
Entity Framework Core Cookbook - Second
Edition

Table of Contents

Entity Framework Core Cookbook - Second Edition
Credits
About the Author
About the Reviewer
www.PacktPub.com

eBooks, discount offers, and more
Why subscribe?

Preface
What this book covers
What you need for this book
Who this book is for
Sections

Getting ready
How to do it…
How it works…
There's more…
See also

Conventions
Reader feedback
Customer support
Downloading the example code

Errata
Piracy
Questions

1. Improving Entity Framework in the Real World
Introduction
Improving Entity Framework by using a code-first approach

Getting ready
How to do it…
How it works…
There's more…

Convention over configuration
Model-View-Controller
Single Responsibility Principle
Provider Model
Testing

See also
Unit testing and mocking

Getting ready
How to do it…
How it works…
There's more…

One class under test

Integration tests
Arrange, Act, Assert
Mocking

Creating databases from code
Getting ready
How to do it…
How it works…
There's more…
See also

Creating mock database connections
How to do it…
How it works…
See also

Implementing the repository pattern
Getting ready
How to do it…
How it works…
There's more…

Dependency Inversion Principle
Repository and caching
Mocking
Where generic constraint

See also
Implementing the unit of work pattern

Getting ready
How to do it…
How it works…
There's more…

Call per change
Interface Segregation Principle
Refactoring

See also
2. Mapping Entities

Introduction
Mapping non-public members

Getting ready
How to do it…
How it works…
There's more…
See also

Mapping interfaces
Getting ready
How to do it…
How it works…
See also

Shadow properties
Getting ready

How to do it…
How it works…
See also

Creating one-to-one maps
Getting ready
How to do it…
How it works…
There's more…
See also

Creating one-to-many maps
Getting ready
How to do it…
How it works…
There's more…
See also

Creating many-to-many maps
Getting ready
How to do it…
How it works…
There's more…
See also

Creating custom conventions
Getting ready
How to do it…
How it works…
There's more…
See also

Using sequence key generators
Getting ready
How to do it…
How it works...
There's more…
See also

Using GUIDs as keys
Getting ready
How to do it…
How it works…
There's more…
See also

Implementing inheritance – Table per Class hierarchy
Getting ready
How to do it…
How it works…
There's more…

3. Validation and Changes
Introduction
Validating simple properties

Getting ready
How to do it…
How it works…
There's more…
See also

Validating the whole entity
Getting ready
How to do it…
How it works…
See also

Validating groups of entities
How to do it…
How it works…
See also

Intercepting saving changes
Getting ready
How to do it…
How it works…
See also

Intercepting property changes
Getting ready
How to do it…
How it works…
See also

Setting the state of an entity
Getting ready
How to do it…
How it works…
There's more…
See also

Improving MVC UI with entity framework validation
Getting ready
How to do it…
How it works…
There's more…

Understanding the HTML helper
See also

Inserting, updating, and deleting entities with stored procedures
Getting ready
How to do it…
How it works…
There's more…
See also

Updating the database from model changes
Getting ready
How to do it…
How it works…

There's more…
See also

Dumping the SQL script for the database creation
Getting ready
How to do it…
How it works…
There's more…
See also

4. Transactions and Concurrency Control
Introduction
Using explicit transactions

Atomic
Consistent
Isolation
Durability
Getting ready
How to do it…
How it works…
See also

Using transactions in custom SQL operations
Getting ready
How to do it…
How it works…
There's more…
See also

Implementing optimistic concurrency in SQL Server
Getting ready
How to do it…
How it works…
There's more…

Database wins
Client wins/last one wins

See also
Implementing optimistic concurrency in a database-agnostic way

Getting ready
How to do it…
How it works…
There's more…
See also

5. Querying
Introduction
Executing client-side functions in LINQ queries

Getting ready
How to do it…
How it works…
See also

Mixing SQL with LINQ queries

Getting ready
How to do it…
How it works…
There's more…
See also

Getting entities from the local cache
Getting ready
How to do it…
How it works…
There's more…
See also

Creating filtered collections
Getting ready
How to do it…
How it works…
There's more…
See also

Creating reusable queries
Getting ready
How to do it…
How it works…
There's more…

Extension methods
Naming conflict

See also
Querying shadow properties

Getting ready
How to do it…
How it works…
There's more…
See also

Implementing the query object pattern
Getting ready
How to do it…
How it works…
There's more…
See also

Using dynamic LINQ
Getting ready
How to do it…
How it works…
There's more…

6. Advanced Scenarios
Introduction
Generating entities from the database

Getting ready
How to do it…

How it works…
There's more…

Implementing multitenancy
Getting ready
How to do it…
How it works…
There's more…

Strongly typed bulk operations
Getting ready
How to do it…
How it works…
There's more…

Handling soft deletes
Getting ready
How to do it…
How it works…
See also

Adding logging
Getting ready
How to do it…
How it works…
There's more…

Capturing the audit data
Getting ready
How to do it…
How it works…
See also

Retrieving entity metadata
Getting ready
How to do it…
How it works…
There's more…
See also

Improving MVC applications
Getting ready
How to do it.…
See also

Hooking infrastructure services
Using other databases

How to do it…
7. Performance and Scalability

Introduction
Improving the performance of queries

Getting ready
How to do it…

Modifications
Updates

Deletes
Queries

SQL
LINQ

See also
Testing and profiling queries

How to do it…
Logging
Database profiler
Real time monitoring
Testing

See also
Using asynchronous operations

Getting ready
How to do it…

Queries
Modifications

See also
Eager loading

Getting ready
How to do it…
How it works…
See also

Using the cache
Getting ready
How to do it…
How it works…
There's more…

A. Pitfalls
Introduction
GroupBy executes on the client side

Problem
How to fix it…

Table per class hierarchy requires nullable columns for derived classes
Problem
How to solve it…

References not eagerly fetched are lost
Problem
How to solve it…

Date/time operations are not supported
Problem
How to solve it…

Paging in SQL Server earlier than 2012
Problem
How to solve it…

Database null semantics
Problem

How to solve it…
Migrations and contexts with parameterized constructors

Problem
How to solve it…

Migrations with contexts in different projects
Problem
How to solve it…

Accessing the service provider too soon
Problem
How to solve it…

Setting the maximum string length
Problem
How to solve it…

Mapping discriminator columns
Problem
How to solve it…

Composite primary keys
Problem
How to solve it…

Refreshing entities
Problem
How to solve it…

Cascading entity deletes
Problem
How to solve it…

Index

Entity Framework Core Cookbook - Second
Edition

Entity Framework Core Cookbook - Second
Edition
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for
any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: March 2012

Second edition: November 2016

Production reference: 1031116

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-330-9

www.packtpub.com

http://www.packtpub.com

Credits
Author

Ricardo Peres

Reviewer

Jason De Oliveira

Commissioning Editor

Kunal Parikh

Acquisition Editor

Chaitanya Nair

Content Development Editors

Siddhi Chavan

Merint Mathew

Technical Editors

Bhavin Savalia

Dhiraj Chandanshive

Copy Editor

Safis Editing

Project Coordinator

Suzanne Coutinho

Proofreader

Safis Editing

Indexer

Tejal Daruwale Soni

Graphics

Abhinash Sahu

Production Coordinator

Melwyn Dsa

Cover Work

Melwyn Dsa

About the Author
Ricardo Peres is a Portuguese developer, blogger, and occasionally an e-book author. He has more than
17 years of experience in software development, using technologies such as C/C++, Java, JavaScript,
and .NET. His interests include distributed systems, architectures, design patterns, and general .NET
development.

He currently works for London-based Simplifydigital as a technical evangelist, and was first awarded as
MVP in 2015.

Ricardo maintains a blog, Development With A Dot, where he regularly writes about technical issues.
You can read it here: http://weblogs.asp.net/ricardoperes.

He has reviewed Learning NHibernate 4 for Packt.

You can catch up with him at @RJPeres75.

I'd like to thank my family, Zézinha, Francisco, and Madalena, for their love and patience and my
friends and colleagues at Simplifydigital for all their support.

This book is dedicated to my parents, Irene (1947-2005) and Jorge Peres (1941-2015), with love and
"saudades."

http://weblogs.asp.net/ricardoperes

About the Reviewer
Jason De Oliveira works as a CTO for MEGA International (http://www.mega.com), a software
company in Paris (France) that provides modeling tools for enterprise architecture, enterprise
governance risk, and compliance management. He is an experienced manager and senior solutions
architect with a lot of skills in software architecture and enterprise architecture.

He loves sharing his knowledge and experience via his blog, by speaking at conferences, writing
technical books, writing articles in the technical press, giving software courses as MCT, and coaching
co-workers in his company. He frequently collaborates with Microsoft, and you can quite often find him
at the Microsoft Technology Center (MTC) in Paris. Microsoft awarded him in 2011 with an MVP in C#
for his numerous contributions to the Microsoft community. Microsoft seeks to recognize the best and
brightest from technology communities around the world with the MVP award. These exceptional and
highly-respected individuals come from more than 90 countries, serve their local online and offline
communities, and have an impact worldwide. Jason is very proud to be one of them. Please feel free to
contact him via his blog (http://www.jasondeoliveira.com) if you need any technical assistance or want
to discuss technical subjects.

Jason has worked as a reviewer on .NET 4.5 Expert Programming Cookbook, WCF 4.5 Multi-tier
Services Development with LINQ to Entities, .NET 4.5 Parallel Extensions Cookbook, and WCF 4.5
Multi-layer Services Development with Entity Framework, Third Edition by Packt. He has also worked
as an author on Visual Studio 2013: Concevoir, développer et gérer des projets Web, les gérer avec TFS
2013 by Editions ENI.

I would like to thank my lovely wife, Orianne, and my beautiful daughters, Julia and Léonie, for
supporting me in my work and for accepting long days and short nights during the week and sometimes
even during the weekend. My life would not be the same without them!

http://www.mega.com
http://www.jasondeoliveira.com

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us at
<customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and
video courses, as well as ind]ustry-leading tools to help you plan your personal development and
advance your career.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

http://www.packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com
https://www.packtpub.com/mapt

Preface
This book is about the new Entity Framework Core 1.0. In here, you will find recipes that will hopefully
make your life easier when working with Entity Framework Core. If all goes well, you will also have
some fun while doing it.

It has something for both beginners as well as more seasoned developers.

What this book covers
Chapter 1, Using Entity Framework in the Real World, introduces you to the structure of the sample
project, and we will see some examples of how to use Entity Framework in a real MVC application.

Chapter 2, Mapping Entities, presents the way to configure the mapping of entities and properties and
relations between entities.

Chapter 3, Validation and Changes, talks about how Entity Framework detects modifications made to
entities, and how we can intercept those modifications, or apply our custom validation logic to it.

Chapter 4, Transactions and Concurrency Control, covers ACID transactions and optimistic
concurrency control.

Chapter 5, Querying, covers the many querying options available to Entity Framework Core, some of
which are quite new.

Chapter 6, Advanced Scenarios, presents some more advanced scenarios.

Chapter 7, Performance and Scalability, introduces you to some tips related to how we can make our
application more responsive and scalable.

Appendix, Pitfalls, presents a list of pitfalls, or anti-patterns, regarding Entity Framework Core usage.

What you need for this book
All you need is .NET Core, including Entity Framework Core, together with an edition of Visual Studio
2015 that supports it (the free Community Edition will work).

We will be using SQL Server as the relational database (any version starting with 2012 will do, in any
edition), including Express.

Who this book is for
This book is for .NET developers who work with relational databases on a daily basis and understand
the basics of Entity Framework, but now want to use it in a more efficient manner. You are expected to
have some prior knowledge of Entity Framework.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, How it
works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or any
preliminary settings required for the recipe.

How to do it…

This section contains the steps required to follow the recipe.

How it works…

This section usually consists of a detailed explanation of what happened in the previous section.

There's more…

This section consists of additional information about the recipe in order to make the reader more
knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles are shown as follows: "Create an entity with the name
MyEntity in the BusinessLogic project."

A block of code is set as follows:

namespace BusinessLogic
{

public class Post : BlogContent
{

public string Body { get; set; }
}

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are
set in bold:

namespace BusinessLogic
{

public class Post : BlogContent
{

public string Body { get; set; }
}

}

New terms and important words are shown in bold. Words that you see on the screen, for example, in
menus or dialog boxes, appear in the text like this: "Open Using EF Core Solution from the included
source code examples.

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you
liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get
the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's
title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a
book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the
most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's webpage at the
Packt Publishing website. This page can be accessed by entering the book's name in the Search box.
Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Entity-
Framework-Core-Cookbook. We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you
find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if
you could report this to us. By doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and
enter the name of the book in the search field. The required information will appear under the Errata
section.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Entity-Framework-Core-Cookbook
https://github.com/PacktPublishing/Entity-Framework-Core-Cookbook
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take
the protection of our copyright and licenses very seriously. If you come across any illegal copies of our
works in any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter 1. Improving Entity Framework in the
Real World
In this chapter, we will cover the following topics:

• Improving Entity Framework by using a code-first approach
• Unit testing and mocking
• Creating databases from code
• Creating mock database connections
• Implementing the repository pattern
• Implementing the unit of work pattern

Introduction
If we were to buy the materials to build a house, would we buy the bare minimum to get four walls up
and a roof, without a kitchen or a bathroom? Or would we buy enough material to build the house with
multiple bedrooms, a kitchen, and multiple bathrooms?

The problem lies in how we define the bare minimum. The progression of software development has
made us realize that there are ways of building software that do not require additional effort, but reap
serious rewards. This is the same choice we are faced with when we decide on the approach to take with
Entity Framework. We could just get it running and it would work most of the time.

Customizing and adding to it later would be difficult, but doable. There are a few things that we would
need to give up for this approach. The most important among those is control over how the code is
written. We have already seen that applications grow, mature, and have features added. The only thing
that stays constant is the fact that at some point in time, in some way, we will come to push the envelope
of almost every tool that we leverage to help us. The other side is that we could go into development,
being aware of the value-added benefits that cost nothing, and with that knowledge, avoid dealing with
unnecessary constraints.

When working with Entity Framework, there are some paths and options available to us. There are two
main workflows for working with Object-Relational Mapper (ORM) tools such as Entity Framework:

• Database first: We start by defining our database objects and their relations, then write our
classes to match them, and we bind them together

• Code first: We start by designing our classes as Plain Old CLR Objects (POCOs) to model
the concepts that we wish to represent, without caring (too much!) how they will be persisted in
the database

Note

The model-first approach was dropped in Entity Framework Core 1.0.

While following the database-first approach, we are not concerned with the actual implementation of our
classes, but merely the structures—tables, columns, keys—on which they will be persisted. In contrast,

with POCOs or code first, we start by designing the classes that will be used in our programs to
represent the business and domain concepts that we wish to model. This is known as Domain-Driven
Design (DDD). DDD certainly includes code first, but it is much more than that.

All of these approaches will solve the problem with varying degrees of flexibility.

Starting with a database-first approach in Entity Framework means we have an existing database schema
and are going to let the schema, along with the metadata in the database, determine the structure of our
business objects and domain model. The database-first approach is normally how most of us start out
with Entity Framework and other ORMs, but the tendency is to move toward more flexible solutions as
we gain proficiency with the framework. This will drastically reduce the amount of code that we need to
write, but will also limit us to working within the structure of the generated code. Entities, which are
generated by default here, are not 100% usable with WCF services, ASP.NET Web APIs, and similar
technologies – just think about lazy loading and disconnected entities, for example. This is not
necessarily a bad thing if we have a well-built database schema and a domain model that translates well
into Data Transfer Objects (DTOs). Such a domain and database combination is a rare exception in the
world of code production. Due to the lack of flexibility and the restrictions on the way these objects are
used, this solution is viewed as a short-term or small-project solution.

Modeling the domain first allows us to fully visualize the structure of the data in the application, and
work in a more object-oriented manner while developing our application. Just think of this: a relational
database does not understand OOP concepts such as inheritance, static members, and virtual methods,
although, for sure, there are ways to simulate them in the relational world. The main reasons for the lack
of adoption of this approach include the poor support for round-trip updates, and the lack of
documentation on manipulating the POCO model so as to produce the proper database structure. It can
be a bit daunting for developers with less experience, because they probably won't know how to get
started. Historically, the database had to be created each time the POCO model changed, causing data
loss when structural changes were made.

Coding the classes first allows us to work entirely in an object-oriented direction, and not worry about
the structuring of the database, without the restrictions that the model-first designer imposes. This
abstraction gives us the ability to craft a more logically sound application that focuses on the behavior of
the application rather than the data generated by it. The objects that we produce that are capable of being
serialized over any service have true persistence ignorance, and can be shared as contract objects as they
are not specific to the database implementation. This approach is also much more flexible as it is entirely
dependent on the code that we write. This allows us to translate our objects into database records
without modifying the structure of our application. All of this, however, is somewhat theoretical, in the
sense that we still need to worry about having primary key properties, generation strategies, and so on.

In each of the recipes presented in this book, we will follow an incremental approach, where we will
start by adding the stuff we need for the most basic cases, and later on, as we make progress, we will
refactor it to add more complex stuff.

Improving Entity Framework by using a code-
first approach
In this recipe, we start by separating the application into a user interface (UI) layer, a data access layer,
and a business logic layer. This will allow us to keep our objects separated from database-specific
implementations. The objects and the implementation of the database context will use a layered
approach so we can add testing to the application. The following table shows the various projects, and
their purpose, available for code-first approach:

Project Purpose

BusinessLogic Stores the entities that represent business entities.

DataAccess Classes that access data and manipulate business entities. Depends on the
BusinessLogic project.

UI User interface – the MVC application. Makes use of the BusinessLogic and
DataAccess projects.

UnitTests Unit tests. Uses both the BusinessLogic and DataAccess projects.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's get connected to the database using the following steps:

1. Add a new C# class named Blog with the following code to the BusinessLogic project:

namespace BusinessLogic
{

public class Blog
{

public int Id { get; set; }
public string Title { get; set; }

}
}

2. Create a new C# class named BlogContext with the following code in the DataAccess
project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void

OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext passing it the
connection string.

3. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated

Security=SSPI;MultipleActiveResultSets=true"
}

}
}

Note

With Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, change the connection
string to match your system settings, for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

4. In the Controllers\BlogController.cs file, modify the Index method with the
following code:

using BusinessLogic;
using DataAccess;
using System.Linq;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Configuration;
namespace UI.Controllers
{

public class BlogController : Controller
{

private readonly BlogContext _blogContext;
public BlogController(IConfiguration config)
{

_blogContext = new
BlogContext(config["Data:Blog:ConnectionString"]);

}
public IActionResult Index()
{

var blog = _blogContext.Blogs.First();
return View(blog);

}
}

}

Note

For Entity Framework 6, remove the config parameter from the HomeController
constructor, and initialize BlogContext with the
ConfigurationManager.ConnectionStrings["Blog"].ConnectionString
value.

5. Finally, in Startup.cs, we need to register the IConfiguration service so that it can be
injected into the HomeController constructor. Please add the following lines to the
ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{

services.AddMvc();
services.AddSingleton<IConfiguration>(_ => Configuration);

}

Note

Prior to version 5, ASP.NET MVC does not include any built-in Inversion of Control containers,
unlike ASP.NET Core. You will need to bring your own and register it with the
DependencyResolver.SetResolver method, or rely on a third-party implementation.

How it works…

The blog entity is created but not mapped explicitly to a database structure. This takes advantage of
convention over configuration, found in the code-first approach, wherein the properties are examined
and then the table mappings are determined. This is obviously a time saver, but it is fairly limited if you
have a non-standard database schema. The other big advantage of this approach is that the entity is
persistence-ignorant. In other words, it has no knowledge of how it is to be stored in the database.

The BlogContext class has a few key elements to understand. The first is to understand the
inheritance from DbContext. DbContext is the code-first context class, which encapsulates all
connection pooling, entity change tracking, and database interactions. We added a constructor to take in
the connection string, so that it knows where to connect to.

We used the standard built-in functionality for the connection string, storing it in a text (JSON) file, but
this could easily be any application setting store; one such location would be the .NET Core secrets file.
We pass the connection string on the construction of the BlogContext. It enables us to pass that
connection string from anywhere so that we are not coupled. Because Entity Framework is agnostic
when it comes to data sources—can use virtually any database server–we need to tell it to use the SQL
Server provider, and to connect to it using the supplied connection string. That's what the
UseSqlServer method does.

There's more…

Approaching the use of code-first development, we have several overarching themes and industry
standards that we need to be aware of. Knowing about them will help us leverage the power of this tool
without falling into the pit of using it without understanding.

Convention over configuration

This is a design paradigm that says that default rules dictate how an application will behave, but allows
the developer to override any of the default rules with specific behavior, in case it is needed. This allows
us, as programmers, to avoid using a lot of configuration files or code to specify how we intended
something to be used or configured. In our case, Entity Framework allows the most common behaviors
to use default conventions that remove the need for a majority of the configurations. When the behavior
we wish to create is not supported by the convention, we can easily override the convention and add the

required behavior to it without the need to get rid of it everywhere else. This leaves us with a flexible
and extendable system to configure the database interaction.

Model-View-Controller

In our example, we use Microsoft ASP.NET MVC. We would use MVC 5 for Entity Framework 6 and
.NET 4.x, and MVC Core 1 for Entity Framework Core 1 and .NET Core, and, in both cases, the Razor
view engine for rendering the UI. We have provided some simple views that will allow us to focus on
the solutions and the code without needing to deal with UI design and markup.

Single Responsibility Principle

One of the SOLID principles of development, the Single Responsibility Principle (SRP), states that
every class should have only one reason to change. In this chapter, there are several examples of that in
use, for example, the separation of model, view and controller, as prescribed by MVC.

Entities in code-first have the structure of data as their singular responsibility in memory. This means
that we will only need to modify the entities if the structure needs to be changed. By contrast, the code
automatically generated by the database-first tools of Entity Framework inherits your entities from base
classes within the Entity Framework Application Programming Interface (API). The process of
Microsoft making occasional updates to the base classes of Entity Framework is the one that introduces
a second reason to change, thus violating our principle.

Provider Model

Entity Framework relies on providers for achieving different parts of its functionality. These are called
providers, and the most important, for sure, is the one that supplies the connection to the underlying data
store. Different providers exist for different data sources, from traditional relational databases such as
SQL Server, to non-relational ones, such as Redis and Azure Table Storage. There's even one for
abstracting a database purely in memory!

Testing

While we did not actively test this recipe, we layered in the abstractions to do so. All of the other recipes
will be executed and presented using test-driven development, as we believe it leads to better software
design and a much clearer representation of intent.

See also

In this chapter:

• Unit testing and mocking
• Implementing the unit of work pattern
• Implementing the repository pattern

Unit testing and mocking
Software development is not just writing code. We also need to test it, to confirm that it does what is
expected. There are several kinds of tests, and unit tests are one of the most popular. In this chapter, we
will set up the unit test framework that will accompany us throughout the book. Another important
concept is that of mocking; by mocking a class (or interface), we can provide a dummy implementation
of it that we can use instead of the real thing. This comes in handy in unit tests, because we do not
always have access to real-life data and environments, and this way, we can pretend we do.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

To mock interfaces and base classes, we will use Moq.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…
1. Start by adding the required NuGet packages to the UnitTests project. We'll edit and add two

dependencies, the main xUnit library and its runner for .NET Core, and then set the runner
command.

2. Now, let's add a base class to the project; create a new C# class file and call it
BaseTests.cs:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTest
{

protected BaseTest()
{

var builder = new ConfigurationBuilder()
.AddJsonFile("appsettings.json");

Configuration = builder.Build();
}

protected IConfiguration Configuration{ get; private
set; }

}
}

3. Now, for a quick test, add a new C# file, called SimpleTest.cs, to the project, with this
content:

using Moq;
using Xunit;
namespace UnitTests
{

public class SimpleTest : BaseTest
{

[Fact]
public void CanReadFromConfiguration()
{

var connectionString =
Configuration["Data:Blog:ConnectionString"];

Assert.NotNull(connectionString);
Assert.NotEmpty(connectionString);

}
[Fact]
public void CanMock()
{

var mock = new Mock<IConfiguration>();
mock.Setup(x =>

x[It.IsNotNull<string>()]).Returns("Dummy Value");
var configuration = mock.Object;
var value = configuration["Dummy Key"];
Assert.NotNull(value);
Assert.NotEmpty(value);

}
}

}

4. If you want to have the xUnit runner running your unit tests automatically, you will need to set
the test command as the profile to run in the project properties:

Project properties

How it works…

We have a unit tests base class that loads configuration from an external file, in pretty much the same
way as the ASP.NET Core template does. Any unit tests that we will define later on should inherit from
this one.

When the runner executes, it will discover all unit tests in the project—those public concrete methods
marked with the [Fact] attribute. It will then try to execute them and evaluate any Assert calls within.

The Moq framework lets you define your own implementations for any abstract or interface methods
that you wish to make testable. In this example, we are mocking the IConfiguration class, and
saying that any attempt to retrieve a configuration value should have a dummy value as the result.

If you run this project, you will get the following output:

Running unit tests

There's more…

Testing to the edges of an application requires that we adhere to certain practices that allow us to shrink
the untestable sections of the code. This will allow us to unit test more code, and make our integration
tests far more specific.

One class under test

An important point to remember while performing unit testing is that we should only be testing a single
class. The point of a unit test is to ensure that a single operation of this class performs the way we expect
it to.

This is why simulating classes that are not under test is so important. We do not want the behavior of
these supporting classes to affect the outcomes of unit tests for the class that is being tested.

Integration tests

Often, it is equally important to test the actual combination of your various classes to ensure they work
properly together. These integration tests are valuable, but are almost always more brittle, require more
setup, and are run slower than the unit tests. We certainly need integration tests on any project of a
reasonable size, but we want unit tests first.

Arrange, Act, Assert

Most unit tests can be viewed as having three parts: Arrange, Act, and Assert. Arrange is where we
prepare the environment to perform the test, for instance, mocking the IDBContext with dummy data
with the expectation that Set will be called. Act is where we perform the action under test, and is most

often a singular line of code. Assert is where we ensure that the proper result was reached. Note the
comments in the preceding examples that call out these sections. We will use them throughout the book
to make it clear what the test is trying to do.

Mocking

Mocking and stubbing—providing a pre-built implementation for methods to intercept—is a very
interesting topic. There are numberless frameworks that can provide mocking capabilities for even the
most challenging scenarios, such as static methods and properties. Mocking fits nicely with unit tests
because we seldom have an environment that is identical to the one where we will be deploying, but we
don't have "real" data. Also, data changes, and we need a way to be able to reproduce things
consistently.

Creating databases from code
As we start down the code-first path, there are a couple of things that could be true. If we already have a
database, then we will need to configure our objects to that schema, but what if we do not have one?
That is the subject of this recipe: creating a database from the objects we declare.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

To mock interfaces and base classes, we will use Moq.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…
1. First, we write a unit test with the following code in a new C# file called DatabaseTest.cs,

in the UnitTests project:

using BusinessLogic;
using Xunit;
using DataAccess;
namespace UnitTests
{

public class DatabaseTest : BaseTest
{

[Fact]
public void CanCreateDatabase()
{

//Arrange
var connectionString =

Configuration["Data:Blog:ConnectionString"];
var context =new BlogContext(connectionString);
//Act
var created = context.Database.EnsureCreated();
//Assert

Assert.True(created);
}

}
}

2. We will need to add a connection string to the UnitTests project to our database; we do so by
providing an identical appSettings.json file to the one introduced in the previous recipe:

{
"Data": {

"Blog": {
"ConnectionString":

"Server=(local)\\SQLEXPRESS;Database=Blog;Integrated
Security=SSPI;MultipleActiveResultSets=true"

}
}

}

Note

Change the connection string to match your specific settings.

3. In the DataAccess project, we will use the C# BlogContext class that was introduced in
the previous chapter:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void

OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

How it works…

Entity Framework will initialize itself by calling the OnConfiguring method whenever it needs to
get data; after that, it knows about the database to use. The EnsureCreated method will make sure
that the database either already exists or is created in the moment.

There's more…

When we start a green field project, we have that rush of happiness to be working in a problem domain
that no one has touched before. This can be exhilarating and daunting at the same time. The objects we
define and the structure of our program come naturally to a programmer, but most of us need to think
differently to design the database schema. This is where the tools can help to translate our objects and
intended structure into the database schema if we leverage some patterns. We can then take full
advantage of being object-oriented programmers.

A word of caution: previous versions of Entity Framework offered mechanisms such as database
initializers. These not only would create the database, but also rebuild it, in case the code-first model
had changed, and even add some initial data. For better or worse, these mechanisms are now gone, and
we will need to leverage Entity Framework Core Migrations for similar features. We will discuss
Migrations in another recipe.

See also

In this chapter:

• Unit testing and mocking

Creating mock database connections
When working with Entity Framework in a test-driven manner, we need to be able to slip a layer
between our last line of code and the framework. This allows us to simulate the database connection
without actually hitting the database.

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

To mock interfaces and base classes, we will use Moq.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…
1. In the DataAccess project, add a new C# interface named IDbContext using the following

code:

using System.Linq;
namespace DataAccess
{

public interface IDbContext
{

IQueryable<T> Set<T>() where T : class;
}

}

2. Add a new unit test in the UnitTests project to test so we can supply dummy results for fake
database calls with the following code:

using System.Linq;
using DataAccess;
using BusinessLogic;
using Moq;
using Xunit;
namespace UnitTests
{

public class MockTest : BaseTest

{
[Fact]
public void CanMock()
{

//Arrange
var data = new[] { new Blog { Id = 1, Title =

"Title" }, newBlog { Id = 2, Title = "No Title" }
}.AsQueryable();

var mock = new Mock<IDbContext>();
mock.Setup(x => x.Set<Blog>()).Returns(data);
//Act
var context = mock.Object;
var blogs = context.Set<Blog>();
//Assert
Assert.Equal(data, blogs);

}
}

}

3. In the DataAccess project, update the C# class named BlogContext with the following
code:

using BusinessLogic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
namespace DataAccess
{

public class BlogContext : DbContext, IDbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
IQueryable<T> IDbContext.Set<T>()
{

return base.Set<T>();
}
protected override void

OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
public void Rollback()
{

ChangeTracker.Entries().ToList().ForEach(x =>
{

x.State = EntityState.Detached;
var keys = GetEntityKey(x.Entity);
Set(x.Entity.GetType(), keys);

});
}

}
}

How it works…

We implemented a fake class —a mock—that mimics some of the functionality of our IDbContext
interface that we wish to expose and make testable; in this case, it is just the retrieval of data. This
allows us to keep our tests independent of the actual data in the database. Now that we have data
available from our mock, we can test whether it acts exactly like we coded it to. Knowing the inputs of
the data access code, we can test the outputs for validity. We made our existing BlogContext class
implement the interface where we define the contract that we wish to mock, IDbContext, and we
configured a mock class to return dummy data whenever its Set method was called.

This layering is accomplished by having a Set method as an abstraction between the public framework
method of Set<T> and our code, so we can change the type to something constructible. By layering
this method, we can now control every return from the database in the test scenarios.

This layering also provides a better separation of concerns, as the DbSet<T> in Entity Framework
mingles multiple independent concerns, such as connection management and querying, into a single
object, whereas IQueryable<T> is the standard .NET interface for performing queries against a data
source (DbSet<T> implements IQueryable<T>). We will continue to separate these concerns in
future recipes.

See also

In this chapter:

• Unit testing and mocking

Implementing the repository pattern
This recipe is an implementation of the Repository Pattern, which allows us to abstract the underlying
data source and the queries used to obtain the data.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

To mock interfaces and base classes, we will use Moq.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…
1. Create a new file in the DataAccess project, with this content:

using System.Linq;
namespace DataAccess
{

public interface IRepository<out T> where T : class
{

IQueryable<T> Set<T>() where T : class;
void RollbackChanges();
void SaveChanges();

}
}

2. In the DataAccess project, add a new C# interface named IBlogRepository with the
following code:

using System.Linq;
namespace DataAccess
{

public interface IBlogRepository : IRepository<Blog>
{

}
}

3. In the DataAccess project, create a new C# class named BlogRepository containing the
following code:

using System.Data.Entity;
using System.Linq;
using BusinessLogic;
namespace DataAccess
{

public class BlogRepository : IBlogRepository
{

private readonly IDbContext _context;
public BlogRepository(IDbContext context)
{

_context = context;
}
public IQueryable<Blog> Set()
{

return _context.Set<Blog>();
}

}
}

4. We'll add a new unit test in the UnitTests project that defines a test for using the repository
with the following code:

using System.Linq;
using BusinessLogic;
using DataAccess;
using Moq;
using Xunit;
namespace UnitTests
{

public class RepositoryTest : BaseTest
{

[Fact]
public void ShouldAllowGettingASetOfObjectsGenerically()
{

//Arrange
var data = new[] { new Blog { Id = 1, Title =

"Title" }, newBlog { Id = 2, Title = "No Title" }
}.AsQueryable();

var mock = new Mock<IDbContext>();
mock.Setup(x => x.Set<Blog>()).Returns(data);
var context = mock.Object;
var repository = new BlogRepository(context);

//Act
var blogs = repository.Set();
//Assert
Assert.Equal(data, blogs);

}
}

}

5. In the BlogController class of the UI project, update the usage of BlogContext so it
uses IBlogRepository with the following code:

using BusinessLogic;
using DataAccess;
using System.Linq;
using Microsoft.AspNet.Mvc;
namespace UI.Controllers
{

public class BlogController : Controller
{

private readonly IBlogRepository _repository;
public BlogController(IBlogRepository repository)
{

_repository = repository;
}
public IActionResult Index()
{

var blog = _repository.Set().First();
return View(blog);

}
}

}

6. Finally, we need to register the IBlogRepository service for dependency injection so that it
can be passed automatically to the HomeController's constructor. We do that in the
Startup.cs file in the UI project, in the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{

services.AddMvc();
services.AddSingleton<IConfiguration>(_ => Configuration);
services.AddScoped<IDbContext>(_ => new

BlogContext(Configuration["Data:Blog:ConnectionString"]));
services.AddScoped<IBlogRepository>(_ => new

BlogRepository(_.GetService<IDbContext>()));
}

How it works…

We start off with a test that defines what we hope to accomplish. We use mocking (or verifiable fake
objects) to ensure that we get the behavior that we expect. The test states that any BlogRepository
function will communicate with the context to connect for the data. This is what we are hoping to
accomplish, as doing so allows us to layer tests and extension points into the domain.

The usage of the repository interface is a key part of this flexible implementation as it will allow us to
leverage mocks, and test the business layer, while still maintaining an extensible solution. The interface
to the context is a straightforward API for all database communication. In this example, we only need to
read data from the database, so the interface is very simple.

Even in this simple implementation of the interface, we see that there are opportunities to increase
reusability. We could have created a method or property that returned the list of blogs, but then we
would have had to modify the context and interface for every new entity. Instead, we set up the Set
method to take a generic type, which allows us to add entities to the usage of the interface without
modifying the interface. We will only need to modify the implementation.

Notice that we constrained the IRepository interface to accept only the reference types for T, using
the where T : class constraint. We did this because value types cannot be stored using Entity Framework;
if you had a base class, you could use it here to constrain the usage of the generic even further.
Importantly, not all reference types are valid for T, but the constraint is as close as we can get using C#.
Interfaces are not valid because Entity Framework cannot construct them when it needs to create an
entity. Instead, it will produce a runtime exception, as they are valid reference types and therefore the
compiler won't complain.

Once we have the context, we need to wrap it with an abstraction. IBlogRepository will allow us
to query the data without allowing direct control over the database connection. We can hide the details
of the specific implementation, the actual context object, while surfacing a simplified API for gathering
data. We can also introduce specific operations for the Blog entity here.

The other interface that we abstracted is the IDbContext interface. This abstraction allows us to
intercept operations just before they are sent to the database. This makes the untestable part of the
application as thin as possible. We can, and will, test right up to the point of database connection.

We had to register the two interfaces, IDbContext and IBlogRepository, in the ASP.NET
dependency resolver. This is achieved at startup time, so that any code that requires these services can
use them. You will notice that the registration for IBlogRepository makes use of the
IDbContext registration. This is OK, because it is a requirement for the actual implementation of
BlogRepository to rely on IDbContext to actually retrieve the data.

There's more…

Keeping the repository implementation clean requires us to leverage some principles and patterns that
are at the core of object-oriented programming, but not specific to using Entity Framework. These

principles will not only help us to write clean implementations of Entity Framework, but can also be
leveraged by other areas of our code.

Dependency Inversion Principle

Dependency inversion is another SOLID principle. This states that all of the dependencies of an object
should be clearly visible and passed in, or injected, to create the object. The benefit of this is twofold:
the first is exposing all of the dependencies so the effects of using a piece of code are clear to those who
will use the class. The second benefit is that by injecting these dependencies at construction, they allow
us to unit test by passing in mocks of the dependent objects. Granular unit tests require the ability to
abstract dependencies, so we can ensure only one object is under test.

Repository and caching

This repository pattern gives us the perfect area for implementing a complex or global caching
mechanism. If we want to persist a value into the cache at the point of retrieval, and not retrieve it again,
the repository class is the perfect location for such logic. This layer of abstraction allows us to
move beyond simple implementations and start thinking about solving business problems quickly, and
later extend to handle more complex scenarios as they are warranted by the requirements of the specific
project. You can think of repository as a well-tested 80%+ solution. Put off anything more until the last
responsible moment.

Mocking

The usage of mocks is commonplace in tests because mocks allow us to verify underlying behavior
without having more than one object under test. This is a fundamental piece of the puzzle for test-driven
development. When you test at a unit level, you want to make sure that the level directly following the
one you are testing was called correctly while not actually executing the specific implementation. This is
what mocking buys us.

