
www.EBooksWorld.ir

Hands-on Node.js

Pedro Teixeira

This book is for sale at http://leanpub.com/hands-on-nodejs

This version was published on 2013-12-02

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2011 - 2013 Pedro Teixeira

www.EBooksWorld.ir

http://leanpub.com/hands-on-nodejs
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Pedro Teixeira by spreading the word about this book on Twitter!

The suggested hashtag for this book is #hands-on-nodejs.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#hands-on-nodejs

www.EBooksWorld.ir

http://twitter.com
https://twitter.com/search?q=%23hands-on-nodejs
https://twitter.com/search?q=%23hands-on-nodejs

Contents

Introduction . 1
Why the sudden, exponential popularity? . 1
What does this book cover? . 2
What does this book not cover? . 2
Prerequisites . 2
Exercises . 2
Source code . 2
Where will this book lead you? . 3

Why? . 4
Why the event loop? . 4

Solution 1: Create more call stacks . 4
Solution 2: Use event-driven I/O . 5

Why JavaScript? . 6
How I Learned to Stop Fearing and Love JavaScript 7

Function Declaration Styles . 8
Functions are first-class objects . 10

JSHint . 11
JavaScript versions . 12

References . 12

Starting up . 13
Install Node . 13

Understanding . 15
Understanding the Node event loop . 15

An event-queue processing loop . 15
Callbacks that will generate events . 16
Don’t block! . 16

Modules and NPM . 18
Modules . 18

How Node resolves a module path . 18
Core modules . 18

www.EBooksWorld.ir

CONTENTS

Modules with complete or relative path . 18
As a file . 19
As a directory . 19
As an installed module . 19

NPM - Node Package Manager . 19
Global vs. Local . 19
NPM commands . 20

npm ls [filter . 20
npm install package[@filters . 20
npm rm package_name[@version . 21
npm view [@ . 22

The Package.json Manifest . 22

Utilities . 24
console . 24
util . 25

Buffers . 27
Slice a buffer . 28
Copy a buffer . 28
Buffer Exercises . 28

Exercise 1 . 28
Exercise 2 . 29
Exercise 3 . 29

Event Emitter . 30
.addListener . 30
.once . 30
.removeAllListeners . 31
Creating an Event Emitter . 31
Event Emitter Exercises . 32

Exercise 1 . 32
Exercise 2 . 32

Timers . 33
setTimeout . 33
clearTimeout . 33
setInterval . 34
clearInterval . 34
setImmediate . 34

Escaping the event loop . 35
A note on tail recursion . 35

Low-level file-system . 37

www.EBooksWorld.ir

CONTENTS

fs.stat and fs.fstat . 37
Open a file . 38
Read from a file . 39
Write into a file . 39

Close Your files . 40
File-system Exercises . 40

Exercise 1 - get the size of a file . 40
Exercise 2 - read a chunk from a file . 41
Exercise 3 - read two chunks from a file . 41
Exercise 4 - Overwrite a file . 41
Exercise 5 - append to a file . 41
Exercise 6 - change the content of a file . 41

HTTP . 42
HTTP Server . 42

The http.ServerRequest object . 43
req.url . 43
req.method . 43
req.headers . 43
The http.ServerResponse object . 44

Write a header . 44
Change or set a header . 45
Remove a header . 45
Write a piece of the response body . 45

HTTP Client . 46
http.get() . 46

http.request() . 46
HTTP Exercises . 48

Exercise 1 . 48
Exercise 2 . 48
Exercise 3 . 48
Exercise 4 . 48

Streams . 49
ReadStream . 49

Wait for data . 49
Know when it ends . 49
Pause it . 50
Resume it . 50

WriteStream . 50
Write to it . 50
Wait for it to drain . 51

Some stream examples . 51

www.EBooksWorld.ir

CONTENTS

Filesystem streams . 51
Network streams . 52

The Slow Client Problem and Back-pressure . 52
What can we do? . 53
Pipe . 54

TCP . 55
Write a string or a buffer . 55
end . 56
…and all the other methods . 56
Idle sockets . 56
Keep-alive . 57
Delay or no delay . 57
server.close() . 57
Listening . 58
TCP client . 58
Error handling . 59
TCP Exercises . 60

Exercise 1 . 60
Exercise 2 . 60

Datagrams (UDP) . 61
Datagram server . 61
Datagram client . 62
Datagram Multicast . 63

Receiving multicast messages . 64
Sending multicast messages . 64
What can be the datagram maximum size? . 65

UDP Exercises . 65
Exercise 1 . 65

Child processes . 66
Executing commands . 66
Spawning processes . 67
Killing processes . 68
Child Processes Exercises . 68

Exercise 1 . 68

Streaming HTTP chunked responses . 69
A streaming example . 69

Streaming Exercises . 70
Exercise 1 . 70

TLS / SSL . 71

www.EBooksWorld.ir

CONTENTS

Public / private keys . 71
Private key . 71
Public key . 71

TLS Client . 72
TLS Server . 73

Verification . 73
TLS Exercises . 73

Exercise 1 . 73
Exercise 2 . 73
Exercise 3 . 74
Exercise 4 . 74
Exercise 5 . 74

HTTPS . 75
HTTPS Server . 75
HTTPS Client . 75

Making modules . 77
CommonJS modules . 77
One file module . 77
An aggregating module . 78
A pseudo-class . 79
A pseudo-class that inherits . 79
node_modules and npm bundle . 80

Bundling . 81

Debugging . 82
console.log . 82
Node built-in debugger . 82
Node Inspector . 83
Live edit . 86

Automated Unit Testing . 87
A test runner . 87
Assertion testing module . 89

should.js . 89
Assert truthfulness: . 89
or untruthfulness: . 90
=== true . 90
=== false . 90
emptiness . 90
equality . 90
equal (strict equality) . 90
assert numeric range (inclusive) with within 91

www.EBooksWorld.ir

CONTENTS

test numeric value is above given value: 91
test numeric value is below given value: 91
matching regular expressions . 91
test length . 91
substring inclusion . 91
assert typeof . 91
property existence . 92
array containment . 92
own object keys . 92
responds to, asserting that a given property is a function: 92

Putting it all together . 92

Callback flow . 95
The boomerang effect . 96
Using caolan/async . 97

Collections . 97
Parallel Iterations . 97
async.forEach . 98
async.map . 99
async.forEachLimit . 100
async.filter . 100
async.reject . 101
async.reduce . 102
async.detect . 103
async.some . 104
async.every . 104

Flow Control . 105
async.series . 105
async.parallel . 106
async.whilst . 107
async.until . 108
async.waterfall . 108
async.queue . 109

Appendix - Exercise Results . 110
Chapter: Buffers . 110

Exercise 1 . 110
One Solution: . 110

Exercise 2 . 110
One Solution: . 110

Exercise 3 . 111
One Solution: . 111

Chapter: Event Emitter . 111

www.EBooksWorld.ir

CONTENTS

Exercise 1 . 111
One Solution: . 111

Exercise 2 . 112
One Solution: . 112

Chapter: Low-level File System . 112
Exercise 1 - get the size of a file . 112

One Solution: . 113
Exercise 2 - read a chunk from a file . 113

One Solution: . 113
Exercise 3 - read two chunks from a file . 114

One Solution: . 114
Exercise 4 - Overwrite a file . 114

One Solution: . 115
Exercise 5 - append to a file . 115

One Solution: . 115
Exercise 6 - change the content of a file . 116

One Solution: . 116
Chapter: HTTP . 117

Exercise 1 . 117
One Solution: . 117

Exercise 2 . 118
One Solution: . 118

Exercise 3 . 118
One Solution: . 119

Exercise 4 . 119
One Solution: . 119

Chapter: Child processes . 120
Exercise 1 . 120

One Solution: . 120
Chapter: Streaming HTTP Chunked responses . 122

Exercise 1 . 122
One Solution: . 122

Chapter: UDP . 123
Exercise 1 . 123

One Solution: . 123
Chapter: TCP . 123

Exercise 1 . 123
One Solution: . 123

Exercise 2 . 124
One Solution: . 124

Chapter: SSL / TLS . 125
Exercise 1 . 125

www.EBooksWorld.ir

CONTENTS

One Solution: . 125
Exercise 2 . 128

One Solution: . 128
Exercise 3 . 129

One Solution: . 129
Exercise 4 . 129

One Solution: . 129
Exercise 5 . 130

One Solution: . 130

www.EBooksWorld.ir

Introduction
At the European JSConf 2009, a young programmer by the name of Ryan Dahl, introduced a project
he had been working on. This project was a platform that combined Google’s V8 JavaScript engine
and an event loop to create a server-side platform programmable in JavaScript. The project took a
different direction from other server-side JavaScript platforms: all I/O primitives were event-driven,
and there was no way around it. Leveraging the power and simplicity of JavaScript, it turned the
difficult task of writing asynchronous applications into an easy one. Since receiving a standing
ovation at the end of his talk, Dahl’s project has been met with unprecedented growth, popularity
and adoption.

The project was named Node.js, now known to developers simply as ‘Node’. Node provides purely
evented, non-blocking infrastructure for building highly concurrent software.

Node allows you to easily construct fast and scalable network services.

Why the sudden, exponential popularity?

Server-side JavaScript has been around for some time, what makes this platform so appealing?

In previous server-side JavaScript implementations, javascript was the raison d’etre, and the
approach focussed on translating common practices from other platforms like Ruby, PERL and
Python, into JavaScript. Node took a leap from this and said: “Let’s use the successful event-driven
programming model of the web and use it to make an easy way to build scalable servers. And let’s
make it the only way people can do anything on this platform.”.

It can be argued that JavaScript itself contributed to much of Node’s success, but that would not
explain why other the server-side projects proceeding Node have not yet come close in popularity.
The ubiquity of JavaScript surely has played a role, but, as Ryan Dahl points out, unlike other Server-
side JavaScript attempts, unifying the client and server into a common language was not the primary
goal for Node.

In my perspective there are three factors contributing to Node’s success:

1. Node is Easy - Node makes event-driven I/O programming, the best way to do I/O program-
ming, much easier to understand and achieve than in any other existing platform.

2. Node is Lean - Node does not try to solve all problems. It lays the foundation and supports
the basic internet protocols using clean, functional APIs.

3. Node does not Compromise - Node does not try to be compatible with pre-existing software,
it takes a fresh look at what many believe is the right direction.

www.EBooksWorld.ir

Introduction 2

What does this book cover?

We will analyze what makes Node a different proposal to other server-side solutions, why you
should use it, and how to get started. We will start with an overview but quickly dive into some
code module-by-module. By the end of this book you should be able to build and test your own
Node modules, service producers/consumers and feel comfortable using Node’s conventions and
API.

What does this book not cover?

This book does not attempt to cover the complete Node API. Instead, we will cover what the author
thinks is required to build most applications he would build on Node.

This book does not cover any Node frameworks; Node is a great tool for building frameworks and
many are available, such as cluster management, inter-process communication, web frameworks,
network traffic collection tools, game engines and many others. Before you dive into any of those
you should be familiar with Node’s infrastructure and what it provides to these building blocks.

Prerequisites

This book does not assume you have any prior knowledge of Node, but the code examples are written
in JavaScript, so familiarity with the JavaScript language will help.

Exercises

This book has exercises in some chapters. At the end of this book you can find the exercise
solutions, but I advise you to try do them yourself. Consult this book or use the comprehensive
API documentation on the official http://nodejs.org¹ website.

Source code

You can find some of the source code and exercises used in this book on GitHub:

https://github.com/pgte/handson_nodejs_source_code²

or you can download it directly:

https://github.com/pgte/handson_nodejs_source_code/zipball/master³

¹http://nodejs.org
²https://github.com/pgte/handson_nodejs_source_code
³https://github.com/pgte/handson_nodejs_source_code/zipball/master

www.EBooksWorld.ir

http://nodejs.org
https://github.com/pgte/handson_nodejs_source_code
https://github.com/pgte/handson_nodejs_source_code/zipball/master
http://nodejs.org
https://github.com/pgte/handson_nodejs_source_code
https://github.com/pgte/handson_nodejs_source_code/zipball/master

Introduction 3

Where will this book lead you?

By the end of it, you should understand the Node API and be able to pursue the exploration of other
things built on top of it, being adaptors, frameworks and modules.

Let’s get started!

www.EBooksWorld.ir

Why?
Why the event loop?

The Event Loop is a software pattern that facilitates non-blocking I/O (network, file or inter-process
communication). Traditional blocking programming does I/O in the same fashion as regular function
calls; processing may not continue until the operation is complete. Here is some pseudo-code that
demonstrates blocking I/O:

1 var post = db.query('SELECT * FROM posts where id = 1');

2 // processing from this line onward cannot execute until the line above completes

3 doSomethingWithPost(post);

4 doSomethingElse();

What is happening here? While the database query is being executed, the whole process/thread
idles, waiting for the response. This is called blocking. The response to this query may take many
thousands of CPU cycles, rendering the entire process unusable during this time. The process could
have been servicing other client requests instead of just waiting for the database operation to
complete.

Programming in this way does not allow you to parallelize I/O (such as performing another database
query or communicating with a remote web service). The call stack becomes frozen, waiting for the
database server to reply.

This leaves you with two possible solutions to keep the process busy while it’s waiting: create more
call stacks or use event callbacks.

Solution 1: Create more call stacks

In order for your process to handle more concurrent I/O, you have to have more concurrent call
stacks. For this, you can use threads or some kind of cooperative multi-threading scheme like co-
routines, fibers, continuations, etc.

The multi-threaded concurrency model can be very difficult to configure, understand and debug,
mainly because of the complexity of synchronization when accessing and modifying shared state;
you never know when the thread you are running is going to be taken out of execution, which can
lead to bugs that are strange and difficult to reproduce.

On the other hand, cooperative multi-threading is a “trick” where you have more than one stack,
and each “thread” of execution explicitly de-schedules itself to give time to another parallel “thread”
of execution. This can relax the synchronization requirements but can become complex and error-
prone, since the thread scheduling is left in the hands of the programmer.

www.EBooksWorld.ir

Why? 5

Solution 2: Use event-driven I/O

Event-driven I/O is a scheme where you register callbacks to be invoked when an interesting I/O
event happens.

An event callback is a function that gets invoked when something significant happens (e.g. the result
of a database query is available.)

To use event callbacks in the previous example, you could change it to:

1 callback = function(post) {

2 doSomethingWithPost(post); // this will only execute when the db.query function\

3 returns.

4 };

5 db.query('SELECT * FROM posts where id = 1', callback);

6 doSomethingElse(); // this will execute independent of the returned status of the\

7 db.query call.

Here you are defining a function to be invokedwhen the database operation is complete, then passing
this function as a callback argument to the db query operation. The db operation becomes responsible
for executing the callback when the result is available.

You can use an inline anonymous function to express this in a more compact fashion:

1 db.query('SELECT * FROM posts where id = 1',

2 function(post) {

3 doSomethingWithPost(post); // this will only execute when the db.query functi\

4 on returns.

5 }

6);

7 doSomethingElse(); // this will execute independent of the returned status of the\

8 db.query call.

While db.query() is executing, the process is free to continue running doSomethingElse(), and even
service new client requests.

For quite some time, the C systems-programming “hacker” community has known that event-driven
programming is the best way to scale a server to handle many concurrent connections. It has been
known to bemore efficient regardingmemory: less context to store, and time: less context-switching.

This knowledge has been infiltrating other platforms and communities: some of the most well-
known event loop implementations are Ruby’s Event Machine, Perl’s AnyEvent and Python’s
Twisted, and some others.

www.EBooksWorld.ir

Why? 6

Tip: Formore info about event-driven server implementations, see http://en.wikipedia.org/wiki/Reactor_-
pattern⁴.

Implementing an application using one of these event-driven frameworks requires framework-
specific knowledge and framework-specific libraries. For example: when using Event Machine, you
must avoid using all the synchronous libraries available in Ruby-land (i.e. most libraries). To gain
the benefit of not blocking, you are limited to using libraries that are specific for Event Machine. If
you use blocking libraries, your program will not be able to scale optimally because the event loop is
constantly being blocked, which may delay the processing of I/O events and makes your application
slow, defeating the original purpose of using event-driven I/O.

Node has been devised as a non-blocking I/O server platform from day one, which means that you
should expect everything built on top of it to be non-blocking (with some specific and very explicit
exceptions). Since JavaScript itself is very minimal and does not impose any way of doing I/O (it
does not have a standard I/O library like C, Ruby or Python), Node has a clean slate to build upon.

Why JavaScript?

Ryan Dahl began this pet project of his by building a platform that was programmable in C, but he
soon realized that maintaining the context between callbacks was too complicated and could lead
to poorly structured code. He then turned to Lua.

Lua already has several blocking I/O libraries and the mix of blocking and non-blocking could
confuse average developers and prevent many of them from building scalable applications, so Lua
wasn’t ideal either. Dahl then thought to JavaScript.

JavaScript has closures and first-class functions, making it indeed a powerful match with evented
I/O programming.

Closures are functions that inherit the variables from their enclosing environment. When a function
callback executes it will magically remember the context in which it was declared, along with all
the variables available in that context and any parent contexts. This powerful feature is at the heart
of Node’s success among programming communities. Let’s see a little bit of this goodness in action:

In the web browser, if you want to listen for an event, a button click for instance, you may do
something like:

1 var clickCount = 0;

2 document.getElementById('mybutton').onclick = function() {

3 clickCount ++;

4 alert('Clicked ' + clickCount + ' times.');

5 };

or, using jQuery:

⁴http://en.wikipedia.org/wiki/Reactor_pattern

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Reactor_pattern
http://en.wikipedia.org/wiki/Reactor_pattern
http://en.wikipedia.org/wiki/Reactor_pattern

Why? 7

1 var clickCount = 0;

2 $('button#mybutton').click(function() {

3 clickCount ++;

4 alert('Clicked ' + clickCount + ' times.');

5 });

In both examples we assign or pass a function as an argument. This function will then be executed
later once the relevant event (button clicking in this case) happens. The click handling function has
access to every variable in scope at the point where the function is declared, i.e. practically speaking,
the click handler has access to the clickCount variable, declared in the parent closure.

Here we are using a global variable, “clickCount”, where we store the number of times the user has
clicked a button. We can also avoid having a global variable accessible to the rest of the system,
by wrapping it inside another closure, making the clickCount variable only accessible within the
closure we created:

1 (function() {

2 var clickCount = 0;

3 $('button#mybutton').click(function() {

4 clickCount ++;

5 alert('Clicked ' + clickCount + ' times.');

6 });

7 })();

In line 7 we are invoking a function immediately after defining it. If this is strange to you, don’t
worry! We will cover this pattern later.

Here you don’t have to worry about synchronization: your callback function will not be interrupted
until it returns - you have that guarantee.

How I Learned to Stop Fearing and Love JavaScript

JavaScript has good and bad parts. It was created in 1995 by Netscape’s Brendan Eich, in a rush to
ship the latest version of the Netscape web browser. Due to this rush some good, even wonderful,
parts got into JavaScript, but also some bad parts.

This book will not cover the distinction between JavaScript good and bad parts. (For all we know, we
will only provide examples using the good parts.) For more on this topic you should read Douglas
Crockford book named “JavaScript, The Good Parts”, edited by O’Reilly.

www.EBooksWorld.ir

Why? 8

In spite of its drawbacks, JavaScript quickly - and somewhat unpredictably - became the de-facto
language for web browsers. Back then, JavaScript was used primarily to inspect and manipulate
HTML documents, allowing the creation the first dynamic, client-side web applications.

