
www.EBooksWorld.ir

Chapter One
1.1–1 Volume of a circular cylinder
1.6–1 Piston motion

Chapter Two
2.3–1 Vectors and displacement
2.3–2 Aortic pressure model
2.3–3 Transportation route analysis
2.3–4 Current and power dissipation in

resistors
2.3–5 A batch distillation process
2.4–1 Miles traveled
2.4–2 Height versus velocity
2.4–3 Manufacturing cost analysis
2.4–4 Product cost analysis
2.5–1 Earthquake-resistant building design
2.6–1 An environmental database
2.7–1 A student database

Chapter Three
3.2–1 Optimization of an irrigation channel

Chapter Four
4.3–1 Height and speed of a projectile
4.5–1 Series calculation with a for loop
4.5–2 Plotting with a for loop
4.5–3 Data sorting
4.5–4 Flight of an instrumented rocket
4.6–1 Series calculation with a while loop
4.6–2 Growth of a bank account
4.6–3 Time to reach a speci ed height

4.7–1 Using the switch structure for calendar
calculations

4.9–1 A college enrollment model: Part I
4.9–2 A college enrollment model: Part II

Chapter Five
5.2–1 Plotting orbits

Chapter Six
6.1–1 Temperature dynamics
6.1–2 Hydraulic resistance
6.2–1 Estimation of traf c ow
6.2–2 Modeling bacteria growth
6.2–3 Breaking strength and alloy

composition
6.2–4 Response of a biomedical instrument

Chapter Seven
7.1–1 Breaking strength of thread
7.2–1 Mean and standard deviation of heights
7.2–2 Estimation of height distribution
7.3–1 Statistical analysis and manufacturing

tolerances

Chapter Eight
8.1–1 The matrix inverse method
8.2–1 Left division method with three

unknowns
8.2–2 Calculations of cable tension
8.2–3 An electric resistance network
8.2–4 Ethanol production

Numbered Examples:
Chapters One to Eight
Number and Topic Number and Topic

pal34870_ifc.qxd 1/7/10 7:44 PM Page i

www.EBooksWorld.ir

8.3–1 An underdetermined set with three
equations and three unknowns

8.3–2 A statically indeterminate problem
8.3–3 Three equations in three unknowns,

continued
8.3–4 Production planning
8.3–5 Traf c engineering
8.4–1 The least-squares method
8.4–2 An overdetermined set

Chapter Nine
9.1–1 Velocity from an accelerometer
9.1–2 Evaluation of Fresnel’s cosine integral
9.1–3 Double integral over a nonrectangular

region
9.3–1 Response of an RC circuit
9.3–2 Liquid height in a spherical tank
9.4–1 A nonlinear pendulum model
9.5–1 Trapezoidal pro le for a dc motor

Chapter Ten
10.2–1 Simulink solution of
10.2–2 Exporting to the MATLAB workspace
10.2–3 Simulink model for
10.3–1 Simulink model of a two-mass

suspension system
10.4–1 Simulink model of a rocket-propelled

sled
10.4–2 Model of a relay-controlled motor
10.5–1 Response with a dead zone
10.6–1 Model of a nonlinear pendulum

Chapter Eleven
11.3–1 Intersection of two circles
11.3–2 Positioning a robot arm
11.5–1 Topping the Green Monster

#

y = -10y + f (t)

#

y = 10 sin t

Numbered Examples:
Chapters Eight to Eleven
Number and Topic Number and Topic

pal34870_fm_i-xii_1.qxd 1/7/10 7:44 PM Page i

www.EBooksWorld.ir

Introduction to MATLAB®

for Engineers

William J. Palm III
University of Rhode Island

TM

pal34870_fm_i-xii_1.qxd 1/7/10 7:44 PM Page iii

www.EBooksWorld.ir

TM

INTRODUCTION TO MATLAB® FOR ENGINEERS, THIRD EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Previous
editions © 2005 and 2001. No part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or
broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper containing 10% postconsumer waste.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5 4 3 2 1 0

ISBN 978-0-07-353487-9

MHID 0-07-353487-0

Vice President & Editor-in-Chief: Martin Lange
Vice President, EDP: Kimberly Meriwether David
Global Publisher: Raghu Srinivasan
Sponsoring Editor: Bill Stenquist
Marketing Manager: Curt Reynolds
Development Editor: Lora Neyens
Senior Project Manager: Joyce Watters
Design Coordinator: Margarite Reynolds
Cover Designer: Rick D. Noel
Photo Research: John Leland
Cover Image: © Ingram Publishing/AGE Fotostock
Production Supervisor: Nicole Baumgartner
Media Project Manager: Joyce Watters
Compositor: MPS Limited, A Macmillan Company
Typeface: 10/12 Times Roman
Printer: RRDonnelly

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Palm, William J. (William John), 1944–
Introduction to MATLAB for engineers / William J. Palm III.—3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-07-353487-9
1. MATLAB. 2. Numerical analysis—Data processing. I. Title.
QA297.P33 2011
518.0285—dc22

2009051876
www.mhhe.com

pal34870_fm_i-xii_1.qxd 1/15/10 11:41 AM Page iv

www.EBooksWorld.ir

To my sisters, Linda and Chris, and to my parents, Lillian and William

pal34870_fm_i-xii_1.qxd 1/7/10 7:44 PM Page v

www.EBooksWorld.ir

William J. Palm III is Professor of Mechanical Engineering at the University of
Rhode Island. In 1966 he received a B.S. from Loyola College in Baltimore, and
in 1971 a Ph.D. in Mechanical Engineering and Astronautical Sciences from
Northwestern University in Evanston, Illinois.

During his 38 years as a faculty member, he has taught 19 courses. One of
these is a freshman MATLAB course, which he helped develop. He has authored
eight textbooks dealing with modeling and simulation, system dynamics, control
systems, and MATLAB. These include System Dynamics, 2nd Edition (McGraw-
Hill, 2010). He wrote a chapter on control systems in the Mechanical Engineers’
Handbook (M. Kutz, ed., Wiley, 1999), and was a special contributor to the fth
editions of Statics and Dynamics, both by J. L. Meriam and L. G. Kraige (Wiley,
2002).

Professor Palm’s research and industrial experience are in control systems,
robotics, vibrations, and system modeling. He was the Director of the Robotics
Research Center at the University of Rhode Island from 1985 to 1993, and is the
coholder of a patent for a robot hand. He served as Acting Department Chair
from 2002 to 2003. His industrial experience is in automated manufacturing;
modeling and simulation of naval systems, including underwater vehicles and
tracking systems; and design of control systems for underwater-vehicle engine-
test facilities.

A B O U T T H E A U T H O R

vi

pal34870_fm_i-xii_1.qxd 1/7/10 7:44 PM Page vi

www.EBooksWorld.ir

Preface ix

C H A P T E R 1
An Overview of MATLAB® 3
1.1 MATLAB Interactive Sessions 4
1.2 Menus and the Toolbar 16
1.3 Arrays, Files, and Plots 18
1.4 Script Files and the Editor/Debugger 27
1.5 The MATLAB Help System 33
1.6 Problem-Solving Methodologies 38
1.7 Summary 46
Problems 47

C H A P T E R 2
Numeric, Cell, and Structure Arrays 53

2.1 One- and Two-Dimensional Numeric
Arrays 54

2.2 Multidimensional Numeric Arrays 63
2.3 Element-by-Element Operations 64
2.4 Matrix Operations 73
2.5 Polynomial Operations Using Arrays 85
2.6 Cell Arrays 90
2.7 Structure Arrays 92
2.8 Summary 96
Problems 97

C H A P T E R 3
Functions and Files 113

3.1 Elementary Mathematical Functions 113
3.2 User-De ned Functions 119
3.3 Additional Function Topics 130
3.4 Working with Data Files 138
3.5 Summary 140
Problems 140

C H A P T E R 4
Programming with MATLAB 147
4.1 Program Design and Development 148
4.2 Relational Operators and Logical

Variables 155
4.3 Logical Operators and Functions 157
4.4 Conditional Statements 164
4.5 for Loops 171
4.6 while Loops 183
4.7 The switch Structure 188
4.8 Debugging MATLAB Programs 190
4.9 Applications to Simulation 193
4.10 Summary 199
Problems 200

C H A P T E R 5
Advanced Plotting 219

5.1 xy Plotting Functions 219
5.2 Additional Commands and

Plot Types 226
5.3 Interactive Plotting in MATLAB 241
5.4 Three-Dimensional Plots 246
5.5 Summary 251
Problems 251

C H A P T E R 6
Model Building and Regression 263

6.1 Function Discovery 263
6.2 Regression 271
6.3 The Basic Fitting Interface 282
6.4 Summary 285
Problems 286

C O N T E N T S

vii

pal34870_fm_i-xii_1.qxd 1/9/10 3:59 PM Page vii

www.EBooksWorld.ir

C H A P T E R 7
Statistics, Probability, and
Interpolation 295

7.1 Statistics and Histograms 296
7.2 The Normal Distribution 301
7.3 Random Number Generation 307
7.4 Interpolation 313
7.5 Summary 322
Problems 324

C H A P T E R 8
Linear Algebraic Equations 331

8.1 Matrix Methods for Linear Equations 332
8.2 The Left Division Method 335
8.3 Underdetermined Systems 341
8.4 Overdetermined Systems 350
8.5 A General Solution Program 354
8.6 Summary 356
Problems 357

C H A P T E R 9
Numerical Methods for Calculus and
Differential Equations 369

9.1 Numerical Integration 370
9.2 Numerical Differentiation 377
9.3 First-Order Differential Equations 382
9.4 Higher-Order Differential Equations 389
9.5 Special Methods for Linear Equations 395
9.6 Summary 408
Problems 410

C H A P T E R 1 0
Simulink 419

10.1 Simulation Diagrams 420
10.2 Introduction to Simulink 421
10.3 Linear State-Variable Models 427
10.4 Piecewise-Linear Models 430
10.5 Transfer-Function Models 437
10.6 Nonlinear State-Variable Models 441

10.7 Subsystems 443
10.8 Dead Time in Models 448
10.9 Simulation of a Nonlinear Vehicle

Suspension Model 451
10.10 Summary 455
Problems 456

C H A P T E R 1 1
MuPAD 465

11.1 Introduction to MuPAD 466
11.2 Symbolic Expressions and Algebra 472
11.3 Algebraic and Transcendental

Equations 479
11.4 Linear Algebra 489
11.5 Calculus 493
11.6 Ordinary Differential Equations 501
11.7 Laplace Transforms 506
11.8 Special Functions 512
11.9 Summary 514
Problems 515

A P P E N D I X A
Guide to Commands and Functions in
This Text 527

A P P E N D I X B
Animation and Sound in MATLAB 538

A P P E N D I X C
Formatted Output in MATLAB 549

A P P E N D I X D
References 553

A P P E N D I X E
Some Project Suggestions
www.mhhe.com/palm
Answers to Selected Problems 554
Index 557

viii Contents

pal34870_fm_i-xii_1.qxd 1/7/10 7:44 PM Page viii

www.EBooksWorld.ir

Formerly used mainly by specialists in signal processing and numerical
analysis, MATLAB® in recent years has achieved widespread and enthusi-
astic acceptance throughout the engineering community. Many engineer-

ing schools now require a course based entirely or in part on MATLAB early in
the curriculum. MATLAB is programmable and has the same logical, relational,
conditional, and loop structures as other programming languages, such as Fortran,
C, BASIC, and Pascal. Thus it can be used to teach programming principles. In
most schools a MATLAB course has replaced the traditional Fortran course, and
MATLAB is the principal computational tool used throughout the curriculum. In
some technical specialties, such as signal processing and control systems, it is
the standard software package for analysis and design.

The popularity of MATLAB is partly due to its long history, and thus it is
well developed and well tested. People trust its answers. Its popularity is also due
to its user interface, which provides an easy-to-use interactive environment that
includes extensive numerical computation and visualization capabilities. Its
compactness is a big advantage. For example, you can solve a set of many linear
algebraic equations with just three lines of code, a feat that is impossible with tra-
ditional programming languages. MATLAB is also extensible; currently more
than 20 “toolboxes” in various application areas can be used with MATLAB to
add new commands and capabilities.

MATLAB is available for MS Windows and Macintosh personal computers
and for other operating systems. It is compatible across all these platforms, which
enables users to share their programs, insights, and ideas. This text is based on
MATLAB version 7.9 (R2009b). Some of the material in Chapter 9 is based
on the control system toolbox, Version 8.4. Chapter 10 is based on Version 7.4 of
Simulink®. Chapter 11 is based on Version 5.3 of the Symbolic Math toolbox.

TEXT OBJECTIVES AND PREREQUISITES
This text is intended as a stand-alone introduction to MATLAB. It can be used in
an introductory course, as a self-study text, or as a supplementary text. The text’s
material is based on the author’s experience in teaching a required two-credit
semester course devoted to MATLAB for engineering freshmen. In addition,
the text can serve as a reference for later use. The text’s many tables and its
referencing system in an appendix have been designed with this purpose in mind.

A secondary objective is to introduce and reinforce the use of problem-
solving methodology as practiced by the engineering profession in general and

ix

P R E F A C E

®MATLAB and Simulink are a registered trademarks of The MathWorks, Inc.

pal34870_fm_i-xii_1.qxd 1/7/10 7:44 PM Page ix

www.EBooksWorld.ir

as applied to the use of computers to solve problems in particular. This method-
ology is introduced in Chapter 1.

The reader is assumed to have some knowledge of algebra and trigonometry;
knowledge of calculus is not required for the rst seven chapters. Some knowl-
edge of high school chemistry and physics, primarily simple electric circuits, and
basic statics and dynamics is required to understand some of the examples.

TEXT ORGANIZATION
This text is an update to the author’s previous text.* In addition to providing new
material based on MATLAB 7, especially the addition of the MuPAD program,
the text incorporates the many suggestions made by reviewers and other users.

The text consists of 11 chapters. The rst chapter gives an overview of
MATLAB features, including its windows and menu structures. It also introduces
the problem-solving methodology. Chapter 2 introduces the concept of an array,
which is the fundamental data element in MATLAB, and describes how to use nu-
meric arrays, cell arrays, and structure arrays for basic mathematical operations.

Chapter 3 discusses the use of functions and les. MA TLAB has an exten-
sive number of built-in math functions, and users can de ne their own functions
and save them as a le for reuse.

Chapter 4 treats programming with MATLAB and covers relational and log-
ical operators, conditional statements, for and while loops, and the switch
structure. A major application of the chapter’s material is in simulation, to which
a section is devoted.

Chapter 5 treats two- and three-dimensional plotting. It rst establishes stan-
dards for professional-looking, useful plots. In the author’s experience, beginning
students are not aware of these standards, so they are emphasized. The chapter
then covers MATLAB commands for producing different types of plots and for
controlling their appearance.

Chapter 6 covers function discovery, which uses data plots to discover a
mathematical description of the data. It is a common application of plotting, and
a separate section is devoted to this topic. The chapter also treats polynomial and
multiple linear regression as part of its modeling coverage.

Chapter 7 reviews basic statistics and probability and shows how to use
MATLAB to generate histograms, perform calculations with the normal distribu-
tion, and create random number simulations. The chapter concludes with linear
and cubic spline interpolation. The following chapters are not dependent on the
material in this chapter.

Chapter 8 covers the solution of linear algebraic equations, which arise in ap-
plications in all elds of engineering. This coverage establishes the terminology
and some important concepts required to use the computer methods properly. The
chapter then shows how to use MATLAB to solve systems of linear equations
that have a unique solution. Underdetermined and overdetermined systems are
also covered. The remaining chapters are independent of this chapter.

*Introduction to MATLAB 7 for Engineers, McGraw-Hill, New York, 2005.

x Preface

pal34870_fm_i-xii_1.qxd 1/7/10 7:44 PM Page x

www.EBooksWorld.ir

Preface xi

Chapter 9 covers numerical methods for calculus and differential equations.
Numerical integration and differentiation methods are treated. Ordinary differen-
tial equation solvers in the core MATLAB program are covered, as well as the
linear system solvers in the Control System toolbox. This chapter provides some
background for Chapter 10.

Chapter 10 introduces Simulink, which is a graphical interface for building
simulations of dynamic systems. Simulink has increased in popularity and
has seen increased use in industry. This chapter need not be covered to read
Chapter 11.

Chapter 11 covers symbolic methods for manipulating algebraic expressions
and for solving algebraic and transcendental equations, calculus, differential
equations, and matrix algebra problems. The calculus applications include inte-
gration and differentiation, optimization, Taylor series, series evaluation, and
limits. Laplace transform methods for solving differential equations are also in-
troduced. This chapter requires the use of the Symbolic Math toolbox, which in-
cludes MuPAD. MuPAD is a new feature in MATLAB. It provides a notebook
interface for entering commands and displaying results, including plots.

Appendix A contains a guide to the commands and functions introduced
in the text. Appendix B is an introduction to producing animation and sound
with MATLAB. While not essential to learning MATLAB, these features are
helpful for generating student interest. Appendix C summarizes functions for
creating formatted output. Appendix D is a list of references. Appendix E,
which is available on the text’s website, contains some suggestions for
course projects and is based on the author’s experience in teaching a freshman
MATLAB course. Answers to selected problems and an index appear at the
end of the text.

All gures, tables, equations, and exercises have been numbered according
to their chapter and section. For example, Figure 3.4–2 is the second gure in
Chapter 3, Section 4. This system is designed to help the reader locate these
items. The end-of-chapter problems are the exception to this numbering system.
They are numbered 1, 2, 3, and so on to avoid confusion with the in-chapter
exercises.

The rst four chapters constitute a course in the essentials of MA TLAB. The
remaining seven chapters are independent of one another, and may be covered in
any order or may be omitted if necessary. These chapters provide additional cov-
erage and examples of plotting and model building, linear algebraic equations,
probability and statistics, calculus and differential equations, Simulink, and sym-
bolic processing, respectively.

SPECIAL REFERENCE FEATURES
The text has the following special features, which have been designed to enhance
its usefulness as a reference.

■ Throughout each of the chapters, numerous tables summarize the com-
mands and functions as they are introduced.

pal34870_fm_i-xii_1.qxd 1/7/10 7:44 PM Page xi

www.EBooksWorld.ir

■ Appendix A is a complete summary of all the commands and functions
described in the text, grouped by category, along with the number of the
page on which they are introduced.

■ At the end of each chapter is a list of the key terms introduced in the
chapter, with the page number referenced.

■ Key terms have been placed in the margin or in section headings where
they are introduced.

■ The index has four sections: a listing of symbols, an alphabetical list of
MATLAB commands and functions, a list of Simulink blocks, and an
alphabetical list of topics.

PEDAGOGICAL AIDS
The following pedagogical aids have been included:

■ Each chapter begins with an overview.
■ Test Your Understanding exercises appear throughout the chapters near

the relevant text. These relatively straightforward exercises allow readers
to assess their grasp of the material as soon as it is covered. In most cases
the answer to the exercise is given with the exercise. Students should work
these exercises as they are encountered.

■ Each chapter ends with numerous problems, grouped according to the
relevant section.

■ Each chapter contains numerous practical examples. The major examples
are numbered.

■ Each chapter has a summary section that reviews the chapter’s objectives.
■ Answers to many end-of-chapter problems appear at the end of the text.

These problems are denoted by an asterisk next to their number (for
example, 15*).

Two features have been included to motivate the student toward MATLAB
and the engineering profession:

■ Most of the examples and the problems deal with engineering applications.
These are drawn from a variety of engineering elds and show realistic
applications of MATLAB. A guide to these examples appears on the inside
front cover.

■ The facing page of each chapter contains a photograph of a recent
engineering achievement that illustrates the challenging and interesting
opportunities that await engineers in the 21st century. A description of
the achievement and its related engineering disciplines and a discussion
of how MATLAB can be applied in those disciplines accompanies each
photo.

xii Preface

pal34870_fm_i-xii_1.qxd 1/7/10 7:44 PM Page xii

www.EBooksWorld.ir

Preface 1

ONLINE RESOURCES
An Instructor’s Manual is available online for instructors who have adopted this
text. This manual contains the complete solutions to all the Test Your Under-
standing exercises and to all the chapter problems. The text website (at
http://www.mhhe.com/palm) also has downloadable les containing PowerPoint
slides keyed to the text and suggestions for projects.

ELECTRONIC TEXTBOOK OPTIONS
Ebooks are an innovative way for students to save money and create a greener en-
vironment at the same time. An ebook can save students about one-half the cost of
a traditional textbook and offers unique features such as a powerful search engine,
highlighting, and the ability to share notes with classmates using ebooks.

McGraw-Hill offers this text as an ebook. To talk about the ebook options,
contact your McGraw-Hill sales rep or visit the site www.coursesmart.com to
learn more.

MATLAB INFORMATION
For MATLAB® and Simulink® product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

ACKNOWLEDGMENTS
Many individuals are due credit for this text. Working with faculty at the Univer-
sity of Rhode Island in developing and teaching a freshman course based on
MATLAB has greatly in uenced this text. Email from many users contained use-
ful suggestions. The author greatly appreciates their contributions.

The MathWorks, Inc., has always been very supportive of educational pub-
lishing. I especially want to thank Naomi Fernandes of The MathWorks, Inc., for
her help. Bill Stenquist, Joyce Watters, and Lora Neyens of McGraw-Hill ef -
ciently handled the manuscript reviews and guided the text through production.

My sisters, Linda and Chris, and my mother, Lillian, have always been there,
cheering my efforts. My father was always there for support before he passed
away. Finally, I want to thank my wife, Mary Louise, and my children, Aileene,
Bill, and Andy, for their understanding and support of this project.

William J. Palm, III
Kingston, Rhode Island
September 2009

pal34870_fm_i-xii_1.qxd 1/20/10 1:17 PM Page 1

www.EBooksWorld.ir

I t will be many years before humans can travel to other planets. In the mean-
time, unmanned probes have been rapidly increasing our knowledge of the
universe. Their use will increase in the future as our technology develops to

make them more reliable and more versatile. Better sensors are expected for imag-
ing and other data collection. Improved robotic devices will make these probes
more autonomous, and more capable of interacting with their environment, instead
of just observing it.

NASA’s planetary rover Sojourner landed on Mars on July 4, 1997, and ex-
cited people on Earth while they watched it successfully explore the Martian
surface to determine wheel-soil interactions, to analyze rocks and soil, and to
return images of the lander for damage assessment. Then in early 2004, two
improved rovers, Spirit and Opportunity, landed on opposite sides of the planet.
In one of the major discoveries of the 21st century, they obtained strong evidence
that water once existed on Mars in signi cant amounts.

About the size of a golf cart, the new rovers have six wheels, each with its
own motor. They have a top speed of 5 centimeters per second on at, hard
ground and can travel up to about 100 meters per day. Needing 100 watts to move,
they obtain power from solar arrays that generate 140 watts during a 4-hour
window each day. The sophisticated temperature control system must not only
protect against nighttime temperatures of �96�C, but also prevent the rover from
overheating.

The robotic arm has three joints (shoulder, elbow, and wrist), driven by ve
motors, and it has a reach of 90 centimeters. The arm carries four tools and instru-
ments for geological studies. Nine cameras provide hazard avoidance, navigation,
and panoramic views. The onboard computer has 128 MB of DRAM and coordi-
nates all the subsystems including communications.

Although originally planned to last for three months, both rovers were still
exploring Mars at the end of 2009.

All engineering disciplines were involved with the rovers’ design and
launch. The MATLAB Neural Network, Signal Processing, Image Processing,
PDE, and various control system toolboxes are well suited to assist designers of
probes and autonomous vehicles like the Mars rovers. ■

Photo courtesy of NASA Jet Propulsion
Laboratory

Engineering in the
21st Century. . .

Remote Exploration

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 2

www.EBooksWorld.ir

3

C H A P T E R 1

An Overview
of MATLAB®*

OUTLINE
1.1 MATLAB Interactive Sessions

1.2 Menus and the Toolbar

1.3 Arrays, Files, and Plots

1.4 Script Files and the Editor/Debugger

1.5 The MATLAB Help System

1.6 Problem-Solving Methodologies

1.7 Summary

Problems

This is the most important chapter in the book. By the time you have nished this
chapter, you will be able to use MATLAB to solve many kinds of problems.
Section 1.1 provides an introduction to MATLAB as an interactive calculator.
Section 1.2 covers the main menus and toolbar. Section 1.3 introduces arrays,
 les, and plots. Section 1.4 discusses how to create, edit, and save MATLAB
programs. Section 1.5 introduces the extensive MATLAB Help System and
Section 1.6 introduces the methodology of engineering problem solving.

How to Use This Book
The book’s chapter organization is exible enough to accommodate a variety of
users. However, it is important to cover at least the rst four chapters, in that order.
Chapter 2 covers arrays, which are the basic building blocks in MATLAB. Chap-
ter 3 covers le usage, functions built into MA TLAB, and user-de ned functions.

*MATLAB is a registered trademark of The MathWorks, Inc.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 3

www.EBooksWorld.ir

Chapter 4 covers programming using relational and logical operators, condi-
tional statements, and loops.

Chapters 5 through 11 are independent chapters that can be covered in any
order. They contain in-depth discussions of how to use MATLAB to solve several
common types of problems. Chapter 5 covers two- and three-dimensional plots in
greater detail. Chapter 6 shows how to use plots to build mathematical models
from data. Chapter 7 covers probability, statistics and interpolation applications.
Chapter 8 treats linear algebraic equations in more depth by developing methods
for the overdetermined and underdetermined cases. Chapter 9 introduces numeri-
cal methods for calculus and ordinary differential equations. Simulink®*, the topic
of Chapter 10, is a graphical user interface for solving differential equation
models. Chapter 11 covers symbolic processing with MuPAD®*, a new feature of
the MATLAB Symbolic Math toolbox, with applications to algebra, calculus,
differential equations, transforms, and special functions.

Reference and Learning Aids
The book has been designed as a reference as well as a learning tool. The special
features useful for these purposes are as follows.

■ Throughout each chapter margin notes identify where new terms are
introduced.

■ Throughout each chapter short Test Your Understanding exercises appear.
Where appropriate, answers immediately follow the exercise so you can
measure your mastery of the material.

■ Homework exercises conclude each chapter. These usually require greater
effort than the Test Your Understanding exercises.

■ Each chapter contains tables summarizing the MATLAB commands
introduced in that chapter.

■ At the end of each chapter is
■ A summary of what you should be able to do after completing that

chapter
■ A list of key terms you should know

■ Appendix A contains tables of MATLAB commands, grouped by category,
with the appropriate page references.

■ The index has four parts: MATLAB symbols, MATLAB commands,
Simulink blocks, and topics.

1.1 MATLAB Interactive Sessions
We now show how to start MATLAB, how to make some basic calculations, and
how to exit MATLAB.

4 CHAPTER 1 An Overview of MATLAB®

*Simulink and MuPAD are registered trademarks of The MathWorks, Inc.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 4

www.EBooksWorld.ir

Conventions
In this text we use typewriter font to represent MATLAB commands, any
text that you type in the computer, and any MATLAB responses that appear on
the screen, for example, y = 6*x.Variables in normal mathematics text appear
in italics, for example, y � 6x. We use boldface type for three purposes: to repre-
sent vectors and matrices in normal mathematics text (for example, Ax � b), to
represent a key on the keyboard (for example, Enter), and to represent the name
of a screen menu or an item that appears in such a menu (for example, File). It is
assumed that you press the Enter key after you type a command. We do not show
this action with a separate symbol.

Starting MATLAB
To start MATLAB on a MS Windows system, double-click on the MATLAB icon.
You will then see the MATLAB Desktop. The Desktop manages the Command
window and a Help Browser as well as other tools. The default appearance of the
Desktop is shown in Figure 1.1–1. Five windows appear. These are the Command
window in the center, the Command History window in the lower right, the
Workspace window in the upper right, the Details window in the lower left, and the

1.1 MATLAB Interactive Sessions 5

Figure 1.1–1 The default MATLAB Desktop.

DESKTOP

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 5

www.EBooksWorld.ir

Current Directory window in the upper left. Across the top of the Desktop are a row
of menu names and a row of icons called the toolbar. To the right of the toolbar is
a box showing the directory where MATLAB looks for and saves les. We will
describe the menus, toolbar, and directories later in this chapter.

You use the Command window to communicate with the MATLAB pro-
gram, by typing instructions of various types called commands, functions, and
statements. Later we will discuss the differences between these types, but for
now, to simplify the discussion, we will call the instructions by the generic name
commands. MATLAB displays the prompt (>>) to indicate that it is ready to
receive instructions. Before you give MATLAB instructions, make sure the cur-
sor is located just after the prompt. If it is not, use the mouse to move the cursor.
The prompt in the Student Edition looks like EDU >>. We will use the normal
prompt symbol >> to illustrate commands in this text. The Command window in
Figure 1.1–1 shows some commands and the results of the calculations. We will
cover these commands later in this chapter.

Four other windows appear in the default Desktop. The Current Directory
window is much like a le manager window; you can use it to access les.
Double-clicking on a le name with the extension .m will open that le in the
MATLAB Editor. The Editor is discussed in Section 1.4. Figure 1.1–1 shows
the les in the author ’s directory C:\MyMATLABFiles.

Underneath the Current Directory window is the . . . window. It displays any
comments in the le. Note that two le types are shown in the Current Directory .
These have the extensions .m and .mdl. We will cover M les in this chapter .
Chapter 10 covers Simulink, which uses MDL les. You can have other le types
in the directory.

The Workspace window appears in the upper right. The Workspace window
displays the variables created in the Command window. Double-click on a vari-
able name to open the Array Editor, which is discussed in Chapter 2.

The fth window in the default Desktop is the Command History window .
This window shows all the previous keystrokes you entered in the Command
window. It is useful for keeping track of what you typed. You can click on a
keystroke and drag it to the Command window or the Editor to avoid retyping it.
Double-clicking on a keystroke executes it in the Command window.

You can alter the appearance of the Desktop if you wish. For example, to
eliminate a window, just click on its Close-window button (�) in its upper right-
hand corner. To undock, or separate the window from the Desktop, click on the
button containing a curved arrow. An undocked window can be moved around on
the screen. You can manipulate other windows in the same way. To restore the
default con guration, click on the Desktop menu, then click on Desktop Layout,
and select Default.

Entering Commands and Expressions
To see how simple it is to use MATLAB, try entering a few commands on your
computer. If you make a typing mistake, just press the Enter key until you get

6 CHAPTER 1 An Overview of MATLAB®

COMMAND
WINDOW

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 6

www.EBooksWorld.ir

the prompt, and then retype the line. Or, because MATLAB retains your previous
keystrokes in a command le, you can use the up-arrow key () to scroll back
through the commands. Press the key once to see the previous entry, twice to
see the entry before that, and so on. Use the down-arrow key (↓) to scroll forward
through the commands. When you nd the line you want, you can edit it using
the left- and right-arrow keys (← and →), and the Backspace key, and the Delete
key. Press the Enter key to execute the command. This technique enables you to
correct typing mistakes quickly.

Note that you can see your previous keystrokes displayed in the Command
History window. You can copy a line from this window to the Command window
by highlighting the line with the mouse, holding down the left mouse button, and
dragging the line to the Command window.

Make sure the cursor is at the prompt in the Command window. To divide
8 by 10, type 8/10 and press Enter (the symbol / is the MATLAB symbol for
division). Your entry and the MATLAB response look like the following on
the screen (we call this interaction between you and MATLAB an interactive
session, or simply a session). Remember, the symbol >> automatically appears
on the screen; you do not type it.

>> 8/10
ans =

0.8000

MATLAB indents the numerical result. MATLAB uses high precision for its
computations, but by default it usually displays its results using four decimal
places except when the result is an integer.

MATLAB assigns the most recent answer to a variable called ans, which is
an abbreviation for answer. A variable in MATLAB is a symbol used to contain
a value. You can use the variable ans for further calculations; for example, using
the MATLAB symbol for multiplication (*), we obtain

>> 5*ans
ans =

4

Note that the variable ans now has the value 4.
You can use variables to write mathematical expressions. Instead of using

the default variable ans, you can assign the result to a variable of your own
choosing, say, r, as follows:

>> r=8/10
r =

0.8000

Spaces in the line improve its readability; for example, you can put a space
before and after the = sign if you want. MATLAB ignores these spaces when
making its calculations. It also ignores spaces surrounding � and � signs.

↓

1.1 MATLAB Interactive Sessions 7

SESSION

VARIABLE

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 7

www.EBooksWorld.ir

If you now type r at the prompt and press Enter, you will see

>> r
r =

0.8000

thus verifying that the variable r has the value 0.8. You can use this variable in
further calculations. For example,

>> s=20*r
s =

16

A common mistake is to forget the multiplication symbol * and type the ex-
pression as you would in algebra, as s � 20r. If you do this in MATLAB, you
will get an error message.

MATLAB has hundreds of functions available. One of these is the square
root function, sqrt. A pair of parentheses is used after the function’s name to
enclose the value—called the function’s argument—that is operated on by the
function. For example, to compute the square root of 9 and assign its value to
the variable r, you type r = sqrt(9). Note that the previous value of r has
been replaced by 3.

Order of Precedence
A scalar is a single number. A scalar variable is a variable that contains a single
number. MATLAB uses the symbols � � * / ^ for addition, subtraction,
multiplication, division, and exponentiation (power) of scalars. These are listed
in Table 1.1–1. For example, typing x = 8 + 3*5 returns the answer x = 23.
Typing 2^3-10 returns the answer ans = -2. The forward slash (/) repre-
sents right division, which is the normal division operator familiar to you.
Typing 15/3 returns the result ans = 5.

MATLAB has another division operator, called left division, which is de-
noted by the backslash (\). The left division operator is useful for solving sets of
linear algebraic equations, as we will see. A good way to remember the differ-
ence between the right and left division operators is to note that the slash slants
toward the denominator. For example, 7/2 � 2\7 � 3.5.

8 CHAPTER 1 An Overview of MATLAB®

ARGUMENT

Table 1.1–1 Scalar arithmetic operations

Symbol Operation MATLAB form

^ exponentiation: ab a^b
* multiplication: ab a*b
/ right division: a/b � a/b

\ left division: a\b � a\b

� addition: a � b a�b
� subtraction: a � b a�b

b
a

a
b

SCALAR

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 8

www.EBooksWorld.ir

The mathematical operations represented by the symbols � � * / \ and
^ follow a set of rules called precedence. Mathematical expressions are evaluated
starting from the left, with the exponentiation operation having the highest order of
precedence, followed by multiplication and division with equal precedence, fol-
lowed by addition and subtraction with equal precedence. Parentheses can be used
to alter this order. Evaluation begins with the innermost pair of parentheses and
proceeds outward. Table 1.1–2 summarizes these rules. For example, note the
effect of precedence on the following session.

>>8 + 3*5
ans =

23
>>(8 + 3)*5
ans =

55
>>4^2 - 12 - 8/4*2
ans =

0
>>4^2 - 12 - 8/(4*2)
ans =

3
>>3*4^2 + 5
ans =

53
>>(3*4)^2 + 5
ans =

149
>>27^(1/3) + 32^(0.2)
ans =

5
>>27^(1/3) + 32^0.2
ans =

5
>>27^1/3 + 32^0.2
ans =

11

1.1 MATLAB Interactive Sessions 9

PRECEDENCE

Table 1.1–2 Order of precedence

Precedence Operation

First Parentheses, evaluated starting with the innermost pair.
Second Exponentiation, evaluated from left to right.
Third Multiplication and division with equal precedence, evaluated from

left to right.
Fourth Addition and subtraction with equal precedence, evaluated from

left to right.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 9

www.EBooksWorld.ir

To avoid mistakes, feel free to insert parentheses wherever you are unsure of the
effect precedence will have on the calculation. Use of parentheses also improves
the readability of your MATLAB expressions. For example, parentheses are not
needed in the expression 8+(3*5), but they make clear our intention to multi-
ply 3 by 5 before adding 8 to the result.

Test Your Understanding

T1.1–1 Use MATLAB to compute the following expressions.

a.

b.

(Answers: a. 410.1297 b. 17.1123.)

The Assignment Operator
The = sign in MATLAB is called the assignment or replacement operator. It works
differently than the equals sign you know from mathematics. When you type
x = 3, you tell MATLAB to assign the value 3 to the variable x. This usage is no
different than in mathematics. However, in MATLAB we can also type something
like this: x = x + 2. This tells MATLAB to add 2 to the current value of x, and
to replace the current value of xwith this new value. If x originally had the value 3,
its new value would be 5. This use of the � operator is different from its use in
mathematics. For example, the mathematics equation x � x � 2 is invalid because
it implies that 0 � 2.

In MATLAB the variable on the left-hand side of the = operator is replaced
by the value generated by the right-hand side. Therefore, one variable, and only
one variable, must be on the left-hand side of the = operator. Thus in MATLAB
you cannot type 6 = x. Another consequence of this restriction is that you
cannot write in MATLAB expressions like the following:

>>x+2=20

The corresponding equation x � 2 � 20 is acceptable in algebra and has the so-
lution x � 18, but MATLAB cannot solve such an equation without additional
commands (these commands are available in the Symbolic Math toolbox, which
is described in Chapter 11).

Another restriction is that the right-hand side of the = operator must have a
computable value. For example, if the variable y has not been assigned a value,
then the following will generate an error message in MATLAB.

>>x = 5 + y

In addition to assigning known values to variables, the assignment operator
is very useful for assigning values that are not known ahead of time, or for

6(351/4) + 140.35

6a10

13
b +

18

5(7)
+ 5(92)

10 CHAPTER 1 An Overview of MATLAB®

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 10

www.EBooksWorld.ir

changing the value of a variable by using a prescribed procedure. The following
example shows how this is done.

1.1 MATLAB Interactive Sessions 11

Volume of a Circular Cylinder

The volume of a circular cylinder of height h and radius r is given by V � �r2h. A partic-
ular cylindrical tank is 15 m tall and has a radius of 8 m. We want to construct another
cylindrical tank with a volume 20 percent greater but having the same height. How large
must its radius be?

■ Solution
First solve the cylinder equation for the radius r. This gives

The session is shown below. First we assign values to the variables r and h representing the
radius and height. Then we compute the volume of the original cylinder and increase
the volume by 20 percent. Finally we solve for the required radius. For this problem we can
use the MATLAB built-in constant pi.

>>r = 8;
>>h = 15;
>>V = pi*r^2*h;
>>V = V + 0.2*V;
>>r = sqrt(V/(pi*h))
r =

8.7636

Thus the new cylinder must have a radius of 8.7636 m. Note that the original values of
the variables r and V are replaced with the new values. This is acceptable as long as we
do not wish to use the original values again. Note how precedence applies to the line V =
pi*r^2*h;. It is equivalent to V = pi*(r^2)*h;.

Variable Names
The term workspace refers to the names and values of any variables in use in the
current work session. Variable names must begin with a letter; the rest of the
name can contain letters, digits, and underscore characters. MATLAB is case-
sensitive. Thus the following names represent ve dif ferent variables: speed,
Speed, SPEED, Speed_1, and Speed_2. In MATLAB 7, variable names
can be no longer than 63 characters.

Managing the Work Session
Table 1.1–3 summarizes some commands and special symbols for managing the
work session. A semicolon at the end of a line suppresses printing the results to
the screen. If a semicolon is not put at the end of a line, MATLAB displays the

r =

B

V

�h

EXAMPLE 1.1–1

WORKSPACE

pal34870_ch01_002-051.qxd 1/11/10 12:27 PM Page 11

www.EBooksWorld.ir

results of the line on the screen. Even if you suppress the display with the semi-
colon, MATLAB still retains the variable’s value.

You can put several commands on the same line if you separate them with a
comma if you want to see the results of the previous command or semicolon if
you want to suppress the display. For example,

>>x=2;y=6+x,x=y+7
y =

8
x =

15

Note that the rst value of x was not displayed. Note also that the value of x
changed from 2 to 15.

If you need to type a long line, you can use an ellipsis, by typing three
periods, to delay execution. For example,

>>NumberOfApples = 10; NumberOfOranges = 25;
>>NumberOfPears = 12;
>>FruitPurchased = NumberOfApples + NumberOfOranges ...
+NumberOfPears
FruitPurchased =

47

Use the arrow, Tab, and Ctrl keys to recall, edit, and reuse functions and
variables you typed earlier. For example, suppose you mistakenly enter the line

>>volume = 1 + sqr(5)

MATLAB responds with an error message because you misspelled sqrt.
Instead of retyping the entire line, press the up-arrow key () once to display
the previously typed line. Press the left-arrow key (←) several times to move
the cursor and add the missing t, then press Enter. Repeated use of the up-arrow
key recalls lines typed earlier.

↓

12 CHAPTER 1 An Overview of MATLAB®

Table 1.1–3 Commands for managing the work session

Command Description

clc Clears the Command window.
clear Removes all variables from memory.
clear var1 var2 Removes the variables var1 and var2 from memory.
exist(‘name’) Determines if a le or variable exists having the name ‘name’.
quit Stops MATLAB.
who Lists the variables currently in memory.
whos Lists the current variables and sizes and indicate if they have

imaginary parts.
: Colon; generates an array having regularly spaced elements.
, Comma; separates elements of an array.
; Semicolon; suppresses screen printing; also denotes a new row

in an array.
... Ellipsis; continues a line.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 12

www.EBooksWorld.ir

Tab and Arrow Keys
You can use the smart recall feature to recall a previously typed function or vari-
able whose rst few characters you specify . For example, after you have entered
the line starting with volume, typing vol and pressing the up-arrow key ()
once recalls the last-typed line that starts with the function or variable whose
name begins with vol. This feature is case-sensitive.

You can use the tab completion feature to reduce the amount of typing.
MATLAB automatically completes the name of a function, variable, or le if
you type the rst few letters of the name and press the Tab key. If the name is
unique, it is automatically completed. For example, in the session listed earlier, if
you type Fruit and press Tab, MATLAB completes the name and displays
FruitPurchased. Press Enter to display the value of the variable, or continue
editing to create a new executable line that uses the variable FruitPurchased.

If there is more than one name that starts with the letters you typed, MATLAB
displays these names when you press the Tab key. Use the mouse to select the
desired name from the pop-up list by double-clicking on its name.

The left-arrow (←) and right-arrow (→) keys move left and right through
a line one character at a time. To move through one word at a time, press Ctrl
and → simultaneously to move to the right; press Ctrl and ← simultaneously
to move to the left. Press Home to move to the beginning of a line; press End
to move to the end of a line.

Deleting and Clearing
Press Del to delete the character at the cursor; press Backspace to delete the char-
acter before the cursor. Press Esc to clear the entire line; press Ctrl and k simul-
taneously to delete (kill) to the end of the line.

MATLAB retains the last value of a variable until you quit MATLAB or clear
its value. Overlooking this fact commonly causes errors in MATLAB. For exam-
ple, you might prefer to use the variable x in a number of different calculations. If
you forget to enter the correct value for x, MATLAB uses the last value, and you
get an incorrect result. You can use the clear function to remove the values of
all variables from memory, or you can use the form clear var1 var2 to clear
the variables named var1 and var2. The effect of the clc command is differ-
ent; it clears the Command window of everything in the window display, but the
values of the variables remain.

You can type the name of a variable and press Enter to see its current value.
If the variable does not have a value (i.e., if it does not exist), you see an error
message. You can also use the exist function. Type exist(‘x’) to see if the
variable x is in use. If a 1 is returned, the variable exists; a 0 indicates that it does
not exist. The who function lists the names of all the variables in memory, but
does not give their values. The form who var1 var2 restricts the display to the
variables speci ed. The wildcard character * can be used to display variables that
match a pattern. For instance, who A* nds all variables in the current
workspace that start with A. The whos function lists the variable names and their
sizes and indicates whether they have nonzero imaginary parts.

↓

1.1 MATLAB Interactive Sessions 13

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 13

www.EBooksWorld.ir

The difference between a function and a command or a statement is that func-
tions have their arguments enclosed in parentheses. Commands, such as clear,
need not have arguments; but if they do, they are not enclosed in parentheses, for
example, clear x. Statements cannot have arguments; for example, clc and
quit are statements.

Press Ctrl-C to cancel a long computation without terminating the session.
You can quit MATLAB by typing quit. You can also click on the File menu,
and then click on Exit MATLAB.

Prede ned Constants
MATLAB has several prede ned special constants, such as the built-in constant
pi we used in Example 1.1–1. Table 1.1–4 lists them. The symbol Inf stands
for �, which in practice means a number so large that MATLAB cannot repre-
sent it. For example, typing 5/0 generates the answer Inf. The symbol NaN
stands for “not a number.” It indicates an unde ned numerical result such as that
obtained by typing 0/0. The symbol eps is the smallest number which, when
added to 1 by the computer, creates a number greater than 1.We use it as an indi-
cator of the accuracy of computations.

The symbols i and j denote the imaginary unit, where We use
them to create and represent complex numbers, such as x = 5 + 8i.

Try not to use the names of special constants as variable names. Although
MATLAB allows you to assign a different value to these constants, it is not good
practice to do so.

Complex Number Operations
MATLAB handles complex number algebra automatically. For example, the
number c1 � 1 � 2i is entered as follows: c1 = 1-2i. You can also type c1 =
Complex(1, -2).

Caution: Note that an asterisk is not needed between i or j and a number, although
it is required with a variable, such as c2 = 5 - i*c1. This convention can cause
errors if you are not careful. For example, the expressions y = 7/2*i and x =
7/2i give two different results: y � (7/2)i � 3.5i and x � 7/(2i) � �3.5i.

i = j = 1-1.

14 CHAPTER 1 An Overview of MATLAB®

Table 1.1–4 Special variables and constants

Command Description

ans Temporary variable containing the most recent answer.
eps Speci es the accuracy of oating point precision.

i,j The imaginary unit
Inf In nity .
NaN Indicates an unde ned numerical result.
pi The number �.

1-1.

pal34870_ch01_002-051.qxd 1/11/10 12:27 PM Page 14

www.EBooksWorld.ir

Addition, subtraction, multiplication, and division of complex numbers are
easily done. For example,

>>s = 3+7i;w = 5-9i;
>>w+s
ans =

8.0000 - 2.0000i
>>w*s
ans =

78.0000 + 8.0000i
>>w/s
ans =

-0.8276 - 1.0690i

Test Your Understanding

T1.1–2 Given x � �5 � 9i and y � 6 � 2i, use MATLAB to show that x � y �
1 � 7i, xy � �12 � 64i, and x/y � �1.2 � 1.1i.

Formatting Commands
The format command controls how numbers appear on the screen. Table 1.1–5
gives the variants of this command. MATLAB uses many signi cant gures in its
calculations, but we rarely need to see all of them. The default MATLAB display
format is the short format, which uses four decimal digits. You can display more
by typing format long, which gives 16 digits. To return to the default mode,
type format short.

You can force the output to be in scienti c notation by typing format
short e, or format long e, where e stands for the number 10. Thus the out-
put 6.3792e+03 stands for the number 6.3792 � 103. The output 6.3792e-03

1.1 MATLAB Interactive Sessions 15

Table 1.1–5 Numeric display formats

Command Description and example

format short Four decimal digits (the default); 13.6745.
format long 16 digits; 17.27484029463547.
format short e Five digits (four decimals) plus exponent;

6.3792e�03.
format long e 16 digits (15 decimals) plus exponent;

6.379243784781294e�04.
format bank Two decimal digits; 126.73.
format � Positive, negative, or zero; �.
format rat Rational approximation; 43/7.
format compact Suppresses some blank lines.
format loose Resets to less compact display mode.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 15

www.EBooksWorld.ir

stands for the number 6.3792 � 10�3. Note that in this context e does not
represent the number e, which is the base of the natural logarithm. Here e stands
for “exponent.” It is a poor choice of notation, but MATLAB follows conventional
computer programming standards that were established many years ago.

Use format bank only for monetary calculations; it does not recognize
imaginary parts.

1.2 Menus and the Toolbar
The Desktop manages the Command window and other MATLAB tools. The
default appearance of the Desktop is shown in Figure 1.1–1. Across the top of
the Desktop are a row of menu names and a row of icons called the toolbar. To
the right of the toolbar is a box showing the current directory, where MATLAB
looks for les. See Figure 1.2–1.

Other windows appear in a MATLAB session, depending on what you do.
For example, a graphics window containing a plot appears when you use the
plotting functions; an editor window, called the Editor/Debugger, appears for use
in creating program les. Each window type has its own menu bar , with one or
more menus, at the top. Thus the menu bar will change as you change windows.
To activate or select a menu, click on it. Each menu has several items. Click on
an item to select it. Keep in mind that menus are context-sensitive. Thus their
contents change, depending on which features you are currently using.

The Desktop Menus
Most of your interaction will be in the Command window. When the Command
window is active, the default MATLAB 7 Desktop (shown in Figure 1.1–1) has
six menus: File, Edit, Debug, Desktop, Window, and Help. Note that these
menus change depending on what window is active. Every item on a menu can
be selected with the menu open either by clicking on the item or by typing its
underlined letter. Some items can be selected without the menu being open by
using the shortcut key listed to the right of the item. Those items followed by
three dots (. . .) open a submenu or another window containing a dialog box.

The three most useful menus are the File, Edit, and Help menus. The Help
menu is described in Section 1.5. The File menu in MATLAB 7 contains the fol-
lowing items, which perform the indicated actions when you select them.

16 CHAPTER 1 An Overview of MATLAB®

Figure 1.2–1 The top of the MATLAB Desktop.

CURRENT
DIRECTORY

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 16

www.EBooksWorld.ir

The File Menu in MATLAB 7

New Opens a dialog box that allows you to create a new program le, called
an M- le, using a text editor called the Editor/Debugger , a new Figure,
a variable in the Workspace window, Model le (a le type used by
Simulink), or a new GUI (which stands for Graphical User Interface).

Open. . . Opens a dialog box that allows you to select a le for editing.
Close Command Window (or Current Folder) Closes the Command

window or current le if one is open.
Import Data. . . Starts the Import Wizard which enables you to import data

easily.
Save Workspace As. . . Opens a dialog box that enables you to save a le.
Set Path. . . Opens a dialog box that enables you to set the MATLAB search

path.
Preferences. . . Opens a dialog box that enables you to set preferences for

such items as fonts, colors, tab spacing, and so forth.
Page Setup Opens a dialog box that enables you to format printed output.
Print. . . Opens a dialog box that enables you to print all the Command

window.
Print Selection. . . Opens a dialog box that enables you to print selected

portions of the Command window.
File List Contains a list of previously used les, in order of most recently

used.
Exit MATLAB Closes MATLAB.

The New option in the File menu lets you select which type of M- le to
create: a blank M- le, a function M- le, or a class M- le. Select blank M- le
to create an M- le of the type discussed in Section 1.4. Function M- les are dis-
cussed in Chapter 3, but class M- les are beyond the scope of this text.

The Edit menu contains the following items.

The Edit Menu in MATLAB 7

Undo Reverses the previous editing operation.
Redo Reverses the previous Undo operation.
Cut Removes the selected text and stores it for pasting later.
Copy Copies the selected text for pasting later, without removing it.
Paste Inserts any text on the clipboard at the current location of the cursor.
Paste to Workspace. . . Inserts the contents of the clipboard into the

workspace as one or more variables.
Select All Highlights all text in the Command window.
Delete Clears the variable highlighted in the Workspace Browser.
Find. . . Finds and replaces phrases.

1.2 Menus and the Toolbar 17

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 17

www.EBooksWorld.ir

Find Files. . . Finds les.
Clear Command Window Removes all text from the Command window.
Clear Command History Removes all text from the Command History

window.
Clear Workspace Removes the values of all variables from the workspace.

You can use the Copy and Paste selections to copy and paste commands appearing
on the Command window. However, an easier way is to use the up-arrow key to
scroll through the previous commands, and press Enter when you see the command
you want to retrieve.

Use the Debug menu to access the Debugger, which is discussed in Chapter 4.
Use the Desktop menu to control the con guration of the Desktop and to display
toolbars. The Window menu has one or more items, depending on what you
have done thus far in your session. Click on the name of a window that appears
on the menu to open it. For example, if you have created a plot and not closed its
window, the plot window will appear on this menu as Figure 1. However, there
are other ways to move between windows (such as pressing the Alt and Tab keys
simultaneously if the windows are not docked).

The View menu will appear to the right of the Edit menu if you have se-
lected a le in the folder in the Current Folder window . This menu gives infor-
mation about the selected le.

The toolbar, which is below the menu bar, provides buttons as shortcuts to
some of the features on the menus. Clicking on the button is equivalent to click-
ing on the menu, then clicking on the menu item; thus the button eliminates one
click of the mouse. The rst seven buttons from the left correspond to the New
M-File, Open File, Cut, Copy, Paste, Undo, and Redo. The eighth button acti-
vates Simulink, which is a program built on top of MATLAB. The ninth button
activates the GUIDE Quick Start, which is used to create and edit graphical user
interfaces (GUIs). The tenth button activates the Pro ler , which can be used to
optimize program performance. The eleventh button (the one with the question
mark) accesses the Help System.

Below the toolbar is a button that accesses help for adding shortcuts to the tool-
bar and a button that accesses a list of the features added since the previous release.

1.3 Arrays, Files, and Plots
This section introduces arrays, which are the basic building blocks in MATLAB,
and shows how to handle les and generate plots.

Arrays
MATLAB has hundreds of functions, which we will discuss throughout the text.
For example, to compute sin x, where x has a value in radians, you type sin(x).
To compute cos x, type cos(x). The exponential function ex is computed from
exp(x). The natural logarithm, ln x, is computed by typing log(x). (Note the
spelling difference between mathematics text, ln, and MATLAB syntax, log.)

18 CHAPTER 1 An Overview of MATLAB®

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 18

www.EBooksWorld.ir

You compute the base-10 logarithm by typing log10(x). The inverse sine, or
arcsine, is obtained by typing asin(x). It returns an answer in radians, not
degrees. The function asind(x) returns degrees.

One of the strengths of MATLAB is its ability to handle collections of num-
bers, called arrays, as if they were a single variable. A numerical array is an or-
dered collection of numbers (a set of numbers arranged in a speci c order). An
example of an array variable is one that contains the numbers 0, 4, 3, and 6, in
that order. We use square brackets to de ne the variable x to contain this collec-
tion by typing x = [0, 4, 3, 6]. The elements of the array may also be
separated by spaces, but commas are preferred to improve readability and avoid
mistakes. Note that the variable y de ned as y = [6, 3, 4, 0] is not the
same as x because the order is different. The reason for using the brackets is as
follows. If you were to type x = 0, 4, 3, 6, MATLAB would treat this as
four separate inputs and would assign the value 0 to x. The array [0, 4, 3, 6]
can be considered to have one row and four columns, and it is a subcase of a
matrix, which has multiple rows and columns. As we will see, matrices are also
denoted by square brackets.

We can add the two arrays x and y to produce another array z by typing the
single line z = x + y. To compute z, MATLAB adds all the corresponding num-
bers in x and y to produce z. The resulting array z contains the numbers 6, 7, 7, 6.

You need not type all the numbers in the array if they are regularly spaced.
Instead, you type the rst number and the last number , with the spacing in the
middle, separated by colons. For example, the numbers 0, 0.1, 0.2, . . . , 10 can
be assigned to the variable u by typing u = 0:0.1:10. In this application of
the colon operator, the brackets should not be used.

To compute w � 5 sin u for u � 0, 0.1, 0.2 , . . . , 10, the session is

>>u = 0:0.1:10;
>>w = 5*sin(u);

The single line w = 5*sin(u) computed the formula w � 5 sin u 101 times,
once for each value in the array u, to produce an array z that has 101 values.

You can see all the u values by typing u after the prompt; or, for example,
you can see the seventh value by typing u(7). The number 7 is called an array
index, because it points to a particular element in the array.

>>u(7)
ans =

0.6000
>>w(7)
ans =

2.8232

You can use the length function to determine how many values are in an
array. For example, continue the previous session as follows:

>>m = length(w)
m =

101

1.3 Arrays, Files, and Plots 19

ARRAY INDEX

ARRAY

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 19

www.EBooksWorld.ir

Arrays that display on the screen as a single row of numbers with more than
one column are called row arrays. You can create column arrays, which have
more than one row, by using a semicolon to separate the rows.

Polynomial Roots
We can describe a polynomial in MATLAB with an array whose elements are the
polynomial’s coef cients, starting with the coef cient of the highest power of x.
For example, the polynomial 4x3 � 8x2 � 7x � 5 would be represented by the
array[4,-8,7,-5]. The roots of the polynomial f (x) are the values of x such that
f (x) � 0. Polynomial roots can be found with the roots(a) function, where a is
the polynomial’s coef cient array. The result is a column array that contains the
polynomial’s roots. For example, to nd the roots of x3 � 7x2 � 40x � 34 � 0,
the session is

>>a = [1,-7,40,-34];
>>roots(a)
ans =

3.0000 + 5.000i
3.0000 - 5.000i
1.0000

The roots are x � 1 and x � 3 � 5i. The two commands could have been com-
bined into the single command roots([1,-7,40,-34]).

Test Your Understanding

T1.3–1 Use MATLAB to determine how many elements are in the array
cos(0):0.02:log10(100). Use MATLAB to determine the
25th element. (Answer: 51 elements and 1.48.)

T1.3–2 Use MATLAB to nd the roots of the polynomial 290 � 11x � 6x2 � x3.
(Answer: x � �10, 2 � 5i.)

Built-in Functions
We have seen several of the functions built into MATLAB, such as the sqrt and
sin functions. Table 1.3–1 lists some of the commonly used built-in functions.
Chapter 3 gives extensive coverage of the built-in functions. MATLAB users can
create their own functions for their special needs. Creation of user-de ned functions
is covered in Chapter 3.

Working with Files
MATLAB uses several types of les that enable you to save programs, data, and
session results. As we will see in Section 1.4, MATLAB function les and pro-
gram les are saved with the extension . m, and thus are called M- les. MAT- les

20 CHAPTER 1 An Overview of MATLAB®

MAT-FILES

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 20

www.EBooksWorld.ir

have the extension .mat and are used to save the names and values of variables
created during a MATLAB session.

Because they are ASCII les, M- les can be created using just about any
word processor. MAT- les are binary les that are generally readable only by
the software that created them. MAT- les contain a machine signature that
allows them to be transferred between machine types such as MS Windows and
Macintosh machines.

The third type of file we will be using is a data file, specifically an ASCII
data file, that is, one created according to the ASCII format. You may need to
use MATLAB to analyze data stored in such a file created by a spreadsheet
program, a word processor, or a laboratory data acquisition system or in a file
you share with someone else.

Saving and Retrieving Your Workspace Variables
If you want to continue a MATLAB session at a later time, you must use the save
and load commands. Typing save causes MATLAB to save the workspace
variables, that is, the variable names, their sizes, and their values, in a binary
 le called matlab.mat, which MATLAB can read. To retrieve your
workspace variables, type load. You can then continue your session as before.
To save the workspace variables in another le named lename.mat, type
save lename. To load the workspace variables, type load lename. If
the saved MAT- le lename contains the variables A, B, and C, then load-
ing the le lename places these variables back into the workspace and over-
writes any existing variables having the same name.

To save just some of your variables, say, var1 and var2, in the le
 lename.mat, type save lename var1 var2. You need not type the
variable names to retrieve them; just type load lename.

Directories and Path It is important to know the location of the les you use
with MATLAB. File location frequently causes problems for beginners. Suppose

1.3 Arrays, Files, and Plots 21

Table 1.3–1 Some commonly used mathematical functions

Function MATLAB syntax*

ex exp(x)
sqrt(x)

ln x log(x)
log10 x log10(x)
cos x cos(x)
sin x sin(x)
tan x tan(x)
cos�1 x acos(x)
sin�1 x asin(x)
tan�1 x atan(x)

*The MATLAB trigonometric functions listed here use radian measure. Trigonometric functions ending
in d, such as sind(x) and cosd(x), take the argument x in degrees. Inverse functions such as
atand(x) return values in degrees.

1x

ASCII FILES

DATA FILE

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 21

www.EBooksWorld.ir

you use MATLAB on your home computer and save a le to a removable disk, as
discussed later in this section. If you bring that disk to use with MATLAB on an-
other computer, say, in a school’s computer lab, you must make sure that MATLAB
knows how to nd your les. Files are stored in directories, called folders on some
computer systems. Directories can have subdirectories below them. For example,
suppose MATLAB was installed on drive c: in the directory c:\matlab. Then
the toolbox directory is a subdirectory under the directory c:\matlab, and
symbolic is a subdirectory under the toolbox directory. The path tells us and
MATLAB how to nd a particular le.

Working with Removable Disks In Section 1.4 you will learn how to create
and save M- les. Suppose you have saved the le problem1.m in the directory
\homework on a disk, which you insert in drive f:. The path for this
 le is f:\homework. As MATLAB is normally installed, when you type
problem1,

1. MATLAB rst checks to see if problem1 is a variable and if so, displays
its value.

2. If not, MATLAB then checks to see if problem1 is one of its own
commands, and executes it if it is.

3. If not, MATLAB then looks in the current directory for a le named
problem1.m and executes problem1 if it nds it.

4. If not, MATLAB then searches the directories in its search path, in order,
for problem1.m and then executes it if found.

You can display the MATLAB search path by typing path. If problem1 is on
the disk only and if directory f: is not in the search path, MATLAB will not nd
the le and will generate an error message, unless you tell it where to look. You
can do this by typing cd f:\homework, which stands for “change directory
to f:\homework.” This will change the current directory to f:\homework and
force MATLAB to look in that directory to nd your le. The general syntax
of this command is cd dirname, where dirname is the full path to the
directory.

An alternative to this procedure is to copy your le to a directory on the hard
drive that is in the search path. However, there are several pitfalls with this approach:
(1) if you change the le during your session, you might forget to copy the revised le
back to your disk; (2) the hard drive becomes cluttered (this is a problem in public
computer labs, and you might not be permitted to save your le on the hard drive);
(3) the le might be deleted or overwritten if MATLAB is reinstalled; and (4) some-
one else can access your work!

You can determine the current directory (the one where MATLAB looks for
your le) by typing pwd. To see a list of all the les in the current directory , type
dir. To see the les in the directory dirname, type dir dirname.

The what command displays a list of the MATLAB-speci c les in the cur-
rent directory. The what dirname command does the same for the directory
dirname. Type which item to display the full path name of the function

22 CHAPTER 1 An Overview of MATLAB®

PATH

SEARCH PATH

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 22

www.EBooksWorld.ir

item or the le item (include the le extension). If item is a variable, then
MATLAB identi es it as such.

You can add a directory to the search path by using the addpath command.
To remove a directory from the search path, use the rmpath command. The Set
Path tool is a graphical interface for working with les and directories. Type
pathtool to start the browser. To save the path settings, click on Save in the
tool. To restore the default search path, click on Default in the browser.

These commands are summarized in Table 1.3–2.

Plotting with MATLAB
MATLAB contains many powerful functions for easily creating plots of several
different types, such as rectilinear, logarithmic, surface, and contour plots. As a
simple example, let us plot the function y � 5 sin x for 0 	 x 	 7. We choose to
use an increment of 0.01 to generate a large number of x values in order to
produce a smooth curve. The function plot(x,y) generates a plot with the
x values on the horizontal axis (the abscissa) and the y values on the vertical axis
(the ordinate). The session is

>>x = 0:0.01:7;
>>y = 3*cos(2*x);
>>plot(x,y),xlabel(‘x’),ylabel(‘y’)

The plot appears on the screen in a graphics window, named Figure 1, as
shown in Figure 1.3–1. The xlabel function places the text in single quotes
as a label on the horizontal axis. The ylabel function performs a similar
function for the vertical axis. When the plot command is successfully executed,
a graphics window automatically appears. If a hard copy of the plot is desired,

1.3 Arrays, Files, and Plots 23

Table 1.3–2 System, directory, and le commands

Command Description

addpath dirname Adds the directory dirname to the search path.
cd dirname Changes the current directory to dirname.
dir Lists all les in the current directory .
dir dirname Lists all the les in the directory dirname.
path Displays the MATLAB search path.
pathtool Starts the Set Path tool.
pwd Displays the current directory.
rmpath dirname Removes the directory dirname from the search path.
what Lists the MATLAB-speci c les found in the current

working directory. Most data les and other non-MA TLAB
 les are not listed. Use dir to get a list of all les.

what dirname Lists the MATLAB-speci c les in directory dirname.
which item Displays the path name of item if item is a function or

 le. Identi es item as a variable if so.

GRAPHICS
WINDOW

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 23

www.EBooksWorld.ir

the plot can be printed by selecting Print from the File menu on the graphics
window. The window can be closed by selecting Close on the File menu in the
graphics window. You will then be returned to the prompt in the Command
window.

Other useful plotting functions are title and gtext. These functions
place text on the plot. Both accept text within parentheses and single quotes, as
with the xlabel function. The title function places the text at the top of the
plot; the gtext function places the text at the point on the plot where the cursor
is located when you click the left mouse button.

You can create multiple plots, called overlay plots, by including another set
or sets of values in the plot function. For example, to plot the functions

and z � 4 sin 3x for 0
 x
 5 on the same plot, the session is

>>x = 0:0.01:5;
>>y = 2*sqrt(x);
>>z = 4*sin(3*x);
>>plot(x,y,x,z),xlabel(‘x’),gtext(‘y’),gtext(‘z’)

After the plot appears on the screen, the program waits for you to position
the cursor and click the mouse button, once for each gtext function used.

y = 21x

24 CHAPTER 1 An Overview of MATLAB®

Figure 1.3–1 A graphics window showing a plot.

OVERPLAY PLOT

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 24

www.EBooksWorld.ir

Use the gtext function to place the labels y and z next to the appropriate
curves.

You can also distinguish curves from one another by using different line types
for each curve. For example, to plot the z curve using a dashed line, replace the
plot(x,y,x,z) function in the above session with plot(x,y,x,z, ‘� �’).
Other line types can be used. These are discussed in Chapter 5.

Sometimes it is useful or necessary to obtain the coordinates of a point on a
plotted curve. The function ginput can be used for this purpose. Place it at the
end of all the plot and plot formatting statements, so that the plot will be in its nal
form. The command [x,y] = ginput(n) gets n points and returns the x and
y coordinates in the vectors x and y, which have a length n. Position the cursor
using a mouse, and press the mouse button. The returned coordinates have the
same scale as the coordinates on the plot.

In cases where you are plotting data, as opposed to functions, you should use
data markers to plot each data point (unless there are very many data points). To
mark each point with a plus sign �, the required syntax for the plot function is
plot(x,y,’�’). You can connect the data points with lines if you wish. In
that case, you must plot the data twice, once with a data marker and once without
a marker.

For example, suppose the data for the independent variable is x =
[15:2:23]and the dependent variable values are y = [20, 50, 60, 90,
70]. To plot the data with plus signs, use the following session:

>>x = 15:2:23;
>>y = [20, 50, 60, 90, 70];
>>plot(x,y,’+’,x,y),xlabel(‘x’),ylabel(‘y’), grid

The grid command puts grid lines on the plot. Other data markers are available.
These are discussed in Chapter 5.

Table 1.3–3 summarizes these plotting commands. We will discuss other
plotting functions, and the Plot Editor, in Chapter 5.

1.3 Arrays, Files, and Plots 25

DATA MARKER

Table 1.3–3 Some MATLAB plotting commands

Command Description

[x,y] � ginput(n) Enables the mouse to get n points from a plot, and returns
the x and y coordinates in the vectors x and y, which have
a length n.

grid Puts grid lines on the plot.
gtext(‘text’) Enables placement of text with the mouse.
plot(x,y) Generates a plot of the array y versus the array x on

rectilinear axes.
title(‘text’) Puts text in a title at the top of the plot.
xlabel(‘text’) Adds a text label to the horizontal axis (the abscissa).
ylabel(‘text’) Adds a text label to the vertical axis (the ordinate).

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 25

www.EBooksWorld.ir

Test Your Understanding

T1.3–3 Use MATLAB to plot the function over
the interval 0
 t
 5. Put a title on the plot, and properly label the axes.
The variable s represents speed in feet per second; the variable t repre-
sents time in seconds.

T1.3–4 Use MATLAB to plot the functions and z � 5e0.3x � 2x
over the interval 0
 x
 1.5. Properly label the plot and each curve. The
variables y and z represent force in newtons; the variable x represents
distance in meters.

Linear Algebraic Equations
You can use the left division operator (\) in MATLAB to solve sets of linear
algebraic equations. For example, consider the set

To solve such sets in MATLAB, you must create two arrays; we will call them
A and B. The array A has as many rows as there are equations and as many
columns as there are variables. The rows of A must contain the coef cients of x,
y, and z in that order. In this example, the rst row of A must be 6, 12, 4; the sec-
ond row must be 7, �2, 3; and the third row must be 2, 8, �9. The array B con-
tains the constants on the right-hand side of the equation; it has one column and
as many rows as there are equations. In this example, the rst row of B is 70, the
second is 5, and the third is 64. The solution is obtained by typing A\B. The
session is

>>A = [6,12,4;7,-2,3;2,8,-9];
>>B = [70;5;64];
>>Solution = A\B
Solution =

3
5
-2

The solution is , , and .
This method works ne when the equation set has a unique solution. To learn

how to deal with problems having a nonunique solution (or perhaps no solution
at all!), see Chapter 8.

z = -2y = 5x = 3

 2x + 8y - 9z = 64

 7x - 2y + 3z = 5

 6x + 12y + 4z = 70

y = 416x + 1

s = 2 sin(3t + 2) + 15t + 1

26 CHAPTER 1 An Overview of MATLAB®

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 26

www.EBooksWorld.ir

Test Your Understanding

T1.3–5 Use MATLAB to solve the following set of equations.

(Answer: .)

1.4 Script Files and the Editor/Debugger
You can perform operations in MATLAB in two ways:

1. In the interactive mode, in which all commands are entered directly in the
Command window.

2. By running a MATLAB program stored in script le. This type of le
contains MATLAB commands, so running it is equivalent to typing all the
commands, one at a time, at the Command window prompt. You can run
the le by typing its name at the Command window prompt.

When the problem to be solved requires many commands or a repeated set of
commands, or has arrays with many elements, the interactive mode is inconve-
nient. Fortunately, MATLAB allows you to write your own programs to avoid
this dif culty . You write and save MATLAB programs in M- les, which have the
extension .m; for example, program1.m.

MATLAB uses two types of M- les: script les and function les. You can use
the Editor/Debugger built into MATLAB to create M- les. Because they contain
commands, script les are sometimes called command les. Function les are
discussed in Chapter 3.

Creating and Using a Script File
The symbol % designates a comment, which is not executed by MATLAB. Com-
ments are used mainly in script les for the purpose of documenting the le. The
comment symbol may be put anywhere in the line. MATLAB ignores everything
to the right of the % symbol. For example, consider the following session.

>>% This is a comment.
>>x = 2+3 % So is this.
x =

5

Note that the portion of the line before the % sign is executed to compute x.
Here is a simple example that illustrates how to create, save, and run a script

 le, using the Editor/Debugger built into MATLAB. However, you may use another

x = 2, y = -5, z = 10

 14x + 9y - 5z = -67

 -5x - 3y + 7z = 75

 6x - 4y + 8z = 112

1.4 Script Files and the Editor/Debugger 27

COMMENT

SCRIPT FILE

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 27

www.EBooksWorld.ir

text editor to create the le. The sample le is shown below. It computes the cosine
of the square root of several numbers and displays the results on the screen.

% Program Example_1.m
% This program computes the cosine of
% the square root and displays the result.
x = sqrt(13:3:25);
y = cos(x)

To create this new M- le in the Command window , select New from the File
menu, then select Blank M- le. You will then see a new edit window. This is the
Editor/Debugger window as shown in Figure 1.4–1. Type in the le as shown
above. You can use the keyboard and the Edit menu in the Editor/Debugger as
you would in most word processors to create and edit the le. When nished,
select Save from the File menu in the Editor/Debugger. In the dialog box that
appears, replace the default name provided (usually named Untitled) with the
name Example_1, and click on Save. The Editor/Debugger will automatically
provide the extension .m and save the le in the MATLAB current directory,
which for now we will assume to be on the hard drive.

Once the le has been saved, in the MA TLAB Command window type the
script le’ s name Example_1 to execute the program. You should see the result
displayed in the Command window. Figure 1.4–1 shows a screen containing the

28 CHAPTER 1 An Overview of MATLAB®

Figure 1.4–1 The MATLAB Command window with the Editor/Debugger open.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 28

www.EBooksWorld.ir

resulting Command window display and the Editor/Debugger opened to display
the script le.

Effective Use of Script Files
Create script les to avoid the need to retype lengthy and commonly used proce-
dures. Here are some other things to keep in mind when using script les:
1. The name of a script le must follow the MA TLAB convention for naming

variables.
2. Recall that typing a variable’s name at the Command window prompt causes

MATLAB to display the value of that variable. Thus, do not give a script le
the same name as a variable it computes because MATLAB will not be able
to execute that script le more than once, unless you clear the variable.

3. Do not give a script le the same name as a MA TLAB command or function.
You can check to see if a command, function, or le name already exists by
using the exist command. For example, to see if a variable example1
already exists, type exist(‘example1’); this will return a 0 if the
variable does not exist and a 1 if it does. To see if an M- le example1.m
already exists, type exist(‘example1.m’,’ le’) before creating the
 le; this will return a 0 if the le does not exist and a 2 if it does. Finally ,
to see if a built-in function example1 already exists, type exist
(‘example1’, ‘builtin’) before creating the le; this will return
a 0 if the built-in function does not exist and a 5 if it does.

Note that not all functions supplied with MATLAB are built-in functions.
For example, the function mean.m is supplied but is not a built-in function. The
command exist(‘mean.m’, ‘ le’) will return a 2, but the command
exist(‘mean’, ‘builtin’) will return a 0. You may think of built-in
functions as primitives that form the basis for other MATLAB functions. You can-
not view the entire le of a built-in function in a text editor , only the comments.

Debugging Script Files
Debugging a program is the process of nding and removing the “bugs,” or errors,
in a program. Such errors usually fall into one of the following categories.
1. Syntax errors such as omitting a parenthesis or comma, or spelling a com-

mand name incorrectly. MATLAB usually detects the more obvious errors
and displays a message describing the error and its location.

2. Errors due to an incorrect mathematical procedure, called runtime errors.
They do not necessarily occur every time the program is executed; their
occurrence often depends on the particular input data. A common example
is division by zero.

To locate an error, try the following:
1. Always test your program with a simple version of the problem, whose

answers can be checked by hand calculations.

1.4 Script Files and the Editor/Debugger 29

DEBUGGING

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 29

www.EBooksWorld.ir

2. Display any intermediate calculations by removing semicolons at the end
of statements.

3. Use the debugging features of the Editor/Debugger, which are introduced in
Chapter 4. However, one advantage of MATLAB is that it requires relatively
simple programs to accomplish many types of tasks. Thus you probably will
not need to use the Debugger for the problems encountered in this text.

Programming Style
Comments may be put anywhere in the script le. However , because the rst
comment line before any executable statement is the line searched by the
lookfor command, discussed later in this chapter, consider putting key-
words that describe the script le in this rst line (called the H1 line). A sug-
gested structure for a script le is the following.
1. Comments section In this section put comment statements to give

a. The name of the program and any keywords in the rst line.
b. The date created and the creators’ names in the second line.
c. The de nitions of the variable names for every input and output

variable. Divide this section into at least two subsections, one for input
data and one for output data. A third, optional section may include
de nitions of variables used in the calculations. Be sure to include the
units of measurement for all input and all output variables!

d. The name of every user-de ned function called by the program.
2. Input section In this section put the input data and/or the input functions

that enable data to be entered. Include comments where appropriate for
documentation.

3. Calculation section Put the calculations in this section. Include comments
where appropriate for documentation.

4. Output section In this section put the functions necessary to deliver the
output in whatever form required. For example, this section might contain
functions for displaying the output on the screen. Include comments where
appropriate for documentation.

The programs in this text often omit some of these elements to save space. Here the
text discussion associated with the program provides the required documentation.

Controlling Input and Output
MATLAB provides several useful commands for obtaining input from the user
and for formatting the output (the results obtained by executing the MATLAB
commands). Table 1.4–1 summarizes these commands.

The disp function (short for “display”) can be used to display the value of a
variable but not its name. Its syntax is disp(A), where A represents a MATLAB
variable name. The disp function can also display text such as a message to the
user. You enclose the text within single quotes. For example, the command
disp(‘The predicted speed is:’) causes the message to appear on

30 CHAPTER 1 An Overview of MATLAB®

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 30

www.EBooksWorld.ir

the screen. This command can be used with the rst form of the disp function
in a script le as follows (assuming the value of Speed is 63):

disp(‘The predicted speed is:’)
disp(Speed)

When the le is run, these lines produce the following on the screen:

The predicted speed is:
63

The input function displays text on the screen, waits for the user to enter
something from the keyboard, and then stores the input in the speci ed variable.
For example, the command x = input(‘Please enter the value of
x:’) causes the message to appear on the screen. If you type 5 and press Enter,
the variable x will have the value 5.

A string variable is composed of text (alphanumeric characters). If you want
to store a text input as a string variable, use the other form of the input command.
For example, the command Calendar = input(‘Enter the day of
the week:’,’s’) prompts you to enter the day of the week. If you type
Wednesday, this text will be stored in the string variable Calendar.

Use the menu function to generate a menu of choices for user input. Its
syntax is

k = menu(‘title’,’option1’,’option2’,...)

The function displays the menu whose title is in the string variable ‘title’and
whose choices are string variables ‘option1’, ‘option2’, and so on. The
returned value of k is 1, 2, . . . depending on whether you click on the button for
option1, option2, and so forth. For example, the following script uses a menu
to select the data marker for a graph, assuming that the arrays x and y already exist.

k = menu(‘Choose a data marker’,’o’,’*’,’x’);
type = [‘o’,’*’,’x’];
plot(x,y,x,y,type(k))

1.4 Script Files and the Editor/Debugger 31

Table 1.4–1 Input/output commands

Command Description

disp(A) Displays the contents, but not the name, of the
array A.

disp(‘text’) Displays the text string enclosed within
single quotes.

format Controls the screen’s output display format (see
Table 1.1–5).

x = input(‘text’) Displays the text in quotes, waits for user input
from the keyboard, and stores the value in x.

x = input(‘text’,’s’) Displays the text in quotes, waits for user input from
the keyboard, and stores the input as a string in x.

k=menu(‘title’,’option1’, Displays a menu whose title is in the string
’option2’,... variable ‘title’ and whose choices are

‘option1’,‘option2’, and so on.

STRING VARIABLE

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 31

www.EBooksWorld.ir

Test Your Understanding

T1.4–1 The surface area A of a sphere depends on its radius r as follows:
A � 4�r2. Write a script le that prompts the user to enter a radius, com-
putes the surface area, and displays the result.

Example of a Script File
The following is a simple example of a script le that shows the preferred pro-
gram style. The speed of a falling object dropped with no initial velocity is given
as a function of time t by , where g is the acceleration due to gravity. In
SI units, m/s2. We want to compute and plot as a function of t for

, where t nal is the nal time entered by the user . The script le is
the following.
0 … t … tfinal

�g = 9.81
� = gt

�

32 CHAPTER 1 An Overview of MATLAB®

% Program Falling_Speed.m: plots speed of a falling object.
% Created on March 1, 2009 by W. Palm III
%
% Input Variable:
% t nal = nal time (in seconds)
%
% Output Variables:
% t = array of times at which speed is computed (seconds)
% v = array of speeds (meters/second)

%
% Parameter Value:
g = 9.81; % Acceleration in SI units
%
% Input section:
tfinal = input(‘Enter the nal time in seconds:’);
%
% Calculation section:
dt = tfinal/500;
t = 0:dt:tfinal; % Creates an array of 501 time values.
v = g*t;
%
% Output section:
plot(t,v),xlabel(‘Time (seconds)’),ylabel(‘Speed (meters/second)’)

After creating this le, you save it with the name Falling_Speed.m. To
run it, you type Falling_Speed (without the .m) in the Command window at
the prompt. You will then be asked to enter a value for t nal . After you enter a
value and press Enter, you will see the plot on the screen.

pal34870_ch01_002-051.qxd 1/11/10 12:27 PM Page 32

www.EBooksWorld.ir

1.5 The MATLAB Help System
To explore the more advanced features of MATLAB not covered in this book,
you will need to know how to use effectively the MATLAB Help System.
MATLAB has these options to get help for using MathWorks products.
1. Function Browser This provides quick access to the documentation for the

MATLAB function.
2. Help Browser This graphical user interface helps you nd information and

view online documentation for your MathWorks products.
3. Help Functions The functions help, lookfor, and doc can be used to

display syntax information for a speci ed function.
4. Other Resources For additional help, you can run demos, contact technical

support, search documentation for other MathWorks products, view a list
of other books, and participate in a newsgroup.

The Function Browser
To activate the Function Browser, either select Function Browser from the Help
menu or select the fx icon to the left of the prompt. Figure 1.5–1 shows the result-
ing menu after the Graphics category has been selected. The subwindow shown
opens when the plot function is selected. Scroll down to see the entire documenta-
tion of the plot function.

The Help Browser
To open the Help Browser, select Product Help from the Help menu, or click the
question mark button in the toolbar. The Help Browser contains two window

1.5 The MATLAB Help System 33

Figure 1.5–1 The Function Browser after plot has been selected.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 33

www.EBooksWorld.ir

“panes”: the Help Navigator pane on the left and the Display pane on the right
(see Figure 1.5–2). The Help Navigator contains two tabs:

■ Contents: a contents listing tab
■ Search Results: a search tab having a nd function and full text search

features

Use the tabs in the Help Navigator to nd documentation. You view documentation
in the Display pane. To open the Help Navigator pane from the display pane, click
on Help Navigator in the View menu.

Finding Documentation
Figure 1.5–3 shows the result of clicking on the � sign next to MATLAB in the Help
Navigator. A submenu appears that shows the various Help topics for MATLAB.

Viewing Documentation
After nding documentation with the Help Navigator , view the documentation in
the Display pane. While viewing a page of documentation, you can

■ Scroll to see contents not currently visible in the window.
■ View the previous or next page in the document by clicking the left or right

arrow at the top of the page.
■ View the previous or next item in the index by clicking the left or right

arrow at the bottom of the page.

34 CHAPTER 1 An Overview of MATLAB®

Figure 1.5–2 The MATLAB Help Browser.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 34

www.EBooksWorld.ir

■ Find a phrase or speci ed term by typing the term in the Search box
below the Help Browser toolbar and pressing the Enter key. The left-hand
pane will then display all the Help pages and function documentation that
contains the speci ed term.

Using the Contents Tab
Click the Contents tab in the Help Navigator to list the titles and table of con-
tents for all product documentation. To expand the listing for an item, click the
� to the left of the item. To collapse the listings for an item, click the � to the
left of the item, or double-click the item. Click on an item to select it. The rst
page of that document appears in the Display pane. Double-clicking an item in
the contents listing expands the listing for that item and shows the rst page of
that document in the Display pane.

The Contents pane is synchronized with the Display pane. By default, the
item selected in the Contents pane always matches the documentation appearing
in the Display pane. Thus, the contents tree is synchronized with the displayed
document.

Using the Search Results Tab
Click the Search Results tab in the Help Navigator pane to nd all MA TLAB
documents containing a speci ed phrase. Type the phrase in the “Search” box.
Then press Enter. The list of documents and the heading under which the phrase

1.5 The MATLAB Help System 35

Figure 1.5–3 The Help Navigator showing the submenus under the
MATLAB category.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 35

www.EBooksWorld.ir

is found in that document then appear in the Help Navigator pane. Select an entry
from the list of results to view that document in the Display pane.

Figure 1.5–4 shows the results of typing plot in the “Search” box. The
Display pane shows the documentation for the plot function (scroll down to
see all of it), and the Help Navigator pane shows the Documentation Search
results and the Demo Search results.

Help Functions
Three MATLAB functions can be used for accessing online information about
MATLAB functions.

The help Function The help function is the most basic way to determine
the syntax and behavior of a particular function. For example, typing help
log10 in the Command window produces the following display:

LOG10 Common (base 10) logarithm.
LOG10(X) is the base 10 logarithm of the elements of X.
Complex results are produced if X is not positive.

See also LOG, LOG2, EXP, LOGM.

Note that the display describes what the function does, warns about any unexpected
results if nonstandard argument values are used, and directs the user to other related
functions.

All the MATLAB functions are organized into logical groups, upon which the
MATLAB directory structure is based. For instance, all elementary mathematical

36 CHAPTER 1 An Overview of MATLAB®

Figure 1.5–4 The results of entering plot in the “Search” box.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 36

www.EBooksWorld.ir

1.5 The MATLAB Help System 37

functions such as log10 reside in the elfun directory, and the polynomial
functions reside in the polyfun directory. To list the names of all the functions
in that directory, with a brief description of each, type help polyfun. If you
are unsure of what directory to search, type help to obtain a list of all the direc-
tories, with a description of the function category each represents.

Typing helpwin topic displays the Help text for the speci ed topic
inside the Desktop Help Browser window. Links are created to functions refer-
enced in the “See Also” line of the Help text. You can also access the Help win-
dow by selecting the Help option under the Help menu, or by clicking the
question mark button on the toolbar.

The lookfor Function The lookfor function allows you to search for
functions on the basis of a keyword. It searches through the rst line of Help text,
known as the H1 line, for each MATLAB function, and returns all the H1 lines
containing a speci ed keyword. For example, MA TLAB does not have a func-
tion named sine. So the response from help sine is

sine.m not found

However, typing lookfor sine produces over a dozen matches, depending on
which toolboxes you have installed. For example, you will see, among others,

ACOS Inverse cosine, result in radians
ACOSD Inverse cosine, result in degrees
ACOSH Inverse hyperbolic cosine
ASIN Inverse sine, result in radians
...
SIN Sine of argument in radians
...

From this list you can nd the correct name for the sine function. Note that all
words containing sine are returned, such as cosine. Adding -all to the lookfor
function searches the entire Help entry, not just the H1 line.

The doc Function Typing doc function displays the documentation for the
MATLAB function function. Typing doc toolbox/function displays
the documentation for the speci ed toolbox function. Typing doc toolbox
displays the documentation road map page for the speci ed toolbox.

The MathWorks Website
If your computer is connected to the Internet, you can access The MathWorks,
Inc., the home of MATLAB. You can use electronic mail to ask questions, make
suggestions, and report possible bugs. You can also use a solution search engine
at The MathWorks website to query an up-to-date database of technical support
information. The website address is http://www.mathworks.com.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 37

www.EBooksWorld.ir

38 CHAPTER 1 An Overview of MATLAB®

MODEL

The Help system is very powerful and detailed, so we have only described
its basics. You can, and should, use the Help system to learn how to use its fea-
tures in greater detail.

Table 1.5–1 summarizes the MATLAB Help functions.

1.6 Problem-Solving Methodologies
Designing new engineering devices and systems requires a variety of problem-
solving skills. (This variety is what keeps engineering from becoming boring!)
When you are solving a problem, it is important to plan your actions ahead of
time. You can waste many hours by plunging into the problem without a plan of
attack. Here we present a plan of attack, or methodology, for solving engineering
problems in general. Because solving engineering problems often requires a
computer solution and because the examples and exercises in this text require
you to develop a computer solution (using MATLAB), we also discuss a method-
ology for solving computer problems in particular.

Steps in Engineering Problem Solving
Table 1.6–1 summarizes the methodology that has been tried and tested by the
engineering profession for many years. These steps describe a general problem-
solving procedure. Simplifying the problem suf ciently and applying the appro-
priate fundamental principles is called modeling, and the resulting mathematical

Table 1.5–1 MATLAB Help functions

Function Use

doc Displays the start page of the documentation in the Help
Browser.

doc function Displays the documentation for the MATLAB function
function.

doc toolbox/ Displays the documentation for the speci ed toolbox
function function.
doc toolbox Displays the documentation road map page for the speci ed

toolbox.
help Displays a list of all the function directories, with a descrip-

tion of the function category each represents.
help function Displays in the Command window a description of the

speci ed function function.
helpwin topic Displays the Help text for the speci ed topic inside the

Desktop Help Browser window.
lookfor topic Displays in the Command window a brief description for

all functions whose description includes the speci ed
keyword topic.

type lename Displays the M- le lename without opening it with a
text editor.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 38

www.EBooksWorld.ir

1.6 Problem-Solving Methodologies 39

* References appear in Appendix D.

description is called a mathematical model, or just a model. When the modeling
is nished, we need to solve the mathematical model to obtain the required an-
swer. If the model is highly detailed, we might need to solve it with a computer
program. Most of the examples and exercises in this text require you to develop
a computer solution (using MATLAB) to problems for which the model has
already been developed. Thus we will not always need to use all the steps shown
in Table 1.6–1. Greater discussion of engineering problem solving can be found
in [Eide, 2008].*

Example of Problem Solving
Consider the following simple example of the steps involved in problem solving.
Suppose you work for a company that produces packaging. You are told that a
new packaging material can protect a package when dropped, provided that the
package hits the ground at less than 25 ft/sec. The package’s total weight is 20 lb,
and it is rectangular with dimensions of 12 by 12 by 8 in. You must determine
whether the packaging material provides enough protection when the package is
carried by delivery persons.

Table 1.6–1 Steps in engineering problem solving

1. Understand the purpose of the problem.
2. Collect the known information. Realize that some of it might later be found

unnecessary.
3. Determine what information you must nd.
4. Simplify the problem only enough to obtain the required information. State any as-

sumptions you make.
5. Draw a sketch and label any necessary variables.
6. Determine which fundamental principles are applicable.
7. Think generally about your proposed solution approach and consider other approaches

before proceeding with the details.
8. Label each step in the solution process.
9. If you solve the problem with a program, hand check the results using a simple version

of the problem. Checking the dimensions and units and printing the results of intermedi-
ate steps in the calculation sequence can uncover mistakes.

10. Perform a “reality check” on your answer. Does it make sense? Estimate the range of
the expected result and compare it with your answer. Do not state the answer with
greater precision than is justi ed by any of the following:
(a) The precision of the given information.
(b) The simplifying assumptions.
(c) The requirements of the problem.

Interpret the mathematics. If the mathematics produces multiple answers, do not discard
some of them without considering what they mean. The mathematics might be trying to
tell you something, and you might miss an opportunity to discover more about the
problem.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 39

www.EBooksWorld.ir

40 CHAPTER 1 An Overview of MATLAB®

The steps in the solution are as follows:

1. Understand the purpose of the problem. The implication here is that the
packaging is intended to protect against being dropped while the delivery
person is carrying it. It is not intended to protect against the package falling
off a moving delivery truck. In practice, you should make sure that the per-
son giving you this assignment is making the same assumption. Poor com-
munication is the cause of many errors!

2. Collect the known information. The known information is the package’s
weight, dimensions, and maximum allowable impact speed.

3. Determine what information you must nd. Although it is not explicitly
stated, you need to determine the maximum height from which the package
can be dropped without damage. You need to nd a relationship between
the speed of impact and the height at which the package is dropped.

4. Simplify the problem only enough to obtain the required information.
State any assumptions you make. The following assumptions will
simplify the problem and are consistent with the problem statement as we
understand it:
a. The package is dropped from rest with no vertical or horizontal velocity.
b. The package does not tumble (as it might when dropped from a moving

truck). The given dimensions indicate that the package is not thin and
thus will not “ utter” as it falls.

c. The effect of air drag is negligible.
d. The greatest height from which the delivery person could drop the

package is 6 ft (and thus we ignore the existence of a delivery person
8 ft tall!).

e. The acceleration g due to gravity is constant (because the distance
dropped is only 6 ft).

5. Draw a sketch and label any necessary variables. Figure 1.6–1 is a sketch
of the situation, showing the height h of the package, its mass m, its speed
, and the acceleration due to gravity g.

6. Determine which fundamental principles are applicable. Because this
problem involves a mass in motion, we can apply Newton’s laws. From
physics we know that the following relations result from Newton’s laws
and the basic kinematics of an object falling a short distance under the in-
 uence of gravity , with no air drag or initial velocity:
a. Height versus time to impact : .

b. Impact speed versus time to impact: .

c. Conservation of mechanical energy: .
7. Think generally about your proposed solution approach and consider other

approaches before proceeding with the details. We could solve the second
equation for and substitute the result into the rst equation to obtain the
relation between h and . This approach would also allow us to nd the
time to drop . However, this method involves more work than necessaryti

�i

ti

mgh =
1
2 m�i

2

�i = gti�i

h =
1
2gt2

iti

�

pal34870_ch01_002-051.qxd 1/11/10 12:27 PM Page 40

www.EBooksWorld.ir

because we need not nd the value of . The most ef cient approach is to
solve the third relation for h.

(1.6–1)

Notice that the mass m cancels out of the equation. The mathematics just
told us something! It told us that the mass does not affect the relation
between the impact speed and the height dropped. Thus we do not need the
weight of the package to solve the problem.

8. Label each step in the solution process. This problem is so simple that
there are only a few steps to label:
a. Basic principle: conservation of mechanical energy

b. Determine the value of the constant g:
c. Use the given information to perform the calculation and round off the

result consistent with the precision of the given information:

Because this text is about MATLAB, we might as well use it to do this
simple calculation. The session looks like this:

>>g=32.2;
>>vi=25;
>>h=vi^2/(2*g)
h =

9.7050

h =

1

2

252

32.2
= 9.7 ft

g = 32.2 ft/sec2.

h =

1

2

�2

i

g

h =

1

2

�2

i

g

ti

1.6 Problem-Solving Methodologies 41

m

g

v

Ground

Package

h

Figure 1.6–1 Sketch of the
dropped-package problem.

pal34870_ch01_002-051.qxd 1/11/10 12:27 PM Page 41

www.EBooksWorld.ir

9. Check the dimensions and units. This check proceeds as follows, using
Equation (1.6–1),

which is correct.
10. Perform a reality check and precision check on the answer. If the

computed height were negative, we would know that we did something
wrong. If it were very large, we might be suspicious. However, the
computed height of 9.7 ft does not seem unreasonable.

If we had used a more accurate value for g, say g � 32.17, then we
would be justi ed in rounding the result to h � 9.71. However, given the
need to be conservative here, we probably should round the answer down
to the nearest foot. So we probably should report that the package will not
be damaged if it is dropped from a height of less than 9 ft.

The mathematics told us that the package mass does not affect the
answer. The mathematics did not produce multiple answers here. However,
many problems involve the solution of polynomials with more than one
root; in such cases we must carefully examine the signi cance of each.

Steps for Obtaining a Computer Solution
If you use a program such as MATLAB to solve a problem, follow the steps
shown in Table 1.6–2. Greater discussion of modeling and computer solutions
can be found in [Star eld, 1990] and [Jayaraman, 1991].

MATLAB is useful for doing numerous complicated calculations and then
automatically generating a plot of the results. The following example illustrates
the procedure for developing and testing such a program.

[ft] = c1
2
d [ft/sec]2

[ft/sec2]
=

[ft]2

[sec]2

[sec]2

[ft]
= [ft]

42 CHAPTER 1 An Overview of MATLAB®

Table 1.6–2 Steps for developing a computer solution

1. State the problem concisely.
2. Specify the data to be used by the program. This is the input.
3. Specify the information to be generated by the program. This is the output.
4. Work through the solution steps by hand or with a calculator; use a simpler set of data if

necessary.
5. Write and run the program.
6. Check the output of the program with your hand solution.
7. Run the program with your input data and perform a “reality check” on the output. Does

it make sense? Estimate the range of the expected result and compare it with your
answer.

8. If you will use the program as a general tool in the future, test it by running it for a
range of reasonable data values; perform a reality check on the results.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 42

www.EBooksWorld.ir

1.6 Problem-Solving Methodologies 43

EXAMPLE 1.6–1 Piston Motion

Figure 1.6–2a shows a piston, connecting rod, and crank for an internal combustion en-
gine. When combustion occurs, it pushes the piston down. This motion causes the con-
necting rod to turn the crank, which causes the crankshaft to rotate. We want to develop a
MATLAB program to compute and plot the distance d traveled by the piston as a function
of the angle A, for given values of lengths L1 and L2. Such a plot would help the engineers
designing the engine to select appropriate values for lengths L1 and L2.

We are told that typical values for these lengths are L1 � 1 ft and L2 � 0.5 ft. Because
the mechanism’s motion is symmetrical about A � 0, we need consider only angles in the
range 0
 A
 180°. Figure 1.6–2b shows the geometry of the motion. From this gure
we can use trigonometry to write the following expression for d:

(1.6–2)

Thus to compute d given the lengths L1 and L2 and the angle A, we must rst determine
the angle B. We can do so using the law of sines, as follows:

Solve this for B:

(1.6–3)B = sin- 1aL2 sin A

L1
b

sin B =

L2 sin A

L1

sin A

L1
=

sin B

L2

d = L1 cos B + L2 cos A

A

B B

Piston

Connecting
Rod

Crank

Crankshaft

A

d

L1

L2

L1

L2

(a) (b)

Figure 1.6–2 A piston, connecting rod, and crank for an
internal combustion engine.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 43

www.EBooksWorld.ir

Equations (1.6–2) and (1.6–3) form the basis of our calculations. Develop and test a
MATLAB program to plot d versus A.

■ Solution
Here are the steps in the solution, following those listed in Table 1.6–2.

1. State the problem concisely. Use Equations (1.6–2) and (1.6–3) to compute d; use
enough values of A in the range 0
 A
 180° to generate an adequate (smooth) plot.

2. Specify the input data to be used by the program. The lengths L1 and L2 and the
angle A are given.

3. Specify the output to be generated by the program. A plot of d versus A is the
required output.

4. Work through the solution steps by hand or with a calculator. You could have
made an error in deriving the trigonometric formulas, so you should check them for
several cases. You can check for these errors by using a ruler and protractor to
make a scale drawing of the triangle for several values of the angle A; measure the
length d; and compare it to the calculated values. Then you can use these results to
check the output of the program.

Which values of A should you use for the checks? Because the triangle
“collapses” when A � 0° and A � 180°, you should check these cases. The results
are d � L1 � L2 for A � 0° and d � L1 � L2 for A � 180°. The case A � 90° is
also easily checked by hand, using the Pythagorean theorem; for this case

. You should also check one angle in the quadrant 0° � A � 90°

and one in the quadrant 90° � A � 180°. The following table shows the results of
these calculations using the given typical values: L1 � 1, L2 � 0.5 ft.

d = 2L2
1 - L2

2

44 CHAPTER 1 An Overview of MATLAB®

A (degrees) d (ft)

0 1.5
60 1.15
90 0.87

120 0.65
180 0.5

5. Write and run the program. The following MATLAB session uses the values
L1 � 1, L2 � 0.5 ft.

>>L_1 = 1;
>>L_2 = 0.5;
>>R = L_2/L_1;
>>A_d = 0:0.5:180;
>>A_r = A_d*(pi/180);
>>B = asin(R*sin(A_r));
>>d = L_1*cos(B)+L_2*cos(A_r);
>>plot(A_d,d),xlabel(‘A (degrees)’), ...
ylabel(‘d (feet)’),grid

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 44

www.EBooksWorld.ir

Note the use of the underscore (_) in variable names to make the names more
meaningful. The variable A_d represents the angle A in degrees. Line 4 creates an
array of numbers 0, 0.5, 1, 1.5, ,180. Line 5 converts these degree values to
radians and assigns the values to the variable A_r. This conversion is necessary
because MATLAB trigonometric functions use radians, not degrees. (A common
oversight is to use degrees.) MATLAB provides the built-in constant pi to use
for �. Line 6 uses the inverse sine function asin.

The plot command requires the label and grid commands to be on the same
line, separated by commas. The line-continuation operator, called an ellipsis,
consists of three periods. This operator enables you to continue typing the line after
you press Enter. Otherwise, if you continued typing without using the ellipsis, you
would not see the entire line on the screen. Note that the prompt is not visible when
you press Enter after the ellipsis.

The grid command puts grid lines on the plot so that you can read values
from the plot more easily. The resulting plot appears in Figure 1.6–3.

6. Check the output of the program with your hand solution. Read the values from
the plot corresponding to the values of A given in the preceding table. You can use
the ginput function to read values from the plot. The values should agree with
one another, and they do.

7. Run the program and perform a reality check on the output. You might suspect an
error if the plot showed abrupt changes or discontinuities. However, the plot is
smooth and shows that d behaves as expected. It decreases smoothly from its maxi-
mum at A � 0° to its minimum at A � 180°.

Á

1.6 Problem-Solving Methodologies 45

0 20 40 60 80 100 120 140 160 180
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

A (degrees)

d
 (f

ee
t)

Figure 1.6–3 Plot of the piston motion versus crank angle.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 45

www.EBooksWorld.ir

8. Test the program for a range of reasonable input values. Test the program using
various values for L1 and L2, and examine the resulting plots to see whether they
are reasonable. Something you might try on your own is to see what happens if
L1
 L2. Should the mechanism work the same way it does when L1 � L2? What
does your intuition tell you to expect from the mechanism? What does the program
predict?

46 CHAPTER 1 An Overview of MATLAB®

Table 1.7–1 Guide to commands and features introduced in this chapter

Scalar arithmetic operations Table 1.1–1
Order of precedence Table 1.1–2
Commands for managing the work session Table 1.1–3
Special variables and constants Table 1.1–4
Numeric display formats Table 1.1–5
Some commonly used mathematical functions Table 1.3–1
System, directory, and le commands Table 1.3–2
Some MATLAB plotting commands Table 1.3–3
Input/output commands Table 1.4–1
MATLAB Help functions Table 1.5–1

Argument, 8
Array, 19
Array index, 19
ASCII les, 21
Command window, 6
Comment, 27
Current directory, 16

Data le, 21
Data marker, 25
Debugging, 29
Desktop, 5
Graphics window, 23
MAT- les, 20
Model, 39

1.7 Summary
You should now be familiar with basic operations in MATLAB. These include

■ Starting and exiting MATLAB
■ Computing simple mathematical expressions
■ Managing variables

You should also be familiar with the MATLAB menu and toolbar system.
The chapter gives an overview of the various types of problems MATLAB

can solve. These include

■ Using arrays and polynomials
■ Creating plots
■ Creating script les

Table 1.7–1 is a guide to the tables of this chapter. The following chapters give
more details on these topics.

Key Terms with Page References

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 46

www.EBooksWorld.ir

Overlay plot, 24
Path, 22
Precedence, 9
Scalar, 8
Script le, 27

Search path, 22
Session, 7
String variable, 31
Variable, 7
Workspace, 11

Problems 47

Problems
Answers to problems marked with an asterisk are given at the end of the text.

Section 1.1
1. Make sure you know how to start and quit a MATLAB session. Use

MATLAB to make the following calculations, using the values x � 10,
y � 3. Check the results by using a calculator.
a. u � x � y b. v � xy c. w � x y
d. z � sin x e. r � 8 sin y f. s � 5 sin (2y)

2.* Suppose that x � 2 and y � 5. Use MATLAB to compute the following.

a. b. c. d.

3. Suppose that x � 3 and y � 4. Use MATLAB to compute the following,
and check the results with a calculator.

a. b. 3�x2 c. d.

4. Evaluate the following expressions in MATLAB for the given value of x.
Check your answers by hand.

a. , x � 3 b. x � 7

c. , x � 9 d. , x � 4

e. y � 7(x1/3) � 4x 0.58, x � 30

5. Assuming that the variables a, b, c, d, and f are scalars, write MATLAB
statements to compute and display the following expressions. Test your
statements for the values a � 1.12, b � 2.34, c � 0.72, d � 0.81, and
f � 19.83.

y = ab
1
c

f

2

2
r =

1
1
a +

1
b +

1
c +

1
d

s =

b - a

d - c
x = 1 +

a

b
+

c

f 2

y = 2
sin x

5
y =

(4x)2

25

y =

x

4
 3,y = 6x3

+

4
x

4(y - 5)

3x - 6

3y

4x - 8
a1 -

1

x5
b-1

x5

x5
- 1

3

2
xy

3x

2y

yx3

x - y

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 47

www.EBooksWorld.ir

6. Use MATLAB to calculate

a. b.

c.

Check your answers with a calculator.

7. The volume of a sphere is given by V � 4�r3/3, where r is the radius. Use
MATLAB to compute the radius of a sphere having a volume 40 percent
greater than that of a sphere of radius 4 ft.

8.* Suppose that x � �7 � 5i and y � 4 � 3i. Use MATLAB to compute
a. x � y b. xy c. x/y

9. Use MATLAB to compute the following. Check your answers by hand.

a. (3 � 6i)(�7 � 9i) b.

c. d.

10. Evaluate the following expressions in MATLAB, for the values x � 5 �
8i, y � �6 � 7i. Check your answers by hand.
a. u � x � y b. v � xy c. w � x /y
d. z � ex e. f. s � xy2

11. The ideal gas law provides one way to estimate the pressure exerted by a
gas in a container. The law is

More accurate estimates can be made with the van der Waals equation

where the term nb is a correction for the volume of the molecules and the
term an2/V 2 is a correction for molecular attractions. The values of a and
b depend on the type of gas. The gas constant is R, the absolute tempera-
ture is T, the gas volume is V, and the number of gas molecules is indi-
cated by n. If n � 1 mol of an ideal gas were con ned to a volume of
V � 22.41 L at 0°C (273.2 K), it would exert a pressure of 1 atm. In these
units, R � 0.08206.

For chlorine (Cl2), a � 6.49 and b � 0.0562. Compare the pressure es-
timates given by the ideal gas law and the van der Waals equation for 1 mol
of Cl2 in 22.41 L at 273.2 K. What is the main cause of the difference in the
two pressure estimates, the molecular volume or the molecular attractions?

P =

nRT

V - nb
-

an2

V 2

P =

nRT

V

r = 1y

3

2i

3

2
i

5 + 4i

5 - 4i

272

4
+

3194>5
5

+ 60(14)-3

48.2(55) - 93

53 + 142

3

4
 (6) (72) +

45

73
- 145

48 CHAPTER 1 An Overview of MATLAB®

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 48

www.EBooksWorld.ir

12. The ideal gas law relates the pressure P, volume V, absolute temperature
T, and amount of gas n. The law is

where R is the gas constant.
An engineer must design a large natural gas storage tank to be

expandable to maintain the pressure constant at 2.2 atm. In December
when the temperature is 4°F (�15°C), the volume of gas in the tank is
28 500 ft3. What will the volume of the same quantity of gas be in July
when the temperature is 88°F (31°C)? (Hint: Use the fact that n, R, and P
are constant in this problem. Note also that K � °C � 273.2.)

Section 1.3
13. Suppose x takes on the values x � 1, 1.2, 1.4, . . . , 5. Use MATLAB to

compute the array y that results from the function y � 7 sin(4x). Use
MATLAB to determine how many elements are in the array y and the
value of the third element in the array y.

14. Use MATLAB to determine how many elements are in the array
sin(-pi/2):0.05:cos(0). Use MATLAB to determine the
10th element.

15. Use MATLAB to calculate

a. b.

c. d.

Check your answers with a calculator.

16. Use MATLAB to calculate
a. 6� tan�1(12.5) � 4 b. 5 tan [3 sin�1(13/5)]
c. 5 ln(7) d. 5 log(7)
Check your answers with a calculator.

17. The Richter scale is a measure of the intensity of an earthquake. The
energy E (in joules) released by the quake is related to the magnitude M
on the Richter scale as follows.

How much more energy is released by a magnitude 7.6 quake than a 5.6
quake?

18.* Use MATLAB to nd the roots of 13 x3 � 182x2 � 184x � 2503 � 0.

19. Use MATLAB to nd the roots of the polynomial 70 x3 � 24x2 � 10x � 20.

20. Determine which search path MATLAB uses on your computer. If you use
a lab computer as well as a home computer, compare the two search paths.
Where will MATLAB look for a user-created M- le on each computer?

E = 104.4101.5M

cos a 4.12�

6
b2

cos2 a4.12�

6
b

(3.4)7 log(14) +
41287e(-2.1)3

+ 3.47 log(14) +
4 1287

P =

nRT

V

Problems 49

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 49

www.EBooksWorld.ir

21. Use MATLAB to plot the function T � 6 ln t � 7e0.2t over the interval 1 �
t � 3. Put a title on the plot and properly label the axes. The variable T
represents temperature in degrees Celsius; the variable t represents time in
minutes.

22. Use MATLAB to plot the functions u � 2 log10(60x � 1) and � 3 cos(6x)
over the interval 0 � x � 2. Properly label the plot and each curve. The vari-
ables u and represent speed in miles per hour; the variable x represents
distance in miles.

23. The Fourier series is a series representation of a periodic function in terms
of sines and cosines. The Fourier series representation of the function

is

Plot on the same graph the function f (x) and its series representation,
using the four terms shown.

24. A cycloid is the curve described by a point P on the circumference of a
circular wheel of radius r rolling along the x axis. The curve is described
in parametric form by the equations

Use these equations to plot the cycloid for r � 10 in. and 0 � � � 4�.

Section 1.4
25. A fence around a eld is shaped as shown in Figure P25. It consists of a

rectangle of length L and width W and a right triangle that is symmetric
about the central horizontal axis of the rectangle. Suppose the width W is
known (in meters) and the enclosed area A is known (in square meters).
Write a MATLAB script le in terms of the given variables W and A to
determine the length L required so that the enclosed area is A. Also
determine the total length of fence required. Test your script for the values
W � 6 m and A � 80 m2.

y = r (1 - cos �)

x = r (� - sin �)

4
�
a sin x

1
+

sin 3x

3
+

sin 5x

5
+

sin 7x

7
+

Á b

f (x) = e 1 0 < x < �

-1 -� < x < 0

�

�

50 CHAPTER 1 An Overview of MATLAB®

W

L

D

Figure P25

pal34870_ch01_002-051.qxd 1/11/10 12:27 PM Page 50

www.EBooksWorld.ir

Problems 51

26. The four-sided gure shown in Figure P26 consists of two triangles hav-
ing a common side a. The law of cosines for the top triangle states that

and a similar equation can be written for the bottom triangle. Develop a
procedure for computing the length of side c2 if you are given the lengths
of sides b1, b2, and c1 and the angles A1 and A2 in degrees. Write a script
 le to implement this procedure. Test your script, using the following val-
ues: b1 � 180 m, b2 � 165 m, c1 � 115 m, A1 � 120°, and A2 � 100°.

a2
= b2

1 + c2
1 - 2b1c1 cos A1

A2

aC2

C1

A1

c2

c1

b1

b2 B2

B1

Figure P26

Section 1.5
27. Use the MATLAB Help facilities to nd information about the following

topics and symbols: plot, label, cos, cosine, :, and *.

28. Use the MATLAB Help facilities to determine what happens if you use
the sqrt function with a negative argument.

29. Use the MATLAB Help facilities to determine what happens if you use
the exp function with an imaginary argument.

Section 1.6
30. a. With what initial speed must you throw a ball vertically for it to reach

a height of 20 ft? The ball weighs 1 lb. How does your answer change
if the ball weighs 2 lb?

b. Suppose you want to throw a steel bar vertically to a height of 20 ft. The
bar weighs 2 lb. How much initial speed must the bar have to reach this
height? Discuss how the length of the bar affects your answer.

31. Consider the motion of the piston discussed in Example 1.6–1. The piston
stroke is the total distance moved by the piston as the crank angle varies
from 0° to 180°.

a. How does the piston stroke depend on L1 and L2?
b. Suppose L2 � 0.5 ft. Use MATLAB to plot the piston motion versus

crank angle for two cases: L1 � 0.6 ft and L1 � 1.4 ft. Compare each
plot with the plot shown in Figure 1.6–3. Discuss how the shape of
the plot depends on the value of L1.

pal34870_ch01_002-051.qxd 1/9/10 4:38 PM Page 51

www.EBooksWorld.ir

We tend to remember the great civilizations of the past in part by their
public works, such as the Egyptian pyramids and the medieval cathe-
drals of Europe, which were technically challenging to create. Perhaps

it is in our nature to “push the limits,” and we admire others who do so. The chal-
lenge of innovative construction continues today. As space in our cities becomes
scarce, many urban planners prefer to build vertically rather than horizontally.
The newest tall buildings push the limits of our abilities, not only in structural
design but also in areas that we might not think of, such as elevator design and
operation, aerodynamics, and construction techniques. The photo above shows
the 1149-ft-high Las Vegas Stratosphere Tower, the tallest observation tower in
the United States. It required many innovative techniques in its assembly. The
construction crane shown in use is 400 ft tall.

Designers of buildings, bridges, and other structures will use new technolo-
gies and new materials, some based on nature’s designs. Pound for pound, spider
silk is stronger than steel, and structural engineers hope to use cables of synthetic
spider silk bers to build earthquake-resistant suspension bridges. Smart struc-
tures, which can detect impending failure from cracks and fatigue, are now close
to reality, as are active structures that incorporate powered devices to counteract
wind and other forces. The MATLAB Financial toolbox is useful for nancial
evaluation of large construction projects, and the MATLAB Partial Differential
Equation toolbox can be used for structural design. ■

Photo courtesy of Stratosphere Corporation.

Engineering in the 21st Century. . .

Innovative Construction

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 52

www.EBooksWorld.ir

53

C H A P T E R 2

Numeric, Cell, and
Structure Arrays
OUTLINE
2.1 One- and Two-Dimensional Numeric Arrays

2.2 Multidimensional Numeric Arrays

2.3 Element-by-Element Operations

2.4 Matrix Operations

2.5 Polynomial Operations Using Arrays

2.6 Cell Arrays

2.7 Structure Arrays

2.8 Summary

Problems

One of the strengths of MATLAB is the capability to handle collections of items,
called arrays, as if they were a single entity. The array-handling feature means
that MATLAB programs can be very short.

The array is the basic building block in MATLAB. The following classes of
arrays are available in MATLAB 7:

Array
numeric character logical cell structure function handle Java

So far we have used only numeric arrays, which are arrays containing only
numeric values. Within the numeric class are the subclasses single (single preci-
sion), double (double precision), int8, int16, and int32 (signed 8-bit, 16-bit, and
32-bit integers), and uint8, uint16, and uint32 (unsigned 8-bit, 16-bit, and 32-bit
integers). A character array is an array containing strings. The elements of logical

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 53

www.EBooksWorld.ir

arrays are “true” or “false,” which, although represented by the symbols 1 and
0, are not numeric quantities. We will study the logical arrays in Chapter 4. Cell
arrays and structure arrays are covered in Sections 2.6 and 2.7. Function handles
are treated in Chapter 3. The Java class is not covered in this text.

The rst four sections of this chapter treat concepts that are essential to under-
standing MATLAB and therefore must be covered. Section 2.5 treats polynomial
applications. Sections 2.6 and 2.7 introduce two types of arrays that are useful for
some specialized applications.

2.1 One- and Two-Dimensional Numeric Arrays
We can represent the location of a point in three-dimensional space by three
Cartesian coordinates x, y, and z. These three coordinates specify a vector p. (In
mathematical text we often use boldface type to indicate vectors.) The set of unit
vectors i, j, k, whose lengths are 1 and whose directions coincide with the x, y,
and z axes, respectively, can be used to express the vector mathematically as fol-
lows: p � xi � yj � zk. The unit vectors enable us to associate the vector
components x, y, z with the proper coordinate axes; therefore, when we write p �
5i � 7j � 2k, we know that the x, y, and z coordinates of the vector are 5, 7, and
2, respectively. We can also write the components in a speci c order , separate
them with a space, and identify the group with brackets, as follows: [5 7 2]. As
long as we agree that the vector components will be written in the order x, y, z,
we can use this notation instead of the unit-vector notation. In fact, MATLAB
uses this style for vector notation. MATLAB allows us to separate the compo-
nents with commas for improved readability if we desire so that the equivalent
way of writing the preceding vector is [5, 7, 2]. This expression is a row vector,
which is a horizontal arrangement of the elements.

We can also express the vector as a column vector, which has a vertical
arrangement. A vector can have only one column, or only one row. Thus, a
vector is a one-dimensional array. In general, arrays can have more than one
column and more than one row.

Creating Vectors in MATLAB
The concept of a vector can be generalized to any number of components. In
MATLAB a vector is simply a list of scalars, whose order of appearance in the
list might be significant, as it is when specifying xyz coordinates. As another
example, suppose we measure the temperature of an object once every hour.
We can represent the measurements as a vector, and the 10th element in the
list is the temperature measured at the 10th hour.

To create a row vector in MATLAB, you simply type the elements inside a
pair of square brackets, separating the elements with a space or a comma. Brackets
are required for arrays unless you use the colon operator to create the array. In
this case you should not use brackets, but you can optionally use parentheses.
The choice between a space or comma is a matter of personal preference,
although the chance of an error is less if you use a comma. (You can also use a
comma followed by a space for maximum readability.)

54 CHAPTER 2 Numeric, Cell, and Structure Arrays

ROW VECTOR

COLUMN VECTOR

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 54

www.EBooksWorld.ir

To create a column vector, you can separate the elements by semicolons;
alternatively, you can create a row vector and then use the transpose notation (’),
which converts a row vector into a column vector, or vice versa. For example:

>>g = [3;7;9]
g =

3
7
9

>>g = [3,7,9]’
g =

3
7
9

The third way to create a column vector is to type a left bracket ([) and the rst
element, press Enter, type the second element, press Enter, and so on until
you type the last element followed by a right bracket (]) and Enter. On the
screen this sequence looks like

>>g = [3
7
9]
g =

3
7
9

Note that MATLAB displays row vectors horizontally and column vectors
vertically.

You can create vectors by “appending” one vector to another. For example,
to create the row vector u whose rst three columns contain the values of r =
[2,4,20] and whose fourth, fth, and sixth columns contain the values of
w = [9,-6,3], you type u = [r,w]. The result is the vector u =
[2,4,20,9,-6,3].

The colon operator (:) easily generates a large vector of regularly spaced
elements. Typing

>>x = m:q:n

creates a vector x of values with a spacing q. The rst value is m. The last value
is n if m - n is an integer multiple of q. If not, the last value is less than n. For
example, typing x = 0:2:8 creates the vector x = [0,2,4,6,8], whereas
typing x = 0:2:7 creates the vector x = [0,2,4,6]. To create a row vec-
tor z consisting of the values from 5 to 8 in steps of 0.1, you type z = 5:0.1:8.
If the increment q is omitted, it is presumed to be 1. Thus y = -3:2 produces
the vector y = [-3,-2,-1,0,1,2].

2.1 One- and Two-Dimensional Numeric Arrays 55

TRANSPOSE

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 55

www.EBooksWorld.ir

The increment q can be negative. In this case m should be greater than n. For
example, u = 10:-2:4 produces the vector [10,8,6,4].

The linspace command also creates a linearly spaced row vector, but in-
stead you specify the number of values rather than the increment. The syntax is
linspace(x1,x2,n), where x1 and x2 are the lower and upper limits and n
is the number of points. For example, linspace(5,8,31) is equivalent to
5:0.1:8. If n is omitted, the spacing is 1.

The logspace command creates an array of logarithmically spaced
elements. Its syntax is logspace(a,b,n), where n is the number of points
between 10a and 10b. For example, x = logspace(-1,1,4) produces the
vector x = [0.1000, 0.4642, 2.1544, 10.000]. If n is omitted, the
number of points defaults to 50.

Two-Dimensional Arrays
An array having rows and columns is a two-dimensional array that is sometimes
called a matrix. In mathematical text, if possible, vectors are usually denoted by
boldface lowercase letters and matrices by boldface uppercase letters. An exam-
ple of a matrix having three rows and two columns is

We refer to the size of an array by the number of rows and the number of
columns. For example, an array with 3 rows and 2 columns is said to be a
3 � 2 array. The number of rows is always stated rst! We sometimes represent
a matrix A as [aij] to indicate its elements aij. The subscripts i and j, called
indices, indicate the row and column location of the element aij. The row number
must always come rst! For example, the element a32 is in row 3, column 2. Two
matrices A and B are equal if they have the same size and if all their correspond-
ing elements are equal, that is, aij � bij for every value of i and j.

Creating Matrices
The most direct way to create a matrix is to type the matrix row by row, separat-
ing the elements in a given row with spaces or commas and separating the rows
with semicolons. Brackets are required. For example, typing

>>A = [2,4,10;16,3,7];

creates the following matrix:

If the matrix has many elements, you can press Enter and continue typing on
the next line. MATLAB knows you are nished entering the matrix when you
type the closing bracket (]).

A = c 2 4 10

16 3 7
d

M = J
2 5

-3 4

-7 1
K

56 CHAPTER 2 Numeric, Cell, and Structure Arrays

ARRAY SIZE

MATRIX

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 56

www.EBooksWorld.ir

You can append a row vector to another row vector to create either a third
row vector or a matrix (if both vectors have the same number of columns). Note
the difference between the results given by [a,b] and [a;b] in the following
session:

>>a = [1,3,5];
>>b = [7,9,11];
>>c = [a,b]
c =

1 3 5 7 9 11
>> D = [a;b]
D =

1 3 5
7 9 11

Matrices and the Transpose Operation
The transpose operation interchanges the rows and columns. In mathematics text
we denote this operation by the superscript T. For an m � n matrix A with m
rows and n columns, AT (read “A transpose”) is an n � m matrix.