Where generic constraint

There are times when we need to create complex sets of queries that will be used frequently, but only by
one or two objects. When this situation occurs, we want to reuse that code without needing to duplicate
it for each object. This is where the where constraint helps us. It allows us to limit generically defined
behavior to an object or set of objects that share a common interface or base class. The extension
possibilities are nearly limitless.

See also

In this chapter:

• Implementing the unit of work pattern
• Creating mock database connections

Implementing the unit of work pattern
In the next example, we present an implementation of the Unit of Work pattern. This pattern was
introduced by Martin Fowler, and you can read about it at http://martinfowler.com/eaaCatalog/
unitOfWork.html. Basically, this pattern states that we keep track of all entities that are affected by a
business transaction and send them all at once to the database, sorting out the ordering of the changes to
apply—inserts before updates, and so on.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

To mock interfaces and base classes, we will use Moq.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…
1. First, we start by adding a new unit test in the UnitTests project to define the tests for using

a unit of work pattern with the following code:

using System;
using System.Linq;
using BusinessLogic;
using DataAccess;
using Moq;
using Xunit;
namespace UnitTests
{

public class UnitOfWorkTest : BaseTest
{

[Fact]
public void ShouldReadToDatabaseOnRead()
{

//Arrange
var findCalled = false;

http://martinfowler.com/eaaCatalog/unitOfWork.html
http://martinfowler.com/eaaCatalog/unitOfWork.html

var mock = new Mock<IDbContext>();
mock.Setup(x => x.Set<Blog>()).Callback(() =>

findCalled = true);
var context = mock.Object;
var unitOfWork = new UnitOfWork(context);
var repository = new BlogRepository(context);
//Act
var blogs = repository.Set();
//Assert
Assert.True(findCalled);

}
[Fact]
public void ShouldNotCommitToDatabaseOnDataChange()
{

//Arrange
var saveChangesCalled = false;
var data = new[] { new Blog() { Id = 1, Title =

"Test" } }.AsQueryable();
var mock = new Mock<IDbContext>();
mock.Setup(x => x.Set<Blog>()).Returns(data);
mock.Setup(x => x.SaveChanges()).Callback(() =>

saveChangesCalled = true);
var context = mock.Object;
var unitOfWork = new UnitOfWork(context);
var repository = new BlogRepository(context);
//Act
var blogs = repository.Set();
blogs.First().Title = "Not Going to be Written";
//Assert
Assert.False(saveChangesCalled);

}
[Fact]
public void ShouldPullDatabaseValuesOnARollBack()
{

//Arrange
var saveChangesCalled = false;
var rollbackCalled = false;
var data = new[] { new Blog() { Id = 1, Title =

"Test" } }.AsQueryable();
var mock = new Mock<IDbContext>();
mock.Setup(x => x.Set<Blog>()).Returns(data);
mock.Setup(x => x.SaveChanges()).Callback(() =>

saveChangesCalled = true);
mock.Setup(x => x.Rollback()).Callback(() =>

rollbackCalled = true);
var context = mock.Object;
var unitOfWork = new UnitOfWork(context);

var repository = new BlogRepository(context);
//Act
var blogs = repository.Set();
blogs.First().Title = "Not Going to be Written";
repository.RollbackChanges();
//Assert
Assert.False(saveChangesCalled);
Assert.True(rollbackCalled);

}
[Fact]
public void ShouldCommitToDatabaseOnSaveCall()
{

//Arrange
var saveChangesCalled = false;
var data = new[] { new Blog() { Id = 1, Title =

"Test" } }.AsQueryable();
var mock = new Mock<IDbContext>();
mock.Setup(x => x.Set<Blog>()).Returns(data);
mock.Setup(x => x.SaveChanges()).Callback(() =>

saveChangesCalled = true);
var context = mock.Object;
var unitOfWork = new UnitOfWork(context);
var repository = new BlogRepository(context);
//Act
var blogs = repository.Set();
blogs.First().Title = "Going to be Written";
repository.SaveChanges();
//Assert
Assert.True(saveChangesCalled);

}
[Fact]
public void ShouldNotCommitOnError()
{

//Arrange
var rollbackCalled = false;
var data = new[] { new Blog() { Id = 1, Title =

"Test" } }.AsQueryable();
var mock = new Mock<IDbContext>();
mock.Setup(x => x.Set<Blog>()).Returns(data);
mock.Setup(x => x.SaveChanges()).Throws(new

Exception());
mock.Setup(x => x.Rollback()).Callback(() =>

rollbackCalled = true);
var context = mock.Object;
var unitOfWork = new UnitOfWork(context);
var repository = new BlogRepository(context);
//Act

var blogs = repository.Set();
blogs.First().Title = "Not Going to be Written";
try
{

repository.SaveChanges();
}
catch
{
}
//Assert
Assert.True(rollbackCalled);

}
}

}

2. In the DataAccess project, create a new C# class named BlogContext with the following
code:

using BusinessLogic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore.Metadata.Internal;
namespace DataAccess
{

public class BlogContext : DbContext, IDbContext
{

private readonly string _connectionString;

public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void

OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
public void Rollback()
{

ChangeTracker.Entries().ToList().ForEach(x =>
{

x.State = EntityState.Detached;
var keys = GetEntityKey(x.Entity);
Set(x.Entity.GetType(), keys);

});
}

public DbSet<T> Set<T>() where T : class
{

return Set<T>();
}

public object[] GetEntityKey<T>(T entity) where T :
class

{
var state = Entry(entity);
var metadata = state.Metadata;
var key = metadata.FindPrimaryKey();
var props = key.Properties.ToArray();
return props.Select(x =>

x.GetGetter().GetClrValue(entity)).ToArray();
}

}
}

3. In the DataAccess project, create a new C# interface called IDbContext with the
following code:

using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.ChangeTracking;
namespace DataAccess
{

public interface IDbContext
{

ChangeTracker ChangeTracker { get; }
DbSet<T> Set<T>() where T : class;
IQueryable<T> Set<T>() where T : class;
EntityEntry<T> Entry<T>(T entity) where T : class;
int SaveChanges();
void Rollback();

}
}

4. In the DataAccess project, create a new C# interface called IUnitOfWork with the
following code:

namespace DataAccess
{

public interface IUnitOfWork
{

void RegisterNew<T>(T entity) where T : class;

void RegisterUnchanged<T>(T entity) where T : class;
void RegisterChanged<T>(T entity) where T : class;
void RegisterDeleted<T>(T entity) where T : class;
void Refresh();
void Commit();
IDbContext Context { get; }

}
}

5. In the DataAccess project, add a new C# class named UnitOfWork with the following
code:

using Microsoft.EntityFrameworkCore;
namespace DataAccess
{

public class UnitOfWork : IUnitOfWork
{

public IDbContext Context { get; private set; }
public UnitOfWork(IDbContext context)
{

Context = context;
}
public void RegisterNew<T>(T entity) where T : class
{

Context.Set<T>().Add(entity);
}
public void RegisterUnchanged<T>(T entity) where T : class
{

Context.Entry(entity).State = EntityState.Unchanged;
}
public void RegisterChanged<T>(T entity) where T : class
{

Context.Entry(entity).State = EntityState.Modified;
}
public void RegisterDeleted<T>(T entity) where T : class
{

Context.Set<T>().Remove(entity);
}
public void Refresh()
{

Context.Rollback();
}
public void Commit()
{

Context.SaveChanges();
}

}
}

6. Create a new C# file in the DataAccess project with this content:

using System.Linq;
namespace DataAccess
{

public interface IRepository<out T> where T : class
{

IQueryable<T> Set();
void RollbackChanges();
void SaveChanges();

}
}

7. Also in the DataAccess project, add a new C# interface named IBlogRepository with
the following code:

using System.Linq;
namespace DataAccess
{

public interface IBlogRepository : IRepository<Blog>
{
}

}

8. In the DataAccess project, create a new C# class named BlogRepository containing the
following code:

using System.Linq;
using BusinessLogic;
namespace DataAccess
{

public class BlogRepository : IBlogRepository
{

private readonly IUnitOfWork _unitOfWork;
public BlogRepository(IUnitOfWork unitOfWork)
{

_unitOfWork = unitOfWork;
}
public IQueryable<Blog> Set
{

return _unitOfWork.Context.Set<Blog>();
}
public void RollbackChanges()
{

_unitOfWork.Refresh();

}
public void SaveChanges()
{

try
{

_unitOfWork.Commit();
}
catch (Exception)
{

_unitOfWork.Refresh();
throw;

}
}

}
}

9. In BlogController, update BlogContext to use IBlogRepository with the
following code:

using BusinessLogic;
using System.Linq;
using DataAccess;
using Microsoft.AspNet.Mvc;
using Microsoft.Extensions.Configuration;
namespace UI.Controllers
{

public class BlogController : Controller
{

private IBlogRepository _repository;
public BlogController(IBlogRepository repository)
{

_repository = repository;
}
//
// GET: /Blog/
public IActionResult Index()
{

var blog = _repository.Set().First();
return View(blog);

}
}

}

10. Finally, register the IUnitOfWork interface in the Startup.cs file, in the
ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{

services.AddMvc();
services.AddSingleton<IConfiguration>(_ =>

Configuration);
services.AddScoped<IDbContext>(_ => new

BlogContext(Configuration["Data:Blog:ConnectionString"]));
services.AddScoped<IBlogRepository>(_ => new

BlogRepository(_.GetService<IDbContext>()));
services.AddScoped<IUnitOfWork>(_ => new

UnitOfWork(_.GetService<IDbContext>()));
}

How it works…

The tests set up the scenarios in which we would want to use a unit of work pattern: reading, updating,
rolling back, and committing. The key to this is that these are all separate actions, not dependent on
anything before or after them. If the application is web-based, this gives you a powerful tool to tie to the
HTTP request so any unfinished work is cleaned up, or to ensure that you do not need to call
SaveChanges, since it can happen automatically.

The unit of work was originally created to track the changes made so they could be persisted, and it
functions the same way now. We are using a more powerful, but less recognized, feature defining the
scope of the unit of work. We gave the ability to control both scope and the changes that are committed
in the database in this scenario. We have also put in some clean-up, which will ensure that even in the
event of a failure, our unit of work will try to clean up after itself before throwing the error to be handled
at a higher level. We do not want to ignore these errors, but we do want to make sure they do not destroy
the integrity of our database.

In addition to this tight encapsulation of work against the database, pass in our unit of work to each
repository. This enables us to couple multiple object interactions to a single unit of work. This will allow
us to write code that's specific to the object, without giving up the shared feature set of the database
context. This is an explicit unit of work, but Entity Framework, in the context, defines it to give you an
implicit unit of work. If you want to tie this to the HTTP request, rollback on error, or tie multiple data
connections together in new and interesting ways, then you will need to code in an explicit
implementation such as this one.

This basic pattern will help to streamline data access, and resolve the concurrency issues caused by
conflicts in the objects that are affected by a transaction.

There's more…

The unit of work is a concept that is deep at the heart of Entity Framework and adheres, out of the box,
to the principles following it. Knowing these principles, and why they are leveraged, will help us use
Entity Framework to its fullest without running into the walls built in the system on purpose.

Call per change

There is a cost for every connection to the database. If we were to make a call to keep the state in the
database in sync with the state in the application, we would have thousands of calls, each with
connection, security, and network overhead. Limiting the number of times that we hit the database not
only allows us to control this overhead, but also allows the database software to handle the larger
transactions for which it was built.

Interface Segregation Principle

Some might be inclined to ask why we should separate unit of work from the repository pattern. Unit of
work is definitely a separate responsibility from repository, and as such it is important to not only define
separate classes, but also to ensure that we keep small, clear interfaces. The IDbContext interface is
specific in the area of dealing with database connections through an Entity Framework object context.
This allows the mocking of a context to give us testability to the lowest possible level.

The IUnitOfWork interface deals with the segregation of work, and ensures that the database
persistence happens only when we intend it to, ignorant of the layer under it that does the actual
commands. The IRepository interface deals with selecting objects back from any type of storage,
and allows us to remove all thoughts of how the database interaction happens from our dependent code
base. These three objects, while related in layers, are separate concerns, and therefore need to be
separate interfaces.

Refactoring

We have added IUnitOfWork to our layered approach to database communication, and if we have
seen anything over the hours of coding, it is code changes. We change it for many reasons, but the
bottom line is that code changes often, and we need to make it easy to change. The layers of abstraction
that we have added to this solution with IRepository, IUnitOfWork, and IDbContext, have all
given us a point at which the change would be minimally painful, and we can leverage the interfaces in
the same way. This refactoring to add abstraction levels is a core tenet of clean, extensible code.
Removing the concrete implementation details from related objects, and coding to an interface, forces us
to encapsulate behavior and abstract our sections of code.

See also

In this chapter:

• Implementing the repository pattern

Chapter 2. Mapping Entities
In this chapter, we will cover the following topics:

• Mapping non-public members
• Mapping interfaces
• Shadow properties
• Creating one-to-one maps
• Creating one-to-many maps
• Creating many-to-many maps
• Creating custom conventions
• Using sequence key generators
• Using GUIDs as keys
• Implementing inheritance–Table per class Hierarchy

Introduction
Object-relational mappers such as Entity Framework rely on mappings to translate Object-oriented
concepts—classes, properties, references, inheritance – to the database world – composed of tables and
columns – and vice versa. For example, a table normally translates to a .NET class, and its columns
translate to the class properties.

Mapping entities and their properties is something that Entity Framework does automatically, and does
generally well. There are some cases, however, in which we need to give it a hand. In this chapter, we
will have a look at some special cases: it's going to be all about mappings.

Mapping non-public members
A well-encapsulated domain model does not contain just public members. The problem is that Entity
Framework automatically maps public properties, but does not do so for non-public ones. In this recipe,
we will see how we can map non-public properties of entities, so that Entity Framework recognizes
them.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's get connected to the database using the following steps:

1. Add a new C# class named Blog with the following code to the BusinessLogic project
(which should be empty):

using System;
namespace BusinessLogic
{

public class Blog
{

public int Id { get; set; }
public string Title { get; set; }
private DateTime Timestamp { get; set; }

}
}

2. Create a new C# class named BlogContext with the following code in the DataAccess
project:

using System;
using Microsoft.EntityFrameworkCore;
using BusinessLogic;

namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
protected override void OnModelCreating(
ModelBuilder modelBuilder)
{

modelBuilder.Entity<Blog>().Property(
typeof (DateTime), "Timestamp").IsRequired();
base.OnModelCreating(modelBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog;
Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, change the connection
string to match your system settings, for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

How it works…

Entity Framework offers two method overloads for explicitly mapping or modifying the mapping of a
property: one that is strongly typed, and another that isn't. We can't use the strongly typed one, because
since we are doing it from a different class, we wouldn't have access to the private properties, so we use
the one that takes a .NET type and a property name. Entity Framework will accept the property even if it
is not public. The way to explicitly register a property is in the OnModelCreating method of
DbContext. This is an infrastructure method that gets called automatically when the model is being
built into memory.

There's more…

As we register our private properties, we can also change their mappings, such as whether maximum
length is required or not, and so on.

Please also take into account that you shouldn't define private properties for references to other entities
(one-to-one, many-to-one, one-to-many, many-to-many) because doing so will prevent the usage of lazy
loading for it. The actual mechanism is beyond the scope of this book, but be warned.

Note

Although Entity Framework Core 1.0 does not support lazy loading, future versions will, and so it is
recommended that you take it in consideration.

See also

In this chapter:

• Shadow properties
• Mapping interfaces

The official documentation for Entity Framework Core is located at https://docs.efproject.net/en/latest/.

https://docs.efproject.net/en/latest/

Mapping interfaces
Other than mapping whole classes, it is also possible to define attributes of properties that are, for
example, defined in interfaces. This kind of mapping could apply to several classes, all those that
implement the given interface.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's get connected to the database using the following steps:

1. Add a C# marker interface called IAuditable to the blank BusinessLogic project:

namespace BusinessLogic
{

public interface IAuditable { }
}

2. Add a new C# class named Blog with the following code to the BusinessLogic project:

using System;
namespace BusinessLogic
{

public class Blog : IAuditable
{

public int Id { get; set; }
public string Title { get; set; }

}
}

3. Now we define the BlogContext class, in a file of the same name, in the DataAccess
project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
using System;
using System.Reflection;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring

(DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
protected override void OnModelCreating(ModelBuilder

modelBuilder)
{

modelBuilder.Entity<Blog>().Property(typeof(DateTime),
"Timestamp").IsRequired();

foreach (var entityType in
modelBuilder.Model.GetEntityTypes())

{
if

(typeof(IAuditable).IsAssignableFrom(entityType.ClrType))
{

modelBuilder.Entity(entityType.ClrType)
.Property(typeof(string),
"CreatedBy").HasMaxLength(50).IsRequired();

modelBuilder.Entity(entityType.ClrType)
.Property(typeof(string),
"UpdatedBy").HasMaxLength(50).IsRequired();

modelBuilder.Entity(entityType.ClrType)
.Property(typeof(DateTime),
"CreatedOn").IsRequired();

modelBuilder.Entity(entityType.ClrType)
.Property(typeof(DateTime),
"UpdatedOn").IsRequired();

}
}
base.OnModelCreating(modelBuilder);

}

}
}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

4. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, in the
connectionStrings section, with the name Blog. Of course, change the connection string
to match your system settings, for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

How it works…

The OnModelCreating method is called by Entity Framework to give developers a chance to change
the model for the entities that it will be managing. In it, we look for entities that implement the
IAuditable interface and we set some attributes for its properties (maximum length, required). This
doesn't prevent us from explicitly setting additional attributes for specific entities implementing
IAuditable (such as Blog), but for those, the problem is already solved. Following is the diagram
showing IAuditable interface and Blog class:

Auditable class and interface

See also

In this chapter:

• Mapping shadow properties
• Mapping interfaces

Shadow properties
Going one step further from private properties, in a well-defined model, it may make sense to hide
certain properties from the developers so that they do not make unwanted changes to them, consciously
or not.

Historically, Entity Framework, like most ORMs, has three models:

• POCO model: This represents the .NET classes and their properties and references
• Database model: This represents the tables, views, and columns (in the case of relational data

stores) where data is actually stored
• Mapping model: This model binds the two preceding models; this is where we say that the
MyEntity class is to be stored in the MY_ENTITY table and the Id property goes into the
MY_ENTITY_ID column

Note

Entity Framework used to call these models Conceptual Model, Storage Model, and Mapping Model. If
you are curious, refer to the following link:

https://msdn.microsoft.com/en-us/data/jj650889.

So, what we are looking for is a way to have a backing data store for entities and properties that does not
reflect in the POCO classes. Enter shadow properties.

A shadow property is not reflected in a class, so, it is virtually impossible – unless you know what you
are doing and where to look for it – to set or change the values for it. A typical use case could be
auditing properties: CreatedBy, CreatedOn, UpdatedBy, and UpdatedOn; we want these to
always be controlled by the infrastructure, not the developers.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

https://msdn.microsoft.com/en-us/data/jj650889

How to do it…

Let's get connected to the database using the following steps:

1. Add a C# marker interface called IAuditable to the BusinessLogic project, which
should initially be empty:

namespace BusinessLogic
{

public interface IAuditable { }
}

2. Add a new C# class named Blog with the following code to the BusinessLogic project:

namespace BusinessLogic
{

public class Blog : IAuditable
{

public int Id { get; set; }
public string Title { get; set; }

}
}

3. Create a new C# class named BlogContext with the following code in the DataAccess
project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
using System;
using System.Linq;
using System.Reflection;
using System.Security.Principal;

namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public Func<string> GetCurrentUser { get; set; } =

() => WindowsIdentity.GetCurrent().Name;
public Func<DateTime> GetCurrentTimestamp

{ get; set; } = () => DateTime.UtcNow;
public DbSet<Blog> Blogs { get; set; }
public override int SaveChanges()

{
foreach (var entry in ChangeTracker.Entries()

.Where(e => (e.Entity is IAuditable) &&
(e.State == EntityState.Added) ||
(e.State == EntityState.Modified)))

{
entry.Property(Auditable.UpdatedBy)

.CurrentValue = GetCurrentUser();
entry.Property(Auditable.UpdatedOn)

.CurrentValue = GetCurrentTimestamp();
if (entry.State == EntityState.Added)
{

entry.Property(Auditable.CreatedBy)
.CurrentValue = GetCurrentUser();

entry.Property(Auditable.CreatedOn)
.CurrentValue = GetCurrentTimestamp();

}
}
return base.SaveChanges();

}
protected override void OnConfiguring

(DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
protected override void OnModelCreating(ModelBuilder

modelBuilder)
{

modelBuilder.Entity<Blog>().Property(
typeof(DateTime), "Timestamp").IsRequired();

foreach (var entityType in modelBuilder.Model.
GetEntityTypes())

{
if (typeof(IAuditable).IsAssignableFrom(

entityType.ClrType))
{

modelBuilder.Entity(entityType.ClrType)
.Property(typeof(string),
Auditable.CreatedBy).HasMaxLength(50).IsRequired();

modelBuilder.Entity(entityType.ClrType)
.Property(typeof(string),
Auditable.UpdatedBy).HasMaxLength(50).IsRequired();

modelBuilder.Entity(entityType.ClrType)
.Property(typeof(DateTime),
Auditable.CreatedOn).IsRequired();

modelBuilder.Entity(entityType.ClrType)

.Property(typeof(DateTime),
Auditable.UpdatedOn).IsRequired();

}
}
base.OnModelCreating(modelBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

4. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, change the connection
string to match your system settings, for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

How it works…

Remember that the OnModelCreating method is called the first time the DbContext is used to
connect to the data store. It offers a chance to revise or update the model that Entity Framework will use.
In this case, we are iterating through all of the mapped entities, sorting out those that implement
IAuditable, and, for those, we are registering a bunch of audit properties. Note that these properties
are not reflected in the IAuditable interface, but we know they are there: the SaveChanges
method, again, iterates through all the entity instances waiting to be persisted (added or modified) and
sets the auditing values explicitly. There are two properties, GetCurrentUser and
GetCurrentTimestamp, that are used to return the current user and the current timestamp: out of
the box, these return the Windows account running the code and the current date and time in UTC
format, respectively. The values returned from these properties are used to fill the properties in the
IAuditable implementation. For querying shadow properties, the syntax is somewhat cumbersome,

as we need to use the EF static class, which isn't exactly intuitive. There's no other way, though, since
there are no backing properties that we can use. Following is the diagram showing IAuditable
interface being implemented by the Blog class:

Blog class implementing the IAuditable interface

See also

In this chapter:

• Mapping non-public members
• Mapping interfaces

You can read more about shadow properties on the official Entity Framework Core documentation site:
https://docs.efproject.net/en/latest/modeling/shadow-properties.html.

https://docs.efproject.net/en/latest/modeling/shadow-properties.html

Creating one-to-one maps
Entities can be related to each other in different ways. A one-to-one relation is one where each
individual entity may be related to another, and this other one, if it exists, is directly related to the first.
Examples include the following:

• A relation from a person to their address, assuming that no two people share the same address
• Additional details for an order
• A person and their pet
• A country and its head of state

A one-to-one relation is easy to represent in domain model terms: each of the entities has a reference to
the other. Only one side can be made required; otherwise, we would have a problem: which one comes
first? Let's see how we can map this kind of relation in Entity Framework Core.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's create a one-to-one relation by following these easy steps:

1. Add a class named Blog to the BusinessLogic project:

namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Title { get; set; }
public BlogDetail Detail { get; set; }

}
}

2. Add another class, this time, BlogDetail, to the same project:

using System;
namespace BusinessLogic
{

public class BlogDetail
{

public int BlogId { get; set; }
public Blog Blog { get; set; }
public DateTime CreatedOn { get; set; }
public string Description { get; set; }
public string Url { get; set; }

}
}

3. Now, we need to add the mapping logic. Add a class called BlogContext to the
DataAccess project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
using System;
using System.Linq;
using System.Reflection;
using Microsoft.EntityFrameworkCore.Metadata;

namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(

DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
protected override void OnModelCreating(

ModelBuilder modelBuilder)
{

modelBuilder
.Entity<BlogDetail>()
.HasKey(b => b.BlogId);

modelBuilder.Entity<BlogDetail>()
.HasOne(b => b.Blog)
.WithOne(b => b.Detail)
.IsRequired();

modelBuilder
.Entity<Blog>()
.HasOne(b => b.Detail)
.WithOne(d => d.Blog).OnDelete

(DeleteBehavior.Cascade);
base.OnModelCreating(modelBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

4. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, change the connection
string to match your system settings, for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

How it works…

We explicitly tell our BlogContext via fluent mapping that the Blog entity has a one-to-one relation
with BlogDetail; that is done in the OnModelCreating infrastructure method. We say that
BlogDetail shares the same key as Blog (BlogId), and that when a Blog is deleted, it will
cascade to its Detail (WillCascadeOnDelete). This cascading is very important, because
BlogDetail doesn't make sense without Blog. On the BlogDetail entity, the Blog property is
mandatory. The following diagram shows a one-to-one relation between Blog and BlogDetail:

One-to-one relation

There's more…

Cascade deletes are something that we cannot configure using attributes; we always have to use fluent
mapping.

See also

In this chapter:

• Creating one-to-many maps
• Creating many-to-many maps

Relationships are described in the official documentation: https://docs.efproject.net/en/latest/modeling/
relationships.html. Cascade deletes are there too: https://docs.efproject.net/en/latest/saving/cascade-
delete.html.

https://docs.efproject.net/en/latest/modeling/relationships.html
https://docs.efproject.net/en/latest/modeling/relationships.html
https://docs.efproject.net/en/latest/saving/cascade-delete.html
https://docs.efproject.net/en/latest/saving/cascade-delete.html

Creating one-to-many maps
When an entity can be associated with one or more entities of another type, and each of these entities is
associated with at most one entity of the first type, we call that one-to-many. It is one of the more basic
kinds of relation, and, if looked at from the other endpoint, it becomes a many-to-one relation. Some
examples of this include the following:

• A blog and its posts
• A parent and their children
• A folder and its sub-folders
• An order and its details (items included)

You may notice that there is one difference: in some of these relations, the many side cannot exist
without the one—for example, a child without a parent–while in others, it can—there can be a folder
without a parent folder.

This is easy to represent in the domain model; the one side holds a collection of entities of the many
side, and the many side holds a reference to an entity on the one side. Pretty simple.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's create a one-to-one relation by following these easy steps:

1. Add a class named Blog to the BusinessLogic project:

using System.Collections.Generic;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }

public string Title { get; set; }
public ICollection<Post> Posts { get; private set; } = new

HashSet<Post>();
}

}

2. Add another class, Post, to the same project, in a new file:

using System;
namespace BusinessLogic
{

public class Post
{

public int PostId { get; set; }
public string Title { get; set; }
public DateTime Timestamp { get; set; }
public string Body { get; set; }
public Blog Blog { get; set; }

}
}

3. Now, we need to add the context. Add a class called BlogContext to the DataAccess
project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
protected override void OnModelCreating(
ModelBuilder modelBuilder)
{

modelBuilder
.Entity<Post>()

.HasOne(p => p.Blog)

.WithMany(b => b.Posts)

.Is Required();
base.OnModelCreating(modelBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

4. Add the following connection string to the appsettings.json file:

{
"Data":{

"Blog":{
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog;Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, change the connection
string to match your system settings, for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

How it works…

We explicitly tell our BlogContext via fluent mapping, that the entity Blog has a one-to-one relation
with BlogDetail; that is done in the infrastructure method OnModelCreating. We say that
BlogDetail shares the same key as Blog (BlogId), and that when a Blog is deleted, it will
cascade to its Detail (WillCascadeOnDelete). This is very important, because the
BlogDetail entity doesn't make sense without the Blog property. On the BlogDetail entity, I
marked the Blog property as mandatory (Required), but that really depends on the use case.
Remember, a folder may not necessarily have a parent – the root folder – but a child needs a parent.
Depending on your use case, you may or not need to mark the one side as required. Related to that is
WillCascadeOnDelete; it doesn't make sense to cascade deletes if the many side can live without
the one. In summary, Required and WillCascadeOnDelete go together; if you do not need one,
you shouldn't need the other. The following diagram shows a one-to-many relation between Blog and
Post:

One-to-many relationship

There's more…

We can use attributes to indicate to Entity Framework that one side of the relationship is required:

using System;
namespace BusinessLogic
{

public class Post
{

public int PostId { get; set; }
public string Title { get; set; }
public DateTime Timestamp { get; set; }
public string Body { get; set; }
[Required]
public Blog Blog { get; set; }

}
}

Also, notice the Posts property in the Blog class using a weird syntax. Basically, I defined a private
setter and I am initializing it as HashSet. This is because it rarely makes sense to replace the collection
altogether, just adding items to it is easier. HashSet ensures there is no duplication of items, and I
initialize it beforehand so that it can be immediately used – it comes as a consequence of having the
private setter.

Note

The initialization syntax for automatic properties was introduced in C# 6.

See also

In this chapter:

• Creating one-to-many maps
• Creating many-to-many maps

Creating many-to-many maps
A many-to-many relation is another of those "canonical" ones. Essentially, each entity on one of the
sides can be associated with many entities on the other side, and this goes the other way too. Just think
of these use cases:

• A post and its tags, where a tag can have multiple posts and a post multiple tags
• Books and authors
• Projects and developers

Usually, a many-to-many relation is easy to represent in classes: each side holds a collection of entities
of the other side. In Entity Framework Core, however, things are not so simple. I'm sorry to break this to
you, but as it happens, many-to-many relations are not supported! Do not be alarmed, though, there's
still something we can do about it! This was a change from previous versions (Entity Framework 6.x)
and one that will certainly be fixed. In the meantime, let's get it working.

Note

In Entity Framework Core, many-to-many relations are simulated with a middle entity. This even allows
you to have additional attributes in it.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's represent a many-to-many relation of posts and tags:

1. Add a class named Blog to the BusinessLogic project:

using System.Collections.Generic;
namespace BusinessLogic
{

public class Blog

{
public int BlogId { get; set; }
public string Title { get; set; }
public ICollection<Post> Posts { get; private set; } = new

HashSet<Post>();
}

}

2. Add another class, Post, to the same project, in a new file:

using System;
using System.Collections.Generic;
namespace BusinessLogic
{

public class Post
{

public int PostId { get; set; }
public string Title { get; set; }
public DateTime Timestamp { get; set; }
public string Body { get; set; }
public Blog Blog { get; set; }
public ICollection<PostTag> Tags { get; private set; } =

new HashSet<PostTag>();
}

}

3. Now let's add the Tag class, again in the BusinessLogic project:

using System.Collections.Generic;
namespace BusinessLogic
{

public class Tag
{

public int TagId { get; set; }
public string Name { get; set; }
public ICollection<PostTag> Tags { get; private set; } =

new HashSet<PostTag>();
}

}

4. Finally, add the mapping class, PostTag:

namespace BusinessLogic
{

public class PostTag
{

public int PostId { get; set; }
public Post Post { get; set; }

public int TagId { get; set; }
public Tag Tag { get; set; }

}
}

5. Now, we need to add the context and tie everything together. Add a class called
BlogContext, this time to the DataAccess project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
protected override void OnModelCreating(
ModelBuilder modelBuilder)
{

modelBuilder
.Entity<Tag>();

modelBuilder
.Entity<PostTag>()
.HasKey(x => new { x.PostId, x.TagId });

modelBuilder
.Entity<Post>()
.HasMany(p => p.Tags)
.WithOne(t => t.Post)
.OnDelete(DeleteBehavior.Cascade)
.IsRequired();

modelBuilder
.Entity<Tag>()
.HasMany(t => t.Tags)
.WithOne(p => p.Tag)
.OnDelete(DeleteBehavior.Cascade)
.IsRequired();

base.OnModelCreating(modelBuilder);
}

}
}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

6. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, change the connection
string to match your system settings, for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

How it works…

Entity Framework Core does not support many-to-many relations, period. To get around this limitation,
we need to replace our many-to-many with two many-to-ones, and have an entity in the middle (the
"one") that continues the relation to the other end. In essence, we are bringing to the domain model
exactly the same configuration we have in the database model. Remember that a many-to-many relation
always needs a middle or mapping table in between the related tables. That's exactly the point of the
PostTag class. Arguably, with this approach, we have a benefit: we can add some payload to the
"mapping" entity (PostTag), such as some attributes that enrich this relation. PostTag has a
composite primary key, which consists of both the PostId and the TagId attributes. Cascade mapping
is required in this case, because we don't want to have "orphaned" PostTag entities. We need to
explicitly tell Entity Framework to map the Tag class, because, since it isn't a root aggregate, there is no
collection for it in the BlogContext class, and therefore Entity Framework knows nothing about it.
The following diagram shows the many-to-many relation between Tag, PostTag and Post:

Many-to-many relationship with a middle entity

There's more…

You may like to know that Entity Framework Core automatically detects one-to-many relations so there
is no mapping configuration required: all it takes is to have, on one side, a collection of entities, and on
this other entity, a reference to the entity on the other side.

See also

In this chapter:

• Creating one-to-one maps
• Creating one-to-many maps

Creating custom conventions
Entity Framework Code First (4.1) introduced mapping conventions. Basically, Entity Framework would
figure out certain patterns from the domain model and would configure things appropriately. In
subsequent versions, these conventions were made customizable, meaning one could define and apply
bespoke ones for our specific use cases. This is very useful, because it prevents us from writing the same
code over and over. Some examples of custom conventions might include the following:

• Defining the maximum length for string properties
• Showing whether certain properties are mandatory or not
• Automatically setting cascading behaviors

Unfortunately, version 1.0 of Entity Framework Core dropped this; fortunately, it is still possible to
achieve with some extra work.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's represent a many-to-many relation of posts and tags:

1. Add a class named Blog to the BusinessLogic project:

using System.Collections.Generic;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Title { get; set; }
public ICollection<Post> Posts { get; private set; } = new

HashSet<Post>();

}
}

2. Add another class, Post, to the same project, in a new file:

namespace BusinessLogic
{

public class Post
{

public int PostId { get; set; }
public string Title { get; set; }
public DateTime Timestamp { get; set; }
public string Body { get; set; }
public Blog Blog { get; set; }

}
}

3. Let's now define our convention interface. Add a file named IConvention.cs to the
DataAccess project with the following content:

using Microsoft.EntityFrameworkCore;
namespace DataAccess.Conventions
{

public interface IConvention
{

void Apply(ModelBuilder modelBuilder);
}

}

4. We'll also create a custom convention, for defining the maximum length of string properties.
Add a StringLengthConvention class to DataAccess:

using System.Linq;
using Microsoft.EntityFrameworkCore;
namespace DataAccess.Conventions
{

public sealed class StringLengthConvention : IConvention
{

internal const string MaxLengthAnnotation = "MaxLength";
internal const int DefaultStringLength = 50;
public static readonly IConvention Instance = new

StringLengthConvention();
public void Apply(ModelBuilder modelBuilder)
{

foreach (var entity in
modelBuilder.Model.GetEntityTypes())

{
foreach (var property in entity.GetProperties().Where(p

=> p.ClrType == typeof(string)))
{

var maxLength = property
.FindAnnotation(MaxLengthAnnotation);
if (maxLength == null)
{

maxLength = property
.AddAnnotation
(MaxLengthAnnotation,
DefaultStringLength);

}
}

}
}

}
}

5. Now, we need to add the context and use this convention. Add a class called BlogContext to
the DataAccess project:

using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;
using BusinessLogic;
using BusinessLogic.Conventions;
namespace DataAccess
{

public class BlogContext : DbContext, IDbContextConventions
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
Conventions
.Add(StringLengthConvention.Instance);

}
public ISet<IConvention> Conventions { get; private set; }

= new HashSet<IConvention>();
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
protected void ApplyConventions(
ModelBuilder modelBuilder)

{
foreach (var convention in Conventions)
{

convention.Apply(modelBuilder);
}

}
protected override void OnModelCreating(
ModelBuilder modelBuilder)
{

ApplyConventions(modelBuilder);
base.OnModelCreating(modelBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

6. The final piece is the IDbContextConventions interface; add it to a new file in
DataAccess:

using System.Collections.Generic;
namespace DataAccess.Conventions
{

public interface IDbContextConventions
{

ISet<IConvention> Conventions { get; }
}

}

7. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, change the connection
string to match your system settings, for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

How it works…

The point where we can define the mapping is in the OnModelCreating infrastructure method; here,
we have a reference to the ModelBuilder class, which is the place where all of it goes, and allows us
to check what we already have configured. We define an interface, IConvention, with a single
method that takes a ModelBuilder instance as a parameter, so that we can do in it the same way we
would in OnModelCreating. We have a class, StringLengthConvention, that checks, by
looking at annotations, if all string properties are missing a maximum length setting, and in that case, it
adds one. Then, the BlogContext is set to have a collection of conventions, which it applies one by
one in OnModelCreating; because we add a StringLengthConvention instance in the
BlogContext constructor, it will always be applied. The IDbContextConventions interface is
somewhat unnecessary, but I still see value in having it to signal that the context applies conventions.
Finally, in case you are wondering, I created a public static field in StringLengthConvention
because there really is no need – although it is harmless – to have multiple instances of this class, since
it holds no state. The following diagram shows convention classes and interfaces:

Convention classes and interfaces

There's more…

All of the mapping code that we added in the previous chapter can be easily turned into conventions, but
you should refrain from doing so for specific cases: for example, in my view, it makes no sense to tie
Posts to Tags, because these are specific to the model, but it might make sense to look for properties
implementing specific interfaces or inheriting from a well-known base class. ModelBuilder exposes
the model Entity Framework knows about in its Model property.

Finally, with the approach outlined here, we have the choice of having DbContext-derived classes
adding their own, default conventions, or adding these from the outside.