In late 1998, the World Wide Web Consortium (W3C), standardized the Document Object Model
(DOM), an API devised to inspect and manipulate HTML documents on the client side. In response
to JavaScript’s quirks and the initial hatred towards the DOM API, JavaScript quickly gained a
bad reputation, also due to some incompatibilities between browser vendors (and sometimes even
between products from the same vendor!).

Despite mild to full-blown hate in some developer communities, JavaScript became widely adopted.
For better or for worse, today JavaScript is the most widely deployed programming language on
planet Earth – and growing.

If you learn the good features of the language - such as prototypical inheritance, function closures,
etc. - and learn to avoid or circumvent the bad parts, JavaScript can be a very pleasant language to
work in.

Function Declaration Styles

A function can be declared in many ways in JavaScript. The simplest is declaring it anonymously:

1 function() {

2 console.log('hello');

3 }

Here we declare a function, but it’s not of much use, because we do not invoke it. What’s more, we
have no way to invoke it as it has no name.

We can invoke an anonymous function in-place:

1 (function() {

2 console.log('hello');

3 })();

Here we are executing the function immediately after declaring it. Notice we wrap the entire
function declaration in parenthesis.

We can also name functions like this:

1 function myFunction () {

2 console.log('hello');

3 }

Here we are declaring a named function with the name: “myFunction”. myFunction will be available
inside the scope in which it’s declared

www.EBooksWorld.ir

Why? 9

1 myFunction();

and also within inner scopes:

1 function myFunction () {

2 console.log('hello');

3 }

4

5 (function() {

6 myFunction();

7 })();

A result of JavaScript treating functions as first-class objects means we can assign a function to a
variable:

1 var myFunc = function() {

2 console.log('hello');

3 }

This function is now available as the value of the myFunc variable.

We can assign that function to another variable:

1 var myFunc2 = myFunc;

And invoke them just like any other function:

1 myFunc();

2 myFunc2();

We can mix both techniques, having a named function stored in a variable:

1 var myFunc2 = function myFunc() {

2 console.log('hello');

3 }

4 myFunc2();

(Note though, we cannot access myFunc from outside the scope of myFunc itself!)

We can then use a variable or a function name to pass variables into functions like this:

www.EBooksWorld.ir

Why? 10

1 var myFunc = function() {

2 console.log('hello');

3 }

4

5 console.log(myFunc);

or simply declare it inline if we don’t need it for anything else:

1 console.log(function() {

2 console.log('hello');

3 });

Functions are first-class objects

In fact, there are no second-class objects in JavaScript. JavaScript is the ultimate object-oriented
language, where (almost) everything is indeed, an object. As that, a function is an object where you
can set properties, pass it around inside arguments and return them.

Example:

1 var scheduler = function(timeout, callbackfunction) {

2 return function() {

3 setTimeout(callbackfunction, timeout)

4 }

5 };

6

7 (function() {

8 var timeout = 1000; // 1 second

9 var count = 0;

10 var schedule = scheduler(timeout, function doStuff() {

11 console.log(++ count);

12 schedule();

13 });

14 schedule()

15 })();

16

17 // "timeout" and "count" variables

18 // do not exist in this scope.

In this little example we create a function and store it in a variable called “scheduler” (starting on
line 1). This function returns a function that sets up a timer that will execute a given function within
a certain number of miliseconds (line 3). This timeout will schedule a callback function to be called
after a time delay of 1 second, as specified by the timeout variable.

www.EBooksWorld.ir

Why? 11

In line 9 we declare a function that will immediately be executed in line 15. This is a normal way
to create new scopes in JavaScript. Inside this scope we create 2 variables: “timeout” (line 8) and
“count” (line 9). Note that these variables will not be accessible to the outer scope.

Then, on line 10, we invoke the scheduler function, passing in the timeout value as first argument
and a function called doStuff as second argument. This returns a function that we store in the local
schedule variable, which we later invoke (line 14), provoking the setTimeout to be called. When the
timeout occurs, this function will increment the variable count and log it, and also call the schedule
all over again.

So in this small example we have: functions passed as argument, functions to create scope, functions
to serve as asynchronous callbacks and returning functions. We also here present the notions of
encapsulation (by hiding local variables form the outside scope) and recursion (the function is calling
itself at the end).

In JavaScript you can even set and access attributes in a function, something like this:

1 var myFunction = function() {

2 // do something crazy

3 };

4 myFunction.someProperty = 'abc';

5 console.log(myFunction.someProperty);

6 // #=> "abc"

JavaScript is indeed a powerful language, and if you don’t already, you should learn it and embrace
its good parts.

JSHint

It’s not to be covered here, but JavaScript indeed has some bad parts, and they should be avoided at
all costs.

One tool that’s proven invaluable to me is JSHint. JSHint analyzes your JavaScript file and outputs a
series of errors and warnings, including some known misuses of JavaScript, such as using globally-
scoped variables (like when you forget the “var” keyword), and freezing values inside iteration that
have callbacks that use them, and many others that are useful.

JHLint can be installed using

1 $ npm install -g jshint

If you don’t have Node installed see section about NPM⁵.

and can be run from the command line like this:

⁵index.html#npm

www.EBooksWorld.ir

index.html#npm
index.html#npm

Why? 12

1 $ jshint myfile.js

You can also define what rules this tool should obey by defining and customizing a .jshintrc inside
your home directory. For more information on JSHint plrease refer to the official documentation at
http://www.jshint.com/docs/⁶.

JavaScript versions

JavaScript is a standardwith its own name - ECMAScript - and it has gone through various iterations.
Currently Node natively supports everything the V8 JavaScript engine supports ECMA 3rd edition
and parts of the new ECMA 5th edition.

These parts of ECMA5 are nicely documented on the following githubwiki page: https://github.com/joyent/node/wiki/ECMA-
5-Mozilla-Features-Implemented-in-V8⁷

References

Event Machine: http://rubyeventmachine.com/⁸

Twisted: http://twistedmatrix.com/trac/⁹

AnyEvent: http://software.schmorp.de/pkg/AnyEvent.html¹⁰

JavaScript, the Good Parts - Douglas Crockford - O’Reilly - http://www.amazon.com/exec/obidos/ASIN/0596517742/wrrrldwideweb¹¹

JSHint http://www.jshint.com/¹²

⁶http://www.jshint.com/docs/
⁷https://github.com/joyent/node/wiki/ECMA-5-Mozilla-Features-Implemented-in-V8
⁸http://rubyeventmachine.com/
⁹http://twistedmatrix.com/trac/
¹⁰http://software.schmorp.de/pkg/AnyEvent.html
¹¹http://www.amazon.com/exec/obidos/ASIN/0596517742/wrrrldwideweb
¹²http://www.jshint.com/

www.EBooksWorld.ir

http://www.jshint.com/docs/
https://github.com/joyent/node/wiki/ECMA-5-Mozilla-Features-Implemented-in-V8
https://github.com/joyent/node/wiki/ECMA-5-Mozilla-Features-Implemented-in-V8
http://rubyeventmachine.com/
http://twistedmatrix.com/trac/
http://software.schmorp.de/pkg/AnyEvent.html
http://www.amazon.com/exec/obidos/ASIN/0596517742/wrrrldwideweb
http://www.jshint.com/
http://www.jshint.com/docs/
https://github.com/joyent/node/wiki/ECMA-5-Mozilla-Features-Implemented-in-V8
http://rubyeventmachine.com/
http://twistedmatrix.com/trac/
http://software.schmorp.de/pkg/AnyEvent.html
http://www.amazon.com/exec/obidos/ASIN/0596517742/wrrrldwideweb
http://www.jshint.com/

Starting up
Install Node

If you don’t have the latest version of Node.js installed in your local machine you should do that
now: Head out to http://nodejs.org¹³ and click on the “Install” button.

Depending on your platform, you will get a package installer downloaded that you should execute to
install Node. This works if you have a MacOS or aWindows machine. If you’re on a Linux box, your
distribution probably supports the latest stable version of Node.js, but you can always download and
build from the source code.

After you are done, you should be able to run the node executable on the command line:

1 $ node -v

2 v0.10.22

The node executable can be executed in two main fashions: CLI (command-line interface) or file.

To launch the CLI, just type, in the command line:

1 $ node

and you will get a JavaScript command line prompt, which you can use to evaluate JavaScript. It’s
great for kicking the tires and trying out some stuff quickly.

You can also launch Node on a file, which will make Node parse and evaluate the JavaScript on that
file, and when it ends doing that, it enters the event loop. Once inside the event loop, node will exit
if it has nothing to do, or will wait and listen for events.

Let’s then create our first Hello World HTTP server in Node.js inside a file named hello_world.js:

hello_world.js:

¹³http://nodejs.org

www.EBooksWorld.ir

http://nodejs.org
http://nodejs.org

Starting up 14

1 var http = require('http');

2 var server = http.createServer();

3 server.on('request', function(req, res) {

4 res.end('Hello World!');

5 });

6 server.listen(8080);

You can launch Node on a file like this:

1 $ node hello_world.js

Now, open a web browser and point it to http://localhost:8080¹⁴:

Hello World on the browser

¹⁴http://localhost:8080

www.EBooksWorld.ir

http://localhost:8080
http://localhost:8080

Understanding
Understanding the Node event loop

Node makes evented I/O programming simple and accessible, putting speed and scalability on the
fingertips of the common programmer.

But the event loop comes with a price. Even though you are not aware of it (and Node makes a
good job at this), you should understand how it works. Every good programmer should know the
intricacies of the platforms he / she is building for, its do’s and don’ts, and in Node it should be no
different.

An event-queue processing loop

You should think of the event loop as a loop that processes an event queue. Interesting events happen,
and when they do, they go in a queue, waiting for their turn to be processed. Then, there is an event
loop popping out these events, one by one, and invoking the associated callback functions, one at a
time. The event loop pops one event out of the queue and invokes the associated callback. When the
callback returns, the event loop pops the next event and invokes the associated callback function.
When the event queue is empty, the event loop waits for new events if there are some pending calls
or servers listening, or just quits of there are none.

So, let’s jump into our first Node example. Write a file named hello.js with the following content:

Source code in chapters/understanding/1_hello.js

1 setTimeout(function() {

2 console.log('World!');

3 }, 2000);

4 console.log('Hello');

Run it using the node command line tool:

1 $ node hello.js

You should see the word “Hello” written out, and then, 2 seconds later, “World!”. Shouldn’t “World!”
have been written first since it appears first on the code? No, and to answer that properly we must
analyze what happens when executing this small program.

www.EBooksWorld.ir

Understanding 16

On line 1 we declare an anonymous function that prints out “World!”. This function, which is not
yet executed, is passed in as the first argument to a setTimeout call, which schedules this function
to run after 2000 milliseconds have passed. Then, on line 4, we output “Hello” into the console.

Two seconds later the anonymous function we passed in as an argument to the setTimeout call is
invoked, printing “World!”.

So, the first argument to the setTimeout call is a function we call a “callback”. It’s a function which
will be called later, when the event we set out to listen to (in this case, a time-out of 2 seconds)
occurs.

We can also pass callback functions to be called on events like when a new TCP connection is
established, some file data is read or some other type of I/O event.

After our callback is invoked, printing “World”, Node understands that there is nothing more to do
and exits.

Callbacks that will generate events

Let’s complicate this a bit further. Let’s keep Node busy and keep on scheduling callbacks like this:

Source code in chapters/understanding/2_repeat.js

1 (function schedule() {

2 setTimeout(function() {

3 console.log('Hello World!');

4 schedule();

5 }, 1000);

6 })();

Here we are wrapping the whole thing inside a function named “schedule”, and we are invoking it
immediately after declaring it on line 6. This function will schedule a callback to execute in 1 second.
This callback, when invoked, will print “Hello World!” and then run schedule again.

On every callback we are registering a new one to be invoked one second later, never letting Node
finish and exit. This little script will just keep printing “Hello World”.

Don’t block!

Node’s primary concern and the main use case for an event loop is to create highly scalable servers.
Since an event loop runs in a single thread, it only processes the next event when the callback returns.
If you could see the call stack of a busy Node application you would see it going up and down really
fast, invoking callbacks and picking up the next event in queue. But for this to work well you have
to clear the event loop as fast as you can.

www.EBooksWorld.ir

Understanding 17

There are two main categories of things that can block the event loop: synchronous I/O and big
loops.

Node API is not all asynchronous. Some parts of it are synchronous like, for instance, some
file operations. Don’t worry, they are very well marked: they always terminate in “Sync” - like
fs.readFileSync - , and they should not be used, or used only when initializing (more about that
later). On a working server you should never use a blocking I/O function inside a callback, since
you’re blocking the event loop and preventing other callbacks - probably belonging to other client
connections - from being served. You’ll just be increasing the response latency, decreasing the
responsiveness of your service or application.

One function that is synchronous and does not end in “Sync” is the “require” function, which should
only be used when initializing an app or a module. Tip: Don’t put a require statement inside a
callback, since it is synchronous and thus will slow down your event loop. Do all your require’ing
during the initialization phase of Node and not inside any callback (later addressed).

The second category of blocking scenarios is when you are performing loops that take a lot of time,
like iterating over thousands of objects or doing complex CPU intensive, time consuming operations
in memory. There are several techniques that can be used to work around that, which I’ll cover later.

Here is a case where we present some simple code that blocks the event loop:

1 var open = false;

2

3 setTimeout(function() {

4 open = true;

5 }, 1000)

6

7 while(!open) {

8 // wait

9 }

10

11 console.log('opened!');

Here we are setting a timeout, on line 3, that invokes a function that will set the open variable to
true. This function is set to be triggered in one second. On line 7 we are waiting for the variable to
become true.

We could be led to believe that, in one second the timeout will happen and set open to true, and that
the while loop will stop and that we will get “opened!” (line 11) printed.

But this never happens. Node will never execute the timeout callback because the event loop is stuck
on this while loop started on line 7, never giving it a chance to process the timeout event!

www.EBooksWorld.ir

Modules and NPM
Modules

Client-side JavaScript has a bad reputation also because of the common namespace shared by all
scripts, which can lead to conflicts and security leaks.

Node implements the CommonJS modules standard, where each module is separated from the other
modules, having a separate namespace to play with, and exporting only the desired properties.

To include an existing module you can use the require function like this:

1 var module = require('module_name');

This will fetch a module that was installed by NPM (more about NPM later). If you want to author
modules (as you should when building an application), you can also use the relative notation like
this:

1 var module = require("./path/to/module_name");

This will fetch the module from a path relative to the current file we are executing. We will cover
creating modules in a later section.

In this format you can use an absolute path (starting with “/”) or a relative one (starting with “.”).

Modules are loaded only once per process, that is, when you have several require calls to the same
module, Node caches the require call if it resolves to the same file. Which leads us to the next chapter.

How Node resolves a module path

So, how does node resolve a call to “require(module_path)”? Here is the recipe:

Core modules

There are a list of core modules, which Node includes in the distribution binary. If you require one
of those modules, Node just returns that module and the require() ends.

Modules with complete or relative path

If the module path begins with “./” or “/”, Node tries to load the module as a file. If it does not
succeed, it tries to load the module as a directory.

www.EBooksWorld.ir

Modules and NPM 19

As a file

When loading as a file, if the file exists, Node just loads it as JavaScript text. If not, it tries doing the
same by appending “.js” to the given path. If not, it tries appending “.node” and load it as a binary
add-on.

As a directory

If appending “/package.json” is a file, try loading the package definition and look for a “main” field.
Try to load it as a file.

If unsuccessful, try to load it by appending “/index” to it.

As an installed module

If the module path does not begin with “.” or “/” or if loading it with complete or relative paths does
not work, Node tries to load the module as a module that was previously installed. For that it adds
“/node_modules” to the current directory and tries to load the module from there. If it does not
succeed it tries adding “/node_modules” to the parent directory and load the module from there. If
it does not succeed it moves again to the parent directory and so on, until either the module is found
or the root of the tree is found.

This means that you can put your Node modules into your app directory, and Node will find those.

Later we will see how using this feature together with NPM we can bundle and “freeze” your
application dependencies.

Also you can, for instance, have a node_modules directory on the home folder of each user, and so
on. Node tries to load modules from these directories, starting first with the one that is closest up
the path.

NPM - Node Package Manager

NPMhas become the standard formanagingNode packages throughout time, and tight collaboration
between Isaac Schlueter - the original author of NPM - and Ryan Dahl - the author and maintainer
on Node - has further tightened this relationship to the point where, starting at version 0.4.0, Node
supports the package.json file format to indicate dependencies and package starting file. NPM is also
installed when you install Node.

Global vs. Local

NPM has two fundamentally different ways of working: local and global.

In the global mode, all packages are installed inside a shared folder, and you can keep only one
version of each package.

www.EBooksWorld.ir

Modules and NPM 20

In local mode you can have different installed packages per directory: In this mode NPM keeps a
local directory named “node_modules” where it keeps the local modules installed. By switching
directories you are inside different local contexts that can have different modules installed.

NPM works in local mode by default. To enable global mode you must explicitly use the “-g” switch
to any of the following commands.

NPM commands

NPM can be used on the command line. The basic commands are:

]

npm ls [filter]

Use this to see the list of all packages and their versions (npm ls with no filter), or filter by a tag
(npm filter tag). Examples:

List all installed packages:

1 $ npm ls installed

List all stable packages:

1 $ npm ls stable

You can also combine filters:

1 $ npm ls installed stable

You can also use npm ls to search by name:

1 $ npm ls fug

(this will return all packages that have “fug” inside its name or tags)

You can also query it by version, prefixed with the “@” character:

1 $ npm ls @1.0

]

npm install package[@filters]

With this command you can install a package and all the packages it depends on.

To install the latest version of a package do:

www.EBooksWorld.ir

Modules and NPM 21

1 $ npm install package_name

Example:

1 $ npm install express

To install a specific version of a package do:

1 $npm install package_name@version

Example:

1 $ npm install express@2.0.0beta

To install the latest within a version range you can specify, for instance:

1 $ npm install express@">=0.1.0

2

3 You can also combine many filters to select a specific version, combining version\

4 range and / or tags like this:

5

6 $ npm install sax@">=0.1.0

7

8 All the above commands install packages into the local directory.To install a pac\

9 kage globally, use the "-g " switch like this:

10

11 $ npm install -g express

[

package_name[@version] …]]npm rm package_name[@version] [package_name[@version] …]

Use this command to uninstall packages. If versions are omitted, then all the found versions are
removed.

Example:

1 $ npm rm sax

If you wish to remove a package that was installed globally you need to explicitly use the “-g” switch:

www.EBooksWorld.ir

Modules and NPM 22

1 $ npm rm -g express

[

[.]…]]npm view [@] [[.]…]

To view all of a package info. Defaults to the latest version if version is omitted.

View the latest info on the “connect” package:

1 $ npm view connect

View information about a specific version:

1 $ npm view connect@1.0.3

Further on we will look more into NPM and how it can help us bundle and “freeze” application
dependencies.

The Package.json Manifest

Each application or module can (and should) have a manifest file named package.json at it’s root.
This files tells, amongst other things, the name of the module, the current version of it and what it’s
dependencies are.

If a module or application depends on other modules it should have a package.json file at it’s root
stating which modules it depends on.

