
[1]

www.it-ebooks.info
www.EBooksWorld.ir

Data-oriented Development
with AngularJS

Write DSLs for your user interface code using
AngularJS directives and add real-time capabilities to
your applications using AngularFire's three-way data
binding with Firebase

Manoj Waikar

BIRMINGHAM - MUMBAI

www.it-ebooks.info
www.EBooksWorld.ir

Data-oriented Development with AngularJS

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-805-7

www.packtpub.com

www.it-ebooks.info
www.EBooksWorld.ir

Credits

Author
Manoj Waikar

Reviewers
Mark Coleman

Pavlo Iuriichuk

Mourad Mourafiq

Arvind Ravulavaru

Commissioning Editor
Kunal Parikh

Acquisition Editor
Meeta Rajani

Content Development Editor
Arwa Manasawala

Technical Editor
Shruti Rawool

Copy Editors
Heeral Bhat

Pranjali Chury

Tani Kothari

Sonia Mathur

Karuna Narayanan

Kriti Sharma

Project Coordinator
Danuta Jones

Proofreaders
Simran Bhogal

Bridget Braund

Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info
www.EBooksWorld.ir

About the Author

Manoj Waikar has been developing software for close to 15 years now.
He started writing desktop applications in VB6 and has used almost all of the
.NET and C# versions to write enterprise software. His urge to improve his craft
led him to explore, and eventually use, open source frameworks such as NHibernate,
Spring.NET, NUnit, Moq, and so on, which, until a few years ago, were not
commonly used in the .NET world.

He admires RoR (Ruby on Rails) and thanks Microsoft for ASP.NET MVC and
Web API. Due to some of the limitations of server-side MVC frameworks, he
introduced AngularJS in one of the UK-based start-ups that he worked with
and used it to great success.

He is interested in functional programming and loves Clojure (a Lisp for the JVM)
and ClojureScript (which compiles to JavaScript). Of late, he has also started exploring
F# and considers it the best language for the .NET platform.

www.it-ebooks.info
www.EBooksWorld.ir

Acknowledgments

First and foremost, I would like to thank my wife, Aboli, for always being there for
me and my family. Although I piss her off sometimes with my incessant questions,
I admire her decision-making skills and insightful answers. Hopefully, I'll learn
from her one day. She even let me take almost a year off from work while she was
the earning partner. I hope to return the favor soon. Thanks also to my kids for
being patient with me while I was writing and for doing their own studies too—I'll
certainly spend more time with them after this book is done.

I am lucky to have not just loving and supportive parents but also a caring and
trustworthy extended family, because of my upbringing in a joint family (which
is rare these days). Life would certainly be less fun without my uncles, aunts, and
dear cousins. Thanks to my many friends for sharing their good (and bad) thoughts,
learning, and insights.

Thanks are also due to all my teachers from the schools and colleges I attended
for sharing their knowledge and making me capable in this journey of life. Special
thanks to my illustrious uncle, Dr. Ganesh Tarey, for teaching me mathematics
and physics (the two dreaded subjects) and my brilliant cousin, Anil Bhatnagar,
for teaching me many fun math techniques—I started liking math and computers
because of you both.

Countless thanks to the creators/maintainers and contributors of excellent open source
software/languages/frameworks—software development would be utterly boring
without your selfless efforts. Thanks also to all the wonderful authors from whose
books I've learned so much—finishing a book is such a Herculean effort in itself.

www.it-ebooks.info
www.EBooksWorld.ir

Thanks to Packt Publishing for giving me the chance to become an author and
the entire team at Packt Publishing who endured with me throughout this journey.
Special thanks to Meeta Rajani, Arwa Manasawala, and Shruti Rawool for being
patient with me and pushing me gently to finish chapter after chapter. This book
wouldn't be in your hands without their efforts and help.

My sincerest and heartfelt thanks to the reviewers: Mark, Pavlo, Mourad, and
Arvind. They not only pointed out some errors in the code, but also gave excellent
suggestions to improve the code and the content. This book is in a much better shape
because of you all.

Thanks to the entire IDFC team at Indus software, where I learned the tricks
of the trade. Thanks to HCL technologies for my first ever trip to USA and also to
the entire team at SunGard Offshore Services, Pune, India, and SunGard Investran,
USA, with whom I've spent some fruitful years of my career. I would also like to
thank my entire team at PJM Interconnection, USA, for one of the best projects and
probably the best work culture. Last but not least, thanks to Intelliheads Technology
and my boss, Daniel Niasoff, for letting us use AngularJS—you are the root cause of
this book.

www.it-ebooks.info
www.EBooksWorld.ir

About the Reviewers

Mark Coleman is a full-stack developer focusing on the latest in web technologies.
He enjoys learning about new technologies. He also likes to share his knowledge
by attending local development groups and blogging (www.kramnameloc.com)
about programming topics. When Mark is not absorbing everything to do with
development, he enjoys photography and anything pertaining to The Simpsons
and is a part-time craft beer/bacon aficionado.

Pavlo Iuriichuk is a frontend lead developer who works at GlobalLogic and has
about 7 years of frontend development experience on various platforms, including
those on mobile and desktop. He graduated from Kyiv Polytechnic Institute 5 years
ago with a master diploma in applied mathematics.

He has previously worked for various outsourcing companies in Ukraine, including
Ciklum, Cybervisiontech, and 2K-group.

Previously, he has reviewed HTML5 and CSS3 Transition, Transformation, and
Animation, Packt Publishing.

I want to thank my team and friends who encouraged me to
review this book that they will use to improve their in-depth
skills in frontend technologies.

www.it-ebooks.info
www.EBooksWorld.ir

Mourad Mourafiq is a software engineer and data scientist. After successfully
completing his studies in applied mathematics, he worked in an investment bank
as a quantitative modeler in the structured products market, specializing in ABS,
CDO, and CDS, after which he worked as a quantitative analyst for the largest
bank in France.

After a couple of years in the financial world, he developed a passion for machine
learning and computational mathematics, and decided to join a start-up that
specialized in software mining and artificial intelligence.

He was also involved in reviewing Python for Finance and Getting Started with Python
pandas, both by Packt Publishing.

Arvind Ravulavaru is a full-stack consultant with over 6 years of
experience in software development. For the last 2 years, he has been working
extensively on JavaScript, both on the server and client side. In his spare time,
Arvind likes to experiment with new and upcoming technologies. He also blogs
at http://thejackalofjavascript.com.

I would like to thank my family, especially my mother, for making
all this happen!

www.it-ebooks.info
www.EBooksWorld.ir

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info
www.EBooksWorld.ir

www.it-ebooks.info
www.EBooksWorld.ir

To my mother, late Mrs. Usha Waikar

www.it-ebooks.info
www.EBooksWorld.ir

www.it-ebooks.info
www.EBooksWorld.ir

[i]

Table of Contents
Preface	 v
Chapter 1: AngularJS Rationale and Data Binding	 1

Frameworks versus libraries	 2
AngularJS versus server-side MVC frameworks	 4
AngularJS versus other frontend JavaScript frameworks	 5
Why AngularJS?	 5
Data binding	 7
AngularJS Hello World!	 7
Two-way data binding	 9
Collection binding	 10
Routes	 12

Other AngularJS directives	 14
Organizing AngularJS applications	 15
Summary	 16

Chapter 2: Working with Data	 17
Dependency injection	 18
Filters	 22
Promise	 24
The $q service	 25
The $http service	 25
The $resource service	 28

Node.js and Express-based API sample	 28
A better $http service	 28

Summary	 30
Chapter 3: Custom Controls	 31

Directives	 31
Defining a directive	 32
Directive compilation phases	 33

www.it-ebooks.info
www.EBooksWorld.ir

Table of Contents

[ii]

Normalization	 33
Directive types	 33
Directive scopes	 34

Writing directives	 34
Custom attributes	 34
Custom elements	 36
Isolate scopes	 38

The =attr option in the scope	 39
The @attr option in the scope	 40
The &attr option in the scope	 42
Transclusion	 43
Custom classes	 45
Directives that manipulate the DOM	 45
Communication between directives	 46

Summary	 49
Chapter 4: Firebase	 51

Persistence	 52
What is Firebase?	 52

Firebase – benefits and why to use?	 53
Firebase use cases	 54

Apps with Firebase as the only backend	 54
Existing apps with some features powered by Firebase	 55
Both client and server code powered by Firebase	 55
Firebase is the API for your product	 56

Getting started with Firebase	 56
Installing Firebase	 56

Structuring data	 58
Denormalizing data	 60

AngularFire	 61
Summary	 61

Chapter 5: Getting Started with AngularFire	 63
AngularFire	 63

Synchronized arrays with $firebaseArray()	 64
Real-time applications	 69
Synchronized objects with $firebaseObject()	 70

Three-way data binding	 74
Authentication	 78
Summary	 78

www.it-ebooks.info
www.EBooksWorld.ir

Table of Contents

[iii]

Chapter 6: Applied Angular and AngularFire	 79
Firebase anonymous authentication	 79
Difference between a factory and a service	 94
Summary	 96

Appendix A: Yeoman	 97
NPM	 98
Yeoman	 99
Grunt	 104
Bower	 106

Appendix B: Git and Git Flow	 109
Initial Git setup	 110
Using Git	 110
Using Git flow	 115
GitHub and Bitbucket	 117

Appendix C: Editors and IDEs	 119
Emacs	 119
Vim	 120
Sublime Text	 121
Visual Studio and Visual Studio Express	 121
Eclipse	 122
Brackets	 122
WebStorm	 123

Index	 125

www.it-ebooks.info
www.EBooksWorld.ir

www.it-ebooks.info
www.EBooksWorld.ir

[v]

Preface
If you've ever wanted to create database-backed Single Page Applications (SPAs),
this book will show you how to do it using the power of AngularJS. Along the way,
you'll also learn the best practices of AngularJS development and will see how to
structure your frontend code that greatly improves maintainability. You'll also learn
how to create custom controls using AngularJS directives.

If you've ever wondered how to write applications that update data in real time
without refreshing your browsers or without employing server-side push technologies,
then this book shows you how easy it is using Firebase and AngularFire. Firebase
resembles the document-oriented NoSQL stores, so you'll also learn how to structure
your data in Firebase. Finally, you'll use Firebase's anonymous authentication and
other best practices learned along the way in a hands-on example application.

What this book covers
Chapter 1, AngularJS Rationale and Data Binding, talks about why AngularJS is needed
and why you should choose AngularJS over other client-side/server-side frameworks.
It also talks about data binding, shows a simple Hello World application, and an
application that demonstrates two-way data binding.

Chapter 2, Working with Data, talks about the whys and hows of dependency injection
in Angular. Then it talks about filters and promises and finally shows you how to do
Ajax communication using $http and $resource services.

Chapter 3, Custom Controls, is all about directives. It shows how you can write custom
elements, attributes, and so on, and also talks about isolate scopes, transclusion, and
other stuff about directives.

www.it-ebooks.info
www.EBooksWorld.ir

Preface

[vi]

Chapter 4, Firebase, talks about different types of persistence mechanisms and local
versus hosted databases. It then talks about the value proposition of Firebase and
discusses AngularFire. Finally, it shows how to structure data while using Firebase
and also talks about denormalization.

Chapter 5, Getting Started with AngularFire, shows how to use AngularFire. It shows
synchronized objects and arrays and also shows three-way data binding in action.

Chapter 6, Applied Angular and AngularFire, builds an example application that shows
how to use Firebase's anonymous authentication. It shows the difference between
Angular factory and service, which is a commonly confused topic. It also uses
Angular best practices in the example application.

Appendix A, Yeoman, demonstrates the use of yo (for scaffolding), grunt, and gulp
(for building) and bower (for dependency management) tools. It discusses the
advantage of using these tools and also shows how to install them using Node
Package Manager (NPM).

Appendix B, Git and Git Flow, introduces Git which is one of the most widely used
version control systems today. It shows the most basic Git commands to help you
get started with Git quickly. It also shows simple Git branching and merging, and
introduces Git flow—a tool which prescribes a practical branching model and makes
branching and merging a joy.

Appendix C, Editors and IDEs, talks about editors and IDEs that have good support
for web (HTML, CSS, and JavaScript) development technologies. The obvious
candidates are Visual Studio, Eclipse, and Sublime Text and oldies such as Emacs
and Vim. It also highlights the support for AngularJS in Brackets (backed by Adobe)
and WebStorm (by JetBrains).

What you need for this book
All that you need for the examples in this book is a good text editor that has support
for HTML/JavaScript syntax highlighting and any modern PC/Laptop.

Who this book is for
This book helps beginner-level AngularJS developers to organize AngularJS
applications by discussing important AngularJS concepts and best practices. If you
are an experienced AngularJS developer, but haven't yet written directives or created
custom HTML controls, then this book is ideal for you. This book also shows you
how to build real-time apps using Firebase/AngularFire to store and sync data in
real time.

www.it-ebooks.info
www.EBooksWorld.ir

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We loaded the ngRoute module as a dependent of the routeApp module."

A block of code is set as follows:

'use strict';
app.service('employeeSvc', function () {

 var Employee = function (name, age) {
 this.name = name;
 this.age = age;
 };

Var getEmployees = function () {
 return [
 new Employee("First employee", 56),
 new Employee("Second employee", 44),
 new Employee("Last employee", 32)
];
 };

 // Public API
 this.Employee = Employee;
 this.getEmployees = getEmployees;
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<div>
 <h1>Employee data:</h1>

 <li ng-repeat="employee in employeeData.employees">
 Employee - {{employee.name}} is - {{employee.age}} years old

</div>

www.it-ebooks.info
www.EBooksWorld.ir

Preface

[viii]

Any command-line input or output is written as follows:

bower install underscore

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "For other
extensions, the Install button is enabled."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.it-ebooks.info
www.EBooksWorld.ir

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info
www.EBooksWorld.ir

www.it-ebooks.info
www.EBooksWorld.ir

[1]

AngularJS Rationale and
Data Binding

AngularJS is described as a "Superheroic JavaScript MVW Framework" (where
MVW stands for Model-View-Whatever). Google search's content description
for AngularJS is as follows:

"AngularJS is what HTML would have been, had it been designed for building
web-apps. Declarative templates with data-binding, MVW, MVVM, MVC,
dependency injection, and great testability story all implemented with pure
client-side JavaScript!"

MVVM is a pattern used in building Windows Presentation Foundation
(WPF) applications. A ViewModel represents the model for the view and
is bound to various UI elements. This is called data binding. Typically,
if the ViewModel changes, the UI elements update themselves, and if a
value is changed in any of the UI elements (because of user interaction
or otherwise), the underlying ViewModel gets updated. This is called
two-way data binding. This is a very powerful concept, as we'll see in the
later chapters. The developer does not have to update the UI whenever
there is a change in the ViewModel and vice versa. This two-way data
binding leads to the elimination of a lot of boilerplate code.

So, what do we gain by having MVVM and MVC in the same framework? As
explained earlier, MVVM gives AngularJS the data binding power, and MVC helps
you build applications that follow a clean separation of concerns. Testing monolithic
applications is very difficult. MVC gives a proper structure to your applications, and
different components can be tested individually.

www.it-ebooks.info
www.EBooksWorld.ir

AngularJS Rationale and Data Binding

[2]

Since AngularJS supports MVC and MVVM architectural patterns, it's described as
the MVW (Model-View-Whatever) or MV* framework.

AngularJS or Angular (for brevity) will be used interchangeably
in this book.

In this chapter, we will:

•	 Compare and contrast frameworks and libraries
•	 Compare and contrast Angular with server-side MVC frameworks
•	 Compare and contrast Angular with other client-side MVC frameworks
•	 Find out why to choose Angular over other alternatives
•	 Learn about data binding (and two-way data binding)
•	 Learn how to bind a collection of data
•	 Find out some naming conventions and learn how to organize

Angular applications

Frameworks versus libraries
You have two choices to aid your development efforts—either choose a framework
like Rails or AngularJS or choose smaller libraries. The Clojure community (in
general) dislikes frameworks, so there wasn't a full-fledged web framework such as
Rails in the Clojure landscape for long. Let's look at the pros and cons of choosing
one over the other:

Frameworks Libraries
Pros
Less R&D is needed: A framework will solve
a lot of problems, and you won't need as
many libraries to get the work done.

Smaller learning curve: A library is
typically easier to learn than a framework.

Better code quality: Since the framework has
a prescribed way of doing things, you can
follow the prescribed best practices and your
code will attain a much better quality (than if
you were to do things yourself).

Easier to fix library bugs: It might be
easier to fix a bug in the library itself
(because of the smaller codebase).

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 1

[3]

Frameworks Libraries
Uniformity in code: Different codebases
written using the same framework are easier
to understand. This is because they all will be
following the same structure, patterns, and
so on.

More flexible: Since you're choosing
libraries, it might be easier to adapt those
individual libraries to your needs.

Cons
Bigger learning curve: Depending on what
a framework does, it can be big or small and
the learning curve will be proportionately
large or small.

More R&D is needed: Since you'll have to
use many libraries to complete your task,
you'll have to spend time and resources to
research many different libraries.

Code complexity: The code will be more
complex for anyone who hasn't learned the
ways of the framework.

Code quality: Since you are using many
different libraries, you might have to
come up with ways to organize code.
Consequently, the code quality might
suffer (this is less of a problem for
experienced developers).

Less flexible: Any task for which there is
a prescribed way of doing things is easy
to implement. However, it may prove to
be difficult to implement tasks outside the
purview of the framework.

Missing uniformity in code: Two
developers using the same library might
structure code in totally different ways.
Alternatively, two codebases that use the
same set of libraries might be structured
in a totally different way. So, there are less
chances of code uniformity between two
different codebases.

Difficult to fix framework bugs: It might be
difficult to fix bugs in the framework itself.

Learning curve: It might be easier to learn
a library. However, if you are trying to
replace a framework, chances are that
you'll have to learn about various libraries.
So, the learning curve might be higher
than learning a single framework.

www.it-ebooks.info
www.EBooksWorld.ir

AngularJS Rationale and Data Binding

[4]

AngularJS versus server-side MVC
frameworks
So, why should one choose a client-side JavaScript MVC framework over other
server-side frameworks, such as Rails or Asp.Net MVC? Typically, the controller
methods of any server-side MVC framework return views (that is, a fully formed
HTML). However, there are cases when a view needs some data through Ajax
calls (for obvious reasons). In such cases, the question arises as to which controller
(method) should send this data. This leads to complexities on two fronts, which are
described here:

•	 The view becomes complex: In this case, you have to understand not only
the part of the view that is generated by the server, but also all the AJAX
interactions happening on the view. Then, you have to decide where to
include the JavaScript code related to the view—in the same view in script
tags or in a separate JavaScript file. Often, a server-side MVC framework
uses a different template engine to build the HTML. This problem can
be mitigated using a template engine such as Handlebars (http://
handlebarsjs.com/).

Ideally, the syntax of the template engine should be close to
the actual HTML syntax. This is so that when the designers
give developers an updated HTML design, it becomes easy to
incorporate their changes.

•	 The controller becomes complex: Some of the controller methods return
complete views, while others return data. If you are using a client-side MV*
framework, then the server-side controllers are API controllers, which only
send data to the client. It is up to the client to display the data in whichever
way it pleases. This makes the controllers simpler.

Similarly, the client-side MV* framework itself gives you some well-defined
mechanisms to organize your code as per the MVC paradigm (or whatever
convention the framework wants you to follow). So, the view code also becomes
simpler and organized. Moreover, every interaction of the view with the server
happens through Ajax calls. This too brings uniformity of communication.

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 1

[5]

AngularJS versus other frontend
JavaScript frameworks
While researching for frontend JavaScript frameworks, you'll realize that there are
four main open-source contenders: AngularJS, Backbone (http://backbonejs.
org/), Ember (http://emberjs.com/), and, the latest kid on the block, React from
Facebook (http://facebook.github.io/react/).

Sure, there is jQuery, but it is a library used mainly for DOM manipulations, event
handling, and Ajax communication. Similarly, Knockout (http://knockoutjs.
com/) is a small framework/library that provides data binding, which greatly
simplifies dynamic JavaScript UIs with the MVVM pattern. Likewise, React only
caters to the View layer (V in MVC) and isn't a full MVC framework.

However, for a large-scale, database-backed web application, you'll need more
than what libraries such as jQuery or Knockout provide. I have no experience with
Backbone, Ember, or React, so here are a few links that will help you compare them:

•	 Angular Backbone or Ember: Which is best for your Build? (https://www.
codeschool.com/blog/2014/05/15/angular-backbone-or-ember-which-
is-best-for-your/)

•	 Angular Backbone Ember: The best JavaScript framework for you (http://
readwrite.com/2014/02/06/angular-backbone-ember-best-
javascript-framework-for-you)

•	 Backbone and Angular: Demystifying the myths (http://blog.nebithi.com/
backbone-and-angular-demystifying-the-myths/)

Why AngularJS?
So, this begs the question, "Why should you choose AngularJS?" The choice of
framework depends on a lot of factors—sometimes even personal preferences play
a role in deciding a framework. However, let's look at some of the technical and
pragmatic reasons that justify choosing AngularJS over other frameworks:

•	 Documentation: Google maintains an excellent and in-depth documentation
for AngularJS at https://docs.angularjs.org/api.

•	 Books: There is a wealth of excellent books on AngularJS, such as Mastering
Web Application Development with AngularJS (https://www.packtpub.
com/web-development/mastering-web-application-development-
angularjs), Mastering AngularJS Directives (https://www.packtpub.com/
application-development/mastering-angularjs-directives), and
many others.

www.it-ebooks.info
www.EBooksWorld.ir

AngularJS Rationale and Data Binding

[6]

•	 Data binding: With two-way data binding, when you update the DOM,
your model gets updated and vice versa. This leads to code reduction.

•	 POJO: Plain old JavaScript objects can be used for data binding. You don't
need any special syntax to achieve data binding.

•	 The $http service: This simplifies Ajax communication.
•	 The $resource service: This provides a higher level abstraction than the

$http service. This service is used to communicate with RESTful APIs.
•	 HTTP interceptors: For purposes of global error handling, authentication,

or any kind of synchronous or asynchronous preprocessing of request or
postprocessing of responses, we can use HTTP interceptors.

•	 Directives: This is a complex but very powerful feature of AngularJS.
This feature (https://www.packtpub.com/application-development/
mastering-angularjs-directives) is the one that "teaches old HTML,
some new tricks". Using directives, you can build custom HTML elements,
attributes, and so on.

•	 Dependency injection: Most of the server-side object-oriented languages
have dependency-injection support available through some library/
framework. You can expect the same ease of use with AngularJS's built-in
support for dependency injection in your favorite language—JavaScript.

•	 Unit testing support: This is a must when developing with a dynamic
language such as JavaScript. AngularJS has excellent support for unit
testing—it comes with mocks for a number of its built-in services.

•	 Support: AngularJS is backed by none other than Google. It becomes easy
to convince your boss if a company like Google is behind a framework
or technology.

•	 Community: This plays an important role when you are learning something
new. There are already a lot of questions answered on sites such as
StackOverflow (http://stackoverflow.com/). You'll find many more
resources on Twitter and many other websites.

•	 Companion frameworks: Ionic (http://ionicframework.com/) is a
frontend framework to develop hybrid mobile apps with HTML5. This
framework is optimized for AngularJS.

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 1

[7]

Data binding
Data binding is the process that establishes a connection between the application
UI and data. So, data binding has two participants: the model (or the getter and
setter properties of the model) and the UI element (to which the model is bound).
In the case of AngularJS, the UI elements are the various DOM elements that make
up our UI.

When the data changes its value, the UI elements that are bound to the data reflect
changes automatically. Conversely, when the data shown in the UI element changes,
the underlying model is updated to reflect the changes.

AngularJS Hello World!
Every programming language has a venerable Hello World code example that
forms the starting point in the study of that language. So, how can AngularJS
be left behind?

The following is AngularJS's Hello World example. This example shows data binding
in action:

<!DOCTYPE html>
<html>
<head>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.3.0-
beta.17/angular.min.js"></script>
 <title>Hello world from AngularJS</title>
</head>
<body>
 <div ng-app>
 <div>
 <label>Name:</label>
 <input type="text" ng-model="yourName" placeholder="Enter a
 name here">
 <hr>
 <h1>Hello {{yourName}}!</h1>
 </div>
 </div>
</body>
</html>

(hello-world.html)

www.it-ebooks.info
www.EBooksWorld.ir

AngularJS Rationale and Data Binding

[8]

Let's take a look at the preceding code (especially the highlighted parts of the code):

•	 Inside the script tag, we included a reference to angular.min.js.
•	 The ngApp directive is used to autobootstrap an AngularJS application. This

directive is a part of the ng core module. The ng module is loaded by default
when an AngularJS application is started. The ngApp directive designates the
root element of the application. Whenever Angular finds the ngApp directive,
it loads the module associated with the directive. From this point on, Angular
can start its magic. This directive is typically placed near the root element of
the page, for example, on the <body> or <html> tags. Alternatively, it can be
placed on the part of the HTML that we want AngularJS to control.

°° Directives: These are markers on a DOM element (such as
an attribute, element name, comment, or CSS class). They tell
AngularJS's HTML compiler to attach a specified behavior to that
DOM element or even transform the DOM element and its children.
You can read more about directives in the AngularJS directive guide
at https://docs.angularjs.org/guide/directive. Also, notice
that the names of the AngularJS directives we've used so far are
ngApp and ngModel, whereas in the HTML document, we are using
ng-app and ng-model. By convention, directives are named using
camelCase in JavaScript and snake case within your HTML. Snake
case means all lowercase, using either :, -, or _ to separate the words.
So, ng-app can also be written as ng_app or ng:app.

°° Bootstrapping: This is the Angular initialization process and can
be done in one of two ways: automatic initialization (which is the
recommended way) or manual initialization (in cases when you
need to perform an operation before Angular compiles a page). The
automatic initialization process, as explained above, starts when
Angular encounters an ngApp directive. You can read more about
the AngularJS bootstrap process in the AngularJS bootstrap guide
available at https://docs.angularjs.org/guide/bootstrap.

•	 The ngModel directive binds input, select, and textarea (or custom form
control) to a property on the scope.

°° Scope refers to the application model and acts as the glue between
application controller and the view. You can read more about scopes
in the AngularJS scope guide at https://docs.angularjs.org/
guide/scope.

•	 {{yourName}} renders the value of this variable in the DOM element. It
means whatever value was stored in the yourName variable is extracted
and displayed in the enclosing DOM element.

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 1

[9]

•	 So, in short, we created a yourName variable on the scope and bound it to
the input element (which means, the data entered in the input box is stored
in this variable). Then, we just showed the value of the yourName variable in
the h1 element. So, as soon as you start typing into the input textbox, you'll
see the same text reflected in the h1 element. This is one-way data binding in
action. Isn't it cool!

You'll also notice that there are no IDs assigned to any of the HTML elements! This
is possible because of the power of data binding—you'll hardly need to retrieve a
DOM element based on its ID because data-bound properties on the scope will do
the magic.

Two-way data binding
Let's extend the preceding example to illustrate two-way data binding:

<!DOCTYPE html>
<html>
<head>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/
 1.3.0-beta.17/angular.min.js"></script>
 <title>AngularJS - Two way data binding</title>
</head>
<body>
 <div ng-app>
 <div>
 <h2 style="color:blue;">One way data binding? Cool!</h2>
 <label>Name:</label>
 <input type="text" ng-model="yourName" placeholder="Enter a
 name here">
 <h3>Hello {{yourName}}!</h3>
 </div>
 <hr />
 <div>
 <h2 style="color:green;">Two way data binding? Great!</h2>
 <textarea type="text" ng-model="newName" placeholder="Enter
 some text to change the value of the underlying
 model"></textarea>
 <button ng-click="yourName = newName">
 Change the underlying model's value
 </button>
 </div>
 </div>
</body>
</html>

www.it-ebooks.info
www.EBooksWorld.ir

AngularJS Rationale and Data Binding

[10]

(two-way-data-binding.html)

•	 We've made very few changes to our preceding Hello World example. We
introduced a <textarea> element and bound it to a new model variable
called newName.

•	 We added a <button> element, and we are handling its clicked event (using
the ngClick directive). Inside the click event, we just assigned the value of
the newName new model to our old variable yourName.

•	 As soon as you enter some text in the textarea value and click on the
Change the underlying model's value button, the textarea value is
reflected in the Name textbox and the Hello label.

•	 This shows two-way data binding in action. The UI control reflects the value
of the underlying model and vice versa.

Collection binding
Let's see how to bind data when we have a collection (or a list) of values. For clarity,
we'll only show the important part of the code.

<body ng-app="collectionBindingApp">
 <div ng-controller="EmployeeCtrl">
 <h1>Employee data:</h1>
 In a list -

 <li ng-repeat="employee in employeeData.employees">
 Employee number {{$index}} is - {{employee.name}}

In a table -
 <table>
 <tr>
 <th>Name</th>
 <th>Age</th>
 </tr>
 <tr ng-repeat="employee in employeeData.employees">
 <td>{{employee.name}}</td>
 <td>{{employee.age}}</td>
 </tr>
 </table>
 </div>

 <script src="app.js"></script>
</body>

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 1

[11]

(collection-binding-ex\index.html)

You're now familiar with the ng-app directive. AngularJS starts its magic from
this point onwards. We then attach EmployeeCtrl to the div element using the
ng-controller directive. The ng-repeat directive instantiates a template once
per item in the collection, which is employeeData.employees here. So, in the first
instance in the preceding code, it repeats the elements, whereas in the second
case, it repeats the <tr> elements. Each template instance gets its own scope, and
$index is set to the item index or key.

Let's look at the controller now (again, for clarity, we are showing a part of the code):

var app = angular.module('collectionBindingApp', []);

app.controller('EmployeeCtrl', ['$scope',
 function ($scope) {

 var Employee = function (name, age) {
 this.name = name;
 this.age = age;
 };

 var getEmployees = function () {
 return [
 new Employee("First employee", 56),
 new Employee("Second employee", 44),
 new Employee("Last employee", 32)
];
 };

 $scope.employeeData = {
 employees: getEmployees()
 };
 }
]);

(collection-binding-ex\app.js)

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.it-ebooks.info
www.EBooksWorld.ir

AngularJS Rationale and Data Binding

[12]

We first create a new module called collectionBindingApp using the below API :

angular.module(name, [requires], [configFn]);

Here name is the name of the module to create or retrieve. The second argument
is optional—if it is specified then a new module is being created, else an existing
module is being retrieved for further configuration. The third parameter is an
optional configuration function for the module.

We store the module in the app variable. This app variable is available globally and is
used to associate controllers, directives, filters, and so on with this module. Then we
create a controller called EmployeeCtrl on this new module.

We should use a controller to set up the initial state of the $scope object and to add
behavior to the $scope object. We declared our new controller, called EmployeeCtrl,
and associate it with the collectionBindingApp module. This controller has
a few functions to generate test data, but in real-life scenarios, you'll typically
fetch data from RESTful services (for which you can use the $http service or the
$resource service). So, we set the state here by assigning some employees to the
$scope.employeeData object. An advantage of using an object is that you don't
clutter $scope with too many variables. So, when you run the example, you see the
employee data, first in a list (which also shows the index) and then in a tabular form.

It would've become pretty obvious by now that data binding can reduce a lot
of DOM manipulation code from the application and is a powerful technique.
AngularJS brings data-binding capabilities within the realm of web applications.
We can use it in our favorite platform, that is, the Web, HTML5, and JavaScript.

Routes
The ngRoute (https://docs.angularjs.org/api/ngRoute) module and the
ngView (https://docs.angularjs.org/api/ngRoute/directive/ngView)
directive are the secret sauces that let us write Single Page Applications (SPAs)
with ease. We configure which views are to be shown for which URLs using the
$routeProvider service. This service comes with the ngRoute module. This module
comes with the angular-route.js library, so we have to include it separately. So,
let's see them in action:

<!DOCTYPE html>
<html>

<head>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/
 1.3.14/angular.min.js"></script>

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 1

[13]

 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/
 1.3.14/angular-route.min.js"></script>
 <title>Routing example</title>
</head>

<body ng-app="routeApp">
 Choose:

 Employees

 Departments

 <div ng-view></div>

 <script src="app.js"></script>
 <script src="employee.ctl.js"></script>
 <script src="department.ctl.js"></script>
</body>

</html>

(route-ex/index.html)

First, we included the angular-route.min.js library. Then, as usual, we set up a
routeApp module and then we set up two links—one each to navigate to employees
and departments. Note that the links have a leading # because we don't want the
browser to actually navigate to the employees.html or departments.html page.
Finally, we added the ng-view directive to our div element, which works together
with the $route service. It serves as the placeholder where the HTML contents
of various templates are rendered as per the current route. Hence, it includes the
rendered template of the current route into the main layout (index.html). The
configuration of routes is done in the following app.js file:

var app = angular.module('routeApp', [
 'ngRoute'
]);

app.config(function ($routeProvider) {
 $routeProvider
 .when('/employees', {
 templateUrl: 'employee.tpl.html',
 controller: 'EmployeeCtrl'
 })
 .when('/departments', {
 templateUrl: 'department.tpl.html',
 controller: 'DepartmentCtrl'
 })

www.it-ebooks.info
www.EBooksWorld.ir

AngularJS Rationale and Data Binding

[14]

 .otherwise({
 redirectTo: '/'
 });
});

(route-ex/app.js)

We loaded the ngRoute module as a dependent of the routeApp module. Next,
we configured various routes of the module using $routeProvider. Here, we
are saying that whenever the URL matches /employees, the employee.tpl.html
template should be inserted in the ng-view placeholder of the index.html file with
EmployeeCtrl as the controller. This also applies to the /department URL.

The EmployeeCtrl controller in route-ex/employee.ctl.js is similar to the one
in the previous example, and DepartmentCtrl in route-ex/department.ctl.js
mimics it. The templates for employee view and department view are also similar,
as shown here:

<div>
 <h1>Employee data:</h1>

 <li ng-repeat="employee in employeeData.employees">
 Employee - {{employee.name}} is - {{employee.age}} years old

</div>

(route-ex/employee.tpl.html)

Just as the employee template in the preceding code shows employee data, the
department template shows department data. When you run the application and
click on the employee link, you see the employee data, and ditto for the department
link, without any page refreshes. Although this is a simple example, you can see how
easy Angular makes it to write SPAs.

Other AngularJS directives
Other AngularJS directives such as ngShow, ngHide, ngChecked, and ngSelected
are among the various other directives that help us in building great-looking UIs
with minimal DOM manipulation code. AngularJS API docs (https://docs.
angularjs.org/api) is a great place for exploring various directives, services etc.
that Angular provides.

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 1

[15]

Organizing AngularJS applications
The success of a project can be judged not only by the timely delivery of working
code but also by other factors such as:

•	 How much of the code is covered by tests
•	 How well organized the codebase is (in a proper folder structure)
•	 How consistent the naming convention is
•	 How easy it is for someone who is new to the project to understand the code

The naming conventions and many other factors are a matter of personal taste.
However, for the sake of consistency, it's always advisable to agree on certain
naming conventions and best practices to be followed for any important projects.

As discussed in Appendix A, Yeoman, tools such as Yeoman (http://yeoman.io/)
help with the scaffolding and setting up of the initial folder structure. Similarly, code
beautifiers available in various IDEs help in arranging the code in a single file to
follow accepted norms with spaces, tabs, new lines, and so on.

You've got a taste of some of the naming conventions that I've followed in the
preceding examples. For example, the template file has been named with a .tpl.
html extension. Similarly, a controller file is named with a .ctl.js extension.
Although it's a trivial change, it adds a lot to the overall code readability. Similarly,
the names of the controllers starts with a capital letter (EmployeeCtrl), whereas the
names of all other components start with a small letter (collectionBindingApp).

Yeoman organizes the code by type, that is, it has folders for controllers, views,
services, and so on. This is OK at the beginning but has a distinct disadvantage:
the files that logically belong together to a feature, that is, a view, a controller, and
various services the controller needs, are in different folders. So, it becomes difficult
to locate these files. When you are working on a particular feature, you are going to
need these files at the same time.

So, the other option is to organize the code by feature or by component. So, assuming
that your project deals with employees, departments, and so on, there will be folders
named employees or departments. Views, controllers, services, and directives
belonging to a component live in the particular component's folder.

You may refer to the following links for more details on organizing the Angular code:

•	 AngularJS style guide at https://github.com/mgechev/angularjs-
style-guide

•	 AngularJS best practices at https://github.com/GrumpyWizards/Angular

www.it-ebooks.info
www.EBooksWorld.ir

AngularJS Rationale and Data Binding

[16]

•	 Best practices recommendations for Angular App structure at https://
docs.google.com/document/d/1XXMvReO8-Awi1EZXAXS4PzDzdNvV6pGcuaF
4Q9821Es/pub

•	 The Google JavaScript style guide at http://google-styleguide.
googlecode.com/svn/trunk/javascriptguide.xml; this is a good place
for general JavaScript conventions

Check out AngularJS Batarang (https://chrome.google.com/webstore/detail/
angularjs-batarang/ighdmehidhipcmcojjgiloacoafjmpfk?hl=en), a Chrome
extension. This helps in debugging JavaScript applications written using AngularJS. It
gets added as an extra AngularJS tab in the developer tools where it shows different
scopes and models. We can check which models are attached to which scope.

Also, check out Built with AngularJS (https://builtwith.angularjs.org/) for
interesting examples of sites/applications built using AngularJS.

Summary
In this chapter, we compared and contrasted frameworks versus libraries, Angular
versus the server-side MVC frameworks, and Angular versus the other client-side
JS MVC frameworks. We also looked at some of the important reasons as to why we
should choose Angular. Then, we talked about data binding and why and how it's
powerful and consequently leads to reduction of code. Finally, we looked at a few of
the naming conventions and how to organize Angular applications.

In the next chapter, we'll learn about advanced Angular concepts such as IoC and
filters. You'll also learn how to fetch data using the $http and $resource services.

www.it-ebooks.info
www.EBooksWorld.ir

[17]

Working with Data
Now that we've already covered the basics of AngularJS and data binding, let's take
a deep dive into Angular and see what dependency injection is, why it is needed,
and how to do dependency injection in Angular. We'll also see the role of filters and
how to write custom filters. Then, we'll see how to call remote APIs using the $http
service and the $resource service. Finally, we'll study how the $resource service
is an abstraction on top of the $http service and how it makes communication with
RESTful APIs easier. So, let's get started.

In this chapter, we will cover the following topics:

•	 Dependency injection and why it is needed
•	 How dependency injection is achieved in Angular
•	 The role of filters and how to implement them
•	 What are promises?
•	 How to communicate with backend APIs using the $http service
•	 How the $resource service makes communication with RESTful

services easier

www.it-ebooks.info
www.EBooksWorld.ir

Working with Data

[18]

Dependency injection
The dependency injection pattern, as the name suggests, is the process of injecting
dependencies (or services) into another (client) object. It is also referred to as
Inversion of Control (IoC). Without it, a client has to create instances of dependent
objects itself, whereas with dependency injection, these objects are handed to the
client by someone else (typically, an IoC container). This is commonly referred to as
the Hollywood principle—"don't call us, we'll call you". The following is an example
C# code to make things more clear:

public interface IShippingService {
 double CalculateShippingCost ();
}

public class ShippingService : IShippingService {
 double CalculateShippingCost () {
 // do some lengthy calculation here and
 // calculate the shipping cost
 }
}

public class LoggingShippingService : IShippingService {
 double CalculateShippingCost () {
 // do some lengthy calculation here and
 // calculate the shipping cost
 Console.WriteLine("Now log the cost");
 }
}

public class Client {
 // without IoC
 private IShippingService _shippingService;

 Client() {
 _shippingService = new ShippingService();
 }

 public ShowShippingCost() {
 Console.WriteLine("The total shipping cost is {0}",
 _shippingService.CalculateShippingCost());
 }
}

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 2

[19]

In the preceding code, the Client class needs an object of ShippingService to do
its work. However, it creates an object of ShippingService itself by calling the
new keyword. So, this tightly couples the Client class to the ShippingService
class. What if tomorrow we need to use the LoggingShippingService class instead
of ShippingService? Also, suppose ShippingService talks to the database to
calculate the shipping cost, then how will we unit test it? As a unit test should
not cross its boundary, we could've used a mock, but our Client class is already
hardcoded to use the ShippingService class. So, what should we do? Let's see how
IoC helps us and the modified code looks like this:

public class Client {
 // with IoC
 private IShippingService _shippingService;

 Client(IShippingService shippingService) {
 _shippingService = shippingService;
 }

 public ShowShippingCost() {
 Console.WriteLine("The total shipping cost is {0}",
 _shippingService.CalculateShippingCost());
 }
}

Here, the Client class only specifies that it needs (or has a dependency on)
IShippingService. It is up to the IoC container to hand over an instance of
ShippingService whenever some class has a dependency on IShippingService.
Now, we can specify the dependencies either in configuration (through XML files)
or in code as follows:

Container.Register<IShippingService, ShippingService>();

The preceding line of code tells the IoC container that whenever some class has a
dependency on IShippingService, hand it an instance of ShippingService. This
way, for our tests, we can inject a different object for IShippingService, as follows:

Container.Register<IShippingService, MockShippingService>();

www.it-ebooks.info
www.EBooksWorld.ir

Working with Data

[20]

Some of the modern IoC frameworks make it even easier by autoregistering the
dependencies as long as they follow a convention. Also, in a typical IoC framework,
dependencies can be injected into an object using either of the following:

•	 The constructor: This is called the constructor injection
•	 A field: This is called the setter injection
•	 The parameters of a method: This is called the method injection (which is

least commonly used)

There's just one more thing to consider—how should the container decide whether
it has to always inject a new instance of a dependency or a singleton instance? Well,
most of the time, the default is to inject a new instance, but with Angular, the default
is a singleton.

By default, Angular's IoC container only supports a singleton
life cycle, so the injected dependency is a singleton.

Dependency injection (or IoC) libraries or frameworks are available for most of
the popular object-oriented languages today. With most of them, they have to be
downloaded as separate libraries. For example, .NET has Unity (https://msdn.
microsoft.com/en-us/library/ff647202.aspx) or Spring.NET (http://
springframework.net/), Java has Guice (https://code.google.com/p/google-
guice/), and so on. Angular makes it easy by bundling an in-built dependency
injection framework. So, let's see how to do dependency injection in Angular.

We'll take the code introduced in Chapter 1, AngularJS Rationale and Data Binding, and
modify it a little bit. We'll introduce a service called employeeSvc, which looks like
the following lines of code:

'use strict';
app.service('employeeSvc', function () {

 var Employee = function (name, age) {
 this.name = name;
 this.age = age;
 };

Var getEmployees = function () {
 return [
 new Employee("First employee", 56),
 new Employee("Second employee", 44),
 new Employee("Last employee", 32)
];

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 2

[21]

 };

 // Public API
 this.Employee = Employee;
 this.getEmployees = getEmployees;
});

[dependency-injection-ex\employee.svc.js]

We've taken the Employee and getEmployees function from EmployeeCtrl from
Chapter 1, AngularJS Rationale and Data Binding, and put them into employeeSvc.
Now, let's inject employeeSvc into EmployeeCtrl and use the functions from this
service as shown in the following code:

'use strict';

app.controller('EmployeeCtrl', ['$scope', 'employeeSvc',
 function ($scope, employeeSvc) {

 $scope.employeeData = {
 employees: employeeSvc.getEmployees()
 };
 }
]);

[dependency-injection-ex\employee.ctl.js]

If you notice the highlighted code, EmployeeCtrl specifies a dependency on
employeeSvc, and it is Angular's responsibility to hand EmployeeCtrl an instance of
employeeSvc. We are telling Angular about the dependencies by passing the names of
dependencies in an array—the ['$scope', 'employeeSvc', …] array—this is called
inline array annotation. We can instead use the following code:

'use strict';

app.controller('EmployeeCtrl', function ($scope, employeeSvc) {

 $scope.employeeData = {
 employees: employeeSvc.GetEmployees()
 };
 }
);

www.it-ebooks.info
www.EBooksWorld.ir

Working with Data

[22]

This code will still work fine. This is called implicit annotation as Angular tries to
infer the names of dependencies based on the function parameter names, but this
is not the preferred way. It will give us problems when we minify our code. Since
minification leads to name mangling, the names of the function parameters, $scope
and employeeSvc, might get minified to, say, s and e. However, the code still refers
to $scope and employeeSvc, so our code will break.

There is a tool called ng-annotate (https://github.com/olov/ng-annotate) that
can automate the process of adding or removing AngularJS dependency injection
annotations. This tool could be run as one of the steps of the build process.

Filters
It often happens that we need to show filtered data. In this case, we can include logic
in one of the functions in a service. However, this logic can get lost if a service has
many methods. Similarly, we might have to format some data before showing it in
the view. Angular introduces filters for precisely these things—either format the
value of an expression for display or filter values from an array. Angular comes with
some of the most common filters to format number, currency, or date. Refer to the
built-in filters available at https://docs.angularjs.org/api/ng/filter.

Let's write a custom filter. In our previous example, our service returns some
employees. Let's add a few more employees whose age is more than 58 years. Let's
assume that the retirement age is 60 years, and anyone whose age is 58 years or more
is about to retire. Then, let's filter the employees. So, here's the modified service:

'use strict';

app.service('employeeSvc', function () {

 var Employee = function (name, age) {
 this.name = name;
 this.age = age;
 };

var getEmployees = function () {
 return [
 new Employee("First employee", 56),
 new Employee("First old employee", 58),
 new Employee("Second employee", 44),
 new Employee("Second old employee", 59),
 new Employee("Last employee", 32)
];

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 2

[23]

 };

 // Public API
 this.Employee = Employee;
 this.getEmployees = getEmployees;
});

[filter-ex\employee.svc.js]

We've added a few senior employees. So, now, let's write a filter to only show
employees who are about to retire:

'use strict';

app.filter('seniorEmployeesFltr', function () {
 return function (items) {
 return _.filter(items, function (item) {
returnitem.age >= 58;
 });
 };
});

[filter-ex\seniorEmployee.flt.js]

In the preceding code, '_' refers to the excellent Underscore library (http://
underscorejs.org/). This library provides many utility functions found in almost
all functional programming languages or even in LINQ (from C#), and 'filter' is
one of the examples.

Don't forget to refer to underscore.js in the index.html file.

This is how we use it in the view:

<div>
 <h1>Employee data:</h1>
 <h3>In a table (with the filter) -</h3>
 <table>
 <tr>
 <th>Name</th>
 <th>Age</th>
 </tr>
 <tr ng-repeat="employee in employeeData.employees |
 seniorEmployeesFltr">
 <td>{{employee.name}}</td>

www.it-ebooks.info
www.EBooksWorld.ir

Working with Data

[24]

 <td>{{employee.age}}</td>
 </tr>
 </table>

 <h3>In a list (without the filter) -</h3>

 <li ng-repeat="employee in employeeData.employees">
 Employee number {{$index}} is - {{employee.name}} -
 {{employee.age}} years old

</div>

[filter-ex\employee.tpl.html]

The syntax to apply filters to expressions is as follows:

{{ expression | filter }}

Filters can be chained and can also have arguments. Visit https://docs.
angularjs.org/guide/filter for further information about filters. With filters
under our belt, let's look at another important feature that Angular provides: that
is the feature of communicating with our backend APIs by making AJAX requests.

Promise
While working with Angular/JavaScript, or any technology for that matter, there
are scenarios when we need to make asynchronous calls—a very common example
is of calling a web API. Obviously, when we call a remote API, we can't call it
synchronously, because all further processing stops until that call completes. One of
the ways of calling a function asynchronously is using a callback. However, callbacks
make the code look convoluted. Sometimes, if you have deeply nested callbacks, then
life becomes even more difficult. Promises solve these issues and make the intent of
the code very clear. The Promise API is part of the ECMAScript 6 (ES6 Harmony)
proposal, but there are implementations of it, which we can use even now.

A Promise object (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Promise) is used for deferred and
asynchronous computations. A Promise object is in one of the following states:

•	 Pending: This is an initial state, not fulfilled or rejected
•	 Fulfilled: This indicates successful operation

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 2

[25]

•	 Rejected: This indicates rejected operation
•	 Settled: This indicates that Promise is either fulfilled or rejected,

but not pending

The idea that makes a Promise intuitive is that it lets an asynchronous method call
return a value (just like a synchronous call). However, instead of returning the final
value, the asynchronous method returns a promise of having a value at some point
in the future. A Promise object looks like this:

new Promise(function(resolve, reject) { ... });

The first argument (resolve) fulfills the Promise, while the second argument (reject)
rejects it. The most important method of a Promise object is the then method. This
method gets called when either the pending promise has been fulfilled with a value
or rejected with a reason.

The $q service
The $q service of Angular is modelled on the lines of ES6 promises, though not all of
the supporting methods from ES6 Harmony promises are available yet. Check out
the documentation of the $q service for more details at https://docs.angularjs.
org/api/ng/service/$q.

The $http service
The $http service is a core Angular service. This service is used to communicate
with remote HTTP servers via the browser's XMLHttpRequest object or JSONP. The
$http API is based on the promise APIs exposed by the $q service. This service,
unsurprisingly, exposes methods that reflect the HTTP verb names, get, head, post,
put, delete, and so on. The typical way of calling these methods is as follows:

$http.get('/someUrl')
 .success(function(data, status, headers, config) {
 // this callback is called asynchronously
 // when the response is available
 })
 .error(function (data, status, headers, config) {
 // called asynchronously if an error occurs
 // or server returns response with an error status
 });

www.it-ebooks.info
www.EBooksWorld.ir

Working with Data

[26]

So, let's see an example of using the $http service. Postcodes.io is a free and open
source postcode and Geolocation API for the UK. It exposes many API endpoints.
We'll specifically use the one that gives us information about a random postcode,
and the API endpoint is http://api.postcodes.io/random/postcodes. If you try
clicking on this link, you'll see some information about a random postcode from the
UK. So, here's the important piece of code:

'use strict';

app.service('postCodeSvc', ['$http', function ($http) {

var getRandomPostCode = function (success, error) {

 $http.get('http://api.postcodes.io/random/postcodes')
 .success(function(data, status, headers, config) {
 success(data, status, headers, config);
 })
 .error(function(data, status, headers, config) {
 error(data, status, headers, config);
 });
 };

 this.getRandomPostCode = getRandomPostCode;
}]);

[ajax-ex\postcode.svc.js]

Notice that we inject the $http service in our postCodeSvc service. Then, we define
a getRandomPostCode method, which internally calls the $http.get method. This
method accepts a success callback as the first parameter and an error callback
as the second parameter. This is because the call to the $http service will either
succeed or fail. If the http.get method succeeds, then the success callback is called;
otherwise, the error callback is called. In these two callbacks, we call the respective
callbacks passed to our getRandomPostCode method.

Let's look at the controller now:

'use strict';

app.controller('PostCodeCtrl', ['$scope', 'postCodeSvc',
 function ($scope, postCodeSvc) {

 $scope.postCodeData = {};

var success = function (data, status, headers, config) {

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 2

[27]

 $scope.postCodeData.result = data.result;
 };

var error = function (data, status, headers, config) {
 $scope.postCodeData.error = data;
 };

 // call this function which will get the
 // data asynchronously
 postCodeSvc.getRandomPostCode(success, error);
 }
]);

[ajax-ex\ postcode.ctl.js]

We define the success and error functions to be passed as callbacks to the
getRandomPostCode method of the postCodeSvc service. Again, we need these
callbacks because the http.get method is called asynchronously, and one of these
callbacks is called when this method completes. In the successful case, we set the
result property of the postCodeData object on $scope. In the case of an error, we set
the error property. Then, the view just displays the information returned by the API:

<div>
 <h1>Postcode info:</h1>
 Postcode: {{postCodeData.result.postcode}} <p />
 Country: {{postCodeData.result.country}} <p />
 Longitude: {{postCodeData.result.longitude}} <p />
 Latitude: {{postCodeData.result.latitude}} <p />
</div>

[ajax-ex\ postcode.tpl.html]

Similarly, we can call other methods of the $http service. Refer to https://docs.
angularjs.org/api/ng/service/$http for more information about the $http
service.

www.it-ebooks.info
www.EBooksWorld.ir

Working with Data

[28]

The $resource service
When we have to deal with a RESTful API, $http proves to be rather low level. We
might have to write a lot of boilerplate code to call the methods exposed by the API.
This is where the $resource service comes in handy. It returns a resource object
that has convenience methods that map to their HTTP verbs' counterparts. So, for
example, the get method of the $resource service maps to the HTTP 'GET' method,
the save method maps to POST, and the remove and delete methods map to DELETE.
The query method maps to GET but has the isArray property set to true. This
means it maps to a method that returns all the records (similar to get all).

Node.js and Express-based API sample
For this demo, I've written a small Node.js backend application that exposes a
REST API for our Employee object used earlier. For simplicity, it just holds the data
in memory and is for illustration purposes only. If you have an API ready, then you
can skip this part and directly jump to the next section (which describes how to use
the $resource service).

This section assumes that you have Node.js (http://nodejs.org/) and Yeoman
(http://yeoman.io/) installed. I've generated the skeleton of this application using
the Yo-based AngularJS fullstack generator (https://github.com/DaftMonk/
generator-angular-fullstack). The discussion of the Node.js or Express part
of this application is beyond the scope of this book. However, the main code is
contained in [resource-ex\server\main.js], which contains the various routes
for the application, and [resource-ex\server\routes\index.js], which contains
methods that map to these routes.

A better $http service
So, let's see why $resource is a higher level abstraction than the $http service.
Let's look at the following service:

'use strict';

app.service('employeeSvc', ['$resource',
 function ($resource) {
var baseApiPath = 'http://localhost\\:9002/api/';
var employeeApiPath = baseApiPath + 'employees/:id';

 var Employee = $resource(employeeApiPath, {
'update': {
 method: 'PUT'

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 2

[29]

 }
 });

 return {
 Employee: Employee
 };
 }
]);

[resource-ex\app\scripts\employee.svc.js]

We inject the $resource service in employeeSvc. Our employee resource is
available at /api/employees, so you may guess the various RESTful methods and
the corresponding URLs. Finally, we return the Employee resource. Also, note that
by default, the update method is not exposed by the $resource service. Hence, we
return it along with the $resource service and map it to the HTTP PUT method.
We can also customize the behavior of this service by passing in a hash of custom
actions. For example, if we set cache to true, the $http cache is used to cache the
GET request. Now, let's see how we can call this resource from MainCtrl:

'use strict';

app.controller('MainCtrl', ['$scope', 'employeeSvc',
 function ($scope, employeeSvc) {

 var Employee = employeeSvc.Employee;
 var employees = Employee.query();
 var employee = Employee.get({ id: 1 });

 $scope.employeeData = {
 employees: employees,
 employee: employee
 };
 }
]);

[resource-ex\app\scripts\controllers\main.js]

The employeeSvc service is injected in MainCtrl, and we store the Employee
resource in a variable with a similar name. From there on, we can easily call the
various RESTful methods on our resource; two examples, query and get, are
shown in the preceding code. Calling other methods is equally easy.

www.it-ebooks.info
www.EBooksWorld.ir

Working with Data

[30]

Summary
In this chapter, we learned about dependency injection and why it is needed. Then,
we looked into Angular's support for dependency injection. After that, we saw how
to format/filter data using filters, and learned how to write custom filters. Then, we
learned about promises and saw how the $http service implements promises-based
APIs. Finally, we looked at how the $resource service is a higher level abstraction
over the $http service and how it makes calling RESTful services a breeze. Next,
we'll learn how to make the UI more declarative using Angular directives.

www.it-ebooks.info
www.EBooksWorld.ir

[31]

Custom Controls
So far, in our study of Angular, we've seen concepts (such as MVC, dependency
injection, and so on) which are available in other programming languages or
frameworks and you would be right in thinking, how this sets Angular apart from
many other frameworks. With our current knowledge and understanding of Angular,
we can write perfectly functional and beautiful-looking applications, but it still doesn't
make our frontend code more maintainable—for sure, we've structured our JavaScript
code into services or filters, which are injected into controllers (which might live in
one or more modules), but think hard, there is still a core piece of frontend code which
hasn't seen any improvement. That core piece is the HTML part.

In this chapter, we will cover the following topics:

•	 What are directives and why do we need them
•	 Naming convention of directives
•	 How to write directives
•	 Different types of directives
•	 Isolate scopes
•	 Transclusion
•	 Directives which communicate

Directives
The HTML code (without the directives) is still made up of divs after divs nested
inside one another, and those divs make no semantic sense; except for the various
class attribute values that you attach to them (or however else you have tried to
give them meaning). But wouldn't it be nice if you could instead, structure your
HTML like this:

<employee id="1"></employee>

www.it-ebooks.info
www.EBooksWorld.ir

Custom Controls

[32]

Or maybe like this:

<address type="corporate"></address>

Then, you get a nice little piece of UI which displays the full address or information
of the employee.

So what are directives? To repeat an oft-quoted cliché, directives teach old HTML
some new tricks, and they are the ones which help us in writing custom controls.
So we should write directives when we want to refactor repeated (HTML) code, to
create new HTML markup and when we need to manipulate the DOM directly.

As per Angular, it is an anti-pattern to manipulate the DOM in your controllers.
You must use directives for any kind of DOM manipulation.

We can write directives to represent custom HTML attributes, elements, comments,
or to represent custom CSS classes—the default being attributes and elements.

Defining a directive
A directive must be registered with a module by calling the directive function. This
function takes the normalized name of the directive and a factory function which
returns a Directive Definition Object (DDO) as follows:

angular.module('app', []).directive('myDirective', function() {
 return myDDO;
});

Here, myDirective is the name of the directive and myDDO is the directive definition
object. A DDO is an object whose fields tell the compiler what the directive does. The
main fields of the DDO are as follows:

{
 restrict: 'AEC', // specifies if this directive is an element,
attribute or class
 template: '', // a string used to generate mark-up
 templateUrl: '', // if template is not provided inline, then the URL
where the template will be found
 scope: false, true or {}, // whether to create a new child scope or
to create an isolated scope
 transclude: true, // whether to extract the contents of the element
where the directive appears and make it available to the directive
 controller: fn, // a function that acts as a controller for this
directive
 compile: fn, // a function that can manipulate the source DOM
 link: fn // a function that links the directive to scope
}

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 3

[33]

For more details on the DDO, please refer to: https://docs.angularjs.org/api/
ng/service/$compile#directive-definition-object.

Directive compilation phases
When Angular compiles a template, it tries to match each element, attribute, comment,
and CSS class against the list of registered directives. Whenever it matches a directive,
Angular calls the directive's compile function, which returns a linking function.

The compilation phase is done before the scope has been prepared, so no scope data
is available to the compile function.

Once all the directives are compiled, Angular creates the scope and starts linking
those directives with the scope using the link function.

At the linking phase, the scope attached to the directive, and the linking function sets
up bindings between the DOM and the scope.

Normalization
Angular normalizes the name of an element or attribute to figure out which
elements match which directive. Directives are looked up based on their
camelCase case-sensitive names, for example, myDirective. However, since
HTML is case insensitive, we refer to this directive in our HTML elements in
one of the following ways:

my-directive, my_directive, or my:directive

We can further prefix these names with either data- or x-.

The best practice is to use the dash-delimited format, for example, my-directive.

Directive types
Using directives, we can create custom elements, attributes, comments, or classes by
setting an appropriate value of the restrict key of the DDO. The different restrict
options which we can set are as follows:	

•	 'A': This only matches the attribute name
•	 'E': This only matches the element name
•	 'C': This only matches the class name

These options can all be combined as needed, so 'AEC' matches either the attribute,
the element, or the class name.

www.it-ebooks.info
www.EBooksWorld.ir

Custom Controls

[34]

Directive scopes
If a directive has to do something meaningful, it needs a scope object. We can supply
a scope to a directive in three different ways, to be specified in the DDO:

•	 scope: false: This means reuse the outer scope from the place where the
directive is included. This is the default.

•	 scope: true: This means create a child scope which prototypically inherits
from the scope where the directive is included.

•	 scope: {}: This means create an isolated scope for the directive which is
totally isolated from the outer (or parent) scope.

Writing directives
Now that we've talked a lot about theory, let's put it into practice and write some
directives. We'll start with very simple examples and go on to build complex
ones, highlighting various aspects involved in writing directives. We'll keep using
employee-related data which we've used in earlier examples to keep things simple,
so here's our first simple directive.

Custom attributes
This directive uses an inline template and inherits the scope from the controller. This
is not a good practice and is for illustration purposes only (as this is our very first
directive). Here's the controller:

app.controller('EmployeeCtrl', ['$scope',
 function ($scope) {

 var Employee = function (name, age) {
 this.name = name;
 this.age = age;
 };

 var GetEmployees = function () {
 return [
 new Employee("First employee", 56),
 new Employee("Second employee", 44),
 new Employee("Last employee", 32)
];
 };

 $scope.employeeData = {

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 3

[35]

 employees: GetEmployees()
 };
 }
]);

[Chapter3\directive-ex\employee.ctl.js]

Here's the directive:

app.directive("myEmployee", function () {
 return {
 template: 'Name - {{employeeData.employees[0].name}}, Age -
 {{employeeData.employees[0].age}}'
 };
});

[Chapter3\directive-ex\employee.dir.js]

Remember we talked about the Directive Definition Object (DDO), so here the
directive returns an object with only the template value set. So, in this case, our
function returns an HTML template which shows an employee's information. Please
note that the directive has inherited the scope from the controller (which is putting a
list of employees in the scope), and so has access to the employeeData object.

Now let's look at the HTML code:

<div>
 <h1>Employee data:</h1>
 <div my-employee></div>
</div>

[Chapter3\directive-ex\employee.tpl.html]

Isn't it simple? We've now started to abstract away HTML code just like we've been
doing it for our JavaScript code (or code in any other object-oriented language).
The my-employee attribute in the preceding HTML code refers to our myEmployee
directive defined in the previous code (as per the naming conventions described
earlier). In this example, we are only showing the name and age of the employee,
but we could have shown a lot more data regarding an employee, and the resulting
HTML (where the directive is being used) would still be the same. The only thing
that would change is the code (or template, in this case) in the directive. The directive
that we just saw, is an example of a 'template expanding' directive.

www.it-ebooks.info
www.EBooksWorld.ir

Custom Controls

[36]

Another example of such a directive is showing an address in the UI. An address
typically consists of a house number, street number, city, state, and zip, and we
would have to repeat this fragment of HTML in different screens where the address
is to be shown. Also, if the way this information is displayed has to be changed, it
has to be changed in many places, and so, a directive is a perfect way to abstract
away this piece of code. So now, even our HTML code follows the don't repeat
yourself (DRY) principle. You must obviously be thinking that writing HTML
templates inside of the directive (as we've shown in our earlier example) is ugly.
You are right, and this is where the templateUrl option comes into the picture.
Here's the same example using the templateUrl option. For simplicity, I've renamed
the view-related template to employee-view.tpl.html. With these changes, our
directive code looks like this:

app.directive("myEmployee", function () {
 return {
 templateUrl: 'employee.tpl.html'
 };
});

[Chapter3\template-url-ex\employee.dir.js]

Our employee template for the directive is:

<h5>Name-</h5>
{{employeeData.employees[0].name}}

<h5>Age-</h5>
{{employeeData.employees[0].age}}

[Chapter3\template-url-ex\employee.tpl.html]

Hopefully, you are now realizing the power of Angular directives. But there's a lot
more, so let's continue digging.

The directives which we've written so far have to be specified as HTML attributes.
However, that is just one way of writing directives, so let's convert one of our
existing directives to be written as an element.

Custom elements
Here, we'll use the restrict option of the DDO to specify that our directive should
be used as an HTML element (by setting its value to E). Here's the relevant code:

app.directive("myEmployee", function () {
 return {
 restrict: 'E',

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 3

[37]

 templateUrl: 'employee.tpl.html'
 };
});

[Chapter3\custom-element-ex\employee.dir.js]

Here's the changed HTML (for the view):

<div>
 <h1>Employee data (without using a directive):</h1>
 <label for="name">Name</label>
 <input id="name" ng-model="employeeData.first.name" />

 <h5>Age-</h5>
 {{employeeData.first.age}}

 <h1>Employee data (from a directive):</h1>
 <my-employee></my-employee>
</div>

[Chapter3\custom-element-ex\employee-view.tpl.html]

The template for the directive remains the same:

<h5>Name-</h5>
{{employeeData.first.name}}

<h5>Age-</h5>
{{employeeData.first.age}}

[Chapter3\custom-element-ex\employee.tpl.html]

Notice that we are showing the same data twice—once without using a directive
(with a label and an input tag), whereas the second view of the same data comes from
a directive. We've done this to show you an important point. Currently, the input
element is bound to employeeData.first.name and the directive template also
makes use of the same data. So what do you think happens if you change the name in
the input element? Yes, the corresponding name coming from the directive template
also gets changed, which makes it abundantly clear that the directive is inheriting
the scope from the parent (which is the controller). This is OK for demonstration
purposes but is not a good option when we want to create reusable components,
because we don't want anyone to mess with the scope of our directive, and that's
where isolate scope comes into the picture (which is discussed in the next section).

www.it-ebooks.info
www.EBooksWorld.ir

Custom Controls

[38]

So how do you decide between a custom element and a custom attribute? Use an
element when you are creating a component and you know what data to display (in
the component). This way you can create a Domain Specific Language (DSL) for the
user interface elements of your application. Use an attribute when you are enhancing
the functionality of an existing element.

Isolate scopes
As we've mentioned earlier, it's not very useful to let the directive use the outside
scope. Because then, the directive is always coupled with the controller. So what
we should do is map the outer scope to the directive's inner scope, and we do this
by creating what is called an isolate scope. The way we do it is by setting the scope
option of the DDO.

The scope object contains a property for each isolate scope binding. There are three
ways in which we can supply data to our isolate scope from the attributes: data bind
(=), interpolate (@) and expression (&). For example:

scope: {
 key1: '=attr1',
 key2: '@attr2',
 key3: '&attr3'
}

Here, we are creating an isolate scope binding with three properties named key1,
key2, and key3. These properties respectively, get the values from the three different
attributes, as specified by =attr1, @attr2, and &attr3.

The attributes in the scope are normalized like directive names, so if the attribute name
is my-attr (as in <div my-attr="value">), you'd specify a binding to myAttr.

There is a shorter syntax for achieving the same effect. When the name of the
attribute is the same as the name that we want to give in the isolate scope, we
can simply write the following:

scope: {
 employee: '='
}

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 3

[39]

The =attr option in the scope
We'll modify the earlier example just a little bit to illustrate the usage of an isolate
scope. So here's the modified code:

<div>
 <h1 style="color:forestgreen">Employee data (without using a
directive):</h1>
 <label for="name">Name</label>
 <input id="name" ng-model="employeeData.first.name" />

 <h5>Age-</h5>
 {{employeeData.first.age}}

 <h1 style="color:red">Employee data (from a directive):</h1>
 <my-employee info="employeeData.second"></my-employee>

<h1 style="color:blueviolet">Back from the directive</h1>
 {{employeeData.second.name}}
</div>

[Chapter3\isolate-scope-ex\employee-view.tpl.html]

Note that we are passing the data of the second employee to our directive through
the info attribute. Here's the changed directive code:

app.directive("myEmployee", function () {
 return {
 restrict: 'E',
 scope: {
 employee: '=info'
 },
 templateUrl: 'employee.tpl.html'
 };
});

[Chapter3\isolate-scope-ex\employee.dir.js]

In this, we are creating an isolate scope for the directive using the scope property
where we are specifying the value of the employee property to be equal to the value
passed to the info attribute from the view (in the preceding code snippet).

www.it-ebooks.info
www.EBooksWorld.ir

Custom Controls

[40]

Now, let's look at the following directive template code:

<h3>Trying to access the parent scope</h3>
<h5>Name-</h5>
{{employeeData.first.name}}

<h5>Age-</h5>
{{employeeData.first.age}}

<hr>

<h3>From the isolate scope</h3>
<h5>Name-</h5>
<input id="name" ng-model="employee.name" />

<h5>Age-</h5>
{{employee.age}}

[Chapter3\isolate-scope-ex\employee.tpl.html]

You'll realize, after looking at the directive template, that although from this
template we are trying to display information for two employees, one using the
parent scope, using {{employeeData.first.name}} and then using the employee
property on the directive's scope, using ng-model="employee.name", the data
doesn't get displayed using the parent scope. This proves that the two scopes are
now different and the directive has access only to its isolate scope.

One thing which might not be so apparent from the preceding code is the data which
we are displaying in the view under the Back from the directive heading—if
you change the name of the employee (which is being displayed by the directive's
isolate scope), the name of the employee changes under the Back from the
directive heading as well, which means that the second employee's data is being
shared by the view and the directive scopes.

So the =attr scope option allows us to set a bidirectional, two-way binding between
data in the controller's and the directive's scopes.

The @attr option in the scope
The @ isolate scope lets us read the value of an attribute. Let's look at an example; the
controller is very simple:

app.controller('EmployeeCtrl', ['$scope',
 function ($scope) {
 $scope.person = {

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 3

[41]

 firstName: 'Bruce',
 lastName: 'Lee'
 };
 }
]);

[Chapter3\at-scope-ex\employee.ctl.js]

The directive is simple, too:

app.directive("myEmployee", function () {
 return {
 scope: {
 firstName: '@',
 lastName: '@'
 },
 templateUrl: 'employee.tpl.html'
 };
});

[Chapter3\at-scope-ex\employee.dir.js]

Here, firstName and lastName are attributes whose value is being set to @.
Here's the view:

<div my-employee first-name="{{person}}" last-name="{{person.
lastName}}"></div>

[Chapter3\at-scope-ex\employee-view.tpl.html]

The view sets the value of the firstName attribute to {{person}} and the lastName
attribute to {{person.lastName}}. Here's the directive template:

<div>First name is {{firstName}}</div>

<div>Last name is {{lastName}}</div>

[Chapter3\at-scope-ex\employee.tpl.html]

The directive can now directly access the values of the firstName and lastName
isolate scope properties. However, when you look at the view, you'll see the following:

First name is {"firstName":"Bruce","lastName":"Lee"}

Last name is Lee

So as you can see, Angular has interpolated the value of the person object to a string,
as seen in the view for First name. The last name is correctly displayed because we
are passing the person.lastName string value.

www.it-ebooks.info
www.EBooksWorld.ir

Custom Controls

[42]

So, interpolation (using @attr) converts an object to a string, and then we cannot
access any properties of the object.

The &attr option in the scope
We've seen how we bind data using the =attr and interpolate data using @attr
scope options in the previous examples. Now we'll discuss the &attr scope option in
the following example. The &attr option lets us create a callback from the directive.
Here's a part of the controller:

$scope.buttonClick = function (message) {
 alert(message);
}

[Chapter3\and-scope-ex\employee.ctl.js]

Here's the directive:

app.directive("myEmployee", function () {
 return {
 restrict: 'E',
 scope : {
 'click': '&onClick'
 },
 templateUrl: 'employee.tpl.html'
 };
});

[Chapter3\and-scope-ex\employee.dir.js]

Notice that the directive has an isolate scope property of click whose value is
&onClick. Hence we pass this value from the view:

<my-employee on-click="buttonClick(message)">
</my-employee>

[Chapter3\and-scope-ex\employee-view.tpl.html]

The directive provides the value of the message as follows:

This text and the button comes from the directive.
<input type="button" ng-click="click({message: 'This msg comes from
the directive'})" value="Click me!" />

[Chapter3\and-scope-ex\employee.tpl.html]

So, as you can see, we use the &attr option when we want the directive to expose an
API to the view (or the outside world) for binding to behaviors.

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 3

[43]

Now, we could have used the buttonClick function of the view directly from
the directive without setting up an isolate scope, but that would've tightly coupled
the directive to the view, and whenever the function name is changed in the view
(for any reason), we'll have to make the corresponding change in the directive. But
now, the view can call the function by any name, and it just has to pass the correct
name of the function to the directive using the on-click attribute (or whatever
mechanism that you set up).

Transclusion
Sometimes, we'll need to create directives that might wrap arbitrary content. In such
cases, instead of passing in a string or an object to the directive, we would want to
pass an entire template (of HTML). So, let's see how to achieve that. The controller is
similar to the earlier examples and is demonstrated in the following code:

app.controller('EmployeeCtrl', ['$scope',
 function ($scope) {

 var Employee = function (name, age) {
 this.name = name;
 this.age = age;
 };

 var GetEmployees = function () {
 return [
 new Employee("First employee", 56),
 new Employee("Second employee", 44),
 new Employee("Last employee", 32)
];
 };

 var employees = GetEmployees();

 $scope.employeeData = {
 first: employees[0],
 second: employees[1]
 };
 }
]);

[Chapter3\transclude-ex\employee.ctl.js]

www.it-ebooks.info
www.EBooksWorld.ir

Custom Controls

[44]

Let's see the view code:

<my-employee info="employeeData.second">
 However, this content comes from the view.
 <h5>Name-</h5>
 {{employeeData.first.name}}
 <h5>Age-</h5>
 {{employeeData.first.age}}
</my-employee>

[Chapter3\transclude-ex\employee-view.tpl.html]

Note that we are wrapping arbitrary content inside the my-employee directive.
By arbitrary, we mean you could include any other valid HTML content and it
would still work. Here's the directive code:

app.directive("myEmployee", function () {
 return {
 restrict: 'E',
 transclude: true,
 scope: {
 employee: '=info'
 },
 templateUrl: 'employee.tpl.html'
 };
});

[Chapter3\transclude-ex\employee.dir.js]

First, we are specifying transclude: true which allows the directive to wrap any
content inside it and finally the directive template as follows:

This content comes from the directive.
<h3>Name-</h3>
{{employee.name}}
<h3>Age-</h3>
{{employee.age}}
<p></p>

<div style="border: 1px solid black;">
 <div style="background-color: beige" ng-transclude></div>
</div>

[Chapter3\transclude-ex\employee.tpl.html]

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 3

[45]

We put an ng-transclude directive from wherever we want the view content to be
visible inside the directive. In this case, the view content is available inside the div
element with the beige color background, and it is pretty easy to figure out which
content comes from the directive and which comes from the view.

So, isolate scopes give directives the ability to encapsulate data and its behavior so
that the directives remain unaffected by the changes outside.

Custom classes
Writing custom classes or comment directives is similar to writing custom attributes
or elements. However, it is preferable to use directives via tag names (elements)
and attributes.

Directives that manipulate the DOM
We can create a directive which manipulates the DOM. Such a directive uses the link
option which takes a function with the following three parameters:

•	 scope: This is the Angular scope object
•	 element: This is the (jqLite wrapped) element that this directive matches
•	 attrs: These are the attributes which are passed to this directive

So, let's see an example of such a directive. The controller is pretty simple:

app.controller('EmployeeCtrl', ['$scope',

 function ($scope) {

 $scope.firstName = "Bruce";
 }
]);

[Chapter3\dom-ex\employee.ctl.js]

The controller exposes a firstName property on the $scope object. The view sets
the value of the lastname attribute of the directive to the value Lee as shown in
the following code:

<div my-employee lastname="Lee"></div>

[Chapter3\dom-ex\employee-view.tpl.html]

www.it-ebooks.info
www.EBooksWorld.ir

Custom Controls

[46]

The directive uses the link function as follows:

app.directive("myEmployee", function () {
 return {
 link: function (scope, element, attrs) {
 var name = scope.firstName + ' ' + attrs.lastname;
 element.text(name);
 $(element).effect('shake');
 }
 };
});

[Chapter3\dom-ex\employee.dir.js]

The signature of the link function is as described in the preceding code. Notice that
inside the link function we can access the firstName property on the controller's
$scope object using the function's first (scope) parameter as scope.firstName. We
can access the value of the lastname attribute using the third (attrs) parameter
and we can access the element using the second (element) parameter of the link
function. The text function on the element is available because it is a jQuery
wrapped element as we are including jQuery before Angular in our HTML page:

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/
 2.1.3/jquery.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jqueryui/
 1.11.2/jquery-ui.js"></script>

[Chapter3\dom-ex\index.html]

If we hadn't referred to jQuery in the previous code, then the element would've been
a jqLite wrapped element. So, in the directive, we just combine the first and the last
name, assign it to the element, and use the jQuery UI's (https://jqueryui.com/)
shake effect (https://api.jqueryui.com/shake-effect/) to shake the element. So,
preferably do your DOM manipulations in a directive as shown in the preceding code.

Communication between directives
What if we want to build a component that is composed of many directives? In such
cases, it might be necessary that those directives have a way to talk to each other. To
do so, a child (contained) directive can set the value of the require property of the
DDO to one of the parent (container) directives as follows:

scope: {
 require: '^parentDirective'
}

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 3

[47]

The ^ prefix means that this directive searches for the controller on its parents.
So, if the specified controller is not found, then $compile throws an error. Without
the ^ prefix, the search for the controller is done only on the directive element. We
can also make the controller optional by putting ? as a prefix for the directive name,
for example:

scope: {
 require: '?parentDirective'
}

If the directive is not provided, then the fourth parameter to the link function
(which is the directive controller, as shown in the following code snippet) is null.

So, let's see an example:

<my-employee name="Employee 1">
 Employee 1
 <addresses>
 Addresses
 <address type="home">Address 1</address>
 <address type="office">Address 2</address>
 </addresses>
</my-employee>

[Chapter3\dir-comm-ex\employee-view.tpl.html]

As you'll notice, my-employee, addresses, and address are all directives. Here are
the directives:

app.directive("myEmployee", function () {
 return {
 restrict: 'E',
 scope: {
 name: '@'
 },
 transclude: true,
 controller: function ($scope) {
 this.getName = function () {
 return $scope.name;
 };
 },
 template: '<div ng-transclude style="background-
 color:blueviolet">{{name}}</div>'
 };
});
app.directive("addresses", function () {

www.it-ebooks.info
www.EBooksWorld.ir

Custom Controls

[48]

 return {
 restrict: 'E',
 scope: {},
 transclude: true,
 template: '<div ng-transclude style="background-
 color:pink"></div>'
 };
});
app.directive("address", function () {
 return {
 require: '^myEmployee',
 restrict: 'E',
 scope: {
 type: '@'
 },
 transclude: true,
 link: function (scope, element, attrs, myEmployeeCtrl) {
 console.log(myEmployeeCtrl.getName() + ' ' + scope.type);
 },
 template: '<div ng-transclude style="background-
 color:powderblue"></div>'
 };
});

[Chapter3\dir-comm-ex\employee.dir.js]

Notice that each of the directive sets transclude to true so that the content inside
can be included. Additionally, the myEmployee directive declares a controller using
the controller function and declares a getName function returns name , which
is on the directive's scope. Now the address directive has a require option set
to ^myEmployee—which means it looks for the controller on any of the parents
of the directive. And finally, the employee directive uses a link function whose
fourth parameter is the myEmployee controller, which we have named here as
myEmployeeCtrl (this could be named anything else). So now the myEmployeeCtrl
parameter can be used inside of the address directive. You must be thinking what
are the differences between a controller and a link function? Well, the differences
are listed as follows:

•	 Just like any other controller, dependencies can be injected into
directive controllers.

•	 All directive controllers have $scope injected into them. Apart from this,
other services such as $timeout or $rootScope can be injected as well.

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 3

[49]

•	 Additionally, three special services can be injected into directive controllers:
$element, $attrs, and $transclude.

•	 Finally, as mentioned previously, a directive controller exposes an API,
whereas a link function can interact with controllers using require.

In case a directive wants to use controllers of multiple directives, then the require
option can accept an array as follows:

require: ['^myEmployee', '^myOtherDirective']

Also, the fourth parameter of the link function is an array of controllers as follows:

link: function (scope, element, attrs, controllers)

These are in the same order as mentioned by the require option, and we can get the
individual controllers from this array.

You can also refer to the excellent Angular documentation on directives: Directives
developer guide (https://docs.angularjs.org/guide/directive).

Summary
In this chapter, we learned all about directives and how directives enable us
to drastically transform our HTML code by helping us write custom elements,
attributes, classes, and comments. If carefully designed, directives help us write the
DSL for our frontend code. We also talked about isolating the directive scope and
including content in the directive using the transclude option. Finally, we talked
about how directives can communicate with each other.

In the next chapter, we'll learn about Firebase, its benefits, and why to use it.
We'll also learn about AngularFire, which is the officially supported Angular
binding for Firebase.

www.it-ebooks.info
www.EBooksWorld.ir

www.it-ebooks.info
www.EBooksWorld.ir

[51]

Firebase
We can write web applications by using the frameworks of our choice—be it
server-side MVC frameworks, client-side MVC frameworks, or some combination
of these. We can also use a persistence store (a database) of our choice—be it an
RDBMS or a more modern NoSQL store. However, making our applications real
time (meaning, if you are viewing a page and data related to that page gets updated,
then the page should be updated or at least you should get a notification to refresh
the page) is not a trivial task and we have to start thinking about push notifications
and what not. This does not happen with Firebase.

In this chapter, we will cover the following topics:

•	 A brief description about various types of persistence mechanisms
•	 A brief comparison of local versus hosted databases
•	 What Firebase is, why to use it, and different use cases where Firebase

can be useful
•	 How to use Firebase
•	 How to structure data while using Firebase
•	 Why denormalizing data can be good sometimes
•	 What is AngularFire?

www.it-ebooks.info
www.EBooksWorld.ir

Firebase

[52]

Persistence
One of the very early decisions a developer or a team has to make when building
any production-quality application is the choice of a persistent storage mechanism.
Until a few years ago, this choice, more often than not, boiled down to a relational
database such as Oracle, SQL Server, or PostgreSQL. However, the rise of NoSQL
solutions such as MongoDB (http://www.mongodb.org/) and CouchDB (http://
couchdb.apache.org/)—document-oriented databases or Redis (http://redis.
io/), Riak (http://basho.com/riak/), keyvalue stores, Neo4j (http://www.
neo4j.org/), and a graph database—has widened the choice for us. Please check
the Wikipedia page on NoSQL (http://en.wikipedia.org/wiki/NoSQL) solutions
for a detailed list of various NoSQL solutions including their classification and
performance characteristics.

There is one more buzzword that everyone must have already heard of, Cloud,
the short form for cloud computing. Cloud computing briefly means that shared
resources (or software) are provided to consumers on a paid/free basis over a
network (typically, the Internet). So, we now have the luxury of choosing our
preferred RDBMS or NoSQL database as a hosted solution. Consequently, we have
one more choice to make—whether to install the database locally (on our own
machine or inside the corporate network) or use a hosted solution (in the cloud).

As with everything else, there are pros and cons to each of the approaches. The pros
of a local database are fast access and one-time buying cost (if it's not an open source
database), and the cons include the initial setup time. If you have to evaluate some
another database, then you'll have to install the other database as well. The pros of a
hosted solution are ease of use and minimal initial setup time, and the cons are the
need for a reliable Internet connection, cost (again, if it's not a free option), and so on.

Considering the preceding pros and cons, it's a safe bet to use a hosted solution when
you are still evaluating different databases and only decide later between a local or a
hosted solution, when you've finally zeroed in on your database of choice.

What is Firebase?
So, where does Firebase fit into all of this? Firebase is a NoSQL database that
stores data as simple JSON documents. We can, therefore, compare it to other
document-oriented databases such as CouchDB (which also stores data as JSON) or
MongoDB (which stores data in the BSON, which stands for binary JSON, format).

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 4

[53]

Although Firebase is a database with a RESTful API, it's also a real-time database,
which means that the data is synchronized between different clients and with the
backend server almost instantaneously. This implies that if the underlying data is
changed by one of the clients, it gets streamed in real time to every connected client;
hence, all the other clients automatically get updates with the newest set of data
(without anyone having to refresh these clients manually).

So, to summarize, Firebase is an API and a cloud service that gives us a real-time and
scalable (NoSQL) backend. It has libraries for most server-side languages/frameworks
such as Node.js, Java, Python, PHP, Ruby, and Clojure. It has official libraries for Node.
js and Java and unofficial third-party libraries for Python, Ruby, and PHP. It also has
libraries for most of the leading client-side frameworks such as AngularJS, Backbone,
Ember, React, and mobile platforms such as iOS and Android.

Firebase – benefits and why to use?
Firebase offers us the following benefits:

•	 It is a cloud service (a hosted solution), so there isn't any setup involved.
•	 Data is stored as native JSON, so what you store is what you see (on the

frontend, fetched through a REST API)—WYSIWYS.
•	 Data is safe because Firebase requires 2048-bit SSL encryption for all

data transfers.
•	 Data is replicated and backed-up to multiple secure locations, so there are

minimal chances of data loss.
•	 When data changes, apps update instantly across devices.
•	 Our apps can work offline—as soon as we get connectivity, the data is

synchronized instantly.
•	 Firebase gives us lightning fast data synchronization. So, combined with

AngularJS, it gives us three-way data binding between HTML, JavaScript,
and our backend (data).

www.it-ebooks.info
www.EBooksWorld.ir

Firebase

[54]

With two-way data binding, whenever our (JavaScript) model changes,
the view (HTML) updates itself and vice versa. But, with three-way data
binding, even when the data in our database changes, our JavaScript
model gets updated, and consequently, the view gets updated as well.

•	 Last but not the least, it has libraries for the most popular server-side
languages/frameworks (such as Node.js, Ruby, Java, and Python) as well as
the popular client-side frameworks (such as Backbone, Ember, and React),
including AngularJS. The Firebase binding for AngularJS is called AngularFire
(https://www.firebase.com/docs/web/libraries/angular/).

Firebase use cases
Now that you've read how Firebase makes it easy to write applications that update
in real time (and you'll see that in action in the next chapter on AngularFire), you
might still be wondering what kinds of applications are most suited for use with
Firebase. Because, as often happens in the enterprise world, either you are not at
liberty to choose all the components of your stack or you might have an existing
application and you just have to add some new features to it. So, let's study the
three main scenarios where Firebase can be a good fit for your needs.

Apps with Firebase as the only backend
This scenario is feasible if:

•	 You are writing a brand-new application or rewriting an existing one
from scratch

•	 You don't have to integrate with legacy systems or other third-party services
•	 Your app doesn't need to do heavy data processing or it doesn't have

complex user authentication requirements

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 4

[55]

In such scenarios, Firebase is the only backend store you'll need and all dynamic
content and user data can be stored and retrieved from it.

Existing apps with some features powered by
Firebase
This scenario is feasible if you already have a site and want to add some real-time
capabilities to it without touching other parts of the system. For example, you have
a working website and just want to add chat capabilities, or maybe, you want to
add a comment feed that updates in real time or you have to show some real-time
notifications to your users.

In this case, the clients can connect to your existing server (for existing features) and
they can connect to Firebase for the newly added real-time capabilities. So, you can
use Firebase together with the existing server.

Both client and server code powered by
Firebase
In some use cases, there might be computationally intensive code that can't be run
on the client. In situations like these, Firebase can act as an intermediary between
the server and your clients. So, the server talks to the clients by manipulating data
in Firebase. The server can connect to Firebase using either the Node.js library (for
Node.js-based server-side applications) or through the REST API (for other server-side
languages). Similarly, the server can listen to the data changes made by the clients and
can respond appropriately. For example, the client can place tasks in a queue that the
server will process later. One or more servers can then pick these tasks from the queue
and do the required processing (as per their availability) and then place the results
back in Firebase so that the clients can read them.

www.it-ebooks.info
www.EBooksWorld.ir

Firebase

[56]

Firebase is the API for your product
You might not have realized by now (but you will once you see some examples) that
as soon as we start saving data in Firebase, the REST API keeps building side-by-side
for free because of the way data is stored as a JSON tree and is associated on different
URLs. Think for a moment if you had a relational database as your persistence
store; you would then need to specially write REST APIs (which are obviously
preferable to old RPC-style web services) by using the framework available for your
programming language to let external teams or customers get access to data. Then, if
you wanted to support different platforms, you would need to provide libraries for
all those platforms whereas Firebase already provides real-time SDKs for JavaScript,
Objective-C, and Java.

So, Firebase is not just a real-time persistence store, but it doubles up as an API
layer too.

Getting started with Firebase
Getting started with Firebase is pretty easy—first, we have to sign up for a free
account. Once we do that, a new Firebase is created for us with a unique URL
ending in firebaseio.com. We'll use this URL to store and sync data in Firebase.

Installing Firebase
There are two ways of using Firebase: One is to reference the JavaScript client library
directly from the Firebase CDNs:

<script src="https://cdn.firebase.com/js/client/2.1.1/
 firebase.js"></script>

The other is to use bower (http://bower.io/), which is a package manager for the
web, if we want to install Firebase as a local dependency. Please check Appendix A,
Yeoman on how to use bower:

bower install firebase

A nice thing about Firebase is that the Firebase API for Node.js is exactly the same as
the Firebase JavaScript API, which means that it can be used in the same way on the
client and the server side.

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 4

[57]

Once you create a new Firebase account and log in to it, you'll see a dashboard with
the ability to create a new app as shown in the following screenshot:

Please note that you can create a new app (the button underlined in yellow). By
creating a new app, we are in fact creating a new URL where all our data relating
to this app will be stored. So, as you can see in the preceding screenshot, I created
a new app called SOCIETY and Firebase created a society.firebaseIO.com
URL for us. We'll be using this app (or URL) for storing data related to our society
application, which we are going to build (using AngularFire) in the next chapter.

www.it-ebooks.info
www.EBooksWorld.ir

Firebase

[58]

Structuring data
Every application involves data, so for talking about how to structure data, let's
choose a simple problem domain. I'll assume that you are staying in an apartment,
and this apartment is part of a bigger apartment complex. The management of the
complex has to maintain a lot of information about the complex, such as how many
buildings there are in the complex, how many apartments there are in each building,
and who the owners and tenants of these apartments are. Then, it has to keep track
of the number of vehicles that each owner/tenant has. Keeping this problem space in
mind, let's see how we can store and fetch data from Firebase.

Since Firebase is a NoSQL store, which doesn't have SQL-like querying capabilities,
we need to pay upfront attention to the structure of data, how the data will be read
back later, and how to make this process of reading as easy as possible. NoSQL
stores operate on one underlying principle, which is—disk space is cheap, but the
user's time is not, which essentially means that duplicating some data to make reads
faster is fine, but then special care needs to be taken while writing data because we
might have to write it in more than one place.

Considering the preceding mentioned problem domain, first, let's look at a naïve
way of structuring our data:

{
 "buildings": {
 "building1": {
 "number": "1",
 "name": "First Building",

 "apartments": {
 "apartment1": { "number": "101",
 "residents": {
 "resident1": { "name": "John Doe" },
 "resident2": { "name": "Jane Doe" }
 }
 }
 }
 },
 ...
 }
}

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 4

[59]

Since Firebase allows us to nest data up to 32 levels deep, we are tempted to structure
our data in a nested, tree-like fashion. However, when we fetch data for a node in
Firebase, we also fetch its children. So, it's better to keep things as flat as possible. With
the preceding nested design, even if we have to show the names (or numbers) of all the
buildings, we have to download the entire buildings tree to the client.

Nesting data is not a recommended practice in Firebase.

Our second attempt at structuring the data might be to replicate an SQL-like
structure as shown in the following code:

{
 "buildings": {
 "building1": {
 "number": "1",
 "name": "First Building"
 },
 "building2": {
 "number": "2",
 "name": "Second Building"
 }
 },
 "apartments": {
 "apartment1": {
 "number": "101",
 "belongsTo": "building1"
 },
 "apartment2": {
 "number": "102",
 "belongsTo": "building1"
 }
 },
 "residents": {
 "resident1": {
 "name": "John Doe",
 "livesIn": "apartment1"
 },
 "resident2": {
 "name": "Jane Doe",
 "livesIn": "apartment2"
 }
 }
}

www.it-ebooks.info
www.EBooksWorld.ir

Firebase

[60]

But, what if we need to show all the residents of a particular apartment? In SQL,
every resident would have a reference to the apartment he was living in, so you
could use where apartment = apartmentId but Firebase doesn't have the
where query. As per the current structure, we could retrieve a resident only if
we knew its resident ID, which we do not.

Denormalizing data
So, what should we do? In our case, to enable retrieving the list of residents for
an apartment, we'll explicitly store that list with each apartment. This is called
denormalization of data, which means splitting the data into separate paths so that
it can be efficiently downloaded in segments, as it is needed. Have a look at this
flattened structure:

{
 "apartments": {
 "apartment1": {
 "number": "101",

 // an apartment's residents are stored here
 "residents": {
 // the value 'true' doesn't matter here
 // what matters is that the key exists
 "resident1": true
 }
 },
 "apartment2": { ... },
 }
}

The same structure applies to the buildings and apartments relation:

{
 "buildings": {
 "building1": {
 "number": "1",
 "name": "First Building"

 // a building's apartments are stored here
 "apartments": {
 // the value 'true' doesn't matter here
 // what matters is that the key exists
 "apartment1": true,
 "apartment2": true

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 4

[61]

 }
 },
 "building2": { ... }
 }
}

We are duplicating some data, but this is the key to writing scalable applications.
Usually, reads are more common than writes, so this is an acceptable trade-off, with
the added price that we'll have to take much more care while updating/deleting data.
Consider what happens when we have to delete a resident—not only do we have to
delete the individual resident, but we also have to delete the link of this resident from
the apartment he was living in. Similarly, if we are adding a new resident, then we
again have to add the link to this resident in the appropriate apartment. So, before you
start writing any Firebase application, please spend some time upfront to figure out
how you are going to structure data because while doing this exercise, you'll be forced
to think what queries your app will need.

AngularFire
AngularFire is the officially supported AngularJS binding for Firebase. Although
we could use the Firebase JavaScript SDK to interact with Firebase, AngularFire
abstracts a lot of complexities involved in synchronizing data, and only in advanced
cases, we'll need to drop down to the Firebase JavaScript SDK. We'll examine
AngularFire in Chapter 5, Getting Started with AngularFire.

Summary
In this chapter, we talked about different types of persistence mechanisms, for
example, RDBMS and NoSql (document, key-value, and graph) stores, and also
looked at Firebase. Then, we talked about the benefits Firebase has to offer and saw
different use cases where Firebase can be used. We also read about AngularFire,
which is the officially supported Angular binding for Firebase.

In the next chapter, we'll see how to use AngularFire in our Angular applications.

www.it-ebooks.info
www.EBooksWorld.ir

www.it-ebooks.info
www.EBooksWorld.ir

[63]

Getting Started with
AngularFire

As mentioned in the previous chapter on Firebase, AngularFire is the officially
supported AngularJS binding for Firebase. Let's get started with AngularFire because
that's the library which will primarily be used in our Angular applications to connect
to Firebase. One thing to keep in mind is that AngularFire is not a wrapper over the
entire Firebase API, but it makes the job of AngularJS developers very easy, and we'll
need to drop down to the Firebase JavaScript SDK only in advanced cases.

In this chapter, we will cover the following topics:

•	 How to use AngularFire
•	 Synchronized objects and arrays in AngularFire
•	 Three-way data binding
•	 Various authentication options provided by Firebase

AngularFire
When we talk of building any system, we either have to deal with objects, or with
collections. Those objects often contain collections, for example, in a one-to-many
relationship. So, AngularFire gives us two different services—$firebaseObject and
$firebaseArray—to synchronize objects and arrays with the backend. Let's see how
to use each of these services in the following examples.

www.it-ebooks.info
www.EBooksWorld.ir

Getting Started with AngularFire

[64]

Synchronized arrays with $firebaseArray()
So, here's our index.html file (just the relevant part of the code is shown):

<script src="https://cdn.firebase.com/js/client/2.2.3/firebase.js">
</script>
<script src="https://cdn.firebase.com/libs/angularfire/1.0.0/
 angularfire.min.js">
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/underscore.js/
 1.7.0/underscore-min.js">
</script>

(Chapter5\sync-objs-arrays\index.html)

We are referring to firebase, angularfire, and the Underscore (http://
underscorejs.org/) libraries from the CDNs. In a real-life scenario, we would
have installed them in our application using 'bower' and referred to these libraries
from their local paths.

Here's the main module of the application:

var app = angular.module('firebaseApp', [
 'ngRoute',
 'firebase'
]);

// this is the Firebase URL we'll be talking to
// in case of your Firebase account, please modify
// the below URL appropriately
app.constant('FIREBASE_URI', 'https://society.firebaseio.com/');

app.config(function ($routeProvider) {
 $routeProvider
 .when('/', {
 templateUrl: 'main.html'
 })
 .when('/arrays', {
 templateUrl: 'sync-array/syncarray.tpl.html',
 controller: 'SyncArrayCtrl'
 })
 .when('/objects', {
 templateUrl: 'sync-object/object.tpl.html',
 controller: 'SyncObjectCtrl'
 })
 .when('/properties', {

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 5

[65]

 templateUrl: 'property/property.tpl.html',
 controller: 'PropertyCtrl'
 })
 .otherwise({
 redirectTo: '/'
 });
});

(Chapter5\sync-objs-arrays\app.js)

First we add the 'firebase' module as a dependency for our firebaseApp Angular
app. This gives us access to the $firebaseObject and $firebaseArray service. We
can specify these as a dependency in our controllers, services, or factories. Then we
register a 'constant' service on our app which contains the Firebase URL where
we'll be storing our data. Notice that the URL https://society.firebaseIO.com
is the same one that Firebase gave us when we created our Society Firebase app (in
the previous chapter). Then we just configure various routes and the corresponding
templates and controllers. Let's look at the controller now:

app.controller('SyncArrayCtrl', ['$scope', 'syncArraySvc',
 function ($scope, syncArraySvc) {

 $scope.building = new Building();

 $scope.buildings = syncArraySvc.getBuildings();

 $scope.addBuilding = function () {
 syncArraySvc.addBuilding(angular.copy($scope.building));
 $scope.building = new Building();
 };

 $scope.updateBuilding = function (id) {
 syncArraySvc.updateBuilding(id);
 };

 $scope.removeBuilding = function (id) {
 syncArraySvc.removeBuilding(id);
 };
 }
]);

(Chapter5\sync-objs-arrays\sync-array\syncarray.ctl.js)

www.it-ebooks.info
www.EBooksWorld.ir

Getting Started with AngularFire

[66]

The SyncArrayCtrl controller is exposing a variable on $scope called building,
which is an instance of a Building domain object. This is being bound to the textboxes
where the user can enter information for a new Building. The controller also exposes
another variable on $scope called buildings, which is used to display the existing
buildings. The controller also has a dependency on syncArraySvc, and various
controller methods (such as addBuilding or updateBuilding) are just delegating to
the corresponding service methods. This is one of the best practices in Angular:

Try to keep your controllers thin and delegate as much responsibility to the
services/factories as you can.

The view is pretty simple. There is one form to create a new building:

<form>
<div class="form-group">
<label for="number">Building Number</label>
<input type="number" class="form-control" id="number" ng-
 model="building.buildingNumber" placeholder="Enter building
 number">
</div>
<div class="form-group">
<label for="name">Building Name</label>
<input type="text" class="form-control" id="name" ng-
 model="building.buildingName" placeholder="Enter building name">
</div>
<button type="submit" class="btn btn-primary" ng-
 click="addBuilding()">Submit</button>
</form>

(Chapter5\sync-objs-arrays\sync-array\syncarray.tpl.html)

The building number and name textboxes are bound to the building.
buildingNumber and building.buildingName properties, respectively, and the
Submit button is bound to the addBuilding method. The remaining part of the form
displays the existing buildings where you can modify or delete any existing building:

<tr ng-repeat="(id, building) in buildings">
<form class="form-inline">
<td><input type="number" class="form-control" ng-
 model="building.buildingNumber"></td>
<td><input type="text" class="form-control" ng-
 model="building.buildingName"></td>
<td>
<button type="button" class="btn btn-default" ng-
 click="updateBuilding(id)">

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 5

[67]

</button>
</td>
<td>
<button type="button" class="btn btn-default" ng-
 click="removeBuilding(id)">

</button>
</td>
</form>
</tr>

(Chapter5\sync-objs-arrays\sync-array\syncarray.tpl.html)

The preceding two snippets are part of the same file.

The bindings of the textboxes are similar to what was just explained. Only the edit
and delete button icons are bound to the updateBuilding and removeBuilding
methods by passing in the ID of the particular record. There's one new construct in
the previous snippet related to ng-repeat:

ng-repeat="(id, building) in buildings"

This is just a variation of the ngRepeat directive (which we've seen before), where id
is the index of the element in the collection over which we are iterating. This is the id
which is being passed to the updateBuilding and removeBuilding methods.

Let's look at the most important part of this application, which is the service:

app.factory('syncArraySvc', ['FIREBASE_URI', '$firebaseArray',
 function (FIREBASE_URI, $firebaseArray) {
 var buildingsUri = FIREBASE_URI + '/buildings';
 var ref = new Firebase(buildingsUri);
 var buildings = $firebaseArray(ref);

 var getBuildings = function () {
 return buildings;
 };

 var addBuilding = function (item) {
 buildings.$add(item);
 };

 var updateBuilding = function (id) {
 buildings.$save(id);

www.it-ebooks.info
www.EBooksWorld.ir

Getting Started with AngularFire

[68]

 };

 var removeBuilding = function (id) {
 buildings.$remove(id);
 };

 return {
 getBuildings: getBuildings,
 addBuilding: addBuilding,
 updateBuilding: updateBuilding,
 removeBuilding: removeBuilding
 }
 }]);

(Chapter5\sync-objs-arrays\sync-array\building.svc.js)

Our syncArraySvc service has a dependency on the $firebaseArray service and
the FIREBASE_URI constant service defined along with the module earlier. The
$firebaseArray service is used for synchronizing Firebase data with Angular apps. It
contains some helper methods for writing data to Firebase, as well as for reading data
into synchronized collections. The $firebaseArray service takes one argument: A
Firebase reference. So we create a Firebase reference by passing in the URL where we'll
be storing the data. For storing the data related to buildings, we append /buildings to
FIREBASE_URI.

The $firebaseArray service returns the data stored on a particular URL as a
collection. This collection is a synchronized array, meaning that the array is kept in
sync with the remote changes. The collection returned by this method is a read-only
collection, so we should not use regular JavaScript array methods such as push, pop,
or splice to modify the structure of the array. Instead, special methods such as $add,
$save, and $remove are provided, which are being used inside our service methods
addBuilding, updateBuilding, and removeBuilding, respectively.

There's just one small piece of code remaining and that is the building domain model:

var Building = function(number, name) {
 this.buildingNumber = number;
 this.buildingName = name;
};

(Chapter5\sync-objs-arrays\domain\building.js)

Currently, this domain model is just a bunch of setters, but, in real life, the domain
model class should be rich; meaning it should contain business rules (related to the
particular model) and it might also contain validation logic to make sure that any
instance of this model should be valid.

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 5

[69]

Real-time applications
You might not have realized by now that we have a running application which
syncs data in real time for every connected client. Run the application, click on the
Synchronized Arrays button, and add a few buildings. Now, either open another
instance of the same browser, or maybe a different browser, and navigate to the
same application (URL). Maximize the first instance of the browser and resize the
second browser to a size smaller than the first one so that the first one is visible (in
the background). Now try adding, modifying, or deleting a few buildings and you'll
notice that the browser window in the back (the bigger one) reflects the changes
you make almost instantaneously, without you having to refresh the first browser
or implementing any kind of PUSH notifications. This is the power of synchronized
arrays, that is, all the connected clients get updates in real time.

Once we've entered data for a few buildings, we can view it in the Firebase dashboard:

You can see the data under the buildings node that is under the root society node.
So the entire data is getting stored as a JSON tree. Notice that there are buttons to
import and export data in the top-right corner of the dashboard.

www.it-ebooks.info
www.EBooksWorld.ir

Getting Started with AngularFire

[70]

Firebase also gives us Vulcan, which is a Chrome DevTools extension which lets us
inspect and edit data from within Chrome. Once you install the extension, it looks
like this:

Synchronized objects with $firebaseObject()
Typically, an object is composed of key-value pairs and is used when we want to
store data for an individual record. The code for synchronized objects is very similar
to the preceding code and is contained in the Chapter5\sync-objs-arrays\sync-
object folder. However, let's see some interesting code in action that shows the
various properties and functions of synchronized objects and arrays.

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 5

[71]

When you run the application, you'll see a Properties button and when you click on
it, the following template file is rendered (The following snippet is just a part of the
template file):

<div class="panel panel-info" ng-if="doesDataExist()">
<div class="panel-heading">
<h3 class="panel-title">Properties / Functions of synchronized
objects</h3>
</div>
<div class="panel-body">
 Properties
<ul class="list-inline">
<li ng-repeat="key in objectkeys">{{key}}

 Functions
<ul class="list-inline">
<li ng-repeat="function in objectfunctions">{{function}}

</div>
</div>

<div class="panel panel-info" ng-if="doesDataExist()">
<div class="panel-heading">
<h3 class="panel-title">Properties / Functions of synchronized
arrays</h3>
</div>
<div class="panel-body">
 Properties
<ul class="list-inline">
<li ng-repeat="key in arraykeys">{{key}}

 Functions
<ul class="list-inline">
<li ng-repeat="function in arrayfunctions">{{function}}

</div>
</div>

(Chapter5\sync-objs-arrays\property\property.tpl.html)

www.it-ebooks.info
www.EBooksWorld.ir

Getting Started with AngularFire

[72]

The ng-if directive removes or recreates a portion of the DOM based on the value of
the expression/function provided to it. So here, it'll either create, or remove the two
divs where we show the properties and functions associated with the synchronized
objects or arrays. The various ng-repeat directives iterate over different properties
and functions of synchronized objects and arrays. Here's the controller:

app.controller('PropertyCtrl', ['$scope', 'propertySvc',
 function ($scope, propertySvc) {

 $scope.syncArray = propertySvc.getSyncArray();

 $scope.doesDataExist = function () {
 return $scope.syncArray.length > 0;
 };

 $scope.showPropertiesAndFunctions = function () {
 $scope.arraykeys = _.keys($scope.syncArray);
 $scope.arrayfunctions = _.functions($scope.syncArray);

 var building =
 propertySvc.getSyncObject($scope.syncArray[0].$id);
 building.$loaded()
 .then(function (item) {
 $scope.objectkeys = _.keys(item);
 $scope.objectfunctions = _.functions(item);
 })
 .catch(function(error) {
 console.log("Error:", error);
 });
 };
 }
]);

(Chapter5\sync-objs-arrays\property.ctl.js)

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 5

[73]

The doesDataExist function returns true if some data is found at the
buildings child of our main URL location. The interesting piece of code is in the
showPropertiesAndFunctions function. It uses the keys and functions functions of
the Underscore library, which return all the names of the synchronized object's/array's
properties and a sorted list of names of every method in that object/array, respectively.
This function also uses the $loaded function on the building synchronized object
(which is returned by the service). The $loaded function returns a promise which is
resolved when the object has been downloaded from Firebase. The service is pretty
straightforward:

app.factory('propertySvc', ['FIREBASE_URI', '$firebaseArray',
 '$firebaseObject',
 function (FIREBASE_URI, $firebaseArray, $firebaseObject) {
 var buildingsUri = FIREBASE_URI + '/buildings';
 var ref = new Firebase(buildingsUri);
 var buildings = $firebaseArray(ref);

 var getSyncArray = function () {
 return buildings;
 };

 var getSyncObject = function (id) {
 return $firebaseObject(ref.child(id));
 };

 return {
 getSyncArray: getSyncArray,
 getSyncObject: getSyncObject
 }
 }]);

(Chapter5\sync-objs-arrays\property.svc.js)

www.it-ebooks.info
www.EBooksWorld.ir

Getting Started with AngularFire

[74]

The getSyncArray function returns a synchronized array, whereas the
getSyncObject function returns a synchronized object. The running
application looks like this:

Some of the functions and/or properties that we've used in our previous example
have been highlighted in the preceding screenshot. Please check the AngularFire API
documentation (https://www.firebase.com/docs/web/libraries/angular/api.
html) for more details about the AngularFire API and the AngularFire Development
Guide (https://www.firebase.com/docs/web/libraries/angular/guide.html)
for more conceptual details.

Three-way data binding
You've seen how easy and cool synchronizing the changes from the server is.
However, AngularFire takes it a notch further by introducing three-way data
binding, whereby it is able to detect local changes, so we don't even have to call
$save(). We just have to call $bindTo() on a synchronized object and any changes
in the DOM are pushed to Angular and finally to Firebase. Conversely, any changes
to the data get pushed to Angular and finally to the DOM.

So let's see it in action. The code for this example is very similar to the one we
used in the synchronized arrays example, with a few changes. Here's the modified
app.js file:

app.config(function ($routeProvider) {
 $routeProvider

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 5

[75]

 .when('/', {
 templateUrl: 'main.html'
 })
 .when('/buildings', {
 templateUrl: 'building/buildings.tpl.html',
 controller: 'BuildingsCtrl'
 })
 .when('/buildings/:buildingIndex', {
 templateUrl: 'building/building.tpl.html',
 controller: 'BuildingCtrl'
 })
 .otherwise({
 redirectTo: '/'
 });
});

(Chapter5\three-way-binding\app.js)

Notice here how we are configuring the second route with
/buildings/:buildingIndex. :buildingIndex is the variable part of
the URL. The following code is part of the template file which constructs
this variable URL:

<tr ng-repeat="(id, building) in buildings">
<td>
{{building.buildingNumber}}
</td>
<td>{{building.buildingName}}</td>
</tr>

(Chapter5\three-way-binding\building\buildings.tpl.html)

When showing the buildings using ng-repeat, we pass {{id}} to href to construct
the dynamic URL. The service is pretty straightforward:

app.factory("buildingSvc", ['FIREBASE_URI', '$firebaseArray',
 '$firebaseObject',
 function(FIREBASE_URI, $firebaseArray, $firebaseObject) {
 var buildingsUri = FIREBASE_URI + '/buildings';
 var buildingsRef = new Firebase(buildingsUri);
 var buildings = $firebaseArray(buildingsRef);

 var getBuildings = function () {
 return buildings;
 };

 var getBuilding = function (index) {

www.it-ebooks.info
www.EBooksWorld.ir

Getting Started with AngularFire

[76]

 var key = buildings.$keyAt(index);
 var buildingRef = buildingsRef.child(key);
 return $firebaseObject(buildingRef);
 };

 return {
 getBuildings: getBuildings,
 getBuilding: getBuilding
 }
}]);

(Chapter5\three-way-binding\building\buildings.svc.js)

The only interesting part is the getBuilding function, which takes a building index,
gets its key, and creates a Firebase reference for the relative path of that particular
building by calling the child function and passing in the key. Then we create a
synchronized object for that building using $firebaseObject. BuildingsCtrl is
very straightforward, so here's the maybe more interesting BuildingCtrl:

app.controller('BuildingCtrl', ['$scope', '$routeParams',
 'buildingSvc',
 function ($scope, $routeParams, buildingSvc) {

 var hasAnError = false;

 $scope.hasError = function () {
 return hasAnError;
 };

 if ($routeParams.buildingIndex !== null) {
 var index = parseInt($routeParams.buildingIndex);

 if (!isNaN(index)) {
 // create a three-way binding to our building as $scope.
building
 buildingSvc.getBuilding(index).$bindTo($scope,
 "building");
 }
 else {
 hasAnError = true;
 }
 }
 }
]);

(Chapter5\three-way-binding\building\building.ctl.js)

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 5

[77]

The $routeParams service is injected in the controller. It allows us to retrieve
the current set of route parameters. Since we had specified :buildingIndex as a
route parameter (while setting up our routes), we retrieve it using $routeParams.
buildingIndex. The buildingSvc service is also injected and the index (of the
building) is passed to this service, which returns a synchronized object to us. Finally,
we bind the returned synchronized object to $scope using the $bindTo method. The
first argument to this method is $scope and the second is the name of the variable
which we want to appear on $scope. Since the value of the second argument here is
building, $scope.building is available to the view(s):

<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">Update building</h3>
</div>
<div class="panel-body">
<form>
<div class="form-group">
<label for="number">Building Number</label>
<input type="number" class="form-control" id="number"
 ng-model="building.buildingNumber" placeholder="Enter building
 number">
</div>
<div class="form-group">
<label for="name">Building Name</label>
<input type="text" class="form-control" id="name"
 ng-model="building.buildingName" placeholder="Enter building name">
</div>
</form>
</div>
</div>

(Chapter5\three-way-binding\building\buildings.tpl.html)

When you click on any of the building number links on the existing buildings page,
you'll see the data for that building reflected in the two input textboxes on the
update building page. Also, notice that there is no Submit button for this form and
we are not even calling $save() anywhere. Now these textboxes are bound directly
to Firebase and sync their changes with Firebase automatically. So, if you make any
changes to the data, that data will automatically be saved to Firebase.

www.it-ebooks.info
www.EBooksWorld.ir

Getting Started with AngularFire

[78]

Although three-way data bindings are extremely convenient, we
should be careful while using these with deeply-nested data structures.
For performance reasons, their use should be limited to synchronizing
key-value pairs which don't get changed by too many users.

Authentication
No application can be built without including some kind of authentication/
authorization mechanism, and Firebase applications are no exception. Hence,
Firebase provides us with many options for authenticating users as follows:

•	 Custom: This is for complete control over authentication. This requires
server-side code and by using it we can generate our own login tokens.

•	 E-mail and password: We can register and authenticate users using e-mail
and password.

•	 Anonymous: For small one-off tasks, we can use anonymous authentication
where users are not required to register with us. A unique identifier is
generated for each user that lasts as long as their session.

•	 OAuth providers for Facebook, Twitter, Google, and GitHub: We can
authenticate users using any of these OAuth providers.

We have to configure each provider individually and enable it in the Firebase
dashboard before any of the clients can use it. Please check AngularFire Development
Guide (https://www.firebase.com/docs/web/libraries/angular/guide.
html) for detailed information about different authentication mechanisms and other
information. We'll see an example of one of the authentication mechanisms in our
final chapter, Applied Angular and AngularFire.

Summary
In this chapter, we talked about the synchronized objects and arrays provided by
AngularFire and how they make it very easy to write real-time applications. Then
we saw how three-way data binding takes it even further and how UI elements
on screen can be directly synchronized with Firebase. Finally, we talked about the
various authentication mechanisms provided by Firebase.

In the next chapter, we'll write a full end-to-end application which will demonstrate
all the best practices of Angular and Firebase and will also show authentication
in action.

www.it-ebooks.info
www.EBooksWorld.ir

[79]

Applied Angular and
AngularFire

We're finally onto the last chapter of the book and we've barely scratched the
surface of AngularFire and Firebase. We haven't looked at any of the authentication
mechanisms provided by Firebase. So, let's see that and much more in action.

In this chapter, we will cover the following topics:

•	 We'll write an example application using the techniques we've learned so far
•	 We'll also follow some of the best practices to be followed while writing

Angular applications
•	 We'll use the simplest (anonymous) authentication provided by Firebase in

our example application
•	 We'll see the difference between Angular factory and service

Firebase anonymous authentication
Anonymous authentication is the simplest form of authentication that Firebase
supports. It generates a unique identifier for each user as long as their session lasts.
The advantage of this approach is that the users don't have to share their personal
information. We are going to use this technique in our next example application.
We'll use the same problem domain that we discussed in Chapter 4, Firebase, and
improve our code which we wrote in Chapter 5, Getting Started with AngularFire,
because the earlier example didn't create any directives. We'll be using the recently
released AngularFire 1.0.0 library.

www.it-ebooks.info
www.EBooksWorld.ir

Applied Angular and AngularFire

[80]

The index.html page (as usual) refers to various JS libraries, and the following is the
only interesting piece of code:

<div class="container">
 <div ng-include="'menu/menu.tpl.html'"></div>

 <div ng-view=""></div>

 <div class="footer">
 <p> from the
 Yeoman team</p>
 </div>
 </div>

(Chapter6\example-app\index.html)

As usual, we have ng-view where we'll be showing various screens. Notice that
we're also including the HTML fragment related to our menu using ng-include.
Also, notice that the name of the file menu/menu.tpl.html is enclosed in single
quotes ''. The reason we are keeping the menu in a separate template is because we
want to show/hide certain menu items based on whether the user is logged in or not.
We'll be delegating this task to its own controller. So, here's the menu template:

<div class="header" ng-controller="MenuCtrl as menuCtrl">
 <ul class="nav nav-pills pull-right">
 <li ng-if="menuCtrl.isLoggedIn()"><a ng-
 href="#/buildings">Buildings
 <li ng-if="menuCtrl.isLoggedIn()"><a ng-
 href="#/apartments">Apartments
 <a ng-href="#/factsvc">Factory-Service
 <li class="active"><a ng-href="#/">Home

 <h3 class="text-muted">Hello AngularFire anonymous
 authentication</h3>
</div>

(Chapter6\example-app\menu\menu.tpl.html)

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 6

[81]

As mentioned previously, we are assigning a MenuCtrl function to the menu
using ng-controller="MenuCtrl as menuCtrl", where menuCtrl is an alias for
MenuCtrl. We'll see the advantages of assigning an alias to the controller later in the
chapter, but please notice that we are accessing the function isLoggedIn defined in
MenuCtrl using its alias menuCtrl. Now, the reason to use an alias for the controller
might have become obvious to you. The ng-if="menuCtrl.isLoggedIn()" function
is used for the element shown earlier and it adds or removes the DOM element
based on whether the user has logged in or not, so if this function returns true
(meaning the user has logged in), this menu element appears, otherwise it doesn't.
Let's look at the menu controller now:

app.controller('MenuCtrl', ['authTokenFactory',
 function (authTokenFactory) {

 this.isLoggedIn = function () {
 return authTokenFactory.isLoggedIn();
 };

 this.errorDuringLoggingIn = function () {
 return authTokenFactory.errorDuringLoggingIn();
 };
 }
]);

(Chapter6\example-app\menu\menu.ctl.js)

Notice that the isLoggedIn and errorDuringLoggingIn methods are defined on
the this object (not on the $scope object as we would usually do). This has been
possible because we are using an alias for the controller in the template. We are
also injecting the authTokenFactory function in our controller (which stores the
authorization token for the logged in user), and both the controller methods delegate
the decision of whether the user is logged in or not to this factory. Let's look at the
factory now:

app.factory('authTokenFactory', ['authSvc',
 function (authSvc) {

 var authTokenFactory = {};

 authTokenFactory.login = function () {
 authSvc.login().then(function (authData) {
 authTokenFactory.authData = authData;
 console.log('aTF.aD: ' + authTokenFactory.authData);
 }).catch(function (error) {
 authTokenFactory.error = error;

www.it-ebooks.info
www.EBooksWorld.ir

Applied Angular and AngularFire

[82]

 });
 };

 authTokenFactory.logout = function () {
 authSvc.logout();
 authTokenFactory.authData = null;
 authTokenFactory.error = null;
 };

 authTokenFactory.isLoggedIn = function () {
 return (typeof authTokenFactory.authData !== 'undefined')
 && authTokenFactory.authData !== null;
 };

 authTokenFactory.errorDuringLoggingIn = function () {
 return (typeof authTokenFactory.error !== 'undefined')
 && authTokenFactory.error !== null;
 };

 return authTokenFactory;
 }]);

(Chapter6\example-app\authToken.fctry.js)

We are injecting the authSvc service which does the actual work of logging in/out
a user (as we'll see in the following code). Inside the factory, we first instantiate an
empty object using var authTokenFactory = {};, and all the other methods—
login, logout, isLoggedIn, and errorDuringLoggingIn—are defined on this
object. Note that I've named this object authTokenFactory, but we could've used
any other name and it would still be ok. The important thing to notice in the login
function is that we are storing the authData and error values on this same empty
object we defined earlier. So once the user logs in, these values will stay there
until he logs out and we can use these in other controllers too. Please also check
the Difference between a factory and a service section to be clear about the difference
between the two. Let's look at the main controller now:

app.controller('MainCtrl', ['$scope', 'authTokenFactory',
 function ($scope, authTokenFactory) {

 $scope.isLoggedIn = function () {
 return authTokenFactory.isLoggedIn();
 };

 $scope.errorDuringLoggingIn = function () {
 return authTokenFactory.errorDuringLoggingIn();

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 6

[83]

 };

 $scope.login = function() {
 authTokenFactory.login();

 $scope.$watch(function () {
 return authTokenFactory.authData;
 }, function () {
 $scope.authData = authTokenFactory.authData;
 });
 };

 $scope.$watch(function () {
 return authTokenFactory.error;
 }, function () {
 $scope.error = authTokenFactory.error;
 });

 $scope.logout = function () {
 authTokenFactory.logout();
 $scope.authData = null;
 };
 }
]);

(Chapter6\example-app\main\main.ctl.js)

MainCtrl also gets injected with authTokenFactory and the various functions
just delegate to the authTokenFactory function. The login function first calls the
authTokenFactory.login() function (which actually logs the user in Firebase)
and then watches for changes to the authTokenFactory.authData variable. As
soon as there is a value in this variable, we put that same data on $scope so that we
could display it on the view. The first argument to the $scope.$watch function is
an expression which returns the value that we want to watch. Now if there was a
variable called title on $scope, then we could've used the following command:

$scope.$watch('title', function() { // do something });

But in our case, the variable is not on scope but is a value in authTokenFactory. So we
have to use another variation of the $watch method, where we use a function as the
watch expression, which returns the value to be watched (as shown in the preceding
code). Here, whenever the value of authTokenFactory.authData changes, we want
to store that value on our $scope variable. We do the same thing when some error
happens by watching the changes to the authTokenFactory.error variable.

www.it-ebooks.info
www.EBooksWorld.ir

Applied Angular and AngularFire

[84]

The authTokenFactory function has a dependency on authSvc which is where the
interesting login-logout stuff happens with AngularFire:

app.service('authSvc', ['FIREBASE_URI', '$firebaseAuth',
 function (FIREBASE_URI, $firebaseAuth) {

 var ref = new Firebase(FIREBASE_URI);
 var auth = $firebaseAuth(ref);

 var login = function () {
 return auth.$authAnonymously();
 };

 var logout = function () {
 return auth.$unauth();
 };

 return {
 login: login,
 logout: logout
 }
 }]);

(Chapter6\example-app\auth.svc.js)

Notice that the authSvc function is now a service, which is injected with the
AngularFire service named $firebaseAuth, which wraps the authentication
methods provided by the Firebase library. The $firebaseAuth service takes a
Firebase reference as its only argument, and this Firebase reference points to the URL
of our Firebase instance. The authentication object (auth) returned by the preceding
service contains several methods for authenticating users, managing authentication
state, managing user accounts, and so on. As anonymous authentication is one
of the simplest methods we've used it here, and the $authAnonymously method
authenticates a Firebase client using a new, temporary guest account. This
method returns a promise which is resolved or rejected based on the outcome
of the authentication attempt. If successful, it returns an object containing the
authentication data about the logged-in user. If unsuccessful, it returns an Error
object. The login method of the authTokenFactory sets authTokenFactory.
authData in the case of successful login or authTokenFactory.error in case of any
errors. Similarly, we call the $unauth method on the auth object to un-authenticate a
Firebase client. We call this method when we want to log out the current user. Please
check the AngularFire API (available at https://www.firebase.com/docs/web/
libraries/angular/api.html) for more details. Now when we run the application,
we see the following screen:

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 6

[85]

Please note that you see only the Factory-Service and Home menu items on the
top-right corner and a Please click here link to log in anonymously. When you
click on the link, you might get an error like this:

The error message is a very descriptive one and clearly specifies the action that we
need to take: Error: {"code":"AUTHENTICATION_DISABLED","details":"You
can enable anonymous authentication from the \"Login & Auth\" tab at
https://society.firebaseio.com."}. So let's do what we are supposed to do
by enabling anonymous authentication from the Login & Auth tab of our Firebase
dashboard, as shown in the following screenshot:

www.it-ebooks.info
www.EBooksWorld.ir

Applied Angular and AngularFire

[86]

Notice that we can set the length of the session to be anywhere from seconds to
hours to months. Once we enable anonymous authentication and try to log in again,
we see the following message:

This time the authentication is successful and we see the authentication information
for the user like UID, token, expires, and so on. We also see the Buildings and
Apartments menu items in addition to the previous Home option. Let's look at how
the routes are defined in the module:

app.config(function ($routeProvider) {
 $routeProvider
 .when('/', {
 templateUrl: 'main/main.tpl.html',
 controller: 'MainCtrl as mainCtrl'
 })
 .when('/buildings', {
 templateUrl: 'building/building-view.tpl.html',
 controller: 'BuildingCtrl as buildingCtrl'
 })
 .when('/apartments', {
 templateUrl: 'apartment/apartment.tpl.html',
 controller: 'ApartmentCtrl as apartmentCtrl'
 })
 .when('/factsvc', {
 templateUrl: 'fact-svc/factSvc.tpl.html',
 controller: 'MyCtrl as myCtrl'
 })
 .otherwise({
 redirectTo: '/'
 });
});

(Chapter6\example-app\app.js)

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 6

[87]

Notice how we are defining various controllers. Each controller is defined along
with its alias using the 'controller as' syntax introduced in Angular 1.2.0. The way
this syntax works is that it binds the controller to the current $scope. The main
advantages of this syntax are given here:

•	 We don't need to inject $scope into the controllers and whatever properties or
methods we want to declare on $scope can be declared on the this object of
the controller. Thus we avoid what is commonly derided as the scope soup.

•	 While referring to any property or method in the DOM, we now have to
refer to it using the controller alias making it very obvious as to which
property/method belongs to which controller.

So for example, consider the following code (when the controller as syntax is not
used when the routes are defined):

<div>
{{ name }}
 <div>
 {{ name }}
 </div>
</div>

Here we have to figure out from which controller the first {{ name }} is coming and
from which controller the second {{ name }} comes (because of the nested scopes).
If we use the controller as syntax, the situation becomes very clear:

<div>
 {{ employeeCtrl.name }}
 <div>
 {{ departmentCtrl.name }}
 </div>
</div>

The whole code is self-explanatory. And the benefit is not limited to when we
have nested scopes but it's for precisely every property or method because each
of them is accessed via its controller alias. So, it makes life easy when we have to
understand/read code written by others (or even by us).

Using the controller as syntax is considered one of the best practices of Angular.

www.it-ebooks.info
www.EBooksWorld.ir

Applied Angular and AngularFire

[88]

So let's see an example from the application:

app.controller('ApartmentCtrl', ['$scope', 'apartmentSvc',
 'buildingSvc',
 function ($scope, apartmentSvc, buildingSvc) {

 var vm = this;
 vm.currentBuilding = null;

 vm.apartment = new Apartment();
 vm.buildings = buildingSvc.findAll();

 vm.insertAndAddReferenceToBuilding = function () {
 apartmentSvc.insertAndAddReferenceToBuilding
 (angular.copy(vm.apartment));
 vm.apartment = new Apartment();
 };

 $scope.$watch(function () {
 return vm.currentBuilding;
 }, function () {
 buildingSvc.setCurrentBuilding(vm.currentBuilding);

 if (vm.currentBuilding) {
 vm.apartments =
 buildingSvc.getApartmentsForCurrentBuilding();
 vm.apartments.$loaded().then(function (data) {
 console.log('apt count: ' + data.length);
 });
 }
 });
 }
]);

(Chapter6\example-app\apartment\apartment.ctl.js)

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 6

[89]

Before you cry foul on seeing $scope injected in the ApartmentCtrl controller,
let me explain. First, we capture the this object in the vm variable so that we don't
have to deal with these scoping and binding issues. The reason we named it as vm is
because the controller actually acts as the view's model (or ViewModel), hence all the
properties/methods are declared on this vm instance. If you follow this (or any other)
convention, your code becomes more readable and predictable. This advice comes
from John Papa's excellent article: AngularJS's Controller As and the VM Variable
(available at http://www.johnpapa.net/angularjss-controller-as-and-the-
vm-variable/). We need to inject $scope into this controller because we want to
watch for changes to the currentBuilding variable. You already saw how watches
work in the preceding lines. The following code is a part of buildingSvc:

app.service('buildingSvc', ['FIREBASE_URI', '$firebaseArray',
 function (FIREBASE_URI, $firebaseArray) {

 var buildingsUri = FIREBASE_URI + 'buildings';
 var buildingsRef = new Firebase(buildingsUri);
 var buildings = $firebaseArray(buildingsRef);

 var currentBuilding = null;

 var getApartmentsForCurrentBuilding = function () {
 var apartmentsRef = buildingsRef.child(currentBuilding +
 '/apartments');
 return $firebaseArray(apartmentsRef);
 };

 var addApartmentForCurrentBuilding = function (apartmentRef) {
 var child = buildingsRef.child(currentBuilding +
 '/apartments/' + apartmentRef.key());
 child.set(true);
 };

 var removeApartmentForCurrentBuilding = function
 (apartmentRef) {
 var child = buildingsRef.child(currentBuilding +
 '/apartments/' + apartmentRef);
 child.remove();
 };
 }]);

(Chapter6\example-app\building\building.svc.js)

www.it-ebooks.info
www.EBooksWorld.ir

Applied Angular and AngularFire

[90]

We keep track of all the buildings using $firebaseArray. You have to look at the
data to figure out how we maintain the relationships between the data elements,
which are buildings and apartments in those buildings in this case:

Notice that for "First Building", there is an apartments node, where the value of
-Jk5pFb2FsD5wbvTLTSP key is set to true. Also notice that this is the same key for
the apartment number "101".

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 6

[91]

We are achieving this in the addApartmentForCurrentBuilding function of
buildingSvc; we first get to the child of currentBuilding using apartmentRef
and then set its value to true (using child.set(true);). We have to use a
similar technique to remove the apartment for the current building. This is how
relationships are maintained in Firebase (please refer to the Firebase Structuring Data
available at https://www.firebase.com/docs/web/guide/structuring-data.
html to read more on structuring your data in Firebase). There is some interesting
code in the view too (again, a part of the file is shown in the following code snippet):

<h3>Current Building</h3>
<select class="form-control" ng-
 model="apartmentCtrl.currentBuilding"
 ng-disabled="apartmentCtrl.buildings.length == 0"
 ng-options="building.$id as building.buildingName for
 building in apartmentCtrl.buildings">
 <option value="">Select a building</option>
</select>

<div ng-if="apartmentCtrl.currentBuilding">
 <h3>Apartments</h3>
 <table class="table edit">
 <thead>
 <tr>
 <th>Number</th>
 <th>Name</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr apartment apartment-ref="{{apartment.$id}}" ng-repeat="(id,
 apartment) in apartmentCtrl.apartments">
 <td><input type="text" ng-
 model="myApartment.apartmentNumber" ng-
 blur="updateItem()"/></td>
 <td><input type="text" ng-model="myApartment.apartmentName"
 ng-blur="updateItem()"/></td>
 <td>
 <a href="#/apartments" ng-click="removeItem()"
 class="navbar-link">Remove
 </td>
 </tr>
 </tbody>
 </table>
</div>

www.it-ebooks.info
www.EBooksWorld.ir

Applied Angular and AngularFire

[92]

(Chapter6\example-app\apartment\apartment.tpl.html)

First we use the ngOptions attribute to dynamically generate a list of <option>
elements for the <select> element. The syntax of ngOptions is like this:

ng-options="select as property for item in items"

Where item is an individual item in the items' collection, property is the text we want
to display in the drop-down box, and select is the value which we want to bind to
the value of the <option> element. An option element can only be bound to string
values at present, so ngOptions should be used if the <select> model has to be
bound to a nonstring value.

Then, while showing apartments for the current building, an apartment directive is
used and we pass apartment.$id to the apartment-ref attribute. $id is the Firebase
key where this record is stored (which is like the primary key value). And on ng-blur,
we call the updateItem() method; the blur event fires when the element loses focus,
so we are updating the value of the apartmentNumber and apartmentName properties
of an apartment whenever the respective input boxes loses focus. Similarly, we call
the removeItem() method of the directive when someone clicks the Remove link. The
directive is pretty straightforward:

app.directive('apartment', ['FIREBASE_URI', '$firebaseObject',
'apartmentSvc',
 function (FIREBASE_URI, $firebaseObject, apartmentSvc) {

 var linker = function (scope, element, attrs) {
 scope.apartmentRef = attrs['apartmentRef'];
 scope.myApartment = $firebaseObject(new Firebase(FIREBASE_URI +
 'apartments/' + scope.apartmentRef));
 };

 var controller = function ($scope) {
 $scope.updateItem = function () {
 $scope.myApartment.$save();
 };

 $scope.removeItem = function () {
 apartmentSvc.removeAndRemoveReferenceFromBuilding($scope.
apartmentRef);
 };
 };

 return {
 scope: true,
 link: linker,

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 6

[93]

 controller: controller
 };
 }]);

(Chapter6\example-app\apartment\apartment.dir.js)

A $firebaseObject is injected in the directive and it holds the apartment object,
the key of which is being passed by the apartment-ref attribute from the view. This
is being stored in the myApartment variable on the isolate scope of the directive, and
the $save method (of $firebaseObject) is called inside updateItem of the directive.
For removing an apartment, the removeAndRemoveReferenceFromBuilding method
of apartmentSvc is called because not only we have to delete an apartment but also
we have to delete the apartment for that particular building. So here's the relevant
part of the code for apartmentSvc:

app.service('apartmentSvc', ['FIREBASE_URI', '$firebaseArray',
 'buildingSvc',
 function (FIREBASE_URI, $firebaseArray, buildingSvc) {

 var apartmentsUri = FIREBASE_URI + 'apartments';
 var apartmentsRef = new Firebase(apartmentsUri);
 var apartments = $firebaseArray(apartmentsRef);

 var insertAndAddReferenceToBuilding = function (apartment) {
 apartments.$add(apartment).then(function (ref) {
 buildingSvc.addApartmentForCurrentBuilding(ref);
 })
 };

 var removeAndRemoveReferenceFromBuilding = function
 (apartmentRef) {
 var index = apartments.$indexFor(apartmentRef);
 apartments.$remove(index).then(function () {
 console.log('now remove apartment for building: ' +
 apartmentRef);
 buildingSvc.removeApartmentForCurrentBuilding(apartmentRef);
 }, function (error) {
 console.log('Error: ' + error);
 });
 };
 }]);

(Chapter6\example-app\apartment\apartment.svc.js)

www.it-ebooks.info
www.EBooksWorld.ir

Applied Angular and AngularFire

[94]

In the insertAndAddReferenceToBuilding function, we call the $add method
on the apartments $firebaseArray, which creates a new apartment. The
$add method creates a new record in the Firebase and adds the record to our
synchronized array. This method returns a promise which is resolved to the
Firebase reference (key) for the newly added record (apartment), and this key is
used to save the apartment for the current building by calling the buildingSvc.
addApartmentForCurrentBuilding method. Similarly, we call the $remove method
on the $firebaseArray object to remove the apartment, but before that we have to
get the index of the apartment (to remove) using the $indexFor method. Once the
apartment is removed, we have to remove its reference from the current building
using the buildingSvc.removeApartmentForCurrentBuilding method.

The rest of the code in the example is easy to comprehend now that you have enough
understanding of topics such as AngularJS directives and various Firebase and
AngularFire concepts. Check the createBuilding and editBuildings directives
contained in the Chapter6\example-app\building\create-building.dir.js and
Chapter6\example-app\building\edit-buildings.dir.js files respectively to
get a taste of how to further encapsulate the UI code in a more DDD fashion.

Difference between a factory and a
service
Factories and services are used almost interchangeably in Angular, however there is
a subtle but important difference between the two. So let's see their usage and it'll be
amply clear when and how to use each one. First let's use the service command:

app.service('myService', function(){
 this.hello = function() {
 return "Hello World";
 };
});

(Chapter6\example-app\fact-svc\my.svc.js)

www.it-ebooks.info
www.EBooksWorld.ir

Chapter 6

[95]

myService has a single function called hello which returns "Hello World" when
called. Now let's use the factory command:

app.factory('myFactory', function(){
 return {
 hello: function() {
 return "Hello World";
 }
 }
});

(Chapter6\example-app\fact-svc\my.fctry.js)

myFactory has a single function called hello which returns "Hello World" when
called as well. So what's the difference? For that, let's look at a factory which can
accept or maintain some state as shown in the following code:

app.factory('myFactoryWithState', function() {
 return function(name) {
 this.name = name;

 this.hello = function() {
 return "Hello " + this.name;
 };
 };
});

(Chapter6\example-app\fact-svc\myState.fctry.js)

The myFactoryWithState command also has a single function called hello, but this
factory is accepting a name parameter, which can be passed from outside. Now let's
see their usage in the controller:

app.controller('myCtrl', function(myService, myFactory,
myFactoryWithState) {

 var vm = this;

 var init = function() {
 vm.fromService = myService.hello(); //'Hello World'
 vm.fromFactory = myFactory.hello(); //'Hello World'
 vm.fromFactoryWithData = new
 myFactoryWithState('State').hello(); //'Hello State'
 };

 init();
});

(Chapter6\example-app\fact-svc\my.ctl.js)

www.it-ebooks.info
www.EBooksWorld.ir

Applied Angular and AngularFire

[96]

The two factories defined earlier and the services are injected into myCtrl. The
controller is just storing the values returned by various service and factory functions
on different scope variables, which are then displayed in the view. But please pay
attention to how we instantiated myFactoryWithState; inside the init function, we
are using new to instantiate that particular factory, and the factory stores this passed
in data in the name variable, so in effect, it can maintain its own state. So, factories
offer more flexibility by returning functions which can be called with new keyword.

For simplicity, prefer services and when you need to store some data,
then use factories.

The template code is very easy and can be found in the Chapter6\example-app\
fact-svc\factSvc.tpl.html file.

Summary
In this final chapter of the book, you looked at the difference between Angular factory
and service. We then built an example using some of the best practices for Angular and
used Firebase's anonymous authentication to achieve login/logout from Firebase. We
also saw how data is to be structured in Firebase and use it from AngularFire.

www.it-ebooks.info
www.EBooksWorld.ir

[97]

Yeoman
Today Node.js (available at http://nodejs.org/) needs no introduction, but for the
benefit of those who haven't crossed paths with it yet, here's an introduction—Node.js
lets developers write server-side code in JavaScript. Yes, it's the same JavaScript, which
used to run only in browsers until a few years ago. The same JavaScript, which was
confined to the frontend, was suddenly unleashed on the world of backend which
was previously accessible to server-side languages such as Java, C#, Ruby, Python,
and the like.

Consequently, you can access the filesystem, write data-intensive
applications which access relational DBs or NoSQL DBs, write a
web server with Node.js, and so on.

Previously, for doing anything with the Web, developers were supposed to learn
and write code in at least two different languages—a server-side language and
JavaScript. Node.js changed this and made our lives easier because the frontend
and the backend code can be written in the same language now.

It is said that for a programming language to gain mass adoption, it needs a
successful and famous library/framework. For example, Rails did it for Ruby.
Node.js is doing the favors for JavaScript—so much so that this survey (available at
http://adambard.com/blog/top-github-languages-for-2013-so-far/) pegs
JavaScript as the top language for 2013, based on the number of repositories created
on GitHub.

www.it-ebooks.info
www.EBooksWorld.ir

Yeoman

[98]

Now when we start coding in any language, we typically use an IDE-like Visual
Studio for .NET and maybe Eclipse for Java, or we might use powerful text editors
such as Sublime Text or Emacs. The extra work these IDEs do for us is to generate
a project skeleton when we create a new project. However, the text editors lack this
support because they are not programming language-specific. So what do we do
when we are starting a new Angular project? Surely, we can create a project structure
manually, but it wouldn't be too productive, right? Then we would have to do this
cumbersome activity again for any new project we create. Also realize that typically,
there are three activities required in a project of reasonable complexity, irrespective
of the programming language, where automation could help developers:

•	 Scaffolding: The dictionary meaning of a scaffold is a temporary structure
for holding workers and materials during the erection, repair, or decoration
of a building. So, scaffolding in programming terms means generating an
agreed upon (based on the best practices for that language or framework)
folder structure for us.

•	 Dependency management: Any sufficiently complex project has to use
external libraries/frameworks, and in this day and age, we can't be expected
to manually download the DLLs, JAR files, or JavaScript/CSS files and
manually include them in the correct path.

•	 Build management: Once we are done with the development, we need
to build the source code and possibly package it as an EXE, JAR file, or a
minified JavaScript file.

This is where the tools, which we are going to discuss in the next section, such as
NPM or Yeoman come handy.

NPM
Any modern programming language has a package manager for managing external
dependencies in your program. In simple terms, it means downloading and using
various external libraries/frameworks in your program; for example, Clojure has
Leiningen (available at http://leiningen.org/), Ruby has RubyGems (available at
https://rubygems.org/), and .NET has Nuget (available at https://www.nuget.
org/). NPM (available at https://www.npmjs.com/) is the official package manager
for Node.js. NPM is bundled with Node.js these days, so as soon as you install Node.js
(for your OS), NPM is ready to serve you.

www.it-ebooks.info
www.EBooksWorld.ir

Appendix A

[99]

You might think that you are just developing an Angular application and you don't
plan on writing server-side JavaScript (or using Node.js), so why do you even need
NPM? The answer to your quandary is that NPM is required to install the other tools
mentioned in the next sections, and it's needless to say that you'll thank yourself for
installing Node.js and NPM.

Yeoman
As far as I remember, I came across the term scaffolding (available at http://
en.wikipedia.org/wiki/Scaffold_(programming)) while reading about Ruby on
Rails framework. Scaffolding generates the boilerplate code for us, thereby reducing
the grunt work we have to do. For example, it might generate a controller, some
views, and the database table based on a model; or it might generate an agreed upon
(based on the best practices for that language or framework) folder structure for us at
the start of a project.

Yeoman (available at http://yeoman.io/) is a scaffolding tool for writing modern
web applications. It is available as an NPM package, so you can install it globally
(for a machine) using NPM as follows:

npm install –g yo

The Yeoman workflow comprises of three tools (which help us automate the three
required tasks as discussed previously):

•	 yo: This tool scaffolds out a new application
•	 grunt or gulp: These are the build tools
•	 bower: This is the package manager

Yeoman also provides a generator ecosystem. As per the Yeoman website, "A
generator is basically a plugin that can be run with the yo command to scaffold
complete projects or their useful parts." So, for example, there are generators for
scaffolding an AngularJS, Backbone, or Ember application. The different generators
available are listed at http://yeoman.io/generators/.

You can install the Angular generator using the following command:

npm install -g generator-angular

www.it-ebooks.info
www.EBooksWorld.ir

Yeoman

[100]

Once this is installed, there are commands for generating an Angular controller,
directive, view, service, and so on. Let's generate a new Angular application now.
Make a new directory and cd into it and run the following command:

yo angular bookExamples

When we run the preceding command, we are asked to choose from several options
such as whether we want to use Sass (with Compass) or include Bootstrap, and
then we are asked to choose between different modules (as shown in the following
screenshot). So you can see the choices I made here (an (*) symbol means you need
to include the module, otherwise exclude it):

After making our choices, when we press Enter, the angular generator generates
a directory structure which looks as shown in the following two screenshots. The
preceding command also runs bower install and npm install internally (which
we can also run separately).

www.it-ebooks.info
www.EBooksWorld.ir

Appendix A

[101]

Notice the following important points about the first screenshot:

Folders and files generated by the yo angular command.

The root folder has the app, node_modules, and test folders.

The app folder has scripts, views, and styles folders.

The scripts folder has a controllers folder.

The root folder also has the bower.json, Gruntfile.js, and package.json files.

Let's look at the contents and purpose of some of the preceding files:

{
 "name": "book-examples",
 "version": "0.0.0",
 "dependencies": {
 "angular": "^1.3.0",
 "bootstrap": "^3.2.0",

www.it-ebooks.info
www.EBooksWorld.ir

Yeoman

[102]

 "angular-cookies": "^1.3.0",
 "angular-resource": "^1.3.0",
 "angular-route": "^1.3.0"
 },
 "devDependencies": {
 "angular-mocks": "^1.3.0"
 },
 "appPath": "app",
 "moduleName": "bookExamplesApp"
}

(bower.json)

As you know by now bower is a dependency management tool, so this JSON file
lists all the dependencies under the dependencies key. There are some dependencies
like the one on angular-mocks, which are only required during development (which
we don't ship), so they are grouped under the devDependencies key. Also notice
that the name of the main module is bookExamplesApp as specified by the value
of the moduleName key in the preceding table. Please remember that we ran the
angular-generator using the bookExamples value. Let's check the contents of the
.bowerrc file, as shown in the following code:

{
 "directory": "bower_components"
}

(.bowerrc)

This file specifies the folder where bower dependencies should be placed.
So as shown in the preceding file, the bower dependencies are stored in
the bower_components folder. Let's look at a part of the package.json file:

{
 "name": "bookexamples",
 "version": "0.0.0",
 "dependencies": {},
 "repository": {},
 "devDependencies": {
 "grunt": "^0.4.5",
 "grunt-autoprefixer": "^2.0.0",
 "grunt-contrib-cssmin": "^0.12.0",
 "grunt-contrib-htmlmin": "^0.4.0",
 "grunt-contrib-imagemin": "^0.9.2",
 "grunt-contrib-jshint": "^0.11.0",
 "grunt-contrib-uglify": "^0.7.0",
 "grunt-contrib-watch": "^0.6.1",

www.it-ebooks.info
www.EBooksWorld.ir

Appendix A

[103]

 "grunt-karma": "^0.10.1",
 "grunt-ng-annotate": "^0.9.2",
 "grunt-svgmin": "^2.0.0",
 "jasmine-core": "^2.2.0",
 "karma": "^0.12.31",
 "karma-jasmine": "^0.3.5",
 "karma-phantomjs-launcher": "^0.1.4",
 "load-grunt-tasks": "^3.1.0",
 "time-grunt": "^1.0.0"
 },
 "engines": {
 "node": ">=0.10.0"
 },
 "scripts": {
 "test": "grunt test"
 }
}

(package.json)

This file again lists dependencies and devDependencies, and these dependencies
are for various npm modules.

Bower and NPM are both used for managing dependencies. However,
Bower manages dependencies for the frontend libraries/components (such as
Bootstrap, UnderscoreJS, and so on) whereas NPM does the same for various
Node.js modules.

Take a look at the second screenshot shown here:

Files and folders for unit testing generated by the yo angular command.

www.it-ebooks.info
www.EBooksWorld.ir

Yeoman

[104]

The root folder has a test folder.

The test folder has a spec folder, and the spec folder has a controllers folder.

The test folder also has a karma.conf.js file. Karma (available at https://github.
com/karma-runner/karma) is a test runner for JavaScript and can run tests written in
Jasmine (available at http://jasmine.github.io/), Mocha (http://mochajs.org/),
and so on.

For any UI application, we can write two types of tests—unit tests and end-to-end
(E2E) tests, where the tests actually spin up a UI and interact with it as a user would.
For the unit testing Angular code (available at https://docs.angularjs.org/
guide/unit-testing), we can use any of the existing JS unit test frameworks such
as Jasmine, Mocha, and so on. However, for E2E testing (available at https://docs.
angularjs.org/guide/e2e-testing), Angular recommends Protractor (available
at http://angular.github.io/protractor/#/), which uses Jasmine for its test
syntax. Once we have written the tests, we need a test runner which can run these
tests. A good test runner is one which can be configured to run automatically (from
continuous integration scripts). So, Karma is the recommended test runner for
Angular applications.

Grunt
Grunt is a JavaScript task runner. It automates common tasks such as minification,
compilation, linting, unit-testing, and so on. We need to create a task file to instruct
the test runner to automatically take care of such mundane tasks.

Gulp is described as a streaming build system. It is used as an alternative to
Grunt, whereas Grunt relies on configuration over code (meaning the tasks are
specified as JSON configuration), Gulp takes the other approach, that is, code over
configuration which means various tasks are configured in code.

It's best to install Grunt CLI (command-line interface) using the following code:

npm install –g grunt-cli

Now you can run Grunt from any folder and run the following code:

grunt --help

www.it-ebooks.info
www.EBooksWorld.ir

Appendix A

[105]

There's a well-known Unix convention for using command-line
arguments by which you can either use the full name of the argument
preceded by two dashes -- or by using a single letter abbreviated
name of the argument preceded by a single dash -. So the preceding
command may also be run as follows:
grunt -h

But not all the command-line applications follow this convention.

Now you'll see that there are many grunt tasks available such as clean (for cleaning
files and folders), cssmin (for minifying CSS), and htmlmin (for minifying HTML).

Let's take a look at a part of the gruntfile.js, as shown in the following table:

grunt.registerTask('serve', 'Compile then start a connect web server',
function (target) {
 if (target === 'dist') {
 return grunt.task.run(['build', 'connect:dist:keepalive']);
 }

 grunt.task.run([
 'clean:server',
 'wiredep',
 'concurrent:server',
 'autoprefixer:server',
 'connect:livereload',
 'watch'
]);
 });

(gruntfile.js)

The preceding file shows a task called serve, which is used to run the application.
This task compiles the application, starts a web server, and then launches the
default browser with the application running. So let's check it out by doing the
following action:

grunt serve

www.it-ebooks.info
www.EBooksWorld.ir

Yeoman

[106]

Now you'll see an application similar to the one shown in the following screenshot:

Running application generated by yo angular.

In the preceding screenshot, the name of the application is highlighted; we specified
the name of the application as bookExamples when we ran yo angular (as the first
argument to this command).

Similarly, the grunt build command minifies the CSS and JS files and updates the
references to external libraries from the bower_components folder to their CDN
versions, and the grunt test task runs the unit and E2E tests using Karma.

Bower
Just like we use NPM for managing Node.js modules (which are stored in the
node_modules folder), we use Bower (available at http://bower.io/) for managing
dependencies on the frontend (which are stored in the bower_components folder).
Suppose you want to use UnderscoreJS (available at http://underscorejs.org/),
you can install it using the following command:

bower install underscore

www.it-ebooks.info
www.EBooksWorld.ir

Appendix A

[107]

This will download underscore in the bower_components folder, but it doesn't make
changes to the bower.json file. However, we want that if any other team member
pulls the latest source code, he too should get a copy of underscore on his machine.
So we can run the following code:

bower install underscore --save

This adds an entry for underscore in the dependencies section of the bower.json
file. However, if we want to install it as a dev-dependency, we need to run the
following code:

bower install underscore --save-dev

This adds an entry for underscore in the devDependencies section of the bower.
json file.

There are certain packages which we need only during development;
for example, unit or mock testing libraries or even grunt itself. We
don't want to ship any of these to the client. Consequently, both
package.json and bower.json files have dependencies and
devDependencies sections. The devDependencies section
contains names of packages needed only during development.

www.it-ebooks.info
www.EBooksWorld.ir

www.it-ebooks.info
www.EBooksWorld.ir

[109]

Git and Git Flow
As some of you might already be aware, Git (available at http://git-scm.com/)
is a free and open source Distributed Version Control System (DVCS). The earlier
version control systems such as Subversion, CVS, or Perforce use the client-server
architecture in which a server stores the current versions of a project and its history,
and clients connect to the server in order to get a complete copy of the project. So the
biggest limitation of such a system is quite apparent—you have to be connected to the
server to check in or check out any changes. But in a DVCS (like Git), you can check in
the changes in your local repository even when you are not connected to the server.
Then, at some later time, when the connection to the server is available, any changes
made in the local repository can be pushed to the server. So, you can experiment to
your heart's content even when you are flying or during your beach vacation.

Now, although there are GUI clients (available at http://git-scm.com/download/
gui/linux) for various platforms such as GitHub for Windows (available at
https://windows.github.com/), GitHub for Mac (available at https://mac.
github.com/), and SourceTree (available at http://www.sourcetreeapp.com/)
which runs on both Mac and Windows, the faster way to use Git (and the one which
will give you more leverage) is through command line (or terminal) and that is the
approach we'll follow here. The biggest advantage of learning Git commands is that
these commands are platform independent, so you'll be at home with Git on any OS.

I am using Git for Windows (available at https://msysgit.github.io/) which
comes with its own terminal called Git Bash and is integrated with Windows
Explorer. Mac and Linux users can type these commands on their local terminal
(once Git is installed).

www.it-ebooks.info
www.EBooksWorld.ir

Git and Git Flow

[110]

Initial Git setup
Now before we start playing with Git to create repositories and adding/modifying
stuff, there are a few things we should do to configure Git for the first time. Once
we've done these, we'll hardly modify these settings, though we may if needs be.
The first thing we need to do is set up our identity by specifying a username and an
e-mail address. This is important because every Git commit uses this information, as
shown in the following command:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

The global flag sets this information at machine level, so we need to do this only
once (until we need to change it), or we can configure it on a per-project basis by
running this command without the global option. We can also configure the editor
which will be used while typing a (commit) message. Once we are done configuring
it, we can run the following command to check all the settings:

$ git config --list

Using Git
1.	 Please check the Git documentation (available at http://git-scm.com/

documentation) for a thorough understanding of Git. However, let's
see some basic commands on how to use Git (I assume that you have Git
installed on your machine). The first step in setting up Git is to create a local
folder where you'll be saving your work. So let's say you are writing a book
on Angular and you want to show an example of Angular code to your
readers, and you decide that you'll keep all the source code examples in a
folder called C:\book-examples.

2.	 So let's open the Git bash on Windows (in the folder C:\book-examples), or
on Ubuntu you can open a terminal and type the following command:
$ git init

www.it-ebooks.info
www.EBooksWorld.ir

Appendix B

[111]

Once you do that, you'll notice that there is a .git folder in your C:\book-examples
folder:

An empty Git repository

Now look at your terminal and it shows you the name of the Git branch as shown in
the following screenshot:

Git Bash showing the current branch of a Git repository

So as you see (in the preceding screenshot), master is the default branch created, and
we can create any number of branches as we want.

Now suppose you add an index.html file in the folder. Run the following command:

$ git status

www.it-ebooks.info
www.EBooksWorld.ir

Git and Git Flow

[112]

After running the command, you'll see that you have an untracked file in the local
Git repository:

Git Bash showing an untracked file in the repository.

If you look closely, Git also gives you a helpful message to add the file to track.

Tracking means the file is now being tracked by the Git (VCS),
so any changes made to the file are being recorded, and we can
see the entire history of changes made to that file.

So, now let's add the file to Git using the following command:

$ git add index.html

Check the Git status again:

$ git status

www.it-ebooks.info
www.EBooksWorld.ir

Appendix B

[113]

Now you'll see that Git has a newly added file (as shown in the following screenshot):

Git Bash showing the newly added file

Now we have to commit this file to Git. When we commit a file to any VCS, we ask
the VCS to remember the changes to the file, and the VCS increments the version
of the file with the changes in the file. So, let's commit our changes using the
following command:

$ git commit -m "my first git commit"

Git Bash showing the last commit message

www.it-ebooks.info
www.EBooksWorld.ir

Git and Git Flow

[114]

Now, while committing, it's always good practice to enter a commit message
describing what changes you have done or what additional code/documentation
you are committing. The –m flag stands for the commit message. After committing,
if you again check git status, you'll notice that you have a clean directory.

A VCS won't be too useful if you are not able to share your changes with the other
team members, and that's where the centralized part of the VCS comes into picture;
every change made to a system should go into the centralized (remote) repository
(if it has to be shared with the team). So to share your changes with the team, you'll
have to push your changes to a remote repository using the following command:

$ git push origin master

Here, origin is an alias for the URL of the remote repository, and master is the branch
we are working in. To use this command, we need to set up a remote repository. Please
check the section for GitHub and Bitbucket on how to set up a remote repository.

Now, let's see how we can create a new branch in Git. To create a new branch,
we've to use the following command:

$ git branch bugfix15

To switch to that branch, use the following command:

$ git checkout bugfix15

There is a shortcut for the preceding two commands which is this command:

$ git checkout –b bugfix15

This command will create a new branch and switch to it at the same time. Please check
Git branching (available at http://git-scm.com/book/en/v2/Git-Branching-
Basic-Branching-and-Merging) for more information about branching and merging.
Now let's see why branching and merging are useful.

www.it-ebooks.info
www.EBooksWorld.ir

Appendix B

[115]

Using Git flow
Now imagine a very plausible real-life situation where you start working on a new
nontrivial feature. Since this feature is nontrivial, imagine you'll take a week to
complete it. You start working on the main branch of the project. After a couple of
days of work, you still haven't checked in your code yet, because the feature you're
working on is not yet complete, and all of a sudden your boss comes and tells you
that there is a critical bug which needs to be fixed immediately. Now what do you
do? If you are working with a VCS tool like Subversion, you'll probably make a
patch, save it somewhere, undo the changes in your main code, and then start
working on the bug fix.

Keeping your code checked out for long periods of time is not a very good way
of working; the recommended way is to check in at short intervals, and if that is
unavoidable, then at least check in the changes by the end of the day. So the trick is
to work on small chunks of code which can be checked in by the end of the day. This
way you can avoid lengthy code merge sessions.

But this is not true with Git. Git makes branching and merging so easy that there is
a much better workflow for the previous scenario; every time you start working on
a bug fix or a new feature, you do so in a different branch, and when you are done
with the bug fix or the feature, you merge the branch with the develop branch. Now
you can do all this branching and merging with Git, but there is a nice little utility
called Git flow (available at https://github.com/nvie/gitflow), which is perfect
for such scenarios and makes these tasks a breeze. Before using Git flow, I suggest
you read a successful Git branching model (available at http://nvie.com/posts/a-
successful-git-branching-model/) by Vincent Driessen. Git flow can be installed
by following the instructions available at https://github.com/nvie/gitflow/
wiki/Installation.

As per the Git flow method of working, we always have two main branches called
master (which is used for production releases) and develop (where all development
is done). There are other supporting branches such as feature, release, hotfix, and
so on. So once you do git init on an empty repository, you have to initialize git
flow in the same repository:

$ git flow init

www.it-ebooks.info
www.EBooksWorld.ir

Git and Git Flow

[116]

This is demonstrated in the following screenshot:

Git Bash showing the git flow init process

Just keep accepting default values for the questions that git flow asks and you'll
be good to go. So assuming that your development happens on the develop branch,
whenever you have to start working on a new feature, you just have to perform the
following action:

$ git flow feature start <featurename>

Here, <featurename> is the name you want to give to your new feature. As soon as
you do that, the Git flow makes a new branch called feature/<featurename> and
switches your repository to the new branch. Once you are done with the new feature
and are ready to put this piece of code into action, you can merge your code into the
develop branch with the following command:

$ git flow feature finish <featurename>

Now, git flow merges the feature branch's code into the develop branch, deletes
this feature/<featurename> branch, and switches the repository back to the
develop branch, all in one sweet little command.

www.it-ebooks.info
www.EBooksWorld.ir

Appendix B

[117]

GitHub and Bitbucket
Now all this while, we have been working exclusively in our local repository. So all
our changes are still confined to our own machine. We haven't shared it yet with
anyone else in the team. For sharing, we have to push it to a remote repository. You
can either have a remote repository on one of your own servers, or you can use
one of the hosted solutions; and GitHub (available at https://github.com/) and
Bitbucket (available at https://bitbucket.org/) are two of the widely used free
hosted solutions. With the free GitHub option, you can only have public repositories
(meaning anyone with access to the Internet can view and download your code).
If you want to keep your repositories private, then you'll have to buy one of their
paid plans. However, the free version of Bitbucket lets you have private repositories
for five users. Here's how you can create a new repository on GitHub (available at
https://help.github.com/articles/create-a-repo/) or on Bitbucket (available
at https://bitbucket.org/repo/create).

If you don't want a cloud-based solution, then Atlassian offers a commercial
on-premise solution called Stash (available at https://www.atlassian.com/
software/stash). GitLab (available at https://about.gitlab.com/) is another
provider which provides commercial hosted and on-premise options.

www.it-ebooks.info
www.EBooksWorld.ir

www.it-ebooks.info
www.EBooksWorld.ir

[119]

Editors and IDEs
Just like programmers are fussy about their choice of programming language, they
are sometimes also very choosy about their choice of an editor or the IDE (Interactive
Development Environment). Also, just like it's very difficult to let go of other habits,
it's also very difficult to change the habits of sticking to the programming language
and the editor/IDE one is used to. The primary reason for this is, of course, the
comfort zone one is in while working with familiar tools and techniques. But, as with
other things in life, sometimes the payoffs can be huge when one charts an unknown
territory. So, I'll recommend you try one of the following editors/IDEs if it is not the
one you are accustomed to. You might even come across some treasure!

When we talk of editors, typically the breadth of choices available in the *nix
(Unix/Linux/Mac) world are far more than in the Windows world. So, let's
start with some of the oldies in this league.

Emacs
Emacs (available at http://www.gnu.org/software/emacs/) is the granddaddy of
text editors and is probably one of the oldest of all. The beauty of Emacs, however,
is that it is one of the most customizable editors out there, so much so that not only
can you write code in almost all of the programming languages you can think of but
also carry out other activities such as using it as a Twitter client, e-mail client, or a
directory editor. Emacs has a major mode which tends to be language or task specific
(such as Clojure, Ruby, Haskell, Python, and many more), but only one major mode
can be active at any given time. A minor mode is an optional editing mode that alters
the behavior of Emacs in some well-defined way.

www.it-ebooks.info
www.EBooksWorld.ir

Editors and IDEs

[120]

Many minor modes can be active at any time, so for example, along with some major
mode, the auto-indent minor mode can be active, or we can use the Paredit minor
mode (which keeps the parentheses balanced) while working with S-expression
based programming languages (such as Clojure, Lisp, and so on). Some of the major
advantages of using Emacs are:

•	 It restricts the usage of mouse to a bare minimum (or none at all) at most
times because it has shortcut key combinations for any tasks imaginable.
And yes, it is difficult to remember those shortcuts initially, but once you get
used to them, your memory can easily recall them even if sometimes you've
actually forgotten those. And excellent help is built inside the editor for most
of the major/minor modes.

•	 You'll seldom have to leave the editor because so many modes are available
that you can practically do everything from inside the editor.

•	 It is free, being the baby of Richard Stallman (RMS of the Free Software
Foundation (available at http://www.fsf.org/) fame)

So, yes, the learning curve is steep and will definitely take some time, but if you learn
how to use Emacs, you might not feel the need to use any other editor ever. It is also
available for Windows too, so no excuses!

Vim
Vim (available at http://www.vim.org/) is the other heavyweight in this category
and an old rival to Emacs. So if anyone is talking about Emacs or Vim, the name
of the other will invariably crop up. The guiding philosophy behind Vim is again
the use of keyboard exclusively, and the biggest advantage of Vim is that it is often
available on servers to be used through SSH. So, for example, when you want to
deploy something on AWS (Linux) machines, all you'll find on that machine is the
omnipresent terminal (the command line) and Vim, so if you are not proficient with
both of these, you are going to have a tough time and will most likely have to install
a simpler editor like Nano (available at http://www.nano-editor.org/) to edit
anything. Vim has an insert mode where the user enters text and a command mode
to navigate and edit using keystrokes. Because of a dedicated command mode, Vim
has more commands which consist of single keys rather than a key combination.
Hence, one can edit faster when one has become accustomed to those commands.
Again, Vim also has a steep learning curve but pays you rich dividends because it
too supports most of the programming languages, and so you'll hardly need to think
about other editors (not to mention that it is also free).

www.it-ebooks.info
www.EBooksWorld.ir

Appendix C

[121]

Sublime Text
Sublime Text is cross-platform and more modern than Emacs or Vim, and so will
appeal to the majority of users who are more accustomed to IDEs such as Visual
Studio or Eclipse. Although it is not a free editor, it has a lot of plugins available
through its Package Manager (available at https://packagecontrol.io/), which
make it suitable for development in any programming language. It is also highly
customizable with lots of themes (available at http://colorsublime.com/) and
other goodies.

Visual Studio and Visual Studio Express
How can one talk of editors and not talk about the de facto standard in the .NET
world—Visual Studio (VS, the paid one) and its free counterpart, the Visual Studio
Express. The debugging support of VS is one of the best. Before you think about
how VS is useful for web development, let me point you to a few extensions such as:

•	 Web Essentials (available at http://vswebessentials.com/), which has
support for HTML, CSS, JS, TypeScript, CoffeeScript, and so on

•	 Node.js tools for Visual Studio (available at http://nodejstools.
codeplex.com/), which has editing, IntelliSense, and NPM support

•	 Package IntelliSense (available at https://visualstudiogallery.msdn.
microsoft.com/65748cdb-4087-497e-a394-2e3449c8e61e), which has
NPM and Bower package IntelliSense

•	 Task Runner Explorer (available at https://visualstudiogallery.
msdn.microsoft.com/8e1b4368-4afb-467a-bc13-9650572db708), which
provides a task runner for Grunt and Gulp directly within VS

The earlier free versions of VS were called VS Express editions, but now they are
called the VS Community (available at https://www.visualstudio.com/en-us/
products/visual-studio-community-vs). It supports coding in C++, Python, and
HTML5 (along with Microsoft languages) and for Node.js and JavaScript too. So, this
IDE is an excellent choice for people who're already used to VS.

www.it-ebooks.info
www.EBooksWorld.ir

Editors and IDEs

[122]

Eclipse
Eclipse (available at http://eclipse.org/) is one of the most popular
editors for folks from the Java land. Eclipse has a huge community and so many
extensions/plugins which can be found on the Eclipse market place (available at
http://marketplace.eclipse.org/). These can be downloaded and installed
from Eclipse without leaving the editor. It has a JavaScript Development Tools
plugin (JSDT, available at https://eclipse.org/webtools/jsdt/) which helps in
the development of JavaScript and web applications. Moreover, it also has plugins
for many functional languages such as Erlang (available at http://erlide.org/),
Haskell (available at http://eclipsefp.github.io/), Clojure (which is called
Counterclockwise and is available at http://doc.ccw-ide.org/documentation.
html), and so on, which make it an excellent choice for development in many
programming languages.

Now, as this is a book on Angular, I want to talk about two more editors that have
extra support for Angular code bases through external plugins. Those are Brackets,
which is backed by Adobe, and WebStorm, which is by JetBrains.

Brackets
Brackets (available at http://brackets.io/) is a free editor backed by Adobe
and has a lot of interesting features such as Inline code editing (where all the CSS
selectors that apply to an ID are shown in an inline window by pressing Command
/ Ctrl + E), Live preview (where if you make any changes to your HTML or CSS,
you can instantly see those changes on screen), and so on. It too has a lot of useful
extensions such as Brackets-Git (available at https://github.com/zaggino/
brackets-git) which provides Git integration from Brackets, Beautify (available at
https://github.com/drewhamlett/brackets-beautify) which formats HTML,
CSS and JavaScript code, and many others for previewing Markdown, code folding,
and so on. The extensions which help in Angular-related coding are shown in the
following screenshot:

www.it-ebooks.info
www.EBooksWorld.ir

Appendix C

[123]

Note that the last one is already installed in my brackets, so the button is disabled;
for other extensions, the Install button is enabled.

WebStorm
JetBrains (available at https://www.jetbrains.com/) is a well-known company,
and they are the creators of the Java IDE called IntelliJ IDEA, the very famous Visual
Studio extension called ReSharper (which makes refactoring a breeze), and other
tools such as TeamCity which is a Continuous Integration and Deployment server.
Now, most of their tools are paid ones (except TeamCity, which has a free version
available), and they have one more ace IDE for JavaScript called WebStorm (available
at https://www.jetbrains.com/webstorm/). It is a cross-platform editor and has
support for most of the modern web technologies such as AngularJS, React, Meteor,
ES6, Dart, TypeScript, Node.js, and many more. It has refactoring support for JS code
which spans not just a single file but also multiple files.

www.it-ebooks.info
www.EBooksWorld.ir

Editors and IDEs

[124]

You can visit Go to definition for declaration of functions and variables and find their
usages with Find usages. Its AngularJS support includes:

•	 AngularJS-aware code completion for ng directives, controller, and
application names, and code insights for data bindings inside curly
brace expressions {{}}

•	 AngularJS-aware navigation between the name of controller in HTML and its
definition is JavaScript between modules, controllers, and directives.

If you don't mind paying something, then WebStorm is one of the best IDEs out there
for web and full-stack JS development.

www.it-ebooks.info
www.EBooksWorld.ir

[125]

Index
Symbols
$http service

about 25-27
URL 27

$q service
about 25
URL 25

$resource service
about 28
Express-based API sample 28
Node.js sample 28
versus $http service 28, 29

@attr option 40, 41
&attr option 42, 43
=attr option 39, 40

A
AngularFire

about 54, 61-63
real-time application, running 69
synchronized arrays,

with $firebaseArray() 64-68
synchronized objects,

with $firebaseObject() 70-74
URL 54
URL, for API 74
URL, for guide 78

AngularJS
about 1
applications, organizing 15
benefits 5, 6
Hello World example 7-9
online resources 15

references 5
URL, for API 14
URL, for documentation 5
versus other frontend JavaScript frame-

works 5
versus server-side MVC frameworks 4

anonymous authentication, Firebase 79-94
authentication

about 78
options 78

B
Backbone

URL 5
Bitbucket

about 117
URL 117

bootstrapping
about 8
reference link 8

Bower
about 106
URL 106

Brackets
about 122, 123
URL 122

brackets-beautify
URL 122

Brackets-Git
about 122
URL 122

branching, Git
URL 114

build management 98

www.it-ebooks.info
www.EBooksWorld.ir

[126]

C
Clojure

URL 122
cloud computing (Cloud) 52
collection binding 10-12
colorsublime

URL 121
compilation phase, directive 33
CouchDB

URL 52
custom attributes 34-36
custom classes

writing 45
custom elements 36-38

D
data binding

about 1, 7
model 7
UI element 7

data structure
about 58-60
data denormalization 60, 61

dependency injection 18-21
dependency management 98
Directive Definition Object (DDO)

about 32
URL 33

directives
about 6-8, 14, 31, 32
communication between 46-49
compilation phase 33
custom classes, writing 45
defining 32, 33
DOM, manipulating 45, 46
normalization 33
reference link 49
scopes 34
transclusion 43, 44
types 33
URL 6
writing 34

directives, writing
custom attributes 34-36
custom elements 36-38

isolate scope 38
Distributed Version Control

System (DVCS) 109
DOM

manipulating, with directives 45, 46
Domain Specific Language (DSL) 38

E
E2E testing

URL 104
Eclipse

about 122
URL 122

Emacs
about 119
advantages 120
major mode 119
minor mode 119
URL 119

Ember
URL 5

Erlang
URL 122

F
factory

versus service 94-96
filters

about 22-24
URL 22

Firebase
about 52, 53
anonymous authentication 79-94
benefits 53, 54
installing 56, 57
signing up 56
use cases 54

frameworks
versus libraries 2, 3

Free Software Foundation
URL 120

G
generator-angular-fullstack

URL 28

www.it-ebooks.info
www.EBooksWorld.ir

[127]

Git
setting up 110
URL 109
URL, for Windows 109
using 110-114

Git flow
references 115
using 115, 116

GitHub
about 117
URL 117
URL, for Mac 109
URL, for Windows 109

GitLab
about 117
URL 117

Grunt 104-106
Guice

URL 20
GUI clients

reference link 109
Gulp 104

H
Handlebars

URL 4
Haskell

URL 122

I
implicit annotation 22
installation

Firebase 56, 57
IntelliJ IDEA 123
Inversion of Control (IoC)

about 18
dependencies, injecting 20

Ionic
URL 6

isolate scope
@attr option 40, 41
&attr option 42, 43
=attr option 39, 40
about 38

J
Jasmine

URL 104
JavaScript Development Tools (JSDT)

URL 122
JetBrains

about 123
URL 123

jQuery UI
URL 46

K
Karma

URL 104
Knockout

URL 5

L
Leiningen

URL 98
libraries

versus frameworks 2, 3

M
Mocha

URL 104
Model-View-Whatever (MVW)

Framework 1
MongoDB

URL 52

N
Nano

about 120
URL 120

Neo4j
URL 52

ng-annotate tool
about 22
URL 22

ngRoute module
URL 12

www.it-ebooks.info
www.EBooksWorld.ir

[128]

ngView directive
URL 12

Node.js
about 97
URL 97

normalization, directive 33
NoSQL

URL 52
NPM

about 98, 99
URL 98

Nuget
URL 98

O
one-way data binding 9

P
Package IntelliSense

URL 121
Package Manager

about 121
URL 121

persistence
about 52
pros and cons 52

Postcodes.io
about 26
URL 26

programming language, for 2013
reference link 97

Promise
about 24, 25
URL 24

Promise object
fulfilled state 24
pending state 24
rejected state 25
settled state 25

Protractor
URL 104

R
React

URL 5

real-time application
running 69

Redis
URL 52

ReSharper 123
Riak

URL 52
routes

about 12-14
other AngularJS directives 14

RubyGems
URL 98

S
scaffolding 98
scope, AngularJS

about 8
reference link 8

server-side MVC frameworks
limitations 4
versus AngularJS 4

service
versus factory 94-96

shake effect
URL 46

Single Page Applications (SPAs) 12
SourceTree

URL 109
Spring.NET

URL 20
StackOverflow

URL 6
Stash

about 117
URL 117

Structuring Data, Firebase
reference link 91

Sublime Text 121
synchronized arrays

with $firebaseArray() 64-68
synchronized objects

with $firebaseObject() 70-74

T
Task Runner Explorer

URL 121

www.it-ebooks.info
www.EBooksWorld.ir

[129]

TeamCity 123
three-way data binding 74-77
transclusion 43, 44
two-way data binding 1, 9, 10

U
UnderscoreJS

URL 106
unit testing, AngularJS

URL 104
Unity

URL 20
use cases, Firebase

apps, with Firebase as only backend 54, 55
apps, with some features powered by Fire-

base 55
client and server code,

powered by Firebase 55
Firebase API, for your product 56

V
Vim

about 120
command mode 120
insert mode 120

URL 120
Visual Studio 121
Visual Studio Express 121
VS Community

URL 121

W
Web Essentials

URL 121
WebStorm

about 123, 124
URL 123

Windows Presentation Foundation (WPF) 1

Y
Yeoman

about 99-104
URL 99
URL, for generators 99

Yeoman, tools
bower 99
grunt 99
gulp 99
yo 99

www.it-ebooks.info
www.EBooksWorld.ir

www.it-ebooks.info
www.EBooksWorld.ir

Thank you for buying
Data-oriented Development with AngularJS

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info
www.EBooksWorld.ir

AngularJS Deployment Essentials
ISBN: 978-1-78398-358-2 Paperback: 148 pages

Learn how to optimally deploy your AngularJS
applications to today's top hosting environments

1.	 Build your own real-time AngularJS application
using a modern tool stack and implement a
clever deployment strategy.

2.	 Deploy your application into production
environments such as Apache, Heroku,
Firebase Hosting, and many more.

3.	 Optimize your development and
deployment workflows to minimize
effort and maximize results.

Dependency Injection with
AngularJS
ISBN: 978-1-78216-656-6 Paperback: 78 pages

Design, control, and manage your dependencies with
AngularJS dependency injection

1.	 Understand the concept of dependency injection.

2.	 Isolate units of code during testing JavaScript
using Jasmine.

3.	 Create reusable components in AngularJS.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info
www.EBooksWorld.ir

AngularJS Web Application
Development Blueprints
ISBN: 978-1-78328-561-7 Paperback: 300 pages

A practical guide to developing powerful web
applications with AngularJS

1.	 Get to grips with AngularJS and the
development of single-page web applications.

2.	 Develop rapid prototypes with ease using
Bootstraps Grid system.

3.	 Complete and in depth tutorials covering
many applications.

Mastering AngularJS Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready
directives for any AngularJS-based application

1.	 Explore the options available for creating
directives, by reviewing detailed explanations
and real-world examples.

2.	 Dissect the life cycle of a directive and
understand why they are the base of the
AngularJS framework.

3.	 Discover how to create structured,
maintainable, and testable directives through a
step-by-step, hands-on approach to AngularJS.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info
www.EBooksWorld.ir

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: AngularJS Rationale and Data Binding
	Frameworks versus libraries
	AngularJS versus server-side MVC frameworks
	AngularJS versus other frontend JavaScript frameworks
	Why AngularJS?
	Data binding
	AngularJS Hello World!
	Two-way data binding
	Collection binding
	Routes
	Other AngularJS directives

	Organizing AngularJS applications
	Summary

	Chapter 2: Working with Data
	Dependency injection
	Filters
	Promise
	The $q service
	The $http service
	The $resource service
	Node.js and Express-based API sample
	A better $http service

	Summary

	Chapter 3: Custom Controls
	Directives
	Defining a directive
	Directive compilation phases
	Normalization
	Directive types
	Directive scopes

	Writing directives
	Custom attributes
	Custom elements
	Isolate scopes
	The =attr option in the scope
	The @attr option in the scope
	The &attr option in the scope
	Transclusion
	Custom classes
	Directives that manipulate the DOM
	Communication between directives

	Summary

	Chapter 4: Firebase
	Persistence
	What is Firebase?
	Firebase – benefits and why to use?

	Firebase use cases
	Apps with Firebase as the only backend
	Existing apps with some features powered by Firebase
	Both client and server code powered by Firebase
	Firebase is the API for your product

	Getting started with Firebase
	Installing Firebase

	Structuring data
	Denormalizing data

	AngularFire
	Summary

	Chapter 5: Getting Started with AngularFire
	AngularFire
	Synchronized arrays with $firebaseArray()
	Real-time applications
	Synchronized objects with $firebaseObject()

	Three-way data binding
	Authentication
	Summary

	Chapter 6: Applied Angular and AngularFire
	Firebase anonymous authentication
	Difference between a factory and a service
	Summary

	Appendix A: Yeoman
	NPM
	Yeoman
	Grunt
	Bower

	Appendix B: Git and Git Flow
	Initial Git setup
	Using Git
	Using Git flow
	GitHub and Bitbucket

	Appendix C: Editors and IDEs
	Emacs
	Vim
	Sublime Text
	Visual Studio and Visual Studio Express
	Eclipse
	Brackets
	WebStorm

	Index