If AT � A, the matrix A is symmetric. Note that the transpose operation converts
a row vector into a column vector, and vice versa.

If the array contains complex elements, the transpose operator (’) produces
the complex conjugate transpose; that is, the resulting elements are the complex
conjugates of the original array’s transposed elements. Alternatively, you can use
the dot transpose operator (.’) to transpose the array without producing com-
plex conjugate elements, for example, A.’. If all the elements are real, the oper-
ators ‘ and.’ give the same result.

Array Addressing
Array indices are the row and column numbers of an element in an array and are used
to keep track of the array’s elements. For example, the notation v(5) refers to the
 fth element in the vector v, and A(2,3) refers to the element in row 2, column 3
in the matrix A. The row number is always listed rst! This notation enables you to
correct entries in an array without retyping the entire array. For example, to change
the element in row 1, column 3 of a matrix D to 6, you can type D(1,3) = 6.

The colon operator selects individual elements, rows, columns, or “subar-
rays” of arrays. Here are some examples:

■ v(:) represents all the row or column elements of the vector v.
■ v(2:5) represents the second through fth elements; that is v(2), v(3),

v(4), v(5).

A = c -2 6

-3 5
d AT

= c -2 -3

6 5
d

2.1 One- and Two-Dimensional Numeric Arrays 57

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 57

www.EBooksWorld.ir

■ A(:,3) denotes all the elements in the third column of the matrix A.
■ A(3,:) denotes all the elements in the third row of A.
■ A(:,2:5) denotes all the elements in the second through fth columns of A.
■ A(2:3,1:3) denotes all the elements in the second and third rows that

are also in the rst through third columns.
■ v = A(:) creates a vector v consisting of all the columns of A stacked

from rst to last.
■ A(end,:) denotes the last row in A, and A(:,end) denotes the last

column.

You can use array indices to extract a smaller array from another array. For ex-
ample, if you create the array B

(2.1–1)

by typing

>>B = [2,4,10,13;16,3,7,18;8,4,9,25;3,12,15,17];

and then type

>>C = B(2:3,1:3);

you can produce the following array:

The empty array contains no elements and is expressed as []. Rows and
columns can be deleted by setting the selected row or column equal to the empty
array. This step causes the original matrix to collapse to a smaller one. For example,
A(3,:) = [] deletes the third row in A, while A(:,2:4) = [] deletes the
second through fourth columns in A. Finally, A([1 4],:) = [] deletes the rst
and fourth rows of A.

Suppose we type A = [6,9,4;1,5,7] to de ne the following matrix:

Typing A(1,5) = 3 changes the matrix to

Because A did not have ve columns, its size is automatically expanded to ac-
cept the new element in column 5. MATLAB adds zeros to ll out the remaining
elements.

A = c6 9 4 0 3

1 5 7 0 0
d

A = c6 9 4

1 5 7
d

C = c16 3 7

8 4 9
d

B = ≥
2 4 10 13

16 3 7 18

8 4 9 25

3 12 15 17

¥

58 CHAPTER 2 Numeric, Cell, and Structure Arrays

EMPTY ARRAY

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 58

www.EBooksWorld.ir

MATLAB does not accept negative or zero indices, but you can use negative
increments with the colon operator. For example, typing B = A(:,5:-1:1)
reverses the order of the columns in A and produces

Suppose that C = [-4,12,3,5,8]. Then typing B(2,:) = C replaces row 2
of B with C. Thus B becomes

Suppose that D = [3,8,5;4,-6,9]. Then typing E = D([2,2,2],:)
repeats row 2 of D three times to obtain

Using clear to Avoid Errors
You can use the clear command to protect yourself from accidentally reusing an
array that has the wrong dimension. Even if you set new values for an array, some
previous values might still remain. For example, suppose you had previously created
the 2 � 2 array A = [2, 5; 6, 9], and then you create the 5 � 1 arrays x =
(1:5)’ and y = (2:6)’. Note that parentheses are needed here to use the trans-
pose operator. Suppose you now rede ne A so that its columns will bex andy. If you
then typeA(:,1) = x to create the rst column, MATLAB displays an error mes-
sage telling you that the number of rows in A and x must be the same. MATLAB
thinksA should be a 2 � 2 matrix becauseAwas previously de ned to have only two
rows and its values remain in memory. The clear command wipes A and all other
variables from memory and avoids this error. To clear A only, type clear A before
typing A(:,1) = x.

Some Useful Array Functions
MATLAB has many functions for working with arrays (see Table 2.1–1). Here is
a summary of some of the more commonly used functions.

The max(A) function returns the algebraically greatest element in A if A is
a vector having all real elements. It returns a row vector containing the greatest
elements in each column if A is a matrix containing all real elements. If any of
the elements are complex, max(A) returns the element that has the largest mag-
nitude. The syntax [x,k] = max(A) is similar to max(A), but it stores the
maximum values in the row vector x and their indices in the row vector k.

If A and B have the same size, C = max(A,B) creates an array the same
size, having the maximum value from each corresponding location in A and B.
For example, the following A and B matrices give the C matrix shown.

E = J
4 -6 9

4 -6 9

4 -6 9
K

B = c 3 0 4 9 6

-4 12 3 5 8
d

B = c3 0 4 9 6

0 0 7 5 1
d

2.1 One- and Two-Dimensional Numeric Arrays 59

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 59

www.EBooksWorld.ir

The functions min(A) and [x,k] = min(A) are the same as max(A)
and [x,k] = max(A) except that they return minimum values.

The function size(A) returns a row vector [m n] containing the sizes of
the m � n array A. The length(A) function computes either the number of el-
ements of A if A is a vector or the largest value of m or n if A is an m � n matrix.

For example, if

thenmax(A) returns the vector[6,2]; min(A) returns the vector[-10,-5];
size(A) returns [3,2]; and length(A) returns 3.

The sum(A) function sums the elements in each column of the array A and
returns a row vector containing the sums. The sort(A) function sorts each
column of the array A in ascending order and returns an array the same size as A.

If A has one or more complex elements, the max, min, and sort functions
act on the absolute values of the elements and return the element that has the largest
magnitude.

A = J
6 2

-10 -5

3 0 K

A = c1 6 4

3 7 2
d B = c3 4 7

1 5 8
d C = c3 6 7

3 7 8
d

60 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.1–1 Basic syntax of array functions*

Command Description

 nd(x) Computes an array containing the indices of the nonzero elements of the array x.
[u,v,w] = nd(A) Computes the arrays u and v, containing the row and column indices of the nonzero

elements of the matrix A, and the array w, containing the values of the nonzero
elements. The array w may be omitted.

length(A) Computes either the number of elements of A if A is a vector or the largest value of
m or n if A is an m � n matrix.

linspace(a,b,n) Creates a row vector of n regularly spaced values between a and b.
logspace(a,b,n) Creates a row vector of n logarithmically spaced values between a and b.
max(A) Returns the algebraically largest element in A if A is a vector. Returns a row vector

containing the largest elements in each column if A is a matrix. If any of the ele-
ments are complex, max(A) returns the elements that have the largest magnitudes.

[x,k] = max(A) Similar to max(A) but stores the maximum values in the row vector x and their
indices in the row vector k.

min(A) Same as max(A) but returns minimum values.
[x,k] = min(A) Same as [x,k] = max(A) but returns minimum values.
norm(x) Computes a vector’s geometric length
size(A) Returns a row vector [m n] containing the sizes of the m � n array A.
sort(A) Sorts each column of the array A in ascending order and returns an array the same

size as A.
sum(A) Sums the elements in each column of the array A and returns a row vector contain-

ing the sums.

*Many of these functions have extended syntax. See the text and MATLAB help for more discussion.

2x 2
1 + x 2

2 +
Á

+ x2
n.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 60

www.EBooksWorld.ir

For example, if

then max(A) returns the vector [-10,-5] and min(A) returns the vector
[3+4i,0]. (The magnitude of 3 � 4i is 5.)

The sort will be done in descending order if the form sort(A,‘descend’)
is used. The min, max, and sort functions can be made to act on the rows in-
stead of the columns by transposing the array.

The complete syntax of the sort function is sort(A, dim, mode),
where dim selects a dimension along which to sort and mode selects the direc-
tion of the sort, ‘ascend’ for ascending order and ‘descend’ for descend-
ing order. So, for example, sort(A,2, ‘descend’) would sort the
elements in each row of A in descending order.

The nd(x) command computes an array containing the indices of the
nonzero elements of the vector x. The syntax [u,v,w] = nd(A) computes
the arrays u and v, containing the row and column indices of the nonzero elements
of the matrix A, and the array w, containing the values of the nonzero elements.
The array w may be omitted.

For example, if

then the session

>>A = [6, 0, 3; 0, 4, 0; 2, 7, 0];
>>[u, v, w] = nd(A)

returns the vectors

The vectors u and v give the (row, column) indices of the nonzero values,
which are listed in w. For example, the second entries in u and v give the indices
(3, 1), which speci es the element in row 3, column 1 of A, whose value is 2.

These functions are summarized in Table 2.1–1.

Magnitude, Length, and Absolute Value of a Vector
The terms magnitude, length, and absolute value are often loosely used in everyday
language, but you must keep their precise meaning in mind when using MATLAB.

w = ≥
6
2
4
7
3

¥v = ≥
1
1
2
2
3

¥u = ≥
1
3
2
3
1

¥

A = J
6 0 3

0 4 0

2 7 0
K

A = J
6 2

-10 -5

3 + 4i 0
K

2.1 One- and Two-Dimensional Numeric Arrays 61

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 61

www.EBooksWorld.ir

The MATLAB length command gives the number of elements in the vector. The
magnitude of a vector x having real elements x1, x2, . . . , xn is a
scalar, given by and is the same as the vector’s geo-
metric length. The absolute value of a vector x is a vector whose elements are the
absolute values of the elements of x. For example, if x = [2,-4,5], its length
is 3; its magnitude is and its absolute value is
[2,4,5]. The length, magnitude, and absolute value of x are computed by
length(x), norm(x), and abs(x), respectively.

Test Your Understanding

T2.1–1 For the matrix B, nd the array that results from the operation [B;B’]. Use
MATLAB to determine what number is in row 5, column 3 of the result.

T2.1–2 For the same matrix B, use MATLAB to (a) nd the lar gest and smallest
elements in B and their indices and (b) sort each column in B to
create a new matrix C.

The Variable Editor
The MATLAB Workspace Browser provides a graphical interface for managing
the workspace. You can use it to view, save, and clear workspace variables. It in-
cludes the Variable Editor, a graphical interface for working with variables,
including arrays. To open the Workspace Browser, type workspace at the
Command window prompt. The browser appears as shown in Figure 2.1–1.

Keep in mind that the Desktop menus are context-sensitive. Thus their
contents will change depending on which features of the browser and Variable
Editor you are currently using. The Workspace Browser shows the name of
each variable, its value, array size, and class. The icon for each variable illus-
trates its class.

B = ≥
2 4 10 13

16 3 7 18

8 4 9 25

3 12 15 17

¥

222
+ (-4)2

+ 52
= 6.7082;

2x2
1 + x2

2 +
Á

+ x2
n,

62 CHAPTER 2 Numeric, Cell, and Structure Arrays

Figure 2.1–1 The Workspace Browser.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 62

www.EBooksWorld.ir

From the Workspace Browser you can open the Variable Editor to view and
edit a visual representation of two-dimensional numeric arrays, with the rows and
columns numbered. To open the Variable Editor from the Workspace Browser,
double-click on the variable you want to open. The Variable Editor opens, dis-
playing the values for the selected variable. The Variable Editor appears as shown
in Figure 2.1–2.

To open a variable, you can also right-click it and use the Context menu. Re-
peat the steps to open additional variables into the Variable Editor. In the Variable
Editor, access each variable via its tab at the bottom of the window, or use the
Window menu. You can also open the Variable Editor directly from the Command
window by typing open(‘var’), where var is the name of the variable to be
edited. Once an array is displayed in the Variable Editor, you can change a value in
the array by clicking on its location, typing in the new value, and pressing Enter.

Right-clicking on a variable brings up the Context menu, which can be used
to edit, save, or clear the selected variable, or to plot the rows of the variable ver-
sus its columns (this type of plot is discussed in Chapter 5).

You can also clear a variable from theWorkspace Browser by rst highlight-
ing it in the Browser, then clicking on Delete in the Edit menu.

2.2 Multidimensional Numeric Arrays
MATLAB supports multidimensional arrays. For more information, type help
datatypes.

A three-dimensional array has the dimension m � n � q. A four-dimensional
array has the dimension m � n � q � r, and so forth. The rst two dimensions are
the row and column, as with a matrix. The higher dimensions are called pages. You
can think of a three-dimensional array as layers of matrices. The rst layer is page 1;
the second layer is page 2, and so on. If A is a 3 � 3 � 2 array, you can access the

2.2 Multidimensional Numeric Arrays 63

Figure 2.1–2 The Variable Editor.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 63

www.EBooksWorld.ir

element in row 3, column 2 of page 2 by typing A(3,2,2). To access all of
page 1, type A(:,:,1). To access all of page 2, type A(:,:,2). The ndims
command returns the number of dimensions. For example, for the array A just
described, ndims(A) returns the value 3.

You can create a multidimensional array by rst creating a two-dimensional
array and then extending it. For example, suppose you want to create a three-
dimensional array whose rst two pages are

To do so, rst create page 1 as a 3 � 3 matrix and then add page 2, as follows:

>>A = [4,6,1;5,8,0;3,9,2];
>>A(:,:,2) = [6,2,9;0,3,1;4,7,5];

Another way to produce such an array is with the cat command. Typing
cat(n,A,B,C,...) creates a new array by concatenating the arrays A, B,
C, and so on along the dimension n. Note that cat(1,A,B) is the same as
[A;B] and that cat(2,A,B) is the same as [A,B]. For example, suppose we
have the 2 � 2 arrays A and B:

Then C = cat(3,A,B) produces a three-dimensional array composed of two
layers; the rst layer is the matrix A, and the second layer is the matrix B. The
element C(m,n,p) is located in row m, column n, and layer p. Thus the element
C(2,1,1) is 9, and the element C(2,2,2) is 3.

Multidimensional arrays are useful for problems that involve several parame-
ters. For example, if we have data on the temperature distribution in a rectangular
object, we could represent the temperatures as an array T with three dimensions.

2.3 Element-by-Element Operations
To increase the magnitude of a vector, multiply it by a scalar. For example, to
double the magnitude of the vector r = [3,5,2], multiply each component by
2 to obtain [6,10,4]. In MATLAB you type v = 2*r.

Multiplying a matrix A by a scalar w produces a matrix whose elements are
the elements of A multiplied by w. For example:

This multiplication is performed in MATLAB as follows:

>>A = [2,9;5,-7];
>>3*A

3 c2 9

5 -7
d = c 6 27

15 -21
d

B = c4 6

7 3
dA = c8 2

9 5
d

J
4 6 1

5 8 0

3 9 2
K J

6 2 9

0 3 1

4 7 5
K

64 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 64

www.EBooksWorld.ir

Thus multiplication of an array by a scalar is easily de ned and easily car-
ried out. However, multiplication of two arrays is not so straightforward. In fact,
MATLAB uses two de nitions of multiplication: (1) array multiplication and
(2) matrix multiplication. Division and exponentiation must also be carefully
de ned when you are dealing with operations between two arrays. MA TLAB has
two forms of arithmetic operations on arrays. In this section we introduce one
form, called array operations, which are also called element-by-element opera-
tions. In the next section we introduce matrix operations. Each form has its own
applications, which we illustrate by examples.

Array Addition and Subtraction
Array addition can be done by adding the corresponding components. To add the
arrays r = [3,5,2] and v = [2,-3,1] to create w in MATLAB, you type
w = r + v. The result is w = [5,2,3].

When two arrays have identical size, their sum or difference has the same
size and is obtained by adding or subtracting their corresponding elements. Thus
C � A � B implies that cij � aij � bij if the arrays are matrices. The array C has
the same size as A and B. For example,

(2.3–1)

Array subtraction is performed in a similar way.
The addition shown in Equation (2.3–1) is performed in MATLAB as follows:

>>A = [6,-2;10,3];
>>B = [9,8;-12,14]
>>A+B
ans =

15 6
-2 17

Array addition and subtraction are associative and commutative. For addi-
tion these properties mean that

(2.3–2)

(2.3–3)

Array addition and subtraction require that both arrays be the same size. The only
exception to this rule in MATLAB occurs when we add or subtract a scalar to or
from an array. In this case the scalar is added or subtracted from each element in
the array. Table 2.3–1 gives examples.

Element-by-Element Multiplication
MATLAB de nes element-by-element multiplication only for arrays that are the same
size. The de nition of the product x.*y, where x and y each have n elements, is

x.*y = [x(1)y(1), x(2)y(2) . . . , x(n)y(n)]

A + B + C = B + C + A = A + C + B

(A + B) + C = A + (B + C)

c 6 -2

10 3
d + c 9 8

-12 14
d = c 15 6

-2 17
d

2.3 Element-by-Element Operations 65

ARRAY
OPERATIONS

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 65

www.EBooksWorld.ir

if x and y are row vectors. For example, if

(2.3–4)

then z = x.*y gives

This type of multiplication is sometimes called array multiplication.
If u and v are column vectors, the result of u.*v is a column vector.
Note that x’ is a column vector with size 3 � 1 and thus does not have the

same size as y, whose size is 1 � 3. Thus for the vectors x and y the operations
x’.*y and y.*x’ are not de ned in MA TLAB and will generate an error mes-
sage. With element-by-element multiplication, it is important to remember that
the dot (.) and the asterisk (*) form one symbol (.*). It might have been better
to have de ned a single symbol for this operation, but the developers of
MATLAB were limited by the selection of symbols on the keyboard.

The generalization of array multiplication to arrays with more than one row or
column is straightforward. Both arrays must be the same size. The array operations
are performed between the elements in corresponding locations in the arrays. For
example, the array multiplication operation A.*B results in a matrix C that has the
same size as A and B and has the elements cij � aij bij. For example, if

then C = A.*B gives this result:

C = c11(-7) 5(8)

-9(6) 4(2)
d = c -77 40

-54 8
d

B = c -7 8

6 2
dA = c 11 5

-9 4
d

z = [2(-7), 4(3), -5(-8)] = [-14, 12, 40]

y = [-7, 3, -8]x = [2, 4, -5]

66 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.3–1 Element-by-element operations

Symbol Operation Form Example

� Scalar-array addition A � b [6,3]�2�[8,5]
� Scalar-array subtraction A � b [8,3]�5�[3,�2]
� Array addition A � B [6,5]�[4,8]�[10,13]
� Array subtraction A � B [6,5]�[4,8]�[2,�3]
.* Array multiplication A.*B [3,5].*[4,8]�[12,40]
./ Array right division A./B [2,5]./[4,8]�[2/4,5/8]
.\ Array left division A.\B [2,5].\[4,8]�[2\4,5\8]
.^ Array exponentiation A.^B [3,5].^2�[3^2,5^2]

2.^[3,5]�[2^3,2^5]
[3,5].^[2,4]�[3^2,5^4]

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 66

www.EBooksWorld.ir

2.3 Element-by-Element Operations 67

EXAMPLE 2.3–1 Vectors and Displacement

Suppose two divers start at the surface and establish the following coordinate system: x is
to the west, y is to the north, and z is down. Diver 1 swims 55 ft west, 36 ft north, and then
dives 25 ft. Diver 2 dives 15 ft, then swims east 20 ft and then north 59 ft. (a) Find the dis-
tance between diver 1 and the starting point. (b) How far in each direction must diver 1
swim to reach diver 2? How far in a straight line must diver 1 swim to reach diver 2?

■ Solution
(a) Using the xyz coordinates selected, the position of diver 1 is r � 55i � 36j � 25k, and
the position of diver 2 is r � �20i � 59j � 15k. (Note that diver 2 swam east, which is
in the negative x direction.) The distance from the origin of a point xyz is given by

that is, by the magnitude of the vector pointing from the origin to the
point xyz. This distance is computed in the following session.

>>r = [55,36,25];w = [-20,59,15];
>>dist1 = sqrt(sum(r.*r))
dist1 =

70.3278

The distance is approximately 70 ft. The distance could also have been computed from
norm(r).

(b) The location of diver 2 relative to diver 1 is given by the vector v pointing from
diver 1 to diver 2. We can nd this vector using vector subtraction: v � w � r. Continue
the above MATLAB session as follows:

>>v = w-r
v =

-75 23 -10
>>dist2 = sqrt(sum(v.*v))
dist2 =

79.0822

Thus to reach diver 2 by swimming along the coordinate directions, diver 1 must swim
75 ft east, 23 ft north, and 10 ft up. The straight-line distance between them is approxi-
mately 79 ft.

1x2
+ y2

+ z2,

Vectorized Functions
The built-in MATLAB functions such as sqrt(x) and exp(x) automatically
operate on array arguments to produce an array result the same size as the array ar-
gument x. Thus these functions are said to be vectorized functions.

Thus, when multiplying or dividing these functions, or when raising them to a
power, you must use element-by-element operations if the arguments are arrays. For
example, to compute z � (ey sin x) cos2 x, you must type z = exp(y).*
sin(x).*(cos(x)).^2. Obviously, you will get an error message if the size of
x is not the same as the size of y. The result z will have the same size as x and y.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 67

www.EBooksWorld.ir

68 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.3–2 Aortic Pressure Model

The following equation is a speci c case of one model used to describe the blood pres-
sure in the aorta during systole (the period following the closure of the heart’s aortic
valve). The variable t represents time in seconds, and the dimensionless variable y
represents the pressure difference across the aortic valve, normalized by a constant refer-
ence pressure.

Plot this function for t � 0.

■ Solution
Note that if t is a vector, the MATLAB functions exp(-8*t) and
sin(9.7*t+pi/2) will also be vectors the same size as t. Thus we must use
element-by-element multiplication to compute y(t).

We must decide on the proper spacing to use for the vector t and its upper limit.
The sine function sin(9.7t � �/2) oscillates with a frequency of 9.7 rad/sec, which is
9.7/(2�) � 1.5 Hz. Thus its period is 1/1.5 � 2/3 sec. The spacing of t should be a small
fraction of the period in order to generate enough points to plot the curve. Thus we select
a spacing of 0.003 to give approximately 200 points per period.

y(t) = e-8t sina9.7t +

�

2
b

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

t (sec)

N
or

m
al

iz
ed

 P
re

ss
ur

e
D

iff
er

en
ce

 y
(t

)

Figure 2.3–1 Aortic pressure response for Example 2.3–2.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 68

www.EBooksWorld.ir

The amplitude of the sine wave decays with time because the sine is multiplied by the
decaying exponential e�8t. The exponential’s initial value is e0 � 1, and it will be 2 per-
cent of its initial value at t � 0.5 (because e�8 (0.5) � 0.02). Thus we select the upper limit
of t to be 0.5. The session is

>>t = 0:0.003:0.5;
>>y = exp(-8*t).*sin(9.7*t+pi/2);
>>plot(t,y),xlabel(‘t (sec)’), . . .

ylabel(‘Normalized Pressure Difference y(t)’)

The plot is shown in Figure 2.3–1. Note that we do not see much of an oscillation
despite the presence of a sine wave. This is so because the period of the sine wave is
greater than the time it takes for the exponential e�8t to become essentially zero.

2.3 Element-by-Element Operations 69

Element-by-Element Division
The de nition of element-by-element division, also called array division, is sim-
ilar to the de nition of array multiplication except, of course, that the elements
of one array are divided by the elements of the other array. Both arrays must be
the same size. The symbol for array right division is . /. For example, if

then z = x./y gives

Also, if

then C = A./B gives

The array left division operator (.\) is de ned to perform element-by-element
division using left division. Refer to Table 2.3–1 for examples. Note that A.\B is
not equivalent to A./B.

C = c24>(-4) 20>5
-9>3 4>2 d = c -6 4

-3 2
d

B = c -4 5

3 2
dA = c 24 20

-9 4
d

z = [8>(-2), 12>6, 15>5] = [-4, 2, 3]

y = [-2, 6, 5]x = [8, 12, 15]

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 69

www.EBooksWorld.ir

■ Solution
For example, the average speed on the rst route is 560/10.3 � 54.4 mi/hr. First we de-
 ne the row vectors d and t from the distance and time data. Then, to nd the average
speed on each route using MATLAB, we use array division. The session is

>>d = [560, 440, 490, 530, 370]
>>t = [10.3, 8.2, 9.1, 10.1, 7.5]
>>speed = d./t
speed =

54.3689 53.6585 53.8462 52.4752 49.3333

The results are in miles per hour. Note that MATLAB displays more signi cant gures
than is justi ed by the three-signi cant- gure accuracy of the given data, so we should
round the results to three signi cant gures before using them.

To nd the highest average speed and the corresponding route, continue the session
as follows:

>>[highest_speed, route] = max(speed)
highest_speed =

54.3689
route =

1

The rst route has the highest speed.
If we did not need the speeds for every route, we could have solved this problem by

combining two lines as follows: [highest_speed, route] = max(d./t).

70 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.3–3 Transportation Route Analysis

The following table gives data for the distance traveled along ve truck routes and the cor-
responding time required to traverse each route. Use the data to compute the average speed
required to drive each route. Find the route that has the highest average speed.

1 2 3 4 5

Distance (mi) 560 440 490 530 370
Time (hr) 10.3 8.2 9.1 10.1 7.5

Element-by-Element Exponentiation
MATLAB enables us not only to raise arrays to powers but also to raise scalars
and arrays to array powers. To perform exponentiation on an element-by-
element basis, we must use the .^ symbol. For example, if x = [3, 5, 8],
then typing x.^3 produces the array [33, 53, 83] � [27, 125, 512]. If x =
0:2:6, then typing x.^2 returns the array [02, 22, 42, 62] � [0, 4, 16, 36]. If

A = c4 -5

2 3
d

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 70

www.EBooksWorld.ir

then B = A.^3 gives this result:

We can raise a scalar to an array power. For example, if p = [2, 4, 5],
then typing 3.^p produces the array [32, 34, 35] � [9, 81, 243]. This example
illustrates a common situation in which it helps to remember that .^ is a single
symbol; the dot in 3.^p is not a decimal point associated with the number 3.
The following operations, with the value of p given here, are equivalent and
give the correct answer:

3.^p
3.0.^p
3..^p
(3).^p
3.^[2,4,5]

With array exponentiation, the power may be an array if the base is a scalar or if
the power’s dimensions are the same as the base dimensions. For example if, x =
[1,2,3] and y = [2,3,4], then y.^x gives the answer 2964. If A =
[1,2; 3,4], then 2.^A gives the array [2,4;8,16].

Test Your Understanding

T2.3–1 Given the matrices

 nd (a) their array product, (b) their array right division (A divided by
B), and (c) B raised to the third power element by element.
(Answers: (a) [-147, -81; -162, 32], (b) [-3, -9; -2,
2], and (c) [-343, -27; 729, 64].)

B = c–7 –3

9 4
dA = c 21 27

-18 8
d

B = c43 (-5)3

23 33 d = c64 -125

8 27
d

2.3 Element-by-Element Operations 71

EXAMPLE 2.3–4 Current and Power Dissipation in Resistors

The current i passing through an electrical resistor having a voltage � across it is given
by Ohm’s law, , where R is the resistance. The power dissipated in the resistor is
given by . The following table gives data for the resistance and voltage for ve resis-
tors. Use the data to compute (a) the current in each resistor and (b) the power dissipated
in each resistor.

�2/R
i = �/R

1 2 3 4 5

R (�) 104 2 � 104 3.5 � 104 105 2 � 105

� (V) 120 80 110 200 350

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 71

www.EBooksWorld.ir

■ Solution
(a) First we de ne two row vectors, one containing the resistance values and one containing
the voltage values. To nd the current using MATLAB, we use array division.
The session is

>>R = [10000, 20000, 35000, 100000, 200000];
>>v = [120, 80, 110, 200, 350];
>>current = v./R
current =

0.0120 0.0040 0.0031 0.0020 0.0018

The results are in amperes and should be rounded to three signi cant gures because the
voltage data contains only three signi cant gures.

(b) To nd the power , use array exponentiation and array division. The
session continues as follows:

>>power = v.^2./R
power =

1.4400 0.3200 0.3457 0.4000 0.6125

These numbers are the power dissipation in each resistor in watts. Note that the statement
v.^2./R is equivalent to (v.^2)./R. Although the rules of precedence are unam-
biguous here, we can always put parentheses around quantities if we are unsure how
MATLAB will interpret our commands.

P = �2/R

i = �/R

72 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.3–5 A Batch Distillation Process

Consider a system for heating a liquid benzene/toluene solution to distill a pure benzene
vapor. A particular batch distillation unit is charged initially with 100 mol of a 60 percent
mol benzene/40 percent mol toluene mixture. Let L (mol) be the amount of liquid remain-
ing in the still, and let x (mol B/mol) be the benzene mole fraction in the remaining
liquid. Conservation of mass for benzene and toluene can be applied to derive the follow-
ing relation [Felder, 1986].

Determine what mole fraction of benzene remains when L � 70. Note that it is dif cult
to solve this equation directly for x. Use a plot of x versus L to solve the problem.

■ Solution
This equation involves both array multiplication and array exponentiation. Note that
MATLAB enables us to use decimal exponents to evaluate L. It is clear that L must be in
the range 0 	 L 	 100; however, we do not know the range of x, except that

L = 100 a x

0.6
b0.625

 a1 - x

0.4
b-1.625

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 72

www.EBooksWorld.ir

x � 0. Therefore, we must make a few guesses for the range of x, using a session like the
following. We nd that L > 100 if x > 0.6, so we choose x = 0:0.001:0.6. We use
the ginput function to nd the value of x corresponding to L � 70.

>>x = 0:0.001:0.6;
>>L = 100*(x/0.6).^(0.625).*((1-x)/0.4).^(-1.625);
>>plot(L,x),grid,xlabel(‘L(mol)’),ylabel(‘x (mol B/mol)’), ...

[L,x] = ginput(1)

The plot is shown in Figure 2.3–2. The answer is x � 0. 52 if L � 70. The
plot shows that the remaining liquid becomes leaner in benzene as the liquid amount be-
comes smaller. Just before the still is empty (L � 0), the liquid is pure toluene.

2.4 Matrix Operations 73

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L (mol)

x
(m

ol
 B

/m
ol

)

Figure 2.3–2 Plot for Example 2.3–5.

2.4 Matrix Operations
Matrix addition and subtraction are identical to element-by-element addition and
subtraction. The corresponding matrix elements are summed or subtracted.
However, matrix multiplication and division are not the same as element-by-
element multiplication and division.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 73

www.EBooksWorld.ir

Multiplication of Vectors
Recall that vectors are simply matrices with one row or one column. Thus matrix
multiplication and division procedures apply to vectors as well, and we will in-
troduce matrix multiplication by considering the vector case rst.

The vector dot product u � w of the vectors u and w is a scalar and can be
thought of as the perpendicular projection of u onto w. It can be computed from
|u||w| cos �, where � is the angle between the two vectors and |u|, |w| are the mag-
nitudes of the vectors. Thus if the vectors are parallel and in the same direction,
� � 0 and u � w � |u||w|. If the vectors are perpendicular, � � 90° and thus u � w � 0.
Because the unit vectors i, j, and k have unit length,

(2.4–1)

Because the unit vectors are perpendicular,

(2.4–2)

Thus the vector dot product can be expressed in terms of unit vectors as

Carrying out the multiplication algebraically and using the properties given by
(2.4–1) and (2.4–2), we obtain

The matrix product of a row vector u with a column vector w is de ned in
the same way as the vector dot product; the result is a scalar that is the sum of the
products of the corresponding vector elements; that is,

if each vector has three elements. Thus the result of multiplying a 1 � 3 vec-
tor by a 3 � 1 vector is a 1 � 1 array, that is, a scalar. This definition
applies to vectors having any number of elements, as long as both vectors
have the same number of elements.

Thus the result of multiplying a 1 � n vector by an n � 1 vector is a 1 � 1 array,
that is, a scalar.

[u1 u2 u3] J
w1

w2

w3
K = u1w1 + u2w2 + u3w3

u # w = u1w1 + u2w2 + u3w3

u # w = (u1i + u2 j + u3k) # (w1i + w2 j + w3k)

i # j � i # k � j # k � 0

i # i � j # j � k # k � 1

74 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.4–1 Miles Traveled

Table 2.4–1 gives the speed of an aircraft on each leg of a certain trip and the time spent
on each leg. Compute the miles traveled on each leg and the total miles traveled.

■ Solution
We can de ne a row vector s containing the speeds and a row vector t containing the
times for each leg. Thus s = [200, 250, 400, 300] and t = [2, 5, 3, 4].

pal34870_ch02_052-111.qxd 1/11/10 12:30 PM Page 74

www.EBooksWorld.ir

To nd the miles traveled on each leg, we multiply the speed by the time. To do so, we
use the MATLAB symbol .*, which speci es the multiplication s.*t to produce the
row vector whose elements are the products of the corresponding elements in s and t:

s.*t

This vector contains the miles traveled by the aircraft on each leg of the trip.
To nd the total miles traveled, we use the matrix product, denoted by s*t’. In this

de nition the product is the sum of the individual element products; that is,

s*t’

These two examples illustrate the difference between array multiplication s.*t and
matrix multiplication s*t’.

= [200(2) + 250(5) + 400(3) + 300(4)] = 4050

= [200(2), 250(5), 400(3), 300(4)] = [400, 1250, 1200, 1200]

2.4 Matrix Operations 75

Table 2.4–1 Aircraft speeds and times per leg

Leg

1 2 3 4

Speed (mi/hr) 200 250 400 300
Time (hr) 2 5 3 4

Vector-Matrix Multiplication
Not all matrix products are scalars. To generalize the preceding multiplication to
a column vector multiplied by a matrix, think of the matrix as being composed of
row vectors. The scalar result of each row-column multiplication forms an ele-
ment in the result, which is a column vector. For example:

(2.4–3)

Thus the result of multiplying a 2 � 2 matrix by a 2 � 1 vector is a 2 � 1 array,
that is, a column vector. Note that the de nition of multiplication requires that the
number of columns in the matrix be equal to the number of rows in the vector.
In general, the product Ax, where A has p columns, is de ned only if x has
p rows. If A has m rows and x is a column vector, the result of Ax is a
column vector with m rows.

Matrix-Matrix Multiplication
We can expand this de nition of multiplication to include the product of two
matrices AB. The number of columns in A must equal the number of rows in B. The
row-column multiplications form column vectors, and these column vectors form the

c2 7

6 -5
d c3

9
d = c2(3) + 7(9)

6(3) - 5(9)
d = c 69

-27
d

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 75

www.EBooksWorld.ir

matrix result. The product AB has the same number of rows as A and the same num-
ber of columns as B. For example,

(2.4–4)

Use the operator * to perform matrix multiplication in MATLAB. The fol-
lowing MATLAB session shows how to perform the matrix multiplication
shown in (2.4–4).

>>A = [6,-2;10,3;4,7];
>>B = [9,8;-5,12];
>>A*B

Element-by-element multiplication is de ned for the following product:

However, this product is not de ned for matrix multiplication, because the rst
matrix has three columns, but the second matrix does not have three rows. Thus
if we were to type [3, 1, 7]*[4, 6, 5] in MATLAB, we would receive
an error message.

The following product is de ned in matrix multiplication and gives the re-
sult shown:

The following product is also de ned:

Evaluating Multivariable Functions
To evaluate a function of two variables, say, z � f (x, y), for the values x � x1, x2,
. . . , xm and y � y1, y2, . . . , yn, de ne the m � n matrices:

y = ≥
y1 y2

Á yn

y1 y2
Á yn

o o o o

y1 y2
Á yn

¥x = ≥
x1 x1

Á x1

x2 x2
Á x2

o o o o

xm xm
Á xm

¥

[10 6] c7 4

5 2
d = [10(7) + 6(5) 10(4) + 6(2)] = [100 52]

J
x1

x2

x3
K [y1 y2 y3] = J

x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3
K

[3 1 7][4 6 5] = [12 6 35]

= J
64 24

75 116

1 116 K
 J

6 -2

10 3

4 7
K c 9 8

-5 12
d = J

(6)(9) + (-2)(-5) (6)(8) + (-2)(12)

(10)(9) + (3)(-5) (10)(8) + (3)(12)

(4)(9) + (7)(-5) (4)(8) + (7)(12) K

76 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 76

www.EBooksWorld.ir

When the function z � f (x, y) is evaluated in MATLAB using array operations, the
resulting m � n matrix z has the elements zij � f (xi, yj). We can extend this technique
to functions of more than two variables by using multidimensional arrays.

2.4 Matrix Operations 77

EXAMPLE 2.4–2 Height versus Velocity

The maximum height h achieved by an object thrown with a speed at an angle � to the
horizontal, neglecting drag, is

Create a table showing the maximum height for the following values of and �:

The rows in the table should correspond to the speed values, and the columns should cor-
respond to the angles.

■ Solution
The program is shown below.

g = 9.8; v = 10:2:20;
theta = 50:10:80;
h = (v’.ˆ2)*(sind(theta).ˆ2)/(2*g);
table = [0, theta; v’, h]

The arrays v and theta contain the given velocities and angles. The array v is 1 � 6
and the array theta is 1 � 4. Thus the term v’.ˆ2 is a 6 � 1 array, and the term
sind(theta).ˆ2 is a 1 � 4 array. The product of these two arrays, h, is a matrix prod-
uct and is a (6 � 1)(1 � 4) � (6 � 4) matrix.

The array [0, theta] is 1 � 5 and the array [v’, h] is 6 � 5, so the matrix
table is 7 � 5. The following table shows the matrix table rounded to one decimal place.
From this table we can see that the maximum height is 8.8 m if � 14 m/s and � � 70°.y

� = 50°, 60°, 70°, 80°� = 10, 12, 14, 16, 18, 20 m/s

y

h =

�2 sin2 �

2g

y

0 50 60 70 80

10 3.0 3.8 4.5 4.9
12 4.3 5.5 6.5 7.1
14 5.9 7.5 8.8 9.7
16 7.7 9.8 11.5 12.7
18 9.7 12.4 14.6 16.0
20 12.0 15.3 18.0 19.8

Test Your Understanding

T2.4–1 Use MATLAB to compute the dot product of the following vectors:

Check your answer by hand. (Answer: �6.)

w = 5i + 3j - 4k
u = 6i - 8j + 3k

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 77

www.EBooksWorld.ir

T2.4–2 Use MATLAB to show that

J
7 4

-3 2

5 9
K c1 8

7 6
d = J

35 80

11 -12

68 94
K

78 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.4–3 Manufacturing Cost Analysis

Table 2.4–2 shows the hourly cost of four types of manufacturing processes. It also shows
the number of hours required of each process to produce three different products. Use
matrices and MATLAB to solve the following. (a) Determine the cost of each process to
produce 1 unit of product 1. (b) Determine the cost to make 1 unit of each product. (c) Sup-
pose we produce 10 units of product 1, 5 units of product 2, and 7 units of product 3.
Compute the total cost.

■ Solution
(a) The basic principle we can use here is that cost equals the hourly cost times the
number of hours required. For example, the cost of using the lathe for product 1 is
($10/hr)(6 hr) � $60, and so forth for the other three processes. If we de ne the row vec-
tor of hourly costs to be hourly_costs and de ne the row vector of hours required for
product 1 to be hours_1, then we can compute the costs of each process for product 1
using element-by-element multiplication. In MATLAB the session is

>>hourly_cost = [10, 12, 14, 9];
>>hours_1 = [6, 2, 3, 4];
>>process_cost_1 = hourly_cost.*hours_1
process_cost_1 =

60 24 42 36

These are the costs of each of the four processes to produce 1 unit of product 1.
(b) To compute the total cost of 1 unit of product 1, we can use the vectors

hourly_costs and hours_1 but apply matrix multiplication instead of element-by-
element multiplication, because matrix multiplication sums the individual products. The
matrix multiplication gives

Table 2.4–2 Cost and time data for manufacturing processes

Hours required to produce one unit
Process Hourly cost ($) Product 1 Product 2 Product 3

Lathe 10 6 5 4
Grinding 12 2 3 1
Milling 14 3 2 5
Welding 9 4 0 3

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 78

www.EBooksWorld.ir

We can perform similar multiplication for products 2 and 3, using the data in the table.
For product 2:

For product 3:

These three operations could have been accomplished in one operation by de ning a
matrix whose columns are formed by the data in the last three columns of the table:

In MATLAB the session continues as follows. Remember that we must use the transpose
operation to convert the row vectors into column vectors.

>>hours_2 = [5, 3, 2, 0];
>>hours_3 = [4, 1, 5, 3];
>>unit_cost = hourly_cost*[hours_1’, hours_2’, hours_3’]
unit_cost =

162 114 149

Thus the costs to produce 1 unit each of products 1, 2, and 3 are $162, $114, and $149,
respectively.

(c) To nd the total cost to produce 10, 5, and 7 units, respectively , we can use ma-
trix multiplication:

[10 5 7] J
162

114

149
K = 1620 + 570 + 1043 = 3233

[10 12 14 9] ≥
6 5 4

2 3 1

3 2 5

4 0 3

¥ = J
60 + 24 + 42 + 36

50 + 36 + 28 + 0

40 + 12 + 70 + 27 K = [162 114 149]

[10 12 14 9] ≥
4

1

5

3

¥ = 10(4) + 12(1) + 14(5) + 9(3) = 149

[10 12 14 9] ≥
5

3

2

0

¥ = 10(5) + 12(2) + 14(3) + 9(0) = 114

[10 12 14 9] ≥
6

2

3

4

¥ = 10(6) + 12(2) + 14(3) + 9(4) = 162

2.4 Matrix Operations 79

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 79

www.EBooksWorld.ir

In MATLAB the session continues as follows. Note the use of the transpose operator on
the vector unit_cost.

>>units = [10, 5, 7];
>>total_cost = units*unit_cost’
total_cost =

3233

The total cost is $3233.

80 CHAPTER 2 Numeric, Cell, and Structure Arrays

The General Matrix Multiplication Case
We can state the general result for matrix multiplication as follows: Suppose A
has dimension m � p and B has dimension p � q. If C is the product AB, then C
has dimension m � q and its elements are given by

(2.4–5)

for all i � 1, 2, . . . , m and j � 1, 2, . . . , q. For the product to be de ned, the ma-
trices A and B must be conformable; that is, the number of rows in B must equal
the number of columns in A. The product has the same number of rows as A and
the same number of columns as B.

Matrix multiplication does not have the commutative property; that is, in
general, AB BA. Reversing the order of matrix multiplication is a common and
easily made mistake.

The associative and distributive properties hold for matrix multiplication.
The associative property states that

(2.4–6)

The distributive property states that

(2.4–7)

Applications to Cost Analysis
Project cost data stored in tables must often be analyzed in several ways. The ele-
ments in MATLAB matrices are similar to the cells in a spreadsheet, and MATLAB
can perform many spreadsheet-type calculations for analyzing such tables.

(AB)C � A(BC)

A(B + C) � AB + AC

Z

cij = a
p

k=1
aik bkj

EXAMPLE 2.4–4 Product Cost Analysis
Table 2.4–3 shows the costs associated with a certain product, and Table 2.4–4 shows the
production volume for the four quarters of the business year. Use MATLAB to nd the
quarterly costs for materials, labor, and transportation; the total material, labor, and trans-
portation costs for the year; and the total quarterly costs.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 80

www.EBooksWorld.ir

■ Solution
The costs are the product of the unit cost and the production volume. Thus we de ne two
matrices: U contains the unit costs in Table 2.4–3 in thousands of dollars, and P contains
the quarterly production data in Table 2.4–4.

>>U = [6, 2, 1;2, 5, 4;4, 3, 2;9, 7, 3];
>>P = [10, 12, 13, 15;8, 7, 6, 4;12, 10, 13, 9;6, 4, 11, 5];

Note that if we multiply the rst column in U by the rst column in P, we obtain the
total materials cost for the rst quarter . Similarly, multiplying the rst column in U by the
second column in P gives the total materials cost for the second quarter. Also, multiply-
ing the second column in U by the rst column in P gives the total labor cost for the rst
quarter, and so on. Extending this pattern, we can see that we must multiply the transpose
of U by P. This multiplication gives the cost matrix C.

>>C = U’*P

The result is

Each column in C represents one quarter. The total rst-quarter cost is the sum of the ele-
ments in the rst column, the second-quarter cost is the sum of the second column, and so
on. Thus because the sum command sums the columns of a matrix, the quarterly costs are
obtained by typing

>>Quarterly_Costs = sum(C)

The resulting vector, containing the quarterly costs in thousands of dollars, is [400 351 509
355]. Thus the total costs in each quarter are $400,000; $351,000; $509,000; and $355,000.

C = J
178 162 241 179

138 117 172 112

84 72 96 64
K

2.4 Matrix Operations 81

Table 2.4–3 Product costs

Unit costs ($ � 103)

Product Materials Labor Transportation

1 6 2 1
2 2 5 4
3 4 3 2
4 9 7 3

Table 2.4–4 Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 10 12 13 15
2 8 7 6 4
3 12 10 13 9
4 6 4 11 5

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 81

www.EBooksWorld.ir

The elements in the rst row of C are the material costs for each quarter; the ele-
ments in the second row are the labor costs, and those in the third row are the transporta-
tion costs. Thus to nd the total material costs, we must sum across the rst row of C.
Similarly, the total labor and total transportation costs are the sums across the second and
third rows of C. Because the sum command sums columns, we must use the transpose of
C. Thus we type the following:

>>Category_Costs � sum(C’)

The resulting vector, containing the category costs in thousands of dollars, is [760 539
316]. Thus the total material costs for the year are $760 000; the labor costs are $539 000;
and the transportation costs are $316 000.

We displayed the matrix C only to interpret its structure. If we need not display C,
the entire analysis would consist of only four command lines.

>>U = [6, 2, 1;2, 5, 4;4, 3, 2;9, 7, 3];
>>P = [10, 12, 13, 15;8, 7, 6, 4;12, 10, 13, 9;6, 4, 11, 5];
>>Quarterly_Costs = sum(U’*P)
Quarterly_Costs =

400 351 509 355
>>Category_Costs = sum((U’*P)’)
Category_Costs =

760 539 316

This example illustrates the compactness of MATLAB commands.

Special Matrices
Two exceptions to the noncommutative property are the null matrix, denoted by
0, and the identity, or unity, matrix, denoted by I. The null matrix contains all
zeros and is not the same as the empty matrix [], which has no elements. The
identity matrix is a square matrix whose diagonal elements are all equal to 1,
with the remaining elements equal to 0. For example, the 2 � 2 identity matrix is

These matrices have the following properties:

MATLAB has speci c commands to create several special matrices. Type
help specmat to see the list of special matrix commands; also check Table 2.4–5.
The identity matrix I can be created with the eye(n) command, where n is
the desired dimension of the matrix. To create the 2 � 2 identity matrix, you type
eye(2). Typing eye(size(A)) creates an identity matrix having the same
dimension as the matrix A.

IA � AI � A
0A � A0 � 0

I = c1 0

0 1
d

82 CHAPTER 2 Numeric, Cell, and Structure Arrays

NULL MATRIX

IDENTITY MATRIX

pal34870_ch02_052-111.qxd 1/11/10 12:30 PM Page 82

www.EBooksWorld.ir

Sometimes we want to initialize a matrix to have all zero elements. The
zeros command creates a matrix of all zeros. Typing zeros(n) creates an
n � n matrix of zeros, whereas typing zeros(m,n) creates an m � n matrix of
zeros, as will typing A(m,n) = 0. Typing zeros(size(A)) creates a
matrix of all zeros having the same dimension as the matrix A. This type of
matrix can be useful for applications in which we do not know the required
dimension ahead of time. The syntax of the ones command is the same, except
that it creates arrays lled with 1s.

For example, to create and plot the function

the script le is

x1 = 0:0.01:2;
f1 = 10*ones(size(x1));
x2 = 2.01:0.01:4.99;
f2 = zeros(size(x2));
x3 = 5:0.01:7;
f3 = -3*ones(size(x3));
f = [f1, f2, f3];
x = [x1, x2, x3];
plot(x,f),xlabel(‘x’),ylabel(‘y’)

(Consider what the plot would look like if the command plot(x,f) were re-
placed with the command plot(x1,f1,x2,f2,x3,f3).)

Matrix Division and Linear Algebraic Equations
Matrix division uses both the right and left division operators, / and \, for various
applications, a principal one being the solution of sets of linear algebraic equa-
tions. Chapter 8 covers a related topic, the matrix inverse.

f (x) = L
10 0 … x … 2

0 2 6 x 6 5

-3 5 … x … 7

2.4 Matrix Operations 83

Table 2.4–5 Special matrices

Command Description

eye(n) Creates an n � n identity matrix.
eye(size(A)) Creates an identity matrix the same size as the matrix A.
ones(n) Creates an n � n matrix of 1s.
ones(m,n) Creates an m � n array of 1s.
ones(size(A)) Creates an array of 1s the same size as the array A.
zeros(n) Creates an n � n matrix of 0s.
zeros(m,n) Creates an m � n array of 0s.
zeros(size(A)) Creates an array of 0s the same size as the array A.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 83

www.EBooksWorld.ir

You can use the left division operator (\) in MATLAB to solve sets of linear
algebraic equations. For example, consider the set

To solve such sets in MATLAB you must create two arrays; we will call them
A and B. The array A has as many rows as there are equations and as many
columns as there are variables. The rows of A must contain the coef cients of
x, y, and z in that order. In this example, the rst row of A must be 6, 12, 4; the
second row must be 7, �2, 3; and the third row must be 2, 8, �9. The array B
contains the constants on the right-hand side of the equation; it has one column
and as many rows as there are equations. In this example, the rst row of B is
70, the second is 5, and the third is 64. The solution is obtained by typing A\B.
The session is

>>A = [6,12,4;7,-2,3;2,8,-9];
>>B = [70;5;64];
>>Solution = A\B
Solution =

3
5
-2

The solution is x � 3, y � 5, and z � �2.
The left division method works ne when the equation set has a unique

solution. To learn how to deal with problems having a nonunique solution (or
perhaps no solution at all!), see Chapter 8.

Test Your Understanding

T2.4–3 Use MATLAB to solve the following set of equations.

(Answer: x � 2, y � �5, z � 10.)

Matrix Exponentiation
Raising a matrix to a power is equivalent to repeatedly multiplying the matrix by
itself, for example, A2 � AA. This process requires the matrix to have the same
number of rows as columns; that is, it must be a square matrix. MATLAB uses
the symbol ^ for matrix exponentiation. To nd A2, type A^2.

 14x + 9y - 5z = -67

 -5x - 3y + 7z = 75

 6x - 4y + 8z = 112

 2x + 8y - 9z = 64

 7x - 2y + 3z = 05

 6x + 12y + 4z = 70

84 CHAPTER 2 Numeric, Cell, and Structure Arrays

LEFT DIVISION
METHOD

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 84

www.EBooksWorld.ir

We can raise a scalar n to a matrix power A, if A is square, by typing n^A,
but the applications for such a procedure are in advanced courses. However,
raising a matrix to a matrix power—that is, AB—is not de ned, even if A and B
are square.

Special Products
Many applications in physics and engineering use the cross product and dot
product; for example, calculations to compute moments and force compo-
nents use these special products. If A and B are vectors with three elements,
the cross product command cross(A,B) computes the three-element vector
that is the cross product A � B. If A and B are 3 � n matrices, cross(A,B)
returns a 3 � n array whose columns are the cross products of the correspond-
ing columns in the 3 � n arrays A and B. For example, the moment M with
respect to a reference point O due to the force F is given by M � r � F, where
r is the position vector from the point O to the point where the force F is ap-
plied. To find the moment in MATLAB, you type M = cross(r,F).

The dot product command dot(A,B) computes a row vector of length n
whose elements are the dot products of the corresponding columns of the m � n
arrays A and B. To compute the component of the force F along the direction
given by the vector r, you type dot(F,r).

2.5 Polynomial Operations Using Arrays
MATLAB has some convenient tools for working with polynomials. Type help
polyfun for more information on this category of commands. We will use the
following notation to describe a polynomial:

We can describe a polynomial in MATLAB with a row vector whose elements
are the polynomial’s coef cients, starting with the coef cient of the highest
power of x. This vector is [a1, a2, a3, . . . , an�1, an, an�1]. For example, the vector
[4,-8,7,-5] represents the polynomial 4x3 � 8x2 � 7x � 5.

Polynomial roots can be found with the roots(a) function, where a is the
array containing the polynomial coef cients. For example, to obtain the roots of
x3 � 12x2 � 45x � 50 � 0, you type y = roots([1,12,45,50]). The an-
swer (y) is a column array containing the values �2, �5, �5.

The poly(r) function computes the coef cients of the polynomial whose
roots are speci ed by the array r. The result is a row array that contains the poly-
nomial’s coef cients. For example, to nd the polynomial whose roots are 1 and
3 � 5i, the session is

>>p = poly([1,3+5i, 3-5i])
p =

1 -7 40 -34

Thus the polynomial is x3 � 7x2 � 40x � 34.

f(x) = a1x
n

+ a2x
n - 1

+ a3x
n - 2

+
Á

+ an - 1x
2

+ anx + an + 1

2.5 Polynomial Operations Using Arrays 85

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 85

www.EBooksWorld.ir

Polynomial Addition and Subtraction
To add two polynomials, add the arrays that describe their coef cients. If the
polynomials are of different degrees, add zeros to the coef cient array of the
lower-degree polynomial. For example, consider

f (x) � 9x3 � 5x2 � 3x � 7

whose coef cient array is f � [9,�5,3,7] and

g(x) � 6x2 � x � 2

whose coef cient array is g = [6,-1,2]. The degree of g(x) is 1 less that of
f (x). Therefore, to add f (x) and g(x), we append one zero to g to “fool”
MATLAB into thinking g(x) is a third-degree polynomial. That is, we
type g = [0 g] to obtain [0,6,-1,2] for g. This vector represents g(x) �
0x3 � 6x2 � x � 2. To add the polynomials, type h = f+g. The result is
h = [9,1,2,9], which corresponds to h(x) � 9x3 � x2 � 2x � 9. Subtrac-
tion is done in a similar way.

Polynomial Multiplication and Division
To multiply a polynomial by a scalar, simply multiply the coef cient array by
that scalar. For example, 5h(x) is represented by [45,5,10,45].

Multiplication and division of polynomials are easily done with MATLAB.
Use the conv function (it stands for “convolve”) to multiply polynomials
and use the deconv function (deconv stands for “deconvolve”) to perform
synthetic division. Table 2.5–1 summarizes these functions, as well as the poly,
polyval, and roots functions.

86 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.5–1 Polynomial functions

Command Description

conv(a,b) Computes the product of the two polynomials described by the coef cient arrays a and b.
The two polynomials need not be of the same degree. The result is the coef cient array
of the product polynomial.

[q,r] � Computes the result of dividing a numerator polynomial, whose coef cient array is num,
deconv (num,den) by a denominator polynomial represented by the coef cient array den. The quotient

polynomial is given by the coef cient array q, and the remainder polynomial is given by
the coef cient array r.

poly(r) Computes the coef cients of the polynomial whose roots are speci ed by the vector r. The
result is a row vector that contains the polynomial’s coef cients arranged in descending
order of power.

polyval(a,x) Evaluates a polynomial at speci ed values of its independent variable x, which can be a
matrix or a vector. The polynomial’s coef cients of descending powers are stored in the
array a. The result is the same size as x.

roots(a) Computes the roots of a polynomial speci ed by the coef cient array a. The result is a
column vector that contains the polynomial’s roots.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 86

www.EBooksWorld.ir

The product of the polynomials f (x) and g(x) is

f (x)g(x) � (9x 3 � 5x2 � 3x � 7)(6x2 � x � 2)

� 54x5 � 39x4 � 41x3 � 29x2 � x � 14

Dividing f(x) by g(x) using synthetic division gives a quotient of

with a remainder of �0.5833x �8.1667. Here is the MATLAB session to per-
form these operations.

>>f = [9,-5,3,7];
>>g = [6,-1,2];
>>product = conv(f,g)
product =

54 -39 41 29 -1 14
>>[quotient, remainder] = deconv(f,g)
quotient =

1.5 -0.5833
remainder =

0 0 -0.5833 8.1667

The conv and deconv functions do not require that the polynomials be of the
same degree, so we did not have to fool MATLAB as we did when adding
the polynomials.

Plotting Polynomials
The polyval(a,x) function evaluates a polynomial at speci ed values of its
independent variable x, which can be a matrix or a vector. The polynomial’s
coef cient array is a. The result is the same size as x. For example, to evaluate
the polynomial f(x) � 9x3 � 5x2 � 3x � 7 at the points x � 0, 2, 4, . . . , 10, type

>>f = polyval([9,-5,3,7],[0:2:10]);

The resulting vector f contains six values that correspond to f(0), f(2), f(4), . . . , f(10).
The polyval function is very useful for plotting polynomials. To do this,

you should de ne an array that contains many values of the independent variable
x in order to obtain a smooth plot. For example, to plot the polynomial f(x) �
9x3 � 5x2 � 3x � 7 for �2 	 x 	 5, you type

>>x = -2:0.01:5;
>>polyval([9,-5,3,7], x);
>>plot (x,f),xlabel(x),ylabel(f(x)),grid

Polynomial derivatives and integrals are covered in Chapter 9.

f(x)

g(x)
=

9x3
- 5x2

+ 3x + 7

6x2
- x + 2

= 1.5x - 0.5833

2.5 Polynomial Operations Using Arrays 87

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 87

www.EBooksWorld.ir

Test Your Understanding

T2.5–1 Use MATLAB to obtain the roots of

x3 � 13x2 � 52x � 6 � 0

Use the poly function to con rm your answer .

T2.5–2 Use MATLAB to con rm that

(20x3 � 7x2 � 5x � 10)(4x2 � 12x � 3)

� 80x5 � 212x4 � 124x3 � 121x2 � 105x � 30

T2.5–3 Use MATLAB to con rm that

with a remainder of 59x � 41.

T2.5–4 Use MATLAB to con rm that

when x � 2.

T2.5–5 Plot the polynomial

y � x3 � 13x2 � 52x � 6

over the range �7 	 x 	 1.

6x3
+ 4x2

- 5

12x3
- 7x2

+ 3x + 9
= 0.7108

12x3
+ 5x2

- 2x + 3

3x2
- 7x + 4

= 4x + 11

88 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.5–1 Earthquake-Resistant Building Design

Buildings designed to withstand earthquakes must have natural frequencies of vibration
that are not close to the oscillation frequency of the ground motion. A building’s natural
frequencies are determined primarily by the masses of its oors and by the lateral stif f-
ness of its supporting columns (which act as horizontal springs). We can nd these fre-
quencies by solving for the roots of a polynomial called the structure’s characteristic
polynomial (characteristic polynomials are discussed further in Chapter 9). Figure 2.5–1
shows the exaggerated motion of the oors of a three-story building. For such a building,
if each oor has a mass m and the columns have stiffness k, the polynomial is

where (models such as these are discussed in greater detail in [Palm,
2010]). The building’s natural frequencies in cycles per second are the positive roots of
this equation. Find the building’s natural frequencies in cycles per second for the case
where and k = 5 * 106 N/m.m = 1000 kg

� = k>4m�2

(� - f2)[(2� - f2)2
- �2] + �2f2

- 2�3

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 88

www.EBooksWorld.ir

■ Solution
The characteristic polynomial consists of sums and products of lower-degree polynomi-
als. We can use this fact to have MATLAB do the algebra for us. The characteristic poly-
nomial has the form

where

The MATLAB script le is

k = 5e+6;m = 1000;
alpha = k/(4*m*pi^2);
p1 = [-1,0,alpha];
p2 = [-1,0,2*alpha];
p3 = [alpha^2,0,-2*alpha^3];
p4 = conv(p2,p2)-(0,0,0,0,alpha^2];
p5 = conv(p1,p4);
p6 = p5+[0,0,0,0,p3];
r = roots(p6)

The resulting positive roots and thus the frequencies, rounded to the nearest integer, are
20, 14, and 5 Hz.

p1 = � - f2 p2 = 2� - f2 p3 = �2f2
- 2�3

p1 Ap2
2 - �2 B + p3 = 0

2.5 Polynomial Operations Using Arrays 89

Columns

Floor

Floor

Floor

Ground Motion

Figure 2.5–1 Simple vibration model of a building subjected to
ground motion.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 89

www.EBooksWorld.ir

2.6 Cell Arrays
The cell array is an array in which each element is a bin, or cell, which can con-
tain an array. You can store different classes of arrays in a cell array, and you can
group data sets that are related but have different dimensions. You access cell
arrays using the same indexing operations used with ordinary arrays.

This is the only section in the text that uses cell arrays. Coverage of this sec-
tion is therefore optional. Some more advanced MATLAB applications, such as
those found in some of the toolboxes, do use cell arrays.

Creating Cell Arrays
You can create a cell array by using assignment statements or by using the
cell function. You can assign data to the cells by using either cell indexing
or content indexing. To use cell indexing, enclose in parentheses the cell sub-
scripts on the left side of the assignment statement and use the standard array
notation. Enclose the cell contents on the right side of the assignment statement
in braces {}.

90 CHAPTER 2 Numeric, Cell, and Structure Arrays

CELL INDEXING

CONTENT
INDEXING

EXAMPLE 2.6–1 An Environment Database

Suppose you want to create a 2 � 2 cell array A, whose cells contain the location, the
date, the air temperature (measured at 8 A.M., 12 noon, and 5 P.M.), and the water tem-
peratures measured at the same time in three different points in a pond. The cell array
looks like the following.

Walden Pond June 13, 1997

■ Solution
You can create this array by typing the following either in interactive mode or in a script
 le and running it.

A(1,1) = {‘Walden Pond’};
A(1,2) = {‘June 13, 1997’};
A(2,1) = {[60,72,65]};
A(2,2) = {[55,57,56;54,56,55;52,55,53]};

If you do not yet have contents for a particular cell, you can type a pair of empty
braces { } to denote an empty cell, just as a pair of empty brackets [] denotes an empty
numeric array. This notation creates the cell but does not store any contents in it.

To use content indexing, enclose in braces the cell subscripts on the left side, using the
standard array notation. Then specify the cell contents on the right side of the assignment

J
55 57 56

54 56 55

52 55 53 K[60 72 65]

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 90

www.EBooksWorld.ir

operator. For example:

A{1,1} = ‘Walden Pond’;
A{1,2} = ‘June 13, 1997’;
A{2,1} = [60,72,65];
A{2,2} = [55,57,56;54,56,55;52,55,53];

Type A at the command line. You will see

A �

‘Walden Pond’ ‘June 13, 1997’
[1x3 double] [3x3 double]

You can use the celldisp function to display the full contents. For example, typing
celldisp(A) displays
A{1,1} =

Walden Pond
A{2,1} =

60 72 65
.
.
.
etc.

The cellplot function produces a graphical display of the cell array’s
contents in the form of a grid. Type cellplot(A) to see this display for the
cell array A. Use commas or spaces with braces to indicate columns of cells and
use semicolons to indicate rows of cells (just as with numeric arrays). For exam-
ple, typing

B = {[2,4], [6,-9;3,5]; [7;2], 10};

creates the following 2 � 2 cell array:

10

You can preallocate empty cell arrays of a speci ed size by using the cell func-
tion. For example, type C = cell(3,5) to create the 3 � 5 cell array C and
 ll it with empty matrices. Once the array has been de ned in this way , you
can use assignment statements to enter the contents of the cells. For example,
type C(2,4) = {[6,-3,7]} to put the 1 � 3 array in cell (2,4) and type
C(1,5) = {1:10} to put the numbers from 1 to 10 in cell (1,5).
Type C(3,4) = {‘30 mph’} to put the string in cell (3,4).

[7 2]

c6 -9

3 5
d[2 4]

2.6 Cell Arrays 91

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 91

www.EBooksWorld.ir

Accessing Cell Arrays
You can access the contents of a cell array by using either cell indexing or content
indexing. To use cell indexing to place the contents of cell (3,4) of the array C in
the new variable Speed, type Speed = C(3,4). To place the contents of
the cells in rows 1 to 3, columns 2 to 5 in the new cell array D, type D =
C(1:3,2:5). The new cell array D will have three rows, four columns, and
12 arrays. To use content indexing to access some of or all the contents in a
single cell, enclose the cell index expression in braces to indicate that you are
assigning the contents, not the cells themselves, to a new variable. For example,
typing Speed = C{3,4} assigns the contents ‘30 mph’ in cell (3,4) to the
variable Speed. You cannot use content indexing to retrieve the contents of
more than one cell at a time. For example, the statements G = C{1,:} and
C{1,:} = var, where var is some variable, are both invalid.

You can access subsets of a cell’s contents. For example, to obtain the sec-
ond element in the 1 � 3-row vector in the (2,4) cell of array C and assign it to the
variable r, you type r = C{2,4}(1,2). The result is r = -3.

2.7 Structure Arrays
Structure arrays are composed of structures. This class of arrays enables you to
store dissimilar arrays together. The elements in structures are accessed using
named elds. This feature distinguishes them from cell arrays, which are
accessed using the standard array indexing operations.

Structure arrays are used in this text only in this section. Some MATLAB
toolboxes do use structure arrays.

A speci c example is the best way to introduce the terminology of structures.
Suppose you want to create a database of students in a course, and you want to in-
clude each student’s name, Social Security number, email address, and test scores.
Figure 2.7–1 shows a diagram of this data structure. Each type of data (name,
Social Security number, and so on) is a eld, and its name is the eld name. Thus
our database has four elds. The rst three elds each contain a text string, while

92 CHAPTER 2 Numeric, Cell, and Structure Arrays

FIELD

Structure array “student”

Student(1) Student(2)

Name: John Smith

SSN: 392-77-1786

Email: smithj@myschool.edu

Tests: 67, 75, 84

Name: Mary Jones

SSN: 431-56-9832

Email: jonesm@myschool.edu

Tests: 84, 78, 93

Figure 2.7–1 Arrangement of data in the structure array student.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 92

www.EBooksWorld.ir

the last eld (the test scores) contains a vector having numerical elements. A struc-
ture consists of all this information for a single student. A structure array is an
array of such structures for different students. The array shown in Figure 2.7–1 has
two structures arranged in one row and two columns.

Creating Structures
You can create a structure array by using assignment statements or by using the
struct function. The following example uses assignment statements to build a
structure. Structure arrays use the dot notation (.) to specify and to access the elds.
You can type the commands either in the interactive mode or in a script le.

2.7 Structure Arrays 93

EXAMPLE 2.7–1 A Student Database

Create a structure array to contain the following types of student data:

■ Student name.
■ Social Security number.
■ Email address.
■ Test scores.

Enter the data shown in Figure 2.7–1 into the database.

■ Solution
You can create the structure array by typing the following either in the interactive mode
or in a script le. Start with the data for the rst student.

student.name = ‘John Smith’;
student.SSN = ‘392-77-1786’;
student.email = ‘smithj@myschool.edu’;
student.tests = [67,75,84];

If you then type

>>student

at the command line, you will see the following response:

name: ‘John Smith’
SSN: = ‘392-77-1786’
email: = ‘smithj@myschool.edu’
tests: = [67 75 84]

To determine the size of the array, type size(student). The result is ans � 1 1,
which indicates that it is a 1 � 1 structure array.

To add a second student to the database, use a subscript 2 enclosed in parentheses
after the structure array’s name and enter the new information. For example, type

student(2).name = ‘Mary Jones’;
student(2).SSN = ‘431-56-9832’;
student(2).email = ‘jonesm@myschool.edu’;
student(2).tests = [84,78,93];

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 93

www.EBooksWorld.ir

This process “expands” the array. Before we entered the data for the second student, the
dimension of the structure array was 1 � 1 (it was a single structure). Now it is a 1 � 2 array
consisting of two structures, arranged in one row and two columns. You can con rm this
information by typing size(student), which returns ans � 1 2. If you now type
length(student), you will get the result ans = 2, which indicates that the array has
two elements (two structures). When a structure array has more than one structure, MATLAB
does not display the individual eld contents when you type the structure array’s name. For
example, if you now type student, MATLAB displays

>>student =
1x2 struct array with elds:

name
SSN
email
tests

You can also obtain information about the elds by using the eldnames function (see
Table 2.7–1). For example:

>> eldnames(student)
ans =

‘name’
‘SSN’
‘email’
‘tests’

As you ll in more student information, MA TLAB assigns the same number of elds and
the same eld names to each element. If you do not enter some information—for
example, suppose you do not know someone’s email address—MATLAB assigns an
empty matrix to that eld for that student.

94 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.7–1 Structure functions

Function Description

names = eldnames(S) Returns the eld names associated
with the structure array S as
names, a cell array of strings.

is eld(S,’ eld’) Returns 1 if ‘ eld’ is the
name of a eld in the structure
array S and 0 otherwise.

isstruct(S) Returns 1 if the array S is a
structure array and 0 otherwise.

S = rm eld(S,’ eld’) Removes the eld ‘ eld’
from the structure array S.

S = struct(‘f1’,’v1’,’f2’, Creates a structure array with the
’v2’, ...) elds ‘f1’, ‘f2’, . . . having

the values ‘v1’, ‘v2’,

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 94

www.EBooksWorld.ir

The elds can he dif ferent sizes. For example, each name eld can contain a dif fer-
ent number of characters, and the arrays containing the test scores can be different sizes,
as would be the case if a certain student did not take the second test.

2.7 Structure Arrays 95

In addition to the assignment statement, you can build structures using the
struct function, which lets you “preallocate” a structure array. To build a
structure array named sa_1, the syntax is

sa_1 = struct(‘ eld1’,’values1’,’ eld2’,values2’, . . .)

where the arguments are the eld names and their values. The values arrays
values1, values2, . . . must all be arrays of the same size, scalar cells, or
single values. The elements of the values arrays are inserted into the correspond-
ing elements of the structure array. The resulting structure array has the same size
as the values arrays, or is 1 � 1 if none of the values arrays is a cell. For example,
to preallocate a 1 � 1 structure array for the student database, you type

student = struct(‘name’,’John Smith’, ‘SSN’, . . .
‘392-77-1786’,’email’,’smithj@myschool.edu’, . . .
‘tests’,[67,75,84])

Accessing Structure Arrays
To access the contents of a particular eld, type a period after the structure array
name, followed by the eld name. For example, typing student(2).name
displays the value ‘Mary Jones’. Of course, we can assign the result to a
variable in the usual way. For example, typing name2 = student(2).name
assigns the value ‘Mary Jones’ to the variable name2. To access elements
within a eld, for example, John Smith’ s second test score, type student(1).
tests(2). This entry returns the value 75. In general, if a eld contains an array ,
you use the array’s subscripts to access its elements. In this example the statement
student(1).tests(2) is equivalent to student(1,1).tests(2)
because student has one row.

To store all the information for a particular structure—say, all the informa-
tion about Mary Jones—in another structure array named M, you type M =
student(2). You can also assign or change values of field elements. For
example, typing student(2).tests(2) = 81 changes Mary Jones’s
second test score from 78 to 81.

Modifying Structures
Suppose you want to add phone numbers to the database. You can do this by typ-
ing the rst student’ s phone number as follows:

student(1).phone = ‘555-1653’

All the other structures in the array will now have a phone eld, but these elds
will contain the empty array until you give them values.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 95

www.EBooksWorld.ir

To delete a eld from every structure in the array , use the rm eld function.
Its basic syntax is

new_struc = rm eld(array,’ eld’);

where array is the structure array to be modi ed, ‘ eld’ is the eld to be
removed, and new_struc is the name of the new structure array so created by
the removal of the eld. For example, to remove the Social Security eld and call
the new structure array new_student, type

new_student = rm eld(student,’SSN’);

Using Operators and Functions with Structures
You can apply the MATLAB operators to structures in the usual way. For
example, to nd the maximum test score of the second student, you type
max(student(2).tests). The answer is 93.

The is eld function determines whether a structure array contains a partic-
ular eld. Its syntax is is eld(S, ‘ eld’). It returns a value of 1 (which
means “true”) if ‘ eld’ is the name of a eld in the structure array S. For exam-
ple, typing is eld(student, ‘name’) returns the result ans = 1.

The isstruct function determines whether an array is a structure array.
Its syntax is isstruct(S). It returns a value of 1 if S is a structure array and
0 otherwise. For example, typing isstruct(student) returns the result
ans = 1, which is equivalent to “true.”

Test Your Understanding

T2.7–1 Create the structure array student shown in Figure 2.7–1 and add the
following information about a third student: name: Alfred E. Newman;
SSN: 555-12-3456; e-mail: newmana@myschool.edu; tests: 55, 45, 58.

T2.7–2 Edit your structure array to change Newman’s second test score from
45 to 53.

T2.7–3 Edit your structure array to remove the SSN eld.

2.8 Summary
You should now be able to perform basic operations and use arrays in MATLAB.
For example, you should be able to

■ Create, address, and edit arrays.
■ Perform array operations including addition, subtraction, multiplication,

division, and exponentiation.
■ Perform matrix operations including addition, subtraction, multiplication,

division, and exponentiation.

96 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 96

www.EBooksWorld.ir

■ Perform polynomial algebra.
■ Create databases using cell and structure arrays.

Table 2.8–1 is a reference guide to all the MATLAB commands introduced in
this chapter.

Key Terms with Page References

Problems 97

Absolute value, 61
Array addressing, 57
Array operations, 65
Array size, 56
Cell array, 90
Cell indexing, 90
Column vector, 54
Content indexing, 90
Empty array, 58
Field, 92

Identity matrix, 82
Left division method, 84
Length, 61
Magnitude, 61
Matrix, 56
Matrix operations, 73
Null matrix, 82
Row vector, 54
Structure arrays, 92
Transpose, 55

Table 2.8–1 Guide to commands introduced in Chapter 2

Special
characters Use

’ Transposes a matrix, creating complex
conjugate elements.

.’ Transposes a matrix without creating complex
conjugate elements.

; Suppresses screen printing; also denotes a new
row in an array.

: Represents an entire row or column of an array.

Tables

Array functions Table 2.1–1
Element-by-element operations Table 2.3–1
Special matrices Table 2.4–5
Polynomial functions Table 2.5–1
Structure functions Table 2.7–1

Problems
You can nd the answers to problems marked with an asterisk at the end of the text.

Section 2.1
1. a. Use two methods to create the vector x having 100 regularly spaced

values starting at 5 and ending at 28.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 97

www.EBooksWorld.ir

b. Use two methods to create the vector x having a regular spacing of 0.2
starting at 2 and ending at 14.

c. Use two methods to create the vector x having 50 regularly spaced val-
ues starting at �2 and ending at 5.

2. a. Create the vector x having 50 logarithmically spaced values starting at
10 and ending at 1000.

b. Create the vector x having 20 logarithmically spaced values starting at
10 and ending at 1000.

3.* Use MATLAB to create a vector x having six values between 0 and 10
(including the endpoints 0 and 10). Create an array A whose rst row
contains the values 3x and whose second row contains the values
5x � 20.

4. Repeat Problem 3 but make the rst column of A contain the values 3x
and the second column contain the values 5x � 20.

5. Type this matrix in MATLAB and use MATLAB to carry out the following
instructions.

a. Create a vector v consisting of the elements in the second column of A.
b. Create a vector w consisting of the elements in the second row of A.

6. Type this matrix in MATLAB and use MATLAB to carry out the following
instructions.

a. Create a 4 � 3 array B consisting of all elements in the second
through fourth columns of A.

b. Create a 3 � 4 array C consisting of all elements in the second
through fourth rows of A.

c. Create a 2 � 3 array D consisting of all elements in the rst two rows
and the last three columns of A.

7.* Compute the length and absolute value of the following vectors:
a. x � [2, 4, 7]
b. y � [2, �4, 7]
c. z � [5 � 3i, �3 � 4i, 2 � 7i]

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

98 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 98

www.EBooksWorld.ir

8. Given the matrix

a. Find the maximum and minimum values in each column.
b. Find the maximum and minimum values in each row.

9. Given the matrix

a. Sort each column and store the result in an array B.
b. Sort each row and store the result in an array C.
c. Add each column and store the result in an array D.
d. Add each row and store the result in an array E.

10. Consider the following arrays.

Write MATLAB expressions to do the following.
a. Select just the second row of B.
b. Evaluate the sum of the second row of B.
c. Multiply the second column of B and the rst column of A element by

element.
d. Evaluate the maximum value in the vector resulting from element-by-

element multiplication of the second column of B with the rst column
of A.

e. Use element-by-element division to divide the rst row of A by the
 rst three elements of the third column of B. Evaluate the sum of the
elements of the resulting vector.

B = ln(A)A = ≥
1 4 2

2 4 100

7 9 7

3 � 42

¥

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

Problems 99

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 99

www.EBooksWorld.ir

Section 2.2
11.* a. Create a three-dimensional array D whose three “layers” are these

matrices:

b. Use MATLAB to nd the lar gest element in each layer of D and the
largest element in D.

Section 2.3
12.* Given the matrices

Use MATLAB to
a. Find A � B � C.
b. Find A � B � C.
c. Verify the associative law

d. Verify the commutative law

13.* Given the matrices

Use MATLAB to
a. Find the result of A times B using the array product.
b. Find the result of A divided by B using array right division.
c. Find B raised to the third power element by element.

14.* The mechanical work W done in using a force F to push a block through a
distance D is W � FD. The following table gives data on the amount of
force used to push a block through the given distance over ve segments
of a certain path. The force varies because of the differing friction proper-
ties of the surface.

B = c14 -4

6 -2
dA = c56 32

24 -16
d

A + B + C � B + C + A � A + C + B

(A + B) + C � A + (B + C)

C = c -3 -9

7 8
dB = c 4 -5

12 -2
dA = c -7 11

4 9
d

C = J
-7 -5 2

10 6 1

3 -9 8 KB = J
6 9 -4

7 5 3

-8 2 1 KA = J
3 -2 1

6 8 -5

7 9 10
K

100 CHAPTER 2 Numeric, Cell, and Structure Arrays

Path segment

1 2 3 4 5

Force (N) 400 550 700 500 600
Distance (m) 3 0.5 0.75 1.5 5

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 100

www.EBooksWorld.ir

Use MATLAB to nd (a) the work done on each segment of the path and
(b) the total work done over the entire path.

15. Plane A is heading southwest at 300 mi/hr, while plane B is heading west
at 150 mi/hr. What are the velocity and the speed of plane A relative to
plane B?

16. The following table shows the hourly wages, hours worked, and output
(number of widgets produced) in one week for ve widget makers.

Problems 101

Worker

1 2 3 4 5

Hourly wage ($) 5 5.50 6.50 6 6.25
Hours worked 40 43 37 50 45
Output (widgets) 1000 1100 1000 1200 1100

Use MATLAB to answer these questions:
a. How much did each worker earn in the week?
b. What is the total salary amount paid out?
c. How many widgets were made?
d. What is the average cost to produce one widget?
e. How many hours does it take to produce one widget on average?
f. Assuming that the output of each worker has the same quality, which

worker is the most ef cient? Which is the least ef cient?

17. Two divers start at the surface and establish the following coordinate sys-
tem: x is to the west, y is to the north, and z is down. Diver 1 swims 60 ft
east, then 25 ft south, and then dives 30 ft. At the same time, diver 2 dives
20 ft, swims east 30 ft and then south 55 ft.
a. Compute the distance between diver 1 and the starting point.
b. How far in each direction must diver 1 swim to reach diver 2?
c. How far in a straight line must diver 1 swim to reach diver 2?

18. The potential energy stored in a spring is kx2/2, where k is the spring con-
stant and x is the compression in the spring. The force required to com-
press the spring is kx. The following table gives the data for ve springs:

Spring

1 2 3 4 5

Force (N) 11 7 8 10 9
Spring constant k (N/m) 1000 600 900 1300 700

Use MATLAB to nd (a) the compression x in each spring and (b) the po-
tential energy stored in each spring.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 101

www.EBooksWorld.ir

19. A company must purchase ve kinds of material. The following table
gives the price the company pays per ton for each material, along with the
number of tons purchased in the months of May, June, and July:

102 CHAPTER 2 Numeric, Cell, and Structure Arrays

Quantity purchased (tons)

Material Price ($/ton) May June July

1 300 5 4 6
2 550 3 2 4
3 400 6 5 3
4 250 3 5 4
5 500 2 4 3

Use MATLAB to answer these questions:
a. Create a 5�3 matrix containing the amounts spent on each item for

each month.
b. What is the total spent in May? in June? in July?
c. What is the total spent on each material in the three-month period?
d. What is the total spent on all materials in the three-month period?

20. A fenced enclosure consists of a rectangle of length L and width 2R, and a
semicircle of radius R, as shown in Figure P20. The enclosure is to be
built to have an area A of 1600 ft2. The cost of the fence is $40/ft for the
curved portion and $30/ft for the straight sides. Use the min function to
determine with a resolution of 0.01 ft the values of R and L required to
minimize the total cost of the fence. Also compute the minimum cost.

L

2R R

Figure P20

21. A water tank consists of a cylindrical part of radius r and height h, and a
hemispherical top. The tank is to be constructed to hold 500 m3 of uid
when lled. The surface area of the cylindrical part is 2�rh, and its vol-
ume is �r2h. The surface area of the hemispherical top is given by 2�r2,
and its volume is given by 2�r3/3. The cost to construct the cylindrical
part of the tank is $300/m2 of surface area; the hemispherical part costs
$400/m2. Plot the cost versus r for 2 	 r 	 10 m, and determine the
radius that results in the least cost. Compute the corresponding height h.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 102

www.EBooksWorld.ir

22. Write a MATLAB assignment statement for each of the following func-
tions, assuming that w, x, y, and z are row vectors of equal length and that
c and d are scalars.

23. a. After a dose, the concentration of medication in the blood declines due
to metabolic processes. The half-life of a medication is the time re-
quired after an initial dosage for the concentration to be reduced by
one-half. A common model for this process is

where C(0) is the initial concentration, t is time (in hours), and k is
called the elimination rate constant, which varies among individuals.
For a particular bronchodilator, k has been estimated to be in the range
0.047 	 k 	 0.107 per hour. Find an expression for the half-life in
terms of k, and obtain a plot of the half-life versus k for the indicated
range.

b. If the concentration is initially zero and a constant delivery rate is
started and maintained, the concentration as a function of time is
described by

where a is a constant that depends on the delivery rate. Plot the con-
centration after 1 hr, C (1), versus k for the case where a � 1 and k is
in the range 0.047 	 k 	 0.107 per hour.

24. A cable of length Lc supports a beam of length Lb, so that it is horizon-
tal when the weight W is attached at the beam end. The principles of
statics can be used to show that the tension force T in the cable is
given by

where D is the distance of the cable attachment point to the beam pivot.
See Figure P24.

T =

LbLcW

D2L2
b - D2

C(t) =

a

k
 (1 - e-kt)

C(t) = C(0)e-kt

S =

x(2.15 + 0.35y)1.8

z(1 - x)yA =

e-c>(2x)

(ln y)2dz

E =

x + w/(y + z)

x + w/(y - z)
f =

1

12�c/x

Problems 103

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 103

www.EBooksWorld.ir

a. For the case where W � 400 N, Lb � 3 m, and Lc � 5 m, use element-by-
element operations and the min function to compute the value of D that
minimizes the tension T. Compute the minimum tension value.

b. Check the sensitivity of the solution by plotting T versus D. How
much can D vary from its optimal value before the tension T increases
10 percent above its minimum value?

Section 2.4
25.* Use MATLAB to nd the products AB and BA for the following

matrices:

26. Given the matrices

Use MATLAB to
a. Verify the associative property

b. Verify the distributive property

27. The following tables show the costs associated with a certain product and
the production volume for the four quarters of the business year. Use MAT-
LAB to nd (a) the quarterly costs for materials, labor, and transportation;

(AB)C � A(BC)

A(B + C) � AB + AC

C = J
-4 -5 2

10 6 1

3 -9 8
KB = J

6 9 -4

7 5 3

-8 2 1 KA = J
4 -2 1

6 8 -5

7 9 10 K

B = c -7 -8

6 2
dA = c 11 5

-9 -4
d

104 CHAPTER 2 Numeric, Cell, and Structure Arrays

Lb

Lc

D W

Figure P24

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 104

www.EBooksWorld.ir

(b) the total material, labor, and transportation costs for the year; and (c) the
total quarterly costs.

Problems 105

Unit product costs ($ � 103)

Product Materials Labor Transportation

1 7 3 2
2 3 1 3
3 9 4 5
4 2 5 4
5 6 2 1

Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 16 14 10 12
2 12 15 11 13
3 8 9 7 11
4 14 13 15 17
5 13 16 12 18

28.* Aluminum alloys are made by adding other elements to aluminum to im-
prove its properties, such as hardness or tensile strength. The following
table shows the composition of ve commonly used alloys, which are
known by their alloy numbers (2024, 6061, and so on) [Kutz, 1999]. Obtain
a matrix algorithm to compute the amounts of raw materials needed to pro-
duce a given amount of each alloy. Use MATLAB to determine how much
raw material of each type is needed to produce 1000 tons of each alloy.

Composition of aluminum alloys

Alloy %Cu %Mg %Mn %Si %Zn

2024 4.4 1.5 0.6 0 0
6061 0 1 0 0.6 0
7005 0 1.4 0 0 4.5
7075 1.6 2.5 0 0 5.6
356.0 0 0.3 0 7 0

29. Redo Example 2.4–4 as a script le to allow the user to examine the ef-
fects of labor costs. Allow the user to input the four labor costs in the fol-
lowing table. When you run the le, it should display the quarterly costs
and the category costs. Run the le for the case where the unit labor costs
are $3000, $7000, $4000, and $8000, respectively.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 105

www.EBooksWorld.ir

30. Vectors with three elements can represent position, velocity, and accel-
eration. A mass of 5 kg, which is 3 m away from the x axis, starts at
x � 2 m and moves with a speed of 10 m/s parallel to the y axis. Its
velocity is thus described by v � [0, 10, 0], and its position is described
by r � [2, 10t � 3, 0]. Its angular momentum vector L is found from
L � m(r � v), where m is the mass. Use MATLAB to
a. Compute a matrix P whose 11 rows are the values of the position vec-

tor r evaluated at the times t � 0, 0.5, 1, 1.5, . . . , 5 s.
b. What is the location of the mass when t � 5 s?
c. Compute the angular momentum vector L. What is its direction?

31.* The scalar triple product computes the magnitude M of the moment of a
force vector F about a speci ed line. It is M � (r � F) . n, where r is the
position vector from the line to the point of application of the force and n
is a unit vector in the direction of the line.

Use MATLAB to compute the magnitude M for the case where
F � [12, �5, 4] N, r � [�3, 5, 2] m, and n � [6, 5, �7].

32. Verify the identity

for the vectors A � 7i � 3j � 7k, B � �6i � 2j � 3k, and
C � 2i � 8j � 8k.

33. The area of a parallelogram can be computed from |A � B|, where A and
B de ne two sides of the parallelogram (see Figure P33). Compute the
area of a parallelogram de ned by A � 5i and B � i � 3j.

A : (B : C) � B (A # C) � C(A # B)

106 CHAPTER 2 Numeric, Cell, and Structure Arrays

Product costs

Unit costs ($ � 103)

Product Materials Labor Transportation

1 6 2 1
2 2 5 4
3 4 3 2
4 9 7 3

Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 10 12 13 15
2 8 7 6 4
3 12 10 13 9
4 6 4 11 5

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 106

www.EBooksWorld.ir

34. The volume of a parallelepiped can be computed from |A
 (B �C)|,
where A, B, and C de ne three sides of the parallelepiped (see Fig-
ure P34). Compute the volume of a parallelepiped de ned by A � 5i,
B � 2i � 4j, and C � 3i � 2k.

Problems 107

A

B

x

y

Figure P33

A

B

C

x

y

z

Figure P34

Section 2.5
35. Use MATLAB to plot the polynomials y � 3x4 � 6x3 � 8x2 � 4x � 90

and z � 3x3 � 5x2 � 8x � 70 over the interval �3 	 x 	 3. Properly
label the plot and each curve. The variables y and z represent current in
milliamperes; the variable x represents voltage in volts.

36. Use MATLAB to plot the polynomial y � 3x4 � 5x3 � 28x2 � 5x � 200
on the interval �1 	 x 	 1. Put a grid on the plot and use the ginput
function to determine the coordinates of the peak of the curve.

37. Use MATLAB to nd the following product:

(10x3
- 9x2

- 6x + 12)(5x3
- 4x2

- 12x + 8)

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 107

www.EBooksWorld.ir

38.* Use MATLAB to nd the quotient and remainder of

39.* Use MATLAB to evaluate

at x � 5.

40. The ideal gas law provides one way to estimate the pressures and vol-
umes of a gas in a container. The law is

More accurate estimates can be made with the van der Waals equation

where the term b is a correction for the volume of the molecules and the
term a/V̂2 is a correction for molecular attractions. The values of a and b
depend on the type of gas. The gas constant is R, the absolute temperature
is T, and the gas speci c volume is V̂ . If 1 mol of an ideal gas were con-
 ned to a volume of 22.41 L at 0�C (273.2 K), it would exert a pressure of
1 atm. In these units, R � 0.08206.
For chlorine (Cl2), a � 6.49 and b � 0.0562. Compare the speci c
volume estimates V̂ given by the ideal gas law and the van der Waals
equation for 1 mol of Cl2 at 300 K and a pressure of 0.95 atm.

41. Aircraft A is ying east at 320 mi/hr , while aircraft B is ying south at
160 mi/hr. At 1:00 P.M. the aircraft are located as shown in Figure P41.

P =

RT

VN - b
-

a

VN 2

P =

RT

VN

24x3
- 9x2

- 7

10x3
+ 5x2

- 3x - 7

14x3
- 6x2

+ 3x + 9

5x2
+ 7x - 4

108 CHAPTER 2 Numeric, Cell, and Structure Arrays

800 mi

320 mi/h

410 mi

160 mi/h

A

B

Figure P41

pal34870_ch02_052-111.qxd 1/11/10 12:30 PM Page 108

www.EBooksWorld.ir

a. Obtain the expression for the distance D between the aircraft as a func-
tion of time. Plot D versus time until D reaches its minimum value.

b. Use the roots function to compute the time when the aircraft are rst
within 30 mi of each other.

42. The function

approaches � as x → 2 and as x → 5. Plot this function over the range 0 �
x � 7. Choose an appropriate range for the y axis.

43. The following formulas are commonly used by engineers to predict the
lift and drag of an airfoil:

where L and D are the lift and drag forces, V is the airspeed, S is the wing
span, � is the air density, and CL and CD are the lift and drag coef cients.
Both CL and CD depend on 	, the angle of attack, the angle between the
relative air velocity and the airfoil’s chord line.

Wind tunnel experiments for a particular airfoil have resulted in the
following formulas.

where 	 is in degrees.
Plot the lift and drag of this airfoil versus V for 0 � V � 150 mi/hr

(you must convert V to ft /sec; there is 5280 ft/mi). Use the values
 �
0.002378 slug/ft3 (air density at sea level), 	 � 10°, and S � 36 ft. The re-
sulting values of L and D will be in pounds.

44. The lift-to-drag ratio is an indication of the effectiveness of an airfoil. Re-
ferring to Problem 43, the equations for lift and drag are

D =

1

2

CDSV 2

L =

1

2

CLSV 2

CD = 5.75 * 10-6	3
+ 5.09 * 10-4	2

+ 1.8 * 10-4	 + 1.25 * 10-2

CL = 4.47 * 10-5	3
+ 1.15 * 10-3	2

+ 6.66 * 10-2	 + 1.02 * 10-1

D =

1

2

CDSV2

L =

1

2

CLSV2

y =

3x2
- 12x + 20

x2
- 7x + 10

Problems 109

pal34870_ch02_052-111.qxd 1/11/10 12:30 PM Page 109

www.EBooksWorld.ir

where, for a particular airfoil, the lift and drag coef cients versus angle of
attack � are given by

Using the rst two equations, we see that the lift-to-drag ratio is given
simply by the ratio CL /CD.

Plot L/D versus � for �2° 	 � 	 22°. Determine the angle of attack that
maximizes L/D.

Section 2.6
45. a. Use both cell indexing and content indexing to create the following

2 � 2 cell array.

L

D
=

1
2�CLSV2

1
2�CDSV2

=

CL

CD

CD = 5.75 * 10-6�3
+ 5.09 * 10-4�2

+ 1.81 * 10-4� + 1.25 * 10-2

CL = 4.47 * 10-5�3
+ 1.15 * 10-3�2

+ 6.66 * 10-2� + 1.02 * 10-1

110 CHAPTER 2 Numeric, Cell, and Structure Arrays

Motor 28C Test ID 6

[6 5 1]c3 9

7 2
d

b. What are the contents of the (1,1) element in the (2,1) cell in this array?

46. The capacitance of two parallel conductors of length L and radius r, sepa-
rated by a distance d in air, is given by

where � is the permittitivity of air (� � 8.854 � 10�12 F/m). Create a cell
array of capacitance values versus d, L, and r for d � 0.003, 0.004, 0.005,
and 0.01 m; L � 1, 2, 3 m; and r � 0.001, 0.002, 0.003 m. Use MATLAB
to determine the capacitance value for d � 0.005, L � 2, and r � 0.001.

Section 2.7

47. a. Create a structure array that contains the conversion factors for con-
verting units of mass, force, and distance between the metric SI system
and the British Engineering System.

C =

��L

ln[(d - r)/r]

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 110

www.EBooksWorld.ir

b. Use your array to compute the following:

■ The number of meters in 48 ft.
■ The number of feet in 130 m.
■ The number of pounds equivalent to 36 N.
■ The number of newtons equivalent to 10 lb.
■ The number of kilograms in 12 slugs.
■ The number of slugs in 30 kg.

48. Create a structure array that contains the following information elds con-
cerning the road bridges in a town: bridge location, maximum load (tons),
year built, year due for maintenance. Then enter the following data into
the array:

Problems 111

Location Max. load Year built Due for maintenance

Smith St. 80 1928 2011
Hope Ave. 90 1950 2013
Clark St. 85 1933 2012
North Rd. 100 1960 2012

Location Max. load Year built Due for maintenance

Shore Rd. 85 1997 2014

49. Edit the structure array created in Problem 48 to change the maintenance
data for the Clark St. bridge from 2012 to 2018.

50. Add the following bridge to the structure array created in Problem 48.

pal34870_ch02_052-111.qxd 1/9/10 5:00 PM Page 111

www.EBooksWorld.ir

Y ou need not be a medical doctor to participate in the exciting develop-
ments now taking place in the health eld. Many advances in medicine
and surgery are really engineering achievements, and many engineers

are contributing their talents in this area. Recent achievements include

■ Laparoscopic surgery in which a ber -optic scope guides a small surgical
device. This technology eliminates the need for large incisions and the re-
sulting long recuperation.

■ Computerized axial tomography (CAT) scans and magnetic resonance
imaging (MRI), which provide noninvasive tools for diagnosing medical
problems.

■ Medical instrumentation, such as a ngertip sensor for continuously mea-
suring oxygen in the blood and automatic blood pressure sensors.

As we move into the 21st century, an exciting challenge will be the development
of robot-assisted surgery in which a robot, supervised by a human, performs op-
erations requiring precise, steady motions. Robots have already assisted in hip
surgery on animals, but much greater development is needed. Another develop-
ing technology is telesurgery in which a surgeon uses a television interface to re-
motely guide a surgical robot. This technology would allow delivery of medical
services to remote areas.

Robot-assisted microsurgery, which uses a robot capable of very small,
precise motions, shows great promise. In some applications the robotic device is
used to lter out tremors normally present in the human hand. Designing such
devices requires geometric analysis, control system design, and image process-
ing. The MATLAB Image Processing toolbox and the several MATLAB tool-
boxes dealing with control system design are useful for such applications. ■

Courtesy Jet Propulsion Lab/NASA.

Engineering in the
21st Century. . .

Robot-Assisted Microsurgery

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 112

www.EBooksWorld.ir

113

C H A P T E R 3

Functions and Files
OUTLINE
3.1 Elementary Mathematical Functions

3.2 User-De ned Functions

3.3 Additional Function Topics

3.4 Working with Data Files

3.5 Summary

Problems

MATLAB has many built-in functions, including trigonometric, logarithmic, and
hyperbolic functions, as well as functions for processing arrays. These functions
are summarized in Section 3.1. In addition, you can de ne your own functions
with a function le, and you can use them just as conveniently as the built-in func-
tions. We explain this technique in Section 3.2. Section 3.3 covers additional top-
ics in function programming, including function handles, anonymous functions,
subfunctions, and nested functions. Another type of le that is useful in MA TLAB
is the data le. Importing and exporting such les is covered in Section 3.4.

Sections 3.1 and 3.2 contain essential topics and must be covered. The
material in Section 3.3 is useful for creating large programs. The material in Sec-
tion 3.4 is useful for readers who must work with large data sets.

3.1 Elementary Mathematical Functions
You can use the lookfor command to nd functions that are relevant to your
application. For example, type lookfor imaginary to get a list of the func-
tions that deal with imaginary numbers. You will see listed

imag Complex imaginary part
i Imaginary unit
j Imaginary unit

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 113

www.EBooksWorld.ir

Note that imaginary is not a MATLAB function, but the word is found in
the Help descriptions of the MATLAB function imag and the special symbols
i and j. Their names and brief descriptions are displayed when you type
lookfor imaginary. If you know the correct spelling of a MATLAB func-
tion, for example, disp, you can type help disp to obtain a description
of the function.

Some of the functions, such as sqrt and sin, are built in. These are stored
as image les and are not M- les. They are part of the MATLAB core so they are
very ef cient, but the computational details are not readily accessible. Some
functions are implemented in M- les. You can see the code and even modify it,
although this is not recommended.

Exponential and Logarithmic Functions
Table 3.1–1 summarizes some of the common elementary functions. An example
is the square root function sqrt. To compute , you type sqrt(9) at the
command line. When you press Enter, you see the result ans = 3. You can use
functions with variables. For example, consider the session

>>x = -9; y = sqrt(x)
y =

0 + 3.0000i

Note that the sqrt function returns the positive root only.

19

114 CHAPTER 3 Functions and Files

Table 3.1–1 Some common mathematical functions

Exponential
exp(x) Exponential; ex.
sqrt(x) Square root; .

Logarithmic
log(x) Natural logarithm; ln x.
log10(x) Common (base-10) logarithm; log x � log10 x.

Complex
abs(x) Absolute value; x.
angle(x) Angle of a complex number x.
conj(x) Complex conjugate.
imag(x) Imaginary part of a complex number x.
real(x) Real part of a complex number x.

Numeric
ceil(x) Round to the nearest integer toward .
fix(x) Round to the nearest integer toward zero.
floor(x) Round to the nearest integer toward .
round(x) Round toward the nearest integer.
sign(x) Signum function:

�1 if x � 0; 0 if x � 0; �1 if x � 0.

- q

q

1x

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 114

www.EBooksWorld.ir

One of the strengths of MATLAB is that it will treat a variable as an array
automatically. For example, to compute the square roots of 5, 7, and 15, type

>>x = [5,7,15]; y = sqrt(x)
y =

2.2361 2.6358 3.8730

The square root function operates on every element in the array x.
Similarly, we can type exp(2) to obtain e2 � 7.3891, where e is the base of

the natural logarithms. Typing exp(1) gives 2.7183, which is e. Note that in
mathematics text, ln x denotes the natural logarithm, where x � ey implies that

because ln e � 1. However, this notation has not been carried over into MAT-
LAB, which uses log(x) to represent ln x.

The common (base-10) logarithm is denoted in text by log x or log10 x. It is
de ned by the relation x � 10y; that is,

because log1010 � 1. The MATLAB common logarithm function is log10(x).
A common mistake is to type log(x), instead of log10(x).

Another common error is to forget to use the array multiplication operator
.*. Note that in the MATLAB expression y = exp (x).*log(x), we need
to use the operator .* if x is an array because both exp(x) and log(x) will
be arrays.

Complex Number Functions
Chapter 1 explained how MATLAB easily handles complex number arithmetic.
In the rectangular representation the number a � ib represents a point in the xy
plane. The number’s real part a is the x coordinate of the point, and the imaginary
part b is the y coordinate. The polar representation uses the distance M of the
point from the origin, which is the length of the hypotenuse, and the angle � the
hypotenuse makes with the positive real axis. The pair (M, �) is simply the polar
coordinates of the point. From the Pythagorean theorem, the length of the

hypotenuse is given by which is called the magnitude of the
number. The angle � can be found from the trigonometry of the right triangle. It
is � � arctan (b/a).

Adding and subtracting complex numbers by hand is easy when they are in
the rectangular representation. However, the polar representation facilitates mul-
tiplication and division of complex numbers by hand. We must enter complex
numbers in MATLAB using the rectangular form, and its answers will be given
in that form. We can obtain the rectangular representation from the polar repre-
sentation as follows:

a = M cos � b = M sin �

M = 2a2
+ b2

log10 x = log10 10y
= y log10 10 = y

ln x = ln(ey) = y ln e = y

3.1 Elementary Mathematical Functions 115

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 115

www.EBooksWorld.ir

The MATLAB abs(x) and angle(x) functions calculate the magnitude M and
angle � of the complex number x. The functions real(x) and imag(x) return
the real and imaginary parts of x. The function conj(x) computes the complex
conjugate of x.

The magnitude of the product z of two complex numbers x and y is equal to
the product of their magnitudes: The angle of the product is equal to
the sum of the angles: These facts are demonstrated below.

>>x = -3 + 4i; y = 6 - 8i;
>>mag_x = abs(x)
mag_x =

5.0000
>>mag_y = abs(y)
mag_y =

10.0000
>>mag_product = abs(x*y)

50.0000
>>angle_x = angle(x)
angle_x =

2.2143
>>angle_y = angle(y)
angle_y =

-0.9273
>>sum_angles = angle_x + angle_y
sum_angles =

1.2870
>>angle_product = angle(x*y)
angle_product =

1.2870

Similarly, for division, if , then and
Note that when x is a vector of real values, abs(x) does not give the geo-

metric length of the vector. This length is given by norm(x). If x is a complex
number representing a geometric vector, then abs(x) gives its geometric length.

Numeric Functions
The round function rounds to the nearest integer. If y=[2.3,2.6,3.9],
typing round(y) gives the results 2, 3, 4. The x function truncates to the
nearest integer toward zero. Typing x(y) gives the results 2, 2, 3. The ceil
function (which stands for “ceiling”) rounds to the nearest integer toward .
Typing ceil(y) produces the answers 3, 3, 4.

Suppose z = [-2.6,-2.3,5.7]. The oor function rounds to the
nearest integer toward . Typing oor(z) produces the result �3, �3, 5.
Typing x(z) produces the answer �2, �2, 5. The abs function computes the
absolute value. Thus abs(z) produces 2.6, 2.3, 5.7.

- q

q

∠z = ∠x - ∠y.�z� = �x�>�y�z = x>y

∠z = ∠x + ∠y.
�z� = �x��y�.

116 CHAPTER 3 Functions and Files

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 116

www.EBooksWorld.ir

Test Your Understanding

T3.1–1 For several values of x and y, con rm that ln (xy) � ln x � ln y.

T3.1–2 Find the magnitude, angle, real part, and imaginary part of the
number . (Answers: magnitude � 2.5149, angle � 0.6245 rad,
real part � 2.0402, imaginary part � 1.4705)

Function Arguments
When writing mathematics in text, we use parentheses (), brackets [], and
braces { } to improve the readability of expressions, and we have much lati-
tude over their use. For example, we can write sin 2 in text, but MATLAB
requires parentheses surrounding the 2 (which is called the function argument
or parameter). Thus to evaluate sin 2 in MATLAB, we type sin(2). The
MATLAB function name must be followed by a pair of parentheses that sur-
round the argument. To express in text the sine of the second element of the
array x, we would type sin[x(2)]. However, in MATLAB you cannot use
brackets or braces in this way, and you must type sin(x(2)).

You can include expressions and other functions as arguments. For example,
if x is an array, to evaluate sin(x2 � 5), you type sin(x.^2 + 5). To evaluate

, you type sin(sqrt(x)+1). Be sure to check the order of
precedence and the number and placement of parentheses when typing such ex-
pressions. Every left-facing parenthesis requires a right-facing mate. However,
this condition does not guarantee that the expression is correct!

Another common mistake involves expressions such as sin2x, which means
(sin x)2. In MATLAB, if x is a scalar we write this expression as (sin(x))^2, not
as sin^2(x), sin^2x, or sin(x^2)!

Trigonometric Functions
Other commonly used functions are cos(x), tan(x), sec(x), and csc(x),
which return cos x, tan x, sec x, and csc x, respectively. Table 3.1–2 lists the
MATLAB trigonometric functions that operate in radian mode. Thus sin(5)
computes the sine of 5 rad, not the sine of 5�. Similarly, the inverse trigonomet-
ric functions return an answer in radians. The functions that operate in degree
mode have the letter d appended to their names. For example, sind(x) accepts
the value of x in degrees. To compute the inverse sine in radians, type asin(x).
For example, asin(0.5) returns the answer 0.5236 rad. Note: In MATLAB,
sin(x)^(-1) does not give ; it gives !

MATLAB has two inverse tangent functions. The function atan(x) com-
putes arctan x—the arctangent or inverse tangent—and returns an angle between

and Another correct answer is the angle that lies in the opposite quad-
rant. The user must be able to choose the correct answer. For example, atan(1)
returns the answer 0.7854 rad, which corresponds to 45�. Thus tan 45� � 1. How-
ever, tan(45� � 180�) � tan 225� � 1 also. Thus arctan(1) � 225� is also correct.

�>2.-�>2

1/sin (x)sin- 1(x)

sin(1x + 1)

12 + 6i

3.1 Elementary Mathematical Functions 117

pal34870_ch03_112-145.qxd 1/9/10 5:48 PM Page 117

www.EBooksWorld.ir

MATLAB provides the atan2 (y,x) function to determine the arctangent
unambiguously, where x and y are the coordinates of a point. The angle computed
by atan2(y,x) is the angle between the positive real axis and line from the
origin (0, 0) to the point (x, y). For example, the point x � 1, y � �1 corresponds
to �45	 or �0.7854 rad, and the point x � �1, y � 1 corresponds to 135	 or
2.3562 rad. Typing atan2 (-1,1) returns �0.7854, while typing
atan2 (1,-1) returns 2.3562. The atan2 (y,x) function is an example of a
function that has two arguments. The order of the arguments is important for such
functions. At present there is no atan2d function.

Test Your Understanding

T3.1–3 For several values of x, con rm that eix � cos x � i sin x.

T3.1–4 For several values of x in the range 0 � x � 2
, con rm that sin �1 x �
cos�1 x �
/2.

T3.1–5 For several values of x in the range 0 � x � 2
, con rm that tan(2 x) �
2 tan x/(1 � tan2 x).

Hyperbolic Functions
The hyperbolic functions are the solutions of some common problems in engi-
neering analysis. For example, the catenary curve, which describes the shape of
a hanging cable supported at both ends, can be expressed in terms of the hyper-
bolic cosine, cosh x, which is de ned as

cosh x =

ex
+ e-x

2

118 CHAPTER 3 Functions and Files

Table 3.1–2 Trigonometric functions

Trigonometric*
cos(x) Cosine; cos x.
cot(x) Cotangent; cot x.
csc(x) Cosecant; csc x.
sec(x) Secant; sec x.
sin(x) Sine; sin x.
tan(x) Tangent; tan x.

Inverse trigonometric†

acos(x) Inverse cosine; arccos x � cos�1 x.
acot(x) Inverse cotangent; arccot x � cot�1 x.
acsc(x) Inverse cosecant; arccsc x � csc�1 x.
asec(x) Inverse secant; arcsec x � sec�1 x.
asin(x) Inverse sine; arcsin x � sin�1 x.
atan(x) Inverse tangent; arctan x � tan�1 x.
atan2(y,x) Four-quadrant inverse tangent.

*These functions accept x in radians.
†These functions return a value in radians.

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 118

www.EBooksWorld.ir

The hyperbolic sine, sinh x, is de ned as

The inverse hyperbolic sine, sinh�1 x, is the value y that satis es sinh y � x.
Several other hyperbolic functions have been de ned. Table 3.1–3 lists these

hyperbolic functions and the MATLAB commands to obtain them.

Test Your Understanding

T3.1–6 For several values of x in the range 0 � x � 5, con rm that sin(ix) �
i sinh x.

T3.1–7 For several values of x in the range �10 � x � 10, con rm that

3.2 User-Defined Functions
Another type of M- le is a function le. Unlike a script le, all the variables in a
function le are local variables, which means their values are available only
within the function. Function les are useful when you need to repeat a set of
commands several times. They are the building blocks of larger programs.

To create a function le, open the Editor /Debugger as described in Chap-
ter 1. The rst line in a function le must begin with a function de nition line that
has a list of inputs and outputs. This line distinguishes a function M- le from a
script M- le. Its syntax is as follows:

function[outputvariables]=function_name(inputvariables)

The output variables are those variables whose values are computed by the
function, using the given values of the input variables. Note that the output

sinh- 1 x = ln (x + 2x2
+ 1).

sinh x =

ex
- e- x

2

3.2 User-De ned Functions 119

Table 3.1–3 Hyperbolic functions

Hyperbolic
cosh(x) Hyperbolic cosine; cosh x � (ex � e�x)/2.
coth(x) Hyperbolic cotangent; cosh x /sinh x.
csch(x) Hyperbolic cosecant; 1/sinh x.
sech(x) Hyperbolic secant; 1/cosh x.
sinh(x) Hyperbolic sine; sinh x � (ex � e�x)/2.
tanh(x) Hyperbolic tangent; sinh x/cosh x.

Inverse hyperbolic
acosh(x) Inverse hyperbolic cosine
acoth(x) Inverse hyperbolic cotangent
acsch(x) Inverse hyperbolic cosecant
asech(x) Inverse hyperbolic secant
asinh(x) Inverse hyperbolic sine
atanh(x) Inverse hyperbolic tangent

FUNCTION FILE

FUNCTION
DEFINITION LINE

LOCAL VARIABLE

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 119

www.EBooksWorld.ir

variables are enclosed in square brackets (which are optional if there is only
one output), while the input variables must be enclosed with parentheses. The
function_name should be the same as the file name in which it is saved
(with the .m extension). That is, if we name a function drop, it should be
saved in the file drop.m. The function is “called” by typing its name (for ex-
ample, drop) at the command line. The word function in the function def-
inition line must be lowercase. Before naming a function, you can use the
exist function to see if another function has the same name.

Some Simple Function Examples
Functions operate on variables within their own workspace (called local vari-
ables), which is separate from the workspace you access at the MATLAB com-
mand prompt. Consider the following user-de ned function fun.

function z = fun(x,y)
u = 3*x;
z = u + 6*y.^2;

Note the use of the array exponentiation operator (.^). This enables the func-
tion to accept y as an array. Now consider what happens when you call this
function in various ways in the Command window. Call the function with its out-
put argument:

>>x = 3; y = 7;
>>z = fun(x,y)
z =

303

or

>>z = fun(3,7)
z =

303

The function uses x � 3 and y � 7 to compute z.
Call the function without its output argument and try to access its value. You

see an error message.

>>clear z, fun(3,7)
ans =

303
>>z
??? Unde ned function or variable ‘z’.

Assign the output argument to another variable:

>>q = fun(3,7)
q =

303

You can suppress the output by putting a semicolon after the function call. For exam-
ple, if you type q = fun(3,7); the value of qwill be computed but not displayed.

120 CHAPTER 3 Functions and Files

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 120

www.EBooksWorld.ir

The variables x and y are local to the function fun, so unless you pass their
values by naming them x and y, their values will not be available in the
workspace outside the function. The variable u is also local to the function. For
example,

>>x = 3; y = 7; q = fun(x,y);
>>u
??? Unde ned function or variable ‘u’.

Compare this to

>>q = fun(3,7);
>>x
??? Unde ned function or variable ‘x’.
>>y
??? Unde ned function or variable ‘y’.

Only the order of the arguments is important, not the names of the arguments:

>>a = 7;b = 3;
>>z = fun(b,a) % This is equivalent to z = fun(3,7)
z =

303

You can use arrays as input arguments:

>>r = fun([2:4],[7:9])
r =

300 393 498

A function may have more than one output. These are enclosed in square
brackets. For example, the function circle computes the area A and circumfer-
ence C of a circle, given its radius as an input argument.

function [A, C] = circle(r)
A = pi*r.^2;
C = 2*pi*r;

The function is called as follows, if r � 4.

>>[A, C] = circle(4)
A =

50.2655
C =

25.1327

A function may have no input arguments and no output list. For example, the
following user-de ned function show_date computes and stores the date in
the variable today, and displays the value of today.

function show_date
today = date

3.2 User-De ned Functions 121

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 121

www.EBooksWorld.ir

Variations in the Function Line
The following examples show permissible variations in the format of the func-
tion line. The differences depend on whether there is no output, a single output,
or multiple outputs.

122 CHAPTER 3 Functions and Files

Function de nition line File name

1. function [area_square] � square(side); square.m
2. function area_square � square(side); square.m
3. function volume_box � box(height,width,length); box.m
4. function [area_circle,circumf] � circle(radius); circle.m
5. function sqplot(side); sqplot.m

Example 1 is a function with one input and one output. The square brackets are
optional when there is only one output (see example 2). Example 3 has one output
and three inputs. Example 4 has two outputs and one input. Example 5 has no output
variable (for example, a function that generates a plot). In such cases the equal sign
may be omitted.

Comment lines starting with the % sign can be placed anywhere in the func-
tion le. However , if you use help to obtain information about the function,
MATLAB displays all comment lines immediately following the function de ni-
tion line up to the rst blank line or rst executable line. The rst comment line
can be accessed by the lookfor command.

We can call both built-in and user-de ned functions either with the output
variables explicitly speci ed, as in examples 1 through 4, or without any output
variables speci ed. For example, we can call the function square as square
(side) if we are not interested in its output variable area_square. (The
function might perform some other operation that we want to occur, such as
producing a plot.) Note that if we omit the semicolon at the end of the function
call statement, the rst variable in the output variable list will be displayed using
the default variable name ans.

Variations in Function Calls
The following function, called drop, computes a falling object’s velocity and
distance dropped. The input variables are the acceleration g, the initial veloc-
ity 0, and the elapsed time t. Note that we must use the element-by-element
operations for any operations involving function inputs that are arrays. Here
we anticipate that t will be an array, so we use the element-by-element
operator (.^).

function [dist,vel] = drop(g,v0,t);
% Computes the distance traveled and the
% velocity of a dropped object, as functions
% of g, the initial velocity v0, and the time t.

y

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 122

www.EBooksWorld.ir

vel = g*t + v0;
dist = 0.5*g*t.^2 + v0*t;

The following examples show various ways to call the function drop:

1. The variable names used in the function de nition may , but need not, be
used when the function is called:

a = 32.2;
initial_speed = 10;
time = 5;
[feet_dropped,speed] = drop(a,initial_speed,time)

2. The input variables need not be assigned values outside the function prior
to the function call:

[feet_dropped,speed] = drop(32.2,10,5)

3. The inputs and outputs may be arrays:

[feet_dropped,speed]=drop(32.2,10,0:1:5)

This function call produces the arrays feet_dropped and speed, each with
six values corresponding to the six values of time in the array 0:1:5.

Local Variables
The names of the input variables given in the function de nition line are local to
that function. This means that other variable names can be used when you call the
function. All variables inside a function are erased after the function nishes exe-
cuting, except when the same variable names appear in the output variable list
used in the function call.

For example, when using the drop function in a program, we can assign a
value to the variable dist before the function call, and its value will be un-
changed after the call because its name was not used in the output list of the call
statement (the variable feet_dropped was used in the place of dist). This
is what is meant by the function’s variables being “local” to the function. This
feature allows us to write generally useful functions using variables of our
choice, without being concerned that the calling program uses the same variable
names for other calculations. This means that our function les are “portable”
and need not be rewritten every time they are used in a different program.

You might nd the M- le Debugger to be useful for locating errors in func-
tion les. Runtime errors in functions are more dif cult to locate because the
function’s local workspace is lost when the error forces a return to the MATLAB
base workspace. The Debugger provides access to the function workspace and
allows you to change values. It also enables you to execute lines one at a time and
to set breakpoints, which are speci c locations in the le where execution is tem-
porarily halted. The applications in this text will probably not require use of the
Debugger, which is useful mainly for very large programs. For more informa-
tion, see Chapter 4 of this text and also Chapter 4 of [Palm, 2005].

3.2 User-De ned Functions 123

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 123

www.EBooksWorld.ir

Global Variables
The global command declares certain variables global, and therefore their values
are available to the basic workspace and to other functions that declare these vari-
ables global. The syntax to declare the variables A, X, and Q is global A X Q.
Use a space, not a comma, to separate the variables. Any assignment to those vari-
ables, in any function or in the base workspace, is available to all the other func-
tions declaring them global. If the global variable doesn’t exist the rst time you
issue the global statement, it will be initialized to the empty matrix. If a variable
with the same name as the global variable already exists in the current workspace,
MATLAB issues a warning and changes the value of that variable to match the
global. In a user-de ned function, make the global command the rst executable
line. Place the same command in the calling program. It is customary, but not re-
quired, to capitalize the names of global variables and to use long names, to make
them easily recognizable.

The decision to declare a variable global is not always clear-cut. It is rec-
ommended to avoid using global variables. This can often be done by using
anonymous and nested functions, as discussed in Section 3.3.

Function Handles
A function handle is a way to reference a given function. First introduced in
MATLAB 6.0, function handles have become widely used and frequently appear in
examples throughout the MATLAB documentation. You can create a function han-
dle to any function by using the @ sign before the function name. You can then give
the handle a name, if you wish, and you can use the handle to reference the function.

For example, consider the following user-de ned function, which computes
y � x � 2e�x � 3.

function y = f1(x)
y = x + 2*exp(-x) - 3;

To create a handle to this function and name the handle fh1, you type fh1 = @f1.

Function Functions
Some MATLAB functions act on functions. These commands are called function
functions. If the function acted upon is not a simple function, it is more conve-
nient to de ne the function in an M- le. You can pass the function to the calling
function by using a function handle.

Finding the Zeros of a Function You can use the fzero function to nd the
zero of a function of a single variable, which is denoted by x. Its basic syntax is

fzero(@function, x0)

where @function is a function handle and x0 is a user-supplied guess for the
zero. The fzero function returns a value of x that is near x0. It identi es only
points where the function crosses the x axis, not points where the function just

124 CHAPTER 3 Functions and Files

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 124

www.EBooksWorld.ir

touches the axis. For example, fzero(@cos,2) returns the value x � 1.5708.
As another example, y � x2 is a parabola that touches the x axis at x � 0. Because
the function never crosses the x axis, however, no zero will be found.

The function fzero(@function,x0) tries to nd a zero of function
near x0, if x0 is a scalar. The value returned by fzero is near a point where
function changes sign, or NaN if the search fails. In this case, the search termi-
nates when the search interval is expanded until an Inf, NaN, or a complex value
is found (fzero cannot nd complex zeros). If x0 is a vector of length 2, fzero
assumes that x0 is an interval where the sign of function(x0(1)) differs from
the sign of function(x0(2)). An error occurs if this is not true. Calling fzero
with such an interval guarantees that fzero will return a value near a point where
function changes sign. Plotting the function rst is a good way to get a value for
the vector x0. If the function is not continuous, fzero might return values that
are discontinuous points instead of zeros. For example, x = fzero(@tan,1)
returns x = 1.5708, a discontinuous point in tan(x).

Functions can have more than one zero, so it helps to plot the function rst and
then use fzero to obtain an answer that is more accurate than the answer read
off the plot. Figure 3.2–1 shows the plot of the function y � x � 2e�x � 3, which
has two zeros, one near x � �0.5 and one near x � 3. Using the function le f1 crea-
ted earlier to nd the zero near x � �0.5, type x = fzero(@f1,-0.5). The
answer is x � �0.5831. To nd the zero near x � 3, type x = fzero(@f1,3).
The answer is x � 2.8887.

3.2 User-De ned Functions 125

0 1 2 3 4 5

0.5

1

1.5

2

2.5

x

y

–1
–1.5

–1

–0.5

0

Figure 3.2–1 Plot of the function y � x � 2e�x � 3.

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 125

www.EBooksWorld.ir

The syntax fzero(@f1,-0.5) is preferred to the older syntax fzero
(‘f1’, -0.5).

Minimizing a Function of One Variable The fminbnd function nds the
minimum of a function of a single variable, which is denoted by x. Its basic syn-
tax is

fminbnd(@function, x1, x2)

where @function is a function handle. The fminbnd function returns a value
of x that minimizes the function in the interval x1 � x � x2. For example,
fminbnd(@cos,0,4) returns the value x � 3.1416.