For instance, if my application is named “myapp” and depends on third-party modules request and
async it should contain a package.json file like this:

1 {

2 "name": "myapp",

3 "version": 1.0.0,

4 "dependencies": {

5 "request": "*",

6 "async": "*"

7 }

8 }

This manifest states that this application depends on any version of the modules request and async,
denoted by the * as the version specification. Should the application rely on specific versions of any
of these modules, it should specify the version like this:

www.EBooksWorld.ir

Modules and NPM 23

1 {

2 "name": "myapp",

3 "version": 1.0.0,

4 "dependencies": {

5 "request": "2.27.0",

6 "async": "0.2.9"

7 }

8 }

Here we’re tying the application to these two specific versions, but we can set the version
specification to be more loose:

1 {

2 "name": "myapp",

3 "version": 1.0.0,

4 "dependencies": {

5 "request": "2.27.x",

6 "async": "0.2.x"

7 }

8 }

In this case we’re saying that the application depends on request version 2 (major) . 27 (minor)
and that any patch version is acceptable. The request version 2.27.3, should it exist, satisfies this
requirement, as does version 2.27.0.

It’s common practise to depend on a specific major and minor version and not specify the patch
version, since patch versions should thoeretically only solve issues.

If you’re going to deploy your application into several machines, consider specifying the exact
version: pin down the major, minor and patch versions of each module. This prevents having two
distinct Node processes running different versions of modules that may cause different behaviour,
preventing bugs from being easily reproduced and traced.

www.EBooksWorld.ir

Utilities
console

Node provides a global “console” object to which you can output strings using:

1 console.log("Hello");

This simply outputs the string into the process stdout after formatting it. You can pass in, instead of
a string, an object like this:

1 var a = {1: true, 2: false};

2 console.log(a); // => { '1': true, '2': false }

In this case console.log outputs the object using util.inspect (covered later);

You can also use string interpolation like this:

1 var a = {1: true, 2: false};

2 console.log('This is a number: %d, and this is a string: %s, and this is an objec\

3 t outputted as JSON: %j', 42, 'Hello', a);

Which outputs:

1 This is a number: 42, and this is a string: Hello, and this is an object outputte\

2 d as JSON: {"1":true,"2":false}

console also allows you to write into the the stderr using:

1 console.warn("Warning!");

and to print a stack trace:

www.EBooksWorld.ir

Utilities 25

1 console.trace();

2

3 Trace:

4 at [object Context]:1:9

5 at Interface. (repl.js:171:22)

6 at Interface.emit (events.js:64:17)

7 at Interface._onLine (readline.js:153:10)

8 at Interface._line (readline.js:408:8)

9 at Interface._ttyWrite (readline.js:585:14)

10 at ReadStream. (readline.js:73:12)

11 at ReadStream.emit (events.js:81:20)

12 at ReadStream._emitKey (tty_posix.js:307:10)

13 at ReadStream.onData (tty_posix.js:70:12)

util

Node has an util module which bundles some functions like:

1 var util = require('util');

2 util.log('Hello');

which outputs a the current timestamp and the given string like this:

1 14 Mar 16:38:31 - Hello

The inspect function is a nice utility which can aid in quick debugging by inspecting and printing
an object properties like this:

1 var util = require('util');

2 var a = {1: true, 2: false};

3 console.log(util.inspect(a));

4 // => { '1': true, '2': false }

util.inspect accepts more arguments, which are:

1 util.inspect(object, showHidden, depth = 2, showColors);

www.EBooksWorld.ir

Utilities 26

the second argument, showHidden should be turned on if you wish inspect to show you non-
enumerable properties, which are properties that belong to the object prototype chain, not the object
itself. depth, the third argument, is the default depth on the object graph it should show. This is useful
for inspecting large objects. To recurse indefinitely, pass a null value.

Tip: util.inspect keeps track of the visited objects, so circular dependencies are no problem, and will
appear as “[Circular]” on the outputted string.

The util module has some other niceties, such as inheritance, which will be covered in a more
appropriate chapter.

www.EBooksWorld.ir

Buffers
Natively, JavaScript is not very good at handling binary data, so Node adds a native buffer
implementation with a JavaScript way of manipulating it. It’s the standard way in Node to transport
data.

Generally, you can pass buffers on every Node API requiring data to be sent.
Also, when receiving data on a callback, you get a buffer (exceptwhen you specify a stream encoding,
in which case you get a String).
This will be covered later.

You can create a Buffer from an UTF-8 string like this:

1 var buf = new Buffer('Hello World!');

You can also create a buffer from strings with other encodings, as long as you pass it as the second
argument:

1 var buf = new Buffer('8b76fde713ce', 'base64');

Accepted encodings are: “ascii”, “utf8” and “base64”.

or you can create a new empty buffer with a specific size:

1 var buf = new Buffer(1024);

and you can manipulate it:

1 buf[20] = 56; // set byte 20 to 56

You can also convert it to a UTF-8-encoded string:

1 var str = buf.toString();

or into a string with an alternative encoding:

www.EBooksWorld.ir

Buffers 28

1 var str = buf.toString('base64');

UTF-8 is the default encoding for Node, so, in a general way, if you omit it as we did on the
buffer.toString() call, UTF-8 will be assumed.

Slice a buffer

A buffer can be sliced into a smaller buffer by using the appropriately named slice() method like
this:

1 var buffer = new Buffer('this is the string in my buffer');

2 var slice = buffer.slice(10, 20);

Here we are slicing the original buffer that has 31 bytes into a new buffer that has 10 bytes equal to
the 10th to 20th bytes on the original buffer.

Note that the slice function does not create new buffer memory: it uses the original untouched buffer
underneath.

Tip: If you are afraid you will be wasting precious memory by keeping the old buffer around when
slicing it, you can copy it into another like this:

Copy a buffer

You can copy a part of a buffer into another pre-allocated buffer like this:

1 var buffer = new Buffer('this is the string in my buffer');

2 var slice = new Buffer(10);

3 var targetStart = 0,

4 sourceStart = 10,

5 sourceEnd = 20;

6 buffer.copy(slice, targetStart, sourceStart, sourceEnd);

Here we are copying part of buffer into slice, but only positions 10 through 20.

Buffer Exercises

Exercise 1

Create an uninitialized buffer with 100 bytes length and fill it with bytes with values starting from
0 to 99. And then print its contents.

www.EBooksWorld.ir

Buffers 29

Exercise 2

Do what is asked on the previous exercise and then slice the buffer with bytes ranging 40 to 60. And
then print it.

Exercise 3

Do what is asked on exercise 1 and then copy bytes ranging 40 to 60 into a new buffer. And then
print it.

www.EBooksWorld.ir

Event Emitter
On Node many objects can emit events. For instance, a TCP server can emit a ‘connect’ event every
time a client connects. Or a file stream request can emit a ‘data’ event.

.addListener

You can listen for these events by calling one of these objects’ “addListener” method, passing in a
callback function. For instance, a file ReadStream can emit a “data” event every time there is some
data available to read.

Instead of using the “addListener” function, you can also use the “on” method, which is simply an
alias for “addListener”:

1 var fs = require('fs'); // get the fs module

2 var readStream = fs.createReadStream('/etc/passwd');

3 readStream.on('data', function(data) {

4 console.log(data);

5 });

6 readStream.on('end', function() {

7 console.log('file ended');

8 });

Here we are binding to the readStream’s “data” and “end” events, passing in callback functions to
handle each of these cases. When one of these events happens, the readStream will call the callback
function we pass in.

You can either pass in an anonymous function as we are doing here, or you can pass a function name
for a function available on the current scope, or even a variable containing a function.

.once

You may also want to listen for an event exactly once. For instance, if you want to listen to the first
connection on a server, you should do something like this:

www.EBooksWorld.ir

Event Emitter 31

1 server.once('connection', function (stream) {

2 console.log('Ah, we have our first user!');

3 });

This works exactly like our “on” example, except that our callback function will be called at most
once. It has the same effect as the following code:

1 function connListener(stream) {

2 console.log('Ah, we have our first user!');

3 server.removeListener('connection', connListener);

4 }

5 server.on('connection', connListener);

Here we are using removeListener, which also belongs to the EventEmitter pattern. It accepts the
event name and the function it should remove.

.removeAllListeners

If you ever need to, you can also remove all listeners for an event from an Event Emitter by simply
calling

1 server.removeAllListeners('connection');

Creating an Event Emitter

If you are interested in using this Event Emitter pattern - and you should - throughout your
application, you can. You can create a pseudo-class and make it inherit from the EventEmitter like
this:

1 var EventEmitter = require('events').EventEmitter,

2 util = require('util');

3

4 // Here is the MyClass constructor:

5 var MyClass = function(option1, option2) {

6 this.option1 = option1;

7 this.option2 = option2;

8 }

9

10 util.inherits(MyClass, EventEmitter);

util.inherits is setting up the prototype chain so that you get the EventEmitter prototype methods
available to your MyClass instances.

This way instances of MyClass can emit events:

www.EBooksWorld.ir

Event Emitter 32

1 MyClass.prototype.someMethod = function() {

2 this.emit('custom event', 'some arguments');

3 }

Here we are emiting an event named “custom event”, sending also some data (“some arguments” in
this case).

Now clients of MyClass instances can listen to “custom event” events like this:

1 var myInstance = new MyClass(1, 2);

2 myInstance.on('custom event', function() {

3 console.log('got a custom event!');

4 });

Tip: The Event Emitter is a nice way of enforcing the decoupling of interfaces, a software design
technique that improves the independence from specific interfaces, making your code more flexible.

Event Emitter Exercises

Exercise 1

Build a pseudo-class named “Ticker” that emits a “tick” event every 1 second.

Exercise 2

Build a script that instantiates one Ticker and bind to the “tick” event, printing “TICK” every time
it gets one.

www.EBooksWorld.ir

Timers
Node implements the timers API also found in web browsers. The original API is a bit quirky, but
it hasn’t been changed for the sake of consistency.

setTimeout

setTimeout lets you schedule an arbitrary function to be executed in the future. An example:

1 var timeout = 2000; // 2 seconds

2 setTimeout(function() {

3 console.log('timed out!');

4 }, timeout);

This code will register a function to be called when the timeout expires. Again, as in any place in
JavaScript, you can pass in an inline function, the name of a function or a variable whose value is a
function.

You can use setTimeout with a timeout value of 0 so that the function you pass gets executed some
time after the stack clears, but with no waiting. This can be used to, for instance schedule a function
that does not need to be executed immediately.

This was a trick sometimes used on browser JavaScript, but, as we will see, Node’s process.nextTick()
can be used instead of this, and it’s more efficient.

clearTimeout

setTimeout returns a timeout handle that you can use to disable it like this:

1 var timeoutHandle = setTimeout(function() { console.log('yehaa!'); }, 1000);

2 clearTimeout(timeoutHandle);

Here the timeout will never execute because we clear it right after we set it.

Another example:

Source code in chapters/timers/timers_1.js

www.EBooksWorld.ir

Timers 34

1 var timeoutA = setTimeout(function() {

2 console.log('timeout A');

3 }, 2000);

4

5 var timeoutB = setTimeout(function() {

6 console.log('timeout B');

7 clearTimeout(timeoutA);

8 }, 1000);

Here we are starting two timers: one with 1 second (timeoutB) and the other with 2 seconds
(timeoutA). But timeoutB (which fires first) unschedules timeoutA on line 7, so timeoutA never
executes - and the program exits right after line 7 is executed.

setInterval

Set interval is similar to set timeout, but schedules a given function to run every X seconds like this:

Source code in chapters/timers/timers_2.js

1 var period = 1000; // 1 second

2 var interval = setInterval(function() {

3 console.log('tick');

4 }, period);

This will indefinitely keep the console logging “tick” unless you terminate Node. You can unschedule
an interval by calling clearInterval.

clearInterval

clearInterval unschedules a running interval (previously scheduled with setInterval).

1 var interval = setInterval(...);clearInterval(interval);

Here we are using the setInterval return value stored on the interval variable to unschedule it on
line 2.

setImmediate

You can also schedule a callback function to run on the next run of the event loop. You can use it
like this:

www.EBooksWorld.ir

Timers 35

1 setImmediate(function() {

2 // this runs on the next event loop

3 console.log('yay!');

4 });

As we saw, this method is prefered to setTimeout(fn, 0) because it is more efficient.

Escaping the event loop

On each loop, the event loop executes the queued I/O events sequentially by calling the associated
callbacks. If, on any of the callbacks you take too long, the event loop won’t be processing other
pending I/O events meanwhile. This can lead to an increased latency in our application or service.
When executing something that may take too long, you can delay the execution until the next event
loop, so waiting events will be processed meanwhile. It’s like going to the back of the line on a
waiting line.

To escape the current event loop you can use setImmediate() like this:

1 setImmediate(function() {

2 // do something

3 });

You can use this to delay processing that does not have to run immediately, until the next event
loop.

For instance, you may need to remove a file, but perhaps you don’t need to do it before replying to
the client. So, you could do something like this:

1 stream.on('data', function(data) {

2 stream.end('my response');

3 setImmediate(function() {

4 fs.unlink('path/to/file');

5 });

6 });

A note on tail recursion

Let’s say you want to schedule a function that does some I/O - like parsing a log file - to execute
periodically, and you want to guarantee that no two of those functions are executing at the same
time. The best way is not to use a setInterval, since you don’t have that guarantee. The interval will
fire regardless of whether the function has finished its duty or not.

Supposing there is an asynchronous function called “async” that performs some I/O and gets a
callback to be invoked when finished. We want to call it every second, so:

www.EBooksWorld.ir

Timers 36

1 var interval = 1000; // 1 second

2 setInterval(function() {

3 async(function() {

4 console.log('async is done!');

5 });

6 }, interval);

If any two async() calls can’t overlap, you are better off using tail recursion like this:

1 var interval = 1000; // 1 second

2 (function schedule() {

3 setTimeout(function() {

4 async(function() {

5 console.log('async is done!');

6 schedule();

7 });

8 }, interval)

9 })();

Here we are declaring a function named schedule (line 2) and we are invoking it immediately after
we are declaring it (line 9).

This function schedules another function to execute within one second (line 3 to 8). This other
function will then call async() (line 4), and only when async is done we schedule a new one by
calling schedule() again (line 6), this time inside the schedule function. This way we can be sure that
no two calls to async execute simultaneously in this context.

The difference is that we probably won’t have async called every second (unless async takes no time
to execute), but we will have it called 1 second after the last one finished.

www.EBooksWorld.ir

Low-level file-system
Node has a nice streaming API for dealing with files in an abstract way, as if they were network
streams, but sometimes you might need to go down a level and deal with the filesystem itself.

First, a nice set of utilities:

fs.stat and fs.fstat

You can query some meta-info on a file (or dir) by using fs.stat like this:

1 var fs = require('fs');

2

3 fs.stat('/etc/passwd', function(err, stats) {

4 if (err) {console.log(err.message); return; }

5 console.log(stats);

6 //console.log('this file is ' + stats.size + ' bytes long.');

7 });

If you print the stats object it will be something like:

1 { dev: 234881026,

2 ino: 24606,

3 mode: 33188,

4 nlink: 1,

5 uid: 0,

6 gid: 0,

7 rdev: 0,

8 size: 3667,

9 blksize: 4096,

10 blocks: 0,

11 atime: Thu, 17 Mar 2011 09:14:12 GMT,

12 mtime: Tue, 23 Jun 2009 06:19:47 GMT,

13 ctime: Fri, 14 Aug 2009 20:48:15 GMT

14 }

stats is a Stats instance, with which you can call:

www.EBooksWorld.ir

Low-level file-system 38

1 stats.isFile()

2 stats.isDirectory()

3 stats.isBlockDevice()

4 stats.isCharacterDevice()

5 stats.isSymbolicLink()

6 stats.isFIFO()

7 stats.isSocket()

If you have a plain file descriptor you can use fs.fstat(fileDescriptor, callback) instead.

More about file descriptors later.

If you are using the low-level filesystem API in Node, you will get file descriptors as a way to
represent files. These file descriptors are plain integer numbers that represent a file in your Node
process, much like in C POSIX APIs.

Open a file

You can open a file by using fs.open like this:

1 var fs = require('fs');

2 fs.open('/path/to/file', 'r', function(err, fd) {

3 // got fd

4 });

The first argument to fs.open is the file path. The second argument contains the flags, indicating the
mode in which the file is to be opened. The flags can be ‘r’, ‘r+’, ‘w’, ‘w+’, ‘a’, or ‘a+’.

Here follow the semantics for each flag, taken from the fopen man page:

• r - Open text file for reading. The stream is positioned at the beginning of the file.
• r+ - Open for reading and writing. The stream is positioned at the beginning of
the file.

• w - Truncate file to zero length or create text file for writing. The stream is
positioned at the beginning of the file.

• w+ - Open for reading and writing. The file is created if it does not exist, otherwise
it is truncated. The stream is positioned at the beginning of the file.

• a - Open for writing. The file is created if it does not exist. The stream is positioned
at the end of the file. Subsequent writes to the file will always end up at the then
current end of file.

• a+ - Open for reading andwriting. The file is created if it does not exist. The stream
is positioned at the end of the file. Subsequent writes to the file will always end
up at the then current end of file.

On the callback function, you get a second argument (fd), which is a file descriptor- nothing more
than an integer that identifies the open file, which you can use like a handler to read and write from.

www.EBooksWorld.ir

Low-level file-system 39

Read from a file

Once it’s open, you can also read from a file like this:

Source code in chapters/fs/read.js

1 var fs = require('fs');

2 fs.open('/var/log/system.log', 'r', function(err, fd) {

3 if (err) throw err;

4 var readBuffer = new Buffer(1024),

5 bufferOffset = 0,

6 bufferLength = readBuffer.length,

7 filePosition = 100;

8

9 fs.read(fd, readBuffer, bufferOffset, bufferLength, filePosition,

10 function(err, readBytes) {

11 if (err) throw err;

12 console.log('just read ' + readBytes + ' bytes');

13 if (readBytes > 0) {

14 console.log(readBuffer.slice(0, readBytes));

15 }

16 });

17 });

Here we are opening the file, and when it’s opened we are asking to read a chunk of 1024 bytes from
it, starting at position 100 (line 9). The last argument to the fs.read call is a callback function (line
10) which will be invoked when one of the following 3 happens:

• there is an error,
• something has been read or
• nothing could be read.

On the first argument, this callback gets an error if there was an one, or null. On the second argument
(readBytes) it gets the number of bytes read into the buffer. If the read bytes is zero, the file has
reached the end.

Write into a file

To write into a file descriptor you can use fs.write like this:

www.EBooksWorld.ir

Low-level file-system 40

1 var fs = require('fs');

2

3 fs.open('/var/log/system.log', 'a', function(err, fd) {

4 var writeBuffer = new Buffer('writing this string'),

5 bufferOffset = 0,

6 bufferLength = writeBuffer.length,

7 filePosition = null;

8

9 fs.write(

10 fd,

11 writeBuffer,

12 bufferOffset,

13 bufferLength,

14 filePosition,

15 function(err, written) {

16 if (err) { throw err; }

17 console.log('wrote ' + written + ' bytes');

18 }

19);

20 });

Here we are opening the file in append-mode (‘a’) on line 3, and then we are writing into it (line 8),
passing in a buffer with the data we want written, an offset inside the buffer where we want to start
writing from, the length of what we want to write, the file position and a callback. In this case we
are passing in a file position of null, which is to say that he writes at the current file position. Here
we are also opening in append-mode, so the file cursor is positioned at the end of the file.

Close Your files

On all these examples we did not close the files. This is because these are small simple examples
destined to be run and returned. All open files will be closed once the process exits.

In real applications you should keep track of those file descriptors and eventually close them using
fs.close(fd[, callback]) when no longer needed.

File-system Exercises

You can check out the solutions at the end of this book.

Exercise 1 - get the size of a file

Having a file named a.txt, print the size of that files in bytes.

www.EBooksWorld.ir

Low-level file-system 41

Exercise 2 - read a chunk from a file

Having a file named a.txt, print bytes 10 to 14.