See also

In this chapter:

• Creating shadow properties
• Mapping interfaces
• Creating one-to-one maps
• Creating one-to-many maps
• Creating many-to-many maps

Using sequence key generators
Historically, Entity Framework offered two ways to handle primary key generation:

• Using the SQL Server IDENTITY mechanism
• Manually setting the key

There are several problems with this approach. One is that the IDENTITY mechanism really only works
in SQL Server, although similar features exist in other RDBMs, such as the MySQL AUTOINCREMENT.
Another one is that the ORM, because it doesn't know the key to be inserted beforehand, needs to get
into some trouble to figure it out after a record is inserted. Finally, there are far more efficient and
flexible mechanisms that do not rely on a specific database engine, such as the High-Low algorithm.

Knowing this, Microsoft took a step forward and introduced an implementation of High-Low in Entity
Framework Core 1. The downside to it is that, for now at least, it requires SQL Server 2012: the way it
was implemented is dependent on sequences that were only introduced in SQL Server 2012. So we're
still stuck.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

We will also be using a SQL Server 2012 database to store the data. The reason for this is that only SQL
Server 2012 supports sequences.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's create a simple domain model that uses sequences as the backing key-generation strategy:

1. First, add a Blog class to the BusinessLogic project:

using System.Collections.Generic;
namespace BusinessLogic
{

public class Blog

{
public int BlogId { get; set; }
public string Title { get; set; }
public ICollection<Post> Posts { get; private set; } = new

HashSet<Post>();
}

}

2. Now, let's add Post as well:

using System;
namespace BusinessLogic
{

public class Post
{

public int PostId { get; set; }
public string Title { get; set; }
public DateTime Timestamp { get; set; }
public string Body { get; set; }
public Blog Blog { get; set; }

}
}

3. Next comes BlogContext, this time in the DataAccess project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
using BusinessLogic.Conventions;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
protected override void OnModelCreating(
ModelBuilder modelBuilder)
{

modelBuilder.ForSqlServerUseSequenceHiLo();
base.OnModelCreating(modelBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

4. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web . config file, under the
connectionStrings section, with the name Blog. Of course, change the connection string to
match your system settings, for example, the name of the SQL Server instance (SQLEXPRESS, in this
example).

How it works...

The key here is the call to the ForSqlServerUseSequenceHiLo extension method in
OnModelCreating: it tells Entity Framework Core to use the new sequence-based High-Low key
generation algorithm instead of the default one based on SQL Server's IDENTITY. Everything will
work smoothly, and there's no need to do anything else. Behind the covers, what happens is Entity
Framework creates a sequence in SQL Server. Before it inserts any records in the database, it increments
this sequence and reserves a range of integer values, which it will use to feed any new records it has to
insert. After this range is exhausted, Entity Framework reserves another one, and so on. Do keep in mind
that this will only work in SQL Server 2012 or newer, because older versions have no knowledge of
sequences.

There's more…

The example shown sets sequences as the global generation pattern. It is also possible, however, to just
use sequences for some entities and use IDENTITY for the rest:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{

modelBuilder
.Entity<Blog>()
.Property(b => b.BlogId)
.ForSqlServerUseSequenceHiLo();

base.OnModelCreating(modelBuilder);
}

The only configurable properties of a sequence are its name and schema. To change them, we just need
to provide values to the default parameters of ForSqlServerUseSequenceHiLo:
modelBuilder.ForSqlServerUseSequenceHiLo("dbo", "MyOwnSequence").

See also

In this chapter:

• Using GUIDs as keys

See more about the High-Low algorithm at https://www.quora.com/What-is-the-Hi-Lo-algorithm-and-
when-is-it-useful.

https://www.quora.com/What-is-the-Hi-Lo-algorithm-and-when-is-it-useful
https://www.quora.com/What-is-the-Hi-Lo-algorithm-and-when-is-it-useful

Using GUIDs as keys
We know that Entity Framework can generates keys using either the IDENTITY or SEQUENCE (SQL
Server 2012) features. It is also possible, however, to leverage GUIDs to generate keys on either the
client or the server side.

Client-side generated GUID keys should work equally well in any database that supports GUIDs: SQL
Server has the UNIQUEIDENTIFIER type, Oracle has RAW(16), MySQL and PostgreSQL have
UUID, and so on.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's create a simple domain model that uses sequences as the backing key generation strategy:

1. First, add a Blog class to the BusinessLogic project:

using System;
using System.Collections.Generic;
namespace BusinessLogic
{

public class Blog
{

public Guid BlogId { get; set; }
public string Title { get; set; }
public ICollection<Post> Posts { get; private set; } = new

HashSet<Post>();
}

}

2. Let's add a Post class as well, in the BusinessLogic project:

using System;
namespace BusinessLogic
{

public class Post
{

public Guid PostId { get; set; }
public string Title { get; set; }
public DateTime Timestamp { get; set; }
public string Body { get; set; }
public Blog Blog { get; set; }

}
}

3. Next comes BlogContext, this time in the DataAccess project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
using BusinessLogic.Conventions;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

4. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, change the connection
string to match your system settings, for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

How it works…

GUID primary keys are treated specially by Entity Framework: when it finds one, it just uses the value
it has (if any), or, it assigns it one using a GUID-generation algorithm. Note that we didn't have to do
anything in order to configure its usage, it just works out of the box. In the initialization for the ID
properties we are assigning it a new GUID, and that's all Entity Framework needs.

There's more…

In SQL Server, you can also have server-generated GUIDs. The best option for that is to have a default
value in the table. We can achieve it with the following code:

protected override void OnModelCreating(
ModelBuilder modelBuilder)
{

modelBuilder
.Entity<Blog>()
.Property(b => b.BlogId)
.HasDefaultValueSql("NEWSEQUENTIALID()");

modelBuilder
.Entity<Post>()
.Property(b => b.PostId)
.HasDefaultValueSql("NEWSEQUENTIALID()");

base.OnModelCreating(modelBuilder);
}

This uses SQL Server's NEWSEQUENTIALID() function, which has some advantages over NEWID(),
namely, the values it returns are sequential and therefore more suitable for use in a clustered index, such
as the one typically used by SQL Server primary keys.

Note

For a good overview of the problems associated with having GUID primary keys, have a look at
http://www.informit.com/articles/article.aspx?p=25862. This article predates the
NEWSEQUENTIALID() function, however, which solves the ordering problem.

See also

In this chapter:

• Using sequence key generators

http://www.informit.com/articles/article.aspx?p=25862

Implementing inheritance – Table per Class
hierarchy
The relational and the object-oriented world, although similar, are in fact quite different. In the object-
oriented world, we have classes and inheritance, references to other classes, virtual and static members,
and different visibilities, which all make our life as developers easier. Relational databases are very
simple: all we have are tables (and views) and foreign keys. So, an object-relational mapper such as
Entity Framework faces a difficult task translating from one to the other where there is no 1:1
correspondence of concepts: this is called the object-relational impedance mismatch.

In this topic, we will focus on inheritance. Tables do not have inheritance, but there are some patterns
that help us mimic it:

• Table per hierarchy/Single table inheritance: A single table is used for a class hierarchy; all
base and derived table's properties are mapped to columns of this table; a special column, called
discriminator, is used to tell to which class each record corresponds

• Table per type/Class table inheritance: The base class is mapped to a table that contains
columns for each property defined in it, and each concrete class is mapped to a specific table,
which only contains columns for the concrete class, and holds a foreign key to the base table

• Table per concrete type/Concrete table inheritance: In this pattern, each concrete class gets
its own table, which contains columns for all of the properties of the class: the inherited and the
specific

In the past, Entity Framework offered support for each of these mapping patterns, but, as of Entity
Framework Core 1, only Table per hierarchy is supported (it is likely to change in subsequent versions,
though). Let's see how we can implement it.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will be creating a class hierarchy that will be interpreted by Entity Framework and persisted in a
relational database:

1. First, add a Blog class to the BusinessLogic project:

using System.Collections.Generic;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Title { get; set; }
public ICollection<BlogContent> Contents { get; private

set; } = new HashSet<BlogContent>();
}

}

2. Now we add the base class for the blog's contents, BlogContent, in a new file in the
BusinessLogic project:

using System.Collections.Generic;
namespace BusinessLogic
{

public abstract class BlogContent
{

public int BlogContent Id { get; set; }
public string Title { get; set; }
public DateTime Timestamp { get; set; }
public Blog Blog { get; set; }

}
}

3. Let's add a PostContent class as well, in the BusinessLogic project inheriting from
BlogContent:

namespace BusinessLogic
{

public class PostContent : BlogContent
{

public string Body { get; set; }
}

}

4. Now we create another class inheriting from BlogContent, and we call it FileContent:

namespace BusinessLogic
{

public class FileContent : BlogContent
{

public string ContentType { get; set; }
public int ? Size { get; set; }
public byte [] Contents { get; set; }

}
}

5. Next comes the BlogContext, this time in the DataAccess project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
using BusinessLogic.Conventions;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<BlogContent> Contents { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
protected override void OnModelCreating(
ModelBuilder modelBuilder)
{

modelBuilder
.Entity<BlogContent>()
.HasKey(p => p.BlogContentId);

modelBuilder
.Entity<BlogContent>()
.HasOne(p => p.Blog)
.WithMany(b => b.Contents)
.IsRequired();

modelBuilder
.Entity<FileContent>()
.HasBaseType<BlogContent>();

modelBuilder

.Entity<Post Content >()

.HasBaseType<BlogContent>();
base.OnModelCreating(modelBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

6. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, change the connection
string to match your system settings, for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

How it works…

We have an abstract base class, BlogContents, that describes the common properties of all the
contents to be stored in a blog. Of that, we have two special cases: posts and files, each with its own
specific properties. Note that all of the properties in the Post and File classes are nullable: the Size
property was made so by making it a nullable integer. This is very important, just think of it: because all
the properties of all the derived classes must fit in it, not all the columns will be appropriate for all
classes. The following screenshot shows different Data tools in Visual Studio:

Data Tools in Visual Studio

The BlogContext class exposes a property, Contents, of the BlogContent type, as shown in the
following diagram:

Classes with inheritance

There's more…

You can query for a specific type in a number of ways:

• Directly on the Contents property, by adding an is clause:

from content in ctx.Contents where content is Post select
content

• By calling the Set method of DbContext with a generic parameter of the desired type:
ctx.Set<File>().

• Another option is to get all BlogContents and then iterate through the collection:

var contents = ctx.Contents.ToList();
foreach (var content in contents)
{

if (content is Post)
{

//…
}
else if (content is File)
{

//…
}

}

It's best if you choose a strategy that filters data in the database so that not everything needs to come to
the client, saving precious time and resources.

Chapter 3. Validation and Changes
In this chapter, we will cover the following topics:

• Validating simple properties
• Validating the whole entity
• Validating groups of entities
• Intercepting saving changes
• Intercepting property changes
• Setting the state of an entity
• Improving MVC UI with Entity Framework validation
• Inserting, updating, and deleting entities with stored procedures
• Updating the database from model changes
• Dumping the SQL script for the database creation

Introduction
In this chapter, we will be looking at how we can make Entity Framework validate our entities for us. Of
course, we don't want to be inserting bad data into the database, and Entity Framework can help us with
that by intercepting data before it is sent to the database.

After that, we will see how we can manipulate the state of entities being tracked, how we can intercept
changes being made to them, and use custom SQL to retrieve, update, and delete entities.

At the very end of the chapter, we will have a look at the migrations functionality that allows us to
evolve our model and have the database reflect those changes.

Validating simple properties
Let's see how we can use attributes to validate properties.

Getting ready

We will be using NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), where Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included with this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's create a sample entity and a validation attribute, and modify our context to take advantage of it:

1. Add a new C# class named Blog with the following code to the BusinessLogic project,
which should initially be empty:

using System;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
[PastDate]
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. Now, create a validation attribute that won't let us use a date later than today. Place the
following code in a file named PastDateAttribute.cs in the BusinessLogic project:

using System;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

[AttributeUsage(AttributeTargets.Property, AllowMultiple =
false, Inherited = true)]

public class PastDateAttribute : ValidationAttribute
{

protected override ValidationResult IsValid(object value,
ValidationContext validationContext)

{
if (!(value is DateTime))
{

return ValidationResult.Success;
}
var date = (DateTime) value;
var now = DateTime.UtcNow;
if (date.Date > now.Date)
{

return new ValidationResult("Cannot insert a future
date");

}
return ValidationResult.Success;

}
}

}

3. Create a new C# class named BlogContext with the following code in the DataAccess
project:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected void ValidateDirtyEntries()
{

var serviceProvider = GetService<IServiceProvider>();
var items = new Dictionary<object, object>();

foreach (var entry in ChangeTracker.Entries()
.Where(e => (e.State == EntityState.Added) || (e.State ==

EntityState.Modified)))
{

var entity = entry.Entity;
var context = new ValidationContext(entity,

serviceProvider, items);
var results = new List<ValidationResult>();
if (Validator.TryValidateObject(entity, context,

results, true) == false)
{

foreach (var result in results)
{

if (result != ValidationResult.Success)
{

throw new ValidationException(
result.ErrorMessage);

}
}

}
}

}
protected override void

OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
public override int SaveChanges()
{

ValidateDirtyEntries();
return base.SaveChanges();

}
}

}

Note

For Entity Framework 6, replace the namespace Microsoft.EntityFrameworkCore for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

4. Now, let's add a unit test, this time, in the UnitTests project, in a file called
ValidationTests.cs:

using Xunit;
using BusinessLogic;

using DataAccess;
using System;
using System.ComponentModel.DataAnnotations;
using Microsoft.Extensions.Configuration;namespace UnitTests
{

public class ValidationTests : BaseTests
{

[Fact]
public void CanValidateAttributes()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
{

var blog = new Blog { CreationDate =
DateTime.Now.AddDays(1) };

//Assert
Assert.ThrowsAny<ValidationException>(() =>
{

ctx.Blogs.Add(blog);
//Act
ctx.SaveChanges();

});
}

}
}

}

5. Of course, we will need the base class BaseTests, which should also go in the UnitTests
project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

The "old" System.ComponentModel.DataAnnotations namespace defines the
ValidationAttribute class; this is a base class for attributes that perform validation on the item
they are located, be it a property or a whole class. Here we define a custom validation attribute,
PastDateAttribute, that, when invoked, will check if the target value is a DateTime, and if so, if
this value is previous to today; if the date is later than today, it will return an error; otherwise, it will
return the well-known success value, ValidationResult.Success. Of course, if the value is not
a DateTime at first, it will yield success too. We decorate the CreationDate property in the Blog
class with it.

The previous versions of Entity Framework used to validate ValidationAttribute derived
attributes automatically, but that is no longer the case. Because of that, we need to override the
SavingChanges DbContext method and hook our own validation behavior. Luckily, the static
Validator class does take care of that, and more, as we will see later on.

The missing piece is figuring out what entities need to be validated; for that, we look at the
ChangeTracker contained entities with states Added or Modified – these are the entities that we
either told Entity Framework to persist or modify after loading them from the store.

There's more…

Multiple ValidationAttribute derived attributes can be added to the same or different properties
of a class, or even to the class itself. We will see this and more in the next chapter.

One thing that you need to keep in mind is, because the ValidationAttribute attributes are
generic, their target values will always be prototyped as an object. Because of that, you always have to
check if the actual target matches what you expect – in this example, it was the DateTime type.

By the way, there are several out-of-the-box validation attributes included in
System.ComponentModel.DataAnnotations:

• CompareAttribute: This compares for equality of the values of two properties
• CreditCardAttribute: This checks if a string value matches a credit card
• CustomValidationAttribute: This performs custom validation by calling a named

method in a given type; the validation result will come from this method
• DataTypeAttribute: This checks if a value matches a given type (date, date and time,

time, duration, phone number (US format), currency, single line text, HTML, multiline text, e-
mail address, password, URL, image URL, credit card, postal code, or uploaded file); some of
the other attributes are shortcuts to some of these types

• EmailAddressAttribute: This checks if a string value is a valid e-mail address
• EnumDataTypeAttribute: This checks that a given value is a valid member of an

enumerated type
• FileExtensionsAttribute: This checks that a file name has a valid extension, according

to a defined set
• MaxLengthAttribute: This checks the maximum string length of a value
• MinLengthAttribute: This checks a string value for a required minimum length
• PhoneAttribute: This checks if a string value represents a valid phone number (beware:

US format only)
• RangeAttribute: This checks that a numeric value is contained within a given threshold

(minimum and maximum values)
• RegularExpressionAttribute: This checks that a string value matches a given regular

expression
• RequiredAttribute: This checks that a value is present (not null)
• StringLengthAttribute: This validates the maximum and minimum required lengths of

a string value; equivalent to applying a MaxLengthAttribute and a
MinLengthAttribute attribute together

• UrlAttribute: This checks that a value is a valid URL

See also

In this chapter:

• Validating the whole entity
• Validating groups of entities

To learn more about DataAnnotations validations refer to the following link:

https://msdn.microsoft.com/en-us/library/ee256141(VS.100).aspx.

https://msdn.microsoft.com/en-us/library/ee256141(VS.100).aspx

Validating the whole entity
In the previous recipe, we saw how we can validate simple, decoupled properties. In real life, though,
there is usually the need to validate properties against each other, or perform some validation that even
uses values from outside the validating entity. We will have a look at two different ways to achieve this.

Getting ready

We will be using NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), where Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included with this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

In this recipe, we'll play a bit with the various forms by which we can validate entities and their
properties:

1. Add a new C# class named Blog with the following code to the BusinessLogic project:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

[BlogValidation]
public class Blog : IValidatableObject
{

public int BlogId { get; set; }
[CustomValidation(typeof(ForbiddenWordsValidator),

"IsValid")]
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }
public IEnumerable<ValidationResult>

Validate(ValidationContext validationContext)
{

yield return ForbiddenWordsValidator.IsValid(Name);

}
}

}

2. Now we will create a validation attribute that will validate the whole entity: create a file named
BlogValidationAttribute.cs in the BusinessLogic project:

using System;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

[AttributeUsage(AttributeTargets.Class,AllowMultiple = false,
Inherited = true)]

public class BlogValidationAttribute :
ValidationAttribute
{

protected override ValidationResult IsValid(object value,
ValidationContext validationContext)

{
if (!(value is Blog))
{

return ValidationResult.Success;
}
var blog = (Blog) value;
//TODO: check the blog for invalid values
//for now, let's assume something is wrongwith the name
yield return new ValidationResult("Invalid name",new [] {

"Name" });
//yield return ValidationResult.Success;

}
}

}

3. Next, the ForbiddenWordsValidator class, also in BusinessLogic project:

using System;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

public static class ForbiddenWordsValidator
{

public static ValidationResult IsValid(string word)
{

//TODO: check if the word is valid, maybe using a
dictionary

//for now, let's assume it isn't valid
return new ValidationResult("Bad word detected");
//if the word is ok, just return success

//return ValidationResult.Success;
}

}
}

4. Finally, create a new C# class named BlogContext with the following code in the
DataAccess project:

using System;
using System.ComponentModel.DataAnnotations;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected void ValidateDirtyEntries()
{

var serviceProvider = (this as
IAccessor<IServiceProvider>).Service;

var items = new Dictionary<object, object>();
foreach (var entry in ChangeTracker.Entries()
.Where(e =>
(e.State == EntityState.Added) ||
(e.State == EntityState.Modified)))

{
var entity = entry.Entity;
var context = new ValidationContext(entity,

serviceProvider, items);
var results = new List<ValidationResult>();
if (Validator.TryValidateObject(entity, context,

results, true) == false)
{

foreach (var result in results)
{

if (result != ValidationResult.Success)
{

throw new ValidationException(
result.ErrorMessage);

}

}
}

}
}
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
public override int SaveChanges()
{

ValidateDirtyEntries();
return base.SaveChanges();

}
}

}

Note

For Entity Framework 6, replace the namespace Microsoft.EntityFrameworkCore for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

5. We'll add a unit test in the UnitTests project, in a file called ValidationTests.cs:

using Xunit;
using BusinessLogic;
using DataAccess;
namespace UnitTests
{

public class ValidationTests : BaseTests
{

[Fact]
public void CanValidateAll()
{

//Arrange
using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

var blog = new Blog { Name = "A Bad Word" };
//Assert
Assert.ThrowsAny<ValidationException>(() =>
{

ctx.Blogs.Add(blog);
//Act
ctx.SaveChanges();

});
}

}
}

}

6. We'll also add the base class BaseTests, also in the UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

7. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

What we have here are three different validation options:

• The BlogValidationAttribute, when applied to the Blog class, will perform some
custom validation of it (here you have just its skeleton); it has access to all of the public
members of the class, and can even change the values, although it is not recommended

• The implementation of IValidatableObject, an interface also coming from
System.ComponentModel.DataAnnotations, allows a class to validate itself

• The CustomValidationAttribute, in this example applied to the Name property of the
Blog class, will trigger a call to a public static method in the supplied class
(ForbiddenWordsValidator, whose actual implementation is left as an exercise)

Let's analyze each of these options.

The first one, a class-level validation attribute, is capable of validating the class as a whole. The problem
is that it needs to have knowledge of the class it is pointed to, so that it can look at the appropriate
properties. Of course, it can rely on abstract base classes or interfaces, but it still needs to know about
them.

Having the class validate itself is interesting – after all, who knows it best? – except from a reusability
point of view: the logic will be inside the class and not really useful outside of it.

The third option, a generic validation attribute, is useful because we can have a collection of validation
methods and reuse them in different places. In this example, the validation attribute is declared on a
string property and hence the validation method only knows about strings, but the attribute can also be
declared at the class level; in this case, of course, the validation method's argument must be of the right
type.

Note that both the ValidationAttribute derived classes as the IValidatableObject and the
generic validation method, all return results as ValidationResult, where
ValidationResult.Success always means is valid. The Validator class knows how to
handle all of these scenarios, which is quite helpful.

Try to implement the content of BlogValidationAttribute and
ForbiddenWordsValidator and see if you can provide your own validations!

See also

In this chapter:

• Validating simple properties
• Validating groups of entities

Validating groups of entities
We've seen how we can validate single properties or entities, but what if we need to validate several
entities at the same time? This may be because we cannot allow duplicate values, or for any other
reason. Let's look at a possible solution.

We will be using NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), where Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included with this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's see how we can validate groups of entities of the same type and state (added, modified) before they
are actually stored:

1. Add a new C# class named Blog with the following code to the BusinessLogic project:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

public class Blog : IGroupValidatable
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. The IGroupValidatable marker interface also goes to the BusinessLogic project:

namespace BusinessLogic
{

public interface IGroupValidatable { }
}

3. Let's now create a BlogContext with the following code in the DataAccess project:

using System;
using System.ComponentModel.DataAnnotations;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected void ValidateEntries(Type type,

IEnumerable<object> entities, EntityState state)
{

if (type == typeof(Blog))
{

var count = entities.Count();
var countDistinctNames = entities
.OfType<Blog>()
.Select(b => b.Name.ToLowerInvariant())
.Distinct()
.Count();
if (count != countDistinctNames)
{

throw new ValidationException("Duplicate blog names
detected");

}
}

}
protected void ValidateDirtyEntries()
{

var addedEntries = ChangeTracker.Entries()
.Where(e => (e.Entity is IGroupValidatable) && (e.State

== EntityState.Added))
.Select(e => e.Entity)
.GroupBy(e => e.GetType())
.Select(g => new { Type = g.Key, Entities = g.ToList() });
var modifiedEntries = ChangeTracker.Entries()
.Where(e => (e.Entity is IGroupValidatable) && (e.State

== EntityState.Modified))
.Select(e => e.Entity)

.GroupBy(e => e.GetType())

.Select(g => new { Type = g.Key, Entities = g.ToList() });
foreach (var g in addedEntries)
{

ValidateEntries(g.Type, g.Entities,EntityState.Added);
}
foreach (var g in modifiedEntries)
{

ValidateEntries(g.Type, g.Entities,
EntityState.Modified);

}
}
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
public override int SaveChanges()
{

ValidateDirtyEntries();
return base.SaveChanges();

}
}

}

Note

For Entity Framework 6, replace the namespace Microsoft.EntityFrameworkCore for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

4. Now let's add a unit test, appropriately, in the UnitTests project, in a file called
ValidationTests.cs:

using Xunit;
using BusinessLogic;
using DataAccess;
namespace UnitTests
{

public class ValidationTests : BaseTests
{

[Fact]
public void CanValidateDuplicates()
{

//Arrange
using (var ctx = new BlogContext(

Configuration["Data:Blog:ConnectionString"]))
{

var blog1 = new Blog { Name = "A Blog Name" };
var blog2 = new Blog { Name = "A Blog Name" };
//Assert
Assert.ThrowsAny<ValidationException>(() =>
{

ctx.Blogs.Add(blog1);
ctx.Blogs.Add(blog2);
//Act
ctx.SaveChanges();

});
}

}
}

}

5. Let's also add the base class BaseTests, in the UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

We know that the SaveChanges infrastructure method is called by Entity Framework when it is about
to persist the entities it is tracking to the data store. We also know that the ChangeTracker member is
responsible for keeping track of these entities. By looking at the added and modified entities that are
waiting to be stored, we can filter them by a certain interface (IGroupValidatable) and group them
by their concrete entity. Then we just need to pass them to a method that does the appropriate validation,
in this case, detecting duplicate blog names. This is a case where, if individual property or entity
validation does not help, we need to look at the whole set.

See also

In this chapter:

• Validating simple properties
• Validating the whole entity

Intercepting saving changes
The .NET framework makes heavy use of a well-known design pattern called Observer. This pattern
enables an interested party to register for notifications about a target object. In .NET parlance, this is
called events. In this recipe, we will see how we can use events to receive notifications when an entity is
about to be saved, and act upon it, including canceling the changes. Let's see how to do it.

Getting ready

We will be using NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), where Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included with this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We want to be notified for each entity that is about to be persisted (added, updated, or deleted) and
possibly act upon it:

1. Add a new C# class named Blog with the following code to the BusinessLogic project:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. Let's now create a BlogContext with the following code in the DataAccess project:

using System;
using System.ComponentModel.DataAnnotations;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
public event EventHandler<EntityEventArgs> SavingChanges;
protected void OnSavingChanges(EntityEventArgs e)
{

var handler = SavingChanges;
if (handler != null)
{

handler(this, e);
}
if (e.Cancel == true)
{

if (e.State == EntityState.Added)
{

Entry(e.Entity).State = EntityState.Detached;
}
else
{

Entry(e.Entity).State = EntityState.Unchanged;
}

}
}
protected override void

OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
public override int SaveChanges()
{

foreach (var entry in ChangeTracker.Entries().Where(e =>
e.State != EntityState.Unchanged))

{

var args = new EntityEventArgs(entry.Entity,
entry.State);

OnSavingChanges(args);
}
return base.SaveChanges();

}
}

}

Note

For Entity Framework 6, replace the namespace Microsoft.EntityFrameworkCore for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. We need to create the event class in its own file, EntityEventArgs.cs, also in project
DataAccess:

using Microsoft.EntityFrameworkCore;
using System.ComponentModel;
namespace DataAccess
{

public sealed class EntityEventArgs : CancelEventArgs
{

public EntityEventArgs(object entity, EntityState state)
{

Entity = entity;
State = state;

}
public EntityState State { get; private set; }
public object Entity { get; private set; }

}
}

4. Now, let's add a unit test to a file called EventTests.cs in the UnitTests project:

using Xunit;
using BusinessLogic;
using DataAccess;
using System;
namespace UnitTests
{

public class EventTests : BaseTests
{

[Fact]
public void CanPreventChanges()
{

//Arrange

using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

ctx.SavingChanges += (sender, e) =>
{

e.Cancel = true;
};
var blog = new Blog { Name = "A Blog Name",CreationDate

= DateTime.UtcNow };
//Act
ctx.Blogs.Add(blog);
//Assert
Assert.True(ctx.SaveChanges() == 0);

}
}
[Fact]
public void CanSetValues()
{

//Arrange
using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

ctx.SavingChanges += (sender, e) =>
{

((Blog) e.Entity).CreationDate = DateTime.UtcNow;
};
var blog = new Blog { Name = "A Blog Name",
Url = "http://some.blog" };
//Act
ctx.Blogs.Add(blog);
//Assert
Assert.True(ctx.SaveChanges() == 1);

}
}

}
}

5. Let's also add the base class BaseTests, in the UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

The infrastructure method SavingChanges is called whenever Entity Framework "feels" it needs to
persist any changes it knows about. What we do here is iterate through all of the entities being tracked –
held inside the ChangeTracker instance – and, for each one that requires handling (is not
unchanged), call another method, OnSavingChanges, passing it an argument which includes the
entity itself and its perceived state. This method raises an event (if it has any event handlers subscribed)
and checks if any of the handlers has canceled it. If it has, it acts accordingly: if the entity was added,
discard it, and if it was marked as changed or deleted, set it to unchanged. The event mechanism allows
for decoupled code; the actual logic to either change the entity or cancel its persistence can be
elsewhere, not in the context.

See also

In this chapter:

• Setting the state of an entity
• Intercepting property changes

Intercepting property changes
This time, we will be looking at individual property value changes. If a modified value is not what we
want, we veto it, therefore returning to the original one.

Getting ready

We will be using NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), where Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included with this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will have a close look at each modified property of each modified entity that is currently being
tracked by Entity Framework:

1. Add a new C# class named Blog with the following code to the BusinessLogic project:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. Let's now create a BlogContext with the following code in the DataAccess project:

using System;
using System.ComponentModel.DataAnnotations;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;

using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
protected bool ValidateProperty(object entity, string

propertyName, object originalValue, object currentValue)
{

if (entity is Blog)
{

if (propertyName == "CreationDate")
{

var originalDate = (DateTime) originalValue;
var currentDate = (DateTime) currentValue;
if (currentValue.Date > originalValue.Date)
{

return false;
}

}
}
return true;

}
protected void ValidateModifiedProperties()
{

ChangeTracker.DetectChanges();
foreach (var entry in ChangeTracker.Entries()
.Where(e => e.State == EntityState.Modified))
{

foreach (var propName in entry.Metadata.GetProperties()
.Select(p => p.Name))
{

var prop = entry.Property(propName);
if (prop.IsModified == true)
{

if (ValidateProperty(entry.Entity,
propName, prop.OriginalValue,
prop.CurrentValue) == false)
{

prop.CurrentValue = prop.OriginalValue;
}

}
}

}
ChangeTracker.DetectChanges();

}
public override int SaveChanges()
{

ValidateModifiedProperties();
return base.SaveChanges();

}
}

}

Note

For Entity Framework 6, replace the namespace Microsoft.EntityFrameworkCore for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. Now, let's add a unit test to a file called ValidationTests.cs in the UnitTests project:

using Xunit;
using BusinessLogic;
using DataAccess;
namespace UnitTests
{

public class ValidationTests : BaseTests
{

[Fact]
public void CanPreventChanges()
{

//Arrange
using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

var blog = new Blog { Name = "A Blog Name",
CreationDate = DateTime.UtcNow };

//Act
ctx.Blogs.Add(blog);
ctx.SaveChanges();
blog.CreationDate = DateTime.UtcNow.AddDays(1);
//Assert

Assert.True(ctx.SaveChanges() == 0);
}

}
}

}

4. Let's also add the base class BaseTests, in the UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

5. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

The change tracking mechanism in Entity Framework means that whenever a change is made to an
entity being tracked, Entity Framework eventually finds about it. For each entity that was either attached

to a context or loaded from the data store, Entity Framework knows the original values for each mapped
property, and, of course, it also knows the current ones.

What we do here is, we loop through all the modified entities, and for each entity, we look at its
properties marked as modified by the change tracking implementation. We just pass these properties to a
custom method to give it a chance to veto the modification. If it does, the original property value is
restored. In this case, we are not throwing an exception, but we are silently restoring the original value.
We call the DetectChanges method before and after the entities loop, first, to be sure that the dirty
properties are detected and, second, to have Entity Framework correctly mark the entities as not
modified if all of its modified properties had their original values restored.

See also

In this chapter:

• Intercepting saving changes
• Setting the state of an entity

Setting the state of an entity
Normally, Entity Framework knows two kinds of entities:

• Those that have been loaded through it, such as the result of a LINQ query
• Those that have been added to it

However, things can get more complicated; imagine, for a second, that you loaded one or more entities
from a context in an ASP.NET web application and you stored them in the ASP.NET session. Because
your DbContext normally only lives for the duration of an HTTP request, in the next request, you will
get another one, which knows nothing about these entities. Another example would be if you loaded an
entity from a query and accidentally made changes to it that you don't want to persist.

The solution for both these cases is to change the Entity Framework's perceived state of the entity (or
entities). Let's see how this can be done.

Getting ready

We will be using NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), where Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included with this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

For this example, we won't be implementing anything new, just a simple Blog-Post model and its
associated context:

1. Add a new C# class named Blog with the following code to the BusinessLogic project:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }

public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }
public ICollection<Post> Posts { get; set; } = new

HashSet<Post>();
}

}

Note

The weird syntax for initializing the Posts collection is specific to C# 5. In older versions, you
have to instantiate the collection in a constructor.

2. Similar to Blog is the Post class:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

public class Post
{

public int PostId { get; set; }
public string Title { get; set; }
public DateTime Timestamp { get; set; }
public string Body { get; set; }
public Blog Blog { get; set; }

}
}

3. Let's now create a BlogContext class with the following code in the DataAccess project:

using System.ComponentModel.DataAnnotations;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)

{
optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the namespace Microsoft.EntityFrameworkCore for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

4. Now, let's add a unit test to a file called StateTests.cs in the UnitTests project:

using Xunit;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using BusinessLogic;
using DataAccess;
namespace UnitTests
{

public class StateTests : BaseTests
{

[Fact]
public void CanSetState()
{

//Arrange
Blog blog = null;
using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

blog = ctx.Blogs.First();
}
using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

//Assert
Assert.Equal(EntityState.Detached,

ctx.Entry(blog).State);
ctx.Entry(blog).State = EntityState.Modified;
//Act
var changes = ctx.SaveChanges();
//Assert
Assert.True(changes == 1);

}
}

}
}

5. Let's also add the base class BaseTests, in the UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. Add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

The Entry method returns the Entity Framework entry for a given mapped entity. This entry holds the
underlying entity's state, which can be one of the following values:

• EntityState.Unchanged: This entity is known from the Entity Framework context and is
considered unchanged

• EntityState.Modified: This entity is known from the context and is considered modified

• EntityState.Added: This entity has just been added to the context and hasn't been
persisted yet

• EntityState.Deleted: This entity is known by the context and has recently been asked
for deletion, but hasn't yet been deleted from the store

• EntityState.Detached: This entity is not being tracked by the context, it knows nothing
about it

We can manipulate the Entity Framework's known state of the entity by setting the State property.
This way we can fool Entity Framework by making it think that the entity is in a state different than
what would be expected. The two most obvious cases are attaching an entity to a new context
(EntityState.Unchanged), having the context forget about it (EntityState.Detached). For
all other cases, you have methods that know how to handle them (Add, Delete, and so on).

There's more…

An entity may have several other entities associated with it: just think, for once, of a blog and all of its
posts. When you explicitly set an entity's state, you do the same for all of its related entities. The
problem is, imagine some of these entities are in a different state: for example, the root entity is new, but
it is associated with entities that already exist in the database. For this scenario, Entity Framework lets
you traverse through all of an entity's associated entities and set each state individually. This is done
using the TrackGraph method of the ChangeTracker member of DbContext:

ChangeTracker.TrackGraph(rootEntity, node =>
{

if (node.Entry.Entity is Blog)
{

if ((node.Entry.Entity as Blog).BlogId != 0)
{

node.Entry.State = EntityState.Unchanged;
}
else
{

node.Entry.State = EntityState.Added;
}

}
else if (node.Entry.Entity is Post)
{

if ((node.Entry.Entity as Post).PostId == 0)
{

node.Entry.State = EntityState.Added;
}
else
{

node.Entry.State = EntityState.Unchanged;
}

}
});

This code relies on a simple – but effective, in most cases – algorithm for finding out if an object is new
or not. If it has its numeric identifier set to non-zero, then it is not new; otherwise, it is. If you call
TrackGraph on a Blog instance, it will go through each of its Posts and give you a chance to set their
state too.

See also

In this chapter:

• Intercepting property changes

Improving MVC UI with entity framework
validation
In this recipe, we will leverage the data annotations to provide real-time feedback to the user, while
those same annotations will validate objects before allowing them to be saved to the database. Because
the UI uses the model properties to display errors, it is important that any validation exception thrown
includes the property that caused it, so that the UI can reflect it.

Getting ready

We will be using NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), where Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included with this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's check if errors are thrown by following these steps:

1. Create a class named Blog in a file likewise named Blog.cs, in the BusinessLogic
project:

using System;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
[Required]
public string Name { get; set; }
public DateTime CreationDate { get; set; }
[MaxLength(50)]
public string Url { get; set; }

}
}

2. Add a context to the DataAccess project:

using System;
using System.ComponentModel.DataAnnotations;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the namespace Microsoft.EntityFrameworkCore for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. In the UI project, add a BlogController class under the Controllers folder, with the
following code:

using System;
using System.Linq;
using System.Web.Mvc;
using Microsoft.Extensions.Configuration;
using BusinessLogic;
using DataAccess;
namespace UI.Controllers
{

public class BlogController : Controller
{

private readonly BlogContext _context;
public BlogController(IConfiguration configuration)

{
_context = new BlogContext(
configuration["Data:Blog:ConnectionString"]);

}
// GET: /Blog/
public IActionResult Index()
{

var blog = _context.Set<Blog>().First();
return View(blog);

}
// GET: /Blog/Create
public IActionResult Create()
{

return View(new Blog());
}
//POST: /Blog/Save
[HttpPost]
public IActionResult Save(Blog blog)
{

if (!ModelState.IsValid)
{

return View();
}
return RedirectToAction("Index");

}
}

}

Note

For Entity Framework 6 and MVC 5, we would be returning ActionResult instead of
IActionResult; the latter was only introduced in MVC 6.