However, to use this function to nd the minimum of more-complicated
functions, it is more convenient to de ne the function in a function le. For ex-
ample, if y � 1 � xe�x, de ne the following function le:

function y = f2(x)
y = 1-x.*exp(-x);

To nd the value of x that gives a minimum of y for 0 � x � 5, type x =
fminbnd(@f2,0,5). The answer is x � 1. To nd the minimum value of y,
type y = f2(x). The result is y = 0.6321.

Whenever we use a minimization technique, we should check that the
solution is a true minimum. For example, consider the polynomial

Its plot is shown in Figure 3.2–2. The function has
two minimum points in the interval �1 � x � 4. The minimum near x � 3 is
called a relative or local minimum because it forms a valley whose lowest point
is higher than the minimum at x � 0. The minimum at x � 0 is the true minimum
and is also called the global minimum. First create the function file

function y = f3(x)
y = polyva1([0.025, -0.0625, -0.333, 1, 0, 0], x);

To specify the interval �1 � x � 4, type x = fminbnd(@f3, -1, 4).
MATLAB gives the answer x = 2.0438e-006, which is essentially 0, the
true minimum point. If we specify the interval 0.1 � x � 2.5, MATLAB gives
the answer x = 0.1001, which corresponds to the minimum value of y on the
interval 0.1 � x � 2.5. Thus we will miss the true minimum point if our speci-
 ed interval does not include it.

Also fminbnd can give misleading answers. If we specify the interval 1 �
x � 4, MATLAB (R2009 b) gives the answer x = 2.8236, which corresponds
to the “valley” shown in the plot, but which is not the minimum point on the in-
terval 1 � x � 4. On this interval the minimum point is at the boundary x � 1. The
fminbnd procedure looks for a minimum point corresponding to a zero slope. In
practice, the best use of the fminbnd function is to determine precisely the
location of a minimum point whose approximate location was found by other
means, such as by plotting the function.

0.0625x4
- 0.333x3

+ x2.
y = 0.025x5

-

126 CHAPTER 3 Functions and Files

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 126

www.EBooksWorld.ir

Minimizing a Function of Several Variables To nd the minimum of a func-
tion of more than one variable, use the fminsearch function. Its basic syntax is

fminsearch(@function, x0)

where @function is a function handle. The vector x0 is a guess that must be

supplied by the user. For example, to use the function , rst de ne it
in an M- le, using the vector x whose elements are x(1) = x and x(2) = y.

function f = f4(x)
f = x(1).*exp(-x(1).^2-x(2).^2);

Suppose we guess that the minimum is near x � y � 0. The session is

>>fminsearch(@f4, [0, 0])
ans =

-0.7071 0.000

Thus the minimum occurs at x � �0.7071, y � 0.
The fminsearch function can often handle discontinuities, particularly

if they do not occur near the solution. The fminsearch function might give
local solutions only, and it minimizes over the real numbers only; that is, x
must consist of real variables only, and the function must return real

f = xe-x2
- y2

3.2 User-De ned Functions 127

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

–1 –0.5

Figure 3.2–2 Plot of the function y � 0.025x5 � 0.0625x4 � 0.333x3 � x2.

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 127

www.EBooksWorld.ir

numbers only. When x has complex values, they must be split into real and
imaginary parts.

Table 3.2–1 summarizes the basic syntax of the fminbnd, fminsearch,
and fzero commands.

These functions have extended syntax not described here. With these forms you
can specify the accuracy required for the solution as well as the number of steps to
use before stopping. Use the help facility to nd out more about these functions.

128 CHAPTER 3 Functions and Files

Table 3.2–1 Minimization and root- nding functions

Function Description

fminbnd(@function,x1,x2) Returns a value of x in the interval x1 � x
� x2 that corresponds to a minimum of the
single-variable function described by the
handle @function.

fminsearch(@function,x0) Uses the starting vector x0 to nd a mini-
mum of the multivariable function described
by the handle @function.

fzero(@function,x0) Uses the starting value x0 to nd a zero of
the single-variable function described by the
handle @function.

EXAMPLE 3.2–1 Optimization of an Irrigation Channel

Figure 3.2–3 shows the cross section of an irrigation channel. A preliminary analysis has
shown that the cross-sectional area of the channel should be 100 ft2 to carry the desired
water ow rate. To minimize the cost of concrete used to line the channel, we want to
minimize the length of the channel’s perimeter. Find the values of d, b, and � that mini-
mize this length.

■ Solution
The perimeter length L can be written in terms of the base b, depth d, and angle � as follows:

The area of the trapezoidal cross section is

100 = db +

d2

tan �

L = b +

2d

sin �

θ θ

b

d

Figure 3.2–3 Cross section of an irrigation channel.

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 128

www.EBooksWorld.ir

The variables to be selected are b, d, and �. We can reduce the number of variables by
solving the latter equation for b to obtain

Substitute this expression into the equation for L. The result is

We must now nd the values of d and � to minimize L.
First de ne the function le for the perimeter length. Let the vector x be [d �].

function L = channel(x)
L = 100./x(1) - x(1)./tan(x(2)) + 2*x(1)./sin(x(2));

Then use the fminsearch function. Using a guess of d � 20 and � � 1 rad, the session is

>>x = fminsearch (@channel,[20,1])
x =

7.5984 1.0472

Thus the minimum perimeter length is obtained with d � 7.5984 ft and � � 1.0472 rad,
or � � 60	. Using a different guess, d � 1, � � 0.1, produces the same answer. The value
of the base b corresponding to these values is b � 8.7738.

However, using the guess d � 20, � � 0.1 produces the physically meaningless
result d � �781, � � 3.1416. The guess d � 1, � � 1.5 produces the physically mean-
ingless result d � 3.6058, � � �3.1416.

The equation for L is a function of the two variables d and �, and it forms a surface
when L is plotted versus d and � on a three-dimensional coordinate system. This surface
might have multiple peaks, multiple valleys, and “mountain passes” called saddle points
that can fool a minimization technique. Different initial guesses for the solution vector
can cause the minimization technique to nd dif ferent valleys and thus report different re-
sults. We can use the surface-plotting functions covered in Chapter 5 to look for multiple
valleys, or we can use a large number of initial values for d and �, say, over the physically
realistic ranges 0 � d � 30 and 0 � � �
 /2. If all the physically meaningful answers
are identical, then we can be reasonably sure that we have found the minimum.

Test Your Understanding

T3.2–1 The equation e�0.2x sin(x � 2) � 0.1 has three solutions in the interval
0 � x � 10. Find these three solutions. (Answers: x � 1.0187, 4.5334,
7.0066)

T3.2–2 The function y � 1 � e�0.2x sin(x � 2) has two minimum points in
the interval 0 � x � 10. Find the values of x and y at each minimum.
(Answers: (x, y) � (2.5150, 0.4070), (9.0001, 0.8347))

T3.2–3 Find the depth d and angle � to minimize the perimeter length of the
channel shown in Figure 3.2–3 to provide an area of 200 ft2. (Answer:
d � 10.7457 ft, � � 60	.)

L =

100

d
-

d

tan �
+

2d

sin �

b =

1

d
a100 -

d2

tan �
b

3.2 User-De ned Functions 129

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 129

www.EBooksWorld.ir

3.3 Additional Function Topics
In addition to function handles, anonymous functions, subfunctions, and nested
functions are some of the newer features of MATLAB. This section covers the
basic features of these new types of functions.

Methods for Calling Functions
There are four ways to invoke, or “call,” a function into action:

1. As a character string identifying the appropriate function M- le
2. As a function handle
3. As an “inline” function object
4. As a string expression

Examples of these ways follow for the fzero function used with the user-
de ned function fun1, which computes y � x2 � 4.

1. As a character string identifying the appropriate function M- le, which is

function y = fun1(x)
y = x.^2-4;

The function may be called as follows, to compute the zero over the range
0 � x � 3:

>>x = fzero(‘fun1’,[0, 3])

2. As a function handle to an existing function M- le:

>>x = fzero(@fun1,[0, 3])

3. As an “inline” function object:

>>fun1 = ‘x.^2-4’;
>>fun_inline = inline(fun1);
>>x = fzero(fun_inline,[0, 3])

4. As a string expression:

>>fun1 = ‘x.^2-4’;
>>x = fzero(fun1,[0, 3])

or as

>>x = fzero(‘x.^2-4’,[0, 3])

Method 2 was not available prior to MATLAB 6.0, and it is now preferred
over method 1. The third method is not discussed in this text because it is a
slower method than the rst two. The third and fourth methods are equivalent be-
cause they both utilize the inline function; the only difference is that with the
fourth method MATLAB determines that the rst ar gument of fzero is a string

130 CHAPTER 3 Functions and Files

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 130

www.EBooksWorld.ir

variable and calls inline to convert the string variable to an inline function ob-
ject. The function handle method (method 2) is the fastest method, followed by
method 1.

In addition to speed improvement, another advantage of using a function
handle is that it provides access to subfunctions, which are normally not visible
outside of their de ning M- le. This is discussed later in this section.

Types of Functions
At this point it is helpful to review the types of functions provided for in MAT-
LAB. MATLAB provides built-in functions, such as clear, sin, and plot,
which are not M- les, and some functions that are M- les, such as the function
mean. In addition, the following types of user-de ned functions can be created
in MATLAB.

■ The primary function is the rst function in an M- le and typically con-
tains the main program. Following the primary function in the same le
can be any number of subfunctions, which can serve as subroutines to the
primary function. Usually the primary function is the only function in an
M- le that you can call from the MA TLAB command line or from another
M- le function. You invoke this function by using the name of the M- le
in which it is de ned. We normally use the same name for the function and
its le, but if the function name dif fers from the le name, you must use the
 le name to invoke the function.

■ Anonymous functions enable you to create a simple function without need-
ing to create an M- le for it. You can construct an anonymous function
either at the MATLAB command line or from within another function or
script. Thus, anonymous functions provide a quick way of making a func-
tion from any MATLAB expression without the need to create, name, and
save a le.

■ Subfunctions are placed in the primary function and are called by the pri-
mary function. You can use multiple functions within a single primary
function M- le.

■ Nested functions are functions de ned within another function. They can
help to improve the readability of your program and also give you more
 exible access to variables in the M- le. The difference between nested
functions and subfunctions is that subfunctions normally cannot be
accessed outside of their primary function le.

■ Overloaded functions are functions that respond differently to different
types of input arguments. They are similar to overloaded functions in any
object-oriented language. For example, an overloaded function can be
created to treat integer inputs differently than inputs of class double.

■ Private functions enable you to restrict access to a function. They can be
called only from an M- le function in the parent directory .

3.3 Additional Function Topics 131

PRIVATE
FUNCTION

PRIMARY
FUNCTION

ANONYMOUS
FUNCTIONS

SUBFUNCTIONS

NESTED
FUNCTIONS

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 131

www.EBooksWorld.ir

Anonymous Functions
Anonymous functions enable you to create a simple function without needing to
create an M- le for it. You can construct an anonymous function either at the
MATLAB command line or from within another function or script. The syntax
for creating an anonymous function from an expression is

fhandle = @(arglist) expr

where arglist is a comma-separated list of input arguments to be passed to the
function and expr is any single, valid MATLAB expression. This syntax creates
the function handle fhandle, which enables you to invoke the function. Note
that this syntax is different from that used to create other function handles,
fhandle = @functionname. The handle is also useful for passing the
anonymous function in a call to some other function in the same way as any other
function handle.

For example, to create a simple function called sq to calculate the square of
a number, type

sq = @(x) x.^2;

To improve readability, you may enclose the expression in parentheses, as sq =
@(x) (x.^2);. To execute the function, type the name of the function handle,
followed by any input arguments enclosed in parentheses. For example,

>>sq(5)
ans =

25
>>sq([5,7])
ans =

25 49

You might think that this particular anonymous function will not save you any
work because typing sq([5,7]) requires nine keystrokes, one more than is re-
quired to type [5,7].^2. Here, however, the anonymous function protects you
from forgetting to type the period (.) required for array exponentiation. Anony-
mous functions are useful, however, for more complicated functions involving
numerous keystrokes.

You can pass the handle of an anonymous function to other functions. For
example, to nd the minimum of the polynomial 4 x2 � 50x � 5 over the inter-
val [�10, 10], you type

>>poly1 = @(x) 4*x.^2 - 50*x + 5;
>>fminbnd(poly1, -10, 10)
ans =

6.2500

If you are not going to use that polynomial again, you can omit the handle de -
nition line and type instead

>>fminbnd(@(x) 4*x.^2 - 50*x + 5, -10, 10)

132 CHAPTER 3 Functions and Files

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 132

www.EBooksWorld.ir

Multiple-Input Arguments You can create anonymous functions having more

than one input. For example, to de ne the function , type

>>sqrtsum = @(x,y) sqrt(x.^2 + y.^2);

Then

>>sqrtsum(3, 4)
ans =

5

As another example, consider the function z � Ax � By de ning a plane.
The scalar variables A and B must be assigned values before you create the func-
tion handle. For example,

>>A = 6; B = 4:
>>plane = @(x,y) A*x + B*y;
>>z = plane(2,8)
z =

44

No-Input Arguments To construct a handle for an anonymous function that
has no input arguments, use empty parentheses for the input argument list, as
shown by the following: d = @() date;.

Use empty parentheses when invoking the function, as follows:

>>d()
ans =

01-Mar-2007

You must include the parentheses. If you do not, MATLAB just identi es the
handle; it does not execute the function.

Calling One Function within Another One anonymous function can call an-
other to implement function composition. Consider the function 5 sin(x3). It is
composed of the functions g(y) � 5 sin(y) and f(x) � x3. In the following session
the function whose handle is h calls the functions whose handles are f and g to
compute 5 sin (23).

>>f = @(x) x.^3;
>>g = @(x) 5*sin(x);
>>h = @(x) g(f(x));
>>h(2)
ans =

4.9468

To preserve an anonymous function from one MATLAB session to the next,
save the function handle to a MAT- le. For example, to save the function
associated with the handle h, type save anon.mat h. To recover it in a later
session, type load anon.mat h.

2x2
+ y2

3.3 Additional Function Topics 133

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 133

www.EBooksWorld.ir

Variables and Anonymous Functions Variables can appear in anonymous
functions in two ways:

■ As variables speci ed in the ar gument list, such as f = @(x) x.^3;.
■ As variables speci ed in the body of the expression, such as with the

variables A and B in plane = @(x,y) A*x + B*y. In this case,
when the function is created, MATLAB captures the values of these vari-
ables and retains those values for the lifetime of the function handle. In this
example, if the values of A or B are changed after the handle is created,
their values associated with the handle do not change. This feature has both
advantages and disadvantages, so you must keep it in mind.

Subfunctions
A function M- le may contain more than one user -de ned function. The rst
de ned function in the le is called the primary function, whose name is the
same as the M- le name. All other functions in the le are called subfunctions.
Subfunctions are normally “visible” only to the primary function and to other
subfunctions in the same le; that is, they normally cannot be called by programs
or functions outside the le. However , this limitation can be removed with the
use of function handles, as we will see later in this section.

Create the primary function rst with a function de nition line and its de ning
code, and name the le with this function name as usual. Then create each subfunc-
tion with its own function de nition line and de ning code. The order of the sub-
functions does not matter, but function names must be unique within the M- le.

The order in which MATLAB checks for functions is very important. When a
function is called from within an M- le, MA TLAB rst checks to see if the function
is a built-in function such as sin. If not, it checks to see if it is a subfunction in the
 le, then checks to see if it is a private function (which is a function M- le residing
in the private subdirectory of the calling function). Then MATLAB checks for a
standard M- le on your search path. Thus, because MATLAB checks for a subfunc-
tion before checking for private and standard M- le functions, you may use sub-
functions with the same name as another existing M- le. This feature allows you to
name subfunctions without being concerned about whether another function exists
with the same name, so you need not choose long function names to avoid con ict.
This feature also protects you from using another function unintentionally.

Note that you may even supercede a MATLAB M-function in this way. The
following example shows how the MATLAB M-function mean can be superceded
by our own de nition of the mean, one which gives the root-mean-square value.
The function mean is a subfunction. The function subfun_demo is the primary
function.

function y = subfun_demo(a)
y = a - mean(a);
%
function w = mean(x)
w = sqrt(sum(x.^2))/length(x);

134 CHAPTER 3 Functions and Files

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 134

www.EBooksWorld.ir

A sample session follows.

>>y = subfn_demo([4, -4])
y =

1.1716 -6.8284

If we had used the MATLAB M-function mean, we would have obtained a
different answer, that is,

>>a=[4,-4];
>>b = a - mean(a)
b =

4 -4

Thus the use of subfunctions enables you to reduce the number of les that
de ne your functions. For example, if it were not for the subfunction mean in the
previous example, we would have had to de ne a separate M- le for our mean
function and give it a different name so as not to confuse it with the MATLAB
function of the same name.

Subfunctions are normally visible only to the primary function and other
subfunctions in the same le. However , we can use a function handle to allow ac-
cess to the subfunction from outside the M- le, as the following example shows.
Create the following M- le with the primary function fn_demo1(range)
and the subfunction testfun(x) to compute the zeros of the function
(x2 � 4) cos x over the range speci ed in the input variable range. Note the use
of a function handle in the second line.

function yzero = fn_demo1(range)
fun = @testfun;
[yzero,value] = fzero(fun,range);
%
function y = testfun(x)
y = (x.^2-4).*cos(x);

A test session gives the following results.

>>yzero = fn_demo1([3, 6])
yzero =

4.7124

So the zero of (x2 � 4) cos x over 3 � x � 6 occurs at x � 4.7124.

Nested Functions
With MATLAB 7 you can now place the de nitions of one or more functions
within another function. Functions so de ned are said to be nested within the
main function. You can also nest functions within other nested functions. Like
any M- le function, a nested function contains the usual components of an M- le
function. You must, however, always terminate a nested function with an end

3.3 Additional Function Topics 135

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 135

www.EBooksWorld.ir

statement. In fact, if an M- le contains at least one nested function, you must ter-
minate all functions, including subfunctions, in the le with an end statement,
whether or not they contain nested functions.

The following example constructs a function handle for a nested function
p(x) and then passes the handle to the MATLAB function fminbnd to nd
the minimum point on the parabola. The parabola function constructs and re-
turns a function handle f for the nested function p that evaluates the parabola
ax2 � bx � c. This handle gets passed to fminbnd.

function f = parabola(a, b, c)
f = @p;

% Nested function
function y = p(x)

y = polyval ([a,b,c],x);
end

end

In the Command window type

>>f = parabola(4, -50, 5);
>>fminbnd(f, -10, 10)
ans =

6.2500

Note than the function p(x) can see the variables a, b, and c in the calling
function’s workspace.

Contrast this approach to that required using global variables. First create the
function p(x).

function y = p(x)
global a b c
y = polyval ([a, b, c], x);

Then, in the Command window, type

>>global a b c
>>a = 4; b = -50; c = 5;
>> fminbnd (@p, -10, 10)

Nested functions might seem to be the same as subfunctions, but they are
not. Nested functions have two unique properties:

1. A nested function can access the workspaces of all functions inside of
which it is nested. So, for example, a variable that has a value assigned to it
by the primary function can be read or overwritten by a function nested at
any level within the main function. In addition, a variable assigned in a
nested function can be read or overwritten by any of the functions contain-
ing that function.

2. If you construct a function handle for a nested function, the handle not only
stores the information needed to access the nested function, but also stores

136 CHAPTER 3 Functions and Files

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 136

www.EBooksWorld.ir

the values of all variables shared between the nested function and those
functions that contain it. This means that these variables persist in memory
between calls made by means of the function handle.

Consider the following representation of some functions named A, B, ..., E.

function A(x, y) % The primary function
B(x, y);
D(y);

function B(x, y) % Nested in A
C(x);
D(y);

function C(x) % Nested in B
D(x);
end % This terminates C

end % This terminates B

function D(x) % Nested in A
E(x);

function E % Nested in D
. . .
end % This terminates E

end % This terminates D
end % This terminates A

You call a nested function in several ways.

1. You can call it from the level immediately above it. (In the previous code,
function A can call B or D, but not C or E.)

2. You can call it from a function nested at the same level within the same
parent function. (Function B can call D, and D can call B.)

3. You can call it from a function at any lower level. (Function C can call
B or D, but not E.)

4. If you construct a function handle for a nested function, you can call the
nested function from any MATLAB function that has access to the handle.

You can call a subfunction from any nested function in the same M- le.

Private Functions
Private functions reside in subdirectories with the special name private, and
they are visible only to functions in the parent directory. Assume the directory
rsmith is on the MATLAB search path. A subdirectory of rsmith called pri-
vate may contain functions that only the functions in rsmith can call. Because

3.3 Additional Function Topics 137

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 137

www.EBooksWorld.ir

private functions are invisible outside the parent directory rsmith, they can use
the same names as functions in other directories. This is useful if the main
directory is used by several individuals including R. Smith, but R. Smith wants to
create a personal version of a particular function while retaining the original in
the main directory. Because MATLAB looks for private functions before standard
M- le functions, it will nd a private function named, say , cylinder.m before a
nonprivate M- le named cylinder.m.

Primary functions and subfunctions can be implemented as private func-
tions. Create a private directory by creating a subdirectory called private
using the standard procedure for creating a directory or a folder on your com-
puter, but do not place the private directory on your path.

3.4 Working with Data Files
An ASCII data le may have one or more lines of text, called the header , at the
beginning. These might be comments that describe what the data represent, the
date they were created, and who created the data, for example. One or more lines
of data, arranged in rows and columns, follow the header. The numbers in each
row might be separated by spaces or by commas.

If it is inconvenient to edit the data le, the MA TLAB environment provides
many ways to bring data created by other applications into the MATLAB
workspace, a process called importing data, and to package workspace variables
so that they can be exported to other applications.

If the le has a header or the data are separated by commas, MA TLAB will
produce an error message. To correct this situation, rst load the data le into a
text editor, remove the header, and replace the commas with spaces. To retrieve
these data into MATLAB, type load filename. If the le has m lines with n
values in each line, the data will be assigned to an m � n matrix having the same
name as the le with the extension stripped of f. Your data le can have any ex-
tension except .mat, so that MATLAB will not try to load the le as a
workspace le.

Importing Spreadsheet Files
Some spreadsheet programs store data in the .wk1 format. You can use the com-
mand M = wk1read(‘filename’) to import these data into MATLAB and
store them in the matrix M. The command A = xlsread(‘filename’)
imports the Microsoft Excel workbook le filename.xls into the array A.
The command [A, B] = xlsread(‘filename’) imports all numeric
data into the array A and all text data into the cell array B.

The Import Wizard
You can use the Import Wizard to import many types of ASCII data formats, in-
cluding data on the clipboard. The Import Wizard presents a series of dialog

138 CHAPTER 3 Functions and Files

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 138

www.EBooksWorld.ir

boxes in which you specify the name of the le, the delimiter used in the le, and
the variables that you want to import.

Do the following to import this sample tab-delimited, ASCII data le,
testdata.txt:

1 2 3 4 5;
17 12 8 15 25;

1. Activate the Import Wizard either by typing uiimport or by selecting the
Import Data option on the MATLAB Desktop File menu. The Import
Wizard displays a dialog box that asks you to specify the name of the le
you want to import.

2. The Import Wizard processes the contents of the le and displays tabs iden-
tifying the variables it recognizes in the le, and displays a portion of the
data in a grid, similar to a spreadsheet. The Import Wizard uses the space
character as the default delimiter. After you click Next, the Import Wizard
attempts to identify the delimiter (see Figure 3.4–1).

3. In the next dialog box, the Import Wizard displays a list of the variables it
found in the le. It also displays the contents of the rst variable in the list.
In this example there is only one variable, named testdata.

4. Choose the variables you want to import by clicking the check boxes next
to their names. By default, all variables are checked for import. After you
select the variables you want to import, click the Finish button to import
the data into the MATLAB workspace.

To import data from the clipboard, select Paste Special from the Edit menu.
Then proceed with step 2. The default variable name is A_pastespecial.

Exporting ASCII Data Files
You might want to export a MATLAB matrix as an ASCII data le where the
rows and columns are represented as space-delimited, numeric values. To export
a MATLAB matrix as a delimited ASCII data le, you can use either the save

3.4 Working with Data Files 139

Figure 3.4–1 The rst screen in the Import Wizard.

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 139

www.EBooksWorld.ir

command, specifying the -ASCII quali er , or the dlmwrite function. The
save command is easy to use; however, the dlmwrite function provides
greater exibility , allowing you to specify any character as a delimiter and to ex-
port subsets of an array by specifying a range of values.

Suppose you have created the array A = [1 2 3 4; 5 6 7 8] in
MATLAB. To export the array using the save command, type the following in
the Command window.

>>save my_data.out A -ASCII

By default, save uses spaces as delimiters, but you can use tabs instead of
spaces by specifying the -tab quali er .

3.5 Summary
In Section 3.1 we introduced just some of the most commonly used mathemati-
cal functions. You should now be able to use the MATLAB Help to nd other
functions you need. If necessary, you can create your own functions, using the
methods of Section 3.2. This section also covered function handles and their use
with function functions.

Anonymous functions, subfunctions, and nested functions extend the capa-
bilities of MATLAB. These topics were treated in Section 3.3. In addition to
function les, data les are useful for many applications. Section 3.4 shows how
to import and export such les in MA TLAB.

Key Terms with Page References

140 CHAPTER 3 Functions and Files

Anonymous functions, 131
Function argument, 117
Function de nition line, 119
Function le, 119
Function handle, 124
Global variables, 124

Local variable, 119
Nested functions, 131
Primary function, 131
Private function, 131
Subfunctions, 131

Problems
You can nd the answers to problems marked with an asterisk at the end of the text.

Section 3.1
1.* Suppose that y � �3 � ix. For x � 0, 1, and 2, use MATLAB to compute

the following expressions. Hand-check the answers.
a. b.

c. (�5 � 7i)y d.
y

6 - 3i

1y�y�

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 140

www.EBooksWorld.ir

2.* Let x � �5 � 8i and y � 10 � 5i. Use MATLAB to compute the following
expressions. Hand-check the answers.
a. The magnitude and angle of xy.
b. The magnitude and angle of .

3.* Use MATLAB to nd the angles corresponding to the following coordi-
nates. Hand-check the answers.
a. (x, y) � (5, 8) b. (x, y) � (�5, 8)
c. (x, y) � (5, �8) d. (x, y) � (�5, �8)

4. For several values of x, use MATLAB to con rm that sinh x � (ex � e�x)/2.

5. For several values of x, use MATLAB to con rm that

6. The capacitance of two parallel conductors of length L and radius r, sepa-
rated by a distance d in air, is given by

where � is the permittivity of air (� � 8.854 � 10�12 F/m).
Write a script le that accepts user input for d, L, and r and computes

and displays C. Test the le with the values L � 1 m, r � 0.001 m, and
d � 0.004 m.

7.* When a belt is wrapped around a cylinder, the relation between the belt
forces on each side of the cylinder is

where � is the angle of wrap of the belt and � is the friction coef cient.
Write a script le that rst prompts a user to specify �, �, and F2 and
then computes the force F1. Test your program with the values � � 130�,
� � 0.3, and F2 � 100 N. (Hint: Be careful with �!)

Section 3.2
8. The output of the MATLAB atan2 function is in radians. Write a func-

tion called atan2d that produces an output in degrees.

9. Write a function that accepts temperature in degrees Fahrenheit (°F) and
computes the corresponding value in degrees Celsius (°C). The relation
between the two is

Be sure to test your function.

T °C =

5

9
 (T °F - 32)

F1 = F2 e��

C =

	�L

ln [(d - r)/r]

ln (x + 1x2
- 1), x Ú 1

cosh-1 x =

x
y

Problems 141

pal34870_ch03_112-145.qxd 1/11/10 2:41 PM Page 141

www.EBooksWorld.ir

10.* An object thrown vertically with a speed reaches a height h at time t,
where

Write and test a function that computes the time t required to reach a
speci ed height h, for a given value of . The function’s inputs should be
h, , and g. Test your function for the case where h � 100 m, � 50 m/s,
and g � 9.81 m/s2. Interpret both answers.

11. A water tank consists of a cylindrical part of radius r and height h and a
hemispherical top. The tank is to be constructed to hold 600 m3 when
 lled. The surface area of the cylindrical part is 2
rh, and its volume is

r2h. The surface area of the hemispherical top is given by 2
r2, and its
volume is given by 2
r3/3. The cost to construct the cylindrical part of
the tank is $400 per square meter of surface area; the hemispherical part
costs $600 per square meter. Use the fminbnd function to compute the
radius that results in the least cost. Compute the corresponding height h.

12. A fence around a eld is shaped as shown in Figure P12. It consists of a
rectangle of length L and width W, and a right triangle that is
symmetrical about the central horizontal axis of the rectangle. Suppose
the width W is known (in meters) and the enclosed area A is known
(in square meters). Write a user-de ned function le with W and A as
inputs. The outputs are the length L required so that the enclosed area is A
and the total length of fence required. Test your function for the
values W � 6 m and A � 80 m2.

y0y0

y0

h = y0t -
1

2
 gt2

y0

142 CHAPTER 3 Functions and Files

W

L

D

Figure P12

13. A fenced enclosure consists of a rectangle of length L and width 2R and a
semicircle of radius R, as shown in Figure P13. The enclosure is to be
built to have an area A of 2000 ft2. The cost of the fence is $50 per foot
for the curved portion and $40 per foot for the straight sides. Use the
fminbnd function to determine with a resolution of 0.01 ft the values of

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 142

www.EBooksWorld.ir

R and L required to minimize the total cost of the fence. Also compute the
minimum cost.

Problems 143

L

2R R

Figure P13

14. Using estimates of rainfall, evaporation, and water consumption, the town
engineer developed the following model of the water volume in the reser-
voir as a function of time

where V is the water volume in liters, t is time in days, and r is the town’s
consumption rate in liters per day. Write two user-de ned functions. The
 rst function should de ne the function V(t) for use with the fzero func-
tion. The second function should use fzero to compute how long it will
take for the water volume to decrease to x percent of its initial value of
109 L. The inputs to the second function should be x and r. Test your
functions for the case where x � 50 percent and r � 107 L/day.

15. The volume V and paper surface area A of a conical paper cup are given by

where r is the radius of the base of the cone and h is the height of the
cone.
a. By eliminating h, obtain the expression for A as a function of r and V.
b. Create a user-de ned function that accepts R as the only argument and

computes A for a given value of V. Declare V to be global within the
function.

c. For V � 10 in.3, use the function with the fminbnd function to com-
pute the value of r that minimizes the area A. What is the correspond-
ing value of the height h? Investigate the sensitivity of the solution by
plotting V versus r. How much can R vary about its optimal value be-
fore the area increases 10 percent above its minimum value?

V =

1

3

r2h A =
r2r2

+ h2

V(t) = 109
+ 108(1 - e-t>100) - rt

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 143

www.EBooksWorld.ir

16. A torus is shaped like a doughnut. If its inner radius is a and its outer radius
is b, its volume and surface area are given by

a. Create a user-de ned function that computes V and A from the argu-
ments a and b.

b. Suppose that the outer radius is constrained to be 2 in. greater than the
inner radius. Write a script le that uses your function to plot A and V
versus a for 0.25 � a � 4 in.

17. Suppose it is known that the graph of the function y �ax3 � bx2 � cx � d
passes through four given points (xi, yi), i �1, 2, 3, 4. Write a user-
de ned function that accepts these four points as input and computes the
coef cients a, b, c, and d. The function should solve four linear equations
in terms of the four unknowns a, b, c, and d. Test your function for the
case where (xi , yi) � (�2, �20), (0, 4), (2, 68), and (4, 508), whose
answer is a � 7, b � 5, c � �6, and d � 4.

Section 3.3
18. Create an anonymous function for 10e�2x and use it to plot the function

over the range 0 � x � 2.

19. Create an anonymous function for 20x2 � 200x � 3 and use it
a. To plot the function to determine the approximate location of its

minimum
b. With the fminbnd function to precisely determine the location of the

minimum

20. Create four anonymous functions to represent the function ,

which is composed of the functions h(z) � 6ez, g(y) � 3 cos y, and

f (x) � x2. Use the anonymous functions to plot over the range
0 � x � 4.

21. Use a primary function with a subfunction to compute the zeros of the
function 3x3 � 12x2 � 33x � 80 over the range �10 � x � 10.

22. Create a primary function that uses a function handle with a nested func-
tion to compute the minimum of the function 20x2 � 200x � 12 over the
range 0 � x � 10.

6e3 cos x2

6e3 cos x2

V =

1

4

2(a + b)(b - a)2 A =
2(b2

- a2)

144 CHAPTER 3 Functions and Files

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 144

www.EBooksWorld.ir

Section 3.4
23. Use a text editor to create a le containing the following data. Then use

the load function to load the le into MA TLAB, and use the mean func-
tion to compute the mean value of each column.
55 42 98
49 39 95
63 51 92
58 45 90

24. Enter and save the data given in Problem 23 in a spreadsheet. Then im-
port the spreadsheet le into the MA TLAB variable A. Use MATLAB to
compute the sum of each column.

25. Use a text editor to create a le from the data given in Problem 23, but
separate each number with a semicolon. Then use the Import Wizard to
load and save the data in the MATLAB variable A.

Problems 145

pal34870_ch03_112-145.qxd 1/5/10 10:02 PM Page 145

www.EBooksWorld.ir

While large-scale technology is attracting much public attention, many
of the engineering challenges and opportunities in the 21st century
will involve the development of extremely small devices and even

the manipulation of individual atoms. This technology is called nanotechnology
because it involves processing materials whose size is about 1 nanometer (nm),
which is 10�9 m, or 1�1 000 000 mm. The distance between atoms in single-
crystal silicon is 0.5 nm.

Nanotechnology is in its infancy, although some working devices have been
created. The micromotor with gear train shown above has a dimension of ap-
proximately 10�4 m. This device converts electrical input power into mechanical
motion. It was constructed using the magnetic properties of electroplated metal
 lms.

While we are learning how to make such devices, another challenge is to de-
velop innovative applications for them. Many of the applications proposed thus
far are medical; small pumps for drug delivery and surgical tools are two
examples. Researchers at the Lawrence Livermore Laboratory have developed a
microgripper tool to treat brain aneurysms. It is about the size of a grain of sand
and was constructed from silicon cantilever beams powered by a shape-memory
alloy actuator. To design and apply these devices, engineers must rst model the
appropriate mechanical and electrical properties. The features of MATLAB
provide excellent support for such analyses. ■

Courtesy Henry Guckel (Late)/Dept. of Electrical
Engineering, University of Wisconsin.

Engineering in the
21st Century. . .

Nanotechnology

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 146

www.EBooksWorld.ir

147

C H A P T E R 4

Programming
with MATLAB
OUTLINE
4.1 Program Design and Development

4.2 Relational Operators and Logical Variables

4.3 Logical Operators and Functions

4.4 Conditional Statements

4.5 for Loops

4.6 while Loops

4.7 The switch Structure

4.8 Debugging MATLAB Programs

4.9 Applications to Simulation

4.10 Summary

Problems

The MATLAB interactive mode is very useful for simple problems, but more-
complex problems require a script le. Such a le can be called a computer pro-
gram, and writing such a le is called programming. Section 4.1 presents a general
and ef cient approach to the design and development of programs.

The usefulness of MATLAB is greatly increased by the use of decision-
making functions in its programs. These functions enable you to write programs
whose operations depend on the results of calculations made by the program.
Sections 4.2, 4.3, and 4.4 deal with these decision-making functions.

MATLAB can also repeat calculations a speci ed number of times or until
some condition is satis ed. This feature enables engineers to solve problems of

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 147

www.EBooksWorld.ir

great complexity or requiring numerous calculations. These “loop” structures are
covered in Sections 4.5 and 4.6.

The switch structure enhances the MATLAB decision-making capabili-
ties. This topic is covered in Section 4.7. Use of the MATLAB Editor/Debugger
for debugging programs is covered in Section 4.8.

Section 4.9 discusses “simulation,” a major application of MATLAB pro-
grams that enables us to study the operation of complicated systems, processes,
and organizations. Tables summarizing the MATLAB commands introduced in
this chapter appear throughout the chapter, and Table 4.10–1 will help you locate
the information you need.

4.1 Program Design and Development
In this chapter we introduce relational operators, such as > and ==, and the two
types of loops used in MATLAB, the for loop and the while loop. These fea-
tures, plus MATLAB functions and the logical operators to be introduced in
Section 4.3, form the basis for constructing MATLAB programs to solve com-
plex problems. Design of computer programs to solve complex problems needs
to be done in a systematic manner from the start to avoid time-consuming and
frustrating dif culties later in the process. In this section we show how to struc-
ture and manage the program design process.

Algorithms and Control Structures
An algorithm is an ordered sequence of precisely de ned instructions that per-
forms some task in a nite amount of time. An ordered sequence means that the
instructions can be numbered, but an algorithm often must have the ability to
alter the order of its instructions using what is called a control structure. There
are three categories of algorithmic operations:

Sequential operations. These instructions are executed in order.
Conditional operations. These control structures rst ask a question to be
answered with a true/false answer and then select the next instruction based
on the answer.
Iterative operations (loops). These control structures repeat the execution
of a block of instructions.

Not every problem can be solved with an algorithm, and some potential algorith-
mic solutions can fail because they take too long to nd a solution.

Structured Programming
Structured programming is a technique for designing programs in which a hier-
archy of modules is used, each having a single entry and a single exit point, and
in which control is passed downward through the structure without unconditional
branches to higher levels of the structure. In MATLAB these modules can be
built-in or user-de ned functions.

148 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 148

www.EBooksWorld.ir

Control of the program ow uses the same three types of control structures
used in algorithms: sequential, conditional, and iterative. In general, any com-
puter program can be written with these three structures. This realization led to
the development of structured programming. Languages suitable for structured
programming, such as MATLAB, thus do not have an equivalent to the goto
statement that you might have seen in the BASIC and FORTRAN languages. An
unfortunate result of the goto statement was confusing code, called spaghetti
code, composed of a complex tangle of branches.

Structured programming, if used properly, results in programs that are easy
to write, understand, and modify. The advantages of structured programming are
as follows.

1. Structured programs are easier to write because the programmer can study
the overall problem rst and deal with the details later .

2. Modules (functions) written for one application can be used for other appli-
cations (this is called reusable code).

3. Structured programs are easier to debug because each module is designed
to perform just one task, and thus it can be tested separately from the other
modules.

4. Structured programming is effective in a teamwork environment because
several people can work on a common program, each person developing
one or more modules.

5. Structured programs are easier to understand and modify, especially if
meaningful names are chosen for the modules and if the documentation
clearly identi es the module’ s task.

Top-down Design and Program Documentation
A method for creating structured programs is top-down design, which aims to
describe a program’s intended purpose at a very high level initially and then
partition the problem repeatedly into more detailed levels, one level at a time,
until enough is understood about the program structure to enable it to be coded.
Table 4.1–1, which is repeated from Chapter 1, summarizes the process of

4.1 Program Design and Development 149

Table 4.1–1 Steps for developing a computer solution

1. State the problem concisely.
2. Specify the data to be used by the program. This is the input.
3. Specify the information to be generated by the program. This is the output.
4. Work through the solution steps by hand or with a calculator; use a simpler set of data if

necessary.
5. Write and run the program.
6. Check the output of the program with your hand solution.
7. Run the program with your input data and perform a “reality check” on the output. Does

it make sense? Estimate the range of the expected result and compare it with you answer.
8. If you will use the program as a general tool in the future, test it by running it for a

range of reasonable data values; perform a reality check on the results.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 149

www.EBooksWorld.ir

top-down design. In step 4 you create the algorithms used to obtain the solution.
Note that step 5, Write and run the program, is only part of the top-down design
process. In this step you create the necessary modules and test them separately.

Two types of charts aid in developing structured programs and in document-
ing them. These are structure charts and owcharts . A structure chart is a graphi-
cal description showing how the different parts of the program are connected. This
type of diagram is particularly useful in the initial stages of top-down design.

A structure chart displays the organization of a program without showing the
details of the calculations and decision processes. For example, we can create
program modules using function les that do speci c, readily identi able tasks.
Larger programs are usually composed of a main program that calls on the mod-
ules to do their specialized tasks as needed. A structure chart shows the connec-
tion between the main program and the modules.

For example, suppose you want to write a program that plays a game, say,
Tic-Tac-Toe. You need a module to allow the human player to input a move, a
module to update and display the game grid, and a module that contains the com-
puter’s strategy for selecting its moves. Figure 4.1–1 shows the structure chart of
such a program.

Flowcharts are useful for developing and documenting programs that con-
tain conditional statements, because they can display the various paths (called
branches) that a program can take, depending on how the conditional statements
are executed. The owchart representation of the verbal description of the if
statement (covered in Section 4.3) is shown in Figure 4.1–2. Flowcharts use the
diamond symbol to indicate decision points.

The usefulness of structure charts and owcharts is limited by their size. For
large, more complicated programs, it might be impractical to draw such charts.
Nevertheless, for smaller projects, sketching a owchart and/or a structure chart
might help you organize your thoughts before you begin to write the speci c
MATLAB code. Because of the space required for such charts we do not use them
in this text. You are encouraged, however, to use them when solving problems.

150 CHAPTER 4 Programming with MATLAB

STRUCTURE
CHART

FLOWCHART

Player Input
Program

Game Status
Display Program

Strategy
Program

Main Program

Figure 4.1–1 Structure chart of a game program.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 150

www.EBooksWorld.ir

Documenting programs properly is very important, even if you never give
your programs to other people. If you need to modify one of your programs, you
will nd that it is often very dif cult to recall how it operates if you have not used
it for some time. Effective documentation can be accomplished with the use of

1. Proper selection of variable names to re ect the quantities they represent.
2. Comments within the program.
3. Structure charts.
4. Flowcharts.
5. A verbal description of the program, often in pseudocode.

The advantage of using suitable variable names and comments is that they reside
with the program; anyone who gets a copy of the program will see such doc-
umentation. However, they often do not provide enough of an overview of the
program. The latter three elements can provide such an overview.

Pseudocode
Use of natural language, such as English, to describe algorithms often results in
a description that is too verbose and is subject to misinterpretation. To avoid

4.1 Program Design and Development 151

Logical
Expression

Statements

True

False

End

Start

Figure 4.1–2 Flowchart
representation of the verbal
description of the if statement.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 151

www.EBooksWorld.ir

dealing immediately with the possibly complicated syntax of the programming
language, we can instead use pseudocode, in which natural language and mathe-
matical expressions are used to construct statements that look like computer
statements but without detailed syntax. Pseudocode may also use some simple
MATLAB syntax to explain the operation of the program.

As its name implies, pseudocode is an imitation of the actual computer code.
The pseudocode can provide the basis for comments within the program. In ad-
dition to providing documentation, pseudocode is useful for outlining a program
before writing the detailed code, which takes longer to write because it must con-
form to the strict rules of MATLAB.

Each pseudocode instruction may be numbered, but should be unambiguous
and computable. Note that MATLAB does not use line numbers except in the
Debugger. Each of the following examples illustrates how pseudocode can doc-
ument each of the control structures used in algorithms: sequential, conditional,
and iterative operations.

Example 1. Sequential Operations Compute the perimeter p and the area A
of a triangle whose sides are a, b, and c. The formulas are

1. Enter the side lengths a, b, and c.
2. Compute the perimeter p.

3. Compute the semiperimeter s.

4. Compute the area A.

5. Display the results p and A.
6. Stop.

The program is

a = input(‘Enter the value of side a: ’);
b = input(‘Enter the value of side b: ’);
c = input(‘Enter the value of side c: ’);
p = a + b + c;
s = p/2;
A = sqrt(s*(s-a)*(s-b)*(s-c));
disp(‘The perimeter is:’)
p
disp(‘The area is:’)
A

A = 1s(s - a)(s - b)(s - c)

s =

p

2

p = a + b + c

p = a + b + c s =

p

2
 A = 1s(s - a)(s - b)(s - c)

152 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 152

www.EBooksWorld.ir

Example 2. Conditional Operations Given the (x, y) coordinates of a point,
compute its polar coordinates (r, �), where

1. Enter the coordinates x and y.
2. Compute the hypoteneuse r.

r = sqrt(x^2+y^2)

3. Compute the angle �.
3.1 If x � 0

theta = atan(y/x)

3.2 Else

theta = atan(y/x) + pi

4. Convert the angle to degrees.

theta = theta*(180/pi)

5. Display the results r and theta.
6. Stop.

Note the use of the numbering scheme 3.1 and 3.2 to indicate subordinate
clauses. Note also that MATLAB syntax may be used for clarity where needed.
The following program implements the pseudocode using some of the MATLAB
features to be introduced in this chapter. It uses the relational operator >=, which
means “greater than or equal to” (in Section 4.2). The program also uses the
“if-else-end” construct, which is covered in Section 4.3.

x = input(‘Enter the value of x: ’);
y = input(‘Enter the value of y: ’);
r = sqrt(x^2+y^2);
if x >= 0

theta = atan(y/x);
else

theta = atan(y/x) + pi;
end
disp(‘The hypoteneuse is:’)
disp(r)
theta = theta*(180/pi);
disp(‘The angle is degrees is:’)
disp(theta)

Example 3. Iterative Operations Determine how many terms are required
for the sum of the series to exceed 20 000. What
is the sum for this many terms?

Because we do not know how many times we must evaluate the expression
, we use a while loop, which is covered in Section 4.6.10k2

- 4k + 2

10k2
- 4k + 2, k = 1, 2, 3, Á

r = 2x2
+ y2 � = tan- 1a y

x
b

4.1 Program Design and Development 153

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 153

www.EBooksWorld.ir

1. Initialize the total to zero.
2. Initialize the counter to zero.
3. While the total is less than 20 000 compute the total.

3.1 Increment the counter by 1.
k = k + 1

3.2 Update the total.
total = 10*k^2 - 4*k + 2 + total

4. Display the current value of the counter.
5. Display the value of the total.
6. Stop.

The following program implements the pseudocode. The statements in the
while loop are executed until the variable total equals or exceeds 2 � 104.

total = 0;
k = 0;
while total < 2e+4

k = k+1;
total = 10*k^2 - 4*k + 2 + total;

end
disp(‘The number of terms is:’)
disp(k)
disp(‘The sum is:’)
disp(total)

Finding Bugs
Debugging a program is the process of nding and removing the “bugs,” or errors,
in a program. Such errors usually fall into one of the following categories.

1. Syntax errors such as omitting a parenthesis or comma, or spelling a com-
mand name incorrectly. MATLAB usually detects the more obvious errors
and displays a message describing the error and its location.

2. Errors due to an incorrect mathematical procedure. These are called runtime
errors. They do not necessarily occur every time the program is executed;
their occurrence often depends on the particular input data. A common
example is division by zero.

The MATLAB error messages usually enable you to nd syntax errors. However ,
runtime errors are more dif cult to locate. To locate such an error, try the
following:

1. Always test your program with a simple version of the problem, whose
answers can be checked by hand calculations.

2. Display any intermediate calculations by removing semicolons at the end
of statements.

154 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 154

www.EBooksWorld.ir

3. To test user-de ned functions, try commenting out the function line and
running the le as a script.

4. Use the debugging features of the Editor/Debugger, which is discussed in
Section 4.8.

4.2 Relational Operators and Logical Variables
MATLAB has six relational operators to make comparisons between arrays.
These operators are shown in Table 4.2–1. Note that the equal to operator con-
sists of two � signs, not a single � sign as you might expect. The single � sign
is the assignment, or replacement, operator in MATLAB.

The result of a comparison using the relational operators is either 0 (if the
comparison is false) or 1 (if the comparison is true), and the result can be used as
a variable. For example, if x = 2 and y = 5, typing z = x < y returns the
value z = 1 and typing u = x == y returns the value u = 0. To make the
statements more readable, we can group the logical operations using parentheses.
For example, z = (x < y) and u = (x == y).

When used to compare arrays, the relational operators compare the arrays on
an element-by-element basis. The arrays being compared must have the same
dimension. The only exception occurs when we compare an array to a scalar. In
that case all the elements of the array are compared to the scalar. For example,
suppose that x = [6,3,9] and y = [14,2,9]. The following MATLAB
session shows some examples.

>>z = (x < y)
z =

1 0 0
>>z = (x ~= y)
z =

1 1 0
>>z = (x > 8)
z =

0 0 1

The relational operators can be used for array addressing. For example, with
x = [6,3,9] and y = [14,2,9], typing z = x(x < y) nds all the ele-
ments in x that are less than the corresponding elements in y. The result is z = 6.

4.2 Relational Operators and Logical Variables 155

Table 4.2–1 Relational operators

Relational operator Meaning

< Less than.
<= Less than or equal to.
> Greater than.
>= Greater than or equal to.
== Equal to.
~= Not equal to.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 155

www.EBooksWorld.ir

The arithmetic operators +, -, *, /, and \ have precedence over the relational
operators. Thus the statement z = 5 > 2 + 7 is equivalent to z = 5 >(2+7)
and returns the result z = 0. We can use parentheses to change the order of
precedence; for example, z = (5 > 2) + 7 evaluates to z = 8.

The relational operators have equal precedence among themselves, and
MATLAB evaluates them in order from left to right. Thus the statement

z = 5 > 3 ~= 1

is equivalent to

z = (5 > 3) ~= 1

Both statements return the result z = 0.
With relational operators that consist of more than one character, such as ==

or >=, be careful not to put a space between the characters.

The logical Class
When the relational operators are used, such as x = (5 > 2), they create
a logical variable, in this case, x. Prior to MATLAB 6.5, logical was an
attribute of any numeric data type. Now logical is a rst-class data type and
a MATLAB class, and so logical is now equivalent to other rst-class types
such as character and cell arrays. Logical variables may have only the values
1 (true) and 0 (false).

Just because an array contains only 0s and 1s, however, it is not necessarily a
logical array. For example, in the following session k and w appear the same, but
k is a logical array and w is a numeric array, and thus an error message is issued.

>>x = -2:2
x =

-2 -1 0 1 2
>>k = (abs(x)>1)
k =

1 0 0 0 1
>>z = x(k)
z =

-2 2
>>w = [1,0,0,0,1];
>>v = x(w)
??? Subscript indices must either be real positive...

integers or logicals.

The logical Function
Logical arrays can be created with the relational and logical operators and with
the logical function. The logical function returns an array that can be used
for logical indexing and logical tests. Typing B = logical(A), where A is a

156 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 156

www.EBooksWorld.ir

numeric array, returns the logical array B. So to correct the error in the previous
session, you may type instead w = logical([1,0,0,0,1]) before typ-
ing v = x(w).

When a nite, real value other than 1 or 0 is assigned to a logical variable, the
value is converted to logical 1 and a warning message is issued. For example, when
you type y = logical(9), y will be assigned the value logical 1 and a warn-
ing will be issued. You may use the double function to convert a logical array to
an array of class double. For example, x = (5 > 3); y = double(x);.
Some arithmetic operations convert a logical array to a double array. For example,
if we add zero to each element of B by typing B = B + 0, then B will be con-
verted to a numeric (double) array. However, not all mathematical operations are de-
 ned for logical variables. For example, typing

>>x = ([2, 3] > [1, 6]);
>>y = sin(x)

will generate an error message. This is not an important issue because it hardly
makes sense to compute the sine of logical data or logical variables.

Accessing Arrays Using Logical Arrays
When a logical array is used to address another array, it extracts from that array
the elements in the locations where the logical array has 1s. So typing A(B),
where B is a logical array of the same size as A, returns the values of A at the
indices where B is 1.

Given A = [5,6,7;8,9,10;11,12,13] and B = logical
(eye(3)), we can extract the diagonal elements of A by typing C = A(B) to
obtain C = [5;9;13]. Specifying array subscripts with logical arrays extracts
the elements that correspond to the true (1) elements in the logical array.

Note, however, that using the numeric array eye(3), as C = A(eye(3)),
results in an error message because the elements of eye(3) do not correspond to
locations in A. If the numeric array values correspond to valid locations, you may
use a numeric array to extract the elements. For example, to extract the diagonal
elements of A with a numeric array, type C = A([1,5,9]).

MATLAB data types are preserved when indexed assignment is used. So
now that logical is a MATLAB data type, if A is a logical array, for example,
A = logical(eye(4)), then typing A(3,4) = 1 does not change A to a
double array. However, typing A(3,4) = 5 will set A(3,4) to logical 1 and
cause a warning to be issued.

4.3 Logical Operators and Functions
MATLAB has ve logical operators, which are sometimes called Boolean oper-
ators (see Table 4.3–1). These operators perform element-by-element operations.
With the exception of the NOT operator (~), they have a lower precedence than
the arithmetic and relational operators (see Table 4.3–2). The NOT symbol is
called the tilde.

4.3 Logical Operators and Functions 157

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 157

www.EBooksWorld.ir

The NOT operation ~A returns an array of the same dimension as A; the new
array has 1s where A is 0 and 0s where A is nonzero. If A is logical, then ~A
replaces 1s with 0s and 0s with 1s. For example, if x = [0,3,9] and y =
[14,-2,9], then z = ~x returns the array z = [1,0,0] and the statement
u = ~x > y returns the result u = [0,1,0]. This expression is equivalent
to u = (~x) > y, whereas v = ~(x > y)gives the result v = [1,0,1].
This expression is equivalent to v = (x <= y).

The & and | operators compare two arrays of the same dimension. The only
exception, as with the relational operators, is that an array can be compared to a
scalar. The AND operation A & B returns 1s where both A and B have nonzero
elements and 0s where any element of A or B is 0. The expression z = 0 & 3
returns z = 0; z = 2 & 3 returns z = 1; z = 0 & 0 returns z = 0, and
z = [5,-3,0,0] & [2,4,0,5] returns z = [1,1,0,0]. Because of
operator precedence, z = 1 & 2 + 3 is equivalent to z = 1 & (2 + 3),
which returns z = 1. Similarly, z = 5 < 6 & 1 is equivalent to z =
(5 < 6) & 1, which returns z = 1.

Let x = [6,3,9] and y = [14,2,9] and let a = [4,3,12]. The
expression

z = (x > y) & a

gives z = [0,1,0], and

z = (x > y) & (x > a)

158 CHAPTER 4 Programming with MATLAB

Table 4.3–1 Logical operators

Operator Name De nition

~ NOT ~A returns an array of the same dimension as A; the new array has 1s where A is
0 and 0s where A is nonzero.

& AND A & B returns an array of the same dimension as A and B; the new array has 1s
where both A and B have nonzero elements and 0s where either A or B is 0.

| OR A | B returns an array of the same dimension as A and B; the new array has 1s
where at least one element in A or B is nonzero and 0s where A and B are both 0.

&& Short-Circuit AND Operator for scalar logical expressions. A && B returns true if both A and B
evaluate to true, and false if they do not.

|| Short-Circuit OR Operator for scalar logical expressions. A || B returns true if either A or B or
both evaluate to true, and false if they do not.

Table 4.3–2 Order of precedence for operator types

Precedence Operator type

First Parentheses; evaluated starting with the innermost pair.
Second Arithmetic operators and logical NOT (~); evaluated from left to right.
Third Relational operators; evaluated from left to right.
Fourth Logical AND.
Fifth Logical OR.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 158

www.EBooksWorld.ir

returns the result z = [0,0,0]. This is equivalent to

z = x > y & x > a

which is much less readable.
Be careful when using the logical operators with inequalities. For example,

note that ~(x > y) is equivalent to x <= y. It is not equivalent to x < y. As
another example, the relation must be written as

(5 < x) & (x < 10)

in MATLAB.
The OR operation A|B returns 1s where at least one of A and B has

nonzero elements and 0s where both A and B are 0. The expression z = 0|3
returns z = 1; the expression z = 0|0 returns z = 0; and

z = [5,-3,0,0]|[2,4,0,5]

returns z = [1,1,0,1]. Because of operator precedence,

z = 3 < 5|4 == 7

is equivalent to

z = (3 < 5)|(4 == 7)

which returns z = 1. Similarly, z = 1|0 & 1 is equivalent to z = (1|0) &
1, which returns z = 1, while z = 1|0 & 0 returns z = 0, and z = 0 &
0|1 returns z = 1.

Because of the precedence of the NOT operator, the statement

z = ~3 == 7|4 == 6

returns the result z = 0, which is equivalent to

z = ((~3) == 7)|(4 == 6)

The exclusive OR function xor(A,B) returns 0s where A and B are either
both nonzero or both 0, and 1s where either A or B is nonzero, but not both. The
function is de ned in terms of the AND, OR, and NOT operators as follows.

function z = xor(A,B)
z = (A|B) & ~(A & B);

The expression

z = xor([3,0,6],[5,0,0])

returns z = [0,0,1], whereas

z = [3,0,6]|[5,0,0]

returns z = [1,0,1].
Table 4.3–3 is a truth table that de nes the operations of the logical opera-

tors and the function xor. Until you acquire more experience with the logical

5 < x < 10

4.3 Logical Operators and Functions 159

TRUTH TABLE

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 159

www.EBooksWorld.ir

operators, you should use this table to check your statements. Remember that
true is equivalent to logical 1, and false is equivalent to logical 0. We can test the
truth table by building its numerical equivalent as follows. Let x and y represent
the rst two columns of the truth table in terms of 1s and 0s.

The following MATLAB session generates the truth table in terms of 1s
and 0s.

>>x = [1,1,0,0]’;
>>y = [1,0,1,0]’;
>>Truth_Table = [x,y,~x,x|y,x & y,xor(x,y)]
Truth_Table =

1 1 0 1 1 0
1 0 0 1 0 1
0 1 1 1 0 1
0 0 1 0 0 0

Starting with MATLAB 6, the AND operator (&) was given a higher prece-
dence than the OR operator (|). This was not true in earlier versions of
MATLAB, so if you are using code created in an earlier version, you should
make the necessary changes before using it in MATLAB 6 or higher. For
example, now the statement y = 1|5 & 0 is evaluated as y = 1|(5 & 0),
yielding the result y = 1, whereas in MATLAB 5.3 and earlier, the statement
would have been evaluated as y = (1|5) & 0, yielding the result y = 0. To
avoid potential problems due to precedence, it is important to use parentheses in
statements containing arithmetic, relational, or logical operators, even where
parentheses are optional. MATLAB now provides a feature to enable the system
to produce either an error message or a warning for any expression containing &
and | that would be evaluated differently than in earlier versions. If you do not
use this feature, MATLAB will issue a warning as the default. To activate the
error feature, type feature(‘OrAndError’,1). To reinstate the default,
type feature(‘OrAndError’,0).

Short-Circuit Operators
The following operators perform AND and OR operations on logical expressions
containing scalar values only. They are called short-circuit operators because
they evaluate their second operand only when the result is not fully determined
by the rst operand. They are de ned as follows in terms of the two logical vari-
ables A and B.

160 CHAPTER 4 Programming with MATLAB

Table 4.3–3 Truth table

x y ~x x|y x & y xor(x,y)

true true false true true false
true false false true false true
false true true true false true
false false true false false false

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 160

www.EBooksWorld.ir

A && B Returns true (logical 1) if both A and B evaluate to true, and
false (logical 0) if they do not.
A||B Returns true (logical 1) if either A or B or both evaluate to true,
and false (logical 0) if they do not.

Thus in the statement A && B, if A equals logical zero, then the entire
expression will evaluate to false, regardless of the value of B, and therefore there
is no need to evaluate B.

For A||B, if A is true, regardless of the value of B, the statement will evalu-
ate to true.

Table 4.3–4 lists several useful logical functions.

4.3 Logical Operators and Functions 161

Table 4.3–4 Logical functions

Logical function De nition

all(x) Returns a scalar, which is 1 if all the elements in the vector x
are nonzero and 0 otherwise.

all(A) Returns a row vector having the same number of columns as
the matrix A and containing 1s and 0s, depending on whether
the corresponding column of A has all nonzero elements.

any(x) Returns a scalar, which is 1 if any of the elements in the
vector x is nonzero and 0 otherwise.

any(A) Returns a row vector having the same number of columns
as A and containing 1s and 0s, depending on whether the
corresponding column of the matrix A contains any nonzero
elements.

 nd(A) Computes an array containing the indices of the nonzero
elements of the array A.

[u,v,w] = nd(A) Computes the arrays u and v containing the row and column
indices of the nonzero elements of the array A and computes
the array w containing the values of the nonzero elements.
The array w may be omitted.

 nite(A) Returns an array of the same dimension as A with 1s where
the elements of are nite and 0s elsewhere.

ischar(A) Returns a 1 if A is a character array and 0 otherwise.
isempty(A) Returns a 1 if A is an empty matrix and 0 otherwise.
isinf(A) Returns an array of the same dimension as A, with 1s where

A has ‘inf’ and 0s elsewhere.
isnan(A) Returns an array of the same dimension as A with 1s where

A has ‘NaN’ and 0s elsewhere. (‘NaN’ stands for “not a
number,” which means an unde ned result.)

isnumeric(A) Returns a 1 if A is a numeric array and 0 otherwise.
isreal(A) Returns a 1 if A has no elements with imaginary parts and

0 otherwise.
logical(A) Converts the elements of the array A into logical values.
xor(A,B) Returns an array the same dimension as A and B; the new

array has 1s where either A or B is nonzero, but not both,
and 0s where A and B are either both nonzero or both zero.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 161

www.EBooksWorld.ir

Logical Operators and the nd Function
The nd function is very useful for creating decision-making programs, espe-
cially when combined with the relational or logical operators. The function
 nd(x) computes an array containing the indices of the nonzero elements of the
array x. For example, consider the session

>>x = [-2, 0, 4];
>>y = nd(x)
y =

1 3

The resulting array y = [1, 3] indicates that the rst and third elements of x
are nonzero. Note that the nd function returns the indices, not the values. In the
following session, note the difference between the result obtained by
x(x < y) and the result obtained by nd(x < y).

>>x = [6, 3, 9, 11];y = [14, 2, 9, 13];
>>values = x(x < y)
values =

6 11
>>how_many = length (values)
how_many =

2
>>indices = nd(x < y)
indices =

1 4

Thus two values in the array x are less than the corresponding values in the array y.
They are the rst and fourth values, 6 and 1 1. To nd out how many , we could
also have typed length(indices).

The nd function is also useful when combined with the logical operators.
For example, consider the session

>>x = [5, -3, 0, 0, 8]; y = [2, 4, 0, 5, 7];
>>z = nd(x & y)
z =

1 2 5

The resulting array z = [1, 2, 5] indicates that the rst, second, and fth
elements of both x and y are nonzero. Note that the nd function returns the
indices, and not the values. In the following session, note the difference between
the result obtained by y(x & y) and the result obtained by nd(x & y) above.

>>x = [5, -3, 0, 0, 8];y = [2, 4, 0, 5, 7];
>>values = y(x & y)
values =

2 4 7
>>how_many = length(values)
how_many =

3

162 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 162

www.EBooksWorld.ir

Thus there are three nonzero values in the array y that correspond to nonzero val-
ues in the array x. They are the rst, second, and fth values, which are 2, 4, and 7.

In the above examples, there were only a few numbers in the arrays x and y,
and thus we could have obtained the answers by visual inspection. However,
these MATLAB methods are very useful either where there are so many data
that visual inspection would be very time-consuming, or where the values are
generated internally in a program.

Test Your Understanding

T4.3–1 If x = [5,-3,18,4] and y = [-9,13,7,4], what will be the
result of the following operations? Use MATLAB to check your answer.

a. z = ~y > x
b. z = x & y
c. z = x | y
d. z = xor(x,y)

T4.3–2 Suppose that x = [-9, -6, 0, 2, 5] and y = [-10, -6 2, 4,
6]. What is the result of the following operations? Determine the an-
swers by hand, and then use MATLAB to check your answers.

a. z � (x < y)
b. z � (x > y)
c. z � (x ~� y)
d. z � (x �� y)
e. z � (x > 2)

T4.3–3 Suppose that x = [-4, -1, 0, 2, 10] and y = [-5, -2, 2,
5, 9]. Use MATLAB to nd the values and the indices of the elements
in x that are greater than the corresponding elements in y.

4.3 Logical Operators and Functions 163

EXAMPLE 4.3–1 Height and Speed of a Projectile

The height and speed of a projectile (such as a thrown ball) launched with a speed of �0

at an angle A to the horizontal are given by

where g is the acceleration due to gravity. The projectile will strike the ground when
, which gives the time to hit . Suppose that ,
m/s, and m/s2. Use the MATLAB relational and logical operators to

 nd the times when the height is no less than 6 m and the speed is simultaneously no
greater than 16 m/s. In addition, discuss another approach to obtaining a solution.

g = 9.81�0 = 20
A = 40°thit = 2(�0>g)sin Ah(t) = 0

 �(t) = 2�2
0 - 2�0 gt sin A + g2t2

 h(t) = �0 t sin A - 0.5gt2

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 163

www.EBooksWorld.ir

■ Solution
The key to solving this problem with relational and logical operators is to use the nd com-
mand to determine the times at which the logical expression (h >= 6) & (v <= 16)
is true. First we must generate the vectors h and v corresponding to times and
between , using a spacing for time t that is small enough to achieve suf cient
accuracy for our purposes. We will choose a spacing of , which provides 101 val-
ues of time. The program follows. When computing the times and , we must subtract
1 from u(1) and from length(u) because the rst element in the array t corresponds
to (that is, t(1) is 0).

% Set the values for initial speed, gravity, and angle.
v0 = 20; g = 9.81; A = 40*pi/180;
% Compute the time to hit.
t_hit = 2*v0*sin(A)/g;
% Compute the arrays containing time, height, and speed.
t = 0:t_hit/100:t_hit;
h = v0*t*sin(A) - 0.5*g*t.^2;
v = sqrt(v0^2 - 2*v0*g*sin(A)*t + g^2*t.^2);
% Determine when the height is no less than 6
% and the speed is no greater than 16.
u = nd(h >= 6 & v <= 16);
% Compute the corresponding times.
t_1 = (u(1)- 1)*(t_hit/100)
t_2 = u(length(u)- 1)*(t_hit/100)

The results are and . Between these two times m and
m/s.

We could have solved this problem by plotting h(t) and �(t), but the accuracy of the
results would be limited by our ability to pick points off the graph; in addition, if we had
to solve many such problems, the graphical method would be more time-consuming.

Test Your Understanding

T4.3–4 Consider the problem given in Example 4.3–1. Use relational and logical
operators to nd the times for which either the projectile’ s height is less
than 4 m or the speed is greater than 17 m/s. Plot h(t) and �(t) to con rm
your answer.

4.4 Conditional Statements
In everyday language we describe our decision making by using conditional
phrases such as “If I get a raise, I will buy a new car.” If the statement “I get a
raise” is true, the action indicated (buy a new car) will be executed. Here is an-
other example: If I get at least a $100 per week raise, I will buy a new car; else,
I will put the raise into savings. A slightly more involved example is: If I get at

� … 16
h Ú 6t2 = 1.7560t1 = 0.8649

t = 0

t2t1

thit>100
0 … t … thit

t2t1

164 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 164

www.EBooksWorld.ir

least a $100 per week raise, I will buy a new car; else, if the raise is greater than
$50, I will buy a new stereo; otherwise, I will put the raise into savings.

We can illustrate the logic of the rst example as follows:

If I get a raise,
I will buy a new car

. (period)

Note how the period marks the end of the statement.
The second example can be illustrated as follows:

If I get at least a $100 per week raise,
I will buy a new car;

else,
I will put the raise into savings

. (period)

The third example follows.

If I get at least a $100 per week raise,
I will buy a new car;

else, if the raise is greater than $50,
I will buy a new stereo;

otherwise,
I will put the raise into savings

. (period)

The MATLAB conditional statements enable us to write programs that make
decisions. Conditional statements contain one or more of the if, else, and
elseif statements. The end statement denotes the end of a conditional state-
ment, just as the period was used in the preceding examples. These conditional
statements have a form similar to the examples, and they read somewhat like
their English-language equivalents.

The if Statement
The if statement’s basic form is

if logical expression
statements

end

Every if statement must have an accompanying end statement. The end state-
ment marks the end of the statements that are to be executed if the logical expres-
sion is true. A space is required between the if and the logical expression, which
may be a scalar, a vector, or a matrix.

For example, suppose that x is a scalar and that we want to compute
only if . In English, we could specify this procedure as follows: If x is
greater than or equal to zero, compute y from . The following ify = 1x

x Ú 0
y = 1x

4.4 Conditional Statements 165

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 165

www.EBooksWorld.ir

statement implements this procedure in MATLAB, assuming x already has a
scalar value.

if x >= 0
y = sqrt(x)

end

If x is negative, the program takes no action. The logical expression here is
x >= 0, and the statement is the single line y = sqrt(x).

The if structure may be written on a single line; for example,

if x >= 0, y = sqrt(x), end

However, this form is less readable than the previous form. The usual practice is
to indent the statements to clarify which statements belong to the if and its cor-
responding end and thereby improve readability.

The logical expression may be a compound expression; the statements may
be a single command or a series of commands separated by commas or semi-
colons or on separate lines. For example, if x and y have scalar values,

z = 0;w = 0;
if (x >= 0)&(y >= 0)

z = sqrt(x) + sqrt(y)
w = sqrt(x*y)

end

The values of z and w are computed only if both x and y are nonnegative. Other-
wise, z and w retain their values of zero. The owchart is shown in Figure 4.4–1.

We may “nest” if statements, as shown by the following example.

if logical expression 1
statement group 1
if logical expression 2

statement group 2
end

end

Note that each if statement has an accompanying end statement.

The else Statement
When more than one action can occur as a result of a decision, we can use the
else and elseif statements along with the if statement. The basic structure
for the use of the else statement is

if logical expression
statement group 1

else
statement group 2

end

Figure 4.4–2 shows the owchart of this structure.

166 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 166

www.EBooksWorld.ir

For example, suppose that for and that for .
The following statements will calculate y, assuming that x already has a scalar value.

if x >= 0
y = sqrt(x)

else
y = exp(x) - 1

end

When the test, if logical expression, is performed, where the logical
expression may be an array, the test returns a value of true only if all the elements
of the logical expression are true! For example, if we fail to recognize how the test
works, the following statements do not perform the way we might expect.

x = [4,-9,25];
if x < 0

disp(‘Some of the elements of x are negative.’)
else

y = sqrt(x)
end

x 6 0y = ex
- 1x Ú 0y = 1x

4.4 Conditional Statements 167

x ≥ 0?

True

False

End

True

False

x , y

y ≥ 0?

Compute z , w

Figure 4.4–1 Flowchart illustrating
two logical tests.

Logical
Expression

True

False

End

Start

Statement
Group 2

Statement
Group 1

Figure 4.4–2 Flowchart of the else structure.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 167

www.EBooksWorld.ir

When this program is run, it gives the result

y =
2 0 + 3.000i 5

The program does not test each element in x in sequence. Instead it tests the truth
of the vector relation x < 0. The test if x < 0 returns a false value because
it generates the vector [0,1,0]. Compare the preceding program with the
following program.

x = [4,-9,25];
if x >= 0

y = sqrt(x)
else

disp(‘Some of the elements of x are negative.’)
end

When executed, it produces the following result: Some of the elements
of x are negative. The test if x < 0 is false, and the test if x >= 0
also returns a false value because x >= 0 returns the vector [1,0,1].

We sometimes must choose between a program that is concise, but perhaps
more dif cult to understand, and one that uses more statements than is necessary .
For example, the statements

if logical expression 1
if logical expression 2

statements
end

end

can be replaced with the more concise program

if logical expression 1 & logical expression 2
statements

end

The elseif Statement
The general form of the if statement is

if logical expression 1
statement group 1

elseif logical expression 2
statement group 2

else
statement group 3

end

The else and elseif statements may be omitted if not required. However, if
both are used, the else statement must come after the elseif statement to
take care of all conditions that might be unaccounted for. Figure 4.4–3 is the
 owchart for the general if structure.

168 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 168

www.EBooksWorld.ir

For example, suppose that if and that if .
The following statements will compute y if x has a scalar value.

if x >= 5
y = log(x)

else
if x >= 0

y = sqrt(x)
end

end

If , for example, no action will be taken. If we use an elseif, we need
fewer statements. For example,

if x >= 5
y = log(x)

elseif x >= 0
y = sqrt(x)

end

Note that the elseif statement does not require a separate end statement.

x = -2

0 … x 6 5y = 1xx Ú 5y = ln x

4.4 Conditional Statements 169

Logical
Expression 2

Logical
Expression 1

Statement
Group 2

Statement
Group 1

True

False

False

True

End

Start

Statement
Group 3

Figure 4.4–3 Flowchart for the general if structure.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 169

www.EBooksWorld.ir

The else statement can be used with elseif to create detailed decision-
making programs. For example, suppose that for , for

, and for . The following statements will compute
y if x already has a scalar value.

if x > 10
y = log(x)

elseif x >= 0
y = sqrt(x)

else
y = exp(x) - 1

end

Decision structures may be nested; that is, one structure can contain another
structure, which in turn can contain another, and so on. Indentations are used to
emphasize the statement groups associated with each end statement.

Test Your Understanding

T4.4–1 Given a number x and the quadrant q (q � 1, 2, 3, 4), write a program
to compute sin�1(x) in degrees, taking into account the quadrant. The
program should display an error message if .

Checking the Number of Input and Output Arguments
Sometimes you will want to have a function act differently depending on how
many inputs it has. You can use the function nargin, which stands for “number
of input arguments.” Within the function you can use conditional statements to
direct the ow of the computation depending on how many input ar guments
there are. For example, suppose you want to compute the square root of the input
if there is only one, but compute the square root of the average if there are two
inputs. The following function does this.

function z = sqrtfun(x, y)
if (nargin == 1)

z = sqrt(x);
elseif (nargin == 2)

z = sqrt((x + y)/2);
end

The nargout function can be used to determine the number of output
arguments.

Strings and Conditional Statements
A string is a variable that contains characters. Strings are useful for creating input
prompts and messages and for storing and operating on data such as names and

�x� 7 1

x 6 0y = ex
- 10 … x … 10

y = 1xx 7 10 y = ln x

170 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 170

www.EBooksWorld.ir

addresses. To create a string variable, enclose the characters in single quotes. For
example, the string variable name is created as follows:

>>name = ‘Leslie Student’
name =

Leslie Student

The following string, called number,

>>number = ‘123’
number =

123

is not the same as the variable number created by typing number = 123.
Strings are stored as row vectors in which each column represents a charac-

ter. For example, the variable name has 1 row and 14 columns (each blank space
occupies one column). We can access any column the way we access any other
vector. For example, the letter S in the name Leslie Student occupies the eighth
column in the vector name. It can be accessed by typing name(8).

One of the most important applications for strings is to create input prompts
and output messages. The following prompt program uses the isempty(x)
function, which returns a 1 if the array x is empty and 0 otherwise. It also uses
the input function, whose syntax is

x = input(‘prompt’, ‘string’)

This function displays the string prompt on the screen, waits for input from the
keyboard, and returns the entered value in the string variable x. The function
returns an empty matrix if you press the Enter key without typing anything.

The following prompt program is a script le that allows the user to answer
Yes by typing either Y or y or by pressing the Enter key. Any other response is
treated as a No answer.

response = input(‘Do you want to continue? Y/N [Y]: ’,‘s’);
if (isempty(response))|(response == ‘Y’)|(response == ‘y’)

response = ‘Y’
else

response = ‘N’
end

Many more string functions are available in MATLAB. Type help strfun
to obtain information on these.

4.5 for Loops
A loop is a structure for repeating a calculation a number of times. Each repeti-
tion of the loop is a pass. MATLAB uses two types of explicit loops: the for
loop, when the number of passes is known ahead of time, and the while loop,
when the looping process must terminate when a speci ed condition is satis ed
and thus the number of passes is not known in advance.

4.5 for Loops 171

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 171

www.EBooksWorld.ir

A simple example of a for loop is

for k = 5:10:35
x = k^2

end

The loop variable k is initially assigned the value 5, and x is calculated from
x = k^2. Each successive pass through the loop increments k by 10 and calcu-
lates x until k exceeds 35. Thus k takes on the values 5, 15, 25, and 35; and x
takes on the values 25, 225, 625, and 1225. The program then continues to exe-
cute any statements following the end statement.

The typical structure of a for loop is

for loop variable � m:s:n
statements

end

172 CHAPTER 4 Programming with MATLAB

k > n?

Statements

True

False

End

Start

Statements
following
the End

statement

Set k = m

Increment k
by s

Figure 4.5–1 Flowchart of a for loop.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 172

www.EBooksWorld.ir

4.5 for Loops 173

EXAMPLE 4.5–1Series Calculation with a for Loop

Write a script le to compute the sum of the rst 15 terms in the series 5 k2 � 2k, k �

1, 2, 3, . . . , 15.

■ Solution
Because we know how many times we must evaluate the expression 5k2 � 2k, we can use
a for loop. The script le is the following:

total = 0;
for k = 1:15

total = 5*k^2 - 2*k + total;
end
disp (‘The sum for 15 terms is:’)
disp (total)

The answer is 5960.

EXAMPLE 4.5–2Plotting with a for Loop

Write a script le to plot the function

for �5 	 x 	 30.

y = L
1514x + 10 x Ú 9

10x + 10 0 … x 6 9

10 x 6 0

The expression m:s:n assigns an initial value of m to the loop variable, which is
incremented by the value s, called the step value or incremental value. The state-
ments are executed once during each pass, using the current value of the loop
variable. The looping continues until the loop variable exceeds the terminating
value n. For example, in the expression for k = 5:10:36, the nal value of k
is 35. Note that we need not place a semicolon after the for m:s:n statement
to suppress printing k. Figure 4.5–1 shows the owchart of a for loop.

Note that a for statement needs an accompanying end statement. The end
statement marks the end of the statements that are to be executed. A space is re-
quired between the for and the loop variable, which may be a scalar, a vector,
or a matrix, although the scalar case is by far the most common.

The for loop may be written on a single line; for example,

for x = 0:2:10, y = sqrt(x), end

However, this form is less readable than the previous form. The usual practice is
to indent the statements to clarify which statements belong to the for and its
corresponding end and thereby improve readability.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 173

www.EBooksWorld.ir

174 CHAPTER 4 Programming with MATLAB

NESTED LOOPS

■ Solution
We choose a spacing dx � 35/300 to obtain 301 points, which is suf cient to obtain a
smooth plot. The script le is the following:

dx = 35/300;
x = -5:dx:30;
for k = 1:length(x)

if x(k) >= 9
y(k) = 15*sqrt(4*x(k)) + 10;

elseif x(k) >= 0
y(k) = 10*x(k) + 10;

else
y(k) = 10;

end
end
plot (x,y), xlabel(’x’), ylabel(‘y’)

Note that we must use the index k to refer to x within the loop, as x(k).

We may nest loops and conditional statements, as shown by the following
example. (Note that each for and if statement needs an accompanying end
statement.)

Suppose we want to create a special square matrix that has 1s in the rst row
and rst column, and whose remaining elements are the sum of two elements, the
element above and the element to the left, if the sum is less than 20. Otherwise,
the element is the maximum of those two element values. The following function
creates this matrix. The row index is r; the column index is c. Note how indent-
ing improves the readability.

function A = specmat(n)
A = ones(n);
for r = 1:n

for c = 1:n
if (r > 1) & (c > 1)

s = A(r-1,c) + A(r,c-1);
if s < 20

A(r,c) = s;
else

A(r,c) = max(A(r-1,c),A(r,c-1));
end

end
end

end

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 174

www.EBooksWorld.ir

4.5 for Loops 175

Typing specmat(5) produces the following matrix:

Test Your Understanding

T4.5–1 Write a script le using conditional statements to evaluate the following
function, assuming that the scalar variable x has a value. The function is

for x
 0, y � 3x � 1 for 0 	 x
 10, and y �

9 sin (5x � 50) � 31 for x � 10. Use your le to evaluate y for x � �5,
x � 5, and x � 15, and check the results by hand.

T4.5–2 Use a for loop to determine the sum of the rst 20 terms in the series
3k2, k � 1, 2, 3, . . . , 20. (Answer: 8610.)

T4.5–3 Write a program to produce the following matrix:

Note the following rules when using for loops with the loop variable ex-
pression k = m:s:n:

■ The step value s may be negative. For example, k = 10:-2:4 produces
k � 10, 8, 6, 4.

■ If s is omitted, the step value defaults to 1.
■ If s is positive, the loop will not be executed if m is greater than n.
■ If s is negative, the loop will not be executed if m is less than n.
■ If m equals n, the loop will be executed only once.
■ If the step value s is not an integer, round-off errors can cause the loop to

execute a different number of passes than intended.

When the loop is completed, k retains its last value. You should not alter the
value of the loop variable k within the statements. Doing so can cause unpre-
dictable results.

A common practice in traditional programming languages such as BASIC
and FORTRAN is to use the symbols i and j as loop variables. However, this
convention is not good practice in MATLAB, which uses these symbols for the
imaginary unit . 1-1

A = ≥
4 8 12

10 14 18

16 20 24

22 26 30

¥

y = 1x2
+ 1

£
1 1 1 1 1

1 2 3 4 5

1 3 6 10 15

1 4 10 10 15

1 5 15 15 15

§

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 175

www.EBooksWorld.ir

The break and continue Statements
It is permissible to use an if statement to “jump” out of the loop before the loop
variable reaches its terminating value. The break command, which terminates the
loop but does not stop the entire program, can be used for this purpose. For example,
for k = 1:10

x = 50 - k^2;
if x < 0

break
end
y = sqrt(x)

end
% The program execution jumps to here
% if the break command is executed.
However, it is usually possible to write the code to avoid using the break com-
mand. This can often be done with a while loop as explained in the next section.

The break statement stops the execution of the loop. There can be applica-
tions where we want to not execute the case producing an error but continue ex-
ecuting the loop for the remaining passes. We can use the continue statement
to do this. The continue statement passes control to the next iteration of the
for or while loop in which it appears, skipping any remaining statements in
the body of the loop. In nested loops, continue passes control to the next iter-
ation of the for or while loop enclosing it.

For example, the following code uses a continue statement to avoid com-
puting the logarithm of a negative number.
x = [10,1000,-10,100];
y = NaN*x;
for k = 1:length(x)

if x(k) < 0
continue

end
kvalue(k) = k;
y(k) = log10(x(k));

end
kvalue
y
The results are k = 1, 2, 0, 4 and y = 1, 3, NaN, 2.

Using an Array as a Loop Index
It is permissible to use a matrix expression to specify the number of passes. In
this case the loop variable is a vector that is set equal to the successive columns
of the matrix expression during each pass. For example,
A = [1,2,3;4,5,6];
for v = A

disp(v)
end

176 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 176

www.EBooksWorld.ir

is equivalent to

A = [1,2,3;4,5,6];
n = 3;
for k = 1:n

v = A(:,k)
end

The common expression k = m:s:n is a special case of a matrix expression in
which the columns of the expression are scalars, not vectors.

For example, suppose we want to compute the distance from the origin to a
set of three points speci ed by their xy coordinates (3, 7), (6,6), and (2,8). We
can arrange the coordinates in the array coord as follows.

Then coord = [3,6,2;7,6,8]. The following program computes the
distance and determines which point is farthest from the origin. The rst time
through the loop the index coord is [3, 7]’. The second time the index is
[6, 6]’, and during the nal pass it is [2, 8]’.

k = 0;
for coord = [3,6,2;7,6,8]

k = k + 1;
distance(k) = sqrt(coord’*coord)

end
[max_distance,farthest] = max(distance)

The previous program illustrates the use of an array index, but the problem
can be solved more concisely with the following program, which uses the diag
function to extract the diagonal elements of an array.

coord = [3,6,2;7,6,8];
distance = sqrt(diag(coord’*coord))
[max_distance,farthest] = max(distance)

Implied Loops
Many MATLAB commands contain implied loops. For example, consider these
statements.

x = [0:5:100];
y = cos(x);

To achieve the same result using a for loop, we must type

for k = 1:21
x = (k - 1)*5;
y(k) = cos(x);

end

c3 6 2

7 6 8
d

4.5 for Loops 177

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 177

www.EBooksWorld.ir

The nd command is another example of an implied loop. The statement y =
 nd(x>0) is equivalent to

m = 0;
for k = 1:length(x)

if x(k) > 0
m = m + 1;
y(m) = k;

end
end

If you are familiar with a traditional programming language such as FORTRAN
or BASIC, you might be inclined to solve problems in MATLAB using loops, in-
stead of using the powerful MATLAB commands such as nd. To use these
commands and to maximize the power of MATLAB, you might need to adopt a
new approach to problem solving. As the preceding example shows, you often
can save many lines of code by using MATLAB commands, instead of using
loops. Your programs will also run faster because MATLAB was designed for
high-speed vector computations.

Test Your Understanding

T4.5–4 Write a for loop that is equivalent to the command sum(A), where A
is a matrix.

178 CHAPTER 4 Programming with MATLAB

EXAMPLE 4.5–3 Data Sorting

A vector x has been obtained from measurements. Suppose we want to consider any data
value in the range �0.1
 x
 0.1 as being erroneous. We want to remove all such ele-
ments and replace them with zeros at the end of the array. Develop two ways of doing
this. An example is given in the following table.

Before After

x(1) 1.92 1.92
x(2) 0.05 �2.43
x(3) �2.43 0.85
x(4) �0.02 0
x(5) 0.09 0
x(6) 0.85 0
x(7) �0.06 0

■ Solution
The following script le uses a for loop with conditional statements. Note how the
null array [] is used.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 178

www.EBooksWorld.ir

x = [1.92,0.05,-2.43,-0.02,0.09,0.85,-0.06];
y = [];z = [];
for k = 1:length(x)

if abs(x(k)) >= 0.1
y = [y,x(k)];

else
z = [z,x(k)];

end
end
xnew = [y,zeros(size(z))]

The next script le uses the nd function.

x = [1.92,0.05,-2.43,-0.02,0.09,0.85,-0.06];
y = x(nd(abs(x) >= 0.1));
z = zeros(size(nd(abs(x) < 0.1)));
xnew = [y,z]

4.5 for Loops 179

Use of Logical Arrays as Masks
Consider the array A.

The following program computes the array B by computing the square roots of
all the elements of A whose value is no less than 0 and adding 50 to each element
that is negative.

A = [0, -1, 4; 9, -14, 25; -34, 49, 64];
for m = 1:size(A,1)

for n = 1:size(A,2)
if A(m,n) >= 0

B(m,n) = sqrt(A(m,n));
else

B(m,n) = A(m,n) + 50;
end

end
end
B

The result is

B = J
0 49 2

3 36 5

16 7 8
K

A = J
0 -1 4

9 -14 25

-34 49 64
K

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 179

www.EBooksWorld.ir

When a logical array is used to address another array, it extracts from that
array the elements in the locations where the logical array has 1s. We can often
avoid the use of loops and branching and thus create simpler and faster programs
by using a logical array as a mask that selects elements of another array. Any
elements not selected will remain unchanged.

The following session creates the logical array C from the numeric array A
given previously.

>>A = [0, -1, 4; 9, -14, 25; -34, 49, 64];
>>C = (A >= 0);

The result is

We can use this technique to compute the square root of only those elements
of A given in the previous program that are no less than 0 and add 50 to those
elements that are negative. The program is

A = [0, -1, 4; 9, -14, 25; -34, 49, 64];
C = (A >= 0);
A(C) = sqrt(A(C))
A(~C) = A(~C) + 50

The result after the third line is executed is

The result after the last line is executed is

A = J
0 49 2

3 36 5

16 7 8
K

A = J
0 -1 2

3 -14 25

-34 49 64
K

C = J
1 0 1

1 0 1

0 1 1
K

180 CHAPTER 4 Programming with MATLAB

MASKS

EXAMPLE 4.5–4 Flight of an Instrumented Rocket

All rockets lose weight as they burn fuel; thus the mass of the system is variable. The fol-
lowing equations describe the speed y and height h of a rocket launched vertically,
neglecting air resistance. They can be derived from Newton’s law.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 180

www.EBooksWorld.ir

4.5 for Loops 181

Table 4.5–1 Pseudocode for Example 4.5–4

Enter data.
Increment burn time from 0 to 100. For each burn time value:

Compute m0, �b, hb, hp.
If hp � hdesired,

Compute tp, thit.
Increment time from 0 to thit.

Compute height as a function of time, using
the appropriate equation, depending on whether
burnout has occurred.

Compute the duration above desired height.
End of the time loop.

If hp � hdesired, set duration equal to zero.
End of the burn time loop.
Plot the results.

(4.5–1)

(4.5–2)

where is the rocket’s initial mass, q is the rate at which the rocket burns fuel mass, u is
the exhaust velocity of the burned fuel relative to the rocket, and g is the acceleration due
to gravity. Let b be the burn time, after which all the fuel is consumed. Thus the rocket’s
mass without fuel is .

For the rocket engine no longer produces thrust, and the speed and height are
given by

(4.5–3)

(4.5–4)

The time to reach the peak height is found by setting . The result is
. Substituting this expression into the expression (4.5–4) for gives

the following expression for the peak height: . The time at which
the rocket hits the ground is

Suppose the rocket is carrying instruments to study the upper atmosphere, and we
need to determine the amount of time spent above 50 000 ft as a function of the burn time
b (and thus as a function of the fuel mass qb). Assume that we are given the following
values: slugs, slug/sec, ft/sec, and ft/sec2. If the
rocket’s maximum fuel load is 100 slugs, the maximum value of b is . Write
a MATLAB program to solve this problem.

100>q = 100
g = 32.2u = 8000q = 1me = 100

thit = tp + 12hp>g.
hp = h(b) + y2(b)>(2g)

h(t)tp = b + y(b)>g
y(t) = 0tp

h(t) = h(b) + �(b)(t - b) -

g(t - b)2

2

�(t) = �(b) - g(t - b)

t 7 b
me = m0 - qb

m0

+ u(ln m0 + 1)t -

gt2

2
-

m0u

q
 ln m0

h(t) =

u

q
(m0 - qt) ln(m0 - qt)

y(t) = u ln
m0

m0 - qt
- gt

pal34870_ch04_146-217.qxd 1/11/10 12:32 PM Page 181

www.EBooksWorld.ir

182 CHAPTER 4 Programming with MATLAB

Table 4.5–2 MATLAB program for Example 4.5–4

% Script le rocket1.m
% Computes ight duration as a function of burn time.
% Basic data values.
m_e = 100; q = 1; u = 8000; g = 32.2;
dt = 0.1; h_desired = 50 000;
for b = 1:100 % Loop over burn time.

burn_time(b) = b;
% The following lines implement the formulas in the text.
m_0 = m_e + q*b; v_b = u*log(m_0/m_e) - g*b;
h_b = ((u*m_e)/q)*log(m_e/(m_e+q*b))+u*b - 0.5*g*b^2;
h_p = h_b + v_b^2/(2*g);
if h_p >= h_desired
% Calculate only if peak height > desired height.

t_p = b + v_b/g; % Compute peak time.
t_hit = t_p + sqrt(2*h_p/g); % Compute time to hit.
for p = 0:t_hit/dt

% Use a loop to compute the height vector.
k = p + 1; t = p*dt; time(k) = t;
if t <= b

% Burnout has not yet occurred.
h(k) = (u/q)*(m_0 - q*t)*log(m_0 - q*t)...

+ u*(log(m_0) + 1)*t - 0.5*g*t^2 ...
- (m_0*u/q)*log(m_0);

else
% Burnout has occurred.
h(k) = h_b - 0.5*g*(t - b)^2 + v_b*(t - b);

end
end
% Compute the duration.
duration(b) = length(nd(h>=h_desired))*dt;

else
% Rocket did not reach the desired height.
duration(b) = 0;

end
end % Plot the results.
plot(burn_time,duration),xlabel(‘Burn Time (sec)’),...
ylabel(‘Duration (sec)’),title(‘Duration Above 50 000 Feet’)

■ Solution
Pseudocode for developing the program appears in Table 4.5–1. A for loop is a logical
choice to solve this problem because we know the burn time b and thit, the time it takes to
hit the ground. A MATLAB program to solve this problem appears in Table 4.5–2. It has
two nested for loops. The inner loop is over time and evaluates the equations of motion
at times spaced 1�10 sec apart. This loop calculates the duration above 50 000 ft for a spe-
ci c value of the burn time b. We can obtain greater accuracy by using a smaller value of
the time increment dt. The outer loop varies the burn time in integer values from to

. The nal result is the vector of durations for the various burn times. Figure 4.5–2
gives the resulting plot.
b = 100

b = 1

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 182

www.EBooksWorld.ir

4.6 while Loops
The while loop is used when the looping process terminates because a speci ed
condition is satis ed, and thus the number of passes is not known in advance.
A simple example of a while loop is

x = 5;
while x < 25

disp(x)
x = 2*x - 1;

end

The results displayed by the disp statement are 5, 9, and 17. The loop variable
x is initially assigned the value 5, and it has this value until the statement x =
2*x - 1 is encountered the rst time. The value then changes to 9. Before each
pass through the loop, x is checked to see whether its value is less than 25. If so,
the pass is made. If not, the loop is skipped and the program continues to execute
any statements following the end statement.

A principal application of while loops is when we want the loop to con-
tinue as long as a certain statement is true. Such a task is often more dif cult to
do with a for loop. The typical structure of a while loop follows.

4.6 while Loops 183

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Burn Time (sec)

D
ur

at
io

n
(s

ec
)

Duration Above 50 000 ft

Figure 4.5–2 Duration above 50 000 ft as a function of the burn time.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 183

www.EBooksWorld.ir

while logical expression
statements

end

MATLAB rst tests the truth of the logical expression. A loop variable must be in-
cluded in the logical expression. For example, x is the loop variable in the state-
ment while x < 25. If the logical expression is true, the statements are
executed. For the while loop to function properly, the following two conditions
must occur:

1. The loop variable must have a value before the while statement is
executed.

2. The loop variable must be changed somehow by the statements.

The statements are executed once during each pass, using the current value of
the loop variable. The looping continues until the logical expression is false.
Figure 4.6–1 shows the owchart of the while loop.

184 CHAPTER 4 Programming with MATLAB

Logical
Expression

Statements
(which increment
the loop variable)

Statements
following
the End

statement

True

False

End

Start

Figure 4.6–1 Flowchart of the while loop.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 184

www.EBooksWorld.ir

Each while statement must be matched by an accompanying end. As with
for loops, the statements should be indented to improve readability. You may
nest while loops, and you may nest them with for loops and if statements.

Always make sure that the loop variable has a value assigned to it before the
start of the loop. For example, the following loop can give unintended results if
x has an overlooked previous value.

while x < 10
x = x + 1;
y = 2*x;

end

If x has not been assigned a value prior to the loop, an error message will occur.
If we intend x to start at zero, then we should place the statement x = 0; before
the while statement.

It is possible to create an in nite loop, which is a loop that never ends. For
example,

x = 8;
while x ~= 0

x = x - 3;
end

Within the loop the variable x takes on the values 5, 2, �1, �4, . . . , and the con-
dition x ~= 0 is always satis ed, so the loop never stops. If such a loop occurs,
press Ctrl-C to stop it.

4.6 while Loops 185

EXAMPLE 4.6–1Series Calculation with a while Loop

Write a script le to determine the number of terms required for the sum of the series
5k2 � 2k, k � 1, 2, 3, . . . , to exceed 10 000. What is the sum for this many terms?

■ Solution
Because we do not know how many times we must evaluate the expression 5k2 � 2k, we
use a while loop. The script le is the following:

total = 0;
k = 0;
while total < 1e+4

k = k + 1;
total = 5*k^2 - 2*k + total;

end
disp(‘The number of terms is:’)
disp(k)
disp(‘The sum is:’)
disp(total)

The sum is 10 203 after 18 terms.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 185

www.EBooksWorld.ir

186 CHAPTER 4 Programming with MATLAB

EXAMPLE 4.6–2 Growth of a Bank Account

Determine how long it will take to accumulate at least $10 000 in a bank account if you
deposit $500 initially and $500 at the end of each year, if the account pays 5 percent an-
nual interest.

■ Solution
Because we do not know how many years it will take, a while loop should be used. The
script le is the following.

amount = 500;
k=0;
while amount < 10000

k = k+1;
amount = amount*1.05 + 500;

end
amount
k

The nal results are amount � 1.0789e�004, or $10 789, and k � 14, or
14 years.

EXAMPLE 4.6–3 Time to Reach a Speci ed Height

Consider the variable-mass rocket treated in Example 4.5–4. Write a program to deter-
mine how long it takes for the rocket to reach 40 000 ft if the burn time is 50 sec.

■ Solution
The pseudocode appears in Table 4.6–1. Because we do not know the time required, a
while loop is convenient to use. The program in Table 4.6–2 performs the task and is
a modi cation of the program in Table 4.5–2. Note that the new program allows for the
possibility that the rocket might not reach 40 000 ft. It is important to write your pro-
grams to handle all such foreseeable circumstances. The answer given by the program
is 53 sec.

Table 4.6–1 Pseudocode for Example 4.6–3

Enter data.
Compute m0, �b, hb, hp.
If hp � hdesired,

Use a while loop to increment time and compute height until desired height
is reached.

Compute height as a function of time, using the appropriate equation,
depending on whether burnout has occurred.

End of the time loop.
Display the results.

If hp
 hdesired, rocket cannot reach desired height.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 186

www.EBooksWorld.ir

4.6 while Loops 187

Table 4.6–2 MATLAB program for Example 4.6–3

% Script le rocket2.m
% Computes time to reach desired height.
% Set the data values.
h_desired = 40000; m_e = 100; q = 1;
u = 8000; g = 32.2; dt = 0.1; b = 50;
% Compute values at burnout, peak time, and height.
m_0 = m_e + q*b; v_b = u*log(m_0/m_e) - g*b;
h_b = ((u*m_e)/q)*log(m_e/(m_e+q*b))+u*b - 0.5*g*b^2;
t_p = b + v_b/g;
h_p = h_b + v_b^2/(2*g);
% If h_p > h_desired, compute time to reached h_desired.
if h_p > h_desired

h = 0; k = 0;
while h < h_desired % Compute h until h = h_desired.

t = k*dt; k = k + 1;
if t <= b

% Burnout has not yet occurred.
h = (u/q)*(m_0 - q*t)*log(m_0 - q*t)...

+ u*(log(m_0) + 1)*t - 0.5*g*t^2 ...
- (m_0*u/q)*log(m_0);

else
% Burnout has occurred.
h = h_b - 0.5*g*(t - b)^2 + v_b*(t - b);

end
end
% Display the results.
disp(‘The time to reach the desired height is:’)
disp(t)

else
disp(‘Rocket cannot achieve the desired height.’)

end

Test Your Understanding

T4.6–1 Use a while loop to determine how many terms in the series 3k2, k �
1, 2, 3, . . . , are required for the sum of the terms to exceed 2000. What
is the sum for this number of terms? (Answer: 13 terms, with a sum
of 2457.)

T4.6–2 Rewrite the following code, using a while loop to avoid using the
break command.

for k = 1:10
x = 50 - k^2;
if x < 0

break
end
y = sqrt(x)

end

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 187

www.EBooksWorld.ir

T4.6–3 Find to two decimal places the largest value of x before the error in the
series approximation exceeds 1 percent.
(Answer: .)

4.7 The switch Structure
The switch structure provides an alternative to using the if, elseif, and
else commands. Anything programmed using switch can also be pro-
grammed using if structures. However, for some applications the switch
structure is more readable than code using the if structure. The syntax is

switch input expression (scalar or string)
case value1

statement group 1
case value2

statement group 2
.
.
.
otherwise

statement group n
end

The input expression is compared to each case value. If they are the same,
then the statements following thatcase statement are executed and processing con-
tinues with any statements after the end statement. If the input expression is a
string, then it is equal to the case value if strcmp returns a value of 1 (true). Only
the rst matching case is executed. If no match occurs, the statements following
the otherwise statement are executed. However, the otherwise statement is
optional. If it is absent, execution continues with the statements following the end
statement if no match exists. Each case value statement must be on a single line.

For example, suppose the variable angle has an integer value that repre-
sents an angle measured in degrees from North. The following switch block
displays the point on the compass that corresponds to that angle.

switch angle
case 45

disp(‘Northeast’)
case 135

disp(‘Southeast’)
case 225

disp(‘Southwest’)
case 315

disp(‘Northwest’)
otherwise

disp(‘Direction Unknown’)
end

x = 0.83
ex

L 1 + x + x2>2 + x3>6

188 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 188

www.EBooksWorld.ir

The use of a string variable for the input expression can result in very
readable programs. For example, in the following code the numeric vector x
has values, and the user enters the value of the string variable response; its
intended values are min, max, or sum. The code then either finds the mini-
mum or maximum value of x or sums the elements of x, as directed by the
user.

t = [0:100]; x = exp(-t).*sin(t);
response = input(‘Type min, max, or sum.’,’s’)
response = lower(‘response’);
switch response

case min
minimum = min(x)

case max
maximum = max(x)

case sum
total = sum(x)

otherwise
disp(‘You have not entered a proper choice.’)

end

The switch statement can handle multiple conditions in a single case
statement by enclosing the case value in a cell array. For example, the following
switch block displays the corresponding point on the compass, given the inte-
ger angle measured from North.

switch angle
case {0,360}

disp(‘North’)
case {-180,180}

disp(‘South’)
case {-270,90}

disp(‘East’)
case {-90,270}

disp(‘West’)
otherwise

disp(‘Direction Unknown’)
end

Test Your Understanding

T4.7–1 Write a program using the switch structure to input one angle, whose
value may be 45, �45, 135, or �135�, and display the quadrant (1, 2, 3,
or 4) containing the angle.

4.7 The switch Structure 189

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 189

www.EBooksWorld.ir

190 CHAPTER 4 Programming with MATLAB

EXAMPLE 4.7–1 Using the switch Structure for Calendar Calculations

Use the switch structure to compute the total elapsed days in a year, given the number
(1–12) of the month, the day, and an indication of whether the year is a leap year.

■ Solution
Note that February has an extra day if the year is a leap year. The following function
computes the total elapsed number of days in a year, given the month, the day of the
month, and the value of extra_day, which is 1 for a leap year and 0 otherwise.

function total_days = total(month,day,extra_day)
total_days = day;
for k = 1:month - 1

switch k
case {1,3,5,7,8,10,12}

total_days = total_days + 31;
case {4,6,9,11}

total_days = total_days + 30;
case 2

total_days = total_days + 28 + extra_day;
end

end

The function can be used as shown in the following program.

month = input(‘Enter month (1 - 12): ‘);
day = input(‘Enter day (1 - 31): ‘);
extra_day = input(‘Enter 1 for leap year; 0 otherwise: ‘);
total_days = total(month,day,extra_day)

One of the chapter problems for Section 4.4 (Problem 19) asks you to write
a program to determine whether a given year is a leap year.

4.8 Debugging MATLAB Programs
Use of the MATLAB Editor/Debugger as an M- le editor was discussed in Sec-
tion 1.4. Figure 1.4–1 shows the Editor/Debugger screen. Figure 4.8–1 shows the
Debugger containing two programs to be analyzed. Here we discuss its use as a
debugger. Before you use the Debugger, try to debug your program using the
commonsense guidelines presented under Debugging Script Files in Section 1.4.
MATLAB programs are often short because of the power of the commands, and
you may not need to use the Debugger unless you are writing large programs.
However, the cell mode discussed in this section is useful even for short programs.
The Editor/Debugger menu bar contains the following items: File, Edit, Text,
Go, Cell, Tools, Debug, Desktop, Window, and Help. The File, Edit, Desktop,

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 190

www.EBooksWorld.ir

Window, and Help menus are similar to those in the Desktop. The Go menu lets
you go backward or forward in the le. The Cell menu will be discussed shortly.
The Tools menu involves advanced topics that will not be treated in this text. The
Desktop menu is similar to that in the Command window. It enables you to dock
and undock windows, arrange the Editor window, and turn the Editor toolbar on
and off.

Below the menu bar is the Editor/Debugger toolbar. It enables you to access
several of the items in the menus with one click of the mouse. Hold the mouse
cursor over a button on the toolbar to see its function. For example, clicking the
button with the binoculars icon is equivalent to selecting Find and Replace from
the Edit menu. One item on the toolbar that is not in the menus is the function
button with the script f icon (f). Use this button to go to a particular function in
the M- le. The list of functions that you will see includes only those functions
whose function statements are in the program. The list does not include functions
that are called from the M- le.

The Text menu supplements the Edit menu for creating M- les. With the
Text menu you can insert or remove comments, increase or decrease the amount
of indenting, turn on smart indenting, and evaluate and display the values of
selected variables in the Command window. Click anywhere in a previously
typed line, and then click Comment in the Text menu. This makes the entire line
a comment. To turn a commented line into an executable line, click anywhere in
the line, and then click Uncomment in the Text menu.

Cell Mode
The cell mode can be used to debug programs. It can also be used to generate
a report. See the end of Section 5.2 for a discussion of the latter usage. A cell is
a group of commands. (Such a cell should not be confused with the cell array
data type covered in Section 2.6.) Type the double percent character (%%) to
mark the beginning of a new cell; it is called a cell divider. The cell mode is en-
abled when you rst enter your program into the Editor . To disable cell mode,
click the Cell button and select Disable Cell Mode. The cell toolbar is shown
in Figure 4.8–2.

4.8 Debugging MATLAB Programs 191

Figure 4.8–1 The Editor/Debugger containing two programs to be analyzed.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 191

www.EBooksWorld.ir

Consider the following simple program that plots either a quadratic or a
cubic function.

%% Evaluate a quadratic and a cubic.
clear, clc
x = linspace(0, 10, 300);
%% Quadratic
y1 = polyval([1, -8, 6], x); plot(x,y1)
%% Cubic
y2 = polyval([1, -11, 9, 9], x); plot(x,y2)

After entering and saving the program, you can click on one of the evaluation
icons shown on the left-hand side of the cell toolbar (see Figure 4.8–2). These
enable you to evaluate the current single cell (where the cursor is currently), to eval-
uate the current cell and advance to the next cell, or to evaluate the entire program.

A useful feature of cell mode is that it enables you to evaluate the results of
changing a parameter. For example, in Figure 4.8–2, suppose the cursor is next
to the number �8. If you click the plus (�) or minus (�) sign in the cell toolbar,
the parameter (�8) will be decremented or incremented by the increment shown
in the window (1.0 is the default, which you can change). If you have already run
the program and the quadratic plot is on the screen, click the minus sign once to
change the parameter from �8 to �9 and watch the plot change.

You can also change the parameter by a divisive or multiplicative factor (1.1
is the default). Click the divide or multiply symbol on the cell toolbar.

The Debug Menu

Breakpoints are points in the file where execution stops temporarily so that
you can examine the values of the variables up to that point. You set break-
points with the Set/Clear Breakpoint item on the Debug menu. Use the Step,

192 CHAPTER 4 Programming with MATLAB

Figure 4.8–2 The cell mode of the Editor/Debugger.

BREAKPOINT

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 192

www.EBooksWorld.ir

Step In, and Step Out items on the Debug menu to step through your file
after you have set breakpoints and run the file. Click Step to watch the script
execute one step at a time. Click Step In to step into the first executable line
in a function being called. Click Step Out in a called function to run the rest
of the function and then return to the calling program.

The solid green arrow to the left of the line text indicates the next line to be
executed. When this arrow changes to a hollow green arrow, MATLAB control
is now in a function being called. Execution returns to the line with the solid
green arrow after the function completes its operation. The arrow turns yellow
at a line where execution pauses or where a function completes its operation.
When the program pauses, you can assign new values to a variable, using ei-
ther the Command window or the Array Editor.

Click on the Go Until Cursor item to run the le until it reaches the line
where the cursor is; this process sets a temporary breakpoint at the cursor. You
can save and execute your program directly from the Debug menu if you want,
by clicking on Run (or Save and Run if you have made changes). You can also
click on the Run icon. You need not set any breakpoints beforehand. Click Exit
Debug Mode to return to normal editing. To save any changes you have made to
the program, rst exit the debug mode, and then save the le.

Using Breakpoints
Most debugging sessions start by setting a breakpoint. A breakpoint stops M- le
execution at a speci ed line and allows you to view or change values in the func-
tion’s workspace before resuming execution. To set a breakpoint, position the
cursor in the line of text and click on the breakpoint icon in the toolbar or select
Set/Clear Breakpoints from the Debug menu. You can also set a breakpoint by
right-clicking on the line of text to bring up the Context menu and choosing
Set/Clear Breakpoint. A red circle next to a line indicates that a breakpoint is set
at that line. If the line selected for a breakpoint is not an executable line, then the
breakpoint is set at the next executable line. The Debug menu enables you to
clear all the breakpoints (select Clear Breakpoints in All Files). The Debug
menu also lets you halt M- le execution if your code generates a warning, an
error, or an NaN or Inf value (select Stop if Errors/ Warnings).

4.9 Applications to Simulation
Simulation is the process of building and analyzing the output of computer pro-
grams that describe the operations of an organization, process, or physical system.
Such a program is called a computer model. Simulation is often used in operations
research, which is the quantitative study of an organization in action, to nd ways
to improve the functioning of the organization. Simulation enables engineers to
study the past, present, and future actions of the organization for this purpose.
Operations research techniques are useful in all engineering elds. Common
examples include airline scheduling, traf c ow studies, and production lines. The
MATLAB logical operators and loops are excellent tools for building simulation
programs.

4.9 Applications to Simulation 193

OPERATIONS
RESEARCH

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 193

www.EBooksWorld.ir

194 CHAPTER 4 Programming with MATLAB

EXAMPLE 4.9–1 A College Enrollment Model: Part I

As an example of how simulation can be used for operations research, consider the fol-
lowing college enrollment model. A certain college wants to analyze the effect of
admissions and freshman retention rate on the college’s enrollment so that it can predict
the future need for instructors and other resources. Assume that the college has esti-
mates of the percentages of students repeating a grade or leaving school before gradu-
ating. Develop a matrix equation on which to base a simulation model that can help in
this analysis.

■ Solution
Suppose that the current freshman enrollment is 500 students and the college decides to
admit 1000 freshmen per year from now on. The college estimates that 10 percent of
the freshman class will repeat the year. The number of freshmen in the following year will
be 0.1(500) � 1000 � 1050, then it will be 0.1(1050) � 1000 � 1105, and so on. Let
x1(k) be the number of freshmen in year k, where k � 1, 2, 3, 4, 5, 6, Then in year
k � 1, the number of freshmen is given by

(4.9–1)

Because we know the number of freshmen in the rst year of our analysis (which is
500), we can solve this equation step by step to predict the number of freshmen in the
future.

Let x2(k) be the number of sophomores in year k. Suppose that 15 percent of the
freshmen do not return and that 10 percent repeat freshman year. Thus 75 percent of
the freshman class returns as sophomores. Suppose also 5 percent of the sophomores
repeat the sophomore year and that 200 sophomores each year transfer from other
schools. Then in year k � 1, the number of sophomores is given by

To solve this equation, we need to solve the “freshman” equation (4.9–1) at the same
time, which is easy to do with MATLAB. Before we solve these equations, let us develop
the rest of the model.

Let x3(k) and x4(k) be the number of juniors and seniors, respectively, in year k.
Suppose that 5 percent of the sophomores and juniors leave school and that 5 percent of
the sophomores, juniors, and seniors repeat the grade. Thus 90 percent of the sophomores
and juniors return and advance in grade. The models for the juniors and seniors are

x4(k + 1) = 0.9x3(k) + 0.05x4(k)

x3(k + 1) = 0.9x2(k) + 0.05x3(k)

x2(k + 1) = 0.75x1(k) + 0.05x2(k) + 200

 = 0.1x1(k) + 1000

 + 1000 new freshmen

 repeating freshman year
 x1(k + 1) = 10 percent of previous freshman class

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 194

www.EBooksWorld.ir

These four equations can be written in the following matrix form:

� �

In Example 4.9–2 we will see how to use MATLAB to solve such equations.

Test Your Understanding

T4.9–1 Suppose that 70 percent of the freshmen, instead of 75 percent, return for
the sophomore year. How does the previous equation change?

A College Enrollment Model: Part II

To study the effects of admissions and transfer policies, generalize the enrollment model
in Example 4.9–1 to allow for varying admissions and transfers.

■ Solution
Let a(k) be the number of new freshmen admitted in the spring of year k for the follow-
ing year k + 1, and let d(k) be the number of transfers into the following year’s sophomore
class. Then the model becomes

where we have written the coef cients c21, c22, and so on in symbolic, rather than numer-
ical, form so that we can change their values if desired.

This model can be represented graphically by a state transition diagram, like the one
shown in Figure 4.9–1. Such diagrams are widely used to represent time-dependent and
probabilistic processes. The arrows indicate how the model’s calculations are updated for

 x4(k + 1) = c43x3(k) + c44x4(k)

 x3(k + 1) = c32x2(k) + c33x3(k)

 x2(k + 1) = c21x1(k) + c22x2(k) + d(k)

 x1(k + 1) = c11x1(k) + a(k)

≥
1000

200

0

0

¥≥
x1(k)

x2(k)

x3(k)

x4(k)

¥≥
0.1 0 0 0

0.75 0.05 0 0

0 0.9 0.05 0

0 0 0.9 0.05

¥≥
x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)

¥

4.9 Applications to Simulation 195

EXAMPLE 4.9–2

STATE
TRANSITION
DIAGRAM

x 1(k) 2x (k) x 3(k) x 4(k)

a (k) c 21 c 32 c 43

d (k)

Sophomore Transfers

Freshmen Sophomores SeniorsJuniors

c 11 c 22 c 33 c 44

New Admissions

Figure 4.9–1 The state transition diagram for the college enrollment model.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 195

www.EBooksWorld.ir

196 CHAPTER 4 Programming with MATLAB

each new year. The enrollment at year k is described completely by the values of x1(k),
x2(k), x3(k), and x4(k), that is, by the vector x(k), which is called the state vector. The ele-
ments of the state vector are the state variables. The state transition diagram shows how
the new values of the state variables depend on both the previous values and the inputs
a(k) and d(k).
The four equations can be written in the following matrix form:

� �

or more compactly as

where

and

Suppose that the initial total enrollment of 1480 consists of 500 freshmen, 400 sopho-
mores, 300 juniors, and 280 seniors. The college wants to study, over a 10-year period,
the effects of increasing admissions by 100 each year and transfers by 50 each year until
the total enrollment reaches 4000; then admissions and transfers will be held constant.
Thus the admissions and transfers for the next 10 years are given by

for k �1, 2, 3, . . . until the college’s total enrollment reaches 4000; then admissions and
transfers are held constant at the previous year’s levels. We cannot determine when this
event will occur without doing a simulation. Table 4.9–1 gives the pseudocode for solv-
ing this problem. The enrollment matrix E is a 4 � 10 matrix whose columns represent
the enrollment in each year.

Because we know the length of the study (10 years), a for loop is a natural choice.
We use an if statement to determine when to switch from the increasing admissions
and transfer schedule to the constant schedule. A MATLAB script le to predict the en-
rollment for the next 10 years appears in Table 4.9–2. Figure 4.9–2 shows the resulting

 d(k) = 150 + 50k

 a(k) = 900 + 100k

C = ≥
c11 0 0 0

c21 c22 0 0

0 c32 c33 0

0 0 c43 c44

¥

b(k) = ≥
a(k)

d(k)

0

0

¥x(k) = ≥
x1(k)

x2(k)

x3(k)

x4(k)

¥

x(k + 1) = Cx(k) + b(k)

≥
a(k)

d(k)

0

0

¥≥
x1(k)

x2(k)

x3(k)

x4(k)

¥≥
c11 0 0 0

c21 c22 0 0

0 c32 c33 0

0 0 c43 c44

¥≥
x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)

¥

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 196

www.EBooksWorld.ir

4.9 Applications to Simulation 197

Table 4.9–1 Pseudocode for Example 4.9–2

Enter the coef cient matrix C and the initial enrollment vector x.
Enter the initial admissions and transfers, a(1) and d(1).
Set the rst column of the enrollment matrix E equal to x.
Loop over years 2 to 10.

If the total enrollment is 	 4000, increase admissions by 100 and transfers
by 50 each year.
If the total enrollment is 4000, hold admissions and transfers constant.
Update the vector x, using x � Cx � b.
Update the enrollment matrix E by adding another column composed of x.

End of the loop over years 2 to 10.
Plot the results.

Table 4.9–2 College enrollment model

% Script le enroll1.m. Computes college enrollment.

% Model’s coef cients.

C = [0.1,0,0,0;0.75,0.05,0,0;0,0.9,0.05,0;0,0,0.9,0.05];

% Initial enrollment vector.

x = [500;400;300;280];

% Initial admissions and transfers.

a(1) = 1000; d(1) = 200;

% E is the 4 x 10 enrollment matrix.

E(:,1) = x;

% Loop over years 2 to 10.

for k = 2:10

% The following describes the admissions

% and transfer policies.

if sum(x) <= 4000

% Increase admissions and transfers.

a(k) = 900+100*k;

d(k) = 150+50*k;

else

% Hold admissions and transfers constant.

a(k) = a(k-1);

d(k) = d(k-1);

end

% Update enrollment matrix.

b = [a(k);d(k);0;0];

x = C*x+b;

E(:,k) = x;

end

% Plot the results.

plot(E’),hold,plot(E(1,:),’o’),plot(E(2,:),’+’),plot(E(3,:),’*’),...

plot(E(4,:),’x’),xlabel(‘Year’),ylabel(‘Number of Students’),...

gtext(‘Frosh’),gtext(‘Soph’),gtext(‘Jr’),gtext(‘Sr’),...

title(‘Enrollment as a Function of Time’)

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 197

www.EBooksWorld.ir

plot. Note that after year 4 there are more sophomores than freshmen. The reason is
that the increasing transfer rate eventually overcomes the effect of the increasing
admission rate.

In actual practice this program would be run many times to analyze the effects of
different admissions and transfer policies and to examine what happens if different
values are used for the coef cients in the matrix C (indicating different dropout and
repeat rates).

Test Your Understanding

T4.9–2 In the program in Table 4.9–2, lines 16 and 17 compute the values of
a(k) and d(k). These lines are repeated here:

a(k) = 900 + 100 * k
d(k) = 150 + 50 * k;

Why does the program contain the line a(1)=1000; d(1)=200;?

198 CHAPTER 4 Programming with MATLAB

1 2 3 4 5 6 7 8 9 10
200

400

600

800

1000

1200

1400

1600

Year

N
um

be
r

of
 S

tu
de

nt
s

Enrollment As a Function of Time

Frosh

Soph

Jr
Sr

Figure 4.9–2 Class enrollments versus time.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 198

www.EBooksWorld.ir

4.10 Summary
Now that you have nished this chapter, you should be able to write programs that
can perform decision-making procedures; that is, the program’s operations depend
on results of the program’s calculations or on input from the user. Sections 4.2,
4.3, and 4.4 covered the necessary functions: the relational operators, the logical
operators and functions, and the conditional statements.

You should also be able to use MATLAB loop structures to write programs
that repeat calculations a speci ed number of times or until some condition is
satis ed. This feature enables engineers to solve problems of great complexity or
requiring numerous calculations. The for loop and while loop structures were
covered in Sections 4.5 and 4.6. Section 4.7 covered the switch structure.

Section 4.8 gave an overview and an example of how to debug programs
using the Editor/Debugger. Section 4.9 presented an application of these methods
to simulation, which enables engineers to study the operation of complicated
systems, processes, and organizations.

Tables summarizing the MATLAB commands introduced in this chapter are
located throughout the chapter. Table 4.10–1 will help you locate these tables. It
also summarizes those commands not found in the other tables.

4.10 Summary 199

Table 4.10–1 Guide to MATLAB commands introduced in Chapter 4

Relational operators Table 4.2–1
Logical operators Table 4.3–1
Order of precedence for operator types Table 4.3–2
Truth table Table 4.3–3
Logical functions Table 4.3–4

Miscellaneous commands

Command Description Section

break Terminates the execution of a for or a while loop. 4.5, 4.6
case Used with switch to direct program execution. 4.7
continue Passes control to the next iteration of a for or while loop. 4.5, 4.6
double Converts a logical array to class double. 4.2
else Delineates an alternate block of statements. 4.4
elseif Conditionally executes statements. 4.4
end Terminates for, while, and if statements. 4.4, 4.5, 4.6
for Repeats statements a speci c number of times. 4.5
if Executes statements conditionally. 4.4
input(‘s1’, ‘s’) Display the prompt string s1 and stores user input as a string. 4.4
logical Converts numeric values to logical values. 4.2
nargin Determines the number of input arguments of a function. 4.4
nargout Determines the number of output arguments of a function. 4.4
switch Directs program execution by comparing the input expression with

the associated case expressions. 4.7
while Repeats statements an inde nite number of times. 4.6
xor Exclusive OR function. 4.3

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 199

www.EBooksWorld.ir

200 CHAPTER 4 Programming with MATLAB

Problems
You can nd answers to problems marked with an asterisk at the end of the text.

Section 4.1
1. The volume V and surface area A of a sphere of radius r are given by

a. Develop a pseudocode description of a program to compute V and A
for m and to plot V versus A.

b. Write and run the program described in part a.