Exercise 3 - read two chunks from a file

Having a file named a.txt, print bytes 5 to 9, and when done, read bytes 10 to 14.

Exercise 4 - Overwrite a file

Having a file named a.txt, Overwrite it with the UTF-8-encoded string “ABCDEFGHIJLKLMNOPQRSTU-
VXYZ0123456789abcdefghijklmnopqrstuvxyz”.

Exercise 5 - append to a file

Having a file named a.txt, append UTF-8-encoded string “abc” to file a.txt.

Exercise 6 - change the content of a file

Having a file named a.txt, change byte at pos 10 to the UTF-8 value of “7”.

www.EBooksWorld.ir

HTTP
HTTP Server

You can easily create an HTTP server in Node. Here is the famous http server “HelloWorld” example:

Source in file:
http/http_server_1.js

1 var http = require('http');

2

3 var server = http.createServer();

4 server.on('request', function(req, res) {

5 res.writeHead(200, {'Content-Type': 'text/plain'});

6 res.write('Hello World!');

7 res.end();

8 });

9 server.listen(4000);

On line 1 we get the ‘http’ module, from which we call createServer() (line 3) to create an HTTP
server.

We then listen for ‘request’ type events, passing in a callback function that takes two arguments:
the request object and the response object. We can then use the response object to write back to the
client.

On line 5 we write a header (ContentType: text/plain) and the HTTP status 200 (OK).
On line 6 we reply with the string “Hello World!” and on line 7 we terminate the request.
On line 9 we bind the server to the port 4000.
So, if you run this script on node you can then point your browser to http://localhost:4000 and you
should see the “Hello World!” string on it.

This example can be shortened to:

Source in file:
http/http_server_2.js

www.EBooksWorld.ir

HTTP 43

1 require('http').createServer(function(req, res) {

2 res.writeHead(200, {'Content-Type': 'text/plain'});

3 res.end('Hello World!');

4 }).listen(4000);

Here we are giving up the intermediary variables for storing the http module (since we only need
to call it once) and the server (since we only need to make it listen on port 4000). Also, as a shortcut,
the http.createServer function accepts a callback function that will be invoked on every request.

There is one last shortcut here: the response.end function can accept a string or buffer which it will
send to the client before ending the request.

The http.ServerRequest object

When listening for “request” events, the callback gets one of these objects as the first argument. This
object contains:

req.url

The URL of the request, as a string. It does not contain the schema, hostname or port, but it contains
everything after that. You can try this to analyze the url:

Source in file:
http/http_server_3.js

1 require('http').createServer(function(req, res) {

2 res.writeHead(200, {'Content-Type': 'text/plain'});

3 res.end(req.url);

4 }).listen(4000);

and connect to port 4000 using a browser. Change the URL to see how it behaves.

req.method

This contains the HTTPmethod used on the request. It can be, for example, ‘GET’, ‘POST’, ‘DELETE’
or any other one.

req.headers

This contains an object with a property for every HTTP header on the request. To analyze it you
can run this server:

Source in file:
http/http_server_4.js

www.EBooksWorld.ir

HTTP 44

1 var util = require('util');

2

3 require('http').createServer(function(req, res) {

4 res.writeHead(200, {'Content-Type': 'text/plain'});

5 res.end(util.inspect(req.headers));

6 }).listen(4000);

and connect your browser to port 4000 to inspect the headers of your request.

Here we are using util.inspect(), an utility function that can be used to analyze the properties of any
object.

req.headers properties names are lower-case. For instance, if the browser sent a “Cache-Control:
max-age: 0” header, req.headers will have a property named “cache-control” with the value “max-
age: 0” (this last one is untouched).

The http.ServerResponse object

The response object (the second argument for the “request” event callback function) is used to reply
to the client. With it you can:

Write a header You can use res.writeHead(status, headers), where headers is an object that
contains a property for every header you want to send.

An example:

Source in file:
http/http_server_5.js

1 var util = require('util');

2

3 require('http').createServer(function(req, res) {

4 res.writeHead(200, {

5 'Content-Type': 'text/plain',

6 'Cache-Control': 'max-age=3600'

7 });

8 res.end('Hello World!');

9 }).listen(4000);

In this example we set 2 headers: one with “Content-Type: text/plain” and another with “Cache-
Control: max-age=3600”.

If you save the above source code into http_server_5.js and run it with:

www.EBooksWorld.ir

HTTP 45

1 $ node http_server_5.js

You can query it by using your browser or using a command-line HTTP client like curl:

1 $ curl -i http://localhost:4000

2 HTTP/1.1 200 OK

3 Content-Type: text/plain

4 Cache-Control: max-age=3600

5 Connection: keep-alive

6 Transfer-Encoding: chunked

7

8 Hello World!

Change or set a header You can change a header you already set or set a new one by using

1 res.setHeader(name, value);

This will only work if you haven’t already sent a piece of the body by using res.write().

Remove a header You can remove a header you have already set by calling:

1 res.removeHeader(name, value);

Again, this will only work if you haven’t already sent a piece of the body by using res.write() or
res.end().

Write a piece of the response body You can write a string:

1 res.write('Hello');

or an existing buffer:

1 var buf = new Buffer('Hello World');

2 buf[0] = 45;

3 res.write(buffer);

This method can, as expected, be used to reply with dynamically generated strings or a binary file.
Replying with binary data will be covered later.

www.EBooksWorld.ir

HTTP 46

HTTP Client

You can issue http requests using the “http” module. Node is specifically designed to be a server, but
it can itself call other external services and act as a “glue” service. Or you can simply use it to run a
simple http client script like this one:

http.get()

Source in file:
http/http_client_1.js

1 var http = require('http');

2

3 var options = {

4 host: 'www.google.com',

5 port: 80,

6 path: '/index.html'

7 };

8

9 http.get(options, function(res) {

10 console.log('got response: ' + res.statusCode);

11 }).on('error', function(err) {

12 console.log('got error: ' + err.message)

13 });

This example uses http.get tomake anHTTPGET request to the url http://www.google.com:80/index.html.

You can try it by saving it to a file named http_client_1.js and running:

1 $ node http_client_1.js

2 got response: 302

http.request()

Using http.request you can make any type of HTTP request:

1 http.request(options, callback);

The options are:

• host : A domain name or IP address of the server to issue the request to.

www.EBooksWorld.ir

HTTP 47

• port : Port of remote server.
• method: A string specifying the HTTP request method. Possible values: ‘GET’ (default),
‘POST’, ‘PUT’, and ‘DELETE’.

• path: Request path. Should include query string and fragments if any. E.G. ‘/index.html?page=12’
• headers: An object containing request headers.

The following method makes it easy to send body values (like when you are uploading a file or
posting a form):

Source in file:
http/http_client_2.js

1 var options = {

2 host: 'www.google.com',

3 port: 80,

4 path: '/upload',

5 method: 'POST'

6 };

7

8 var req = require('http').request(options, function(res) {

9 console.log('STATUS: ' + res.statusCode);

10 console.log('HEADERS: ' + JSON.stringify(res.headers));

11 res.setEncoding('utf8');

12 res.on('data', function (chunk) {

13 console.log('BODY: ' + chunk);

14 });

15 });

16

17 // write data to request body

18 req.write("data\n");

19 req.write("data\n");

20 req.end();

On lines 18 and 19 we are writing the HTTP request body data (two lines with the “data” string)
and on line 20 we are ending the request. Only then the server replies and the response callback gets
activated (line 8).

Then we wait for the response. When it comes, we get a “response” event, which we are listening
to on the callback function that starts on line 8. By then we only have the HTTP status and headers
ready, which we print (lines 9 and 10).

Then we bind to “data” events (line 12). These happen when we get a chunk of the response body
data (line 12).

This mechanism can be used to stream data from a server. As long as the server keeps sending body
chunks, we keep receiving them.

www.EBooksWorld.ir

HTTP 48

HTTP Exercises

You can checkout the solutions at the end of this book.

Exercise 1

Make anHTTP server that serves files. The file path is provided in the URL like this: http://localhost:4000/path/to/my/file.txt

Exercise 2

Make an HTTP server that outputs plain text with 100 new-line separated unix timestamps every
second.

Exercise 3

Make an HTTP server that saves the request body into a file.

Exercise 4

Make a script that accepts a file name as first command line argument and uploads this file into the
server built on the previous exercise.

www.EBooksWorld.ir

Streams
Node has a useful abstraction: Streams. More specifically, two very useful abstractions: Read Streams
and Write Streams. They are implemented throughout several Node objects, and they represent
inbound (ReadStream) or outbound (WriteStream) flow of data. We have already come across some
of them, but here we will try to introduce them in a more formal way.

ReadStream

A ReadStream is like a faucet of data. After you have created one (and the method of creating them
depends on the type of stream), you can:

Wait for data

By binding to the “data” event you can be notified every time there is a chunk being delivered by
that stream. It can be delivered as a buffer or as a string.

If you use stream.setEncoding(encoding), the “data” events pass in strings. If you don’t set an
encoding, the “data” events pass in buffers. So here is an example:

1 var readStream = ...

2 readStream.on('data', function(data) {

3 // data is a buffer;

4 });

5

6 var readStream = ...

7 readStream.setEncoding('utf8');

8 readStream.on('data', function(data) {

9 // data is a UTF-8-encoded string;

10 });

So here data passed in on the first example is a buffer, and the one passed on the second is a string
because we are informing the stream about the encoding we are expecting.

The size of each chunk may vary; it may depend on buffer size or on the amount of available data.

Know when it ends

A stream can end, and you can know when that happens by binding to the “end” event like this:

www.EBooksWorld.ir

Streams 50

1 var readStream = ...

2 readStream.on('end', function() {

3 console.log('the stream has ended');

4 });

Pause it

A read stream is like a faucet, and you can keep the data from coming in by pausing it like this:

1 readStream.pause();

Resume it

If it’s paused, the faucet can be reopened and the stream can start flowing again:

1 readStream.resume();

WriteStream

A WriteStream is an abstraction on somewhere you can send data to. It can be a file or a network
connection or even an object that outputs data that was transformed - like when zipping a file. With
a WriteStream you can:

Write to it

You can write a buffer or a string by calling write:

1 var writeStream = ...;

2 writeStream.write('this is an UTF-8 string');

Here Node assumes we are passing an UTF-8-encoded string.

Alternatively you can specify another encoding like this:

1 var writeStream = ...;

2 writeStream.write('7e3e4acde5ad240a8ef5e731e644fbd1', 'base64');

or you can simply write a buffer:

www.EBooksWorld.ir

Streams 51

1 var writeStream = ...;

2 var buffer = new Buffer('this is a buffer with some string');

3 writeStream.write(buffer);

Wait for it to drain

Node does not block on I/O, so it does not block on read or write commands. On write commands,
if Node is not able to flush the data into the kernel buffers, it will buffer that data for you, storing it
in your process memory. Because of this, writeStream.write() returns a boolean. If write() manages
to flush all data to the kernel buffer, it returns true. If not, it returns false.

When a writeStream manages to flush the data into the kernel buffers, it emits a “drain” event so
you can listen to it like this:

1 var writeStream = ...;

2 writeStream.on('drain', function() {

3 console.log('write stream drained');

4 });

Later we will see how this draining notification combined with the pause and resume capabilities
can come in handy when limiting the memory growth of your Node process.

Some stream examples

Here are some instances of Node streams.

Filesystem streams

You can create a read stream for a file path by doing something like:

1 var fs = require('fs');

2 var rs = fs.createReadStream('/path/to/file');

3 ...

Here you can pass a second argument to fs.createReadStream where you can specify the start and
end position on your file, the encoding, the flags and the buffer size. Here are the defaults:

www.EBooksWorld.ir

Streams 52

1 { flags: 'r',

2 encoding: null,

3 fd: null,

4 mode: 0666,

5 bufferSize: 64 * 1024

6 }

You can also create a write stream:

1 var fs = require('fs');

2 var rs = fs.createWriteStream('/path/to/file', options);

3 ...

Which also accepts a second argument with an options object. The options argument to cre-
ateWriteStream has these default values:

1 { flags: 'w', encoding: null, mode: 0666 }

For instance, to create a file WriteStream that assumes UTF-8 encoding you can use:

1 var fs = require('fs');

2 var rs = fs.createWriteStream('/path/to/file', { encoding: 'utf8' });

Network streams

There are all kinds of streams on the networking API of Node. For instance, a client TCP connection
is a write and a read stream. An http request object is a read stream. An http response object is a
write stream. That is, each implements the ReadStream /WriteStream methods and events.

The Slow Client Problem and Back-pressure

As we said, Node does not block on writes, and it buffers the data for you if the write cannot be
flushed into the kernel buffers. Imagine this scenario: you are pumping data into a write stream (like
a TCP connection to a browser), and your source of data is a read stream (like a file ReadStream):

www.EBooksWorld.ir

Streams 53

1 require('http').createServer(function(req, res) {

2 var rs = fs.createReadStream('/path/to/big/file');

3 rs.on('data', function(data) {

4 res.write(data);

5 });

6 rs.on('end', function() {

7 res.end();

8 });

9 });

If the file is local, the read stream should be fast. If the connection to the client is slow, the
writeStream will be slow. So readStream “data” events will happen quickly, the data will be sent
to the writeStream, but eventually Node will have to start buffering the data because the kernel
buffers will be full.

What will happen then is that the /path/to/big/file file will be buffered in memory for each request,
and if you have many concurrent requests, Node memory consumption will inevitably increase,
which may lead to other problems, like swapping, thrashing and memory exhaustion.

What can we do?

To address this problem you will have to make use of the pause and resume of the read stream, and
pace it alongside your write stream so your memory does not fill up:

1 require('http').createServer(function(req, res) {

2 var rs = fs.createReadStream('/path/to/big/file');

3 rs.on('data', function(data) {

4 if (!res.write(data)) {

5 rs.pause();

6 }

7 });

8 res.on('drain', function() {

9 rs.resume();

10 });

11 rs.on('end', function() {

12 res.end();

13 });

14 });

On line 5 we are pausing the readStream if the write cannot flush it to the kernel, and we are
resuming it (line 9) when the writeStream is drained.

www.EBooksWorld.ir

Streams 54

Pipe

What was described here is a recurring pattern, and instead of this complicated chain of events, you
can simply use stream.pipe(), which does exactly what we described:

1 require('http').createServer(function(req, res) {

2 var rs = fs.createReadStream('/path/to/big/file');

3 rs.pipe(res);

4 });

Much simpler, right? readStream.pipe accepts 1 argument containing the destination writable
stream.

By default, end() is called on the destination when the read stream ends. You can prevent that
behavior by passing in end: false on the second argument options object like this:

1 var fs = require('fs');

2 require('http').createServer(function(req, res) {

3 var rs = fs.createReadStream('/path/to/big/file');

4 rs.pipe(res, {end: false});

5 rs.once('end', function() {

6 res.end("And that's all folks!");

7 }).listen(4000);

8 });

www.EBooksWorld.ir

TCP
Node has a first-class HTTP server implementation, but this server descends from the “bare-bones”
TCP server. Being so, everything described here applies also to every class descending from the
net.Server, like the http.Server.

You can create a TCP server using the “net” module like this:

1 require('net').createServer(function(socket) {

2

3 // new connection

4

5 socket.on('data', function(data) {

6 // got data

7 });

8

9 socket.on('end', function(data) {

10 // connection closed

11 });

12

13 socket.write('Some string');

14

15 }).listen(4001);

On line 1 we use the createServer method on the net package, which we bind to TCP port 4001
on line 15. We can pass in a function callback to createServer to be invoked every time there is a
“connection” event.

Every time there is a connection event, our handler function gets invoked with one argument
containing the TCP socket object representing the connection.

On this socket object we can then listen to “data” events when we get a package of data and the
“end” event when that connection is closed.

On a socket we can also:

Write a string or a buffer

We can pass in a string or a buffer to be sent through the socket to the other peer. If a string is passed
in, you can specify an encoding as a second argument like this:

www.EBooksWorld.ir

TCP 56

1 flushed = socket.write('453d9ea499aa8247a54c951', 'base64');

If you don’t specify the encoding, Node will assume it’s UTF-8.

The socket object is an instance of net.Socket, which is a writeStream, so the write method returns
a boolean, saying whether it flushed to the kernel or not.

You can also pass in a callback function to be invoked when the data is finally written out like this:

1 var flushed = connection.write('453d', 'base64', function() {

2 // flushed

3 });

or, assuming UTF-8:

1 var flushed = connection.write('I am UTF-8!', function() {

2 // flushed

3 });

end

You can end the connection by calling the end method. This sends the TCP FIN packet, notifying
the other end that this end wants to close the connection.

But you can still get “data” events after you have issued this, simply because there still might be
some data in transit, or the other end might be insisting on sending you some more data. Also, you
can pass in some final data to be sent when invoking end:

1 socket.end('Bye bye!');

…and all the other methods

socket object is an instance of net.Socket, and it implements the writeStream and readStream
interfaces, so all those methods are available, like pause() and resume(). Also you can bind to the
“drain” events.

Idle sockets

You can also be notified when a socket has been idle for some time, i.e., there has been no data
received. For that, you must define a timeout by calling setTimeout():

www.EBooksWorld.ir

TCP 57

1 var timeout = 60000; // 1 minute

2 socket.setTimeout(timeout);

3 socket.on('timeout', function() {

4 socket.write('idle timeout, disconnecting, bye!');

5 socket.end();

6 });

or, in a shorter form:

1 socket.setTimeout(60000, function() {

2 socket.end('idle timeout, disconnecting, bye!');

3 });

Keep-alive

In Node, a net.Socket can implement a keep-alive mechanism to prevent timeouts occurring on
the network or on the peer. Node does that by sending an empty TCP packet with the ACK
(Acknowledgement) flag turned on.

You can enable the keep-alive functionality by:

1 socket.keepAlive(true);

You can also specify the delay between the last packet received and the next keep-alive packet on
the second argument to the keepAlive call like this:

1 socket.keepAlive(true, 10000); // 10 seconds

Delay or no delay

When sending off TCP packets, the kernel buffers data before sending it off, and uses Nagle’s
algorithm to determine when to send off the data. If you wish to turn this off and demand that
the data gets sent immediately after write commands, use:

1 socket.setNoDelay(true);

server.close()

This method closes the server, preventing it from accepting new connections. This function is
asynchronous, and the server will emit the “close” event when actually closed:

www.EBooksWorld.ir

TCP 58

1 var server = ...

2 server.close();

3 server.on('close', function() {

4 console.log('server closed!');

5 });

Listening

As we saw, after the server is created, we can bind it to a specific TCP port like this:

1 var port = 4001;

2 var host = '0.0.0.0';

3 server.listen(port, host);

The second argument (host) is optional. If omitted, the server will accept connections directed to
any IP address.

This method is asynchronous. To be notified when the server is really bound you have to pass a
callback like this:

1 server.listen(port, host, function() {

2 console.log('server listening on port ' + port);

3 });

or without a host:

1 server.listen(port, function() {

2 console.log('server listening on port ' + port);

3 });

TCP client

You can connect to a TCP server using the “net” module like this:

1 var net = require('net');

2 var port = 4001;

3 var conn = net.createConnection(port);

Here we omitted the second argument for the createConnection function, which is the host name. If
you omit it, it defaults to localhost.

Now with a host name:

www.EBooksWorld.ir

TCP 59

1 var net = require('net');

2 var port = 80;

3 var host = 'www.google.com';

4 var conn = net.createConnection(port, host);

Then you can listen for data:

1 conn.on('data', function(data) {

2 console.log('some data has arrived')

3 });

or send some data:

1 conn.write('some string over to you!');

or close it:

1 conn.close();

and also listen to the “close” event:

1 conn.on('close', function() {

2 console.log('connection closed');

3 });

Socket conforms to the ReadStream and WriteStream interfaces, so you can use all of the previously
described methods on it.