4. Also in UI, add the following Razor view to the Views\Blog folder, in a file called
Index.cshtml:

@model BusinessLogic.Blog
<h2>Display</h2>
@using (Html.BeginForm())
{

<h4>Blog</h4>
<hr/>
@Html.ValidationSummary(true)
<div>

<label>@Html.LabelFor(model => model.Name)</label>
@Html.EditorFor(model => model.Name)
@Html.ValidationMessageFor(model => model.Name)

</div>

<div>
<label>@Html.LabelFor(model => model.Url)</label>
@Html.EditorFor(model => model.Url)
@Html.ValidationMessageFor(model => model.Url)

</div>
<div>

<label>@Html.LabelFor(model => model.CreationDate)</label>
@Html.EditorFor(model => model.CreationDate)
@Html.ValidationMessageFor(model => model.CreationDate)

</div>
<input type="submit" value="Save" />

}

5. This is a recipe that deals specifically with the UI interaction, and therefore cannot be easily
wrapped in testing. However, we can verify that the UI responds manually to the same
responses that we get programmatically. So, we add the following test in the UnitTests
project:

using Xunit;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using BusinessLogic;
using DataAccess;
using Microsoft.EntityFrameworkCore;
namespace UnitTests
{

public class ValidationTest : BaseTests
{

[Fact]
public void ShouldErrorOnNameTooLong()
{

//Arrange
using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

var builder = new StringBuilder();
for (var i = 0; i < 20; i++)
{

builder.Append("Repeat this");
}
var blog = new Blog()
{

CreationDate = DateTime.UtcNow,
Name = builder.ToString(),
Url = "http://Some.url"

};
//Act
ctx.Set<Blog>().Add(blog);
//Assert
Assert.ThrowsAny<ValidationException>(() =>
ctx.SaveChanges());

}
}
[Fact]
public void ShouldErrorOnUrlRequired()
{

using (var ctx = new
BlogContext(Configuration["Data:Blog:ConnectionString"]))

{
//Arrange
var blog = new Blog()
{

CreationDate = DateTime.UtcNow,
Name = "A Blog"

};
//Act
ctx.Set<Blog>().Add(blog);
//Assert
Assert.ThrowsAny<ValidationException>(() =>
ctx.SaveChanges());

}
}

}
}

6. Now we need to add the base unit tests class, BaseTests:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

7. The connection string should go in the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

8. Run the application, and we should get some verification on the UI from the same validation
that executes from the unit test side, provided no data is entered for the Url property and too
long data is entered for Name.

How it works…

We start off by specifying a test that will validate the data annotations on the database side. In this
example, we will also have to validate the client-side feedback manually to ensure that we have met our
intent. The Blog object is restricted with several simple validations (the Required and MaxLength
attributes) that will give some error messages to the MVC view when the user changes inputs and the
validation runs. The details of these restrictions, for our example, are not drastically important, but they
give us a framework to test against. In the Razor UI, the MVC framework will use the validation
attributes to put messages on the screen, close to the properties that caused the validation errors, as an
instant feedback to the user.

There's more…

Validations like these are generated amazingly simply in an MVC user experience, but we need to
understand how that is accomplished.

Understanding the HTML helper

The HTML helper that enables our validation message to be displayed for a property, must be used to
display the message from our attribute. The editor for the helper will not display on its own. This also
requires sending the business objects to the UI in strongly-typed views. One of the key features of Code
First is that we can use the objects throughout our code base, because they are not tied to our database
structure.

See also

In this chapter:

• Validating simple properties
• Validating the whole entity
• Validating groups of entities

Inserting, updating, and deleting entities with
stored procedures
What if we do not want to rely on the EF automatically generated SQL to retrieve, create, update, or
delete our entities? This can be because we have specific needs, such as logging whatever changes we
make, or checking for the right permissions. In this case, the best alternative is to provide our own SQL,
particularly if we want to use stored procedures for that purpose. The previous versions of Entity
Framework allowed us to do that very easily; however, version 1.0 of Entity Framework Core doesn't
(yet) include this capability. Let's see how we can get over it.

Getting ready

We will be using NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), where Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included with this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's look at inserting, updating, and deleting entities with stored procedures with the help of following
steps:

1. Create a class named Blog in a file likewise named Blog.cs, in project BusinessLogic
project:

using System;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. Add a context to the DataAccess project:

using System;
using System.ComponentModel.DataAnnotations;
using System.Data;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
public override int SaveChanges()
{

var changes = 0;
foreach (var in ChangeTracker.Entries()
.Where(e => (e.State != EntityState.Unchanged) &&

(e.Entity is Blog)))
{

var blog = e.Entity as Blog;
switch (e.State)
{

case EntityState.Added:
var con = Database.GetDbConnection();
using (var cmd = con.CreateCommand())
{

con.Open();
var name = cmd.CreateParameter();
name.ParameterName = "p0";
name.Value = blog.Name;
var url = cmd.CreateParameter();
url.ParameterName = "p1";
url.Value = blog.Url;
var creationDate = cmd.CreateParameter();
creationDate.ParameterName = "p2";
creationDate.Value = blog.CreationDate;
var blogid = cmd.CreateParameter();
blogid.ParameterName = "blogid";

blogid.DbType = DbType.Int32;
blogid.Direction = ParameterDirection.Output;
cmd.CommandText = "EXEC @blogid = dbo.InsertBlog

@Name = @p0, @Url = @p1, @CreationDate = @p2";
cmd.Parameters.AddRange(new[] { name, url,

creationDate, blogid });
cmd.ExecuteNonQuery();
blog.BlogId = (int) blogid.Value;
con.Close();

}
break;
case EntityState.Modified:

Database.ExecuteSqlCommand("EXEC dbo.UpdateBlog
@BlogId = @p0, @Name = @p1, @Url = @p2, @CreationDate = @p3",
blog.BlogId,blog.Name, blog.Url, blog.CreationDate);

break;
case EntityState.Deleted:

Database.ExecuteSqlCommand("EXEC dbo.DeleteBlog
@BlogId = @p0", blog.BlogId);

break;
}
e.State = EntityState.Unchanged;
++changes;

}
return changes + base.SaveChanges();

}
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the namespace Microsoft.EntityFrameworkCore for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. Now we need to create the stored procedures in SQL Server; execute the following SQL in a
SQL editor, such as Management Studio:

USE [Blog]
GO
CREATE PROCEDURE [dbo].[GetBlog]

(
@BlogID INT = NULL

)
AS
BEGIN

SET NOCOUNT ON
SELECT BlogId, Name, Url, CreationDate
FROM [dbo].[Blog]
WHERE BlogId = ISNULL(@BlogId, BlogId)
ORDER BY BlogId
RETURN @@ROWCOUNT

END
CREATE PROCEDURE [dbo].[InsertBlog]
(

@CreationDate DATETIME = NULL,
Url NVARCHAR(50),
@Name NVARCHAR(50)

)
AS
BEGIN

SET NOCOUNT ON
SET @CreationDate = ISNULL(@CreationDate, GETUTCDATE())
INSERT INTO dbo.Blog (CreationDate, Url, Name)
VALUES (@CreationDate, @Url, @Name)
RETURN SCOPE_IDENTITY()

END
CREATE procedure [dbo].[UpdateBlog]
(

@BlogId INT,
@Name VARCHAR(50),
@Url VARCHAR(50),
@CreationDate DATETIME = NULL

)
AS
BEGIN

SET NOCOUNT ON
UPDATE dbo.Blog
SET Name = ISNULL(@Name, Name), Url = ISNULL(@Url, URL),

CreationDate = ISNULL(@CreationDate, GETUTCDATE())
WHERE BlogId = @BlogId
RETURN @@ROWCOUNT

END
CREATE PROCEDURE [dbo].[DeleteBlog]
(

@BlogId INT
)
AS

BEGIN
SET NOCOUNT ON
DELETE FROM dbo.Blog
WHERE BlogId = @BlogId
RETURN @@ROWCOUNT

END

4. Let's add some tests, so that we can see if it's working; add the following code to a file called
StoredProcedureTests.cs, in project UnitTests:

using Xunit;
using System;
using System.Linq;
using BusinessLogic;
using DataAccess;
using Microsoft.EntityFrameworkCore;
namespace UnitTests
{

public class ValidationTest : BaseTests
{

[Fact]
public void CanInsertBlog()
{

using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

//Arrange
var blog = new Blog()
{

CreationDate = DateTime.UtcNow,
Name = "A Blog",
Url = "http://Some.url"

};
//Act
ctx.Set<Blog>().Add(blog);
//Assert
Assert.True(ctx.SaveChanges() == 1);

}
}
[Fact]
public void CanDeleteBlog()
{

using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

//Arrange
var blog = new Blog()

{
CreationDate = DateTime.UtcNow,
Name = "A Blog",
Url = "http://Some.url"

};
//Act
ctx.Set<Blog>().Add(blog);
ctx.SaveChanges();
ctx.Set<Blog>().Remove(blog);
//Assert
Assert.True(ctx.SaveChanges() == 1);

}
}
[Fact]
public void CanUpdateBlog()
{

using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

//Arrange
var blog = new Blog()
{

CreationDate = DateTime.UtcNow,
Name = "A Blog",
Url = "http://Some.url"

};
//Act
ctx.Set<Blog>().Add(blog);
ctx.SaveChanges();
blog.Name + " - Updated";
//Assert
Assert.True(ctx.SaveChanges() == 1);

}
}

}
}

5. Now we need to add the base unit tests class, BaseTests:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. The connection string should go in the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

We start off by creating stored procedures for the so-called CUD (short for create, update, and delete)
operations. These are appropriately called InsertBlog, UpdateBlog, and DeleteBlog, and do
nothing really special. The trick here is swapping Entity Framework's default handling of the persistence
for the Blog entity and handle the three cases (new entities, modified entities, and deleted entities). We
get the list of these from the ChangeTracker.

You will notice that the code for adding blog instances is considerably more complex. This is because
we need to retrieve the generated primary key for the BlogId property and assign it to the class
instance. The extension method ExecuteSqlCommand doesn't allow us to do that, because we can't
inspect the returned value, so we have to do it "by hand". As for the other states, modified and deleted,
we just call the stored procedures using ExecuteSqlCommand, because we don't need any result. In
any case, we are incrementing the number of changes handled by ourselves, because we will want to
return them as the result of SaveChanges, together with whatever the default implementation returns
for any other entity class. We mark the entities we processed as unchanged, so that they are not
processed again by the default EF implementation.

There's more…

This solution won't work, at least in some particular cases:

• Cascade deletes: In this, each stored procedure expects to return a single change (insert, update,
or delete)

• Optimistic concurrency checks: In this, code does not take into account optimistic
concurrency, namely, for deletes; if we need it, we will need to pass additional class properties
to the stored procedure that will perform the delete

It is expected that future versions of Entity Framework will provide a more robust solution, similar to
the one that existed in previous (pre-Core) versions.

See also

In this chapter:

• Validating simple properties

Updating the database from model changes
Entity Framework includes a migrations API since its Code First (4.1) version. What it does is, allows us
to have named schemas for our code first model, that is, for the current state of the POCO model – the
classes that compose it and their properties – we can create a named "bookmark". As we improve our
model, we can create additional migrations, and keep "bookmarking" them. Whenever we want, we can
ask the migrations API to apply them to the database.

Getting ready

We will be using NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), where Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included with this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's create a simple model from which we will create an initial migration, and then make some changes
and create another one:

1. Add a new C# class named Blog with the following code to the BusinessLogic project:

namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }

}
}

2. Create a new context named BlogContext with the following code in the DataAccess
project:

using System;
using System.ComponentModel.DataAnnotations;
using Microsoft.EntityFrameworkCore;

using Microsoft.EntityFrameworkCore.Infrastructure;
using Microsoft.Extensions.Configuration;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder.AddJsonFile("appSettings.json");
var configuration = configurationBuilder.Build();
_connectionString =

configuration["Data:Blog:ConnectionString"];
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the namespace Microsoft.EntityFrameworkCore for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

4. Now, let's execute the following command in a Command Prompt console, in the
DataAccess project folder:

dnx ef migrations add "Initial Version"

You should see a success message.
5. Let's add the following in the same console:

dnx ef migrations list

You should now get a single item Initial Version:

20160515170259_Initial Version

6. Now, returning to the Blog class, let's add a Url property to it:

namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

7. And now, we create a new migration for the model changes:

dnx ef migrations add "Added Url property"

8. Now ask for the current list:

dnx ef migrations list

You will get the two migrations, Initial Version and Added Url property, as
follows:

20160515170259_Initial Version
20160516180240_Added Url property

9. We will now apply our migrations to the database:

dnx ef database update

If you look at the database, you should see that the Blog table already contains a Url column.
10. If we want to return to a previous version, enter the following:

dnx ef database update "Initial Version"

The Url column should now have been dropped from the Blog table, since it didn't exist in the
initial migration.

How it works…

The migrations API requires a context with a public parameterless constructor, so that it can instantiate
it. It will introspect the model it contains and generate, for the configured data store (mind you, this will
only work for relational data sources), a set of .NET classes that represent the database schema creation
and dropping. When we create a new migration, it inspects the current model and tries to find out the
changes it has, and then generates a new migration class.

There's more…

It is also possible to apply migrations in code, from within DbContext, by calling the Migrate
method, with or without a migration name parameter. In the latter case, it will apply the latest migration:
Database.Migrate().

See also

In this chapter:

• Dumping the SQL script for the database creation

Dumping the SQL script for the database
creation
The migrations API, part of Entity Framework since version 4.1 (Code First) knows how to update the
database from the POCO model. Of course, it also knows how to dump the SQL script that it will then
execute for that purpose. Sometimes it is important to have a look at that SQL script, and we will see
how we can do that.

Getting ready

We will be using NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), where Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included with this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's create a simple model from which we will create a migration, and then export its script:

1. Add a new C# class named Blog with the following code to the BusinessLogic project:

namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. Create a new context named BlogContext with the following code in the DataAccess
project:

using System;
using System.ComponentModel.DataAnnotations;

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using Microsoft.Extensions.Configuration;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext()
{

var configurationBuilder = new
ConfigurationBuilder();
configurationBuilder
.AddJsonFile("appSettings.json");
var configuration = configurationBuilder.Build();
_connectionString =

configuration["Data:Blog:ConnectionString"];
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the namespace Microsoft.EntityFrameworkCore for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

4. Now, let's execute the following command in a Command Prompt console, in the
DataAccess project folder:

dnx ef migrations script

You should see the SQL script that Entity Framework generated for your model. You can now
inspect it, modify it, or store it in your source control tool, by redirecting the output to a file.

Note

Beware, if you make any changes to the SQL file, you may need to change your POCO model
to reflect them.

How it works…

The migrations API instantiates your context class – you need to have a public parameterless
constructor, don't forget that – and then generates the SQL that would be necessary to create the model
in your relational database of choice (our example uses SQL Server).

There's more…

The migrations API will know what the current migration name is and will dump the appropriate SQL
script for it. If you want, you can ask for the delta from one version to another, for example, assuming
you have two migrations called Initial Version and Second Version:

dnx ef migrations script "Initial Version" "Second version"

See also

In this chapter:

• Updating the database from model changes

Chapter 4. Transactions and Concurrency
Control
In this chapter, we will cover the following topics:

• Using explicit transactions
• Using transactions in custom SQL operations
• Implementing optimistic concurrency in SQL Server
• Implementing optimistic concurrency in a database-agnostic way

Introduction
In this chapter, we will see how Entity Framework Core deals with concurrency, that is, multiple
simultaneous (or almost) changes to the same database object. In particular, we will see the two most
common ways to handle concurrency: optimistic concurrency control and pessimistic concurrency
control, also known as transactions.

Using explicit transactions
Transactions define a boundary: anything (and everything) inside a transaction is either guaranteed to
fail or succeed. Imagine a bank transfer from one bank to another. If you think of the steps involved,
they are as follows:

1. Some amount is withdrawn from a bank account.
2. The same amount is deposited in another bank account.

One cannot exist without the other: both actions must either occur or neither of them can occur in
isolation.

Transactions have what is commonly referred to as the ACID properties. This acronym is explained in
the following sections.

Atomic

The execution of any transaction should either have the full intended effect or no effect at all. The results
should be either complete (commit), or nothing should happen (roll back).

Consistent

Any transaction is a transition of state in an application, and therefore should preserve a consistent
version of the application. For example, when updating a many-to-many relationship, both the foreign
key and the reference table relationship should be updated.

Isolation

Each transaction should be isolated from all other incomplete transactions. Due to the transactions being
in the state of transition, they are not consistent, and therefore should be removed from affecting the
transaction that is currently executing.

Durability

System failures should not cause a committed transaction that fails to persist its effects. If we rename
something, but the SQL database crashes in the middle of the commit operation, on recovery the
transaction should still be fully committed (this normally involves another call to the database to execute
the commit operation again).

It is outside the scope of this book to explain transactions in depth as there are lots of good references on
that. Instead, we will see how we can make use of explicit transactions in Entity Framework Core.

Getting ready

We will be using the NuGet Package Manager to install Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Notice that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

By default, Entity Framework creates an implicit transaction when it is saving its changes—the
SaveChanges method is called. This is required for the Unit of Work pattern implementation, which
states that all changes are either applied or none at all. In most cases, this is what you want, but you may
also want to have more control over the process, for example, if you are to execute SQL outside of the
context and you also want it to be inside the transaction:

1. Create a unit test class file called Blog in a Blog.cs file in the BusinessLogic project:

using System;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. Now, create a C# data context class, call it BlogContext, and put it in the DataAccess
project:

using System;
using Microsoft.Data.Entity;
using Microsoft.Data.Entity.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(

DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);

base.OnConfiguring(optionsBuilder);
}

}
}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespaces
with System.Data.Entity and call the base constructor of DbContext passing it the
connection string. Finally, drop the OnConfiguring method.

3. Now, let's add a unit test in the UnitTests project, in a file called
TransactionTests.cs:

using Xunit;
using BusinessLogic;
using DataAccess;
using System;
using System.Data;
using Microsoft.EntityFrameworkCore;
namespace UnitTests
{

public class TransactionTests : BaseTests
{

[Fact]
public void CanUseExplicitTransactions()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
using (var tx =

ctx.Database.BeginTransaction(IsolationLevel.Serializable))
{

var blog1 = new Blog { Name = "Blog 1",
CreationDate = DateTime.Today };

var blog2 = new Blog { Name = "Blog 2",
CreationDate = DateTime.Today };

ctx.AddRange(blog1, blog2);
try
{

//Act
ctx.SaveChanges();
tx.Commit();

}
catch
{

tx.Rollback();
}
//Assert
Assert.True(true);

}
}

}
}

Note

Note that the BeginTransaction method is an extension method coming from the
Microsoft.EntityFrameworkCore namespace, and it differs from the
DatabaseFacade.BeginTransaction method in that it takes a parameter. You can only
call this method if you know for sure that Entity Framework is using a relational database—all
of the examples in this book do.

4. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new
ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");

Configuration = configurationBuilder.Build();
}
protected IConfiguration Configuration { get; set;}

}
}

5. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

The Database property (appropriately, of type DatabaseFacade) in the DbContext exposes a
few methods for managing transactions:

• BeginTransaction/BeginTransactionAsync: This starts a new database transaction,
either synchronously or asynchronously

• CommitTransaction: This commits the current database transaction
• RollbackTransaction: This rolls back the current database transaction

There are also some extension methods related with transactions:

• BeginTransaction/BeginTransactionAsync: This version takes a single parameter
of type IsolationLevel, by which we can tell Entity Framework to start a database
transaction with an explicit isolation level.

• UseTransaction: This uses an ADO.NET transaction started explicitly. There's more on this
later on.

When we create a transaction, we are therefore responsible for either committing it (therefore making
the changes permanent) or rolling it back (aborting all changes made inside the transaction). That's what
we do by either calling Commit or Rollback. The transaction object itself is disposable, meant to be
used in a using block, which, in this case, means that if the transaction wasn't committed or rolled back,
.NET will automatically call Rollback when the transaction is disposed of.

Note

.NET Core and, therefore, Entity Framework Core, do not support ambient transactions like those
provided by the System.Transactions namespace that is available in .NET full.

See also

In this chapter:

• Using transactions in custom SQL operations

Using transactions in custom SQL operations
If we are using Entity Framework, we most likely want it to handle database operations for us. However,
there may be cases where we need to leverage SQL directly, in order to achieve something that Entity
Framework does not support, such as a complex SQL query or running stored procedures. For that,
Entity Framework Core lets us use the underlying ADO.NET connection directly. If, however, we plan
to make use of transactions created explicitly, we need to tell it to use the created transaction.

Getting ready

We will be using the NuGet Package Manager to install Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Notice that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's create an explicit transaction and then use it in a command:

1. We need a context to go in the DataAccess project, in a BlogContext.cs file:

using System;
using Microsoft.Data.Entity;
using Microsoft.Data.Entity.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
protected override void OnConfiguring(

DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);

base.OnConfiguring(optionsBuilder);
}

}
}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespaces
with System.Data.Entity and call the base constructor of DbContext passing it the
connection string. Finally, drop the OnConfiguring method.

2. We now need to create a test class in the UnitTests project, in a file called
TransactionTests.cs:

using Xunit;
using BusinessLogic;
using DataAccess;
using System;
using System.Data;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Storage;
namespace UnitTests
{

public class TransactionTests : BaseTests
{

[Fact]
public void CanUseExplicitTransactionsInCommands()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
using (var tx = ctx.Database.BeginTransaction())
{

var con = ctx.Database.GetDbConnection();
var cmd = con.CreateCommand();
cmd.CommandText = "SELECT @@TRANCOUNT";
cmd.Transaction = tx.GetDbTransaction();
//Act
var transactions = (int) cmd.ExecuteScalar();
//Assert
Assert.True(transactions == 1);

}
}

}
}

3. The base class for unit tests should also go in the UnitTests project and be called
BaseTests:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

4. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under the
connectionStrings section, with the name Blog. Of course, do change the connection string to
match your system settings, for example, the name of the SQL Server instance (SQLEXPRESS, in this
example).

How it works…

We create an explicit transaction by calling DatabaseFacade.BeginTransaction. To get hold
of the Entity Framework context's underlying connection, we call the GetDbConnection extension
method, which will return a DbConnection instance. Now, because we started an explicit transaction
on this connection, every command that is sent to the database in the course of this transaction needs to
take the transaction object, which is why we store this object—obtained through the
GetDbTransaction extension method—in the Transaction property of DbCommand, even for
operations that do not change the data in the database. If we didn't do that, we would end up with an
exception.

There's more…

Entity Framework's behavior will be the same as usual; we only need to be concerned with explicit SQL
calls that we may be doing. It is possible to create several nested transactions, as can be done in
databases; we just need to hold references to all of the transactions (DbTransaction instances) and
manually manage them.

See also

In this chapter:

• Using explicit transactions

Implementing optimistic concurrency in SQL
Server
Another way to deal with simultaneous changes to a database is implementing optimistic concurrency
control. Unlike transactions—the pessimistic approach—with optimistic concurrency we assume that
things will work out fine, so we have no need for explicit control mechanisms (transactions). In this
chapter, we will see a solution for SQL Server.

Getting ready

We will be using the NuGet Package Manager to install Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Notice that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will make use of SQL Server's ROWVERSION (previously known as TIMESTAMP) data type to
implement optimistic concurrency:

1. First, we create a Blog.cs file containing a Blog class, in the DataAccess project:

using System;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }
[Timestamp]
public byte [] RowVersion { get; private set; }

}
}

2. Add this unit test class to the UnitTests project in a ConcurrencyTests.cs file:

using Xunit;
using DataAccess;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using System;
namespace UnitTests
{

public class ConcurrencyTests : BaseTests
{

[Fact]
public void CanUseSqlServerOptimisticConcurrency()
{

//Arrange
using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

var blog = ctx.Blogs.First();
var con = ctx.Database.GetDbConnection();
var cmd = con.CreateCommand();
cmd.CommandText = "UPDATE Blogs SET Name = Name

+ '_modified_'";
blog.Name = "something to trigger a change";
//Act
cmd.ExecuteNonQuery();
//Assert
try
{

ctx.SaveChanges();
}
catch
{

Assert.True(true);
}

}
}

}
}

3. The base class for unit tests should also go in the UnitTests project and be called
BaseTests:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests

{
protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

4. Finally, let's add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under the
connectionStrings section, with the name Blog. Of course, do change the connection string to
match your system settings, for example, the name of the SQL Server instance (SQLEXPRESS, in this
example).

How it works…

The TimestampAttribute attribute is used to tell SQL Server—through Entity Framework, of
course—to use the column of the property it is applied to as a ROWVERSION column, for optimistic
concurrency control purposes. This is what this means:

• When generating the database, set ROWVERSION as the column's type
• The ROWVERSION data type maps, in .NET, to an opaque array of bytes, not to any type related

to date and time
• Ignore any changes made to the property (in fact, we even defined the setter as private to make

it harder)
• When Entity Framework loads a record of an entity using optimistic concurrency, it will fetch

the optimistic concurrency column and hydrate the mapped property, as it does with all the other
mapped properties; these values will be kept in the context's cache, also known as first level
cache

• If there is need to update a record for a loaded entity using optimistic concurrency, Entity
Framework will use the optimistic concurrency's property value (managed by Entity

Framework, don't forget) in all UPDATE and DELETE operations involving the record, not just
its primary key

• If the optimistic concurrency value sent by Entity Framework does not match the one present in
the database, because the database was updated by a third party, then the affected records will be
0, and EF will throw a DbUpdateConcurrencyException exception

Simply put, when Entity Framework needs to update a record, it will issue SQL similar to the following
(highly simplified):

UPDATE [dbo].[Blogs]
SET [Name] = @p0
WHERE [BlogId] = @p AND [RowVersion] = @p2

Notice the RowVersion column being used in the comparison expression next to the BlogId
(primary key).

Note

ROWVERSION is a SQL Server-specific mechanism, but other databases have similar mechanisms. For
example, look for ORA_ROWSCN in Oracle or TIMESTAMP in MySQL with the DEFAULT and ON
UPDATE options.

There's more…

Instead of using the TimestampAttribute, we could have used code configuration, as per this
example:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{

modelBuilder
.Entity<Blog>()
.Property(p => p.RowVersion)
.IsConcurrencyToken();

base.OnModelCreating(modelBuilder);
}

Note

You will see in several locations the ROWVERSION data type being referred to as TIMESTAMP. The fact
is, they are synonyms, and TIMESTAMP used to be the common name for it, but Microsoft wanted to
make it explicit that this time has nothing to do with dates and times; you cannot use ROWVERSION/
TIMESTAMP columns to infer any kind of sequential order or creation date/time.

You may ask yourself: what can we do in the case of an optimistic concurrency control failure? Well, if
one happened, we know for sure that the database values have changed, and no longer match the values
stored in the context cache. There are two possible solutions.

Database wins

We discard our current modified values and instead use the current database ones. The best way to do
this is to set the state for our entity as Detached and get it again from the database:

//load the entity
var blog = ctx.Blogs.Single(b => b.BlogId == 1);
//make changes to the entity and try to save it
//mark the entity as detached, to remove it from cache
ctx.Entry(blog).State = EntityState.Detached;
//reload the entity
blog = ctx.Blogs.Single(b => b.BlogId == 1);

Client wins/last one wins

We push the values we have into the database, discarding any modified values there. This is not so easy
to achieve because Entity Framework will prevent us from doing it. It is possible, though: it is a matter
of getting from the database the current values for the properties that are doing the concurrency check,
updating the first level cache, and attempting to save changes again.

See also

In this chapter:

• Implementing optimistic concurrency in a database-agnostic way

Implementing optimistic concurrency in a
database-agnostic way
In the previous chapter, we saw how to use a SQL Server-specific solution to a common problem in
database development—implementing optimistic concurrency control. This time, we will see how we
can extend it to other databases, and to more than one columns.

Getting ready

We will be using the NuGet Package Manager to install Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Notice that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will mark a couple of properties as optimistic concurrency tokens, but we won't be using SQL
Server's ROWVERSION feature, so that our solution works on any database:

1. First, we create a Blog.cs file containing a Blog class in the DataAccess project:

using System;
using System.ComponentModel.DataAnnotations;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
[ConcurrencyCheck]

public string Name { get; set; }
[ConcurrencyCheck]

public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. Add this unit test class to the UnitTests project in a ConcurrencyTests.cs file using
Xunit:

using Xunit;
using DataAccess;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using System;
namespace UnitTests
{

public class ConcurrencyTests : BaseTests
{

[Fact]
public void CanUseOptimisticConcurrency()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
{

var blog = ctx.Blogs.First();
var con = ctx.Database.GetDbConnection();
var cmd = con.CreateCommand();
cmd.CommandText = "UPDATE Blogs SET Name = Name +

'_modified_'";
blog.Name = "something to trigger a change";
//Act
cmd.ExecuteNonQuery();
//Assert
try
{

ctx.SaveChanges();
}
catch(Exception ex)
{

Assert.True(ex is
DbUpdateConcurrencyException);

}
}

}
}

}

3. The base class for unit tests should also go in the UnitTests project and be called
BaseTests:

using Microsoft.Extensions.Configuration;
namespace UnitTests

{
public abstract class BaseTests
{

protected BaseTests()
{
var builder = new ConfigurationBuilder()
.AddJsonFile("appsettings.json");
Configuration = builder.Build();
}
protected IConfiguration Configuration

{ get; private set; }
}

}

4. Finally, let's add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, in the
connectionStrings section, with the name Blog. Of course, do change the connection string to
match your system settings, for example, the name of the SQL Server instance (SQLEXPRESS, in this
example).

How it works…

Because we have a number of properties marked with ConcurrencyCheckAttribute, all of its
values will be used in UPDATE and DELETE. The differences to the SQL Server-specific solution that
uses TimestampAttribute are as follows:

• ConcurrencyCheckAttribute works on any database server, not just SQL Server
• It can be applied to any number of properties, all of which will be used in the WHERE clause of
UPDATE and DELETE

• Unlike ROWVERSION columns, these are transparent and their values can be set and viewed at
any time

When Entity Framework detects that a loaded entity has changed since it was loaded, and it has been
asked to persist these changes (SaveChanges was called), it will try to execute SQL as follows:

UPDATE [dbo].[Blogs]
SET [Name] = @p0, [CreationDate] = @p1, [Url] = @p2
WHERE [BlogId] = @p3
AND [Name] = @p4 AND [CreationDate]= @p5

If the number of affected records is not 1, Entity Framework will throw a
DbUpdateConcurrencyException.

There's more…

It is possible to use fluent configuration instead of attributes, if we do not want to pollute our model:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{

modelBuilder
.Entity<Blog>()
.Property(p => p.Name)
.IsConcurrencyToken();

modelBuilder
.Entity<Blog>()
.Property(p => p.CreationDate)
.IsConcurrencyToken();

base.OnModelCreating(modelBuilder);
}

It is safe to use [ConcurrencyCheck] instead of [Timestamp].

See also

In this chapter:

• Implementing optimistic concurrency in SQL Server

Chapter 5. Querying
In this chapter, we will cover the following topics:

• Executing client-side functions in LINQ queries
• Mixing SQL with LINQ queries
• Getting entities from the local cache
• Creating filtered collections
• Creating reusable queries
• Querying on shadow properties
• Implementing the query object pattern
• Using Dynamic LINQ

Introduction
This chapter will be all about getting data from a database using Entity Framework Core. We will
explore what Entity Framework Core has to offer, including features not commonly found in other
ORMs, such as the ability to mix LINQ with SQL and the usage of shadow properties.

Granted, querying is probably the most common activity you do with an Object-Relational tool such as
Entity Framework, or, for that matter, with any data exploration tool.

Applications need data to display or use, and they need it to come fast. Caching data is usually a good
thing, performance-wise, and we talk about it here.

Sometimes, we need to run similar queries with just minor adjustments. That's where the Query Object
pattern kicks in, as well as LINQ reusable queries.

On the other hand, not all kinds of queries that can be expressed in SQL can be performed using LINQ.
Entity Framework allows us to have a bit of both worlds, and even combine the comfort of LINQ with
the power of SQL.

Also, we cover here some ways by which parts of the data – or actual queries – can be hidden from the
developers, possibly to avoid tampering or to enforce certain business rules.

Executing client-side functions in LINQ queries
There have always been two kinds of LINQ in .NET: LINQ to Objects, and all the others. Pun aside, the
fact is that there are two fundamentally different LINQ implementations and sometimes we don't even
realize that. There's the one that applies to IEnumerable<T> instances, and is executed in memory at
once—LINQ to Objects—and then there is a myriad of others that are instead interpreted from
expressions originating from IQueryable<T> instances and then translated to a specific dialect, such
as SQL, and only executed when requested. Their syntaxes are exactly the same, and we can only tell
them apart if we know the source. Here is an example:

var blogs = from blog in Blogs
where blog.Name.Contains("Development")
select blog;

Depending on whether Blogs is an implementation of IQueryable<Blog> or
IEnumerable<Blog>, you will get one implementation or the other. Now, let's consider that this
code is going to be translated to SQL for the SQL Server engine. In this case, the LINQ interpreter needs
to know how to translate the Contains method (besides all the rest of the expressions, of course), and
different engines will have different translations. This does not happen with LINQ to Objects, because
the expression is immediately translated into a call to the String class Contains method. Because
expressions are checked at compile time, the only real requirement is that they comply to the C#
language, and thus compile, but that does not mean that the LINQ interpreter will know or be able to
produce proper SQL (in this example). For example, say you have some ComputeHash extension
method over the String class; the following code will compile, but then it will crash at runtime:

var blogs = from blog in Blogs
where blog.Name.ComputeHash() == 0
select blog;

It will crash, that is, in the pre-Core version, as we shall see!

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

This example will show how to call an extension method in a LINQ query that will only be evaluated at
the client side, that is, after the query results are materialized:

1. Create a class file called Blog in a Blog.cs file in the BusinessLogic project:

using System;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. Now, create a C# data context class, call it BlogContext, and put it in the DataAccess
project:

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespaces
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. We now add a static class that will hold some extension methods. Call it
StringExtensions and have it stored in a StringExtensions.cs file in the
UnitTests project:

namespace UnitTests
{

public static class StringExtensions
{

public static int ComputeHash(this string str)
{

var hash = 0;
foreach (var ch in str)
{

hash += (int) ch;
}
return hash;

}
}

}

4. Now, let's add a unit test in the UnitTests project, in a file called LinqTests.cs:

using Xunit;
using DataAccess;
using System;
using System.Linq;

namespace UnitTests
{

public class ObjectQueryTests : BaseTests
{

[Fact]
public void CanQueryUsingObject()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
{

//Act
var query = new BlogsQuery(ctx);
query.LowerDate = DateTime.Today.AddDays(-7);

query.HigherDate = DateTime.Today.AddDays(-1);
query.Name = ".NET";
query.MaxItems = 3;
var blogs = (ctx as IQueryExecutor).Execute(query);

//Assert
Assert.NotEmpty(blogs);
Assert.True(blogs.Count() <= 3);
Assert.All(blogs, blog =>
{

Assert.Contains(".NET", blog.Name);
Assert.True(blog.CreationDate >=

DateTime.Today.AddDays(-7));
Assert.True(blog.CreationDate <=

DateTime.Today.AddDays(-1));
});

}
}

}
}

5. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new
ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;

MultipleActiveResultSets=true"
}

}
}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under the
connectionStrings section, with the name Blog. Of course, do change the connection string to
match your system settings, for example, the name of the SQL Server instance (SQLEXPRESS, in this
example).

How it works…

When Entity Framework Core analyzes the LINQ expression it is given, it goes through all its nodes and
eventually finds a method call that it does not know how to translate to the underlying data source
(remember that it may not be a relational data source and hence not use SQL). In this case, what it does
is, it does the translation exactly as if the method call wasn't there, and, if the property (or properties) is
present in the projected results, it then calls the method on the retrieved results.

See also

In this chapter:

• Mixing SQL with LINQ queries

Mixing SQL with LINQ queries
Another great new feature in Entity Framework Core is the ability to intertwine LINQ and SQL. This
means that we can have SQL that returns results that can be turned into entities, and after this SQL is
run, we are back to strong typing and can add additional LINQ clauses.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We are going to run some custom SQL and then turn it into a LINQ query:

1. Execute the following SQL into your SQL Server instance, in the Blog database:

CREATE PROCEDURE dbo.GetBlogs
AS
SELECT b.*
FROM dbo.Blogs

2. Create a class file called Blog in a Blog.cs file in the BusinessLogic project:

namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

3. Now, create a C# data context class, call it BlogContext, and put it in the DataAccess
project:

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)

{
optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

4. Now, let's add a unit test in the UnitTests project, in a file called LinqTests.cs:

using Xunit;
using DataAccess;
using System.Linq;
using Microsoft.EntityFrameworkCore;
namespace UnitTests
{

public class LinqSqlTests : BaseTests
{

[Fact]
public void CanFilterAfterSql()
{

//Arrange

using (var ctx = new
BlogContext(Configuration["Data:Blog:ConnectionString"]))

{
//Act
var blogs = ctx.Blogs
.FromSql("EXEC dbo.GetBlogs")
.Where(b => b.Name.Contains("Development"))
.ToList();
//Assert

Assert.NotEmpty(blogs);
}

}
[Fact]
public void CanSelectAfterSql()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
{

//Act
var blogNames = ctx.Blogs
.FromSql("SELECT b.* FROM Blogs b")
.Select(b => b.Name)
.ToList();
//Assert
Assert.NotEmpty(blogNames);

}
}

}
}

5. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under the
connectionStrings section, with the name Blog. Of course, do change the connection string to
match your system settings, for example, the name of the SQL Server instance (SQLEXPRESS, in this
example).