2. The roots of the quadratic equation are given by

a. Develop a pseudocode description of a program to compute both roots
given the values of a, b, and c. Be sure to identify the real and
imaginary parts.

b. Write the program described in part a and test it for the following
cases:
1.

2.

3.

3. It is desired to compute the sum of the rst 10 terms of the series

a. Develop a pseudocode description of the required program.
b. Write and run the program described in part a.

14k3
- 20k2

+ 5k, k = 1, 2, 3, Á

a = 4, b = 24, c = 100

a = 3, b = 24, c = 48

a = 2, b = 10, c = 12

x =

-b � 1b2
- 4ac

2a

ax2
+ bx + c = 0

0 … r … 3

V =

4

3
�r3 A = 4�r2

Key Terms with Page References

Breakpoint, 192
Conditional statement, 164
Flowchart, 150
for loop, 171
Implied loop, 177
Logical operator, 157
Masks, 180
Nested loops, 174
Operations research, 193
Pseudocode, 151

Relational operator, 155
Simulation, 193
State transition diagram, 195
Structure chart, 150
Structured programming, 148
switch structure, 188
Top-down design, 149
Truth table, 159
while loop, 183

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 200

www.EBooksWorld.ir

Section 4.2
4.* Suppose that x = 6. Find the results of the following operations by hand

and use MATLAB to check your results.
a. z = (x < 10)
b. z = (x == 10)
c. z = (x >= 4)
d. z = (x ~= 7)

5.* Find the results of the following operations by hand and use MATLAB to
check your results.
a. z = 6 > 3 + 8
b. z = 6 + 3 > 8
c. z = 4 > (2 + 9)
d. z = (4 < 7) + 3
e. z = 4 < 7 + 3
f. z = (4<7)*5
g. z = 4<(7*5)
h. z = 2/5>=5

6.* Suppose that x = [10, -2, 6, 5, -3] and y = [9, -3, 2,
5, -1]. Find the results of the following operations by hand and use
MATLAB to check your results.
a. z = (x < 6)
b. z = (x <= y)
c. z = (x == y)
d. z = (x ~= y)

7. For the arrays x and y given below, use MATLAB to nd all the elements
in x that are greater than the corresponding elements in y.
x = [-3, 0, 0, 2, 6, 8] y = [-5, -2, 0, 3, 4, 10]

8. The array price given below contains the price in dollars of a certain
stock over 10 days. Use MATLAB to determine how many days the price
was above $20.
price = [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]

9. The arrays price_A and price_B given below contain the price in
dollars of two stocks over 10 days. Use MATLAB to determine how
many days the price of stock A was above the price of stock B.
price_A = [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]

price_B = [22, 17, 20, 19, 24, 18, 16, 25, 28, 27]

10. The arrays price_A, price_B, and price_C given below contain the
price in dollars of three stocks over 10 days.
a. Use MATLAB to determine how many days the price of stock A was

above both the price of stock B and the price of stock C.

Problems 201

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 201

www.EBooksWorld.ir

b. Use MATLAB to determine how many days the price of stock A was
above either the price of stock B or the price of stock C.

c. Use MATLAB to determine how many days the price of stock A was
above either the price of stock B or the price of stock C, but not
both.

price_A = [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]

price_B = [22, 17, 20, 19, 24, 18, 16, 25, 28, 27]

price_C = [17, 13, 22, 23, 19, 17, 20, 21, 24, 28]

Section 4.3
11.* Suppose that x = [-3, 0, 0, 2, 5, 8] and y = [-5, -2,

0, 3, 4, 10]. Find the results of the following operations by hand
and use MATLAB to check your results.
a. z = y < ~ x
b. z = x & y

c. z = x|y
d. z = xor(x,y)

12. The height and speed of a projectile (such as a thrown ball) launched with
a speed of at an angle A to the horizontal are given by

where g is the acceleration due to gravity. The projectile will strike the
ground when which gives the time to hit .

Suppose that A � 30°, m/s, and m/s2. Use the
MATLAB relational and logical operators to nd the times when
a. The height is no less than 15 m.
b. The height is no less than 15 m and the speed is simultaneously no

greater than 36 m/s.
c. The height is less than 5 m or the speed is greater than 35 m/s.

13.* The price, in dollars, of a certain stock over a 10-day period is given in
the following array.

price = [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]

Suppose you owned 1000 shares at the start of the 10-day period, and you
bought 100 shares every day the price was below $20 and sold 100 shares
every day the price was above $25. Use MATLAB to compute (a) the
amount you spent in buying shares, (b) the amount you received from the
sale of shares, (c) the total number of shares you own after the 10th day,
and (d) the net increase in the worth of your portfolio.

g = 9.81y0 = 40

thit = 2(�0>g) sin Ah(t) = 0,

 �(t) = 1�2
0 - 2�0gt sin A + g2t2

 h(t) = �0t sin A - 0.5 gt2

y0

202 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 202

www.EBooksWorld.ir

14. Let e1 and e2 be logical expressions. DeMorgan’s laws for logical
expressions state that

NOT(e1 AND e2) implies that (NOT e1) OR (NOT e2)
and
NOT(e1 OR e2) implies that (NOT e1) AND (NOT e2)
Use these laws to nd an equivalent expression for each of the following
expressions and use MATLAB to verify the equivalence.

a. ~((x < 10) & (x >= 6))
b. ~((x == 2) | (x > 5))

15. Are these following expressions equivalent? Use MATLAB to check your
answer for speci c values of a, b, c, and d.

a. 1. (a == b) & ((b == c)|(a == c))

2. (a == b)|((b == c)&(a == c))

b. 1. (a < b) & ((a > c)|(a > d))

2. (a < b) & (a > c)|((a < b)&(a > d))

16. Write a script le using conditional statements to evaluate the following
function, assuming that the scalar variable x has a value. The function is
y � ex � 1 for x
 �1, y � 2 � cos(�x) for �1 	 x
 5, and y � 10(x � 5) � 1
for x � 5. Use your le to evaluate y for x � �5, x � 3, and x � 15, and
check the results by hand.

Section 4.4
17. Rewrite the following statements to use only one if statement.

if x < y

if z < 10

w = x*y*z

end

end

18. Write a program that accepts a numerical value x from 0 to 100 as input
and computes and displays the corresponding letter grade given by the
following table.

A
B

C
D

F

a. Use nested if statements in your program (do not use elseif).
b. Use only elseif clauses in your program.

x 6 60

60 … x … 69
70 … x … 79

80 … x … 89
x Ú 90

Problems 203

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 203

www.EBooksWorld.ir

19. Write a program that accepts a year and determines whether the year is a
leap year. Use the mod function. The output should be the variable
extra_day, which should be 1 if the year is a leap year and 0 other-
wise. The rules for determining leap years in the Gregorian calendar are
as follows:

1. All years evenly divisible by 400 are leap years.
2. Years evenly divisible by 100 but not by 400 are not leap years.
3. Years divisible by 4 but not by 100 are leap years.
4. All other years are not leap years.

For example, the years 1800, 1900, 2100, 2300, and 2500 are not leap
years, but 2400 is a leap year.

20. Figure P20 shows a mass-spring model of the type used to design packag-
ing systems and vehicle suspensions, for example. The springs exert a
force that is proportional to their compression, and the proportionality
constant is the spring constant k. The two side springs provide additional
resistance if the weight W is too heavy for the center spring. When the
weight W is gently placed, it moves through a distance x before coming to
rest. From statics, the weight force must balance the spring forces at this
new position. Thus

if x
 d

if x � d

These relations can be used to generate the plot of x versus W.
a. Create a function le that computes the distance x, using the input

parameters W, k1, k2, and d. Test your function for the following
two cases, using the values k1 � 104 N/m; k2 � 1.5 � 104 N/m;
d � 0.1 m.

W � 500 N

W � 2000 N

b. Use your function to plot x versus W for 0 	 W 	 3000 N for the
values of k1, k2, and d given in part a.

W = k1x + 2k2(x - d)

W = k1x

204 CHAPTER 4 Programming with MATLAB

d

W

k2

k1

k2

x

Platform

Figure P20

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 204

www.EBooksWorld.ir

Section 4.5
21. Use a for loop to plot the function given in Problem 16 over the interval

�2 	 x 	 6. Properly label the plot. The variable y represents height in
kilometers, and the variable x represents time in seconds.

22. Use a for loop to determine the sum of the rst 10 terms in the series
5k3, k � 1, 2, 3, . . . , 10.

23. The (x, y) coordinates of a certain object as a function of time t are given
by

for 0 	 t 	 4. Write a program to determine the time at which the object
is the closest to the origin at (0, 0). Determine also the minimum distance.
Do this in two ways:
a. By using a for loop.
b. By not using a for loop.

24. Consider the array A.

Write a program that computes the array B by computing the natural loga-
rithm of all the elements of A whose value is no less than 1, and adding
20 to each element that is equal to or greater than 1. Do this in two ways:
a. By using a for loop with conditional statements.
b. By using a logical array as a mask.

25. We want to analyze the mass-spring system discussed in Problem 20 for
the case in which the weight W is dropped onto the platform attached to
the center spring. If the weight is dropped from a height h above the plat-
form, we can nd the maximum spring compression x by equating the
weight’s gravitational potential energy with the potential
energy stored in the springs. Thus

which can be solved for x as

and

W(h + x) =
1
2 k1x

2
+

1
2(2k2)(x - d)2 if x Ú d

x =
W � 1W2

+ 2k1Wh
k1

 if x 6 d

W (h + x) = 12k1x
2 if x < d

W(h + x)

A =

3 5 - 4

J - 8 -1 33 K
- 17 6 - 9

x(t) = 5t - 10 y(t) = 25t2 - 120t + 144

Problems 205

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 205

www.EBooksWorld.ir

which gives the following quadratic equation to solve for x:

a. Create a function le that computes the maximum compression x due
to the falling weight. The function’s input parameters are k1, k2, d, W,
and h. Test your function for the following two cases, using the
values N/m; N/m; and m.

b. Use your function le to generate a plot of x versus h for 0 	 h 	 2 m.
Use N and the preceding values for k1, k2, and d.

26. Electrical resistors are said to be connected “in series” if the same current
passes through each and “in parallel” if the same voltage is applied across
each. If in series, they are equivalent to a single resistor whose resistance
is given by

If in parallel, their equivalent resistance is given by

Write an M- le that prompts the user for the type of connection (series or
parallel) and the number of resistors n and then computes the equivalent
resistance.

27. a. An ideal diode blocks the ow of current in the direction opposite that
of the diode’s arrow symbol. It can be used to make a half-wave recti-
 er as shown in Figure P27a. For the ideal diode, the voltage across
the load RL is given by

Suppose the supply voltage is

where time t is in seconds. Write a MATLAB program to plot the volt-
age versus t for .

b. A more accurate model of the diode’s behavior is given by the offset
diode model, which accounts for the offset voltage inherent in semi-
conductor diodes. The offset model contains an ideal diode and a bat-
tery whose voltage equals the offset voltage (which is approximately

0 … t … 10�L

�S(t) = 3e- t/3 sin(�t) V

�L = e �S if �S 7 0

0 if �S … 0

�L

1

R
=

1

R1
+

1

R2
+

1

R3
+

Á
+

1

Rn

R = R1 + R2 + R3 +
Á

+ Rn

W = 100

 W = 2000 N h = 0.5 m

 W = 100 N h = 0.5 m

d = 0.1k2 = 1.5 * 104k1 = 104

(k1 + 2k2)x
2

- (4k2d + 2W)x + 2k2d
2

- 2 Wh = 0 if x Ú d

206 CHAPTER 4 Programming with MATLAB

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 206

www.EBooksWorld.ir

0.6 V for silicon diodes) [Rizzoni, 2007]. The half-wave recti er using
this model is shown in Figure P27b. For this circuit,

Using the same supply voltage given in part a, plot the voltage versus
t for ; then compare the results with the plot obtained in
part a.

28.* A company wants to locate a distribution center that will serve six of its
major customers in a mi area. The locations of the customers
relative to the southwest corner of the area are given in the following
table in terms of (x, y) coordinates (the x direction is east; the y direction
is north) (see Figure P28). Also given is the volume in tons per week that
must be delivered from the distribution center to each customer. The
weekly delivery cost ci for customer i depends on the volume Vi and the
distance di from the distribution center. For simplicity we will assume that
this distance is the straight-line distance. (This assumes that the road net-
work is dense.) The weekly cost is given by , .
Find the location of the distribution center (to the nearest mile) that mini-
mizes the total weekly cost to service all six customers.

i = 1, Á , 6ci = 0.5diVi

30 * 30

0 … t … 10
yL

�L = e �S - 0.6 if �S 7 0.6

0 if �S … 0.6

Problems 207

+

–

vS vL

Diode

+

–

vS
vL

+ –

(a)

(b)

0 .6 V

Figure P27

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 207

www.EBooksWorld.ir

29. A company has the choice of producing up to four different products with
its machinery, which consists of lathes, grinders, and milling machines.
The number of hours on each machine required to produce a product is
given in the following table, along with the number of hours available
per week on each type of machine. Assume that the company can sell
everything it produces. The pro t per item for each product appears in the
last line of the table.

208 CHAPTER 4 Programming with MATLAB

0 1 0 20 3 0
0

10

20

30
1

2

3

4

5

6

x (m iles)

y
(miles)

East

North

Figure P28

x location y location Volume
Customer (mi) (mi) (tons/week)

1 1 28 3
2 7 18 7
3 8 16 4
4 17 2 5
5 22 10 2
6 27 8 6

Product

1 2 3 4 Hours available

Hours required
Lathe 1 2 0.5 3 40
Grinder 0 2 4 1 30
Milling 3 1 5 2 45

Unit pro t ($) 100 150 90 120

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 208

www.EBooksWorld.ir

a. Determine how many units of each product the company should
make to maximize its total pro t, and then compute this pro t.
Remember, the company cannot make fractional units, so your
answer must be in integers. (Hint: First estimate the upper limits on
the number of products that can be produced without exceeding the
available capacity.)

b. How sensitive is your answer? How much does the pro t decrease if
you make one more or one less item than the optimum?

30. A certain company makes televisions, stereo units, and speakers. Its parts
inventory includes chassis, picture tubes, speaker cones, power supplies,
and electronics. The inventory, required components, and pro t for each
product appear in the following table. Determine how many of each prod-
uct to make in order to maximize the pro t.

Problems 209

Product

Television Stereo unit Speaker unit Inventory

Requirements
Chassis 1 1 0 450
Picture tube 1 0 0 250
Speaker cone 2 2 1 800
Power supply 1 1 0 450
Electronics 2 2 1 600

Unit pro t ($) 80 50 40

Section 4.6
31. Plot the function y � 10(1 � e�x/4) over the interval 0 	 x 	 xmax, using

a while loop to determine the value of xmax such that y(xmax) � 9.8.
Properly label the plot. The variable y represents force in newtons, and
the variable x represents time in seconds.

32. Use a while loop to determine how many terms in the series 2k, k � 1,
2, 3, . . . , are required for the sum of the terms to exceed 2000. What is
the sum for this number of terms?

33. One bank pays 5.5 percent annual interest, while a second bank pays
4.5 percent annual interest. Determine how much longer it will take to
accumulate at least $50 000 in the second bank account if you deposit
$1000 initially and $1000 at the end of each year.

34.* Use a loop in MATLAB to determine how long it will take to accumulate
$1 000 000 in a bank account if you deposit $10 000 initially and $10 000
at the end of each year; the account pays 6 percent annual interest.

35. A weight W is supported by two cables anchored a distance D apart
(see Figure P35). The cable length LAB is given, but the length LAC is to be

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 209

www.EBooksWorld.ir

210 CHAPTER 4 Programming with MATLAB

selected. Each cable can support a maximum tension force equal to W.
For the weight to remain stationary, the total horizontal force and total
vertical force must each be zero. This principle gives the equations

We can solve these equations for the tension forces TAB and TAC if we
know the angles and . From the law of cosines

From the law of sines

For the given values ft, ft, and lb, use a loop
in MATLAB to nd , the shortest length we can use without

or exceeding 2000 lb. Note that the largest can be is 6.7 ft
(which corresponds to). Plot the tension forces and on
the same graph versus for .

36.* In the structure in Figure P36a, six wires support three beams. Wires 1
and 2 can support no more than 1200 N each, wires 3 and 4 can support
no more than 400 N each, and wires 5 and 6 can support no more than
200 N each. Three equal weights W are attached at the points shown.
Assuming that the structure is stationary and that the weights of the wires
and the beams are very small compared to W, the principles of statics ap-
plied to a particular beam state that the sum of vertical forces is zero and

LACmin … LAC … 6.7LAC

TACTAB� = 90°
LACTACTAB

LACLACmin

W = 2000LAB = 3D = 6

� = sin- 1aLAB sin �

LAC
b

� = cos- 1aD2
+ LAB

2
- LAC

2

2DLAB
b

��

 TAB sin � + TAC sin � = W

 -TAB cos � + TAC cos � = 0

W

A

B

C

D

��

LA B LAC

Figure P35

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 210

www.EBooksWorld.ir

that the sum of moments about any point is also zero. Applying these
principles to each beam using the free-body diagrams shown in
Figure P36b, we obtain the following equations. Let the tension force in
wire i be . For beam 1

For beam 2

For beam 3

 -W + 3T6 = 0

 T5 + T6 = W

 -W - 2T5 + 3T4 = 0

 T3 + T4 = W + T5

 -T3 - 4T4 - 5W - 6T6 + 7T2 = 0

 T1 + T2 = T3 + T4 + W + T6

Ti

Problems 211

1m
1 2

3

(a)

(b)

4

5

6
W

W

W

1m 1m 1m 1m 1m 1m

W

W

W

T1 T2

T6T4T3

T5
T6

1 3 1 1 1

11 1 1

1 2

Figure P36

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 211

www.EBooksWorld.ir

Find the maximum value of the weight W the structure can support.
Remember that the wires cannot support compression, so Ti must be
nonnegative.

37. The equations describing the circuit shown in Figure P37 are

a. The given values of the resistances and the voltage are ,

�, and V.

(Note that 1 k� � 1000 �.) Suppose that each resistance is rated to
carry a current of no more than 1 mA (� 0.001 A). Determine the
allowable range of positive values for the voltage 2.

b. Suppose we want to investigate how the resistance R3 limits the
allowable range for . Obtain a plot of the allowable limit on as a

function of R3 for k�.

38. Many applications require us to know the temperature distribution in an
object. For example, this information is important for controlling the ma-
terial properties, such as hardness, when cooling an object formed from
molten metal. In a heat-transfer course, the following description of the
temperature distribution in a at, rectangular metal plate is often derived.
The temperature is held constant at on three sides and at on the
fourth side (see Figure P38). The temperature as a function of the
xy coordinates shown is given by

T (x, y) = (T2 - T1)w(x, y) + T1

T(x, y)
T2T1

150 … R3 … 250

y2y2

y

y1 = 100R2 = 100, R3 = 200, R4 = 150, R5 = 250 k

R1 = 5y1

 i2 = i3 + i5

 i1 = i2 + i4

 -R5i5 + R3i3 + y2 = 0

 -R4i4 + R2i2 + R5i5 = 0

 -y1 + R1i1 + R4i4 = 0

212 CHAPTER 4 Programming with MATLAB

+

–

+

–

v1 v2R5

R1 R2 R3

R4

i5i4

i3i2i1

Figure P37

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 212

www.EBooksWorld.ir

where

Use the following data: F, F, and ft.

a. The terms in the preceding series become smaller in magnitude as
n increases. Write a MATLAB program to verify this fact for

for the center of the plate ().
b. Using , write a MATLAB program to determine how many

terms are required in the series to produce a temperature calculation
that is accurate to within 1 percent. (That is, for what value of n will
the addition of the next term in the series produce a change in T of less
than 1 percent?) Use your physical insight to determine whether this
answer gives the correct temperature at the center of the plate.

c. Modify the program from part b to compute the temperatures in the
plate; use a spacing of 0.2 for both x and y.

39. Consider the following script le. Fill in the lines of the following table
with the values that would be displayed immediately after the while
statement if you ran the script le. Write in the values the variables have
each time the while statement is executed. You might need more or
fewer lines in the table. Then type in the le, and run it to check your
answers.

k = 1;b = -2;x = -1;y = -2;
while k <= 3

k, b, x, y
y = x^2 - 3;

x = y = 1
x = y = 1n = 1, Á , 19

W = L = 2T2 = 200°T1 = 70°

w(x, y) =

2
�a

q

n odd

2
n

 sin a n�x

L
b sinh(n�y/L)

sinh(n�W/L)

Problems 213

y

x

T1

T2

T1

T1
0 L

0

W

T (x ,y)

Figure P38

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 213

www.EBooksWorld.ir

if y < b
b = y;

end
x = x + 1;
k = k + 1;

end

214 CHAPTER 4 Programming with MATLAB

Pass k b x y

First

Second

Third

Fourth

Fifth

Materials �

Metal on metal 0.20
Wood on wood 0.35
Metal on wood 0.40
Rubber on concrete 0.70

40. Assume that the human player makes the rst move against the computer
in a game of Tic-Tac-Toe, which has a 3 � 3 grid. Write a MATLAB
function that lets the computer respond to that move. The function’s input
argument should be the cell location of the human player’s move. The
function’s output should be the cell location of the computer’s rst move.
Label the cells as 1, 2, 3 across the top row; 4, 5, 6 across the middle row;
and 7, 8, 9 across the bottom row.

Section 4.7
41. The following table gives the approximate values of the static coef cient

of friction � for various materials.

To start a weight W moving on a horizontal surface, you must push with
a force F, where . Write a MATLAB program that uses the
switch structure to compute the force F. The program should accept as
input the value of W and the type of materials.

42. The height and speed of a projectile (such as a thrown ball) launched with
a speed of at an angle A to the horizontal are given by

 �(t) = 1�0
2

- 2�0gt sin A + g2t2
 h(t) = �0t sin A - 0.5gt2

y0

F = �W

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 214

www.EBooksWorld.ir

where g is the acceleration due to gravity. The projectile will strike the
ground when , which gives the time to hit .

Use the switch structure to write a MATLAB program to compute
the maximum height reached by the projectile, the total horizontal distance
traveled, or the time to hit. The program should accept as input the user’s
choice of which quantity to compute and the values of , A, and g. Test
the program for the case where m/s, , and m/s2.

43. Use the switch structure to write a MATLAB program to compute the
amount of money that accumulates in a savings account in one year. The
program should accept the following input: the initial amount of money
deposited in the account; the frequency of interest compounding
(monthly, quarterly, semiannually, or annually); and the interest rate.
Run your program for a $1000 initial deposit for each case; use a 5 per-
cent interest rate. Compare the amounts of money that accumulate for
each case.

44. Engineers often need to estimate the pressures and volumes of a gas in a
container. The van der Waals equation is often used for this purpose. It is

where the term b is a correction for the volume of the molecules and the
term is a correction for molecular attractions. The gas constant is R,
the absolute temperature is T, and the gas speci c volume is . The value
of R is the same for all gases; it is R � 0.08206 L-atm/mol-K. The values
of a and b depend on the type of gas. Some values are given in the follow-
ing table. Write a user-de ned function using the switch structure that
computes the pressure P on the basis of the van der Waals equation. The
function’s input arguments should be T, , and a string variable contain-
ing the name of a gas listed in the table. Test your function for chlorine
(Cl2) for T � 300 K and � 20 L/mol.VN

VN

VN
a/VN 2

P =

RT

VN - b
-

a

VN 2

g = 9.81A = 300y0 = 40
�0

thit = 2(�0 >g) sin Ah(t) = 0

Problems 215

Gas a (L2-atm/mol2) b (L/mol)

Helium, He 0.0341 0.0237
Hydrogen, H2 0.244 0.0266
Oxygen, O2 1.36 0.0318
Chlorine, Cl2 6.49 0.0562
Carbon dioxide, CO2 3.59 0.0427

45. Using the program developed in Problem 19, write a program that uses
the switch structure to compute the number of days in a year up to a
given date, given the year, the month, and the day of the month.

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 215

www.EBooksWorld.ir

Section 4.9
46. Consider the college enrollment model discussed in Example 4.9–2. Sup-

pose the college wants to limit freshman admissions to 120 percent of the
current sophomore class and limit sophomore transfers to 10 percent of
the current freshman class. Rewrite and run the program given in the
example to examine the effects of these policies over a 10-year period.
Plot the results.

47. Suppose you project that you will be able to deposit the following
monthly amounts into a savings account for a period of 5 years. The
account initially has no money in it.

216 CHAPTER 4 Programming with MATLAB

Year 1 2 3 4 5
Monthly deposit ($) 300 350 350 350 400

Week 1 2 3 4 5 6 7 8 9 10
Sales 50 55 60 70 70 75 80 80 90 55

At the end of each year in which the account balance is at least $3000,
you withdraw $2000 to buy a certi cate of deposit (CD), which pays
6 percent interest compounded annually.

Write a MATLAB program to compute how much money will
accumulate in 5 years in the account and in any CDs you buy. Run
the program for two different savings interest rates: 4 percent and
5 percent.

48.* A certain company manufactures and sells golf carts. At the end of each
week, the company transfers the carts produced that week into storage
(inventory). All carts that are sold are taken from the inventory. A simple
model of this process is

where

number of carts produced in week k

number of carts in inventory in week k

number of carts sold in week k

The projected weekly sales for 10 weeks are

S(k) =

I(k) =

P(k) =

I(k + 1) = P(k) + I(k) - S(k)

Suppose the weekly production is based on the previous week’s sales so
that . Assume that the rst week's production is 50 carts;
that is, . Write a MATLAB program to compute and plot theP(1) = 50

P(k) = S(k - 1)

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 216

www.EBooksWorld.ir

number of carts in inventory for each of the 10 weeks or until the inven-
tory drops below zero. Run the program for two cases: (a) an initial
inventory of 50 carts so that and (b) an initial inventory of
30 carts so that .

49. Redo Problem 48 with the restriction that the next week’s production is
set to zero if the inventory exceeds 40 carts.

I(1) = 30
I(1) = 50

Problems 217

pal34870_ch04_146-217.qxd 1/9/10 5:19 PM Page 217

www.EBooksWorld.ir

Sometimes just when we think a certain technical area is mature and the
possibility of further development is unlikely, we are surprised by a novel
design. Recent developments in low-speed aeronautics are examples of this

phenomenon. Even though engineers have known for years that a human could
generate enough power to propel an aircraft, the feat remained impossible until
the availability of lightweight materials that enabled the Gossamer Challenger to
 y across the English Channel. Solar -powered aircraft that can stay aloft for over
a day are other examples.

Another example is the recent appearance of wing-in-ground (WIG) effect
vehicles. WIG vehicles make use of an air cushion to create lift. They are a hybrid
between an aircraft and a hovercraft, and most are intended for over-water ight
only. A hovercraft rides on an air cushion created by fans, but the air cushion of
a WIG vehicle is due to the air that is captured under its stubby wings.

Small aircraft with cameras will be useful for search and reconnaissance.
An example of such a “micro air vehicle” (MAV) is the 6-in.-long Black Widow
produced by Aero Vironment, Inc. It carries a 2-g video camera the size of a
sugar cube, and ies at about 65 km/h with a range of 10 km. Proper design of
such vehicles requires a systematic methodology to nd the optimum combina-
tion of airfoil shape, motor type, battery type, and most importantly, the propeller
shape.

The MATLAB advanced graphics capabilities make it useful for visualiz-
ing flow patterns, and the Optimization toolbox is useful for designing such
vehicles. ■

Courtesy of Aero Vironment, Inc.

Engineering in the
21st Century. . .

Low-Speed Aeronautics

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 218

www.EBooksWorld.ir

219

C H A P T E R 5

Advanced Plotting
OUTLINE
5.1 xy Plotting Functions

5.2 Additional Commands and Plot Types

5.3 Interactive Plotting in MATLAB

5.4 Three-Dimensional Plots

5.5 Summary

Problems

In this chapter you will learn additional features to use to create a variety of
two-dimensional plots, which are also called xy plots, and three-dimensional
plots called xyz plots, or surface plots. Two-dimensional plots are discussed in
Sections 5.1 through 5.3. Section 5.4 discusses three-dimensional plots. These
plotting functions are described in the graph2d and graph3d Help cate-
gories, so typing help graph2d or help graph3d will display a list of
the relevant plotting functions.

An important application of plotting is function discovery, the technique for
using data plots to obtain a mathematical function or “mathematical model” that
describes the process that generated the data. This topic is treated in Chapter 6.

5.1 xy Plotting Functions
The “anatomy” and nomenclature of a typical xy plot is shown in Figure 5.1–1,
in which the plot of a data set and a curve generated from an equation appear. A
plot can be made from measured data or from an equation. When data are plot-
ted, each data point is plotted with a data symbol, or point marker, such as the
small circles shown in Figure 5.1–1. An exception to this rule would be when
there are so many data points that the symbols would be too densely packed.

DATA SYMBOL

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 219

www.EBooksWorld.ir

In that case, the data points should be plotted with a dot. However, when the plot
is generated from a function, data symbols must never be used! Lines between
closely spaced points are always used to plot a function.

The MATLAB basic xy plotting function is plot(x,y) as we saw in
Chapter 1. If x and y are vectors, a single curve is plotted with the x values on
the abscissa and the y values on the ordinate. The xlabel and ylabel com-
mands put labels on the abscissa and the ordinate, respectively. The syntax is
xlabel(‘text’), where text is the text of the label. Note that you must
enclose the label’s text in single quotes. The syntax for ylabel is the same.
The title command puts a title at the top of the plot. Its syntax is
title(‘text’), where text is the title’s text.

The plot(x,y) function in MATLAB automatically selects a tick-mark
spacing for each axis and places appropriate tick labels. This feature is called
autoscaling. MATLAB also chooses limits for the x and y axes. The order of the
xlabel, ylabel, and title commands does not matter, but we must place
them after the plot command, either on separate lines using ellipses or on the
same line separated by commas.

220 CHAPTER 5 Advanced Plotting

Zero Drag Model
Data

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

Time (seconds)

H
ei

gh
t (

fe
et

)

Height of a Falling Object Versus Time

PLOT TITLE

DATA SYMBOL

LEGEND

TICK- MARK LABEL
AXIS LABEL

TICK MARK

Figure 5.1–1 Nomenclature for a typical xy plot.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 220

www.EBooksWorld.ir

5.1 xy Plotting Functions 221

After the plot command is executed, the plot will appear in the Figure
window. You can obtain a hard copy of the plot in one of several ways:

1. Use the menu system. Select Print on the File menu in the Figure window.
Answer OK when you are prompted to continue the printing process.

2. Type print at the command line. This command sends the current plot
directly to the printer.

3. Save the plot to a le to be printed later or imported into another applica-
tion such as a word processor. You need to know something about graphics
 le formats to use this le properly . See the subsection Exporting Figures
later in this section.

Type help print to obtain more information.
MATLAB assigns the output of the plot command to Figure window

number 1. When another plot command is executed, MATLAB overwrites
the contents of the existing Figure window with the new plot. Although you
can keep more than one Figure window active, we do not use this feature in this
text.

When you have nished with the plot, close the Figure window by selecting
Close from the File menu in the Figure window. If you do not close the window,
it will not reappear when a new plot command is executed. However, the
 g ure will still be updated.

Table 5.1–1 lists the requirements essential to producing plots that commu-
nicate effectively.

Table 5.1–1 Requirements for a correct plot

1. Each axis must be labeled with the name of the quantity being plotted and its units! If
two or more quantities having different units are plotted (such as when in a plot of both
speed and distance versus time), indicate the units in the axis label, if there is room, or
in the legend or labels for each curve.

2. Each axis should have regularly spaced tick marks at convenient intervals—not too
sparse, but not too dense—with a spacing that is easy to interpret and interpolate. For
example, use 0.1, 0.2, and so on, rather than 0.13, 0.26, and so on.

3. If you are plotting more than one curve or data set, label each on its plot, use different
line types, or use a legend to distinguish them.

4. If you are preparing multiple plots of a similar type or if the axes’ labels cannot convey
enough information, use a title.

5. If you are plotting measured data, plot each data point with a symbol such as a circle,
square, or cross (use the same symbol for every point in the same data set). If there are
many data points, plot them using the dot symbol.

6. Sometimes data symbols are connected by lines to help the viewer visualize the data,
especially if there are few data points. However, connecting the data points, especially
with a solid line, might be interpreted to imply knowledge of what occurs between the
data points. Thus you should be careful to prevent such misinterpretation.

7. If you are plotting points generated by evaluating a function (as opposed to measured
data), do not use a symbol to plot the points. Instead, be sure to generate many points,
and connect the points with solid lines.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 221

www.EBooksWorld.ir

grid and axis Commands
The grid command displays gridlines at the tick marks corresponding to the
tick labels. You can use the axis command to override the MATLAB selections
for the axis limits. The basic syntax is axis([xmin xmax ymin ymax]).
This command sets the scaling for the x and y axes to the minimum and maxi-
mum values indicated. Note that, unlike an array, this command does not use
commas to separate the values.

Figure 5.1–2 shows a plot in which the command axis([0 10 �2 5])
was used to override the limits chosen by auto scaling (which chose the upper
limit of the ordinate to be 4).

The axis command has the following variants:

■ axis square selects the axes’ limits so that the plot will be square.
■ axis equal selects the scale factors and tick spacing to be the same on

each axis. This variation makes plot(sin(x),cos(x)) look like a
circle, instead of an oval.

■ axis auto returns the axis scaling to its default autoscaling mode in
which the best axes’ limits are computed automatically.

Type help axis to see the full list of variants.

222 CHAPTER 5 Advanced Plotting

AXIS LIMITS

Figure 5.1–2 A sample plot shown in a Figure window.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 222

www.EBooksWorld.ir

Plots of Complex Numbers
With only one argument, say, plot(y), the plot function will plot the values
in the vector y versus their indices 1, 2, 3, . . . , and so on. If y is complex,
plot(y) plots the imaginary parts versus the real parts. Thus plot(y) in this
case is equivalent to plot(real(y),imag(y)). This situation is the only
time when the plot function handles the imaginary parts; in all other variants of
the plot function, it ignores the imaginary parts. For example, the script le

z = 0.1 + 0.9i;
n = 0:0.01:10;
plot(z.^n),xlabel(‘Real’),ylabel(‘Imaginary’)

generates a spiral plot.

The Function Plot Command fplot
MATLAB has a “smart” command for plotting functions. The fplot command
automatically analyzes the function to be plotted and decides how many plotting
points to use so that the plot will show all the features of the function. Its syntax
is fplot(function, [xmin xmax]), where function is a function han-
dle to the function to be plotted and [xmin xmax] speci es the minimum and
maximum values of the independent variable. The range of the dependent
variable can also be speci ed. In this case the syntax is fplot(function,
[xmin xmax ymin ymax]).

For example, the session

>>f = @(x) (cos(tan(x)) - tan(sin(x)));
>>fplot(f,[1 2])

produces the plot shown in Figure 5.1–3a. The fplot command automatically
chooses enough plotting points to display all the variations in the function. We
can achieve the same results using the plot command, but we need to know
how many values to compute to generate the plot. For example, choosing a spac-
ing of 0.01, and using plot, we obtain the plot in Figure 5.1–3b. We see that this
choice of spacing misses some of the function’s behavior.

Another form is [x,y] = fplot(function, limits), wherelimits
may be either [xmin xmax] or [xmin xmax ymin ymax]. With this form
the command returns the abscissa and ordinate values in the column vectors x
and y, but no plot is produced. The returned values can then be used for other
purposes, such as plotting multiple curves, which is the topic of the next section.
Other commands can be used with the fplot command to enhance a plot’s ap-
pearance, for example, the title, xlabel, and ylabel commands and the
line type commands to be introduced in the next section.

Plotting Polynomials
We can plot polynomials more easily by using the polyval function. The
function polyval(p,x) evaluates the polynomial p at speci ed values of its

5.1 xy Plotting Functions 223

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 223

www.EBooksWorld.ir

independent variable x. For example, to plot the polynomial 3x5 � 2x4 � 100x3 �
2x2 � 7x � 90 over the range �6 � x � 6 with a spacing of 0.01, you type

>>x = -6:0.01:6;
>>p = [3,2,-100,2,-7,90];
>>plot(x,polyval(p,x)),xlabel(‘x’),ylabel(‘p’)

Table 5.1–2 summarizes the xy plotting commands discussed in this section.

Test Your Understanding

T5.1–1 Plot the equation for 0 � x � 35 and 0 � y � 3.5.

T5.1–2 Use the fplot command to investigate the function tan(cos x) �
sin(tan x) for 0 � x � 2�. How many values of x are needed to obtain
the same plot using the plot command? (Answer: 292 values.)

T5.1–3 Plot the imaginary part versus the real part of the function (0.2 � 0.8i)n

for 0 � n � 20. Choose enough points to obtain a smooth curve. Label
each axis and put a title on the plot. Use the axis command to
change the tick-label spacing.

y = 0.411.8x

224 CHAPTER 5 Advanced Plotting

1.3 1.4 1.5 1.6 1.7 1.8
−3

−2.5

−2

−1.5

−1

−0.5

1.3 1.4 1.5 1.6 1.7 1.8
−3

−2.5

−2

−1.5

−1

−0.5

(a) (b)

Figure 5.1–3 (a) The plot was generated with fplot. (b) The plot was generated with
plot using 101 points.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 224

www.EBooksWorld.ir

5.1 xy Plotting Functions 225

Saving Figures
When you create a plot, the Figure window appears. This window has eight
menus, which are discussed in detail in Section 5.3. The File menu is used for
saving and printing the gure. You can save your gure in a format that can be
opened during another MATLAB session or in a format that can be used by other
applications.

To save a gure that can be opened in subsequent MA TLAB sessions, save
it in a gure le with the . g le name extension. To do this, select Save from the
Figure window File menu or click the Save button (the disk icon) on the toolbar.
If this is the rst time you are saving the le, the Save As dialog box appears.
Make sure that the type is MATLAB Figure (*. g). Specify the name you want
assigned to the gure le. Click OK. You can also use the saveas command.

To open a gure le, select Open from the File menu or click the Open but-
ton (the opened folder icon) on the toolbar. Select the gure le you want to open
and click OK. The gure le appears in a new gure window .

Exporting Figures
If you want to save the gure in a format that can be used by another application,
such as the standard graphics le formats TIFF or EPS, perform these steps.

1. Select Export Setup from the File menu. This dialog provides options you
can specify for the output le, such as the gure size, fonts, line size and
style, and output format.

2. Select Export from the Export Setup dialog. A standard Save As dialog
appears.

Table 5.1–2 Basic xy plotting commands

Command Description

axis([xmin xmax ymin ymax]) Sets the minimum and maximum limits of the x and y axes.
fplot(function,[xmin xmax]) Performs intelligent plotting of functions, where function is a func-

tion handle that describes the function to be plotted and [xmin xmax]
speci es the minimum and maximum values of the independent vari-
able. The range of the dependent variable can also be speci ed. In this
case the syntax is fplot(function, [xmin xmax ymin
ymax]).

grid Displays gridlines at the tick marks corresponding to the tick labels.
plot(x,y) Generates a plot of the array y versus the array x on rectilinear axes.
plot(y) Plots the values of y versus their indices if y is a vector. Plots the

imaginary parts of y versus the real parts if y is a vector having
complex values.

polyval(p,x) Evaluates the polynomial p at speci ed values of its independent
variable x.

print Prints the plot in the Figure window.
title(‘text’) Puts text in a title at the top of a plot.
xlabel(‘text’) Adds a text label to the x axis (the abscissa).
ylabel(‘text’) Adds a text label to the y axis (the ordinate).

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 225

www.EBooksWorld.ir

3. Select the format from the list of formats in the Save As type menu. This
selects the format of the exported le and adds the standard le name
extension given to les of that type.

4. Enter the name you want to give the le, less the extension.
5. Click Save.

You can also export the gure from the command line, by using the print
command. See MATLAB Help for more information about exporting gures in
different formats.

You can also copy a gure to the clipboard and then paste it into another
application:

1. Select Copy Options from the Edit menu of the Figure window. The
Copying Options page of the Preferences dialog box appears.

2. Complete the elds on the Copying Options page and click OK.
3. Select Copy Figure from the Edit menu.

The gure is copied to the Windows clipboard and can be pasted into another
application.

MATLAB also enables you to save gures in formats compatible with
PowerPoint and MS Word. See the MATLAB Help for more information.

The graphics functions covered in this section and in Section 5.3 can be
placed in script les that can be reused to create similar plots. This feature gives
them an advantage over the interactive plotting tools discussed in Section 5.3.

When you are creating plots, keep in mind that the actions listed in
Table 5.1–3, while not required, can never the less improve the appearance and
usefulness of your plots.

5.2 Additional Commands and Plot Types
MATLAB can create gures that contain an array of plots, called subplots. These
are useful when you want to compare the same data plotted with different axis
types, for example. The MATLAB subplot command creates such gures. We

226 CHAPTER 5 Advanced Plotting

Table 5.1–3 Hints for improving plots

1. Start scales from zero whenever possible. This technique prevents a false impression
of the magnitudes of any variations shown on the plot.

2. Use sensible tick-mark spacing. For example, if the quantities are months, choose a
spacing of 12 because 1�10 of a year is not a convenient division. Space tick marks
as close as is useful, but no closer.

3. Minimize the number of zeros in the tick labels. For example, use a scale in millions
of dollars when appropriate, instead of a scale in dollars with six zeros after every
number.

4. Determine the minimum and maximum data values for each axis before plotting the
data. Then set the axis limits to cover the entire data range plus an additional amount
to allow convenient tick-mark spacing to be selected.

SUBPLOT

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 226

www.EBooksWorld.ir

frequently need to plot more than one curve or data set on a single plot. Such a
plot is called an overlay plot. This section describes these plots and several other
types of plots.

Subplots
You can use the subplot command to obtain several smaller “subplots” in the
same gure. The syntax is subplot(m,n,p). This command divides the
Figure window into an array of rectangular panes with m rows and n columns.
The variable p tells MATLAB to place the output of the plot command follow-
ing the subplot command into the pth pane. For example, subplot(3,2,5)
creates an array of six panes, three panes deep and two panes across, and directs
the next plot to appear in the fth pane (in the bottom left corner). The following
script le created Figure 5.2–1, which shows the plots of the functions y �
e�1.2x sin(10x � 5) for 0 � x � 5 and y � |x3 � 100| for �6 � x � 6.

x = 0:0.01:5;
y = exp(-1.2*x).*sin(10*x+5);
subplot(1,2,1)
plot(x,y),xlabel(‘x’),ylabel(‘y’),axis([0 5 -1 1])
x = -6:0.01:6;
y = abs(x.^3-100);
subplot(1,2,2)
plot(x,y),xlabel(‘x’),ylabel(‘y’),axis([-6 6 0 350])

5.2 Additional Commands and Plot Types 227

 –5 0 5
0

50

100

150

200

250

300

350

x

y

0 1 2 3 4
 –1

 –0.8

 –0.6

 –0.4

 –0.2

0

0.2

0.4

0.6

0.8

1

x

y

Figure 5.2–1 Application of the subplot command.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 227

www.EBooksWorld.ir

Test Your Understanding

T5.2–1 Pick a suitable spacing for t and �, and use the subplot command to
plot the function z � e�0.5t cos(20t � 6) for 0 � t � 8 and the function u �
6 log10 (�2 � 20) for �8 � � � 8. Label each axis.

Overlay Plots
You can use the following variants of the MATLAB basic plotting functions
plot(x,y) and plot(y) to create overlay plots:

■ plot(A) plots the columns of A versus their indices and generates n
curves, where A is a matrix with m rows and n columns.

■ plot(x,A) plots the matrix A versus the vector x, where x is either a
row vector or a column vector and A is a matrix with m rows and n columns.
If the length of x is m, then each column of A is plotted versus the vector x.
There will be as many curves as there are columns of A. If x has length n,
then each row of A is plotted versus the vector x. There will be as many
curves as there are rows of A.

■ plot(A,x) plots the vector x versus the matrix A. If the length of x is m,
then x is plotted versus the columns of A. There will be as many curves as
there are columns of A. If the length of x is n, then x is plotted versus the
rows of A. There will be as many curves as there are rows of A.

■ plot(A,B) plots the columns of the matrix B versus the columns of the
matrix A.

Data Markers and Line Types
To plot the vector y versus the vector x and mark each point with a data
marker, enclose the symbol for the marker in single quotes in the plot function.
Table 5.2–1 shows the symbols for some of the available data markers. For
example, to use a small circle, which is represented by the lowercase letter o,
type plot(x,y, ‘o’). This notation results in a plot like the one on the left

228 CHAPTER 5 Advanced Plotting

Table 5.2–1 Speci ers for data markers, line types, and colors

Data markers† Line types Colors

Dot () Solid line - Black k
Asterisk (*) * Dashed line - - Blue b
Cross (�) � Dash-dotted line -. Cyan c
Circle (o) o Dotted line : Green g
Plus sign (�) � Magenta m
Square () s Red r
Diamond () d White w
Five-pointed star () p Yellow y

†Other data markers are available. Search for “markers” in MATLAB Help.

�
�

##

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 228

www.EBooksWorld.ir

in Figure 5.2–2. To connect each data marker with a straight line, we must plot
the data twice, by typing plot(x,y,x,y,‘o’). See the plot on the right in
Figure 5.2–2.

Suppose we have two curves or data sets stored in the vectors x, y, u, and v.
To plot y versus x and v versus u on the same plot, type plot(x,y,u,v). Both
sets will be plotted with a solid line, which is the default line style. To distinguish
the sets, we can plot them with different line types. To plot y versus x with a solid
line and u versus vwith a dashed line, type plot(x,y,u,v,’��’), where the
symbols ‘��’ represent a dashed line. Table 5.2–1 gives the symbols for other line
types. To plot y versus x with asterisks (*) connected with a dotted line, you must
plot the data twice by typing plot(x,y,’*’,x,y,’:’).

You can obtain symbols and lines of different colors by using the color symbols
shown in Table 5.2–1. The color symbol can be combined with the data-marker sym-
bol and the line-type symbol. For example, to plot y versus xwith green asterisks (*)
connected with a red dashed line, you must plot the data twice by typing
plot(x,y,’g*’,x,y,’r��’). (Do not use colors if you are going to print the
plot on a black-and-white printer.)

Labeling Curves and Data
When more than one curve or data set is plotted on a graph, we must distinguish
between them. If we use different data symbols or different line types, then we
must either provide a legend or place a label next to each curve. To create a legend,

5.2 Additional Commands and Plot Types 229

0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

x

y

0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

x

y

Figure 5.2–2 Use of data markers.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 229

www.EBooksWorld.ir

use the legend command. The basic form of this command is legend
(‘string1’,‘string2’), where string1 and string2 are text strings
of your choice. The legend command automatically obtains from the plot the
line type used for each data set and displays a sample of this line type in the leg-
end box next to the string you selected. The following script le produced the
plot in Figure 5.2–3.

x = 0:0.01:2;
y = sinh(x);
z = tanh(x);
plot(x,y,x,z,‘��’),xlabel(‘x’),...

ylabel(‘Hyperbolic Sine and Hyperbolic Tangent’),...
legend(‘sinh(x)’,’tanh(x)’)

The legend command must be placed somewhere after the plot command.
When the plot appears in the Figure window, use the mouse to position the leg-
end box. (Hold down the left button on the mouse to move the box.)

Another way to distinguish curves is to place a label next to each. The label
can be generated either with the gtext command, which lets you place the
label by using the mouse, or with the text command, which requires you to
specify the coordinates of the label. The syntax of the gtext command is
gtext(‘string’), where string is a text string that speci es the label of
your choice. When this command is executed, MATLAB waits for a mouse button
or a key to be pressed while the mouse pointer is within the Figure window; the label

230 CHAPTER 5 Advanced Plotting

sinh(x)
tanh(x)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

x

H
yp

er
bo

lic
 S

in
e

an
d

H
yp

er
bo

lic
 T

an
ge

nt

Figure 5.2–3 Application of the legend command.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 230

www.EBooksWorld.ir

is placed at that position of the mouse pointer. You may use more than one gtext
command for a given plot. The text command text(x,y,‘string’)adds a
text string to the plot at the location speci ed by the coordinates x,y. These coordi-
nates are in the same units as the plot’s data. Of course, nding the proper coordi-
nates to use with the text command usually requires some trial and error.

The hold Command
The hold command creates a plot that needs two or more plot commands.
Suppose we wanted to plot y2 � 4 � e�x cos 6x versus y1 � 3 � e�x sin 6x, �1 �
x � 1 on the same plot with the complex function z � (0.1 � 0.9i)n, where 0 �
n � 10. The following script le creates the plot in Figure 5.2–4.

x = -1:0.01:1;
y1 = 3+exp(-x).*sin(6*x);
y2 = 4+exp(-x).*cos(6*x);
plot((0.1+0.9i).^(0:0.01:10)),hold,plot(y1,y2),...

5.2 Additional Commands and Plot Types 231

 –1 0 1 2 3 4 5 6
 –1

0

1

2

3

4

5

6

7

y2 versus y1

Imag (z) versus Real (z)

Figure 5.2–4 Application of the hold command.

gtext(‘y2 versus y1’),gtext(‘Imag(z) versus Real(z)’)

When more than one plot command is used, do not place any of the gtext com-
mands before any plot command. Because the scaling changes as each plot
command is executed, the label placed by the gtext command might end up in the
wrong position. Table 5.2–2 summarizes the plot enhancement commands
introduced in this section.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 231

www.EBooksWorld.ir

232 CHAPTER 5 Advanced Plotting

Table 5.2–2 Plot enhancement commands

Command Description

gtext(‘text’) Places the string text in the Figure window at a point speci ed by the mouse.
hold Freezes the current plot for subsequent graphics commands.
legend(‘leg1’,’leg2’,...) Creates a legend using the strings leg1, leg2, and so on and enables its

placement with the mouse.
plot(x,y,u,v) Plots, on rectilinear axes, four arrays: y versus x and v versus u.
plot(x,y,’type’) Plots the array y versus the array x on rectilinear axes, using the line type,

data marker, and colors speci ed in the string type. See Table 5.2–1.
plot(A) Plots the columns of the m � n array A versus their indices and generates n

curves.
plot(P,Q) Plots array Q versus array P. See the text for a description of the possible

variants involving vectors and/or matrices: plot(x,A), plot(A,x), and
plot(A,B).

subplot(m,n,p) Splits the Figure window into an array of subwindows with m rows and n
columns and directs the subsequent plotting commands to the pth subwindow.

text(x,y,’text’) Places the string text in the Figure window at a point speci ed by
coordinates x, y.

Test Your Understanding

T5.2–2 Plot the following two data sets on the same plot. For each set, x � 0, 1,
2, 3, 4, 5. Use a different data marker for each set. Connect the markers
for the rst set with solid lines. Connect the markers for the second set
with dashed lines. Use a legend, and label the plot axes appropriately.
The rst set is y �11, 13, 8, 7, 5, 9. The second set is y �2, 4, 5, 3, 2, 4.

T5.2–3 Plot y � cosh x and y � 0.5ex on the same plot for 0 � x � 2. Use differ-
ent line types and a legend to distinguish the curves. Label the plot axes
appropriately.

T5.2–4 Plot y � sinh x and y � 0.5ex on the same plot for 0 � x � 2. Use a solid
line type for each, the gtext command to label the sinh x curve, and the
text command to label the 0.5ex curve. Label the plot axes appropriately.

T5.2–5 Use the hold command and the plot command twice to plot y � sin x
and y � x � x3/3 on the same plot for 0 � x � 1. Use a solid line type
for each, and use the gtext command to label each curve. Label the
plot axes appropriately.

Annotating Plots
You can create text, titles, and labels that contain mathematical symbols, Greek
letters, and other effects such as italics. The features are based on the TEX
typesetting language. For more information, including a list of the available
characters, search the online Help for the “Text Properties” page. See also the
“Mathematical symbols, Greek Letters, and TEX Characters” page.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 232

www.EBooksWorld.ir

5.2 Additional Commands and Plot Types 233

You can create a title having the mathematical function Ae�t/� sin(t) by
typing

>>title(‘{\it Ae}^{-{\it t/\tau}}\sin({\it \omega t})’)

The backslash character \ precedes all TEX character sequences. Thus the strings
\tau and \omega represent the Greek letters � and 	. Superscripts are created
by typing ^; subscripts are created by typing _. To set multiple characters as super-
scripts or subscripts, enclose them in braces. For example, type x_{13} to pro-
duce x13. In mathematical text variables are usually set in italic, and functions, such
as sin, are set in roman type. To set a character, say, x, in italic using the TEX
commands, you type {\it x}.

Logarithmic Plots
Logarithmic scales—abbreviated log scales—are widely used (1) to represent a
data set that covers a wide range of values and (2) to identify certain trends in data.
Certain types of functional relationships appear as straight lines when plotted using
a log scale. This method makes it easier to identify the function. A log-log plot has
log scales on both axes. A semilog plot has a log scale on only one axis.

Figure 5.2–5 shows a rectilinear plot and a log-log plot of the function

(5.2–1)y =
100(1 - 0.01x2)2

+ 0.02x2

(1 - x2)2
+ 0.1x2

 0.1 … x … 100

10−2 100 10210−2

10−1

100

101

102

x

y

0 50 100
0

5

10

15

20

25

30

35

x

y

(a) (b)

Figure 5.2–5 (a) Rectilinear plot of the function in Equation (5.2–1). (b) Log-log plot of
the function. Note the wide range of values of both x and y.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 233

www.EBooksWorld.ir

234 CHAPTER 5 Advanced Plotting

Because of the wide range in values on both the abscissa and the ordinate,
rectilinear scales do not reveal the important features. The following program
produced Figure 5.2–5.

% Create the Rectilinear Plot
x1 = 0:0.01:100; u1 = x1.^2;
num1 = 100*(1-0.01*u1).^2 + 0.02*u1;
den1 = (1-u1).^2 + 0.1*u1;
y1 = sqrt(num1./den1);
subplot(1,2,1), plot(x1,y1),xlabel(‘x’),ylabel(‘y’),
% Create the Loglog Plot
x2 = logspace(-2, 2, 500); u2 = x2.^2;
num2 = 100*(1-0.01*u2).^2 + 0.02*u2;
den2 = (1-u2).^2 + 0.1*u2;
y2 = sqrt(num2./den2);
subplot(1,2,2), loglog(x2,y2),xlabel(‘x’),ylabel(‘y’)

It is important to remember the following points when using log scales:

1. You cannot plot negative numbers on a log scale, because the logarithm of
a negative number is not de ned as a real number .

2. You cannot plot the number 0 on a log scale, because log10 0 � ln 0 � �
.
You must choose an appropriately small number as the lower limit on the
plot.

3. The tick-mark labels on a log scale are the actual values being plotted; they
are not the logarithms of the numbers. For example, the range of x values
in the plot in Figure 5.2–5b is from 10�2 � 0.01 to 102 � 100, and the
range of y values is from 10�2 to 102 � 100.

MATLAB has three commands for generating plots having log scales. The
appropriate command depends on which axis must have a log scale. Follow these
rules:

1. Use the loglog(x,y) command to have both scales logarithmic.
2. Use the semilogx(x,y) command to have the x scale logarithmic and

the y scale rectilinear.
3. Use the semilogy(x,y) command to have the y scale logarithmic and

the x scale rectilinear.

Table 5.2–3 summarizes these functions. For other two-dimensional plot types,
type help specgraph. We can plot multiple curves with these commands
just as with the plot command. In addition, we can use the other commands, such
as grid, xlabel, and axis, in the same manner. Figure 5.2–6 shows how
these commands are applied. It was created with the following program.

x1 = 0:0.01:3; y1 = 25*exp(0.5*x1);
y2 = 40*(1.7.^x1);
x2 = logspace(-1,1,500); y3 = 15*x2.^(0.37);

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 234

www.EBooksWorld.ir

subplot(1,2,1),semilogy(x1,y1,x1,y2, ‘--’),...
legend (‘y = 25e^{0.5x}’, ‘y = 40(1.7) ^x’),...
xlabel(‘x’),ylabel(‘y’),grid,...
subplot(1,2,2),loglog(x2,y3),legend(‘y = 15x^{0.37}’),...
xlabel(‘x’),ylabel(‘y’),grid

5.2 Additional Commands and Plot Types 235

Table 5.2–3 Specialized plot commands

Command Description

bar(x,y) Creates a bar chart of y versus x.
loglog(x,y) Produces a log-log plot of y versus x.
plotyy(x1,y1,x2,y2) Produces a plot with two y axes, y1 on the left and y2

on the right.
polar(theta,r,’type’) Produces a polar plot from the polar coordinates

theta and r, using the line type, data marker, and
colors speci ed in the string type.

semilogx(x,y) Produces a semilog plot of y versus x with logarithmic
abscissa scale.

semilogy(x,y) Produces a semilog plot of y versus x with logarithmic
ordinate scale.

stairs(x,y) Produces a stairs plot of y versus x.
stem(x,y) Produces a stem plot of y versus x.

0 1 2 3
101

102

103

x

y

10–1 100 101
100

101

102

x

y

y = 25e0.5x

y = 40(1.7)x
y = 15x0.37

Figure 5.2–6 Two examples of exponential functions plotted with the semilogy func-
tion (the left-hand plot), and an example of a power function plotted with the loglog
function (right-hand) plot.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 235

www.EBooksWorld.ir

236 CHAPTER 5 Advanced Plotting

Note that the two exponential functions y � 25e0.5x and y � 40(1.7)x both produce
straight lines on a semilog plot with the y axis logarithmic. The power function
y � 15x0.37 produces a straight line on a log-log plot.

Stem, Stairs, and Bar Plots
MATLAB has several other plot types that are related to xy plots. These include
the stem, stairs, and bar plots. Their syntax is very simple, namely, stem(x,y),
stairs(x,y), and bar(x,y). See Table 5.2–3.

Separate y Axes
The plotyy function generates a graph with two y axes. The syntax plotyy
(x1,y1,x2,y2) plots y1 versus x1 with y axis labeling on the left, and plots y2
versus x2 with y axis labeling on the right. The syntax plotyy(x1,y1,x2,
y2,’type1’,’type2’) generates a ‘type1’ plot of y1 versus x1with y axis
labeling on the left, and generates a ‘type2’ plot of y2 versus x2 with y axis la-
beling on the right. For example, plotyy(x1,y1,x2,y2,‘plot’,‘stem’)
uses plot(x1,y1) to generate a plot for the left axis, and stem(x2,y2) to gen-
erate a plot for the right axis. To see other variations of the plotyy function, type
help plotyy.

Polar Plots
Polar plots are two-dimensional plots made using polar coordinates. If the
polar coordinates are (�, r), where � is the angular coordinate and r is the radial
coordinate of a point, then the command polar(theta,r) will produce the
polar plot. A grid is automatically overlaid on a polar plot. This grid consists of
concentric circles and radial lines every 30�. The title and gtext com-
mands can be used to place a title and text. The variant command
polar(theta,r,’type’) can be used to specify the line type or data
marker, just as with the plot command.

EXAMPLE 5.2–1 Plotting Orbits

The equation

describes the polar coordinates of an orbit measured from one of the orbit’s two focal
points. For objects in orbit around the sun, the sun is at one of the focal points. Thus
r is the distance of the object from the sun. The parameters p and determine the size
of the orbit and its eccentricity, respectively. Obtain the polar plot that represents an

r =

p

1 - cos �

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 236

www.EBooksWorld.ir

orbit having � 0.5 and p � 2 AU (AU stands for “astronomical unit”; 1 AU is the
mean distance from the sun to Earth). How far away does the orbiting object get from
the sun? How close does it approach Earth’s orbit?

■ Solution
Figure 5.2–7 shows the polar plot of the orbit. The plot was generated by the following
session.

>>theta = 0:pi/90:2*pi;
>>r = 2./(1-0.5*cos(theta));
>>polar(theta,r),title(‘Orbital Eccentricity = 0.5’)

The sun is at the origin, and the plot’s concentric circular grid enables us to deter-
mine that the closest and farthest distances the object is from the sun are approximately
1.3 and 4 AU. Earth’s orbit, which is nearly circular, is represented by the innermost
circle. Thus the closest the object gets to Earth’s orbit is approximately 0.3 AU. The
radial grid lines allow us to determine that when � = 90� and 270�, the object is 2 AU
from the sun.

Error Bar Plots
Experimental data are often represented with plots containing error bars. The
bars show the estimated or calculated errors for each data point. They can also be
used to display the error in an approximate formula. For example, keeping two

5.2 Additional Commands and Plot Types 237

Orbital Eccentricity = 0.5

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

Figure 5.2–7 A polar plot showing an orbit having an eccentricity of 0.5.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 237

www.EBooksWorld.ir

terms in the Taylor series expansion of cos x about x � 0 gives cos x � 1 � x2�2.
The following program creates the plot shown in Figure 5.2–8.

% errorbar example
x = linspace(0.1, pi, 20);
approx = 1 - x.^2/2;
error = approx - cos(x);
errorbar(x, cos(x), error), legend(‘cos(x)’), . . .

title(‘Approximation = 1 - x^2/2’)

There are more than 20 two-dimensional plot functions available in MATLAB.
We have shown the most important ones for engineering applications.

Test Your Understanding

T5.2–6 Plot the following functions using axes that will produce a straight-line plot.
The power function is y � 2x�0.5, and the exponential function is y � 101�x.

T5.2–7 Plot the function y � 8x3 for �1 � x � 1 with a tick spacing of 0.25 on
the x axis and 2 on the y axis.

T5.2–8 The spiral of Archimedes is described by the polar coordinates (�, r),
where r � a�. Obtain a polar plot of this spiral for 0 � � � 4�, with the
parameter a � 2.

Publishing Reports Containing Graphics
Starting with MATLAB 7, the publish function is available for creating re-
ports, which may have embedded graphics. Reports generated by the publish

238 CHAPTER 5 Advanced Plotting

0 0.5 1 1.5 2 2.5 3 3.5
−4

−3

−2

−1

0

1

2

x

Approximation = 1 − x2/2

cos(x)

Figure 5.2–8 Error bars for the approximation cos x � 1 � x2�2.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 238

www.EBooksWorld.ir

function may be exported to a variety of common formats including HTML
(Hyper Text Markup Language), which is used for Web-based reports; MS Word;
PowerPoint; and LATEX. To publish a report, do the following.

1. Open the Editor, type in the M- le that forms the basis of the report, and
save it. Use the double percent character (%%) to indicate a section head-
ing in the report. This character marks the beginning of a new cell, which is
a group of commands. (Such a cell should not be confused with the cell
array data type covered in Section 2.6.) Enter any blank lines you wish to
appear in the report. Consider, as a very simple example, the following
sample le polyplot.m.

%% Example of Report Publishing:
% Plotting the cubic y = x^3 - 6x^2 + 10x+4.

%% Create the independent variable.

5.2 Additional Commands and Plot Types 239

x = linspace(0, 4, 300); % Use 300 points between 0 and 4.
%% De ne the cubic from its coef cients.
p = [1, -6, 10, 4]; % p contains the coef cients.

%% Plot the cubic
plot(x, polyval(p, x)), xlabel(‘x’), ylabel(‘y’)

2. Run the le to check it for errors. (T o do this for a larger le, you may use
the cell mode of the Debugger to execute its each cell one at a time; see
Section 4.7.)

3. Use the publish and open functions to create the report in the desired for-
mat. Using our sample le, we can obtain a report in HTML format by typing

>>publish (‘polyplot’,’html’)
>>open html/polyplot.html

You should see a report like the one shown in Figure 5.2–9.
Instead of using the publish and open functions, you may select
Publish to HTML from the File menu in the Editor window. To publish to
another format, select instead Publish to and then choose the desired
format from the menu.

Once it is published in HTML, you may click on a section heading in the
Contents to go to that section. This is useful for larger reports.

If you want the equation to look professionally typeset, you may edit the
resulting report in the appropriate editor (say, MS Word or LATEX). For exam-
ple, to set the cubic polynomial in the resulting LATEX le, use the commands
presented earlier in this section to replace the equation in the second line of the
report with

y = {\it x}^3 - 6{\it x}^2 + 10{\it x} + 4

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 239

www.EBooksWorld.ir

240 CHAPTER 5 Advanced Plotting

Example of Report Publishing:

Plotting the cubic y = xˆ3 � 6 xˆ2 + 10x + 4 .

Contents

• Create the independent variable.
• Define the cubic.
• Plot the cubic.

Create the independent variable.

x = linspace(0, 4, 300); % Use 300 points between 0 and 4.

Define the cubic.

p = [1, -6, 10, 4]; % p contains the coefficients.

Plot the cubic.

plot(x,polyval(p,x)),xlabel(’x’),ylabel(’y’)

0 0.5 1 1.5 2 2.5 3 3.5 4
4

5

6

7

8

9

10

11

12

x

y

Figure 5.2–9 A sample report published from MATLAB.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 240

www.EBooksWorld.ir

5.3 Interactive Plotting in MATLAB
The interactive plotting environment in MATLAB is a set of tools for

■ Creating different types of graphs,
■ Selecting variables to plot directly from the Workspace Browser,
■ Creating and editing subplots,
■ Adding annotations such as lines, arrows, text, rectangles, and ellipses, and
■ Editing properties of graphics objects, such as their color, line weight, and font.

The Plot Tools interface includes the following three panels associated with
a given gure.

■ The Figure Palette: Use this to create and arrange subplots, to view and
plot workspace variables, and to add annotations.

■ The Plot Browser: Use this to select and control the visibility of the axes
or graphics objects plotted in the gure, and to add data for plotting.

■ The Property Editor: Use this to set basic properties of the selected object
and to obtain access to all properties through the Property Inspector.

The Figure Window
When you create a plot, the Figure window appears with the Figure toolbar visi-
ble (see Figure 5.3–1). This window has eight menus.

The File Menu The File menu is used for saving and printing the gure. This
menu was discussed in Section 5.1 under Saving Figures and Exporting
Figures.

The Edit Menu You can use the Edit menu to cut, copy, and paste items, such
as legend or title text, that appear in the gure. Click on Figure Properties to
open the Property Editor—Figure dialog box to change certain properties of the
 gure.

Three items on the Edit menu are very useful for editing the gure. Clicking
the Axes Properties item brings up the Property Editor—Axes dialog box.
Double-clicking on any axis also brings up this box. You can change the scale
type (linear, log, etc.), the labels, and the tick marks by selecting the tab for the
desired axis or the font to be edited.

The Current Object Properties item enables you to change the properties
of an object in the gure. To do this, rst click on the object, such as a plotted

5.3 Interactive Plotting in MATLAB 241

Figure 5.3–1 The Figure toolbar displayed.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 241

www.EBooksWorld.ir

line, then click on Current Object Properties in the Edit menu. You will see the
Property Editor—Lineseries dialog box that lets you change properties such as
line weight and color, data-marker type, and plot type.

Clicking on any text, such as that placed with the title, xlabel,
ylabel, legend, or gtext commands, and then selecting Current Object
Properties in the Edit menu bring up the Property Editor—Text dialog box,
which enables you to edit the text.

The View Menu The items on the View menu are the three toolbars (Figure
Toolbar, Plot Edit Toolbar, and Camera Toolbar), the Figure Palette, the Plot
Browser, and the Property Editor. These will be discussed later in this section.

The Insert Menu The Insert menu enables you to insert labels, legends, titles,
text, and drawing objects, rather than using the relevant commands from the
Command window. To insert a label on the y axis, for example, click on the Y Label
item on the menu; a box will appear on the y axis. Type the label in this box, and
then click outside the box to nish.

The Insert menu also enables you to insert arrows, lines, text, rectangles,
and ellipses in the gure. To insert an arrow, for example, click on the Arrow
item; the mouse cursor changes to a crosshair style. Then click the mouse button,
and move the cursor to create the arrow. The arrowhead will appear at the point
where you release the mouse button. Be sure to add arrows, lines, and other an-
notations only after you are nished moving or resizing your axes, because these
objects are not anchored to the axes. (They can be anchored to the plot by pin-
ning; see the MATLAB Help.)

To delete or move a line or arrow, click on it, then press the Delete key to
delete it, or press the mouse button and move it to the desired location. The Axes
item lets you use the mouse to place a new set of axes within the existing plot.
Click on the new axes, and a box will surround them. Any further plot commands
issued from the Command window will direct the output to these axes.

The Light item applies to three-dimensional plots.

The Tools Menu The Tools menu includes items for adjusting the view (by
zooming and panning) and the alignment of objects on the plot. The Edit Plot
item starts the plot editing mode, which can also be started by clicking on the
northwest-facing arrow on the Figure toolbar. The Tools menu also gives access
to the Data Cursor, which is discussed later in this section. The last two items,
Basic Fitting and Data Statistics, will be discussed in Sections 6.3 and 7.1,
respectively.

Other Menus The Desktop menu enables you to dock the Figure window
within the desktop. The Window menu lets you switch between the Command
window and any other Figure windows. The Help menu accesses the general
MATLAB Help System as well as Help features speci c to plotting.

There are three toolbars available in the Figure window: the Figure toolbar,
the Plot Edit toolbar, and the Camera toolbar. The View menu lets you select
which ones you want to appear. We will discuss the Figure toolbar and the Plot

242 CHAPTER 5 Advanced Plotting

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 242

www.EBooksWorld.ir

5.3 Interactive Plotting in MATLAB 243

Edit toolbar in this section. The Camera toolbar is useful for three-dimensional
plots, which are discussed at the end of this chapter.

The Figure Toolbar
To activate the Figure toolbar, select it from the View menu (see Figure 5.3–1).
The four leftmost buttons are for opening, saving, and printing the gure.
Clicking on the northwest-facing arrow button toggles the plot edit mode on
and off.

The Zoom-in and Zoom-out buttons let you obtain a close-up or faraway
view of the gure. The Pan and Rotate 3D buttons are used for three-dimensional
plots.

The Data Cursor button enables you to read data directly from a graph by
displaying the values of points you select on plotted lines, surfaces, images, and
so on.

The Insert Colorbar button inserts a color map strip in the graph and is use-
ful for three-dimensional surface plots. The Insert Legend button enables you to
insert a legend in the plot. The last two buttons hide or show the plot tools and
dock the gure if it is undocked.

The Plot Edit Toolbar
Once a plot is in the window, you can display the Plot Edit toolbar from the View
menu. This toolbar is shown in Figure 5.3–2. You can enable plot editing by
clicking on the northwest-facing arrow on the Figure toolbar. Then double-click
on an axis, a plotted line, or a label to activate the appropriate property editor. To
add text that is not a label, title, or legend, click the button labeled T, move the
cursor to the desired location for the text, click the mouse button, and type the
text. When nished, click outside the text box and note that the nine leftmost but-
tons become highlighted and available. These enable you to modify the color,
font, and other attributes of the text.

To insert arrows, lines, rectangles, and ellipses, click on the appropriate but-
ton and follow the instructions given previously for the Insert menu.

The Plot Tools
Once a gure has been created, you can display any of or all three Plot Tools
(Figure Palette, Plot Browser, and Property Editor) by selecting them from

Figure 5.3–2 The Figure and Plot Edit toolbars displayed.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 243

www.EBooksWorld.ir

the View menu. You can also start the environment by rst creating a plot and
then clicking on the Show Plot Tools icon at the far left of the Figure toolbar
(see Figure 5.3–3), or by creating a gure with the plotting tools attached by
using the plottools command. Remove the tools by clicking on the Hide
Tools icon, which is second from the left.

Figure 5.3–3 shows the result of clicking on the plotted line after clicking the
Show Plot Tools icon. The plotting interface then displays the Property Editor—
Lineseries.

The Figure Palette
The Figure Palette contains three panels, which are selected and expanded by
clicking the appropriate button. Click on the grid icon in the New Subplots panel
to display the selector grid that enables you to specify the layout of the subplots.
In the Variables panel you can select a graphics function to plot the variable by
selecting the variable and right-clicking to display the context menu. This menu
contains a list of possible plot types based on the type of variable you select. You
can also drag the variable into an axes set, and MATLAB will select an appropri-
ate plot type.

Selecting More Plots from the context menu activates the Plot Catalog
tool, which provides access to most of the plotting functions. After selecting a
plot category, and a plot type from that category, you will see its description in
the rightmost display. Type the name of one or more variables in the Plotted

244 CHAPTER 5 Advanced Plotting

Figure 5.3–3 The Figure window with the Plot Tools activated.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 244

www.EBooksWorld.ir

Variables eld, separated by commas, and they will be passed to the selected
plotting function as arguments. You can also type a MATLAB expression that
uses any workspace variables shown in the Figure Palette.

Click on the Annotations panel to display a menu of objects such as lines,
arrows, etc. Click on the desired object, and use the mouse to position and size it.

The Plot Browser
The Plot Browser provides a legend of all the graphs in the gure. For example, if
you plot an array with multiple rows and columns, the browser lists each axis and
the objects (lines, surfaces, etc.) used to create the graph. To set the properties of an
individual line, double-click on the line. Its properties are displayed in the Property
Editor—Lineseries box, which opens on the bottom of the gure.

If you select a line in the graph, the corresponding entry in the Plot Browser
is highlighted, indicating which column in the variable produced the line. The
check box next to each item in the browser controls the object’s visibility. For ex-
ample, if you want to plot only certain columns of data, you can uncheck the
columns not wanted. The graph updates as you uncheck each box and rescales
the axes as required.

The Property Editor
The Property Editor enables you to access a subset of the selected object’s
properties. When no object is selected, the Property Editor displays the gure’ s
properties. There are several ways to display the Property Editor.

1. Double-click an object when plot edit mode is enabled.
2. Select an object and right-click to display its context menu, then select

Properties.
3. Select Property Editor from the View menu.
4. Use the propertyeditor command.

The Property Editor enables you to change the most commonly used object
properties. If you want to access all object properties, use the Property Inspector.
To display the Property Inspector, click the Inspector button on any Property
Editor panel. Use of this feature requires detailed knowledge of object properties
and handle graphics, and thus will not be covered here.

Recreating Graphs from M-Files
Once your graph is finished, you can generate MATLAB code to reproduce
the graph by selecting Generate M-File from the File menu. MATLAB cre-
ates a function that recreates the graph and opens the generated M-File in the
editor. This feature is particularly useful for capturing property settings and
other modifications made in the plot editor. You can also use the makemcode
function.

5.3 Interactive Plotting in MATLAB 245

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 245

www.EBooksWorld.ir

Adding Data to Axes
The Plot Browser provides the mechanism by which you add data to axes. The
procedure is as follows:

1. Select a two-dimensional or three-dimensional axis from the New Subplots
subpanel.

2. After creating the axis, select it in the Plot Browser panel to enable the
Add Data button at the bottom of the panel.

3. Click the Add Data button to display the Add Data to Axes dialog box.
The Add Data to Axes dialog enables you to select a plot type and specify
the workspace variables to pass to the plotting function. You can also
specify a MATLAB expression, which is evaluated to produce the data
to plot.

5.4 Three-Dimensional Plots
MATLAB provides many functions for creating three-dimensional plots. Here
we will summarize the basic functions to create three types of plots: line plots,
surface plots, and contour plots. Information about the related functions is avail-
able in MATLAB Help (category graph3d).

Three-Dimensional Line Plots
Lines in three-dimensional space can be plotted with the plot3 function. Its
syntax is plot3(x,y,z). For example, the following equations generate a
three-dimensional curve as the parameter t is varied over some range:

If we let t vary from t � 0 to t � 10�, the sine and cosine functions will vary
through ve cycles, while the absolute values of x and y become smaller as t
increases. This process results in the spiral curve shown in Figure 5.4–1, which
was produced with the following session.

>>t = 0:pi/50:10*pi;
>>plot3(exp(-0.05*t).*sin(t),exp(-0.05*t).*cos(t),t),...

xlabel(‘x’),ylabel(‘y’),zlabel(‘z’),grid

Note that the grid and label functions work with the plot3 function, and that
we can label the z axis by using the zlabel function, which we have seen for
the rst time. Similarly , we can use the other plot enhancement functions dis-
cussed in Sections 5.1 and 5.2 to add a title and text and to specify line type
and color.

 z = t
 y = e-0.05t cos t
 x = e-0.05t sin t

246 CHAPTER 5 Advanced Plotting

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 246

www.EBooksWorld.ir

Surface Mesh Plots
The function z � f (x, y) represents a surface when plotted on xyz axes, and the
mesh function provides the means to generate a surface plot. Before you can use
this function, you must generate a grid of points in the xy plane and then evaluate
the function f (x, y) at these points. The meshgrid function generates the grid.
Its syntax is [X,Y] = meshgrid(x,y). If x = xmin:xspacing:xmax
and y = ymin:yspacing:ymax, then this function will generate the coor-
dinates of a rectangular grid with one corner at (xmin, ymin) and the opposite
corner at (xmax, ymax). Each rectangular panel in the grid will have a width
equal to xspacing and a depth equal to yspacing. The resulting matrices X and Y
contain the coordinate pairs of every point in the grid. These pairs are then used
to evaluate the function.

The function [X,Y] = meshgrid(x) is equivalent to [X,Y] =
meshgrid(x,x) and can be used if x and y have the same minimum values, the
same maximum values, and the same spacing. Using this form, you can type
[X,Y] = meshgrid(min:spacing:max), where min and max specify
the minimum and maximum values of both x and y and spacing is the desired
spacing of the x and y values.

After the grid is computed, you create the surface plot with the mesh func-
tion. Its syntax is mesh(x,y,z). The grid, label, and text functions can be used
with the mesh function. The following session shows how to generate the

5.4 Three-Dimensional Plots 247

 –1
 –0.5

0
0.5

1

 –1

 –0.5

0

0.5

1
0

5

10

15

20

25

30

35

xy

z

Figure 5.4–1 The curve x � e�0.05t sin t, y � e�0.05t cos t, z � t plotted with the
plot3 function.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 247

www.EBooksWorld.ir

surface plot of the function z � xe�[(x�y2)2�y2], for �2 � x � 2 and �2 � y � 2,
with a spacing of 0.1. This plot appears in Figure 5.4–2.

>>[X,Y] = meshgrid(-2:0.1:2);
>>Z = X.*exp(-((X-Y.^2).^2�Y.^2));
>>mesh(X,Y,Z),xlabel(‘x’),ylabel(‘y’),zlabel(‘z’)

Be careful not to select too small a spacing for the x and y values for two reasons:
(1) Small spacing creates small grid panels, which make the surface dif cult to
visualize, and (2) the matrices X and Y can become too large.

The surf and surfc functions are similar to mesh and meshc except
that the former create a shaded surface plot. You can use the Camera toolbar
and some menu items in the Figure window to change the view and lighting of
the gure.

Contour Plots
Topographic plots show the contours of the land by means of constant elevation
lines. These lines are also called contour lines, and such a plot is called a contour
plot. If you walk along a contour line, you remain at the same elevation. Contour
plots can help you visualize the shape of a function. They can be created with the
contour function, whose syntax is contour(X,Y,Z). You use this function
the same way you use the mesh function; that is, rst use the meshgrid function
to generate the grid and then generate the function values. The following session
generates the contour plot of the function whose surface plot is shown in

248 CHAPTER 5 Advanced Plotting

 –2
 –1

0
1

2

 –2

 –1

0

1

2
 –0.5

0

0.5

xy

z

Figure 5.4–2 A plot of the surface z � xe�[(x�y2)2�y2] created with the mesh
function.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 248

www.EBooksWorld.ir

5.4 Three-Dimensional Plots 249

Figure 5.4–2, namely, z � xe�[(x�y2)2�y2], for �2 � x � 2 and �2 � y � 2, with a
spacing of 0.1. This plot appears in Figure 5.4–3.

>>[X,Y] = meshgrid(-2:0.1:2);
>>Z = X.*exp(-((X-Y.^2).^2+Y.^2));
>>contour(X,Y,Z),xlabel(‘x’),ylabel(‘y’)

You can add labels to the contour lines. Type help clabel.
Contour plots and surface plots can be used together to clarify the function. For

example, unless the elevations are labeled on contour lines, you cannot tell whether
there is a minimum or a maximum point. However, a glance at the surface plot will
make this easy to determine. On the other hand, accurate measurements are not
possible on a surface plot; these can be done on the contour plot because no distor-
tion is involved. Thus a useful function is meshc, which shows the contour lines
beneath the surface plot. The meshz function draws a series of vertical lines under
the surface plot, while the waterfall function draws mesh lines in one direction
only. The results of these functions are shown in Figure 5.4–4 for the function
z � xe�(x2�y2).

Table 5.4–1 summarizes the functions introduced in this section. For other
three-dimensional plot types, type help specgraph.

 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2
 –2

 –1.5

 –1

 –0.5

0

0.5

1

1.5

2

x

y

Figure 5.4–3 A contour plot of the surface z � xe�[(x�y2)2�y2] created with the
contour function.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 249

www.EBooksWorld.ir

Test Your Understanding

T5.4–1 Create a surface plot and a contour plot of the function z � (x � 2)2 �
2xy � y2.

250 CHAPTER 5 Advanced Plotting

 –2

 –2 –2

 –2
0

2

 –2

 –2 –2

 –2

0

2
 –0.5

 –0.5 –0.5

 –0.5

0

0.5

xy
z

0
2

0

2

0

0.5

xy

z

0
2

0

2

0

0.5

xy

z

0
2

0

2

0

0.5

xy

z

(a) (b)

(c) (d)

Figure 5.4–4 Plots of the surface z � xe�(x2�y2) created with the mesh function and its
variant forms: meshc, meshz, and waterfall. (a) mesh, (b) meshc, (c) meshz,
(d) waterfall.

Table 5.4–1 Three-dimensional plotting functions

Function Description

contour(x,y,z) Creates a contour plot.
mesh(x,y,z) Creates a three-dimensional mesh surface plot.
meshc(x,y,z) Same as mesh but draws a contour plot under the surface.
meshz(x,y,z) Same as mesh but draws a series of vertical reference

lines under the surface.
surf(x,y,z) Creates a shaded three-dimensional mesh surface plot.
surfc(x,y,z) Same as surf but draws a contour plot under the surface.
[X,Y] = meshgrid(x,y) Creates the matrices X and Y from the vectors x and y to

de ne a rectangular grid.
[X,Y] = meshgrid(x) Same as [X,Y] = meshgrid(x,x).
waterfall(x,y,z) Same as mesh but draws mesh lines in one direction only.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 250

www.EBooksWorld.ir

Problems 251

5.5 Summary
This chapter explained how to use the powerful MATLAB commands to create
effective and pleasing two-dimensional and three-dimensional plots. The follow-
ing guidelines will help you create plots that effectively convey the desired infor-
mation.

■ Label each axis with the name of the quantity being plotted and its units!
■ Use regularly spaced tick marks at convenient intervals along each axis.
■ If you are plotting more than one curve or data set, label each on its plot or

use a legend to distinguish them.
■ If you are preparing multiple plots of a similar type or if the axes’ labels

cannot convey enough information, use a title.
■ If you are plotting measured data, plot each data point in a given set with

the same symbol, such as a circle, square, or cross.
■ If you are plotting points generated by evaluating a function (as opposed to

measured data), do not use a symbol to plot the points. Instead, connect the
points with solid lines.

Key Terms with Page References

Axis limits, 222
Contour plot, 248
Data symbol, 219
Overlay plot, 228

Polar plot, 236
Subplot, 226
Surface mesh plot, 247

Problems
You can nd the answers to problems marked with an asterisk at the end of the text.

Sections 5.1, 5.2, and 5.3
1.* Breakeven analysis determines the production volume at which the total

production cost is equal to the total revenue. At the breakeven point, there
is neither pro t nor loss. In general, production costs consist of xed costs
and variable costs. Fixed costs include salaries of those not directly in-
volved with production, factory maintenance costs, insurance costs, and
so on. Variable costs depend on production volume and include material
costs, labor costs, and energy costs. In the following analysis, assume that
we produce only what we can sell; thus the production quantity equals the
sales. Let the production quantity be Q, in gallons per year.

Consider the following costs for a certain chemical product:
Fixed cost: $3 million per year.
Variable cost: 2.5 cents per gallon of product.

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 251

www.EBooksWorld.ir

The selling price is 5.5 cents per gallon.
Use these data to plot the total cost and the revenue versus Q, and

graphically determine the breakeven point. Fully label the plot and mark the
breakeven point. For what range of Q is production pro table? For what
value of Q is pro t a maximum?

2. Consider the following costs for a certain chemical product:
Fixed cost: $2.045 million/year.
Variable costs:

Material cost: 62 cents per gallon of product.
Energy cost: 24 cents per gallon of product.
Labor cost: 16 cents per gallon of product.

Assume that we produce only what we sell. Let P be the selling price in
dollars per gallon. Suppose that the selling price and the sales quantity
Q are interrelated as follows: Q � 6 � 106 � 1.1 � 106P. Accordingly,
if we raise the price, the product becomes less competitive and sales
drop.

Use this information to plot the xed and total variable costs versus
Q, and graphically determine the breakeven point(s). Fully label the plot
and mark the breakeven points. For what range of Q is production prof-
itable? For what value of Q is pro t a maximum?

3.* a. Estimate the roots of the equation

by plotting the equation.
b. Use the estimates found in part a to nd the roots more accurately with

the fzero function.

4. To compute the forces in structures, sometimes we must solve equations
similar to the following. Use the fplot function to nd all the positive
roots of this equation:

5.* Cables are used to suspend bridge decks and other structures. If a heavy
uniform cable hangs suspended from its two endpoints, it takes the shape
of a catenary curve whose equation is

where a is the height of the lowest point on the chain above some horizon-
tal reference line, x is the horizontal coordinate measured to the right from

y = a cosha x
a
b

x tan x = 9

x3
- 3x2

+ 5x sin a�x

4
-

5�

4
b + 3 = 0

252 CHAPTER 5 Advanced Plotting

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 252

www.EBooksWorld.ir

the lowest point, and y is the vertical coordinate measured up from the
reference line.

Let a � 10 m. Plot the catenary curve for �20 � x � 30 m. How high
is each endpoint?

6. Using estimates of rainfall, evaporation, and water consumption, the town
engineer developed the following model of the water volume in the
reservoir as a function of time

where V is the water volume in liters and t is time in days. Plot V(t)
versus t. Use the plot to estimate how many days it will take before the
water volume in the reservoir is 50 percent of its initial volume of 109 L.

7. It is known that the following Leibniz series converges to the value �/4 as
n →
.

Plot the difference between �/4 and the sum S(n) versus n for 0 �
n � 200.

8. A certain shing vessel is initially located in a horizontal plane at x � 0 and
y � 10 mi. It moves on a path for 10 hr such that x � t and y � 0.5t2 � 10,
where t is in hours. An international shing boundary is described by the line
y � 2x � 6.
a. Plot and label the path of the vessel and the boundary.
b. The perpendicular distance of the point (x1, y1) from the line Ax � By �

C � 0 is given by

where the sign is chosen to make d � 0. Use this result to plot the distance
of the shing vessel from the shing boundary as a function of time for
0 � t � 10 hr.

9. Plot columns 2 and 3 of the following matrix A versus column 1. The
data in column 1 are time (seconds). The data in columns 2 and 3 are
force (newtons).

A = £
0 -7 6

5 -4 3

10 -1 9

15 1 0

20 2 -1

§

d =

Ax1 + By1 + C

�1A2
+ B2

S(n) = a
n

k = 0
(-1)k

1

2k + 1

V(t) = 109
+ 108(1 - e-t>100) - 107t

Problems 253

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 253

www.EBooksWorld.ir

10.* Many applications use the following “small angle” approximation for the
sine to obtain a simpler model that is easy to understand and analyze. This
approximation states that sin x � x, where x must be in radians. Investi-
gate the accuracy of this approximation by creating three plots. For the
 rst, plot sin x and x versus x for 0 � x � 1. For the second, plot the
approximation error sin x � x versus x for 0 � x � 1. For the third, plot
the relative error [sin(x) � x]/sin(x) versus x for 0 � x � 1. How small
must x be for the approximation to be accurate within 5 percent?

11. You can use trigonometric identities to simplify the equations that appear
in many applications. Con rm the identity tan(2 x) � 2 tan x/(1 � tan2 x)
by plotting both the left and the right sides versus x over the range
0 � x � 2�.

12. The complex number identity eix � cos x � i sin x is often used to con-
vert the solutions of equations into a form that is relatively easy to visual-
ize. Con rm this identity by plotting the imaginary part versus the real
part for both the left and right sides over the range 0 � x � 2�.

13. Use a plot over the range 0 � x � 5 to con rm that sin(ix) � i sinh x.

14.* The function y(t) � 1 � e�bt, where t is time and b > 0, describes many
processes, such as the height of liquid in a tank as it is being lled and
the temperature of an object being heated. Investigate the effect of the
parameter b on y (t). To do this, plot y versus t for several values of b on
the same plot. How long will it take for y(t) to reach 98 percent of its
steady-state value?

15. The following functions describe the oscillations in electric circuits and
the vibrations of machines and structures. Plot these functions on the
same plot. Because they are similar, decide how best to plot and label
them to avoid confusion.

16. In certain kinds of structural vibrations, a periodic force acting on
the structure will cause the vibration amplitude to repeatedly increase
and decrease with time. This phenomenon, called beating, also occurs
in musical sounds. A particular structure’s displacement is described by

where y is the displacement in inches and t is the time in seconds. Plot
y versus t over the range 0 � t � 20 for f1 � 8 rad/sec and f2 � 1 rad/sec.
Be sure to choose enough points to obtain an accurate plot.

y(t) =

1

f 2
1 - f 2

2

[cos(f2t) - cos(f1t)]

 y(t) = 7e-0.4t cos(5t - 3)

 x(t) = 10e-0.5t sin(3t + 2)

254 CHAPTER 5 Advanced Plotting

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 254

www.EBooksWorld.ir

17.* The height h(t) and horizontal distance x(t) traveled by a ball thrown at an
angle A with a speed � are given by

At Earth’s surface the acceleration due to gravity is g � 9.81 m/s2.
a. Suppose the ball is thrown with a velocity � � 10 m/s at an angle of

35�. Use MATLAB to compute how high the ball will go, how far it
will go, and how long it will take to hit the ground.

b. Use the values of � and A given in part a to plot the ball’s trajectory;
that is, plot h versus x for positive values of h.

c. Plot the trajectories for � � 10 m/s corresponding to ve values of the
angle A: 20�, 30�, 45�, 60�, and 70�.

d. Plot the trajectories for A � 45� corresponding to ve values of the
initial velocity �: 10, 12, 14, 16, and 18 m/s.

18. The perfect gas law relates the pressure p, absolute temperature T, mass
m, and volume V of a gas. It states that

The constant R is the gas constant. The value of R for air is 286.7
(N · m)/(kg · K). Suppose air is contained in a chamber at room tempera-
ture (20�C � 293 K). Create a plot having three curves of the gas pressure
in N/m2 versus the container volume V in m3 for 20 � V � 100. The three
curves correspond to the following masses of air in the container: m � 1 kg,
m � 3 kg, and m � 7 kg.

19. Oscillations in mechanical structures and electric circuits can often be
described by the function

where t is time and 	 is the oscillation frequency in radians per unit time.
The oscillations have a period of 2�/	, and their amplitudes decay in time
at a rate determined by �, which is called the time constant. The smaller �
is, the faster the oscillations die out.
a. Use these facts to develop a criterion for choosing the spacing of the

t values and the upper limit on t to obtain an accurate plot of y(t).
(Hint: Consider two cases: 4� � 2�/	 and 4� � 2�/	.)

b. Apply your criterion, and plot y(t) for � � 10, 	 � �, and � � 2.
c. Apply your criterion, and plot y(t) for � � 0.1, 	 � 8�, and � � 2.

20. When a constant voltage was applied to a certain motor initially at rest, its
rotational speed s(t) versus time was measured. The data appear in the
following table:

y(t) = e-t>� sin(t + �)

pV = mRT

 x(t) = �t cos A

 h(t) = �t sin A -

1

2
gt2

Problems 255

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 255

www.EBooksWorld.ir

Determine whether the following function can describe the data. If so, nd
the values of the constants b and c.

21. The following table shows the average temperature for each year in a
certain city. Plot the data as a stem plot, a bar plot, and a stairs plot.

22. A sum of $10 000 invested at 4 percent interest compounded annually will
grow according to the formula

where k is the number of years (k � 0, 1, 2, . . .). Plot the amount of
money in the account for a 10-year period. Do this problem with four
types of plots: the xy plot, the stem plot, the stairs plot, and the bar plot.

23. The volume V and surface area A of a sphere of radius r are given by

a. Plot V and A versus r in two subplots, for 0.1 � r � 100 m. Choose
axes that will result in straight-line graphs for both V and A.

b. Plot V and r versus A in two subplots, for 1 � A � 104 m2. Choose
axes that will result in straight-line graphs for both V and r.

24. The current amount A of a principal P invested in a savings account
paying an annual interest rate r is given by

where n is the number of times per year the interest is compounded. For
continuous compounding, A � Pert. Suppose $10 000 is initially invested
at 3.5 percent (r � 0.035).
a. Plot A versus t for 0 � t � 20 years for four cases: continuous

compounding, annual compounding (n � 1), quarterly compounding
(n � 4), and monthly compounding (n � 12). Show all four cases on
the same subplot and label each curve. On a second subplot, plot the

A = P a1 +

r
n
bnt

V =

4

3
 �r3 A = 4�r2

y(k) = 104(1.04)k

s(t) = b(1 - ect)

256 CHAPTER 5 Advanced Plotting

Time (sec) 1 2 3 4 5 6 7 8 10

Speed (rpm) 1210 1866 2301 2564 2724 2881 2879 2915 3010

Year 2000 2001 2002 2003 2004

Temperature (�C) 21 18 19 20 17

pal34870_ch05_218-261.qxd 1/9/10 5:39 PM Page 256

www.EBooksWorld.ir

difference between the amount obtained from continuous compounding
and the other three cases.

b. Redo part a, but plot A versus t on log-log and semilog plots. Which
plot gives a straight line?

25. Figure P25 is a representation of an electrical system with a power supply
and a load. The power supply produces the xed voltage �1 and supplies
the current i1 required by the load, whose voltage drop is �2. The current–
voltage relationship for a speci c load is found from experiments to be

Suppose that the supply resistance is R1 � 30 � and the supply voltage is
�1 � 15 V. To select or design an adequate power supply, we need to de-
termine how much current will be drawn from the power supply when
this load is attached. Find the voltage drop �2 as well.

26. The circuit shown in Figure P26 consists of a resistor and a capacitor and
is thus called an RC circuit. If we apply a sinusoidal voltage �i, called the
input voltage, to the circuit as shown, then eventually the output voltage
�o will be sinusoidal also, with the same frequency but with a different
amplitude and shifted in time relative to the input voltage. Speci cally , if
�i � Ai sin 	t, then �o � Ao sin(t � �). The frequency–response plot is a
plot of Ao /Ai versus frequency 	. It is usually plotted on logarithmic axes.

i1 = 0.16(e0.12�2
- 1)

Problems 257

R1

v1

+

–

v2

i1

Source

Load

Figure P25

R

vi vo
C

+

–

Figure P26

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 257

www.EBooksWorld.ir

Upper-level engineering courses explain that for the RC circuit shown,
this ratio depends on 	 and RC as follows:

where s � 	i. For RC � 0.1 s, obtain the log-log plot of versus 	
and use it to nd the range of frequencies for which the output amplitude
Ao is less than 70 percent of the input amplitude Ai.

27. An approximation to the function sin x is sin x � x � x3�6. Plot the sin x
function and 20 evenly spaced error bars representing the error in the
approximation.

Section 5.4
28. The popular amusement ride known as the corkscrew has a helical shape.

The parametric equations for a circular helix are

where a is the radius of the helical path and b is a constant that
determines the “tightness” of the path. In addition, if b � 0, the helix has
the shape of a right-handed screw; if b � 0, the helix is left-handed.

Obtain the three-dimensional plot of the helix for the following three
cases and compare their appearance with one another. Use 0 � t � 10�
and a � 1.
a. b � 0.1
b. b � 0.2
c. b � �0.1

29. A robot rotates about its base at 2 rpm while lowering its arm and extending
its hand. It lowers its arm at the rate of 120� per minute and extends its hand
at the rate of 5 m/min. The arm is 0.5 m long. The xyz coordinates of the
hand are given by

where t is time in minutes.
Obtain the three-dimensional plot of the path of the hand for 0 � t �

0.2 min.

 z = (0.5 + 5t) cos a2�

3
tb

 y = (0.5 + 5t) sin a2�

3
tb sin (4�t)

 x = (0.5 + 5t) sin a2�

3
tb cos (4�t)

 z = bt

 y = a sin t

 x = a cos t

�Ao /Ai�

Ao

Ai
= ` 1

RCs + 1
`

258 CHAPTER 5 Advanced Plotting

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 258

www.EBooksWorld.ir

30. Obtain the surface and contour plots for the function z � x2 � 2xy � 4y2,
showing the minimum at x � y � 0.

31. Obtain the surface and contour plots for the function z � �x2 � 2xy �
3y2. This surface has the shape of a saddle. At its saddlepoint at x � y � 0,
the surface has zero slope, but this point does not correspond to either a
minimum or a maximum. What type of contour lines corresponds to a
saddlepoint?

32. Obtain the surface and contour plots for the function z � (x � y2)(x � 3y2).
This surface has a singular point at x � y � 0, where the surface has zero
slope, but this point does not correspond to either a minimum or a maxi-
mum. What type of contour lines corresponds to a singular point?

33. A square metal plate is heated to 80�C at the corner corresponding to x �
y � 1. The temperature distribution in the plate is described by

Obtain the surface and contour plots for the temperature. Label each axis.
What is the temperature at the corner corresponding to x � y � 0?

34. The following function describes oscillations in some mechanical
structures and electric circuits.

In this function t is time, and 	 is the oscillation frequency in radians per
unit time. The oscillations have a period of 2�/	, and their amplitudes
decay in time at a rate determined by �, which is called the time constant.
The smaller � is, the faster the oscillations die out.

Suppose that � � 0, 	 � 2, and � can have values in the range 0.5 �
� � 10 sec. Then the preceding equation becomes

Obtain a surface plot and a contour plot of this function to help visualize
the effect of � for 0 � t � 15 sec. Let the x variable be time t and the y
variable be �.

35. The following equation describes the temperature distribution in a at
rectangular metal plate. The temperature on three sides is held constant at
T1, and at T2 on the fourth side (see Figure P35). The temperature T (x, y) as
a function of the xy coordinates shown is given by

where

w(x,y) =

2
�a

q

n odd

2
n

 sin a n�x

L
b

sinh(n�y>L)

sinh(n�W>L)

T(x, y) = (T2 - T1)w(x,y) + T1

z(t) = e-t>� sin(2t)

z(t) = e-t>� sin(t + �)

T = 80e-(x - 1)2

e-3(y - 1)2

Problems 259

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 259

www.EBooksWorld.ir

The given data for this problem are T1 � 70�F, T2 � 200�F, and
W � L � 2 ft.

Using a spacing of 0.2 for both x and y, generate a surface mesh plot
and a contour plot of the temperature distribution.

36. The electric potential eld V at a point, due to two charged particles, is
given by

where q1 and q2 are the charges of the particles in coulombs (C), r1 and r2

are the distances of the charges from the point (in meters), and 0 is the
permittivity of free space, whose value is

Suppose the charges are q1 � 2 � 10�10 C and q2 � 4 � 10�10 C. Their
respective locations in the xy plane are (0.3, 0) and (�0.3, 0) m. Plot the
electric potential eld on a three-dimensional surface plot with V plotted on
the z axis over the ranges �0.25 � x � 0.25 and �0.25 � y � 0.25. Create
the plot in two ways: (a) by using the surf function and (b) by using the
meshc function.

37. Refer to Problem 25 of Chapter 4. Use the function le created for that
problem to generate a surface mesh plot and a contour plot of x versus h
and W for 0 � W � 500 N and for 0 � h � 2 m. Use the values k1 �
104 N/m, k2 � 1.5 � 104 N/m, and d � 0.1 m.

38. Refer to Problem 28 of Chapter 4. To see how sensitive the cost is to
location of the distribution center, obtain a surface plot and a contour plot

0 = 8.854 * 10-12
 C2>(N . m2)

V =

1

4�0
 aq1

r1
+

q2

r2
b

260 CHAPTER 5 Advanced Plotting

y

x

T1

T2

T1

T1
0 L

0

W

T (x ,y)

Figure P35

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 260

www.EBooksWorld.ir

Problems 261

of the total cost as a function of the x and y coordinates of the distribution
center location. How much would the cost increase if we located the
center 1 mi in any direction from the optimal location?

39. Refer to Example 3.2–1. Use a surface plot and a contour plot of the perime-
ter length L as a function of d and � over the ranges 1 � d � 30 ft and 0.1 �
� � 1.5 rad. Are there valleys other than the one corresponding to d �
7.5984 and � � 1.0472? Are there any saddle points?

pal34870_ch05_218-261.qxd 1/5/10 10:03 PM Page 261

www.EBooksWorld.ir

T o many people, computer-aided design (CAD) or computer-aided engi-
neering (CAE) means creating engineering drawings. However, it means
much more. Engineers can use computers to determine the forces, volt-

ages, currents, and so on that might occur in a proposed design. Then they can
use this information to make sure the hardware can withstand the predicted
forces or supply the required voltages or currents. Engineers are just beginning
to use the full potential of CAE.

The normal stages in the development of a new vehicle, such as an aircraft,
formerly consisted of aerodynamic testing a scale model; building a full-size
wooden mock-up to check for pipe, cable, and structural interferences; and
 nally building and testing a prototype, the rst complete vehicle. CAE is chang-
ing the traditional development cycle. The Boeing 777 is the rst aircraft to be
designed and built using CAE, without the extra time and expense of building a
mock-up. The design teams responsible for the various subsystems, such as aero-
dynamics, structures, hydraulics, and electrical systems, all had access to the
same computer database that described the aircraft. Thus when one team made a
design change, the database was updated, allowing the other teams to see
whether the change affected their subsystem. This process of designing and test-
ing with a computer model has been called virtual prototyping. Virtual prototyp-
ing reduced engineering changes, errors, and rework by 50 percent and greatly
enhanced the manufacturability of the airplane. When production began, the
parts went together easily.

MATLAB is a powerful tool for many CAE applications. It complements
geometric modeling packages because it can do advanced calculations that such
packages cannot do. ■

Copyright Royalty-Free/CORBIS

Engineering in the
21st Century. . .

Virtual Prototyping

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 262

www.EBooksWorld.ir

263

C H A P T E R 6

Model Building and
Regression
OUTLINE
6.1 Function Discovery

6.2 Regression

6.3 The Basic Fitting Interface

6.4 Summary

Problems

An important application of the plotting techniques covered in Chapter 5 is
function discovery, the technique for using data plots to obtain a mathematical
function or “mathematical model” that describes the process that generated the
data. This is the topic of Section 6.1. A systematic way of nding an equation that
best ts the data is regression (also called the least-squares method). Regression
is treated in Section 6.2. Section 6.3 introduces the MATLAB Basic Fitting
interface, which supports regression.

6.1 Function Discovery
Function discovery is the process of nding, or “discovering,” a function that can
describe a particular set of data. The following three function types can often de-
scribe physical phenomena.

1. The linear function: y(x) � mx � b. Note that y(0) � b.
2. The power function: y(x) � bxm. Note that y(0) � 0 if m � 0, and y(0) � �

if m � 0.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 263

www.EBooksWorld.ir

3. The exponential function: y(x) � b(10)mx or its equivalent form y �
bemx, where e is the base of the natural logarithm (ln e � 1). Note that
y(0) � b for both forms.

Each function gives a straight line when plotted using a speci c set of axes:

1. The linear function y � mx � b gives a straight line when plotted on
rectilinear axes. Its slope is m and its intercept is b.

2. The power function y � bxm gives a straight line when plotted on log-log
axes.

3. The exponential function y � b(10)mx and its equivalent form y � bemx give
a straight line when plotted on a semilog plot whose y axis is logarithmic.

We look for a straight line on the plot because it is relatively easy to recognize,
and therefore we can easily tell whether the function will t the data well.

Use the following procedure to nd a function that describes a given set of
data. We assume that one of the function types (linear, exponential, or power) can
describe the data.

1. Examine the data near the origin. The exponential function can never
pass through the origin (unless of course b � 0, which is a trivial case).
(See Figure 6.1–1 for examples with b � 1.) The linear function can pass
through the origin only if b � 0. The power function can pass through the
origin but only if m � 0. (See Figure 6.1–2 for examples with b � 1.)

264 CHAPTER 6 Model Building and Regression

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

The Exponential Function y = 10mx

m = 2
m = 1

m = 0

m = –1
m = –2

Figure 6.1–1 Examples of exponential functions.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 264

www.EBooksWorld.ir

6.1 Function Discovery 265

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y
The Power Function y = xm

m = – 0.5

m = 2
m = 1

m = 0.5

m = 0

Figure 6.1–2 Examples of power functions.

2. Plot the data using rectilinear scales. If the data form a straight line, then
the data can be represented by the linear function and you are nished.
Otherwise, if you have data at x � 0, then
a. If y(0) 0, try the power function.
b. If y(0) 0, try the exponential function.

If data are not given for x � 0, proceed to step 3.
3. If you suspect a power function, plot the data using log-log scales. Only a

power function will form a straight line on a log-log plot. If you suspect an
exponential function, plot the data using the semilog scales. Only an expo-
nential function will form a straight line on a semilog plot.

4. In function discovery applications, we use the log-log and semilog plots
only to identify the function type, but not to nd the coef cients b and m.
The reason is that it is dif cult to interpolate on log scales.

We can nd the values of b and m with the MATLAB poly t function.
This function nds the coef cients of a polynomial of speci ed degree n that
best ts the data, in the so-called least-squares sense. The syntax appears in
Table 6.1–1. The mathematical foundation of the least-squares method is pre-
sented in Section 6.2.

Because we are assuming that our data will form a straight line on a
rectilinear, semilog, or log-log plot, we are interested only in a polynomial
that corresponds to a straight line, that is, a rst-degree polynomial, which we

Z

=

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 265

www.EBooksWorld.ir

will denote as w � p1z � p2. Thus, referring to Table 6.1–1, we see that the
vector p will be [p1, p2] if n is 1. This polynomial has a different interpreta-
tion in each of the three cases:

■ The linear function: y � mx � b. In this case the variables w and z in the
polynomial w � p1z � p2 are the original data variables x and y, and we can
 nd the linear function that ts the data by typing p = poly t(x,y,1).
The rst element p1 of the vector p will be m, and the second element p2 will
be b.

■ The power function: y � bxm. In this case log10 y � m log10 x � log10 b,
which has the form w � p1z � p2, where the polynomial variables w and z
are related to the original data variables x and y by w � log10 y and z �
log10 x. Thus we can nd the power function that ts the data by typing p =
poly t(log10(x), log10(y),1). The rst element p1 of the vector
p will be m, and the second element p2 will be log10 b. We can nd b from

.

■ The exponential function: y � b(10)mx. In this case log10 y � mx � log10 b,
which has the form w � p1z � p2, where the polynomial variables w and z
are related to the original data variables x and y by w � log10 y and z � x.
Thus we can nd the exponential function that ts the data by typing p =
poly t(x, log10(y),1). The rst element p1 of the vector p will be
m, and the second element p2 will be log10b. We can nd b from .b = 10

p2

b = 10
p2

266 CHAPTER 6 Model Building and Regression

Table 6.1–1 The poly t function

Command Description

p = poly t(x,y,n) Fits a polynomial of degree n to data described by the
vectors x and y, where x is the independent variable.
Returns a row vector p of length n � 1 that contains the
polynomial coef cients in order of descending powers.

Temperature Dynamics

The temperature of coffee cooling in a porcelain mug at room temperature (68�F) was
measured at various times. The data follow.

EXAMPLE 6.1–1

Time t (sec) Temperature T (�F)

0 145
620 130

2266 103
3482 90

Develop a model of the coffee’s temperature as a function of time, and use the model to
estimate how long it took the temperature to reach 120�F.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 266

www.EBooksWorld.ir

■ Solution
Because T(0) is nite but nonzero, the power function cannot describe these data, so we do
not bother to plot the data on log-log axes. Common sense tells us that the coffee will cool
and its temperature will eventually equal the room temperature. So we subtract the room
temperature from the data and plot the relative temperature, T 	 68, versus time. If the rel-
ative temperature is a linear function of time, the model is T 	 68 � mt � b. If the relative
temperature is an exponential function of time, the model is T 	 68 � b(10)mt. Figure
6.1–3 shows the plots used to solve the problem. The following MATLAB script le gen-
erates the top two plots. The time data are entered in the array time, and the temperature
data are entered in temp.

% Enter the data.
time = [0,620,2266,3482];
temp = [145,130,103,90];
% Subtract the room temperature.
temp = temp - 68;
% Plot the data on rectilinear scales.
subplot(2,2,1)
plot(time,temp,time,temp,’o’),xlabel(‘Time (sec)’),...

ylabel(‘Relative Temperature (deg F)’)
%
% Plot the data on semilog scales.

6.1 Function Discovery 267

0 1000 2000 3000 4000
20

30

40

50

60

70

80

Time (sec)

R
el

at
iv

e
Te

m
pe

ra
tu

re
 (

de
g

F
)

0 1000 2000 3000 4000
10

1

10
2

Time (sec)

R
el

at
iv

e
Te

m
pe

ra
tu

re
 (

de
g

F
)

0 1000 2000 3000 4000
10

1

10
2

Time (sec)

R
el

at
iv

e
Te

m
pe

ra
tu

re
 (

de
g

F
)

0 1000 2000 3000 4000
80

90

100

110

120

130

140

150

Time (sec)

Te
m

pe
ra

tu
re

 (
de

g
F

)

Figure 6.1–3 Temperature of a cooling cup of coffee, plotted on various coordinates.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 267

www.EBooksWorld.ir

subplot(2,2,2)
semilogy(time,temp,time,temp,’o’),xlabel(‘Time (sec)’),...

ylabel(‘Relative Temperature (deg F)’)

The data form a straight line on the semilog plot only (the top right plot). Thus the data
can be described with the exponential function T � 68 � b(10)mt. Using the poly t
command, the following lines can be added to the script le.

% Fit a straight line to the transformed data.
p = poly t(time,log10(temp),1);
m = p(1)
b = 10^p(2)

The computed values are m � 	1.5557
 10	4 and b � 77.4469. Thus our derived
model is T � 68 � b(10)mt. To estimate how long it will take for the coffee to cool to
120�F, we must solve the equation 120 � 68 � b(10)mt for t. The solution is t �

[log10(120	68)	log10(b)]/m. The MATLAB command for this calculation is shown in
the following script le, which is a continuation of the previous script and produces the
bottom two subplots shown in Figure 6.1–3.

268 CHAPTER 6 Model Building and Regression

Hydraulic Resistance

A 15-cup coffee pot (see Figure 6.1–4) was placed under a water faucet and lled to the
15-cup line. With the outlet valve open, the faucet’s ow rate was adjusted until the water
level remained constant at 15 cups, and the time for one cup to ow out of the pot was

EXAMPLE 6.1–2

% Compute the time to reach 120 degrees.
t_120 = (log10(120-68)-log10(b))/m
% Show the derived curve and estimated point on semilog scales.
t = 0:10:4000;
T = 68+b*10.^(m*t);
subplot(2,2,3)
semilogy(t,T-68,time,temp,’o’,t_120,120-68,’+’),
xlabel(‘Time (sec)’),...

ylabel(‘Relative Temperature (deg F)’)
%
% Show the derived curve and estimated point on rectilinear scales.
subplot(2,2,4)
plot(t,T,time,temp+68,’o’,t_120,120,’+’),xlabel(‘Time (sec)’),...

ylabel(‘Temperature (deg F)’)

The computed value of t_120 is 1112. Thus the time to reach 120� F is 1112 sec. The
plot of the model, along with the data and the estimated point (1112, 120) marked with
a � sign, is shown in the bottom two subplots in Figure 6.1–3. Because the graph of
our model lies near the data points, we can treat its prediction of 1112 sec with some
con dence.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 268

www.EBooksWorld.ir

measured. This experiment was repeated with the pot lled to the various levels shown in
the following table:

6.1 Function Discovery 269

Figure 6.1–4 An experiment to verify
Torricelli’s principle.

Liquid volume V (cups) Time to ll 1 cup t (sec)

15 6
12 7
9 8
6 9

(a) Use the preceding data to obtain a relation between the ow rate and the number
of cups in the pot. (b) The manufacturer wants to make a 36-cup pot using the same
outlet valve but is concerned that a cup will ll too quickly , causing spills. Extrapolate the
relation developed in part (a) and predict how long it will take to ll one cup when the pot
contains 36 cups.

■ Solution
(a) Torricelli’s principle in hydraulics states that f � rV1/2, where f is the ow rate through
the outlet valve in cups per second, V is the volume of liquid in the pot in cups, and r is a
constant whose value is to be found. We see that this relation is a power function where
the exponent is 0.5. Thus if we plot log10(f) versus log10(V), we should obtain a straight
line. The values for f are obtained from the reciprocals of the given data for t. That is,
f � 1/t cups per second.

The MATLAB script le follows. The resulting plots appear in Figure 6.1–5. The
volume data are entered in the array cups, and the time data are entered in
meas_times.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 269

www.EBooksWorld.ir

% Data for the problem.
cups = [6,9,12,15];
meas_times = [9,8,7,6];
meas_ ow = 1./meas_times;
%
% Fit a straight line to the transformed data.
p = poly t(log10(cups),log10(meas_ ow),1);
coeffs = [p(1),10^p(2)];
m = coeffs(1)
b = coeffs(2)
%
% Plot the data and the tted line on a loglog plot to see
% how well the line ts the data.
x = 6:0.01:40;
y = b*x.^m;
subplot(2,1,1)
loglog(x,y,cups,meas_ ow,’o’),grid,xlabel(‘Volume (cups)’),...

ylabel(‘Flow Rate (cups/sec)’),axis([5 15 0.1 0.3])

The computed values are m � 0.433 and b � 0.0499, and our derived relation is f �

0.0499V 0.433. Because the exponent is 0.433, not 0.5, our model does not agree exactly

270 CHAPTER 6 Model Building and Regression

101
10 –1

Volume (cups)

F
lo

w
 R

at
e

(c
up

s/
se

c)

5 10 15 20 25 30 35
0

2

4

6

8

10

Volume (cups)

F
ill

 T
im

e
pe

r
C

up
 (

se
c)

Figure 6.1–5 Flow rate and ll time for a cof fee pot.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 270

www.EBooksWorld.ir

with Torricelli’s principle, but it is close. Note that the rst plot in Figure 6.1–5 shows
that the data points do not lie exactly on the tted straight line. In this application it is
dif cult to measure the time to ll one cup with an accuracy greater than an integer
second, so this inaccuracy could have caused our result to disagree with that predicted
by Torricelli.

(b) Note that the ll time is 1 /f, the reciprocal of the ow rate. The remainder of the
MATLAB script uses the derived ow rate relation f � 0.0499V 0.433 to plot the extrapo-
lated ll-time curve 1/ f versus t.

% Plot the ll time curve extrapolated to 36 cups.
subplot(2,1,2)

6.2 Regression 271

x y

0 2
5 6

10 11

According to the least-squares criterion, the line that gives the best t is the
one that minimizes J, the sum of the squares of the vertical differences between

plot(x,1./y,cups,meas_times,’o’),grid,xlabel(‘Volume(cups)’),...
ylabel(‘Fill Time per Cup (sec)’),axis([5 36 0 10])

%
% Compute the ll time for V = 36 cups.
 ll_time = 1/(b*36^m)

The predicted ll time for 1 cup is 4.2 sec. The manufacturer must now decide if
this time is suf cient for the user to avoid over lling. (In fact, the manufacturer did
construct a 36-cup pot, and the ll time is approximately 4 sec, which agrees with our
prediction.)

6.2 Regression
In Section 6.1 we used the MATLAB function poly t to perform regression
analysis with functions that are linear or could be converted to linear form by a
logarithmic or other transformation. The poly t function is based on the least-
squares method, which is also called regression. We now show how to use this
function to develop polynomial and other types of functions.

The Least-Squares Method
Suppose we have the three data points given in the following table, and we need
to determine the coef cients of the straight line y � mx � b that best t the fol-
lowing data in the least-squares sense.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 271

www.EBooksWorld.ir

the line and the data points. These differences are called the residuals. Here there
are three data points, and J is given by

The values of m and b that minimize J are found by setting the partial deriva-
tives �J/�m and �J/�b equal to zero.

These conditions give two equations that must be solved for the two unknowns m
and b. The solution is m � 0.9 and b � 11/6. The best straight line in the least-
squares sense is y � 0.9x � 11/6. If we evaluate this equation at the data values x �
0, 5, and 10, we obtain the values y � 1.833, 6.333, 10.8333. These values are dif-
ferent from the given data values y � 2, 6, 11 because the line is not a perfect t to
the data. The value of J is J � (1.833 	 2)2 � (6.333 	 6)2 � (10.8333 	 11)2 �
0.16656689. No other straight line will give a lower value of J for these data.

In general, for the polynomial a1xn � a2xn	1 � · · · � anx � an�1, the sum
of the squares of the residuals for m data points is

The values of the n � 1 coef cients ai that minimize J can be found by solving a set
of n � 1 linear equations. The poly t function provides this solution. Its syntax
is p = poly t(x,y,n). Table 6.2–1 summarizes the poly t and polyval
functions.

Consider the data set where x � 1, 2, 3, . . . , 9 and y � 5, 6, 10, 20, 28, 33,
34, 36, 42. The following script le computes the coef cients of the rst- through
fourth-degree polynomials for these data and evaluates J for each polynomial.

x = 1:9;
y = [5,6,10,20,28,33,34,36,42];
for k = 1:4

coeff = poly t(x,y,k)
J(k) = sum((polyval(coeff,x)-y).^2)

end

The J values are, to two signi cant gures, 72, 57, 42, and 4.7. Thus the value
of J decreases as the polynomial degree is increased, as we would expect. Fig-
ure 6.2–1 shows this data and the four polynomials. Note now the t improves
with the higher-degree polynomial.

J = a
m

i = 1
(a1x

n
+ a2x

n - 1
+

Á
+ anx + an + 1 - yi)

2

�J

�b
= 30m + 6b - 38 = 0

�J

�m
= 250m + 30b - 280 = 0

 = (0m + b - 2)2
+ (5m + b - 6)2

+ (10m + b - 11)2

 J = a
3

i = 1
(mxi + b - yi)

2

272 CHAPTER 6 Model Building and Regression

RESIDUALS

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 272

www.EBooksWorld.ir

6.2 Regression 273

Table 6.2–1 Functions for polynomial regression

Command Description

p = poly t(x,y,n) Fits a polynomial of degree n to data described by the vectors x and
y, where x is the independent variable. Returns a row vector p of
length n+1 that contains the polynomial coef cients in order of
descending powers.

[p,s, mu] = poly t(x,y,n) Fits a polynomial of degree n to data described by the vectors x and
y, where x is the independent variable. Returns a row vector p of
length n+1 that contains the polynomial coef cients in order of
descending powers and a structure s for use with polyval to
obtain error estimates for predictions. The optional output variable
mu is a two-element vector containing the mean and standard
deviation of x.

[y,delta] = polyval(p,x,s,mu) Uses the optional output structure s generated by [p,s,mu] =
poly t(x,y,n) to generate error estimates. If the errors in the
data used with poly t are independent and normally distributed
with constant variance, at least 50 percent of the data will lie within
the band y � delta.

0 5 10
0

10

20

30

40

50

x

y

First Degree

0 5 10
0

10

20

30

40

50

x

y

Second Degree

0 5 10
0

10

20

30

40

50

x

y

Third Degree

0 5 10
0

10

20

30

40

50

x

y

Fourth Degree

Figure 6.2–1 Regression using polynomials of rst through fourth degree.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 273

www.EBooksWorld.ir

Caution: It is tempting to use a high-degree polynomial to obtain the best
possible t. However , there are two dangers in using high-degree polynomials.
High-degree polynomials often exhibit large excursions between the data
points and thus should be avoided if possible. Figure 6.2–2 shows an example
of this phenomenon. The second danger with using high-degree polynomials is
that they can produce large errors if their coef cients are not represented with
a large number of signi cant gures. In some cases it might not be possible to
 t the data with a low-degree polynomial. In such cases we might be able to
use several cubic polynomials. This method, called cubic splines, is covered in
Chapter 7.

Test Your Understanding

T6.2–1 Obtain and plot the rst- through fourth-degree polynomials for the fol-
lowing data: x � 0, 1, . . . , 5 and y � 0, 1, 60, 40, 41, and 47. Find the
coef cients and the J values.
(Answer: The polynomials are 9.5714x � 7.5714; 	3.6964x2 �
28.0536x 	 4.7500; 0.3241x3 	 6.1270x2 � 32.4934x 	 5.7222; and
2.5208x4 	 24.8843x3 � 71.2986x2 	 39.5304x 	 1.4008. The corre-
sponding J values are 1534, 1024, 1017, and 495, respectively.)

274 CHAPTER 6 Model Building and Regression

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 –40

 –20

0

20

40

60

80

x

y

Figure 6.2–2 An example of a fth-degree polynomial that passes through all six data
points but exhibits large excursions between points.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 274

www.EBooksWorld.ir

Fitting Other Functions
Given the data (y, z), the logarithmic function y � m ln z � b can be converted to
a rst-degree polynomial by transforming the z values into x values by the trans-
formation x � ln z. The resulting function is y � mx � b.

Given the data (y, z), the function y � b(10)m/z can be converted to an expo-
nential function by transforming the z values by the transformation x � 1/z.

Given the data (�, x), the function � � 1/(mx � b) can be converted to a
 rst- degree polynomial by transforming the � data values with the transformation
y � 1/�. The resulting function is y � mx � b.

To see how to obtain a function y � kx that passes through the origin, see
Problem 8.

The Quality of a Curve Fit
The least-squares criterion used to t a function f (x) is the sum of the squares of
the residuals J. It is de ned as

(6.2–1)

We can use the J value to compare the quality of the curve t for two or more
functions used to describe the same data. The function that gives the smallest
J value gives the best t.

We denote the sum of the squares of the deviation of the y values from their
mean by S, which can be computed from

(6.2–2)

This formula can be used to compute another measure of the quality of the curve
 t, the coef cient of determination, also known as the r-squared value. It is
de ned as

(6.2–3)

For a perfect t, J � 0 and thus r2 � 1. Thus the closer r2 is to 1, the better
the t. The largest r2 can be is 1. The value of S indicates how much the data is
spread around the mean, and the value of J indicates how much of the data
spread is unaccounted for by the model. Thus the ratio J /S indicates the frac-
tional variation unaccounted for by the model. It is possible for J to be larger
than S, and thus it is possible for r2 to be negative. Such cases, however, are in-
dicative of a very poor model that should not be used. As a rule of thumb, a
good t accounts for at least 99 percent of the data variation. This value corre-
sponds to r2 � 0.99.

For example, the following table gives the values of J, S, and r2 for the
 rst- through fourth-degree polynomials used to t the data x � 1, 2, 3, . . . , 9
and y � 5, 6, 10, 20, 28, 33, 34, 36, 42.

r2
= 1 -

J

S

S = a
m

i = 1
(yi - y)2

y

J = a
m

i = 1
[f(xi) - yi]

2

6.2 Regression 275

COEFFICIENT OF
DETERMINATION

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 275

www.EBooksWorld.ir

Because the fourth-degree polynomial has the largest r2 value, it represents the
data better than the representation from rst- through third-degree polynomials,
according to the r2 criterion.

To calculate the values of S and r2, add the following lines to the end of the
script le shown on page 272.

mu = mean(y);
for k=1:4

S(k) = sum((y-mu).^2);
r2(k) = 1 - J(k)/S(k);

end
S
r2

Scaling the Data
The effect of computational errors in computing the coef cients can be lessened
by properly scaling the x values. When the function poly t(x,y,n) is exe-
cuted, it will issue a warning message if the polynomial degree n is greater than
or equal to the number of data points (because there will not be enough equations
for MATLAB to solve for the coef cients), or if the vector x has repeated, or
nearly repeated, points, or if the vector x needs centering and/or scaling. The
alternate syntax [p, s, mu] = poly t(x,y,n) nds the coef cients p
of a polynomial of degree n in terms of the variable

The output variable mu is a two-element vector [x, �x], where x is the mean
of x and �x is the standard deviation of x (the standard deviation is discussed
in Chapter 7).

You can scale the data yourself before using poly t. Some common scal-
ing methods are

if the range of x is small, or

if the range of x is large.

xN =

x
xmax

 or xN =

x
xmean

xN = x - xmin or xN = x - x

xN = (x - x)>�x

276 CHAPTER 6 Model Building and Regression

Degree n J S r2

1 72 1562 0.9542
2 57 1562 0.9637
3 42 1562 0.9732
4 4.7 1562 0.9970

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 276

www.EBooksWorld.ir

Estimation of Traf c Flow

The following data give the number of vehicles (in millions) crossing a bridge each year
for 10 years. Fit a cubic polynomial to the data and use the t to estimate the ow in the
year 2010.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Vehicle ow 2.1 3.4 4.5 5.3 6.2 6.6 6.8 7 7.4 7.8
(millions)

■ Solution
If we attempt to t a cubic to these data, as in the following session, we get a warning
message.

>>Year = 2000:2009;
>>Veh_Flow = [2.1,3.4,4.5,5.3,6.2,6.6,6.8,7,7.4,7.8];
>>p = poly t(Year,Veh_Flow,3)
Warning: Polynomial is badly conditioned.

The problem is caused by the large values of the independent variable Year. Because
their range is small, we can simply subtract 2000 from each value. Continue the session
as follows.

>>x = Year-2000; y = Veh_Flow;
>>p = poly t(x,y,3)
p =

0.0087 -0.1851 1.5991 2.0362
>>J = sum((polyval(p,x)-y).^2);
>>S = sum((y-mean(y)).^2);
>>r2 = 1 - J/S
r2 =

0.9972

Thus the polynomial t is good because the coef cient of determination is 0.9972. The
corresponding polynomial is

where f is the traf c ow in millions of vehicles and t is the time in years measured from 0.
We can use this equation to estimate the ow at the year 2010 by substituting t � 2010,
or by typing in MATLAB polyval(p,10). Rounded to one decimal place, the an-
swer is 8.2 million vehicles.

Using Residuals
We now show how to use the residuals as a guide to choosing an appropriate func-
tion to describe the data. In general, if you see a pattern in the plot of the residu-
als, it indicates that another function can be found to describe the data better.

f = 0.0087(t - 2000)3
- 0.1851(t - 2000)2

+ 1.5991(t - 2000) + 2.0362

6.2 Regression 277

EXAMPLE 6.2–1

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 277

www.EBooksWorld.ir

Modeling Bacteria Growth

The following table gives data on the growth of a certain bacteria population with time.
Fit an equation to these data.

278 CHAPTER 6 Model Building and Regression

EXAMPLE 6.2–2

Time (min) Bacteria (ppm) Time (min) Bacteria (ppm)

0 6 10 350
1 13 11 440
2 23 12 557
3 33 13 685
4 54 14 815
5 83 15 990
6 118 16 1170
7 156 17 1350
8 210 18 1575
9 282 19 1830

■ Solution
We try three polynomial ts (linear , quadratic, and cubic) and an exponential t. The script
 le is given below . Note that we can write the exponential form as y � b(10)mt � 10mt�a,
where b � 10a.

% Time data
x = 0:19;
% Population data
y = [6,13,23,33,54,83,118,156,210,282,...

350,440,557,685,815,990,1170,1350,1575,1830];
% Linear t
p1 = poly t(x,y,1);
% Quadratic t
p2 = poly t(x,y,2);
% Cubic t
p3 = poly t(x,y,3);
% Exponential t
p4 = poly t(x,log10(y),1);
% Residuals
res1 = polyval(p1,x)-y;
res2 = polyval(p2,x)-y;
res3 = polyval(p3,x)-y;
res4 = 10.^polyval(p4,x)-y;

You can then plot the residuals as shown in Figure 6.2–3. Note that there is a de nite
pattern in the residuals of the linear t. This indicates that the linear function cannot
match the curvature of the data. The residuals of the quadratic t are much smaller , but
there is still a pattern, with a random component. This indicates that the quadratic

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 278

www.EBooksWorld.ir

function also cannot match the curvature of the data. The residuals of the cubic t are
even smaller, with no strong pattern and a large random component. This indicates that
a polynomial degree higher than 3 will not be able to match the data curvature any bet-
ter than the cubic. The residuals for the exponential are the largest of all, and indicate a
poor t. Note also how the residuals systematically increase with t, indicating that the
exponential cannot describe the data’s behavior after a certain time.

Thus the cubic is the best t of the four models considered. Its coef cient of deter-
mination is r2 � 0.9999. The model is

where y is the bacteria population in ppm and t is time in minutes.

Multiple Linear Regression
Suppose that y is a linear function of two or more variables x1, x2, . . . , for
example, y � a0 � a1x1 � a2x2. To find the coefficient values a0, a1, and a2 to
fit a set of data (y, x1, x2) in the least-squares sense, we can make use of the
fact that the left-division method for solving linear equations uses the least-
squares method when the equation set is overdetermined. To use this method,

y = 0.1916t3 + 1.2082t2 + 3.607t + 7.7307

6.2 Regression 279

0 5 10 15 20
–600

–400

–200

0

200

400

t (min)

R
es

id
ua

ls
 (

pp
m

)

Linear

0 5 10 15 20
–60

–40

–20

0

20

40

60

t (min)

R
es

id
ua

ls
 (

pp
m

)

Quadratic

0 5 10 15 20
–15

–10

–5

0

5

10

t (min)

R
es

id
ua

ls
 (

pp
m

)

Cubic

0 5 10 15 20
–500

0

500

1000

1500

t (min)

R
es

id
ua

ls
 (

pp
m

)

Exponential

Figure 6.2–3 Residual plots for the four models.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 279

www.EBooksWorld.ir

let n be the number of data points and write the linear equation in matrix form as
Xa � y, where

where x1i, x2i, and yi are the data, i � 1, . . . , n. The solution for the coef cients
is given by a = X\y.

Breaking Strength and Alloy Composition

We want to predict the strength of metal parts as a function of their alloy composition.
The tension force y required to break a steel bar is a function of the percentage x1 and x2

of each of two alloying elements present in the metal. The following table gives some
pertinent data. Obtain a linear model y � a0 � a1x1 � a2x2 to describe the relationship.

a =

a0

 a1

a2

 X =

1 x11 x21

1 x12 x22

1 x13 x23
Á Á Á

1 x1n x2n

 y =

y1

y2

y3
Á

yn

280 CHAPTER 6 Model Building and Regression

EXAMPLE 6.2–3

Breaking strength (kN) % of element 1 %of element 2
y x1 x2

7.1 0 5
19.2 1 7
31 2 8
45 3 11

■ Solution
The script le is as follows:

x1 = (0:3)’;x2 = [5,7,8,11]’;
y = [7.1,19.2,31,45]’;
X = [ones(size(x1)), x1, x2];
a = X\y
yp = X*a;
Max_Percent_Error = 100*max(abs((yp-y)./y))

The vector yp is the vector of breaking strength values predicted by the model. The scalar
Max_Percent_Error is the maximum percent error in the four predictions. The
results are a = [0.8000, 10.2429, 1.2143]’ and Max_Percent_Error =
3.2193. Thus the model is y � 0.8 � 10.2429x1 � 1.2143x2. The maximum percent
error of the model’s predictions, as compared to the given data, is 3.2193 percent.

Linear-in-Parameters Regression
Sometimes we want to t an expression that is neither a polynomial nor a func-
tion that can be converted to linear form by a logarithmic or other transforma-
tion. In some cases we can still do a least-squares t if the function is a linear

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 280

www.EBooksWorld.ir

expression in terms of its parameters. The following example illustrates the
method.

Response of a Biomedical Instrument

Engineers developing instrumentation often need to obtain a response curve that describes
how fast the instrument can make measurements. The theory of instrumentation shows that
often the response can be described by one of the following equations, where � is the voltage
output and t is time. In both models, the voltage reaches a steady-state constant value as

, and T is the time required for the voltage to equal 95 percent of the steady-state
value.

The following data give the output voltage of a certain device as a function of time. Ob-
tain a function that describes these data.

 �(t) = a1 + a2e
-3t>T

+ a3te
-3t>T (second - order model)

 �(t) = a1 + a2e
-3t>T (first- order model)

t : q

6.2 Regression 281

EXAMPLE 6.2–4

t (s) 0 0.3 0.8 1.1 1.6 2.3 3

(V) 0 0.6 1.28 1.5 1.7 1.75 1.8�

■ Solution
Plotting the data, we estimate that it takes approximately 3 s for the voltage to become
constant. Thus we estimate that T � 3. The rst-order model written for each of the n data
points results in n equations, which can be expressed as follows:

or, in matrix form,

which can be solved for the coef cient vector a using left division. The following
MATLAB script solves the problem.

t = [0,0.3,0.8,1.1,1.6,2.3,3];
y = [0,0.6,1.28,1.5,1.7,1.75,1.8];
X = [ones(size(t));exp(-t)]’;
a = X\y’

The answer is a1 � 2.0258 and a2 � 	1.9307.

Xa = y¿

≥
1 e-t1

1 e-t2

Á Á

1 e-tn

¥ ca1

a2
d = ≥

y1

y2
Á

yn

¥

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 281

www.EBooksWorld.ir

A similar procedure can be followed for the second-order model.

Continue the previous script as follows.

X = [ones(size(t));exp(-t);t.*exp(-t)]’;
a = X\y’

The answer is a1 � 1.7496, a2 � 	1.7682, and a3 � 0.8885. The two models are plotted
with the data in Figure 6.2–4. Clearly the second-order model gives the better t.

6.3 The Basic Fitting Interface
MATLAB supports curve tting through the Basic Fitting interface. Using this
interface, you can quickly perform basic curve- tting tasks within the same easy-
to-use environment. The interface is designed so that you can do the following:

■ Fit data using a cubic spline or a polynomial up to degree 10.
■ Plot multiple ts simultaneously for a given data set.
■ Plot the residuals.

≥
1 e-t1 t1e

-t1

1 e-t2 t2e
-t2

Á Á Á

1 e-tn tne
-tn

¥ J
a1

a2

a3
K = ≥

y1

y2
Á

yn

¥

282 CHAPTER 6 Model Building and Regression

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t (s)

v
(V

)

Data
First Order
Second Order

Figure 6.2–4 Comparison of rst- and second-order model ts.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 282

www.EBooksWorld.ir

■ Examine the numerical results of a t.
■ Interpolate or extrapolate a t.
■ Annotate the plot with the numerical t results and the norm of residuals.
■ Save the t and evaluated results to the MA TLAB workspace.

Depending on your specific curve-fitting application, you can use the Basic
Fitting interface, the command line functions, or both. Note: You can use the
Basic Fitting interface only with two-dimensional data. However, if you plot
multiple data sets as a subplot, and at least one data set is two-dimensional,
then the interface is enabled.

Two panes of the Basic Fitting interface are shown in Figure 6.3–1. To repro-
duce this state:

1. Plot some data.
2. Select Basic Fitting from the Tools menu of the Figure window.
3. When the rst pane of the Basic Fitting interface appears, click the right

arrow button once.

6.3 The Basic Fitting Interface 283

Figure 6.3–1 The Basic Fitting interface.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 283

www.EBooksWorld.ir

The third pane is used for interpolating or extrapolating a t. It appears when you
click the right arrow button a second time.

At the top of the rst pane is the Select data window which contains the
names of all the data sets you display in the Figure window associated with the
Basic Fitting interface. Use this menu to select the data set to be t. You can
perform multiple ts for the current data set. Use the Plot Editor to change the
name of a data set. The remaining items on the rst pane are used as follows.

■ Center and scale X data. If checked, the data are centered at zero mean
and scaled to unit standard deviation. You may need to center and scale
your data to improve the accuracy of the subsequent numerical computa-
tions. As described in the previous section, a warning is returned to the
Command window if a t produces results that might be inaccurate.

■ Plot ts. This panel allows you to visually explore one or more ts to the
current data set.

■ Check to display ts on gur e. Select the ts you want to display for the
current data set. You can choose as many ts for a given data set as you want.
However, if your data set has n points, then you should use polynomials with
at most n coef cients. If you t using polynomials with more than n
coef cients, the interface will automatically set a suf cient number of
coef cients to zero during the calculation so that a solution can be obtained.

■ Show equations. If checked, the t equation is displayed on the plot.
■ Signi cant digits. Select the signi cant digits associated with the t

coef cient display .
■ Plot residuals. If checked, the residuals are displayed. You can display the

residuals as a bar plot, a scatter plot, a line plot using either the same gure
window as the data or using a separate gure window . If you plot multiple
data sets as a subplot, then residuals can be plotted only in a separate gure
window. See Figure 6.3–2.

■ Show norm of residuals. If checked, the norm of residuals is displayed. The
norm of residuals is a measure of the goodness of t, where a smaller value
indicates a better t. The norm is the square root of the sum of the squares of
the residuals.

The second pane of the Basic Fitting interface is labeled Numerical Results. This
pane enables you to explore the numerical results of a single t to the current data
set without plotting the t. It contains three items.

■ Fit. Use this menu to select an equation to t to the current data set. The t
results are displayed in the box below the menu. Note that selecting an
equation in this menu does not affect the state of the Plot ts selection.
Therefore, if you want to display the t in the data plot, you might need to
check the relevant check box in Plot ts.

■ Coef cients and norm of r esiduals. Displays the numerical results for the
equation selected in Fit. Note that when you rst open the Numerical
Results panel, the results of the last t you selected in Plot ts are displayed.

284 CHAPTER 6 Model Building and Regression

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 284

www.EBooksWorld.ir

■ Save to workspace. Launches a dialog box that allows you to save the t
results to workspace variables.

The third pane of the Basic Fitting interface contains three items.

■ Find Y � f(X). Use this to interpolate or extrapolate the current fit.
Enter a scalar or a vector of values corresponding to the independent
variable (X). The current fit is evaluated after you click on the Evaluate
button, and the results are displayed in the associated window. The
current fit is displayed in the Fit window.

■ Save to workspace. Launches a dialog box that allows you to save the
evaluated results to workspace variables.

■ Plot evaluated results. If checked, the evaluated results are displayed on
the data plot.

6.4 Summary
In this chapter you learned an important application of plotting—function
discovery—which is the technique for using data plots to obtain a mathematical
function that describes the data. Regression can be used to develop a model for
cases where there is considerable scatter in the data.

6.4 Summary 285

Figure 6.3–2 A gure produced by the Basic Fitting interface.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 285

www.EBooksWorld.ir

Many physical processes can be modeled with functions that produce a
straight line when plotted using a suitable set of axes. In some cases, we can nd
a transformation that produces a straight line in the transformed variable.

When such a function or transformation cannot be found, we resort to poly-
nomial regression, multiple linear regression, or linear-in-parameters regression
to obtain an approximate functional description of the data. The MATLAB Basic
Fitting interface is a powerful aid in obtaining regression models.

Key Terms with Page References
Coef cient of determination, 275
Linear-in-parameters, 280
Multiple linear regression, 279
Regression, 271
Residuals, 272

Problems
You can nd the answers to problems marked with an asterisk at the end of the text.

Section 6.1
1. The distance a spring stretches from its “free length” is a function of how

much tension force is applied to it. The following table gives the spring
length y that the given applied force f produced in a particular spring. The
spring’s free length is 4.7 in. Find a functional relation between f and x,
the extension from the free length (x � y 	 4.7).

286 CHAPTER 6 Model Building and Regression

Force f (lb) Spring length y (in.)

0 4.7
0.94 7.2
2.30 10.6
3.28 12.9

2.* In each of the following problems, determine the best function y(x)
(linear, exponential, or power function) to describe the data. Plot the
function on the same plot with the data. Label and format the plots
appropriately.
a. x 25 30 35 40 45

y 5 260 480 745 1100

x 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10

y 1500 1220 1050 915 810 745 690 620 520 480 410 390

b.

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 286

www.EBooksWorld.ir

c.

3. The population data for a certain country are as follows:

Obtain a function that describes these data. Plot the function and the
data on the same plot. Estimate when the population will be double its
2004 size.

4.* The half-life of a radioactive substance is the time it takes to decay by
one-half. The half-life of carbon 14, which is used for dating previously
living things, is 5500 years. When an organism dies, it stops accumulating
carbon 14. The carbon 14 present at the time of death decays with time.
Let C(t)/C(0) be the fraction of carbon 14 remaining at time t. In
radioactive carbon dating, scientists usually assume that the remaining
fraction decays exponentially according to the following formula:

a. Use the half-life of carbon 14 to nd the value of the parameter b, and
plot the function.

b. If 90 percent of the original carbon 14 remains, estimate how long ago
the organism died.

c. Suppose our estimate of b is off by �1 percent. How does this error
affect the age estimate?

5. Quenching is the process of immersing a hot metal object in a bath for a
speci ed time to obtain certain properties such as hardness. A copper sphere
25 mm in diameter, initially at 300�C, is immersed in a bath at 0�C. The fol-
lowing table gives measurements of the sphere’s temperature versus time.
Find a functional description of these data. Plot the function and the data on
the same plot.

6. The useful life of a machine bearing depends on its operating temperature, as
the following data show. Obtain a functional description of these data. Plot

C(t)

C(0)
= e-bt

Problems 287

x 550 600 650 700 750

y 41.2 18.62 8.62 3.92 1.86

Year 2004 2005 2006 2007 2008 2009

Population (millions) 10 10.9 11.7 12.6 13.8 14.9

Time (s) 0 1 2 3 4 5 6

Temperature (�C) 300 150 75 35 12 5 2

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 287

www.EBooksWorld.ir

the function and the data on the same plot. Estimate a bearing’s life if it
operates at 150�F.

7. A certain electric circuit has a resistor and a capacitor. The capacitor is
initially charged to 100 V. When the power supply is detached, the
capacitor voltage decays with time, as the following data table shows.
Find a functional description of the capacitor voltage � as a function of
time t. Plot the function and the data on the same plot.

Sections 6.2 and 6.3
8.* The distance a spring stretches from its free length is a function of how

much tension force is applied to it. The following table gives the spring
length y that was produced in a particular spring by the given applied
force f. The spring’s free length is 4.7 in. Find a functional relation
between f and x, the extension from the free length (x � y 	 4.7).

9. The following data give the drying time T of a certain paint as a function
of the amount of a certain additive A.
a. Find the rst-, second-, third-, and fourth-degree polynomials that t

the data, and plot each polynomial with the data. Determine the quality
of the curve t for each by computing J, S, and r2.

b. Use the polynomial giving the best t to estimate the amount of
additive that minimizes the drying time.

10.* The following data give the stopping distance d as a function of initial
speed �, for a certain car model. Find a quadratic polynomial that ts the
data. Determine the quality of the curve t by computing J, S, and r2.

288 CHAPTER 6 Model Building and Regression

Temperature (�F) 100 120 140 160 180 200 220

Bearing life (hours
 103) 28 21 15 11 8 6 4

Time (s) 0 0.5 1 1.5 2 2.5 3 3.5 4

Voltage (V) 100 62 38 21 13 7 4 2 3

Force f (lb) Spring length y (in.)

0 4.7
0.94 7.2
2.30 10.6
3.28 12.9

A (oz) 0 1 2 3 4 5 6 7 8 9

T (min) 130 115 110 90 89 89 95 100 110 125

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 288

www.EBooksWorld.ir

11.* The number of twists y required to break a certain rod is a function of the
percentage x1 and x2 of each of two alloying elements present in the rod. The
following table gives some pertinent data. Use linear multiple regression to
obtain a model y � a0 � a1x1 � a2x2 of the relationship between the number
of twists and the alloy percentages. In addition, nd the maximum percent
error in the predictions.

12. The following represents pressure samples, in pounds per square inch
(psi), taken in a fuel line once every second for 10 sec.

a. Fit a rst-degree polynomial, a second-degree polynomial, and a
third-degree polynomial to these data. Plot the curve ts along with the
data points.

b. Use the results from part a to predict the pressure at t � 11 sec.
Explain which curve t gives the most reliable prediction. Consider
the coef cients of determination and the residuals for each t in mak-
ing your decision.

13. A liquid boils when its vapor pressure equals the external pressure acting
on the surface of the liquid. This is why water boils at a lower tempera-
ture at higher altitudes. This information is important for people who

Problems 289

� (mi/hr) 20 30 40 50 60 70

d (ft) 45 80 130 185 250 330

Number of twists Percentage of element 1 Percentage of element 2
y x1 x2

40 1 1
51 2 1
65 3 1
72 4 1
38 1 2
46 2 2
53 3 2
67 4 2
31 1 3
39 2 3
48 3 3
56 4 3

Time (sec) Pressure (psi) Time (sec) Pressure (psi)

1 26.1 6 30.6
2 27.0 7 31.1
3 28.2 8 31.3
4 29.0 9 31.0
5 29.8 10 30.5

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 289

www.EBooksWorld.ir

must design processes utilizing boiling liquids. Data on the vapor pres-
sure P of water as a function of temperature T are given in the following
table. From theory we know that ln P is proportional to 1/T . Obtain a
curve t for P(T) from these data. Use the t to estimate the vapor
pressure at 285 and 300 K.

14. The solubility of salt in water is a function of the water temperature. Let S
represent the solubility of NaCl (sodium chloride) as grams of salt in 100 g
of water. Let T be temperature in �C. Use the following data to obtain a
curve t for S as a function of T. Use the t to estimate S when T � 25�C.

15. The solubility of oxygen in water is a function of the water temperature.
Let S represent the solubility of O2 as millimoles of O2 per liter of
water. Let T be temperature in �C. Use the following data to obtain a
curve t for S as a function of T. Use the t to estimate S when
T � 8�C and T � 50�C.

290 CHAPTER 6 Model Building and Regression

T (K) P (torr)

273 4.579
278 6.543
283 9.209
288 12.788
293 17.535
298 23.756

T (�C) S (g NaCl/100 g H2O)

10 35
20 35.6
30 36.25
40 36.9
50 37.5
60 38.1
70 38.8
80 39.4
90 40

T (�C) S (mmol O2 /L H2O)

5 1.95
10 1.7
15 1.55
20 1.40
25 1.30
30 1.15
35 1.05
40 1.00
45 0.95

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 290

www.EBooksWorld.ir

16. The following function is linear in the parameters a1 and a2.

Use least-squares regression with the following data to estimate the
values of a1 and a2. Use the curve t to estimate the values of y at x � 2.5
and at x � 11.

17. Chemists and engineers must be able to predict the changes in chemical
concentration in a reaction. A model used for many single-reactant
processes is

where C is the chemical concentration and k is the rate constant. The
order of the reaction is the value of the exponent n. Solution methods for
differential equations (which are discussed in Chapter 9) can show that
the solution for a rst-order reaction (n � 1) is

The following data describe the reaction

Use these data to obtain a least-squares t to estimate the value of k.

18. Chemists and engineers must be able to predict the changes in chemical
concentration in a reaction. A model used for many single-reactant
processes is

where C is the chemical concentration and k is the rate constant. The
order of the reaction is the value of the exponent n. Solution methods for

Rate of change of concentration = -kCn

(CH3)3CBr + H2O : (CH3)3COH + HBr

C(t) = C(0)e-kt

Rate of change of concentration = -kCn

y(x) = a1 + a2 ln x

Problems 291

x 1 2 3 4 5 6 7 8 9 10

y 10 14 16 18 19 20 21 22 23 23

Time t (h) C (mol of (CH3)3 CBr/L)

0 0.1039
3.15 0.0896
6.20 0.0776

10.0 0.0639
18.3 0.0353
30.8 0.0207
43.8 0.0101

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 291

www.EBooksWorld.ir

differential equations (which are discussed in Chapter 9) can show that
the solution for a rst-order reaction (n � 1) is

and the solution for a second-order reaction (n � 2) is

The following data (from Brown, 1994) describes the gas-phase
decomposition of nitrogen dioxide at 300�C.

Determine whether this is a rst-order or second-order reaction, and
estimate the value of the rate constant k.

19. Chemists and engineers must be able to predict the changes in
chemical concentration in a reaction. A model used for many single-
reactant processes is

where C is the chemical concentration and k is the rate constant. The
order of the reaction is the value of the exponent n. Solution methods for
differential equations (which are discussed in Chapter 9) can show that
the solution for a rst-order reaction (n � 1) is

The solution for a second-order reaction (n � 2) is

and the solution for a third-order reaction (n � 3) is

1

2C2(t)
=

1

2C2(0)
+ kt

1

C(t)
=

1

C(0)
+ kt

C(t) = C(0)e-kt

Rate of change of concentration = -kCn

2NO2 : 2NO + O2

1

C(t)
=

1

C(0)
+ kt

C(t) = C(0)e-kt

292 CHAPTER 6 Model Building and Regression

Time t (s) C (mol NO2 /L)

0 0.0100
50 0.0079

100 0.0065
200 0.0048
300 0.0038

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 292

www.EBooksWorld.ir

The preceding data describe a certain reaction. By examining the
residuals, determine whether this is a rst-order , second-order, or
third-order reaction, and estimate the value of the rate constant k.

Problems 293

Time t (min) C (mol of reactant/L)

5 0.3575
10 0.3010
15 0.2505
20 0.2095
25 0.1800
30 0.1500
35 0.1245
40 0.1070
45 0.0865

pal34870_ch06_262-293.qxd 1/5/10 10:04 PM Page 293

www.EBooksWorld.ir

Modern societies have become very dependent on transportation pow-
ered by gasoline and diesel fuel. There is some disagreement about
how long it will take to exhaust these fuel resources, but it will cer-

tainly happen. Novel engineering developments in both personal and mass trans-
portation will be needed to reduce our dependence on such fuels. These
developments will be required in a number of areas such as engine design, elec-
tric motor and battery technology, lightweight materials, and aerodynamics.

A number of such initiatives are underway. Several projects have the goal of
designing a six-passenger car that is one-third lighter and 40 percent more aerody-
namic than today’s sleekest cars. A hybrid gas-electric vehicle is the most promis-
ing at present. An internal combustion engine and an electric motor drive the
wheels. A fuel cell or a battery is charged either by a generator driven by the engine
or by energy recovered during braking. This is called regenerative braking.

The weight reduction can be achieved with all-aluminum unibody construc-
tion and by improved design of the engine, radiator, and brakes to make use of
advanced materials such as composites and magnesium. Other manufacturers are
investigating plastic bodies made from recycled materials.

There is still much room for improved ef ciency , and research and develop-
ment engineers in this area will remain busy for some time. MATLAB is widely
used to assist these efforts with modeling and analysis tools for hybrid vehicle
designs. ■

Engineering in the
21st Century

Energy-Efficient Transportation

© The McGraw-Hill Companies, Inc./Mark Dierker, Photographer.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 294

www.EBooksWorld.ir

295

C H A P T E R 7

Statistics, Probability,
and Interpolation
OUTLINE
7.1 Statistics and Histograms

7.2 The Normal Distribution

7.3 Random Number Generation

7.4 Interpolation

7.5 Summary

Problems

This chapter begins with an introduction to basic statistics in Section 7.1. You
will see how to obtain and interpret histograms, which are specialized plots
for displaying statistical results. The normal distribution, commonly called
the bell-shaped curve, forms the basis of much of probability theory and many
statistical methods. It is covered in Section 7.2. In Section 7.3 you will see
how to include random processes in your simulation programs. In Section 7.4
you will see how to use interpolation with data tables to estimate values that
are not in the table.

When you have nished this chapter , you should be able to use MATLAB to
do the following:

■ Solve basic problems in statistics and probability.
■ Create simulations incorporating random processes.
■ Apply interpolation techniques.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 295

www.EBooksWorld.ir

7.1 Statistics and Histograms
With MATLAB you can compute the mean (the average), the mode (the most
frequently occurring value), and the median (the middle value) of a set of data.
MATLAB provides the mean(x), mode(x), and median(x) functions to
compute the mean, mode, and median of the data values stored in x, if x is a vec-
tor. However, if x is a matrix, a row vector is returned containing the mean (or
mode or median) value of each column of x. These functions do not require the
elements in x to be sorted in ascending or descending order.

The way the data are spread around the mean can be described by a his-
togram plot. A histogram is a plot of the frequency of occurrence of data values
versus the values themselves. It is a bar plot of the number of data values that
occur within each range, with the bar centered in the middle of the range.

To plot a histogram, you must group the data into subranges, called bins. The
choice of the bin width and bin center can drastically change the shape of the
histogram. If the number of data values is relatively small, the bin width cannot
be small because some of the bins will contain no data and the resulting his-
togram might not usefully illustrate the distribution of the data.

To obtain a histogram, rst sort the data values if they have has not yet been
sorted (you can use the sort function here). Then choose the bin ranges and bin
centers and count the number of values in each bin. Use the bar function to plot
the number of values in each bin versus the bin centers as a bar chart. The func-
tion bar(x,y) creates a bar chart of y versus x.

MATLAB also provides the hist command to generate a histogram.
This command has several forms. Its basic form is hist(y), where y is a
vector containing the data. This form aggregates the data into 10 bins evenly
spaced between the minimum and maximum values in y. The second form is
hist(y,n), where n is a user-speci ed scalar indicating the number of bins.
The third form is hist(y,x), where x is a user-speci ed vector that deter-
mines the location of the bin centers; the bin widths are the distances between
the centers.

Breaking Strength of Thread

To ensure proper quality control, a thread manufacturer selects samples and tests them for
breaking strength. Suppose that 20 thread samples are pulled until they break, and the
breaking force is measured in newtons rounded off to integer values. The breaking force
values recorded were 92, 94, 93, 96, 93, 94, 95, 96, 91, 93, 95, 95, 95, 92, 93, 94, 91, 94,
92, and 93. Plot the histogram of the data.

■ Solution
Store the data in the vector y, which is shown in the following script le. Because there
are six outcomes (91, 92, 93, 94, 95, 96 N), we choose six bins. However, if you use
hist(y,6), the bins will not be centered at 91, 92, 93, 94, 95, and 96. So use the form

296 CHAPTER 7 Statistics, Probability, and Interpolation

BINS

MEAN

MODE

MEDIAN

EXAMPLE 7.1–1

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 296

www.EBooksWorld.ir

hist(y,x), where x = 91:96. The following script le generates the histogram
shown in Figure 7.1–1.

% Thread breaking strength data for 20 tests.
y = [92,94,93,96,93,94,95,96,91,93,...

95,95,95,92,93,94,91,94,92,93];
% The six possible outcomes are 91,92,93,94,95,96.
x = 91:96;
hist(y,x),axis([90 97 0 6]),ylabel(‘Absolute Frequency’),...

xlabel(‘Thread Strength (N)’),...
title(‘Absolute Frequency Histogram for 20 Tests’)

The absolute frequency is the number of times a particular outcome oc-
curs. For example, in 20 tests these data show that a 95 occurred 4 times. The
absolute frequency is 4, and its relative frequency is 4/20, or 20 percent of the
time.

When there is a large amount of data, you can avoid typing in every data
value by rst aggregating the data. The following example shows how this is done
using the ones function. The following data were generated by testing 100 thread

7.1 Statistics and Histograms 297

90 91 92 93 94 95 96 97
0

1

2

3

4

5

6

Thread Strength (N)

A
bs

ol
ut

e
F

re
qu

en
cy

Absolute Frequency Histogram for 20 Tests

Figure 7.1–1 Histograms for 20 tests of thread strength.

ABSOLUTE
FREQUENCY

RELATIVE
FREQUENCY

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 297

www.EBooksWorld.ir

samples. The number of times 91, 92, 93, 94, 95, or 96 N was measured is 13, 15,
22, 19, 17, and 14, respectively.

% Thread strength data for 100 tests.
y = [91*ones(1,13),92*ones(1,15),93*ones(1,22),...

94*ones(1,19),95*ones(1,17),96*ones(1,14)];
x = 91:96;
hist(y,x),ylabel(‘Absolute Frequency’),...

xlabel(‘Thread Strength (N)’),...
title(‘Absolute Frequency Histogram for 100 Tests’)

The result appears in Figure 7.1–2.
The hist function is somewhat limited in its ability to produce useful his-

tograms. Unless all the outcome values are the same as the bin centers (as is the
case with the thread examples), the graph produced by the hist function will
not be satisfactory. This case occurs when you want to obtain a relative
frequency histogram. In such cases you can use the bar function to generate the
histogram. The following script le generates the relative frequency histogram
for the 100 thread tests. Note that if you use the bar function, you must aggre-
gate the data rst.

298 CHAPTER 7 Statistics, Probability, and Interpolation

90 91 92 93 94 95 96 97
0

5

10

15

20

25

Thread Strength (N)

A
bs

ol
ut

e
F

re
qu

en
cy

Absolute Frequency Histogram for 100 Tests

Figure 7.1–2 Absolute frequency histogram for 100 thread tests.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 298

www.EBooksWorld.ir

% Relative frequency histogram using the bar function.
tests = 100;
y = [13,15,22,19,17,14]/tests;
x = 91:96;
bar(x,y),ylabel(‘Relative Frequency’),...

xlabel(‘Thread Strength (N)’),...
title(‘Relative Frequency Histogram for 100 Tests’)

The result appears in Figure 7.1–3.
The fourth, fth, and sixth forms of the hist function do not generate a

plot, but are used to compute the frequency counts and bin locations. The bar
function can then be used to plot the histogram. The syntax of the fourth form
is [z,x] = hist(y), where z is the returned vector containing the frequency
count and x is the returned vector containing the bin locations. The fth and sixth
forms are [z,x] = hist(y,n) and [z,x] = hist(y,x). In the latter
case the returned vector x is the same as the user-supplied vector. The following
script le shows how the sixth form can be used to generate a relative frequency
histogram for the thread example with 100 tests.

tests = 100;
y = [91*ones(1,13),92*ones(1,15),93*ones(1,22),...

94*ones(1,19),95*ones(1,17),96*ones(1,14);

7.1 Statistics and Histograms 299

90 91 92 93 94 95 96 97
0

0.05

0.1

0.15

0.2

0.25

Thread Strength (N)

R
el

at
iv

e
F

re
qu

en
cy

Relative Frequency Histogram for 100 Tests

Figure 7.1–3 Relative frequency histogram for 100 thread tests.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 299

www.EBooksWorld.ir

x = 91:96;
[z,x] = hist(y,x);bar(x,z/tests),...

ylabel(‘Relative Frequency’),xlabel(‘Thread Strength(N)’),...
title(‘Relative Frequency Histogram for 100 Tests’)

300 CHAPTER 7 Statistics, Probability, and Interpolation

Table 7.1–1 Histogram functions

Command Description

bar(x,y) Creates a bar chart of y versus x.
hist(y) Aggregates the data in the vector y into 10 bins evenly spaced

between the minimum and maximum values in y.
hist(y,n) Aggregates the data in the vector y into n bins evenly spaced

between the minimum and maximum values in y.
hist(y,x) Aggregates the data in the vector y into bins whose center

locations are speci ed by the vector x. The bin widths are the
distances between the centers.

[z,x] = hist(y) Same as hist(y) but returns two vectors z and x that
contain the frequency count and the bin locations.

[z,x] = hist(y,n) Same as hist(y,n) but returns two vectors z and x that
contain the frequency count and the bin locations.

[z,x] = hist(y,x) Same as hist(y,x) but returns two vectors z and x that
contain the frequency count and the bin locations. The
returned vector x is the same as the user-supplied vector x.

The plot generated by this M- le will be identical to that shown in Figure 7.1–3.
These commands are summarized in Table 7.1–1.

Test Your Understanding

T7.1–1 In 50 tests of thread, the number of times 91, 92, 93, 94, 95, or 96 N was
measured was 7, 8, 10, 6, 12, and 7, respectively. Obtain the absolute
and relative frequency histograms.

The Data Statistics Tool
With the Data Statistics tool you can calculate statistics for data and add plots
of the statistics to a graph of the data. The tool is accessed from the Figure
window after you plot the data. Click on the Tools menu, then select Data
Statistics. The menu appears as shown in Figure 7.1–4. To show the mean of
the dependent variable (y) on the plot, click the box in the row labeled mean
under the column labeled Y, as shown in the gure. A horizontal line is then
placed on the plot at the mean. You can plot other statistics as well; these are
shown in the gure. You can save the statistics to the workspace as a structure
by clicking on the Save to Workspace button. This opens a dialog box that

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 300

www.EBooksWorld.ir

prompts you for a name for the structure containing the x data, and a name for
the y data structure.

7.2 The Normal Distribution
Rolling a die is an example of a process whose possible outcomes are a limited
set of numbers, namely, the integers from 1 to 6. For such processes the proba-
bility is a function of a discrete-valued variable, that is, a variable having a lim-
ited number of values. For example, Table 7.2–1 gives the measured heights of
100 men 20 years of age. The heights were recorded to the nearest 1/2 in., so the
height variable is discrete-valued.

Scaled Frequency Histogram
You can plot the data as a histogram using either the absolute or relative
frequencies. However, another useful histogram uses data scaled so that the
total area under the histogram’s rectangles is 1. This scaled frequency his-
togram is the absolute frequency histogram divided by the total area of that
histogram. The area of each rectangle on the absolute frequency histogram
equals the bin width times the absolute frequency for that bin. Because all the
rectangles have the same width, the total area is the bin width times the sum
of the absolute frequencies. The following M-file produces the scaled his-
togram shown in Figure 7.2–1.

7.2 The Normal Distribution 301

Figure 7.1–4 The Data Statistics tool.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 301

www.EBooksWorld.ir

% Absolute frequency data.
y_abs=[1,0,0,0,2,4,5,4,8,11,12,10,9,8,7,5,4,4,3,1,1,0,1];
binwidth = 0.5;
% Compute scaled frequency data.
area = binwidth*sum(y_abs);
y_scaled = y_abs/area;

302 CHAPTER 7 Statistics, Probability, and Interpolation

Table 7.2–1 Height data for men 20 years of age

Height (in.) Frequency Height (in.) Frequency

64 1 70 9
64.5 0 70.5 8
65 0 71 7
65.5 0 71.5 5
66 2 72 4
66.5 4 72.5 4
67 5 73 3
67.5 4 73.5 1
68 8 74 1
68.5 11 74.5 0
69 12 75 1
69.5 10

62 64 66 68 70 72 74 76
0

0.05

0.1

0.15

0.2

0.25

Height (in.)

S
ca

le
d

F
re

qu
en

cy

Figure 7.2–1 Scaled histogram of height data.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 302

www.EBooksWorld.ir

% De ne the bins.
bins = 64:binwidth:75;
% Plot the scaled histogram.
bar(bins,y_scaled),...

ylabel(‘Scaled Frequency’),xlabel(‘Height (in.)’)

Because the total area under the scaled histogram is 1, the fractional area
corresponding to a range of heights gives the probability that a randomly selected
20-year-old man will have a height in that range. For example, the heights of the
scaled histogram rectangles corresponding to heights of 67 through 69 in. are
0.1, 0.08, 0.16, 0.22, and 0.24. Because the bin width is 0.5, the total area corre-
sponding to these rectangles is (0.1� 0.08 � 0.16 � 0.22 � 0.24)(0.5) � 0.4.
Thus 40 percent of the heights lie between 67 and 69 in.

You can use the cumsum function to calculate areas under the scaled
frequency histogram and therefore to calculate probabilities. If x is a vector,
cumsum(x) returns a vector the same length as x, whose elements are the sum
of the previous elements. For example, if x =[2, 5, 3, 8], cumsum(x)=
[2, 7, 10, 18]. If A is a matrix, cumsum(A) computes the cumulative sum
of each row. The result is a matrix the same size as A.

After running the previous script, the last element of cumsum(y_scaled)*
binwidth is 1, which is the area under the scaled frequency histogram. To
compute the probability of a height lying between 67 and 69 in. (that is, above the
6th value up to the 11th value), type

>>prob = cumsum(y_scaled)*binwidth;
>>prob67_69 = prob(11)-prob(6)

The result is prob67_69 = 0.4000, which agrees with our previous
calculation of 40 percent.

Continuous Approximation to the Scaled Histogram
For processes having an in nite number of possible outcomes, the probability
is a function of a continuous variable and is plotted as a curve rather than as
rectangles. It is based on the same concept as the scaled histogram; that is, the
total area under the curve is 1, and the fractional area gives the probability of
occurrence of a speci c range of outcomes. A probability function that
describes many processes is the normal or Gaussian function, which is shown
in Figure 7.2–2.

This function is also known as the bell-shaped curve. Outcomes that can be
described by this function are said to be normally distributed. The normal
probability function is a two-parameter function; one parameter, �, is the mean
of the outcomes, and the other parameter, �, is the standard deviation. The mean
� locates the peak of the curve and is the most likely value to occur. The width,
or spread, of the curve is described by the parameter �. Sometimes the term
variance is used to describe the spread of the curve. The variance is the square of
the standard deviation �.

7.2 The Normal Distribution 303

NORMAL OR
GAUSSIAN
FUNCTION

NORMALLY
DISTRIBUTED

STANDARD
DEVIATION

VARIANCE

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 303

www.EBooksWorld.ir

The normal probability function is described by the following equation:

(7.2–1)

It can be shown that approximately 68 percent of the area lies between the
limits of � � � � x � � � �. Consequently, if a variable is normally distributed,
there is a 68 percent chance that a randomly selected sample will lie within one
standard deviation of the mean. In addition, approximately 96 percent of the area
lies between the limits of � � 2� � x � � � 2�, and 99.7 percent, or practically
100 percent, of the area lies between the limits of � � 3� � x � � � 3�.

The functions mean(x), var(x), and std(x) compute the mean, vari-
ance, and standard deviation of the elements in the vector x.

p(x) =

1

�12�
 e-(x-�)2>2�2

304 CHAPTER 7 Statistics, Probability, and Interpolation

1/σ√2σ π

0.6065/σ√2σ π
2σ

μ μ + σ+μ + σ–
x

p

Figure 7.2–2 The basic shape of the normal distribution curve.

EXAMPLE 7.2–1 Mean and Standard Deviation of Heights

Statistical analysis of data on human proportions is required in many engineering
applications. For example, designers of submarine crew quarters need to know how small
they can make bunk lengths without eliminating a large percentage of prospective crew
members. Use MATLAB to estimate the mean and standard deviation for the height data
given in Table 7.2–1.

■ Solution
The script le follows. The data given in Table 7.2–1 are the absolute frequency data and
are stored in the vector y_abs. A bin width of 1/2 in. is used because the heights were
measured to the nearest 1/2 in. The vector bins contains the heights in 1/2 in. increments.

To compute the mean and standard deviation, reconstruct the original (raw) height
data from the absolute frequency data. Note that these data have some zero entries. For
example, none of the 100 men had a height of 65 in. Thus to reconstruct the raw data, start
with an empty vector y_raw and ll it with the height data obtained from the absolute

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 304

www.EBooksWorld.ir

frequencies. The for loop checks to see whether the absolute frequency for a particular
bin is nonzero. If it is nonzero, append the appropriate number of data values to the
vector y_raw. If the particular bin frequency is 0, y_raw is left unchanged.

% Absolute frequency data.
y_abs = [1,0,0,0,2,4,5,4,8,11,12,10,9,8,7,5,4,4,3,1,1,0,1];
binwidth = 0.5;
% De ne the bins.
bins = [64:binwidth:75];
% Fill the vector y_raw with the raw data.
% Start with an empty vector.
y_raw = [];
for i = 1:length(y_abs)

if y_abs(i)>0
new = bins(i)*ones(1,y_abs(i));

else
new = [];

end
y_raw = [y_raw,new];
end
% Compute the mean and standard deviation.
mu = mean(y_raw),sigma = std(y_raw)

When you run this program, you will nd that the mean is � � 69.6 in. and the stan-
dard deviation is � � 1.96 in.

If you need to compute probabilities based on the normal distribution, you
can use the erf function. Typing erf(x) returns the area to the left of the value
t � x under the curve of the function This area, which is a function of x,
is known as the error function and is written as erf(x). The probability that the
random variable x is less than or equal to b is written as P(x � b) if the outcomes
are normally distributed. This probability can be computed from the error function
as follows:

(7.2–2)

The probability that the random variable x is no less than a and no greater than b
is written as P(a � x � b). It can be computed as follows:

(7.2–3)

Estimation of Height Distribution

Use the results of Example 7.2–1 to estimate how many 20-year-old men are no taller
than 68 in. How many are within 3 in. of the mean?

P(a … x … b) =

1

2
 cerf a b - �

�12
b - erf aa - �

�12
b d

P(x … b) =

1

2
 c1 + erf a b - �

�12
b d

2e-t2>1�.

7.2 The Normal Distribution 305

EXAMPLE 7.2–2

ERROR FUNCTION

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 305

www.EBooksWorld.ir

■ Solution
In Example 7.2–1 the mean and standard deviation were found to be � � 69.3 in. and
� � 1.96 in. In Table 7.2–1, note that few data points are available for heights less than
68 in. However, if you assume that the heights are normally distributed, you can use
Equation (7.2–2) to estimate how many men are shorter than 68 in. Use (7.2–2) with
b � 68, that is,

To determine how many men are within 3 in. of the mean, use Equation (7.2–3) with a �

� � 3 � 66.3 and b � � � 3 � 72.3, that is,

In MATLAB these expressions are computed in a script le as follows:

mu = 69.3;
s = 1.96;
% How many are no taller than 68 inches?
b1 = 68;
P1 = (1+erf((b1-mu)/(s*sqrt(2))))/2
% How many are within 3 inches of the mean?
a2 = 66.3;
b2 = 72.3;
P2 = (erf((b2-mu)/(s*sqrt(2)))-erf((a2-mu)/(s*sqrt(2))))/2

P(66.3 … x … 72.3) =

1

2
 cerf a 3

1.9612
b - erf a -3

1.9612
b d

P(x … 68) =

1

2
 c1 + erf a68 - 69.3

1.9612
b d

306 CHAPTER 7 Statistics, Probability, and Interpolation

When you run this program, you obtain the results P1 = 0.2536 and P2 = 0.8741.
Thus 25 percent of 20-year-old men are estimated to be 68 in. or less in height, and
87 percent are estimated to be between 66.3 and 72.3 in. tall.

Test Your Understanding

T7.2–1 Suppose that 10 more height measurements are obtained so that the fol-
lowing numbers must be added to Table 7.2–1.

(a) Plot the scaled frequency histogram. (b) Find the mean and standard
deviation. (c) Use the mean and standard deviation to estimate how many

Height (in.) Additional data

64.5 1
65 2
66 1
67.5 2
70 2
73 1
74 1

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 306

www.EBooksWorld.ir

20-year-old men are no taller than 69 in. (d) Estimate how many are
between 68 and 72 in. tall.
(Answers: (b) mean � 69.4 in., standard deviation � 2.14 in.; (c) 43 per-
cent; (d) 63 percent.)

Sums and Differences of Random Variables
It can be proved that the mean of the sum (or difference) of two independent
normally distributed random variables equals the sum (or difference) of their
means, but the variance is always the sum of the two variances. That is, if x and
y are normally distributed with means �x and �y and variances �2

x and �2
y, and

if u � x � y and � � x � y, then

(7.2–4)

(7.2–5)

(7.2–6)

These properties are applied in some of the homework problems.

7.3 Random Number Generation
We often do not have a simple probability distribution to describe the distribution
of outcomes in many engineering applications. For example, the probability that
a circuit consisting of many components will fail is a function of the number and
the age of the components, but we often cannot obtain a function to describe the
failure probability. In such cases we often resort to simulation to make predic-
tions. The simulation program is executed many times, using a random set of
numbers to represent the failure of one or more components, and the results are
used to estimate the desired probability.

Uniformly Distributed Numbers
In a sequence of uniformly distributed random numbers, all values within a given
interval are equally likely to occur. The MATLAB function rand generates random
numbers uniformly distributed over the interval [0,1]. Type rand to obtain a single
random number in the interval [0,1]. Typing rand again generates a different num-
ber because the MATLAB algorithm used for the rand function requires a “state”
to start. MATLAB obtains this state from the computer’s CPU clock. Thus every
time the rand function is used, a different result will be obtained. For example,

rand
ans =

0.6161
rand
ans =

0.5184

 �2
u = �2

y = �2
x + �2

y

 �y = �x - �y

 �u = �x + �y

7.3 Random Number Generation 307

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 307

www.EBooksWorld.ir

Type rand(n) to obtain an n 	 n matrix of uniformly distributed random
numbers in the interval [0,1]. Type rand(m,n) to obtain an m 	 n matrix of
random numbers. For example, to create a 1 	 100 vector y having 100 random
values in the interval [0,1], type y = rand(1,100). Using the rand
function this way is equivalent to typing rand 100 times. Even though there is
a single call to the rand function, the rand function’s calculation has the
effect of using a different state to obtain each of the 100 numbers so that they
will be random.

Use Y = rand(m,n,p,...) to generate a multidimensional array Y
having random elements. Typing rand(size(A)) produces an array of
random entries that is the same size as A.

For example, the following script makes a random choice between two
equally probable alternatives.

if rand < 0.5
disp(‘heads’)

else
disp(‘tails’)

end

To compare the results of two or more simulations, sometimes you will need
to generate the same sequence of random numbers each time the simulation
runs. To generate the same sequence, you must use the same state each time.
The current state s of the uniform number generator can be obtained by typing
s = rand(‘twister’). This returns a vector containing the current state
of the uniform generator. To set the state of the generator to s, type
rand(‘twister’,s). Typing rand(‘twister’,0) resets the generator
to its initial state. Typing rand(‘twister’,j), for integer j, resets the
generator to state j. Typing rand(‘twister’,sum(100*clock)) resets
the generator to a different state each time. Table 7.3–1 summarizes these
functions.

The name ‘twister’ refers to the speci c algorithm used by MA TLAB to
generate random numbers. In MATLAB Version 4, ‘seed’ was used instead of
‘twister’. In Versions 5 through 7.3, ‘state’ was used. Use ‘twister’
in Version 7.4 and later. The following session shows how to obtain the same
sequence every time rand is called.

>>rand(‘twister’,0)
>>rand
ans =

0.5488
>>rand
ans =

0.7152
>>rand(‘twister’,0)
>>rand

308 CHAPTER 7 Statistics, Probability, and Interpolation

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 308

www.EBooksWorld.ir

ans =
0.5488

>>rand
ans =

0.7152

You need not start with the initial state to generate the same sequence. To show
this, continue the above session as follows.

>>s = rand(‘twister’);
>>rand(‘twister’,s)
>>rand
ans =

0.6028
>>rand(‘twister’,s)
>>rand
ans =

0.6028

7.3 Random Number Generation 309

Table 7.3–1 Random number functions

Command Description

rand Generates a single uniformly distributed random number between
0 and 1.

rand(n) Generates an n 	 n matrix containing uniformly distributed random
numbers between 0 and 1.

rand(m,n) Generates an m 	 n matrix containing uniformly distributed random
numbers between 0 and 1.

s = rand(‘state’) Returns a vector s containing the current state of the uniformly
distributed generator.

rand(‘twister’,s) Sets the state of the uniformly distributed generator to s.
rand(‘twister’,0) Resets the uniformly distributed generator to its initial state.
rand(‘twister’,j) Resets the uniformly distributed generator to state j, for integer j.
rand(‘twister’,sum(100*clock)) Resets the uniformly distributed generator to a different state each

time it is executed.
randn Generates a single normally distributed random number having a

mean of 0 and a standard deviation of 1.
randn(n) Generates an n 	 n matrix containing normally distributed random

numbers having a mean of 0 and a standard deviation of 1.
randn(m,n) Generates an m 	 n matrix containing normally distributed random

numbers having a mean of 0 and a standard deviation of 1.
s = randn(‘state’) Like rand(‘state’) but for the normally distributed generator.
randn(‘state’,s) Like rand(‘state’,s) but for the normally distributed generator.
randn(‘state’,0) Like rand(‘state’,0) but for the normally distributed generator.
randn(‘state’,j) Like rand(‘state’,j) but for the normally distributed generator.
randn(‘state’,sum(100*clock)) Like rand(‘state’,sum(100*clock)) but for the normally

distributed generator.
randperm(n) Generates a random permutation of the integers from 1 to n.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 309

www.EBooksWorld.ir

You can use the rand function to generate random numbers in an interval
other than [0, 1]. For example, to generate values in the interval [2,10], generate
a random number between 0 and 1, multiply it by 8 (the difference between
the upper and lower bounds), and add the lower bound (2). The result is a value
that is uniformly distributed in the interval [2,10]. The general formula for
generating a uniformly distributed random number y in the interval [a,b] is

(7.3–1)

where x is a random number uniformly distributed in the interval [0,1]. For
example, to generate a vector y containing 1000 uniformly distributed random
numbers in the interval [2, 10], you type y = 8*rand(1,1000) + 2. You can
check the results with the mean, min, and max functions. You should obtain
values close to 6, 2, and 10, respectively.

You can use rand to generate random results for games involving dice, for
example, but you must use it to create integers. An easier way is to use the
randperm(n) function, which generates a random permutation of the integers
from 1 to n. For example, randperm(6) might generate the vector [3 2 6 4
1 5], or some other permutation of the numbers from 1 to 6. Note that
randperm calls rand and therefore changes the state of the generator.

With twister you control the internal state of the random number stream
used by rand and randn. Starting with MATLAB Version 7.7, the use of
twister is still supported for backwards compatibility but will be discontinued
eventually. For Version 7.7 and higher, you can generate the random number
stream using Randstream, which is an advanced topic. See the MATLAB
documentation.

Normally Distributed Random Numbers
In a sequence of normally distributed random numbers, the values near the mean
are more likely to occur. We have noted that the outcomes of many processes can
be described by the normal distribution. Although a uniformly distributed ran-
dom variable has de nite upper and lower bounds, a normally distributed ran-
dom variable does not.

The MATLAB function randn will generate a single number that is nor-
mally distributed with a mean equal to 0 and a standard deviation equal to 1.
Type randn(n) to obtain an n 	 n matrix of such numbers. Type
randn(m,n) to obtain an m 	 n matrix of random numbers.

The functions for retrieving and specifying the state of the normally distributed
random number generator are identical to those for the uniformly distributed gener-
ator, except that randn(...) replaces rand(...) in the syntax and ‘state’
is used instead of ‘twister’. These functions are summarized in Table 7.3–1.

You can generate a sequence of normally distributed numbers having a mean
� and standard deviation � from a normally distributed sequence having a mean

y = (b - a)x + a

310 CHAPTER 7 Statistics, Probability, and Interpolation

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 310

www.EBooksWorld.ir

of 0 and a standard deviation of 1. You do this by multiplying the values by � and
adding � to each result. Thus if x is a random number with a mean of 0 and a
standard deviation of 1, use the following equation to generate a new random
number y having a standard deviation of � and a mean of �.

(7.3–2)

For example, to generate a vector y containing 2000 random numbers normally
distributed with a mean of 5 and a standard deviation of 3, you type y =
3*randn(1,2000) + 5. You can check the results with the mean and std
functions. You should obtain values close to 5 and 3, respectively.

Test Your Understanding

T7.3–1 Use MATLAB to generate a vector y containing 1800 random numbers
normally distributed with a mean of 7 and a standard deviation of 10.
Check your results with the mean and std functions. Why can’t you
use the min and max functions to check your results?

Functions of Random Variables If y and x are linearly related as

(7.3–3)

and if x is normally distributed with a mean �x and standard deviation �x, it can
be shown that the mean and standard deviation of y are given by

(7.3–4)

(7.3–5)

However, it is easy to see that the means and standard deviations do not combine
in a straightforward fashion when the variables are related by a nonlinear func-
tion. For example, if x is normally distributed with a mean of 0, and if y � x2, it
is easy to see that the mean of y is not 0, but is positive. In addition, y is not nor-
mally distributed.

Some advanced methods are available for deriving a formula for the mean
and variance of y � f (x), but for our purposes, the simplest way is to use random
number simulation.

It was noted in the previous section that the mean of the sum (or difference)
of two independent normally distributed random variables equals the sum (or dif-
ference) of their means, but the variance is always the sum of the two variances.
However, if z is a nonlinear function of x and y, then the mean and variance of z
cannot be found with a simple formula. In fact, the distribution of z will not even
be normal. This outcome is illustrated by the following example.

Statistical Analysis and Manufacturing Tolerances

Suppose you must cut a triangular piece off the corner of a square plate by measuring the
distances x and y from the corner (see Figure 7.3–1). The desired value of x is 10 in., and

 �y = |b|�x

 �y = b�x + c

y = bx + c

y = �x + �

7.3 Random Number Generation 311

EXAMPLE 7.3–1

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 311

www.EBooksWorld.ir

the desired value of
 is 20�. This requires that y � 3.64 in. We are told that measurements
of x and y are normally distributed with means of 10 and 3.64, respectively, with a
standard deviation equal to 0.05 in. Determine the standard deviation of
 and plot the
relative frequency histogram for
.

■ Solution
From Figure 7.3–1, we see that the angle
 is determined by
 � tan�1(y/x). We can nd
the statistical distribution of
 by creating random variables x and y that have means of 10
and 3.64, respectively, with a standard deviation of 0.05. The random variable
 is then
found by calculating
 � tan�1(y/x) for each random pair (x,y). The following script le
shows this procedure.

s = 0.05; % standard deviation of x and y
n = 8000; % number of random simulations
x = 10 + s*randn(1,n);
y = 3.64 + s*randn(1,n);
theta = (180/pi)*atan(y./x);
mean_theta = mean(theta)
sigma_theta = std(theta)
xp = 19:0.1:21;
z = hist(theta,xp);
yp = z/n;
bar(xp,yp),xlabel(‘Theta (degrees)’),...

ylabel(‘Relative Frequency’)

The choice of 8000 simulations was a compromise between accuracy and the amount of
time required to do the calculations. You should try different values of n and compare the
results. The results gave a mean of 19.9993� for
 with a standard deviation of 0.2730�.
The histogram is shown in Figure 7.3–2. Although the plot resembles the normal distri-
bution, the values of
 are not distributed normally. From the histogram we can calculate
that approximately 65 percent of the values of
 lie between 19.8 and 20.2. This range
corresponds to a standard deviation of 0.2�, not 0.273� as calculated from the simulation
data. Thus the curve is not a normal distribution.

312 CHAPTER 7 Statistics, Probability, and Interpolation

x

y

Plate

θ

Figure 7.3–1 Dimensions of a
triangular cut.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 312

www.EBooksWorld.ir

This example shows that the interaction of two of more normally distributed vari-
ables does not produce a result that is normally distributed. In general, the result is nor-
mally distributed if and only if the result is a linear combination of the variables.

7.4 Interpolation
Paired data might represent a cause and effect, or input-output relationship, such
as the current produced in a resistor as a result of an applied voltage, or a time
history, such as the temperature of an object as a function of time. Another type
of paired data represents a pro le, such as a road pro le (which shows the height
of the road along its length). In some applications we want to estimate a vari-
able’s value between the data points. This process is called interpolation. In other
cases we might need to estimate the variable’s value outside the given data range.
This process is called extrapolation. Interpolation and extrapolation are greatly
aided by plotting the data. Such plots, some perhaps using logarithmic axes,
often help to discover a functional description of the data.

Suppose we have the following temperature measurements, taken once an
hour starting at 7:00 A.M. The measurements at 8 and 10 A.M. are missing for
some reason, perhaps because of equipment malfunction.

Time 7 A.M. 9 A.M. 11 A.M. 12 noon

Temperature (�F) 49 57 71 75

7.4 Interpolation 313

18.5 19 19.5 20 20.5 21 21.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Theta (degrees)

R
el

at
iv

e
F

re
qu

en
cy

Figure 7.3–2 Scaled histogram of the angle
.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 313

www.EBooksWorld.ir

A plot of these data is shown in Figure 7.4–1 with the data points con-
nected by dashed lines. If we need to estimate the temperature at 10 A.M., we
can read the value from the dashed line that connects the data points at 9 and
11 A.M. From the plot we thus estimate the temperature at 8 A.M. to be 53�F
and at 10 A.M. to be 64�F. We have just performed linear interpolation on the
data to obtain an estimate of the missing data. Linear interpolation is so
named because it is equivalent to connecting the data points with a linear
function (a straight line).

Of course we have no reason to believe that the temperature follows the
straight lines shown in the plot, and our estimate of 64�F will most likely be
incorrect, but it might be close enough to be useful. Using straight lines to con-
nect the data points is the simplest form of interpolation. Another function could
be used if we have a good reason to do so. Later in this section we use polyno-
mial functions to do the interpolation.

Linear interpolation in MATLAB is obtained with the interp1 and
interp2 functions. Suppose that x is a vector containing the independent vari-
able data and that y is a vector containing the dependent variable data. If x_int
is a vector containing the value or values of the independent variable at which we
wish to estimate the dependent variable, then typing interp1(x,y,x_int)
produces a vector the same size as x_int containing the interpolated values of

314 CHAPTER 7 Statistics, Probability, and Interpolation

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
45

50

55

60

65

70

75

80
Temperature Measurements at a Single Location

Time (hr)

T
em

pe
ra

tu
re

 (
de

g
F

)

Figure 7.4–1 A plot of temperature data versus time.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 314

www.EBooksWorld.ir

y that correspond to x_int. For example, the following session produces an
estimate of the temperatures at 8 and 10 A.M. from the preceding data. The vec-
tors x and y contain the times and temperatures, respectively.

>>x = [7, 9, 11, 12];
>>y = [49, 57, 71, 75];
>>x_int = [8, 10];
>>interp1(x,y,x_int)
ans =

53
64

You must keep in mind two restrictions when using the interp1 function.
The values of the independent variable in the vector x must be in ascending
order, and the values in the interpolation vector x_int must lie within the range
of the values in x. Thus we cannot use the interp1 function to estimate the
temperature at 6 A.M., for example.

The interp1 function can be used to interpolate in a table of values by
de ning y to be a matrix instead of a vector. For example, suppose that we now
have temperature measurements at three locations and the measurements at 8 and
10 A.M. are missing for all three locations. The data are as follows:

We de ne x as before, but now we de ne y to be a matrix whose three columns
contain the second, third, and fourth columns of the preceding table. The fol-
lowing session produces an estimate of the temperatures at 8 and 10 A.M. at each
location.

>>x = [7, 9, 11, 12]’;
>>y(:,1) = [49, 57, 71, 75]’;
>>y(:,2) = [52, 60, 73, 79]’;
>>y(:,3) = [54, 61, 75, 81]’;
>>x_int = [8, 10]’;
>>interp1(x,y,x_int)
ans =

53.0000 56.0000 57.5000
64.0000 65.5000 68.0000

Thus the estimated temperatures at 8 A.M. at each location are 53, 56, and 57.5�F,
respectively. At 10 A.M. the estimated temperatures are 64, 65.5, and 68�F. From

Temperature (�F)

Time Location 1 Location 2 Location 3

7 A.M. 49 52 54
9 A.M. 57 60 61
11 A.M. 71 73 75
12 noon 75 79 81

7.4 Interpolation 315

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 315

www.EBooksWorld.ir

this example we see that if the rst ar gument x in the interp1(x,y,x_int)
function is a vector and the second argument y is a matrix, then the function
interpolates between the rows of y and computes a matrix having the same
number of columns as y and the same number of rows as the number of values
in x_int.

Note that we need not de ne two separate vectors x and y. Rather, we can
de ne a single matrix that contains the entire table. For example, by de ning the
matrix temp to be the preceding table, the session will look like this:

>>temp(:,1) = [7, 9, 11, 12]’;
>>temp(:,2) = [49, 57, 71, 75]’;
>>temp(:,3) = [52, 60, 73, 79]’;
>>temp(:,4) = [54, 61, 75, 81]’;
>>x_int = [8, 10]’;
>>interp1(temp(:,1),temp(:,2:4),x_int)
ans =

53.0000 56.0000 57.5000
64.0000 65.5000 68.0000

Two-Dimensional Interpolation
Now suppose that we have temperature measurements at four locations at 7 A.M.
These locations are at the corners of a rectangle 1 mi wide and 2 mi long. Assign-
ing a coordinate system origin (0,0) to the rst location, the coordinates of the
other locations are (1, 0), (1, 2), and (0, 2); see Figure 7.4–2. The temperature
measurements are shown in the gure. The temperature is a function of two

316 CHAPTER 7 Statistics, Probability, and Interpolation

y

x
(1,0)(0,0)

(1,2)(0,2)

53° 57°

(0.6, 1.5)

49° 54°

Figure 7.4–2 Temperature
measurements at four locations.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 316

www.EBooksWorld.ir

variables, the coordinates x and y. MATLAB provides the interp2 function
to interpolate functions of two variables. If the function is written as z � f(x,y)
and we wish to estimate the value of z for x � xi and y � yi, the syntax is
interp2(x,y,z,x_i,y_i).

Suppose we want to estimate the temperature at the point whose coordinates
are (0.6,1.5). Put the x coordinates in the vector x and the y coordinates in the
vector y. Then put the temperature measurements in a matrix z such that going
across a row represents an increase in x and going down a column represents an
increase in y. The session to do this is as follows:

>>x = [0,1];
>>y = [0,2];
>>z = [49,54;53,57]
z =

49 54
53 57

>>interp2(x,y,z,0.6,1.5)
ans =

54.5500

Thus the estimated temperature is 54.55�F.
The syntax of the interp1 and interp2 functions is summarized in

Table 7.4–1. MATLAB also provides the interpn function for interpolating
multidimensional arrays.

Cubic Spline Interpolation
High-order polynomials can exhibit undesired behavior between the data points,
and this can make them unsuitable for interpolation. A widely used alternative
procedure is to t the data points using a lower -order polynomial between each
pair of adjacent data points. This method is called spline interpolation and is so
named for the splines used by illustrators to draw a smooth curve through a set
of points.

Spline interpolation obtains an exact t that is also smooth. The most com-
mon procedure uses cubic polynomials, called cubic splines, and thus is called

7.4 Interpolation 317

Table 7.4–1 Linear interpolation functions

Command Description

y_int=interp1(x,y,x_int) Used to linearly interpolate a function of one
variable: y � f (x). Returns a linearly
interpolated vector y_int at the speci ed
value x_int, using data stored in x and y.

z_int=interp2(x,y,z,x_,y_int) Used to linearly interpolate a function of two
variables: y � f (x, y). Returns a linearly
interpolated vector z_int at the speci ed
values x_int and y_int, using data stored
in x, y, and z.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 317

www.EBooksWorld.ir

cubic spline interpolation. If the data are given as n pairs of (x, y) values, then
n � 1 cubic polynomials are used. Each has the form

for xi � x � xi�1 and i � 1, 2, . . . , n � 1. The coef cients ai, bi, ci, and di for
each polynomial are determined so that the following three conditions are satis-
 ed for each polynomial:

1. The polynomial must pass through the data points at its endpoints at xi and xi�1.
2. The slopes of adjacent polynomials must be equal at their common data point.
3. The curvatures of adjacent polynomials must be equal at their common

data point.

For example, a set of cubic splines for the temperature data given earlier follows
(y represents the temperature values, and x represents the hourly values). The data
are repeated here.

x 7 9 11 12

y 49 57 71 75

We will shortly see how to use MATLAB to obtain these polynomials. For 7 �
x � 9,

For 9 � x � 11,

For 11 � x � 12,

MATLAB provides the spline command to obtain a cubic spline
interpolation. Its syntax is y_int = spline(x,y,x_int), where x and y
are vectors containing the data and x_int is a vector containing the values of
the independent variable x at which we wish to estimate the dependent variable y.
The result y_int is a vector the same size as x_int containing the interpo-
lated values of y that correspond to x_int. The spline t can be plotted by
plotting the vectors x_int and y_int. For example, the following session
produces and plots a cubic spline t to the preceding data, using an increment of
0.01 in the x values.

>>x = [7,9,11,12];
>>y = [49,57,71,75];
>>x_int = 7:0.01:12;
>>y_int = spline(x,y,x_int);
>>plot(x,y,’o’,x,y,’— —‘,x_int,y_int),...

xlabel(‘Time (hr)’),ylabel(‘Temperature (deg F)’), ...

title(‘Measurements at a Single Location’), ...
axis([7 12 45 80])

y3(x) = -0.35(x - 11)3
- 1.35(x - 11)2

+ 5.7(x - 11) + 71

y2(x) = -0.35(x - 9)3
+ 0.75(x - 9)2

+ 6.9(x - 9) + 57

y1(x) = -0.35(x - 7)3
+ 2.85(x - 7)2

- 0.3(x - 7) + 49

yi(x) = ai(x - xi)
3

+ bi(x - xi)
2

+ ci(x - xi) + di

318 CHAPTER 7 Statistics, Probability, and Interpolation

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 318

www.EBooksWorld.ir

The plot is shown in Figure 7.4–3. The dashed lines represent linear
interpolation, and the solid curve is the cubic spline. If we evaluate the spline
polynomial at x � 8, we obtain y(8) � 51.2�F. This estimate is different from the
53�F estimate obtained from linear interpolation. It is impossible to say which
estimate is more accurate without having greater understanding of the tempera-
ture dynamics.

We can obtain an estimate more quickly by using the following variation of
the interp1 function.

y_est = interp1(x,y,x_est,’spline’)

In this form the function returns a column vector y_est that contains the esti-
mated values of y that correspond to the x values speci ed in the vector x_est,
using cubic spline interpolation.

In some applications it is helpful to know the polynomial coef cients, but
we cannot obtain the spline coef cients from the interp1 function. However,
we can use the form

[breaks, coeffs, m, n] = unmkpp(spline(x,y))

to obtain the coef cients of the cubic polynomials. The vector breaks
contains the x values of the data, and the matrix coeffs is an m 	 n matrix

7.4 Interpolation 319

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
45

50

55

60

65

70

75

80
Measurements at a Single Location

Time (hr)

T
em

pe
ra

tu
re

 (
de

g
F

)

Figure 7.4–3 Linear and cubic-spline interpolation of temperature data.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 319

www.EBooksWorld.ir

containing the coef cients of the polynomials. The scalars m and n give the
dimensions of the matrix coeffs; m is the number of polynomials, and n is
the number of coef cients for each polynomial (MATLAB will t a lower -
order polynomial if possible, so there can be fewer than four coef cients). For
example, using the same data, the following session produces the coef cients
of the polynomials given earlier:

>>x = [7,9,11,12];
>>y = [49,57,71,75];
>> [breaks, coeffs, m, n] = unmkpp(spline(x,y))
breaks =

7 9 11 12
coeffs =

-0.3500 2.8500 -0.3000 49.0000
-0.3500 0.7500 6.900 57.0000
-0.3500 -1.3500 5.7000 71.0000

m =
3

n =
4

The rst row of the matrix coeffs contains the coef cients of the rst polyno-
mial, and so on. These functions are summarized in Table 7.4–2. The Basic

320 CHAPTER 7 Statistics, Probability, and Interpolation

Table 7.4–2 Polynomial interpolation functions

Command Description

y_est = interp1(x,y,x_est, method) Returns a column vector y_est that contains the
estimated values of y that correspond to the x values
speci ed in the vector x_est, using interpolation
speci ed by method. The choices for method are
‘nearest’, ‘linear’, ‘spline’, ‘pchip’, and ‘cubic’.

y_int = spline(x,y,x_int) Computes a cubic spline interpolation where x
and y are vectors containing the data and x_int
is a vector containing the values of the independent
variable x at which we wish to estimate the
dependent variable y. The result y_int is a
vector the same size as x_int containing the
interpolated values of y that correspond to x_int.

y_int = pchip (x,y,x_int) Similar to spline but uses piecewise cubic
Hermite polynomials for interpolation to preserve
shape and respect monotonicity.

[breaks, coeffs, m, n] = unmkpp(spline(x,y)) Computes the coef cients of the cubic spline
polynomials for the data in x and y. The vector
breaks contains the x values, and the matrix
coeffs is an m 	 n matrix containing the
polynomial coef cients. The scalars m and n give
the dimensions of the matrix coeffs; m is the
number of polynomials, and n is the number of
coef cients for each polynomial.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 320

www.EBooksWorld.ir

Fitting interface, which is available on the Tools menu of the Figure window, can
be used for cubic spline interpolation. See Section 6.3 for instructions for using
the interface.

As another example of interpolation, consider 10 evenly spaced data points
generated by the function y � 1/(3 � 3x � x2) over the range 0 � x � 4. The top
graph in Figure 7.4–4 shows the results of tting a cubic polynomial and an
eighth-order polynomial to the data. Clearly the cubic is not suitable for inter-
polation. As we increase the order of the tted polynomial, we nd that the poly-
nomial does not pass through all the data points if the order is less than 7.
However, there are two problems with the eighth-order polynomial: we should
not use it to interpolate over the interval 0 � x � 0.5, and its coef cients must be
stored with very high accuracy if we use the polynomial to interpolate. The

7.4 Interpolation 321

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

x

data
cubic
eighth−order

data
spline

Figure 7.4–4 Top graph: Interpolation with a cubic polynomial and an eighth-order polynomial. Bottom graph:
Interpolation with a cubic spline.

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 321

www.EBooksWorld.ir

bottom graph in Figure 7.4–4 shows the results of tting a cubic spline, which is
clearly a better choice here.

Interpolation with Hermite Polynomials
The pchip function uses piecewise continuous Hermite interpolation polynomi-
als (pchips). Its syntax is identical to that of the spline function. With pchip
the slopes at the data points are computed to preserve the “shape” of the data and
to “respect” monotonicity. That is, the tted function will be monotonic on inter-
vals where the data are monotonic and will have a local extremum on intervals
where the data have a local extremum. The differences between the two functions
are that

■ The second derivatives are continuous with spline but may be discontin-
uous with pchip, so spline may give a smoother function.

■ Therefore, the spline function is more accurate if the data are “smoother.”
■ There are no overshoots and less oscillation in the function produced by

pchip, even if the data are not smooth.

Consider the data given by x � [0, 1, 2, 3, 4, 5] and y � [0, �10, 60, 40, 41,
47]. The top graph in Figure 7.4–5 shows the results of tting a fth-order poly-
nomial and a cubic spline to the data. Clearly the fth-order polynomial is less
suitable for interpolation because of the large excursions it makes, especially over
the ranges 0 � x � 1 and 4 � x � 5. These excursions are often seen with high-
order polynomials. Here, the cubic spline is more useful. The bottom graph in
Figure 7.4–5 compares the results of a cubic spline t with a piecewise continu-
ous Hermite polynomial t (using pchip), which is clearly a better choice here.

MATLAB provides a number of other functions to support interpolation for
three-dimensional data. See griddata, griddata3, griddatan, interp3,
and interpn in the MATLAB Help.

7.5 Summary
This chapter introduces MATLAB functions that have widespread and important
uses in statistics and data analysis. Section 7.1 gives an introduction to basic
statistics and probability, including histograms, which are specialized plots for
displaying statistical results. The normal distribution that forms the basis of
many statistical methods is covered in Section 7.2. Section 7.3 covers random
number generators and their use in simulation programs. Section 7.4 covers
interpolation methods, including linear and spline interpolation.

Now that you have nished this chapter , you should be able to use MATLAB to

■ Solve basic problems in statistics and probability.
■ Create simulations incorporating random processes.
■ Apply interpolation to data.

322 CHAPTER 7 Statistics, Probability, and Interpolation

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 322

www.EBooksWorld.ir

7.5 Summary 323

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−60

−40

−20

0

20

40

60

80

x

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−40

−20

0

20

40

60

80

x

y

data
fifth order
spline

data
pchip
spline

Figure 7.4–5 Top graph: Interpolation with a fth-order polynomial and a cubic spline. Bottom graph: Interpolation
with piecewise continuous Hermite polynomials (pchip) and a cubic spline.

Absolute frequency, 297
Bins, 296
Cubic splines, 317
Error function, 305
Gaussian function, 303
Histogram, 296
Interpolation, 313
Mean, 296
Median, 296

Mode, 296
Normally distributed, 303
Normal or Gaussian function, 303
Relative frequency, 297
Scaled frequency histogram, 301
Standard deviation, 303
Uniformly distributed, 307
Variance, 303

Key Terms with Page References

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 323

www.EBooksWorld.ir

Problems
You can nd the answers to problems marked with an asterisk at the end of
the text.

Section 7.1

1. The following list gives the measured gas mileage in miles per gallon for
22 cars of the same model. Plot the absolute frequency histogram and the
relative frequency histogram.

23 25 26 25 27 25 24 22 23 25 26
26 24 24 22 25 26 24 24 24 27 23

2. Thirty pieces of structural timber of the same dimensions were subjected
to an increasing lateral force until they broke. The measured force in
pounds required to break them is given in the following list. Plot the ab-
solute frequency histogram. Try bin widths of 50, 100, and 200 lb. Which
gives the most meaningful histogram? Try to nd a better value for the
bin width.

243 236 389 628 143 417 205
404 464 605 137 123 372 439
497 500 535 577 441 231 675
132 196 217 660 569 865 725
457 347

3. The following list gives the measured breaking force in newtons for a
sample of 60 pieces of certain type of cord. Plot the absolute frequency
histogram. Try bin widths of 10, 30, and 50 N. Which gives the most
meaningful histogram? Try to nd a better value for the bin width.

311 138 340 199 270 255 332 279 231 296 198 269
257 236 313 281 288 225 216 250 259 323 280 205
279 159 276 354 278 221 192 281 204 361 321 282
254 273 334 172 240 327 261 282 208 213 299 318
356 269 355 232 275 234 267 240 331 222 370 226

Section 7.2
4. For the data given in Problem 1:

a. Plot the scaled frequency histogram.
b. Compute the mean and standard deviation and use them to estimate the

lower and upper limits of gas mileage corresponding to 68 percent of
cars of this model. Compare these limits with those of the data.

324 CHAPTER 7 Statistics, Probability, and Interpolation

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 324

www.EBooksWorld.ir

5. For the data given in Problem 2:
a. Plot the scaled frequency histogram.
b. Compute the mean and standard deviation and use them to estimate the

lower and upper limits of strength corresponding to 68 and 96 percent
of such timber pieces. Compare these limits with those of the data.

6. For the data given in Problem 3:
a. Plot the scaled frequency histogram.
b. Compute the mean and standard deviation, and use them to estimate

the lower and upper limits of breaking force corresponding to
68 and 96 percent of cord pieces of this type. Compare these limits
with those of the data.

7.* Data analysis of the breaking strength of a certain fabric shows that it is
normally distributed with a mean of 300 lb and a variance of 9.
a. Estimate the percentage of fabric samples that will have a breaking

strength no less than 294 lb.
b. Estimate the percentage of fabric samples that will have a breaking

strength no less than 297 lb and no greater than 303 lb.

8. Data from service records show that the time to repair a certain machine
is normally distributed with a mean of 65 min and a standard deviation
of 5 min. Estimate how often it will take more than 75 min to repair a
machine.

9. Measurements of a number of ttings show that the pitch diameter of the
thread is normally distributed with a mean of 8.007 mm and a standard
deviation of 0.005 mm. The design speci cations require that the pitch
diameter be 8 � 0.01 mm. Estimate the percentage of ttings that will be
within tolerance.

10. A certain product requires that a shaft be inserted into a bearing.
Measurements show that the diameter d1 of the cylindrical hole in the
bearing is normally distributed with a mean of 3 cm and a variance of
0.0064. The diameter d2 of the shaft is normally distributed with a mean
of 2.96 cm and a variance of 0.0036.
a. Compute the mean and the variance of the clearance c � d1 � d2.
b. Find the probability that a given shaft will not t into the bearing.

(Hint: Find the probability that the clearance is negative.)

11.* A shipping pallet holds 10 boxes. Each box holds 300 parts of different
types. The part weight is normally distributed with a mean of 1 lb and a
standard deviation of 0.2 lb.
a. Compute the mean and standard deviation of the pallet weight.
b. Compute the probability that the pallet weight will exceed 3015 lb.

Problems 325

pal34870_ch07_294-329.qxd 1/6/10 12:45 PM Page 325

www.EBooksWorld.ir

12. A certain product is assembled by placing three components end to end.
The components’ lengths are L1, L2, and L3. Each component is manufac-
tured on a different machine, so the random variations in their lengths are
independent of one another. The lengths are normally distributed with
means of 1, 2, and 1.5 ft and variances of 0.00014, 0.0002, and 0.0003,
respectively.
a. Compute the mean and variance of the length of the assembled

product.
b. Estimate the percentage of assembled products that will be no less than

4.48 and no more than 4.52 ft in length.

Section 7.3
13. Use a random number generator to produce 1000 uniformly distributed

numbers with a mean of 10, a minimum of 2, and a maximum of 18.
Obtain the mean and the histogram of these numbers, and discuss
whether they appear uniformly distributed with the desired mean.

14. Use a random number generator to produce 1000 normally distributed
numbers with a mean of 20 and a variance of 4. Obtain the mean,
variance, and histogram of these numbers, and discuss whether they
appear normally distributed with the desired mean and variance.

15. The mean of the sum (or difference) of two independent random variables
equals the sum (or difference) of their means, but the variance is always the
sum of the two variances. Use random number generation to verify this
statement for the case where z � x � y, where x and y are independent and
normally distributed random variables. The mean and variance of x are
�x � 8 and �2

x � 2. The mean and variance of y are �y � 15 and
�2

y � 4. Find the mean and variance of z by simulation, and compare
the results with the theoretical prediction. Do this for 100, 1000, and
5000 trials.

16. Suppose that z � xy, where x and y are independent and normally
distributed random variables. The mean and variance of x are �x � 10 and
�2

x � 2. The mean and variance of y are �y � 15 and �2
y � 3. Find the

mean and variance of z by simulation. Does �z � �x �y? Does �2
z � �2

x �
2
y?

Do this for 100, 1000, and 5000 trials.

17. Suppose that y � x2, where x is a normally distributed random variable
with a mean and variance of �x � 0 and �2

x � 4. Find the mean and
variance of y by simulation. Does �y � �2

x? Does �y � �2
x? Do this for

100, 1000, and 5000 trials.

18.* Suppose you have analyzed the price behavior of a certain stock by
plotting the scaled frequency histogram of the price over a number of
months. Suppose that the histogram indicates that the price is normally
distributed with a mean $100 and a standard deviation of $5. Write a

326 CHAPTER 7 Statistics, Probability, and Interpolation

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 326

www.EBooksWorld.ir

MATLAB program to simulate the effects of buying 50 shares of this
stock whenever the price is below the $100 mean, and selling all your
shares whenever the price is above $105. Analyze the outcome of this
strategy over 250 days (the approximate number of business days in a
year). Define the profit as the yearly income from selling stock plus
the value of the stocks you own at year’s end, minus the yearly cost
of buying stock. Compute the mean yearly profit you would expect
to make, the minimum expected yearly profit, the maximum expected
yearly profit, and the standard deviation of the yearly profit. The
broker charges 6 cents per share bought or sold with a minimum fee
of $40 per transaction. Assume you make only one transaction
per day.

19. Suppose that data show that a certain stock price is normally distributed
with a mean of $150 and a variance of 100. Create a simulation to com-
pare the results of the following two strategies over 250 days. You start
the year with 1000 shares. With the rst strategy , every day the price is
below $140 you buy 100 shares, and every day the price is above
$160 you sell all the shares you own. With the second strategy, every
day the price is below $150 you buy 100 shares, and every day the price
is above $160 you sell all the shares you own. The broker charges
5 cents per share traded with a minimum of $35 per transaction.

20. Write a script le to simulate 100 plays of a game in which you ip two
coins. You win the game if you get two heads, lose if you get two tails, and
 ip again if you get one head and one tail. Create three user -de ned func-
tions to use in the script. Function ip simulates the ip of one coin, with
the state s of the random number generator as the input argument, and the
new state s and the result of the ip (0 for a tail and 1 for a head) as the
outputs. Function ips simulates the ipping of two coins and calls ip.
The input of ips is the state s, and the outputs are the new state s and
the result (0 for two tails, 1 for a head and a tail, and 2 for two heads).
Function match simulates a turn at the game. Its input is the state s, and
its outputs are the result (1 for win, 0 for lose) and the new state s. The
script should reset the random number generator to its initial state, compute
the state s, and pass this state to the user-de ned functions.

21. Write a script le to play a simple number guessing game as follows.
The script should generate a random integer in the range 1, 2, 3, . . . , 14,
15. It should provide for the player to make repeated guesses of the
number, and it should indicate if the player has won or give the player a
hint after each wrong guess. The responses and hints are as follows:

■ “You won” and then stop the game.
■ “Very close” if the guess is within 1 of the correct number.
■ “Getting close” if the guess is within 2 or 3 of the correct number.
■ “Not close” if the guess is not within 3 of the correct number.

Problems 327

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 327

www.EBooksWorld.ir

Section 7.4
22.* Interpolation is useful when one or more data points are missing. This sit-

uation often occurs with environmental measurements, such as tempera-
ture, because of the dif culty of making measurements around the clock.
The following table of temperature versus time data is missing readings at
5 and 9 hours. Use linear interpolation with MATLAB to estimate the
temperature at those times.

Time (hours, P.M.) 1 2 3 4 5 6 7 8 9 10 11 12

Temperature (�C) 10 9 18 24 ? 21 20 18 ? 15 13 11

23. The following table gives temperature data in �C as a function of time of
day and day of the week at a speci c location. Data are missing for the
entries marked with a question mark (?). Use linear interpolation with
MATLAB to estimate the temperature at the missing points.

24. Computer-controlled machines are used to cut and to form metal and
other materials when manufacturing products. These machines often use
cubic splines to specify the path to be cut or the contour of the part to be
shaped. The following coodinates specify the shape of a certain car’s
front fender. Fit a series of cubic splines to the coordinates, and plot the
splines along with the coordinate points.

x (ft) 0 0.25 0.75 1.25 1.5 1.75 1.875 2 2.125 2.25

y (ft) 1.2 1.18 1.1 1 0.92 0.8 0.7 0.55 0.35 0

25. The following data are the measured temperature T of water owing from
a hot water faucet after it is turned on at time t � 0.

t (sec) T (�F) t (sec) T (�F)

0 72.5 6 109.3
1 78.1 7 110.2
2 86.4 8 110.5
3 92.3 9 109.9
4 110.6 10 110.2
5 111.5

Day

Hour Mon Tues Wed Thurs Fri

1 17 15 12 16 16
2 13 ? 8 11 12
3 14 14 9 ? 15
4 17 15 14 15 19
5 23 18 17 20 24

328 CHAPTER 7 Statistics, Probability, and Interpolation

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 328

www.EBooksWorld.ir

a. Plot the data, connecting them rst with straight lines and then with a
cubic spline.

b. Estimate the temperature values at the following times, using linear in-
terpolation and then cubic spline interpolation: t � 0.6, 2.5, 4.7, 8.9.

c. Use both the linear and cubic spline interpolations to estimate the time
it will take for the temperature to equal the following values: T � 75,
85, 90, 105.

Problems 329

pal34870_ch07_294-329.qxd 1/5/10 10:04 PM Page 329

www.EBooksWorld.ir

The end of the Cold War has resulted in increased international coopera-
tion. A vivid example of this is the cooperation between the Russian and
American space agencies. In the rst joint mission the U.S. space shuttle

Atlantis docked with the Russian space station Mir. Now Russia, the United
States, and several other countries are collaborating on a more ambitious space
project: the International Space Station (ISS). The launch of the rst element of
the station, a Russian-built cargo block, occurred in 1998. The rst permanent
crew arrived in 2000. The station will have a crew of seven, will weigh over
1 000 000 lb, and will be 290 ft long and 356 ft wide. To assemble it will require
28 U.S. shuttle ights and 41 Russian ights over a period of 10 years.

The new era of international cooperation has resulted in increased integration
of national economies into one global economy. For example, many components
for cars assembled in the United States are supplied by companies in other coun-
tries. In the 21st century, improved communications and computer networks will
enable engineering teams in different countries to work simultaneously on dif-
ferent aspects of the product’s design, employing a common design database. To
prepare for such a future in international engineering, students need to become
familiar with other cultures and languages as well as pro cient in computer -aided
design.

MATLAB is available in international editions and has been widely used in
Europe for many years. Thus engineers familiar with MATLAB will already
have a head start in preparing for a career in international engineering. ■

© Stocktrek/age fotostock/RF

Engineering in the
21st Century. . .

International Engineering

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 330

www.EBooksWorld.ir

331

C H A P T E R 8

Linear Algebraic
Equations
OUTLINE
8.1 Matrix Methods for Linear Equations

8.2 The Left Division Method

8.3 Underdetermined Systems

8.4 Overdetermined Systems

8.5 A General Solution Program

8.6 Summary

Problems

Linear algebraic equations such as

occur in many engineering applications. For example, electrical engineers use
them to predict the power requirements for circuits; civil, mechanical, and
aerospace engineers use them to design structures and machines; chemical engi-
neers use them to compute material balances in chemical processes; and indus-
trial engineers apply them to design schedules and operations. The examples and
homework problems in this chapter explore some of these applications.

Linear algebraic equations can be solved “by hand” using pencil and paper,
by calculator, or with software such as MATLAB. The choice depends on the
circumstances. For equations with only two unknown variables, hand solution is
easy and adequate. Some calculators can solve equation sets that have many vari-
ables. However, the greatest power and exibility is obtained by using software.

7x + 3y = 24

5x - 2y = 13

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 331

www.EBooksWorld.ir

For example, MATLAB can obtain and plot equation solutions as we vary one or
more parameters.

Systematic solution methods have been developed for sets of linear equations.
In Section 8.1 we introduce some matrix notation that is required for use with
MATLAB and that is also useful for expressing solution methods in a compact
way. The conditions for the existence and uniqueness of solutions are then intro-
duced. Methods using MATLAB are treated in four sections: Section 8.2 covers
the left division method for solving equation sets that have unique solutions.
Section 8.3 covers the case where the equation set does not contain enough infor-
mation to determine all the unknown variables. This is the underdetermined case.
The overdetermined case occurs when the equation set has more independent
equations than unknowns (Section 8.4). A general solution program is given in
Section 8.5.

8.1 Matrix Methods for Linear Equations
Sets of linear algebraic equations can be expressed as a single equation, using ma-
trix notation. This standard and compact form is useful for expressing solutions
and for developing software applications with an arbitrary number of variables. In
this application, a vector is taken to be a column vector unless otherwise speci ed.

Matrix notation enables us to represent multiple equations as a single matrix
equation. For example, consider the following set.

This set can be expressed in vector-matrix form as

which can be represented in the following compact form

(8.1–1)

where we have de ned the following matrices and vectors:

In general, the set of m equations in n unknowns can be expressed in the form
Equation (8.1–1), where A is m � n, x is n � 1, and b is m � 1.

Matrix Inverse
The solution of the scalar equation ax � b is x � b/a if a � 0. The division op-
eration of scalar algebra has an analogous operation in matrix algebra. For exam-
ple, to solve the matrix equation (8.1–1) for x, we must somehow “divide” b by A.

A � c2 9

3 -4
d x � cx1

x2
d b � c5

7
d

Ax = b

c2 9

3 -4
d cx1

x2
d � c5

7
d

3x1 � 4x2 � 7

2x1 + 9x2 � 5

332 CHAPTER 8 Linear Algebraic Equations

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 332

www.EBooksWorld.ir

The procedure for doing this is developed from the concept of a matrix inverse.
The inverse of a matrix A is denoted by A�1 and has the property that

where I is the identity matrix. Using this property, we multiply both sides of Equa-
tion (8.1–1) from the left by A�1 to obtain A�1Ax �A�1b. Because A�1Ax � Ix � x,
we obtain the solution

(8.1–2)

The inverse of a matrix A is de ned only if A is square and nonsingular.Amatrix
is singular if its determinant |A| is zero. If A is singular, then a unique solution to
Equation (8.1–1) does not exist. The MATLAB functions inv(A) and det(A)
compute the inverse and the determinant of the matrix A. If the inv(A) function
is applied to a singular matrix, MATLAB will issue a warning to that effect.

An ill-conditioned set of equations is a set that is close to being singular. The
ill-conditioned status depends on the accuracy with which the solution calcula-
tions are made. When internal numerical accuracy used by MATLAB is insuf -
cient to obtain a solution, it prints the message warning that the matrix is close to
singular and that the results might be inaccurate.

For a 2 � 2 matrix A,

where det(A) � ad � bc. Thus A is singular if ad � bc � 0.

A � ca b

c d
d A�1 �

1

ad � bc
 c d �b

�c a
d

x � A�1b

A�1A � AA�1 � I

8.1 Matrix Methods for Linear Equations 333

EXAMPLE 8.1–1 The Matrix Inverse Method

Solve the following equations, using the matrix inverse.

■ Solution
The matrix A and the vector b are

The session is

>>A = [2,9;3,-4]; b = [5;7];
>>x = inv(A)*b
x =

2.3714
0.0286

The solution is x1 � 2.3714 and x2 � 0.0286. MATLAB did not issue a warning, so the
solution is unique.

A � c2 9

3 �4
d b � c5

7
d

3x1 � 4x2 � 7

2x1 + 9x2 � 5

SINGULAR
MATRIX

ILL-CONDITIONED
SET

pal34870_ch08_330-367.qxd 1/9/10 5:42 PM Page 333

www.EBooksWorld.ir

The solution form x � A�1b is rarely applied in practice to obtain numerical
solutions to sets of many equations, because calculation of the matrix inverse is
likely to introduce greater numerical inaccuracy than the left division method to be
introduced.

Test Your Understanding

T8.1–1 For what values of c will the following set (a) have a unique solution and
(b) have an in nite number of solutions? Find the relation between x1

and x2 for these solutions.

(Answers: (a) c 12, x1 � x2 � 0; (b) c � 12, x1 � �2x2)

T8.1–2 Use the matrix inverse method to solve the following set.

(Answer: x1 � 7, x2 � 4)

T8.1–3 Use the matrix inverse method to solve the following set.

(Answer: No solution.)

Existence and Uniqueness of Solutions
The matrix inverse method will warn us if a unique solution does not exist, but
it does not tell us whether there is no solution or an in nite number of solu-
tions. In addition, the method is limited to cases where the matrix A is square,
that is, cases where the number of equations equals the number of unknowns.
For this reason we now introduce a method that allows us to determine easily
whether an equation set has a solution and whether it is unique. The method re-
quires the concept of the rank of a matrix.

Consider the 3 � 3 determinant

(8.1–3)

If we eliminate one row and one column in the determinant, we are left with a
2 � 2 determinant. Depending on which row and column we choose to elimi-
nate, there are nine possible 2 � 2 determinants we can obtain. These are

|A| = †
3 -4 1

6 10 2

9 -7 3
† = 0

6x1 � 8x2 � 2

3x1 � 4x2 � 5

6x1 � 10x2 � 2

3x1 � 4x2 � 5

�

2x1 + 4x2 � 0

6x1 + cx2 � 0

334 CHAPTER 8 Linear Algebraic Equations

MATRIX RANK

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 334

www.EBooksWorld.ir

called subdeterminants. For example, if we eliminate the second row and third
column, we obtain

Subdeterminants are used to de ne the rank of a matrix. The de nition of
matrix rank is as follows.

De nition of Matrix Rank. An m � n matrix A has a rank r � 1 if and only if
|A| contains a nonzero r � r determinant and every square subdeterminant with
r � 1 or more rows is zero.

For example, the rank of A in Equation (8.1–3) is 2 because |A| � 0 while |A|
contains at least one nonzero 2 � 2 subdeterminant. To determine the rank of a
matrix A in MATLAB, type rank(A). If A is n � n, its rank is n if det(A) � 0.

We can use the following test to determine if a solution exists to Ax � b
and whether it is unique. The test requires that we rst form the augmented
matrix [A b].

Existence and Uniqueness of Solutions. The set Ax � b with m equations and
n unknowns has solutions if and only if (1) rank(A) � rank([A b]). Let r �
rank(A). If condition (1) is satis ed and if r � n, then the solution is unique. If
condition (1) is satis ed but r < n, there are an in nite number of solutions, and
r unknown variables can be expressed as linear combinations of the other n � r
unknown variables, whose values are arbitrary.

Homogeneous case. The homogeneous set Ax � 0 is a special case in which
b � 0. For this case, rank(A) � rank([A b]) always, and thus the set always
has the trivial solution x � 0. A nonzero solution, in which at least one
unknown is nonzero, exists if and only if rank(A) < n. If m < n, the homoge-
neous set always has a nonzero solution.

This test implies that if A is square and of dimension n � n, then
rank([A b]) � rank(A), and a unique solution exists for any b if rank(A) � n.

8.2 The Left Division Method
MATLAB provides the left division method for solving the equation set Ax � b.
This method is based on Gauss elimination. To use the left division method to
solve for x, you type x = A\b. If |A| � 0 or if the number of equations does not
equal the number of unknowns, then you need to use the other methods to be
presented later.

` 3 �4

9 �7
` � 3(�7) � 9(�4) � 15

8.2 The Left Division Method 335

SUBDETER-
MINANT

AUGMENTED
MATRIX

EXAMPLE 8.2–1 Left Division Method with Three Unknowns

Use the left division method to solve the following set.

 6x1 + 7x2 + 3x3 � 5

 �9x1 � 5x2 + 2x3 � 16

 3x1 + 2x2 � 9x3 � �65

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 335

www.EBooksWorld.ir

■ Solution
The matrices A and b are

The session is

>>A = [3,2,-9;-9,-5,2;6,7,3];
>>rank(A)
ans =

3

Because A is 3 � 3 and rank(A) � 3, which is the number of unknowns, a unique solution
exists. It is obtained by continuing the session as follows.

>>b = [-65;16;5];
>>x = A\b
x =

2.0000
-4.0000
7.0000

This answer gives the vector x, which corresponds to the solution x1 � 2, x2 � �4, x3 � 7.

For the solution x � A�1b, vector x is proportional to the vector b. We can
use this linearity property to obtain a more generally useful algebraic solution in
cases where the right-hand sides are all multiplied by the same scalar. For exam-
ple, suppose the matrix equation is Ay � bc, where c is a scalar. The solution
is y � A�1bc � xc. Thus if we obtain the solution to Ax � b, the solution to
Ay � bc is given by y � xc.

A � J 3 2 �9

�9 �5 2

6 7 3
K b � J �65

16

5
K

336 CHAPTER 8 Linear Algebraic Equations

EXAMPLE 8.2–2 Calculation of Cable Tension

A mass m is suspended by three cables attached at three points B, C, and D, as shown in
Figure 8.2–1. Let T1, T2, and T3 be the tensions in the three cablesAB,AC, andAD, respec-
tively. If the mass m is stationary, the sum of the tension components in the x, in the y, and
in the z directions must each be zero. This gives the following three equations:

Determine T1, T2, and T3 in terms of an unspeci ed value of the weight mg.

5T1

135
+

5T2

134
+

5T3

142
� mg � 0

3T1

135
�

4T3

142
� 0

T1

135
�

3T2

134
+

T3

142
� 0

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 336

www.EBooksWorld.ir

■ Solution
If we set mg � 1, the equations have the form AT � b where

The script le to solve this system is

% File cable.m
s34 = sqrt(34); s35 = sqrt(35); s42 = sqrt(42);
A1 = [1/s35, -3/s34, 1/s42];
A2 = [3/s35, 0, -4/s42];
A3 = [5/s35, 5/s34, 5/s42];
A = [A1; A2; A3];
b = [0; 0; 1];
rank(A)
rank([A, b])
T = A\b

When this le is executed by typing cable, we nd that rank(A) � rank ([A b]) � 3 and
obtain the values T1 � 0.5071, T2 � 0.2915, and T3 � 0.4166. Because A is 3 � 3 and
rank(A) � 3, which is the number of unknowns, the solution is unique. Using the linearity
property, we multiply these results by mg and obtain the general solution T1 � 0.5071 mg,
T2 � 0.2915 mg, and T3 � 0.4166 mg.

A � ≥
1
35

� 3
34

1
42

3
35

0 � 4
42

5
35

5

34
5

42

¥ T � J
T1

T2

T3
K b � J

0

0

1
K

8.2 The Left Division Method 337

3 m
3 m

4 m

5 m

1 m

B

D

z

C

y x

A

m

1 m

Figure 8.2–1 A mass suspended by three cables.

1

1

1 1

1

1

1

1

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 337

www.EBooksWorld.ir

Linear equations are useful in many engineering elds. Electric circuits are
a common source of linear equation models. The circuit designer must be able to
solve them to predict the currents that will exist in the circuit. This information
is often needed to determine the power supply requirements among other things.

338 CHAPTER 8 Linear Algebraic Equations

EXAMPLE 8.2–3 An Electric Resistance Network

The circuit shown in Figure 8.2–2 has ve resistances and two applied voltages.
Assuming that the positive directions of current ow are in the directions shown in the
 gure, Kirchhof f’s voltage law applied to each loop in the circuit gives

Conservation of charge applied at each node in the circuit gives

You can use these two equations to eliminate and from the rst three equations. The
result is

Thus we have three equations in the three unknowns , and .
Write a MATLAB script le that uses given values of the applied voltages �1 and �2

and given values of the ve resistances to solve for the currents i1, i2, and i3. Use the

i3i1, i2

 R5i2 � (R3 + R5)i3 � �2

 �R4i1 + (R2 + R4 + R5)i2 � R5i3 � 0

 (R1 + R4)i1 � R4i2 � �1

i5i4

i2 � i3 + i5

i1 � i2 + i4

 �R5i5 + R3i3 + �2 � 0

 �R4i4 + R2i2 + R5i5 � 0

 ��1 + R1i1 + R4i4 � 0

+

–

+

–

v1 v2R5

R1 R2 R3

R4

i 5i 4

i 3i 2i 1

Figure 8.2–2 An electric resistance network.

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 338

www.EBooksWorld.ir

program to nd the currents for the case R1 � 5, R2 � 100, R3 � 200, R4 � 150, and R5 �
250 k	 and �1 � 100 and �2 � 50 V. (Note that 1 k	 � 1000 	.)

■ Solution
Because there are as many unknowns as equations, there will be a unique solution if

in addition, the left division method will generate an error message if .
The following script le, named resist.m, uses the left division method to solve the
three equations for i1, i2, and i3.

% File resist.m
% Solves for the currents i_1, i_2, i_3
R = [5,100,200,150,250]*1000;
v1 = 100; v2 = 50;
A1 = [R(1) + R(4), -R(4), 0];
A2 = [-R(4), R(2) + R(4) + R(5), -R(5)];
A3 = [0, R(5), -(R(3) + R(5))];
A = [A1; A2; A3];
b=[v1; 0; v2];
current = A\b;
disp(‘The currents are:’)
disp(current)

The row vectors A1, A2, and A3 were de ned to avoid typing the lengthy expression for
A in one line. This script is executed from the command prompt as follows:

>>resist
The currents are:

1.0e-003*
0.9544
0.3195
0.0664

Because MATLAB did not generate an error message, the solution is unique. The
currents are i1 � 0.9544, i2 � 0.3195, and i3 � 0.0664 mA, where 1 mA � 1 milli-
ampere � 0.001 A.

A
 = 0
A
 � 0;

8.2 The Left Division Method 339

Ethanol Production

Engineers in the food and chemical industries use fermentation in many processes. The
following equation describes Baker’s yeast fermentation.

The variables a, b, . . . , f represent the masses of the products involved in the reaction.
In this formula C6H12O6 represents glucose, C6H10NO3 represents yeast, and C2H6O
represents ethanol. This reaction produces ethanol in addition to water and carbon

 : C6H10NO3 + d(H2O) + e(CO2) + f (C2H6O)

 a(C6H12O6) + b(O2) + c(NH3)

EXAMPLE 8.2–4

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 339

www.EBooksWorld.ir

dioxide. We want to determine the amount of ethanol f produced. The number of C, O,
N, and H atoms on the left must balance those on the right side of the equation. This
gives four equations:

The fermenter is equipped with an oxygen sensor and a carbon dioxide sensor. These
enable us to compute the respiratory quotient R:

Thus the fth equation is . The yeast yield Y (grams of yeast produced per
gram of glucose consumed) is related to a as follows

where 144 is the molecular weight of yeast and 180 is the molecular weight of glucose.
By measuring the yeast yield Y we can compute a as follows: . This is the
sixth equation.

Write a user-de ned function that computes f, the amount of ethanol produced, with
R and Y as the function’s arguments. Test your function for two cases where Y is measured
to be 0.5: (a) R � 1.1 and (b) R � 1.05.

■ Solution
First note that there are only four unknowns because the third equation directly gives
c � 1, and the sixth equation directly gives . To write these equations in
matrix form, let , and . Then the equations can be written as

In matrix form these become

≥
0 0 -1 -2

2 -1 -2 -1

0 -2 0 -6

R 0 -1 0

¥ ≥
x1

x2

x3

x4

¥ = ≥
6 - 6(144>180Y)

3 - 6(144>180Y)

7 - 12(144>180Y)

 0

¥

 Rx1 - x3 = 0

 -2x2 - 6x4 = 7 - 12(144>180Y)

 2x1 - x2 - 2x3 - x4 = 3 - 6(144>180Y)

 -x3 - 2x4 = 6 - 6(144>180Y)

x4 = fx1 = b, x2 = d, x3 = e
a = 144>180Y

a = 144>180Y

Y =

144

180a

Rb - e = 0

R =
CO2

O2
 =

e

b

 12a + 3c = 10 + 2d + 6f

 c = 1

 6a + 2b = 3 + d + 2e + f

 6a = 6 + e + 2f

340 CHAPTER 8 Linear Algebraic Equations

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 340

www.EBooksWorld.ir

The function le is shown below .

function E = ethanol(R,Y)
% Computes ethanol produced from yeast reaction.
A = [0,0,-1,-2;2,-1,-2,-1;...

0,-2,0,-6;R,0,-1,0];
b = [6-6*(144./(180*Y));3-6*(144./(180*Y));...

7-12*(144./(180*Y));0];
x = A\b;
E = x(4);

The session is as follows:

>>ethanol(1.1,0.5)
ans =

0.0654
>>ethanol(1.05,0.5)
ans =

-0.0717

The negative value for E in the second case indicates that ethanol is being consumed rather
than produced.

Test Your Understanding

T8.2–1 Use the left division method to solve the following set.

(Answers: x1 � 6, x2 � 3)

8.3 Underdetermined Systems
An underdetermined system does not contain enough information to determine
all the unknown variables, usually but not always because it has fewer equations
than unknowns. Thus an in nite number of solutions can exist, with one or more
of the unknowns dependent on the remaining unknowns. The left division
method works for square and nonsquare A matrices. However, if A is not square,
the left division method can give answers that might be misinterpreted. We will
show how to interpret MATLAB results correctly.

When there are fewer equations than unknowns, the left division method might
give a solution with some of the unknowns set equal to zero, but this is not the gen-
eral solution. An in nite number of solutions might exist even when the number of
equations equals the number of unknowns. This can occur when |A| � 0. For such
systems the left division method generates an error message warning us that the

 7x1 - 2x2 = 36

 5x1 - 3x2 = 21

8.3 Underdetermined Systems 341

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 341

www.EBooksWorld.ir

matrix A is singular. In such cases the pseudoinverse method x = pinv(A)*b
gives one solution, the minimum norm solution. In cases where there are an in nite
number of solutions, the rref function can be used to express some of the un-
knowns in terms of the remaining unknowns, whose values are arbitrary.

An equation set can be underdetermined even though it has as many equa-
tions as unknowns. This can happen if some of the equations are not independent.
Determining by hand whether all the equations are independent might not be easy,
especially if the set has many equations, but it is easily done in MATLAB.

342 CHAPTER 8 Linear Algebraic Equations

PSEUDOINVERSE
METHOD

MINIMUM NORM
SOLUTION

EXAMPLE 8.3–1 An Underdetermined Set with Three Equations and Three Unknowns

Show that the following set does not have a unique solution. How many of the unknowns
will be undetermined? Interpret the results given by the left division method.

■ Solution
A MATLAB session to check the ranks is

>>A = [2,-4,5;-4,-2,3;2,6,-8];
>>b = [-4;4;0];
>>rank(A)
ans =
2

>>rank([A, b])
ans =
2

>>x = A\b
Warning: Matrix is singular to working precision.
ans =

NaN
NaN
NaN

Because the ranks of A and [A b] are equal, a solution exists. However, because the num-
ber of unknowns is 3 and is 1 greater than the rank of A, one of the unknowns will be un-
determined. An in nite number of solutions exist, and we can solve for only two of the
unknowns in terms of the third unknown. The set is underdetermined because there are
fewer than three independent equations; the third equation can be obtained from the rst
two. To see this, add the rst and second equations, to obtain �2x1 � 6x2 � 8x3 � 0,
which is equivalent to the third equation.

Note that we could also tell that the matrix A is singular because its rank is less than 3.
If we use the left division method, MATLAB returns a message warning that the problem
is singular, and it does not produce an answer.

 2x1 + 6x2 - 8x3 = 0

 -4x1 - 2x2 + 3x3 = 4

 2x1 - 4x2 + 5x3 = -4

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 342

www.EBooksWorld.ir

The pinv Function and the Euclidean Norm
The pinv function (which stands for “pseudoinverse”) can be used to obtain a
solution of an underdetermined set. To solve the equation set Ax � b using the
pinv function, you type x = pinv(A)*b. The pinv function gives a solution
that gives the minimum value of the Euclidean norm, which is the magnitude of
the solution vector x. The magnitude of a vector v in three-dimensional space,
having components x, y, z, is . It can be computed using matrix
multiplication and the transpose as follows.

The generalization of this formula to an n-dimensional vector v gives the magni-
tude of the vector and is the Euclidean norm N. Thus

(8.3–1)

The MATLAB function norm(v) computes the Euclidean norm.

N = 2vTv

2vTv = [x y z]T J
x

y

z K = 2x2
+ y2

+ z2

2x2
+ y2

+ z2

8.3 Underdetermined Systems 343

A Statically Indeterminate Problem

Determine the forces in the three equally spaced supports that hold up a light xture. The
supports are 5 ft apart. The xture weighs 400 lb, and its mass center is 4 ft from the right
end. Obtain the solution using the MATLAB left-division method and the pseudoinverse
method.

■ Solution
Figure 8.3–1 shows the xture and the free-body diagram, where , and are the
tension forces in the supports. For the xture to be in equilibrium, the vertical forces must
cancel, and the total moments about an arbitrary xed point—say , the right endpoint—
must be zero. These conditions give the two equations

or

(8.3–2)

(8.3–3)

Because there are more unknowns than equations, the set is underdetermined. Thus we
cannot determine a unique set of values for the forces. Such a problem, when the equa-
tions of statics do not give enough equations, is called statically indeterminate. These

 10T1 + 5T2 + 0T3 = 1600

 T1 + T2 + T3 = 400

 400(4) - 10T1 - 5T2 = 0

 T1 + T2 + T3 - 400 = 0

T3T1, T2

EXAMPLE 8.3–2

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 343

www.EBooksWorld.ir

equations can be written in the matrix form AT � b as follows:

The MATLAB session is

>>A = [1,1,1;10,5,0];
>>b = [400;1600];
>>rank(A)
ans =
2

>>rank([A, b])
ans =
2

>>T = A\b
T =

160.0000
0
240.0000

c 1 1 1

10 5 0
d J

T1

T2

T3
K = c 400

1600
d

344 CHAPTER 8 Linear Algebraic Equations

400 lb

5 ft 5 ft

4 ft

T1 T2

(a)

(b)

T3

400

Figure 8.3–1 A light xture and its free-body diagram.

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 344

www.EBooksWorld.ir

>>T = pinv(A)*b
T =

93.3333
133.3333
173.3333

The left division answer corresponds to T1 � 160, T2 � 0, and T3 � 240. This illustrates
how the MATLAB left division operator produces a solution with one or more variables
set to zero, for underdetermined sets having more unknowns than equations.

Because the ranks of A and [A b] are both 2, a solution exists, but it is not unique. Be-
cause the number of unknowns is 3, and is 1 greater than the rank of A, an in nite number of
solutions exist, and we can solve for only two of the unknowns in terms of the third.

The pseudoinverse solution gives T1 � 93.3333, T2 � 133.3333, and T3 � 173.3333.
This is the minimum norm solution for real values of the variables. The minimum norm
solution consists of the real values of T1, T2, and T3 that minimize

To understand what MATLAB is doing, note that we can solve Equations (8.3–2) and
(8.3–3) to obtain T1 and T2 in terms of T3 as T1 � T3 � 80 and T2 � 480 � 2T3. Then the
Euclidean norm can be expressed as

The real value of T3 that minimizes N can be found by plotting N versus T3, or by using
calculus. The answer is T3 � 173.3333, the same as the minimum norm solution given by
the pseudoinverse method.

Where there are an in nite number of solutions, we must decide whether the
solutions given by the left division and the pseudoinverse methods are useful for
applications. This must be done in the context of the speci c application.

Test Your Understanding

T8.3–1 Find two solutions to the following set.

(Answer: Minimum norm solution: x1 � 4.33, x2 � �1.67, x3 � 1.34.
Left division solution: x1 � 5, x2 � �1, x3 � 0.)

The Reduced Row Echelon Form
We can express some of the unknowns in an underdetermined set as functions
of the remaining unknowns. In Example 8.3–2, we wrote the solutions for two of
the unknowns in terms of the third: T1 � T3 � 80 and T2 � 480 � 2T3. These two
equations are equivalent to

T1 - T3 = -80 T2 + 2T3 = 480

 x1 + x2 + x3 = 4

 x1 + 3x2 + 2x3 = 2

N = 2(T3 - 80)2
+ (480 - 2T3)

2
+ T2

3 = 26T2
3 - 2080T3 + 236,800

N = 2T2
1 + T2

2 + T2
3

8.3 Underdetermined Systems 345

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 345

www.EBooksWorld.ir

In matrix form these are

The augmented matrix [A b] for the above set is

Note that the rst two columns form a 2 � 2 identity matrix. This indicates that
the corresponding equations can be solved directly for T1 and T2 in terms of T3.

We can always reduce an underdetermined set to such a form by multiplying
the set’s equations by suitable factors and adding the resulting equations to elimi-
nate an unknown variable. The MATLAB rref function provides a procedure
for reducing an equation set to this form, which is called the reduced row echelon
form. Its syntax is rref([A b]). Its output is the augmented matrix [C d] that
corresponds to the equation set Cx � d. This set is in reduced row echelon form.

c1 0 -1 -80

0 1 2 480
d

c1 0 -1

0 1 2
d J

T1

T2

T3
K = c -80

480
d

346 CHAPTER 8 Linear Algebraic Equations

EXAMPLE 8.3–3 Three Equations in Three Unknowns, Continued

The following underdetermined equation set was analyzed in Example 8.3–1. There it
was shown that an in nite number of solutions exist. Use the rref function to obtain the
solutions.

■ Solution
The MATLAB session is

>>A = [2,-4,5;-4,-2,3;2,6,-8];
>>b = [-4;4;0];
>>rref([A, b])
ans =
1 0 -0.1 -1.2000
0 1 -1.3 0.4000
0 0 0 0

The answer corresponds to the augmented matrix [C d], where

[C d] = J 1 0 -0.1 -1.2

0 1 -1.3 0.4

0 0 0 0
K

2x1 + 6x2 - 8x3 = 0

 -4x1 - 2x2 + 3x3 = 4

 2x1 - 4x2 + 5x3 = -4

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 346

www.EBooksWorld.ir

This matrix corresponds to the matrix equation Cx � d, or

x1 � 0x2 � 0.1x3 � �1.2

0x1 � x2 � 1.3x3 � 0.4

0x1 � 0x2 � 0x3 � 0

These can be easily solved for x1 and x2 in terms of x3 as follows: x1 � 0.1x3 � 1.2, x2 �

1.3x3 � 0.4. This is the general solution to the problem, where x3 is taken to be the arbitary
variable.

Supplementing Underdetermined Systems
Often the linear equations describing the application are underdetermined because
not enough information has been speci ed to determine unique values of the
unknowns. In such cases we might be able to include additional information,
objectives, or constraints to nd a unique solution. We can use therref command
to reduce the number of unknown variables in the problem, as illustrated in the
next two examples.

8.3 Underdetermined Systems 347

Production Planning

The following table shows how many hours reactors A and B need to produce 1 ton each
of the chemical products 1, 2, and 3. The two reactors are available for 40 and 30 hr per
week, respectively. Determine how many tons of each product can be produced each
week.

EXAMPLE 8.3–4

Hours Product 1 Product 2 Product 3

Reactor A 5 3 3
Reactor B 3 3 4

■ Solution
Let x, y, and z be the number of tons each of products 1, 2, and 3 that can be produced in
one week. Using the data for reactor A, the equation for its usage in one week is

The data for reactor B gives

This system is underdetermined. The matrices for the equation Ax � b are

Here the rank(A) � rank([A b]) � 2, which is less than the number of unknowns. Thus
an in nite number of solutions exist, and we can determine two of the variables in terms
of the third.

A = c5 3 3

3 3 4
d b = c40

30
d x = J

x

y

z K

3x + 3y + 4z = 30

5x + 3y + 3z = 40

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 347

www.EBooksWorld.ir

Using the rref command rref([A b]), where A = [5,3,3;3,3,4] and
b = [40;30], we obtain the following reduced echelon augmented matrix:

This matrix gives the reduced system

which can be easily solved as follows:

(8.3–4)

(8.3–5)

where z is arbitrary. However, z cannot be completely arbitrary if the solution is to be
meaningful. For example, negative values of the variables have no meaning here; thus we
require that , and . Equation (8.3–4) shows that if .
From Equation (8.3–5), implies that . Thus valid solutions
are those given by Equations (8.3–4) and (8.3–5), where tons. The choice
of z within this range must be made on some other basis, such as pro t.

For example, suppose we make a pro t of $400, $600, and $100 per ton for products
1, 2, and 3, respectively. Then our total pro t P is

Thus to maximize pro t, we should choose z to be the smallest possible value, namely,
. This choice gives tons.

However, if the pro ts for each product were $3000, $600, and $100, the total pro t
would be . Thus we should choose z to be its maximum, namely,
z � 2.727 tons. From Equations (8.3–4) and (8.3–5), we obtain x � 6.36 and y � 0 tons.

P = 18 000 + 500z

x = y = 5z = 0

 = 5000 - 800z

 = 400(5 + 0.5z) + 600(5 - 1.8333z) + 100z

 P = 400x + 600y + 100z

0 … z … 2.737
z … 5>1.8333 = 2.727y Ú 0

z Ú -10x Ú 0z Ú 0x Ú 0, y Ú 0

 y = 5 - 1.8333z

 x = 5 + 0.5z

 y + 1.8333z = 5

 x - 0.5z = 5

c1 0 -0.5 5

0 1 1.8333 5
d

348 CHAPTER 8 Linear Algebraic Equations

EXAMPLE 8.3–5 Traf c Engineering

A traf c engineer wants to know if measurements of traf c ow entering and leaving a
road network are suf cient to predict the traf c ow on each street in the network. For
example, consider the network of one-way streets shown in Figure 8.3–2. The numbers
shown are the measured traf c ows in vehicles per hour . Assume that no vehicles park
anywhere within the network. If possible, calculate the traf c ows f1, f2, f3, and f4. If this
is not possible, suggest how to obtain the necessary information.

■ Solution
The ow into intersection 1 must equal the ow out of the intersection. This gives

100 + 200 = f1 + f4

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 348

www.EBooksWorld.ir

8.3 Underdetermined Systems 349

1 2

34

f1

f2f4

f3

200 300

200

400

600500

300

100

Figure 8.3–2 A network of one-way streets.

Similarly, for the other three intersections, we have

Putting these in the matrix form Ax � b, we obtain

First, check the ranks of A and [A b], using the MATLAB rank function. Both
have a rank of 3, which is 1 less than the number of unknowns, so we can determine
three of the unknowns in terms of the fourth. Thus we cannot determine all the traf c
 ows based on the given measurements.

Using the rref([A b]) function produces the reduced augmented matrix

which corresponds to the reduced system

f3 + f4 = 800

f2 - f4 = 200

f1 + f4 = 300

≥
1 0 0 1 300

0 1 0 -1 200

0 0 1 1 800

0 0 0 0 0

¥

A = ≥
1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

¥ b = ≥
300

500

1000

800

¥ x = ≥
f1

f2

f3

f4

¥

f3 + f4 = 300 + 500

600 + 400 = f2 + f3

f1 + f2 = 300 + 200

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 349

www.EBooksWorld.ir

These can be solved easily as follows: f1 � 300 � f4, f2 � 200 � f4, and f3 � 800 � f4. If
we could measure the ow on one of the internal roads, say f4, then we could compute the
other ows. So we recommend that the engineer arrange to have this additional measure-
ment made.

Test Your Understanding

T8.3–2 Use the rref, pinv, and the left division methods to solve the follow-
ing set.

(Answer: There are an in nite number of solutions. The result obtained
with the rref function is x1 � 0.2558 � 0.3721x3, x2 � 1.0465 �
0.9767x3, x3 arbitrary. The pinv function gives x1 � 0.0571, x2 =
0.5249, x3 � 0.5340. The left division method generates an error
message.)

T8.3–3 Use the rref, pinv, and left division methods to solve the
following set.

(Answer: There are an in nite number of solutions. The result obtained
with the rref function is x1 � 0.2727x3 � 5.2727, x2 � �1.3636x3 �
2.2626, x3 arbitrary. The solution obtained with left division is x1 �
4.8000, x2 � 0, x3 � �1.7333. The one obtained with the pseudoinverse
method is x1 � 4.8394, x2 � �0.1972, x3 � �1.5887.)

8.4 Overdetermined Systems
An overdetermined system is a set of equations that has more independent equa-
tions than unknowns. Some overdetermined systems have exact solutions, and
they can be obtained with the left division method x = A\b. For other overde-
termined systems, no exact solution exists; in some of these cases, the left divi-
sion method does not yield an answer, while in other cases the left division
method gives an answer that satis es the equation set only in a “least-squares”
sense. We will show what this means in the next example. When MATLAB gives
an answer to an overdetermined set, it does not tell us whether the answer is the

x1 - 2x2 - 3x3 = 10

3x1 + 5x2 + 6x3 = 4

5x1 - 6x2 - 4x3 = -5

8x1 - x2 + 2x3 = 1

3x1 + 5x2 + 6x3 = 6

350 CHAPTER 8 Linear Algebraic Equations

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 350

www.EBooksWorld.ir

exact solution. We must determine this information ourselves, and we will now
show how to do this.

The Least-Squares Method

Suppose we have the following three data points, and we want to nd the straight line
y � c1x � c2 that best ts the data in some sense.

x y
0 2
5 6

10 11

(a) Find the coef cients c1 and c2 using the least-squares criterion. (b) Find the coef -
cients by using the left division method to solve the three equations (one for each data
point) for the two unknowns c1 and c2. Compare with the answer from part (a).

■ Solution
(a) Because two points de ne a straight line, unless we are extremely lucky , our three data
points will not lie on the same straight line. A common criterion for obtaining the straight
line that best ts the data is the least-squares criterion. According to this criterion, the line
that minimizes J, the sum of the squares of the vertical differences between the line and
the data points, is the “best” t. Here J is

If you are familiar with calculus, you know that the values of c1 and c2 that minimize J
are found by setting the partial derivatives �J/�c1 and �J/�c2 equal to zero.

The solution is c1 � 0.9 and c2 � 11/6. The best straight line in the least-squares sense is
y � 0.9x � 11/6.

(b) Evaluating the equation y � c1x � c2 at each data point gives the following
three equations, which are overdetermined because there are more equations than
unknowns.

(8.4–1)

(8.4–2)

(8.4–3) 10c1 + c2 = 11

 5c1 + c2 = 6

 0c1 + c2 = 2

�J

�c2
= 30c1 + 6c2 - 38 = 0

� J

�c1
= 250c1 + 30c2 - 280 = 0

J = a
i = 3

i = 1
(c1xi + c2 - yi)

2
= (0c1 + c2 - 2)2

+ (5c1 + c2 - 6)2
+ (10c1 + c2 - 11)2

8.4 Overdetermined Systems 351

EXAMPLE 8.4–1

LEAST-SQUARES
METHOD

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 351

www.EBooksWorld.ir

These equations can be written in the matrix form Ax � b as follows.

where

To use left division, the MATLAB session is

>>A = [0,1;5,1;10,1];
>>b = [2;6;11];
>>rank(A)
ans =
2

>>rank([A, b])
ans =
3

>>x = A\b
x =

0.9000
1.8333

>>A*x
ans =
1.833
6.333
10.8333

This result for x agrees with the least-squares solution obtained previously: c1 � 0.9,
c2 � 11/6 � 1.8333. The rank of A is 2, but the rank of [A b] is 3, so no exact solution
exists for c1 and c2. Note that A*x gives the y values generated by the line y � 0.9x �

1.8333 at the x data values x � 0, 5, 10. These are different from the right-hand sides of
the original three equations (8.4–1) through (8.4–3). This is not unexpected, because the
least-squares solution is not an exact solution of the equations.

Some overdetermined systems have an exact solution. The left division
method sometimes gives an answer for overdetermined systems, but it does not
indicate whether the answer is the exact solution. We need to check the ranks of
A and [A b] to know if the answer is the exact solution. The next example illus-
trates this situation.

[A b] = J 0 1 2

5 1 6

10 1 11
K

Ax = J
0 1

5 0

10 1 K c
c1

c2
d = J 2

6

11
K = b

352 CHAPTER 8 Linear Algebraic Equations

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 352

www.EBooksWorld.ir

An Overdetermined Set

Solve the following equations and discuss the solution for two cases: c � 9 and c � 10.

■ Solution
The coef cient matrix and the augmented matrix for this problem are

Making the computations in MATLAB, we nd that for c � 9, rank (A) � rank([A b]) � 2.
Thus the system has a solution, and because the number of unknowns (2) equals the rank
of A, there is a unique solution. The left division method A\b gives this solution, which is
x1 � �1 and x2 � 2.

For c � 10 we nd that rank(A) � 2, but rank([A b]) � 3. Because rank(A) �

rank([Ab]), there is no solution. However, the left division method A\b gives x1 � �1.3846
and x2 � 2.2692, which is not an exact solution! This can be veri ed by substituting these
values into the original equation set. This answer is the solution to the equation set in a
least-squares sense. That is, these values are the values of x1 and x2 that minimize J, the sum
of the squares of the differences between the equations’ left- and right-hand sides.

To interpret MATLAB answers correctly for an overdetermined system, rst
check the ranks of A and [Ab] to see if an exact solution exists; if one does not exist,
then we know that the left division answer is a least-squares solution. In Section 8.5
we develop a general-purpose program that checks the ranks and solves a general
set of linear equations.

Test Your Understanding

T8.4–1 Solve the following set.

(Answer: There is a unique solution: x1 � 2.2143, x2 � 0.0714, which is
given by the left division method.)

 70x1 - 28x2 = 153

 3x1 + 5x2 = 7

 x1 - 3x2 = 2

J = (x1 + x2 - 1)2
+ (x1 + 2x2 - 3)2

+ (x1 + 5x2 - 10)2

A = J
1 1

1 2

1 5 K [A b] = J
1 1 1

1 2 3

1 5 c K

 x1 + 5x2 = c

 x1 + 2x2 = 3

 x1 + x2 = 1

8.4 Overdetermined Systems 353

EXAMPLE 8.4–2

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 353

www.EBooksWorld.ir

T8.4–2 Show why there is no solution to the following set.

8.5 A General Solution Program
In this chapter you saw that the set of linear algebraic equations Ax � b with m
equations and n unknowns has solutions if and only if (1) rank[A] � rank[A b].
Let r � rank[A]. If condition (1) is satis ed and if r � n, then the solution is
unique. If condition (1) is satis ed but r � n, an in nite number of solutions
exist; in addition, r unknown variables can be expressed as linear combinations
of the other n � r unknown variables, whose values are arbitrary. In this case we
can use the rref command to nd the relations between the variables. The pseu-
docode in Table 8.5–1 can be used to outline an equation solver program before
writing it.

A condensed owchart is shown in Figure 8.5–1. From this chart or the pseu-
docode, we can develop the script le shown in Table 8.5–2. The program uses
the given arrays A and b to check the rank conditions; the left division method to
obtain the solution, if one exists; and the rref method if there are an in nite
number of solutions. Note that the number of unknowns equals the number of
columns in A, which is given by size_A (2), the second element in size_A.
Note also that the rank of A cannot exceed the number of columns in A.

Test Your Understanding

T8.5–1 Type in the script le lineq.m given in Table 8.5–2 and run it for the
following cases. Hand-check the answers.
a. A = [1,-1;1,1], b = [3;5]
b. A = [1,-1;2,-2], b = [3;6]
c. A = [1,-1;2,-2], b = [3;5]

 5x1 - 2x2 = -4

 3x1 + 5x2 = 7

 x1 - 3x2 = 2

354 CHAPTER 8 Linear Algebraic Equations

Table 8.5–1 Pseudocode for the linear equation solver

If the rank of A equals the rank of [A b], then
determine whether the rank of A equals the number of unknowns. If so, there is a
unique solution, which can be computed using left division. Display the results
and stop.
Otherwise, there are an in nite number of solutions, which can be found from
the augmented matrix. Display the results and stop.

Otherwise (if the rank of A does not equal the rank of [A b]), there are no solutions.
Display this message and stop.

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 354

www.EBooksWorld.ir

Table 8.5–2 MATLAB program to solve linear equations

% Script le lineq.m
% Solves the set Ax = b, given A and b.
% Check the ranks of A and [A b].
if rank(A) == rank([A b])

% The ranks are equal.
size_A = size(A);
% Does the rank of A equal the number of unknowns?
if rank(A) == size_A(2)

% Yes. Rank of A equals the number of unknowns.
disp(‘There is a unique solution, which is:’)
x = A\b % Solve using left division.

else
% Rank of A does not equal the number of unknowns.
disp(‘There is an in nite number of solutions.’)
disp(‘The augmented matrix of the reduced system is:’)
rref([A b]) % Compute the augmented matrix.

end
else

% The ranks of A and [A b] are not equal.
disp(‘There are no solutions.’)

end

rank (A) = rank ([A b])
?

No
rank (A) = # of unknowns

?

Unique solution exists.
Compute it with A\b.

Infinite # of solutions exist.
Compute augmented matrix
using rref command.

Display answer. Display answer.

Display message:
No solutions exist.

No

Yes

Yes

Stop

A, b

Figure 8.5–1 Flowchart illustrating a program to solve linear equations.

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 355

www.EBooksWorld.ir

356 CHAPTER 8 Linear Algebraic Equations

8.6 Summary
If the number of equations in the set equals the number of unknown variables,
MATLAB provides two ways of solving the equation set Ax � b: the matrix
inverse method, x = inv(A)*b, and the matrix left division method, x = A\b.
If MATLAB does not generate an error message when you use one of these
methods, then the set has a unique solution. You can always check the solution
for x by typing Ax to see if the result is the same as b. If you receive an error
message, the set is underdetermined (even though it may have an equal number
of equations and unknowns), and either it does not have a solution, or it has more
than one solution.

For underdetermined sets, MATLAB provides three ways of dealing with
the equation set Ax � b (note that the matrix inverse method will never work
with such sets):

1. The matrix left division method (which gives one speci c solution, but not
the general solution).

2. The pseudoinverse method. Solve for x by typing x = pinv(A)*b. This
gives the minimum norm solution.

3. The reduced row echelon form (RREF) method. This method uses the
MATLAB command rref to obtain a general solution for some of the un-
knowns in terms of the other unknowns.

The four methods are summarized in Table 8.6–1. You should be able to de-
termine whether a unique solution, an in nite number of solutions, or no solution
exists. You can do this by applying the existence and uniqueness test given on
page 335.

Some overdetermined systems have exact solutions, and they can be obtained
with the left division method, but the method does not indicate that the solution is
exact. To determine this, rst check the ranks of A and [A b] to see if a solution
exists; if one does not exist, then we know that the left division solution is a least-
squares answer.

Table 8.6–1 Matrix functions and commands for solving linear equations

Function Description

det(A) Computes the determinant of the array A.
inv(A) Computes the inverse of the matrix A.
pinv(A) Computes the pseudoinverse of the matrix A.
rank(A) Computes the rank of the matrix A.
rref([A b]) Computes the reduced row echelon form corresponding to the

augmented matrix [A b].
x � inv(A)*b Solves the matrix equation Ax � b using the matrix inverse.
x � A\b Solves the matrix equation Ax � b using left division.

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 356

www.EBooksWorld.ir

Problems
You can nd the answers to problems marked with an asterisk at the end of the text.

Section 8.1
1. Solve the following problems using matrix inversion. Check your solutions

by computing A�1A.
a.

b.

c.

d.

2.* a. Solve the following matrix equation for the matrix C.

b. Evaluate the solution obtained in part a for the case

A = c 7 9

-2 4
d B = c4 -3

7 6
d

A(BC + A) � B

 -5x + 2y + 6x3 = 16

 12x + 5y - 7x3 = -26

 6x - 3y + 4x3 = 41

6x + 2y + 3x3 = 22

 -3x + 4y + 7x3 = -3

12x - 5y = 11

-2x + 7y = 10

-8x - 5y = 4

3x - 9y = 7

2x + y = 5

Problems 357

Augmented matrix, 335
Euclidean norm, 343
Gauss elimination, 335
Homogeneous equations, 335
Ill-conditioned equations, 333
Least-squares method, 351
Left division method, 335
Matrix inverse, 332
Matrix rank, 334

Minimum norm solution, 342
Overdetermined system, 350
Pseudoinverse method, 342
Reduced row echelon form, 345
Singular matrix, 333
Statically indeterminate, 343
Subdeterminant, 335
Underdetermined system, 341

Key Terms with Page References

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 357

www.EBooksWorld.ir

3. Use MATLAB to solve the following problems.
a.

b.

c.

d.

Section 8.2
4. The circuit shown in Figure P4 has ve resistances and one applied voltage.

Kirchhoff’s voltage law applied to each loop in the circuit shown gives

 -R4i4 - R3i3 + R5i5 = 0

 -R2i2 + R1i1 + R3i3 = 0

 � - R2i2 - R4i4 = 0

3x1 - 7x2 - 2x3 + x4 = -75

-x1 + 4x2 - x3 + 3x4 = 30

2x1 - x2 + x3 - 2x4 = 7

x1 + 5x2 - x3 + 6x4 = 19

-2x + y = -5.00001

-2x + y = -5

-8x + 4y = 12

-2x + y = 3

-2x + y = 3

-2x + y = -5

358 CHAPTER 8 Linear Algebraic Equations

+

–

v

R1R 2

R 3

R5

R 4

i 1

i
2

i 3i 4

i
5

i 6

Figure P4

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 358

www.EBooksWorld.ir

Conservation of charge applied at each node in the circuit gives

a. Write a MATLAB script le that uses given values of the applied voltage
and the values of the ve resistances and solves for the six currents.

b. Use the program developed in part a to nd the currents for the case
where R1 � 1, R2 � 5, R3 � 2, R4 � 10, R5 � 5 k	, and � � 100 V.
(1 k	 � 1000 	.)

5.* a. Use MATLAB to solve the following equations for x, y, and z as
functions of the parameter c.

b. Plot the solutions for x, y, and z versus c on the same plot, for
�10 c 10.

6. Fluid ows in pipe networks can be analyzed in a manner similar to that
used for electric resistance networks. Figure P6 shows a network with
three pipes. The volume ow rates in the pipes are q1, q2, and q3. The
pressures at the pipe ends are pa, pb, and pc. The pressure at the junction is
p1. Under certain conditions, the pressure– ow rate relation in a pipe has
the same form as the voltage-current relation in a resistor. Thus, for the
three pipes, we have

where the Ri are the pipe resistances. From conservation of mass,
q1 � q2 � q3.
a. Set up these equations in a matrix form Ax � b suitable for solving for

the three ow rates q1, q2, and q3 and the pressure p1, given the values
of pressures pa, pb, and pc and the values of resistances R1, R2, and R3.
Find the expressions for A and b.

 q3 =

1

R3
(p1 - pc)

 q2 =

1

R2
(p1 - pb)

 q1 =

1

R1
(pa - p1)

7x + 3y - 5z = 10c

 6x + 3y + z = 13c

 x - 5y - 2z = 11c

�

 i4 + i5 = i6

 i1 = i3 + i5

 i2 + i3 = i4

 i6 = i1 + i2

Problems 359

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 359

www.EBooksWorld.ir

b. Use MATLAB to solve the matrix equations obtained in part a for the
case where pa � 4320 lb/ft2, pb � 3600 lb/ft2, and pc � 2880 lb/ft2.
These correspond to 30, 25, and 20 psi, respectively (1 psi � 1 lb/in2,
and atmospheric pressure is 14.7 psi). Use the resistance values R1 �
10 000, R2 � 14 000 lb sec/ft5. These values correspond to fuel oil
 owing through pipes 2 ft long, with 2- and 1.4-in. diameters, respec-
tively. The units of the answers are ft3/sec for the ow rates and lb/ft 2

for pressure.

360 CHAPTER 8 Linear Algebraic Equations

pa

pb

pc

p1

R 1

R 2

R 3

q1

q3

q2

(a)

R 1

R 3

R 2

pa

pb

pc

(b)

p1

Figure P6

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 360

www.EBooksWorld.ir

7. Figure P7 illustrates a robot arm that has two “links” connected by two
“joints”—a shoulder or base joint and an elbow joint. There is a motor at
each joint. The joint angles are �1 and �2. The (x, y) coordinates of the
hand at the end of the arm are given by

where L1 and L2 are the lengths of the links.
Polynomials are used for controlling the motion of robots. If we start the
arm from rest with zero velocity and acceleration, the following
polynomials are used to generate commands to be sent to the joint
motor controllers

 �2(t) = �2(0) + b1t
3

+ b2t
4

+ b3t
5

 �1(t) = �1(0) + a1t
3

+ a2t
4

+ a3t
5

 y = L1 sin �1 + L2 sin (�1 + �2)

 x = L1 cos �1 + L2 cos (�1 + �2)

Problems 361

(a)

x

y

B ase Motor

Elbow Motor

Hand

L2

L1

θ2

θ1

Start

iF nish
Path of
Hand

(b)

Figure P7

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 361

www.EBooksWorld.ir

where �1(0) and �2(0) are the starting values at time t � 0. The angles
�1(tf) and �2(tf) are the joint angles corresponding to the desired destina-
tion of the arm at time tf . The values of �1(0), �2(0), �1(tf), and �2(tf) can
be found from trigonometry, if the starting and ending (x, y) coordinates
of the hand are speci ed.
a. Set up a matrix equation to be solved for the coef cients a1, a2, and a3,

given values for �1(0), �1(tf), and tf . Obtain a similar equation for the
coef cients b1, b2, and b3.

b. Use MATLAB to solve for the polynomial coef cients given the values
tf � 2 sec, �1(0) � �19�, �2(0) � 44�, �1(tf) � 43�, and �2(tf) � 151�.
(These values correspond to a starting hand location of x � 6.5, y � 0 ft
and a destination location of x � 0, y � 2 ft for L1 � 4 and L2 � 3 ft.)

c. Use the results of part b to plot the path of the hand.

8.* Engineers must be able to predict the rate of heat loss through a building
wall to determine the heating system requirements. They do this by using
the concept of thermal resistance R, which relates the heat ow rate q
through a material to the temperature difference �T across the material:
q � �T/R. This relation is like the voltage-current relation for an electric
resistor: i � v/R. So the heat ow rate plays the role of electric current, and
the temperature difference plays the role of the voltage difference. The
SI unit for q is the watt (W), which is 1 joule/second (J/s).
The wall shown in Figure P8 consists of four layers: an inner layer of
plaster/lathe 10 mm thick, a layer of ber glass insulation 125 mm thick, a

362 CHAPTER 8 Linear Algebraic Equations

R1
R3R2

Ti

(a)

(b)

R4

T1 T2 T3 To
Ti

T1 T2 T3 To

Inside
Air

Lathe Insulation Wood Brick

Outside
Air

Figure P8

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 362

www.EBooksWorld.ir

layer of wood 60 mm thick, and an outer layer of brick 50 mm thick. If
we assume that the inner and outer temperatures Ti and To have remained
constant for some time, then the heat energy stored in the layers is
constant, and thus the heat ow rate through each layer is the same.
Applying conservation of energy gives the following equations.

The thermal resistance of a solid material is given by R � D/k, where D is
the material thickness and k is the material’s thermal conductivity. For the
given materials, the resistances for a wall area of 1 m2 are R1 � 0.036,
R2 � 4.01, R3 � 0.408, and R4 � 0.038 K/W.
Suppose that Ti � 20�C and To � �10�C. Find the other three temperatures
and the heat loss rate q, in watts. Compute the heat loss rate if the wall’s area
is 10 m2.

9. The concept of thermal resistance described in Problem 8 can be used to nd
the temperature distribution in the at square plate shown in Figure P9(a).

q =

1

R1
 (Ti - T1) =

1

R2
 (T1 - T2) =

1

R3
 (T2 - T3) =

1

R4
 (T3 - To)

Problems 363

R

(a)

(b)

T3 Tb

T3 Tb

Ta

R

R

R R

T 1

R

T a

T2T1

T4

T4

T2

Figure P9

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 363

www.EBooksWorld.ir

The plate’s edges are insulated so that no heat can escape, except at two
points where the edge temperature is heated to Ta and Tb, respectively.
The temperature varies through the plate, so no single point can describe
the plate’s temperature. One way to estimate the temperature distribution
is to imagine that the plate consists of four subsquares and to compute
the temperature in each subsquare. Let R be the thermal resistance of the
material between the centers of adjacent subsquares. Then we can think
of the problem as a network of electric resistors, as shown in part (b) of
the gure. Let qij be the heat ow rate between the points whose temper-
atures are Ti and Tj. If Ta and Tb remain constant for some time, then the
heat energy stored in each subsquare is constant also, and the heat ow
rate between each subsquare is constant. Under these conditions, conser-
vation of energy says that the heat ow into a subsquare equals the heat
 ow out. Applying this principle to each subsquare gives the following
equations.

Substituting q � (Ti � Tj)/R, we nd that R can be canceled out of every
equation, and they can be rearranged as follows:

These equations tell us that the temperature of each subsquare is the aver-
age of the temperatures in the adjacent subsquares!

Solve these equations for the case where Ta � 150�C and Tb � 20�C.

10. Use the averaging principle developed in Problem 9 to nd the tempera-
ture distribution of the plate shown in Figure P10, using the 3 � 3 grid
and the given values Ta � 150�C and Tb � 20�C.

 T4 =

1

3
 (T2 + T3 + T5)

 T3 =

1

2
 (T1 + T4)

 T2 =

1

2
 (T1 + T4)

 T1 =

1

3
 (Ta + T2 + T3)

 q34 + q24 = q4b

 q13 = q34

 q12 = q24

 qa1 = q12 + q13

364 CHAPTER 8 Linear Algebraic Equations

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 364

www.EBooksWorld.ir

Problems 365

Section 8.3
11.* Solve the following equations:

x � 5y � z � �2

12. The following table shows how many hours in process reactors A and B
are required to produce 1 ton each of chemical products 1, 2, and 3. The
two reactors are available for 35 and 40 hrs per week, respectively.

3x + 2y - 4z = 12

7x + 9y - 9z = 22

Hours Product 1 Product 2 Product 3

Reactor A 6 2 10
Reactor B 3 5 2

T 4 T 6

T a T 2T 1

T 8

T 3

T 5

T 9T 7 T b

Figure P10

Let x, y, and z be the number of tons each of products 1, 2, and 3 that can
be produced in one week.
a. Use the data in the table to write two equations in terms of x, y, and z.

Determine whether a unique solution exists. If not, use MATLAB to
 nd the relations between x, y, and z.

b. Note that negative values x, y, and z have no meaning here. Find the
allowable ranges for x, y, and z.

c. Suppose the pro ts for each product are $200, $300, and $100 for
products 1, 2, and 3, respectively. Find the values of x, y, and z to
maximize the pro t.

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 365

www.EBooksWorld.ir

d. Suppose the pro ts for each product are $200, $500, and $100 for
products 1, 2, and 3, respectively. Find the values of x, y, and z to
maximize the pro t.

13. See Figure P13. Assume that no vehicles stop within the network. A
traf c engineer wants to know if the traf c ows f1, f2, . . . , f7 (in vehicles
per hour) can be computed given the measured ows shown in the gure.
If not, then determine how many more traf c sensors need to be installed,
and obtain the expressions for the other traf c ows in terms of the
measured quantities.

Section 8.4
14.* Use MATLAB to solve the following problem:

15.* Use MATLAB to solve the following problem:

4x - 6y = 10

x + 5y = 18

x - 3y = 2

4x - 6y = 20

x + 5y = 18

x - 3y = 2

366 CHAPTER 8 Linear Algebraic Equations

100

300

100 200 400

200

500

100300200

1 2 3

654

f 1 f 2

f 5f 4f 3

f 6 f 7

Figure P13

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 366

www.EBooksWorld.ir

16. a. Use MATLAB to nd the coef cients of the quadratic polynomial
y � ax2 � bx � c that passes through the three points (x, y) � (1, 4),
(4, 73), (5, 120).

b. Use MATLAB to nd the coef cients of the cubic polynomial y �
ax3 � bx2 � cx � d that passes through the three points given in part a.

17. Use the MATLAB program given in Table 8.5–2 to solve the following
problems:

a. Problem 3d
b. Problem 11
c. Problem 14
d. Problem 15

Problems 367

pal34870_ch08_330-367.qxd 1/5/10 10:15 PM Page 367

www.EBooksWorld.ir

During the Great Depression, many public works projects that improved
the nation’s infrastructure were undertaken to stimulate the economy and
provide employment. These projects included highways, bridges, water

supply systems, sewer systems, and electrical power distribution networks. Fol-
lowing World War II another burst of such activity culminated in the construction
of the interstate highway system. As we enter the 21st century, much of the in-
frastructure is 30 to 70 years old and is literally crumbling or not up to date. One
survey showed that more than 25 percent of the nation’s bridges are substandard.
These need to be repaired or replaced.

Rebuilding the infrastructure requires engineering methods different from
those in the past because labor and material costs are now higher and environmen-
tal and social issues have greater importance than before. Infrastructure engineers
must take advantage of new materials, inspection technology, construction tech-
niques, and labor-saving machines.

Also, some infrastructure components, such as communications networks,
need to be replaced because they are outdated and do not have suf cient capacity
or ability to take advantage of new technology. An example is the information
infrastructure, which includes physical facilities to transmit, store, process, and
display voice, data, and images. Better communications and computer networking
technology will be needed for such improvements. Many of the MATLAB tool-
boxes provide advanced support for such work, including the Financial, Commu-
nications, Image Processing, Signal Processing, PDE, and Wavelet toolboxes. ■

© Donovan Reese/Getty Images/RF

Engineering in the
21st Century. . .

Rebuilding the Infrastructure

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 368

www.EBooksWorld.ir

369

C H A P T E R 9

Numerical Methods
for Calculus and
Differential Equations
OUTLINE
9.1 Numerical Integration

9.2 Numerical Differentiation

9.3 First-Order Differential Equations

9.4 Higher-Order Differential Equations

9.5 Special Methods for Linear Equations

9.6 Summary

Problems

This chapter covers numerical methods for computing integrals and derivatives
and for solving ordinary differential equations. Some integrals cannot be evalu-
ated analytically, and we need to compute them numerically with an approximate
method (Section 9.1). In addition, it is often necessary to use data to estimate rates
of change, and this requires a numerical estimate of the derivative (Section 9.2).
Finally, many differential equations cannot be solved analytically, and so we
must be able to solve them by using appropriate numerical techniques. Section 9.3
covers rst-order dif ferential equations, and Section 9.4 extends the methods to
higher-order equations. More powerful methods are available for linear equations.
Section 9.5 treats these methods.

When you have nished this chapter , you should be able to

■ Use MATLAB to numerically evaluate integrals.
■ Use numerical methods with MATLAB to estimate derivatives.
■ Use the MATLAB numerical differential equation solvers to obtain solutions.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 369

www.EBooksWorld.ir

9.1 Numerical Integration
The integral of a function f (x) for a � x � b can be interpreted as the area be-
tween the f (x) curve and the x axis, bounded by the limits x � a and x � b. If we
denote this area by A, then we can write A as

(9.1–1)

An integral is called a de nite integral if it has speci ed limits of integration.
Inde nite integrals have no speci ed limits. Improper integrals can have in nite
values, depending on their integration limits. For example, the following integral
can be found in most integral tables:

However, it is an improper integral if the integration limits include the point x � 1.
So, even though an integral can be found in an integral table, you should exam-
ine the integrand to check for singularities, which are points at which the inte-
grand is unde ned. The same warning applies when you are using numerical
methods to evaluate integrals.

Trapezoidal Integration
The simplest way to nd the area under a curve is to split the area into rectangles
(Figure 9.1–1a). If the widths of the rectangles are small enough, the sum of their
areas gives the approximate value of the integral. A more sophisticated method is
to use trapezoidal elements (Figure 9.1–1b). Each trapezoid is called a panel. It
is not necessary to use panels of the same width; to increase the method’s

L

1

x - 1
 dx = ln �x - 1�

A =

L

b

a
f (x) dx

370 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

SINGULARITIES

DEFINITE
INTEGRAL

INDEFINITE
INTEGRAL

IMPROPER
INTEGRAL

(a)

Rectangular

a b
x

y

y = f(x)

(b)

Trapezoidal

a b
x

y

y = f(x)

Figure 9.1–1 Illustration of (a) rectangular and (b) trapezoidal numerical integration.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 370

www.EBooksWorld.ir

accuracy, you can use narrow panels where the function is changing rapidly.
When the widths are adjusted according to the function’s behavior, the method is
said to be adaptive. MATLAB implements trapezoidal integration with the
trapz function. Its syntax is trapz(x, y), where the array y contains the
function values at the points contained in the array x. If you want the integral of
a single function, then y is a vector. To integrate more than one function, place
their values in a matrix y; trapz(x, y) will compute the integral of each
column of y.

You cannot directly specify a function to integrate with the trapz function;
you must rst compute and store the function’ s values ahead of time in an array.
Later we will discuss two other integration functions, the quad and quadl
functions, that can accept functions directly. However, they cannot handle arrays
of values. So the functions complement each other. The trapz function is
summarized in Table 9.1–1.

As a simple example of the use of the trapz function, let us compute the
integral

(9.1–2)

whose exact answer is A � 2. To investigate the effect of panel width, let us rst
use 10 panels with equal widths of ��10. The script le is

x = linspace(0,pi,10);
y = sin(x);
A = trapz(x,y)

A =

L

�

0
sin x dx

9.1 Numerical Integration 371

Table 9.1–1 Basic syntax of numerical integration functions

Command Description

dblquad(fun,a,b,c,d) Computes the double integral of the function f (x, y) between the
limits a � x � b and c � y � d. The input fun speci es the func-
tion that computes the integrand. It must accept a vector argument x
and scalar y, and it must return a vector result.

polyint(p,C) Computes the integral of the polynomial p using an optional
user-speci ed constant of integration C.

quad(fun,a,b) Uses an adaptive Simpson rule to compute the integral of the function
fun between the limits a and b. The input fun, which represents the
integrand f (x), is a function handle for the integrand function. It must
accept a vector argument x and return the vector result y.

quadl(fun,a,b) Uses Lobatto integration. The syntax is identical to quad.
trapz(x,y) Uses trapezoidal integration to compute the integral of y with

respect to x, where the array y contains the function values at the
points contained in the array x.

triplequad(fun,a,b,c,d,e,f) Computes the triple integral of the function f (x, y, z) between the
limits a � x � b, c � y � d, and e � y � f. The input fun
speci es the function that computes the integrand. It must accept a
vector argument x, scalar y, and scalar z, and it must return a vector
result.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 371

www.EBooksWorld.ir

The answer is A � 1.9797, which gives a relative error of
100(2 � 1.9797)�2 � 1 percent. Now try 100 panels of equal width; replace the
array x with x = linspace(0,pi,100). The answer is A � 1.9998 for a
relative error of 100(2 � 1.9998)�2 � 0.01 percent. If we examine the plot of the
integrand sin x, we see that the function is changing faster near x � 0 and x � �
than near x � ��2. Thus we could achieve the same accuracy by using fewer
panels if narrower panels are used near x � 0 and x � �.

We normally use the trapz function when the integrand is given as a table
of values. Otherwise, if the integrand is given as a function, use the quad or
quadl functions, to be introduced shortly.

372 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

EXAMPLE 9.1–1 Velocity from an Accelerometer

An accelerometer is used in aircraft, rockets, and other vehicles to estimate the vehicle’s
velocity and displacement. The accelerometer integrates the acceleration signal to pro-
duce an estimate of the velocity, and it integrates the velocity estimate to produce an
estimate of displacement. Suppose the vehicle starts from rest at time t � 0, and its mea-
sured acceleration is given in the following table.

Time (s) 0 1 2 3 4 5 6 7 8 9 10

Acceleration (m/s2) 0 2 4 7 11 17 24 32 41 48 51

(a) Estimate the velocity � after 10 s.
(b) Estimate the velocity at times t � 1, 2, . . . , 10 s.

■ Solution
(a) The initial velocity is zero, so � (0) � 0. The relation between the velocity and accel-
eration a(t) is

The script le is shown below .

t = 0:10;
a = [0,2,4,7,11,17,24,32,41,48,51];
v10 = trapz(t,a)

The answer for the velocity after 10 s is v10, and it is 211.5 m/s.
(b) The following script le uses the fact that the velocity can be expressed as

where � (t1) � 0.

t = 0:10;
a = [0,2,4,7,11,17,24,32,41,48,51];

�(tk + 1) =

L

tk + 1

tk

a(t) dt + �(tk) k = 1, 2, . . . , 10

�(10) =

L

10

0
a(t) dt + �(0) =

L

10

0
a(t) dt

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 372

www.EBooksWorld.ir

v(1) = 0;
for k = 1:10

v(k+1) = trapz(t(k:k+1), a(k:k+1))+v(k);
end
disp([t’,v’])

The answers are given in the following table.

9.1 Numerical Integration 373

Time (s) 0 1 2 3 4 5 6 7 8 9 10

Velocity (m/s) 0 1 4 9.5 18.5 32.5 53 81 117 162 211.5

Test Your Understanding

T9.1–1 Modify the script le given in part (b) of Example 9.1–1 to estimate the
displacement at times t � 1, 2, . . . , 10 s. (Partial answer: The displace-
ment after 10 s is 584.25 m.)

Quadrature Functions
Another approach to numerical integration is Simpson’s rule, which divides the in-
tegration range b � a into an even number of sections and uses a different quadratic
function to represent the integrand for each panel. A quadratic function has three
parameters, and Simpson’s rule computes these parameters by requiring that the
quadratic pass through the function’s three points corresponding to the two adjacent
panels. To obtain greater accuracy, we can use polynomials of degree higher than 2.

The MATLAB function quad implements an adaptive version of Simpson’s
rule. The quadl function is based on an adaptive Lobatto integration method,
where the letter “l” in quadl stands for Lobatto. The term quad is an abbrevia-
tion of quadrature, which is an old term for the process of measuring areas. Some
writers distinguish between the terms quadrature and integration and reserve
integration to mean numerical integration of ordinary differential equations. We
will not make that distinction.

The function quad(fun,a,b) computes the integral of the function fun
between the limits a and b. The input fun, which represents the integrand f (x),
is either a function handle of the integrand function (the preferred method) or the
name of the function as a character string (i.e., placed in single quotes). The func-
tion y � f (x) must accept a vector argument x and must return the vector result y.
The basic syntax of quadl is identical and is summarized in Table 9.1–1.

To illustrate, let us compute the integral given in Equation (9.1–2). The
session consists of one command: A = quad(@sin, 0, pi) or A =
quad(‘sin’, 0, pi). The answer given by MATLAB is A � 2.0000, which is
correct to four decimal places. We use quad1 the same way.

Because the quad and quadl functions call the integrand function using
vector arguments, you must always use array operations when de ning the func-
tion. The following example shows how this is done.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 373

www.EBooksWorld.ir

374 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

EXAMPLE 9.1–2 Evaluation for Fresnel’s Cosine Integral

Some simple-looking integrals cannot be evaluated in closed form. An example is
Fresnel’s cosine integral

(9.1–3)

(a) Demonstrate two ways to compute the integral when the upper limit is
(b) Demonstrate the use of a nested function to compute the more general integral

(9.1–4)

for n � 2 and for n � 3.

Solution
(a) The integrand cos x2 obviously does not contain any singularities that might cause prob-
lems for the integration function. We demonstrate two ways to use the quad function.
1. With a function le: De ne the integrand with a user -de ned function as shown by

the following function le.

function c2 = cossq(x)
c2 = cos(x.^2);

The quad function is called as follows: A = quad(@cossq,0,sqrt(2*pi)).
The result is A � 0.6119.

2. With an anonymous function (anonymous functions are discussed in Section 3.3):
The session is

>>cossq = @(x)cos(x.^2);
>>A = quad(cossq,0,sqrt(2*pi))
A =

0.6119

The two lines can be combined into one as follows:

A = quad(@(x)cos(x.^2),0,sqrt(2*pi))

The advantage of using an anonymous function is that you need not create and save
a function le. However , for complicated integrand functions, using a function le is
preferable.

(b) Because quad requires that the integrand function have only one argument, the
following code will not work.

>>cossq = @(x)cos(x.^n);
>>n = 2;
>>A = quad(cossq,0,sqrt(2*pi))
??? Unde ned function or variable ‘n’.

Instead we will use parameter passing with a nested function (nested functions are dis-
cussed in Section 3.3). First create and save the following function.

A =

L

b

0
cos xn

 dx

b = 12�.

A =

L

b

0
cos x2

 dx

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 374

www.EBooksWorld.ir

function A = integral_n(n)
A = quad(@cossq_n,0,sqrt(2*pi));

% Nested function
function integrand = cossq_n(x)

integrand = cos(x.^n);
end

end

The session for n � 2 and n � 3 is as follows.

>>A = integral_n(2)

A =
0.6119

>>A = integral_n(3)
A =

0.7734

The quad functions have some optional arguments for analyzing and adjusting the algo-
rithm’s ef ciency and accuracy . Type help quad for details.

Test Your Understanding

T9.1–2 Use both the quad and quadl functions to compute the integral

and compare the answers with that obtained from the closed-form
solution, which is A � 0.9163.

Polynomial Integration
MATLAB provides the polyint function to compute the integral of a poly-
nomial. The syntax q = polyint(p, C) returns a polynomial q represent-
ing the integral of polynomial p with a user-speci ed scalar constant of
integration C. The elements of the vector p are the coef cients of the polynomial,
arranged in descending powers. The syntax polyint(p) assumes the constant
of integration C is zero.

For example, the integral of 12x3 � 9x2 � 8x � 5 is obtained from q =
polyint([12,9,8,5], 10). The answer is q = [3, 3, 4, 5, 10],
which corresponds to 3x4 � 3x3 � 4x2 � 5x � 10. Because polynomial integrals
can be obtained from a symbolic formula, the polyint function is not a numerical
integration operation.

A =

L

5

2

1
x

 dx

9.1 Numerical Integration 375

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 375

www.EBooksWorld.ir

Double Integrals
The function dblquad computes double integrals. Consider the integral

The basic syntax is

A = dblquad(fun, a, b, c, d)

where fun is the handle to a user-de ned function that de nes the integrand
f (x, y). The function must accept a vector x and a scalar y, and it must return a
vector result, so the appropriate array operations must be used. The extended
syntax enables the user to adjust the accuracy and to use quadl or a user-de ned
quadrature routine. See the MATLAB Help for details.

For example, using an anonymous function to compute the integral

you type

>>fun = @(x,y)x.*y^2;
>>A = dblquad(fun, 1, 3, 0, 1)

The answer is A � 1.3333.
The preceding integral is carried out over the rectangular region speci ed by

1 � x � 3, 0 � y � 1. Some double integrals are speci ed over a nonrectangu-
lar region. These problems can be handled by a transformation of variables. You
can also use a rectangular region that encloses the nonrectangular region and
force the integrand to be zero outside of the nonrectangular region, by using the
MATLAB relational operators, for example. See Problem 15. The following
example illustrates the former approach.

A =

L

1

0 L

3

1
xy2

 dx dy

A =

L

d

c L

b

a
f (x, y) dx dy

376 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

EXAMPLE 9.1–3 Double Integral over a Nonrectangular Region

Compute the integral

over the region R bounded by the lines

Solution
We must convert the integral into one that is speci ed over a rectangular region. To do
this, let u � x – y and � � 2x � y. Thus, using the Jacobian, we obtain

dx dy = ` �x>�u �x>��

�y>�u �y>��
` du d� = ` 1>3 1>3

-2>3 1>3 ` du d� =

1

3
 du d�

x - y = �1 2x + y = �2

A =

LLR
(x - y)4(2x + y)2 dx dy

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 376

www.EBooksWorld.ir

9.2 Numerical Differentiation 377

Then the region R is speci ed as a rectangular region in terms of u and �. Its boundaries
are given by u � �1 and � � �2, and the integral becomes

and the MATLAB session is

>>fun = @(u,v)u.^4*v^2;
>>A = (1/3)*dblquad(fun, -1, 1, -2, 2)

The answer is A � 0.7111.

Triple Integrals
The function triplequad computes triple integrals. Consider the integral

The basic syntax is

A = triplequad(fun, a, b, c, d, e, f)

where fun is the handle to a user-de ned function that de nes the integrand
f (x, y, z). The function must accept a vector x, a scalar y, and a scalar z, and it
must return a vector result, so the appropriate array operations must be used. The
extended syntax enables the user to adjust the accuracy and to use quadl or a
user-de ned quadrature routine. See the MA TLAB Help for details. For exam-
ple, to compute the integral

You type

>>fun = @(x,y,z)(x*y-y^2)/z;
>>A = triplequad(fun, 1, 3, 0, 2, 1, 2)

The answer is A � 1.8484.

9.2 Numerical Differentiation
The derivative of a function can be interpreted graphically as the slope of the
function. This interpretation leads to various methods for computing the deriva-
tive of a set of data. Figure 9.2–1 shows three data points that represent a
function y(x). Recall that the de nition of the derivative is

(9.2–1)
dy

dx
=

lim
	x:0

	y

	x

A =

L

2

1 L

2

0 L

3

1
a xy - y2

z
b dx dy dz

A =

L

f

e L

d

c L

b

a
 f (x, y, z) dx dy dz

A =

1

3L

2

-2L

1

-1
u4�2du d�

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 377

www.EBooksWorld.ir

The success of numerical differentiation depends heavily on two factors: the
spacing of the data points and the scatter present in the data due to measurement
error. The greater the spacing, the more dif cult it is to estimate the derivative.
We assume here that the spacing between the measurements is regular; that is,
x3 � x2 � x2 � x1 � 	x. Suppose we want to estimate the derivative dy�dx at the
point x2. The correct answer is the slope of the straight line passing through the
point (x2, y2); but we do not have a second point on that line, so we cannot nd
its slope. Therefore, we must estimate the slope by using nearby data points. One
estimate can be obtained from the straight line labeled A in the gure. Its slope is

(9.2–2)

This estimate of the derivative is called the backward difference estimate, and it
is actually a better estimate of the derivative at x � x1 � (x)�2 than at x � x2.
Another estimate can be obtained from the straight line labeled B. Its slope is

(9.2–3)

This estimate is called the forward difference estimate, and it is a better estimate
of the derivative at x � x2 � (x)�2 than at x � x2. Examining the plot, you
might think that the average of these two slopes would provide a better estimate
of the derivative at x � x2, because the average tends to cancel out the effects of
measurement error. The average of mA and mB is

(9.2–4)mC =

mA + mB

2
=

1

2
a y2 - y1

	x
+

y3 - y2

	x
b =

y3 - y1

2 	x

mB =

y3 - y2

x3 - x2
=

y3 - y2

	x

mA =

y2 - y1

x2 - x1
=

y2 - y1

	x

378 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

True Slope

y3

y2

y1 A C

B

x1

Δx Δx

x2 x3

y = f (x)

Figure 9.2–1 Illustration of methods for estimating the
derivative dy/dx.

FORWARD
DIFFERENCE

BACKWARD
DIFFERENCE

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 378

www.EBooksWorld.ir

This is the slope of the line labeled C, which connects the rst and third data
points. This estimate of the derivative is called the central difference estimate.

The diff Function
MATLAB provides the diff function to use for computing derivative esti-
mates. Its syntax is d = diff(x), where x is a vector of values, and the result
is a vector d containing the differences between adjacent elements in x. That is,
if x has n elements, d will have n – 1 elements, where d � [x(2) – x(1), x(3) –
x(2), . . . , x(n) – x(n – 1)]. For example, if x = [5, 7, 12, –20], then
diff(x) returns the vector [2, 5, –32]. The derivative dy�dx can be esti-
mated from diff(y)./diff(x).

The following script le implements the backward dif ference and central
difference methods for arti cial data generated from a sinusoidal signal that is
measured 51 times during one half-period. The measurement error is uniformly
distributed between –0.025 and 0.025.

9.2 Numerical Differentiation 379

CENTRAL
DIFFERENCE

x = 0:pi/50:pi;
n = length(x);
% Data-generation function with +/–0.025 random error.
y = sin(x)+.05*(rand(1,51)–0.5);
% Backward difference estimate of dy/dx.
d1 = diff(y)./diff(x);
subplot(2,1,1)
plot(x(2:n),d1,x(2:n),d1,’o’)
% Central difference estimate of dy/dx.
d2 = (y(3:n)–y(1:n–2))./(x(3:n)–x(1:n–2));
subplot(2,1,2)
plot(x(2:n–1),d2,x(2:n–1),d2,’o’)

Test Your Understanding

T9.2–1 Modify the previous program to use the forward difference method to
estimate the derivative. Plot the results, and compare with the results
from the backward and central difference methods.

Polynomial Derivatives
MATLAB provides the polyder function to compute the derivative of a poly-
nomial. Its syntax has several forms. The basic form is d = polyder(p),
where p is a vector whose elements are the coef cients of the polynomial, ar-
ranged in descending powers. The output d is a vector containing the coef cients
of the derivative polynomial.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 379

www.EBooksWorld.ir

The second syntax form is d = polyder(p1,p2). This form computes
the derivative of the product of the two polynomials p1 and p2. The third form
is [num, den] = polyder(p2,p1). This form computes the derivative of
the quotient p2/p1. The vector of coef cients of the numerator of the derivative
is given by num. The denominator is given by den.

Here are some examples of the use of polyder. Let p1 � 5x � 2 and p2 �
10x2 � 4x – 3. Then

These results can be obtained with the following program.

p1 = [5, 2];p2 = [10, 4, -3];
% Derivative of p2.
der2 = polyder(p2)
% Derivative of p1*p2.
prod = polyder(p1,p2)
% Derivative of p2/p1.
[num, den] = polyder(p2,p1)

The results are der2 = [20, 4], prod = [150, 80, -7], num =
[50, 40, 23], and den = [25, 20, 4].

Because polynomial derivatives can be obtained from a symbolic formula,
the polyder function is not a numerical differentiation operation.

Gradients
The gradient
f of a function f (x, y) is a vector pointing in the direction of in-
creasing values of f (x, y). It is de ned by

where i and j are the unit vectors in the x and y directions, respectively. The con-
cept can be extended to functions of three or more variables.

In MATLAB the gradient of a set of data representing a two-dimensional
function f (x, y) can be computed with the gradient function. Its syntax is
[df_dx, df_dy] = gradient (f, dx, dy), where df_dx and df_dy
represent f� x and f� y and dx and dy are the spacing in the x and y values����

f =

�f

�x
 i +

�f

�y
 j

d(p2>p1)

dx
=

50x2
+ 40x + 23

25x2
+ 20x + 4

d(p1p2)

dx
= 150x2

+ 80x - 7

p1p2 = 50x3
+ 40x2

- 7x - 6

dp2

dx
= 20x + 4

380 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 380

www.EBooksWorld.ir

associated with the numerical values of f. The syntax can be extended to include
functions of three or more variables.

The following program plots the contour plot and the gradient (shown by
arrows) for the function

The plots are shown in Figure 9.2–2. The arrows point in the direction of
increasing f.

[x,y] = meshgrid(–2:0.25:2);
f = x.*exp(–((x–y.^2).^2+y.^2));
dx = x(1,2) – x(1,1); dy = y(2,1) – y(1,1);
[df_dx, df_dy] = gradient(f, dx, dy);
subplot(2,1,1)
contour(x,y,f), xlabel(‘x’), ylabel(‘y’), . . .

f (x, y) = xe-(x2
+ y2)2

+ y2

9.2 Numerical Differentiation 381

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

xy

f

Figure 9.2–2 Gradient, contour, and surface plots of the function f (x, y) = xe-(x2
+ y2)2

+ y2.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 381

www.EBooksWorld.ir

hold on, quiver(x,y,df_dx, df_dy), hold off
subplot(2,1,2)
mesh(x,y,f),xlabel(‘x’),ylabel(‘y’),zlabel(‘f’)

The curvature is given by the second-order derivative expression called the
Laplacian.

It can be computed with the de12 function. See the MATLAB Help for details.
The MATLAB differentiation functions discussed here are summarized in

Table 9.2–1.

9.3 First-Order Differential Equations
In this section, we introduce numerical methods for solving rst-order dif feren-
tial equations. In Section 9.4 we show how to extend the techniques to higher-
order equations.

An ordinary differential equation (ODE) is an equation containing ordinary
derivatives of the dependent variable. An equation containing partial derivatives
with respect to two or more independent variables is a partial differential equa-
tion (PDE). Solution methods for PDEs are an advanced topic, and we will not
treat them in this text. In this chapter we limit ourselves to initial-value problems
(IVPs). These are problems where the ODE must be solved for a given set of

2f (x, y) =

�2f

�x2
+

�2f

�y2

382 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

Table 9.2–1 Numerical differentiation functions

Command Description

d = diff(x) Returns a vector d containing the differ-
ences between adjacent elements in the
vector x.

[df_dx,df_dy] = Computes the gradient of the function
gradient(f,dx,dy) f (x, y), where df_dx and df_dy

represent and , and dx and dy
are the spacing in the x and y values asso-
ciated with the numerical values of f.

d = polyder(p) Returns a vector d containing the
coef cients of the derivative of the
polynomial represented by the vector p.

d = polyder(p1,p2) Returns a vector d containing the
coef cients of the polynomial that is the
derivative of the product of the
polynomials represented by p1 and p2.

[num, den] = polyder(p2,p1) Returns the vectors num and den
containing the coef cients of the
numerator and denominator polynomials
of the derivative of the quotient p2/p1,
where p1 and p2 are polynomials.

�f>�y�f>�x

LAPLACIAN

ORDINARY
DIFFERENTIAL
EQUATION (ODE)

INITIAL-VALUE
PROBLEM

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 382

www.EBooksWorld.ir

values speci ed at some initial time, which is usually taken to be t 0. Other
types of ODE problems are discussed at the end of Section 9.6.

It will be convenient to use the following abbreviated “dot” notation for
derivatives.

The free response of a differential equation, sometimes called the homogeneous
solution or the initial response, is the solution for the case where there is no forcing
function. The free response depends on the initial conditions. The forced response is
the solution due to the forcing function when the initial conditions are zero. For lin-
ear differential equations, the complete or total response is the sum of the free and
the forced responses. Nonlinear ODEs can be recognized by the fact that the depen-
dent variable or its derivatives appear raised to a power or in a transcendental func-
tion. For example, the equations and are nonlinear.

The essence of a numerical method is to convert the differential equation
into a difference equation that can be programmed. Numerical algorithms differ
partly as a result of the speci c procedure used to obtain the dif ference equations.
It is important to understand the concept of “step size” and its effects on solution
accuracy. To provide a simple introduction to these issues, we consider the sim-
plest numerical methods, the Euler method and the predictor-corrector method.

The Euler Method
The Euler method is the simplest algorithm for numerical solution of a differen-
tial equation. Consider the equations

(9.3–1)

where f (t, y) is a known function and y0 is the initial condition, which is the given
value of y(t) at t � 0. From the de nition of the derivative,

If the time increment 	t is chosen small enough, the derivative can be replaced
by the approximate expression

(9.3–2)

Assume that the function f (t, y) in Equation (9.3–1) remains constant over the time
interval (t, t � 	t), and replace Equation (9.3–1) by the following approximation:

y(t + 	t) - y(t)

	t
= f (t, y)

dy

dt
L

y(t + 	t) - y(t)

	t

dy

dt
= lim

	t:0

y(t + 	t) - y(t)

	t

dy

dt
= f(t, y) y(0) = y0

y
#

= cos yy
#

= y2

y
(t) =

dy

dt
 y

$

(t) =

d2y

dt2

=

9.3 First-Order Differential Equations 383

FREE RESPONSE

FORCED
RESPONSE

EULER METHOD

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 383

www.EBooksWorld.ir

or

(9.3–3)

The smaller 	t is, the more accurate are our two assumptions leading to Equa-
tion (9.3–3). This technique for replacing a differential equation with a differ-
ence equation is the Euler method. The increment 	t is called the step size.

Equation (9.3–3) can be written in more convenient form as

(9.3–4)

where tk�1 � tk � 	t. This equation can be applied successively at the times tk by
putting it in a for loop. The accuracy of the Euler method can be improved some-
times by using a smaller step size. However, very small step sizes require longer
run times and can result in a large accumulated error due to roundoff effects.

The Predictor-Corrector Method
The Euler method can have a serious de ciency in problems where the variables
are rapidly changing, because the method assumes the variables are constant
over the time interval 	t. One way of improving the method is to use a better ap-
proximation to the right-hand side of Equation (9.3–1). Suppose instead of the
Euler approximation (9.3–4) we use the average of the right-hand side of Equa-
tion (9.3–1) on the interval (tk, tk�1). This gives

(9.3–5)

where

(9.3–6)

with a similar de nition for fk�1. Equation (9.3–5) is equivalent to integrating
Equation (9.3–1) with the trapezoidal rule.

The dif culty with Equation (9.3–5) is that fk�1 cannot be evaluated until
y(tk�1) is known, but this is precisely the quantity being sought. A way out of this
dif culty is to use the Euler formula (9.3–4) to obtain a preliminary estimate of
y(tk�1). This estimate is then used to compute fk�1 for use in Equation (9.3–5) to
obtain the required value of y(tk�1).

The notation can be changed to clarify the method. Let h � 	t and yk � y(tk),
and let xk�1 be the estimate of y(tk�1) obtained from the Euler formula (9.3–4).
Then, by omitting the tk notation from the other equations, we obtain the follow-
ing description of the predictor-corrector process.

Euler predictor (9.3–7)

Trapezoidal corrector (9.3–8)

This algorithm is sometimes called the modi ed Euler method . However, note
that any algorithm can be tried as a predictor or a corrector. Thus many other
methods can be classi ed as predictor -corrector.

yk + 1 = yk +

h

2
 [f (tk, yk) + f (tk + 1, xk + 1)]

xk + 1 = yk + hf (tk, yk)

fk = f [tk, y(tk)]

y(tk + 1) = y(tk) +

	t

2
 (fk + fk + 1)

y(tk + 1) = y(tk) + 	t f [tk, y(tk)]

y(t + 	t) = y(t) + f (t, y)	t

384 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

STEP SIZE

MODIFIED EULER
METHOD

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 384

www.EBooksWorld.ir

Runge-Kutta Methods
The Taylor series representation forms the basis of several methods of solving
differential equations, including the Runge-Kutta methods. The Taylor series
may be used to represent the solution y(t � h) in terms of y(t) and its derivatives
as follows.

(9.3–9)

The number of terms kept in the series determines its accuracy. The required
derivatives are calculated from the differential equation. If these derivatives can
be found, Equation (9.3–9) can be used to march forward in time. In practice, the
high-order derivatives can be dif cult to calculate, and the series (9.3–9) is trun-
cated at some term. The Runge-Kutta methods were developed because of the
dif culty in computing the derivatives. These methods use several evaluations of
the function f (t, y) in a way that approximates the Taylor series. The number of
terms in the series that is duplicated determines the order of the Runge-Kutta
method. Thus, a fourth-order Runge-Kutta algorithm duplicates the Taylor series
through the term involving h4.

MATLAB ODE Solvers
In addition to the many variations of the predictor-corrector and Runge-Kutta al-
gorithms that have been developed, there are more-advanced algorithms that use
a variable step size. These “adaptive” algorithms use larger step sizes when the
solution is changing more slowly. MATLAB provides several functions, called
solvers, that implement the Runge-Kutta and other methods with variable step
size. Two of these are the ode45 and ode15s functions. The ode45 function
uses a combination of fourth- and fth-order Runge-Kutta methods. It is a
general-purpose solver whereas ode15s is suitable for more-dif cult equations
called “stiff” equations. These solvers are more than suf cient to solve the prob-
lems in this text. It is recommended that you try ode45 rst. If the equation
proves dif cult to solve (as indicated by a lengthy solution time or by a warning
or error message), then use ode15s.

In this section we limit our coverage to rst-order equations. Solution of
higher-order equations is covered in Section 9.4. When used to solve the equa-
tion , the basic syntax is (using ode45 as the example)

[t,y] = ode45(@ydot, tspan, y0)

where @ydot is the handle of the function le whose inputs must be t and y, and
whose output must be a column vector representing dy�dt, that is, f (t, y). The
number of rows in this column vector must equal the order of the equation. The
syntax for ode15s is identical. The function le ydot may also be speci ed by
a character string (i.e., its name placed in single quotes), but use of the function
handle is now the preferred approach.

The vector tspan contains the starting and ending values of the indepen-
dent variable t, and optionally any intermediate values of t where the solution is

y
#

= f (t, y)

y(t + h) = y(t) + hy
#

(t) +

1
2

h2
 y
$

(t) + . . .

9.3 First-Order Differential Equations 385

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 385

www.EBooksWorld.ir

desired. For example, if no intermediate values are speci ed, tspan is [t0,
tfinal], where t0 and tfinal are the desired starting and ending values of
the independent parameter t. As another example, using tspan � [0, 5, 10]
tells MATLAB to nd the solution at t � 5 and at t � 10. You can solve equation
backward in time by specifying t0 to be greater than tfinal.

The parameter y0 is the initial value y(0). The function le must have its rst
two input arguments as t and y in that order, even for equations where f (t, y) is not
a function of t. You need not use array operations in the function le because the
ODE solvers call the le with scalar values for the ar guments. The solvers may
have an additional argument, options, which is discussed at the end of this
section.

First consider an equation whose solution is known in closed form, so that
we can make sure we are using the method correctly.

386 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

EXAMPLE 9.3–1 Response of an RC Circuit

The model of the RC circuit shown in Figure 9.3–1 can be found from Kirchhoff’s
voltage law and conservation of charge. It is . Suppose the value of RC is
0.1 s. Use a numerical method to nd the free response for the case where the applied
voltage is zero and the initial capacitor voltage is y(0) � 2 V. Compare the results with
the analytical solution, which is y(t) � 2e–10t.

Solution
The equation for the circuit becomes . First solve this for .
Next de ne and save the following function le. Note that the order of the input
arguments must be t and y even though t does not appear on the right-hand side of the
equation.

function ydot = RC_circuit(t,y)
% Model of an RC circuit with no applied voltage.
ydot = -10*y;

The initial time is t � 0, so set t0 to be 0. Here we know from the analytical solution that
y(t) will be close to 0 for t � 0.5 s, so we choose tfinal to be 0.5 s. In other problems
we generally do not have a good guess for tfinal, so we must try several increasing
values of tfinal until we see enough of the response on the plot.

y: y
#

= -10y0.1y
#

+ y = 0

y

RCy
#

+ y = �(t)

y

R

C

+

–

v

Figure 9.3–1 An RC circuit.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 386

www.EBooksWorld.ir

The function ode45 is called as follows, and the solution plotted along with the
analytical solution y_true.

[t, y] = ode45(@RC_circuit, [0, 0.5], 2);
y_true = 2*exp(-10*t);
plot(t,y,’o’,t,y_true), xlabel(‘Time(s)’),...

ylabel(‘Capacitor Voltage’)

Note that we need not generate the array t to evaluate y_true because t is generated
by the ode45 function. The plot is shown in Figure 9.3–2. The numerical solution is
marked by the circles, and the analytical solution is indicated by the solid line. Clearly the
numerical solution gives an accurate answer. Note that the step size has been automati-
cally selected by the ode45 function.

Earlier versions of MATLAB required that the function name, here RC_
circuit, be enclosed within single quotes, but this might not be allowed in future
versions. The use of function handles is now preferred, such as @RC_circuit.
As we will see, additional capabilities are available with function handles.

Test Your Understanding

T9.3–1 Use MATLAB to compute and plot the solution of the following equation.

10

dy

dt
+ y = 20 + 7 sin 2t y(0) = 15

9.3 First-Order Differential Equations 387

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (s)

C
ap

ac
ito

r
V

ol
ta

ge

Figure 9.3–2 Free response of an RC circuit.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 387

www.EBooksWorld.ir

When the differential equation is nonlinear, we often have no analytical so-
lution to use for checking our numerical results. In such cases we can use our
physical insight to guard against grossly incorrect results. We can also check the
equation for singularities that might affect the numerical procedure. Finally, we
can sometimes use an approximation to replace the nonlinear equation with a lin-
ear one that can be solved analytically. Although the linear approximation does
not give the exact answer, it can be used to see if our numerical answer is “in the
ballpark.” The following example illustrates this approach.

388 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

EXAMPLE 9.3–2 Liquid Height in a Spherical Tank

Figure 9.3–3 shows a spherical tank for storing water. The tank is lled through a hole in the
top and drained through a hole in the bottom. If the tank’s radius is r, you can use integra-
tion to show that the volume of water in the tank as a function of its height h is given by

(9.3–10)

Torricelli’s principle states that the liquid ow rate through the hole is proportional to the
square root of the height h. Further studies in uid mechanics have identi ed the relation
more precisely, and the result is that the volume ow rate through the hole is given by

(9.3–11)

where A is the area of the hole, g is the acceleration due to gravity, and Cd is an experi-
mentally determined value that depends partly on the type of liquid. For water, Cd � 0.6
is a common value. We can use the principle of conservation of mass to obtain a differen-
tial equation for the height h. Applied to this tank, the principle says that the rate of
change of liquid volume in the tank must equal the ow rate out of the tank; that is,

(9.3–12)

From Equation (9.3–10),

dV

dt
= 2�rh

dh

dt
- �h2

dh

dt
= �h (2r - h)

dh

dt

dV

dt
= -q

q = CdA12gh

V(h) = �rh2
- �

h3

3

r

h

Figure 9.3–3 Draining of
a spherical tank.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 388

www.EBooksWorld.ir

Substituting this and Equation (9.3–11) into Equation (9.3–12) gives the required equa-
tion for h.

(9.3–13)

Use MATLAB to solve this equation to determine how long it will take for the tank
to empty if the initial height is 9 ft. The tank has a radius of r � 5 ft and has a 1-in.-diameter
hole in the bottom. Use g � 32.2 ft/sec2. Discuss how to check the solution.

Solution:
With Cd � 0.6, r � 5, g � 32.2, and A � �(1�24)2, Equation (9.3–13) becomes

(9.3–14)

We can rst check the above expression for dh�dt for singularities. The denominator does
not become zero unless h � 0 or h � 10, which correspond to a completely empty and a
completely full tank. So we will avoid singularities if 0 � h � 10.

Finally, we can use the following approximation to estimate the time to empty. Replace
h on the right side of Equation (9.3–14) with its average value, namely, (9 � 0)�2 � 4.5 ft.
This gives dh�dt � �0.00286, whose solution is h(t) � h(0) � 0.00286t � 9 � 0.00286 t.
According to this equation, the tank will be empty at t � 9�0.00286 � 3147 sec, or 52 min.
We will use this value as a “reality check” on our answer.

The function le based on Equation (9.3–14) is

function hdot � height(t,h)
hdot = -(0.0334*sqrt(h))/(10*h-h^2);

The le is called as follows, using the ode45 solver.

[t, h]=ode45 (@height, [0, 2475], 9);
plot(t,h),xlabel(‘Time (sec)’), ylabel(‘Height (ft)’)

The resulting plot is shown in Figure 9.3–4. Note how the height changes more rapidly
when the tank is nearly full or nearly empty. This is to be expected because of the effects
of the tank’s curvature. The tank empties in 2475 sec, or 41 min. This value is not grossly
different from our rough estimate of 52 min, so we should feel comfortable accepting the
numerical results. The value of the nal time of 2475 sec was found by increasing the nal
time until the plot showed that the height became 0.

9.4 Higher-Order Differential Equations
To use the ODE solvers to solve an equation higher than order 1, you must rst
write the equation as a set of rst-order equations. This is easily done. Consider
the second-order equation

(9.4–1)5y
$

+ 7y
#

+ 4y = f (t)

dh

dt
= -

0.03341h

10h - h2

�(2rh - h2)

dh

dt
= -CdA12gh

9.4 Higher-Order Differential Equations 389

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 389

www.EBooksWorld.ir

Solve it for the highest derivative:

(9.4–2)

De ne two new variables x1 and x2 to be y and its derivative That is, de ne
x1 � y and This implies that

This form is sometimes called the Cauchy form or the state-variable form.
Now write a function le that computes the values of and and stores

them in a column vector. To do this, we must rst have a function speci ed for
f (t). Suppose that f (t) � sin t. Then the required le is

function xdot = example_1(t,x)
% Computes derivatives of two equations
xdot(1) = x(2);
xdot(2) = (1/5)*(sin(t)–4*x(1)-7*x(2));
xdot = [xdot(1); xdot(2)];

x
#

2x
#

1

x2
#

=

1

5
f (t) -

4

5
x1 -

7

5
x2

x
#

1 = x2

x2 = y
#

.
y
#

.

y
$

=

1

5
f (t) -

4

5
 y -

7

5
y
#

390 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9

Time (sec)

H
ei

gh
t (

ft)

Figure 9.3–4 Plot of water height in a spherical tank.

CAUCHY OR
STATE-VARIABLE
FORM

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 390

www.EBooksWorld.ir

Note that xdot(1) represents xdot(2) represents x(1) represents x1,
and x(2) represents x2. Once you become familiar with the notation for the
state-variable form, you will see that the previous code could be replaced with
the following shorter form.

function xdot = example_1(t,x)
% Computes derivatives of two equations
xdot = [x(2); (1/5)*(sin(t)-4*x(1)-7*x(2))];

Suppose we want to solve Equation (9.4–1) for 0 � t � 6 with the initial con-
ditions x(0) � 3, Then the initial condition for the vector x is [3, 9].
To use ode45, you type

[t, x] = ode45(@example_1, [0, 6], [3, 9]);

Each row in the vector x corresponds to a time returned in the column vector t.
If you type plot(t,x), you will obtain a plot of both x1 and x2 versus t. Note
x is a matrix with two columns. The rst column contains the values of x1 at
the various times generated by the solver; the second column contains the val-
ues of x2. Thus, to plot only x1, type plot(t,x(:,1)). To plot only x2, type
plot(t,x(:,2)).

When we are solving nonlinear equations, sometimes it is possible to check
the numerical results by using an approximation that reduces the equation to a
linear one. The following example illustrates such an approach with a second-
order equation.

x
#

(0) = 9.

x
#

2,x
#

1,

9.4 Higher-Order Differential Equations 391

EXAMPLE 9.4–1A Nonlinear Pendulum Model

The pendulum shown in Figure 9.4–1 consists of a concentrated mass m attached to a rod
whose mass is small compared to m. The rod’s length is L. The equation of motion for this
pendulum is

(9.4–3)

Suppose that L � 1 m and g � 9.81 m/s2. Use MATLAB to solve this equation for (t) for
two cases: (0) � 0.5 rad and (0) � 0.8� rad. In both cases Discuss how to
check the accuracy of the results.

Solution
If we use the small-angle approximation sin , the equation becomes

(9.4–4)

which is linear and has the solution

(9.4–5)(t) = (0) cos
g

L
 t

$

+

g

L
 = 0

L

#

 (0) = 0.

$

+

g

L
 sin = 0

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 391

www.EBooksWorld.ir

if Thus the amplitude of oscillation is (0), and the period is P �

We can use this information to select a nal time and to check our
numerical results.

First rewrite the pendulum equation (9.4–3) as two rst-order equations. To do this,
let and . Thus

The following function le is based on the last two equations. Remember that the
output xdot must be a column vector.

function xdot = pendulum(t,x)
g = 9.81; L = 1;
xdot = [x(2); –(g/L)*sin(x(1))];

This le is called as follows. The vectors ta and xa contain the results for the case
where (0) � 0.5. In both cases, The vectors tb and xb contain the results for
(0) � 0.8�.

[ta, xa] = ode45(@pendulum, [0,5], [0.5, 0];
[tb, xb] = ode45(@pendulum, [0,5], [0.8*pi, 0];
plot(ta, xa(:,1), tb,xb(:,1)), xlabel (‘Time (s)’), . . .

ylabel(‘Angle (rad)’), gtext(‘Case 1’), gtext(‘Case 2’)

The results are shown in Figure 9.4–2. The amplitude remains constant, as predicted
by the small-angle analysis, and the period for the case where (0) � 0.5 is a little larger
than 2 s, the value predicted by the small-angle analysis. So we can place some con -
dence in the numerical procedure. For the case where (0) � 0.8�, the period of the

.
(0) = 0.

x
#

2 =
$

= -

g

L
 sin x1

x1
#

=
#

= x2

x2 =
#

x1 =

2�1L>g = 2.006 s.

#

(0) = 0.

392 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

g

θ

L

m

Figure 9.4–1 A pendulum.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 392

www.EBooksWorld.ir

numerical solution is about 3.3 s. This illustrates an important property of nonlinear
differential equations. The free response of a linear equation has the same period for any
initial conditions; however, the form and therefore the period of the free response of a
nonlinear equation often depend on the particular values of the initial conditions.

In this example, the values of g and L were encoded in the function
pendulum(t,x). Now suppose you want to obtain the pendulum response for
different lengths L or different gravitational accelerations g. You could use the
global command to declare g and L as global variables, or you could pass
parameter values through an argument list in the ode45 function; but starting
with MATLAB 7, the preferred method is to use a nested function. Nested func-
tions are discussed in Section 3.3. The following program shows how this is done.

function pendula
g = 9.81; L = 0.75; % First case.
tF = 6*pi*sqrt(L/g); % Approximately 3 periods.
[t1, x1] = ode45(@pendulum, [0,tF], [0.4, 0];
%
g = 1.63; L = 2.5; % Second case.
tF = 6*pi*sqrt(L/g); % Approximately 3 periods.
[t2, x2] = ode45(@pendulum, [0,tF], [0.2, 0];
plot(t1, x1(:,1), t2, x2(:,1)), . . .

9.4 Higher-Order Differential Equations 393

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 –3

 –2

 –1

0

1

2

3

Time (s)

A
ng

le
 (

ra
d)

Case 1

Case 2

Figure 9.4–2 The pendulum angle as a function of time for two starting positions.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 393

www.EBooksWorld.ir

xlabel (‘time (s)’), ylabel (‘\theta (rad)’)
% Nested function.

function xdot = pendulum(t,x)
xdot = [x(2);–(g/L)*sin(x(1))];

end
end

Advanced Solver Capabilities
The complete preferred ODE solver syntax in MATLAB 7, using ode45 as an
example, is

[t, y] = ode45(@ydot, tspan, y0, options)

where the options argument is created with the odeset function.

The odeset Function The odeset function creates an options structure to
be supplied to the solver. Its syntax is

options = odeset(‘name1’, ‘value1’ ‘name2’,‘value2’,.. .)

where name is the name of a property and value is the value to be assigned to
the property.

A simple example will clarify things. The Refine property is used to in-
crease the number of output points from the solver by an integer factor n. For
ode45 the default value of n is 4 because of the solver’s large step sizes. Sup-
pose we want to solve the for with y(0) � 0. De ne the
following function le.

function ydot = sinefn(t,y)
ydot = sin(t)^2;

Then use the odeset function to set the value of Refine to n � 8, and call the
ode45 solver, as shown in the following code. This will produce twice as many
points to plot to obtain a smoother curve.

options = odeset(‘Refine’,8);
[t, y] = ode45(@sinefn, [0, 4*pi], 0, options);

Another property is the Events property, which has two possible values: on
and off. It can be used to locate transitions to, from, or through zeros of a user-
de ned function. This can be used to detect in the ODE solution when a variable
makes a transition to, from, or through a certain value, such as zero. This feature
can be used, for example, to simulate a dropped ball bouncing up from the oor .
See the MATLAB Help for other examples.

There are many properties that can be set with the odeset function. To see
a list of these, type odeset. Table 9.4–1 summarizes the syntax of the ODE
solvers using ode45 as an example.

0 … t … 4�y
#

= sin2 t

394 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 394

www.EBooksWorld.ir

9.5 Special Methods for Linear Equations
MATLAB provides some convenient tools to use if the differential equation
model is linear. Even though there are general methods available for nding the
analytical solutions of linear differential equations, it is sometimes more conve-
nient to use a numerical method to nd the solution. Examples of such situations
occur when the forcing function is a complicated function or when the order of
the differential equation is higher than 2. In such cases the algebra involved in
obtaining the analytical solution might not be worth the effort, especially if the
main objective is to obtain a plot of the solution.

Matrix Methods
We can use matrix operations to reduce the number of lines to be typed in the
derivative function le. For example, the following equation describes the mo-
tion of a mass connected to a spring, with viscous friction acting between the
mass and the surface. Another force u(t) also acts on the mass.

(9.5–1)

This can be put into Cauchy form by letting x1 � y and . This gives

x
#

2 =

1
m

 u(t) -

k
m

x1 -

c
m

x2

x
#

1 = x2

x2 = y
#

my
$

+ cy
#

+ ky = u(t)

9.5 Special Methods for Linear Equations 395

Table 9.4–1 Syntax of the ODE solver ode45

Command Description

[t, y] = ode45(@ydot, Solves the vector differential equation speci ed by the function le
tspan, y0, options) whose handle is @ydot and whose inputs must be t and y, and whose output

must be a column vector representing dy�dt; that is, f(t, y). The number of rows
in this column vector must equal the order of the equation. The vector tspan
contains the starting and ending values of the independent variable t, and
optionally any intermediate values of t where the solution is desired. The
vector y0 contains the initial values. The function le must have two input
arguments, t and y, even for equations where f (t, y) is not a function of t.
The options argument is created with the odeset function. The syntax is
identical for the solver ode15s.

options = odeset Creates an integrator options structure options to be used with the
(‘name1’, ‘value1’ ODE solver, in which the named properties have the speci ed values,
‘name2’, ‘value2’, where name is the name of a property and value is the value to be
. . .) assigned to the property. Any unspeci ed properties have default values.

Typing odeset with no input arguments displays all property names and their
possible values.

y# = f(t, y)

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 395

www.EBooksWorld.ir

This can be written as one matrix equation as follows.

In compact form this is

(9.5–2)

where

The following function le shows how to use matrix operations. In this ex-
ample, m � 1, c � 2, k � 5, and the applied force is u(t) � 10.

function xdot = msd(t,x)
% Function le for mass with spring and damping.
% Position is rst variable, velocity is second variable.
u = 10;
m = 1;c = 2;k = 5;
A = [0, 1;-k/m, -c/m];
B = [0; 1/m];
xdot = A*x+B*u;

Note that the output xdot will be a column vector because of the de nition of
matrix-vector multiplication. We try different values of the nal time until we see
the entire response. Using a nal time of 5 and the initial conditions x1(0) � 0
and x2(0) � 0, we call the solver and plot the solution as follows:

[t, x] = ode45(@msd, [0,5], [0,0];
plot(t,x(:,1),t,x(:,2))

Figure 9.5–1 shows the edited plot. Note that we could have avoided embedding
the values of the parameters m, c, k, and u by making msd a nested function as
was done with the functions pendulum and pendula in Section 9.4.

Test Your Understanding

T9.5–1 Plot the position and velocity of a mass with a spring and damping, hav-
ing the parameter values m � 2, c � 3, and k � 7. The applied force is
u � 35, the initial position is y(0) � 2, and the initial velocity is
y
#

(0) = -3.

A = c 0 1

-
k
m -

c
m
d B = c01

m
d x = cx1

x2
d

x# = Ax + Bu(t)

cx
#

1

x
#

2
d = J

0 1

-

k
m

-

c
m
K cx1

x2
d + J

0

1
m
Ku(t)

396 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 396

www.EBooksWorld.ir

Characteristic Roots from the eig Function
The characteristic roots of a linear differential equation give information about
the speed of response and the oscillation frequency, if any.

MATLAB provides the eig function to compute the characteristic roots
when the model is given in the state-variable form (9.5–2). Its syntax is eig(A),
where A is the matrix that appears in Equation (9.5–2). (The function’s name is
an abbreviation of eigenvalue, which is another name for characteristic root.) For
example, consider the equations

(9.5–3)

(9.5–4)

The matrix A for these equations is

To nd the characteristic roots, type

>>A = [-3, 1;-1, -7];
>>r = eig(A)

The answer so obtained is r = [–6.7321, -3.2679]. To nd the time con-
stants, which are the negative reciprocals of the real parts of the roots, you type

A = c -3 1

-1 -7
d

x
#

2 = -x1 - 7x2

x
#

1 = -3x1 + x2

9.5 Special Methods for Linear Equations 397

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 –1

 –0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

D
is

pl
ac

em
en

t (
m

)
an

d
V

el
oc

ity
 (

m
/s

)

Displacement

Velocity

Figure 9.5–1 Displacement and velocity of the mass as a function of time.

EIGENVALUE

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 397

www.EBooksWorld.ir

tau = -1./real(r). The time constants are 0.1485 and 0.3060. Four times
the dominant time constant, or 4(0.3060) � 1.224, gives the time it takes for the
free response to become approximately zero.

ODE Solvers in the Control System Toolbox
Many of the functions from the Control System toolbox are available in the
Student Edition of MATLAB. Some of these can be used to solve linear, time-
invariant (constant-coef cient) dif ferential equations. They are sometimes more
convenient to use and more powerful than the ODE solvers discussed thus far,
because general solutions can be found for linear, time-invariant equations. Here
we discuss several of these functions. These are summarized in Table 9.5–1. The
other features of the Control System toolbox require advanced methods, and will
not be covered here. See [Palm, 2005] for coverage of these methods.

An LTI object describes a linear, time-invariant equation, or sets of equa-
tions, here referred to as the system. An LTI object can be created from different
descriptions of the system, it can be analyzed with several functions, and it can
be accessed to provide alternate descriptions of the system. For example, the
equation

(9.5–5)

is one description of a particular system. This description is called the reduced
form. The following is a state-model description of the same system

(9.5–6)

where x1 � x, and

(9.5–7)

Both model forms contain the same information. However, each form has its
own advantages, depending on the purpose of the analysis.

Because there are two or more state variables in a state model, we need to be
able to specify which state variable, or combination of variables, constitutes the
output of the simulation. For example, models (9.5–6) and (9.5–7) can represent
the motion of a mass, with x1 the position and x2 the velocity of the mass. We need
to be able to specify whether we want to see a plot of the position, or the velocity,
or both. This speci cation of the output, denoted by the vector y, is done in gen-
eral with the matrices C and D, which must be compatible with the equation

(9.5–8)

where the vector u(t) allows for multiple inputs. To continue the previous exam-
ple, if we want the output to be the position x � x1, then y � x1, and we would
select C � [1, 0] and D � 0. Thus, in this case, Equation (9.5–8) reduces to y � x1.

y = Cx + Du(t)

A = c 0 1

-
5
2 -

3
2
d B = c01

2
d x = cx1

x2
d

x2 = x
#

,

x# = Ax + Bu

2x
$

+ 3x
#

+ 5x = u(t)

398 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

LTI OBJECT

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 398

www.EBooksWorld.ir

To create an LTI object from the reduced form (9.5–5), use the tf(right,
left) function, and type

>>sys1 � tf(1, [2, 3, 5]);

where the vector right is the vector of coef cients of the right-hand side of the
equation, arranged in descending derivative order, and left is the vector of
coef cients of the left-hand side of the equation, also arranged in descending
derivative order. The result, sys1, is the LTI object that describes the system in
reduced form, also called the transfer function form. (The name of the function,
tf, stands for transfer function, which is an equivalent way of describing the
coef cients on the left- and right-hand sides of the equation.)

The LTI object sys2 in transfer function form for the equation

(9.5–9)

is created by typing

>>sys2 = tf([3, 9, 2], [6, -4, 7, 5]);

To create an LTI object from a state model, you use the ss(A, B, C, D)
function, where ss stands for state space. For example, to create an LTI object
in state-model form for the system described by Equations (9.5–6) through
(9.5–8), you type

>>A = [0, 1; -5/2, -3/2]; B = [0; 1/2];
>>C = [1, 0]; D = 0;
>>sys3 = ss(A,B,C,D);

An LTI object de ned using the tf function can be used to obtain an equiv-
alent state-model description of the system. To create a state model for the sys-
tem described by the LTI object sys1 created previously in transfer function
form, you type ss(sys1). You will then see the resulting A, B, C, and D
matrices on the screen. To extract and save the matrices, use the ssdata
function as follows.

>>[A1, B1, C1, D1] = ssdata(sys1);

The results are

When using ssdata to convert a transfer function form to a state model, note
that the output y will be a scalar that is identical to the solution variable of the
reduced form; in this case the solution variable of Equation (9.5–1) is the vari-
able y. To interpret the state model, we need to relate its state variables x1 and x2

to y. The values of the matrices C1 and D1 tell us that the output variable
y � 0.5x2. Thus we see that x2 � 2y. The other state variable x1 is related to x2 by

Thus x1 = y
#

.x
#

2 = 2x1.

A1 = c -1.5 -1.25

2 0
d B1 = c0.5

0
d C1 = 30 0.54 D1 = [0]

6

d3x

dt3
- 4

d2x

dt2
+ 7

dx

dt
+ 5x = 3

d2u

dt2
+ 9

du

dt
+ 2u

9.5 Special Methods for Linear Equations 399

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 399

www.EBooksWorld.ir

To create a transfer function description of the system sys3, previously
created from the state model, you type tfsys3 = tf(sys3). To extract and
save the coef cients of the reduced form, use the tfdata function as follows:

[right, left] = tfdata(sys3, ‘v’)

For this example, the vectors returned are right = 1 and left = [1, 1.5,
2.5]. The optional parameter ‘v’ tells MATLAB to return the coef cients as
vectors; otherwise, they are returned as cell arrays. These functions are summa-
rized in Table 9.5–1.

Test Your Understanding

T9.5–2 Obtain the state model for the reduced-form model

Then convert the state model back to reduced form, and see if you get
the original reduced-form model.

Linear ODE Solvers
The Control System toolbox provides several solvers for linear models. These
solvers are categorized by the type of input function they can accept: zero input,
impulse input, step input, and a general input function. These are summarized in
Table 9.5–2.

The initial Function The initial function computes and plots the free
response of a state model. This is sometimes called the initial-condition response
or the undriven response in the MATLAB documentation. The basic syntax is
initial(sys,x0), where sys is the LTI object in state-model form and x0

5x
$

+ 7x
#

+ 4x = u(t)

400 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

Table 9.5–1 LTI object functions

Command Description

sys = ss(A, B, C, D) Creates an LTI object in state-space form, where the matrices A, B,
C, and D correspond to those in the model y �
Cx � Du.

[A, B, C, D] = ssdata(sys) Extracts the matrices A, B, C and D corresponding to those in the
model y � Cx � Du.

sys = tf(right,left) Creates an LTI object in transfer function form, where the vector
right is the vector of coef cients of the right-hand side of the
equation, arranged in descending derivative order, and left is the
vector of coef cients of the left-hand side of the equation, also
arranged in descending derivative order.

sys2 = tf(sys1) Creates the transfer function model sys2 from the state model sys1.
sys1 = ss(sys2) Creates the state model sys1 from the transfer function model sys2.
[right, left] = tfdata(sys,’v’) Extracts the coef cients on the right- and left-hand sides of the

reduced-form model speci ed in the transfer function model sys.
When the optional parameter ‘v’ is used, the coef cients are
returned as vectors rather than as cell arrays.

x. � Ax � Bu,

x. � Ax � Bu,

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 400

www.EBooksWorld.ir

9.5 Special Methods for Linear Equations 401

Table 9.5–2 Basic syntax of the LTI ODE solvers

Command Description

impulse(sys) Computes and plots the impulse response of the LTI object sys.
initial(sys,x0) Computes and plots the free response of the LTI object sys given in

state-model form, for the initial conditions speci ed in the vector x0.
lsim(sys,u,t) Computes and plots the response of the LTI object sys to the input

speci ed by the vector u, at the times speci ed by the vector t.
step(sys) Computes and plots the step response of the LTI object sys.

See the text for description of extended syntax.

Time (sec.)

A
m

pl
itu

de

Initial Condition Results

0 1 2 3 4 5 6 7 8
 –1

0

1

2

3

4

5

Figure 9.5–2 Free response of the model given by Equations (9.5–5) through
(9.5–8) for x1(0) � 5 and x2(0) � –2.

is the initial-condition vector. The time span and number of solution points are
chosen automatically. For example, to nd the free response of the state model
(9.5–5) through (9.5–8), for x1(0) � 5 and x2(0) � –2, rst de ne it in state-
model form. This was done previously to obtain the system sys3. Then use the
initial function as follows.

>>initial(sys3, [5, -2])

The plot shown in Figure 9.5–2 will be displayed on the screen. Note that
MATLAB automatically labels the plot, computes the steady-state response, and
displays it with a dotted line.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 401

www.EBooksWorld.ir

To specify the nal time tF, use the syntax initial(sys,x0,tF). To
specify a vector of times of the form t = 0:dt:tF, at which to obtain the so-
lution, use the syntax initial(sys,x0,t).

When called with left-hand arguments, as [y, t, x] =
initial(sys,x0,. . .), the function returns the output response y, the
time vector t used for the simulation, and the state vector x evaluated at those
times. The columns of the matrices y and x are the outputs and the states,
respectively. The number of rows in y and x equals length(t). No plot is
drawn. The syntax initial(sys1, sys2, . . .,x0,t) plots the free
response of multiple LTI systems on a single plot. The time vector t is optional.
You can specify line color, line style, and marker for each system, for example,
initial(sys1,’r’, sys2,’y— —’,sys3,’gx’,x0).

The impulse Function The impulse function plots the unit-impulse re-
sponse for each input-output pair of the system, assuming that the initial con-
ditions are zero. (The unit impulse is also called the Dirac delta function.) The
basic syntax is impulse(sys), where sys is the LTI object. Unlike the
initial function, the impulse function can be used with either a state
model or a transfer function model. The time span and number of solution
points are chosen automatically. For example, the impulse response of Equa-
tion (9.5–5) is found as follows:

>>sys1 = tf(1, [2, 3, 5]);
>>impulse(sys1)

The extended syntax of the impulse function is similar to that of the initial
function.

The step Function The step function plots the unit-step response for each
input-output pair of the system, assuming that the initial conditions are zero.
[The unit step function u(t) is 0 for t � 0 and 1 for t � 0.] The basic syntax is
step(sys), where sys is the LTI object. The step function can be used with
either a state model or a transfer function model. The time span and number of
solution points are chosen automatically. The extended syntax of the step func-
tion is similar to that of the initial and the impulse functions.

To nd the unit-step response, for zero initial conditions, of the state model
(9.5–6) through (9.5–8), and the reduced-form model

(9.5–10)

the session is (assuming sys3 is still available in the workspace)

>>sys4 = tf([5, 1], [5, 7, 5]);
>>step(sys3,’b’,sys4,’— —’)

The result is shown in Figure 9.5–3. The steady-state response is indicated by the
horizontal dotted line. Note how the steady-state response and the time to reach
that state are automatically determined.

5x
$

+ 7x
#

+ 5x = 5f
#

+ f

402 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 402

www.EBooksWorld.ir

9.5 Special Methods for Linear Equations 403

Step response can be characterized by the following parameters.

■ Steady-state value: The limit of the response as
■ Settling time: The time for the response to reach and stay within a certain

percentage (usually 2 percent) of its steady-state value.
■ Rise time: The time required for the response to rise from 10 to 90 percent

of its steady-state value.
■ Peak response: The largest value of the response.
■ Peak time: The time at which the peak response occurs.

When the step(sys) function puts a plot on the screen, you may use the plot
to calculate these parameters by right-clicking anywhere within the plot area.
This brings up a menu. Choose Characteristics to obtain a submenu that con-
tains the response characteristics. When you select a speci c characteristic, for
example, “peak response,” MATLAB puts a large dot on the peak and displays
dashed lines indicating the value of the peak response and the peak time. Move
the cursor over this dot to see a display of the values. You can use the other solvers
in the same way, although the menu choices may be different. For example, peak
response and settling time are available when you use the impulse(sys)
function, but not the rise time. If instead of choosing Characteristics you choose
Properties and select the Options tab, you can change the defaults for the set-
tling time and rise time, which are 2 percent and 10 to 90 percent.

t : q .

Time (sec.)

A
m

pl
itu

de
Step Response

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 9.5–3 Step response of the model given by Equations (9.5–6) through
(9.5–8) and the model (9.5–10), for zero initial conditions.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 403

www.EBooksWorld.ir

404 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

Using this method, we nd that the solid curve in Figure 9.5–3 has the
following characteristics:

■ Steady-state value: 0.2
■ 2 percent settling time: 5.22
■ 10 to 90 percent rise time: 1.01
■ Peak response: 0.237
■ Peak time: 2.26

You can also read values off any part of the curve by placing the cursor on
the curve at the desired point. You can move the cursor along the curve and read
the values as they change. Using this method, we nd that the solid curve in Fig-
ure 9.5–3 crosses the steady-state value of 0.2 for the second time at t � 3.74.

You can suppress the plot generated by step and create your own plot as
follows, assuming sys3 is still available in the workspace.

[x,t] = step(sys3);
plot(t,x)

You can then use the Plot Editor tools to edit the plot. However, with this ap-
proach, right-clicking on the plot will no longer give you information about the
step response characteristics.

Suppose the step input is not a unit step but instead is 0 for t � 0 and 10 for
t � 0. There are two ways to obtain the solution with the factor 10. Using sys3
as the example, these are step(10*sys3)and

[x,t] = step(sys3);
plot(t,10*x)

The lsim Function The lsim function plots the response of the system to an
arbitrary input. The basic syntax for zero initial conditions is lsim(sys,u,t),
where sys is the LTI object, t is a time vector having regular spacing, as
t = 0:dt:tF, and u is a matrix with as many columns as inputs, and whose
ith row speci es the value of the input at time t(i). To specify nonzero initial
conditions for a state-space model, use the syntax lsim(sys,u,t,x0). This
computes and plots the total response (the free plus forced response). Right-
clicking on the plot brings up the menu containing the Characteristics choice,
although the only characteristic available is the peak response.

When called with left-hand arguments, as [y, t] = lsim(sys, u,...),
the function returns the output response y and the time vector t used for the sim-
ulation. The columns of the matrix y are the outputs, and the number of its rows
equals length(t). No plot is drawn. To obtain the state vector solution for
state-space models, use the syntax [y, t, x] = lsim(sys,u,...).
The syntax lsim(sys1,sys2,. ..,u,t,x0) plots the responses of multi-
ple LTI systems on a single plot. The initial-condition vector xo is needed
only if the initial conditions are nonzero. You can specify line color, line style,
and marker for each system, for example, lsim(sys1,’r’,sys2,
’y--’,sys3,’gx’,u,t).

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 404

www.EBooksWorld.ir

9.5 Special Methods for Linear Equations 405

We will see an example of the lsim function shortly.

Programming Detailed Forcing Functions
As a nal example of higher -order equations, we now show how to program a
detailed forcing function for use with the lsim function. We use a dc motor as
the application. The equations for an armature-controlled dc motor (such as a
permanent-magnet motor) shown in Figure 9.5–4 are the following. They result
from Kirchhoff’s voltage law and Newton’s law applied to a rotating inertia. The
motor’s current is i and its rotational velocity is �.

(9.5–11)

(9.5–12)

where L, R, and I are the motor’s inductance, resistance, and inertia; KT and Ke

are the torque constant and back emf constant; c is a viscous damping constant;
and �(t) is the applied voltage. These equations can be put into matrix form as
follows, where x1 � i and x2 � �.

Trapezoidal Pro le for a DC Motor

In many applications we want to accelerate the motor to a desired speed and allow it to
run at that speed for some time before decelerating to a stop. Investigate whether an applied
voltage having a trapezoidal pro le will accomplish this. Use the values R � 0.6 �, L �

0.002 H, KT � 0.04 N � m/A, Ke � 0.04 V� s/rad, c � 0, and I � 6 � 10–5 kg � m2. The
applied voltage in volts is given by

y(t) = μ
100t

10

-100(t - 0.4) + 10

0

0 … t 6 0.1

0.1 … t … 0.4

0.4 6 t … 0.5

t 7 0.5

cx
#

1

x
#

2
d = c -R

L -
Ke

L
KT

I -
c
I

d cx1

x2
d + c 1L

0
d �(t)

I
d�

dt
= KTi - c�

L
di

dt
= -Ri - Ke� + �(t)

R

v

i

Ke

T = KTi

ω

cω

L

+

–

I

ω

Figure 9.5–4 An armature-controlled dc motor.

EXAMPLE 9.5–1

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 405

www.EBooksWorld.ir

406 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

This is shown in the top graph in Figure 9.5–5.

■ Solution
The following program rst creates the model sys from the matrices A, B, C, and D. We
choose C and D to obtain the speed x2 as the only output. (To obtain both the speed and
the current as outputs, we would choose C = [1, 0; 0, 1] and D = [0; 0].) The
program computes the time constants using the eig function and then creates time, the
array of time values to be used by lsim. We choose the time increment 0.0001 to be a
very small fraction of the total time, 0.6 s.

The trapezoidal voltage function is then created with a for loop. This is perhaps the
easiest way because the if-elseif-else structure mimics the equations that de ne
� (t). The initial conditions x1(0) and x2(0) are assumed to be zero, and so they need not be
speci ed in the lsim function.

% File dcmotor.m
R = 0.6; L = 0.002; c = 0;
K_T = 0.04; K_e = 0.04; I = 6e–5;
A = [-R/L, -K_e/L; K_T/I, -c/I];
B = [1/L; 0]; C = [0,1]; D = [0];
sys = ss(A,B,C,D);
Time_constants = -1./real(eig(A))
time = 0:0.0001:0.6;
k = 0;
for t = 0:0.0001:0.6

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

t (s)
V

ol
ta

ge
 (

V
)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

t (s)

V
el

oc
ity

 (
ra

d/
s)

Figure 9.5–5 Voltage input and resulting velocity response of a dc motor.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 406

www.EBooksWorld.ir

k = k + 1;
if t < 0.1

v(k) = 100*t;
elseif t < = 0.4

v(k) = 10;
elseif t < = 0.5

v(k) = –100*(t-0.4) + 10;
else

v(k) = 0;
end

end
[y,t] = lsim(sys, v, time);
subplot(2,1,1), plot(time,v)
subplot(2,1,2), plot(time,y)

The time constants are computed to be 0.0041 and 0.0184 s. The largest time con-
stant indicates that the motor’s response time is approximately 4(0.0184) � 0.0736 s. Be-
cause this time is less than the time needed for the applied voltage to reach 10 V, the
motor should be able to follow the desired trapezoidal pro le reasonably well. To know
for certain, we must solve the motor’s differential equations. The results are plotted in the
bottom graph of Figure 9.5–5. The motor’s velocity follows a trapezoidal pro le as
expected, although there is some slight deviation because of its electric resistance and
mechanical inertia.

LTI Viewer The Control System toolbox contains the LTI Viewer, which
assists in the analysis of LTI systems. It provides an interactive user interface that
allows you to switch between different types of response plots and between the
analysis of different systems. The viewer is invoked by typing ltiview. See
the MATLAB Help for more information.

Prede ned Input Functions
You can always create any complicated input function to use with the ODE
solver ode45 or lsim by de ning a vector containing the input function’ s val-
ues at speci ed times, as was done in Example 9.5–1 for the trapezoidal pro le.
However, MATLAB provides the gensig function that makes it easy to con-
struct periodic input functions.

The syntax [u, t] = gensig(type, period) generates a periodic
input of a speci ed type type, having a period period. The following types
are available: sine wave (type � ‘sin’), square wave (type � ‘square’), and
narrow-width periodic pulse (type � ‘pulse’). The vector t contains the times,
and the vector u contains the input values at those times. All generated inputs
have unit amplitudes. The syntax [u, t] = gensig(type, period,
tF,dt) speci es the time duration tF of the input and the spacing dt between
the time instants.

9.5 Special Methods for Linear Equations 407

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 407

www.EBooksWorld.ir

For example, suppose a square wave with period 5 is applied to the follow-
ing reduced-form model.

(9.5–13)

To nd the response for zero initial conditions, over the interval 0 � t � 10,
using a step size of 0.01, the session is

>>sys5 = tf(4,[1,2,4]);
>>[u, t] = gensig(‘square’,5,10,0.01);
>>[y, t] = lsim (sys5,u,t);plot(t,y,u), . . .

axis([0 10 -0.5 1.5]), . . .
xlabel(‘Time’),ylabel(‘Response’)

The result is shown in Figure 9.5–6.

9.6 Summary
This chapter covered numerical methods for computing integrals and deriva-
tives, and for solving ordinary differential equations. Now that you have nished
this chapter, you should be able to do the following.

■ Numerically evaluate single, double, and triple integrals whose integrands
are given functions.

x
$

+ 2x
#

+ 4x = 4f

408 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

0 1 2 3 4 5 6 7 8 9 10
 –0.5

0

0.5

1

1.5

Time

R
es

po
ns

e

Figure 9.5–6 Square wave response of the model x
$

+ 2x
#

+ 4x = 4f.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 408

www.EBooksWorld.ir

9.6 Summary 409

■ Numerically evaluate single integrals whose integrands are given as
numerical values.

■ Numerically estimate the derivative of a set of data.
■ Compute the gradient and Laplacian of a given function.
■ Obtain in closed form the integral and derivative of a polynomial function.
■ Use the MATLAB ODE solvers to solve single rst-order ordinary

differential equations whose initial conditions are speci ed.
■ Convert higher-order ordinary differential equations into a set of rst-order

equations.
■ Use the MATLAB ODE solvers to solve sets of higher-order ordinary

differential equations whose initial conditions are speci ed.
■ Use MATLAB to convert a model from transfer function form to

state-variable form, and vice versa.
■ Use the MATLAB linear solvers to solve linear differential equations to ob-

tain the free response and the step response for arbitrary forcing functions.

We have not covered all the differential equation solvers provided in
MATLAB, but limited our coverage to ordinary differential equations whose
initial conditions are speci ed. MA TLAB provides algorithms for solving boundary-
value problems (BVPs) such as

See the Help for the function bvp4c. Some differential equations are speci ed
implicitly as The solver ode15i can be used for such problems.
MATLAB can also solve delay-differential equations (DDEs) such as

See the help for the functions dde23, ddesd, and deval. The function
pdepe can solve partial differential equations. See also pdeval. In addition,
MATLAB provides support for analyzing and plotting the solver’s output. See
the functions odeplot, odephas2, odephas3, and odeprint.

x
$

+ 7x
#

+ 10x + 5x(t - 3) = 0

f(t, y, y
#

) = 0.

x
$

+ 7x
#

+ 10x = 0 x(0) = 2 x(5) = 8 0 … t … 5

Backward difference, 378
Cauchy form, 390
Central difference, 379
De nite integral, 370
Eigenvalue, 397
Euler method, 383
Forced response, 383
Forward difference, 378
Free response, 383
Improper integral, 370
Inde nite integral, 370

Initial-value problem (IVP), 382
Laplacian, 382
LTI object, 398
Modi ed Euler method, 384
Ordinary differential equation, 382
ODE, 382
Predictor-corrector method, 384
Quadrature, 373
Singularities, 370
State-variable form, 390
Step size, 384

Key Terms with Page References

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 409

www.EBooksWorld.ir

410 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

Problems
You can nd answers to problems marked with an asterisk at the end of the text.

Section 9.1
1.* An object moves at a velocity � (t) � 5 � 7t2 m/s starting from the posi-

tion x(2) � 5 m at t � 2 s. Determine its position at t � 10 s.

2. The total distance traveled by an object moving at velocity � (t) from the
time t � a to the time t � b is

The absolute value �� (t)� is used to account for the possibility that �(t) might
be negative. Suppose an object starts at time t � 0 and moves with a velocity
of �(t) � cos(�t) m. Find the object’s location at t � 1 s if x(0) � 2 m.

3. An object starts with an initial velocity of 3 m/s at t � 0, and it
accelerates with an acceleration of a(t) � 7t m/s2. Find the total distance
the object travels in 4 s.

4. The equation for the voltage � (t) across a capacitor as a function of time is

where i(t) is the applied current and Q0 is the initial charge. A certain
capacitor initially holds no charge. Its capacitance is C � 10–7 F. If a
current i(t) � 0.2[1 � sin (0.2t)] A is applied to the capacitor, compute
the voltage �(t) at t � 1.2 s if its initial velocity is zero.

5. A certain object’s acceleration is given by a(t) � 7t sin 5t m/s2. Compute
its velocity at t � 10 s if its initial velocity is zero.

6. A certain object moves with the velocity � (t) given in the table below.
Determine the object’s position x(t) at t � 10 s if x(0) � 3.

�(t) =

1

C
c
L

t

0
 i(t) dt + Q0 d

x(b) =

L

b

a
 � �(t)� dt + x(a)

Time (s) 0 1 2 3 4 5 6 7 8 9 10

Velocity (m/s) 0 2 5 7 9 12 15 18 22 20 17

Time (min) 0 1 2 3 4 5 6 7 8 9 10

Flow rate (ft3/min) 0 80 130 150 150 160 165 170 160 140 120

7.* A tank having vertical sides and a bottom area of 100 ft2 is used to store
water. The tank is initially empty. To ll the tank, water is pumped into
the top at the rate given in the following table. Determine the water height
h(t) at t � 10 min.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 410

www.EBooksWorld.ir

Problems 411

8. A cone-shaped paper drinking cup (like the kind supplied at water foun-
tains) has a radius R and a height H. If the water height in the cup is h, the
water volume is given by

Suppose that the cup’s dimensions are R � 1.5 in. and H � 4 in.
a. If the ow rate from the fountain into the cup is 2 in. 3/s, how long will

it take to ll the cup to the brim?
b. If the ow rate from the fountain into the cup is given by 2(1 – e–2t)

in.3/s, how long will it take to ll the cup to the brim?

9. A certain object has a mass of 100 kg and is acted on by a force
f (t) � 500[2 – e–t sin(5�t)] N. The mass is at rest at t � 0. Determine the
object’s velocity at t � 5 s.

10.* A rocket’s mass decreases as it burns fuel. The equation of motion for a
rocket in vertical ight can be obtained from Newton’ s law, and it is

where T is the rocket’s thrust and its mass as a function of time is given
by m(t) � m0(1 – rt�b). The rocket’s initial mass is m0, the burn time is b,
and r is the fraction of the total mass accounted for by the fuel.
Use the values T � 48,000 N, m0 � 2200 kg, r � 0.8, g � 9.81 m/s2, and
b � 40 s. Determine the rocket’s velocity at burnout.

11. The equation for the voltage �(t) across a capacitor as a function of time is

where i(t) is the applied current and Q0 is the initial charge. Suppose that
C � 10–7 F and that Q0 � 0. Suppose the applied current is i(t) � 0.3 �
0.1e–5t sin(25�t) A. Plot the voltage �(t) for 0 � t � 7 s.

12. Compute the inde nite integral of p(x) � 5x2 – 9x � 8.

13. Compute the double integral

14. Compute the double integral

A =

L

4

0 L

�

0
 x2 sin y dx dy

A =

L

3

0 L

3

1
(x2

+ 3xy) dx dy

y(t) =

1

C
 c
L

t

0
 i(t) dt + Q0 d

m(t)

d�

dt
= T - m(t)g

V =

1

3
 �a R

H
b2

h3

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 411

www.EBooksWorld.ir

15. Compute the double integral

Note that the region of integration lies to the right of the line y � x. Use
this fact and a MATLAB relational operator to eliminate values for which
y � x.

16. Compute the triple integral

Section 9.2
17. Plot the estimate of the derivative dy�dx from the following data. Do this

by using forward, backward, and central differences. Compare the results.

x 0 1 2 3 4 5 6 7 8 9 10

y 0 2 5 7 9 12 15 18 22 20 17

18. At a relative maximum of a curve y(x), the slope dy/dx is zero. Use the
following data to estimate the values of x and y that correspond to a maxi-
mum point.

x 0 1 2 3 4 5 6 7 8 9 10

y 0 2 5 7 9 10 8 7 6 8 10

19. Compare the performance of the forward, backward, and central
difference methods for estimating the derivative of y(x) � e–x sin(3x). Use
101 points from x � 0 to x � 4. Use a random additive error of �0.01.

20. Compute the expressions for dp2�dx, d(p1p2)�dx, and d(p2�p1)�dx for
p1 � 5x2 � 7 and p2 � 5x2 – 6x � 7.

21. Plot the contour plot and the gradient (shown by arrows) for the
function

Section 9.3
22. Plot the solution of the equation

if f (t) � 0 for t � 0 and f(t) � 15 for t � 0. The initial condition is
y(0) � 7.

6y
.

+ y = f(t)

f(x, y) = -x2
+ 2xy + 3y2

A =

L

2

1 L

1

0 L

3

1
 xeyz

 dx dy dz

A =

L

1

0 L

3

y
 x2 (x + y) dx dy

412 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 412

www.EBooksWorld.ir

23. The equation for the voltage y across the capacitor of an RC circuit is

where �(t) is the applied voltage. Suppose that RC � 0.2 s and that the
capacitor voltage is initially 2 V. Suppose also that the applied voltage
goes from 0 to 10 V at t � 0. Plot the voltage y(t) for 0 � t � 1 s.

24. The following equation describes the temperature T(t) of a certain object
immersed in a liquid bath of constant temperature Tb.

Suppose the object’s temperature is initially T(0) � 70�F and the bath
temperature is Tb � 170�F.
a. How long will it take for the object’s temperature T to reach the bath

temperature?
b. How long will it take for the object’s temperature T to reach 168�F?
c. Plot the object’s temperature T(t) as a function of time.

25.* The equation of motion of a rocket-propelled sled is, from Newton’s law,

where m is the sled mass, f is the rocket thrust, and c is an air resistance
coef cient. Suppose that m � 1000 kg and c � 500 N � s/m. Suppose also
that �(0) � 0 and f � 75,000 N for t � 0. Determine the speed of the sled
at t � 10 s.

26. The following equation describes the motion of a mass connected to a
spring, with viscous friction on the surface.

Plot y(t) for y(0) � 10, if

a. m � 3, c � 18, and k � 102
b. m � 3, c � 39 and k � 120

27. The equation for the voltage y across the capacitor of an RC circuit is

where �(t) is the applied voltage. Suppose that RC � 0.2 s and that the
capacitor voltage is initially 2 V. Suppose also that the applied voltage is
� (t) � 10[2 – e–t sin(5�t)] V. Plot the voltage y(t) for 0 � t � 5 s.

RC

dy

dt
+ y = �(t)

y
#

(0) = 5

my
$

+ cy
#

+ ky = 0

m�
.

= f - c�

10
dT

dt
+ T = Tb

RC
dy

dt
+ y = �(t)

Problems 413

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 413

www.EBooksWorld.ir

28. The equation describing the water height h in a spherical tank with a drain
at the bottom is

Suppose the tank’s radius is r � 3 m and the circular drain hole has a
radius of 2 cm. Assume that Cd � 0.5 and that the initial water height is
h(0) � 5 m. Use g � 9.81 m/s2.
a. Use an approximation to estimate how long it takes for the tank to

empty.
b. Plot the water height as a function of time until h(t) � 0.

29. The following equation describes a certain dilution process, where y(t)
is the concentration of salt in a tank of freshwater to which salt brine is
being added.

Suppose that y(0) � 0. Plot y(t) for 0 � t � 10.

Section 9.4
30. The following equation describes the motion of a certain mass connected

to a spring, with viscous friction on the surface

where f (t) is an applied force. Suppose that f (t) � 0 for t � 0 and f (t) �
10 for t � 0.
a. Plot y(t) for

b. Plot y(t) for y(0) � 0 and Discuss the effect of the nonzero
initial velocity.

31. The following equation describes the motion of a certain mass connected
to a spring, with viscous friction on the surface

where f (t) is an applied force. Suppose that f(t) � 0 for t � 0 and f(t) � 10
for t � 0.
a. Plot y(t) for

b. Plot y(t) for y(0) � 0 and Discuss the effect of the nonzero
initial velocity.

32. The following equation describes the motion of a certain mass connected
to a spring, with no friction

3y
$

+ 75y = f(t)

y
#

(0) = 10.

y(0) = y
#

(0) = 0.

3y
$

+ 39y
#

+ 120y = f(t)

y
#

(0) = 10.

y(0) = y
#

(0) = 0.

3y
$

+ 18y
#

+ 102y = f(t)

dy

dt
+

5

10 + 2t
 y = 4

�(2rh - h2)

dh

dt
= -CdA12gh

414 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 414

www.EBooksWorld.ir

Problems 415

where f(t) is an applied force. Suppose the applied force is sinusoidal with
a frequency of � rad/s and an amplitude of 10 N: f (t) � 10 sin(� t).
Suppose that the initial conditions are Plot y(t) for 0
t 20 s. Do this for the following three cases. Compare the results of
each case.

a. � � 1 rad/s
b. � � 5 rad/s
c. � � 10 rad/s

33. Van der Pol’s equation has been used to describe many oscillatory
processes. It is

Plot y(t) for � � 1 and 0 � t � 20, using the initial conditions y(0) � 5,

34. The equation of motion for a pendulum whose base is accelerating hori-
zontally with an acceleration a(t) is

Suppose that g � 9.81 m/s2, L � 1 m, and Plot (t) for 0 �
t � 10 s for the following three cases.

a. The acceleration is constant: a � 5 m/s2, and (0) � 0.5 rad.
b. The acceleration is constant: a � 5 m/s2, and (0) � 3 rad.
c. The acceleration is linear with time: a � 0.5t m/s2, and (0) � 3 rad.

35. Van der Pol’s equation is

This equation is stiff for large values of the parameter �. Compare the
performance of ode45 and ode15s for this equation. Use � � 1000
and 0 � t � 3000, with the initial conditions y(0) � 2, Plot
y(t) versus t.

Section 9.5
36. The equations for an armature-controlled dc motor are the following. The

motor’s current is i and its rotational velocity is �.

(9.6–1)

(9.6–2)

where L, R, and I are the motor’s inductance, resistance, and inertia; KT

and Ke are the torque constant and back emf constant; c is a viscous
damping constant; and � (t) is the applied voltage.

I
d�

dt
= KTi - c�

L
di

dt
= -Ri - Ke� + �(t)

y
#

(0) = 0.

y
..

- �(1 - y2)y
.

+ y = 0

.
(0) = 0.

L
..

+ g sin = a(t) cos

y
#

(0) = 0.

y
..

- �(1 - y2)y
.

+ y = 0

…

…y(0) = y
.
(0) = 0.

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 415

www.EBooksWorld.ir

Use the values R � 0.8 �, L � 0.003 H, KT � 0.05 N � m/A, Ke �
0.05 V � s/rad, c � 0, and I � 8 � 10–5 kg � m2.
a. Suppose the applied voltage is 20 V. Plot the motor’s speed and

current versus time. Choose a nal time lar ge enough to show the
motor’s speed becoming constant.

b. Suppose the applied voltage is trapezoidal as given below.

Plot the motor’s speed versus time for 0 � t � 0.3 s. Also plot the applied
voltage versus time. How well does the motor speed follow a trapezoidal
pro le?

37. Compute and plot the unit-impulse response of the following model.

38. Compute and plot the unit-step response of the following model.

39.* Find the reduced form of the following state model.

40. The following state model describes the motion of a certain mass con-
nected to a spring, with viscous friction on the surface, where m � 1,
c � 2, and k � 5.

a. Use the initial function to plot the position x1 of the mass, if the
initial position is 5 and the initial velocity is 3.

b. Use the step function to plot the step response of the position and
velocity for zero initial conditions, where the magnitude of the step
input is 10. Compare your plot with that shown in Figure 9.5–1.

41. Consider the following equation.

a. Plot the free response for the initial conditions y(0) � 10,
b. Plot the unit-step response (for zero initial conditions).

y
#

(0) = -5.

5y
$

+ 2y
#

+ 10y = f(t)

cx
#

1

x
#

2
d = c 0 1

-5 -2
d cx1

x2
d + c0

1
d f(t)

cx
#

1

x
#

2
d = c -4 -1

2 -3
d cx1

x2
d + c2

5
d u(t)

10y
..

+ 6y
.

+ 2y = f + 7f
.

10y
$

+ 3y
#

+ 7y = f(t)

�(t) = μ
400t

20

-400(t - 0.2) + 20

0

 0 … t 6 0.05

0.05 … t … 0.2

0.2 6 t … 0.25

 t 7 0.25

416 CHAPTER 9 Numerical Methods for Calculus and Differential Equations

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 416

www.EBooksWorld.ir

c. The total response to a step input is the sum of the free response and
the step response. Demonstrate this fact for this equation by plotting
the sum of the solutions found in parts a and b and comparing the
plot with that generated by solving for the total response with
y(0) � 10,

42. The model for the RC circuit shown in Figure P42 is

For RC � 0.2 s, plot the voltage response �o(t) for the case where the
applied voltage is a single square pulse of height 10 V and duration 0.4 s,
starting at t � 0. The initial capacitor voltage is zero.

RC

d�o

dt
+ �o = �i

y
#

(0) = -5.

Problems 417

R

Cvi vo

+

–

Figure P42

pal34870_ch09_368-417.qxd 1/5/10 10:16 PM Page 417

www.EBooksWorld.ir

An embedded control system is a microprocessor and sensor suite de-
signed to be an integral part of a product. The aerospace and automotive
industries have used embedded controllers for some time, but the de-

creasing cost of components now makes embedded controllers feasible for more
consumer and biomedical applications.

For example, embedded controllers can greatly increase the performance of
orthopedic devices. One model of an arti cial leg now uses sensors to measure
in real time the walking speed, the knee joint angle, and the loading due to the
foot and ankle. These measurements are used by the controller to adjust the
hydraulic resistance of a piston to produce a more stable, natural, and ef cient
gait. The controller algorithms are adaptive in that they can be tuned to an indi-
vidual’s characteristics and their settings changed to accommodate different
physical activities.

Engines incorporate embedded controllers to improve ef ciency . Embedded
controllers in new active suspensions use actuators to improve on the perfor-
mance of traditional passive systems consisting only of springs and dampers.
One design phase of such systems is hardware-in-the-loop testing, in which the
controlled object (the engine or vehicle suspension) is replaced with a real-time
simulation of its behavior. This enables the embedded system hardware and soft-
ware to be tested faster and less expensively than with the physical prototype,
and perhaps even before the prototype is available.

Simulink is often used to create the simulation model for hardware-in-the-loop
testing. The Control Systems and the Signal Processing toolboxes, and the DSP
and Fixed Point block sets, are also useful for such applications. ■

Nick Koudis/Getty Images/RF

Engineering in the
21st Century. . .

Embedded Control Systems

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 418

www.EBooksWorld.ir

419

C H A P T E R 10

Simulink
OUTLINE
10.1 Simulation Diagrams

10.2 Introduction to Simulink

10.3 Linear State-Variable Models

10.4 Piecewise-Linear Models

10.5 Transfer-Function Models

10.6 Nonlinear State-Variable Models

10.7 Subsystems

10.8 Dead Time in Models

10.9 Simulation of a Nonlinear Vehicle Suspension Model

10.10 Summary

Problems

Simulink is built on top of MATLAB, so you must have MATLAB to use
Simulink. It is included in the Student Edition of MATLAB and is also available
separately from The MathWorks, Inc. Simulink is widely used in industry to
model complex systems and processes that are dif cult to model with a simple
set of differential equations.

Simulink provides a graphical user interface that uses various types of ele-
ments called blocks to create a simulation of a dynamic system, that is, a system
that can be modeled with differential or difference equations whose independent
variable is time. For example, one block type is a multiplier, another performs a
sum, and still another is an integrator. The Simulink graphical interface enables
you to position the blocks, resize them, label them, specify block parameters, and
interconnect the blocks to describe complicated systems for simulation.

This chapter starts with simulations of simple systems that require few blocks.
Gradually, through a series of examples, more block types are introduced. The

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 419

www.EBooksWorld.ir

chosen applications require only a basic knowledge of physics and thus can be
appreciated by readers from any engineering or scienti c discipline. By the time
you have nished this chapter , you will have seen the block types needed to sim-
ulate a large variety of common applications.

10.1 Simulation Diagrams
You develop Simulink models by constructing a diagram that shows the elements
of the problem to be solved. Such diagrams are called simulation diagrams or
block diagrams. Consider the equation y

.
� 10 f (t). Its solution can be represented

symbolically as

which can be thought of as two steps, using an intermediate variable x:

This solution can be represented graphically by the simulation diagram shown in
Figure 10.1–1a. The arrows represent the variables y, x, and f. The blocks represent
cause-and-effect processes. Thus, the block containing the number 10 represents
the process x(t)�10f(t), where f(t) is the cause (the input) and x(t) represents the
effect (the output). This type of block is called a multiplier or gain block.

The block containing the integral sign represents the integration process
where is the cause (the input) and y(t) represents the effect

(the output). This type of block is called an integrator block.
There is some variation in the notation and symbols used in simulation dia-

grams. Figure 10.1–1b shows one variation. Instead of being represented by a
box, the multiplication process is now represented by a triangle like that used to
represent an electrical ampli er , hence the name gain block.

In addition, the integration symbol in the integrator block has been replaced
by the operator symbol which derives from the notation used for the Laplace
transform (see Section 11.7 for a discussion of this transform). Thus the equation

is represented by sy �10 f, and the solution is represented as

or as the two equations

x = 10 f and y =

1
s

x

y =

10 f

s

y. = 10 f(t)

1/s,

x(t)y(t) = 1

x(t) dt,

1

x(t) = 10 f (t) and y(t) =

L
x(t) dt

y(t) =

L
10 f (t) dt

420 CHAPTER 10 Simulink

BLOCK DIAGRAM

GAIN BLOCK

INTEGRATOR
BLOCK

(a) (b)

10
f (t)

∫
x(t) y(t) 1

s10
f x y

Figure 10.1–1 Simulation diagrams for .y. = 10 f(t)

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 420

www.EBooksWorld.ir

Another element used in simulation diagrams is the summer that, despite its
name, is used to subtract as well as to sum variables. Two versions of its symbol
are shown in Figure 10.1–2a. In each case the symbol represents the equation

Note that a plus or minus sign is required for each input arrow.
The summer symbol can be used to represent the equation

which can be expressed as

or as

You should study the simulation diagram shown in Figure 10.1–2b to con rm
that it represents this equation. This gure forms the basis for developing a
Simulink model to solve the equation.

10.2 Introduction to Simulink
Type simulink in the MATLAB Command window to start Simulink. The
Simulink Library Browser window opens. See Figure 10.2–1. The Simulink
blocks are located in “libraries.” These libraries are displayed under the Simulink
heading in Figure 10.2–1. Depending on what other MathWorks products are
installed, you might see additional items in this window, such as the Control
System Toolbox and State ow . These provide additional Simulink blocks, which
can be displayed by clicking on the plus sign to the left of the item. As Simulink
evolves through new versions, some libraries are renamed and some blocks are
moved to different libraries, so the library we specify here might change in later
releases. The best way to locate a block, given its name, is to type its name in the
search pane at the top of the Simulink Library Browser. When you press Enter,
Simulink will take you to the block location.

To create a new model, click on the icon that resembles a clean sheet of
paper, or select New from the File menu in the browser. A new Untitled window
opens for you to create the model. To select a block from the Library Browser,
double-click on the appropriate library, and a list of blocks within that library
then appears as shown in Figure 10.2–1. This gure shows the result of clicking
on the Continuous library, then clicking on the Integrator block.

y =

1
s

(f - 10y)

y(t) =

L
[f (t) - 10y] dt

y
.

= f (t) - 10y,
z = x - y.

10.2 Introduction to Simulink 421

(a)

zx

�

�

y

zx

y

����

(b)

1
s

10

yf

Figure 10.1–2 (a) The summer element. (b) Simulation diagram for
y. = f (t) - 10y.

SUMMER

LIBRARY
BROWSER

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 421

www.EBooksWorld.ir

Click on the block name or icon, hold the mouse button down, drag the block
to the new model window, and release the button. You can access help for that
block by right-clicking on its name or icon and selecting Help from the drop-
down menu.

Simulink model les have the extension . mdl. Use the File menu in the
model window to Open, Close, and Save model les. To print the block diagram
of the model, select Print on the File menu. Use the Edit menu to copy, cut, and
paste blocks. You can also use the mouse for these operations. For example, to
delete a block, click on it and press the Delete key.

Getting started with Simulink is best done through examples, which we now
present.

Simulink Solution of

Use Simulink to solve the following problem for

The exact solution is y (t) � 10(1 – cos t).

dy

dt
= 10 sin t y(0) = 0

0 … t … 13.

#y = 10 sin t

422 CHAPTER 10 Simulink

Figure 10.2–1 The Simulink Library Browser.

EXAMPLE 10.2–1

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 422

www.EBooksWorld.ir

■ Solution
To construct the simulation, do the following steps. Refer to Figure 10.2–2. Figure 10.2–3
shows the Model window after completing the following steps.

1. Start Simulink and open a new model window as described previously.
2. Select and place in the new window the Sine Wave block from the Sources

library. Double-click on it to open the Block Parameters window, and make sure
the Amplitude is set to 1, the Bias to 0, the Frequency to 1, the Phase to 0, and the
Sample time to 0. Then click OK.

3. Select and place the Gain block from the Math Operations library, double-click on
it, and set the Gain value to 10 in the Block Parameters window. Then click OK.
Note that the value 10 then appears in the triangle. To make the number more
visible, click on the block, and drag one of the corners to expand the block so that
all the text is visible.

4. Select and place the Integrator block from the Continuous library, double-click
on it to obtain the Block Parameters window, and set the Initial condition to 0
[because y (0) � 0]. Then click OK.

5. Select and place the Scope block from the Sinks library.
6. Once the blocks have been placed as shown in Figure 10.2–2, connect the input

port on each block to the outport port on the preceding block. To do this, move the
cursor to an input port or an output port; the cursor will change to a cross. Hold the
mouse button down, and drag the cursor to a port on another block. When you release
the mouse button, Simulink will connect them with an arrow pointing at the input
port. Your model should now look like that shown in Figure 10.2–2.

7. Enter 13 for the Stop time in the window to the right of the Start Simulation icon
(the black triangle). See Figure 10.2–3. The default value is 10, which can be
deleted and replaced with 13.

10.2 Introduction to Simulink 423

ScopeIntegratorSine Wave Gain

10
1
s

Figure 10.2–2 Simulink model for y. = 10 sin t.

Figure 10.2–3 The Simulink Model window showing the model created in Example 10.2–1.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 423

www.EBooksWorld.ir

8. Run the simulation by clicking on the Start Simulation icon on the toolbar.
9. You will hear a bell sound when the simulation is nished. Then double-click on

the Scope block and click on the binoculars icon in the Scope display to enable
autoscaling. You should see an oscillating curve with an amplitude of 10 and a period
of 2� (Figure 10.2–4). The independent variable in the Scope block is time t; the
input to the block is the dependent variable y. This completes the simulation.

In the Con guration Parameters submenu under the Simulation menu,
you can select the ODE solver to use by clicking on the Solver tab. The default
is ode45, as indicated in the lower right-hand corner of the Model window.

To have Simulink automatically connect two blocks, select the Source block,
hold down the Ctrl key, and left-click on the Destination block. Simulink also pro-
vides easy ways to connect multiple blocks and lines; see the Help for information.

Note that blocks have a Block Parameters window that opens when you
double-click on the block. This window contains several items, the number and
nature of which depend on the speci c type of block. In general, you can use the
default values of these parameters, except where we have explicitly indicated
that they should be changed. You can always click on Help within the Block
Parameters window to obtain more information.

When you click on Apply, any changes immediately take effect and the window
remains open. If you click on OK, the changes take effect but the window closes.

Note that most blocks have default labels. You can edit text associated with
a block by clicking on the text and making the changes. You can save the
Simulink model as an .mdl le by selecting Save from the File menu in
Simulink. The model le can then be reloaded at a later time. You can also print
the diagram by selecting Print on the File menu.

424 CHAPTER 10 Simulink

Figure 10.2–4 The Scope window after running the
model in Example 10.2–1.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 424

www.EBooksWorld.ir

The Scope block is useful for examining the solution, but if you want to
obtain a labeled and printed plot, you can use the To Workspace block, which is
described in the next example.

Exporting to the MATLAB Workspace

We now demonstrate how to export the results of the simulation to the MATLAB
workspace, where they can be plotted or analyzed with any of the MATLAB functions.

■ Solution
Modify the Simulink model constructed in Example 10.2–1 as follows. Refer to Fig-
ure 10.2–5.

1. Delete the arrow connecting the Scope block by clicking on it and pressing the
Delete key. Delete the Scope block in the same way.

2. Select and place the To Workspace block from the Sinks library and the Clock
block from the Sources library.

3. Select and place the Mux block from the Signal Routing library, double-click on it,
and set the Number of inputs to 2. Click OK. (The name Mux is an abbreviation for
multiplexer, which is an electrical device for combining several signals.)

4. Connect the top input port of the Mux block to the output port of the Integrator
block. Then use the same technique to connect the bottom input port of the Mux
block to the outport port of the Clock block. Your model should now look like that
shown in Figure 10.2–5.

5. Double-click on the To Workspace block. You can specify any variable name you
want as the output; the default is simout. Change its name to y. The output vari-
able y will have as many rows as there are simulation time steps, and as many
columns as there are inputs to the block. The second column in our simulation will
be time, because of the way we have connected the Clock to the second input port
of the Mux. Specify the Save format as Array. Use the default values for the other
parameters (these should be inf, 1, and -1 for Limit data points to last: Decima-
tion, and Sample time, respectively). Click on OK.

10.2 Introduction to Simulink 425

EXAMPLE 10.2–2

To WorkspaceClock

y

IntegratorSine Wave Gain

10
1
s

Figure 10.2–5 Simulink model using the Clock and To
Workspace blocks.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 425

www.EBooksWorld.ir

6. After running the simulation, you can use the MATLAB plotting commands from
the Command window to plot the columns of y (or simout in general). To plot
y (t), type in the MATLAB Command window

>>plot(y(:,2),y(:,1)),xlabel(‘t’),ylabel(‘y’)

Simulink can be con gured to put the time variable tout into the MATLAB
workspace automatically when you are using the To Workspace block. This is
done with the Data Import/Export menu item under Con guration Parame-
ters on the Simulation menu. The alternative is to use the Clock block to put
tout into the workspace. The Clock block has one parameter, Decimation. If
this parameter is set to 1, the Clock block will output the time every time step; if
set to 10, for example, the block will output every 10 time steps, and so on.

Simulink Model for

Construct a Simulink model to solve

where

■ Solution

To construct the simulation, do the following steps.

1. You can use the model shown in Figure 10.2–2 by rearranging the blocks as shown
in Figure 10.2–6. You will need to add a Sum block.

2. Select the Sum block from the Math Operations library and place it as shown in the
simulation diagram. Its default setting adds two input signals. To change this,
double-click on the block, and in the List of Signs window, type |+-. The signs
are ordered counterclockwise from the top. The symbol | is a spacer indicating
here that the top port is to be empty.

3. To reverse the direction of the Gain block, right-click on the block, select Format
from the pop-up menu, and select Flip Block.

4. When you connect the negative input port of the Sum block to the output port of
the Gain block, Simulink will attempt to draw the shortest line. To obtain the more

f (t) = 2 sin 4 t, for 0 … t … 3.

y. = -10y + f (t) y (0) = 1

y. = -10y + f (t)

426 CHAPTER 10 Simulink

Sine Wave

1
s

ScopeIntegrator

Gain

10

+–

Figure 10.2–6 Simulink model for y. = -10y + f(t).

EXAMPLE 10.2–3

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 426

www.EBooksWorld.ir

standard appearance shown in Figure 10.2–6, rst extend the line vertically down
from the Sum input port. Release the mouse button, and then click on the end of the
line and attach it to the Gain block. The result will be a line with a right angle. Do
the same to connect the input of the Gain block to the arrow connecting the Integra-
tor and the Scope blocks. A small dot appears to indicate that the lines have been
successfully connected. This point is called a takeoff point because it takes the
value of the variable represented by the arrow (here, the variable y) and makes that
value available to another block.

5. Set the Stop time to 3.

6. Run the simulation as before and observe the results in the Scope.

10.3 Linear State-Variable Models
State-variable models, unlike transfer-function models, can have more than one
input and more than one output. Simulink has the State-Space block that rep-
resents the linear state-variable model x. �Ax�Bu, y � Cx � Du. (See Section 9.5
for discussion of this model form.) The vector u represents the inputs, and the vec-
tor y represents the outputs. Thus, when you are connecting inputs to the State-
Space block, care must be taken to connect them in the proper order. Similar care
must be taken when connecting the block’s outputs to another block. The follow-
ing example illustrates how this is done.

Simulink Model of a Two-Mass Suspension System

The following are the equations of motion of the two-mass suspension model shown in
Figure 10.3–1.

Develop a Simulink model of this system to obtain the plots of x1 and x2. The input y(t) is
a unit step function, and the initial conditions are zero. Use the following values: m1 �

250 kg, m2 � 40 kg, k1 � 1.5 � 104 N/m, k2 � 1.5 � 105 N/m, and c1 � 1917 N s/m.

■ Solution
The equations of motion can be expressed in state-variable form by letting z1 � x1,
z2 � x�1, z3 � x2, z4 � x�2. The equations of motion become

 z
#

3 = z4 z
#

4 =

1

m2
[k1z1 + c1z2 - (k1 + k2)z3 - c1z4 + k2y]

 z
#

1 = z2 z
#

2 =

1

m1
(-k1z1 - c1z2 + k1z3 + c1z4)

#

m2x
$

2 = -k1(x2 - x1) - c1(x
#

2 - x
#

1) + k2(y - x2)

m1x
$

1 = k1(x2 - x1) + c1(x
#

2 - x
#

1)

10.3 Linear State-Variable Models 427

EXAMPLE 10.3–1

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 427

www.EBooksWorld.ir

These equations are expressed in vector-matrix form as

where

and

To simplify the notation, let ,
and The matrices A and B become

Next select appropriate values for the matrices in the output equation y � Cz � By(t).
Because we want to plot x1 and x2, which are z1 and z3, we must use the following
matrices for C and D.

C = c1 0 0 0

0 0 1 0
d D = c0

0
d

B = ≥
0

0

0

a5

¥A = ≥
0 1 0 0

-a1 -a2 a1 a2

0 0 0 1

a3 a4 -a6 -a4

¥

a6 = a3 + a5.
a1 = k1>m1, a2 = c1>m1, a3 = k1>m2, a4 = c1>m2, a5 = k2>m2

z = ≥
z1

z2

z3

z4

¥ = ≥
x1

x
#

1

x2

x
#

2

¥

B = ≥
0

0

0
k2

m2

¥A = ≥
0 1 0 0

-
k1

m1
-

c1

m1

k1

m1

c1

m1

0 0 0 1
k1

m2

c1

m2
-

k1 + k2

m2
-

c1

m2

¥

z# = Az + By(t)

428 CHAPTER 10 Simulink

m1

m2

x1

x2

k1

k2

c1

Body

Suspension

Wheel

y

Road

Datum level

Figure 10.3–1 Two-mass suspension model.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 428

www.EBooksWorld.ir

10.3 Linear State-Variable Models 429

Step ScopeState-Space

x' = Ax+Bu
y = Cx+Du

Figure 10.3–2 Simulink model containing
the State-Space block and Step block.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

D
is

pl
ac

em
en

t (
m

)

x2

x1

Figure 10.3–3 Unit-step response of the two-mass suspension model.

Note that the dimensions of B tell Simulink that there is one input. The dimensions of C
and D tell Simulink that there are two outputs.

Open a new model window, and then do the following to create the model shown in
Figure 10.3–2.

1. Select and place the Step block from the Sources library. Double-click on it to open
the Block Parameters window, and set the Step Time to 0, the Initial Value to 0, and
the Final Value to 1. Do not change the default value of any other parameters in this
window. Click OK. The Step Time is the time at which the step input begins.

2. Select and place the State-Space block from the Continuous library. Open its Block
Parameters window and enter the following values for the matrices A, B, C, and D.
For A enter

[0, 1, 0, 0; �a1,�a2, a1, a2; 0, 0, 0, 1; a3, a4, �a6, �a4]

For B enter [0; 0; 0; a5]. For C enter [1, 0, 0, 0; 0, 0, 1, 0], and
for D enter [0; 0]. Then enter [0; 0; 0; 0] for the initial conditions. Click OK.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 429

www.EBooksWorld.ir

3. Select and place the Scope block from the Sinks library.
4. Connect the input and output ports as shown in Figure 10.3–2, and save the model.
5. In the Workspace window enter the parameter values and compute the ai constants as

shown in the following session.

>>m1 = 250; m2 = 40; k1 = 1.5e+4;
>>k2 = 1.5e+5; c1 =1917;
>>a1 = k1/m1; a2 = c1/m1; a3 = k1/m2;
>>a4 = c1/m2; a5 = k2/m2; a6 = a3 + a5;

6. Experiment with different values of Stop Time until the Scope shows that steady state
has been reached. Using this method a Stop Time of 1 s was found to be satisfactory.
The plots of both x1 and x2 will appear in the Scope. The default ode45 solver gave
jagged lines for the x2 plot, so the ode15s solver was used instead. A To Workspace
block can be added to obtain the plot in MATLAB. Figure 10.3–3 was created in
this way.

10.4 Piecewise-Linear Models
Unlike linear models, closed-form solutions are not available for most nonlinear
differential equations, and we must therefore solve such equations numerically.
A nonlinear ordinary differential equation can be recognized by the fact that the
dependent variable or its derivatives appear raised to a power or in a transcen-
dental function. For example, the following equations are nonlinear.

Piecewise-linear models are actually nonlinear, although they may appear to
be linear. They are composed of linear models that take effect when certain
conditions are satis ed. The effect of switching back and forth between these
linear models makes the overall model nonlinear. An example of such a model is
a mass attached to a spring and sliding on a horizontal surface with Coulomb
friction. The model is

These two linear equations can be expressed as the single, nonlinear equation

Solutions of models that contain piecewise-linear functions are very tedious
to program. However, Simulink has built-in blocks that represent many of the
commonly found functions such as Coulomb friction. Therefore Simulink is
especially useful for such applications. One such block is the Saturation block in
the Discontinuities library. The block implements the saturation function shown
in Figure 10.4–1.

mx
$

+ kx = f(t) - �mg sign(x
#

) where sign(x
#

) = e +1 if x
#

Ú 0

-1 if x
#

6 0

mx
$

+ kx = e f(t) - �mg if x
#

Ú 0

f(t) + �mg if x
#

6 0

yy
$

+ 5y
#

+ y = 0 y
#

+ sin y = 0 y
#

+ 1y = 0

430 CHAPTER 10 Simulink

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 430

www.EBooksWorld.ir

10.4 Piecewise-Linear Models 431

Output

Upper Limit

Lower Limit

Input

Slope � 1

Figure 10.4–1 The saturation nonlinearity.

EXAMPLE 10.4–1Simulink Model of a Rocket-Propelled Sled

A rocket-propelled sled on a track is represented in Figure 10.4–2 as a mass m with an ap-
plied force f that represents the rocket thrust. The rocket thrust initially is horizontal, but
the engine accidentally pivots during ring and rotates with an angular acceleration of

rad/s. Compute the sled’s velocity � for if . The rocket
thrust is 4000 N and the sled mass is 450 kg.

The sled’s equation of motion is

To obtain , note that

	
#

=

L

t

0
	

##

dt =

�

50
t

	(t)

450�
#

= 4000 cos 	(t)

�(0) = 00 … t … 6	
$

= �>50

v

f
�

m

Figure 10.4–2 A rocket-propelled sled.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 431

www.EBooksWorld.ir

and

Thus the equation of motion becomes

or

The solution is formally given by

Unfortunately, no closed-form solution is available for the integral, which is called
Fresnel’s cosine integral. The value of the integral has been tabulated numerically, but we
will use Simulink to obtain the solution.
(a) Create a Simulink model to solve this problem for
(b) Now suppose that the engine angle is limited by a mechanical stop to 60
, which is
60�/180 rad. Create a Simulink model to solve the problem.

■ Solution
(a) There are several ways to create the input function . Here we note that

rad/s and that

and

Thus we can create by integrating the constant twice. The simulation dia-
gram is shown in Figure 10.4–3. This diagram is used to create the corresponding
Simulink model shown in Figure 10.4–4.

There are two new blocks in this model. The Constant block is in the Sources
library. After placing it, double-click on it and type pi/50 in its Constant Value
window.

The Trigonometric block is in the Math Operations library. After placing it, double-
click on it and select cos in its Function window.

	
..

= �/50	(t)

	 =

L

t

0
	
.

dt =

�

100
t2

	
.

=

L

t

0
	
..

 dt

	
..

= �/50
	 = (�/100)t2

0 … t … 10 s.

�(t) =

80

9

L

t

0
cos a �

100
t2b dt

�
.

=

80

9
 cos a �

100
t2b

450�
.

= 4000 cos a �

100
t2b

	 =

L

t

0
	
.

dt =

L

t

0

�

50
t dt =

�

100
t2

432 CHAPTER 10 Simulink

1
s

80
9

	̈ 1
s

	̇ 	 1
s

vv
cos

Figure 10.4–3 Simulation diagram for � = (80/9)cos(�t2/100).

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 432

www.EBooksWorld.ir

Set the Stop Time to 10, run the simulation, and examine the results in the Scope.
(b) Modify the model in Figure 10.4–4 as follows to obtain the model shown in Fig-

ure 10.4–5. We use the Saturation block in the Discontinuities library to limit the range
of rad. After placing the block as shown in Figure 10.4–5, double-click
on it and type 60*pi/180 in its Upper Limit window. Then type 0 in its Lower Limit
window.

Enter and connect the remaining elements as shown, and run the simulation. The
upper Constant block and Integrator block are used to generate the solution when the en-
gine angle is , as a check on our results. [The equation of motion for is

which gives]
If you prefer, you can substitute a To Workspace block for the Scope. Then you

can plot the results in MATLAB. The resulting plot is shown in Figure 10.4–6.

The Relay Block
The Simulink Relay block is an example of something that is tedious to program
in MATLAB but is easy to implement in Simulink. Figure 10.4–7a is a graph of
the logic of a relay. The relay switches the output between two speci ed values,
named On and Off in the gure. Simulink calls these values “Output when on”
and “Output when off.” When the relay output is On, it remains On until the
input drops below the value of the Switch-off point parameter, named SwOff in
the gure. When the relay output is Off, it remains Off until the input exceeds the
value of the Switch-on point parameter, named SwOn in the gure.

The Switch-on point parameter value must be greater than or equal to the
Switch-off point value. Note that the value of Off need not be zero. Note also that
the value of Off need not be less than the value of On. The case where Off > On is

�(t) = 80t>9.�
.

= 80>9,
	 = 0	 = 0

	 to 60�/180

10.4 Piecewise-Linear Models 433

ScopeIntegrator 1 Trigonometric
Function

cos

Integrator 2Gain

80/9

IntegratorConstant

pi/50 1
s

1
s

1
s

Figure 10.4–4 Simulink model for � = (80/9)cos(�t2/100).

Scope

Trigonometric
Function

cos 1
s

Integrator 2Gain

80/9

Saturation

1
s

Integrator 3Constant 1

80/9

1
s

Integrator 1

1
s

IntegratorConstant

pi/50

Figure 10.4–5 Simulink model for with a Saturation block.� = (80/9)cos(�t2/100)

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 433

www.EBooksWorld.ir

shown in Figure 10.4–7b. As we will see in the following example, it is some-
times necessary to use this case.

Model of a Relay-Controlled Motor

The model of an armature-controlled dc motor was discussed in Section 9.5. See Fig-
ure 10.4–8. The model is

I
d�

dt
= KT i - c� - Td (t)

L
di

dt
= -Ri - Ke� + �(t)

434 CHAPTER 10 Simulink

0 1 2 3 4 5 6
0

10

20

30

40

50

60

t (s)

v(
t)

 (
m

/s
)

	 = 0

	 ≠ 0

Figure 10.4–6 Speed response of the sled for 	 = 0 and 	 � 0.

On

Off

SwOnSwOff

Off

On
SwOnSwOff

(a) (b)

Figure 10.4–7 The relay function. (a) The case where
On > Off. (b) The case where On < Off.

EXAMPLE 10.4–2

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 434

www.EBooksWorld.ir

where the model now includes a torque acting on the motor shaft due, for example,
to some unwanted source such as Coulomb friction or wind gusts. Control system engi-
neers call this a disturbance. These equations can be put into matrix form as follows,
where .

Use the values
and .

Suppose we have a sensor that measures the motor speed, and we use the sensor’s
signal to activate a relay to switch the applied voltage �(t) between 0 and 100 V to keep
the speed between 250 and 350 rad/s. This corresponds to the relay logic shown in
Figure 10.4–7b, with SwOff � 250, SwOn � 350, Off � 100, and On � 0. Investigate
how well this scheme will work if the disturbance torque is a step function that increases
from 0 to 3 N m, starting at t � 0.05 s. Assume that the system starts from rest with

.

■ Solution
For the given parameter values,

To examine the speed as output, we choose C � [0, 1] and D � [0, 0]. To create this
simulation, rst obtain a new model window . Then do the following.

1. Select and place in the new window the Step block from the Sources library. Label
it Disturbance Step as shown in Figure 10.4–9. Double-click on it to obtain the
Block Parameters window, and set the Step Time to 0.05, the Initial and Final values
to 0 and 3, and the Sample time to 0. Click OK.

�

B = c500 0

0 -16 667
dA = c -300 -20

666.7 -166.7
d

�(0) = 0 and i(0) = 0

#

I = 6 * 10- 5 kg # m2c = 0.01 N # m # s/rad,
L = 0.002 H, KT = 0.04 N # m/A, Ke = 0.04 V # s/rad,R = 0.6 ,

c � (t)

Td (t) d+ ≥
1

L
0

0 -

1

I

¥cx1

x2
d= ≥

-

R

L
-

Ke

L
KT

I
-

c

I

¥cx
.
1

x.2
d

x1 = i and x2 = �

Td (t)

10.4 Piecewise-Linear Models 435

R

v

i

Ke I

T = KTi

c

L

+

–

ω

ω

ω

Figure 10.4–8 An armature-controlled dc motor.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 435

www.EBooksWorld.ir

2. Select and place the Relay block from the Discontinuities library. Double-click on
it, and set the Switch-on and Switch-off points to 350 and 250, and set the Output
when on and Output when off to 0 and 100. Click OK.

3. Select and place the Mux block from the Signal Routing library. The Mux block
combines two or more signals into a vector signal. Double-click on it, and set the
Display option to signals. Click OK. Then click on the Mux icon in the model win-
dow, and drag one of the corners to expand the box so that all the text is visible.

4. Select and place the State-Space block from the Continuous library. Double-click on
it, and enter [-300, -20; 666.7, -166.7] for A, [500, 0; 0, -16667]
for B, [0, 1] for C, and [0, 0] for D. Then enter [0; 0] for the initial condi-
tions. Click OK. Note that the dimension of the matrix B tells Simulink that there
are two inputs. The dimensions of the matrices C and D tell Simulink that there is
one output.

5. Select and place the Scope block from the Sinks library.
6. Once the blocks have been placed, connect the input port on each block to the

outport port on the preceding block as shown in the gure. It is important to connect
the top port of the Mux block [which corresponds to the rst input, (t)] to the
output of the Relay block, and to connect the bottom port of the Mux block [(which
corresponds to the second input, Td(t)] to the output of the Disturbance Step block.

7. Set the Stop time to 0.1 (which is simply an estimate of how long is needed to
see the complete response), run the simulation, and examine the plot of in the
Scope. You should see something like Figure 10.4–10. If you want to examine the
current i(t), change the matrix C to [1, 0] and run the simulation again.

The results show that the relay logic control scheme keeps the speed within the desired
limits of 250 and 350 before the disturbance torque starts to act. The speed oscillates be-
cause when the applied voltage is zero, the speed decreases as a result of the back-emf
and the viscous damping. The speed drops below 250 when the disturbance torque starts
to act, because the applied voltage is 0 at that time. As soon as the speed drops below 250,

�(t)

�

436 CHAPTER 10 Simulink

Disturbance
Step

Relay

Mux State-Space Scope

signal1
x' = Ax+Bu
 y = Cx+Du

signal2

Figure 10.4–9 Simulink model of a relay-controlled motor.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 436

www.EBooksWorld.ir

the relay controller switches the voltage to 100, but it now takes longer for the speed to
increase because the motor torque must now work against the disturbance.

Note that the speed becomes constant, instead of oscillating. This is so because with
, the system achieves a steady-state condition in which the motor torque equals

the sum of the disturbance torque and the viscous damping torque. Thus the acceleration
is zero.

One practical use of this simulation is to determine how long the speed is below the
limit of 250. The simulation shows that this time is approximately 0.013 s. Other uses of
the simulation include nding the period of the speed’ s oscillation (about 0.013 s) and the
maximum value of the disturbance torque that can be tolerated by the relay controller (it
is about 3.7 N m).

10.5 Transfer-Function Models
The equation of motion of a mass-spring-damper system is

(10.5–1)

As with the Control System toolbox, Simulink can accept a system description in
transfer-function form and in state-variable form. (See Section 9.5 for a discus-
sion of these forms.) If the mass-spring system is subjected to a sinusoidal forc-
ing function f (t), it is easy to use the MATLAB commands presented thus far to
solve and plot the response y (t). However, suppose that the force f (t) is created
by applying a sinusoidal input voltage to a hydraulic piston that has a dead-zone
nonlinearity. This means that the piston does not generate a force until the input

my.. + cy. + ky = f (t)

#

� = 100

10.5 Transfer-Function Models 437

Figure 10.4–10 Scope display of the speed response of a
relay-controlled motor.

DEAD ZONE

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 437

www.EBooksWorld.ir

voltage exceeds a certain magnitude, and thus the system model is piecewise
linear.

A graph of a particular dead-zone nonlinearity is shown in Figure 10.5–1.
When the input (the independent variable on the graph) is between �0.5 and 0.5,
the output is zero. When the input is greater than or equal to the upper limit of
0.5, the output is the input minus the upper limit. When the input is less than or
equal to the lower limit of �0.5, the output is the input minus the lower limit. In
this example, the dead zone is symmetric about 0, but it need not be in general.

Simulations with dead-zone nonlinearities are somewhat tedious to program
in MATLAB, but are easily done in Simulink. The following example illustrates
how it is done.

438 CHAPTER 10 Simulink

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

Input

O
ut

pu
t

Figure 10.5–1 A dead-zone nonlinearity

Response with a Dead Zone

Create and run a Simulink simulation of a mass-spring-damper model (Equation 10.5–1)
using the parameter values m � 1, c � 2, and k � 4. The forcing function is the function
f (t) � sin 1.4t. The system has the dead-zone nonlinearity shown in Figure 10.5–1.

■ Solution
To construct the simulation, do the following steps.

1. Start Simulink and open a new Model window as described previously.

2. Select and place in the new window the Sine Wave block from the Sources library.
Double-click on it, and set the Amplitude to 1, the Frequency to 1.4, the Phase to 0,
and the Sample time to 0. Click OK.

EXAMPLE 10.5–1

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 438

www.EBooksWorld.ir

3. Select and place the Dead Zone block from the Discontinuities library, double-click
on it, and set the Start of dead zone to �0.5 and the End of dead zone to 0.5.
Click OK.

4. Select and place the Transfer Fcn block from the Continuous library, double-click on
it, and set the Numerator to [1] and the Denominator to [1, 2, 4]. Click OK.

5. Select and place the Scope block from the Sinks library.

6. Once the blocks have been placed, connect the input port on each block to the out-
port port on the preceding block. Your model should now look like Figure 10.5–2.

7. Set the Stop time to 10.

8. Run the simulation. You should see an oscillating curve in the Scope display.

It is informative to plot both the input and the output of the Transfer Fcn block versus
time on the same graph. To do this:

1. Delete the arrow connecting the Scope block to the Transfer Fcn block. Do this by
clicking on the arrow line and then pressing the Delete key.

2. Select and place the Mux block from the Signal Routing library, double-click on it,
and set the Number of inputs to 2. Click OK.

3. Connect the top input port of the Mux block to the output port of the Transfer Fcn
block. Then use the same technique to connect the bottom input port of the Mux
block to the arrow from the outport port of the Dead Zone block. Just remember to
start with the input port. Simulink will sense the arrow automatically and make the
connection. Your model should now look like Figure 10.5–3.

4. Set the Stop time to 10, run the simulation as before, and bring up the Scope display.
You should see what is shown in Figure 10.5–4. This plot shows the effect of the
dead zone on the sine wave.

10.5 Transfer-Function Models 439

Sine Wave Dead Zone Scope

1
s2+2s+4

Transfer Fcn

Figure 10.5–2 The Simulink model of dead-zone
response.

Sine Wave Dead Zone

Scope

1
s2+2s+4

Transfer Fcn

Figure 10.5–3 Modi cation of the dead-zone model to
include a Mux block.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 439

www.EBooksWorld.ir

You can bring the simulation results into the MATLAB workspace by using the To
Workspace block. For example, suppose we want to examine the effects of the dead zone
by comparing the response of the system with and without a dead zone. We can do this
with the model shown in Figure 10.5–5. To create this model:

1. Copy the Transfer Fcn block by right-clicking on it, holding down the mouse button,
and dragging the block copy to a new location. Then release the button. Copy the
Mux block in the same way.

2. Double-click on the rst Mux block and change the number of its inputs to 3.

3. In the usual way, select and place the To Workspace block from the Sinks library
and optionally the Clock box from the Sources library. Double-click on the To
Workspace block. You can specify any variable name you want as the output; the
default is simout. Change its name to y. The output variable y will have as many

440 CHAPTER 10 Simulink

Figure 10.5–4 The response of the dead-zone model.

Sine Wave Dead Zone

Scope

1
s2+2s+4

Transfer Fcn 1

1
s2+2s+4

Transfer Fcn 2

To WorkspaceMux 2

Mux 1

Clock

simout

Figure 10.5–5 Modi cation of the dead-zone model to export variables to the
MATLAB workspace.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 440

www.EBooksWorld.ir

rows as there are simulation time steps, and as many columns as there are inputs to
the block. The fourth column in our simulation will be time, because of the way we
have connected the Clock to the second Mux. Specify the Save format as Matrix. Use
the default values for the other parameters (these should be inf, 1, and -1 for Maxi-
mum number of rows, Decimation, and Sample time, respectively). Click on OK.

4. Connect the blocks as shown, and run the simulation.

5. You can use the MATLAB plotting commands from the Command window to plot
the columns of y; for example, to plot the response of the two systems and the
output of the Dead Zone block versus time, type

>>plot(y(:,4),y(:,1),y(:,4),y(:,2),y(:,4),y(:,3))

10.6 Nonlinear State-Variable Models
Nonlinear models cannot be put into transfer-function form or the state-variable
form However, they can be simulated in Simulink. The following
example shows how this can be done.

x# � Ax � Bu.

10.6 Nonlinear State-Variable Models 441

EXAMPLE 10.6–1 Model of a Nonlinear Pendulum

The pendulum shown in Figure 10.6–1 has the following nonlinear equation of motion,
if there is viscous friction in the pivot and if there is an applied moment M(t) about the
pivot

where I is the mass moment of inertia about the pivot. Create a Simulink model for this
system for the case where I � 4, mgL � 10, c � 0.8, and M(t) is a square wave with an
amplitude of 3 and a frequency of 0.5 Hz. Assume that the initial conditions are

and

■ Solution
To simulate this model in Simulink, de ne a set of variables that lets you rewrite the
equation as two rst-order equations. Thus let . Then the model can be written as

Integrate both sides of each equation over time to obtain

 � = 0.25
L

[-0.8� - 10 sin 	 + M(t)] dt

 	 =

L
� dt

 �
#

=

1

I
 [-c� - mgL sin 	 + M(t)] = 0.25[-0.8� - 10 sin 	 + M(t)]

 	
#

= �

� = 	
#

	
#

 (0) = 0.	(0) = �>4 rad

I	
$

+ c	
#

+ mgL sin 	 = M(t)

g

L

�

m

Figure 10.6–1
A pendulum.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 441

www.EBooksWorld.ir

We will introduce four new blocks to create this simulation. Obtain a new Model window
and do the following.

1. Select and place in the new window the Integrator block from the Continuous
library, and change its label to Integrator 1 as shown in Figure 10.6–2. You can
edit text associated with a block by clicking on the text and making the changes.
Double-click on the block to obtain the Block Parameters window, and set the
Initial condition to 0 [this is the initial condition]. Click OK.

2. Copy the Integrator block to the location shown and change its label to Integrator 2.
Set its initial condition to by typing pi/4 in the Block Parameters window.
This is the initial condition .

3. Select and place a Gain block from the Math Operations library, double-click on it,
and set the Gain value to 0.25. Click OK. Change its label to 1/I. Then click on the
block, and drag one of the corners to expand the box so that all the text is visible.

4. Copy the Gain box, change its label to c, and place it as shown in Figure 10.6–2.
Double-click on it, and set the Gain value to 0.8. Click OK. To ip the box left to
right, right-click on it, select Format, and select Flip.

5. Select and place the Scope block from the Sinks library.

6. For the term , we cannot use the Trig function block in the Math library
because we need to multiply the by 10. So we use the Fcn block under the
User-De ned Functions library (Fcn stands for function). Select and place this
block as shown. Double-click on it, and type 10*sin(u) in the expression win-
dow. This block uses the variable u to represent the input to the block. Click OK.
Then ip the block.

7. Select and place the Sum block from the Math Operations library. Double-click
on it, and select round for the Icon shape. In the List of Signs window, type +--.
Click OK.

sin 	
10 sin 	

	(0) = �>4
�>4

	
#

 (0) = 0

442 CHAPTER 10 Simulink

Scope

Fcn

10*sin(u)

Integrator 1 Integrator 21/I

0.25

c

0.8

––
+

Signal
Generator

1
s

1
s

Figure 10.6–2 Simulink model of nonlinear pendulum dynamics.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 442

www.EBooksWorld.ir

8. Select and place the Signal Generator block from the Sources library. Double-click
on it, select square wave for the Wave form, 3 for the Amplitude, 0.5 for the
Frequency, and Hertz for the Units. Click OK.

9. Once the blocks have been placed, connect arrows as shown in the gure.

10. Set the Stop time to 10, run the simulation, and examine the plot of in the
Scope. This completes the simulation.

10.7 Subsystems
One potential disadvantage of a graphical interface such as Simulink is that, to
simulate a complex system, the diagram can become rather large and therefore
somewhat cumbersome. Simulink, however, provides for the creation of subsystem
blocks, which play a role analogous to that of subprograms in a programming
language. A subsystem block is actually a Simulink program represented by a
single block. A subsystem block, once created, can be used in other Simulink
programs. We also introduce some other blocks in this section.

To illustrate subsystem blocks, we will use a simple hydraulic system whose
model is based on the conservation of mass principle familiar to engineers.
Because the governing equations are similar to other engineering applications,
such as electric circuits and devices, the lessons learned from this example will
enable you to use Simulink for other applications.

A Hydraulic System
The working uid in a hydraulic system is an incompressible uid such as water
or a silicon-based oil. (Pneumatic systems operate with compressible uids,
such as air.) Consider a hydraulic system composed of a tank of liquid of mass
density � (Figure 10.7–1). The tank shown in cross section in the gure is cylin-
drical with a bottom area A. A ow source dumps liquid into the tank at the mass
 ow rate qmi(t). The total mass in the tank is m � �Ah, and from conservation of
mass we have

(10.7–1)

since � and A are constants.

dm

dt
= �A

dh

dt
= qmi - qmo

	(t)

10.7 Subsystems 443

h

qmi

qmo

pa

paRA

Figure 10.7–1 A hydraulic system with a ow source.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 443

www.EBooksWorld.ir

If the outlet is a pipe that discharges to atmospheric pressure pa and provides
a resistance to ow that is proportional to the pressure dif ference across its ends,
then the outlet ow rate is

where R is called the uid resistance. Substituting this expression into Equa-
tion (10.7–1) gives the model

(10.7–2)

The transfer function is

On the other hand, the outlet may be a valve or other restriction that provides
nonlinear resistance to the ow . In such cases, a common model is the signed-
square-root (SSR) relation

where qmo is the outlet mass ow rate, R is the resistance, is the pressure
difference across the resistance, and

Note that we may express the SSR(u) function in MATLAB as follows:
sgn(u)*sqrt(abs(u)).

Consider the slightly different system shown in Figure 10.7–2, which has a
 ow source q and two pumps that supply liquid at the pressures pl and pr. Suppose

SSR(�p) = e1�p if �p Ú 0

- 1��p� if �p 6 0

�p

qmo =

1

R
 SSR(�p)

H(s)

Qmi(s)
=

1

�As + �g>R

�A

dh

dt
= qmi(t) -

�g

R
h

qmo =

1

R
[(�gh + pa) - pa] =

�gh

R

444 CHAPTER 10 Simulink

pa pa
pl

Rl Rr

pr

h

q

p
A

Figure 10.7–2 A hydraulic system with a ow source
and two pumps.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 444

www.EBooksWorld.ir

the resistances are nonlinear and obey the signed-square-root relation. Then the
model of the system is

where A is the bottom area and . The pressures pl and pr are the gauge
pressures at the left- and right-hand sides. Gauge pressure is the difference between
the absolute pressure and atmospheric pressure. Note that the atmospheric pres-
sure pa cancels out of the model because of the use of gauge pressure.

We will use this application to introduce the following Simulink elements:

■ Subsystem blocks
■ Input and output ports

You can create a subsystem block in one of two ways: by dragging the
Subsystem block from the library to the Model window or by rst creating a
Simulink model and then “encapsulating” it within a bounding box. We will
illustrate the latter method.

We will create a subsystem block for the liquid-level system shown in
Figure 10.7–2. First construct the Simulink model shown in Figure 10.7–3. The
oval blocks are Input and Output Ports (In 1 and Out 1), which are available in
the Ports and Subsystems library. Note that you can use MATLAB variables and
expressions when entering the gains in each of the four Gain blocks.

Before running the program, we will assign values to these variables in the
MATLAB Command window. Enter the gains for the four Gain blocks using the
expressions shown in the block. You may also use a variable as the Initial condi-
tion of the Integrator block. Name this variable h0.

The SSR blocks are examples of the Fcn block, which is in the User-De ned
Functions library. Double-click on the block and enter the MATLAB expression

p = �gh

�A

dh

dt
= q +

1

Rl
 SSR(pl - p) -

1

Rr
 SSR(p - pr)

10.7 Subsystems 445

1
Left Pressure

Left Resistance

Right Resistance
Right Pressure

2

SSR

SSR1

f(u)

f(u)

1/R_I

1/R_r

Mass Flow Input

1/(rho*A)

1/(rho*A) rho*g

rho*g

Integrator

2
Liquid
Height

Bottom
Pressure

1

3

1
s

+–

+
–

++

–+

Figure 10.7–3 Simulink model of the system shown in Figure 10.7–2.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 445

www.EBooksWorld.ir

sgn(u)*sqrt(abs(u)). Note that the Fcn block requires you to use the
variable u. The output of the Fcn block must be a scalar, as is the case here, and
you cannot perform matrix operations in the Fcn block, but these are not needed
here. (An alternative to the Fcn block is the MATLAB Fcn block to be discussed
in Section 10.9.) Save the model and give it a name, such as Tank.

Now create a “bounding box” surrounding the diagram. Do this by placing
the mouse cursor in the upper left, holding the mouse button down, and dragging
the expanding box to the lower right to enclose the entire diagram. Then choose
Create Subsystem from the Edit menu. Simulink will then replace the diagram
with a single block having as many input and output ports as required and will
assign default names. You can resize the block to make the labels readable. You
may view or edit the subsystem by double-clicking on it. The result is shown in
Figure 10.7–4.

Connecting Subsystem Blocks
We now create a simulation of the system shown in Figure 10.7–5, where the mass
in ow rate q is a step function. To do this, create the Simulink model shown in
Figure 10.7–6. The square blocks are Constant blocks from the Sources library.
These give constant inputs (which are not the same as step function inputs).

The larger rectangular blocks are two subsystem blocks of the type just cre-
ated. To insert them into the model, open the Tank subsystem model, select Copy
from the Edit menu, then paste it twice into the new model window. Connect the

446 CHAPTER 10 Simulink

1

2

3
2

1Left Pressure
Bottom
Pressure

Liquid
Height

Right Pressure

Mass Flow Input

Left Pressure
Bottom Pressure

Right Pressure

Mass Flow Input
Liquid Height

Subsystem

Figure 10.7–4 The Subsystem block.

h1

h2

R1 R2

q1

A1 A2

Figure 10.7–5 A hydraulic system with two tanks.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 446

www.EBooksWorld.ir

input and output ports and edit the labels as shown. Then double-click on the
Tank 1 subsystem block, set the left-side gain 1/R_l equal to 0, the right-side
gain 1/R_r equal to 1/R_1, and the gain 1/rho*A equal to 1/rho*A_1. Set
the Initial condition of the integrator to h10. Note that setting the gain 1/R_l
equal to 0 is equivalent to R_l � , which indicates no inlet on the left-hand side.

Then double-click on the Tank 2 subsystem block, set the left-side gain
1/R_l equal to 1/R_1, the right-side gain 1/R_r equal to 1/R_2, and the
gain 1/rho*A equal to 1/rho*A_2. Set the Initial condition of the integrator
to h20. For the Step block, set the Step time to 0, the Initial value to 0, the Final
value to the variable q_1, and the Sample time to 0. Save the model using a
name other than Tank.

Before you run the model, in the Command window assign numerical values
to the variables. As an example, you may type the following values for water, in
U.S. Customary units, in the Command window.

>>A_1 = 2;A_2 = 5;rho = 1.94;g = 32.2;
>>R_1 = 20;R_2 = 50;q_1 = 0.3;h10 = 1;h20 = 10;

After selecting a simulation Stop time, you may run the simulation. The
Scope will display the plots of the heights h1 and h2 versus time.

Figures 10.7–7, 10.7–8, and 10.7–9 illustrate some electrical and mechanical
systems that are likely candidates for application of subsystem blocks. In Fig-
ure 10.7–7, the basic element for the subsystem block is an RC circuit. In
Figure 10.7–8, the basic element for the subsystem block is a mass connected to
two elastic elements.

q

10.7 Subsystems 447

Left Pressure
Bottom Pressure

Right Pressure

0

No Left
Input

Mass Inflow

Atmosphere

0

0

Input Flow 2

Mass Flow Input
Liquid Height

Tank 1

Scope
Left Pressure

Bottom Pressure

Right Pressure

Mass Flow Input
Liquid Height

Tank 2

Figure 10.7–6 Simulink model of the system shown in Figure 10.7–5.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 447

www.EBooksWorld.ir

Figure 10.7–9 is the block diagram of an armature-controlled dc motor,
which may be converted to a subsystem block. The inputs for the block would be
the voltage from a controller and a load torque, and the output would be the
motor speed. Such a block would be useful in simulating systems containing sev-
eral motors, such as a robot arm.

10.8 Dead Time in Models
Dead time, also called transport delay, is a time delay between an action and its
effect. It occurs, for example, when a uid ows through a conduit. If the uid
velocity � is constant and the conduit length is L, it takes a time for the
 uid to move from one end to the other . The time T is the dead time.

Let denote the incoming uid temperature and the temperature of
the uid leaving the conduit. If no heat ener gy is lost, then 	2(t) = 	1(t - T).

	2(t)	1(t)

T = L>�

448 CHAPTER 10 Simulink

R1

v1 vn
C1

R2

C2

+

–

Rn�1

Cn�1

Rn

Cn

Figure 10.7–7 A network of RC loops.

k1 kn�1k2 k3

m1 m2 mn

Figure 10.7–8 A vibrating system.

K1
Control
Voltage Speed

Load
Torque

KT
� �

K2

�

1
Ls � R

1
Is � c

�

Figure 10.7–9 An armature-controlled dc motor.

TRANSPORT
DELAY

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 448

www.EBooksWorld.ir

From the shifting property of the Laplace transform,

So the transfer function for a dead-time process is .
Dead time may be described as a “pure” time delay, in which no response at

all occurs for a time T, as opposed to the time lag associated with the time con-
stant of a response, for which .

Some systems have an unavoidable time delay in the interaction between com-
ponents. The delay often results from the physical separation of the components
and typically occurs as a delay between a change in the actuator signal and its effect
on the system being controlled, or as a delay in the measurement of the output.

Another, perhaps unexpected, source of dead time is the computation time re-
quired for a digital control computer to calculate the control algorithm. This can be
a signi cant dead time in systems using inexpensive and slower microprocessors.

The presence of dead time means the system does not have a characteristic
equation of nite order . In fact, there are an in nite number of characteristic
roots for a system with dead time. This can be seen by noting that the term
can be expanded in an in nite series as

The fact that there are an in nite number of characteristic roots means that the
analysis of dead-time processes is dif cult, and often simulation is the only
practical way to study such processes.

Systems having dead-time elements are easily simulated in Simulink. The
block implementing the dead-time transfer function is called the Transport
Delay block.

Consider the model of the height h of liquid in a tank, such as that shown in
Figure 10.7–1, whose input is a mass ow rate . Suppose that it takes a time T
for the change in input ow to reach the tank following a change in the valve
opening. Thus, T is a dead time. For speci c parameter values, the transfer func-
tion has the form

Figure 10.8–1 shows a Simulink model for this system. After placing the Transport
Delay block, set the delay to 1.25. Set the Step time to 0 in the Step Function
block. We will now discuss the other blocks in the model.

Specifying Initial Conditions with Transfer Functions
The “Transfer Fcn (with initial outputs)” block, so-called to distinguish it from
the Transfer Fcn block, enables us to set the initial value of the block output. In
our model, this corresponds to the initial liquid height in the tank. This feature
thus provides a useful improvement over traditional transfer-function analysis, in
which initial conditions are assumed to be zero.

H(s)

Qi(s)
= e-Ts

2

5s + 1

qi

e-Ts

e-Ts
=

1

eTs =

1

1 + Ts + T2s2>2 +
Á

e-Ts

	2(t) = (1 - e-t>�) 	1(t)

e-Ts

�2(s) = e-Ts�1(s)

10.8 Dead Time in Models 449

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 449

www.EBooksWorld.ir

The Transfer Fcn (with initial outputs) block is equivalent to adding the free
response to the block output, with all the block’s state variables set to zero except
for the output variable. The block also lets you assign an initial value to the block
input, but we will not use this feature and so will leave the Initial input set to 0 in
the Block Parameters window. Set the Initial output to 0.2 to simulate an initial
liquid height of 0.2.

The Saturation and Rate Limiter Blocks
Suppose that the minimum and maximum ow rates available from the input ow
valve are 0 and 2. These limits can be simulated with the Saturation block, dis-
cussed in Section 10.4. After placing the block as shown in Figure 10.8–1, double-
click on it and type 2 in its Upper limit window and 0 in the Lower limit window.

In addition to being limited by saturation, some actuators have limits on how
fast they can react. This limitation might be due to deliberate restrictions placed on
the unit by its manufacturer to avoid damage to the unit. An example is a ow con-
trol valve whose rate of opening and closing is controlled by a rate limiter.
Simulink has such a block, and it can be used in series with the Saturation block to
model the valve behavior. Place the Rate Limiter block as shown in Figure 10.8–1.
Set the Rising slew rate to 1 and the Falling slew rate to �1.

A Control System
The Simulink model shown in Figure 10.8–1 is for a speci c type of control
system called a PI controller, whose response f (t) to the error signal e(t) is the
sum of a term proportional to the error signal and a term proportional to the inte-
gral of the error signal. That is,

where and are called the proportional and integral gains. Here the error
signal is the difference between the unit-step command representing the
desired height and the actual height. In transform notation this expression becomes

F(s) = KPE(s) +

KI

s
 E(s) = aKp +

KI

s
bE(s)

e(t)
KIKP

f (t) = KP
e(t) + KI

L

t

0
e(t) dt

450 CHAPTER 10 Simulink

Unit-Step
Command

+–
+
+

Rate
Limiter

Transfer Fcn

Gain

4

Saturation HeightTransport
Delay

Transfer Fcn
(with initial
outputs)

5/4
s

2
5s�1

Figure 10.8–1 Simulink model of a hydraulic system with dead time.

PI CONTROLLER

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 450

www.EBooksWorld.ir

In Figure 10.8–1, we used the values KP � 4 and KI � 5�4. These values are
computed using the methods of control theory. (For a discussion of control sys-
tems, see, for example, [Palm, 2010].) The simulation is now ready to be run. Set
the Stop time to 30 and observe the behavior of the liquid height h(t) in the
Scope. Does it reach the desired height of 1?

10.9 Simulation of a Nonlinear Vehicle
Suspension Model

Linear or linearized models are useful for predicting the behavior of dynamic
systems because powerful analytical techniques are available for such models,
especially when the inputs are relatively simple functions such as the impulse,
step, ramp, and sine. Often in the design of an engineering system, however, we
must eventually deal with nonlinearities in the system and with more compli-
cated inputs such as trapezoidal functions, and this must often be done with
simulation.

In this section we introduce four additional Simulink elements that enable us
to model a wide range of nonlinearities and input functions:

■ Derivative block
■ Signal Builder block
■ Look-Up Table block
■ MATLAB Fcn block

As our example, we will use the single-mass suspension model shown in
Figure 10.9–1, where the spring and damper forces fs and fd have the nonlinear
models shown in Figures 10.9–2 and 10.9–3. The damper model is unsymmetric
and represents a damper whose force during rebound is higher than during
jounce (in order to minimize the force transmitted to the passenger compartment
when the vehicle strikes a bump). The bump is represented by the trapezoidal
function y(t) shown in Figure 10.9–4. This function corresponds approximately to
a vehicle traveling at 30 mi/h over a road surface elevation 0.2 m high and 48 m
long.

10.9 Simulation of a Nonlinear Vehicle Suspension Model 451

m
x

k c

Body

Suspension

y
Road

(a)

m

fs fd

(b)

Datum level

Figure 10.9–1 Single-mass model of a vehicle suspension.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 451

www.EBooksWorld.ir

452 CHAPTER 10 Simulink

�0.5 �0.3 500

4500

Spring force (N)

Deflection
y � x (m)

�4500

�500 0.3 0.5

Figure 10.9–2 Nonlinear spring function.

0

0

v = dy/dt – dx/dt (m/s)

D
am

pe
r

fo
rc

e
f (

N
)

f = 200v 0.6

f = –800|v |0.6

Figure 10.9–3 Nonlinear damping function.

3.13.00.1

y(t) (m)

0.2

t (s)

Figure 10.9–4 Road surface pro le.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 452

www.EBooksWorld.ir

The system model from Newton’s law is

where m � 400 kg, fs(y�x) is the nonlinear spring function shown in Fig-
ure 10.9–2, and is the nonlinear damper function shown in Fig-
ure 10.9–3. The corresponding simulation diagram is shown in Figure 10.9–5.

The Derivative and Signal Builder Blocks
The simulation diagram shows that we need to compute . Because Simulink
uses numerical and not analytical methods, it computes derivatives only approx-
imately, using the Derivative block. We must keep this in mind when using
rapidly changing or discontinuous inputs. The Derivative block has no settings,
so merely place it in the Simulink diagram as shown in Figure 10.9–6.

y.

fd(y. - x.)

mx.. = fs(y - x) + fd(y. - x.)

10.9 Simulation of a Nonlinear Vehicle Suspension Model 453

�

��y 1
m

�

d
dt

fs

fd

��

1
s

1
s

x
x

Figure 10.9–5 Simulation diagram of a vehicle suspension model.

1
s

Clock

1/400

1/m Integrator Integrator 1 Scope

Scope 1

To
Workspace

simout

1
s

Derivative

+–

+–

du/dt

MATLAB
Function

Look-Up
Table

Signal Builder

Signal 1 ++

+ –

Figure 10.9–6 Simulink model of a vehicle suspension system.

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 453

www.EBooksWorld.ir

Next, place the Signal-Builder block, then double-click on it. A plot window
appears that enables you to place points to de ne the input function. Follow the
directions in the window to create the function shown in Figure 10.9–4.

The Look-Up Table Block
The spring function fs is created with the Look-Up Table block. After placing it
as shown, double-click on it and enter [-0.5, -0.1, 0, 0.1, 0.5] for
the Vector of input values and [-4500, -500, 0, 500, 4500] for the
Vector of output values. Use the default settings for the remaining parameters.

Place the two integrators as shown, and make sure the initial values are set
to 0. Then place the Gain block and set its gain to 1�400. The To Workspace
block and the Clock will enable you to plot x(t) and y(t)�x(t) versus t in the
MATLAB Command window.

The MATLAB Fcn Block
In Section 10.7 we used the Fcn block to implement the signed-square-root func-
tion. We cannot use this block for the damper function shown in Figure 10.9–3
because we must write a user-de ned function to describe it. This function is as
follows.

function f = damper(v)
if v <= 0

f = -800*(abs(v)).^(0.6);
else

f = 200*v.^(0.6);
end

Create and save this function le. After placing the MATLAB Fcn block,
double-click on it and enter its name damper. Make sure Output dimensions is
set to �1 and the Output signal type is set to auto.

The Fcn, MATLAB Fcn, Math Function, and S-Function blocks can be used
to implement functions, but each has its advantages and limitations. The Fcn
block can contain an expression, but its output must be a scalar, and it cannot call
a function le. The MATLAB Fcn block is slower than the Fcn block, but its out-
put can be an array, and it can call a function le.

The Math Function block can produce an array output, but it is limited to
a single MATLAB function and cannot use an expression or call a le. The
S-Function block provides more advanced features, such as the ability to use
C language code.

The Simulink model when completed should look like Figure 10.9–6. You
can plot the response x(t) in the Command window as follows:

>>x = simout(:,1);
>>t = simout(:,3);
>>plot(t,x),grid,xlabel(‘t (s)’),ylabel(‘x (m)’)

454 CHAPTER 10 Simulink

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 454

www.EBooksWorld.ir

The result is shown in Figure 10.9–7. The maximum overshoot is seen to be
0.26 � 0.2 � 0.06 m, but the maximum undershoot is seen to be much greater,
�0.168 m.

10.10 Summary
The Simulink model window contains menu items we have not discussed. How-
ever, the ones we have discussed are the most important ones for getting started.
We have introduced just a few of the blocks available within Simulink. Some of
the blocks not discussed deal with discrete-time systems (ones modeled with dif-
ference, rather than differential, equations), digital logic systems, and other types
of mathematical operations. In addition, some blocks have additional properties
that we have not mentioned. However, the examples given here will help you get
started in exploring the other features of Simulink. Consult the online help for in-
formation about these items.

10.10 Summary 455

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t (s)

x
(m

)

Figure 10.9–7 Output of the Simulink model shown in Figure 10.9–6.

Block diagram, 420
Dead time, 448
Dead zone, 437
Derivative block, 453
Fcn block, 454
Gain block, 420

Integrator block, 420
Library Browser, 421
Look-Up Table block, 454
PI controller, 450
Piecewise-linear models, 430
Rate Limiter block, 450

Key Terms with Page References

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 455

www.EBooksWorld.ir

Relay block, 433
Saturation block, 450
Signal Builder block, 453
Simulation diagrams, 420
State-variable models, 441

Subsystems, 443
Summer, 421
Transfer-function models, 437
Transport delay, 448

456 CHAPTER 10 Simulink

Problems

Section 10.1

1. Draw a simulation diagram for the following equation.

2. Draw a simulation diagram for the following equation.

3. Draw a simulation diagram for the following equation.

Section 10.2

4. Create a Simulink model to plot the solution of the following equation for

5. A projectile is launched with a velocity of 100 m/s at an angle of 30

above the horizontal. Create a Simulink model to solve the projectile’s
equations of motion where x and y are the horizontal and vertical dis-
placements of the projectile.

Use the model to plot the projectile’s trajectory y versus x for

6. The following equation has no analytical solution even though it is linear.

The approximate solution, which is less accurate for large values of t, is

Create a Simulink model to solve this problem, and compare its solution
with the approximate solution over the range 0 … t … 1.

x(t) =

1
3

t3 - t2 + 3t - 3 + 3e- t

x
.

+ x = tan t x(0) = 0

0 … t … 10 s.

x.. = 0 x(0) = 0 x
.
(0) = 100 cos 30°

y
..

= - g y(0) = 0 y
.
(0) = 100 sin 30°

10y
..

 = 7 sin 4t + 5 cos 3t y(0) = 3 y
.
(0) = 2

0 … t … 6.

3y
.

+ 5 sin y = f(t)

5y
..

= 3y
.

 + 7y = f (t)

y
.

= 5f (t) - 7y

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 456

www.EBooksWorld.ir

7. Construct a Simulink model to plot the solution of the following equation
for

where us(t) is a unit-step function (in the Block Parameters window of the
Step block, set the Step time to 0, the Initial value to 0, and the Final
value to 1).

8. A tank having vertical sides and a bottom area of 100 ft2 is used to store
water. To ll the tank, water is pumped into the top at the rate given in the
following table. Use Simulink to solve for and plot the water height h(t)
for 0 � t � 10 min.

Section 10.3

9. Construct a Simulink model to plot the solution of the following equa-
tions for 0 � t � 2

where f(t) � 3t. Use the Ramp block in the Sources library.

10. Construct a Simulink model to plot the solution of the following equa-
tions for 0 � t � 3

where f1(t) is a step function of height 3 starting at t � 0 and f2(t) is a step
function of height �3 starting at t �1.

Section 10.4

11. Use the Saturation block to create a Simulink model to plot the solution
of the following equation for 0 � t � 6.

where

f (t) = L
8 if 10 sin 3t > 8

- 8 if 10 sin 3t < -8

10 sin 3t otherwise

3y
.

+ y = f(t) y(0) = 3

x
.
2 = 5x1 - 7x2 + f2(t)

x
.
1 = -6x1 + 4x2 + f1(t)

x
.
2 = 5x1 - 7x2 + f(t)

x
.
1 = -6x1 + 4x2

15x
#

+ 5x = 4us(t) - 4us(t - 2) x(0) = 5

0 … t … 10

Problems 457

Time (min) 0 1 2 3 4 5 6 7 8 9 10

Flow Rate (ft3/min) 0 80 130 150 150 160 165 170 160 140 120

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 457

www.EBooksWorld.ir

12. Construct a Simulink model of the following problem.

The forcing function is

where g(t) � 10 sin 4t.

13. If a mass-spring system has Coulomb friction on the surface rather than
viscous friction, its equation of motion is

where � is the coef cient of friction. Develop a Simulink model for the
case where m � 1kg, k�5 N/m, � � 0.4, and g� 9.8 m/s2. Run the
simulation for two cases: (a) the applied force f(t) is a step function with
a magnitude of 10 N and (b) the applied force is sinusoidal: f (t) �
10 sin 2.5t. Either the Sign block in the Math Operations library or the
Coulomb and Viscous Friction block in the Discontinuities library can be
used, but since there is no viscous friction in this problem, the Sign block
is easier to use.

14. A certain mass, m � 2 kg, moves on a surface inclined at an angle
above the horizontal. Its initial velocity is (0) � 3 m/s up the

incline. An external force of N acts on it parallel to and up the in-
cline. The coef cient of Coulomb friction is Use the Sign block
and create a Simulink model to solve for the velocity of the mass until the
mass comes to rest. Use the model to determine the time at which the
mass comes to rest.

15. a. Develop a Simulink model of a thermostatic control system in which
the temperature model is

where T is the room air temperature in
F, Ta is the ambient (outside)
air temperature in
F, time t is measured in hours, q is the input from
the heating system in lb ft/hr, R is the thermal resistance, and C is the
thermal capacitance. The thermostat switches q on at the value qmax

whenever the temperature drops below 69
F and switches q to q � 0
whenever the temperature is above 71
F. The value of qmax indicates
the heat output of the heating system.

#

RC
dT

dt
+ T = Rq + Ta(t)

� = 0.5.
f1 = 5

�� = 30°

my
..

= e -ky + f (t) - �mg if y
.

Ú 0

-ky + f (t) + �mg if y
.
 < 0

f(t) = L
-5 if g(t) … -5

g(t) if -5 … g(t) … 5

5 if g(t) Ú 5

5x
.

+ sin x = f(t) x(0) = 0

458 CHAPTER 10 Simulink

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 458

www.EBooksWorld.ir

Run the simulation for the case where T(0) � 70
F, and Ta(t) � 50 �
10 sin (�t�12). Use the values R � 5 � 10�5
 and C � 4 �
104 . Plot the temperatures T and Ta versus t on the same
graph, for 0 � t � 24 hr. Do this for two cases: qmax � 4 � 105 and
qmax � 8 � 105 . Investigate the effectiveness of each case.

b. The integral of q over time is the energy used. Plot q dt versus t
and determine how much energy is used in 24 hr for the case where
qmax � 8 � 105.

16. Refer to Problem 15. Use the simulation with qmax � 8 � 105 to compare
the energy consumption and the thermostat cycling frequency for the two
temperature bands (69
, 71
) and (68
, 72
).

17. Consider the liquid-level system shown in Figure 10.7–1. The governing
equation based on conservation of mass is Equation (10.7–2). Suppose
that the height h is controlled by using a relay to switch the input ow
rate between the values 0 and 50 kg/s. The ow rate is switched on when
the height is less than 4.5 m and is switched off when the height reaches
5.5 m. Create a Simulink model for this application using the values
A � 2 m2, R � 400 m�1 s�1, � � 1000 kg/m3, and h(0) �1 m. Obtain
a plot of h(t).

Section 10.5
18. Use the Transfer Function block to construct a Simulink model to plot the

solution of the following equation for 0 � t � 4.

19. Use Transfer Function blocks to construct a Simulink model to plot the
solution of the following equations for 0 � t � 2.

where f(t) � 75us(t).

20. Use Transfer Function blocks to construct a Simulink model to plot the
solution of the following equations for 0 � t � 2

where f(t) � 50us (t). At the output of the rst block there is a dead zone
for �1� x � 1. This limits the input to the second block.

21. Use Transfer Function blocks to construct a Simulink model to plot the
solution of the following equations for 0 � t � 2

2y.. + 16y. + 50y = x(t) y(0) = y
.
(0) = 0

3x.. + 15x. + 18x = f(t) x(0) = x
.
(0) = 0

2y.. + 16y. + 50y = x(t) y(0) = y
.
(0) = 0

3x.. + 15x. + 18x = f(t) x(0) = x
.
(0) = 0

2y
..

+ 16y
.

+ 50y = x(t) y(0) = y
.
(0) = 0

3x
..

+ 15x
.

+ 18x = f(t) x(0) = x
.
(0) = 0

2x
..

+ 12x
.

+ 10x = 5us(t) - 5us(t - 2) x(0) = x
.
(0) = 0

#

1

lb # ft / hr

lb # ft/°F
F # hr/lb # ft

Problems 459

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 459

www.EBooksWorld.ir

where f(t) � 50us(t). At the output of the rst block there is a saturation
that limits x to be �x� � 1. This limits the input to the second block.

Section 10.6
22. Construct a Simulink model to plot the solution of the following equation

for 0 � t � 4.

23. Create a Simulink model to plot the solution of the following equation for
0 � t � 3.

24. Construct a Simulink model of the following problem.

The forcing function is f (t) � sin 2t. The system has the dead-zone non-
linearity shown in Figure 10.5–1.

25. The following model describes a mass supported by a nonlinear, harden-
ing spring. The units are SI. Use g � 9.81 m/s2.

Create a Simulink model to plot the solution for 0 � t � 2.

26. Consider the system for lifting a mast shown in Figure P26. The 70-ft-long
mast weighs 500 lb. The winch applies a force f � 380 lb to the cable.
The mast is supported initially at an angle of 30
, and the cable at A is ini-
tially horizontal. The equation of motion of the mast is

where

Create and run a Simulink model to solve for and plot for �
��2 rad.

	(t)	(t)

Q = 12020 + 1650 cos(1.33 +)

25 400 	
..

= -17 500 cos 	 +

626 000

Q
 sin(1.33 +)

5y
..

= 5g - (900y + 1700y3) y(0) = 0.5 y
.
(0) = 0

10x
.

+ sin x = f(t) x(0) = 0

x
#

+ 10x2
= 5 sin 3t x(0) = 1

2x.. + 12x. + 10x2
= 8 sin 0.8 t x(0) = x

.
(0) = 0

460 CHAPTER 10 Simulink

W � 5�

L � 40�

H � 20�

D
d

A

O

380 lb

30°

Figure P26

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 460

www.EBooksWorld.ir

27. The equation describing the water height h in a spherical tank with a drain
at the bottom is

Suppose that the tank’s radius is r � 3 m and the circular drain hole of
area A has a radius of 2 cm. Assume that Cd � 0.5 and that the initial
water height is h(0) � 5 m. Use g � 9.81 m/s2. Use Simulink to solve the
nonlinear equation, and plot the water height as a function of time until
h(t) � 0.

28. A cone-shaped paper drinking cup (like the kind used at water fountains)
has a radius R and a height H. If the water height in the cup is h, the water
volume is given by

Suppose that the cup’s dimensions are R�1.5 in. and H � 4 in.

a. If the ow rate from the fountain into the cup is 2 in. 3/sec, use
Simulink to determine how long will it take to ll the cup to the brim.

b. If the ow rate from the fountain into the cup is given by 2(1 � e�2t)
in.3/sec, use Simulink to determine how long will it take to ll the cup
to the brim.

Section 10.7
29. Refer to Figure 10.7–2. Assume that the resistances obey the linear rela-

tion, so that the mass ow ql through the left-hand resistance is ql �
(pl – p)�Rl, with a similar linear relation for the right-hand resistance.

a. Create a Simulink subsystem block for this element.
b. Use the subsystem block to create a Simulink model of the system

shown in Figure 10.7–5. Assume that the mass in ow rate is a step
function.

c. Use the Simulink model to obtain plots of h1(t) and h2(t) for the fol-
lowing parameter values: A1 2 m2, A2 5 m2, R1 400 m�1 s�1 #

===

V =

1

3
� a R

H
b2

h3

� (2rh - h2)
dh

dt
 = -CdA12gh

Problems 461

R2 600 m�1 s�1, 1000 kg/m3, qmi 50 kg/s, h1(0) 1.5 m, ===�#
=

and h2(0) 0.5 m.

30. a. Use the subsystem block developed in Section 10.7 to construct a
Simulink model of the system shown in Figure P30. The mass in ow
rate is a step function.

b. Use the Simulink model to obtain plots of h1(t) and h2(t) for the
following parameter values: A1 � 3 ft2, A2 � 5 ft2, R1� 30 ft�1 sec�1,
R2 � 40 ft�1 sec�1, slug/ft3, qmi � 0.5 slug/sec, h1(0) � 2 ft,
and h2(0) � 5 ft.

� = 1.94#

#

=

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 461

www.EBooksWorld.ir

31. Consider Figure 10.7–7 for the case where there are three RC loops with
the values , and

.
a. Develop a subsystem block for one RC loop.
b. Use the subsystem block to construct a Simulink model of the

entire system of three loops. Plot over for
V.

32. Consider Figure 10.7–8 for the case where there are three masses. Use
the values m1 � m3 � 10 kg, m2 � 30 kg, k1 � k4 � 104 N/m, and
k2 � k3 � 2 � 104 N/m.
a. Develop a subsystem block for one mass.
b. Use the subsystem block to construct a Simulink model of the entire

system of three masses. Plot the displacements of the masses over
s for if the initial displacement of m1 is 0.1 m.

Section 10.8

33. Refer to Figure P30. Suppose there is a dead time of 10 sec between the
out ow of the top tank and the lower tank. Use the subsystem block
developed in Section 10.7 to create a Simulink model of this system.
Using the parameters given in Problem 30, plot the heights h1 and h2

versus time.

Section 10.9

34. Redo the Simulink suspension model developed in Section 10.9, using the
spring relation and input function shown in Figure P34 and the following
damper relation.

fd(�) = e -500���1.2 � … 0

50�1.2 � 7 0

0 … t … 2

�1(t) = 12 sin 10t
0 … t … 3�3(t)

C2 = 4 * 10-6 F
R1 = R3 = 104

 �, R2 = 5 * 104 �, C1 = C3 = 10-6 F

462 CHAPTER 10 Simulink

qmi

R1A1

h2

h1

A2 R2

Figure P30

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 462

www.EBooksWorld.ir

Use the simulation to plot the response. Evaluate the overshoot and
undershoot.

35. Consider the system shown in Figure P35. The equations of motion are

Suppose that and .
a. Develop a Simulink model of this system. In doing this, consider

whether to use a state-variable representation or a transfer-function
representation of the model.

b. Use the Simulink model to plot the response for the following
input. The initial conditions are zero.

f(t) = L
t 0 … t … 1

2 - t 1 6 t 6 2

0 t Ú 2

x1(t)

k2 = 4m1 = m2 = 1, c1 = 3, c2 = 1, k1 = 1,

m2x
$

2 + c2x
#

2 + k2x2 - c2x
#

1 - k2x1 = f(t)

m1x
$

1 + (c1 + c2)x
#

1 + (k1 + k2)x1 - c2x
#

2 - k2x2 = 0

Problems 463

(a)

0.25 0.15 500

1300

3000

Spring force (N)

Deflection
y x (m)

3000

500

1300

0.15 0.25 4.154.00.15

y(t)
(m)

0.3

0
0

t (s)

(b)

Figure P34

k2

c2 c1

k1m2 m1
f (t)

Figure P35

pal34870_ch10_418-463.qxd 1/5/10 10:17 PM Page 463

www.EBooksWorld.ir

It now appears that the United States and much of the rest of the world have
recognized the need to reduce their dependence on nonrenewable energy
sources such as natural gas, oil, coal, and perhaps even uranium. Supplies of

these fuels will eventually be exhausted, they have harmful environmental effects,
and when imported, they cause huge trade imbalances that hurt the economy.
One of the major engineering challenges of the 21st century will be to develop
renewable energy sources.

Renewable energy sources include solar energy (both solar-thermal and
solar-electric), geothermal power, tidal and wave power, wind power, as well as
crops that can be converted to alcohol. In solar-thermal applications, energy from
the sun is used to heat a uid, which can be used to heat a building or power an
electrical generator such as a steam turbine. In solar-electric applications, sun-
light is directly converted to electricity.

Geothermal power is obtained from ground heat or steam vents. With tidal
power the tidal currents are used to drive a turbine to generate electricity. Wave
power uses the change in water surface level due to waves to drive water through
a turbine or other device. Wind power uses a wind turbine to drive a generator.

The dif culty with most renewable ener gy sources is that they are diffuse, so
the energy must be concentrated somehow, and they are intermittent, which
requires a storage method. At present most renewable energy systems are not
very ef cient, and so the engineering challenge of the future is to improve their
ef ciency . ■

© Royalty-Free/CORBIS

Engineering in the
21st Century. . .

Developing Alternative
Sources of Energy

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 464

www.EBooksWorld.ir

465

C H A P T E R 11

MuPAD
OUTLINE
11.1 Introduction to MuPAD

11.2 Symbolic Expressions and Algebra

11.3 Algebraic and Transcendental Equations

11.4 Linear Algebra

11.5 Calculus

11.6 Ordinary Differential Equations

11.7 Laplace Transforms

11.8 Special Functions

11.9 Summary

Problems

MuPAD is a very large program with many capabilities. In this chapter we cover
a subset of those capabilities, emphasizing the ones of greatest use to beginning
students in engineering and science. Speci cally we treat the following:

■ MuPAD basics and the Help system.
■ Symbolic algebra.
■ Methods for solving algebraic and transcendental equations.
■ Selected topics in linear algebra.
■ Symbolic methods for solving ordinary differential equations.
■ Symbolic calculus.
■ Laplace transforms.
■ The special functions of mathematics.

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 465

www.EBooksWorld.ir

When you have nished this chapter , you should be able to use MATLAB to do
the following:

■ Create symbolic expressions and manipulate them algebraically.
■ Obtain symbolic and numeric solutions to algebraic and transcendental

equations.
■ Perform symbolic linear algebra operations, including obtaining expres-

sions for determinants, matrix inverses, eigenvectors, and eigenvalues.
■ Perform symbolic differentiation and integration.
■ Evaluate limits and series symbolically.
■ Obtain symbolic solutions to ordinary differential equations.
■ Obtain and apply Laplace transforms.
■ Solve ordinary differential equations in terms of special functions or series.

11.1 Introduction to MuPAD
MuPAD is a big package with a lot of capabilities. In this chapter we introduce a
subset of those capabilities, ones that are most useful to engineers and scientists,
and only the basic syntax of those commands. Most commands in MuPAD have
an extended syntax that is documented in the MuPAD Help system. You will
need to refer frequently to this Help system, because space limitations make it
impossible to cover MuPAD in detail in one chapter.

MuPAD comes with the Symbolic Math toolbox. The toolbox itself has its
own syntax, different somewhat from that of MuPAD, and its commands are en-
tered in the Command window or in M- les. The MuPAD interface, however, is a
notebook. Prior to MATLAB Release 2008b (Version 5.1 of the toolbox), the tool-
box used a licensed version of Maple as its engine. Now the Maple engine has
been replaced by the MuPAD engine, but the toolbox syntax remains the same.
However, the MuPAD engine behaves somewhat differently from the Maple
engine. One example of the differing behavior is the solution of transcendental
equations. Whereas the Maple engine sometimes correctly gave more than one
solution, the MuPAD engine often gives only one of the possible solutions. Thus
previous users of the toolbox will nd that their old program may behave
differently now.

In this chapter we cover MuPAD exclusively, because of page length limi-
tations and because MuPAD appears to be the future of the Symbolic Math
toolbox.

The MuPAD Welcome Screen
In MuPAD you perform operations in “notebooks.” Thus you can organize your
work by topics. To start MuPAD, rst start MA TLAB; then to open a new note-
book, type mupadwelcome at the MATLAB prompt. This opens the screen
shown in Figure 11.1–1. It enables you to get help under the subwindow First

466 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 466

www.EBooksWorld.ir

Steps. Clicking on Getting Started opens the screen shown in Figure 11.1–2,
which has a variety of Help topics. The left-hand pane has a list of topics that can
be expanded or collapsed by clicking on the � or � signs. The right-hand pane
contains a shorter list of topics.

11.1 Introduction to MuPAD 467

Figure 11.1–1 The MuPAD welcome screen.

Figure 11.1–2 The Getting Started screen.

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 467

www.EBooksWorld.ir

Referring to the welcome screen shown in Figure 11.1–1, when you click on
Notebook Interface, the screen shown in Figure 11.1–3 appears. It provides
access to the Help features speci c to the Notebook Interface.

You can start a new notebook by clicking on New Notebook in the wel-
come screen, or you can open a previously created notebook by clicking on
Open Recent File or by clicking on Open File to access les not in the default
directory.

You can avoid the welcome screen by typing mupad at the MATLAB
prompt. This opens a new notebook. Once MuPAD opens, you can select a pre-
viously created notebook if you wish.

The Menu Bar
Figure 11.1–4 shows a previously created notebook containing commands, out-
puts (the results of executing the commands), and comments. Commands and
comments are placed in input and text regions, respectively. Results appear in out-
put regions. The results can be mathematical expressions, numbers, or graphs.

In the default desktop arrangement, the Command bar appears to the right of
the screen. This bar will be discussed in Section 11.2. You can con gure the
desktop to display the Search and Replace bar instead, but the Command bar is
more useful in general.

The Menu bar is at the top of the interface. It contains nine menus, some of
which you will not need to do basic computations. The File, Edit, and Help
menus are similar to those in MATLAB except that the latter accesses the
MuPAD First Steps screen. The View menu lets you con gure the screen by
adding or removing toolbars. The Navigation menu enables you to go back and
forth in the notebook.

468 CHAPTER 11 MuPAD

Figure 11.1–3 The Notebook Interface Help screen.

INPUT, TEXT, AND
OUTPUT REGIONS

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 468

www.EBooksWorld.ir

The Insert menu is very useful because it enables you to insert calculations
and comments (text paragraphs) at any place in the notebook. By clicking on one
of the Evaluate options in the Notebook menu, the results of any newly inserted
calculations will be propagated throughout the notebook.

The Format menu lets you change font sizes and page formatting. The
Window menu lets you switch between notebooks if more than one is open.

You quit a MuPAD notebook by selecting Close on the File menu. Selecting
Exit on the File menu will close MuPAD and return you to MATLAB.

The Standard Toolbar
Below the Menu bar is the Standard toolbar (Figure 11.1–5). This contains short-
cut buttons for commonly used operations whose functions are obvious from the
name of the button. The most useful are the Calculation button, which inserts a
new input region below the current cursor position; the Text Paragraph button,
which inserts a text paragraph; and the Evaluate button, which evaluates the cal-
culation in the input region containing the cursor.

11.1 Introduction to MuPAD 469

Figure 11.1–4 The MuPAD Notebook Interface.

Figure 11.1–5 The Standard bar.

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 469

www.EBooksWorld.ir

Entering Commands
You enter commands into input regions in the notebook. Figure 11.1–4 shows a
notebook with some comments, commands, and responses displayed. Input and
output regions have a bracket at the left; text regions do not. After you type a
command in a blank input region, press Enter and MuPAD will evaluate the com-
mand. The result will be displayed in the next bracket, just below the input region.
An example session that computes cos(3.14) is the following. The command is
cos(3.14) and the output is –0.9999987317. In this chapter we display com-
mands in boldface type, outputs and comments in italic and roman type.

[> cos(3.14)
[�0.9999987317

Note that the answer is not exactly �1 because 3.14 is not exactly �. For exact
answers use PI, which is the MuPAD symbol for �.

[> cos(PI)
[�1

Some commonly used reserved symbols in MuPAD are PI for �, I for the
complex number , and E for e, the base of the natural logarithm. You
should not use these as identi ers to represent something other than their reserved
meaning.

You can edit previous inputs by clicking on them and entering or deleting
text, using the keyboard editing keys. Obtain an updated result by pressing
Enter. You can cut and paste from the input region, but output cannot be edited
or copied because it is a graphic. Terminate the command with a colon to sup-
press the output display. Enter more than one command on a line by separating
them with either a semicolon or a colon.

MuPAD uses the standard arithmetic operators (� � * �) and follows the
same precedence rules as MATLAB. MuPAD uses function names that are for
the most part identical to those used by MATLAB, for example, sin, tan, exp.
Two notable exceptions are the natural logarithm ln, which is ln in MuPAD, and
the base-10 logarithm, log10, which is log in MuPAD. Answers are exact (not
rounded oating-point numbers) when computing with integers and rational
numbers. For example,

[> 1 � 3*7�2

[> (3 � (7�2*5))�(1�5 � 2�9)^2

[> sqrt(52)
[2113

c 83025

722

c 23

2

i = 1-1

470 CHAPTER 11 MuPAD

RESERVED
SYMBOLS

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 470

www.EBooksWorld.ir

Use E or exp(1) for the base of the natural logarithm, although MuPAD dis-
plays the results using the lowercase e. Use ln(x) for ln x and log(x) for log x.

[> 2*ln(E^3�2)

2 ln

[> oat(%)
[4.613705639

The oat function returns a oating-point result. You can use % to refer to
the previous result. MuPAD displays results according to the value of DIGITS,
which sets the number of decimal digits to display. The default value is 10.

Warning! It is easy to make mistakes using the oat function with the % sym-
bol, which represents the last computed result, not necessarily the result just
above the oat(%) command. For example, if you go back several steps in the
notebook and recompute a command, then typing oat(%) later on will cause it
to evaluate the results of that command, even though you type oat(%) as the
last command in the notebook.

Approximate computation is used if at least one of the numbers involved is
a oating-point value. For example, changing the 3 in the earlier example to 3.2
gives a oating-point result.

[> (3.2 � (7�2*5))�(1�5 � 2�9)^2
[116.1149584

Most of the common mathematical functions will return an exact value if
their argument is exact, and a oating-point value if their ar gument is oating-
point. For example,

[> 0.8*cos(2)
[0.8 cos(2)

[> 2�5*cos(2.1)
[�0.2019384418

Complex number calculations are easily done using I for .

[> (1�3 � 2*I)*(0.1 � I�2)^3
[0.1953333333 � 0.1846666666i

The functions Re(p) and Im(p) return the real and the imaginary part of a
complex number p. The functions conjugate(p), abs(p), and arg(p) compute the
complex conjugate, the absolute value, and the polar angle of the number p. The
function rectform converts a number to rectangular form.

[> conjugate(1�(sqrt(3) � I))

c 1

13 - i

1-1

a e3

2
bc

11.1 Introduction to MuPAD 471

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 471

www.EBooksWorld.ir

[> rectform(conjugate(1�(sqrt(3) � I)))

[> abs(1�(sqrt(3) � I))

[> arg(1�sqrt(3) � I))

Inserting Text and Calculations
You can insert text for documentation purposes. An example is shown in Fig-
ure 11.1–4. To insert text above a calculation, the easiest way is to position the
cursor within the input region to be documented, then click on the Insert
menu, next on Text Paragraph Above. Then type your text. You may also
want to insert a calculation above another one. To do this, click on the Insert
menu, then on Calculation Above. This opens a blank input region.

11.2 Symbolic Expressions and Algebra
Use the assignment operator :� to assign a symbolic expression to an identi er
named, say, r. The identi er r can then be used as an abbreviation for the expres-
sion. For example,

[> r:� y^2 � 3*y � 5*x � 7*x^2 � 2*x^3
[2x3 � 7x2 � 5x � y2 � 3y

Notice that the expression has been rearranged in the display.
It is good practice to delete the identi ers of variables, expressions, and

functions to avoid con icts if you later use those identi ers to mean something
else. Use the delete (p) function to delete p. It is also necessary to remove any
assumptions placed on a parameter if that parameter will be used in later com-
putations. Examples of this are the assume and unassume functions, to be dis-
cussed later.

Expressions Versus Functions
It is important to realize that an expression in MuPAD is not the same thing as a
function. For example, consider the expression

[> w :� x^6:
We cannot evaluate the expression at a particular value of x, say x � 3 by typing
w (3) or by typing oat (w(3)) .

c - �

6

c 1
2

c 13

4
+

i

4

472 CHAPTER 11 MuPAD

ASSIGNMENT
OPERATOR

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 472

www.EBooksWorld.ir

User-de ned functions can be created by de ning a procedure. Consider the
function f (x) � x2 � 3x � 7. We can de ne it by a procedure as follows:

[> f : � x -> x^2 � 3*x � 7:
The arrow symbol is obtained by typing the hyphen - followed by the greater
than sign (>). We can then evaluate the function at given values of x:

[> f(x)
[x2 � 3x � 7

[> f(y)
[y2 � 3y � 7

[> f(a�b)
[3a � 3b � (a � b)2 � 7

[> f(2.5)
[20.75

You can plot expressions or functions in the same way. For example,

[> y :� 5*exp(-0.5*x)*sin(3*x):
[> plot (y,x�0..5)
The result is shown in Figure 11.2–1. You could also type plot(y) without limits,
but MuPAD would select the plot limits so that the plot was centered around
x � 0. Typing plot(%) produces the same result.

11.2 Symbolic Expressions and Algebra 473

Figure 11.2–1 Creating a plot.

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 473

www.EBooksWorld.ir

Manipulating Expressions
Figure 11.2–2 shows the Command bar. The Command bar provides shortcuts to
avoid typing commands into the input region. When you click on an item, that
command is inserted at the current cursor location in the notebook. Table 11.2–1
lists the operations that are available from the upper portion of the Command bar.
We will discuss these commands throughout the chapter, and you can refer to this
table when particular commands are discussed.

The following functions can be used to manipulate expressions by collecting
coef cients of like powers, expanding powers, and factoring expressions, for
example. You can type functions directly in the input region, or you can select
functions from the Command bar, which contains a subset of all the MuPAD
functions. The following choices appear when you choose General Math from
the Command bar:

474 CHAPTER 11 MuPAD

Figure 11.2–2 The Command bar.

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 474

www.EBooksWorld.ir

The last ve items on the General Math menu contain submenus. We will
discuss the Solve function in Section 11.3. When you click on any of these items,
MuPAD inserts the corresponding function into the input region at the location
of the cursor. The function argument will be the place marker #, which you
should delete, and then you enter the appropriate expression. In every case you
may type in the function if you do not want to use the menu.

Expand When you select Expand from the menu, MuPAD inserts expand(#)
in the input region. Delete the place marker # and type in your text. The function
expand(p) expands the expression p by using a set of rules appropriate to the
given expression. The following example shows how the expansion is carried out
by powers.

[> p1 :� (x-5)^2�(y-3)^2
[(x � 5)2 � (y �3)2

[> expand(p1)
[x2 � 10x � y2 � 6y �34

You can reuse expression symbols such as p1 by typing delete(p1) in the input box.
The next example shows how the expansion is carried out using trigonomet-

ric identities.

[> expand(sin(x � y))
[cos(x) sin(y) � cos(y) sin(x)

Factor When you select Factor from the menu, MuPAD inserts factor (#) in
the input region. Use the factor(p) function to factor the expression p.

[> factor(x^2-1)
[(x � 1)(x � 1)

11.2 Symbolic Expressions and Algebra 475

The General Math Menu

Expand Simplify
Factor Combine
Normalize Rewrite
Evaluate Solve

Table 11.2–1 Items on the Command bar

Derivatives Limits Sums
Integrals Rewrite Expressions Products
Solve Equations Simplify Evaluate with x � a
Numerical Evaluation and Rounding Equality Tests Assignment
Math Operators Factorials Function De nition
Trig Functions Exponentials and Logs Piecewise De nitions
Reserved Symbols Greek Letters Physical Units
Matrices and Vectors 2D Plot 3D Plot

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 475

www.EBooksWorld.ir

The factorout(p,q) function factors out a given expression q from the expression p.

[> factorout((a*b � a*c)�(d*c�c), a�c)

Normalize Clicking on Normalize places the function normal (#) in the input
area that contains the cursor. The function normal(p) nds a common denomi-
nator for rational expressions.

[> p :� x�(1 � x) - 3�(1 - x)

[> normal(p)

Also, normal cancels common factors in the numerator and the denominator:

[> x^2�(x � y) - y^2�(x � y)

[> normal(%)
[x � y

Evaluate The menu item Evaluate has two subchoices: Numerically and
Boolean. Choosing Numerically inserts oat (#) into the input region. We have
already seen the oat function. Choosing Boolean inserts bool (#), which evalu-
ates a Boolean expression.

[> bool(oat(sqrt(18)) <� oat(sqrt(3)*sqrt(6)))
[TRUE

Simplify The Simplify menu item has eight subchoices:

Choosing General inserts the function Simplify(#). Note the capitalized
 rst letter . You can also type the related function simplify(p). The simplify and
Simplify functions are similar; Simplify is more powerful, but may be slower.

The general form of these functions is simplify(p, <target>), where <target>
restricts the simpli cation rules to the tar get function(s). For example, choosing

The Simplify Menu

General Exponential
Logical Logarithm
Radical Sine
Relational Cosine

c x2

x + y
-

y2

x + y

c x2
+ 2x + 3

x2
- 1

c x

x + 1
+

3

x - 1

c a
c

b + c

d + 1

476 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 476

www.EBooksWorld.ir

the submenu item Logical inserts the function simplify(#, logic). Other choices
for <target> are sqrt, relation, exp, ln, sin, and cos, which are obtained by
choosing the menu items Radical, Relational, Exponential, Logarithm, Sine,
and Cosine, respectively. For example,

[> simplify(sqrt(4 � 2*sqrt(3)), sqrt)
[

Sometimes the target function is not needed. For example,

[> simplify(cos(x)*sin(y) � cos(y)*sin(x))
[sin(x � y)

Combine The Combine menu item has eight subchoices:

Choosing General inserts the function combine(#) into the notebook. The
combine(p) function combines terms in the expression p of the same algebraic
structure. The general form of the combine function is combine(p <target>).
The <target> option combines several calls to the target functions(s) in the ex-
pression p to a single call. Other target functions are available, but are not on the
menu; these are log and gamma.

For example, choosing the submenu item Sine�Cosine inserts the function
combine(#, sincos). Other choices for <target> are arctan, exp, ln, power,
sincos, sinhcosh, and sqrt, which are obtained by choosing the corresponding
menu items.

When the second argument is not speci ed, combine groups powers of the
same base:

[> combine(x*y*x^y)
[

The function combine combines powers with the same exponent in certain
cases, but not always:

[> combine(sqrt(2)*sqrt(3)*y^5*x^5)
[

With the target function sincos, products of sines and cosines are expressed
as sums of sines and cosines.

[> combine(cos(a)*sin(b) � sin(a)^2, sincos)

c sin(a + b)

2
-

cos(2a)

2
-

sin(a - b)

2
+

1

2

16x5y5

xy + 1y

The Combine Menu

General Power
Arc Tangent Sine�Cosine
Exponential Sine�Cosine Hyp
Logarithm Square Root

13 + 1

11.2 Symbolic Expressions and Algebra 477

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 477

www.EBooksWorld.ir

Some combinations may require certain assumptions to be made. For example,

[> assume(a > 0): assume(b > 0):
[> combine(ln(a) � ln(b), ln)
[ln(ab)

[> unassume(a): unassume(b):
Rewrite The Rewrite menu under General Math has eight subchoices:

Choosing any one of these items inserts the function rewrite(#, <target>)
into the notebook. The rewrite(p, <target>) function transforms an expression p
to a mathematically equivalent form, trying to express p in terms of the speci ed
target function. For example, choosing the submenu item Sine�Cosine inserts
the function rewrite(#, sincos).

[> rewrite(cot(x), sincos)

[> rewrite(arcsinh(x), ln)
[ln()

Other choices for <target> are diff, which is discussed in Section 11.5; and
exp, fact, heaviside, ln, sign, and sincos, which are obtained by choosing the
corresponding menu items. Many other target functions are available, but are not
on the menu; consult the Help for rewrite to see the list.

Functions Not on the Toolbar There are many useful functions that are not on
the toolbar. One example is the function collect(p,x). It collects coef cients of
like powers of x in the expression p.

[> p2 :� (x�3)^2�3*x�5
[3x � (x � 3)2 � 5

[> collect(p2, x)
[x2 � 9x � 15

If there is more than one variable, you can specify which one to collect.

[> p3:� (x�3)^2�5*x�(y-4)^3
[5x � (x � 3)2 � (y � 4)3

[> collect(p3,x)
[x2 � 11x � (y � 4)3 � 9

x + 2x2
+ 1

c cos(x)

sin(x)

The Rewrite Menu

Differential Heaviside
Exponential Logarithm
Factorial Sign
Gamma Sine�Cosine

478 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 478

www.EBooksWorld.ir

You can perform operations involving more than one expression. For example,

[> collect(p2*p3,x)
[x4 � 20x3 � ((y � 4)3 � 122) x2 � (9(y � 4)3 � 225) x � 14(y � 4)3 � 126

Another function not on the Command bar is the subs function. You can re-
place a variable x in an expression p with the variable y by typing subs(p, x � y).
For example,

[> p4:�3*x^2�5*x�9
[3x2 � 5x � 9

[> subs(p4,x�x�1)
[5x � 3(x � 1)2 � 14

Note that p4 has not changed:

[> 2*p4
[6x2 � 10x � 18

To obtain a new variable, you must give it a name:

[>p5:�subs(p4,x�x�1)
[5x � 3(x � 1)2 � 14

[>2*p5
[10x � 6(x + 1)2 � 28

The remaining items on the General Math menu are discussed in later
sections.

Test Your Understanding

T11.2–1 Given the expressions E1 � x3 � 15x2 � 75x � 125 and E2 � (x � 5)2 �
20x, use MuPAD to

(a) nd the product E1E2 and express it in its simplest form.
(b) nd the quotient E1�E2 and express it in its simplest form.
(c) evaluate the sum E1 � E2 at x � 7.1 in symbolic form and in

numeric form.
(Answers: (a) (x � 5)5, (b) x � 5, (c) 13,671�1000 in symbolic form,
13.6710 in numeric form)

11.3 Algebraic and Transcendental Equations
MuPAD can solve algebraic and transcendental equations as well as systems of
such equations. A transcendental equation is one that contains one or more tran-
scendental functions, such as sin x, ex, or log x. The appropriate function to solve
such equations is the solve function.

11.3 Algebraic and Transcendental Equations 479

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 479

www.EBooksWorld.ir

The solve Function
The function solve(p) solves a symbolic expression or equation (an expression
containing the equals sign �) represented by the expression p. If the expression
p does not contain an equals sign, MuPAD assumes that the expression is set to 0.
For example, to solve the equation 5x � 25 � 0 using solve(p), type

[> solve(5*x�25�0)
[{[x � �5]}

or

[> y :� solve(5*x�25�0)
[{[x � �5]}

[>3*y
[{3[y � �5]}

The expression need not equal 0.

[> solve(5*x�-25)
[{[x � �5]}

Using the version solve(p,x), we obtain

[> solve(5*x�25�0,x)
[{�5}

or

[> y :� solve(5*x�25�0,x)
[{�5}

MuPAD Libraries
MuPAD has hundreds of functions, which are organized into libraries. The Stan-
dard library is the most important MuPAD library. It has the most frequently used
functions such as solve, and simplify. Except for the functions of the Standard
library, library functions have a pre x separated with ::. For example, the solve
function in the Standard library solves for analytic solutions, whereas the solve
function in the Numeric library is called as numeric::solve(p).

Library functions can also be called by their short notation if you rst export
them with the use function. One library we will see soon is the numeric library;
it contains the function polyroots, which obtains the roots of polynomials numer-
ically rather than symbolically. We can call this function by typing numeric::
polyroots. However, you can “export” this library’s functions from the library
into MuPAD by typing use(numeric). After exporting, you can type polyroots
instead of the long form numeric::polyroots, for example. To avoid confusion as
to whether a library function has been exported, in this chapter we will always use
the long form.

480 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 480

www.EBooksWorld.ir

There are many libraries, and you can obtain more information about them
and their functions by searching for libraries in the Help system. You can obtain
a list of the functions in a particular library, say, the numeric library, by typing
info(numeric).

Selecting Functions from the Command Bar
You can type functions directly in the input region of the notebook, or you can
select functions from the Command bar, which contains a subset of all the
MuPAD functions. The following choices appear when you choose Solve under
General Math from the Command bar:

Selecting Exact puts solve(#) in the input box. You then delete the # and
enter the equation to be solved. Instead of using the menu, you can type solve(p)
or solve(p,x), where p represents the equation to be solved and x is the solution
variable. To solve x2 � 4x � 6 � 0, type

[>solve(x^2-4*x�6)
[}

Some nonlinear equations have an in nite number of solutions. MuP AD in-
dicates these in the following way, if it can nd them exactly .

[> solve(sin(2*x)-cos(x)�0,x)

The symbol means that the complete solution can be obtained from the
expressions on both sides of the symbol, where the k Z symbols indicate the
two solutions given are true for any integer value of k.

To nd all the roots of x4 � 1, you type solve(x^4�1) to get x � �1 and x �
�i. To nd only the real roots of x4 � 1, you can restrict the results to be positive
by using the option Type::Real as follows:

[> assume (x, Type::Real): solve(x^4 � 1, x)
[{�1, 1}

Be sure to type unassume(x): afterward if you intend to use x later as another
variable. There are other options, such as Type::Positive, available to use with
assume and solve. We will see some of these later; see the Help for details.

You need not use the assume function. For example, there are an in nite
number of solutions to the equation e2x � 3ex � 54, and MuPAD can nd them
using solve. Suppose, however, that you are interested only in the real solutions.

�h
h

c e�

2
+ 2�k ` k � Z f h e�

6
+

2�k

3
 ` k � Z f

{[x = 2 - 12i], [x = 2 + 12i]

The Solve Menu

Exact Polynomial Diophantine Equation
Numeric Recurrences
Linear System ODE

11.3 Algebraic and Transcendental Equations 481

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 481

www.EBooksWorld.ir

Then you can use the Real option as follows to obtain the only real solution,
x � ln 6.

[> solve(exp(2*x) � 3*exp(x)�54, x, Real)
[{ln(6)}

You must always be careful in interpreting the results. For example, the equa-
tion x4 � 5x2 � 6x �2 � 0 is fourth order and therefore has four roots, but MuPAD
gives only three roots and does not indicate that the root x � 1 is repeated.

[> solve(x^4 - 5*x^2 � 6*x � 2, x)
[{ }

You can avoid this problem by using the option Multiple, as follows:

[> solve(x^4-5*x^2 � 6*x � 2, x, Multiple)
[

The result [1, 2] indicates that the root x � 1 is repeated twice.
You can specify the interval over which you seek a solution. For example,

the equation cos(�x�5) � 0 has an in nite number of solutions, which can be
found using the solve function. However, if you want only the solutions on the
interval �10 � x � 10, type

[>solve(cos(x*PI�5) � 0, x � -10..10)

MuPAD cannot always nd an exact solution. In such cases, MuP AD simply
displays the command. You can use the oat function to force MuPAD to pro-
duce a numerical solution. For example,

[> solve(cos(x) � x^2, x)
[solve(cos(x) � x2 � 0, x)

[> oat(%)
[�0.8241323123

You can also solve inequalities. For example, the inequality x2 � 3x > 4 has
solutions on the intervals and

[> solve (x^2 � 3*x > 4, x)

You can instruct MuPAD to make assumptions about the problem. For
example, the quadratic equation ax2 � bx � c � 0 has the following types of
solutions, depending on the values of the coef cients:

1. if

2. if a � 0 and b 	 0x = -

c

b

a 	 0x =
-b � 2b2

- 4ac
2a

[(1, q) h (-q ,-4)

1 6 x 6 q.- q 6 x 6 - 4

c e -

15

2
, -

5

2
,

5

2
,

15

2
f

{[1, 2], [1, - 13 - 1,13 - 1]}

1, - 13 - 1,13 - 1

482 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 482

www.EBooksWorld.ir

3. There is no solution if a � b � 0 but
4. There are an in nite number of solutions if a � b � c � 0.

You can eliminate the last three cases by telling MuPAD to assume that ,
as follows.

[> solve(a*x^2 � b*x � c, x, assume (a<>0))

which is equivalent to the solution given previously. You can relax the assump-
tion on a for later solutions by typing unassume(a): in the input box. Do not
forget to delete variables if you intend to reuse their names. The names x and y
are commonly used, so you should delete them before continuing.

Numeric
Selecting Numeric from the solve menu puts numeric::solve(#) in the input
box. The results are returned as oating-point numbers.

[> numeric::solve(x^2-4*x�6,x)
[{2 � 1.414213562i, 2 � 1.414213562i}

Note that MuPAD might not be able to solve any given nonlinear equation,
and if so, you must use the numerical solver. However, in contrast to polynomial
equations, the numerical solver computes at most one solution of a nonpolyno-
mial equation.

[> numeric::solve(x�2*exp(-x)-3)
[{[x � �0.583073876]}

Sometimes we can direct the search for a solution. Suppose we are interested
only in a solution over the range 0 � x � 10. The session is

[> numeric::solve(x�2*exp(-x)-3, x � 0..10)
[{[x � 2.888703356]}

Sets of Equations
The solve function can also solve sets of equations. The solutions can be
expressed as a set of substitutions or as vectors. For example, to solve the set
x � 2y � 1, 3x � 7y � 5, you type

[> solve ([x � 2*y � 1, 3*x � 7*y � 5], [x, y])
[{[x � �3, y � 2]}

or

[> solve([x � 2*y � 1, 3*x � 7*y � 5], [x, y], VectorFormat)

c e a -3

2
b f

c e -

b + 2 -4ac + b2

2a
, -

b - 2 -4ac + b2

2a
f

a 	 0

c 	 0.

11.3 Algebraic and Transcendental Equations 483

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 483

www.EBooksWorld.ir

Consider another example:

[> eqs :� {x � y � a, x - a*y � b}:
[> solve(eqs, [x, y], IgnoreSpecialCases)

Here there are two symbolic parameters a and b, and thus we need to spec-
ify the symbols representing the variables to be found (here, x and y). The solu-
tion is incorrect if a � �1, and the option IgnoreSpecialCases tells MuPAD to
ignore this possibility.

The solve function can also handle sets of nonlinear equations. For example,

[> solve([x^2 � y � 1, x � 2*y � 1], [x, y])

Test Your Understanding

T11.3–1 Use MuPAD to solve the equation . (Answer:)

T11.3–2 Use MuPAD to solve the equation set x � 6y � a, 2x � 3y � 9 in terms
of the parameter a. (Answer: x � (a � 18)�5, y � (2a � 9)�15)

Here is a somewhat more involved application.

x = 12>221 - x2
= x

c e [x = 1, y = 0], cx = -

1

2
, y =

3

4
d f

c e cx =

a2
+ b

a + 1
, y =

a - b

a + 1
d f

484 CHAPTER 11 MuPAD

EXAMPLE 11.3–1 Intersection of Two Circles

We want to nd the intersection points of two circles. The rst circle has a radius of 2
and is centered at x � 3, y � 5. The second circle has a radius b and is centered at x � 5,
y � 3. See Figure 11.3–1.
(a) Find the (x, y) coordinates of the intersection points in terms of the parameter b.
(b) Evaluate the solution for the case where b = 13.

y

2

b

5

5

3

3
x

Figure 11.3–1 Intersection points of
two circles.

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 484

www.EBooksWorld.ir

■ Solution
(a) The intersection points are found from the solutions of the two equations for the
circles. These equations are

for the rst circle and

The session to solve these equations is the following.

[> p1:�(x-3)^2 � (y-5)^2-4
[(x � 3)2 � (y � 5)2 � 4

[> p2:�(x-5)^2 � (y-3)^2-b^2
[(x � 5)2 � (y � 3)2 � b2

[> ans1:�solve([p1�0,p2�0],[x,y])

(x - 5)2
+ (y - 3)2

= b2

(x - 3)2
+ (y - 5)2

= 4

11.3 Algebraic and Transcendental Equations 485

[where

J
These are the x and y coordinates of the two intersection points.
(b) Continue the above session by substituting into the expression for x.

[> ans2:�subs(ans1,b�sqrt(3))

[> oat(ans2)
[{[x � 4.982, y � 4.732]} {[x � 3.268, y � 3.018]}

These are the two pairs of coordinates for the two intersection points if b = 13.

c e cx =

33

8
-

147

8
, y =

31

8
-

147

8
d f e cx = -

147

8
+

33

8
, y =

147

8
+

31

8
d f

b = 13

1 � �
A

�
b4

16
�

3b2

2
� 1

2

c e cx =

9

2
-

b2

8
+
1, y =

b2

8
+
1 +

7

2
d f e cx = -
1 -

b2

8
+

9

2
, y = -
1 +

b2

8
+

7

2
d f

Test Your Understanding

T11.3–3 Find the x and y coordinates of the two intersection points in Exam-
ple 11.3–1 using (Answer: x � 4.986, y � 5.236; x �

2.764, y � 3.014)
T11.3–4 Obtain the exact solution for x from the following equations.

(Answer: x = (�e2
+ 413)>(� + 313))

3x - �y = 4

x + 13y = e2

b = 15.

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 485

www.EBooksWorld.ir

Positioning a Robot Arm

Figure 11.3–2 shows a robot arm having two joints and two links. The angles of rotation
of the motors at the joints are and . From trigonometry we can derive the following
expressions for the (x, y) coordinates of the hand.

Suppose that the link lengths are L1 � 4 ft and L2 � 3 ft.
Compute the motor angles required to position the hand at x � 6 ft, y � 2 ft.

■ Solution
Substituting the given values of L1, L2, x, and y into the above equations gives

The following session solves these equations. The variables th1 and th2 represent
and .

[>numeric::solve([4*cos(th1)�3*cos(th1�th2)�6,4*sin(th1)�3*sin(th1�th2)�2],[th1,th2])

[{[th1 � �0.05756292117, th2 � 0.8956647939]}

Thus the solution in degress is � �3.2981�, � 51.3178�.�2�1

�2

�1

2 = 4 sin �1 + 3 sin(�1 + �2)

6 = 4 cos �1 + 3 cos(�1 + �2)

 y = L1
sin �1 + L2

sin(�1 + �2)

 x = L1 cos �1 + L2 cos(�1 + �2)

�2�1

486 CHAPTER 11 MuPAD

EXAMPLE 11.3–2

1

Base Motor

Elbow Motor

Hand

L2

L1

x

y

θ

2θ

Figure 11.3–2 A robot arm having two joints and
two links.

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 486

www.EBooksWorld.ir

Selecting Linear System from the Solve menu inserts linsolve(#) into the
input box. This function solves sets of linear equations numerically rather than
symbolically.

Polynomial Diophantine Equations
The next item on the Solve menu is Polynomial Diophantine Equation. It
inserts the function solvelib::pdioe(#, #) into the input box. Such an equation is
one whose solutions are restricted to be polynomials. An important type of this
class has the form

au � b� � c

where a, b, and c are given polynomial functions of x, and u and � are the
unknowns. This type of equation can be solved with the solve::pdioe(a,b,c,x)
function, for example,

The solution is found as follows.

[> solvelib::pdioe((x^2 � 1), (x^3 � 1), 2*x, x)
[�x2 � x � 1, x � 1

Thus one solution is u � �x2 � x � 1 and � � x �1. Polynomial diophantine
equations do not have unique solutions. Any multiple wab can be used to transform
u and v into another solution u1, �1, where u1 � u � wb and �1 � � � wa. For exam-
ple, the choice w ��1 leads to the solution u1 � �x3 � x2 � x, �1 � x2 � x.

Recurrence Relations
An example of a recurrence relation, sometimes called a difference equation, is

y (n � 2) � 2y (n � 1) � y (n) � 5

Such equations can be solved using the menu item Recurrences on the Solve
menu. For example, with the given initial conditions y(0) � 0, y(1) � 1,

[> eqn :� y(n � 2) - 2*y(n � 1) � y(n) � 5:
[> solve (rec(eqn, y(n), {y(0) � 0, y(1) � 1}))

Thus the solution is

The last menu item under the Solve menu is ODE, which stands for the
ordinary differential equation solver. This is discussed in Section 11.6.

y(n) =

5n2

2
-

3n

2
 n = 2, 3, . . .

c e 5n2

2
-

3n

2
f

(x2
+ 1)u + (x3

+ 1)� = 2x

11.3 Algebraic and Transcendental Equations 487

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 487

www.EBooksWorld.ir

Optimization Problems
There are other solvers that deal with sets of linear inequalities, rather than lin-
ear equations. One class of such problems is called linear programming. A linear
programming problem is one in which you need to nd the values of a set of n
variables, denoted x1, x2, . . . , xn required to either maximize or minimize a func-
tion J(x1, x2, . . . , xn) subject to a set of equalities or inequalities that are linear
functions of the variables x1, x2, . . . , xn. Such problems have found widespread
applications in industry, including optimizing airline schedules and many types
of production problems. They can be solved using the functions in the linopt
library.

An example of such a problem is the following. Suppose we want to nd the
values of x, y, and z to maximize the function

J � �x � y � 2z

subject to the constraints
3x � 4y � 3z � 20

6x � 4y � 3z � 10

7x � 4y �11z � 30

In MuPAD we would type

[> eq1 :� 3*x � 4*y - 3*z <� 20
[> eq2 :� 6*x - 4*y - 3*z � 10
[> eq3 :� 7*x � 4*y � 11*z <� 30
[> J :� [{eql,eq2,eq3},- x � y � 2*z]
[> linopt::maximize(J)

The answer gives the values of x, y, and z that maximize J subject to the three
constraints. The resulting maximum possible value of J is given as 20�87.

Sometimes we must specify constraints that are not immediately obvious. For
example, Example 8.3–4, Production Planning, has the constraint equations

5x � 3y � 3z � 40
3x � 3y � 4z � 30

where x, y, and z are the number of tons of each product to be produced each
week. The pro t to be maximized is

P � 400x � 600y � 100z
Without additional constraints, the solver may give physically unrealistic values.
Here x, y, and z cannot be negative, so we add these three additional constraints.
The session is

[> eqn1 :� 5*x�3*y�3*z�40
[> eqn2 :� 3*x�3*y�4*z�30

c cOPTIMAL, e x =

200

87
, y = 0, z =

110

87
f ,

20

87
d

488 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 488

www.EBooksWorld.ir

[> eqn3 :� x >� 0: eqn4:� y >� 0: eqn5 :� z >� 0:
[> J :� [eqn1,eqn2,eqn3,eqn4,eqn5, 400*x�600*y�100*z]:
[> linopt::maximize(J)
[[OPTIMAL, {x � 5, y � 5, z � 0}, 5000]

The maximum pro t is $5000.
Functions can be minimized with the linopt::minimize(J) function. The linopt

library has many more functions that are useful for linear programming problems.

11.4 Linear Algebra
The linalg library contains over 40 functions dealing with linear algebra. Type
info(linalg) to see a list of the functions. In this section we will use only a few of
these. A reminder: library functions can also be called by their short notation if
you rst export them with the use function, for example, use(linalg). After ex-
porting, you can type charpoly instead of the long form linalg::charpoly, for
example. To avoid confusion as to whether a function has been exported, we will
always use the long form.

Matrix Operations
Linear algebra deals with matrices. The easiest way to create a matrix is the func-
tion matrix, which is in the Standard library. For example,

[> A :� matrix([[3, 5], [-4, 2]]),B :� matrix([[2,1], [3, -2]])

Note that MuPAD surrounds matrices with a pair of parentheses, whereas
square brackets are used in MATLAB and much of the technical literature.
You can add, subtract, multiply, or divide matrices using the standard arith-
metical operators. Adding or subtracting a scalar has the effect of adding or
subtracting that scalar from only the diagonal elements in the array. Note that
this is different from MATLAB, in which the scalar is subtracted from every
element.

[> A * A, 1�A, 2*A,A-3

, , ,

The determinant and rank are calculated as follows.

[> linalg::det(A),linalg::rank(A)
[26, 2

a 0 5

-4 -1
ba 6 10

-8 4
b±

1

13
-

5

26

2

13

3

26

≤c a -11 25

-20 -16
b

� � 3 5

�4 2�, �2 1

3 �2�

11.4 Linear Algebra 489

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 489

www.EBooksWorld.ir

Matrix entries can be accessed with the index operator [].

[> A[2,1]
[�4

You can multiply matrices.

[> A*B

You can create symbolic matrices.

[> C :� matrix([[a, b], [c, d]])

Create a diagonal matrix as follows:

[> D :� matrix(3, 3, [2, -2, 5], Diagonal)

Consider the rotation matrix R(a) for a coordinate system rotated through an
angle a:

[> R :� matrix([[cos(a),sin(a)],[-sin(a),cos(a)]])

One property of coordinate rotations is that if we rotate the coordinate system
twice by the same angle to produce a third coordinate system, the result is the
same as a single rotation with twice the angle. Thus, R(a) R(a) should equal
R(2a). Let us check this with MuPAD as follows.

[> simplify(R*R)

which is the same as R(2a):

[> subs(R, a�2*a)

To evaluate a symbolic matrix numerically, use the oat and subs functions.
[> oat(subs(R, a �2))

c a -0.4161468365 0.9092974268

-0.9092974268 -0.4161468365
 b

c a cos(2a) sin(2a)

-sin(2a) cos(2a)
b

c a cos(2a) sin(2a)

-sin(2a) cos(2a)
b

c a cos(a) sin(a)

-sin(a) cos(a)
b

J P
2 0 0

0 -2 0

0 0 5Q

c aa b

c d
b

c a 21 -7

-2 -8
b

490 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 490

www.EBooksWorld.ir

Note that this operation did not change the symbolic matrix R.
A rotation in the negative direction is represented by R(�a), which equals

the inverse of R(a). The inverse of a matrix can be found from its reciprocal 1�A
or with the inverse function, which is in the Standard library. You get the mes-
sage FAIL if the matrix is not invertible.

[> simplify(inverse(R))

This equals R(�a), as can be shown by typing simplify(subs(R,a��a)).

The Characteristic Polynomial, Eigenvalues, and Eigenvectors
The function linalg::charpoly(A, x) computes the characteristic polynomial of
the matrix A. Using the matrix A created previously, we have
[> p :� linalg::charpoly(A,x)
[x2 � 5x � 26

The eigenvalues are the roots of the characteristic polynomial and can be
found as follows.
[> solve(p,x)

If you do not need the characteristic polynomial, you can calculate the eigen-
values of A directly with the function linalg::eigenvalues(A). This gives the
exact solution for the eigenvalues. This might not be possible for large matrices;
if so, you can use the numeric::eigenvalues(A) function.

The function linalg::eigenvectors(A) computes both the eigenvalues and
the eigenvectors of the matrix. The function returns a list of sublists; each sublist
consists of an eigenvalue of A, its algebraic multiplicity, and a basis vector,
which is an eigenvector normalized so that the last element is 1. If a basis vector
cannot be computed, the message FAIL is returned. For example,

[> A :� matrix([[3, 5], [-4, 2]]):
[> linalg::eigenvectors(A)

c e 5

2
-

179i

2
,

5

2
+

179i

2
f

c acos(a) -sin(a)

sin(a) cos(a)
b

11.4 Linear Algebra 491

J J J 5

2
-

179i

2
, 1, J P -

1

8
+

179i

8

1
Q K K , J 5

2
+

179i

2
, 1, J P -

1

8
-

179i

8

1
Q K K K

Matrix Solution of Linear Equations
The function linalg::matlinsolve(A, b) computes the general solution of the
equation Ax � b, where A is an m n matrix, b is an m 1 vector, and the so-
lution x is an n 1 vector. Consider the set

2x � y � 11

3x � 5y � �16

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 491

www.EBooksWorld.ir

It can be solved as follows.
[> A :� matrix([[2,1], [3, -5]]):b:� matrix ([11, 16]):
[> x :� linalg::matlinsolve(A, b)

This set has a unique solution x � 3, y � 5, whereas the set
2x � 3y � 14
4x � 6y � 10

has no solution. This is indicated by an empty set of brackets as the result.
[> A :� matrix ([[2,3], [4,6]]): b :� matrix([14, 10]):
[> x :� linalg:: matlinsolve(A, b)
[[]
For this set of equations the rank of A equals 1, which is less than the rank of the
matrix [A, b], which is created by typing A.b. Thus there is no solution. These
ranks can be computed as follows.

[> linalg::rank(A)
[1

[> C :� A.b:
[> linalg::rank(C)
[2

See Chapter 8 for discussion of the existence and uniqueness of solutions of lin-
ear algebraic equations.

Now consider the following set, which has the same matrix A but an in nite
number of solutions, x � 7 � 3y�2.

2x � 3y � 14
4x � 6y � 28

The MuPAD session is

[> A :� matrix([[2,3], [4,6]]); b :� matrix([14, 28]):
[> C:� A.b:

[> linalg::rank(A)
[1

[> linalg::rank(C)
[1

[> x :� linalg::matlinsolve(A, b)

J J a7

0
b , J P -

3

2

1
Q K K

c a3

5
b

492 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 492

www.EBooksWorld.ir

Because the rank of A equals the rank of [A, b], but is less than the number of
equations, there are an in nite number of solutions. MuP AD expresses this fact
indirectly in vector form. The rst vector on the solution, (7, 0), says that one so-
lution of the set is y � 0 and x � 7. The square brackets enclosing the second
vector (�3�2, 1) may be thought of as an eigenvector that expresses the slope of
x versus y in the solution x � 7 � 3y�2.

Equation sets can be solved symbolically. Consider the set

2x � ay � 1
3x � 6y � 3

It can be solved as follows.

[> A:�matrix([[2,a],[3,-6]])
[> b :� matrix([[1],[3]])
[> linalg::matlinsolve(A,b)

Use the function numeric::matlinsolve to solve a linear system numerically.

Test Your Understanding

T11.4–1 Consider three successive coordinate rotations using the same angle a.
Show that the product RRR of the rotation matrix R(a) equals R(3a).

T11.4–2 Find the characteristic polynomial and roots of the following matrix.

(Answers: s2 � 7s � 10 � 3k and

T11.4–3 Use the matrix inverse and the matlinsolve function to solve the fol-
lowing set.

�4x � 6y � �2
7x � 4y � 23

(Answer: x � 5, y � 3)

11.5 Calculus
In Chapter 9 we discussed techniques for performing numerical differentiation and
numerical integration; this section covers differentiation and integration of sym-
bolic expressions to obtain closed-form results for the derivatives and integrals.

s = (-7 � 19 - 12k)>2)

A = c -2 1

-3k -5
d

≥

±

6a+12

6a+24

-

6

6a+24

≤

11.5 Calculus 493

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 493

www.EBooksWorld.ir

Differentiation
The diff(f,x) function is used to obtain the symbolic ordinary derivative of the
expression f with respect to x. Although this function has the same name as the
function used to compute numerical differences (see Chapter 9), MuPAD uses
the symbolic form. The differential operator D(f), abbreviated as f�, computes
the derivative of the univariate function f. The D operator is used for functions,
not expressions. We will not use it here.

For example, the derivatives

are obtained with the following session.

[> diff(xn, x)
[nxn�1

[> diff(ln(x),x)

[> diff(sin(x)2,x)
[2 cos (x) sin(x)

[> diff(sin(y),y)
[cos(y)

When there is more than one variable, the diff function computes the partial
derivative. For example, if

f(x, y) � sin(xy)

then

The corresponding session is

[> diff(sin(x*y),x)
[y cos(xy)

�f
�x = y cos (xy)

c 1
x

�[sin (xy)]

�x
= y cos(xy)

d(sin y)

dy
= cos y

d(sin2x)

dx
= 2 sin x cos x

d(ln x)

dx
=

1
x

d(xn)

dx
= nxn - 1

494 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 494

www.EBooksWorld.ir

Higher derivatives can be obtained by successive application of the diff
command. For example,

[> diff(diff(ln(x),x),x)

A shorter form is

[> diff(ln(x),x,x)
The mixed second partial derivative may be calculated as follows:

[> diff((x2*y3 � 6*x2*y), y, x)
[6xy2 � 12x

Max-Min Problems
The derivative can be used to nd the maximum or minimum of a continuous
function, say f(x), over an interval a � x � b. A local maximum or local minimum
(one that does not occur at one of the boundaries x � a or x � b) can occur only
at a critical point, which is a point where either df�dx � 0 or df�dx does not exist.
If d2f�dx2 � 0, the point is a relative minimum; if d2f�dx2 � 0, the point is a rel-
ative maximum. If d2f�dx2 � 0, the point is neither a minimum nor a maximum,
but is an in ection point . If multiple candidates exist, you must evaluate the func-
tion at each point to determine the global maximum and global minimum.

Topping the Green Monster

The “Green Monster” is a wall 37 ft high in left eld at Fenway Park in Boston. The wall
is 310 ft from home plate down the left eld line. Assuming that the batter hits the ball
4 ft above the ground, and neglecting air resistance, determine the minimum speed the
batter must give to the ball in order to hit it over the Green Monster. In addition, nd the
angle at which the ball must be hit. (see Figure 11.5–1).

■ Solution
The equations of motion for a projectile launched with a speed �0 at an angle � relative to
the horizontal are

where x � 0, y � 0 is the location of the ball when it is hit. Because we are not concerned
with the time of ight in this problem, we can eliminate t and obtain an equation for y in
terms of x. To do this, solve the x equation for t and substitute this into the y equation to
obtain

y(t) = -

g

2

x2(t)

�2
0 cos2 �

+ x(t) tan �

x(t) = (�0 cos �)t y(t) = -

gt2

2
+ (�0 sin �)t

c - 1

x2

11.5 Calculus 495

EXAMPLE 11.5–1

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 495

www.EBooksWorld.ir

(You could use MuPAD to do this algebra if you wish. We will use MuPAD to do the more
dif cult task to follow .)

Because the ball is hit 4 ft above the ground, the ball must rise 37 � 4 � 33 ft to clear
the wall. Let h represent the relative height of the wall (33 ft). Let d represent the distance to
the wall (310 ft). Use g � 32.2 ft/sec2. When x � d, y � h. Thus the previous equation gives

which can easily be solved for as follows.

Because �0 � 0, minimizing is equivalent to minimizing �0. Note also that gd2�2 is a

multiplicative factor in the expression for . Thus the minimizing value of � is indepen-
dent of g and can be found by minimizing the function

The session to do this is as follows. The variable th represents the angle � of the ball’s
velocity vector relative to the horizontal. The rst step is to calculate the derivative
df�d� and solve the equation df�d � 0 for �. We know � must be less than �/2
1.57 rad.

L�

f =

1

cos2 �(d tan � - h)

�2
0

�2
0

�2
0 =

g

2

d2

cos2 �(d tan � - h)

�2
0

h = -

g

2

d2

�2
0 cos2 �

+ d tan�

496 CHAPTER 11 MuPAD

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

H
ei

gh
t y

 (
ft

)

Distance x (ft)

Green
Monster

Figure 11.5–1 A baseball trajectory to clear the Green Monster.

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 496

www.EBooksWorld.ir

11.5 Calculus 497

[> d :� 310:h:�33:g:�32.2:
[> f :� 1�(((cos(th))^2)*(d*tan(th)-h)):
[> dfdth :� diff(f, th):

[> thmin :� numeric::realroot(dfdth,th � 0..1.57)
[0.838424752

So the solution candidate is � 0.8384 rad, or about 48°. To verify that this is a minimum
solution, and not a maximum or an in ection point, we can check the second derivative
d2f�d 2. If this derivative is positive, the solution represents a minimum. To check this
and to nd the speed required, continue the session as follows.

[> second :� diff(diff(f,th),th):
[> subs(second, th � thmin)

[> oat(%)
[0.03209697518

So the second derivative is positive, and the solution represents the minimum. To nd the
speed required, continue the session as follows.

[> v2:�(g*d^2�2)*f
[> v2min :� subs(v2, th � thmin):

[> vmin :�sqrt(v2min)
[105.3612757

Thus the minimum speed required is about 105 ft/sec, or about 72 mph. A ball hit with this
speed will clear the wall only if it is hit at an angle of approximately 48°.

Test Your Understanding

T11.5–1 Given that y � sinh (3x) cosh(5x), use MuPAD to nd dy�dx at x � 0.2.
(Answer: 9.2288)

T11.5–2 Given that z � 5 cos (2x) ln(4y), use MuPAD to nd z� y. (Answer:
5 cos(2x)�y)

Integration
The int(f,x) function is used to integrate a symbolic expression f with respect
to x. It is possible that the integral does not exist in closed form, or that MuPAD
cannot nd the integral even if it exists. For example, you can obtain the follow-
ing integrals with the session shown below.

L
cos x dx = sin x

L

1
x

 dx = ln x

��

�

�

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 497

www.EBooksWorld.ir

[> int(1�x,x)
[ln(x)

[> int(cos(x),x)
[sin(x)

[> int(sin(y),y)
[�cos(y)

[> assume(n <>-1):int(xn,x)

If we had not forced MuPAD into assuming that n �1, MuPAD would have
given us a second solution, ln x, as well.

De nite integrals can be computed by giving the limits after the integrand.
For example, the integral

is computed as follows:

[> int(x3, x�0..10)
[2500

The following session gives an example for which no integral can be found.
The inde nite integral exists, but the de nite integral does not exist if the limits
of integration include the singularity at x � 1. The integral is

The session is

[> int(1�(x-1),x)
[ln(x � 1)

[> int(1�(x-1),x�0..2
[unde ned

Test Your Understanding

T11.5–3 Given that y � x sin(3x), use MuPAD to nd ydx. (Answer: (sin(3x) �
3x cos(3x))�9)

T11.5–4 Given that z � 6y2 tan(8x), use MuPAD to nd zdy. (Answer:
2y3 tan(8x))

1

1

L

1

x - 1
 dx = ln � x - 1�

L

10

0
x3dx

	

c xn+1

n+1

L
xn dx =

xn + 1

n + 1

L
sin y dy = -cos y

498 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 498

www.EBooksWorld.ir

T11.5–5 Use MuPAD to evaluate

(Answer: 0.6672)

Taylor Series
The taylor(f,x�a,n) function gives the rst n � 1 terms in the Taylor series for
the function de ned in the expression f, evaluated at the point x � a. The param-
eter n is optional. If the parameter a is omitted, the function returns the series
evaluated at x � 0. Some common examples of the Taylor series are

where a � 0 in both examples.
Here are some examples.

[> taylor(exp(x), x)

[> taylor(exp(x), x, 8)

[> taylor(sin(x),x,6)

A linear approximation to ex about the point x � 2 is found as follows.

[> taylor(exp(x),x�2,2)
[e2 � e2(x � 2) � O((x � 2)2)

The latter expression corresponds to

ex e2 [1 � (x � 2)] for x 2LL

c x -

x3

6
+

x5

120
+ O(x7)

c 1 + x +

x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+

x7

5040
+ O(x8)

c 1 + x +

x2

2
+

x3

6
+

x4

24
+

x5

120
+ O(x6)

sin x = x -

x3

3!
+

x5

5!
-

x7

7!
+

Á - q 6 x 6 q

ex
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

Á - q 6 x 6 q

L

5

- 2
x sin(3x) dx

11.5 Calculus 499

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 499

www.EBooksWorld.ir

Sums
The sum(f,k � a..b) function returns the sum of the expression f as the symbolic
variable varies from a to b. Here are some examples. The summations

are given by

[> sum(k,k � 0..10)
[55

[> sum(k, k � 0..n-1)

[> sum(k2, k � 1..4)
[30

Limits
The function limit(f,x � a) returns the limit

For example, the limits

are found from

[> limit((x-3)�(x^2-9), x�3)

[> limit((sin(x � h)-sin(x))�h,h�0)
[cos(x)

c 1
6

lim
x:0

sin(x + h) - sin(x)

h
= cos x

lim
x:3

x - 3

x2
- 9

=

1

6

lim
x:a

 f(x)

c n(n-1)

2

 a
4

k = 1
k2

= 1 + 4 + 9 + 16 = 30

 a
n - 1

k = 0
k = 0 + 1 + 2 + 3 +

Á
+ n - 1 =

n(n - 1)

2

 a
10

k = 0
k = 0 + 1 + 2 + 3 +

Á
+ 9 + 10 = 55

500 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 500

www.EBooksWorld.ir

The forms limit(f, x � a, Left) and limit(f, x � a, Right) specify the direc-
tion of the limit. For example,

are given by

[> limit(1�x, x�0, Left)
[

[> limit(1�x, x�0, Right)
[

Test Your Understanding

T11.5–6 Use MuPAD to nd the rst three nonzero terms in the Taylor series for
cos x.

(Answer:

T11.5–7 Use MuPAD to nd a formula for the sum

(Answer:)

T11.5–8 Use MuPAD to evaluate

(Answer: 0)

T11.5–9 Use MuPAD to evaluate

(Answer:)

11.6 Ordinary Differential Equations
Methods for obtaining a numerical solution to differentiation, integration, and
differential equation problems were covered in Chapter 9. However, we prefer to
obtain an analytical solution whenever possible, because it is more general, and
thus more useful for designing engineering devices or processes.

2>75

lim
x:5

2x - 10

x3
- 125

a
7

n = 0
cos(�n)

m4>4 - m3>2 + m2>4
a

m - 1

m = 0
m3

1 - x2>2 + x4>24)

q

- q

 lim
x:0+

1
x

= q

 lim
x:0-

1
x

= - q

11.6 Ordinary Differential Equations 501

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 501

www.EBooksWorld.ir

MuPAD provides the ode and solve functions for solving ordinary differen-
tial equations in closed form. These functions are different from the numerical
ODE solvers in MATLAB (such as ode45 and the symbolic ODE solver
dsolve in the Symbolic Math toolbox).

The syntax of the MuPAD ode and solve functions differs somewhat according
to whether they are used to solve single equations or sets of equations, and whether
boundary conditions are speci ed. MuPAD also has the numeric::solve function
for solving differential equations numerically, but we will not cover this topic
because the MATLAB ode solvers are suf cient for our purposes.

Solving a Single Differential Equation
The MuPAD ode function is used to describe the equation and its boundary condi-
tions, if any, but it does not solve the equation. The solve function is then used to
solve the problem. The arbitrary constants in the solution are denoted by Cl, C2, and
so on. The number of such constants is the same as the order of the equation. Deriva-
tives are denoted by primes regardless of the independent variable. For example,

and so on.
For example, the equation

(11.6–1)

has the solution

The solution can be found with the following session. We give the equation
the arbitrary name eqn and tell MuPAD that the independent variable is t and the
dependent variable is y(t). If the colon is not used after the command, MuPAD
will display the equation.

[> eqn :� ode(y¿(t)�2*y(t)�12, y(t)):
[> solve (eqn)

which is the correct solution, although it is expressed in a less than conventional
form.

Suppose the initial condition is y(0) � 5. We nd the solution as follows.

[> eqn :� ode ({y¿(t)�2*y(t)�12, y(0)�5}, y(t)):
[> solve(eqn)

Note how the braces are used to group the equation and the initial condition.

c e 6 -

1

e2t
f

c eC1

e2t
+ 6 f

y(t) = 6 + C1e
- 2t

dy

dt
+ 2y = 12

y¿ =

dy

dx
=

dy

dt
 y– =

d2y

dx2
=

d2y

dt2

502 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 502

www.EBooksWorld.ir

You need not use t as the independent variable or y as the dependent variable.
We could just as easily express Eq. (11.6–1) as

and the MuPAD session would be

[> eqn :� ode(w¿(x)�2*w(x)�12, w(x)):
[> solve(eqn)

There can be symbolic constants in the equation and boundary conditions,
although the more complicated the equation, the more complicated the solution
will be, perhaps to the point of not being useful. Here is a second-order example.

The session is

[> eqn :� ode(y¿¿(t)�c^2*y(t), y(t)):
[> solve(eqn)

The solution is .
With the initial conditions , the session is

[> eqn :� ode({y¿¿(t)�c^2*y(t), y(0)�1, y¿(0)�0}, y(t)):
[> solve(eqn)

The solution given by MuPAD is if and

if .
Here is an example having a forcing function.

The session is

[> eqn :� ode({y¿(t)�sin(b*t), y(0)�0}, y(t)):
[> solve(eqn)

c e 1

b
-

cos(bt)

b
f

dy

dt
= sin bt y(0) = 0

c 	 0

y(t) =

1

2
ect

+

1

2
e-ct

c = 0y(t) = 1

y(0) = 1, y¿(0) = 0
y(t) = C1e

-ct
+ C2e

ct

c eC1

ect + C2ect f

d2y

dt2
= c2y

c eC1

e2x
+ 6 f

dw

dx
+ 2w = 12

11.6 Ordinary Differential Equations 503

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 503

www.EBooksWorld.ir

The solution is

General boundary conditions may also be speci ed. For example, consider
the problem

The session to nd the solution and plot it is

[> eqn :� ode({y¿¿(t) � 9*y(t)�0, y(0)�1, y¿(PI)�2}, y(t)):
[> solve(eqn)

[> plot(oat(%))

So the solution is

If a plot of the solution is required, then it is better to make use of the powerful
MATLAB plot function.

Higher-order equations can also be solved. Consider, for example,

with the initial conditions and

The session is

[> eqn :� ode({y¿¿ ¿¿(t)-y(t)�0, y(0)�1, y¿(0)�0, y¿¿(0)�0, y¿¿¿(0)�0}, y(t)):
[> solve(eqn)

So the solution is

y(t) =

1

4
e-t

+

1

2
 cos t +

1

4
et

c e 1

4et +

cos(t)

2
+

et

4
f

dy

dt
`
t = 0

=

d2y

dt2
`
t = 0

=

d3y

dt3
`
t = 0

= 0

y(0) = 1

d4y

dt4
- y = 0

y(t) = cos 3t -

2

3
 sin 3t

c e cos(3t) -

2 sin(3t)

3
f

d2y

dt2
+ 9y = 0 y(0) = 1, y. (�) = 2

y(t) =

1

b
 (1 - cos bt)

504 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 504

www.EBooksWorld.ir

Solving Sets of Equations
Sets of equations can be solved with solve. Use a set of square brackets to denote
the set of equations and another set of brackets to denote the dependent variables.
For example, consider the set

The MuPAD session is

[> eqn :� ode([x¿(t)�3*x(t)�4*y(t), y¿(t)� �4*x(t)�3*y(t)], [x(t),y(t)]):
[> solve(eqn)

Thus the solution is

Note that MuPAD rst displays the solution for the second variable y(t).
Sets of equations with speci ed boundary conditions can be solved as fol-

lows. For example, consider the equation set just given, with the initial condi-
tions x(0) � 0, y(0) � 1. The session is

 x(t) = C2e
3t cos 4t - C1e

3t sin 4t

 y(t) = -C1e
3t cos 4t - C2e

3t sin 4t

[{[y(t) = -C1 cos(4t)e3t
- C2 sin(4t)e3t, x(t) = C2 cos(4t)e3t

- C1 sin(4t)e3t]}

dy

dt
= -4x + 3y

dx

dt
= 3x + 4y

11.6 Ordinary Differential Equations 505

[> eqn:�ode({x¿(t)�3*x(t)�4*y(t),y¿(t)��4*x(t)�3*y(t),x(0)�0, y(0)�1} [x(t),y(t)]):
[{y(t) = cos(4t)e3t, x(t) = sin(4t)e3t}

Note how when boundary conditions are speci ed, braces are used instead of
brackets to group the equations and the boundary conditions.

Solving Nonlinear Equations
MuPAD can solve some nonlinear differential equations. For example, the problem

(11.6–2)

can be solved with the following session.

[> eqn:� ode({y¿(t)�(y(t))2, y(0)�1}, y(t))):
[> solve(eqn)

c e -

1

t - 1
f

dy

dt
= y2 y(0) = 1

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 505

www.EBooksWorld.ir

So the solution is

Not all nonlinear equations can be solved in closed form. An example is the
following equation, which is the equation of motion of a pendulum:

. If you try to solve this equation in MuPAD, the result is ex-
pressed in terms of integrals that would need to be evaluated numerically.

Test Your Understanding

T11.6–1 Use MuPAD to solve the problem

for . Check the answer by hand or with MuPAD. (Answer:
)

11.7 Laplace Transforms
The Laplace transform L[y(t)] of a function y(t) is de ned to be

(11.7–1)

and can be obtained in MuPAD by typing transform::laplace(y,t,s), where y is
the function of t. The result is a function of s. The laplace command is in the
Transform library, which also contains the Fourier and z transforms.

Here is a MuPAD session with some examples. The functions are t3, e�bt,
and sin bt.

[> transform::laplace(t^3, t, s)

[> transform::laplace(exp(�b*t), t, s)

[> transform::laplace(sin(b*t), t, s)

c b

b2
+ s2

c 1

b + s

c 6

s4

= Y(s)L[y(t)] =

L

q

0
 y(t)e-st

 dt

y(t) = cos(1at)
a 7 0

d2y

dt2
+ ay = 0 y(0) = 1 y. (0) = 0

L�" + g sin � = 0

y(t) =

1

1 - t

506 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 506

www.EBooksWorld.ir

The inverse Laplace transform is that time function y(t) whose
transform is Y(s), that is, . Inverse transforms can be found
using the function transform::invlaplace(Y, s, t). Note the reversed order of s
and t. For example,

[> transform::invlaplace(6�s^4, s, t)
[t3

[> transform::invlaplace(1�(s�b), s, t)

Depending on what computations have preceded the command in the note-
book, you may get different, but still correct, answers. For example, sometimes,
but not always, you will get an unreduced answer like the following.

[> transform::invlaplace(b�(s^2�b^2), s, t)
[

This occurs because MuPAD considers the possibility that b may be negative.
Note that MuPAD does not reduce to b. If in fact , you can avoid this
by typing

[> assume(b>0):
[> transform::invlaplace(b�(s^2�b^2), s, t)
[sin(bt)

Because the transform is an integral, its has the properties of integrals. In
particular, it has the linearity property, which states that if a and b are not func-
tions of t, then

(11.7–2)

The transforms of derivatives are useful for solving differential equations.
Applying integration by parts to the de nition of the transform, we obtain

(11.7–3)

This procedure can be extended to higher derivatives. For example, the result for
the second derivative is

(11.7–4)

The general result for any order derivative is

(11.7–5)Ladny

dtn
b = snY(s) - a

n

k = 1
sn - kgk - 1

Lad2y

dt2
b = s2Y(s) - sy(0) -

#

y(0)

 = sL[y(t)] - y(0) = sY(s) - y(0)

 Lady

dt
b =

L

q

0

dy

dt
 e-st

 dt = y(t)e-st ` q
0

+ s
L

q

0
y(t)e-st

 dt

L[af1(t) + bf2(t)] = aL[f1(t)] + bL[f2(t)]

b 7 02b2

sin(2b2
 t)

c 1

ebt

y(t) = L
- 1[Y(s)]
L

-1[Y(s)]

11.7 Laplace Transforms 507

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 507

www.EBooksWorld.ir

where

(11.7–6)

Application to Differential Equations
The derivative and linearity properties can be used to solve equations such as

(11.7–7)

Application of the transform gives

(11.7–8)

The free response is given by

The forced response is given by

(11.7–9)

This cannot be evaluated until V(s) is speci ed.
Suppose �(t) is a unit-step function, which is also called the Heaviside func-

tion. In MuPAD this is called by the command heaviside(t). For example,

[> transform::laplace(heaviside(t), t, s)

Thus the transform of the unit-step function is 1�s, and so V(s) � 1�s. Then Equa-
tion (11.7–9) becomes

To nd the inverse transform, which is y(t), enter

[> transform::invlaplace(b�(s*(a*s�1)), s, t)

which can be expressed as . This is the forced response to a unit-step
input.

Consider the second-order model

(11.7–10)$

x + 2 #

x + x = f(t)

b(1 - e-t>a)

c b -

b

e
t
a

L
- 1 c b

s(as + 1)
d

c 1
s

L
- 1 c b

as + 1
V(s) d

L
- 1 c ay(0)

as + 1
d = L

- 1 c y(0)

s + 1>a d = y(0)e-t>a

Y(s) =

ay(0)

as + 1
+

b

as + 1
V(s)

a
#

y + y = b�(t)

gk - 1 =

dk - 1y

dtk - 1
`
t = 0

508 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 508

www.EBooksWorld.ir

Transforming this equation gives

Solve for X(s).

The free response is obtained from

Suppose the initial conditions are and . Then the free response
is obtained from

(11.7–11)

It can be found in MuPAD by typing

[> transform::invlaplace((2*s�7)�(s^2�2*s�1), s, t)

So the free response is

The forced response is obtained from

If f(t) is a unit-step function, , and the forced response is

To nd the forced response, enter

[> transform::invlaplace(1�(s*(s^2�2*s�1)),s,t)

So the forced response is

(11.7–12)x(t) = 1 - te-t
- e-t

c 1 -

t

et -

1

et

x(t) = L
- 1 c 1

s(s2
+ 2s + 1)

d
F(s) = 1>s

x(t) = L
- 1 c F(s)

s2
+ 2s + 1

d

x(t) = 2e-t
+ 5te-t

c 2
et +

5t

et

x(t) = L
- 1 c 2s + 7

s2
+ 2s + 1

d

x# (0) = 3x(0) = 2

x(t) = L
- 1 c x (0)s + x# (0) + 2x(0)

s2
+ 2s + 1

d

X(s) =

x(0)s +

#

x(0) + 2x(0)

s2
+ 2s + 1

+

F(s)

s2
+ 2s + 1

[s2X(s) - sx(0) -

#

x(0)] + 2[sX(s) - x(0)] + X(s) = F(s)

11.7 Laplace Transforms 509

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 509

www.EBooksWorld.ir

Input Derivatives
Two similar mechanical systems are shown in Figure 11.7–1. In both cases the
input is a displacement y(t). Their equations of motion are

(11.7–13)

(11.7–14)

The only difference between these systems is that the system in Figure 11.7–1a
has an equation of motion containing the derivative of the input function y(t).
Both systems are examples of the more general differential equation

(11.7–15)

We now demonstrate how to use the Laplace transform to nd the step re-
sponse of equations containing derivatives of the input. Suppose the initial con-
ditions are zero. Then transforming Equation (11.7–15) gives

(11.7–16)

Let us compare the unit-step response of Equation (11.7–16) for two cases
using the values m = 1, c = 2, and k = d = 1, with zero initial conditions. The
two cases are g = 0 and g = 5.

With , Equation (11.7–16) gives

(11.7–17)

The response for the case g = 0 was found earlier in Equation (11.7–14). The re-
sponse for g = 5 is found by typing

[> transform::invlaplace((1�5s*)�(s*(s2�2*s�1)), s, t)

c 4t

et -

1

et + 1

X(s) =

1 + gs

s(s2
+ 2s + 1)

Y(s) = 1>s

X(s) =

d + gs

ms2
+ cs + k

Y(s)

m
$

x + c
#

x + kx = dy + g
#

y

 m$

x + c
#

x + kx = ky

 m$

x + c
#

x + kx = ky + c
#

y

510 CHAPTER 11 MuPAD

(b)(a)

y

xx

mm

k

k
c

c

y

Figure 11.7–1 Two mechanical systems. The model for (a) contains the derivative
of the input y(t); the model for (b) does not.

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 510

www.EBooksWorld.ir

11.7 Laplace Transforms 511

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

t

x

g = 5

g = 0

Figure 11.7–2 The step response of the model ẍ + 2x
.
+ x = u + gu

. for g = 0 and g = 5.

or

The two response are plotted in Figure 11.7–2. The effect of differentiating
the input is an increase in the response’s peak value.

Partial fraction expansions are useful when dealing with inverse Laplace
transforms and for other applications. The partfrac(f,x) function creates the par-
tial fraction expansion of the expression f(s) in terms of its variable s.

[> partfrac((6*s�5)�(s^3�14*s^2�59*s�70),s)

Test Your Understanding

T11.7–1 Find the Laplace transform of the functions 1 - e-at and cosbt. Use the
ilaplace function to check your answers.

T11.7–2 Use the Laplace transform to solve the problem
, where u(t) is a unit-step function and

. (Answer:)y(t) = -1.6e-3t
+ 4.6e-t

+ 2#

y(0) = 1
y(0) = 5,15y = 30u - 4 #

u
5$

y + 20 #

y +

c 25

6(s + 5)
-

7

15(s + 2)
-

37

10(s + 7)

x(t) = 4te-t
- e-t

+ 1

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 511

www.EBooksWorld.ir

11.8 Special Functions
Differential equations that do not have closed-form solutions can often be solved
in terms of special functions. Many such ordinary differential equations arise in
the solution of partial differential equations. Examples include the Chebyshev
polynomials of the rst kind T(n, x), the Hermite polynomials Hn(x), and several
types of Bessel functions. Other examples are the Airy functions Ai(x) and Bi(x),
which are the two independent solutions to Airy’s equation y�� � xy � 0.
Table 11.8–1 lists some of the special functions available in MuPAD.

Consider a speci c case of Legendre’ s equation (1 � x2)y�� � 2xy� � 6y � 0
with the initial conditions y(0) � 1, y�(0) � 0. It can be solved in MuPAD with
the following session:
[> eqn1:= ode({(1-x^2)*y¿¿ (x)-2*x*y¿ (x)+6*y(x)=0, y(0)=1, y¿(0)=0}, y(x)):
[> solve(eqn1)
[{1 � 3x2}
The result is a nite polynomial of degree 2.

Airy’s equation y�� � xy � 0 with the same initial conditions can be solved
with the following session:
[> eqn2:= ode({y¿¿ (x)-x*y(x)=0, y(0)=1, y¿(0) = 0}, y(x)):
[> solve(eqn2)

where �(x) is another special function called the gamma function. The gamma
function is evaluated by typing gamma(x). Table 11.8–2 shows that the oat
function is used to evaluate special functions numerically. For example,
[> oat(gamma(2 �3))
[1.354117939
[> oat(airy Ai(2,0))
[0.03492413042

J L 32>3�a2

3
bairyAi(x,0)

2
+

31>6�a2

3
bairyBi(x,0)

2
M

512 CHAPTER 11 MuPAD

Table 11.8–1 Special function calls in MuPAD

Name and Symbol Function Call

Airy, Ai(x) airy Ai(x)
Airy, Bi(x) airy Bi(x)
Chebyshev of rst kind, T(n, x) chebyshev1 (n, x)
Gamma, �(x) gamma(x)
Hermite, Hn(x) hermite (n,x)
Bessel I, In(x) besselI(n,x)
Bessel J, Jn(x) besselJ(n,x)
Bessel K, Kn(x) besselK(n,x)
Bessel Y, Yn(x) besselY (n,x)
Laguerre, L(n, a, x) laguerreL(n,a,x)
Legendre, Pn(x) legendre(n,x)

pal34870_ch11_464-526.qxd 1/11/10 2:45 PM Page 512

www.EBooksWorld.ir

If an explicit series solution is preferred, you can use the series option as fol-
lows. Using the particular Legendre’s equation (1 � x2)y�� � 2xy� � 12y � 0 as
an example, solving it with the solve function, even with simple initial condi-
tions such as y(0) � 1 and y�(0) � 0, results in a complicated expression that is
too detailed to display here (try it). However, even with arbitrary initial condi-
tions, the series solution is not very complicated. The session is

[> eqn3 := (1-x^2)*y"(x)-2*y¿(x)+12*y(x)=0:
[> ode::series({eqn3, y(0)=a, y¿0)=b},y(x), x=0)

To evaluate a special function symbolically as a nite series , use either the
orthpoly:: option or the series function. The orthpoly package provides some
standard orthogonal polynomials. Call the package functions by using the pack-
age name orthpoly and the name of the function. For example, the fth-order
Legendre polynomial is obtained as follows:

[> orthpoly::legendre(5, x)

[> orthpoly::legendre(5,2)

[> oat (orthpoly::legendr e(5,2))
[185.75

To evaluate symbolically a special function that consists of an in nite series ,
use the series function. For example,

[> series(besselJ(0,x), x)

You can plot special functions just as any other functions. For example,

[> plot(airyAi(x),x=0..5)

c 1 -

x2

4
+

x4

64
+ O(x6)

c 743

4

c epolya63x5

8
-

35x3

4
+

15x

8
, [x]b f

c ea + bx - 6ax2
-

5b

3
x3

+ 3ax4
+ O(x6) f

11.8 Special Functions 513

Table 11.8–2 Evaluation of special functions in MuPAD

Result Code

Symbolic nite series orthpoly::
Symbolic in nite series series
Numeric result oat

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 513

www.EBooksWorld.ir

You can plot the solution of a differential equation by following this exam-
ple based on Airy’s equation.

[> eqn4 := ode({y"(x)=x*y(x), y(0)=1, y¿(0)=-0.1}, y(x)):
[> solve(eqn4):
[> y4 := op(%):
[> plotfunc2d(y4, x=0..1)

The op function removes the braces surrounding the solution obtained by the
solve function.

Test Your Understanding

T11.8–1 Solve Legendre’s equation for the given initial conditions.

(1 � x2)y�� � 2xy� � 6y � 0 y(0) � 12 y�(0) � 0

(Answer: y(x) � 12 � 36x2)

T11.8–2 Evaluate the solution to Airy’s equation at x � 3 for the given initial
conditions.

y�� � xy � 0 y(0) � 1 y�(0) � 5

(Answer: y(3) � 89.6423632)

11.9 Summary
This chapter covers a subset of the capabilities of MuPAD. Now that you have
 nished this chapter , you should be able to use MuPAD to do the following:

■ Create symbolic expressions and manipulate them algebraically.
■ Obtain symbolic solutions to algebraic and transcendental equations.
■ Perform symbolic differentiation and integration.
■ Evaluate limits and series symbolically.
■ Obtain symbolic solutions to ordinary differential equations.
■ Obtain and apply Laplace transforms.
■ Perform symbolic linear algebra operations, including obtaining expres-

sions for determinants, matrix inverses, eigenvectors, and eigenvalues.
■ Evaluate the special functions of mathematics.

Key Terms with Page References

514 CHAPTER 11 MuPAD

Assignment operator, 472
Input region, 468
MuPAD Library, 480

Output region, 468
Reserved symbols, 470
Text region, 468

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 514

www.EBooksWorld.ir

Problems
You can nd the answers to problems marked with an asterisk at the end of the text.

Section 11.2
1. Use MuPAD to prove the following identities:

a. sin2x � cos2 x � 1
b. sin(x � y) � sin x cosy � cosx siny
c. sin2x � 2 sin x cosx
d. cosh2x � sinh2 x � 1

2.* Two polynomials in the variable x are represented by the coef cient
vectors p1 = [6,2,7,-3] and p2 = [10,-5,8].
a. Use MuPAD to nd the product of these two polynomials; express the

product in its simplest form.
b. Use MuPAD to nd the numeric value of the product if x � 2.

3.* The equation of a circle of radius r centered at x � 0, y � 0 is

Use MuPAD functions to nd the equation of a circle of radius r centered at
the point x � a, y � b. Rearrange the equation into the form Ax2 � Bx �
Cxy � Dy � Ey2 � F and nd the expressions for the coef cients in terms
of a, b, and r.

Section 11.3
4.* The law of cosines for a triangle states that a2 � b2 � c2 � 2bc cos A,

where a is the length of the side opposite the angle A, and b and c are the
lengths of the other sides.
a. Use MuPAD to solve for b.
b. Suppose that A � 60�, a � 5 m, and c � 2 m. Determine b.

5. Use MuPAD to solve the polynomial equation x3 � 8x2 � ax � 10 � 0
for x in terms of the parameter a, and evaluate your solution for the case
a � 17. Use MuPAD to check the answer.

6.* The equation for an ellipse centered at the origin of the Cartesian
coordinates (x, y) is

where a and b are constants that determine the shape of the ellipse.
a. In terms of the parameter b, use MuPAD to nd the points of

intersection of the two ellipses described by

x2
+

y2

b2
= 1

x2

a2
+

y2

b2
= 1

x2
+ y2

= r2

Problems 515

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 515

www.EBooksWorld.ir

and

b. Evaluate the solution obtained in part a for the case b � 2.

7. The equation

describes the polar coordinates of an orbit with the coordinate origin at
the sun. If � � 0, the orbit is circular; if 0 < � < 1, the orbit is elliptical.
The planets have orbits that are nearly circular; comets have orbits that
are highly elongated with � nearer to 1. It is of obvious interest to deter-
mine whether a comet’s or an asteroid’s orbit will intersect that of a
planet. For each of the following two cases, use MuPAD to determine
whether orbits A and B intersect. If they do, determine the polar coordi-
nates of the intersection point. The units of distance are AU, where 1 AU
is the mean distance of the Earth from the sun.
a. Orbit A: p � 1, � � 0.01. Orbit B: p � 0.1, � � 0.9.
b. Orbit A: p � 1, � � 0.01. Orbit B: p � 1.1, � � 0.5.

Section 11.4
8. Show that R�1(a)R(a) � I, where I is the identity matrix and R(a) is the

rotation matrix. This equation shows that the inverse coordinate transfor-
mation returns you to the original coordinate system.

9. Show that R�1(a) � R(�a). This equation shows that a rotation through a
negative angle is equivalent to an inverse transformation.

10.* Find the characteristic polynomial and roots of the following matrix:

11.* Use the matrix inverse and the matrix division method to solve the
following set for x and y in terms of c:

12. The currents i1, i2, and i3 in the circuit shown in Figure P12 are described
by the following equation set if all the resistances are equal to R.

J
2R -R 0

-R 3R -R

0 R -2R
K J

i1
i2
i3
K = J

�1

0

�2
K

 3x - 4y = -22

 4cx + 5y = 43

A = c -6 2

3k -7
d

r =

p

1 - � cos �

x2

100
+ 4y2

= 1

516 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 516

www.EBooksWorld.ir

Here �1 and �2 are applied voltages; the other two currents can be found
from i4 � i1 � i2 and i5 � i2 � i3.
a. Use both the matrix inverse method and the matrix division method to

solve for the currents in terms of the resistance R and the voltages �1

and �2.
b. Find the numerical values for the currents if R � 1000 �, �1 � 100 V,

and �2 � 25 V.

Problems 517

13. The equations for the armature-controlled dc motor shown in Figure P13
follow. The motor’s current is i, and its rotational velocity is �.

where L, R, and I are the motor’s inductance, resistance, and inertia; KT

and Ke are the torque constant and back-emf constant; c is a viscous
damping constant; and �(t) is the applied voltage.
a. Find the characteristic polynomial.

 I

d�

dt
= KTi - c�

 L

di

dt
= -Ri - Ke� + �(t)

+

–

+

–

v1 v2R5

R1 R2 R3

R4

i 5i 4

i 3i 2i 1

Figure P12

R

v

i

Ke

T = KTi

ω

cω

L

+

–

I

ω

Figure P13

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 517

www.EBooksWorld.ir

b. Use the values R � 0.8 �, L � 0.003 H, KT � 0.05 N � m/A, Ke � 0.05
V � s/rad, and I � 8 10�5 kg � m2. The damping constant c is often
dif cult to determine with accuracy . For these values nd the expres-
sions for the two characteristic roots in terms of c.

c. Using the parameter values in part b, determine the roots for the
following values of c (in N � m � s): c � 0, c � 0.01, c � 0.1, and c �
0.2. For each case, use the roots to estimate how long the motor’s
speed will take to become constant; also discuss whether the speed will
oscillate before it becomes constant.

14. Solve the following recurrence relation for the given initial conditions.

y(n � 2) � 0.3y(n � 1) � 0.02y(n) � 10 y(0) � 2 y(1) � 0

15. Solve the following optimization problem. Minimize

J � x � 3y � 2z

subject to the constraints

Section 11.5
16. Use MuPAD to nd all the values of x where the graph of y � 3x � 2x has

a horizontal tangent line.

17.* Use MuPAD to determine all the local minima and local maxima and all
the in ection points where dy�dx � 0 of the following function:

18. The surface area of a sphere of radius r is S � 4�r2. Its volume is
V � 4�r3�3.
a. Use MuPAD to nd the expression for dS�dV.
b. A spherical balloon expands as air is pumped into it. What is the rate

of increase in the balloon’s surface area with volume when its volume
is 30 in.3?

19. Use MuPAD to nd the point on the line y � 2 � x�3 that is closest to the
point x � �3, y � 1.

20. A particular circle is centered at the origin and has a radius of 5. Use
MuPAD to nd the equation of the line that is tangent to the circle at the
point x � 3, y � 4.

21. Ship A is traveling north at 6 mi/hr, and ship B is traveling west at 12 mi/hr.
When ship A was dead ahead of ship B, it was 6 mi away. Use MuPAD to
determine how close the ships come to each other.

y = x4
-

16
3 x3

+ 8x2
- 4

 7x + 4y + 11z … 50

 6x - 4y - 3z = 20

 3x + 3y - 3z … 20

518 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 518

www.EBooksWorld.ir

22. Suppose you have a wire of length L. You cut a length x to make a square
and use the remaining length L � x to make a circle. Use MuPAD to nd
the length x that maximizes the sum of the areas enclosed by the square
and the circle.

23.* A certain spherical street lamp emits light in all directions. It is mounted
on a pole of height h (see Figure P23). The brightness B at point P on the
sidewalk is directly proportional to sin � and inversely proportional to the
square of the distance d from the light to the point. Thus

where c is a constant. Use MuPAD to determine how high h should be to
maximize the brightness at point P, which is 30 ft from the base of the pole.

B =

c

d2
 sin �

Problems 519

Light

30 ft

P

d
h

θ

Figure P23

24.* A certain object has a mass m � 100 kg and is acted on by a force f (t) �
500[2 � e�t sin(5�t)] N. The mass is at rest at t � 0. Use MuPAD to
compute the object’s velocity at t � 5 s. The equation of motion is

25. A rocket’s mass decreases as it burns fuel. The equation of motion for a
rocket in vertical ight can be obtained from Newton’ s law and is

where T is the rocket’s thrust and its mass as a function of time is given by
m(t) � m0(1 � rt/b). The rocket’s initial mass is m0, the burn time is b, and
r is the fraction of the total mass accounted for by the fuel. Use the values
T � 48 000 N, m0 � 2200 kg, r � 0.8, g � 9.81 m/s2, and b � 40 s.
a. Use MuPAD to compute the rocket’s velocity as a function of time for

t � b.
b. Use MuPAD to compute the rocket’s velocity at burnout.

26. The equation for the voltage �(t) across a capacitor as a function of time is

�(t) =

1

C
c
L

t

0
 i(t) dt + Q0 d

m(t)

d�

dt
= T - m(t)g

m�
#

= f(t).
�

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 519

www.EBooksWorld.ir

where i(t) is the applied current and Q0 is the initial charge. Suppose that
C �10�6 F and that Q0 � 0. If the applied current is i(t) � [0.01 �
0.3e�5t sin(25�t)]10�3 A, use MuPAD to obtain the voltage �(t).

27. The power P dissipated as heat in a resistor R as a function of the current
i(t) passing through it is P � i2R. The energy E(t) lost as a function of
time is the time integral of the power. Thus

If the current is measured in amperes, the power is in watts and the energy
is in joules (1 W � 1 J/s). Suppose that a current i(t) � 0.2[1 � sin(0.2t)] A is
applied to the resistor.
a. Determine the energy E(t) dissipated as a function of time.
b. Determine the energy dissipated in 1 min if R � 1000 �.

28. The RLC circuit shown in Figure P28 can be used as a narrowband lter . If
the input voltage �i(t) consists of a sum of sinusoidally varying voltages
with different frequencies, the narrowband lter will allow to pass only
those voltages whose frequencies lie within a narrow range. The magni ca-
tion ratio M of a circuit is the ratio of the amplitude of the output voltage
�o(t) to the amplitude of the input voltage �i(t). It is a function of the radian
frequency � of the input voltage. Formulas for M are derived in elementary
electrical circuits courses. For this particular circuit, M is given by

M =

RC�

2(1 - LC�2)2
+ (RC�)2

E(t) =

L

t

0
P(t) dt = R

L

t

0
i2(t) dt

520 CHAPTER 11 MuPAD

C

vi voR

L

+

–

Figure P28

The frequency at which M is a maximum is the frequency of the desired
carrier signal. Determine this frequency as a function of R, C, and L.

29. The shape of a cable hanging with no load other than its own weight is a
catenary curve. A particular bridge cable is described by the catenary
y(x) � 10 cosh[(x � 20)�10] for 0 � x � 50, where x and y are the hori-
zontal and vertical coordinates measured in feet. (See Figure P29.) It is
desired to hang plastic sheeting from the cable to protect passersby while

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 520

www.EBooksWorld.ir

the bridge is being repainted. Use MuPAD to determine how many square
feet of sheeting are required. Assume that the bottom edge of the sheeting
is located along the x axis at y � 0.

Problems 521

Cable

y

x
Bridge Deck

Plastic Sheet

Figure P29

30. The shape of a cable hanging with no load other than its own weight is a
catenary curve. A particular bridge cable is described by the catenary
y(x) � 10 cosh[(x � 20)�10] for 0 � x � 50, where x and y are the hori-
zontal and vertical coordinates measured in feet.

The length L of a curve described by y(x) for a � x � b can be found
from the following integral:

Determine the length of the cable.

31. Use the rst ve nonzero terms in the Taylor series for eix, sinx, and cos x
about x � 0 to demonstrate the validity of Euler’s formula eix � cos x �
i sin x.

32. Find the Taylor series for ex sin x about x � 0 in two ways:
a. By multiplying the Taylor series for ex and that for sin x.
b. By using the taylor function directly on exsinx.

33. Integrals that cannot be evaluated in closed form sometimes can be evalu-
ated approximately by using a series representation for the integrand. For
example, the following integral is used for some probability calculations
(see Section 7.2):

a. Obtain the Taylor series for e�x2 about x � 0 and integrate the rst six
nonzero terms in the series to nd I. Use the seventh term to estimate
the error.

I =

L

1

0
e-x2

 dx

L � �a

b A
1 � �dy

dx�
2
dx

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 521

www.EBooksWorld.ir

b. Compare your answer with that obtained with the MuPAD erf(t) func-
tion, de ned as

34.* Use MuPAD to compute the following limits.

a.

b.

c.

35. Use MuPAD to compute the following limits.
a.

b.

c.

d.

e.

f.

36. Use MuPAD to compute the following limits.

a.

b.

37. Find the expression for the sum of the geometric series

for r 	1.

38. A particular rubber ball rebounds to one-half its original height when
dropped on a oor .
a. If the ball is initially dropped from a height h and is allowed to con-

tinue to bounce, nd the expression for the total distance traveled by
the ball after the ball hits the oor for the nth time.

a
n - 1

k = 0
rk

lim
x: - q

3x3
- 2x

2x3
+ 3

lim
x: q

x + 1
x

lim
x:1 +

x2
- 1

sin[(x - 1)2]

lim
x:5 -

x2
- 25

x2
- 10x + 25

lim
x:0 -

sin x2

x3

lim
x:0 +

a 1

1 - x
b-1>x2

lim
x:0 +

(cos x)1>tan x

lim
x:0 +

xx

lim
x:0

x4
+ 2x2

x3
+ x

lim
x: -2

x2

- 4

x2
+ 4

lim
x:1

x2

- 1

x2
- x

erf(t) =

2

1�L

t

0
 e-t2dt

522 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 522

www.EBooksWorld.ir

b. If it is initially dropped from a height of 10 ft, how far will the ball
have traveled after it hits the oor for the eighth time?

Section 11.6
39. The equation for the voltage y across the capacitor of an RC circuit is

where �(t) is the applied voltage. Suppose that RC � 0.2 s and that the
capacitor voltage is initially 2 V. If the applied voltage goes from 0 to 10 V
at t � 0, use MuPAD to determine the voltage y(t).

40. The following equation describes the temperature T(t) of a certain object
immersed in a liquid bath of temperature Tb(t):

Suppose the object’s temperature is initially T(0) � 70�F and the bath
temperature is 170�F. Use MuPAD to answer the following questions:
a. Determine T(t).
b. How long will it take for the object’s temperature T to reach 168�F?

41.* This equation describes the motion of a mass connected to a spring with
viscous friction on the surface

where f(t) is an applied force. The position and velocity of the mass at
t � 0 are denoted by x0 and �0. Use MuPAD to answer the following
questions.
a. What is the free response in terms of x0 and �0 if m � 3, c � 18, and

k � 102?
b. What is the free response in terms of x0 and �0 if m � 3, c � 39, and

k � 120?
42. The equation for the voltage y across the capacitor of an RC circuit is

where �(t) is the applied voltage. Suppose that RC � 0.2 s and that the capaci-
tor voltage is initially 2 V. If the applied voltage is �(t) � 10[2 � e�t sin(5�t)],
use MuPAD to obtain the voltage y(t).

RC
dy

dt
+ y = �(t)

my
$

+ cy
#

+ ky = f(t)

10

dT

dt
+ T = Tb

RC

dy

dt
+ y = �(t)

Problems 523

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 523

www.EBooksWorld.ir

43. The following equation describes a certain dilution process, where y(t) is
the concentration of salt in a tank of freshwater to which salt brine is
being added:

Suppose that y(0) � 0. Use MuPAD to obtain y(t).
44. This equation describes the motion of a certain mass connected to a

spring with viscous friction on the surface

where f (t) is an applied force. Suppose that f (t) � 0 for t � 0 and f(t) � 10
for t � 0.
a. Use MuPAD to obtain y(t) if
b. Use MuPAD to obtain y(t) if y(0) � 0 and

45. This equation describes the motion of a certain mass connected to a
spring with viscous friction on the surface

where f (t) is an applied force. Suppose that f (t) � 0 for t � 0 and f(t) �10
for t � 0.
a. Use MuPAD to obtain y(t) if
b. Use MuPAD to obtain y(t) if y(0) � 0 and

46. The equations for an armature-controlled dc motor follow. The motor’s
current is i and its rotational velocity is �.

where L, R, and I are the motor’s inductance, resistance, and inertia; KT and
Ke are the torque constant and back-emf constant; c is a viscous damping
constant; and �(t) is the applied voltage.

Use the values R � 0.8 �, L � 0.003 H, KT � 0.05 N�m/A, Ke � 0.05
V � s/rad, c � 0, and I � 8 10�5 kg · m2.

Suppose the applied voltage is 20 V. Use MuPAD to obtain the motor’s
speed and current versus time for zero initial conditions. Choose a nal time
large enough to show the motor’s speed becoming constant.

 I

d�

dt
= KTi - c�

 L

di

dt
= -Ri - Ke� + �(t)

y
#

(0) = 10.
y(0) = y

#

(0) = 0.

3y
$

+ 39y
#

+ 120y = f(t)

y
#

(0) = 10.
y(0) = y

#

(0) = 0.

3y
$

+ 18y
#

+ 102y = f(t)

dy

dt
+

2

10 + 2t
 y = 4

524 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 524

www.EBooksWorld.ir

Section 11.7
47. The RLC circuit described in Problem 28 and shown in Figure P28 has

the following differential equation model:

Use the Laplace transform method to solve for the unit-step response of
�0(t) for zero initial conditions, where C � 10�5 F and L � 5 10�3 H.
For the rst case (a broadband lter), R � 1000 �. For the second case
(a narrowband lter), R � 10 �. Compare the step responses of the two
cases.

48. The differential equation model for a certain speed control system for a
vehicle is

where the actual speed is �, the desired speed is �d(t), and Kp and KI are
constants called the control gains. Use the Laplace transform method to
 nd the unit-step response [that is, �d (t) is a unit-step function]. Use zero
initial conditions. Compare the response for three cases.
a. Kp � 9, KI � 50
b. Kp � 9, KI � 25
c. Kp � 54, KI � 250

49. The differential equation model for a certain position control system for a
metal cutting tool is

where the actual tool position is x; the desired position is xd (t); and Kp, KI,
and KD are constants called the control gains. Use the Laplace transform
method to nd the unit-step response [that is, xd(t) is a unit-step function].
Use zero initial conditions. Compare the response for three cases.
a. Kp � 30, KI � KD � 0
b. Kp � 27, KI � 17.18, KD � 0
c. Kp � 36, KI � 38.1, KD � 8.52

50.* The differential equation model for the motor torque m(t) required for a
certain speed control system is

where the desired speed is �d(t) and K is a constant called the control gain.
a. Use the Laplace transform method to nd the unit-step response

[that is, �d(t) is a unit-step function]. Use zero initial conditions.

4m
$

+ 4Km
#

+ K2m = K2�
#

d

= KD

d2xd

dt2
+ Kp

dxd

dt
+ KI

xd

d3x

dt3
+ (6 + KD)

d2x

dt2
+ (11 + Kp)

dx

dt
+ (6 + KI)x

�
$

+ (1 + Kp)�
#

+ KI� = Kp�
#

d + KI�d

LC�
$

o + RC�
#

o + �o = RC�
#

i(t)

Problems 525

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 525

www.EBooksWorld.ir

b. Use symbolic manipulation in MuPAD to nd the value of the peak
torque in terms of the gain K.

Section 11.8
51. Solve Legendre’s equation for the given initial conditions.

(1 � x2)y�� � 2xy� � 6y � 0 y(0) � 5 y�(0) � 0

52. Evaluate the solution to Airy’s equation at x � 2 for the given initial
conditions.

y�� � xy � 0 y(0) � 0 y�(0) � 1

53. Obtain a series solution to the following Legendre equation for the given
initial conditions.

(1 � x2) y�� � 2xy� � 6y � 0 y(0) � a y�(0) � b

526 CHAPTER 11 MuPAD

pal34870_ch11_464-526.qxd 1/5/10 10:18 PM Page 526

www.EBooksWorld.ir

Guide to Commands
and Functions in
This Text

Operators and special characters

Item Description Pages

+ Plus; addition operator. 8
- Minus; subtraction operator. 8
* Scalar and matrix multiplication operator. 8
.* Array multiplication operator. 66
^ Scalar and matrix exponentiation operator. 8
.^ Array exponentiation operator. 66
\ Left division operator. 8, 66
/ Right division operator. 8, 66
.\ Array left division operator. 66
./ Array right division operator. 66
: Colon; generates regularly spaced elements and represents

an entire row or column. 12, 57
() Parentheses; enclose function arguments and array indices;

override precedence. 9, 117
[] Brackets; enclose array elements. 19, 55
{} Braces; enclose cell elements. 91
... Ellipsis; line-continuation operator. 12
, Comma; separates statements, and elements in a row of an array. 12
; Semicolon; separates columns in an array, and suppresses display. 12, 55
% Percent sign; designates a comment, and speci es formatting. 27, 549
‘ Quote sign and transpose operator. 55, 57
.’ Nonconjugated transpose operator. 57
= Assignment (replacement) operator. 10
@ Creates a function handle. 124

527

A P P E N D I X A

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 527

www.EBooksWorld.ir

528 Appendix A

Logical and relational operators

Item Description Pages

== Relational operator: equal to. 155
~= Relational operator: not equal to. 155
< Relational operator: less than. 155
<= Relational operator: less than or equal to. 155
> Relational operator: greater than. 155
>= Relational operator: greater than or equal to. 155
& Logical operator: AND. 158
&& Short-circuit AND. 158
| Logical operator: OR. 158
|| Short-circuit OR. 158
~ Logical operator: NOT. 158

Special variables and constants

Item Description Pages

ans Most recent answer. 14
eps Accuracy of oating-point precision. 14
i,j The imaginary unit . 14
Inf In nity . 14
NaN Unde ned numerical result (not a number). 14
pi The number �. 14

Commands for managing a session

Item Description Pages

clc Clears Command window. 12
clear Removes variables from memory. 12
doc Displays documentation. 38
exist Checks for existence of le or variable. 12
global Declares variables to be global. 124
help Displays Help text in the Command window. 38
helpwin Displays Help text in the Help browser. 38
lookfor Searches Help entries for a keyword. 38
quit Stops MATLAB. 12
who Lists current variables. 12
whos Lists current variables (long display). 12

1-1

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 528

www.EBooksWorld.ir

Guide to Commands and Functions in This Text 529

System and le commands

Item Description Pages

cd Changes current directory. 23
date Displays current date. 122
dir Lists all les in current directory . 23
load Loads workspace variables from a le. 21
path Displays search path. 23
pwd Displays current directory. 23
save Saves workspace variables in a le. 21
type Displays contents of a le. 38
what Lists all MATLAB les. 23
wk1read Reads .wk1 spreadsheet le. 138
xlsread Reads .xls spreadsheet le. 135

Input/output commands

Item Description Pages

disp Displays contents of an array or string. 31
format Controls screen display format. 14, 31
fprintf Performs formatted writes to screen or le. 549
input Displays prompts and waits for input. 31, 171
menu Displays a menu of choices. 31
; Suppresses screen printing. 12

Numeric display formats

Item Description Pages

format short Four decimal digits (default). 14, 31
format long 16 decimal digits. 14, 31
format short e Five digits plus exponent. 14, 31
format long e 16 digits plus exponent. 14, 31
format bank Two decimal digits. 14, 31
format + Positive, negative, or zero. 14, 31
format rat Rational approximation. 14, 31
format compact Suppresses some line feeds. 14, 31
format loose Resets to less compact display mode. 14, 31

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 529

www.EBooksWorld.ir

530 Appendix A

Array functions

Item Description Pages

cat Concatenates arrays. 64
 nd Finds indices of nonzero elements. 60, 161
length Computes number of elements. 19
linspace Creates regularly spaced vector. 60
logspace Creates logarithmically spaced vector. 60
max Returns largest element. 60
min Returns smallest element. 60
size Computes array size. 60
sort Sorts each column. 60, 296
sum Sums each column. 60

Special matrices

Item Description Pages

eye Creates an identity matrix. 83
ones Creates an array of 1s. 83
zeros Creates an array of 0s. 83

Matrix functions for solving linear equations

Item Description Pages

det Computes determinant of an array. 333
inv Computes inverse of a matrix. 333
pinv Computes pseudoinverse of a matrix. 342
rank Computes rank of a matrix. 335
rref Computes reduced row echelon form. 345

Exponential and logarithmic functions

Item Description Pages

exp(x) Exponential; ex. 21, 114
log(x) Natural logarithm; In x. 114
log10(x) Common (base 10) logarithm; log x � log10 x. 114
sqrt(x) Square root; 114

Complex functions

Item Description Pages

abs(x) Absolute value; 114
angle(x) Angle of a complex number x. 114
conj(x) Complex conjugate of x. 114
imag(x) Imaginary part of a complex number x. 114
real(x) Real part of a complex number x. 114

�x�

1x.

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 530

www.EBooksWorld.ir

Guide to Commands and Functions in This Text 531

Numeric functions

Item Description Pages

ceil Rounds to the nearest integer toward 114
fix Rounds to the nearest integer toward zero. 114
floor Rounds to the nearest integer toward � 114
round Rounds toward the nearest integer. 114
sign Signum function. 114

Trigonometric functions

Item Description Pages

acos(x) Inverse cosine; arccos x � cos�1x. 21, 118
acot(x) Inverse cotangent; arccot x � cot�1x. 118
acsc(x) Inverse cosecant; arccsc x � csc�1x. 118
asec(x) Inverse secant; arcsec x � sec�1x. 118
asin(x) Inverse sine; arcsin x � sin�1x. 21, 118
atan(x) Inverse tangent; arctan x � tan�1x. 21, 118
atan2(y,x) Four-quadrant inverse tangent. 118
cos(x) Cosine; cos x. 21, 118
cot(x) Cotangent; cot x. 118
csc(x) Cosecant; csc x. 118
sec(x) Secant; sec x. 118
sin(x) Sine; sin x. 118
tan(x) Tangent; tan x. 118

Hyperbolic functions

Item Description Pages

acosh(x) Inverse hyperbolic cosine; cosh�1x. 119
acoth(x) Inverse hyperbolic cotangent; coth�1x. 119
acsch(x) Inverse hyperbolic cosecant; csch�1x. 119
asech(x) Inverse hyperbolic secant; sech�1x. 119
asinh(x) Inverse hyperbolic sine; sinh�1x. 119
atanh(x) Inverse hyperbolic tangent; tanh�1x. 119
cosh(x) Hyperbolic cosine; cosh x. 119
coth(x) Hyperbolic cotangent; cosh x /sinh x. 119
csch(x) Hyperbolic cosecant; 1�sinh x. 119
sech(x) Hyperbolic secant; 1�cosh x. 119
sinh(x) Hyperbolic sine; sinh x. 119
tanh(x) Hyperbolic tangent; sinh x / cosh x. 119

Polynomial functions

Item Description Pages

conv Computes product of two polynomials. 86
deconv Computes ratio of polynomials. 86
eig Computes the eigenvalues of a matrix. 397
poly Computes polynomial from roots. 86
poly t Fits a polynomial to data. 273
polyval Evaluates polynomial. 225
roots Computes polynomial roots. 86

q

q

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 531

www.EBooksWorld.ir

532 Appendix A

Logical functions

Item Description Pages

any True if any elements are nonzero. 161
all True if all elements are nonzero. 161
 nd Finds indices of nonzero elements. 161
 nite True if elements are nite. 161
ischar True if elements are a character array. 161
isinf True if elements are in nite. 161
isempty True if matrix is empty. 161
isnan True if elements are unde ned. 161
isreal True if all elements are real. 161
isnumeric True if elements have numeric values. 161
logical Converts a numeric array to a logical array. 161
xor Exclusive OR. 161

Miscellaneous mathematical functions

Item Description Pages

cross Computes cross products. 85
dot Computes dot products. 85
function Creates a user-de ned function. 119
nargin Number of function input arguments. 170
nargout Number of function output arguments. 170

Cell and structure functions

Item Description Pages

cell Creates cell array. 90
 eldnames Returns eld names in a structure array . 94
is eld Identi es a structure array eld. 94
isstruct Identi es a structure array . 94
rm eld Removes a eld from a structure array . 94
struct Creates a structure array. 93

Basic xy plotting commands

Item Description Pages

axis Sets axis limits and other axis properties. 222, 225
cla Clears the axes. 539
fplot Intelligent plotting of functions. 223, 225
ginput Reads coordinates of the cursor position. 25
grid Displays grid lines. 225
plot Generates xy plot. 23, 232
print Prints plot or saves plot to a le. 225
title Puts text at top of plot. 225
xlabel Adds text label to x axis. 225
ylabel Adds text label to y axis. 225

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 532

www.EBooksWorld.ir

Guide to Commands and Functions in This Text 533

Plot enhancement commands

Item Description Pages

colormap Sets the color map of the current gure. 539
gtext Enables label placement by mouse. 232
hold Freezes current plot. 232
legend Places legend by mouse. 230
subplot Creates plots in subwindows. 232
text Places string in gure. 232

Specialized plot functions

Item Description Pages

bar Creates bar chart. 235, 295
loglog Creates log-log plot. 235
plotyy Enables plotting on left and right axes. 235
polar Creates polar plot. 235
semilogx Creates semilog plot (logarithmic abscissa). 235
semilogy Creates semilog plot (logarithmic ordinate). 235
stairs Creates stairs plot. 235
stem Creates stem plot. 235

Three-dimensional plotting functions

Item Description Pages

contour Creates contour plot. 248
mesh Creates three-dimensional mesh surface plot. 248
meshc Same as mesh with contour plot underneath. 248
meshgrid Creates rectangular grid. 247
meshz Same as mesh with vertical lines underneath. 249
plot3 Creates three-dimensional plots from lines and points. 246
shading Speci es type of shading. 539
surf Creates shaded three-dimensional mesh surface plot. 248
surfc Same as surf with contour plot underneath. 248
sur Same as surf with lighting. 539
view Sets the angle of the view. 539
waterfall Same as mesh with mesh lines in one direction. 249
zlabel Adds text label to z axis. 248

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 533

www.EBooksWorld.ir

534 Appendix A

Program ow control

Item Description Pages

break Terminates execution of a loop. 176
case Provides alternate execution paths within switch structure. 188
continue Passes control to the next iteration of a for or while loop. 276
else Delineates alternate block of statements. 166
elseif Conditionally executes statements. 168
end Terminates for, while, and if statements. 166
for Repeats statements a speci c number of times. 172
if Executes statements conditionally. 165
otherwise Provides optional control within a switch structure. 188
switch Directs program execution by comparing input with 188

case expressions.
while Repeats statements an inde nite number of times. 183

Optimization and root- nding functions

Item Description Pages

fminbnd Finds the minimum of a function of one variable. 128
fminsearch Finds the minimum of a multivariable function. 128
fzero Finds the zero of a function. 128

Histogram functions

Item Description Pages

bar Creates a bar chart. 235, 295
hist Aggregates the data into bins. 300

Statistical functions

Item Description Pages

cumsum Computes the cumulative sum across a row. 303
erf Computes the error function erf(x). 305
mean Calculates the mean. 296
median Calculates the median. 296
std Calculates the standard deviation. 304

Random number functions

Item Description Pages

rand Generates uniformly distributed random numbers 309
between 0 and 1; sets and retrieves the state.

randn Generates normally distributed random numbers; 309
sets and retrieves the state.

randperm Generates random permutation of integers. 309

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 534

www.EBooksWorld.ir

Guide to Commands and Functions in This Text 535

Polynomial functions

Item Description Pages

poly Computes the coef cients of a polynomial from its roots. 86
poly t Fits a polynomial to data. 273
polyval Evaluates a polynomial and generates error estimates. 273
roots Computes the roots of a polynomial from its coef cients. 86

Interpolation functions

Item Description Pages

interp1 Linear and cubic spline interpolation of a function of 320
one variable.

interp2 Linear interpolation of a function of two variables. 317
spline Cubic spline interpolation. 320
unmkpp Computes the coef cients of cubic spline polynomials. 320

Numerical integration functions

Item Description Pages

dblquad Numerical integration of a double integral. 372
polyint Integration of a polynomial. 371
quad Numerical integration with adaptive Simpson’s rule. 371
quadl Numerical integration with Lobatto quadrature. 371
trapz Numerical integration with the trapezoidal rule. 371
triplequad Numerical integration of a triple integral. 371

Numerical differentiation functions

Item Description Pages

del2 Computes the Laplacian from data. 382
diff(x) Computes the differences between adjacent 329, 382

elements in the vector x.
gradient Computes the gradient from data. 382
polyder Differentiates a polynomial, a polynomial product, 382

or a polynomial quotient.

ODE solvers

Item Description Pages

ode45 Nonstiff, medium-order solver. 385, 395
ode15s Stiff, variable-order solver. 385, 395
odeset Creates integrator options structure for ODE solvers. 395

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 535

www.EBooksWorld.ir

536 Appendix A

LTI object functions

Item Description Pages

ss Creates an LTI object in state-space form. 400
ssdata Extracts state-space matrices from an LTI object. 400
tf Creates an LTI object in transfer-function form. 400
tfdata Extracts equation coef cients from an L TI object. 400

LTI ODE solvers

Item Description Pages

impulse Computes and plots the impulse response of an LTI object. 401
initial Computes and plots the free response of an LTI object. 401
lsim Computes and plots the response of an LTI object to a 401

general input.
step Computes and plots the step response of an LTI object. 401

Prede ned input functions

Item Description Pages

gensig Generates a periodic sine, square, or pulse input. 408

Manipulating expressions in MuPAD

Item Description Pages

collect Collects terms with the same powers. 478
combine Combines terms of the same algebraic structure. 477
delete Deletes the value of an identi er . 472
expand Expands an expression. 475
factor Factors a polynomial into irreducible polynomials. 475
normal Returns the normal form of a rational expression. 476
rewrite Transforms an expression in terms of a target function. 478
simplify Simpli es an expression. 476

Solution of nonlinear algebraic and differential equations in MuPAD

Item Description Pages

assume Speci es constraints on the solution variable. 472, 478
ode Speci es a dif ferential equation and its boundary conditions. 502
polyroots Numerically solves for all the roots of a polynomial. 480
solve Solves nonlinear algebraic and differential equations. 480
unassume Removes constraints imposed by assume. 478

Numerical evaluation in MuPAD

Item Description Pages

DIGITS Speci es the number of displayed digits. 471
 oat Evaluates the result as a oating-point number . 471

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 536

www.EBooksWorld.ir

Guide to Commands and Functions in This Text 537

Matrix operations in MuPAD

Item Description Pages

charpoly Finds the characteristic polynomial of a matrix. 489
det Finds the determinant of a matrix. 489
eigenvalues Finds the eigenvalues of a matrix. 491
eigenvectors Finds the eigenvectors of a matrix. 491
matlinsolve Solves the matrix equation Ax = b. 491
matrix Creates a matrix. 489
rank Finds the rank of a matrix. 489

Symbolic calculus in MuPAD

Item Description Pages

diff Finds the rst derivative of an expression. 494
int Finds the single integral of an expression. 497
limit Finds the limit of an expression. 500
sum Finds the sum of terms in an expression. 500
taylor Finds the Taylor series expansion of an expression. 499

Laplace transforms in MuPAD

Item Description Pages

invlaplace Finds the inverse Laplace transform of an expression. 507
laplace Finds the Laplace transform of an expression. 506

Animation functions

Item Description Pages

drawnow Initiates immediate plotting. 541
getframe Captures current gure in a frame. 538
movie Plays back frames. 538
moviein Initializes movie frame memory. 540
pause Pauses the display. 541

Sound functions

Item Description Pages

sound Plays a vector as sound. 546
soundsc Scales data and plays as sound. 547
wavplay Plays recorded sound. 547
wavread Reads Microsoft WAVE le. 547
wavrecord Records sound from input device. 548
wavwrite Writes Microsoft WAVE le. 548

pal34870_appA_527-537.qxd 1/7/10 7:43 PM Page 537

www.EBooksWorld.ir

538

Animation and Sound
in MATLAB

B.1 Animation
Animation can be used to display the behavior of an object over time. Some of
the MATLAB demos are M- les that perform animation. After completing this
section, which has simple examples, you may study the demo les, which are
more advanced. Two methods can be used to create animations in MATLAB.
The rst method uses the movie function. The second method uses the Erase-
Mode property.

Creating Movies in MATLAB

The getframe command captures, or takes a snapshot of, the current gure to
create a single frame for the movie. The getframe function is usually used in
a for loop to assemble an array of movie frames. The movie function plays
back the frames after they have been captured.

To create a movie, use a script le of the following form.
for k = 1:n

plotting expressions
M(k) = getframe; % Saves current figure in array M

end
movie(M)

For example, the following script le creates 20 frames of the function te�t/b for
0 � t � 100 for each of 20 values of the parameter b from b �1 to b � 20.

% Program movie1.m
% Animates the function t*exp(-t/b).

B A P P E N D I X

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 538

www.EBooksWorld.ir

Animation and Sound in MATLAB 539

t = 0:0.05:100;
for b = 1:20
plot(t,t.*exp(-t/b)),axis([0 100 0 10]),xlabel(‘t’);
M(:,b) = getframe;

end

The line M(:,b) = getframe; acquires and saves the current gure as
a column of the matrix M. Once this le is run, the frames can be replayed as a
movie by typing movie(M). The animation shows how the location and height
of the function peak changes as the parameter b is increased.

Rotating a 3D Surface

The following example rotates a three-dimensional surface by changing the
viewpoint. The data are created using the built-in function peaks.

% Program movie2.m
% Rotates a 3D surface.
[X,Y,Z] = peaks(50); % Create data.
surfl(X,Y,Z) % Plot the surface.
axis([-3 3 -3 3 -5 5])% Retain same scaling for each frame.
axis vis3d off % Set the axes to 3D and turn off tick marks,

% and so forth.
shading interp % Use interpolated shading.
colormap(winter) % Specify a color map.
for k = 1:30 % Rotate the viewpoint and capture each frame.

view(-37.5+0.5*(k-1),30)
M(k) = getframe;

end
cla % Clear the axes.
movie(M) % Play the movie.

The colormap(map) function sets the current gure’ s color map to map.
Type help graph3d to see a number of color maps to choose for map. The
choice winter provides blue and green shading. The view function speci es
the 3D graph viewpoint. The syntax view(az,el) sets the angle of the view
from which an observer sees the current 3D plot, where az is the azimuth or
horizontal rotation and el is the vertical elevation (both in degrees). Azimuth
revolves about the z axis, with positive values indicating counterclockwise rota-
tion of the viewpoint. Positive values of elevation correspond to moving above
the object; negative values move below. The choice az � �37.5, el � 30
is the default 3D view.

Extended Syntax of the movie Function

The function movie (M) plays the movie in array M once, where M must be an
array of movie frames (usually acquired with getframe). The function

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 539

www.EBooksWorld.ir

540 Appendix B

movie(M,n) plays the movie n times. If n is negative, each “play” is once for-
ward and once backward. If n is a vector, the rst element is the number of times
to play the movie, and the remaining elements are a list of frames to play in the
movie. For example, if M has four frames, then n = [10 4 4 2 1] plays
the movie 10 times, and the movie consists of frame 4 followed by frame 4 again,
followed by frame 2 and nally frame 1.

The function movie (M,n,fps) plays the movie at fps frames per sec-
ond. If fps is omitted, the default is 12 frames per second. Computers that can-
not achieve the speci ed fps will play the movie as fast as they can. The
function movie(h,...) plays the movie in object h, where h is a handle to
a gure or an axis. Handles are discussed in Section 2.2.

The function movie(h,M,n,fps,loc) speci es the location to play the
movie, relative to the lower left corner of object h and in pixels, regardless of the
value of the object’s Units property, where loc = [x y unused unused] is
a four-element position vector, of which only the x and y coordinates are used,
but all four elements are required. The movie plays back using the width and
height in which it was recorded.

Note that for code to be compatible with versions of MATLAB prior to
Release 11 (5.3), the moviein(n)function must be used to initialize movie
frame memory for n frames. To do this, place the line M = moviein(n);
before the for loop that generates the plots.

The disadvantage of the movie function is that it might require too much
memory if many frames or complex images are stored.

Animation with the EraseMode Property
One form of extended syntax for the plot function is

plot(...,‘PropertyName’,‘PropertyValue’,...)

This form sets the plot property speci ed by PropertyName to the values
speci ed by PropertyValue for all line objects created by the plot func-
tion. One such property name is EraseMode. This property controls the tech-
nique MATLAB uses to draw and erase line objects and is useful for creating
animated sequences. The allowable values for the EraseMode property are the
following.

■ normal This is the default value for the EraseMode property. By typing

plot(...,‘EraseMode’,‘normal’)

the entire gure, including axes, labels, and titles, is erased and redrawn
using only the new set of points. In redrawing the display, a three-dimensional
analysis is performed to ensure that all objects are rendered correctly. Thus,
this mode produces the most accurate picture but is the slowest. The other
modes are faster but do not perform a complete redraw and are therefore less
accurate. This method may cause blinking between each frame because
everything is erased and redrawn. This method is therefore undesirable for
animation.

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 540

www.EBooksWorld.ir

Animation and Sound in MATLAB 541

■ none When the EraseMode property value is set to none, objects in
the existing gure are not erased, and the new plot is superimposed on the
existing gure. This mode is therefore fast because it does not remove
existing points, and it is useful for creating a “trail” on the screen.

■ xor When the EraseMode property value is set to xor, objects are drawn
and erased by performing an exclusive OR with the background color. This
produces a smooth animation. This mode does not destroy other graphics
objects beneath the ones being erased and does not change the color of the
objects beneath. However, the object’s color depends on the background
color.

■ backgroundWhen the EraseMode property value is set to background,
the result is the same as with xor except that objects behind the erased
objects are destroyed. Objects are erased by drawing them in the axes’
background color or in the gure background color if the axes Color
property is set to none. This damages objects that are behind the erased
line, but lines are always properly colored.

The drawnow command causes the previous graphics command to be exe-
cuted immediately. If the drawnow command were not used, MATLAB would
complete all other operations before performing any graphics operations and
would display only the last frame of the animation.

Animation speed depends of the intrinsic speed of the computer and on what
and how much is being plotted. Symbols such as o, *, or + will be plotted
slower than a line. The number of points being plotted also affects the animation
speed. The animation can be slowed by using the pause(n) function, which
pauses the program execution for n seconds.

Using Object Handles

An expression of the form

p = plot(...)

assigns the results of the plot function to the variable p, which is a gure identi-
 er called a gur e handle. This stores the gure and makes it available for future
use. Any valid variable name may be assigned to a handle. A gure handle is a
speci c type of object handle. Handles may be assigned to other types of objects.
For example, later we will create a handle with the text function.

The set function can be used with the handle to change the object proper-
ties. This function has the general format

set(object handle, ‘PropertyName’, ‘PropertyValue’, ...)

If the object is an entire gure, its handle also contains the speci cations for
line color and type, marker size, and the value of the EraseMode property. Two
of the properties of the gure specify the data to be plotted. Their property
names are XData and YData. The following example shows how to use these
properties.

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 541

www.EBooksWorld.ir

542 Appendix B

Animating a Function

Consider the function te�t/b, which was used in the rst movie example. This
function can be animated as the parameter b changes with the following pro-
gram.

% Program animate1.m
% Animates the function t*exp(-t/b).
t = 0:0.05:100;
b = 1;
p = plot(t,t.*exp(-t/b),‘EraseMode’,‘xor’);...

axis([0 100 0 10]),xlabel(‘t’);
for b = 2:20

set(p,‘XData’,t,‘YData’,t.*exp(-t/b)),...
axis([0 100 0 10]),xlabel(‘t’);
drawnow
pause(0.1)

end

In this program the function te�t/b is rst evaluated and plotted over the range
0 � t � 100 for b � 1, and the gure handle is assigned to the variable p. This es-
tablishes the plot format for all following operations, for example, line type and
color, labeling, and axis scaling. The function te�t/b is then evaluated and plotted
over the range 0 � t � 100 for b � 2, 3, 4, . . . in the for loop, and the previ-
ous plot is erased. Each call to set in the for loop causes the next set of points
to be plotted. The EraseMode property value speci es how to plot the existing
points on the gure (i.e., how to refresh the screen), as each new set of points is
added. You should investigate what happens if the EraseMode property value is
set to none instead of xor.

Animating Projectile Motion

This following program illustrates how user-de ned functions and subplots can
be used in animations. The following are the equations of motion for a projectile
launched with a speed s0 at an angle � above the horizontal, where x and y are the
horizontal and vertical coordinates, g is the acceleration due to gravity, and t is
time.

By setting y � 0 in the second expression, we can solve for t and obtain the fol-
lowing expression for the maximum time the projectile is in ight tmax.

tmax =

2s0

g
 sin�

x(t) = (s0 cos �)t y(t) = -

gt2

2
+ (s0 sin �)t

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 542

www.EBooksWorld.ir

Animation and Sound in MATLAB 543

The expression for y(t) may be differentiated to obtain the expression for the ver-
tical velocity:

The maximum distance xmax may be computed from x(tmax), the maximum height
ymax may be computed from y(tmax�2), and the maximum vertical velocity occurs
at t � 0.

The following functions are based on these expressions, where s0 is the
launch speed s0 and th is the launch angle �.

function x = xcoord(t,s0,th);
% Computes projectile horizontal coordinate.
x = s0*cos(th)*t;

function y = ycoord(t,s0,th,g);
% Computes projectile vertical coordinate.
y = -g*t.^2/2+s0*sin(th)*t;

function v = vertvel(t,s0,th,g);
% Computes projectile vertical velocity.
v = -g*t+s0*sin(th);

The following program uses these functions to animate the projectile motion
in the rst subplot, while simultaneously displaying the vertical velocity in the
second subplot, for the values � � 45�, s0 �105 ft/sec, and g � 32.2 ft/sec2. Note
that the values of xmax, ymax, and vmax are computed and used to set the axes
scales. The gure handles are h1 and h2.

�vert =

dy

dt
= - gt + s0 sin �

% Program animate2.m
% Animates projectile motion.
% Uses functions xcoord, ycoord, and vertvel.
th = 45*(pi/180);
g = 32.2; s0 = 105;
%
tmax = 2*s0*sin(th)/g;
xmax = xcoord(tmax,s0,th);
ymax = ycoord(tmax/2,s0,th,g);
vmax = vertvel(0,s0,th,g);
w = linspace(0,tmax,500);
%
subplot(2,1,1)
plot(xcoord(w,s0,th),ycoord(w,s0,th,g)),hold,
h1 = plot(xcoord(w,s0,th),ycoord(w,s0,th,g),’o’,‘EraseMode’,’xor’)
axis([0 xmax 0 1.1*ymax]),xlabel(‘x’), ylabel(‘y’)
subplot(2,1,2)

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 543

www.EBooksWorld.ir

544 Appendix B

plot(xcoord(w,s0,th),vertvel(w,s0,th,g)),hold,
h2 = plot(xcoord(w,s0,th),vertvel(w,s0,th,g),’s’,’EraseMode’,’xor’);
axis([0 xmax 0 1.1*vmax]),xlabel(‘x’),...

ylabel(‘Vertical Velocity’)
for t = 0:0.01:tmax

set(h1,’XData’,xcoord(t,s0,th),’YData’,ycoord(t,s0,th,g))
set(h2,’XData’,xcoord(t,s0,th),’YData’,vertvel(t,s0,th,g))
drawnow
pause(0.005)

end
hold

You should experiment with different values of the pause function
argument.

Animation with Arrays

Thus far we have seen how the function to be animated may be evaluated in the
set function with an expression or with a function. A third method is to compute
the points to be plotted ahead of time and store them in arrays. The following
program shows how this is done, using the projectile application. The plotted
points are stored in the arrays x and y.

% Program animate3.m
% Animation of a projectile using arrays.
th = 70*(pi/180);
g = 32.2; s0=100;
tmax = 2*s0*sin(th)/g;
xmax = xcoord(tmax,s0,th);
ymax = ycoord(tmax/2,s0,th,g);
%
w = linspace(0,tmax,500);
x = xcoord(w,s0,th);y = ycoord(w,s0,th,g);
plot(x,y),hold,
h1 = plot(x,y,‘o’,‘EraseMode’,‘xor’);
axis([0 xmax 0 1.1*ymax]),xlabel(‘x’),ylabel(‘y’)
%
kmax = length(w);
for k =1:kmax

set(h1,‘XData’,x(k),‘YData’,y(k))
drawnow
pause(0.001)

end
hold

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 544

www.EBooksWorld.ir

Animation and Sound in MATLAB 545

Displaying Elapsed Time

It may be helpful to display the elapsed time during an animation. To do this,
modify the program animate3.m as shown in the following. The new lines are
indicated in bold; the line formerly below the line h1 = plot(... has been
deleted.

% Program animate4.m
% Like animate3.m but displays elapsed time.
th = 70*(pi/180);
g = 32.2; s0 = 100;
%
tmax = 2*s0*sin(th)/g;
xmax = xcoord(tmax,s0,th);
ymax = ycoord(tmax/2,s0,th,g);
%
t = linspace(0,tmax,500);
x = xcoord(t,s0,th);y = ycoord(t,s0,th,g);
plot(x,y),hold,
h1 = plot(x,y, ‘o’,‘EraseMode’,‘xor’);
text(10,10,‘Time = ‘)
time = text(30,10,‘0’,‘EraseMode’,‘background’)

axis([0 xmax 0 1.1*ymax]),xlabel(‘x’),ylabel(‘y’)
%
kmax = length(t);
for k = 1:kmax
set(h1,‘XData’,x(k),‘YData’,y(k))
t_string = num2str(t(k));
set(time,‘String’,t_string)
drawnow
pause(0.001)

end
hold

The rst new line creates a label for the time display using the text statement,
which writes the label once. The program must not write to that location again.
The second new statement creates the handle time for the text label and creates
the string for the rst time value, which is 0. By using the background value
for EraseMode, the statement speci es that the existing display of the time
variable will be erased when the next value is displayed. Note that the numerical
value of time t(k) must be converted to a string, by using the function
num2str, before it can be displayed. In the last new line, in which the set
function uses the time handle, the property name is ‘String’, which is not a
variable but a property associated with text objects. The variable being updated
is t_string.

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 545

www.EBooksWorld.ir

546 Appendix B

B.2 Sound
MATLAB provides a number a functions for creating, recording, and playing
sound on the computer. This section gives a brief introduction to these functions.

A Model of Sound

Sound is the uctuation of air pressure as a function of time t. If the sound is a
pure tone, the pressure p(t) oscillates sinusoidally at a single frequency, that is,

where A is the pressure amplitude (the ‘loudness”), f is the sound frequency in
cycles per second (Hz), and is the phase shift in radians. The period of the

sound wave is P � 1�f.
Because sound is an analog variable (one having an in nite number of val-

ues), it must be converted to a nite set of numbers before it can be stored and
used in a digital computer. This conversion process involves sampling the sound
signal into discrete values and quantizing the numbers so that they can be repre-
sented in binary form. Quantization is an issue when you are using a microphone
and analog-to-digital converter to capture real sound, but we will not discuss it
here because we will produce only simulated sounds in software.

You use a process similar to sampling whenever you plot a function in
MATLAB. To plot the function you should evaluate it at enough points to produce
a smooth plot. So, to plot a sine wave, we should “sample” or evaluate it many
times over the period. The frequency at which we evaluate it is the sampling
frequency. So, if we use a time step of 0.1 s, our sampling frequency is 10 Hz. If
the sine wave has a period of 1 s, then we are “sampling” the function 10 times
every period. So we see that the higher the sampling frequency, the better is our
representation of the function.

Creating Sound in MATLAB

The MATLAB function sound(sound_vector,sf) plays the signal in the
vector sound_vector, created with the sampling frequency sf, on the com-
puter’s speaker. Its use is demonstrated with the following user-de ned function,
which plays a simple tone.

function playtone(freq,sf,amplitude,duration)
% Plays a simple tone.
% freq = frequency of the tone (in Hz).
% sf = sampling frequency (in Hz).
% amplitude = sound amplitude (dimensionless).
% duration = sound duration (in seconds).
t = 0:1/sf:duration;
sound_vector = amplitude*sin(2*pi*freq*t);
sound(sound_vector,sf)

�

p(t) = A sin(2	 ft + �)

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 546

www.EBooksWorld.ir

Animation and Sound in MATLAB 547

Try this function with the following values: freq = 1000, sf = 10000,
amplitude = 1, and duration = 10. The sound function trun-
cates or “clips” any values in sound_vector that lie outside the range �1 to

1. Try using amplitude = 0.1 and amplitude = 5 to see the effect
on the loudness of the sound.

Of course, real sound contains more than one tone. You can create a sound hav-
ing two tones by adding two vectors created from sine functions having different
frequencies and amplitudes. Just make sure that they are sampled with the same
frequency and, have the same number of samples, and that their sum lies in the
range �1 to
1. You can play two different sounds in sequence by concatenating
them in a row vector, as sound([sound_vector_1, sound_vector_2],
sf). You can play two different sounds simultaneously in stereo by concate-
nating them in a column vector, as sound([sound_vector_1’,
sound_vector_2’], sf).

MATLAB includes some sound les. For example, load the MAT- le
chirp.mat and play the sound as follows:

>>load chirp
>>sound(y,Fs)

Note that the sound vector has been stored in the MAT- le as the array y and the
sampling frequency has been stored as the variable Fs. You can also try the le
gong.mat.

A related function is soundsc(sound_vector,sf). This function
scales the signal in sound_vector to the range �1 to
1 so that the sound is
played as loudly as possible without clipping.

Reading and Playing Sound Files

The MATLAB function wavread(‘ lename’) reads a Microsoft WAVE le
having the extension .wav. The syntax is

[sound_vector, sf, bits] = wavread(‘ lename’)

where sf is the sampling frequency used to create the le and bits is the num-
ber of bits per sample used to encode the data. To play the le, use the wavplay
function as follows:

>>wavplay(sound_vector, sf)

Most computers have WAVE files to play bells, beeps, chimes, etc., to
signal you when certain actions occur. For example, to load and play the
WAVE file chimes.wav located in C:\windows\media on some PC systems,
you type

>>[sound_vector, sf] = wavread(‘c:\windows\media\chimes.wav’);
>>wavplay(sound_vector, sf)

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 547

www.EBooksWorld.ir

548 Appendix B

You can also play this sound using the sound command, as sound(y,sf), but
the wavplay function has more capabilities than the sound function. See the
MATLAB Help for information about the extended syntax of the wavplay
function.

Recording and Writing Sound Files

You can use MATLAB to record sound and write sound data to a WAVE le. The
wavrecord function records sound from a PC-based audio input device. Its
basic syntax is

sound_vector = wavrecord(n,sf)

where n is the number of samples, sampled at the rate sf. The default value is
11,025 Hz. For example, to record 5 s of audio from channel 1 sampled at 11,025 Hz,
speak into the audio device while the following program runs.

>>sf = 11025;
>>sound_vector = wavrecord(5*sf, sf);

Play back the sound by typing wavplay(sound_vector,sf).
You can use the wavwrite function to write sound stored in the vector

sound_vector to a Microsoft WAVE le. One syntax is wavwrite
(sound_vector, sf, ‘ lename’), where the sampling frequency is
sf Hz and the data are assumed to be 16-bit data. The function clips any ampli-
tude values outside the range �1 to
1.

pal34870_appB_538-548.qxd 1/7/10 7:43 PM Page 548

www.EBooksWorld.ir

549

Formatted Output
in MATLAB

The disp and format commands provide simple ways to control the screen
output. However, some users might require greater control over the screen dis-
play. In addition, some users might want to write formatted output to a data le.
The fprintf function provides this capability. Its syntax is count =
fprintf(fid,format,A,...), which formats the data in the real part of
matrix A (and in any additional matrix arguments) under control of the speci ed
format string format, and writes the data to the le associated with le identi-
 er fid. A count of the number of bytes written is returned in the variable
count. The argument fid is an integer le identi er obtained from fopen. (It
may also be 1 for standard output—the screen—or 2 for standard error. See
fopen for more information.) Omitting fid from the argument list causes output
to appear on the screen, and is the same as writing to standard output (fid� 1). The
string format speci es notation, alignment, signi cant digits, eld width, and
other aspects of output format. It can contain ordinary alphanumeric characters,
along with escape characters, conversion speci ers, and other characters, or ga-
nized as shown in the following examples. Table C.1 summarizes the basic
syntax of fprintf. Consult MATLAB Help for more details.

Suppose the variable Speed has the value 63.2. To display its value using
three digits with one digit to the right of the decimal point, along with a message,
the session is

>>fprintf(‘The speed is: %3.1f\n’,Speed)
The speed is: 63.2

Here the “ eld width” is 3, because there are three digits in 63.2. You may want
to specify a wide enough eld to provide blank spaces or to accommodate an un-
expectedly large numerical value. The % sign tells MATLAB to interpret the

A P P E N D I X C

pal34870_appC_549-552.qxd 1/7/10 7:43 PM Page 549

www.EBooksWorld.ir

550 Appendix C

following text as codes. The code \n tells MATLAB to start a new line after dis-
playing the number.

The output can have more than one column, and each column can have its
own format. For example,

>>r = 2.25:20:42.25;
>>circum = 2*pi*r;
>>y = [r;circum];
>>fprintf(‘%5.2f %11.5g\n’,y)

2.25 14.137
22.25 139.8
42.25 265.46

Note that the fprintf function displays the transpose of the matrix y.
Format code can be placed within text. For example, note how the

period after the code %6.3f appears in the output at the end of the dis-
played text.

Table C.1 Display formats with the fprintf function

Syntax Description

fprintf(‘format’,A, ...) Displays the elements of the array A, and any addi-
tional array arguments, according to the format speci-
 ed in the string ‘format’.

‘format’ structure %[�][number1.number2]C, where number1
speci es the minimum eld width, number2 speci-
 es the number of digits to the right of the decimal
point, and C contains control codes and format codes.
Items in brackets are optional. [-] speci es left-
justi ed.

Control codes Format codes

Code Description Code Description

\n Start new line. %e Scienti c format with lowercase e.
\r Beginning of new line. %E Scienti c format with uppercase E.
\b Backspace. %f Decimal format.
\t Tab. %g %e or %f, whichever is shorter.
‘’ Apostrophe.
\\ Backslash.

>>fprintf(‘The rst circumference is %6.3f.\n’,circum(1))
The rst circumference is 14.137

An apostrophe in displayed text requires two single quotes. For example:

>>fprintf(‘The second circle’‘s radius %15.3e is large.\n’,r(2))
The second circle’s radius 2.225e+001 is large.

pal34870_appC_549-552.qxd 1/7/10 7:43 PM Page 550

www.EBooksWorld.ir

Formatted Output in MATLAB 551

A minus sign in the format code causes the output to be left-justi ed within its
 eld. Compare the following output with the preceding example:

>>fprintf(‘The second circle’‘s radius %-15.3e is large.\n’,r(2))
The second circle’s radius 2.225e+001 is large.

Control codes can be placed within the format string. The following example
uses the tab code (\t).

>>fprintf(‘The radii are:%4.2f \t %4.2f \t %4.2f\n',r)
The radii are: 2.25 22.25 42.25

The disp function sometimes displays more digits than necessary. We can
improve the display by using the fprintf function instead of disp. Consider
the program:

p = 8.85; A = 20/100^2;
d = 4/1000; n = [2:5];
C = ((n - 1).*p*A/d);
table (:,1) = n’;
table (:,2) = C’;
disp (table)

The disp function displays the number of decimal places speci ed by the
format command (4 is the default value).

If we replace the line disp(table)with the following three lines

E=’’;
fprintf(‘No.Plates Capacitance (F) X e12 %s\n’,E)
fprintf(‘%2.0f \t \t \t %4.2f\n’,table’)

we obtain the following display:

2 4.42
3 8.85
4 13.27
5 17.70

The empty matrix E is used because the syntax of the fprintf statement
requires that a variable be speci ed. Because the rst fprintf is needed to dis-
play the table title only, we need to fool MATLAB by supplying it with a variable
whose value will not display.

Note that the fprintf command truncates the results, instead of
rounding them. Note also that we must use the transpose operation to inter-
change the rows and columns of the table matrix in order to display it
properly.

pal34870_appC_549-552.qxd 1/7/10 7:43 PM Page 551

www.EBooksWorld.ir

552 Appendix C

Only the real part of complex numbers will be displayed with the fprintf
command. For example,

>>z = -4+9i;
>>fprintf(‘Complex number: %2.2f \n’,z)
Complex number: -4.00

Instead you can display a complex number as a row vector. For example,
if w � �4�9i,

>>w = [-4,9];
>>fprintf(‘Real part is %2.0f. Imaginary part is %2.0f. \n’,w)
Real part is -4. Imaginary part is 9.

pal34870_appC_549-552.qxd 1/7/10 7:43 PM Page 552

www.EBooksWorld.ir

553

References

[Brown, 1994] Brown, T. L.; H. E. LeMay, Jr.; and B. E. Bursten. Chemistry: The
Central Science. 6th ed. Upper Saddle River, NJ: Prentice-Hall, 1994.

[Eide, 2008] Eide, A. R.; R. D. Jenison; L. L. Northup; and S. Mickelson. Introduction
to Engineering Problem Solving. 5th ed. New York: McGraw-Hill, 2008.

[Felder, 1986] Felder, R. M., and R. W. Rousseau. Elementary Principles of Chemical
Processes. New York: John Wiley & Sons, 1986.

[Garber, 1999] Garber, N. J., and L. A. Hoel. Traf c and Highway Engineering. 2nd ed.
Paci c Grove, CA: PWS Publishing, 1999.

[Jayaraman, 1991] Jayaraman, S. Computer-Aided Problem Solving for Scientists and
Engineers. New York: McGraw-Hill, 1991.

[Kreyzig, 2009] Kreyzig, E. Advanced Engineering Mathematics. 9th ed. New York:
John Wiley & Sons, 1999.

[Kutz, 1999] Kutz, M., editor. Mechanical Engineers’ Handbook. 2nd ed. New York:
John Wiley & Sons, 1999.

[Palm, 2010] Palm, W. System Dynamics. 2nd ed. New York: McGraw-Hill, 2010.
[Rizzoni, 2007] Rizzoni, G. Principles and Applications of Electrical Engineering.

5th ed. New York: McGraw-Hill, 2007.
[Star eld, 1990] Star eld, A. M.; K. A. Smith; and A. L. Bleloch. How to Model It:

Problem Solving for the Computer Age. New York: McGraw-Hill, 1990.

A P P E N D I X D

pal34870_appD_553-553.qxd 1/7/10 7:44 PM Page 553

www.EBooksWorld.ir

Answers to Selected
Problems

Chapter 1
2. (a) �13.3333; (b) 0.6; (c) 15; (d) 1.0323.

8. (a) x � y � �3.0000 � 2.0000i; (b) xy �
�13.0000 � 41.0000i; (c) x�y � �1.7200
� 0.0400i.

18. x � �15.685 and x � 0.8425 � 3.4008i.

Chapter 2
3.

7. (a) Length is 3. Absolute values � [2 4 7];
(b) Same as (a); (c) Length is 3. Absolute

values � [5.8310 5.0000 7.2801].

11. (b) The largest elements in the rst, second, and
third layers are 10, 9, and 10, respectively.
The largest element in the entire array is 10.

12. (a)

(b)

13. (a) A.*B = [784, -128; 144,32];
(b) A/B = [76, -168; -12, 32];
(c) B.^3 = [2744, -64;216, -8].

 A - B + C = c -14 7

-1 19
d

 A + B + C = c -6 -3

23 15
d

A = c 0 6 12 18 24 30

-20 -10 0 10 20 30
d

14. (a) F.*D = [1200, 275, 525, 750,
3000] J; (b) sum(F.*D) = 5750 J.

25. (a) A*B = [-47, -78; 39, 64];
(b) B*A = [-5, -3, 48, 22].

28. 60 tons of copper, 67 tons of magnesium, 6 tons
of manganese, 76 tons of silicon, and 101 tons
of zinc.

31. M � 675 N�m if F is in newtons and r is in
meters.

38. [q,r] = deconv([14,-6,3,9], [5,7,-
4]), q = [2.8, -5.12], r = [0, 0,
50.04, -11.48]. The quotient is 2.8x � 5.12
with a remainder of 50.04x � 11.48.

39. 2.0458.

Chapter 3
1. (a) 3, 3.1623, 3.6056;

(b) 1.7321i, 0.2848 � 1.7553i, 0.5503 � 1.8174i;
(c) 15 � 21i, 22 � 16i, 29 � 11i;
(d) �0.4 � 0.2i, �0.4667 � 0.0667i,

�0.5333 � 0.0667i.
2. (a)

(b)

3. (a) 1.01 rad (58�); (b) 2.13 rad (122�);
(c) �1.01 rad (�58�); (d) �2.13 rad (�122�).

7. F1 � 197.5217 N.
10. 2.7324 sec while ascending; 7.4612 sec while

descending.

�x>y� = 0.84, ∠x>y = - 1.67 rad.

�xy� = 105, ∠xy = - 2.6 rad;

pal34870_ans_554-556.qxd 1/9/10 9:49 AM Page 554

www.EBooksWorld.ir

Answers to Selected Problems 555

Chapter 4
4. (a) z = 1; (b) z = 0; (c) z = 1; (d) z = 1.
5. (a) z = 0; (b) z = 1; (c) z = 0; (d) z = 4;

(e) z = 1; (f) z = 5; (g) z = 1; (h) z = 0.
6. (a) z = [0, 1, 0, 1, 1];

(b) z = [0, 0, 0, 1, 1];
(c) z = [0, 0, 0, 1, 0];
(d) z = [1, 1, 1, 0, 1].

11. (a) z = [1, 1, 1, 0, 0, 0];
(b) z = [1, 0, 0, 1, 1, 1];
(c) z = [1, 1, 0, 1, 1, 1];
(d) z = [0, 1, 0, 0, 0, 0].

13. (a) $7300; (b) $5600; (c) 1200 shares;
(d) $15,800.

28. Best location: x � 9, y � 16. Minimum cost:
$294.51. There is only one solution.

34. After 33 years, the amount will be $1,041,800.
36. W � 300 and T � [428.5714, 471.4286,

266.6667, 233.3333, 200, 100]
48. Weekly inventory for cases (a) and (b):

Week 1 2 3 4 5
Inventory (a) 50 50 45 40 30
Inventory (b) 30 25 20 20 10

Week 6 7 8 9 10
Inventory (a) 30 30 25 20 10
Inventory (b) 10 5 0 0 (�0)

Chapter 5
1. Production is pro table for Q 	 108 gal/yr. The

pro t increases linearly with Q, so there is no
upper limit on the pro t.

3. x � �0.4795, 1.1346, and 3.8318.
5. 37.622 m above the left-hand point, and

100.6766 m above the right-hand point.
10. 0.54 rad (31�).
14. The steady-state value of y is y � 1. y � 0.98

at t � 4�b.
17. (a) The ball will rise 1.68 m and will travel

9.58 m horizontally before striking the ground
after 1.17 s.

Chapter 6
2. (a) y � 53.5x � 1354.5;

(b) y � 3582.1x�0.9764;
(c) y � 2.0622
 105(10)�0.0067x

4. (a) b � 1.2603
 10�4; (b) 836 years.
(c) Between 760 and 928 years ago.

8. If unconstrained to pass through the origin,
f � 0.3998x � 0.0294. If constrained to pass
through the origin, f � 0.3953x.

10. d � 0.0509�2 � 1.1054� � 2.3571; J � 10.1786;
S � 57,550; r2 � 0.9998.

11. y � 40 � 9.6x1 � 6.75x2. Maximum percent
error is 7.125 percent.

Chapter 7
7. (a) 96%; (b) 68%.

11. (a) Mean pallet weight is 3000 lb. Standard
deviation is 10.95 lb; (b) 8.55 percent.

18. Mean yearly pro t is $64,609. Minimum
expected pro t is $51,340. Maximum expected
pro t is $79,440. Standard deviation of yearly
pro t is $5967.

22. The estimated temperatures at 5 P.M. and 9 P.M.
are 22.5� and 16.5�.

Chapter 8
2. (a) C � B�1(A�1B � A).

(b) C = [-0.8536, -1.6058; 1.5357,
1.3372].

5. (a) x � 3c, y � �2c, z � c; (b) The plot consists
of three straight lines that intersect at (0,0).

8. T1 � 19.7596�C, T2 � �7.0214�C,
T3 ��9.7462�C. Heat loss in watts is 66.785.

11. In nite number of solutions: x � �1.3846z �
4.9231, y � 0.0769z � 1.3846.

14. Unique solution: x � 8 and y � 2.
15. Least-squares solution; x � 6.0928 and

y � 2.2577.

Chapter 9
1. 23 690 m.
7. 13.65 ft.

10. 1363 m/s.
25. 150 m/s.

Chapter 11
2. (a) 60x5 � 10x4 � 108x3 � 49x2 � 71x � 24;

(b) 2546.
3. A � 1, B � �2a, C � 0, D � �2b, E � 1, and

F � r2 � a2 � b2.

pal34870_ans_554-556.qxd 1/9/10 9:49 AM Page 555

www.EBooksWorld.ir

556 Answers to Selected Problems

4. (a) (b) b�5.6904.

6. (a)

(b) x � �0.9685, y � �0.4976.
10. s2 � 13s � 42 � 6k, .

11.
x =

62

16c + 15
 y =

129 + 88c

16c + 15

s = (-13 � 11 + 24k)>2
y = � 299>(400b2

- 1);

x = �102(4b2
- 1)>(400b2

- 1),

b = c cos A � 2a2
- c2 sin2A; 23. � � 0.6155 rad (35.26�).

24. 49.6808 m/s.
34. (a) 2; (b) 0; (c) 0.
41. (a)

(b) e-5t(8x0>3 + �0>3) + (-5x0>3 - �0>3)e-8t

(3x0>5 + �0>5)e-3t
 sin 5t + x0e-3t

 cos 5t;

pal34870_ans_554-556.qxd 1/9/10 9:49 AM Page 556

www.EBooksWorld.ir

557

I N D E X

MATLAB Symbols

MATLAB Commands
A
abs, 114
acos, 21, 118
acosh, 119
acot, 118
acoth, 119
acsc, 118
acsch, 119
addpath, 23
all, 161
angle, 114
ans, 14
any, 161
asec, 118
asech, 119
asin, 21, 118

asinh, 119
atan, 21, 118
atan2, 118
atanh, 119
axis, 222, 225

B
bar, 235, 295, 300
break, 176
bvp4c, 409

C
case, 188
cat, 64
cd, 23
ceil, 114

cell, 90
celldisp, 91
cellplot, 91
cla, 539
clabel, 249
clc, 12
clear, 12
colormap, 539
conj, 114
continue, 276
contour, 250
conv, 86
cos, 21, 118
cosh, 119
cot, 118
coth, 119
cross, 85

csc, 118
csch, 119
cumsum, 303

D
date, 122
dblquad, 372
dde23, 409
ddesd, 409
deconv, 86
del2, 382
det, 333
deval, 409
diff, 379, 382
dir, 23
disp, 31

� addition, 8
� subtraction, 8
* multiplication, 8
.* array multiplication,

66
^ exponentiation, 8
.^ array exponentiation,

66
\ left division, 8, 66
/ right division, 8, 66
.\ array left division, 66
./ array right division, 66
: colon

array addressing,
57, 58

array generation, 12,
54, 55

() parentheses

function arguments,
117

modifying
precedence, 9

{ } braces; enclose cell
elements, 91

[] brackets, 19, 55
. . . ellipsis, line

continuation, 12
, comma

column separation,
12

statement separation,
12

; semicolon
display suppression,

12
row separation, 55

~� not equal to, 155
� less than, 155
�� less than or equal

to, 155
� greater than, 155
�� greater than or

equal to, 155
& AND, 158
&& short-circuit AND,

158
| OR, 158
|| short-circuit OR, 158
~NOT, 158
>> MATLAB prompt,

6
@ creates a function

handle, 124

% percent sign
comment designa-

tion, 27
format speci cation,

549
’ apostrophe

complex conjugate
transpose, 57

string designation,
31, 171

transpose, 55
.’ nonconjugated

transpose (dot
transpose), 57

� assignment or
replacement
operator, 10

�� equal to, 155

pal34870_index_557-564.qxd 1/9/10 5:59 PM Page 557

www.EBooksWorld.ir

doc, 38
dot, 85
drawnow, 541

E
eig, 397
else, 166
elseif, 168
end, 166
eps, 14
erf, 305
exist, 12
exp, 21, 114
eye, 83

F
 eldnames, 94
 nd, 60, 161
 nite, 161
 x, 114
 oor, 114
fminbnd, 128
fminsearch, 128
for, 172
format, 15, 31
fplot, 223, 225
fprintf, 549
function, 119
fzero, 128

G
gensig, 408
getframe, 538
ginput, 25
gradient, 382
grid, 25, 222, 225
global, 124
gtext, 25, 232

H
help, 38
helpwin, 38
hist, 296, 300
hold, 231, 232

I
i, 14
if, 165
imag, 114
impulse, 401
Inf, 14
initial, 401
inline, 130
input, 31, 171
interp1, 317, 320
interp2, 317
interpn, 317
inv, 333
ischar, 161
isempty, 161
is eld, 94
isinf, 161
isnan, 161
isnumeric, 161
isreal, 161
isstruct, 94

J
j, 14

L
legend, 232
length, 19, 60
linspace, 56, 60
load, 21
log, 21, 114
log10, 21, 114
logical, 156, 161
loglog, 235
logspace, 56, 60
lookfor, 38
lsim, 401

M
max, 60
mean, 296
median, 296
menu, 31

mesh, 250
meshc, 250
meshgrid, 250
meshz, 250
min, 60
mode, 296
movie, 538
moviein, 538
mupadwelcome, 466

N
NaN, 14
nargin, 170
nargout, 170
norm, 60

O
ode15i, 409
ode15s, 385, 395
ode45, 385, 395
odephase, 409
odeplot, 409
odeprint, 409
odeset, 394, 395
ones, 83
otherwise, 188

P
path, 23
pathtool, 23
pause, 541
pchip, 320, 329
pdeval, 409
pi, 14
pinv, 342
plot, 25, 225, 232
plotyy, 235
plot3, 246
polar, 235
poly, 86
polyder, 382
poly t, 266, 273
polyint, 371

polyval, 86, 87,
225, 273

print, 221, 225
pwd, 23

Q
quad, 371
quadl, 371
quit, 12
quiver, 382

R
rand, 307, 309
randn, 309, 310
randperm, 309
rank, 335
real, 114
rm eld, 94
rmpath, 23
roots, 20, 86
round, 114
rref, 345

S
save, 21
sec, 118
sech, 119
semilogx, 235
semilogy, 235
shading, 539
sign, 114
simulink, 431
sin, 21, 118
sinh, 119
size, 60
sort, 60, 296
sound, 546
soundsc, 547
spline, 318, 320
sqrt, 21, 114
ss, 399, 400
ssdata, 399, 400
stairs, 235

558 Index

pal34870_index_557-564.qxd 1/9/10 5:59 PM Page 558

www.EBooksWorld.ir

Index 559

std, 304
stem, 235
step, 401
struct, 94
subplot, 232
sum, 60
surf, 250
surf1, 539
surfc, 250
switch, 188

T
tan, 21, 118
tanh, 119

text, 232
tf, 399, 400
tfdata, 400
title, 25, 225
trapz, 371
triplequad, 371
type, 38

U
unmkp, 319, 320

V
var, 304
view, 539

W
waterfall, 250
wavplay, 547
wavread, 547
wavrecord, 548
wavwrite, 548
what, 23
which, 23
while, 183
who, 12
whos, 12
wk1read, 138

X
xlabel, 25, 225
xlsread, 135
xor, 159, 161

Y
ylabel, 25, 225

Z
zeros, 83
zlabel, 248

Simulink Blocks
C
Clock, 425
Constant, 432

D
Dead Zone, 438
Derivative, 453

F
Fcn, 454

G
Gain, 420

I
Integrator, 420

L
Look-Up Table, 454

M
MATLAB Fcn, 454
Mux, 425

R
Rate Limiter, 450
Relay, 433

S
Saturation, 450
Scope, 425
Signal Builder, 453
Signal Generator, 443
Sine Wave, 423
State-Space, 427
Step, 429
Subsystem, 443
Summer, 421

T
To Workspace, 425
Transfer Fcn, 437
Transfer Fcn (with

initial outputs),
437

Transport Delay, 448
Trigonometric

Function, 432

MuPAD Symbols and Commands1

Symbols
: colon, display

suppression, 470
:� assignment

operator, 472
:: library reference,

480

% reference to
previous result,
471

´ derivative notation,
502

place marker, 475

Commands
A
airyAi(x), 512
airyBi(x), 512
arg, 471
assume, 478

B
besselI, 512
besselJ, 512
besselK, 512
besselY, 512
bool, 476

1 Most MuPAD symbols and commands are identical to their MATLAB counterparts; for example cos and cos. Here we list commonly
used symbols and commands that have special meaning in MuPAD.

pal34870_index_557-564.qxd 1/9/10 5:59 PM Page 559

www.EBooksWorld.ir

560 Index

C
charpoly, 489
chebyshev1, 512
collect, 478
combine, 477
conjugate, 471

D
DIGITS, 471
delete, 472
det, 489
diff, 494

E
E, 470
eigenvalues, 491
eigenvectors, 491
expand, 475

F
factor, 475
factorout, 476
 oat , 471

G
gamma, 512

H
heaviside, 508
hermite, 512

I
I, 470
Im, 471
int, 497
inverse, 491
invlaplace, 507

L
laguerreL, 512
laplace, 506
legendre, 512
limit, 500
log, 470
ln, 470

M
matlinsolve, 491
matrix, 489
maximize, 488
minimize, 489

N
normal, 476

O
ode, 502
op, 514

P
pdioe, 487
PI, 470
plotfunc2d, 514
polyroots, 480

R
rank, 489
Re, 471

realroot, 497
rec, 487
rectform, 472
rewrite, 478

S
series, 513
Simplify, 476
simplify, 476
solve, 480, 502
subs, 479
sum, 500

T
taylor, 499

U
unassume, 478

Topics
A
absolute frequency,

297
absolute value, 61
algebraic equations,

see also linear
algebraic equations

polynomial diophan-
tine equations,
487

recurrence relations,
488

solving numerically,
483

solving sets of,
483

solving symboli-
cally, 480

algorithm, 148
animation, 538
anonymous function,

130, 132
argument, 8
array, 19

addition and subtrac-
tion, 65

addressing, 58
cell, 90
creating an, 55
division, 69
empty, 58
exponentiation, 70
functions, 60
index, 19
multidimensional, 63
multiplication, 65

operations, 65
pages, 63
powers, 70
size, 56
structure, 93

ASCII les, 21
assignment operator,

10
augmented matrix, 335
axis label, 220
axis limits, 251

B
backward differences,

378
bar plots, 296
Basic Fitting Interface,

282

bins, 296
block diagram, 420
Block Parameters

window, 424
Boolean operator, 157
boundary value

problem, 409
breakpoint, 193

C
Cauchy form, 390
cell indexing, 90
cell array, 90
cell mode, 191
central difference, 379
characteristic roots,

397
clearing variables, 12

pal34870_index_557-564.qxd 1/9/10 5:59 PM Page 560

www.EBooksWorld.ir

Index 561

coef cient of
determination, 275

colors, 228
column vector, 54
command, 8
Command bar

(MuPAD), 475
Command window, 6
comment, 27
common mathematical

functions, 21, 114
complex numbers, 16
complex conjugate

transpose, 57
computer solution

steps, 41, 149
conditional statement,

164
content indexing, 90
contour plots, 248
Control System

toolbox, 398
cubic splines, 317
current directory, 16
curve t, quality of, 275

D
data les, 21
data markers, 25, 228
Data Statistics tool, 300
data symbol, 251
dead time, 448
dead zone, 437
Debug menu, 192
debugging, 29, 190
de nite integral, 370
delay differential

equation, 409
derivative, see

differentiation
Desktop, 5
determinants, 335
differential equations

Cauchy form, 391

characteristic roots,
397

delay, 409
higher order, 390
nonlinear, 383
ordinary, 382
partial, 382
piecewise-linear, 430
solvers, 385
state variable form,

391
symbolic solution of,

501
differentiation,

numerical, 329, 382
partial, 409
polynomial, 382
symbolic, 494

directory, 6
dot transpose, 57

E
Edit menu, 17
Editor/Debugger, 28,

190
eigenvalue, 397, 491
element-by-element

operations, 66,
69, 70

ellipsis, 12
empty array, 58
EraseMode property,

540
error function, 305
Euclidean norm, 343
Euler method, 383
exporting data, 139
exporting gures, 225
extrapolation, 313

F
 eld, 92
 gure handle, 540

File menu, 17
 les

ASCII, 21
command, 27
data, 21
function, 27
MAT- les, 20
M- les, 20
script, 27
spreadsheet, 135
user-de ned, 1 19

 owchart, 150
for loop, 172
forced response, 383
formatting, 15
forward differences,

379
free response, 383
function argument,

117
function de nition line,

119
function discovery,

263
function le, 1 19
function handle, 124
functions

anonymous, 131
argument, 117
complex, 114
elementary mathe-

matical, 113
exponential, 114
handle, 124
hyperbolic, 118
logarithmic, 124
minimization of,

126, 127
nested, 131
numeric, 116
overloaded, 131
primary, 131
private, 131
of random variables,

311

subfunction, 131
trigonometric, 117
user-de ned, 1 19
zeros of, 124

G
Gauss elimination, 335
Gaussian function, 303
global variable, 124
gradient, 380
Graphics window, 23
grid, 25, 222

H
H1 line, 30
handle, 124
help functions, 38
Help system, 33
histogram, 296
histogram functions,

300
homogeneous

equations, 335
hyperbolic functions,

119

I
identity matrix, 82
ill-conditioned

problem, 333
implied loop, 177
importing data, 172
importing spreadsheet

 les, 173
Import Wizard, 173
improper integral, 370
inde nite integral,

370
initial value problem,

382
input region, 468
input/output

commands, 31

pal34870_index_557-564.qxd 1/9/10 5:59 PM Page 561

www.EBooksWorld.ir

562 Index

integral,
de nite, 370
double, 376
improper, 370
inde nite, 370
singularity, 370
triple, 377

integration
numerically, 371
symbolically, 497
panel, 370
trapezoidal, 370

interpolation, 313
cubic spline, 317
Hermite polynomi-

als, 329
linear, 315, 317
2–D, 316
polynomial, 320

inverse Laplace
transform, 507

L
Laplace transform, 506
Laplacian, 382
least squares, 312
left division method, 8,

335
legend, 230
Library Browser, 421
limits, 500
line continuation, 12
line types, 228
linear algebra

characteristic poly-
nomial, 491

eigenvalues, 397,
491

eigenvectors, 491
matrix operations,

489
linear algebraic

equations, 26, 84,
331

application of matrix
rank, 335

and augmented
matrix, 335

and Euclidean norm,
343

homogeneous, 335
ill-conditioned

system of, 333
and linearity, 336
matrix solution, 492
overdetermined

system of, 350
and reduced row

echelon form, 345
singular set of, 333
solution by left divi-

sion method, 28,
335

solution by matrix
inverse, 333

solution by pseu-
doinverse method,
342

underdetermined
system of, 341

linear-in-parameters,
329

linear interpolation
functions, 317

linear programming,
488

local variable, 32, 119
logarithmic plots,

233
logical arrays, 157
logical functions, 161
logical operators, 158
logical variable, 123,

155
loop variable, 172
LTI ODE solvers,

401
LTI object, 399, 400
LTI Viewer, 407

M
M- les, 29
magnitude, 61
managing the work

session, 12
mask, 180
MAT- les, 20
MathWorks website,

37
matrix, 56

augmented, 345
creating a, 55
division, 83
exponentiation, 84
identity, 82
inverse, 332
multiplication,

75, 80
null, 82
operations, 73
rank, 334
special, 82
transpose, 57
unity, 82

mean, 296
median, 296
methodology

for developing a
computer solution,
42

for engineering prob-
lem solving, 38

minimization and root-
 nding functions,
128

modi ed Euler
method, 384

multidimensional
arrays, 81

multiple linear
regression, 328

MuPAD libraries, 480
MuPAD menus

Combine, 477

General math, 475
Rewrite, 478
Simplify, 476
Solve, 481

N
naming variables, 11
nested function, 131,

135
nested loops, 174
normal distribution, 301
normal function, 303
normally distributed

numbers, 303
null matrix, 82
numeric display

formats, 15
numerical

differentiation,
329, 382

numerical integration
functions, 371

O
ODE. See differential

equation, ordinary
operations research, 193
optimization problems,

488
order of precedence, 9,

158
output region, 468
overdetermined

system, 350
overlay plots, 24, 228
overloaded function,

131

P
pages (in

multidimensional
arrays), 81

panel, 471

pal34870_index_557-564.qxd 1/9/10 5:59 PM Page 562

www.EBooksWorld.ir

Index 563

path, 22
PI controller, 450
plot, 25

axis label, 220
bar, 296
colors, 228
contour, 248
data markers, 228
editor, 241
enhancement com-

mands, 232
hints for improving,

220
grid, 25, 222
interactive interface,

241
legend, 230
line types, 228
logarithmic, 233
overlay, 24, 228
polar, 236
requirements, 221
second y-axis, 236
specialized, 235
stairs, 230
stem, 236
subplots, 226
surface mesh, 247
text placement, 232
three-dimensional,

250
three-dimensional

line, 246
tick mark label, 220
tick marks 220
tick mark spacing,

220
title, 220, 225

plotting
complex numbers,

223
in MuPAD, 473
polynomials, 87
with smart function

plot command, 227

symbolic expres-
sions, 593

tools, 243
xy plots, 225

polar plot, 235
polynomial, 20

addition, 86
differentiation, 380
division, 86
functions, 86
interpolation func-

tions, 320
multiplication, 86
plotting, 87
regression, 273
roots, 20

precedence 9, 158
prede ned constants, 15
prede ned input

functions, 407
predictor-corrector

method, 384
primary function, 131
private function, 137
program documentation,

149
programming style, 30
prompt, 6
pseudocode, 151
pseudoinverse method,

342

Q
quadrature, 373

R
random number

functions, 309
random number

generator, 307
rank, 334
rate limiter, 450
rectangular integration,

370

reduced form, 390
reduced row echelon

form, 345
regression, 271
relational operators, 155
relative frequency, 287
relay, 433
replacement operator,

10
reserved symbols in

MuPAD, 470
residuals, 272, 277
right division, 8
row vector, 54
r-squared value, 275
Runge-Kutta methods,

385

S
saturation nonlinearity,

440
saving gures, 225
session, 7
scalar, 8
scalar arithmetic

operations, 8
scaled frequency

histogram, 301
scaling data, 276
script le, 27
search path, 2
session, 7
short-circuit operators,

160
simulation, 193
simulation diagrams,

420
singular matrix, 333
singularity, 370
smart recall, 13
sound, 546
special functions

(MuPAD), 512,
513

special matrices, 83
special variables and

constants, 14
spreadsheet les, 138
stairs plots, 235
standard deviation,

303
state of random

generator, 307
state transition

diagram, 195
state-variable form,

390, 441
statically indeterminate

problem, 343
stem plots, 235
step function, 402
step size, 384
string, 31
structure arrays, 92
structure chart, 150
structure functions,

94
structured

programming, 148
subdeterminant, 335
subfunction, 131, 134
subplots, 232
subsystems, 443
surface mesh plot,

247
sums, 500
switch structure, 188
symbolic expressions,

472
collecting, 478
combining, 477
evaluating, 476
expanding, 475
factoring, 475
manipulating, 474
normalizing, 476
rewriting, 478
simplifying, 476
substituting, 479

pal34870_index_557-564.qxd 1/9/10 5:59 PM Page 563

www.EBooksWorld.ir

564 Index

system, directory, and
 le commands, 23

T
tab completion, 13
Taylor series, 499
text region, 468
three-dimensional

plots, 246
contour plots, 248
line plots, 246
surface mesh plots,

247

toolbox, 5
top-down design,

149
transfer-function form,

437
transport delay,

448
transpose, 55
trapezoidal integration,

370
trigonometric

functions, 118, 119
truth table, 159

U
underdetermined

system, 341
uniformly distributed

numbers, 307
user-de ned functions,

119

V
Variable editor, 62
variance, 303
variable, 7

vector, 70
absolute value of, 61
cross product, 85
dot product, 85
length of, 61
magnitude of, 61
multiplication, 74

W
while loop, 183
working directory. See

current directory
workspace, 11

pal34870_index_557-564.qxd 1/9/10 5:59 PM Page 564

www.EBooksWorld.ir

	Front Cover
	Inside Front Cover
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	CONTENTS
	Preface
	CHAPTER 1 An Overview of MATLAB®
	1.1 MATLAB Interactive Sessions
	1.2 Menus and the Toolbar
	1.3 Arrays, Files, and Plots
	1.4 Script Files and the Editor/Debugger
	1.5 The MATLAB Help System
	1.6 Problem-Solving Methodologies
	1.7 Summary
	Problems

	CHAPTER 2 Numeric, Cell, and Structure Arrays
	2.1 One- and Two-Dimensional Numeric Arrays
	2.2 Multidimensional Numeric Arrays
	2.3 Element-by-Element Operations
	2.4 Matrix Operations
	2.5 Polynomial Operations Using Arrays
	2.6 Cell Arrays
	2.7 Structure Arrays
	2.8 Summary
	Problems

	CHAPTER 3 Functions and Files
	3.1 Elementary Mathematical Functions
	3.2 User-Defined Functions
	3.3 Additional Function Topics
	3.4 Working with Data Files
	3.5 Summary
	Problems

	CHAPTER 4 Programming with MATLAB
	4.1 Program Design and Development
	4.2 Relational Operators and Logical Variables
	4.3 Logical Operators and Functions
	4.4 Conditional Statements
	4.5 for Loops
	4.6 while Loops
	4.7 The switch Structure
	4.8 Debugging MATLAB Programs
	4.9 Applications to Simulation
	4.10 Summary
	Problems

	CHAPTER 5 Advanced Plotting
	5.1 xy Plotting Functions
	5.2 Additional Commands and Plot Types
	5.3 Interactive Plotting in MATLAB
	5.4 Three-Dimensional Plots
	5.5 Summary
	Problems

	CHAPTER 6 Model Building and Regression
	6.1 Function Discovery
	6.2 Regression
	6.3 The Basic Fitting Interface
	6.4 Summary
	Problems

	CHAPTER 7 Statistics, Probability, and Interpolation
	7.1 Statistics and Histograms
	7.2 The Normal Distribution
	7.3 Random Number Generation
	7.4 Interpolation
	7.5 Summary
	Problems

	CHAPTER 8 Linear Algebraic Equations
	8.1 Matrix Methods for Linear Equations
	8.2 The Left Division Method
	8.3 Underdetermined Systems
	8.4 Overdetermined Systems
	8.5 A General Solution Program
	8.6 Summary
	Problems

	CHAPTER 9 Numerical Methods for Calculus and Differential Equations
	9.1 Numerical Integration
	9.2 Numerical Differentiation
	9.3 First-Order Differential Equations
	9.4 Higher-Order Differential Equations
	9.5 Special Methods for Linear Equations
	9.6 Summary
	Problems

	CHAPTER 10 Simulink
	10.1 Simulation Diagrams
	10.2 Introduction to Simulink
	10.3 Linear State-Variable Models
	10.4 Piecewise-Linear Models
	10.5 Transfer-Function Models
	10.6 Nonlinear State-Variable Models
	10.7 Subsystems
	10.8 Dead Time in Models
	10.9 Simulation of a Nonlinear Vehicle Suspension Model
	10.10 Summary
	Problems

	CHAPTER 11 MuPAD
	11.1 Introduction to MuPAD
	11.2 Symbolic Expressions and Algebra
	11.3 Algebraic and Transcendental Equations
	11.4 Linear Algebra
	11.5 Calculus
	11.6 Ordinary Differential Equations
	11.7 Laplace Transforms
	11.8 Special Functions
	11.9 Summary
	Problems

	APPENDICES
	A: Guide to Commands and Functions in This Text
	B: Animation and Sound in MATLAB
	C: Formatted Output in MATLAB
	D: References

	Answers to Selected Problems
	INDEX Symbols, Commands & Topics