Error handling

When handling a socket on the client or the server you can (and should) handle the errors by listening
to the “error” event like this:

1 require('net').createServer(function(socket) {

2 socket.on('error', function(error) {

3 // do something

4 });

5 });

If you don’t choose to catch an error, Node will handle an uncaught exception and terminate the
current process. Unless you want that, you should handle the errors.

www.EBooksWorld.ir

TCP 60

TCP Exercises

You can check the solutions at the end of the book.

Exercise 1

Make a chat server that requires no authentication, just a TCP client connection. Each time the client
sends some text, the server broadcasts it to the other clients.

Exercise 2

Make a chat client that accepts 2 command line arguments: host and port, and reads from stdin,
sending data to the server on each new line.

www.EBooksWorld.ir

Datagrams (UDP)
UDP is a connection-less protocol that does not provide the delivery characteristics that TCP does.
When sending UDP packets, you cannot guaranteed the order they might arrive in, nor whether
they will even arrive at all.

On the other hand, UDP can be quite useful in certain cases, like when you want to broadcast data,
when you don’t need hard delivery guarantees and sequence or even when you don’t know the
addresses of your peers.

Datagram server

You can setup a server listening on a UDP port like this:

Code in udp/udp_server_1.js

1 var dgram = require('dgram');

2

3 var server = dgram.createSocket('udp4');

4 server.on('message', function(message, rinfo) {

5 console.log('server got message: ' + message + ' from ' + rinfo.address + ':' +\

6 rinfo.port);

7 });

8

9 server.on('listening', function() {

10 var address = server.address();

11 console.log('server listening on ' + address.address + ':' + address.port);

12 });

13

14 server.bind(4000);

Here we are using the “dgram” module, which provides a way to create a UDP socket (line 3). The
createSocket function accepts the socket type as the first argument , which can be either “udp4”
(UDP over IPv4), “udp6” (UDP over IPv6) or “unix_dgram” (UDP over unix domain sockets).

You can save this in a file named “udp_server_1.js” and run it:

1 $ node udp_server_1.js

Which should output the server address, port and wait for messages.

You can test it using a tool like “nc” like this:

www.EBooksWorld.ir

Datagrams (UDP) 62

1 $ echo 'hello' | nc -c -u -w 1 localhost 4000

This sends an UDP packet with “hello” to localhost port 4000. You should then get on the server
output something like:

1 server got message: hello

2 from 127.0.0.1:54950

Datagram client

To create an UDP client to send UDP packets you can do something like:

Code in udp/udp_client_1.js

1 var dgram = require('dgram');

2

3 var client = dgram.createSocket('udp4');

4

5 var message = new Buffer('this is a message');

6 client.send(message, 0, message.length, 4000, 'localhost');

7 client.close();

Here we are creating a client using the same createSocket function we did to create the client, with
the difference that we don’t bind.

You have to be careful not to change the buffer you pass on client.send before the message has been
sent. If you need to know when your message has been flushed to the kernel, you should pass a last
argument to client.send with a callback function to be invoked when the buffer may be reused like
this:

1 client.send(message, 0, message.length, 4000, 'localhost', function() {

2 // you can reuse the buffer now

3 });

Since we are not binding, the message is sent from a UDP random port. If we wanted to send from
a specfic port, we could have used client.bind(port) like this:

Code in udp/udp_client_2.js

www.EBooksWorld.ir

Datagrams (UDP) 63

1 var dgram = require('dgram');

2

3 var client = dgram.createSocket('udp4');

4

5 var message = new Buffer('this is a message');

6 client.bind(4001);

7 client.send(message, 0, message.length, 4000, 'localhost');

8 client.close();

Here we are binding to the specific port 4001, and when saving this file and executing it, the running
server should output something like:

1 server got message: this is a message from 127.0.0.1:4001

This port binding on the client really mixes what a server and a client are, and can be useful for
maintaining conversations like this:

1 var dgram = require('dgram');

2

3 var client = dgram.createSocket('udp4');

4

5 var message = new Buffer('this is a message');

6 client.bind(4001);

7 client.send(message, 0, message.length, 4000, 'localhost');

8 client.on('message', function(message, rinfo) {

9 console.log('and got the response: ' + message);

10 client.close();

11 });

Here we are sending a message, and also listening to messages. When we receive one message we
close the client.

Don’t forget that UDP is unreliable, and whatever protocol you devise on top of it, account for the
fact that messages can be lost or delivered out of order!

Datagram Multicast

One of the interesting uses of UDP is to distribute messages to several nodes using only one network
message. This can have many uses like logging, cache cleaning and in the general case where you
can afford to lose some messages.

www.EBooksWorld.ir

Datagrams (UDP) 64

Message multicasting can be useful when you don’t need to know the address of all peers. Peers just
have to “tune in” and listen to that channel.

Nodes can report their interest in listening to certain multicast channels by “tuning” into that
channel. In IP addressing there is a space reserved for multicast addresses. In IPv4 the range is
between 224.0.0.0 and 239.255.255.255, but some of these are reserved. 224.0.0.0 through 224.0.0.255
is reserved for local purposes (as administrative and maintenance tasks) and the range 239.0.0.0 to
239.255.255.255 has also been reserved for “administrative scoping”.

Receiving multicast messages

To join a multicast address like 230.1.2.3 you can do something like this:

Code in udp/udp_multicast_listen.js

1 var server = require('dgram').createSocket('udp4');

2

3 server.on('message', function(message, rinfo) {

4 console.log('server got message: ' + message + ' from ' + rinfo.address + ':' +\

5 rinfo.port);

6 });

7

8 server.bind(4000, function() {

9 server.addMembership('230.1.2.3');

10 });

On line 7 we are saying to the kernel that this UDP socket should receive multicast messages for the
multicast address 230.1.2.3. When calling addMembership, you can pass the listening interface as an
optional second argument. If omitted, Node will try to listen on every public interface.

Then you can test the server using nc like this:

1 $ echo 'hello' | nc -c -u -w 1 230.1.2.3 4000

Sending multicast messages

To send a multicast message you simply have to specify the multicast address like this:

www.EBooksWorld.ir

Datagrams (UDP) 65

1 var dgram = require('dgram');

2

3 var client = dgram.createSocket('udp4');

4

5 var message = new Buffer('this is a multicast message');

6 client.setMulticastTTL(10);

7 client.send(message, 0, message.length, 4000, '230.1.2.3');

8 client.close();

Here, besides sending the message, we previously set the Multicast time-to-live to 10 (an arbitrary
value here). This TTL tells the network how many hops (routers) it can travel through before it is
discarded. Every time a UDP packet travels through a hop, the TTL counter is decremented, and if
0 is reached, the packet is discarded.

What can be the datagrammaximum size?

It really depends on the network it travels through. The UDP header allows up to 65535 bytes of
data, but if you are sending a packet across an Ethernet network, for instance, the Ethernet MTU
is 1500 bytes, limiting the maximum datagram size. Also, some routers will attempt to fragment a
large UDP packet into 512 byte chunks.

UDP Exercises

Exercise 1

Create a UDP server that echoes the messages it receives back into the origin socket.

www.EBooksWorld.ir

Child processes
On Node you can spawn child processes, which can be another Node process or any process you
can launch from the command line. For that you will have to provide the command and arguments
to execute it. You can either spawn and live along side the process (spawn), or you can wait until it
exits (exec).

Executing commands

You can then launch another process and wait for it to finish like this:

1 var exec = require('child_process').exec;

2

3 exec('cat *.js wc -l', function(err, stdout, stderr) {

4 if (err) {

5 console.log('child process exited with error code ' + err.code);

6 return;

7 }

8 console.log(stdout);

9 });

Here on line 3 we are passing in “cat *.js wc -l” as the command, the first argument to the exec
invokation. We are then passing as the second argument a callback function that will be invoked
once the exec has finished.

If the child process returned an error code, the first argument of the callback will contain an instance
of Error, with the code property set to the child exit code.

If not, the output of stdout and stderr will be collected and be offered to us as strings.

You can also pass an optional options argument between the command and the callback function
like this:

1 var options = {timeout: 10000};

2 exec('cat *.js wc -l', options, function(err, stdout, stderr) {

3 //...

4 });

The available options are:

www.EBooksWorld.ir

Child processes 67

• encoding: the expected encoding for the child output. Defaults to ‘utf8’;
• timeout : the timeout in milliseconds for the execution of the command. Defaults to 0, which
does not timeout;

• maxBuffer : specifies the maximum size of the output allowed on stdout or stderr. If exceeded,
the child is killed. Defaults to 200 * 1024;

• killSignal: the signal to be sent to the child if it times out or exceeds the output buffers.
Identified as a string;

• cwd: current working directory;
• env: environment variables to be passed into the child process. Defaults to null.

On the killSignal option you can pass a string identifying the name of the signal you wish to send
to the target process. Signals are identified in node as strings. For a complete list of strings type on
your shell:

1 $ man signal

Scroll down, and you will see a list of constants representing the signals. Those are the strings used
in Node.

Spawning processes

You can spawn a new child process based on the child_process.spawn function like this:

1 var spawn = require('child_process').spawn;

2

3 var child = spawn('tail', ['-f', '/var/log/system.log']);

4 child.stdout.on('data', function(data) {

5 console.log('stdout: ' + data);

6 });

Here we are spawning a child process to run the “tail” command, passing in as arguments “-f” and
“/var/log/system.log”. This “tail” command will monitor the file “/var/log/system.log” - if it exists -
and output every new data appended to it into the stdout.

On line 4 we are listening to the child stdout and printing its output. So here, in this case, we are
piping the changes to the “/var/log/system.log” file into our Node application. Besides the stdout,
we can also listen to the stderr child output stream like this:

www.EBooksWorld.ir

Child processes 68

1 child.stderr.on('data', function(data) {

2 console.log('stderr: ' + data);

3 });

Killing processes

You can (and should) eventually kill child processes by calling the kill method on the child object:

1 var spawn = require('child_process').spawn;

2 var child = spawn('tail', ['-f', '/var/log/system.log']);

3 child.stdout.on('data', function(data) {

4 console.log('stdout: ' + data);

5 child.kill();

6 });

This sends a SIGTERM signal to the child process.

You can also send another signal to the child process. You need to specify it inside the kill call like
this:

1 child.kill('SIGKILL');

Child Processes Exercises

Exercise 1

Create a server that a) opens a file b) listens on a unix domain socket and c) spawns a client. This
client opens the socket to the server and waits for a file descriptor. The server then passes in the file
descriptor we opened in a). The client writes to the file and quits. When the client process quits, the
server quits.

www.EBooksWorld.ir

Streaming HTTP chunked responses
One of the great features of Node is to be extremely streamable, and since HTTP is a first-class
protocol in Node, HTTP responses are no different.

HTTP chunked encoding allows a server to keep sending data to the client without ever sending the
body size.

Unless you specify a “Content-Length” header, Node HTTP server sends the header

1 Transfer-Encoding: chunked

to the client, which makes it wait for a final chunk with length of 0 before giving the response as
terminated.

This can be useful for streaming data - text, audio, video - or any other data to the HTTP client.

A streaming example

Here we are going to code an example that pipes the output of a child process into the client:

Source code in chapters/chunked/chunked.js

1 var spawn = require('child_process').spawn;

2

3 require('http').createServer(function(req, res) {

4 var child = spawn('tail', ['-f', '/var/log/system.log']);

5 child.stdout.pipe(res);

6 res.on('end', function() {

7 child.kill();

8 });

9 }).listen(4000);

Here we are creating an HTTP server (line 3) and binding it to port 4000 (line 9).
When there is a new request we launch a new child process by executing the command “tail -f
/var/log/system.log” (line 4) whose output is being piped into the response (line 5).
When the response ends (because the browser window was closed, or the network connection was
severed, for instance), we kill the child process so it does not hang around afterwards indefinitely.

So here, in 9 lines of code, we are making a Node streaming server that spawns, pipes the output of
a process and then kills it as needed.

www.EBooksWorld.ir

Streaming HTTP chunked responses 70

Streaming Exercises

Exercise 1

Create a mixed TCP and HTTP server that, for every HTTP request, streams all the TCP clients
input into the request response.

www.EBooksWorld.ir

TLS / SSL
TLS (Transport Layer Security) and SSL (Secure Socket Layer) allow client / server applications
to communicate across a network in a way designed to prevent eavesdropping (others looking into
yourmessages) and tampering (others changing yourmessage). TLS and SSL encrypt the segments of
network connections above the Transport layer, enabling both privacy and message authentication.

TLS is a standard based on the earlier SSL specifications developed by Netscape. In fact, TLS 1.0 is
also known as SSL 3.1 , and the latest version (TLS 1.2) is also known as SSL 3.3. So, from hereon,
we will be using “TLS” instead of the deprecated “SSL”.

Public / private keys

Node TLS implementation is based on the OpenSSL library. Chances are you have the library
installed, also as the openssl command-line utility. If it’s not installed, you should be looking for
a package named “openssl”.

Private key

TLS is a public / private key infrastructure. Each client and server must have a private key. A private
key can be created by the openssl utility on the command line like this:

1 $ openssl genrsa -out my.pem 1024

This should create a file named my.pem with your private key.

Public key

All servers and some clients need to have a certificate. Certificates are public keys signed by a
Certificate Authority or self-signed. The first step to getting a certificate is to create a “Certificate
Signing Request” (CSR) file. This can be done with:

1 $ openssl req -new -key my_key.pem -out my_csr.pem

This will create a CSR file named my_csr.pem.

To create a self-signed certificate with the CSR, you can do this:

www.EBooksWorld.ir

TLS / SSL 72

1 openssl x509 -req -in my_csr.pem -signkey my_key.pem -out my_cert.pem

This will create a self-signed certificate file named my_cert.pem.

Alternatively you can send the CSR to a Certificate Authority for signing.

TLS Client

You can connect to a TLS server using something like this:

1 var tls = require('tls'),

2 fs = require('fs'),

3 port = 3000,

4 host = 'myhost.com',

5 options = {

6 key : fs.readFileSync('/path/to/my/private_key.pem'),

7 cert : fs.readFileSync('/path/to/my/certificate.pem')

8 };

9

10 var client = tls.connect(port, host, options, function() {

11 console.log('connected');

12 console.log('authorized: ' + client.authorized);

13 client.on('data', function(data) {

14 client.write(data); // just send data back to server

15 });

16 });

First we need to inform Node of the client private key and client certificate, which should be
strings. We are then reading the pem files into memory using the synchronous version of fs.readFile,
fs.readFileSync.

• Here we are using fs.readFileSync, a synchronous function. Won’t this block the event loop?

No, this will just run on the initialization of our app. As long as you don’t use blocking functions
inside an event handler, you should be ok.

• Wait, what if this is a module we are requiring this inside a callback?

You shouldn’t be requiring modules inside callbacks. They do synchronous file system access and
will block your event loop.

Then, on line 10 we are connecting to the server. tls.connect returns a CryptoStream object, which
you can use normally as a ReadStream and WriteStream. On line 13 we just wait for data from the
server as we would on a ReadStream, and then we, in this case, send it back to the server on line 14.

www.EBooksWorld.ir

TLS / SSL 73

TLS Server

A TLS server is a subclass of net.Server. With it you can make everything you can with a net.Server,
except that you are doing over a secure connection.

Here is an example of a simple echo TLS server:

1 var tls = require('tls');

2 fs = require('fs');

3 options = {

4 key : fs.readFileSync('/path/to/my/server_private_key.pem'),

5 cert : fs.readFileSync('/path/to/my/server_certificate.pem')

6 };

7

8 tls.createServer(options, function(s) {

9 s.pipe(s);

10 }).listen(4000);

Besides the key and cert options, tls.createServer also accepts:

• requestCert : If true the server will request a certificate from clients that connect and attempt
to verify that certificate. Default: false.

• rejectUnauthorized: If true the server will reject any connection which is not authorized with
the list of supplied CAs. This option only has an effect if requestCert is true. Default: false.

Verification

On both the client and the server APIs, the stream has a property named authorized. This is a boolean
indicating if the client was verified by one of the certificate authorities you are using, or one that
they delegate to. If s.authorized is false, then s.authorizationError contains the description of how
the authorization failed.

TLS Exercises

Exercise 1

Create a certificate authority. Create a client certificate signed by this new certificate authority.

Exercise 2

Create a TLS echo server that uses the default certificate authorities.

www.EBooksWorld.ir

TLS / SSL 74

Exercise 3

Create a TLS client that reads from stdin and sends it to the echo TLS server created on exercise 2.

Exercise 4

Make the TLS server only accept connections if the client is certified. Verify that he does not let the
client created on exercise 3 connect.

Exercise 5

Make the TLS Server use the same certificate authority you used to sign the client certificate with.
Verify that the server now accepts connections from this client.

www.EBooksWorld.ir

HTTPS
HTTPS is the HTTP protocol over TLS. In Node, HTTPS is implemented as a separate module.

The HTTPS API is very similar to the HTTP one, with some honorable small differences.

HTTPS Server

To create a server, you can do something like this:

1 var https = require('https'),

2 fs = require('fs');

3

4 var options = {

5 key: fs.readFileSync('/path/to/server/private_key.pem'),

6 cert: fs.readFileSync('/path/to/server/cert.pem')

7 };

8

9 https.createServer(options, function(req, res) {

10 res.writeHead(200, {'Content-Type': 'text/plain'});

11 res.end('Hello World!');

12 });

So here, the first argument to https.createServer is an options object that, much like in the TLS
module, provides the private key and the certificate strings.

HTTPS Client

To make an HTTPS request you must also use the https module like this:

www.EBooksWorld.ir

HTTPS 76

1 var https = require('https');

2 var options = {

3 host: 'encrypted.google.com',

4 port: 443,

5 path: '/',

6 method: 'GET'

7 };

8

9 var req = https.request(options, function(res) {

10 console.log("statusCode: ", res.statusCode);

11 console.log("headers: ", res.headers);

12

13 res.on('data', function(d) {

14 process.stdout.write(d);

15 });

16 });

17 req.end();

Here the options object, besides the http.request options, also accepts:

• port: port of host to request to. Defaults to 443.
• key: The client private key string to use for SSL. Defaults to null.
• cert: The client certificate to use. Defaults to null.
• ca: An authority certificate or array of authority certificates to check the remote host against.

You may want to use the key and cert options if the server needs to verify the client.

Also, you may pass the ca argument, which is a certificate authority certificate or an array of them
with which you may verify the server.

Much like the http module, this module also offers a shortcut https.get method that can be used like
this:

1 var https = require('https');

2 var options = { host: 'encrypted.google.com', path: '/' };

3

4 https.get(options, function(res) {

5 res.on('data', function(d) {

6 process.console.log(d.toString());

7 });

www.EBooksWorld.ir

Making modules
CommonJS modules

When crafting your first Node app, you tend to cram everything into one file, but sooner or later
you will need to expand.

The Node way to spread your app is to compartmentalise it into logic blocks called modules. These
modules will have an interface, exposing module properties like functions or simple attributes.

One file module

To create a module you simply have to create a file somewhere in your app dir tree (lib/my_module.js
is perhaps the appropriate place to start).