How it works…

From the mapped entity collection Blogs, we asked Entity Framework to execute custom SQL, through
the FromSql method. In one case, it was a call to a stored procedure; in the other, a regular SQL
SELECT. In both cases, the SQL results were automatically turned into strongly typed (LINQ) object
queries, and before they were actually executed—which only happened when ToList was called—we
added more stuff to the LINQ query, namely, a restriction (Where) and a projection (Select). All of
the filtering and projection took place in the database, not in memory.

There's more…

We can also pass parameters to the FromSql method, which will then be passed to the SQL. For
example, imagine your stored procedure looked like this instead:

CREATE PROCEDURE dbo.GetBlogs
(

@creationdate DATETIME = NULL
)
AS

SELECT b.*
FROM dbo.Blogs b
WHERE b.CreationDate >= ISNULL(@creationdate, b.CreationDate)

You could pass a parameter to match @creationdate as this:

var blogs = ctx.Blogs
.FromSql("EXEC dbo.GetBlogs @p0", DateTime.Today)
.ToList();

So, each parameter will look like @p0, @p1, and so on.

See also

In this chapter:

• Executing client-side functions in LINQ queries

Getting entities from the local cache
When using an Object-Relational Mapper (ORM) such as Entity Framework, a very important feature
to keep in mind is this: when an entity is materialized as the result of executing a query, it is stored in an
in-memory cache. This is usually referred to as First Level Cache, but Martin Fowler gave it another
name: Identity Map. In its definition, he said that the purpose of this pattern is to ensure that each object
gets loaded only once, by keeping every loaded object in a map. If you think of it, it is a good thing
performance-wise, because there's always a cost in instantiating classes and hydrating them from the
records obtained from the data source. This is used internally by ORMs, but we can also make use of it
to our benefit.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

In this example we are going to retrieve an entity from the First Level Cache.

1. Create a class file called Blog in a Blog.cs file in the BusinessLogic project:

using System;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. Now, create a C# data context class, call it BlogContext, and put it in the DataAccess
project:

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespaces
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. Now, let's add a unit test in the UnitTests project, in a file called CacheTests.cs:

using Xunit;
using BusinessLogic;
using DataAccess;
using System.Linq;
namespace UnitTests
{

public class CacheTests : BaseTests
{

[Fact]
public void CanRetrieveFromCache()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
{

//Act

var blogs = ctx.Blogs.ToList();
//Assert
var cachedBlogs = ctx.ChangeTracker
.Entries<Blog>()

.Select(e => e.Entity);
Assert.NotEmpty(cachedBlogs);

}
}

}
}

4. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

5. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

The ChangeTracker instance in the DbContext keeps track of all entities known by that context.
These entities might have been recently added or loaded by some query operation. In any case, they are
made available by the Entries<T> method, which returns an EntityEntry (or
EntityEntry<T>) instance, which in turn wraps the actual entity, as its Entity property. The
EntityEntry class also stores the state of the entity (added, unmodified, deleted, or unknown).

There's more…

The existence of the First Level Cache (or Identity Map, as you prefer) raises an interesting problem:
in all subsequent queries that return the same records from a table, if those records have been
materialized into entities and kept in the cache, the same unchanged entities are returned. That is, the
ORM makes no attempt to try to update (re-hydrate) the in-memory entity properties from the new
record values. The only way to refresh these cached entities is to first remove (evict) them from the
cache. We can do this explicitly for a given entity:

ctx.Entry(blog).State = EntityState.Detached;

We can also do it to all entities of a given type:

public static class DbContextExtensions
{

public static void Evict<T>(this DbContext ctx)
where T: class
{

foreach (var entry in
ctx.ChangeTracker.Entries<T>().ToList())

{
ctx.Entry(entry.Entity).State =
EntityState.Detached;

}
}

}

See also

In this chapter:

• Creating filtered collections

Creating filtered collections
Sometimes, you may want to always return entities that match certain restrictions. For example, you
may want to return orders that have been processed or are in a particular state. This recipe will explain
how we can achieve that.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

In this recipe, we are going to create a filtered collection by inheriting from a base Entity Framework
class and adding additional logic:

1. Create a class named FilteredDbSet in DataAccess, in a file with the same name:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Internal;
using Microsoft.EntityFrameworkCore.ChangeTracking;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
namespace DataAccess
{

public class FilteredDbSet<TEntity> :
InternalDbSet<TEntity>where TEntity : class

{
private readonly Expression<Func<TEntity, bool>>

_filter;
private readonly Func<TEntity, bool> _condition;
private static DbSet<TEntity> GetDbSet(
DbContext context)

{
return context.Set<TEntity>();

}
private static IQueryable<TEntity> GetSource(
DbContext context,
Expression<Func<TEntity, bool>> filter)
{

var query = context.Set<TEntity>() as
IQueryable<TEntity>;
query = query.Where(filter);
return query;

}
private void EnsureMatchesFilter(
IEnumerable<TEntity> entities)
{

foreach (var entity in entities)
{

EnsureMatchesFilter(entity);
}

}
private void EnsureMatchesFilter(TEntity entity)
{

if (!_condition(entity))
{

throw new ArgumentException(
"Entity does not match the filter");

}
}
protected FilteredDbSet(
DbContext context,
Expression<Func<TEntity, bool>> filter) : base(
GetSource(context, filter), GetDbSet(context))
{

_filter = filter;
_condition = _filter.Compile();

}
public static DbSet<T> Create(
DbContext context,
Expression<Func<T, bool>> filter)
{

if (filter == null)
{

throw new ArgumentNullException("filter");
}
return new FilteredDbSet<T>(context, filter);

}
public override EntityEntry<TEntity> Add(

TEntity entity)
{

EnsureMatchesFilter(entity);
return base.Add(entity);

}
public override void AddRange(
IEnumerable<TEntity> entities)
{

EnsureMatchesFilter(entities);
base.AddRange(entities);

}
public override void AddRange(
params TEntity[] entities)
{

EnsureMatchesFilter(entities);
base.AddRange(entities);

}
public override EntityEntry<TEntity> Attach(
TEntity entity)
{

EnsureMatchesFilter(entity);
return base.Attach(entity);

}
public override void AttachRange(
IEnumerable<TEntity> entities)
{

EnsureMatchesFilter(entities);
base.AttachRange(entities);

}
public override void AttachRange(
params TEntity[] entities)
{

EnsureMatchesFilter(entities);
base.AttachRange(entities);

}
public override EntityEntry<TEntity> Update(
TEntity entity)
{

EnsureMatchesFilter(entity);
return base.Update(entity);

}
public override void UpdateRange(
IEnumerable<TEntity> entities)
{

EnsureMatchesFilter(entities);
base.UpdateRange(entities);

}

public override void UpdateRange(
params TEntity[] entities)
{

EnsureMatchesFilter(entities);
base.UpdateRange(entities);

}
}

}

2. To make this class easier to use, let us add to the same project a static class with an extension
method:

using System.Linq;
using Microsoft.EntityFrameworkCore;
using System.Linq.Expressions;
using System;
namespace DataAccess
{

public static class DbContextExtensions
{

public static DbSet<T> FilteredSet<T>(
this DbContext context,
Expression<Func<T, bool>> filter)
{

return FilteredDbSet<T>.Create(context, filter);
}

}
}

3. Create a class file called Blog in a Blog.cs file in the BusinessLogic project:

namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

4. Now, create a C# data context class, call it BlogContext, and put it in the DataAccess
project:

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using BusinessLogic;

namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
JavaBlogs = FilteredDbSet<Blog>.Create<Blog>

(this, x => x.Name.Contains("Java"));
DotNetBlogs = FilteredDbSet<Blog>.Create<Blog>

(this, x => x.Name.Contains(".NET"));
}

public DbSet<Blog> JavaBlogs { get; set; }
public DbSet<Blog> DotNetBlogs { get; set; }
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

5. Now, let's add a unit test in the UnitTests project in a file called FilterTests.cs:

using Xunit;
using BusinessLogic;
using DataAccess;
using System;
using System.Linq;
namespace UnitTests
{

public class FilterTests : BaseTests
{

[Fact]
public void CanRetrieveFiltered()
{

//Arrange
using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

//Act
var javaBlogs = ctx.JavaBlogs.ToList();
//Assert
Assert.NotEmpty(javaBlogs);
Assert.All(javaBlogs, blog =>
Assert.Contains("Java", blog.Name));

}
}
[Fact]
public void CanPreventInsertion()
{

//Arrange
using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

//Act
var blog = new Blog
{

Name = "A Blog",
CreationDate = DateTime.Today,
Url = http://a.url

};
//Assert
Assert.Throws<ArgumentException>(() =>

ctx.JavaBlogs.Add(blog));
}

}
}

}

6. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new
ConfigurationBuilder();

configurationBuilder.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

7. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

The DbSet<T> generic class plays a very important role in Entity Framework: it is essentially the entry
point to the data, both for querying and for inserting new items. It is normally instantiated by the Entity
Framework DbContext automatically, when the context is created, by inspecting its properties using
reflection. We created a new class that inherits from DbSet<T>—actually, from the specific class
provided by Entity Framework Core, since DbSet<T> is abstract—and added some logic to it:

• The source query is filtered
• All of its Add* and Update* methods check to see if its arguments match the provided filter,

otherwise they throw an exception

What we are doing here is overriding this behavior for two specific properties, JavaBlogs and
DotNetBlogs, for which we supply a restriction in the form of a LINQ expression. Each query issued
against JavaBlogs and DotNetBlogs will feature this restriction automatically.

There's more…

All the default behavior will remain the same, but when we query these two collections, the results will
appear filtered. We can now add sorting, additional filters, projections, and so on, and the query results

will still be cached in First Level Cache. Finally, you will still be able to add entities directly to these
collections, provided they match the filter.

See also

In this chapter:

• Getting entities from the local cache
• Creating reusable queries

Creating reusable queries
In this recipe, we will be working to create reusable queries that are defined outside of the data context
and are specific to an object type.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We are going to create a couple of extension methods over IQueryable<T> that can be called from
different locations and are composable:

1. Create a class file called Blog in a Blog.cs file in the BusinessLogic project:

namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }

}
}

2. Now, create a C# data context class, call it BlogContext, and put it in the DataAccess
project:

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set;

}
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespaces
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. We then create a static class for holding our reusable queries. This goes in the UnitTests
project, in the BlogQueries.cs file:

using System;
using System.Linq;
using BusinessLogic;
namespace UnitTests
{

public static class BlogQueries
{

public static IQueryable<Blog> FilterByName(
this IQueryable<Blog> blogs, string name)
{

return blogs.Where(x => x.Title.Contains(name));
}
public static IQueryable<Blog>
BlogsCreatedInTheLastWeek(
this IQueryable<Blog> blogs)
{

return blogs.Where(x => x.CreationDate >=
DateTime.Today.AddDays(-7));

}

}
}

4. Now, let's add a unit test in the UnitTests project, in a file called ReusableTests.cs:

using Xunit;
using DataAccess;
using System;
using System.Linq;

namespace UnitTests
{

public class ObjectQueryTests : BaseTests
{

[Fact]
public void CanQueryUsingObject()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
{

//Act
var query = new BlogsQuery(ctx);
query.LowerDate = DateTime.Today.AddDays(-7);
query.HigherDate = DateTime.Today.AddDays(-1);
query.Name = ".NET";
query.MaxItems = 3;
var blogs = (ctx as IQueryExecutor).Execute(query);

//Assert
Assert.NotEmpty(blogs);
Assert.True(blogs.Count() <= 3);
Assert.All(blogs, blog =>
{

Assert.Contains(".NET", blog.Name);
Assert.True(blog.CreationDate >=

DateTime.Today.AddDays(-7));
Assert.True(blog.CreationDate <=

DateTime.Today.AddDays(-1));
});

}
}

}
}

Assert.All(blogs, blog =>
Assert.Contains(".NET", blog.Name)

&& Assert.True(blog.CreationDate >=
DateTime.Today.AddDays(-7)));

}
}

}
}

5. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new
ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

Here, we are leveraging a C# language feature called extension methods to layer on our queries without
bloating our context with every possible data query. It lets us target a specific type; these queries will
only be available on the types that use them, and nowhere else.

Note that we return an IQueryable<T> here. This is done to allow us to compose multiple statements
together before translating them into an SQL statement that will be executed. These queries are not
executed until a terminal operation is called upon them. ToList, ToArray, Count, Any, First,
FirstOrDefault, Single, and SingleOrDefault are the most common terminal operations.

There's more…

When using extension methods, there are some things to keep in mind so you create a consistent and
valuable library of queries.

Extension methods

Extension methods allow us to extend behavior onto a type without modifying that type or any of its
inheritance chain. These methods are brought into scope at the namespace level. Therefore, we must add
the using statement to have access to them.

Naming conflict

We can use extension methods to extend behavior to an existing type, but not to override it. The
compiler gives priority to instance methods. Therefore, it will never call an extension method with the
same signature as an instance method unless we call it explicitly (as in
ExtensionClass.ExtensionMethod(parameter)). It is also possible, though strongly
discouraged, to have two extension methods with the same name, same parameters, and both in scope.

LINQ queries (not LINQ to Objects) are not executed immediately. This means that we can play with
them a bit before we actually need their results. For example, we can have code along these lines:

//cast to IQueryable<Blog>
var query = ctx.Blogs.AsQueryable();
if (someLogic)
{

//add some restriction
query = query.AddSomeFiltering();

}
else
{

//add another restriction
query = query.AddOtherFiltering();

}
//add paging (max records) and show page 0
query = query.AddPaging(0);

//we're happy with the query, let's execute it
var results = query.ToList();

Here, I am using some hypothetical AddSomeFiltering, AddOtherFiltering, and
AddPaging methods, but I think you get the idea.

See also

In this chapter:

• Creating filtered collections
• Implementing the query object pattern

Querying shadow properties
You heard about shadow properties in Chapter 2, Mapping Entities. In a nutshell, a shadow property is
one that belongs to the model, maps to a database column, but has no counterpart in the POCO class: it
stays in the shadows. They are useful because, since we do not see them, we can't (easily) tamper with
them. But alas, if they do not exist, they cannot be (easily) queried. In this recipe, we will see how.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will create a model and define a shadow property for it, which we will then query:

1. Create a class file called Blog in a Blog.cs file in the BusinessLogic project:

namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public string Url { get; set; }

}
}

2. Now, create a C# data context class, call it BlogContext, and put it in the DataAccess
project:

using Microsoft.EntityFrameworkCore;
using System.Linq;
using BusinessLogic;
using System;
namespace DataAccess

{
public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set;

}
public override int SaveChanges(
bool acceptAllChangesOnSuccess)
{

foreach (var entry in ChangeTracker
.Entries<Blog>()
.Where(x => x.State == EntityState.Added))
{

entry.Property("CreationDate").CurrentValue =
DateTime.UtcNow;

}
return base
.SaveChanges(acceptAllChangesOnSuccess);

}
protected override void OnModelCreating(
ModelBuilder modelBuilder)
{

modelBuilder
.Entity<Blog>()
.Property(typeof(DateTime), "CreationDate")
.IsRequired(true);
base.OnModelCreating(modelBuilder);

}
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespaces
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. Now, let's add a unit test in the UnitTests project, in a file called ShadowTests.cs:

using Xunit;
using DataAccess;
using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;
namespace UnitTests
{

public class ShadowTests : BaseTests
{

[Fact]
public void CanQueryShadowProperties()
{

//Arrange
using (var ctx = new BlogContext(
Configuration["Data:Blog:ConnectionString"]))
{

//Act
var blogs = ctx.Blogs
.Where(b =>

EF.Property<DateTime>(b,"CreationDate") >=
DateTime.Today.AddDays(-7))

.ToList();
//Assert
Assert.NotEmpty(blogs);

}
}

}
}

4. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new
ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}

protected IConfiguration Configuration { get; set; }
}

}

5. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

We configure a shadow property—one that has no physical counterpart—in the OnModelCreating
method of DbContext; in this example, it is a mandatory DateTime property called
CreationDate. When the context is about to save its entries (SaveChanges), we iterate through all
the added Blog entities and we set the CreationDate property using a special syntax. For querying,
all we need to do is to make use of the EF static class Property method, passing it a generic
parameter of the desired type, so that we have strong typing.

There's more…

Reusable queries can also make use of shadow properties using this exact same technique
(EF.Property).

See also

In this chapter:

• Creating reusable queries
• Implementing the query object

Implementing the query object pattern
In this recipe, we will be implementing the Query Object pattern on top of Entity Framework Core to
leverage maximum reuse without surfacing queryable collections to the consuming developers. The
Query Object pattern allows encapsulating and making parameterizable queries without actually
exposing what it does.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will create a query object class and a query executor interface and implementation, which will be the
DbContext class:

1. Create a class file called Blog in a Blog.cs file in the BusinessLogic project:

namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public string Url { get; set; }
public DateTime CreationDate { get; set; }

}
}

2. The query object base class should go into the DataAccess project in a QueryObject.cs
file:

using System.Linq;
namespace DataAccess
{

public abstract class QueryObject<T>
{

public int MaxItems { get; set; }
public int FirstItemIndex { get; set; }
public abstract IQueryable<T> ToQuery();

}
}

3. Here's our IQueryExecutor interface. Here, we are only concerned about the Execute
method that takes a QueryObject instance. This code should go into a file called
IQueryExecutor.cs in the DataAccess project:

using System.Collections.Generic;
namespace DataAccess
{

public interface IQueryExecutor
{

IEnumerable<T> Execute<T>(QueryObject<T> query);
}

}

4. Now, create a C# data context class, call it BlogContext, and put it in the DataAccess
project. Notice how it implements our IQueryExecutor interface:

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext, IQueryExecutor
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
public IEnumerable<T> Execute<T>(
QueryObject<T> query)
{

return query
.ToQuery()
.ToList();

}

protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespaces for
System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

5. A particular query object class for retrieving all blogs containing a certain name and created in a
given time frame, BlogsQuery, should be located in the DataAccess project:

using Xunit;
using DataAccess;
using System;
using System.Linq;

namespace UnitTests
{

public class ObjectQueryTests : BaseTests
{

[Fact]
public void CanQueryUsingObject()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
{

//Act
var query = new BlogsQuery(ctx);
query.LowerDate = DateTime.Today.AddDays(-7);
query.HigherDate = DateTime.Today.AddDays(-1);
query.Name = ".NET";
query.MaxItems = 3;
var blogs = (ctx as IQueryExecutor).Execute(query);

//Assert
Assert.NotEmpty(blogs);
Assert.True(blogs.Count() <= 3);
Assert.All(blogs, blog =>

{
Assert.Contains(".NET", blog.Name);
Assert.True(blog.CreationDate >=

DateTime.Today.AddDays(-7));
Assert.True(blog.CreationDate <=

DateTime.Today.AddDays(-1));
});

}
}

}
}

6. Now, let's add a unit test in the UnitTests project, in a file called
ObjectQueryTests.cs:

using Xunit;
using DataAccess;
using System;
using System.Linq;

namespace UnitTests
{

public class ObjectQueryTests : BaseTests
{

[Fact]
public void CanQueryUsingObject()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
{

//Act
var query = new BlogsQuery(ctx);
query.LowerDate = DateTime.Today.AddDays(-7);
query.HigherDate = DateTime.Today.AddDays(-1);
query.Name = ".NET";
query.MaxItems = 3;
var blogs = (ctx as IQueryExecutor).Execute(query);

//Assert
Assert.NotEmpty(blogs);
Assert.True(blogs.Count() <= 3);
Assert.All(blogs, blog =>
{

Assert.Contains(".NET", blog.Name);
Assert.True(blog.CreationDate >=

DateTime.Today.AddDays(-7));
Assert.True(blog.CreationDate <=

DateTime.Today.AddDays(-1));
});

}
}

}
}

7. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new
ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

8. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

A Query Object contains all the properties it needs to perform a query. We defined a base abstract class
that basically offers paging properties; in the concrete implementation, the BlogsQuery takes a
DbContext in its constructor and a few extra properties (HigherDate, LowerDate, and Name).
When it is asked to return a query (ToQuery), it takes all of these properties into account and builds the
appropriate query, which may be arbitrarily complex. The context only needs to execute this query and
materialize it.

Note

Note that the purpose of the Query Object pattern is not to be extensible or composable, like LINQ, for
example. It is meant to return one thing precisely.

There's more…

Use the Query Object instead of the Repository pattern because it is much more flexible: just think that
for any new query you want to implement, you would need to add another method to the repository
interface and implementation. If you don't know about the Repository pattern, it allows you to abstract
possibly complex logic behind a simple façade where all queries look like collections returned by query
methods.

See also

In this chapter:

• Creating reusable queries

The Repository pattern: http://martinfowler.com/eaaCatalog/repository.html.

http://martinfowler.com/eaaCatalog/repository.html

Using dynamic LINQ
The IQueryable<T> interface offers interesting possibilities for composing queries with some degree
of dynamism. However, sometimes that is enough. Imagine, for example, that you want to filter by some
text expression or order by a property for which you only have the name. Enter Dynamic LINQ: a means
to combine strongly typed LINQ queries with text expressions. Let's see how it works.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database for storing the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests and dotnet-text-xunit adds
tooling support for Visual Studio. Note that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

To use the Dynamic LINQ functionality in .NET Core, we need the System.Linq.Dynamic.Core
NuGet package.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We are going to use Dynamic LINQ to execute queries with some parameters coming as text.

1. Create a class file called Blog in a Blog.cs file in the BusinessLogic project:

namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public string Url { get; set; }
public DateTime CreationDate { get; set; }

}
}

2. Now, create a C# data context class, call it BlogContext, and put it in the DataAccess
project:

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<Blog> Blogs { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespaces
with System.Data.Entity and call the base constructor of DbContext, passing it the
connection string. Finally, drop the OnConfiguring method.

3. Now, let's add a unit test in the UnitTests project, in a file called
DynamicLinqTests.cs:

using Xunit;
using DataAccess;
using System;
using System.Linq;

namespace UnitTests
{

public class ObjectQueryTests : BaseTests
{

[Fact]
public void CanQueryUsingObject()
{

//Arrange
using (var ctx = new

BlogContext(Configuration["Data:Blog:ConnectionString"]))
{

//Act
var query = new BlogsQuery(ctx);
query.LowerDate = DateTime.Today.AddDays(-7);
query.HigherDate = DateTime.Today.AddDays(-1);
query.Name = ".NET";
query.MaxItems = 3;
var blogs = (ctx as IQueryExecutor).Execute(query);

//Assert
Assert.NotEmpty(blogs);
Assert.True(blogs.Count() <= 3);
Assert.All(blogs, blog =>
{

Assert.Contains(".NET", blog.Name);
Assert.True(blog.CreationDate >=

DateTime.Today.AddDays(-7));
Assert.True(blog.CreationDate <=

DateTime.Today.AddDays(-1));
});

}
}

}
}

4. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new
ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

5. Finally, add the following connection string to the appsettings.json file:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings, for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

Microsoft, a long time ago, made available a set of extensions to LINQ that take strings instead of
strongly typed expressions. Stef Heyenrath (https://github.com/StefH) ported this code to .NET Core
(https://github.com/StefH/System.Linq.Dynamic.Core) and made it available as a NuGet package
(https://www.nuget.org/packages/System.Linq.Dynamic.Core/). This is pretty cool and offers exciting
possibilities: imagine, for example, that you are receiving the sort order for a query from the web, as a
query string parameter, for example. You don't have a strongly typed LINQ query for the property, only
a string. Otherwise, you want to be able to concatenate strings to build restrictions.

Note

Note that I'm not talking here about SQL; it's still LINQ, but in string format. All it needs is to add a
reference to the System.Linq.Dynamic.Core namespace and all the extension methods taking
strings are immediately available.

There's more…

You can make arbitrarily complex stringified LINQ queries using this approach and choose whether to
pass parameters or have values directly in the string. Even the methods that are normally available in the
property types—such as the ones in the String class that can be turned into SQL—are still available.

https://github.com/StefH
https://github.com/StefH/System.Linq.Dynamic.Core
https://www.nuget.org/packages/System.Linq.Dynamic.Core/

Chapter 6. Advanced Scenarios
In this chapter, we will cover the following topics:

• Generating entities from the database
• Implementing multitenancy
• Strongly typed bulk operations
• Handling soft deletes
• Adding logging
• Capturing the audit data
• Retrieving entity metadata
• Improving MVC applications
• Hooking infrastructure services
• Using other databases

Introduction
This chapter will cover more advanced features of Entity Framework Core. These include some
scenarios that more seasoned users will miss.

One of these scenarios is bulk updates and deletes. After some basic usage of an ORM, users will easily
find out that it doesn't make much sense to load entities just for deleting or modifying them. We will
make use of an external library to make it possible.

If you have a big model, with possibly tens of tables, you will definitely want to generate the class
model automatically, and sure enough, Entity Framework Core can do it.

Multitenancy is very popular nowadays, and we will see how we can implement it on the data side of
things.

Soft deletes and auditing come in handy when we cannot afford to drop records from the database and
wish to see who was the last person who changed a record.

Finally, logging is a must have, and can save us ours of debugging.

We'll see all of this and more; hope you find it instructive!

Generating entities from the database
Entity Framework Core 1.0 supports two different workflows:

• Code first: Entities are first generated as code and only then is the database generated. This
follows the Domain Driven Design (DDD) approach.

• Database first: We already have a database and we want to generate entities for it.

The first approach was made popular when Entity Framework 4.1 "Code First" was released. The idea
here is that we, as C# developers, understand code better than anything, and so we model our entities as
code. It is left for Entity Framework to produce the database objects (tables, relations, and so on) that
will enable it to persist our data in an almost transparent way.

But what happens when you have an existing (legacy or otherwise) database, perhaps consisting of
hundreds of tables? Or you have this super cool UML tool that generates the database from a model? It
is troublesome, to say the least, to generate all C# entities by hand in Visual Studio, so the option is to
have some tool generate coded entities to match all these objects. Enter EF Core scaffolding.

Scaffolding is the process by which the database is inspected and Plain Old CLR Object (POCO)
classes are produced that match the structure of the database objects automatically. This way you do not
have to be worried about any spelling mistakes or about forgetting something: as long as the tables have
the appropriate constraints–primary and foreign keys–everything works pretty well.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer. Because we will
be using scaffolding, we also need Microsoft.EntityFrameworkCore.SqlServer.Design
and Microsoft.EntityFrameworkCore.Design.

Open Using EF Core Solution from the included source code examples.

Make sure you have PowerShell 5 installed. It is available free of charge for a number of Windows
editions from 7 upwards. Get it here: https://www.microsoft.com/en-us/download/
details.aspx?id=50395.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will be generating C# POCO entities that match our database:

1. Open a command prompt and navigate to the folder where you have the Scaffold project and
run the following command:

https://www.microsoft.com/en-us/download/details.aspx?id=50395
https://www.microsoft.com/en-us/download/details.aspx?id=50395

dotnet ef dbcontext scaffold "Data Source=.\SQLEXPRESS;
Integrated Security=SSPI; Initial Catalog=Blog;"
Microsoft.EntityFrameworkCore.SqlServer

Of course, do replace the connection string for one that's appropriate to your system.
2. Examine the generated files, for example, Blog.cs:

using System;
using System.Collections.Generic;
namespace Scaffold
{

public partial class Blog
{

public Blog()
{

Post = new HashSet<Post>();
}
public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }
public virtual ICollection<Post> Post { get; set; }

}
}

3. You will notice a couple of things:
◦ Collections are not pluralized (for example, Post instead of Posts) and are instantiated

in the public constructor as HashSets<>
◦ All classes are created as partial
◦ Navigation properties and collections are marked as virtual

How it works…

The Entity Framework tooling inspects the database whose connection string was passed as the first
parameter to scaffold ("Data Source=…") using the provider passed as the second parameter
(Microsoft.EntityFrameworkCore.SqlServer). It looks for all tables, their columns and
keys, and then outputs the corresponding C# POCO entities. When it does so, it produces partial classes,
so that you can easily extend the entities without the changes being lost if you regenerate them from the
database. The virtual modifier is kind of pointless right now, because Entity Framework Core 1.0 does
not have lazy loading, but it doesn't do any harm, and may come in handy in the future.

There's more…

You can extend the classes generated by creating new files, probably with a similar name, and adding
the same classes to them bearing the partial keyword:

using System;
using System.Collections.Generic;
using System.Linq;
namespace Scaffold
{

public partial class Blog
{

public TimeSpan Age
{

get
{

return DateTime.UtcNow – CreationDate;
}

}
public IEnumerable<Post> RecentPosts
{

get
{

return Post.Where(p => p.Date >=
DateTime.UtcNow.AddDays(-7));

}
}

}
}

This might go, for example, in a Blog.Extensions.cs file, as it contains additional methods to the
Blog class.

Implementing multitenancy
Multitenancy is the ability by which an application can act (and seem) different when observed in
different ways. Think, for example, of a website that displays a different look and feel when it is
accessed as http://abc.com or http://xyz.net. Here, we are talking about the same physical
site having two different domain names bound to it, abc.com and xyz.net, which are the tenants.

When it comes to relational databases, there are essentially three techniques for achieving multitenancy:

• Separate database: Each tenant's data is kept in a separate database instance, with a different
connection string for each; the multitenant system should pick automatically the one appropriate
for the current tenant as shown in the following figure:

Separate databases

• Separate schema: The same database instance is used for all the tenants' data, but each tenant
will have a separate schema; not all RDBMSs support this properly, for example, SQL Server
doesn't, but Oracle does. When I say SQL Server doesn't support this, I don't mean to say that it
doesn't have schemas, it's just that it does not offer an isolation mechanism, unlike Oracle, and it
isn't possible to specify, per query or per connection, the schema to use by default.

Separate schemas

• Partitioned data: The data for all tenants is kept in the same physical instance and schema, and
a partitioning column is used to differentiate tenants; it is up to the framework to issue proper
SQL queries that filter data appropriately.

Partitioned data

Entity Framework Core supports all of these techniques. We won't go into which one is better; all have
their pros and cons. For the sake of our discussion, let's imagine we have some service that returns the
current tenant's ID.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

For the web interfaces, there will also be a need for the Microsoft.AspNetCore.Http and
Microsoft.AspNetCore.Http.Abstractions.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will be implementing some infrastructure classes that will help with configuring multitenancy:

1. Add a file called MultitenantEntity.cs with the following content to the
BusinessLogic project:

using System;
namespace BusinessLogic
{

public class MultitenantEntity : IMultitenant
{

public int Id { get; set; }
public string Name { get; set; }

}
}

2. Add a marker interface called IMultitenant also to BusinessLogic, in a file with the
name IMultitenant.cs:

namespace BusinessLogic
{

public interface IMultitenant { }
}

3. Add a MultitenantConfiguration class to the DataAccess project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public abstract class MultitenantConfiguration
{

public static MultitenantConfiguration Provider
{ get; set; }
protected MultitenantConfiguration(
IMultitenantAccessor accessor)
{

Accessor = accessor;
}
public IMultitenantAccessor Accessor
{ get; private set; }
public abstract void Use(
DbContextOptionsBuilder optionsBuilder);
public abstract void Use(
ModelBuilder modelBuilder);

}
}

4. The IMultitenantAccessor interface defines the contract for getting the current tenant,
and it should look like this in the DataAccess project):

namespace DataAccess
{

public interface IMultitenantAccessor
{

string GetCurrentTenantId();

}
}

5. A simple implementation of the IMultitenantAccessor interface would be like this:

using System.Linq;
using Microsoft.AspNetCore.Http;
namespace DataAccess
{

public class HostHeaderMultitenantAccessor :
IMultitenantAccessor

{
private readonly IHttpContextAccessor _accessor;
public HostHeaderMultitenantAccessor(

IHttpContextAccessor accessor)
{

_accessor = accessor;
}
public string GetCurrentTenantId()
{

var context = _accessor.HttpContext;
var parts = context.Request.Host.Host.Split('.');
return parts.ElementAt(parts.Length - 2) + "." +

parts.Last();
}

}
}

6. Now add a class to the DataAccess project that will implement the Partitioned Data
approach and call it PartitionedDataConfiguration.cs:

using System.Linq;
using System.Reflection;
using Microsoft.EntityFrameworkCore;
using BusinessLogic;

namespace DataAccess
{

public class PartitionedDataConfiguration :
MultitenantConfiguration

{
public const string MultitenantColumn = "TenantId";
public PartitionedDataConfiguration(IMultitenantAccessor

accessor) : base(accessor)
{
}

public override void Use(DbContextOptionsBuilder

optionsBuilder)
{
}

public override void Use(ModelBuilder modelBuilder)
{

var tenantId = Accessor.GetCurrentTenantId();
foreach (var entity in

modelBuilder.Model.GetEntityTypes(). Where(e =>
typeof(IMultitenant).IsAssignableFrom(e.ClrType)))

{
modelBuilder

.Entity(entity.ClrType)

.HasDiscriminator(MultitenantColumn, typeof(string))

.HasValue(tenantId);
}

}
}

}

7. Now, do the Separate Database implementation,
SeparateDatabaseConfiguration.cs:

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace DataAccess
{

public class SeparateDatabaseConfiguration :
MultitenantConfiguration

{
private readonly IConfiguration _configuration;
private readonly string _connectionStringTemplate;
private readonly Func<IMultitenantAccessor, string>

_connectionStringProvider;

public SeparateDatabaseConfiguration(IMultitenantAccessor
accessor, IConfiguration configuration, string
connectionStringTemplate) : base(accessor)

{
_configuration = configuration;
_connectionStringTemplate = connectionStringTemplate

?? "Data:{0}:ConnectionString";
}

public SeparateDatabaseConfiguration(IMultitenantAccessor

accessor, Func<IMultitenantAccessor, string>
csProvider) : base(accessor)

{
_connectionStringProvider = csProvider;

}

private string GetConnectionString()
{

var connectionString = string.Empty;
if (_configuration != null)
{

var tenantId = Accessor.GetCurrentTenantId();
var template = string.Format(_connectionStringTemplate,
tenantId);
connectionString = _configuration[template];

}
else if (_connectionStringProvider != null)
{

connectionString = _connectionStringProvider(Accessor);
}
return connectionString;

}

public override void Use(DbContextOptionsBuilder
optionsBuilder)

{
var connectionString = GetConnectionString();
optionsBuilder.UseSqlServer(connectionString);

}

public override void Use(ModelBuilder modelBuilder)
{
}

}
}

8. Finally, let's do the implementation for Separate Schema, which should go in a
SeparateSchemaConfiguration.cs file, in the DataAccess project:

using System.Linq;
using System.Reflection;
using Microsoft.EntityFrameworkCore;
using BusinessLogic;

namespace DataAccess
{

public class SeparateSchemaConfiguration :

MultitenantConfiguration
{

public SeparateSchemaConfiguration(
IMultitenantAccessor accessor) : base(accessor)

{
}
public override void Use(DbContextOptionsBuilder

optionsBuilder)
{
}
public override void Use(ModelBuilder modelBuilder)
{

var tenantId = Accessor.GetCurrentTenantId();
foreach (var entity in

modelBuilder.Model.GetEntityTypes().Where
(e => typeof(IMultitenant).
IsAssignableFrom(e.ClrType)))

{
modelBuilder

.Entity(entity.ClrType)

.ForSqlServerToTable(modelBuilder
.Model.FindEntityType(entity.ClrType)
.SqlServer().TableName, tenantId);

}
}

}
}

9. Next, we add a context (MultitenantContext) to the DataAccess project:

using BusinessLogic;
using Microsoft.EntityFrameworkCore;

namespace DataAccess
{

public class MultitenantContext : DbContext
{

private readonly string _connectionString;

public MultitenantContext(DbContextOptions
options) : base(options)

{
}

public MultitenantContext(string connectionString)
{

_connectionString = connectionString;

}

public DbSet<MultitenantEntity> MultitenantEntities
{ get; set; }

protected override void
OnConfiguring(DbContextOptionsBuilder optionsBuilder)

{
optionsBuilder.UseSqlServer(_connectionString);
MultitenantConfiguration.Provider?

.Use(optionsBuilder);
base.OnConfiguring(optionsBuilder);

}

protected override void OnModelCreating
(ModelBuilder modelBuilder)

{
MultitenantConfiguration.Provider?.Use(modelBuilder);
base.OnModelCreating(modelBuilder);

}
}

}

How it works…

We created a base class for representing the different multitenant strategies:
MultitenantConfiguration. It also holds a static reference for the current strategy in use
(Provider) and two abstract methods, both named Use; these are meant to be called in the two places
in the DbContext life cycle, OnModelCreating and OnConfiguring, where we can act upon
the configuration of the context:

• OnConfiguring: We can select the database provider (not relevant here, as we will stick with
SQL Server) and the connection string that is specific to that provider

• OnModelCreating: We can inspect and change the data model and its mapping to the data
store

Before we use the context, we need to make sure that we register the tenant identification strategy
(IMultitenantAccessor) implementation of our choice. For web applications, we're probably
going to choose one that gets the tenant from the host header. The sample
HostHeaderMultitenantAccessor does just that; for a domain of abc.com it returns abc, that
is, it strips off the top level domain part plus any additional sub-domains that there may be. Of course,
you can pick a totally different strategy.

This strategy will be fed to a MultitenantConfiguration instance, which will be conveniently
kept in the Provider static property. In our MultitenantContext, we will make sure to call the
Use methods of MultitenantConfiguration in both OnConfiguring and

OnModelCreating. Not all strategies require this, but since we do not know which ones do, we're
better off this way. Notice the ? syntax: if the Provider property is null, nothing will be called.

These strategies work like this:

• PartitionedDataConfiguration: This checks all the mapped entities that implement
the marker interface, IMultitenant, and add a WHERE restriction over a non-mapped
column TenantId that will hold the current tenant's ID (for example, TenantId = 'abc')

• SeparateDatabaseConfiguration: This returns a different connection string
depending on the current tenant ID

• SeparateSchemaConfiguration: For each mapped entity implementing
IMultitenant, set its schema to be the current tenant ID (for example, abc.MyEntity,
xyz.MyEntity)

There's more…

When it comes to web tenant identification strategies, we have a myriad of choices:

• Host header (like in this example)
• Query string parameter
• Hardcoded per requesting domain/IP range

We won't focus on these; normally, the host header is the one we want.

As for the multitenant configuration, it is certainly possible to think of options other than different
schema, databases, or discriminating columns, but these are usually sufficient.

Strongly typed bulk operations
Entity Framework Core 1.0 supports two query options:

• SQL
• LINQ

LINQ, of course, is the preferred query language in the .NET world. It has the great advantage that it is
compiled to .NET and is strongly typed, meaning most errors are detected at compile time. The
drawback is that it cannot be used for anything other than querying, that is, it cannot do updates, inserts,
or deletes.

However, because of the great extensibility hooks that are present in Entity Framework Core, it is indeed
possible to turn strongly typed LINQ queries into updates and deletes. In particular, Pomelo Foundation
has implemented a library for doing just that.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer. We will also need
Pomelo.EntityFrameworkCore.Lolita.SqlServer for the strongly typed bulk API.

Finally, Xunit is the package we will be using for the unit tests, and dotnet-text-Xunit adds
tooling support for Visual Studio. Notice that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will create unit tests for doing strongly typed bulk operations using the Pomelo API:

1. Create an entity class MyEntity in a similar named file in the BusinessLogic project:

using System;
namespace BusinessLogic
{

public class MyEntity
{

public int Id { get; set; }
public string Name { get; set; }
public DateTime Date { get; set; }

}
}

2. Next, we add a context called MyContext to the DataAccess project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public class MyContext : DbContext
{

private readonly string _connectionString;
public MyContext

(DbContextOptions options): base(options)
{
}
public MyContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<MyEntity> MyEntities { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServerLolita();
optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

3. Create a unit tests file, StronglyTypedTests.cs, in the UnitTests project:

using BusinessLogic;
using DataAccess;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using Xunit;

namespace UnitTests
{

public class StronglyTypedTests : BaseTests
{

[Fact]
public void CanDelete()
{

//Arrange
using (var ctx = new

MyContext(Configuration["Data:Blog:ConnectionString"]))
{

//Act
ctx.MyEntities.Add(new MyEntity { Name = "test" });
ctx.SaveChanges();
var result = ctx.MyEntities.Where(b =>

b.Name == "test").Delete();

//Assert
Assert.True(result == 1);

}
}

[Fact]
public void CanUpdate()
{

//Arrange
using (var ctx = new MyContext

(Configuration["Data:Blog:ConnectionString"]))
{

//Act
ctx.MyEntities.Add(new MyEntity { Name = "test" });
ctx.SaveChanges();
var result = ctx.MyEntities.Where(b =>

b.Name == "test").SetField(b =>
b.Date).AddDays(1).Update();

//Assert
Assert.True(result == 1);

}
}

}
}

4. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Framework.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

5. Finally, add the following connection string to the appsettings.json file and make sure
the file is copied to the output folder upon build:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings; for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

Notice how we, in the OnConfiguring method, make a call to UseSqlServerLolita. This is
what makes strong typing bulk operations possible. We see two kinds of bulk operation:

• Deletes: The Delete method is called on top of a LINQ expression, which can even be the
DbSet<T> property, any IQueryable<T> will do; it returns the number of affected records
(deleted rows)

• Updates: Here there are two possibilities:
◦ Updating a column to a constant value
◦ Updating a column to an expression possibly based on the column itself

In any case, the Update method always returns the number of affected records (updated rows)

The Delete and Update "terminal" methods, similar to ToList, ToArray, Count, First,
FirstOrDefault, Single, SingleOrDefault, and so on, take a LINQ expression waiting to be
executed and do so, turning the LINQ expression into SQL, executing it in the database and returning
the number of records affected by it.

Our example for strongly typed deletes picks an entity property, Date, from entities where its value is
before the current date, and adds one day to it.

There's more…

The actual process of generating SQL from a LINQ expression is quite complex. If you are curious, you
can have a look at the code for Lolita in GitHub: https://github.com/PomeloFoundation/Lolita.

https://github.com/PomeloFoundation/Lolita

Handling soft deletes
Soft deletes is a handy database technique by which you never (or almost never) delete records from
your database. Instead, you mark these records as deleted and when you query these records, you always
filter out those marked as such. In this recipe, we will see how we can get this working in Entity
Framework Core. We will leverage concepts introduced in previous chapters, such as shadow properties.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Notice that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's build a class model suitable for demonstrating soft deletes:

1. Create an entity class called MyEntity in a similarly named file in the BusinessLogic
project (the ISoftDeletable definition comes next):

using System;
namespace BusinessLogic
{

public class MyEntity : ISoftDeletable
{

public int Id { get; set; }
public string Name { get; set; }

}
}

2. Now, for the interface that will be used to mark entities as soft-deletable, add
ISoftDeletable to the BusinessLogic project:

namespace BusinessLogic
{

public interface ISoftDeletable
{

}
}

3. Next, we add a context called SoftDeleteContext to the DataAccess project, in a file
named SoftDeleteContext.cs:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
using System.Linq;
using System.Reflection;

namespace DataAccess
{

public class SoftDeleteContext : DbContext
{

private readonly string _connectionString;
public SoftDeleteContext(DbContextOptions

options) : base(options)
{
}

public SoftDeleteContext(string connectionString)
{

_connectionString = connectionString;
}

public DbSet<MyEntity> MyEntities { get; set; }
public override int SaveChanges()
{

foreach (var entry in ChangeTracker.Entries()
.Where(e => e.State == EntityState.Deleted))

{
if (entry.Entity is ISoftDeletable)
{

entry
.Property("IsDeleted")
.CurrentValue = true;

entry.State = EntityState.Modified;
}

}
return base.SaveChanges();

}

protected override void
OnModelCreating(ModelBuilder modelBuilder)

{
foreach (var entity in

modelBuilder.Model.GetEntityTypes())
{

if (typeof(ISoftDeletable).IsAssignableFrom
(entity.ClrType))

{
modelBuilder

.Entity(entity.ClrType)

.HasDiscriminator("IsDeleted", typeof(bool))

.HasValue(false);

modelBuilder
.Entity(entity.ClrType)
.Property(typeof(bool), "IsDeleted")
.IsRequired(true)
.HasDefaultValue(false);

modelBuilder
.Entity(entity.ClrType)
.Property(typeof(bool), "IsDeleted")
.Metadata
.IsReadOnlyAfterSave = false;

}
}

base.OnModelCreating(modelBuilder);
}

protected override void
OnConfiguring(DbContextOptionsBuilder optionsBuilder)

{
optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

4. Create a unit tests file, SoftDeleteTests.cs, in the UnitTests project:

using Xunit;
using BusinessLogic;
using DataAccess;
using System;
using Microsoft.Framework.Configuration;
namespace UnitTests
{

public class SoftDeleteTests : BaseTests
{

[Fact]
public void CanSoftDelete()
{

//Arrange
using (var ctx = new SoftDeleteContext(
Configuration["Data:Blog:ConnectionString"]))
{

//Act
var entity = new MyEntity { Name = "Test" };
ctx.MyEntities.Add(entity);
var inserts = ctx.SaveChanges();
ctx.Entry(entity).State = EntityState.Detached;
entity = ctx.MyEntities.First();
ctx.MyEntities.Remove(entity);
var deletes = ctx.SaveChanges();
//Assert
Assert.True(deletes == 1);

}
}

}
}

5. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Framework.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new
ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");

Configuration = configurationBuilder.Build();
}
protected IConfiguration Configuration { get; set; }

}
}

6. Finally, add the following connection string to the appsettings.json file and make sure
the file is copied to the output folder upon build:

{
"Data": {

"Blog": {

"ConnectionString":"Server=(local)\\SQLEXPRESS;
Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings; for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

For all entities that are assignable to ISoftDeletable, we configure a discriminator column
(HasDiscriminator) called IsDeleted, which has a default value of false. This is going to be
used by Entity Framework whenever it tries to query records mapped to this entity, for example:

SELECT [m].[Id], [m].[Name]
FROM [MyEntity] AS [m]
WHERE [m].[IsDeleted] = 0

This is done automatically for you, and is done regardless of other filter conditions. This IsDeleted
column is a shadow property, because it is mapped but does not have a corresponding property in the
POCO model.

Then we intercept the saving of changes (SaveChanges method), we iterate through all entities that
are marked as Deleted and are ISoftDeletable, change its state to Modified, and set the value
of the IsDeleted shadow property to true. It's as simple as that!

See also

In this chapter:

• Capturing the audit data
• Retrieving entity metadata

Adding logging
It's sometimes important, namely when things go wrong, to get a glimpse of what's going on inside. For
that, we can leverage the logging capabilities of Entity Framework Core: we are presented with a
detailed register of what is happening, such as the SQL that is being sent to the database.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

We also need the Microsoft.Extensions.Logging and
Microsoft.Extensions.Logging.Console packages to add logging capabilities.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's create a sample context and entity, add logging capabilities, and see what happens when we
perform simple operations:

1. Create a MyEntity entity class in a similarly named file in the BusinessLogic project:

using System;
namespace BusinessLogic
{

public class MyEntity
{

public int Id { get; set; }
public string Name { get; set; }
public DateTime Date { get; set; }

}
}

2. Next, we add a context called MyContext to the DataAccess project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public class MyContext : DbContext
{

private readonly string _connectionString;

public MyContext(DbContextOptions options) :
base(options)
{
}
public MyContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<MyEntity> MyEntities
{ get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseLoggerFactory(new LoggerFactory()
.AddConsole());

optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

How it works…

The logging framework of .NET Core, used by Entity Framework Core, consists of the following:

• Logger factories: The top-level registration point. Normally, we can just use the built-in
LoggerFactory and add logger providers to it.

• Logger providers: These are implementations of ILoggerProvider that are registered to
the .NET Core provided ILoggerFactory.

• Actual loggers: These are ILogger implementations returned by a logger provider. These do
the actual logging.

A logger is returned for a concrete logger category. Logger categories come from infrastructure class
names, the ones that provide the logging information. Because Entity Framework Core is built using a
modular, layered approach, some of its operations will come from the datastore-agnostic core
(DbContext, InternalQueryCompiler), others will come from the relational layers
(RelationalCommandBuilderFactory, RelationalModelValidator,
SqlServerQueryCompilationContextFactory,
SqlServerCompositeMethodCallTranslator), and finally, others will come from database-
specific classes (SqlServerConnection).

Each logging entry actually consists of the following:

• Log Level: The severity of the log entry, such as Critical, Debug, Error,
Information, or Trace

• Event Id: This is a provider-specific code that represents the type of event being logged (more
on this in a second)

• State: An optional contextual object to pass more information to the logger
• Exception: An exception, to use in the case of an error (normally for the Critical or
Error) log levels

• Formatter: An optional formatter object to help format the log output, in cases where it is
necessary

The event ID is specific to the infrastructure. Some common values are as follows:

ID Meaning Sender State

1 Execute SQL RelationalCommandBuilderFactory DbCommandLogData

2 Create database SqlServerConnection Database and server names

3 Open connection SqlServerConnection Database and server names

4 Close connection SqlServerConnection Database and server names

5 Begin transaction SqlServerConnection IsolationLevel

6 Commit transaction SqlServerConnection IsolationLevel

7 Rollback transaction SqlServerConnection IsolationLevel

> 7 Warnings

In the case of relational data sources, these values are specified in the RelationalEventId
enumeration.

When we add logging to an Entity Framework context through the OnConfiguring method, we start
to get things in the logging target of our choice–in this example, it is the console. For example, we issue
a query such as this:

ctx
.MyEntities
.Where(x => x.Date == DateTime.Today)
.ToList();

We're likely to get output like this in the console:

info:
Microsoft.EntityFrameworkCore.Storage.Internal.RelationalCommandBuild
erFactory[1]

Executed DbCommand (2ms) [Parameters=[],
CommandType='Text',CommandTimeout='30']

SELECT [x].[Id], [x].[Date], [x].[Name]
FROM [MyEntities] AS [x]
WHERE [x].[Date] = @__Today_0

Notice that the SQL does not include the actual filtering value (DateTime.Today); instead, it
references the parameter name that was used. Besides the actual SQL, we can see that the execution took
2 milliseconds.

How do we interpret this? Well, first, we can see the log level, info in this case. Then we have the
provider class that logged this (the category name), RelationalCommandBuilderFactory, and
then the event inside [], 1. Finally, we have the actual message, which is specific to the log event
parameters (Executed DbCommand).

There's more…

Microsoft makes some logging providers for .NET Core available:

Provider Purpose

Microsoft.Extensions.Logging.Console Logs all messages with log level equal or greater than
information to the console of the current application

Microsoft.Extensions.Logging.Debug Logs to the debug window of the current attached
debugger (like Visual Studio while debugging) with log
level equal or greater than information

Microsoft.Extensions.Logging.TraceSource Writes to all registered trace listeners

And you can also write your own logging provider. You need to create a logging provider factory,
register it with an Entity Framework Core context, and it will be used automatically.

Finally, you can change the behavior of certain events–ignore, log, throw an exception–by making a call
to ConfigureWarnings:

optionsBuilder.ConfigureWarnings(
warnings =>
{

warnings.Ignore(RelationalEventId.OpeningConnection,
RelationalEventId.ClosingConnection);

warnings.Throw(RelationalEventId
.RollingBackTransaction);

});

Setting a default can be done too:

optionsBuilder.ConfigureWarnings(
warnings =>
{

warnings.Default(WarningBehavior.Ignore);
warnings.Log(RelationalEventId.CommitTransaction);

});

Capturing the audit data
So, we want to track every time a record was changed. There are several ways to do this, but we'll do it
the Entity Framework way, so that we do not depend on any database-specific features–see, for example,
the Change Data Tracking feature of SQL Server Enterprise.

The data we're interested in is as follows:

• Creation timestamp
• Creation user
• Last update timestamp
• Last update user

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

We also need the System.Security.Principal.Windows package in order to get the current
logged-in user.

Finally, Xunit is the package we will be using for the unit tests, and dotnet-text-Xunit adds
tooling support for Visual Studio. Notice that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We are going to define an audit interface where we will capture the data that we're interested in and then
we'll intercept the saving of changes and add the audit data:

1. Create an interface called IAuditable in the BusinessLogic project with the following
content:

using System;
namespace BusinessLogic
{

public interface IAuditable
{

string CreatedBy { get; set; }
DateTime CreatedAt { get; set; }

string UpdatedBy { get; set; }
DateTime? UpdatedAt { get; set; }

}
}

2. Now, create a class that is auditable, for example, MyEntity, to also be added to the
BusinessLogic project:

using System;
namespace BusinessLogic
{

public class MyEntity : IAuditable
{

public int Id { get; set; }
public string Name { get; set; }
public string CreatedBy { get; set; }
public DateTime CreatedAt { get; set; }
public string UpdatedBy { get; set; }
public DateTime? UpdatedAt { get; set; }

}
}

3. Now, we need a context that knows about our entity. We'll call it MyContext and store it in a
MyContext.cs file in the DataAccess project:

using Microsoft.EntityFrameworkCore;
using System;
using System.Security.Principal;
using BusinessLogic;
namespace DataAccess
{

public class MyContext : DbContext
{

private readonly string _connectionString;
public MyContext(DbContextOptions options) : base(options)
{
}
public MyContext(string connectionString)
{

_connectionString = connectionString;
}
public Func<string> UserProvider { get; set; } = () =>

WindowsIdentity.GetCurrent().Name;
public Func<DateTime> TimestampProvider { get; set; }= ()

=> DateTime.UtcNow;
public DbSet<MyEntity> MyEntities { get; set; }
protected override int SaveChanges()
{

foreach (var entry in
this.ChangeTracker.Entries().Where(e => e.State ==
EntityState.Added ||e.State == EntityState.Modified))

{
if (entry.Entity is IAuditable)
{

var auditable = entry.Entity as IAuditable;
if (entry.State == EntityState.Added)
{

auditable.CreatedBy = UserProvider();
auditable.CreatedAt = TimestampProvider();

}
else
{

auditable.UpdatedBy = UserProvider();
auditable.UpdatedAt = TimestampProvider();

}
}

}
return base.SaveChanges();

}
protected override void

OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

4. Create a unit tests file, AuditableTests.cs, in the UnitTests project:

using Xunit;
using BusinessLogic;
using DataAccess;
using System;
using Microsoft.Framework.Configuration;
namespace UnitTests
{

public class AuditableTests : BaseTests
{

[Fact]
public void CanAudit()
{

/Arrange
using (var ctx = new MyContext(
Configuration["Data:Blog:ConnectionString"]))

{
ctx.UserProvider = () => "creator";
ctx.TimestampProvider = () => new DateTime(2016, 1, 1);
//Act
ctx.MyEntities.Add(new MyEntity { Name = "test" });
ctx.SaveChanges();
var entity = ctx.MyEntities.First(b => b.Name ==

"test");
var createdBy = entity.CreatedBy;
var createdAt = entity.CreatedAt;
entity.Name += "_modified";
ctx.UserProvider = () => "updater";
ctx.TimestampProvider = () => DateTime.Today;
ctx.SaveChanges();
entity = ctx.MyEntities.First(b => b.Id == entity.Id);
var updatedBy = entity.UpdatedBy;
var updatedAt = entity.UpdatedAt;
//Assert
Assert.Equal("creator", createdBy);
Assert.Equal(new DateTime(2016, 1, 1), createdAt);
Assert.Equal("updater", updatedBy);
Assert.Equal(DateTime.Today, updatedAt);

}
}

}
}

5. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Framework.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new ConfigurationBuilder();
configurationBuilder.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. Finally, add the following connection string to the appsettings.json file and make sure
the file is copied to the output folder upon build:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the
connection string to match your system settings; for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

We have a context in which we defined two provider functions: one for retrieving the current user
(UserProvider), and the other for retrieving the current timestamp (TimestampProvider).
These are both initialized to sensible values: the name of the current Windows user in the first case and
the current date and time in UTC coordinates for the latter. We do it this way so that we can easily
change the way the current user or timestamp is retrieved, without having to change the context class.

When it is time to save changes, we iterate through all the entities pending saving and we figure out
those that are either added or modified. For the first ones, we set the creation audit properties, and for
the others, we set the updating ones.

Note

The UpdatedAt property in the IAuditable interface is set to nullable because, of course, a record
may have not been updated yet.

See also

In this chapter:

• Handling soft deletes
• Retrieving entity metadata

Retrieving entity metadata
When you create an Entity Framework context, you map a domain model to a data store. Specifically, in
the case of relational databases, you assign the following:

• Classes to tables
• Properties to columns
• References to foreign keys

Of course, in normal usage, you normally don't need to worry about these mappings; you just query the
POCO domain model and that's it. But if you need to write SQL for more advanced queries, you are left
with two options:

• You know exactly the database names of all the tables and columns (keep in mind that the class
Person can be mapped to, say, PERSON, PEOPLE, PERSON_DETAIL, PERSON_DETAILS,
and so on)

• You obtain this information dynamically at runtime

If you want to be safe, you will stick to the second option and obtain all the information you need
whenever you need it; this way, you know you're not wrong. That's what this chapter is about, after all!

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, Xunit is the package we will be using for the unit tests, and dotnet-text-Xunit adds
tooling support for Visual Studio. Notice that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's write some extension methods for getting the metadata information for the model dynamically:

1. Create a static class called ModelExtensions in the DataAccess project with the
following content:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;
using Microsoft.EntityFrameworkCore.Metadata.Internal;

using System;
using System.Linq.Expressions;
namespace DataAccess
{

public static class ModelExtensions
{

//Key
public static string [] GetPrimaryKeyProperties<T>(this

IModel model)
{

return model
.FindEntityType(typeof(T))
.FindPrimaryKey()
.Properties
.Select(x => x.Name)
.ToArray();

}
public static string [] GetProperties<T>(this IModel model)
{

return model
.FindEntityType(typeof(T))
.GetProperties()
.Select(x => x.Name)
.ToArray();

}
public static string[] GetNavigationProperties<T>(this

IModel model)
{

return model
.FindEntityType(typeof(T))
.GetNavigations()
.Select(x => x.Name)
.ToArray();

}
//Table
public static string GetTableName<T>(this IModel model)
{

return GetTableName(model, typeof(T));
}
public static string GetTableName(this IModel model,

Type entityType)
{

return GetTableName(model, entityType.Name);
}
public static string GetTableName(this IModel model,

string entityName)
{

return model
.AsModel()
.FindEntityType(entityName)
.Relational()
.TableName;

}
//Discriminator
public static object GetTableDiscriminatorValue<T>(this

IModel model)
{

return GetTableDiscriminatorValue(model, typeof(T));
}
public static object GetTableDiscriminatorValue(this IModel

model, Type entityType)
{

return GetTableDiscriminatorValue(model, entityType.Name);
}
public static object GetTableDiscriminatorValue(this IModel

model, string entityName)
{

return model
.AsModel()
.FindEntityType(entityName)
.Relational()
.DiscriminatorValue;

}
public static string

GetTableDiscriminatorColumnName<T>(this IModel model)
{

return GetTableDiscriminatorColumnName(model, typeof(T));
}
public static string GetTableDiscriminatorColumnName(this

IModel model, Type entityType)
{

return GetTableDiscriminatorColumnName(model,
entityType.Name);

}
public static string GetTableDiscriminatorColumnName(this

IModel model, string entityName)
{

return model
.AsModel()
.FindEntityType(entityName)
.Relational()
.DiscriminatorProperty
.Relational()
.ColumnName;

}
//Schema
public static string GetTableSchema<T>(this IModel model)
{

return GetTableSchema(model, typeof(T));
}
public static string GetTableSchema(this IModel model, Type

entityType)
{

return GetTableSchema(model, entityType.Name);
}
public static string GetTableSchema(this IModel model,

string entityName)
{

return model
.AsModel()
.FindEntityType(entityName)
.Relational()
.Schema;

}
//Database
public static string GetDatabaseName(this IModel model)
{

return model.AsModel().Relational().DatabaseName;
}
public static string GetDatabaseDefaultSchema(this IModel

model)
{

return model.AsModel().Relational().DefaultSchema;
}
//Column
public static string GetColumnName<T>(this IModel model,

Expression<Func<T,object>> property)
{

var member = property.Body as MemberExpression;
if (member == null)
{

throw new ArgumentException("Invalid property
expression", "property");

}
return GetColumnName(model, member.Member.DeclaringType,

member.Member.Name);
}
public static string GetColumnName(this IModel model, Type

entityType,string propertyName)
{

return model

.AsModel()

.FindEntityType(entityType)

.FindProperty(propertyName)

.Relational()

.ColumnName;
}
public static string GetColumnDefaultValueSql<T>(this

IModel model, Expression<Func<T,object>> property)
{

var member = property.Body as MemberExpression;
if (member == null)
{

throw new ArgumentException(Invalid property
expression", "property");

}
return GetColumnDefaultValueSql(model,

member.Member.DeclaringType,member.Member.Name);
}
public static string GetColumnDefaultValueSql(this IModel

model, Type entityType, string propertyName)
{

return model
.AsModel()
.FindEntityType(entityType)
.FindProperty(propertyName)
.Relational()
.DefaultValueSql;

}
public static object GetColumnDefaultValue<T>(this IModel

model, Expression<Func<T,object>> property)
{

var member = property.Body as MemberExpression;
if (member == null)
{

throw new ArgumentException("Invalid property
expression", "property");

}
return

GetColumnDefaultValue(model,member.Member.DeclaringType,
member.Member.Name);

}
public static object GetColumnDefaultValue(this IModel

model, Type entityType, string propertyName)
{

return model
.AsModel()
.FindEntityType(entityType)

.FindProperty(propertyName)

.Relational()

.DefaultValue;
}
public static string GetColumnType<T>(this IModel

model,Expression<Func<T,
object>> property)

{
var member = property.Body as MemberExpression;
if (member == null)
{

throw new ArgumentException("Invalid property
expression", "property");

}
return GetColumnType(model, member.Member.DeclaringType,

member.Member.Name);
}
public static string GetColumnType(this IModel model, Type

entityType, string propertyName)
{

return model
.AsModel()
.FindEntityType(entityType)
.FindProperty(propertyName)
.Relational()
.ColumnType;

}
public static int? GetColumnMaxLength<T>(this IModel model,

Expression<Func<T,object>> property)
{

var member = property.Body as MemberExpression;
if (member == null)
{

throw new ArgumentException("Invalid property
expression", "property");

}
return

GetColumnMaxLength(model,member.Member.DeclaringType,
member.Member.Name);

}
public static int? GetColumnMaxLength(this IModel model,

Type entityType,string propertyName)
{

var annotation = model
.AsModel()
.FindEntityType(entityType)
.FindProperty(propertyName)

.FindAnnotation("MaxLength");
return (annotation != null) ?

Convert.ToInt32(annotation.Value) :
(int?)null;

}
public static bool? IsColumnRequired<T>(this IModel model,

Expression<Func<T, object>> property)
{

var member = property.Body as MemberExpression;
if (member == null)
{

throw new ArgumentException("Invalid property
expression", "property");

}
return

IsColumnRequired(model,member.Member.DeclaringType,member.Member
.Name);

}
public static bool? IsColumnRequired(this IModel model,

Type entityType, string propertyName)
{

return !model
.AsModel()
.FindEntityType(entityType)
.FindProperty(propertyName)
.IsColumnNullable();

}
}

}

2. Create an entity, MyEntity, in the BusinessLogic project, in a file called
MyEntity.cs:

namespace BusinessLogic
{

public class MyEntity
{

public int Id { get; set; }
public string Name { get; set; }

}
}

3. We'll also need a context to match MyContext, in the DataAccess project as well:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public class MyContext : DbContext
{

private readonly string _connectionString;
public MyContext(DbContextOptions options) :base(options)
{
}
public MyContext(string connectionString)
{

_connectionString = connectionString;
}
public DbSet<MyEntity> MyEntities { get; set; }
protected override void OnConfiguring(

DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

4. Create a unit tests class, MetadataTests, in the UnitTests project with the following
content:

using Xunit;
using BusinessLogic;
using DataAccess;
using System;
using Microsoft.Framework.Configuration;
namespace UnitTests
{

public class MetadataTests : BaseTests
{

[Fact]
public void CanGetMetadata()
{

//Arrange
using (var ctx = new

SoftDeleteContext(Configuration["Data:Blog:ConnectionString"]))
{

//Act
var id = ctx.Model.GetPrimaryKeyProperties<MyEntity>();
var props = ctx.Model.GetProperties<MyEntity>();
var tableName = ctx.Model.GetTableName<MyEntity>();
var columnName = ctx.Model.GetColumnName<MyEntity>(x =>

x.Name);
var columnMaxLength =

ctx.Model.GetColumnMaxLength<MyEntity>(x => x.Name);

var isColumnRequired
=ctx.Model.IsColumnRequired<MyEntity>(x => x.Name);

//Assert
Assert.Equal("Id", id);
Assert.NotNull(props);
Assert.Equal("Name", columnName);
Assert.Equal(null, columnMaxLength);
Assert.Equal(false, isColumnRequired);

}
}

}
}

5. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Framework.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = newConfigurationBuilder();
configurationBuilder.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. Finally, add the following connection string to the appsettings.json file and make sure
the file is copied to the output folder upon build:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, do change the

connection string to match your system settings; for example, the name of the SQL Server
instance (SQLEXPRESS, in this example).

How it works…

Entity Framework makes available all of the domain model in the Model property. This class is
prototyped as IModel, but it is actually a subset of Model. Its methods, such as
FindEntityType() and GetEntityTypes(), grant access to the metadata of the domain model,
which includes all the definitions of each mapped class, such as the following:

• Mapped table name and schema
• Mapped columns, their names and other information, such as maximum length and nullability
• Mapped properties, including identifiers and navigation properties

It's important to notice that Entity Framework is agnostic when it comes to datastores, so the information
it exposes may not be very specific. So, in this case, we are looking for information that is specific to
relational databases, hence the Relational() extension method call; otherwise, you'd have to do the
cast by hand, and what's worse, need to know what to cast to!

There's more…

As an exercise, try iterating through all the entities returned by the GetEntityTypes method and see
what meaningful information you can extract!

See also

In this chapter:

• Handling soft deletes
• Capturing the audit data

Improving MVC applications
Granted, most of us who will be writing applications for .NET Core will be writing web applications.
This is not only because there aren't really any other application frameworks for .NET Core–no
Windows Forms or WPF–but because web applications seem to have taken over. So, it pays to know
how to integrate Entity Framework Core with web apps.

We will be looking at the following:

• Registering and injecting data contexts into MVC controllers, view components, and views
• Passing additional configuration to the data context

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Since we will be working with web applications, we will need to add the appropriate packages:
Microsoft.AspNetCore.Mvc, Microsoft.AspNetCore.Server.Kestrel, and
Microsoft.AspNetCore.Server.IISIntegration. Mind you, these are added automatically
by the Visual Studio template for ASP.NET Web Core applications.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it.…

Until now, we have had to manually build instances of the data contexts to use. Because web
applications are not manually instantiated, we have a problem…or maybe not!

ASP.NET MVC Core is built around the concepts of Inversion of Control (IoC) and Dependency
Injection (DI). Basically, these tell us to delegate the creation of concrete classes to specialized libraries
and instead just ask them for the interface or base class that describes the functionality that we want to
use, and to add any dependencies that the concrete classes may have automatically, so that we don't need
to do so ourselves.

So, the first thing to do is to register our data contexts; normally, we would do so in the
ConfigureServices method of the Startup class:

services
.AddEntityFrameworkSqlServer()
.AddDbContext<BlogContext>(opt =>

{

opt.UseSqlServer(Configuration["Data:Blog:ConnectionString"]);
});

So, we are registering all the services that are required for using the SQL Server database with our
service provider (AddEntityFrameworkSqlServer) and then we're explicitly saying that our data
context (BlogContext) will use the SQL Server provider (UseSqlServer) with a given connection
string (Configuration["Data:Blog:ConnectionString"]).

For this to work properly, our context needs to help; in particular, it needs to feature a specific public
constructor:

public class BlogContext : DbContext
{

public BlogContext(DbContextOptions options) : base(options)
{
}

}

Of course, it can have more constructors, but it specifically needs one that takes a
DbContextOptions. The DbContext base class knows what to do with it. Notice that using this
approach, we don't even need to have an OnConfiguring method, because the actual configuration is
done outside the context.

Because we are registering our context to the "global" service provider (that comes from the
ConfigureServices method), it will be available for injection in all MVC components, such as
controllers:

public class HomeController : Controller
{

public HomeController(BlogContext blogContext)
{

//do something with blogContext
}

}

It's also available for view components:

public class MyViewComponent : ViewComponent
{

public MyViewComponent(BlogContext blogContext)
{

//do something with blogContext
}

}

And it's available for tag helpers:

public class MyTagHelper
{

public MyTagHelper(BlogContext blogContext)
{

//do something with blogContext
}

}

Finally, its available for views:

@inject BlogContext blogContext

Also, the AddDbContext method is the place where you can specify additional options, such as
logging:

services
.AddEntityFrameworkSqlServer()
.AddDbContext<BlogContext>(opt =>

{
opt.EnableSensitiveDataLogging();
opt.UseLoggerFactory(new LoggerFactory().AddDebug());
opt.ConfigureWarnings(warnings =>
{

warnings.Throw(RelationalEventId.RollingbackTransaction);
});
opt.UseSqlServer(Configuration["Data:Blog:ConnectionString"]);

});

See also

In this chapter:

• Adding logging

Hooking infrastructure services
Being modular means, for Entity Framework Core, that a big part of its constituting parts can be
addressed and switched separately. This means that we can replace a component that has some
functionality for another one that offers enhanced capabilities.

Most of the components of Entity Framework Core have their functionality specified by an interface.
Some of these interfaces are as follows:

• ICompiledQueryCacheKeyGenerator
• IConventionSetBuilder
• IDatabaseProviderServices
• IDbContextTransactionManager
• IInternalEntityEntryFactory
• IEntityQueryModelVisitorFactory
• IHistoryRepository
• IMemberTranslator
• IMethodCallTranslator
• IMigrationsAnnotationProvider
• IMigrationsSqlGenerator
• IModelSource
• IModificationCommandBatchFactory
• IQueryCompilationContextFactory
• IQuerySqlGeneratorFactory
• IRelationalAnnotationProvider
• IRelationalConnection
• IRelationalDatabaseCreator
• IRelationalTransactionManager
• IRelationalTypeMapper
• ISqlGenerationHelper
• ISqlServerSequenceValueGeneratorFactory
• ISqlServerUpdateSqlGenerator
• ISqlServerValueGeneratorCache
• IValueGeneratorSelector

And there are more; these are just those added by the AddEntityFrameworkSqlServer,
AddRelational, AddDbContext, and AddQuery extension methods. We won't go into all of
them. You can see that some are specific to SQL Server (starting with ISqlServer) and the rest are
generic (or specific to relational datasources). For some, it's easy to guess what they do (take, for
example, IRelationalTypeMapper or IRelationalConnection); others are not so simple.
Anyway, they all have a role in making Entity Framework Core work.

So, where does Entity Framework Core get these components (or services) from? The answer is the
service provider. Each Entity Framework Core context has its own service provider, and, fortunately, we

can make it our own by passing an alternative service provider. Normally, we would build one from a
ServiceCollection instance automatically:

var services = new ServiceCollection();
services

.AddEntityFrameworkSqlServer()

.AddDbContext<MyContext>()

.AddSingleton<IEntityStateListener>(
new CustomStateListener());

In this case, we are using the default behavior of having the data context use the services registered in
the external service collection. But we can build another service provider and pass it inside
AddDbContext:

services
.AddEntityFrameworkSqlServer()
.AddDbContext<MyContext>(opt =>

{
var svcscopy = new ServiceCollection();
for (var i = 0; i < services.Count; i++)
{

(svcscopy as IList<ServiceDescriptor>)
.Add(services[i]);

}
opt.UseInternalServiceProvider();

});

If you want to resolve, or even change, one of the built-in services, just make sure you do it after calling
AddEntityFrameworkSqlServer or AddDbContext, to make sure it's there in the first place!

Using other databases
Entity Framework, being a modern, modular and extensible data access tool, supports several datastores.
In fact, starting with Core 1.0, it even has built-in support for non-relational databases. It is expected that
Microsoft and third parties will start making non-relational providers available very soon. In the
meantime, we already have support for a number of relational databases:

Database Provider

Microsoft SQL Server Microsoft.EntityFrameworkCore.SqlServer

SQLite Microsoft.EntityFrameworkCore.SQLite

PostgreSQL Npgsql.EntityFrameworkCore.PostgreSQL

In Memory Microsoft.EntityFrameworkCore.InMemory

MySQL Pomelo.EntityFrameworkCore.MySql

Note

These are just some of the providers that are available for free–and also open source–but there are others
commercially available, of course. Other providers, such as
EntityFrameworkCore.SqlServerCompact40 by Erik Jensen (https://github.com/ErikEJ) or
EntityFramework.IBMDataServer by IBM, do not support .NET Core yet. MySQL and Oracle
are working on their own provider, which will be available for free. Devart already offers paid providers
for MySQL, Oracle, PostgreSQL, SQLite, DB2, and SQL Server.

You can always find up-to-date information about available providers on the Entity Framework Core
site: http://ef.readthedocs.io/en/latest/providers.

How to do it…

In general, most stuff works the same way regardless of the provider in use, but there are some
exceptions:

• Some database options, such as the connection string parameters, differ from provider to
provider, reflecting the natural differences between database servers.

• The primary key generation strategy is different. Some providers use auto-incrementing
columns, while others use sequences.

• Not all providers support the same data types; if you stick to the .NET basic types, you should
be safe:

https://github.com/ErikEJ
http://ef.readthedocs.io/en/latest/providers

◦ String
◦ Integers (short, int, long) – unsigned integers should be avoided
◦ Floating point (float, double)
◦ decimal
◦ bool
◦ char
◦ byte and byte []
◦ DateTime
◦ Guid

• Some providers have more query options than others. For example, some providers offer native
regular expression matching.

In general, all providers are configured the same way, through a call to UseXXX() on the
OnConfiguring override, as we can see using the NpgSql provider for PostgreSQL:

protected void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseNpgSql(@"Host=localhost; Database=<db>;
Username=<usr>; Password=<pwd>");

base.OnConfiguring(optionsBuilder);
}

Each provider, of course, will accept slightly different connection strings. If you need to configure
additional options, there's also an overload to UseXXX() that takes a lambda, such as the
UseRowNumberForPaging option for SQL Server:

optionsBuilder.UseSqlServer(@"Data Source=localhost; Initial
Catalog=<db>; User Id=<usr>; Password=<pwd>",
opt =>
{

opt.UseRowNumberForPaging();
});

And there may well be some extension methods as in this example using the Pomelo provider for
MySQL:

modelBuilder.ForMySqlUseIdentityColumns();

Primary key generation strategies such as auto-increment (in the case of SQL Server and MySQL) and
sequences (SQL Server, PostgreSQL, Oracle, and DB2) are defined by the provider. When it comes to
actually configuring the sequence to use, we can do it globally (this works on all providers that support
sequences):

protected void OnModelCreating(ModelBuilder modelBuilder)
{

modelBuilder
.HasSequence(name: "SeqName", schema: "shared")

.StartsAt(1)

.IncrementsBy(1);
base.OnModelCreating (modelBuilder);

}

We can do it per entity (this example is for PostgreSQL; notice the NEXTVAL and the
schema.sequencename syntax):

modelBuilder
.Entity<Product>()
.Property(p => p.Id)
.HasDefaultValueSql("NEXTVAL('shared.SeqName')")
.ValueGeneratedOnAdd();

In case you are wondering, sequences will be created as part of the initial database creation
automatically.

Note

As of now, it is not possible to configure auto-increment options in Entity Framework Core.

It is, of course, possible to use client-generated primary keys, such as meaningful codes or GUIDs. That
also works in any kind of database, if your business case allows it; it may be a viable option. You just
need to tell Entity Framework to not try to generate the key in any way:

modelBuilder
.Entity<Product>()
.Property(p => p.Id)
.ValueGeneratedNever();

Finally, not all providers support this kind of query, regular expression matching, but NpgSql does (other
providers would do it client-side):

context
.Products
.Where(p => Regex.IsMatch(p.Name, "%brand%"))
.ToList();

Other providers may do other LINQ to SQL translations that their databases support.

So, this is a resume of what we said:

Database Provider

Microsoft SQL Server UseSqlServer("<connection string>")

Database Provider

https://www.connectionstrings.com/sql-server/

SQLite UseSqlite("<connection string>")

https://www.connectionstrings.com/sqlite/

PostgreSQL optionsBuilder.UseNpgsql("<connection string>")

https://www.connectionstrings.com/npgsql/

In Memory UseInMemoryDatabase()

MySQL UseMySql("<connection string>")

https://www.connectionstrings.com/mysql/

https://www.connectionstrings.com/sql-server/
https://www.connectionstrings.com/sqlite/
https://www.connectionstrings.com/npgsql/
https://www.connectionstrings.com/mysql/

Chapter 7. Performance and Scalability
In this chapter, we will cover the following topics, all related to improving the performance and/or
scalability of Entity Framework Core:

• Improving the performance of queries
• Testing and profiling queries
• Using asynchronous operations
• Eager loading
• Using the cache

Introduction
Nobody will bother too much if a web page takes too long to open, or try to access a site that is
unresponsive due to too much simultaneous accesses—people will just close it and navigate somewhere
else. With the advances in broadband speed in the last few years, people expect to see things rapidly;
there's no excuse for slowness. And that's precisely what this chapter is about.

Performance is how fast we get results, and scalability is how well our system behaves if we have lots of
simultaneous requests. Not exactly the same, but related.

Let's go through the options we have.

Improving the performance of queries
We want to get the best performance that we can, from the code/application side of things. When it
comes to relational databases, we are interested in optimizing the following:

• Modifications (inserts, updates, deletes)
• Queries

Each has a different solution.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer. We will also need
Pomelo.EntityFrameworkCore.Lolita.SqlServer for the strongly typed bulk API.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Let's see how we can improve the performance of our queries.

Modifications

Entity Framework, in any of its versions and like most ORMs, is not meant to be used as a bulk import
tool, meaning it really shouldn't be used for that and there's nothing really we can do about it. But we
can optimize updates and deletes.

Updates

Normally, the flow for doing updates in an ORM is as follows:

1. Retrieve an entity.
2. Make changes to it.
3. Save changes.

But it turns out this is very inefficient: ORMs have to create an instance, hydrate it from the column
values returned from the database, and add it to its change tracking service. Imagine we want to do this
in bulk, that is, for many records.

There are easy solutions for this:

• Use SQL to apply changes to the database directly
• Use an extension for Entity Framework Core that allows specifying strongly-typed changes

In the first case, we would use something like this:

var updatedRecords = ctx
.Database
.ExecuteSqlCommand(
"UPDATE dbo.MyEntities SET Date = {0} WHERE Id = {1}",

DateTime.Today, 10);

Note

ExecuteSqlCommand will return the number of affected records.

We already covered one such extension in the last chapter: it is the
Pomelo.EntityFrameworkCore.Lolita.SqlServer package, and it allows us to write code
such as this:

var updatedRecords = ctx
.MyEntities
.Where(x => x.Id == 10)
.SetField(x => x.Date)
.WithValue(DateTime.Today)
.Update();

Note

There's no need to call the SaveChanges method on DbContext, it is done for us through the
Update extension method. This method will return the number of affected records.

You can see that this is much better in several ways: it's a pure .NET solution with no string constants
and no need to know the actual table and column names.

This also works for updates based on the actual data:

var updatedRecords = ctx
.MyEntities
.Where(x => x.Id == 10)
.SetField(x => x.Date)
.AddDays(1)
.Update();

Note

Please keep in mind that this only works if your entity mapping is not using any kind of optimistic
concurrency checks, in which case, you have to load each entity before making changes to it.

Deletes

What about deletes? Normally, ORMs follow a similar pattern as updates, but instead of modifying an
entity, we mark it as deleted. But, as for updates, there is no need to actually load the full entity into the
context. We can do it like this, for a single entity delete:

ctx.MyEntities.Remove(new MyEntity { Id = 10 });
var deletedRecords = ctx.SaveChanges();

Note

If there isn't actually any record with the given ID, you will get an exception, so be warned!

For bulk updates, we can use SQL:

var deletedRecords = ctx
.Database
.ExecuteSqlCommand(

"DELETE FROM dbo.MyEntities WHERE Id = {0}", 10);

Or we can use an extension such as Pomelo.EntityFrameworkCore.Lolita.SqlServer:

var deletedRecords = ctx
.MyEntities
.Where(x => x.Id == 10)
.Delete();

Another very handy optimization has to do with change tracking. All entities loaded by (or explicitly
added to) an Entity Framework context are stored in what is called the session or first level cache. When
entities are added to this cache, Entity Framework takes a snapshot of its state. When time comes to
persist changes to the database–normally when SaveChanges is called—the Entity Framework
context has to iterate through all of entities in its first level cache and, for each that is not marked as
deleted or added, check if it was modified—its current state does not match the one that was taken when
the entity was added. If so, then Entity Framework considers that the entity was changed and thus needs
to be updated in the database. Now, if we have a big number of entities in the first level cache, it may
take some time to check all of them. If we are 100% sure that there are no changes other than additions
or deletes (or if we really don't care), we can disable change tracking. To do so, we set
AutoDetectChangesEnabled to false:

ctx.ChangeTracker.AutoDetectChangesEnabled = false;

If we do so and we want to revert this behavior, for the entities currently in the cache, we need to call
DetectChanges:

ctx.ChangeTracker.DetectChanges();

Note

Just setting AutoDetectChangesEnabled to true won't work; you also need to call
DetectChanges.

Queries

When it comes to querying, we normally use LINQ, and it usually does a good job in translating to SQL.
But, there are cases where we need to resort to plain SQL, for example, queries that are too complex for
LINQ, or when we want to use functions or stored procedures.

SQL

If we want to return data that can be translated to our mapped entities, we can easily use the FromSql
method:

var entities = ctx
.MyEntities
.FromSql("EXEC dbo.GetMyEntity @Id = {0}", 10)
.ToList();

Otherwise, for plain data that doesn't have the shape of an entity, it's slightly more work, as we need to
handle the data reader, iterate through its results, and fetch the columns we're interested in:

var con = ctx.Database.GetDbConnection();
using (var cmd = con.CreateCommand())
{

var param = cmd.CreateParameter();
param.ParameterName = "id";
param.Value = 10;
cmd.CommandText = "EXEC dbo.GetMyData @Id = @id";
cmd.Parameters.Add(param);
if (con.State != ConnectionState.Open)
{

con.Open();
}
using (var reader = cmd.ExecuteReader())
{

while (reader.Read())
{

var id = reader.GetInt32(0);
var name = reader.GetString(1);
var timestamp = reader.GetDateTime(2);
var guid = reader.GetGuid(3);
var flag = reader.GetBoolean(4);

}
}

}

Note

Make sure you dispose of the data reader and command when you no longer need them.

Whenever possible, you should only ask for the data that you effectively need. This has two sides to it:

• Using projections to retrieve only the columns that are required
• Using paging to return only a small section of the data

Paging in SQL is highly dependent on the server of choice. Even SQL Server offers at least two paging
options:

• Based on ROW_NUMBER(), which works on any SQL Server version starting from 2008:

SELECT [t].[Id], [t].[Name], [t].[Date]
FROM
(
SELECT [x].[Id], [x].[Name], [x].[Date],
ROW_NUMBER() OVER(ORDER BY [x].[Date]) AS
[__RowNumber__]
FROM [MyEntities] AS [x]
) AS [t]
WHERE ([t].[__RowNumber__] > @StartRowNum)
AND ([t].[__RowNumber__] <= (@StartRowNum + @PageSize)) S

• Based on OFFSET and LIMIT, for SQL Server 2012 and higher:

SELECT [x].[Id], [x].[Name], [x].[Date]
FROM [MyEntities] AS [x]
ORDER BY [x].[Date]
OFFSET @StartRowNum ROWS FETCH NEXT @PageSize ROWS ONLY

In both examples, @StartRowNum is the index of the first record that should be returned and
@PageSize is the number of records to return.

Note

Keep in mind that whenever you want to do paging, you should always specify an order.

Projections are basically done the same way everywhere: we just SELECT the columns we need.

LINQ

If you can live with LINQ, there are a couple of things that you should be aware of.

Any extension methods that you call on your query expression that the provider does not know how to
translate to SQL call will be executed client-side.

Second, some provider-specific settings may affect how Entity Framework Core translates the LINQ
expressions to SQL. For example, the SQL Server provider has a setting,
UseRowNumberForPaging, for controlling whether to use ROW_NUMBER or OFFSET for paging.
All relational database providers offer the UseRelationalNulls that can be used to tell Entity
Framework how it should generate SQL queries that deal with Nulls:

protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString, opt =>
{

opt.UseRelationalNulls();
//for versions of SQL Server < 2012
opt.UseRowNumberForPaging();

});
base.OnConfiguring();

}

Note

Different providers may offer other options, so do check out the documentation.

Paging in LINQ is done in a standard way:

var entities = (from e in ctx.MyEntities orderby e.Date select e)
.Take(10)
.Skip(5)
.ToList();

And projections are done in a standard way too:

var entityProps = (from e in ctx.MyEntities orderby e.Date select
new { e.Name, e.Date })

.ToList();

In this example, we are returning instances of an anonymous class that contains Name and Date
properties. The LINQ to SQL translation will make sure that only these columns are selected.

Finally, let's go back to the first level cache. All entities loaded from Entity Framework as the result of a
query (SQL or LINQ) will be stored in the first level cache. If you know that some entities will never
have any changes, and therefore do not need to be checked, you can prevent them from being added to
the cache by applying the AsNoTracking method:

var entityProps = (from e in ctx.MyEntities orderby e.Date select e)
.AsNoTracking()
.ToList();

The default behavior is, of course, to track (add to the cache) all entities, but we can revert it by setting
the QueryTrackingBehavior property:

ctx.ChangeTracker.QueryTrackingBehavior =
QueryTrackingBehavior.NoTracking;

In this case, if the default behavior is to not track entities automatically, we can do the opposite to have
them being tracked:

var entityProps = (from e in ctx.MyEntities orderby e.Date select e)
.AsTracking()
.ToList();

Disabling the tracking of entities helps in two ways:

• Makes queries faster to execute, because each returned entity does not need to be added to a
collection after it is instantiated

• When the Entity Framework context is about to perform change tracking, there are fewer
entities to verify for modifications

Note

Projected entities are never stored in the first level cache, because they are not considered
"complete" entities.

See also

In this chapter:

• Testing and profiling queries
• Eager loading

Testing and profiling queries
Sometimes, a query doesn't behave as expected: it either doesn't return what it should or takes longer
than desired. When this happens, you need to profile it.

We will talk about four options to test profile your queries:

• Adding logging
• Using a profiler connected to the database to monitor executing queries
• Adding a diagnostics package to monitor your app in real time
• Using a tool to dynamically perform queries and see their results

How to do it…

The next sections will cover tools that will help you in watching the output, measuring the performance,
and debugging your queries.

Logging

You have a couple of options when it comes to profiling; first, it is usually helpful to look at the SQL
that is being sent to the database. If you enable logging, you can get both the SQL and the time it took to
execute. Think of this as the first step in profiling. This is how it goes:

protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseLoggerFactory(new LoggerFactory()
.AddConsole()
.AddDebug());
optionsBuilder.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}

AddConsole is useful for console applications, and AddDebug is useful for web ones. This causes
Entity Framework to output any SQL that it produces:

info:
Microsoft.EntityFrameworkCore.Storage.Internal.RelationalCommandBuild
erFactory[1]

Executed DbCommand (2ms) [Parameters=[],
CommandType='Text',CommandTimeout='30']

SELECT [x].[Id], [x].[Date], [x].[Name]
FROM [MyEntities] AS [x]
WHERE [x].[Date] = @__Today_0

You can see in the output, the SQL and the time it took to execute (2 ms).

Database profiler

Sometimes, however, it is not practical or even possible to change the code to add logging and monitor
its output. When this happens, another option is to hook directly to the database and see whatever SQL
comes in. A good choice is Express Profiler, an open source profiler with .NET code. Express Profiler is
available from CodePlex: https://expressprofiler.codeplex.com/.

Using Express Profiler is easy: just open it and point to the database you wish to monitor. Then you can
observe what is happening:

Express Profiler

You can see that it shows all SQL that was sent, even some that you may not be expecting, and a lot of
additional information, such as the logged-in user, the CPU usage, duration, and SQL Server Process
ID (SPID). Then you can apply some filters to see only the stuff you're interested in:

https://expressprofiler.codeplex.com/

Filtering Express Profiler

All in all, an interesting tool for query monitoring.

Real time monitoring

Another very interesting project that we will talk about is Glimpse. Glimpse is another open source
project, available, http://getglimpse.com/, which has a very strong involvement from Microsoft.

http://getglimpse.com/

Glimpse is not just for monitoring Entity Framework; it provides a number of other useful insights. It
has a very small footprint and is very easy to install: just add the Glimpse.Agent.AspNet.Mvc
and Glimpse.Server packages and register its services to the service provider:

public void ConfigureServices(IServiceCollection services)
{

services.AddGlimpse();
//rest goes here

}

And then add the Glimpse middleware to the pipeline:

public void Configure(IApplicationBuilder app,
IHostingEnvironment env, ILoggerFactory loggerFactory)
{

app.UseGlimpse();
//rest goes here

}

After this, the Glimpse bar will be immediately available in your web page:

The Glimpse bar

This bar presents a summary of the most useful information, as far as Entity Framework is concerned; it
shows how long the queries took (31 ms) and how many records were returned (1). If we want more
detailed information, we can click on the Glimpse icon in the top right corner of the screen:

Here, you can see all the queries that have been run as part of the request, but you can check all other
resources that were requested as part of the main request. You even get the executed SQL!

Testing

LINQPad is a commercial tool that can be used to play with several LINQ providers, including Entity
Framework Core's DbContext implementation. It also offers a free license, which, as can be expected,
is not as powerful as the paid one.

After we start LINQPad, we can add connections from several sources. If we choose Entity Framework
V7 Driver, select the assembly that contains our data context, choose the data context class from this
assembly, and pass it a proper connection string, as shown in the following screenshot:

Configuring a LINQPad connection

We can then play with it, like executing any kinds of LINQ queries and seeing its results in a visual way:

LINQPad queries

I won't go into too much detail about LINQPad, but if you download even the free version, you can see
for yourself. You can execute queries dynamically and see the results immediately, with the bonus of
also getting the SQL for them.

See also

In this chapter:

• Improving the performance of queries
• Eager loading

Using asynchronous operations
Asynchronous programming can help us avoid performance bottlenecks and enhance the overall
responsiveness of our applications. .NET has had support for asynchronous operations since its early
days, but version 4.5 took it one step further, with the introduction of the async and await keywords
and related patterns. And, sure thing, the developers of Entity Framework Core took it in consideration
when they wrote it: asynchronous operations, both for queries and for modifications.

First, let's get one thing straight: asynchronous operations are not faster than synchronous ones; in fact,
they may even be slightly slower because of context switches. The real advantage is that they do not
block the current thread of execution, and are therefore more suited for handling multiple simultaneous
requests, such as in a web server.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

Asynchronous operations can help in two situations:

• Performing queries for retrieving data
• Making modifications to existing data

Queries

All queries returning records can be made asynchronous by calling an asynchronous terminator. Instead
of ToList, ToArray, First, FirstOrDefault, Single, SingleOrDefault, Count, and so
on, we should use their asynchronous counterparts: ToListAsync, ToArrayAsync, FirstAsync,
FirstOrDefaultAsync, SingleAsync, SingleOrDefaultAsync, CountAsync, and so
on. Here is an example:

var entities = await ctx
.MyEntities
.Where(x => x.Date <= DateTime.Today)
.ToListAsync();

Just notice the usage of the await keyword; it is used to get a synchronous value from an asynchronous
method call. await can only be used inside methods marked with the async keyword, which should
return a Task or Task<T> value.

All asynchronous methods take an optional CancellationToken parameter. This parameter, when
supplied, provides a way for the caller method to cancel the asynchronous execution:

var source = new CancellationTokenSource();
var cancel = source.Token;
cancel.Register(() =>
{

//cancelled
});
ctx.MyEntities.ToListAsync(cancel);
if (!cancel.WaitHandle.WaitOne(TimeSpan.FromSeconds(5)))
{

source.Cancel();
}

Note

If you want to perform multiple simultaneous asynchronous queries on the same context at the same
time, you need to enable Multiple Active Result Sets (MARS). See https://msdn.microsoft.com/en-us/
library/ms131686.aspx.

Modifications

In Entity Framework Core, the only method that applies changes (synchronously) is SaveChanges,
and, of course, there is an asynchronous version, not surprisingly called SaveChangesAsync:

var results = await ctx.SaveChangesAsync();

Of course, you can also pass a CancellationToken as a parameter to SaveChangesAsync.

Note

Having a query running asynchronously doesn't change anything in the SQL or anything else;
everything works exactly the same.

See also

In this chapter:

• Improving the performance of queries

https://msdn.microsoft.com/en-us/library/ms131686.aspx
https://msdn.microsoft.com/en-us/library/ms131686.aspx

Eager loading
An entity in Entity Framework Core can be associated with other entities in a number of ways:

• One-to-one relationship: Where two entities share a primary key
• One-to-many: An entity has a collection of entities
• Many-to-one: The inverse of one-to-many; an entity has a pointer to another entity

When querying for an entity, Entity Framework does not automatically bring the entities associated with
it. This is actually a good thing: depending on how closely related the entities are, asking for one entity
could bring with it the entire database!

This doesn't mean, of course, that we can't retrieve, on the same query, all the associated entities that
we're interested in: this is called eager loading. In fact, in Entity Framework Core 1, this is of particular
importance, since lazy loading is not yet implemented.

Note

The SELECT N+1 problem is not relevant for Entity Framework Core, since it doesn't (yet) have lazy
loading.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Notice that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will be generating C# POCO entities that match our database:

1. Create an entity with the name Blog in the BusinessLogic project, in a file called
Blog.cs:

using System;
using System.Collections.Generic;

namespace BusinessLogic
{

public class Blog
{

public Blog()
{

Posts = new HashSet<Post>();
}
public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }
public virtual ICollection<Post> Posts { get; set; }
}

}

2. And create a file called Post.cs, with the following content, in the same project:

using System;

namespace BusinessLogic
{

public class Post
{

public int PostId { get; set; }
public string Title { get; set; }
public DateTime Timestamp { get; set; }
public string Body { get; set; }
public Blog Blog { get; set; }

}
}

3. Now, create a data context called BlogContext in the DataAccess project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
using System.Collections.Generic;

namespace DataAccess
{

public class BlogContext : DbContext
{

private readonly string _connectionString;
public BlogContext(string connectionString)
{

_connectionString = connectionString;
}

public DbSet<Blog> Blogs { get; set; }

protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)

{
optionsBuilder

.UseSqlServer(_connectionString);
base.OnConfiguring(optionsBuilder);

}
}

}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext passing it the
connection string. Finally, drop the OnConfiguring method.

4. A unit test is what follows. Let's call it EagerLoadingTests and place it in the
UnitTests project:

using Xunit;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using DataAccess;

namespace UnitTests
{

public class EagerLoadingTests : BaseTests
{

[Fact]
public void CanEagerLoad()
{

//Arrange
using (var ctx = new BlogContext

(Configuration["Data:Blog:ConnectionString"]))
{

//Act
var blogsAndPosts = ctx

.Blogs

.Include(b => b.Posts)

.ToList();

//Assert
Assert.NotNull(blogsAndPosts);
Assert.NotEmpty(blogsAndPosts);
Assert.All(blogsAndPosts, b =>

Assert.NotNull(b.Posts));

}
}

}
}

5. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new
ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set; }

}
}

6. Finally, add the following connection string to the appsettings.json file and make sure
the file is copied to the output folder upon build:

{
"Data": {

"Blog": {
"ConnectionString":"Server=(local)\\SQLEXPRESS;

Database=Blog; Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under the
connectionStrings section, with the name Blog. Of course, change the connection string to
match your system settings; for example, the name of the SQL Server instance (SQLEXPRESS, in this
example).

How it works…

By adding an Include call to a LINQ expression on a root entity and referencing an entity or
collection property, we instruct Entity Framework to load this property as part of the query. When it sees
this, Entity Framework will generate SQL with joins to the other tables that are being included:

SELECT [b].[BlogId], [b].[Name], [b].[CreationDate], [b].[Url],
[p].[PostId], [p].[Title], [p].[Timestamp], [p].[Body]
FROM [Blog] AS [b]
LEFT JOIN [Post] AS [p] ON [p].[BlogId] = [b].[BlogId]

Note

The Include extension method can be used to eagerly load both collections of entities (one-to-many)
or entity references (one-to-one or many-to-one). Calling it on a scalar property (one of a base type) has
no effect.

Several include paths can be specified, but you should ask yourself if you really should do it. This is
because the actual data returned is greater than the sum of the individual parts. Just consider these two
tables:

BlogId Name CreationDate Url

1 Development With A Dot 2016-08-19 http://weblogs.asp.net/ricardoperes

PostId BlogId Title Body Timestamp

1 1 First Post This is the first post 2016-08-19 10:00:00

2 1 Second Post This is the second post 2016-08-20 16:00:00

3 1 Third Post This is the third post 2016-09-10 20:00:00

A query over the Blog entity and including the Post entity might contain the following:

BlogId Name CreationDate Url PostId Title Body Timestamp

1 Development
With A Dot

2016-08-19 http://weblogs.asp.net/
ricardoperes

1 … … 2016-08-19
10:00:00

http://weblogs.asp.net/ricardoperes
http://weblogs.asp.net/ricardoperes
http://weblogs.asp.net/ricardoperes

BlogId Name CreationDate Url PostId Title Body Timestamp

1 Development
With A Dot

2016-08-19 http://weblogs.asp.net/
ricardoperes

2 … … 2016-08-20
16:00:00

1 Development
With A Dot

2016-08-19 http://weblogs.asp.net/
ricardoperes

3 … … 2016-09-10
20:00:00

See the problem? Yes, it's duplication…when we perform a join between the two tables, we get
significant duplication, which means data will take longer to get to the application. This is, of course,
not an argument against performing joins, but you should be aware of its implications.

See also

In this chapter:

• Testing and profiling queries

http://weblogs.asp.net/ricardoperes
http://weblogs.asp.net/ricardoperes
http://weblogs.asp.net/ricardoperes
http://weblogs.asp.net/ricardoperes

Using the cache
We already talked about the first level (or session) cache. Basically, all records loaded from an Entity
Framework context as the result of a query are added to this cache automatically. So, if we have loaded
enough entities, we may have in this cache what we are looking for, without the need to go to the
database.

Another kind of cache is sometimes called a second level cache. This kind of cache outlives a data
context, meaning different instances of the same context share this cache. What is it good for? Well, it's
good for reference data, for example, data that does not change so often. Once this data is loaded into
memory, it can be made available to all contexts that need it, no need to query the database again,
instantiate all entities, hydrate them, and so on.

We will explore both caches here.

Getting ready

We will be using the NuGet Package Manager to install the Entity Framework Core 1 package,
Microsoft.EntityFrameworkCore. We will also be using a SQL Server database to store the
data, so we will also need Microsoft.EntityFrameworkCore.SqlServer.

Next, we will need the Z.EntityFramework.Plus.EFCore package. This contains, among
others, an implementation of a second level cache.

Finally, xunit is the package we will be using for the unit tests, and dotnet-text-xunit adds
tooling support for Visual Studio. Notice that the UnitTests project is a .NET Core App 1.0
(netcoreapp1.0), that Microsoft.EntityFrameworkCore.Design is configured as a build
dependency, and Microsoft.EntityFrameworkCore.Tools is set as a tool.

Open Using EF Core Solution from the included source code examples.

Execute the database setup script from the code samples included for this recipe. This can be found in
the DataAccess project within the Database folder.

How to do it…

We will see how we can use both caches, the first level and a second level cache implementation by
Z.EntityFramework.Plus:

1. Create an entity with the name MyEntity in the BusinessLogic project, in a file called
MyEntity.cs:

using System;
namespace BusinessLogic
{

public class MyEntity

{
public int Id { get; set; }
public string Name { get; set; }
public DateTime Date { get; set; }

}
}

2. We now create an extension method for DbContext-derived types. This should go in the
DataAccess project, in a file called DbContextExtensions.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
{

public class DbContextExtensions
{

public static IEnumerable<T> Local<T>(
this DbContext ctx) where T : class
{

return ctx
.ChangeTracker
.Entries<T>()
.Select(e => e.Entity);

}
}

}

3. Now, create a data context called MyContext in the DataAccess project:

using Microsoft.EntityFrameworkCore;
using BusinessLogic;
namespace DataAccess
{

public static class MyContext : DbContext
{

private readonly string _connectionString;
public MyContext(string connectionString)
{

_connectionString = connectionString;
}

public DbSet<MyEntity> MyEntities { get; set; }
protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder
.UseSqlServer(_connectionString);

base.OnConfiguring(optionsBuilder);
}

}
}

Note

For Entity Framework 6, replace the Microsoft.EntityFrameworkCore namespace
with System.Data.Entity and call the base constructor of DbContext passing it the
connection string. Finally, drop the OnConfiguring method.

4. Now, for a unit test class, let's call it CacheTests, and place it in the UnitTests project:

using Xunit;
using Microsoft.EntityFrameworkCore;
using System;
using System.Linq;
using Microsoft.Extensions.Caching.Memory;
using System.Threading;
using BusinessLogic;
using DataAccess;
using Z.EntityFramework.Plus;

namespace UnitTests
{

public class CacheTests : BaseTests
{

[Fact]
public void CanQueryFirstLevelCache()
{

//Arrange
using (var ctx = new MyContext

(Configuration["Data:My:ConnectionString"]))
{

//Act
var entity = new MyEntity
{

Name = "Test",
Date = DateTime.Today

};
ctx.MyEntities.Add(entity);
ctx.SaveChanges();
ctx.Entry(entity).State = EntityState.Detached;
var entities = ctx

.Local<MyEntity>()

.ToList();
//Assert
Assert.NotNull(entities);

Assert.Empty(entities);
ctx.MyEntities.ToList();
entities = ctx

.Local<MyEntity>()

.ToList();
Assert.NotNull(entities);
Assert.NotEmpty(entities);

}
}

[Fact]
public void CanQuerySecondLevelCache()
{

//Arrange
var cache = QueryCacheManager.Cache as MemoryCache;
var query = null as IQueryable<MyEntity>;
var cacheKey = string.Empty;
using (var ctx = new MyContext

(Configuration["Data:My:ConnectionString"]))
{

//Act
var entity = new MyEntity
{

Name = "Test",
Date = DateTime.Today

};
ctx.MyEntities.Add(entity);
ctx.SaveChanges();
ctx.Entry(entity).State = EntityState.Detached;
Assert.Equal(0, cache.Count);
var entities = query

.FromCache(new MemoryCacheEntryOptions
{

SlidingExpiration = TimeSpan.FromSeconds(5)
});

cacheKey = QueryCacheManager.GetCacheKey
(query, new string[0]);

var isFound = cache.TryGetValue(cacheKey,
out entities);

//Assert
Assert.True(isFound);
Assert.NotNull(cacheKey);
Assert.NotNull(entities);
Assert.NotEmpty(entities);
Assert.Equal(1, cache.Count);

}
using (var ctx = new MyContext

(Configuration["Data:My:ConnectionString"]))
{

var entities = query.FromCache();
var isFound = cache.TryGetValue(cacheKey,

out entities);
//Assert
Assert.True(isFound);
Assert.NotNull(entities);
Assert.NotEmpty(entities);
Assert.Equal(1, cache.Count);
//two minutes
Thread.Sleep(2 * 60 * 1000);
isFound = cache.TryGetValue(cacheKey,

out entities);
Assert.False(isFound);

}
}

}
}

5. We will need the base class for the unit tests, BaseTests, which should also go in the
UnitTests project:

using Microsoft.Extensions.Configuration;
namespace UnitTests
{

public abstract class BaseTests
{

protected BaseTests()
{

var configurationBuilder = new
ConfigurationBuilder();

configurationBuilder
.AddJsonFile("appSettings.json");
Configuration = configurationBuilder.Build();

}
protected IConfiguration Configuration { get; set;

}
}

6. Finally, add the following connection string to the appsettings.json file and make sure
the file is copied to the output folder upon build:

{
"Data": {

"Blog": {
"ConnectionString":

"Server=(local)\\SQLEXPRESS;Database=Blog;

Integrated Security=SSPI;
MultipleActiveResultSets=true"

},
"My": {

"ConnectionString":
"Server=(local)\\SQLEXPRESS;Database=Blog;
Integrated Security=SSPI;
MultipleActiveResultSets=true"

}
}

}

Note

For Entity Framework 6, we would add this connection string to the Web.config file, under
the connectionStrings section, with the name Blog. Of course, change the connection
string to match your system settings; for example, the name of the SQL Server instance
(SQLEXPRESS, in this example).

How it works…

The first unit test, CanQueryFirstLevelCache, tests the usage of the first level cache: after an
item is loaded, it is stored there, and can be queried at any time through the Entries method of the
ChangeTracker. This is all using the built-in functionality.

CanQuerySecondLevelCache, on the other hand, makes use of the
Z.EntityFramework.Plus package to implement a cache that outlives a context. Entries are
stored for some amount of time in the cache, and then they expire. Whenever the FromCache
extension method is used, if the query can be found in the cache, it is returned from there, otherwise,
Entity Framework goes to the database, as it usually does.

There's more…

The Z.EntityFramework.Plus package offers a lot more than just (if it wasn't enough!) a cache
provider. Do have a look at the source code for the project, available at GitHub: https://github.com/
zzzprojects/EntityFramework-Plus.

https://github.com/zzzprojects/EntityFramework-Plus
https://github.com/zzzprojects/EntityFramework-Plus

Appendix A. Pitfalls
In this chapter, we are going to cover the following pitfalls–unexpected behaviors of Entity Framework
Core:

• GroupBy executes on the client side
• Table per class hierarchy requires nullable columns for derived classes
• References not eagerly fetched are lost
• Date/time operations are not supported
• Paging in SQL Server earlier than 2012
• Database null semantics
• Migrations and contexts with parameterized constructors
• Migrations with contexts in different projects
• Setting the maximum string length
• Mapping discriminator columns
• Composite primary keys
• Refreshing entities
• Cascading entity deletes

Introduction
In this chapter, we will be looking at some common pitfalls of Entity Framework Core. By pitfall I mean
to say some behavior that we are not expecting and which may cause unwanted effects. Not all of these
are bugs or implementation problems, it may be just something that we didn't thought of, yet, is here to
remind us.

Because Entity Framework Core is quite new – it was a total rewrite of the previous Entity Framework
code – some parts of it haven't been implemented, purely because of time constraints. Some of these
pitfalls will cease to make sense, hopefully soon, others are just constraints that exist and probably will
always exist.

In some cases, it may not be obvious to find out the cause once we fall into one of them, therefore, I
hope this appendix will help you in figuring out sooner than later what is going wrong.

GroupBy executes on the client side
The current version of EF Core disregards GroupBy.

Problem

We normally use the LINQ GroupBy method to group records by some common characteristic,
probably with the goal of doing aggregations. In most LINQ implementations, this generates a SQL
GROUPBY, which is what we want, but, in Entity Framework Core 1.0, this translation is silently
ignored, and grouping is instead done on the client-side, after retrieving all records. The problem is, this
may bring a lot of records, causing severe performance and memory problems.

Imagine, for example, that you have thousands of products distributed in four colors: blue, red, green,
and yellow. You might want to run this query:

var productsGrouped = (from p in context.Products
groupby p.Color into g
select new { Color = g.Key, Count = g.Count() })

.ToDictionary(x => x.Color, x => x.Count);

What will happen is, Entity Framework will bring all the thousands of products into the client
application and perform the grouping by color and count the products in memory.

How to fix it…

Unfortunately, as of now, we need to use plain SQL for this, which can be a plain SELECT or a stored
procedure call. There is no alternative, I'm afraid; we need to do something like the following:

//get the ADO.NET connection
var con = context.Database.GetDbConnection();
var productsGrouped = new Dictionary<string, int>();
//create an ADO.NET command attached to the connection
using (var cmd = con.CreateCommand())
{

cmd.CommandText = "SELECT p.Color, COUNT(1)FROM Products p GROUP
BY p.Color";

con.Open();
using (var reader = cmd.ExecuteReader())
{

//while there are records to read
while (reader.Read())
{

//read the first column as a string
var color = reader.GetString(0);
//read the second column as an integer
var count = reader.GetInt32(1);

productsGrouped[color] = count;
}

}
}

The default implementation, if not understood and dealt with in time, can result in severe performance
(lots of records traveling from the database to the client application) and memory (lots of instances being
created and hydrated) problems, so be warned!

Table per class hierarchy requires nullable
columns for derived classes
When persisting class hierarchies, all properties in derived classes must be nullable.

Problem

A common pattern for representing class hierarchies in relational databases is to use a table that will
have columns for each of the base and derived classes. For example, imagine we have a Vehicle base
class and two derived classes, LandVehicle and AirVehicle:

Vehicles class model

Using the Table per class hierarchy (also called single table inheritance), this could be represented as
follows:

Table per class hierarchy mapping table

You may have noticed that the columns that correspond to the properties in the derived classes–Wheels
and Wings–are set to accept nulls. Why is that? Well, since this table has to support a schema for all the
possible derived classes, we never know, for each row, which class it will map to. For that reason, all
columns that correspond to the properties in derived classes need to be nullable, because otherwise, what
value would we store there for the records that correspond to other classes?

Consider the following table per class hierarchy values for example:

ID Name Wheels Wings Discriminator

1 Helicopter NULL 0 AirVehicle

2 Car 4 NULL LandVehicle

How to solve it…

All our properties of value types need to be marked as nullable:

public class LandVehicle : Vehicle
{

public int? Wheels { get; set; }
}
public class AirVehicle
{

public int? Wings { get; set; }
}

This is for nullable value types; since they cannot be null, the built-in conventions will mark the
properties as nullable. For reference types, we need to mark them as such explicitly, in the
OnModelCreating method:

protected override void OnModelCreating(
protected override void OnModelCreating(
DbModelBuilder modelBuilder)
{

//create the hierarchy
modelBuilder
.Entity<Vehicle>()
.HasDiscriminator()
.HasValue<LandVehicle>(typeof(LandVehicle).Name)
.HasValue<AirVehicle>(typeof(AirVehicle).Name);
//mark Wheels as nullable – not required
modelBuilder
.Entity<Vehicle>()
.Property(x => x.Wheels)
.IsRequired(false);
//mark Wings as nullable – not required
modelBuilder
.Entity<AirVehicle>()
.Property(x => x.Wings)
.IsRequired(false);
base.OnModelCreating(modelBuilder);

}

Here we are configuring the class Vehicle to have two derived classes, AirVehicle and
LandVehicle, each using as its discriminator value, its own class name. Each property in one of the
derived classes is set to not required (nullable).

References not eagerly fetched are lost
If you don't explicitly ask for related entities when you load an entity, you won't be able to do it later.

Problem

Object-Relational Mappers (ORMs) typically have a feature called lazy loading. Lazy loading means
that when an entity is loaded from the database, all its relations (one-to-one, one-to-many, many-to-one,
many-to-many) do not necessarily need to be loaded too. When they are first accessed, the ORM will
issue a query and retrieve the records. This is interesting, because we do not need to pay the extra cost of
loading potentially a lot of records if we are not going to use them. On the other hand, it requires that a
connection is always available when the lazy properties are first accessed, otherwise their data cannot be
retrieved.

So, here's the catch: Entity Framework Core 1.0 does not have lazy loading. It will come in a future
version. What happens, then? Let's imagine we have the following class model:

using System;
using System.Collections.Generic;
namespace BusinessLogic
{

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }
public DateTime CreationDate { get; set; }
public string Url { get; set; }
public ICollection<Post> Posts { get; set; }

}
public class Post
{

public int PostId { get; set; }
public string Title { get; set; }
public DateTime Timestamp { get; set; }
public string Body { get; set; }
public Blog Blog { get; set; }
public ICollection<Comment> Comments { get; set; }

}
}

See what happens if you execute a query for the Blog class, such as this one:

var blogs = ctx.Blogs.ToList();

You will retrieve all the blogs in the database, but on each of them, the Posts collection will be null,
even for those blogs that do have posts! This is an example of a not loaded one-to-many relationship.

How to solve it…

This is caused by the lack of the lazy loading feature. Since Entity Framework wasn't instructed to fetch
the associated posts, it won't do it. The solution is to eagerly fetch them in the query:

var blogsWithPosts = ctx
.Blogs
.Include(b => b.Posts)
.ToList();

This way, all of the posts will be retrieved alongside the blogs.

The same will happen for many-to-one relationships, asking for all posts will not bring along their blogs:

var posts = ctx.Posts.ToList();

We also need to explicitly ask for the Blog property to be included:

var postsWithBlogs = ctx
.Posts
.Include(p => p.Blog)
.ToList();

If you look at the SQL query that was produced, you will see that it generates a LEFT JOIN clause,
bringing together the columns for both the Blog and Posts tables.

The Include extension method can even be used to eagerly load multiple levels, for example:

var postsWithBlogsAndComments = ctx
.Posts
.Include(p => p.Blog)
.Include(p => p.Comments)
.ToList();

Note

Not asking for a relation to be retrieved will cause its corresponding property to be null, so be aware of
it.

Date/time operations are not supported
Most direct operations with DateTime objects are not supported.

Problem

It is often necessary to produce operations over DateTime properties, such as, for example, computing
the difference between two columns. In the past (Entity Framework pre-Core), there was a class called
DbFunctions (https://msdn.microsoft.com/en-us/library/
system.data.entity.dbfunctions(v=vs.113).aspx) that had some useful extension methods that we could
use for this.

Unfortunately, as of Entity Framework Core 1, this class is not included. This means that the following
queries do not work or will not work as expected–in this example, AddDays will be executed client-
side, not in the database:

var age = ctx
.Blogs
.Select(b => DateTime.UtcNow – b.CreationDate)
.ToList();

var oneWeekAfterCreation = ctx
.Blogs
.Select(b => b.CreationDate.AddDays(7))
.ToList();

How to solve it…

For queries that need to perform complex date/time operations in the database side, we need to resort to
plain SQL; there is no way around it. For example, the first of these queries could be rewritten as
follows:

var age = ctx
.Blogs
.FromSql("SELECT GETUTCDATE() – CreationDate AS CreationDate FROM

Blogs")
.Select(b => b.CreationDate)
.ToList();

And the second could be rewritten as follows:

var oneWeekAfterCreation = ctx
.Blogs
.FromSql("SELECT DATEADD(day, 7, CreationDate) AS CreationDate

FROM Blogs")
.Select(b => b.CreationDate)
.ToList();

https://msdn.microsoft.com/en-us/library/system.data.entity.dbfunctions(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/system.data.entity.dbfunctions(v=vs.113).aspx

Paging in SQL Server earlier than 2012
Beware if you want to use a SQL Server version earlier than 2012 while doing paging.

Problem

At least two features of Entity Framework Core depend on SQL Server 2012:

• Using sequences to generate primary keys
• Using OFFSET for pagination

If we are not using SQL Server 2012 or higher, of course, we cannot use these features. The first one is
not a problem since we can use IDENTITY columns or manually assigned identifiers, but the second is
the default strategy Entity Framework uses for pagination. Type the following LINQ query:

var pagedBlogs = ctx
.Blogs
.Skip(4)
.Take(5)
.OrderBy(b => b.CreationDate)
.ToList();

It will produce SQL similar to this:

SELECT [b].[BlogId], [b].[Name], [b].[CreationDate], [b].[Url]
FROM [Blog] AS [b]
ORDER BY [b].[CreationDate]
OFFSET @__b_0 ROWS FETCH NEXT @__b_1 ROWS ONLY

How to solve it…

This syntax with OFFSET… ROWS FETCH NEXT… ROWS ONLY is only valid for versions of SQL
Server equal to or higher than 2012. Fortunately, we can tell Entity Framework to use a compatibility
mode that will work from SQL Server 2005 upwards. We just need to set the
UseRowNumberForPaging configuration setting, probably in the OnConfiguring method of our
DbContext-derived class:

protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString, opt =>
{

//use ROW_NUMBER instead of OFFSET
opt.UseRowNumberForPaging();

});
base.OnConfiguring(optionsBuilder);

}

After this, the same query will be instead:

SELECT [t].[BlogId], [t].[Name], [t].[CreationDate], [t].[Url]
FROM (

SELECT [b].[BlogId], [b].[Name], [b].[CreationDate], [b].[Url],
ROW_NUMBER() OVER(ORDER BY [b].[CreationDate]) AS [__RowNumber__]

FROM [Blog] AS [b]
) AS [t]
WHERE ([t].[__RowNumber__] > @__b_0) AND ([t].[__RowNumber__] <=
(@__b_0 + @__b_1))

Notice the usage of the ROW_NUMBER function and the nested queries.

Note

You can find a discussion of the two paging techniques in this article:
http://social.technet.microsoft.com/wiki/contents/articles/23811.paging-a-query-with-sql-server.aspx.

http://social.technet.microsoft.com/wiki/contents/articles/23811.paging-a-query-with-sql-server.aspx

Database null semantics
Doing comparisons with NULL can yield unexpected results.

Problem

Relational database engines treat the NULL case differently. NULL is not a value; rather, it is the absence
of a value, so the syntax around it is special. To check if a column value is NULL, this is the syntax we
use:

SELECT * FROM MyTable WHERE MyCol IS NULL

Entity Framework, as with other Object-Relational Mappers, has to take this into account. So, what
happens if we issue a LINQ query that needs to be executed with a parameter value that may be null?
Let's consider this query:

var name = GetParameterValue();
var records = ctx

.MyEntities

.Where(x => x.Name == name)

.ToList();

By default, it will produce the following SQL:

SELECT [x].[Id] AS Id, [x].[Name] AS Name
FROM [dbo].[MyEntities] AS [x]
WHERE ([x].[Name] == @__name_0)
OR (([x].[Name] IS NULL) AND ((@__name_0 IS NULL))

This is hardly ideal and it is caused by the fact that, when the SQL is being generated, Entity Framework
does not know what value the name parameter will have when the query is executed. If the LINQ query
instead uses a literal null, or something clearly different than null, the problem does not occur. Because
it doesn't know, it has to be cautious and check, if the values are identical using normal semantics or
check if they are both NULL. Unfortunately, this results in some extra work for the database engine.

How to solve it…

If we are 100% sure that the values that we will be using in LINQ comparison queries, we can turn on
the UseRelationalNulls flag:

protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString, opt =>
{

//if this is present, use the simple check

opt.UseRelationalNulls();
});
base.OnConfiguring(optionsBuilder);

}

If you set this, then the same query will produce this SQL instead:

SELECT [x].[Id] AS Id, [x].[Name] AS Name
FROM [dbo].[MyEntities] AS [x]
WHERE [x].[Name] == @__name_0

Of course, this will never return any records if the parameter is ever null, so be warned.

Note

In Entity Framework 6.x, this was controlled by the UseDatabaseNullSemantics property of the
DbContextConfiguration class. Refer to the following link:

https://msdn.microsoft.com/en-us/library/
system.data.entity.infrastructure.dbcontextconfiguration.usedatabasenullsemantics(v=vs.113).aspx.

https://msdn.microsoft.com/en-us/library/system.data.entity.infrastructure.dbcontextconfiguration.usedatabasenullsemantics(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/system.data.entity.infrastructure.dbcontextconfiguration.usedatabasenullsemantics(v=vs.113).aspx

Migrations and contexts with parameterized
constructors
When using migrations we need to have public parameterless constructors or implement a factory.

Problem

If your context takes parameters in all of its public constructors, then it cannot be used by migrations,
since the migrations framework does not know how to instantiate it. The error will be something like
"unable to find the DbContext", which is far from helpful.

How to solve it…

The solution for this is to have a public context factory class in the same assembly as your migrations
assembly. This context factory needs to implement IDbContextFactory<TContext> and return a
context instance from its Create method:

public class MyContextFactory : IDbContextFactory<MyContext>
{

public MyContext Create(DbContextFactoryOptions options)
{

//return a MyContext instance with its parameters
return new MyContext("<SomeConnectionString>");

}
}

For similar reasons, this class needs to be public and have a public parameterless constructor.

Migrations with contexts in different projects
Problems arise if your context is in a different project than the startup one.

Problem

If you have an entry assembly and an additional project/assembly that contains your DbContext and
your model, migrations won't work. This is by design.

For example, you have an assembly called Web and an assembly called DomainModel. The latter
contains the DbContext and all the model classes and you are trying to generate a migration from the
Web folder using the following:

dotnet ef migrations add "Initial version"

You could also use a similar one. You will get a "Your target project 'Web' doesn't
match your migrations assembly 'DomainModel'" error.

How to solve it…

You either need to pass the --startup-project flag to dotnet, if you run it from the
DomainModel project:

dotnet ef --startup-project ..\Web migrations add "Initial version"

Or, from within code, you need to tell Entity Framework which one will be the project containing the
startup code:

protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)
{

optionsBuilder.UseSqlServer(_connectionString, opt =>
{

//set the migrations assembly
opt.MigrationsAssembly("Web");

});
base.OnConfiguring(optionsBuilder);

}

Note

And, by the way, make sure that you include the Microsoft.EntityFrameworkCore.Design
and Microsoft.EntityFrameworkCore.Tools Nuget packages.

Accessing the service provider too soon
Do not access the internal service provider in OnConfiguring or OnModelCreating.

Problem

The Entity Framework Core context uses a service provider of its own, but it is possible to pass it an
external service provider. Having a service provider to hand is appealing, because we can use it to pass
any kind of services to the context.

The problem is that most likely, we will be making use of these services in one of the methods that are
used to configure the DbContext, such as OnConfiguring or OnModelCreating, but, it turns
out, if you try to access the underlying service provider, either the built-in or the passed instance, you
will get an "An attempt was made to use the context while it is being
configured" exception.

How to solve it…

You should pass all services that you will need in the constructor of the DbContext-derived class and
store them internally. Then you can use them in any of the infrastructure methods, such as
OnConfiguring or OnModelCreating. If you are using Dependency Injection, like you would in
a web application, you can even declare these services as their base classes or interfaces and .NET Core
will resolve them for you.

You will be able to access the internal service provider after a query is executed or when the
SaveChanges method is called.

Setting the maximum string length
The right attribute to set the maximum string length is StringLengthAttribute.

Problem

We want to define the maximum length of a string column (VARCHAR, and NVARCHAR in SQL Server)
in the database using attributes, and there are two choices: MaxLengthAttribute or
StringLengthAttribute.

How to solve it…

The right attribute to use for this is StringLengthAttribute. This is the one that Entity
Framework will look to when creating the schema:

using System.ComponentModel.DataAnnotations;
public class MyEntity
{

public int Id { get; set; }
[StringLength(100)]
public string Name { get; set; }

}

Note

Of course, we can also use fluent mapping for this, but it is not strictly necessary for this simple case.

Mapping discriminator columns
You cannot map discriminator columns.

Problem

When you have a class hierarchy that you want to map to a database table using the Table per class
hierarchy/Single table inheritance pattern, this table will make use of a discriminator column to figure
out the class that each record refers to; this is because the same table will hold records for any of the
derived classes of the hierarchy. You may be tempted to add a property for this discriminator column,
but you will not succeed, because discriminator columns cannot be mapped.

How to solve it…

You simply cannot map the discriminator column as a property, because doing so might cause the type
of the stored record to change from one class to another, and Entity Framework does not let that happen.
You can give it any name you want and also give specific values for each subclass, but that's as far as it
goes:

protected override void OnModelCreating(
DbModelBuilder modelBuilder)
{

//register a string discriminator column named Type
//with values for each subclass equal to their type
modelBuilder

.Entity<Vehicle>()

.HasDiscriminator<string>("Type")

.HasValue<LandVehicle>(typeof(LandVehicle).Name)

.HasValue<AirVehicle>(typeof(AirVehicle).Name);
base.OnModelCreating(modelBuilder);

}

Composite primary keys
When we have composite primary keys, we need to give them an order.

Problem

In some cases, you may need to have composite primary keys, that is, have a primary key that is
composed of not a single column, but many. This is certainly a valid requirement, but, unless you
configure it properly, Entity Framework will not work. And something that does not work is mapping
attributes:

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
public class MyClassWithCompositeKey
{
[Key]

[Column(Order = 0)]
public int KeyA { get; set; }

[Key]
[Column(Order = 1)]

public string KeyB { get; set; }
[Key]
[Column(Order = 2)]

public Guid KeyC { get; set; }
}

Again, the preceding code will not work; it will be totally ignored by Entity Framework.

How to solve it…

You need to mark all of your properties that make up the primary key with an order number; each will
have its own, and you need to use fluent mapping for this:

protected override void OnModelCreating(
DbModelBuilder modelBuilder)
{

//set keys for MyClassWithCompositeKey in order
modelBuilder
.Entity<MyClassWithCompositeKey>()

.HasKey("KeyA", "KeyB", "KeyC");
base.OnModelCreating(modelBuilder);

}

This is, sadly, another shortcoming of Entity Framework Core 1 that we expect to see fixed in a future
release.

Refreshing entities
Because of the first level cache, reloading an entity with modified database values will not refresh it.

Problem

Entity Framework Core, like other Object-Relational Mappers, uses something called a First Level
Cache (also known as Identity Map) to keep track of the entities that it knows about. These are entities
that were loaded from the database or ones that have been marked for persistence. This, in general, can
be regarded as an optimization: when Entity Framework loads the same record over and over again, it
does not need to instantiate the entity's class and hydrate it with the values coming from the database.

The problem is, what if the entity's record changes in the database and we wish to refresh the ones we
have? For example, this won't work:

//retrieve an entity from the database
var myEntity = ctx.MyEntities.First();
//the entity's record changes in the database
//retrieve the entity again
//unchanged: is returned from the first level cache
myEntity = ctx.MyEntities.First();

How to solve it…

The way to solve this is to first detach it from the context, which effectively means removing it from the
first level cache, like this:

//retrieve an entity from the database
var myEntity = ctx.MyEntities.First();
//the entity's record changes in the database
//detach the entity
ctx.Entry(myEntity).State = EntityState.Detached;
//retrieve the entity again
myEntity = ctx.MyEntities.First();

This way, you are sure to get the most up-to-date values.

Cascading entity deletes
Cascading deletes, if not configured properly, can cause cycles.

Problem

Cascade delete means that if an entity is deleted, all of its dependent entities will be removed too. This
makes sense in those cases where a child cannot exist without its parent; imagine a blog and its posts, for
example. This is how Entity Framework deletes these dependent entities:

• If we are using a database engine that supports cascades in constraints (such as SQL Server) and
Entity Framework was used to create the database, it will use them

• If the dependent entities are not loaded, they will be deleted with a single DELETE statement
• If we cannot delete them, we can set the relation property to NULL; unfortunately, this has to be

done one by one for all the related entities

Problems start to arise if we let Entity Framework set up the cascade constraints in the database and
there are cycles, meaning the deletion of a record cascades to other records, possibly in different tables,
which in turn will trigger a deletion on a third level table, like in the following diagram:

Multi-level relationships

We cannot let SQL Server manage these cascade deletions through foreign key constraints because it
would result in an error when the database is created.

How to solve it…

Cascade deletions are enabled by default for required relations but can be configured explicitly. For that,
we use the fluent API:

protected override void OnModelCreating(
ModelBuilder modelBuilder)
{

modelBuilder
.Entity<Parent>()
.HasMany(c => c.Children2)
.WithOne(c => c.Parent)
.OnDelete(DeleteBehavior.SetNull);

base.OnModelCreating(modelBuilder);
}

And we also use this class model:

public class Parent
{

public int Id { get; set; }
public string Name { get; set; }
[InverseProperty("Parent")]
public ICollection<Child1> Children1 { get; set; }
[InverseProperty("Parent")]
public ICollection<Child2> Children2 { get; set; }

}
public class Child1
{

public int Id { get; set; }
public int Option { get; set; }
[Required]
public Parent Parent { get; set; }
[InverseProperty("Child1")]
public ICollection<GrandChild> GrandChildren
{ get; set; }

}
public class Child2
{

public int Id { get; set; }
public string Text { get; set; }
public Parent Parent { get; set; }
[InverseProperty("Child2")]
public ICollection<GrandChild> GrandChildren
{ get; set; }

}
public class GrandChild
{

public int Id { get; set; }
public byte [] Payload { get; set; }
[Required]
public Child1 Child1 { get; set; }

[Required]
public Child2 Child2 { get; set; }

}

Note

Do not pay attention to the names of the classes and their properties; this is just a simple example.

Notice that for the Child2 class, we do not mark the Parent property as required, this is what allows
us to use the SetNull cascade option. Also, we do not need to specify the cascade delete behavior for
all the other relations, this is the default.

So, with this setup, what happens if we delete a Parent instance is this:

• If the Children1 or Children2 collections have not been loaded, Entity Framework will
only remove records from the Parent table

• All loaded entities in the Child1 table that are related with the Parent instance
(Children1 collection) are deleted with a single DELETE command

• All loaded entities in the Child2 table that are related with Parent (Children2) have their
Parent property set to NULL one by one

• If any of the GrandChildren collections was loaded, the entries in the GrandChild table
stored in it will be deleted one by one

Of course, if we want, we can disable cascade deletes altogether:

modelBuilder
.Entity<Child1>()
.HasMany(c => c.GrandChildren)
.WithOne(c => c.Child1)
.OnDelete(DeleteBehavior.Restrict);

However, in this case we must not forget to remove the dependent entities before removing the principal
one.

Index
A

• ACID properties
◦ atomic / Atomic
◦ consistent / Consistent
◦ isolation / Isolation
◦ durability / Durability

• actual loggers / How it works…
• Application Programming Interface (API) / Single Responsibility Principle
• asynchronous operations

◦ using / Using asynchronous operations, How to do it…
◦ queries, performing for data retrieval / Queries
◦ existing data, modifying / Modifications

• atomic / Atomic
• audit data

◦ capturing / Capturing the audit data, How to do it…, How it works…
• Azure Table Storage / Provider Model

C
• C# POCO entities

◦ generating / How to do it…
• cache

◦ using / Using the cache, How to do it…, How it works…
• caching mechanism, in repository pattern / Repository and caching
• cascade delete

◦ reference / See also
◦ about / There's more…

/ Problem
• cascading entity deletes

◦ issue / Problem
◦ solving / How to solve it…

• client-side functions
◦ executing, in LINQ queries / Executing client-side functions in LINQ queries, Getting

ready, How to do it…, How it works…
• code

◦ databases, creating from / Creating databases from code, Getting ready, How to do it…
• code first approach

◦ used, for improving Entity Framework / Improving Entity Framework by using a code-
first approach, Getting ready, How to do it…

• composite primary keys
◦ issue / Problem
◦ solving / How to solve it…

• consistent / Consistent
• convention over configuration approach / Convention over configuration

• custom conventions
◦ creating / Creating custom conventions, How to do it…, How it works…

• custom SQL operations
◦ transactions, using in / Using transactions in custom SQL operations, How to do it…,

How it works…

D
• DataAnnotations validations

◦ reference / See also
• database

◦ updating, from model changes / Updating the database from model changes, How to do
it…

◦ entities, generating from / Generating entities from the database, How to do it…, How it
works…

• database-agnostic way
◦ optimistic concurrency, implementing in / Getting ready, How to do it…, How it

works…
• database initializers / There's more…
• database null semantics

◦ issue / Problem
◦ solving / How to solve it…

• database profiler
◦ about / Database profiler

• databases
◦ creating, from code / Creating databases from code, Getting ready, How to do it…
◦ using / Using other databases, How to do it…

• Data Transfer Objects (DTOs)
◦ about / Introduction

• date/time operations, not supported
◦ issue / Problem
◦ solving / How to solve it…

• DbFunctions
◦ reference / Problem

• Dependency Injection (DI) / How to do it.…
• Dependency Inversion Principle / Dependency Inversion Principle
• Domain-Driven Design (DDD)

◦ about / Introduction
• Domain Driven Design (DDD) / Generating entities from the database
• durability / Durability
• dynamic LINQ

◦ using / Using dynamic LINQ, How to do it…, How it works…

E
• eager loading / Eager loading, How to do it…, How it works…
• entities

◦ state, setting of / Setting the state of an entity, How to do it…, How it works…

◦ inserting, with stored procedures / Inserting, updating, and deleting entities with stored
procedures, How to do it…, How it works…

◦ updating, with stored procedures / Inserting, updating, and deleting entities with stored
procedures, How to do it…, How it works…

◦ deleting, with stored procedures / Inserting, updating, and deleting entities with stored
procedures, How to do it…, How it works…

◦ obtaining, from local cache / Getting entities from the local cache, Getting ready, How
to do it…, How it works…

◦ generating, from database / Generating entities from the database, How to do it…, How
it works…

• Entity Framework
◦ about / Introduction
◦ improving, code first approach used / Improving Entity Framework by using a code-

first approach, Getting ready, How to do it…
• Entity Framework Core

◦ reference / See also
• EntityFrameworkCore.SqlServerCompact40

◦ reference / Using other databases
• Entity Framework Core 1.0, workflows

◦ code first / Generating entities from the database
◦ database first / Generating entities from the database

• Entity Framework Core site
◦ reference / Using other databases

• entity framework validation
◦ MVC UI, improving with / Improving MVC UI with entity framework validation, How

to do it…, How it works…
• entity metadata

◦ retrieving / Retrieving entity metadata, How to do it…, How it works…
• Entry method, states

◦ EntityState.Unchanged / How it works…
◦ EntityState.Modified / How it works…
◦ EntityState.Added / How it works…
◦ EntityState.Deleted / How it works…
◦ EntityState.Detached / How it works…

• explicit transactions
◦ using / Using explicit transactions, Getting ready, How to do it…, How it works…

• Express Profiler
◦ reference / Database profiler
◦ using / Database profiler

• extension methods / Extension methods

F
• filtered collections

◦ creating / Creating filtered collections, How to do it…, How it works…
• First Level Cache / There's more…, Problem

G
• Glimpse

◦ about / Real time monitoring
◦ reference / Real time monitoring

• GroupBy executes, on client side
◦ issue / Problem
◦ fixing / How to fix it…

• groups of entities
◦ validating / Validating groups of entities, How to do it…, How it works…

• GUID primary keys
◦ about / How it works…
◦ reference / There's more…

• GUIDs
◦ using, as keys / Using GUIDs as keys, How to do it…, How it works…

H
• High-Low algorithm

◦ about / Using sequence key generators
◦ reference / See also

• HTML helper / Understanding the HTML helper

I
• Identity Map / There's more…, Problem
• infrastructure services

◦ hooking / Hooking infrastructure services
• inheritance

◦ implementing / Implementing inheritance – Table per Class hierarchy, How to do it…,
How it works…

◦ Table Per Hierarchy/Single Table Inheritance / Implementing inheritance – Table per
Class hierarchy

◦ Table Per Type/Class Table Inheritance / Implementing inheritance – Table per Class
hierarchy

◦ Table Per Concrete Type/Concrete Table Inheritance / Implementing inheritance – Table
per Class hierarchy

• integration tests / Integration tests
• interfaces

◦ mapping / Mapping interfaces, How to do it…, How it works…
• Interface Segregation Principle / Interface Segregation Principle
• Inversion of Control (IoC) / How to do it.…
• isolation / Isolation

K
• keys

◦ GUIDs, using as / Using GUIDs as keys, How to do it…, How it works…

L
• lazy loading / Problem
• LINQ

◦ about / LINQ
• LINQPad / Testing
• LINQ queries

◦ client-side functions, executing in / Executing client-side functions in LINQ queries,
Getting ready, How to do it…, How it works…

◦ SQL, mixing with / Mixing SQL with LINQ queries, How to do it…
• local cache

◦ entities, obtaining from / Getting entities from the local cache, Getting ready, How to
do it…, How it works…

• logger factories / How it works…
• logger providers / How it works…
• logging

◦ adding / Getting ready, How it works…
◦ about / Logging

• logging entry
◦ Log Level / How it works…
◦ Event Id / How it works…
◦ State / How it works…
◦ Exception / How it works…
◦ Formatter / How it works…

• logging providers, .NET Core
◦ MICROSOFT.EXTENSIONS.LOGGING / There's more…

• Lolita code, GitHub
◦ reference / There's more…

M
• many-to-many maps

◦ creating / Creating many-to-many maps, How to do it…, How it works…
• many-to-one relationship / Eager loading
• mapping discriminator columns issue

◦ about / Problem
◦ solving / How to solve it…

• maximum string length issue
◦ about / Problem
◦ solving / How to solve it…

• Microsoft ASP.NET MVC / Model-View-Controller
• migrations and contexts, with parameterized constructors

◦ issue / Problem
◦ solving / How to solve it…

• migrations API / There's more…
• migrations with contexts, in different projects

◦ issue / Problem
◦ solving / How to solve it…

• mock database connections
◦ creating / Creating mock database connections, How to do it…, How it works…

• mocking
◦ about / Unit testing and mocking, Getting ready, How to do it…, How it works…

/ Mocking
• mocks / Mocking
• Model-View-Controller / Model-View-Controller
• model changes

◦ database, updating from / Updating the database from model changes, How to do it…
• Moq framework / How it works…
• Multiple Active Result Sets (MARS) / Queries
• multitenancy

◦ about / Implementing multitenancy
◦ achieving, techniques / Implementing multitenancy
◦ implementing / Getting ready, How to do it…, How it works…

• MVC applications
◦ improving / Improving MVC applications, How to do it.…

• MVC UI
◦ improving, with entity framework validation / Improving MVC UI with entity

framework validation, How to do it…, How it works…

N
• naming conflict / Naming conflict
• non-public members

◦ mapping / Mapping non-public members, How to do it…, How it works…
• NuGet package

◦ reference / How it works…

O
• Object-Relational Mapper (ORM) / Getting entities from the local cache

◦ flow, for performing updates / Updates
◦ flow, for performing deletes / Deletes

• Object-Relational Mapper (ORM), models
◦ POCO model / Shadow properties
◦ database model / Shadow properties
◦ mapping model / Shadow properties

• Object-Relational Mappers (ORMs) / Problem
• one-to-many maps

◦ creating / Creating one-to-many maps, How to do it…, How it works…
• one-to-many relationship / Eager loading
• one-to-one maps

◦ creating / Creating one-to-one maps, How to do it…, How it works…
• one-to-one relationship / Eager loading
• one class under test / One class under test
• optimistic concurrency

◦ implementing, in SQL Server / Implementing optimistic concurrency in SQL Server,
How to do it…, How it works…

◦ implementing, in database-agnostic way / Getting ready, How to do it…, How it
works…

• optimistic concurrency checks
◦ about / There's more…

• optimistic concurrency control failure, solutions
◦ database wins / Database wins
◦ client wins/last one wins / Client wins/last one wins

P
• paging, in SQL Server

◦ issue / Problem
◦ solving / How to solve it…

• paging techniques
◦ reference / How to solve it…

• performance
◦ improving, of queries / Improving the performance of queries, Getting ready

• Plain Old CLR Object (POCO) / Generating entities from the database
• Plain Old CLR Objects (POCOs) / Introduction
• projects, available for code-first approach

◦ BusinessLogic / Improving Entity Framework by using a code-first approach
◦ DataAccess / Improving Entity Framework by using a code-first approach
◦ UI / Improving Entity Framework by using a code-first approach
◦ UnitTests / Improving Entity Framework by using a code-first approach

• property changes
◦ intercepting / Intercepting property changes, How to do it…, How it works…

• Provider Model / Provider Model

Q
• queries

◦ performance, improving of / Improving the performance of queries, Getting ready
◦ testing / Testing and profiling queries, How to do it…
◦ profiling / Testing and profiling queries, How to do it…

• Query Object pattern
◦ implementing / Implementing the query object pattern, How to do it…, How it works…

• query performance, improving ways
◦ modifications / Modifications
◦ queries / Queries

R
• real time monitoring / Real time monitoring
• Redis / Provider Model
• refactor / Refactoring
• references not eagerly fetched are lost issue

◦ about / Problem

◦ solving / How to solve it…
• refreshing entities

◦ issue / Problem
◦ solving / How to solve it…

• relationships
◦ reference / See also

• repository pattern
◦ implementing / Implementing the repository pattern, How to do it…, How it works…
◦ caching mechanism / Repository and caching
◦ reference / See also

• reusable queries
◦ creating / Creating reusable queries, How to do it…, How it works…

S
• saving changes

◦ intercepting / Intercepting saving changes, How to do it…, How it works…
• scaffolding / Generating entities from the database
• SELECT N+1 problem / Eager loading
• sequence key generators

◦ using / Using sequence key generators, How to do it…
• server-generated GUIDs

◦ using / There's more…
• Server Process ID (SPID) / Database profiler
• service provider access

◦ issue / Problem
◦ solving / How to solve it…

• shadow properties
◦ about / Shadow properties, How to do it…
◦ working / How it works…
◦ reference / See also
◦ querying / Querying shadow properties, How to do it…, How it works…

• simple properties
◦ validating / Validating simple properties, How to do it…, How it works…

• Single Responsibility Principle (SRP) / Single Responsibility Principle
• soft deletes

◦ handling / Getting ready, How to do it…, How it works…
• SOLID principles / Single Responsibility Principle
• SQL

◦ mixing, with LINQ queries / Mixing SQL with LINQ queries, How to do it…
◦ about / SQL

• SQL script
◦ dumping, for database creation / Dumping the SQL script for the database creation,

How to do it…
• SQL Server

◦ optimistic concurrency, implementing in / Implementing optimistic concurrency in SQL
Server, How to do it…, How it works…

• state

◦ setting, of entities / Setting the state of an entity, How to do it…, How it works…
• stored procedures

◦ entities, inserting with / Inserting, updating, and deleting entities with stored
procedures, How to do it…, How it works…

◦ entities, updating with / Inserting, updating, and deleting entities with stored
procedures, How to do it…, How it works…

◦ entities, deleting with / Inserting, updating, and deleting entities with stored procedures,
How to do it…, How it works…

• strongly typed bulk operations
◦ about / Strongly typed bulk operations, Getting ready, How to do it…
◦ deletes / How it works…
◦ updates / How it works…

• stubbing / Mocking

T
• table per class hierarchy, requiring nullable columns for derived class

◦ issue / Problem
◦ solving / How to solve it…

• Table Per Class Hierarchy/Single Table Inheritance pattern / Problem
• Table Per Concrete Type/Concrete Table Inheritance / Implementing inheritance – Table per

Class hierarchy
• Table Per Hierarchy/Single Table Inheritance / Implementing inheritance – Table per Class

hierarchy
• Table Per Type/Class Table Inheritance / Implementing inheritance – Table per Class hierarchy
• testing / Testing
• transactions

◦ using, in custom SQL operations / Using transactions in custom SQL operations, How
to do it…, How it works…

• transactions, extension methods
◦ BeginTransaction/BeginTransactionAsync / How it works…
◦ UseTransaction / How it works…

• transactions, methods
◦ BeginTransaction/BeginTransactionAsync / How it works…
◦ CommitTransaction / How it works…
◦ RollbackTransaction / How it works…

U
• unit of work pattern

◦ implementing / Implementing the unit of work pattern, How to do it…
◦ reference / Implementing the unit of work pattern
◦ call per change / Call per change

• unit testing
◦ about / Unit testing and mocking, Getting ready, How to do it…, How it works…
◦ Arrange, Act, Assert / Arrange, Act, Assert

• user interface (UI) layer
◦ about / Improving Entity Framework by using a code-first approach

V
• validation attributes, System.ComponentModel.DataAnnotations

◦ CompareAttribute / There's more…
◦ CreditCardAttribute / There's more…
◦ CustomValidationAttribute / There's more…
◦ DataTypeAttribute / There's more…
◦ EmailAddressAttribute / There's more…
◦ EnumDataTypeAttribute / There's more…
◦ FileExtensionsAttribute / There's more…
◦ MaxLengthAttribute / There's more…
◦ MinLengthAttribute / There's more…
◦ PhoneAttribute / There's more…
◦ RangeAttribute / There's more…
◦ RegularExpressionAttribute / There's more…
◦ RequiredAttribute / There's more…
◦ StringLengthAttribute / There's more…
◦ UrlAttribute / There's more…

W
• where generic constraint / Where generic constraint
• whole entity

◦ validating / Validating the whole entity, How to do it…, How it works…
• workflows, for working with Object-Relational Mapper (ORM)

◦ database first / Introduction
◦ code first / Introduction

X
• xUnit runner / How to do it…

Z
• Z.EntityFramework.Plus package / There's more…

	Entity Framework Core Cookbook - Second Edition
	Table of Contents
	Entity Framework Core Cookbook - Second Edition
	Entity Framework Core Cookbook - Second Edition
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Conventions
	Note
	Tip

	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Chapter 1. Improving Entity Framework in the Real World
	Introduction
	Note

	Improving Entity Framework by using a code-first approach
	Getting ready
	How to do it…
	Note
	Note
	Note
	Note

	How it works…
	There's more…
	Convention over configuration
	Model-View-Controller
	Single Responsibility Principle
	Provider Model
	Testing

	See also

	Unit testing and mocking
	Getting ready
	How to do it…
	How it works…
	There's more…
	One class under test
	Integration tests
	Arrange, Act, Assert
	Mocking

	Creating databases from code
	Getting ready
	How to do it…
	Note

	How it works…
	There's more…
	See also

	Creating mock database connections
	How to do it…
	How it works…
	See also

	Implementing the repository pattern
	Getting ready
	How to do it…
	How it works…
	There's more…
	Dependency Inversion Principle
	Repository and caching
	Mocking
	Where generic constraint

	See also

	Implementing the unit of work pattern
	Getting ready
	How to do it…
	How it works…
	There's more…
	Call per change
	Interface Segregation Principle
	Refactoring

	See also

	Chapter 2. Mapping Entities
	Introduction
	Mapping non-public members
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	Note

	See also

	Mapping interfaces
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	See also

	Shadow properties
	Note
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	See also

	Creating one-to-one maps
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Creating one-to-many maps
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	Note

	See also

	Creating many-to-many maps
	Note
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Creating custom conventions
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Using sequence key generators
	Getting ready
	How to do it…
	Note
	Note

	How it works...
	There's more…
	See also

	Using GUIDs as keys
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	Note

	See also

	Implementing inheritance – Table per Class hierarchy
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…

	Chapter 3. Validation and Changes
	Introduction
	Validating simple properties
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Validating the whole entity
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	See also

	Validating groups of entities
	How to do it…
	Note
	Note

	How it works…
	See also

	Intercepting saving changes
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	See also

	Intercepting property changes
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	See also

	Setting the state of an entity
	Getting ready
	How to do it…
	Note
	Note
	Note

	How it works…
	There's more…
	See also

	Improving MVC UI with entity framework validation
	Getting ready
	How to do it…
	Note
	Note
	Note

	How it works…
	There's more…
	Understanding the HTML helper

	See also

	Inserting, updating, and deleting entities with stored procedures
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Updating the database from model changes
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Dumping the SQL script for the database creation
	Getting ready
	How to do it…
	Note
	Note
	Note

	How it works…
	There's more…
	See also

	Chapter 4. Transactions and Concurrency Control
	Introduction
	Using explicit transactions
	Atomic
	Consistent
	Isolation
	Durability
	Getting ready
	How to do it…
	Note
	Note
	Note

	How it works…
	Note

	See also

	Using transactions in custom SQL operations
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Implementing optimistic concurrency in SQL Server
	Getting ready
	How to do it…
	Note

	How it works…
	Note

	There's more…
	Note
	Database wins
	Client wins/last one wins

	See also

	Implementing optimistic concurrency in a database-agnostic way
	Getting ready
	How to do it…
	Note

	How it works…
	There's more…
	See also

	Chapter 5. Querying
	Introduction
	Executing client-side functions in LINQ queries
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	See also

	Mixing SQL with LINQ queries
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Getting entities from the local cache
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Creating filtered collections
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Creating reusable queries
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	Extension methods
	Naming conflict

	See also

	Querying shadow properties
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…
	See also

	Implementing the query object pattern
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	Note

	There's more…
	See also

	Using dynamic LINQ
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	Note

	There's more…

	Chapter 6. Advanced Scenarios
	Introduction
	Generating entities from the database
	Getting ready
	How to do it…
	How it works…
	There's more…

	Implementing multitenancy
	Getting ready
	How to do it…
	How it works…
	There's more…

	Strongly typed bulk operations
	Getting ready
	How to do it…
	Note

	How it works…
	There's more…

	Handling soft deletes
	Getting ready
	How to do it…
	Note

	How it works…
	See also

	Adding logging
	Getting ready
	How to do it…
	How it works…
	There's more…

	Capturing the audit data
	Getting ready
	How to do it…
	Note

	How it works…
	Note

	See also

	Retrieving entity metadata
	Getting ready
	How to do it…
	Note

	How it works…
	There's more…
	See also

	Improving MVC applications
	Getting ready
	How to do it.…
	See also

	Hooking infrastructure services
	Using other databases
	Note
	How to do it…
	Note

	Chapter 7. Performance and Scalability
	Introduction
	Improving the performance of queries
	Getting ready
	How to do it…
	Modifications
	Updates

	Note
	Note
	Note
	Deletes

	Note
	Note
	Queries
	SQL

	Note
	Note
	LINQ

	Note
	Note

	See also

	Testing and profiling queries
	How to do it…
	Logging
	Database profiler
	Real time monitoring
	Testing

	See also

	Using asynchronous operations
	Getting ready
	How to do it…
	Queries
	Note
	Modifications
	Note

	See also

	Eager loading
	Note
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	Note

	See also

	Using the cache
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	There's more…

	Appendix A. Pitfalls
	Introduction
	GroupBy executes on the client side
	Problem
	How to fix it…

	Table per class hierarchy requires nullable columns for derived classes
	Problem
	How to solve it…

	References not eagerly fetched are lost
	Problem
	How to solve it…
	Note

	Date/time operations are not supported
	Problem
	How to solve it…

	Paging in SQL Server earlier than 2012
	Problem
	How to solve it…
	Note

	Database null semantics
	Problem
	How to solve it…
	Note

	Migrations and contexts with parameterized constructors
	Problem
	How to solve it…

	Migrations with contexts in different projects
	Problem
	How to solve it…
	Note

	Accessing the service provider too soon
	Problem
	How to solve it…

	Setting the maximum string length
	Problem
	How to solve it…
	Note

	Mapping discriminator columns
	Problem
	How to solve it…

	Composite primary keys
	Problem
	How to solve it…

	Refreshing entities
	Problem
	How to solve it…

	Cascading entity deletes
	Problem
	How to solve it…
	Note

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