Inside each module you can use the global namespace without fear of stepping on another module’s
toes. And, at the end, you expose only what you wish to expose by assigning it to module.exports.
Here is a quick example:

1 var counter = 0;

2 var onePrivateMethod = function() {

3 return counter;

4 } ;

5

6 var onePublicMethod = function() {

7 onePrivateMethod();

8 return 'you already called this module ' + counter + ' times';

9 };

10

11 module.exports = onePublicMethod;

Here we are exporting (on the last line) only one function. If we save this module in the current
directory under “my_module.js”:

1 var myModule = require('./my_module');

2 myModule(); // => 'you already called this module 1 times';

You can export any JavaScript object you wish, so, for instance, you can export an object that has a
collection of functions like this:

www.EBooksWorld.ir

Making modules 78

1 var counter1 = 0;

2 var onePublicMethod = function() {

3 return 'you already called this function ' + (++ counter1) + ' times';

4 };

5

6 var counter2 = 0;

7 var anotherPublicMethod = function() {

8 return 'you already called this function ' + (++ counter2) + ' times';

9 }

10

11 module.exports = {

12 functionA: onePublicMethod,

13 functionB: anotherPublicMethod

14 };

A client using this module would look something like:

1 var myModule = require('./my_module');

2 myModule.functionA();

3 // => 'you already called this function 1 times';

4 myModule.functionA();

5 // => 'you already called this function 2 times';

6 myModule.functionB();

7 // => 'you already called this function 1 times';

An aggregating module

Also, modules can aggregate other modules and mix and expose them as they wish. For instance,
such a module could look like:

1 var moduleA = require('./moduleA');

2 var moduleB = require('./moduleB');

3

4 var myFunc = function() {

5 return "doing some crazy stuff";

6 }

7

8 module.exports = {

9 funcA: moduleA.funcA,

10 funcB: moduleB.funcB,

11 funcC: myFunc

12 }

www.EBooksWorld.ir

Making modules 79

A pseudo-class

If you need to learn about JavaScript pseudo-classes and prototypical inheritance I can recommend
that you read the book “Eloquent JavaScript”¹⁵ or Douglas Crockford’s “JavaScript - The Good Parts”.

It is possible to implement a classlike(ish) behavior on your module using something like this:

1 var Line = function(x1, y1, x2, y2) {

2 this.x1 = x1;

3 this.y1 = y1;

4 this.x2 = x2;

5 this.y2 = x2;

6 };

7

8 Line.prototype.length = function() {

9 return Math.sqrt(

10 Math.pow(Math.abs(this.x1 - this.x2), 2) +

11 Math.pow(Math.abs(this.y1 - this.y2), 2)

12);

13 };

14

15 module.exports.create = function(x1, y1, x2, y2) {

16 return new Line(x1, y1, x2, y2);

17 };

Here we are creating the Line pseudo-class, but we are not exporting its constructor directly. Instead,
we are exporting a “create” function, which calls the constructor for us. We are doing this because
people using this module may not remember that it would be necessary to use the “new” keyword
when invoking the constructor function. If they forgot to do so, this would be bound to the global
namespace, yielding very strange results. To prevent it we just export one create function, leading
to clear module usage like:

1 var Line = require('./line');

2 var line = Line.create(2, 4, 10, 15);

3 console.log('this line length is ' + line.length());

A pseudo-class that inherits

Besides implementing a class behavior, you can also inherit it from another class. For instance, the
EventEmitter class is a very useful to use like this:

¹⁵http://eloquentjavascript.net/

www.EBooksWorld.ir

http://eloquentjavascript.net/
http://eloquentjavascript.net/

Making modules 80

1 var util = require('util'),

2 EventEmitter = require('events').EventEmitter;

3

4 var Line = function(x1, y1, x2, y2) {

5 this.x1 = x1;

6 this.y1 = y1;

7 this.x2 = x2;

8 this.y2 = x2;

9 };

10

11 util.inherits(Line, EventEmitter);

12

13 Line.prototype.length = function() {

14 return Math.sqrt(

15 Math.pow(Math.abs(this.x1 - this.x2), 2) +

16 Math.pow(Math.abs(this.y1 - this.y2), 2)

17);

18 };

Note that you should call util.inherits before declaring the prototype properties on the pseudo-class
(like the Line.prototype.length on the previous example). If you call util.inherits afterwards, they
will be removed, since the prototype object is replaced on line 11.

Now you should be ready to create your own modules, so your app code doesn’t have to live on a
single file!

node_modules and npm bundle

As explained on the module loading chapter, Node tries to use the nearest “node_modules” directory
by backtracking the current directory up to root. What this means is that, generally, you can put the
external modules your application depends on into a node_modules folder inside your app root
folder, thus bundling and “freezing” your application dependencies.

Fortunately npm can do that for you. For that to work you need to declare your application
dependencies inside a package.json file like this:

Source code in chapters/packaging/app1

www.EBooksWorld.ir

Making modules 81

1 { "name" : "app1"

2 , "version" : "0.1.0"

3 , "description" : "Hands-on packaging app example"

4 , "main" : "app.js"

5 , "dependencies" :

6 {

7 "express" : ">= 1.0",

8 "jade" : "0.8.5"

9 }

10 }

This is a minimal package.json, you can add more information to it. You can type

1 $ npm help json

to get a man page documenting the JSON document format.

On lines 7 and 8 we declare that this application depends on “express” and “jade” npm packages,
specifying the version requirements.

Bundling

Having now the package.json package in your root directory you can bundle all your dependencies
into a “node_modules” by typing into your console, in your app root dir:

1 $ npm install

This will create a “node_modules” inside the app root dir – if it doesn’t exist yet – and when your
app is executed, node will first look into this directory to resolve modules.

Using this technique you can package an application so you don’t run into cross-dependencies
problems on co-existing applications and removing the need to install packages globally.

www.EBooksWorld.ir

Debugging
If you find yourself in a situation where you need to inspect the inner workings of your Node app
code, there are several tools that can come to your aid.

console.log

The simplest one is console.log. You can use it to inspect objects like this:

1 var obj = {a: 1, b: 2};

2 console.log(obj);

Which will print

1 { a: 1, b: 2 }

Node built-in debugger

If you need to halt execution to carefully inspect your app, you can use Node’s (simple and basic)
built-in debugger.

First, you have to insert an initial breakpoint in your app by inserting a debugger instruction like
this:

1 var a = 1;

2 debugger;

3 var b = a + 1;

And then you can start the Node debuuger on your app like this:

1 $ node debug my_app.js

This will launch the Node debugger. You should now get the debugger prompt, but your app is not
running just yet.

Inside the debugger prompt you will have to type:

www.EBooksWorld.ir

Debugging 83

1 $ run

And your app will start running, hitting your first debugger instruction.

It will then stop on the breakpoint you set as soon as it is encountered. If you type

1 $ list

you will see where you are inside your script.

You can inspect the local scope. You can print variables like this:

1 $ print a

If you type

1 $ next

you will step into the next line of your script.

If you type

1 $ continue

your app will resume, stopping if it passes another (or the same) breakpoint.

When inside the prompt you can kill your app by commanding:

1 $ kill

Node Inspector

Another debugging tool is Node Inspector. This debugger brings the full-fledged Chrome inspector
to your Node app.

You can install Node Inspector like this:

1 $ npm install node-inspector

Node Inspector runs as a daemon by default on port 8080. You can launch it like this:

www.EBooksWorld.ir

Debugging 84

1 $ node-inspector &

This will send the node-inspector process to the background.

Next you need to fire up your app, but using a –debug or –debug-brk option on the node executable
like this:

1 $ node --debug-brk myapp.js

The –debug-brk option will make your app break on the first line, while the –debug option will
simply enable debugging.

Tip: when debugging servers you will want to use –debug, and when debugging other scripts you
may want to break on the first line by using –debug-brk.

Now you can open your browser and point it to http://localhost:8080, and you should get something
like this:

www.EBooksWorld.ir

Debugging 85

You can set and unset breakpoints by clicking on the line numbers.

When a breakpoint is reached, your app freezes and Node Inspector shows the context:

You can see the two most interesting context panes on the right:

The call stack, where you can see which functions were invoked to get to this point.

The scope variables, where you can inspect the local variables, the global variables and the closure
variables, which are variables that are defined on a higher function scope.

Above those panes you can see some buttons which you can use to manipulate the executed
instructions:

Continue execution up until a breakpoint is reached.

Execute this function and stop on the next line.

www.EBooksWorld.ir

Debugging 86

Step into this function.

Continue, and when this function ends return to the caller.

Live edit

You can change the code while you are debugging. For this you can double-click on a line of code
and edit it. Change the code and hit the “Tab” key or click outside the edit area. And voila, you just
changed running code!

Changing the code like this will not save save the changes - it should only be used to test quick fixes.

www.EBooksWorld.ir

Automated Unit Testing
When building a module you should also create an automated way to test it. A set of tests that test
a module are called unit tests.

Let’s say youwant to create the unit tests for amodule that exports a function that sums two integers:

1 module.exports = function(a, b) {

2 return a + b;

3 };

For that you need two tools: a test runner and an assertion module.

A test runner

A test runner is a piece of software that loads your tests, runs them and then presents the test
result. The result can be positive (test passed) or negative (test failed), generally accompanied by a
description of the failure.

There are various test runners, and my favorite nowadays is mocha. You can install it by running:

1 $ npm install -g mocha

On your app you should create a “tests” dir under the root, and create a file module for each one of
your modules.
So, we would create a test module under tests/sum.js. This module should then define description
scopes and tests for any functionality you need testing.
Each one of these tests is a function that is launched asynchronously. When all are done or failed,
mocha reports how many were run and how many failed / succeeded.

A test file for the “sum” module would be something like this:

www.EBooksWorld.ir

Automated Unit Testing 88

1 require('should');

2

3 var sum = require('../lib/sum');

4

5 describe("Sum Lib", function() {

6

7 it("should be able to sum 0 and 5", function() {

8 sum(0, 5).should.equal(5);

9 });

10

11 it("should be able to sum 2 and 5", function() {

12 sum(2, 5).should.equal(7);

13 });

14

15 it("should be able to sum do some sums", function() {

16 sum(1, 1).should.equal(2);

17 sum(1, 2).should.equal(3);

18 sum(2, 1).should.equal(3);

19 sum(10, 120).should.equal(130);

20 });

21 });

To run this test you’ll also need the should package to be installed:

1 $ npm install should

To run expresso on all files inside the tests directory you can invoke the mocha executable like this:

1 $ mocha test/*.js

You can also specify asynchronous tests by accepting a callback function that should be invoked
once the test is done:

1 it("should be able to execute asynchronously", function(done) {

2 setTimeout(function() {

3 done();

4 }, 2000);

5 });

You can obtain more info about mocha here http://visionmedia.github.com/mocha/¹⁶.

¹⁶http://visionmedia.github.com/mocha/

www.EBooksWorld.ir

http://visionmedia.github.com/mocha/
http://visionmedia.github.com/mocha/

Automated Unit Testing 89

Assertion testing module

An assertion testing module is something that allows you to easily compare results to what you
expect. For instance, a module that sums two integers should be compared against some known
cases.

Node already comes with a basic assertionmodule named “assert”. You can use the followingmodule
functions:

• assert.equal(a, b, [message]) - test shallow equality (with ==);
• assert.deepEqual(a, b, [message]) - test for deep equality;
• assert.notEqual(a, b, [message]) - test shallow inequality (as with !=);
• assert.notDeepEqual(a, b, [message]) - test for deep inequality;
• assert.strictEqual(a, b, [message]) - test strict equality (as with ===);
• assert.notStrictEqual(a, b, [message]) - test strict inequality (as with !==);
• assert.throws(block, [error], [message]) - test if the block (given as function) throws an error.
With the optional error argument you can pass in an Error instance to be compared with the
thrown exception, a regular expression to be compared with the exception, or a validation
function.

• assert.doesNotThrow(block, [error], [message]) - the negation of the result of assert.throws()
with the same arguments.

All these messages have a final optional argument where you can pass the message in case of failure.

should.js

Another useful assertion testing module is “should.js”. Should.js provides a nice extension to the
objects, into which you can perform tests using a nice API that you can chain like this:

1 value.should.be.a('object').and.have.property('name', 'Pedro');

You can install Should.js using npm like this;

1 $ npm install should

and then include the module

1 require('should');

There is no need to assign a variable to the module since should extends

With it you can:

www.EBooksWorld.ir

Automated Unit Testing 90

Assert truthfulness:

1 true.should.be.ok;

2

3 'yay'.should.be.ok;

or untruthfulness:

1 false.should.not.be.ok;

2

3 ''.should.not.be.ok;

=== true

1 true.should.be.true;

2

3 '1'.should.not.be.true;

=== false

1 false.should.be.false;

2

3 ''.should.not.be.false;

emptiness

1 [].should.be.empty;

2

3 ''.should.be.empty;

equality

1 ({ foo: 'bar' }).should.eql({ foo: 'bar' });

2

3 [1,2,3].should.eql([1,2,3]);

www.EBooksWorld.ir

Automated Unit Testing 91

equal (strict equality)

1 (4).should.equal(4);

2

3 'test'.should.equal('test');

4

5 [1,2,3].should.not.equal([1,2,3]);

assert numeric range (inclusive) with within

1 15.should.be.within(10, 20);

test numeric value is above given value:

1 10.should.be.above(5);

2

3 10.should.not.be.above(15);

test numeric value is below given value:

1 10.should.not.be.below(5);

2

3 10.should.be.below(15);

matching regular expressions

1 "562".should.match(/[0-9]{3}/);

test length

1 [1, 2, 3].should.have.length(3);

substring inclusion

1 "abcdef".should.include.string('bc');

www.EBooksWorld.ir

Automated Unit Testing 92

assert typeof

1 {a:1, b:2}.should.be.a('object');

2

3 "test".should.be.a('string');

property existence

1 {a:1, b:2}.should.have.property('a');

2

3 {a:1, b:2}.should.not.have.property('c');

array containment

1 [1,2,3].should.contain(3);

2

3 [1,2,3].should.not.contain(4);

own object keys

1 var obj = { foo: 'bar', baz: 'raz' };

2 obj.should.have.keys('foo', 'bar');

3 obj.should.have.keys(['foo', 'bar']);

responds to, asserting that a given property is a function:

1 user.should.respondTo('email');

Putting it all together

The source code for this section can be found at chapters/testing

So now we should be able to make a test for our “sum” module:

www.EBooksWorld.ir

Automated Unit Testing 93

1 require('should');

2

3 var sum = require('../lib/sum');

4

5 describe("Sum Lib", function() {

6

7 it("should be able to sum 0 to 5", function() {

8 sum(0, 5).should.equal(5);

9 });

10

11 it("should be able to sum 2 to 5", function() {

12 sum(2, 5).should.equal(7);

13 });

14

15 it("should be able to sum do some sums", function() {

16 sum(1, 1).should.equal(2);

17 sum(1, 2).should.equal(3);

18 sum(2, 1).should.equal(3);

19 sum(10, 120).should.equal(130);

20 });

21 });

And then we can run our test from the command line like this;

1 $ mocha tests/*.js

Which should print out:

1 ... âœ” 3 tests complete (4 ms)

In case you are testing callbacks, you can also use a first argument given to all testing functions,
which we can name beforeExit.
This function can be used to attach callbacks before the tests end, so you can test if your callbacks
have been called or not:

www.EBooksWorld.ir

Automated Unit Testing 94

1 module.exports.testAsync = function(beforeExit) {

2 var n = 0;

3 setTimeout(function(){

4 ++n;

5 assert.ok(true);

6 }, 200);

7 setTimeout(function(){

8 ++n;

9 assert.ok(true);

10 }, 200);

11 beforeExit(function(){

12 assert.equal(2, n, 'Ensure both timeouts are called');

13 });

14 };

www.EBooksWorld.ir

Callback flow
As you may have noticed, asynchronous programming does not rely on the stack to organize flow
between caller and called function. Instead, it relies on callback functions that are usually passed as
arguments.

Imagine that you would have to build a script that does the following:

Append bytes 10-20 from file a.txt into file b.txt. Both files already exist.

A solution may be something like this:

Source code in:
flow/exercise_1.js

1 var fs = require('fs');

2

3 var doWhatWasAsked = function(callback) {

4 fs.open(__dirname + '/a.txt', 'r', function(err, aFd) {

5 if (err) { callback(err); return; }

6 var buffer = new Buffer(10);

7 fs.read(aFd, buffer, 0, 10, 10, function(err, bytesRead) {

8 if (err) { callback(err); return; }

9

10 fs.open(__dirname + '/b.txt', 'a', function(err, bFd) {

11 if (err) { callback(err); return; }

12 fs.fstat(bFd, function(err, bStats) {

13 if (err) { callback(err); return; }

14 fs.write(bFd, buffer, 0, 10, bStats.size, callback);

15 })

16 })

17 });

18 })

19 };

20

21 console.log('starting...');

22 doWhatWasAsked(function(err) {

23 if (err) { throw err; }

24 console.log('done');

25 });

www.EBooksWorld.ir

Callback flow 96

Here we devise a function sillily called “doWhatWasAsked”, which receives a callback to be invoked
when there is an error or when the task is done.
This function opens a.txt (line 4), and then reads 10 bytes starting at pos 10 (line 7).
Then it opens b.txt (line 10), checks its size using fs.stat (line 12) and then writes into the end of the
file (line 14).

The boomerang effect

In this example you can see what can be called a “boomerang effect” of callback chaining, where
the text indentation increases and then decreases along with function nesting.

This can turn your code into “callback spaghetti”, making it visually hard to track which context
you are in. This style also makes debugging your application difficult, reducing even more the
maintainability of your code.

There is more than one way around this. One is: instead of using anonymous inline functions we
can use named functions - like this:

Source code in
flow/exercise_2.js

1 var fs = require('fs');

2

3 var doWhatWasAsked = function(callback) {

4 var aFd, bFd, buffer = new Buffer(10);

5

6 function openA() {

7 fs.open(__dirname + '/a.txt', 'r', readFromA);

8 }

9

10 function readFromA(err, fd) {

11 if (err) { callback(err); return; }

12 aFd = fd;

13 fs.read(aFd, buffer, 0, 10, 10, openB);

14 }

15

16 function openB(err) {

17 if (err) { callback(err); return; }

18 fs.open(__dirname + '/b.txt', 'a', statB);

19 }

20

21 function statB(err, fd) {

22 if (err) { callback(err); return; }

www.EBooksWorld.ir

Callback flow 97

23 bFd = fd;

24 fs.fstat(bFd, writeB);

25 }

26

27 function writeB(err, bStats) {

28 if (err) { callback(err); return; }

29 fs.write(bFd, buffer, 0, 10, bStats.size, callback);

30 }

31

32 openA();

33 };

34

35 console.log('starting...');

36 doWhatWasAsked(function(err) {

37 if (err) { throw err; }

38 console.log('done');

39 });

This code does what the previous code did, but it’s unarguably clearer. We are now declaring one
named function for each callback all under the same scope, and using the function names to pass
them as the next callback to be executed.

The downside of this technique is that we lose the closure scopes, so we need to store the application
state on a common scope (line 4).

We could discuss which approach is more elegant, but this one is certainly more readable.

Using caolan/async

Async is a utility module which provides straight-forward, powerful functions for working with
asynchronous JavaScript. Although originally designed for use with node.js, it can also be used
directly in the browser.

Collections

Parallel Iterations

When you have a collection and you need to resolve them in an async manner, you can use
async.forEach():

Here is a service that returns the square of a number:

Source code in
flow/squaring_server.js

www.EBooksWorld.ir

Callback flow 98

1 require('http').createServer(function(req, res) {

2 var body = '';

3

4 req.setEncoding('utf8');

5 req.on('data', function(data) {

6 body += data;

7 });

8

9 req.on('end', function() {

10 var number = parseInt(body, 10);

11 var squared = Math.pow(number, 2);

12 res.end(squared.toString());

13 });

14

15 }).listen(4001);

You can save this snippet into a file named “squaring_server.js” and launch it:

1 $ node squaring_server.js

You can install the “async” package using NPM inside the localhost:

1 $ npm install async

For our purpose you should also install the “request” module using NPM:

1 $ npm install request

async.forEach

You can then use async to iterate asynchronously and query the square of a collection of numbers:

Source code in
flow/squaring_client.js

www.EBooksWorld.ir

Callback flow 99

1 var async = require('async');

2 var request = require('request');

3

4 var collection = [1, 2, 3, 4];

5

6 function iterator(element, next) {

7 request({ uri: 'http://localhost:4001/',

8 body: element.toString() },

9 function(err, res, body) {

10 console.log('square of %d is %d', element, body);

11 next(err);

12 });

13 }

14

15 function callback() {

16 console.log('finished');

17 }

18

19 async.forEach(collection, iterator, callback);

async.map

You can also collect the results asynchronously using async.map like this:

Source code in
flow/squaring_client_map.js

1 var async = require('async');

2 var request = require('request');

3

4 var collection = [1, 2, 3, 4];

5

6 function iterator(element, next) {

7 request({ uri: 'http://localhost:4001/',

8 body: element.toString() },

9 function(err, res, body) {

10 next(err, parseInt(body, 10));

11 });

12 }

13

14 function callback(err, result) {

15 console.log('finished.');

16 for (var i in collection) {

www.EBooksWorld.ir

Callback flow 100

17 console.log('the square of %d is %d', collection[i], result[i]);

18 }

19 }

20

21 async.map(collection, iterator, callback);

Notice that the results are in the same order as they were issued, even though they might have
finished in a different order.

async.forEachLimit

You can limit the amount of parallelism by using async.forEachLimit like this:

Source code in
flow/squaring_client_limited.js

1 var async = require('async');

2 var request = require('request');

3

4 var collection = [];

5

6 for (var i = 0; i collection.push(i);

7 }

8

9 var maxConcurrency = 5;

10

11 function iterator(element, next) {

12 request({ uri: 'http://localhost:4001/',

13 body: element.toString() },

14 function(err, res, body) {

15 console.log('square of %d is %d', element, body);

16 next(err);

17 });

18 }

19

20 function callback() {

21 console.log('finished');

22 }

23

24 async.forEachLimit(collection, maxConcurrency, iterator, callback);

async.filter

You can also filter a collection asynchronously:

www.EBooksWorld.ir

Callback flow 101

1 var async = require('async');

2 var exists = require('path').exists;

3

4 var files = [

5 'filter.js',

6 'does_not_exist.js',

7 'squaring_client.js',

8 'also_does_not_exist.js',

9 'squaring_client_limited.js',

10 'squaring_client_map.js',

11 'also_does_not_exist_2.js',

12 'squaring_server.js'

13];

14

15 function callback(result) {

16 console.log('of files %j, these exist: %j', files, result);

17 }

18

19 async.filter(files, exists, callback);

Here we are using path.exists (which is asynchronous) to filter out a list of files.

async.reject

Reject is the opposite of filter:

1 var async = require('async');

2 var exists = require('path').exists;

3

4 var files = [

5 'filter.js',

6 'does_not_exist.js',

7 'squaring_client.js',

8 'also_does_not_exist.js',

9 'squaring_client_limited.js',

10 'squaring_client_map.js',

11 'also_does_not_exist_2.js',

12 'squaring_server.js'

13];

14

15 function callback(result) {

16 console.log('of files %j, these do not exist: %j', files, result);

www.EBooksWorld.ir

Callback flow 102

17 }

18

19 async.reject(files, exists, callback);

async.reduce

This reduces a list of values using an asynchronous iterator to return each step.

For instance, if we want to calculate the 100th Fibbonacci number, we can use a web service that
sums two numbers:

1 function sum(a, b) {

2 return a + b;

3 }

4

5 require('http').createServer(function(req, res) {

6 var body = '';

7

8 req.setEncoding('utf8');

9 req.on('data', function(data) {

10 body += data;

11 });

12

13 req.on('end', function() {

14 var numbers = body.split('&').map(function(arg){

15 return arg.split('=');

16 }).map(function(strs) {

17 return parseInt(strs[1], 10);

18 });

19 console.log(numbers);

20 var total = numbers.reduce(sum, 0);

21 res.end(total.toString());

22 });

23

24 }).listen(4001);

Now we are ready to make a client to calculate the 100th Fibbonacci number:

Source code in
flow/fibbonacci.js

www.EBooksWorld.ir

Callback flow 103

1 var async = require('async');

2 var request = require('request');

3

4 var items = [];

5 var order = process.argv[2] && parseInt(process.argv[2]) || 100;

6 var orderMinus2 = order - 2;

7

8 for (var i = 0 ; i items.push(i);

9 }

10

11 var memo = [0, 1];

12

13 function iterator(memo, item, next) {

14 request({uri: 'http://localhost:4001/', form: {a: memo[0], b: memo[1]}}, functi\

15 on(err, res, body) {

16 next(err, [memo[1], parseInt(body, 10)]);

17 });

18 }

19

20 async.reduce(items, memo, iterator, function(err, result) {

21 if (err) { throw err; }

22 console.log('Fibbonacci of order %d: %d', order, result[1]);

23 });

async.detect

async.detect returns the first value in a list that passes an async truth test:

Source code in
flow/detect.js

1 var async = require('async');

2 var exists = require('path').exists;

3

4 var files = [

5 'filter.js',

6 'does_not_exist.js',

7 'squaring_client.js',

8 'also_does_not_exist.js',

9 'squaring_client_limited.js',

10 'squaring_client_map.js',

11 'also_does_not_exist_2.js',

12 'squaring_server.js'

www.EBooksWorld.ir

Callback flow 104

13];

14

15 function callback(result) {

16 console.log('this file exists: %s', result);

17 }

18

19 async.detect(files, exists, callback);

If you save this to a file named detect.js, and run it:

1 $ node detect.js

You should get the result:

1 file exists: filter.js

async.some

Returns true if at least one element in the array satisfies the asynchronous test.

Source code in
flow/some.js

1 var async = require('async');

2 var exists = require('path').exists;

3

4 var files = [

5 'does_not_exist.js',

6 'also_does_not_exist.js',

7 'also_does_not_exist_2.js',

8 'filter.js'];

9

10 function callback(result) {

11 console.log('at least one of these files exists: %j', result);

12 }

13

14 async.some(files, exists, callback);

async.every

Returns true if all elements in the array satisfies the asynchronous test.

Source code in
flow/every.js

www.EBooksWorld.ir

Callback flow 105

1 var async = require('async');

2 var exists = require('path').exists;

3

4 var files = [

5 'filter.js',

6 'does_not_exist.js',

7 'squaring_client.js',

8 'also_does_not_exist.js',

9 'squaring_client_limited.js',

10 'squaring_client_map.js',

11 'also_does_not_exist_2.js',

12 'squaring_server.js'

13];

14

15 function callback(result) {

16 console.log('all these files exist: %j', result);

17 }

18

19 async.every(files, exists, callback);

Running this example should result in:

1 all these files exist: false

Flow Control

async.series

Executes a bunch of tasks in series. Returns results to callback as an array. Stops if an error occurs.

Source code in
flow/series.js

1 var async = require('async');

2 var request = require('request');

3

4 var functions = [];

5

6 for (var i = 0; i functions.push(function(i) {

7

8 return function(done) {

9

www.EBooksWorld.ir

Callback flow 106

10 request({

11 uri: 'http://localhost:4001'

12 , body: i.toString()}

13 , function(err, res, body) {

14 done(err, body);

15 });

16

17 }

18

19 }(i));

20 }

21

22 function callback(err, result) {

23 if (err) { throw err; }

24 console.log('done: %j', result);

25 }

26

27 async.series(functions, callback);

async.parallel

Run an array of functions in parallel without waiting for the previous function to have finished.

Fire up the squaring server:

1 $ node squaring_server.js

And then run this:

Source code in
flow/parallel.js

1 var async = require('async');

2 var request = require('request');

3

4 var functions = [];

5

6 for (var i = 0; i functions.push(function(i) {

7

8 return function(done) {

9

10 request({

11 uri: 'http://localhost:4001'

www.EBooksWorld.ir

Callback flow 107

12 , body: i.toString()}

13 , function(err, res, body) {

14 done(err, body);

15 });

16

17 }

18

19 }(i));

20 }

21

22 function callback(err, result) {

23 if (err) { throw err; }

24 console.log('done: %j', result);

25 }

26

27 async.parallel(functions, callback);

async.whilst

Repeatedly call fn, while test returns true. Here is an example for calculating the biggest integer
whose square is smaller than 1000:

1 var async = require('async');

2 var request = require('request');

3

4 var i = -1;

5 var n = i;

6 var lastResult = -1;

7

8 function test() {

9 var pass = lastResult if (pass) { i = n; }

10 return pass;

11 }

12

13 function action(done) {

14 n = i + 1;

15 request({

16 uri: 'http://localhost:4001/'

17 , body: n.toString()}

18 , function(err, res, body) {

19 if (err) { return done(err); }

20 lastResult = parseInt(body, 10);

www.EBooksWorld.ir

Callback flow 108

21 done();

22 });

23 }

24

25 function callback(err) {

26 if (err) { throw err; }

27 console.log('the biggest integer whose square is smaller than 1000: %d', i);

28 }

29

30 async.whilst(test, action, callback);

async.until

The same as async.whilst, except that the test is reversed.

async.waterfall

Runs an array of functions in series, each passing their results to the next in the array. Stops on the
first error.

Here we’re using our squaring server to calculate 5ˆ4:

1 var async = require('async');

2 var request = require('request');

3

4 var functions = [

5

6 function(done) {

7 request(

8 { uri: 'http://localhost:4001'

9 , body: '5' }

10 , done);

11 },

12

13 function(res, body, done) {

14 request(

15 { uri: 'http://localhost:4001'

16 , body: body}

17 , done);

18 }

19

20];

21

www.EBooksWorld.ir

Callback flow 109

22 function callback(err, res, result) {

23 if (err) { throw err; }

24 console.log('5^4 = 5^2^2 = %s', result);

25 }

26

27 async.waterfall(functions, callback);

async.queue

This creates a queue with a determined concurrency. You have to provide a worker function and
push work to it. Example:

1 var async = require('async');

2 var request = require('request');

3

4 function worker(number, done) {

5 request({uri: 'http://localhost:4001/', body: number.toString()}, function(err,\

6 res, body) {

7 done(err, number, parseInt(body, 10));

8 });

9 }

10

11 var queue = async.queue(worker, 5);

12

13 for (var i = 0; i queue.push(i, function(err, number, squared) {

14 if (err) {return console.log(err); }

15 console.log('the square of %d is %d', number, squared);

16 });

17 }

18

19 queue.drain = function() {

20 console.log('queue drained!');

21 };

www.EBooksWorld.ir

Appendix - Exercise Results
Chapter: Buffers

Exercise 1

Create an uninitialized buffer with 100 bytes length and fill it with bytes with values starting from
0 to 99. And then print its contents.

One Solution:

Source in
exercises/buffer/1.js

1 var buffer = new Buffer(100);

2

3 for(var i = 0; i < buffer.length; i ++) {

4 buffer[i] = i;

5 }

6 console.log(buffer);

Exercise 2

Do what is asked on the previous exercise and then slice the buffer with bytes ranging 40 to 60. And
then print it.

One Solution:

Source in
exercises/buffer/2.js

www.EBooksWorld.ir

Appendix - Exercise Results 111

1 var buffer = new Buffer(100);

2

3 for(var i = 0; i < buffer.length; i ++) {

4 buffer[i] = i;

5 }

6 console.log(buffer);

7

8 var buffer2 = buffer.slice(40, 60);

9

10 console.log(buffer2);

Exercise 3

Do what is asked on exercise 1 and then copy bytes ranging 40 to 60 into a new buffer. And then
print it.

One Solution:

Source in
exercises/buffer/3.js

1 var buffer = new Buffer(100);

2

3 for(var i = 0; i < buffer.length; i ++) {

4 buffer[i] = i;

5 }

6 console.log(buffer);

7

8 var buffer2 = new Buffer(20);

9 buffer.copy(buffer2, 0, 40, 60);

10

11 console.log(buffer2);

Chapter: Event Emitter

Exercise 1

Build a pseudo-class named “Ticker” that emits a “tick” event every 1 second.

One Solution:

Source in
exercises/event_emitter/1.js

www.EBooksWorld.ir

Appendix - Exercise Results 112

1 var util = require('util'),

2 EventEmitter = require('events').EventEmitter;

3

4 var Ticker = function() {

5 var self = this;

6 setInterval(function() {

7 self.emit('tick');

8 }, 1000);

9 };

Exercise 2

Build a script that instantiates one Ticker and bind to the “tick” event, printing “TICK” every time
it gets one.

One Solution:

Source in
exercises/event_emitter/2.js

1 var util = require('util'),

2 EventEmitter = require('events').EventEmitter;

3

4 var Ticker = function() {

5 var self = this;

6 setInterval(function() {

7 self.emit('tick');

8 }, 1000);

9 };

10

11 util.inherits(Ticker, EventEmitter)

12

13 var ticker = new Ticker();

14 ticker.on('tick', function() {

15 console.log('TICK');

16 });

Chapter: Low-level File System

Exercise 1 - get the size of a file

Having a file named a.txt, print the size of that files in bytes.

www.EBooksWorld.ir

Appendix - Exercise Results 113

One Solution:

Source code in
exercises/fs/1.1.js

1 var fs = require('fs');

2

3 fs.stat(__dirname + '/a.txt', function(err, stats) {

4 if (err) { throw err; }

5 console.log(stats.size);

6 });

Exercise 2 - read a chunk from a file

Having a file named a.txt, print bytes 10 to 14.

One Solution:

Source code in
exercises/fs/1.2.js

1 var fs = require('fs');

2

3 fs.open(__dirname + '/a.txt', 'r', function(err, fd) {

4 if (err) { throw err; }

5 var buffer = Buffer(5);

6 var readBytes = 0;

7 (function readIt() {

8 fs.read(fd, buffer, readBytes, buffer.length - readBytes, 10 + readBytes, fun\

9 ction(err, bytesRead) {

10 if (err) { throw err; }

11 readBytes += bytesRead;

12 if (readBytes === buffer.length) {

13 console.log(buffer);

14 } else {

15 readIt();

16 }

17 });

18 })();

19 });

www.EBooksWorld.ir

Appendix - Exercise Results 114

Exercise 3 - read two chunks from a file

Having a file named a.txt, print bytes 5 to 9, and when done, read bytes 10 to 14.

One Solution:

Source code in
exercises/fs/1.3.js

1 var fs = require('fs');

2

3 fs.open(__dirname + '/a.txt', 'r', function(err, fd) {

4 if (err) { throw err; }

5 function readSome(startingAt, byteCount, callback) {

6 var buffer = Buffer(byteCount);

7 var readBytes = 0;

8 (function readIt() {

9 fs.read(fd, buffer, readBytes, buffer.length - readBytes, startingAt + read\

10 Bytes, function(err, bytesRead) {

11 if (err) { throw err; }

12 readBytes += bytesRead;

13 if (readBytes === buffer.length) {

14 callback(buffer)

15 } else {

16 readIt();

17 }

18 });

19 })();

20 }

21 readSome(5, 4, function(buffer1) {

22 console.log(buffer1);

23 readSome(10, 4, function(buffer2) {

24 console.log(buffer2);

25 });

26 })

27 });

Exercise 4 - Overwrite a file

Having a file named a.txt, Overwrite it with the UTF-8-encoded string “ABCDEFGHIJLKLMNOPQRSTU-
VXYZ0123456789abcdefghijklmnopqrstuvxyz”.

www.EBooksWorld.ir

Appendix - Exercise Results 115

One Solution:

Source code in
exercises/fs/1.4.js

1 var fs = require('fs');

2

3 fs.open(__dirname + '/a.txt', 'w', function(err, fd) {

4 if (err) { throw err; }

5 var buffer = new Buffer('ABCDEFGHIJLKLMNOPQRSTUVXYZ0123456789abcdefghijklmnopqr\

6 stuvxyz');

7 var written = 0;

8 (function writeIt() {

9 fs.write(fd, buffer, 0 + written, buffer.length - written, 0 + written, funct\

10 ion(err, bytesWritten) {

11 if (err) { throw err; }

12 written += bytesWritten;

13 if (written === buffer.length) {

14 console.log('done');

15 } else {

16 writeIt();

17 }

18 });

19 })();

20 });

Exercise 5 - append to a file

Having a file named a.txt, append UTF-8-encoded string “abc” to file a.txt.

One Solution:

Source code in
exercises/fs/1.5.js

www.EBooksWorld.ir

Appendix - Exercise Results 116

1 var fs = require('fs');

2

3 fs.open(__dirname + '/a.txt', 'a', function(err, fd) {

4 if (err) { throw err; }

5 var buffer = new Buffer('abc');

6 var written = 0;

7 (function writeIt() {

8 fs.write(fd, buffer, 0 + written, buffer.length - written, null, function(err\

9 , bytesWritten) {

10 if (err) { throw err; }

11 written += bytesWritten;

12 if (written === buffer.length) {

13 console.log('done');

14 } else {

15 writeIt();

16 }

17 });

18 })();

19 });

Exercise 6 - change the content of a file

Having a file named a.txt, change byte at pos 10 to UTF-8 value of “7”.

One Solution:

Source code in
exercises/fs/1.6.js

1 var fs = require('fs');

2

3 fs.open(__dirname + '/a.txt', 'a', function(err, fd) {

4 if (err) { throw err; }

5 var buffer = new Buffer('7');

6 var written = 0;

7 (function writeIt() {

8 fs.write(fd, buffer, 0 + written, buffer.length - written, 10, function(err, \

9 bytesWritten) {

10 if (err) { throw err; }

11 written += bytesWritten;

www.EBooksWorld.ir

Appendix - Exercise Results 117

12 if (written === buffer.length) {

13 console.log('done');

14 } else {

15 writeIt();

16 }

17 });

18 })();

19 });

Chapter: HTTP

Exercise 1

Make anHTTP server that serves files. The file path is provided in the URL like this: http://localhost:4000/path/to/my/file.txt

One Solution:

Source code in
exercises/http/exercise_1.js

1 var path = require('path'),

2 fs = require('fs');

3

4 require('http').createServer(function(req, res) {

5 var file = path.normalize(req.url);

6 path.exists(file, function(exists) {

7 if (exists) {

8 fs.stat(file, function(err, stat) {

9 var rs;

10

11 if (err) { throw err; }

12

13 if (stat.isDirectory()) {

14 res.writeHead(403);

15 res.end('Forbidden');

16 } else {

17 rs = fs.createReadStream(file);

18 res.writeHead(200);

19 rs.pipe(res);

www.EBooksWorld.ir

Appendix - Exercise Results 118

20 }

21 });

22 } else {

23 res.writeHead(404);

24 res.end('Not found');

25 }

26 })

27 }).listen(4000);

Exercise 2

Make an HTTP server that outputs plain text with 100 timestamps new-line separated every second.

One Solution:

Source code in
exercises/http/exercise_2.js

1 require('http').createServer(function(req, res) {

2

3 res.writeHead(200, {'Content-Type': 'text/plain'});

4 var left = 10;

5 var interval = setInterval(function() {

6 for(var i = 0; i res.write(Date.now() + "\n");

7 }

8

9 if (-- left === 0) {

10 clearInterval(interval);

11 res.end();

12 }

13

14 }, 1000);

15

16 }).listen(4001);

Exercise 3

Make an HTTP server that saves the request body into a file.

www.EBooksWorld.ir

Appendix - Exercise Results 119

One Solution:

Source code in
exercises/http/exercise_3.js

1 var fs = require('fs');

2

3 var sequence = 0;

4 require('http').createServer(function(req, res) {

5 var fileName = '/tmp/' + sequence + '.bin';

6 console.log("writing " + fileName);

7 var writeStream = fs.createWriteStream(fileName);

8

9 req.pipe(writeStream);

10 req.on('end', function() {

11 res.writeHead(200);

12 res.end();

13 });

14 sequence ++;

15 }).listen(3000);

Here we are creating a write stream (line number 7) every time there is a new request. Each file will
have a sequential file name n.bin (1.bin, 2.bin, etc.), saved to /tmp.

After creating the write stream we pipe the request data into it (line 9). From line 10 to line 13 we
are responding after the request is done.

You can test this by using curl from the command line and piping in a file like this:

1 $ curl http://localhost:3000 -T /var/log/mail.log

Exercise 4

Make a script that accepts a file name as first command line argument and uploads this file into the
server built on the previous exercise.

One Solution:

Source code in
exercises/http/exercise_4.js

www.EBooksWorld.ir

Appendix - Exercise Results 120

1 var http = require('http'),

2 fs = require('fs');

3

4 if (process.argv.length < 5) {

5 console.log('Usage: ' + process.argv[0] + ' ' + process.argv[1] + ' ');

6 return;

7 }

8

9 var options = {

10 host: process.argv[2],

11 port: parseInt(process.argv[3], 10),

12 path: '/',

13 method: 'PUT'

14 };

15

16 var req = http.request(options);

17

18 console.log('piping ' + process.argv[4]);

19 fs.createReadStream(process.argv[4]).pipe(req);

To test this you can try:

1 $ node exercise_4.js localhost 3000 /var/log/mail.log

Here we are initializing an HTTP put request on line 16, with the host name and ports passed in as
command line. Then, on line 19 we are creating a read stream from the file name and piping it to
the request object. When the file read stream is finished it will call end() on the request object.

Chapter: Child processes

Exercise 1

Create a server that a) opens a file b) listens on a unix domain socket and c) spawns a client. This
client opens the socket to the server and waits for a file descriptor. The server then passes in the file
descriptor we opened on a). The client writes to the file and quits. When the client process quits, the
server quits.

One Solution:

The server code:

Source code in
exercises/child_processes/exercise_1/server.js

www.EBooksWorld.ir

Appendix - Exercise Results 121

1 var spawn = require('child_process').spawn;

2

3 require('fs').open(__dirname + '/example.txt', 'a', function(err, fileDesc) {

4

5 var server = require('net').createServer(function(socket) {

6

7 socket.write('Here you go', fileDesc);

8 socket.end();

9 server.close();

10 });

11

12 server.listen('/tmp/ho_child_exercise_1.sock', function() {

13

14 var child = spawn(process.argv[0], [__dirname + '/client.js']);

15 child.on('exit', function() {

16 console.log('child exited');

17 });

18

19 });

20 });

First we open the file on line 3. Once it is opened, we create the server (line 5) and bind it to a well-
known socket path (line 12). When we start listening, we spawn the child process (line 14), which is
a node process executing ‘child.js’ from the current directory. This server will simply write the file
descriptor into the first connecting client, end the connection and close the server socket.

The client code:

Source code in
exercises/child_processes/exercise_1/client.js

1 var fs = require('fs');

2

3 var conn = require('net').createConnection('/tmp/ho_child_exercise_1.sock');

4 conn.on('fd', function(fileDesc) {

5 fs.write(fileDesc, "this is the child!\n", function() {

6 conn.end();

7 });

8 });

The client is very simple: it will connect to the server and wait for a file descriptor to be handed
down (line 4). When that happens, it will append the string “this is the child!” into the file and end
the server connection, exiting the process.

www.EBooksWorld.ir

Appendix - Exercise Results 122

Chapter: Streaming HTTP Chunked responses

Exercise 1

Create a mixed TCP and HTTP server that, for every HTTP request, streams all the TCP clients
input into the request response.

One Solution:

1 var util = require('util'),

2 EventEmitter = require('events').EventEmitter;

3

4 var Hose = function() {

5 var self = this;

6 require('net').createServer(function(socket) {

7 socket.on('data', function(data) {

8 self.emit('data', data);

9 })

10 }).listen(4001);

11 };

12

13 util.inherits(Hose, EventEmitter);

14

15 var hoser = new Hose();

16

17 require('http').createServer(function(req, res) {

18 res.writeHead(200, {'Content-Type': 'text/plain'});

19 hoser.on('data', function(data) {

20 res.write(data);

21 });

22

23 }).listen(4002);

Here we are creating a pseudo-class named “Hose” that inherits from EventEmitter. An instance of
this class (hoser), when created, starts the TCP server, and on every message it emits a “data” event.

Then, the HTTP server simply binds to that event on the hoser, and when the hoser emits it, that
data is piped into the response.

www.EBooksWorld.ir

Appendix - Exercise Results 123

Chapter: UDP

Exercise 1

Create a UDP server that echoes the messages ot receives back into the origin socket.

One Solution:

1 var dgram = require('dgram');

2

3 var socket = dgram.createSocket('udp4', function(message, rinfo) {

4 console.log(rinfo);

5 socket.send(message, 0, message.length, rinfo.port, rinfo.address);

6 });

7

8 socket.bind(4001);

You can test this using netcat like this:

1 $ netcat -u -w 1 localhost 4001

and then you can type a message and hit Return, and you should get the same message back.

Chapter: TCP

Exercise 1

Make a chat server that requires no authentication, just a TCP client connection. Each time the client
sends some text, the server broadcasts it to the other clients.

One Solution:

Source code in
exercises/http/exercise_1.js

www.EBooksWorld.ir

Appendix - Exercise Results 124

1 var sockets = [];

2

3 require('net').createServer(function(socket) {

4

5 sockets.push(socket);

6

7 socket.on('data', function(data) {

8 sockets.forEach(function(socket) {

9 socket.write(data);

10 });

11 });

12

13 socket.on('end', function() {

14 var pos = sockets.indexOf(socket);

15 if (pos > 0) {

16 sockets.splice(pos, 1);

17 }

18 });

19

20 }).listen(4001);

On line 5 we are adding every new connection to the sockets array. On line 8 and 9 we are
broadcasting every message received to every client connection. On lines 14-17 we are removing
the client socket from the sockets array if he disconnects.

Exercise 2

Make a chat client that accepts 2 command line arguments: host and port, and reads from stdin,
sending data to the server on each new line.

One Solution:

Source code in
exercises/http/exercise_2.js

www.EBooksWorld.ir

Appendix - Exercise Results 125

1 var net = require('net');

2

3 if (process.argv.length < 4) {

4 console.log('Usage: ' + process.argv[0] + ' ' + process.argv[1] + ' ');

5 return;

6 }

7

8 var host = process.argv[2],

9 port = process.argv[3];

10

11 var conn = net.createConnection(port, host);

12

13 process.stdin.resume();

14 process.stdin.pipe(conn);

15 conn.pipe(process.stdout, {end: false});

Here we are opening a connection to the chat server on line 11. Then, we pipe the process stdin into
the socket (line 13). Also, to print what we get from the server, we pipe that socket into the process
stdout (line 15).

Chapter: SSL / TLS

Exercise 1

Create a certificate authority. Create a client certificate signed by this new certificate authority.

One Solution:

Create the Certificate Authority (CA):

1 $ mkdir private

2 $ openssl req -new -x509 -days 3650 -extensions v3_ca -keyout private/cakey.pem -\

3 out cacert.pem

Here is an example output:

www.EBooksWorld.ir

Appendix - Exercise Results 126

1 Generating a 1024 bit RSA private key

2 ..++++++

3++++++

4 writing new private key to 'private/cakey.pem'

5 Enter PEM pass phrase:

6 Verifying - Enter PEM pass phrase:

7 -----

8 You are about to be asked to enter information that will be incorporated

9 into your certificate request.

10 What you are about to enter is what is called a Distinguished Name or a DN.

11 There are quite a few fields but you can leave some blank

12 For some fields there will be a default value,

13 If you enter '.', the field will be left blank.

14 -----

15 Country Name (2 letter code) [AU]:PT

16 State or Province Name (full name) [Some-State]:

17 Locality Name (eg, city) []:Lisbon

18 Organization Name (eg, company) [Internet Widgits Pty Ltd]:Test CA

19 Organizational Unit Name (eg, section) []:

20 Common Name (eg, YOUR name) []:Pedro Teixeira

21 Email Address []:pedro.teixeira@gmail.com

The CA should now be generated:

1 $ tree

2 .

3 -- cacert.pem

4 `-- private

5 `-- cakey.pem

Now we create the client private and public keys:

1 $ mkdir client1

2

3 $ cd client1

4

5 $ openssl genrsa -out client.pem 1024

Now we generate a Certificate Signing Request (CSR):

www.EBooksWorld.ir

Appendix - Exercise Results 127

1 openssl req -new -key client.pem -out client_csr.pem

The output should be something like this:

1 You are about to be asked to enter information that will be incorporated

2 into your certificate request.

3 What you are about to enter is what is called a Distinguished Name or a DN.

4 There are quite a few fields but you can leave some blank

5 For some fields there will be a default value,

6 If you enter '.', the field will be left blank.

7 -----

8 Country Name (2 letter code) [AU]:PT

9 State or Province Name (full name) [Some-State]:

10 Locality Name (eg, city) []:Lisbon

11 Organization Name (eg, company) [Internet Widgits Pty Ltd]:Test Client

12 Organizational Unit Name (eg, section) []:

13 Common Name (eg, YOUR name) []:Pedro Teixeira

14 Email Address []:pedro.teixeira@gmail.com

15

16 Please enter the following 'extra' attributes

17 to be sent with your certificate request

18 A challenge password []:

19 An optional company name []:

Now we create a signed certificate:

1 $ openssl x509 -req -in client_csr.pem -signkey ../private/cakey.pem -out client_\

2 cert.pem

You will be prompted for the CA private key password, and he output will look something like this:

1 Signature ok

2 subject=/C=PT/ST=Some-State/L=Lisbon/O=Test Client/CN=Pedro Teixeira/emailAddress\

3 =pedro.teixeira@gmail.com

4 Getting Private key

5 Enter pass phrase for ../private/cakey.pem:

Now you should have the client certificate in the file named client_cert.pem.

www.EBooksWorld.ir

Appendix - Exercise Results 128

Exercise 2

Create a TLS echo server that uses the default certificate authorities.

One Solution:

Create a directory to store the keys named exercise2:

1 $ mkdir exercise2

2

3 $ cd exercise 2

Create the server private key:

1 $ openssl genrsa -out server-key.pem 1024

Create the server certificate sigining request (CSR):

1 $ openssl req -new -key server-key.pem -out server-csr.pem

Create a self-signed sertificate:

1 $ openssl x509 -req -in server-csr.pem -signkey server-key.pem -out server-cert.p\

2 em

Now go down a dir and type the server script:

1 $ cd ..

Source code in
exercise/ssl_tls/exercise_2.js

www.EBooksWorld.ir

Appendix - Exercise Results 129

1 var fs = require('fs');

2 var options = {

3 key: fs.readFileSync(__dirname + '/exercise_2/server-key.pem'),

4 cert: fs.readFileSync(__dirname + '/exercise_2/server-cert.pem'),

5 ca: fs.readFileSync(__dirname + '/exercise_1/private/cakey.pem')

6 };

7 require('tls').createServer(options, function(socket) {

8 socket.pipe(socket);

9 }).listen(4001);

Exercise 3

Create a TLS client that reads from stdin and sends it to the echo TLS server created on exercise 2.

One Solution:

Source code in
exercise/ssl_tls/exercise_3.js

1 var fs = require('fs');

2 var client = require('tls').connect(4001, function(err) {

3 client.connected = true;

4 console.log('connected');

5 process.stdin.resume();

6 process.stdin.pipe(client);

7 client.pipe(process.stdout, {end: false});

8 });

Exercise 4

Make the TLS server only accept connections if the client is certified. Verify that he does not let the
client created on exercise 3 connect.

One Solution:

Source code in
exercise/ssl_tls/exercise_4.js

www.EBooksWorld.ir

Appendix - Exercise Results 130

1 var fs =require('fs');

2 var options = {

3 key: fs.readFileSync(__dirname + '/exercise_2/server-key.pem'),

4 cert: fs.readFileSync(__dirname + '/exercise_2/server-cert.pem'),

5 ca: fs.readFileSync(__dirname + '/exercise_1/private/cakey.pem'),

6 requestCert: true,

7 rejectUnauthorized: true

8 };

9 require('tls').createServer(options, function(socket) {

10 socket.on('data', function(data) {

11 console.log(data.toString());

12 });

13 socket.pipe(socket);

14 }).listen(4001);

Here we are passing in the requestCert and rejectUnauthorized options with a true value. Once our
client connects the connection will be rejected since it is not using a certificate regognizable to the
server.

Exercise 5

Make the TLS Server use the same certificate authority you used to sign the client certificate with.
Verify that the server now accepts connections from this client.

One Solution:

Source code in
exercise/ssl_tls/exercise_5.js

1 var fs = require('fs');

2 var options = {

3 key: fs.readFileSync(__dirname + '/exercise_1/client1/client.pem'),

4 cert: fs.readFileSync(__dirname + '/exercise_1/client1/client_cert.pem')

5 };

6 var client = require('tls').connect(4001, options, function(err) {

7 client.connected = true;

8 console.log('connected');

9 process.stdin.resume();

10 process.stdin.pipe(client);

11 client.pipe(process.stdout, {end: false});

12 });

www.EBooksWorld.ir

Appendix - Exercise Results 131

Here we are using the client key and certificate we generated on exercise 1, which should be
recognizable by our server since it was signed by our Certificate Authority.

www.EBooksWorld.ir

	Table of Contents
	Introduction
	Why the sudden, exponential popularity?
	What does this book cover?
	What does this book not cover?
	Prerequisites
	Exercises
	Source code
	Where will this book lead you?

	Why?
	Why the event loop?
	Solution 1: Create more call stacks
	Solution 2: Use event-driven I/O

	Why JavaScript?
	How I Learned to Stop Fearing and Love JavaScript
	Function Declaration Styles
	Functions are first-class objects

	JSHint
	JavaScript versions

	References

	Starting up
	Install Node

	Understanding
	Understanding the Node event loop
	An event-queue processing loop
	Callbacks that will generate events
	Don't block!

	Modules and NPM
	Modules
	How Node resolves a module path
	Core modules
	Modules with complete or relative path
	As a file
	As a directory
	As an installed module

	NPM - Node Package Manager
	Global vs. Local
	NPM commands
	npm ls [filter
	npm install package[@filters
	npm rm package_name[@version
	npm view [@

	The Package.json Manifest

	Utilities
	console
	util

	Buffers
	Slice a buffer
	Copy a buffer
	Buffer Exercises
	Exercise 1
	Exercise 2
	Exercise 3

	Event Emitter
	.addListener
	.once
	.removeAllListeners
	Creating an Event Emitter
	Event Emitter Exercises
	Exercise 1
	Exercise 2

	Timers
	setTimeout
	clearTimeout
	setInterval
	clearInterval
	setImmediate
	Escaping the event loop
	A note on tail recursion

	Low-level file-system
	fs.stat and fs.fstat
	Open a file
	Read from a file
	Write into a file
	Close Your files

	File-system Exercises
	Exercise 1 - get the size of a file
	Exercise 2 - read a chunk from a file
	Exercise 3 - read two chunks from a file
	Exercise 4 - Overwrite a file
	Exercise 5 - append to a file
	Exercise 6 - change the content of a file

	HTTP
	HTTP Server
	The http.ServerRequest object
	req.url
	req.method
	req.headers
	The http.ServerResponse object
	Write a header
	Change or set a header
	Remove a header
	Write a piece of the response body

	HTTP Client
	http.get()
	http.request()

	HTTP Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Streams
	ReadStream
	Wait for data
	Know when it ends
	Pause it
	Resume it

	WriteStream
	Write to it
	Wait for it to drain

	Some stream examples
	Filesystem streams
	Network streams

	The Slow Client Problem and Back-pressure
	What can we do?
	Pipe

	TCP
	Write a string or a buffer
	end
	…and all the other methods
	Idle sockets
	Keep-alive
	Delay or no delay
	server.close()
	Listening
	TCP client
	Error handling
	TCP Exercises
	Exercise 1
	Exercise 2

	Datagrams (UDP)
	Datagram server
	Datagram client
	Datagram Multicast
	Receiving multicast messages
	Sending multicast messages
	What can be the datagram maximum size?

	UDP Exercises
	Exercise 1

	Child processes
	Executing commands
	Spawning processes
	Killing processes
	Child Processes Exercises
	Exercise 1

	Streaming HTTP chunked responses
	A streaming example
	Streaming Exercises
	Exercise 1

	TLS / SSL
	Public / private keys
	Private key
	Public key

	TLS Client
	TLS Server
	Verification

	TLS Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	HTTPS
	HTTPS Server
	HTTPS Client

	Making modules
	CommonJS modules
	One file module
	An aggregating module
	A pseudo-class
	A pseudo-class that inherits
	node_modules and npm bundle
	Bundling

	Debugging
	console.log
	Node built-in debugger
	Node Inspector
	Live edit

	Automated Unit Testing
	A test runner
	Assertion testing module
	should.js
	Assert truthfulness:
	or untruthfulness:
	=== true
	=== false
	emptiness
	equality
	equal (strict equality)
	assert numeric range (inclusive) with within
	test numeric value is above given value:
	test numeric value is below given value:
	matching regular expressions
	test length
	substring inclusion
	assert typeof
	property existence
	array containment
	own object keys
	responds to, asserting that a given property is a function:

	Putting it all together

	Callback flow
	The boomerang effect
	Using caolan/async
	Collections
	Parallel Iterations
	async.forEach
	async.map
	async.forEachLimit
	async.filter
	async.reject
	async.reduce
	async.detect
	async.some
	async.every

	Flow Control
	async.series
	async.parallel
	async.whilst
	async.until
	async.waterfall
	async.queue

	Appendix - Exercise Results
	Chapter: Buffers
	Exercise 1
	One Solution:

	Exercise 2
	One Solution:

	Exercise 3
	One Solution:

	Chapter: Event Emitter
	Exercise 1
	One Solution:

	Exercise 2
	One Solution:

	Chapter: Low-level File System
	Exercise 1 - get the size of a file
	One Solution:

	Exercise 2 - read a chunk from a file
	One Solution:

	Exercise 3 - read two chunks from a file
	One Solution:

	Exercise 4 - Overwrite a file
	One Solution:

	Exercise 5 - append to a file
	One Solution:

	Exercise 6 - change the content of a file
	One Solution:

	Chapter: HTTP
	Exercise 1
	One Solution:

	Exercise 2
	One Solution:

	Exercise 3
	One Solution:

	Exercise 4
	One Solution:

	Chapter: Child processes
	Exercise 1
	One Solution:

	Chapter: Streaming HTTP Chunked responses
	Exercise 1
	One Solution:

	Chapter: UDP
	Exercise 1
	One Solution:

	Chapter: TCP
	Exercise 1
	One Solution:

	Exercise 2
	One Solution:

	Chapter: SSL / TLS
	Exercise 1
	One Solution:

	Exercise 2
	One Solution:

	Exercise 3
	One Solution:

	Exercise 4
	One Solution:

	Exercise 5
	One Solution:

