< Day Day Up > | NERT 3 '

C# Threading Handbook
by Tobin Titus et al. ISBN:1861008295

CH Threading APress, LLC © 2004 (288 pages)
Handbook

This book addresses the fundamental units of Windows and
.NET programming—threads. Coverage includes how .NET

applications are executed, the life cycle of a thread in .NET,
- how the .NET Framework uses threads, and more.

<?xml version="1.0" encoding="1S0-8859-1"?>
Table of Contents
C# Threading Handbook
Introduction
Chapter 1 - Defining Threads
Chapter 2 - Threading in .NET
Chapter 3 - Working with Threads
Chapter 4 - Threading Design Principles
Chapter 5 - Scaling Threaded Applications
Chapter 6 - Debugging and Tracing Threads
Chapter 7 - Networking and Threading
Appendix A - Customer Support and Feedback
Index

List of Figures

< Day Day Up > | NEXT - '

www.EBooksWorld.ir



| @ FrEV | < Day Day Up > | NE<T |

Back Cover

This book addresses the fundamental units of Windows and .NET programming - threads. A strong understanding of the role threads play
in program execution, how multiple threads can interact in order to make efficient programs, and the pitfalls to beware of when
developing multithreaded applications, are all core to a developer's ability to develop effective C# programs. This book will cover how
.NET applications are executed, the life cycle of a thread in .NET, how the .NET Framework uses threads, how threads work in an event-
driven environment, how we can avoid race conditions and deadlocks, how the activity of multiple threads can be synchronized, and how
to debug multithreaded applications. We finish it off by describing the creation of a multithreaded network application.

What is great about this book?

Threads are fundamental to the way GUI and server applications operate; if your code is running in a GUI, then you're already writing
code in a threaded environment. An ASP.NET page also runs in a threaded environment. This book aims to cover the tricky issues of
threading in .NET, and particularly to do so from the perspective of C# developers. Threading is by nature not easy to grasp, but a
necessary step towards mastery of programming for the .NET platform.

| s < Day Day Up > | NEXT ap |

www.EBooksWorld.ir



‘ 48 FREV < Day Day Up >

C# Threading Handbook
Apress:

Tobin Titus

Fabio Claudio Ferracchiati
Tejaswi Redkar

Srinivasa Sivakumar

Copyright © 2004 by Apress

(This book was originally published by Wrox Press in 2003.)

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN (pbk): 1-86100-829-5

Printed and bound in the United States of America 10987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,
we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY, 10010 and
outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email <orders@springer-ny.com>, or visit http://www.springer-ny.com. Outside the
United States: fax +49 6221 345229, email <orders@springer.de>, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710. Phone 510-
549-5930, fax 510-549-5939, email <info@apress.com>, or visit http://www.apress.com.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

Credits

Authors

Tobin Titus

Fabio Claudio Ferracchiati
Tejaswi Redkar

Srinivasa Sivakumar

Additional Material
Kourosh Ardestani
Sandra Gopikrishna
Andrew Polshaw

Commissioning Editors
Nick Manning
Andrew Polshaw

Technical Editors
James Hart

Nick Manning
Douglas Patterson

. www.EBooksWorld.ir
Project Manager


http://www.springer-ny.com
http://www.springer.de
http://www.apress.com
http://www.apress.com

Beckie Stones

Managing Editor

Emma Batch Technical Reviewers
Kourosh Ardestani

Richard Bonneau

Mark Horner

Craig McQueen

Saurabh Nandu

Erick Sgarbi

David Whitney

Publisher
Jan Kolasinski

Index
Michael Brinkman

Production Coordinator
Neil Lote

Proof Reader
Chris Smith

Cover
Natalie O'Donnell

About the Authors

Tobin Titus

Tobin has several years of experience in software development and in the consulting industry. He started working with BASIC in
the 5th grade on an Atari 800XL computer. With the release of Visual Basic, Tobin moved to Windows programming and has been
developing Windows and web-based solutions ever since. Tobin specializes in internet applications solutions with Visual Basic,
Java, and now Microsoft .NET tools - VB.NET, C#, and ASP.NET. He is also authoring the BrainBench certification exam on
Visual Basic .NET (www.brainbench.com). Currently, Tobin does work for some of the best companies in the world including his

own - Dax Software and Consulting, LLC (www.daxsoftware.com).

Thanks go to everyone who has supported me in my career. To the staff at Bethel Christian High School in Pennsylvania
and Bob Jones University in South Carolina, thank you for your unfailing faith and uncompromising positions. Thanks go to
Carol, for putting up with my never-ending work schedule. Special thanks to my parents who sacrificed so much for our
family. And a special loving memory to my Grandmother Helm who was always able to encourage me to do better with just a
simple hug - and maybe a little taste of fudge!

www.EBookswWorld.ir



Fabio Claudio Ferracchiati

Fabio Claudio Ferracchiati is a software developer and technical writer. In the early years of his ten-year career he worked with
classical languages and 'old' Microsoft tools like Visual Basic and Visual C++. After five years he decided to dedicate his attention
to the Internet and all the related technologies. In 1998 he started a parallel career writing technical articles for Italian and
international magazines. He works in Rome for CPI Progetti Spa (http://www.cpiprogetti.it), where he develops Internet/Intranet
solutions using Microsoft technologies. Fabio would like to thank Wrox for the chance to write this book.

Dedication to Danila: As in every book | write and will write, a special thank you goes to my unique love. You can't imagine
how is important to have a woman like her near me in the happy and sad moments that life gives to us. I love you so
much...

Tejaswi Redkar

Tejaswi Redkar is a software evangelist. He holds a Master's degree in Engineering from San Jose State University, California.
His areas of interest include designing scalable multi-tiered distributed applications and new generation embedded devices.
Recently he filed a patent for his innovations in managing telemetry gateways. When he is not working he can be found eating
exotic food.

| would like to thank Wrox Press for giving me the opportunity to express my ideas through articles. | would also like to thank
my dear wife Arohi for continuing to motivate me.

www.EBooksWorld.ir


http://www.cpiprogetti.it

Srinivasa Sivakumar

Srinivasa Sivakumar is a software consultant, developer, and writer. He specializes in web and mobile technologies using
Microsoft solutions. He currently works at Chicago for TransTech, LLC. He has co-authored various books, including Professional
ASP.NET Web Services, ASP.NET Mobile Controls - Tutorial Guide, .NET Compact Framework, Beginning ASP.NET 1.0 with
VB.NET, Professional ASP.NET Security, The Complete Visual C# Programmer's Reference Guide, and .NET Compact
Framework. He has also written technical articles for ASP Today, C# Today, .NET Developer, and more. In his free time he likes to
watch Tamil movies and listen to Tamil sound tracks (Especially ones sung by Mr. S.P Balasubramaniyam).

The book takes a top-down look at how exactly .NET executes C# code. We begin by describing what a Windows thread is, and
how they relate to .NET processes, application domains, and threads. We examine thread scheduling (how the operating system
decides which thread to process next), then look at how we write .NET code to work with threads. Then we look at thread
synchronization, so that we can safely allow multiple threads to access the same resources. We look at some typical architectures
that multithreaded programs employ, in particular thread pooling. We also examine how to debug multithreaded code. We finish
with a fully worked example showing how threading can help us build a scalable, high performance network server.

‘ .‘ PREY < Day Day Up > ME®T "

www.EBooksWorld.ir



1 .- FREW < Day Day Up > | MNE®T ‘

Introduction

Multithreading is what enables complex applications to appear to be performing numerous tasks at the same time. They may
respond to user events, while at the same time accessing network resources, or the file system. Such concurrent applications are
written in different ways depending on the platform and the operating system, giving varying control over this process. Visual Basic
6, for instance, gave you little or no control, and it would implement threading behind the scenes, so that when an event occurred,
it would execute the appropriate handling code within a particular threading model, but the application programmer never needed
to concern themself with it. Visual C++ developers had access to the full complexity of the Windows threading and process model,
but with great power comes great responsibility: C++ programmers could easily create multithreaded monsters, and had to learn
and use a range of complex tricks to ensure that the threads were kept under control.

The .NET Framework's managed coding environment has made available a full and powerful threading model that allows you to
control exactly what runs in a thread, when the thread exits, and how much data it should have access to. However, just as the
Common Language Runtime has taken responsibility for memory management out of the hands of programmers, it has also taken
much of the responsibility for managing and cleaning up threads. So, in .NET we have a happy medium between the power of C++
and the simplicity of Visual Basic. That said, multithreaded applications introduce a whole range of programming problems that
single-threaded programs never encounter.

This book will teach you how to take advantage of the threading capabilities provided by the .NET Framework, guiding you through
the various features made available to you, while pointing out pitfalls for you to avoid.

When is threading used? Well, in fact, all programs execute in threads, so understanding how .NET and Windows execute
threads will help you understand just what's going on inside your program at run time. Windows Forms applications use event-loop
threads to handle user interface events. Separate forms execute on separate threads, so if you need to communicate between
Windows Forms, you need to communicate between threads. ASP.NET pages execute inside the multi-threaded environment of
IIS - separate requests for the same page may execute on different threads, and the same page may be executing on more than
one thread simultaneously. When accessing shared resources from an ASP.NET page, you'll encounter threading issues.

As well as writing code that is executed in a multithreaded environment such as this, we often need to take control and actively
create and control our own threads. Perhaps you need to create an application that never or rarely waits while processing some
data, and is permanently available to respond to users and events. This can only happen if you build a multithreaded application.
You can find many articles on the Web, and chapters in other books that tell you how to create a thread with the .NET Framework
and how to perform some rudimentary operations; however, implementing the code is only half of the story. When you are using a
multithreaded application, the type of operations that would normally block your application, such as file system operations, and so
are ideal candidates for threading, are the kinds of operations that could produce synchronization or scalability issues, as more
than one thread could be operating on the same file at the same time. This book, apart from teaching you how to create and
manipulate threads, teaches you how to design your application so that you can avoid many of these issues by applying the
appropriate kind of lock, and not blocking a thread while it waits for some other operation to complete.

Who Is This Book For?

This book is for C# developers who want to explore the full capabilities of the .NET platform. If you want to understand how C#
code is executed inside the .NET Runtime, write code which is safe to execute in a multi-threaded system, and create and control
threads in your own code, then this book will help you.

This book assumes you're already coding with C#, you're already familiar with the basic syntax, and you're regularly writing code
that works. You should be familiar with your chosen development tools and know how to compile and run C# code.

tm < Day Day Up > m’

www.EBookswWorld.ir



‘ 48 FREV < Day Day Up >

What Will You Learn?

The book takes a top-down look at how exactly .NET executes C# code. We begin by describing what a Windows thread is, and
how threads relate to .NET processes, application domains, and threads. We examine thread scheduling (how the operating
system decides which thread to process next), then look at how we write .NET code to work with threads. Then we look at thread
synchronization, so that we can safely allow multiple threads to access the same resources. We look at some typical architectures
that multithreaded programs employ, in particular thread pooling. We also examine how to debug multithreaded code. We finish
with a fully worked example showing how threading can help us build a scalable, high performance network server.

Chapter by chapter, here's what to expect:
Chapter 1 - Defining Threads

This chapter explains what exactly a thread is, what role threads play in .NET, and how threads are created, executed, and
terminated in the operating system.

Chapter 2 - Threading in .NET

In the second chapter, we examine how the concepts explored in Chapter 1 are implemented in .NET. We see how C# code
can create threads, access information about their state and lifecycle, and perform basic operations like sleeping, stopping,
and interrupting.

Chapter 3 - Working with Threads

This chapter explores in more depth how we can work with multiple threads in an application. We look at synchronization and
locking, to ensure exclusive access to data by one thread at a time, and examine the danger of deadlock, and how to avoid it.

Chapter 4 - Threading Design Principles

In this chapter, we look at some of the common patterns employed in multithreaded code - architectures that we can use
confidently, knowing that if we implement them following these tried and tested principles, we should avoid the dangers of
deadlocks.

Chapter 5 - Scaling Threaded Applications

We can't go on creating threads forever - there is, with threads, a law of diminishing returns. Often, however, when we want to
execute multiple simultaneous tasks on separate threads, we can achieve the effect without spawning more and more threads
by employing a thread pool. This chapter examines .NET's own thread pool, and how to implement your own.

Chapter 6 - Debugging and Tracing Threads

Multithreaded applications can be much more complex to debug. This chapter examines some of .NET's most useful
debugging tools, and explains how to use them to debug multithreaded code.

Chapter 7 - Networking and Threading

Networking operations can be slow in a single-threaded program. The application spends a lot of its time waiting for traffic to
travel across the network, and during that time, it is doing nothing. Multithreading is therefore a common requirement in
network applications, enabling them to get on with other activities while waiting for network traffic. In this chapter, we look at
how threading can enable us to build a fast, scalable network server.

tm < Day Day Up > m

www.EBookswWorld.ir



| 4 FREV | < Day Day Up >

What Do You Need?

To make use of this book, you need to be able to compile and execute code written in C#. This means you will require either:

m The .NET Framework SDK obtainable from Microsoft's MSDN site (http://msdn.microsoft.com), in the Software Development
Kits category. The download page at time of publication could be reached via the following URL:

http://msdn.microsoft.com/downl oads/sampl e.asp?url=/msdn-files/027/000/976/msdncompositedoc.xml

m A version of Visual Studio .NET that incorporates Visual C# .NET. The 2002 edition of the Visual C# .NET IDE is included
with the following Microsoft products:

o Microsoft Visual C# .NET Standard

o Microsoft Visual Studio .NET Enterprise Architect
o Microsoft Visual Studio .NET Enterprise Developer
o Microsoft Visual Studio .NET Professional

The product homepage is at http://msdn.microsoft.com/vstudio/.

There are several .NET implementations for other platforms underway, and support for C# compilation on Linux, UNIX, and
Windows is provided by the Mono project (http://www.gomono.com/). Mono code does not have access to the full Microsoft .NET
class library, but follows the same syntactic rules as Microsoft's C#. The threading model is not guaranteed to be the same as it is
in .NET, but implementations of the classes and facilities described in this book are part of the Mono platform's goals, so the
lessons described in this book should apply. However, the code in this book has not been tested with Mono.

| 4 FREV < Day Day Up > NE=T wip

www.EBooksWorld.ir


http://msdn.microsoft.com
http://msdn.microsoft.com/downloads/sample.asp?url=/msdn-files/027/000/976/msdncompositedoc.xml
http://msdn.microsoft.com/vstudio/
http://www.gomono.com/

| 4 FREV | < Day Day Up >

Chapter 1: Defining Threads

Overview

Threading is the ability of a development framework to spin off parts of an application into "threads", which run out of step with the
rest of the program. In most programming languages, you have the equivalent of a Mai n () method, and each line is executed in
sequence, with the next line executing only after the previous has completed. A thread is a special object that is part of the general
multitasking abilities of an operating system and allows a part of the application to run independently from the execution of other
objects, and so out of the general execution sequence of the application. In this chapter, we will also discuss the different types
of multitasking.

Another concept is that of free threading, which is not new to most C++ or Java developers; we will define this term and further
explain the support provided in C#. We will briefly compare this free-threading model to other models, such as Visual Basic 6.0's
apartment-threading model. We won't dwell on the differences for too long since this isn't a history lesson and this book certainly
isn't about Visual Basic 6.0. However, understanding what sets these models apart will help you to understand why free threading
is so wonderful. This chapter's concepts are essential to your understanding of the remainder of this book, as you will learn:

m What a thread is, conceptually

m Some comparisons between various multitasking and threading models
m Where threads exist and how they are allocated processor time

m How threads are controlled and managed using interrupts and priorities

m The concept of application domains, and how they provide finer grained control on the security of your application than that
provided in a simple process environment

By understanding many of the concepts of threading and how they are structured in .NET, you will be better placed to make
programming decisions on how to implement these features in your applications, before learning the details of implementation as
provided in the rest of the book.

[ & FrEv | < Day Day Up > | NEXT @ |

www.EBookswWorld.ir



4 FREV < Day Day Up >

Threading Defined
By the end of this section, you will understand the following:
m What multitasking is and what the different types of multitasking are
m What a process is
m What a thread is
m What a primary thread is

m What a secondary thread is

Multitasking

As you probably know, the term multitasking refers to an operating system's ability to run more than one application at a time. For
instance, while this chapter is being written, Microsoft Outlook is open as well as two Microsoft Word windows, with the system
tray showing further applications running in the background. When clicking back and forth between applications, it would appear
that all of them are executing at the same time. The word "application” is a little vague here, though; what we really are referring to
are processes. We will define the word "process" a little more clearly later in this chapter.

Classically speaking, multitasking actually exists in two different flavors. These days Windows uses only one style in threading,
which we will discuss at length in this book. However, we will also look at the previous type of multitasking so we can understand
the differences and advantages of the current method.

In earlier versions of Windows - such as Windows 3.x - and in some other operating systems, a program is allowed to execute
until it cooperates by releasing its use of the processor to the other applications that are running. Because it is up to the
application to cooperate with all other running programs, this type of multitasking is called cooperative multitasking. The downside
to this type of multitasking is that if one program does not release execution, the other applications will be locked up. What is
actually happening is that the running application hangs and the other applications are waiting in line. This is quite like a line at a
bank. A teller takes one customer at a time. The customer more than likely will not move from the teller window until all their
transactions are complete. Once finished, the teller can take the next person in line. It doesn't really matter how much time each
person is going to spend at the window. Even if one person only wants to deposit a check, they must wait until the person in front
of them who has five transactions has finished.

Thankfully, we shouldn't encounter this problem with current versions of Windows (2000 and XP) as the method of multitasking
used is very different. An application is now allowed to execute for a short period before it is involuntarily interrupted by the
operating system and another application is allowed to execute. This interrupted style of multitasking is called pre-emptive
multitasking. Pre-emption is simply defined as interrupting an application to allow another application to execute. It's important to
note that an application may not have finished its task, but the operating system is going to allow another application to have its
time on the processor. The bank teller example above does not fit here. In the real world, this would be like the bank teller pausing
one customer in the middle of their transaction to allow another customer to start working on their business. This doesn't mean
that the next customer would finish their transaction either. The teller could continue to interrupt one customer after another -
eventually resuming with the first customer. This is very much like how the human brain deals with social interaction and various
other tasks. While pre-emption solves the problem of the processor becoming locked, it does have its own share of problems as
well. As you know, some applications may share resources such as database connections and files. What happens if two
applications are accessing the same resource at the same time? One program may change the data, then be interrupted, allowing
another program to again change the data. Now two applications have changed the same data. Both applications assumed that
they had exclusive access to the data. Let's look at the simple scenario illustrated in Figure 1.

www.EBookswWorld.ir
Figure 1



In Step 1, Application A obtains an integer value from a data store and places it in memory. That integer variable is set to 10.
Application A is then pre-empted and forced to wait on Application B. Step 2 begins and Application B then obtains that same
integer value of 10. In Step 3, Application B increments the value to 11. The variable is then stored to memory by Application B in
Step 4. In Step 5, Application A increments this value as well. However, because they both obtained a reference to this value at
10, this value will still be 11 after Application A completes its increment routine. The desired result was for the value to be set to
12. Both applications had no idea that another application was accessing this resource, and now the value they were both
attempting to increment has an incorrect value. What would happen if this were a reference counter or a ticket agency booking
plane tickets?

The problems associated with pre-emptive multitasking are solved by synchronization, which is covered in Chapter 3.

Processes

When an application is launched, memory and any other resource for that application are allocated. The physical separation of this
memory and resources is called a process. Of course, the application may launch more than one process. It's important to note
that the words "application" and "process" are not synonymous. The memory allocated to the process is isolated from that of other
processes and only that process is allowed to access it.

In Windows, you can see the currently running processes by accessing the Windows Task Manager. Right-clicking in an empty
space in the taskbar and selecting Task Manager will load it up, and it will contain three tabs: Applications, Processes, and
Performance. The Processes tab shows the hame of the process, the process ID (PID), CPU usage, the processor time used by the
process so far, and the amount of memory it is using. Applications and the processes appear on separate tabs, for a good reason.
Applications may have one or more processes involved. Each process has its own separation of data, execution code, and system
resources.

O Windows Task Manager E =10l x|
Fla Opbons Wiew Help
pphcations. Frocesses | parfomancs |
Image Mame [ e[ ou] cutmel Memisoge]=
Soystam [ile Proosss 0 k] 25029 16K
Spattemn B o0 0:00:0% 212K
- e 140 00 0001700 ZI0K
WA e 160 00000 2,7 K
CEres AxE 164 0:00: 1% 1,852 K
sendices. Bue 22 W 0:00:02 2,588k
I, W 0 D000 1,180 K
vihost s 2 W 0 D 2ETEE
spookyeeue 20 @ 0:00:01 2, T4 K
Pip, g8 2 m 0:00: 00 MOk
ribksry, sos 448 00 0: 00 0 456 k
[ LE ] 00000 2504k
SCOMINIC EXE = ] 0: 0000 TIZE
dabwatch, axe 52 m HERE LT diiw
dmisrv. em B84 W 10: 001700 ¥ K
wwchost sxe S50 o0 (0: D000 3, 556 K
chafichrri, aoos 575 L] 0 0000 1, 158K
rrachem. e L= ] (0: 00100 1,400 K
FhvECan. BB £l 0 0:00:05 3624k *|
End Prosiess
Processes: 51 LU Usage: T9% Merm Usage: DBO2EEE | 200 (K

You will also notice that the Task Manager has summary information about process CPU utilization. This is because the process
also has an execution sequence that is used by the computer's processor. This execution sequence is known as a thread. This
thread is defined by the registers in use on the CPU, the stack used by the thread, and a container that keeps track of the thread's
current state. The container mentioned in the last sentence is known as Thread Local Storage. The concepts of registers and
stacks should be familiar to any of you used to dealing with low-level issues like memory allocation; however, all you need to know
here is that a stack in the .NET Framework is an area of memory that can be used for fast access and either stores value types, or
pointers to objects, method arguments, and other data that is local to each method call.

Single-Threaded Processes

As noted above, each process has at least one of these sequential execution orders, or threads. Creating a process includes
starting the process running at a point in the instructions. This initial thread is known as the primary or main thread. The thread's
actual execution sequence is determined by what you code in your application's methods. For instance, in a simple .NET Windows
Forms application, the primary thread is started in the statienMaimnol)ariiethod placed in your project. It begins with a call to
Application. Run().



Now that we have an idea of what a process is and that it has at least one thread, let's look at a visual model of this relationship in
Figure 2:

Process
Data Data
Data Data

Thread

[nstruction

Instruction

Figure 2

Looking at the diagram above, you'll notice that the thread is in the same isolation as the data. This is to demonstrate that the data
you declare in this process can be accessed by the thread. The thread executes on the processor and uses the data within the
process, as required. This all seems simple; we have a physically separated process that is isolated so no other process can
modify the data. As far as this process is concerned, it is the only process running on the system. We don't need to know the
details of other processes and their associated threads to make our process work.

To be more precise, the thread is really a pointer into the instruction stream portion of a process. The thread does not actually
contain the instructions, but rather it indicates the current and future possible paths through the instructions determined by
data and branching decisions.

Time Slices

When we discussed multitasking, we stated that the operating system grants each application a period to execute before
interrupting that application and allowing another one to execute. This is not entirely accurate. The processor actually grants time
to the process. The period that the process can execute is known as a time slice or a quantum. The period of this time slice is
unknown to the programmer and unpredictable to anything besides the operating system. Programmers should not consider this
time slice as a constant in their applications. Each operating system and each processor may have a different time allocated.

Nevertheless, we did mention a potential problem with concurrency earlier, and we should consider how that would come into play
if each process were physically isolated. This is where the challenge starts, and is really the focus of the remainder of this book.
We mentioned that a process has to have at least one thread of execution - at least one. Our process may have more than one
task that it needs to be doing at any one point in time. For instance, it may need to access a SQL Server database over a network,
while also drawing the user interface.

Multithreaded Processes

As you probably already know, we can split up our process to share the time slice allotted to it. This happens by spawning
additional threads of execution within the process. You may spawn an additional thread in order to do some background work,
such as accessing a network or querying a database. Because these secondary threads are usually created to do some work, they
are commonly known as worker threads. These threads share the process's memory space that is isolated from all the other
processes on the system. The concept of spawning new threads within the same process is known as free threading.

The concept of free threading gives a significant advantage over the apartment-threading model - the threading model used in
Visual Basic 6.0. With apartment threading, each process was granted its own copy of the global data needed to execute. Each
thread spawned was spawned within its own process, so that threads coyld not share data in the process's memory. Let's look at
these models side by side for comparison. Figure 3 demonstrates the apartment-threading concept, while Figure 4 demonstrates



the free-threading concept. We won't spend a much time on this because we are not here to learn about Visual Basic 6.0, but it's
important to describe these differences:

Mrocess Frocess
Glohal Data GRobal Dits
ol Dana Gt Dana

Thrgad Thraad

1P SAFLAE Erei ISt s e

Instruction Instruction

Figure 3

Thiraasd Thiread

Figure 4

As you can see, each time you want to do some background work, it happens in its own process. This is therefore called running
out-of-process. This model is vastly different from the free-threading model shown in Figure 4.

You can see that we can get the CPU to execute an additional thread using the same process's data. This is a significant
advantage over single threaded apartments. We get the benefits of an additional thread as well as the ability to share the same
data. It is very important to note, however, that only one thread is executing on the processor at a time. Each thread within that
process is then granted a portion of that execution time to do its work. Let's go one more time to a diagram (Figure 5) to help
illustrate how this works.

Process B

0 EEa00Id

Process A

Figure 5

For the sake of this book, the examples and diagrams assume a single processor. However, there is an even greater benefit to
multi-threading your applications if the computer has more than one processor. The operating system now has two places to send
execution of the thread. In the bank example that we spoke of earlier, this would be similar to opening up another line with another
teller. The operating system is responsible for determining which threads are executed on which processor. However, the .NET
platform does provide the ability to control which CPU a process uses if the programmer so chooses. This is made possible with
the Pr ocessor Af fi ni ty property of the Pr ocess class"{tR8°S§¥18H Di agnosti cs namespace. Bear in mind, however,



that this is set at the process level and so all threads in that particular process will execute on the same processor.

The scheduling of these threads is vastly more complicated than demonstrated in the last diagram, but for our purposes, this
model is sufficient for now. Since each thread is taking its turn to execute, we might be reminded of that frustrating wait in line at
the bank teller. However, remember that these threads are interrupted after a brief period. At that point, another thread, perhaps
one in the same process, or perhaps a thread in another process, is granted execution. Before we move on, let's look at the Task
Manager again.

Launch the Task Manager and return to the Processes tab. Once open, go to the View | Select Columns menu. You will see a list of
columns that you can display in the Task Manager. We are only concerned with one additional column at this point - the Thread
Count option. Select this checkbox. You should see something like this:

£ Windows Task Ma

Eppbcations  Processes |Hlm |

=10 x|

oci=ctCobumns x|
Sefact the column that vall appear on Bhe Process pags
o the Task Marudged
i [T Page Foukts Delta
. PID [Peocets idenths] [ Virtusl Mamoyp See
¥ CPU Usage ™ Paged Podd
! F PUTime ™ Menpaged Paal
. Memony Usage ™ B Puceily
I T Memesy Usage Debs [T Handa Count
t T Pesk Memony Lisags ' Thread Court
'™ Page Fats I™ GO Dbgects
. ™ USER Obpects ™ 10 wirites
+ T 170 Resds ™ 170 Ve Bpess
£ 7 140 Read Bybes ™ 170 Dt
| I 10 Oithes Bytas
o | can |
Processes: 51 CPU Lisage: 6% Mem Lizage: 1EDEADE | 308408

Once you click OK you will notice that several of your processes have more than one thread listed in the Thread Count column. This
reinforces the idea that your program may have many threads for one just one process.

How Interrupts and Thread Local Storage Work

When one thread runs out of time in its allocated time slice, it doesn't just stop and wait its turn again. Each processor can only
handle one task at a time, so the current thread has to get out of the way. However, before it jumps out of line again, it has to store
the state information that will allow its execution to start again from the point it left earlier. If you remember, this is a function of
Thread Local Storage (TLS). The TLS for this thread, as you may remember, contains the registers, stack pointers, scheduling
information, address spaces in memory, and information about other resources in use. One of the registers stored in the TLS is a
program counter that tells the thread which instruction to execute next.

Interrupts

Remember that we said that processes don't necessarily need to know about other processes on the same computer. If that were
the case, how would the thread know that it's supposed to give way to anther process? This scheduling decision nightmare is
handled by the operating system for the most part. Windows itself (which after all is just another program running on the
processor) has a main thread, known as the system thread, which is responsible for the scheduling of all other threads.

Windows knows when it needs to make a decision about thread scheduling by using interrupts. We've used this word already, but
now we are going to define exactly what an interrupt is. An interrupt is a mechanism that causes the normally sequential execution
of CPU instructions to branch elsewhere in the computer memory without the knowledge of the execution program. Windows
determines how long a thread has to execute and places an instruction in the current thread's execution sequence. This period
can differ from system to system and even from thread to thread on the same system. Since this interrupt is obviously placed in
the instruction set, it is known as a software interrupt. This should not be confused with hardware interrupts, which occur outside
the specific instructions being executed. Once the interrupt is placed, Windows then allows the thread to execute. When the
thread comes to the interrupt, Windows uses a special function known as an interrupt handler to store the thread's state in the
TLS. The current program counter for that thread, which was stored before the interrupt was received, is then stored in that TLS.
As you may remember, this program counter is simply the address of the currently executing instruction. Once the thread's
execution has timed out, it is moved to the end of the thread queue for its given priority to wait its turn again. Look at Figure 6 for a
diagram of this interruption process:

www.EBookswWorld.ir



' setion | SR Ge | T|S |

M (3 BCLion
e |2 — n
B LS
o TLS | 8
! 5 Tececute et TLS | |
¢ 11 e et TLS |
Interrupt Inserted : Q
f LS I
.F; =
| u
-L.l'l|l Paturn To Quews e | TLS e

Figure 6

The TLS is not actually saved to the queue; it is stored in the memory of the process that contains the thread. A pointer to that
memory is what is actually saved to the queue.

This is, of course, fine if the thread isn't done yet or if the thread needs to continue executing. However, what happens if the
thread decides that it doesn't need to use all of its execution time? The process in context switching (that is switching from the
context of one thread to another) is slightly different initially, but the results are the same. A thread may decide that it needs to wait
on a resource before it can execute again. Therefore, it may yield its execution time to another thread. This is the responsibility of
the programmer as well as the operating system. The programmer signals the thread to yield. The thread then clears any
interrupts that Windows may have already placed in its stack. A software interrupt is then simulated. The thread is stored in TLS
and moved to the end of the queue just as before. We will not diagram this concept as it's quite easy to understand and very
similar to the diagram opposite. The only thing to remember is that Windows may have already placed an interrupt on the thread's
stack. This must be cleared before the thread is packed up; otherwise, when the thread is again executed, it may be interrupted
prematurely. Of course, the details of this are abstracted from us. Programmers do not have to worry about clearing these
interrupts themselves.

Thread Sleep and Clock Interrupts

As we stated, the program may have yielded execution to another thread so it can wait on some outside resource. However, the
resources may not be available the next time the thread is brought back to execute. In fact, it may not be available the next 10 or
20 times a thread is executed. The programmer may wish to take this thread out of the execution queue for a long period so that
the processor doesn't waste time switching from one thread to another just to realize it has to yield execution again. When a
thread voluntarily takes itself out of the execution queue for a period, it is said to sleep. When a thread is put to sleep, it is again
packed up into TLS, but this time, the TLS is not placed at the end of the running queue; it is placed on a separate sleep queue. In
order for threads on a sleep queue to run again, they are marked to do so with a different kind of interrupt called a clock
interrupt. When a thread is put into the sleep queue, a clock interrupt is scheduled for the time when this thread should be
awakened. When a clock interrupt occurs that matches the time for a thread on the sleep queue, it is moved back to the runnable
gueue where it will again be scheduled for execution. Figure 7 illustrates this:

g TLS K ;I- - Froam Dy TLS ::\
L TLS e -
E TLS e TLS ;
| TLS L7 e TLS
W TLS £ o TLS |s
E| TLS TLS ©
E - n

TLS | ewn TLS |

" TLS

www.EBookswWorld.ir



Figure 7

Thread Abort

We've seen a thread interrupted, and we've seen a thread sleep. However, like all other good things in life, threads must end.
Threads can be stopped explicitly as a request during the execution of another thread. When a thread is ended in this way, it is
called an abort. Threads also stop when they come to the end of their execution sequence. In any case, when a thread is ended,
the TLS for that thread is de-allocated. The data in the process used by that thread does not go away, however, unless the
process also ends. This is important because the process may have more than one thread accessing that data. Threads cannot
be aborted from within themselves; a thread abort must be called from another thread.

Thread Priorities

We've seen how a thread can be interrupted so that another thread can execute. We have also seen how a thread may vyield its
execution time by either yielding that execution once, or by putting itself to sleep. We have also seen how a thread can end. The
last thing we need to cover for the basic concept of threading is how threads prioritize themselves. Using the analogy of our own
lives, we understand that some tasks we need to do take priority over other tasks. For instance, while there is a grueling deadline
to meet with this book, the author also needs to eat. Eating may take priority over writing this book because of the need to eat. In
addition, if this author stays up too late working on this book, rest deprivation may elevate the body's priority to sleep. Additional
tasks may also be given by other people. However, those people cannot make that task the highest priority. Someone can
emphasize that a task may be important, but it's ultimately up to the recipient of the task to determine what should be of extremely
high importance, and what can wait.

The information above contains much theory and analogy; however, this very closely relates to our threading concept. Some
threads just need to have a higher priority. Just as eating and sleeping are high priorities because they allow us to function, system
tasks may have higher priorities because the computer needs them to function. Windows prioritizes threads on a scale of 0 to 31,
with larger numbers meaning higher priorities.

A priority of O can only be set by the system and means the thread is idle. Priorities between 1 and 15 can be set by users of a
Windows system. If a priority needs to be set higher than 15, it must be done by the administrator. We will discuss how an
administrator does this later. Threads running in a priority between 16 and 31 are considered to be running real-time. When we
refer to the term real-time, we mean that the priority is so high that they pre-empt threads in lower priorities. This pre-emption has
the effect of making their execution more immediate. The types of items that might need to run in real-time mode are processes
like device drivers, file systems, and input devices. Imagine what would happen if your keyboard and mouse input were not high
priorities to the system! The default priority for user-level threads is 8.

One last thing to remember is that threads inherit the priority of the processes in which they reside. Let's diagram this for your
future reference in Figure 8. We'll also use this diagram to break these numbers down even further.

31 RealTime Crtica
Real Time 27.26 RealTime Mormal

iLi] Real-Time Idle

15 Mor-Real-Time Critical
11-15 High foreground

Uisery/Nonreal-Tima 11 Mormal foreground
-4 Maormal background
1-6 Non-Real-Time |die

[4] ldle Thread

Figure 8

In some operating systems, such as Windows, as long as threads of a higher priority exist, threads in lower priority are not
scheduled for execution. The processor will schedule all threads at the highest priority first. Each thread of that same priority level
will take turns executing in a round-robin fashion. After all threads in the highest priority have completed, then the threads in the
next highest level will be scheduled for execution. If a thread of a higher priority is available again, all threads in a lower priority are
pre-empted and use of the processor is given to the higher priority thread.

Administrating Priorities

Based on what we know about priorities, it may be desirable to set certain process priorities higher so that any threads spawned
from those processes will have a higher likelihood of being scheduled for execution. Windows provides several ways to set
priorities of tasks administratively and programmatically. Right now, we will focus on setting priorities administratively. This can be
done with tools such as the task manager, and two other tools called pvi ew (installed with Visual Studio) and pvi ewer (installed
with either a resource kit for Windows NT or directly with Windows XP Professional). You can also view the current priorities using
the Windows Performance Monitor. We won't concentrateamatbodktnese.itools right now. We will briefly look at how to set the
general priority of processes. If you remember, back when we first introduced processes, we launched the Task Manager to view



all of the processes currently running on the system. What we didn't cover is the fact that we can elevate the priority of a particular
process in that very same window.

Let's try changing a process's priority. First, open up an instance of an application such as Microsoft Excel. Now launch the Task
Manager and go to the Processes tab again. Look at an instance of Excel running as a process. Right-click on EXCEL.EXE in the
list and choose Set Priority from the menu. As you can see, you can change the priority class as you wish. It wouldn't make much
sense to set the priority of Excel high, but the point is you could if you wanted to. Every process has a priority and the operating
system isn't going to tell you what priorities you should and should not have. However, it will warn you that you may be about to do
something with undesirable consequences; but the choice is still left up to you.

=10]x|

2 windows Task Manager

Processas: 82 CPU Lssge: UO0%  Mam Ussge: ICOS0K | 308408

In the previous screenshot, you can see that one of the priorities has a mark next to it. This mark represents the current priority of
the process. It should be noted that when you set a priority for one process, you are setting it for that one instance only. This
means that all other currently running instances of that same application will retain their default process levels. Additionally, any
future instances of the process that are launched will also have the default process level.

‘ .‘ PREY < Day Day Up > ME®T "

www.EBooksWorld.ir



4 FREV < Day Day Up >

Thread Support in .NET and C#

Free threading is supported in the .NET Framework and is therefore available in all .NET languages, including C# and VB.NET. In
this next section, we will look at how that support is provided and more of how threading is done as opposed to what it is. We will
also cover some of the additional support provided to help further separate processes

By the end of this section, you will understand:

m What the Syst em AppDonai n class is and what it can do for you

m How the .NET runtime monitors threads

System.AppDomain

When we explained processes earlier in this chapter, we established that they are a physical isolation of the memory and
resources needed to maintain themselves. We later mentioned that a process has at least one thread. When Microsoft designed
the .NET Framework, it added one more layer of isolation called an application domain or AppDomain. This application domain
is not a physical isolation as a process is; it is a further logical isolation within the process. Since more than one application
domain can exist within a single process, we receive some major advantages. In general, it is impossible for standard processes
to access each other's data without using a proxy. Using a proxy incurs major overheads and coding can be complex. However,
with the introduction of the application domain concept, we can now launch several applications within the same process. The
same isolation provided by a process is also available with the application domain. Threads can execute across application
domains without the overhead associated with inter-process communication. Another benefit of these additional in-process
boundaries is that they provide type checking of the data they contain.

Microsoft encapsulated all of the functionality for these application domains into a class called Syst em AppDonai n. Microsoft
.NET assemblies have a very tight relationship with these application domains. Any time that an assembly is loaded in an
application, it is loaded into an AppDomai n. Unless otherwise specified, the assembly is loaded into the calling code's

AppDomai n. Application domains also have a direct relationship with threads; they can hold one or many threads, just like a
process. However, the difference is that an application domain may be created within the process and without a new thread. This
relationship could be modeled as shown in Figure 9.

Process
AppDomain #1 AppDomain #2

Global Data

Thread
Instruction

AppDomain #3

Global Data Global Data
Thread Thread
Instruction Instruction

Figure 9

In .NET, the AppDonei n and Thr ead classes cannot be inherited for security reasons.

Each application contains one or more AppDonai ns. Each AppDomai n can create and execute multiple threads. If you look at
Figure 10, in Machine X there are two OS processes Y and Z running. The OS process Y has four running AppDorai ns: A, B, C,
and D. The OS process Z has two AppDonai ns: A and B.

www.EBooksWorld.ir



Machine X

MECORE DLL MSCORE DL

Applomalin & Applomain B

AppDomain Applioaiaia [

Opeating System Process ¥ Oporating System Process I

Lgend:

Figure 10

Setting AppDomain Data

You've heard the theory and seen the models; now let's get our hands on some real code. In the example below, we will be using
the AppDonai n to set data, retrieve data, and identify the thread that the AppDomai n is executing. Create a new class file called
appdonmai n. cs and enter the following code:

usi ng System

public class MyAppDomai n

{
publ i c AppDormai n Donai n;
public int Threadld;
public void SetDomai nData(string vName ,string vVal ue)
{
Donmai n. Set Dat a( vNane, (object)vVal ue);
Threadl d = AppDonai n. Get Current Threadl d() ;
}
public string GetDomai nData(string nane)
{
return (string)Donain. Get Dat a( nane) ;
}
public static void Main()
{
string DataNane = "MyData";
string DataValue = "Sone Data to be stored";
Consol e. WiteLine("Retrieving current domain");
MyAppDomai n Gbj = new MyAppDonai n() ;
bj . Domai n = AppDonai n. Cur r ent Domai n;
Consol e. WiteLine("Setting domain data");
bj . Set Domai nDat a( Dat aNane, Dat aVal ue);
Consol e. WiteLine("CGetting domain data");
Consol e. WiteLine("The Data found for key '" + DataName
+ """ is """ + bj.Cet Dormai nDat a( Dat aNane)
+ "' running on thread id: " + Obj.Threadld);
}
}

. . . www.EBooksWorld.ir
Your output should look something like this:



Retrieving current domain

Setting domain data

Getting domain data

The Data found for key 'MyData' is 'Some Data to be stored' running on thread id: 1372

This is straightforward for even unseasoned C# developers. However, let's look at the code and determine exactly what is
happening here. This is the first important piece of this class:

public void Set Domai nData(string vNane , string vVal ue)
{

Donmai n. Set Dat a( vNane, (object)vVal ue);

Threadl d = AppDomai n. Get Current Threadl d() ;

This method takes parameters for the name of the data to be set, and the value. You'll notice that the Set Dat a () method has
done something a little different when it passes the parameters in. Here we cast the st ri ng value to an Cbj ect data type as the
Set Dat a () method takes an object as its second parameter. Since we are only using a st ri ng, and a st ri ng inherits from
Syst em Obj ect, we could just use the variable without casting it to an object. However, other data that you might want to store
would not be as easily handled as this. We have done this conversion as a simple reminder of this fact. In the last part of this
method, you will notice that we can obtain the currently executing Thr ead| d with a simple call to the Get Cur r ent Thr eadl d
property of our AppDomai n object.

Let's move on to the next method:

public string GetDomai nData(string nane)
{

}

return (string)Domain. Get Dat a( nane) ;

This method is very basic as well. We use the Get Dat a () method of the AppDonai n class to obtain data based on a key value.
In this case, we are just passing the parameter from our Get Dormai nDat a() method to the Get Dat a () method. We return the
result of that method to the calling method.

Finally, let's look at the Main () method:

public static void Min()
{
string DataNane = "MData";
string DataVal ue = "Sonme Data to be stored";

Consol e. WitelLine("Retrieving current domain");
MyAppDomai n Gbj = new MyAppDomai n();
bj . Donmai n = AppDorai n. Cur r ent Donai n;

Consol e. WitelLine("Setting domain data");
bj . Set Domai nDat a( Dat aNane, Dat aVal ue);

Consol e. WitelLine("Getting domain data");
Consol e. WiteLine("The Data found for key '" + DataNane
+ "' is '"" + (Obj.Get Domai nDat a( Dat aNane)
+ "' running on thread id: " + Qbj.Threadld);

We start by initializing the name and value pairs we want to store in our AppDomnai n and writing a line to the console to indicate
our method has started execution. Next, we set the Donrai n field of our class with a reference to the currently executing
AppDonai n object (the one in which your Mai n () method is executing). Next we call our methods - passing both parameters to
the Set Domai nDat a() method:

www.EBooksWorld.ir
bj . Set Domai nDat a( Dat aNane, Dat aval ue);



Moving on, we pass one parameter into Get Dormai nDat a() method to get the data we just set and insert it into our console
output stream. We also output the Thr eadl d property of our class to see what our executing Thr eadl d was in the method we
called.

Executing Code within a Specified AppDomain

Now let's look at how to create a new application domain and make some important observations about the behavior when
creating threads within the newly created AppDonai n. The following code is contained within cr eat e_appdonai ns. cs:

usi ng System
public class Creat eAppDomai ns

{
public static void Min()
{
AppDonai n Domai nA;
Domai nA = AppDonai n. Cr eat eDonmai n(" MyDomai nA") ;
string StringA = "Donmai nA Val ue";
Dorai nA. Set Dat a( " Domai nKey", StringA);

CommoncCal | Back() ;

Cr ossAppDomai nDel egat e del egat eA =
new CrossAppDonai nDel egat e( CormonCal | Back) ;
Donai nA. DoCal | Back( del egat eA) ;

}

public static void ConmmonCal | Back()
{

AppDomeai n Domai n;

Donmai n = AppDonai n. Curr ent Donai n;

Consol e. WiteLine("The Value '" + Donmi n. Get Dat a(" Donai nKey") +
"' was found in " + Domain. Friendl yNanme. ToString() +

running on thread id: " +

AppDorai n. Get Current Threadl d(). ToString());

The output of this compiled class should look similar to this:

The Value " was found in create_appdomains.exe running on thread id: 1372
The Value 'DomainA Value' was found in MyDomainA running on thread id: 1372

You'll notice in this example we have created two application domains. To do this, we call the Cr eat eDonai n() static method of
the AppDonai n class. The parameter that the constructor takes is a friendly name for the AppDormai n instance that we are
creating. We will see that we can access the friendly name later by way of a read-only property. Here is the code that creates the
AppDomai n instance:

AppDorai n Donai nA;
Donai nA = AppDorai n. Cr eat eDomai n( " MyDormai nA") ;

Next we call the Set Dat a () method that we saw in the previous example. We won't redisplay the code here because we
explained its use earlier. However, what we need to explain next is how we get code to execute in a given AppDonai n. We do
this with the DoCal | Back() method of the AppDorai n class. This method takes a Cr ossAppDonai nDel egat e as its
parameter. In this case, we have created an instance of a Cr ossAppDonai nDel egat e passing the name of the method we wish
to execute into the constructor: www.EBooksWorld.ir



CommoncCal | Back() ;

Cr ossAppDonai nDel egat e del egat eA =
new Cr ossAppDonai nDel egat e( CormonCal | Back) ;
Donai nA. DoCal | Back( del egat eA) ;

You'll notice that we call CormonCal | Back() first. This is to execute our CommonCal | Back () method within the context of the
main AppDomai n. You'll also notice from the output that the Fri endl yNanme property of the main AppDonai n is the executable's
name.

Lastly, let's look at the ConmonCal | Back() method itself:

public static void ComonCal | Back()
{

AppDomai n Domai n;

Donmai n = AppDonai n. Curr ent Domai n;

Consol e. WitelLine("The Value '" + Donmi n. Get Dat a(" Donai nKey") +
" was found in " + Donmin. Friendl yNanme. ToString() +

running on thread id: " +

AppDomai n. Get Current Threadl d(). ToString());

You'll notice that this is rather generic so it will work in no matter what instance we run it. We use the Cur r ent Domai n property
once again to obtain a reference to the domain that is executing the code. Then we use the Fri endl yNane property again to
identify the AppDonai n we are using.

Lastly, we call the Get Curr ent Thr eadl d() method again here. When you look at the output, you can see that we get the same
thread ID no matter what AppDomai n we are executing in. This is important to note because this not only means that an
AppDomai n can have zero or many threads, but also that a thread can execute across different domains.

Thread Management and the .NET Runtime

The .NET Framework provides more than just the ability for free-threaded processes and logical application domains. In fact, the
.NET Framework supplies an object representation of processor threads. These object representations are instances of the
Syst em Thr eadi ng. Thr ead class. We will go into this in more depth in the next chapter. However, before we move on to the
next chapter, we must understand how unmanaged threads work in relation to managed threads. That is to say, how
unmanaged threads (threads created outside of the .NET world) relate to instances of the managed Thr ead class, which
represent threads running inside the .NET CLR.

The .NET runtime monitors all threads that are created by .NET code. It also monitors all unmanaged threads that may execute
managed code. Since managed code can be exposed by COM-callable wrappers, it is possible for unmanaged threads to wander
into the .NET runtime.

When unmanaged code does execute in a managed thread, the runtime will check the TLS for the existence of a managed

Thr ead object. If a managed thread is found, the runtime will use that thread. If a managed thread isn't found, it will create one
and use it. It's very simple, but is necessary to note. We would still want to get an object representation of our thread no matter
where it came from. If the runtime didn't manage and create the threads for these types of inbound calls, we wouldn't be able to
identify the thread, or even control it, within the managed environment.

The last important note to make about thread management is that once an unmanaged call returns back to unmanaged code, the
thread is no longer monitored by the runtime.

‘ 48 FREY < Day Day Up >

www.EBookswWorld.ir



| 4 FREV | < Day Day Up >

Summary

We have covered a wide range of topics in this chapter. We covered the basics of what multitasking is and how it is accomplished
by the use of threads. We established that multitasking and free threading are not the same thing. We described processes and
how they isolate data from other applications. We also described the function of threads in an operating system like Windows. You
now know that Windows interrupts threads to grant execution time to other threads for a brief period. That brief period is called a
time slice or quantum. We described the function of thread priorities and the different levels of these priorities, and that threads will
inherit their parent process's priority by default.

We also described how the .NET runtime monitors threads created in the .NET environment and additionally any unmanaged
threads that execute managed code. We described the support for threading in the .NET Framework. The Syst em AppDomai n

class provides an additional layer of logical data isolation on top of the physical process data isolation. We described how threads
could cross easily from one AppDonai n to another. Additionally, we saw how an AppDonai n doesn't necessarily have its own

thread as all processes do.

m < Day Day Up > m

www.EBooksWorld.ir



[ & FrEv | < Day Day Up > | NEXT @ |

Chapter 2: Threading in .NET

Overview

In Chapter 1 we described what threading is. We covered a lot of the common ground that many may be familiar with already.
Knowing the what portion of threading is important. In this chapter, you will see how to implement some basic threading; however,
it is of equal, if not greater importance, to understand when to use threading.

By the end of this chapter, you will understand:
m The Syst em Thr eadi ng hamespace
m What design issues there are in the use of threads
m What resources are used by threads
m What are good opportunities for threading

m What mistakes to avoid when using threads

, 48 FREV | < Day Day Up >

www.EBooksWorld.ir



‘ 4 FREV

< Day Day Up >

System.Threading Namespace

We have already mentioned that threads in managed code are represented by a Syst em Thr eadi ng. Thr ead class instance. In
this section, we will discuss the Syst em Thr eadi ng namespace in depth, as well as its contents. The classes available in the
Syst em Thr eadi ng namespace are listed in the following table.

Class
Aut oReset Event

I nterl ocked

Manual Reset Event

Moni t or
Mut ex

Reader Wi t er Lock
Regi st er edWai t Handl e

Synchroni zati onLockExcepti on

Thr ead

Thr eadAbor t Excepti on

Thr eadExcepti onEvent Ar gs
Thr eadl nt er r upt edExcepti on
Thr eadPool

Thr eadSt at eExcepti on

Ti meout

Ti mer

Wi t Handl e

Description
This event notifies one or more waiting threads that an event has occurred.

This class protects against errors by providing atomic operations for variables
that are shared by multiple threads.

This event occurs when notifying one or more waiting threads that an event has
occurred.

This class provides a mechanism that synchronizes access to objects.

A synchronization primitive that grants exclusive access to a shared resource to
only one thread. It can also be used for inter-process synchronization.

This class defines a lock that allows single-writer and multiple-reader semantics.

This class represents a handle that has been registered when calling the
Regi st er Wi t For Si ngl eObj ect () method.

This exception is thrown when a synchronized method is invoked from an
unsynchronized block of code.

This class creates and controls a thread, sets its priority, and gets its status.
This exception is thrown when a call is made to the Abort () method.

This class provides data for the Thr eadExcept i on event.

This exception is thrown when a thread is interrupted while it is in a waiting state.

This class provides a pool of threads that can be used to post work items,
process asynchronous 1/O, wait on behalf of other threads, and process timers.

This is the exception that is thrown when a thread is in an invalid state for the
method call.

This class simply contains a constant integer used when we want to specify an
infinite amount of time.

This class provides a mechanism for executing methods at specified intervals.

This class encapsulates operating system-specific objects that wait for exclusive
access to shared resources.

We won't use all of these classes in this section, but it's useful to understand what this namespace makes available to us. The
other classes will be discussed in later chapters.

Thread Class

Right now, we are going to focus on the Thr ead class, since this class represents our processing threads. This class allows us to
do everything, from managing a thread's priority, to reading its status.

Let's start by looking at a table of this class's publ i ¢ methods.

www.EBookswWorld.ir



Public Method Name
Abort ()

Al | ocat eDat aSl ot ()

Al | ocat eNanedDat aS| ot ()

Fr eeNanedDat aSl ot ()
Cet Dat a()

CGet Donai n()
Get Domai nl D()
Get HashCode()

Cet NanedDat aSl ot ()
I nterrupt ()

Joi n()

Reset Abort ()
Resune()

Set Dat a()

Sl eep()

Spi NV t ()

Start()

Suspend()

Description

This overloaded method raises a Thr eadAbor t Except i on in the thread on which it is
invoked, to begin the process of terminating the thread. Calling this method usually
terminates the thread.

This static method allocates an unnamed data slot on all the threads.
This static method allocates a named data slot on all threads.
This static method frees a previously allocated named data slot.

This static method retrieves the value from the specified slot on the current thread,
within the current thread's current domain.

This static method returns the current domain in which the current thread is running.
This static method returns a unique application domain identifier.

This method serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

This static method looks up a named data slot.

This method interrupts a thread that is in the Wai t Sl eepJoi n thread state.
This overloaded method blocks the calling thread until a thread terminates.
This static method cancels an Abort () requested for the current thread.
This method resumes a thread that has been suspended.

This static method sets the data in the specified slot on the currently running thread, for
that thread's current domain.

This static and overloaded method blocks the current thread for the specified number of
milliseconds.

This static method causes a thread to wait the number of times defined by the iterations
parameter.

This method causes the operating system to change the state of the current instance to
Thr eadSt at e. Runni ng.

This method will either suspend the thread, or if the thread is already suspended, has no
effect.

Now let's look at another table, this time containing its publ i ¢ properties.

Public Property Name
Apartment St at e
Cur r ent Cont ext
CurrentCul ture
Current Princi pal
Current Thread
CurrentUl Cul ture

I sAlive

| sBackgr ound

| sThr eadPool Thr ead
Nanme

Priority

ThreadSt at e

Description

Sets or gets the apartment state of this thread.

This static property gets the current context in which the thread is executing.

Sets or gets the culture for the current thread.

This static property sets or gets the thread's current principal. It is used for role-based security.
This static property gets the currently running thread.

Used at run time, this property sets or gets the current culture used by the Resource Manager
to look up culture-specific resources.

Gets a value that indicates the execution status of the current thread.

Sets or gets a value that indicates whether a thread is a background thread or not.
Gets a value indicating whether a thread is part of a thread pool.

Sets or gets the name of the thread.

Sets or gets a value that indicates the scheduling priority of a thread.

i www.EBooksWarld.ir
Gets a value that contains the states of the current thread.



Again, we won't use all of these properties and methods in this chapter. We've seen these class members, but it does us little
good until we can at least create a thread - or a reference to one. So let's get our feet wet with a simple C# threading example.

Creating a Thread

We are going to use a simple example here. This isn't a good example of why you should use a new thread but it strips off all of
the complexities that will be covered later. Create a new console application with a file called si npl e_t hr ead. ¢cs and place the

following code in it:

usi ng System
usi ng System Thr eadi ng;

public class SinpleThread

{
public void SinpleMethod()
{
int i =5
int x = 10;
int result =i * x;
Consol e. WiteLine("This code cal cul ated the value " +
result.ToString() + " fromthread ID. " +
AppDorai n. Get Current Threadl d(). ToString());
}
public static void Main()
{
/1 Calling the nethod from our current thread
Si npl eThread si npl eThread = new Si npl eThread();
si npl eThr ead. Si npl eMet hod() ;
/1 Calling the method on a new t hread
ThreadStart ts = new ThreadStart (sinpl eThread. Si npl eMet hod) ;
Thread t = new Thread(ts);
t.Start();
Consol e. ReadLi ne();
}
}

Now save, compile, and execute the file. Your output should look something like this:

This code cal cul ated the value 50 fromthread id: 1400
This code cal cul ated the value 50 fromthread id: 1040

Let's walk through this simple example and make sure we understand what is happening here. As we have already established,
the threading functionality is encapsulated in the Syst em Thr eadi ng hamespace. As such, we must first import this namespace

into our project. Once the namespace is imported, we want to create a method that can be executed on the main (primary) thread
and on our new worker thread. We use Si npl eMet hod() in our example:

public void SinpleMethod()

{
int i = 5;
int x = 10;
int result =i * x;
Consol e. WiteLine("This code calculated the value " +
result.ToString() + " fromthread ID " +
AppDonei n. Get Current Threadl d() . ToString()) ;
}

As you can see, we are using the AppDomai n class that W&HERSARUEY I Chapter 1 to find out what thread we are running on.



This method, whenever it is executed, simply does a sum, and prints the result, along with a report of which thread the calculation
was performed on.

Our program's entry point is the Mai n() method. The first thing we do inside this method is execute our Si npl eMet hod()
method. This calls the method on the same thread as that on which the Mai n() method is running. The next part is important: we
get our first look at creating a thread. Before we can create a thread in C#, we must first create a Thr eadSt art delegate
instance. A delegate is really an object-oriented type-safe function pointer. Since we are going to tell a thread what function to
execute, we are essentially passing a function pointer to the thread's constructor. This is demonstrated in our application as
follows:

ThreadStart ts = new ThreadStart (sinpl eThread. Si npl eMet hod) ;

One thing to notice is that the method name is not accompanied by parentheses; it simply takes the method's name. Once we
have created our Thr eadSt art delegate, we can then create our Thr ead for execution. The only constructor for a Thr ead takes
an instance of the Thr eadSt art delegate. We again demonstrated this in our code with the following line:

Thread t = new Thread(ts);

We are declaring a variable calledt as a new Thr ead. The Thr ead class constructor takes the Thr eadSt art delegate as its
sole parameter.

On our next line we call the St art () method of the Thr ead object. This starts off a new execution thread, which begins by
invoking the Thr eadSt art delegate we passed into the constructor, which in turn invokes the method. We follow this up with
Consol e. ReadLi ne() so the program will wait on your key input before exiting our main thread:

t.Start();
Consol e. ReadLi ne() ;

When the method is executed this second time, we can see that the code is indeed executing on a different thread.

OK, so we've created a thread, but that doesn't really provide any insight into the power of threads. The fact that we are displaying
different thread IDs doesn't really do much - we haven't executed more than one thing at once yet. To see how we can use this
same threading code in a more realistic application, we are going to create another program that simulates a long process

executing in the background while another process executes in the foreground. Create a new console application and place this
code in a new file called do_sonet hi ng_t hr ead. cs:

usi ng System
usi ng System Thr eadi ng;

public class DoSonet hi ngThr ead

{

static void Worker Met hod()

{
for(int i =1; i < 1000; i++)
{

Consol e. WiteLine("Wrker Thread: " + i.ToString());

}

}

static void Main()
{
ThreadStart ts = new ThreadStart (Wrker Met hod) ;
Thread t = new Thread(ts);
t.Start();
for(int i =1; i < 1000; i++)
{

}

Consol e. WiteLine("Primary Thread: " + i.ToString());

www.EBookswWorld.ir



Consol e. ReadLi ne();

}
}

Your output may be somewhat different every time. The thread execution will be switched at different points in the loop every time.
But your concatenated results will look something like this:

Primary Thread: 1
Primary Thread: 2
Primary Thread: 3

Wor ker Thread: 743
Wor ker Thread: 744
Wor ker Thread: 745

Primary Thread: 1000

We won't walk through this code because it doesn't introduce any new coding techniques. However, as we can see, execution
time is shared between the two threads. Neither thread is completely blocked until the other finishes. Instead, each thread is given
a small amount of time to execute. After one thread has run out of execution time, the next thread begins executing in its time
slice. Both threads continue to alternate until execution is completed. Actually, there are more than just our two threads that are
alternating and sharing time slices. We aren't just switching between the two threads in our application. In reality, we are sharing
our execution time with many other threads currently running on our computer.

ThreadStart and Execution Branching

Take a look, once again, at the Thr eadSt art delegate we mentioned earlier. We can do some interesting work with these
delegates. Let's examine a quick example in a real-world scenario. Suppose that you want to perform some background routine
when a user launches an application. Depending on who is launching the application, you want to perform different routines. For
instance, let's say that when an administrator logs into an application, you want to run a background process that will gather report
data and format it. That background process will alert the administrator when the report is available. You probably wouldn't want to
perform the same reporting function for an ordinary user as you would for an administrator. This is where the object-oriented
nature of Thr eadSt art is useful.

Let's look at some example code. We aren't going to code the exact scenario described above, but we will show you how you can
branch based on a certain criteria defined in a Thr eadSt ar t . Create a new console application and place the following code in a
file called Thr eadSt art Br anchi ng. cs:

usi ng System
usi ng System Thr eadi ng;

public class ThreadStartBranching

{
enum User Cl ass
{
Cl assAdmi n,
Cl assUser
}
static void Adm nMet hod()
{
Consol e. Wi teLine("Admi n Method");
}
static void UserMet hod()
{
Consol e. WiteLine("User Method");
}

static void ExecuteFor(Userd ass uc)

{

www.EBookswWorld.ir



ThreadStart ts;
ThreadStart tsAdmin = new ThreadStart (Adm nMet hod) ;
ThreadStart tsUser = new ThreadStart (User Met hod) ;

i f(uc == Userd ass. Cl assAdnin)
ts = tsAdm n;

el se
ts = tsUser;

Thread t = new Thread(ts);

t.Start();
}
static void Min()
{

[/l execute in the context of an adm n user
Execut eFor (User C ass. C assAdni n) ;

/] execute in the context of a regular user
Execut eFor (User d ass. d assUser) ;

Consol e. ReadLi ne();

The output from the code is quite simple:

Adm n ©Met hod
User Met hod

We will detail some of the important points to observe here. First, you will notice that we created an enumeration of the types of
user that may be executing code:

enum User d ass

{

d assAdmi n,
Cl assUser

The next thing you'll notice is that we created two methods: Admi nMet hod() and User Met hod() . These would theoretically
execute a long series of instructions that would be completely different for the two different user types. In our case, we just want to
identify that they have run so we write them out to the console:

static void Adm nMet hod()

{

Consol e. Wi teLine("Adnm n Met hod");
}
static void User Met hod()
{

Consol e. Wit eLi ne("User Method");
}

The next thing you'll notice is that within the Execut eFor () method we declared a variable called ts as a Thr eadSt art class,
but didn't create an instance with the New keyword. We then created two new Thr eadSt ar t objects that point to the different
methods created above:

www.EBooksWorld.ir
ThreadStart ts;



ThreadStart tsAdmin = new ThreadStart (Adm nMet hod) ;
ThreadStart tsUser = new ThreadStart (User Met hod) ;

So, now we have two new Thr eadSt art objects and a variable that can hold an instance of a Thr eadSt art . Then we branch
our code with an | f statement and set our empty t s variable to the instance of the Thr eadSt ar t that coincides with our
business rule:

i f(uc == Userd ass. C assAdni n)
ts = tsAdnm n;

el se
ts = tsUser;

Lastly, we pass the dynamically assigned Thr eadSt art delegate to our Thr ead constructor to create a thread, and begin its
execution:

Thread t = new Thread(ts);
t.Start();

Thread Properties and Methods

As we showed in the beginning of this chapter, there are many properties and methods of the Thr ead class. We promised that
controlling the execution of threads was made much simpler with the Syst em Thr eadi hg hamespace. So far, all we have done
is create threads and start them.

Let's look at two more members of the Thr ead class; the S| eep() method and the | sAl i ve property. In Chapter 1 we said that
a thread may go to sleep for a time until it is clock-interrupted. Putting a thread to sleep is as simple as calling the static Sl eep()
method. We also stated that we could determine a thread's state. In the following example we are going to use the | sAl i ve
property to determine if a thread has completed its executions, and the Sl eep() method to pause the execution of a thread. Look
at the following code, t hr ead_sl eep. cs, where we will make use of both of these members:

usi ng System
usi ng System Thr eadi ng;

public class ThreadState

{

static void WrkerFunction()

{
string ThreadState;

for(int i =1; i < 50000; i++)
{
if(i %5000 == 0)
{
ThreadState = Thread. Current Thread. ThreadSt ate. ToStri ng() ;
Consol e. WiteLine("Worker: " + ThreadState);
}
}
Consol e. Wi teLi ne("Wrker Function Conplete");

}

static void Main()

{
string ThreadSt at e;

Thread t = new Thread(new ThreadStart (Wrker Function));

t.Start();
while(t.IsAlive)
{

Console. WiteLine("Still waiting. vhwasgaiswgidoack to sl eep.");
Thr ead. Sl eep(200);



}

ThreadState = t. ThreadState. ToString();

Consol e. WiteLine("He's finally done! Thread state is:
+ ThreadState);

Consol e. ReadLi ne();

Your output should look similar to the following (try experimenting with the values in the f or loop and passed to the sl eep()
method to see different results):

Still waiting. |'mgoing back to sl eep.
Wor ker: Runni ng

Wir ker: Runni ng

Wor ker: Runni ng

Wor ker: Runni ng

Wor ker: Runni ng

Wor ker: Runni ng

Wor ker: Runni ng

Wor ker: Runni ng

Wor ker: Runni ng

Wor ker: Runni ng

Wor ker Function Conpl ete

He's finally done! Thread state is: Stopped

Let's look at the Mai n() method where we have used our new concepts First, we create a thread and pass it the method we want
to execute as a delegate:

Thread t = new Thread(new ThreadStart (Wrker Function));
t.Start();

Notice that instead of creating a variable to hold our Thr eadSt art class, we simply created one on the fly and passed it as the
parameter of our Thr ead constructor. As usual, our Mai n() method continues to execute alongside our new thread as the
processor switches between them. Then we use the | sAl i ve property of our newly created thread to see if it is still executing.
We will continue to test this variable. While the worker thread is alive, the main thread will continue to sleep for 200 milliseconds,
wake up the thread, and test if our worker thread is still alive again:

whil e(t.IsAlive)

{
Console. WiteLine("Still waiting. |I'm going back to sleep.");

Thread. Current Thread. Sl eep(200);
}

Next we want to look at the Thr eadSt at e property that we have used twice in our code. The Thr eadSt at e property is actually a
property that returns an enumerated type. The enumeration tells you exactly what state the thread is in. We can either test this
property with an i f statement as we did in our last example or use the ToSt ri ng() method on the property and write out its

state in text form:

ThreadState = t. ThreadState. ToString();
Consol e. WiteLine("He's finally done! Thread state is:
+ ThreadState);

The rest of this code is standard and doesn't need to be reviewed. There are some important things to note. The first is that we tell
one thread to sleep for a specified period so that we yield execution to our other threads. We do that with the Thr ead object's

Sl eep() method - passing in the length of time in m|II|secV(v)V\r/1V$I§ th%t we C\{vant to the thread to sleep. In addition, we can test our
threads to see if they have finished executing by using the I sAl'i ve property Lastly, we can use the Thr eadSt at e property of



our thread instances to determine their exact thread state.

Thread Priorities

The thread priority determines the relative priority of the threads against each other. The Thr eadPri ori t y enumeration defines
the possible values for setting a thread's priority. The available values are:

m Hi ghest

= AboveNor nal
= Nor nal

= Bel owNor nal
= Lowest

When a thread is created by the runtime and it has not been assigned any priority then it will initially have the Nor mal priority.
However, this can be changed using the Thr eadPri ori t y enumeration. Before seeing an example for the thread priority, let's

see what a thread priority looks like. Let's create a simple threading example that just displays the name, state, and the priority
information about the current thread, t hread_priority.cs:

usi ng System
usi ng System Thr eadi ng;

public class ThreadPriority

{
public static Thread worker;
static void Main()
{
Consol e. WiteLine("Entering void Main()");
wor ker = new Thread(new ThreadStart (FindPriority));
/]l Let's give a nane to the thread
wor ker. Nane = "FindPriority() Thread";
wor ker. Start();
Console. WiteLine("Exiting void Main()");
}
public static void FindPriority()
{
Consol e. WiteLine("Nanme: " + worker. Name);
Consol e. WiteLine("State: " + worker.ThreadState. ToString());
Console. WiteLine("Priority: " + worker.Priority.ToString());
}
}

There is a simple method called Fi ndPri ori ty() that displays the name, state, and priority information of the current thread,
which produces output like the following:

Entering the void Min()
Exiting the void Min()
Nane: FindPriority() Thread
State: Runni ng

Priority: Nornal

We know the wor ker thread is running with a Nor mal priority. Let's add a new thread, and call our reporting method with a
different priority. Here's t hread_priority2. cs:

usi ng System
usi ng System Thr eadi ng;

. . . www.EBookswWorld.ir
public class ThreadPriority2



public static Thread worker;
public static Thread worker?2;

static void Min()

{
Consol e. WiteLine("Entering void Main()");
wor ker = new Thread(new ThreadStart (FindPriority));
wor ker2 = new Thread(new ThreadStart (FindPriority));

/1l Let's give a nane to the thread
wor ker. Nanme = "FindPriority() Thread";
wor ker2. Name = "FindPriority() Thread 2";

/1 Gve the new thread object the highest priority
worker2.Priority = System Threadi ng. ThreadPriority. H ghest;

wor ker. Start ();
wor ker2. Start();
Consol e. WiteLine("Exiting void Main()");
Consol e. ReadLi ne() ;
}

static public void FindPriority()

{
Consol e. WiteLine("Name: " + worker. Nane);
Consol e. WiteLine("State: " + worker. ThreadState. ToString());
Console. WiteLine("Priority: " + worker.Priority.ToString());

}

The output fromt hread_priority2. cs will be something like the following:

Entering void Min()

Nane: FindPriority() Thread2
State: Runni ng

Priority: Highest

Exiting void Min()

Nane: FindPriority() Thread
State: Running

Priority: Nornal

Threads are scheduled for execution based on the priority set using the Pri ori t y property. Every operating system will execute
a thread priority differently and the operating system could change the priority of the thread.

There is no way that our application can restrict the operating system from changing the priority of the thread that was
assigned by the developer, since the OS is the master of all threads and it knows when and how to schedule them. For
example, the priority of the thread could be dynamically changed by the OS due to several factors, such as system events
like user input that has higher priority, or lack of memory that will trigger the garbage-collection process.

Timers and Callbacks

We've seen some simple examples of threading. What we haven't covered at all is the issue of synchronization, although we will
cover that in much greater detail in the next chapter. As threads run out of sequence from the rest of the application code, we
cannot be certain that actions affecting a particular shared resource that occur in one thread will be completed before code in
another thread wants to access that same shared resource. There are various methods of dealing with these issues, but here we
will cover one simple way; the use of timers. Using a timer, we can specify that a method is executed at a specific regular interval,
and this method could check that the required actions have'heepeecHipleted before continuing. This is a very simple model, but
can apply to a variety of situations.



Timers are made up of two objects, a Ti ner Cal | back and a Ti mer . The Ti ner Cal | back delegate defines the method to be
called at a specified interval, whereas the Ti ner is the timer itself. The Ti mer Cal | back associates a specific method with the
timer. The Ti mer ' s constructor (which is overloaded) requires four arguments. The first is the Ti nmer Cal | back specified earlier.
The second is an object that can be used to transmit state across to the method specified. The last two arguments are the period
after which to start periodic method calls, and the interval between subsequent Ti mer Cal | back method calls. They can be
entered as integers or longs representing numbers of milliseconds, but as you will see below, an alternative is to use the

Syst em Ti meSpan object with which you can specify the intervals in ticks, milliseconds, seconds, minutes, hours, or days.

The easiest way to show how this works is by demonstration, so below we will detail an application that fires two threads. The
second thread will not perform its operations until the first has completed its operations; t hread_t i ner. cs:

usi ng System
usi ng System Thr eadi ng;
usi ng System Text;

public class TinerExanpl e

{
private string nessage;
private static Tiner tnr;
private static bool conplete;

Everything is straightforward above. We declare t nt as static and class-wide as it will be defined in the Mai n() method:

public static void Min()

{
Ti mer Exanpl e obj = new Ti mer Exanpl e() ;
Thread t = new Thread(new ThreadStart (obj. CGenerateText));
t.Start();

Ti mer Cal | back tnrCall Back = new Ti mer Cal | back( obj. Get Text);
tnr = new Tinmer(tnrCallBack, null, TineSpan. Zero,
Ti meSpan. Fr onSeconds(2));

Here we fire up a new thread that will execute on the Gener at eText () method, which iterates through a f or loop to generate a
string and store it in the class-wide message field:

do
{
if( conplete )
br eak;
} while(true);
Console. WiteLine("Exiting Main...");
Consol e. ReadLi ne();

The above loop just freezes the Mai n() loop until the conpl et e field ist r ue. In a GUI different methods could be used, as the
Appl i cation. Run() method puts the application in a perpetual loop anyway:

public void GenerateText ()
{

StringBuilder sb = new StringBuilder();

for(int i = 1; i < 200; i++)
{
sb. Append(sb. Length, "This is Line ");
sb. Append(sb. Length, i.ToString()); _
sb. Append(sb. Lengt h, System Envi ronr’r%Br??k.S\NOer\lﬁdlri ne);



}

message = sbh. ToString();

}

Above is the first method used, which just generates 200 lines of text using a St ri ngBui | der object, and then stores them in the
nmessage field.

public void GetText(object state)
{
i f(message == null)
return;
Consol e. WiteLine("Message is :");
Consol e. WiteLi ne(nmessage);
tnr. D spose();
conplete = true;

}

} /1 class

The last method used in this class is fired every two seconds by the timer. If message hasn't been set yet, then it exits; otherwise
it outputs a message and then disposes of the timer. This stops the timer from continuing to count. This should be performed as
soon as the timer is no longer necessary.

The output fromt hread_ti nmer. cs will be as follows:
Message is :

This is Line
This is Line 2

[

This is Line 199
This is Line 200

Exiting Main...

Spinning Threads with Threads

We've seen in code how to spawn a thread from the voi d Mai n() . In a similar way, we can also spawn multiple threads within a
thread. For example, let's say we have a Car class that has a publ i ¢ method called St art TheEngi ne() . The

St art TheEngi ne() method calls another three pri vat e methods called CheckTheBattery(), CheckForFuel (), and
CheckTheEngi ne() . Since each of these tasks, checking the battery, fuel, and engine, can happen simultaneously, we can run
each of these methods in a different thread. Here is how the Car class is implemented in t hr ead_spi nni ng. cs:

usi ng System
usi ng Syst em Thr eadi ng;

class Car

{
public void Start TheEngi ne()

{
Console. WiteLine("Starting the engine!");
/I Decl are three new threads
Thread batt = new Thread(new ThreadStart (CheckTheBattery));
Thread fuel = new Thread(new ThreadSt art (CheckFor Fuel ));
Thread eng = new Thread(new ThreadSt art (CheckTheEngi ne));

batt. Start(); www.EBooksWorld.ir
fuel.Start();



eng. Start();

for(int i = 1; i < 100000000; i ++)
{
/1 sonme real executing code here
}
Consol e. WiteLine("Engine is ready!");
}
private void CheckTheBattery()
{
Consol e. Wi teLine("Checking the Battery!");
for(int i = 1; i < 100000000; i++)
{
/1l some real executing code here
}
Consol e. Wi teLi ne("Fi nished checking the Battery!");
}
private void CheckForFuel ()
{
Consol e. Wi teLi ne(" Checking for Fuel!");
for(int i = 1; i < 100000000; i ++)
{
/1 some real executing code here
}
Consol e. WiteLine("Fuel is available!");
}
private void CheckTheEngi ne()
{
Consol e. Wi teLi ne("Checking the engine!");
for(int i = 1; i < 100000000; i ++)
{
/1l some real executing code here
}
Consol e. Wit eLi ne("Fini shed checking the engine!");
}

In the St art TheEngi ne() method, we create three threads and then start each of them one by one. Let's add an entry point to
our class so we can see some results of our code:

public static void Min()

{
Consol e. WitelLine("Entering void Main!");
int j ;
Car nyCar = new Car();
Thread worker = new Thread(new ThreadStart (nyCar. Start TheEngi ne));
wor ker. Start();
for(int i = 1; i < 100000000; i++)
{
/1
}
Consol e. WiteLine("Exiting void Main!");
Consol e. ReadLi ne();
}

In the void Mai n() method we simply create one more thread and execute the St art TheEngi ne() method in that thread, as

illustrated in Figure 1.
www.EBooksWorld.ir



AppDomain
Main Thread (Sub Main)
Car Thread (Car.StartTheEngine)

CheckTheBattery Thread
CheckForFuel Thread

CheckTheEngine Thread

Figure1

The output should look something like the following:

Entering void Min!

Exiting void Main!

Starting the engine!

Checking the Battery!

Checking for Fuel!

Checki ng the engi ne!

Fi ni shed checking the Battery!
Fuel is avail abl e!

Fi ni shed checki ng the engi ne!
Engi ne i s ready!

As you can see, each of these methods works in it's own thread and is executed in its own time-sliced slot.

Spinning Threads with Threads with Threads

We can split the Car class into separate classes and we could build two more methods in a new Engi ne class called check1()
and check2() . Then the Engi ne class will execute the check1() and check?2() methods in its own thread as shown in

Figure 2.

AppDaomain
Main Theead (Sub Main)

Car Theead (Car.StartThaEngine)

CheckThoBattery Theead
CheckPorFuel Thiead
Engine Throad (CheckThe Engine)

Checkl Thread | (Check? Thraad

Figure 2

We'll remove the CheckTheEngi ne() method from the Car class and create one more class called Engi ne; see
t hread_spi nni ng2. cs:

. www.EBooksWorld.ir
usi ng System



usi ng System Thr eadi ng;

cl ass Engi ne

{
public void CheckTheEngi ne()
{
Thread chckl = new Thread(new ThreadStart (Checkl))
Thread chck2 = new Thread(new Thr eadSt art ( Check?2));
chckl. Start();
chck2. Start();
Consol e. Wit eLi ne("Checking the engine!");
for(int i = 1; i < 100000000; i++)
{
/1l some real executing code here
}
Consol e. Wit eLi ne("Fini shed checking the engine!");
}
private void Checkl()
{
Consol e. WiteLine("Starting the engi ne check!!");
for(int i = 1; i < 100000000; i ++)
{
/1 some real executing code here
}
Consol e. Wi teLine("Fini shed engi ne checkl!");
}
private void Check2()
{
Consol e. WiteLine("Starting the engi ne check2!");
for(int i = 1; i < 100000000; i ++)
{
/1l some real executing code here
}
Consol e. Wi teLi ne("Fini shed engi ne check2!");
}
}

The Engi ne class has the public method CheckTheEngi ne() that creates two more threads and calls the check1() and
check?2() methods. Here is how the results may look:

Entering void Min!

Exiting void Min!

Starting the engine!

Checking the Battery!
Checki ng for Fuel!

Checki ng the engi ne!

Starting the engine check!
Starting the engi ne check?2!
Fi ni shed checking the Battery!
Fuel is avail abl e!

Engi ne is ready!

Fi ni shed engi ne check1l!

Fi ni shed checki ng t he engi ne!
Fi ni shed engi ne check?2!

As you can see, spawning threads from within threads is very easy. However, you may be interested in knowing the
disadvantages: as the number of active threads goes up, HE"HHBINARSE degrades.



Performance Considerations

The more threads you create, the more work the system has to do to maintain the thread contexts and CPU instructions. The
Processes tab of the Windows Task Manager will tell you how many processes and threads are currently running. However, these
will be OS processes and they're not equivalent to the AppDonai ns. You can also look at the running threads while debugging a

given .NET application by using the threads window.

If we want to know how many threads are running inside the CLR then you have to use the Windows Performance Monitor tool
and add a couple of CLR-specific performance categories. The CLR exposes a performance counter category called .NET CLR
LocksAndThreads and we can use this category to get more information about the CLR-managed threads. Let's run the
Performance Monitor and add the counters shown in the following table from the .NET CLR LocksAndThreads category.

Performance Counter Description

# of current [ ogical This counter displays the number of current managed threads in the application and

Thr eads includes both the running and stopped threads.

# of current physical This counter displays the number of OS threads created and owned by the CLR. This

Thr eads counter may not map one to one with managed threads.

# of total recognized This counter displays the number of current threads recognized by the CLR

t hr eads

Current Queue Length This counter displays number of threads that are waiting to acquire locks in the managed
application.

Total # of This counter displays the number of failures when the managed applications try to acquire

Cont enti ons locks.

Here is how the values looks for our t hr ead_spi nni ng2 application:

5 Performande == =181 x|
e pe— D@l @ 18]
keton Wew Bavortes ||+~ = | B(W &

Tree | Pavcrites |

| Corscds Rk
=51 System Monior AN NG

- s e LS - HET TR LodeshndThreacs Hobal_
& Performancs Logs and Mt o bogical T LG5
& of aurrent pivskcal Threads =T ]
& al tatal recognize oo
Current Queuse Length 0000
Total & of Contemionm ELEE

Here is a comprehensive overview of the ".NET CLR LocksAndThreads" performance counter information.

| 4m FREY < Day Day Up > | NEXT

The counter # of current local Threads specifies that 11 managed threads are created and owned by the CLR

Since we've added the counter instance " Global ", we see all the threads created by the CLR.

The counter # of current physical Threads specifies that 8 OS threads are created and owned by the CLR

The counter # of total recognized Threads specifies that 3 OS threads are recognized by the CLR and they're created by the
Thread object

The counter Total # of Contentions specifies that the runtime did not fail when it tried to acquire managed locks. Managed lock
fails are bad for the execution of code

www.EBookswWorld.ir



‘ 4 FREV < Day Day Up >

Lifecycle of Threads

When a thread is scheduled for execution it can go through several states, including unstarted, alive, sleeping, etc. The Thr ead

class contains methods that allow you to start, stop, resume, abort, suspend, and join (wait for) a thread. We can find the current
state of the thread using its Thr eadSt at e property, which will be one of the values specified in the Thr eadSt at e enumeration:

m Abort ed - The thread is in the stopped state, but did not necessarily complete execution

m Abort Request ed - The Abort () method has been called but the thread has not yet received the
Syst em Thr eadi ng. Thr eadAbor t except i on that will try to terminate it - the thread is not stopped but soon will be.

m Background - The thread is being executed in the background

m Runni ng - The thread has started and is not blocked

m St opped - The thread has completed all its instructions, and stopped

m St opRequest ed - The thread is being requested to stop

m Suspended - The thread has been suspended

m SuspendRequest ed - The thread is being requested to suspend

m Unstarted-The Start () method has not yet been called on the thread

m Wit Sl eepJoi n - The thread has been blocked by a calltoWait (), Sleep(), orJoin()

Figure 3 shows the lifecycle of a thread. Figure 3.

Figure 3

In this section, we'll explore the lifecycle of threads.

Putting a Thread to Sleep

When we create a new thread we have to call the St art () method of the Thr ead object to schedule that thread. At this time, the
CLR will allocate a time slice to the address of the method passed to the constructor of the Thr ead object. Once the thread is in
the Runni ng state, it can go back to either the Sl eep or Abort states when the OS is processing the other threads. We can use
the Sl eep() method of the Thr ead class to put a thread to sleep. The Sl eep() method is really useful if you are waiting for a
resource and you want to retry for it. For example, let's say your application cannot proceed due to unavailability of a resource that
it is trying to access. You may want your application to retry to access the resource after few milliseconds, in which case the

Sl eep() method is a good way to put the thread to sleep for a specified time before the application retries to access the
resource.

The overloaded Sl eep() method is available in two flavors. The first overload takes an integer as the parameter that will
suspended the thread for number of milliseconds specified. For example, if you pass 100 to the parameter the thread will be
suspended for 100 milliseconds. This will place the thread into the Wi t S| eepJoi n state. Let's see an example for this,

t hr ead_sl eep2. cs:

. www.EBookswWorld.ir
usi ng System



usi ng System Thr eadi ng;

public class ThreadSl eep

{
public static Thread worker;
public static Thread worker?2;
public static void Main()
{
Consol e. WiteLine("Entering the void Main!");
wor ker = new Thread(new ThreadStart (Counter));
wor ker2 = new Thread(new ThreadStart (Counter?2));
/1l Make the worker2 object as highest priority
worker2. Priority = System Threadi ng. ThreadPriority. H ghest;
wor ker. Start ();
wor ker2. Start();
Console. WiteLine("Exiting the void Main!");
}
public static void Counter()
{
Consol e. WiteLine("Entering Counter");
for(int i = 1; i < 50; i++)
{
Console. Wite(i + " ");
if(i == 10)
Thr ead. Sl eep(1000) ;
}
Consol e. WiteLine();
Consol e. WitelLine("Exiting Counter");
}
public static void Counter2()
{
Consol e. WiteLine("Entering Counter2");
for(int i = 51; i < 100; i++)
{
Console. Wite(i + " ");
if( i ==170)
Thr ead. Sl eep(5000);
}
Consol e. Wi teLine();
Consol e. WiteLine("Exiting Counter2");
}
}

The Count er () method counts numbers from 1 to 50 and when it reaches 10 it sleeps for 1000 milliseconds. The Count er 2()
method counts from 51 to 100 and when it reaches 70 it sleeps for 5000 milliseconds. Here is how the output might look:

Entering the void Min!

Enteri ng Counter?2

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 EXiting
the void Min!

Ent eri ng Counter

1234567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
50

Exiting Counter

www.EBookswWorld.ir



71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 100
Exi ting Counter?2

The second overload takes a Ti neSpan as parameter and, based on the Ti meSpan value, the current thread will be suspended.
The Ti meSpan is a structure defined in the Syst emnamespace. The Ti neSpan structure has a few useful properties that return
the time interval based on clock ticking. We can use public methods such as Fr onSeconds() and Fr omM nut es() to specify
the sleep duration. Here is an example, t hr ead_sl eep3. cs:

public static void Counter()
{

for(i = 1; i < 50; i++4)
{
Console. Wite(i + " ");
if(i == 10)
Thr ead. Sl eep( Syst em Ti meSpan. FronSeconds( 1))

public static void Counter2()
{

for(int i = 51; i < 100; i++)
{
Console. Wite(i + " ");

if( i ==70)
Thr ead. Sl eep(5000) ;

The output will be similar to that of t hr ead_sl eep2.

Interrupting a Thread

When a thread is put to sleep, the thread goes to the Wi t SI eepJoi n state. If the thread is in the sleeping state the only way to
wake the thread, before its timeout expires, is using the | nt er rupt () method. The | nt er rupt () method will place the thread
back in the scheduling queue. Let's see an example for this, t hread_i nterrupt . cs:

usi ng System
usi ng Syst em Thr eadi ng;

public class Interrupt

{

public static Thread sl eeper;
public static Thread worker;

public static void Main()
{
Consol e. WiteLine("Entering the void Main!");

sl eeper = new Thread(new ThreadSt art (Sl eepi ngThread));
wor ker = new Thread(new ThreadSt art (AwakeTheThr ead));

sl eeper. Start();
wor ker. Start ();

Consol e. WiteLine("Exiting the voivgwodksWorid.ir



public static void Sl eepingThread()

{

}

for(int i =1; i < 50; i++)
{
Console. Wite(i + " ") ;
if(i == 10 || i == 20 || i == 30)
{
Console. WiteLine("Going to sleep at: " + i);
Thr ead. Sl eep(20);
}

public static void AwakeTheThread()

{

for(int i

{

Console. Wite(i + "

= b1,

i < 100; i++)

"),

i f(sleeper. ThreadState ==
System Threadi ng. ThreadSt at e. Wi t Sl eepJoi n)

{

Consol e. WiteLine("Interrupting the sl eeping thread");
sl eeper.Interrupt();

In the above example, the first thread ( sl eeper) is put to sleep when the counter reaches 10, 20, and 30. The second thread
(wor ker) checks if the first thread is asleep. If so, it interrupts the first thread and places it back in the scheduler. The

I nt errupt () method is the best way to bring the sleeping thread back to life and you can use this functionality if the waiting for
the resource is over and you want the thread to become alive. The output will look similar to the following:

Entering the Sub Min!

Exiting the Sub Mi n!

51
74
97
11
21
31

52
75
98
12
22
32

53
76
99
13
23
33

54 55
77 78
100 1
14 15
24 25
34 35

56 57
79 80
234
16 17
26 27
36 37

58 59
81 82
567
18 19
28 29
38 39

60 61 62 63 64 65 66 67 68 69 70 71 72 73
83 84 85 86 87 88 89 90 91 92 93 94 95 96
8 9 10 Going to sleep at: 10

20 Going to sleep at: 20

30 Going to sleep at: 30

40 41 42 43 44 45 46 47 48 49 50

Pausing and Resuming Threads

The Suspend() and Resune() methods of the Thr ead class can be used to suspend and resume the thread. The Suspend()
method will suspend the current thread indefinitely until another thread wakes it up. When we call the Suspend() method, the
thread will be place in the SuspendRequest ed or Suspended state.

Let's see an example for this. We'll create a new C# application that generates prime numbers in a new thread. This application
will also have options to pause and resume the prime number generation thread. To make this happen let's create a new C#
WinForms project called Pri neNunber s and build a Ul like this in For .

www.EBookswWorld.ir



Morimetumbers 10 %]
Prime Humbers:

£] n [3 n = EiE] (=] =y
3 73 T3 an T ] E4 TE
3] 74 74 0 4 521 B3 TES
7 ] a 3 403 523 47 m
n -] 9N =0 a3 541 =x] a7
13 ar 13 =7 21 47 653 AT
17 1m EH amn 5] EE7 EE [Eic]
19 103 ] M3 41 553 ] B
123 07 n n7 41 =] BT B2
9 [} s amn 43 5N B3 B
€} 13 = a7 443 5 [25) &7
i 127 e M7 457 &y i)

M1 k| pcx} 3 451 83 A

M3 137 | 33 453 53 s

47 ko) 20 k) = B rrird

£ 143 =51 =7 479 E7 b}

2] 151 =7 £re) 97 E13 ]

3 157 3 e 4 5] 43

k7 163 3 =3 499 B19 7

] Paue | [ |

We have a Li st Box and three command buttons in the Ul. The Li st Box is used to display the prime numbers and three
command buttons are used to start, pause, and resume the thread. Initially we've disabled the pause and the resume buttons,
since they can't be used until the thread is started. Let's see what the code is going to look like. We've declared a class-level
Thr ead object that is going to generated prime numbers.

usi ng System

usi ng System Drawi ng;

usi ng System Col | ecti ons;

usi ng Syst em Conponent Model ;
usi ng System W ndows. For 1rs;
usi ng System Thr eadi ng;

nanespace Chapter_02

{

public class Forml : System W ndows. Forms. Form
{

/1 private thread variabl e

private Thread prinmeNunber Thr ead;

Double-click on the Start command button and add the following code.

private void cndStart Cdick(object sender, System EventArgs e)
{
/] Let's create a new t hread
pri meNunber Thread = new Thr ead(
new ThreadStart (GeneratePrineNunbers));

/!l Let's give a nane for the thread
pri meNunber Thread. Name = "Pri ne Nunbers Exanpl e";

pri meNunmber Thread. Priority = ThreadPriority. Bel owNor mal ;

/! Enabl e the Pause Button
cndPause. Enabl ed = true;
/! Disable the Start button
cndSt art. Enabl ed = fal se;

/1 Let's start the thread
pri meNunber Thread. Start () ;

All the Start button does is create a new Thr ead object with the Thr eadSt art delegate of the Gener at ePri meNunber s()
method and assign the name Pri me Nunber Exanpl e to the thread. Then it enables the Pause button and disables the Start
button. Then it starts the prime number generating thread wsingethessbadit method of the Thr ead class.



Let's double-click on the Pause button and add the following code.

private void cndPause Cick(object sender, System EventArgs e)
{

try

{

try

{

/1 If current state of thread is Running,
/1 then pause the Thread
i f (prinmeNunberThread. ThreadState ==

Syst em Thr eadi ng. Thr eadSt at e. Runni ng)

{

/I Pause the Thread
pri meNunber Thr ead. Suspend() ;

//Di sabl e the Pause button
cndPause. Enabl ed = fal se;

// Enabl e the resume button
cndResune. Enabl ed = true;
}
}
cat ch(ThreadSt at eExcepti on Ex)
{
MessageBox. Show( Ex. ToString(), "Exception",
MessageBoxButt ons. OK, MessageBoxl| con. Error,
MessageBoxDef aul t But t on. Butt onl);

The Pause button checks if the thread is in the Runni ng state. If it is in the Runni ng state, it pauses the thread by calling the
Suspend method of the Thr ead object. Then it enables the Resume button and disables the Pause button. Since the Suspend
method can raise the Thr eadSt at eExcept i on exception, we're wrapping the code withinatry. .. cat ch block.

Double-click on the Resume button and add the following code.

private void cndResurme O ick(object sender, System EventArgs e)
{
i f(prinmeNunberThread. ThreadState ==
System Thr eadi ng. Thr eadSt at e. Suspended | |
pri meNunber Thr ead. ThreadState ==
Syst em Thr eadi ng. Thr eadSt at e. SuspendRequest ed)

try
{

/1 Resume the thread
pri meNumber Thr ead. Resune() ;

/! Disable the resune button
cndResune. Enabl ed = fal se;

// Enabl e the Pause button
cndPause. Enabl ed = true;

}
cat ch(Thr eadSt at eExcepti on Ex)

{
MessageBox. Show( Ex. ToString(), "Exception",
MessageBoxButt ons. K, MessageBoxl con. Error,

MessageBoxDef aul t But t on. But t on1):  voridir



The Resume button checks if the state of the thread is Suspended or SuspendRequest ed before resuming the thread. If the
state of the thread is either Suspended or SuspendRequest ed then it resumes the thread and disables the Resume button and
enables the Pause button.

Well, so far our business logic is ready. Let's see the code that generates the prime numbers. Since our main aim is to use
multithreading and not prime nhumber generation, I'm not going to go deep into the code. The Gener at ePri meNunber s()
method generates the first 255 prime numbers starting from 3. When the method finds a prime number it'll add the new prime
number to an array as well as to the listbox. The first prime number, 2, will be automatically added to the listbox. Finally, the
method will enable the Start button and disable the Pause button.

public void GeneratePrineNunbers()
{
| ong | ngCount er;
| ong | ngNunber ;
| ong | ngDi vi deByCount er;
bool bl nlsPri me;
long[] PrinmeArray = new | ong[ 256];

/!l initialize variables
| ngNunber = 3;
| ngCounter = 2;

/1l We know that the first prine is 2. Therefore,
/l let's add it to the list and start from 3
PrinmeArray[1] = 2;

I stPrinme.ltens. Add(2);

whi | e(I ngCounter < 256)
{

bl nlsPrine = true;

[l Try dividing this nunber by any already found prime
/1 which is smaller then the root of this nunber.
for(l ngDi videByCounter = 1; PrineArray[l ngD vi deByCounter]
* PrinmeArray[l ngDivideByCounter] <= | ngNunber;
I ngDi vi deByCount er ++)
{
i f (1 ngNunber % PrinmeArray[l ngDi vi deByCounter] == 0)
{
/1 This is not a prinme nunber
bl nl sPrine = fal se;
/1 Exit the | oop break;

}
}

/[l 1f this is a prime nunber then display it
i f(blnlsPrine)
{
/1 Guess we found a new prine.
PrimeArray[ |l ngCounter] = | ngNunber;
/'l Increase prinme found count.
| ngCount er ++;
I stPrime.|tens. Add(Il ngNunber);
/1 Let's put the thread to sleep for 100 m|liseconds.
/1 This will simulate the tine lag and we'll get tine
/1l to pause and resune the thread
Thread. Sl eep(100);

www.EBookswWorld.ir



/1l I ncrenent nunber by two
| ngNunmber += 2;
}
// Once the thread is finished execution enable the start
/1 and di sabl e the pause button
cndSt art . Enabl ed true;
cndPause. Enabl ed = fal se;

Well everything is ready now. Let's run the code and see how our application looks.

o=
Priene Wambers:
L1 2
Siant

Well, everything looks good now and the code is apparently working fine. But there is a huge flaw in our code. When the

Gener at ePri meNunber s() method finds a prime number it adds the prime number back to the listbox control. It may not look
like a problem for you if this code is running in a synchronized execution manner where both the prime number generation code
and the user interface are running on the same thread. But in our example, the Ul is running in a different thread from the
Cener at ePri neNunber s() method. Therefore, when we go between threads to write data this could cause some unexpected
behaviors in our application.

The best way to address this problem is using delegates. We can declare a delegate and we can use the delegate to inform the Ul
thread to update the listbox control itself. In this way, we're not crossing the threading boundaries and the application stability is
not compromised.

Let's see how we can implement this operation. Let's add one more public delegate called Updat eDat a:

public del egate void UpdateData(string returnVval);

Let's modify the Gener at ePri meNunber s() method a little bit to call the delegate from it. We've added a new string array with
the initial value as 2, since the first prime number is 2. Then we've declared a new object of the type Updat eDat a as a delegate
and we've passed the address of the Updat eUl method. Then we've used the t hi s. | nvoke method with the delegate object
and the string array to inform the user interface to update itself. We've done the same when we found a prime number.

For nl is represented as t hi s in this context.

public void CeneratePrimeNurbers()
{
l ong | ngCount er;
 ong | ngNunber ;
[ ong | ngDi vi deByCount er;
bool bl nlsPri ne;
long[] PrineArray = new | ong[255] ;
string[] args = new string[] {"2"};
Updat eData Ul Del = new Updat eDat a( Updat eUl ) ;
www.EBooksWorld.ir



this. I nvoke(U Del, args);

whi | e(1 ngCount er <= 255)
{

[/ If this is a prine nunber then display it
i f(blnlsPrinme)
{
/1 Guess we found a new prine.
PrimeArray[ | ngCounter] = | ngNunber;
/1 1ncrease prime found count.
| ngCount er ++;

args[ 0] = I ngNunber. ToString();
this.lnvoke(Ul Del, args);

The Updat eUl () method simply accepts the value that needs to be added to the listbox in its parameter and adds the value to
the listbox. Since the Updat eUl method runs in the Ul thread there are no cross-boundary thread updates and the stability of our
application is not compromised:

void UpdateUl (string result )
{

}

IstPrime.ltens. Add(result);

Destroying Threads

The Abort () method can be used to destroy the current thread. The Abort () method would be very useful, if you want to
terminate the thread for whatever reason, such as the thread is taking too much time to execute or the user has changed their
mind by selecting cancel. You might want this behavior in a search process that takes a long time. A search may continue running
but the user may have seen the results they wish to see and discontinue the thread that is carrying on the search routine. When
Abort () is called against a thread, the Thr eadAbor t Except i on exception will be raised. If it isn't caught in any code in the
thread, then the thread will terminate. Think twice before writing generic exception handling code inside methods that will be
accessed in a multithreaded context, since acat ch (Excepti on e) will also catch Thr eadAbor t Except i ons - from which
you probably don't want to recover. As we'll see, Thr eadAbor t Except i on isn't so easily stopped, and your program flow may
not continue as you expect it to.

Let's see an example for this. We're going to create a new project called Destroying and we'll copy the code from the previous
prime number generation code into the new For mL. cs cl ass. Let's add one more Stop button to the Ul like this.

www.EBookswWorld.ir



T
Prime Humbers
4] LA
Shan

Let's add the following code into the Stop button.

private void cnmdStop Cick(object sender, System EventArgs e)
{

// Enable the Start button and disable all others

cndSt op. Enabl ed = fal se;

cndPause. Enabl ed = fal se;

cndResune. Enabl ed = fal se;

cndStart. Enabl ed = true;

/1 Destroy the thread

pri meNunber Thr ead. Abort () ;

This example is very similar to the previous example. The only difference is that we're using the Abor t () method to destroy the
thread when the user clicks on the Stop button. Then we're enabling the Start button and disabling all other buttons. You might also
note that the Thr eadAbor t Except i on is a special exception. Like all other exceptions it can be caught. However, once the

cat ch block has completed, the exception will automatically be raised again. When the exception is raised, the runtime executes
all the finally blocks before killing the thread.

Joining Threads

The Joi n() method blocks a given thread until the currently running thread is terminated. When we call the Joi n() method
against a given thread instance, the thread will be placed in the Wai t S| eepJoi n state. This method is very useful, if one thread
is dependent upon another thread. By simply joining two threads we are saying that the thread that is running when the Joi n()
method is called will enter the Wi t SI eepJoi n state and not return to the Runni ng state until the thread upon which the

Joi n() method was called completes its tasks. This may sound a bit confusing, but let's see an example for this in the following
code sample, t hread_j oi ni ng. cs:

using System
usi ng System Thr eadi ng;
nanmespace Chapter_02

{

public class Joini ngThread
{
public static Thread SecondThread;
public static Thread FirstThread;
static void First()
{
for(int i = 1; i <= 250; i++)
Console. Wite(i + " ");
}

static void Second()

{

First Thread. Joi n(); www.EBooksWorld.ir



for(int i = 251; i <= 500; i++)
Console. Wite(i + " ");
}

public static void Main()

{
First Thread = new Thread(new ThreadStart(First));
SecondThread = new Thread(new ThreadStart (Second));

First Thread. Start();
SecondThread. Start ();

In this simple example, the aim is to output numbers to the console sequentially, starting at 1 and finishing at 500. The Fi r st ()
method will output the first 250 numbers and the Second() method will produce those from 251 to 500. Without the

Fi rst Thread. Joi n() line in the Second() method, execution would switch back and forth between the two methods and our
output would be scrambled (try commenting out the line and running the example again). By calling the Fi r st Thr ead. Joi n()
method within the Second() method, the execution of the Second() method is paused until the execution of whatever is in

Fi rst Thr ead (the Fi r st () method) has completed.

The Joi n() method is overloaded; it can accept either an integer or a Ti meSpan as a single parameter and returns a Boolean.

The effect of calling one of the overloaded versions of this method is that the thread will be blocked until either the other thread
completes or the time period elapses, whichever occurs first. The return value will be t r ue if the thread has completed and f al se

if it has not.

tm < Day Day Up > m

www.EBookswWorld.ir



[ & FREY < Day Day Up > | NEXT P

Why Not Thread Everything?

We've seen several very useful benefits to threading; we can have several processes running at once, and several threads
running within those processes. So, with all these benefits, why don't we just use new threads for all of our methods? Wouldn't that
just make everything run fast? Not really. As a matter of fact, we will see in this section that quite the opposite can happen if we
overuse threading.

Multithreaded applications require resources. Threads require memory to store the thread-local storage container. As you can
imagine, the number of threads used is limited by the amount of memory available. Memory is fairly inexpensive these days so
many computers have large amounts of memory. However, you should not assume that this is the case. If you are running your
application on an unknown hardware configuration, you cannot assume that your application will have enough memory.
Additionally, you cannot assume that your process will be the only one spawning threads and consuming system resources. Just
because a machine has a lot of memory, doesn't mean it's all for your application.

You will also discover that each thread also incurs additional processor overhead. Creating too many threads in your applications
will limit the amount of time that your thread has to execute. Therefore, your processor could potentially spend more time switching
between threads as opposed to actually executing the instructions that the threads contain. If your application is creating more
threads, your application will gain more execution time than all the other processes with fewer threads.

To make this concept easier to understand, take the parallel example you'll find down at your local grocery store. Two cashiers are
scanning groceries for their customers. However, there is only one bagger, who takes turns switching between the two cashiers.
The bagger is rather efficient at jumping back and forth between the two registers and bagging the groceries because they don't
pile up any faster than the bagger can bag the groceries. However, if two more cashiers open up lanes, it will become apparent
that the bagger will spend more time jumping back and forth between the registers than they spend actually bagging groceries.
Eventually, the store will need to get another bagger. In the case of threading, think of the cashiers as applications - or threads,
and the bagger as a processor. The processor has to switch between threads. As the "threads" increase, the grocery store has to
add another "processor" to be sure that the customers get the attention they need.

The phrase "too many threads" is a rather generic term - and rightly so. What constitutes "too many" on one system could be fine
on another. Since hardware configurations largely dictate the number of threads available on a system, "too many" is an
unquantifiable variable without specific configuration details and lots of testing.

It is for these reasons that Microsoft recommends that you use as few threads as possible in your applications. This limits the
amount of resources required by the operating system.

[ .‘ PREY < Day Day Up > | ME®T ‘

www.EBookswWorld.ir



‘ 48 FREV < Day Day Up >

Threading Opportunities

So, now | may have you wondering why we would thread at all if it could potentially have a negative impact on our application. The
idea is that you will learn there is a time and place for threading. Learning which circumstances represent good opportunities to
spawn a new thread is the key to making good design decisions. There are two distinct opportunities for which to consider
spawning a new thread. In this section, we will discuss what those opportunities are.

Background Processes

The first opportunity to spawn a new thread occurs when your application needs to run a large process in the background while
still keeping its user interface active and usable. We have all run into times when an application just didn't seem to respond
because we had told it to query data or process a large piece of information. Take, for example, the case of professional graphics
packages that are required to render graphics into a specific file format. In early versions of some products, asking the application
to render a large graphic would result in the application becoming unresponsive until the rendering process had finished. You'd
often have to finish working with the application, then set it to render overnight - coming back in the morning to see if the results
were what you expected - because sitting and waiting in front of the computer for an hour was just not viable. This problem
presents an ideal time to set a background thread to do your computer-intensive processing while leaving your user interface to
run on the main application thread.

Let's take a look at an example of a background process that needs to spawn a new thread. This example demonstrates
searching for files. When the search routine finds a file matching the pattern specified, it adds a new item to the Li st Box.

I L:H'q'.ﬂhl or Files nglil
[ Single Thread Wi Thread

] Swanch

The code below will demonstrate that this method does indeed need its own thread:

usi ng System Thr eadi ng;
using System |G
public class Threaded Search : System W ndows. Forns. Form
{
string search;
int fileCount;
private void cndSingle dick(object sender, System EventArgs e)
{
Search();

}

public void Search()

{
search = Text Box1. Text;
Li stBoxl.Items. C ear();
fileCount = O;
SearchDirectory(@C:\winnt");

} www.EBookswWorld.ir



public void SearchDirectory(string Path)

{
/1l Search the directory
Directorylnfo di = new Directorylnfo(Path);
Filelnfo[] f = di.GetFiles(search);

Li st Box1. Begi nUpdat e() ;

foreach(Filelnfo nyFile in f)
Li st Box1. | tens. Add(nyFi |l e. Ful | Nane) ;

Li st Box1. EndUpdat e() ;

/] Search its sub directories
Directorylnfo[] d = di.GetDirectories();

foreach(Directorylnfo nyDir in d)
SearchDi rectory(nyDi r. Ful | Nare) ;

Go ahead and compile this example and run it. Type a search term in the search textbox, such as * .*, click the Single Thread
Search button, and observe our problem. As you will see, we are searching for files and trying to update the user interface every
time we find a file with our search criteria. However, because both the user interface and the search code are running on the same
thread, we don't see the updates until the search code has completely finished its processing. Additionally, we cannot resize our
form while the search is processing.

This rather long piece of code is actually a very simple demonstration. Let's see if we can correct this problem with a simple
change. In the But t on2_dl i ck routine, add the following code to call the Sear ch() method with the use of a new thread:

private void cndMulti dick(object sender, System EventArgs e)
{

Thread t = new Thread(new ThreadStart (Search));

t.Start();

}

Now recompile and run the program again. This time, type in the same search term and click the Multi Thread Search button. You
can see that there is quite a difference. This time our results are displayed immediately. This is because Windows is now
switching execution back and forth between the user interface and the search thread. The processor is how given a time slice to
update the interface to reflect the changes in the ListBox. You will also notice that we can now resize our form while it is
searching.

There are other background processes that may cause our interface to be unresponsive. We might want to do some intense
processing, such as searching, sorting, formatting, parsing, and filtering a large number of records in a database. This would be
another opportunity to consider using a new thread. You may also want to spawn a new thread if you want to run a routine that is
constantly logging information. The user interface won't necessarily be unresponsive in this instance, but it may appear slow or
sluggish if this type of routine isn't on its own thread.

Accessing External Resources

The second circumstance in which you might want to consider spawning a new thread occurs when you are accessing resources
that are not local to your system. This might be a database process or a network file share somewhere on your network. In such
cases, network performance could adversely affect your application performance.

Let's take the following example. We are going to connect to a database in this example. Let's assume that network performance
is poor and may cause this application to be slow. Let's also assume that company policy dictates that no applications can be
installed on the database server:

usi ng System Thr eadi ng;
using System | Q www.EBooksWorld.ir
usi ng System Dat a;



usi ng System Data. Sql dient;

nanespace Chapter 02

{
public class Threaded Resource : System W ndows. Forns. Form
{
public void Buttonl Cdick(object sender , System EventArgs e)
{
QueryData();
}
public void QueryData()
{
Sql Dat aReader obj Reader;
Sql Connecti on obj Conn;
Sqgl Command obj Conmmand;
i nt intEnpl oyeel D
string strFirstNaneg;
string strTitle;
int intReportsTo;
obj Conn = new Sql Connecti on("server =Renot eServer;" +
" Ul D=Renot eUser ; PAD=Passwor d; dat abase=nort hwi nd") ;
obj Command = new Sql Command(" SELECT Enpl oyeel D, FirstNane, " +
"Title, ReportsTo FROM Enpl oyees", obj Conn);
obj Conn. Open();
obj Reader = obj Command. Execut eReader (
CommandBehavi or . Cl oseConnection );
whi | e (obj Reader. Read())
{
i nt Enpl oyeel D = obj Reader. Get I nt 32(0);
strFirstNane = obj Reader. GetString(1);
strTitle = objReader. GetString(2);
i f(obj Reader.|sDBNull (3))
i nt ReportsTo = O;
el se
i nt ReportsTo = obj Reader. Getl nt 32(3);
[istBox1.Itens. Add(i nt Enpl oyeel D. ToString() + " " +
strFirstNane + " " + strTitle + " " +
i nt ReportsTo. ToString());
}
obj Reader . d ose();
obj Conn. d ose();
}
public static void Main()
{
Application. Run(new Threaded_Resource());
}
}
}

As you can see in this example, all we are doing is querying a remote database. The data returned will not be excessive, but you
will notice that the user interface freezes while it takes time to get the data and update the listbox. We can again correct this by
simply spawning a new thread and executing our database code within that thread. Let's add a second button and use the
following code:

private void button2 dick(object sender, System EventArgs e)
{
Thread t = new Thread(new ThreadSt arWt\AKN(gé%cr) oerqr));
t.Start(); ' '



Now when we run the code, we get a result similar to our last example. We can resize the form while the query runs. The interface
is responsive throughout the entire query process.

Of course, | want to reiterate that this doesn't necessarily mean you should spawn a new thread every time you connect to a
database. However, analyze your options to find out if you can move the database or the application so they reside on the same
server. Also, make sure that this component isn't going to be continuously called from various client applications. Doing so would
spawn additional threads for every call and consume more resources than you intended. There are ways to reuse objects and their
threads without using a new thread every time your object is called. These issues will be covered in Chapters 3 and 5.

m < Day Day Up > m

www.EBooksWorld.ir



‘ 48 FREV < Day Day Up >

Threading Traps

We've seen the two main situations where it can be a good idea to use threading in your applications. However, there are some
circumstances in which spawning a new thread would be a bad idea. Obviously, this isn't going to be a complete listing of
inappropriate times to create new threads, but it is meant to give you an idea of what constitutes a bad threading decision. There
are two main areas we'll look at here: the first is an instance where execution order is extremely important, and the second is a
mistake seen quite often in code - creating new threads in a loop.

Execution Order Revisited

Recall the example do_somet hi ng_t hr ead. cs from earlier in the chapter where we created some code demonstrating the fact
that execution randomly jumped from one thread to the other. It looked as if one thread would execute and show 10 lines in the
console, then the next thread would show 15, and then return back to the original thread to execute 8. A common mistake in
deciding whether to use threads or not is to assume that you know exactly how much code is going to execute in the thread's
given time slice.

Here's an example that demonstrates this problem. It looks as if the thread t 1 will finish first because it starts first, but that's a big
mistake. Create a console application called Execut i onOr der and set its startup object to Mai n()) . Build and run this example a
few times - you'll get differing results:

usi ng System
usi ng System Thr eadi ng;

nanespace Chapter 02

{

public class ExecutionOrder

{
static Thread t1;

static Thread t2;

public static void WiteFinished(string threadNane)

{
swi t ch(t hr eadNane)
{
case "T1":
Consol e. WiteLine();
Consol e. WiteLine("T1l Finished");
br eak;
case "T2":
Consol e. WiteLine();
Consol e. WitelLine("T2 Finished");
br eak;
}
}
public static void Min()
{
t1l = new Thread(new ThreadStart (I ncrenent));

t2 = new Thread(new ThreadStart (Il ncrenent));
tl. Namre = "T1";
t2. Name = "T2";

tl.Start();
t2.Start();
Consol e. ReadLi ne();

}

public static void Increnent()
{ www.EBooksWorld.ir



for(long i = 1; i <=1000000; i ++)

{
if(i % 100000 == 0 )
Console.Wite(" {" + Thread. Current Thread. Nane + "}");
}
Wit eFi ni shed(Thread. Current Thread. Nane) ;
}
}
}

Sometimes t 1 will finish then t 2 will execute some more code and then finish. Sometimes t 2 will finish completely and thent 1
will execute to completion. The point is that you can't count on the threads completing in the order they were started. Later in this
book we will discuss how you can synchronize threads to execute in a specified order. However, it's important to note
synchronization doesn't happen by default.

This isn't the only problem associated with execution order. Take the next piece of example code where we show that data can be
adversely affected by unsynchronized threads, Execut i onOr der 2:

usi ng System
usi ng System Thr eadi ng;
public class ExecutionOrder?2
{

static Thread t1;

static Thread t2;

static int ilncr;

public static void WiteFinished(string threadNane)

{
swi t ch(t hr eadNane)
{
case "T1":
Consol e. WiteLine();
Consol e. WiteLine("Tl Finished: ilncr =" + ilncr.ToString);
br eak;
case "T2":
Consol e. WiteLine();
Consol e. WiteLine("T2 Finished: ilncr =" + ilncr.ToString);
br eak;
}
}
public static void Main()
{
ilncr = 0;

tl = new Thread(new ThreadStart (Il ncrenent));
t2 = new Thread(new ThreadStart (I ncrenment));
t1l. Name = "T1";
t2. Name = "T2";

tl.Start();
t2.Start();
Consol e. Read() ;
}
public static void Increnent()
{
for(long i = 1; i <= 1000000; i ++)
{
if(i % 100000 = 0)
Consol e. WiteLine(" {" + Thread. Current Thread. Nanre + "} " +
ilncr.ToString());
}

il ncr++; www.EBooksWorld.ir



Wit eFi ni shed(Thread. Current Thread. Nane) ;

}
}

This is a very similar class to Execut i onOr der . This time, however, we created a shared incrementing counter called il ncr .
We tell the application to increment the variable before moving on to the Wi t eFi ni shed() method. If we execute this
application a few times, you will notice that the value of the incrementing counter will change at different times. Keep in mind again
that we will show you how to synchronize these threads later on. These two examples should act as warnings that threads do not
execute in the order that you want by default. However, in these cases, you can use synchronization tactics such as using the

Joi n() method we discussed earlier. Thread synchronization will be covered more in depth later in this book.

Threads in a Loop

One other common mistake made when someone discovers the joys of threading is that they create and use them within a loop.
There follows a code example that demonstrates this, which is often implemented by programmers who are new to the threading
concept. It is a common concept used by developers or system administrators to send notifications when an event occurs. The
idea is not bad, but its implementation using a thread in the loop can cause many problems.

Please be aware that running this code may well disable your system. Don't run it unless you don't mind rebooting your
machine to reclaim the resources the program will waste.

usi ng System

usi ng System Thr eadi ng;
usi ng System Web. Mai | ;

usi ng System Col | ecti ons;

public class Loopi ngThreads
{
public del egate void SendMail (string oMessageTo);

private class MyMil

{
public string Email To;
public string Email From
public string Email Subject;
public string Email Body;
public SendMail SendThi sEmail; /'l Del egate instance
public void Send()
{
System Web. Mai | . Mai | Message oMail =
new System Web. Mai | . Mai | Message() ;
oMai | . To = Emai |l To;
oMai | . From = Enai | From
oMai | . Body = Enui | Body;
oMai | . Subj ect = Enail Subj ect;
oMai | . BodyFor mat = Mai | For mat . Text ;
Snt pMai | . Send(oMai | ) ;
SendThi sEmai | (Enai | To) ;
}

}

public static Thread CreateEnmil (SendMail oSendEmail,
string Email To , string Email From,
string Email Body , string Email Subject )
{
MyMai | oMail = new MyMail ();

i i i [EBooksWorld.i
oMai | . Emai | From = Enai | From www.EBooksworld.ir



oMai | . Enai | Body = Enmai | Body;

oMai | . Emai | Subj ect = Emai | Subj ect ;
oMai | . Emai | To = Enmmi |l To;

oMai | . SendThi semai| = oSendEmail ;

Thread t = new Thread(new ThreadStart(oMil. Send));

return t;
}
}
class Mailer
{
public static void Mil Method(string oString)
{
Consol e. WiteLine("Sending Email: " + oString);
}
}
public class DoMil
{
static ArrayList al = new ArraylList();
public static void Main()
{
for(int i =1; i <= 1000; i ++)
{
al . Add(i.ToString() + "@oneplace.cont');
}
SendAl | Emai | () ;
}
public static void SendAll Email ()
{
int loopTo = al.Count - 1;
for(int i = 0; i <= loopTo; i++)
{

Thread t = Loopi ngThreads. Creat eEnai | (
new Loopi ngThr eads. SendMai | (Mai | er. Mai | Met hod),
(string)al[i],

"j ohndoe@onewher e. cont',
"Threading in a loop", "Ml Exanple");
t.Start();

t.Join(Tinmeout.Infinite);

}
}
}

The code may be a little more complex than you thought because it also demonstrates how to use a delegate and a lengthy set of
classes to call a thread with parameters. This is necessary because threads can only create an entry on a method that has no
parameters. As such, it is the duty of the programmer to create proxy methods that create the parameters for another method and
return a thread object (we'll see more of this in later chapters). The calling method can then use the reference to the returned

Thr ead to start execution.

Let's concentrate on the SendAl | Emai | method. This is where we loop through the Ar r ayLi st and send our parameters to the
proxy method. We start a new thread for each and every e-mail we want to send:

public static void SendAl | Email ()
{
int | oopTo = al.Count - 1;
for(int i = 0; i <= loopTo; i++)
{ _
Thread t = Loopi ngThr eads. Cr eat e EAY fBooksworld.r



new Loopi ngThr eads. SendMai | (Mai | er. Mai | Met hod) ,
(string)al[i],
"j ohndoe@onewher e. cont',
"Threading in a | oop", "Ml Exanple");

t.Start();

t.Join(Timeout.Infinite);

}
}

At first glance, this sounds like a good idea. Why not send e-mail on another thread? It takes a long time to process sometimes
doesn't it? This is true, but the problem is that we are now tying up the processor's execution time by switching between the
threads. By the time this process is done, the time slice allocated to each thread is mainly spent unpacking and packing the thread
local storage. Very little time is spent executing the instructions in the thread. The system may even lock up completely leaving
poor John without any mail from us. What may make more sense is to create a single thread and execute the SendAl | Enai |
method on that thread. Additionally, you could use a thread pool with a fixed number of threads. In this instance, when one thread
in the pool has completed, it will spawn the next thread and send another e-mail.

One common programming practice is to place work into a queue to be processed by a service. For instance, a bank may place
an XML-based file in a network directory to be picked up by a service running on another server. The service would scan the
directory for new files and process them one at a time. If more than one file is placed in the directory at a time, the service would
process them one by one. In a typical environment, new files would be placed in this directory infrequently. Based on this
information, at first glance, this might seem like a good time to start a new thread when a file is found. You would be right, but
think about what would happen if the service that processes these files was stopped. What happens if a network problem prevents
the service from accessing the directory for a long period of time? The files would pile up in the directory. When the service finally
started again, or was allowed access to the directory once again, each file would essentially spawn a new thread on the service.
Anyone who has used this model can tell you that this situation can bring a server to its knees.

The file model is just one example. Another similar model may be to use Microsoft BizTalk Server or Microsoft Message Queue
with a service that processes items in a queue. All of these implementations have the same basic structure. The actual
implementation isn't the important thing to note here. The point to walk away with is that if your work is being placed into a queue
and you feel that multithreading is the answer, you might want to consider using thread pooling.

| 4 FREV < Day Day Up > ME=T iy

www.EBookswWorld.ir



| 4 FREV | < Day Day Up >

Summary

In this chapter we introduced the Syst em Thr eadi ng namespace and examined the Thr ead class in detail. We also discussed
some basic ideas to help you hone your decision making skills when it comes to multithreading your applications. You must always
keep in mind the fact that threads require resources. Before you consume those resources, analyze what affect their use will have
on the system and how you can minimize that overhead. You should consider creating a thread if you are accessing outside
resources such as a network share or remote databases. You should also consider spawning a new thread when you plan to
execute a lengthy process such as printing, /O operations, or background data processing.

Whatever your situation, keep the number of your threads to a minimum. You will reduce the overhead on your processor,
increase the amount of time that your time slice uses to process instructions within your thread, and reduce the amount of memory
required by your application.

m < Day Day Up > m

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Chapter 3: Working with Threads

Overview

In the previous chapters, we discussed how threads play an important role in developing multiuser applications. We used threads
to solve some significant problems, like giving multiple users or clients access to the same resource at the same time. However, in
the learning process we ignored one issue that we now need to address: what would happen to the resource if one user changes
the state of the resource and at the same time another user wants to change the state of the same resource?

Let's take the example of an ATM. Mr. X and his wife Mrs. X both decide to empty their joint checking account by withdrawing
$1,000 from an ATM. Unfortunately they forget to decide who will actually do the job. So, ironically, Mr. X and Mrs. X both access
the checking account from different ATMs, at exactly the same time. If two users access the same account at the same time, and if
the application is not thread-safe, it may possible that both the ATMs detect that there is enough amount in the checking account
and dispense $1,000 to each of their users. The two users are causing two servier-side threads to access the account database at
the same time. In an ideal scenario, when one user is trying to update their account, nobody else should have access to that
account at that instance. In short, the access to that account should be locked when the user accesses it for updating any
information regarding that account.

The .NET Framework provides specific mechanisms to deal with such problems. The phenomenon of allowing only one thread
to access a resource at any point of time is called Synchronization. Synchronization is a feature available to developers for
creating thread-safe access to critical resources.

[ & FrEv | < Day Day Up > | NEXT wp |

www.EBookswWorld.ir



1 .‘ FREW < Day Day Up > | MNE®T “

Why Worry About Synchronization?

There are two main reasons why any .NET developer needs to keep synchronization in mind when designing a multithreaded
application:

m To avoid race conditions
m To ensure threadsafety

Since the .NET Framework has built-in support for threading, there is a possibility that any class you develop may eventually be
used in a multithreaded application. You don't need to (and shouldn't) design every class to be thread-safe, because thread safety
doesn't come for free. But you should at least think about thread safety every time you design a .NET class. The costs of thread
safety and guidelines concerning when to make classes thread-safe are discussed later in the chapter. You need not worry about
multithreaded access to local variables, method parameters, and return values, because these variables reside on the stack and
are inherently thread-safe. But instance and class variables will only be thread-safe if you design your class appropriately.

Before we examine the nuts and bolts of synchronization, let's consider in detail the ATM example that we discussed at the
beginning of the chapter. Figure 1 depicts with more clarity the ATM scenario where Mr. X and Mrs. X are both trying to withdraw
the last $1,000 from the same account at the same time. Such a condition, where one thread accesses a resource and leaves it in
an invalid state while at the same time another thread uses the object when in an invalid state to produce undesirable results, is
called a race condition. To avoid the race condition, we need to make the Wt hdr aw() method thread-safe so that only one

thread can access the method at any point of time.

I8

ATM 81

k]
Wil | #—Check Balance —®  RaANK

o

IR

Mrs. X ATM &2

Figure 1

There are at least three ways to make an object thread-safe:
m Synchronize critical sections within the code
m Make the object immutable

m Use a thread-safe wrapper

Synchronize Critical Sections

To avoid undesirable effects caused by multiple threads updating a resource at the same time, we need to restrict access to that
resource such that only one thread can update the resource at any point of time, or in other words, make the resource thread-safe.
The most straightforward way to make an object or an instance variable thread-safe is to identify and synchronize its critical
sections. A critical section is a piece of code in the program that may be accessed by multiple threads at the same time to update
the state of the object. For example, in the above scenario where Mr. X and Mrs. X are both trying to access the same

W t hdr aw() method at the same time, the W t hdr aw() method becomes the critical section and needs to be thread-safe. The
easiest way to do this is to synchronize the method W t hdr aw() so that only one thread (either Mr. X or Mrs. X) can enter it at
any one time. A process that cannot be interrupted during its execution is said to be Atomic. An atom (in the classical meaning of
the word) is an indivisible unit, and atomic processes are units of code that execute as one complete unit - as if they were a single
processor instruction. By making the W t hdr awm() method atolgglcké%a £nsure that it is not possible for another thread to change
the balance of the same account until the first thread has finished changing the state of the account (emptying in our case). The



following code listing is a pseudo-code representation of a non-thread-safe Account class:

public class Account

{
public ApprovedOrNot Wt hdraw (Anpunt)
{
1. Make sure that the user has enough cash (Check the Bal ance)
2. Update the Account with the new bal ance
3. Send approval to the ATM
}
}

This next listing represents a thread-safe pseudo-code version of the Account class:

public class Account
{
public ApprovedOrNot Wt hdraw (Anmount)
{
| ock this section (access for only one thread)
{
1. Check the Account Bal ance
2. Update the Account with the new bal ance
3. Send approval to the ATM

In the first listing, two or more threads can enter the critical section at the same time so there is a possibility that both the threads
check the balance at the same time, with both the threads receiving the balance ($1,000) of the account. Due to this, there is a
possibility that the ATM might dispense the $1,000 amount to both the users, thus causing the account to go overdrawn
unexpectedly.

However, in the second listing, only one thread is allowed access to the critical section at any one time. Assuming that Mr. X's
thread gets the first slice of time, Mr. X's thread will enter the W t hdr awm() method just before Mrs X's. So, when Mr. X's thread
begins to execute the W t hdr aw() method, Mrs. X's thread is not allowed access to the critical section and has to wait until Mr.
X's thread leaves the section. As a result, Mr. X's thread checks the balance of the account, updates the account with the new
balance, which is $0 in this case, and then returns the approval Boolean value (t r ue in this case) to the ATM for dispensing the
cash. Until the cash is dispensed, no other thread has access to the critical section of Mr. and Mrs. X's Account object. After Mr.
X receives the cash, Mrs. X's thread enters the critical section of the W t hdr aw() method. Now, when the method checks for the
account balance, the returned amount is $0 and, as a result, the method returns a Boolean value of f al se indicating insufficient
balance and the ATM denies the withdrawal.

Making the Account Object Immutable

An alternative way to make an object thread-safe is to make the object immutable. An immutable object is one whose state can't
be changed once the object has been created. This can be achieved by not allowing any thread to modify the state of the
Account object once it is created. In this approach, we separate out the critical sections that read the instance variables from
those that write to instance variables. The critical sections that only read the instance variables are left as they are, whereas the
critical sections that change the instance variables of the object are changed so that, instead of changing the state of the current
object, a new object is created that embodies the new state, and a reference to that new object is returned. In this approach, we
don't need to lock the critical section because no methods (only the constructor) of an immutable object actually writes to the
object's instance variables, thus, an immutable object is by definition thread-safe.

Using a Thread-Safe Wrapper
The third approach to making an object thread-safe is to write a wrapper class over the object that will be thread-safe rather than

making the object itself thread-safe. The object will remain unchanged and the new wrapper class will contain synchronized
sections of thread-safe code. The following listing is a wrapper class over the Account object:

public class Account W apper www.EBooksWorld.ir



private Account a;

publ i c Account Wapper (Account a)

{
this. a = a;
}
public bool Wthdraw doubl e anpunt)
{
| ock( a)
{
return this. a.Wthdrawanount);
}
}

}

The Account W apper class acts as a thread-safe wrapper of the Account class. The Account instance is declared as a

pri vat e instance variable of the Account W apper class so that no other object or thread can access the Account variable. In
this approach, the Account object does not have any thread-safe features, since all the thread-safety is provided by the
Account W apper class.

This approach is typically useful when you are dealing with a third-party library and the classes in that library are not designed for
thread safety. For example, let's assume that the bank already has an Account class that it used for developing software for its
mainframe system and, for the sake of consistency, wants to use the same Account class for writing the ATM software. From the
documentation of the Account class that the bank has provided us, it is clear that the Account class is not thread-safe. Also, we
are not given access to the Account source code for security reasons. In such a case, we would have to adopt the thread-safe
wrapper approach where we develop the thread-safe Account W apper class as an extension to the Account class. Wrappers
are used to add synchronization to non-thread-safe resources. All the synchronization logic will be in the wrapper class and
keeping the non-thread-safe class intact.

| 4 FREV < Day Day Up > NE=T wip

www.EBookswWorld.ir



‘ 4 FREV

< Day Day Up >

.NET Synchronization Support

The .NET Framework provides a few classes in the Syst em Thr eadi ng, Syst em Ent er pri seServi ces, and
Syst em Runt i me. Conpi | er hamespaces that allow the programmer to develop thread-safe code. The table below briefly
describes some of the synchronization classes in the .NET Framework.

Class

Moni t or

Mut ex

Aut oReset Event ,
Manual Reset Event

I nterl ocked

Synchroni zati onAttribute

Met hodl npl Attri bute

Description

Moni t or objects are used to lock the critical sections of code so that one and only
one thread has access to those critical sections at any point of time. They help
ensure the atomicity of critical sections of code.

Mut ex objects are similar to Moni t or objects with the exception that they grant

exclusive access to a resource shared across processes to only one thread. The
Mut ex overloaded constructor can be used to specify Mut ex ownership and name.

Aut oReset Event and Manual Reset Event are used to notify one or more waiting
threads that an event has occurred. Both these classes are Not | nheri t abl e.

The I nt er| ocked class has the Conpar eExchange() , Decrenent (),
Exchange(), and | ncr ement () methods that provide a simple mechanism for
synchronizing access to a variable that is shared by multiple threads.

Synchr oni zati onAt tri but e ensures that only one thread at a time can access
an object. This synchronization process is automatic and does not need any kind of
explicit locking of critical sections.

This attribute notifies the compiler on how the method should be implemented.

The MethodImplAttribute Class

The Syst em Runti me. Conpi | er Ser vi ces namespace, as its name suggests, contains attributes that affect the runtime
behaviour of the CLR (Common Language Runtime). Met hodl npl At t ri but e is one such attribute that notifies the CLR on how
the method is implemented. One of the Met hodl npl Att ri but e constructors accepts the Met hodl npl Opt i ons enumeration
as a parameter. The Met hodl npl Opt i ons enumeration has a field named Synchr oni zed that specifies that only one thread is
allowed to access this method at any point of time. This is similar to the | ock keyword that we used in the previous example. The
listing below of M . ¢cs shows how you can use this attribute to synchronize a method:

usi ng System

usi ng System Runti nme. Conpi |l er Servi ces;

usi ng Syst em Thr eadi ng;

nanespace Met hodl npl
{

class M

{

//This attribute | ocks the method for use
/by one and only one thread at a tine.

[ Met hodl npl ( Met hodl npl Opti ons. Synchr oni zed) ]
public void doSomeWr kSync()

{

Consol e. Wi teLi ne("doSomeWor kSync()" +
"--Lock held by Thread " +
Thr ead. Current Thread. Get HashCode()) ;

//When a thread sleeps, it still holds the I ock
Thr ead. Sl eep(5 * 1000);
Consol e. Wi teLi ne("doSomeWor kSync()" +

"--Lock released by Thread " +

Thr ead. Current T%ﬁfé&o&@\;\/ﬁ%hmde() );



/1 This is a non synchronized net hod
public void doSomeWr kNoSync()
{
Consol e. Wit eLi ne("doSomeWr kNoSync()" +
"--Entered Thread is " +
Thr ead. Current Thr ead. Get HashCode() ) ;
Thread. Sl eep(5 * 1000);
Consol e. Wi teLi ne("doSomeWor kNoSync() " +
"--Leaving Thread is " +
Thr ead. Current Thread. Get HashCode()) ;

}

[ STAThr ead]
static void Miin(string[] args)

{
M m=new M ();

/1 Del egate for Non-Synchronous operation
ThreadStart tsNoSyncDel egate =
new ThreadStart(m doSonmeWor kNoSync) ;

/1 Del egate for Synchronous operation
ThreadStart tsSyncDel egate =
new ThreadStart(m doSomeWr kSync) ;

Thread t1 = new Thread(tsNoSyncDel egat e);
Thread t2 = new Thread(tsNoSyncDel egat e);
tl.Start();

t2.Start();

Thread t3 = new Thread(tsSyncDel egat e);
Thread t4 = new Thread(tsSyncDel egate);
t3.Start();

t4.Start();

The output from the above listing will be similar to the following (output might vary from computer to computer as Thread IDs might
differ):

doSonmeWor kNoSync() --Entered Thread is
doSomeWor kNoSync() --Entered Thread is
doSomeWor kSync() --Lock held by Thread
doSomeWor kNoSync() -- Leaving Thread is
doSomeWor kNoSync() --Leaving Thread is 3

doSomeWor kSync() --Lock rel eased by Thread 4
doSomeWor kSync() --Lock held by Thread 5

doSomeWor kSync() --Lock rel eased by Thread 5

NDhWDN

In the above listing, the M class has two methods: doSomeWor kSync() and doSormeWsr kNoSync() . The Met hodl npl

attribute has been applied to the doSomeWbr kSync() method to synchronize it, whereas doSonmeWsr kNoSync() is kept as it is
so that multiple threads can access the method at the same time. In the Mai n() method, threadst 1 and t 2 access the non-
synchronized method and threads t 3 and t 4 access the synchronized method. In both the methods, the Thr ead. Sl eep()
method is added to give sufficient time for another competing thread to enter the method while the first thread is still in the method.
The expected behavior of the program should be such that threads t 1 and t 2 can simultaneously enter the

doSomeWsr kNoSync() method, whereas only one of the threads (either t 3 or t 4) will be allowed to enter the

doSomeWor kSync() method. Ift 1 and t 2 have the samepriesitywhieh thread will get the preference is totally at random; the
.NET Framework does not guarantee the order in which the threads will be executed.



If you look at the output carefully, you will find that thread 2 (t 1) and thread 3 (t 2) entered the method doSonmeWor kNoSync()
at the same time, whereas, once thread 4 (t 3) acquired the lock on the method doSonmeWor kSync (), thread 5 (t 4) was not

allowed to enter the method until thread 4 (t 3) released the lock on that method.

m < Day Day Up > m

www.EBooksWorld.ir



‘ 4 FREV < Day Day Up >

.NET Synchronization Strategies

The Common Language Infrastructure provides three strategies to synchronize access to instance and st at i ¢ methods and
instance fields, namely:

m Synchronized contexts
m Synchronized code regions

m Manual synchronization

Synchronization Context

A context is a set of properties or usage rules that are common to a collection of objects with related run-time execution. The
context properties that can be added include policies regarding synchronization, thread affinity, and transactions. In short, a
context groups together like-minded objects. In this strategy, we use the Synchr oni zati onAttri but e class to enable simple,
automatic synchronization for Cont ext BoundObj ect objects. Objects that reside in a context and are bound to the context rules
are called context-bound objects. .NET automatically associates a synchronization lock with the object, locking it before every
method call and releasing the lock (to allow other competing threads to access the object) when the method returns. This is a
huge productivity gain, because thread synchronization and concurrency management are among the most difficult tasks that a
developer encounters.

The Synchroni zat i onAttri but e class is useful to programmers who do not have experience of dealing with synchronization
manually because it covers the instance variables, instance methods, and instance fields of the class to which this attribute is
applied. It does not, however, handle synchronization of st at i ¢ fields and methods. It also does not help if you have to
synchronize specific code blocks; synchronizing the entire object is the price you have to pay for ease of use.

Synchroni zat i onAttri but e is very handy when programming with Syst em Ent er pri seSer vi ces where objects
belonging to a context (for example a transaction) are grouped together by the COM+ runtime.

Going back to our Account example, we can make our pseudo-code Account class thread-safe by using the
Synchroni zati onAttri but e. The listing below shows an example of synchronizing the Account class using the
Synchroni zati onAttri bute:

[ Synchroni zati onAttri but e(Synchroni zati onOpti on. Requi red)]
public class Account : ContextBoundObj ect

{
public ApprovedOrNot W thdraw (Anmount)
{
1. Check the Account Bal ance
2. Update the Account with the new bal ance
3. Send approval to the ATM
}
}

The Synchroni zati onAtttri but e class has two constructors; a no-argument constructor and a constructor that takes in the
Synchroni zat i onOpt i on enumeration as its only parameter. When using the default (no-argument) constructor, the
Synchroni zati onQpti on is by default Synchr oni zat i onOpt i on. Requi r ed. The other supported options are Di sabl ed,
Not Support ed, RequiresNew, and Support ed. The table below describes these options.

www.EBookswWorld.ir



Synchronization Description

Option

Di sabl ed The synchronization requirements of the object are ignored, which means that the object is never
thread-safe

Not Support ed The component is created without any governing synchronization, that is, the object cannot
participate in any synchronization, regardless of the status of the caller

Requi red Ensures that all the objects that are created are synchronized

Requi r esNew The component always participates in a new synchronization irrespective of the caller

Support ed Obijects with this option participate in synchronization only if it exists (dependent on the caller)

Synchronized Code Regions

The second synchronization strategy concerns the synchronization of specific code regions. These specific code regions are
critical pieces of code in methods that either change the state of the object or update another resource (for example a database,
file). In this section we will look at the Moni t or and Reader Wi t er Lock classes.

Monitors

Monitors are used to synchronize sections of code by acquiring a lock with the Moni t or . Ent er () method and then releasing
that lock using the Moni t or . Exi t () method. The concept of a lock is normally used to explain the Moni t or class. One thread
gets a lock, while others wait until the lock is released. Once the lock is acquired on a code region, you can use the following
methods within the Moni t or . Ent er () and Moni t or. Exi t () block:

m Wi t () - This method releases the lock on an object and blocks the current thread until it reacquires the lock
m Pul se() - This method notifies a thread that is waiting in a queue that there has been a change in the object's state
m Pul seAl | () - This method notifies all threads that are waiting in a queue that there has been a change in the object's state

The Enter() and Exit() Methods

It is important to note that the Moni t or methods are st at i ¢ and can be called on the Moni t or class itself rather than an
instance of that class. In the .NET Framework, each object has a lock associated with it that can be obtained and released so that
only one thread at any time can access the object's instance variables and methods. Similarly, each object in the .NET Framework
also provides a mechanism that allows it to be in a waiting state. Just like the lock mechanism, the main reason for this
mechanism is to aid communication between threads. The need for such mechanism arises when one thread enters the critical
section of an object and needs a certain condition to exist and assumes that another thread will create that condition from the
same critical section.

The trick is now that only one thread is allowed in any critical section at any point of time, and when the first thread enters the
critical section, no other thread can. So, how will the second thread create a condition in the critical section when the first thread is
already in it? For example, if thread A has to get some data from the database and another thread B has to wait until all the data is
received and then process the data, thread B calls the Wai t () method and waits for thread A to notify it when the data arrives.
When the data does arrive, A calls the Pul se() method, which notifies B so that B can process the data. This is achieved by the
"Wait and Pulse" mechanism. The first thread enters the critical section and executes the Wai t () method. The Wi t () method
releases the lock prior to waiting and the second thread is now allowed to enter the critical section, changes the required
condition, and calls the Pul se() method to notify the waiting thread that the condition has been reached and it can now continue
its execution. The first thread then reacquires the lock prior to returning from the Moni t or . Wai t () method and continues
execution from the point where it called Moni t or. Wai t ().

No two threads can ever enter the Ent er () method simultaneously. It is analogous to an ATM machine where only one person is

allowed to operate at any point of time and no one else can get their chance until after the first person leaves. You can see that
the names Ent er and Exi t have been chosen very aptly. Figure 2 illustrates the Moni t or functionality.

www.EBookswWorld.ir



s Executing Thread

wm Waiting Thread

Thread 1 Thread 2

if:.||

Time

o

Figure 2

Let's see an example of using the Ent er () and Exi t () methods, Moni t or Enter Exi t. cs:

usi ng System
usi ng System Thr eadi ng;

nanespace MonitorEnterExit

{

public class EnterExit

{

private int result = O;

public EnterExit()

{
}

public void NonCritical Section()

{

}

Consol e. WitelLine("Entered Thread " +
Thr ead. Current Thread. Get HashCode() ) ;

for(int i =1; i <=5; i++)
{
Console. WiteLine("Result =" + result++ + " Threadl D "
+ Thread. Current Thr ead. Get HashCode() ) ;
Thread. Sl eep(1000) ;

}

Consol e. WiteLine("Exiting Thread " +
Thread. Current Thread. Get HashCode()) ;

public void Critical Section()

{

//Enter the Critical Section
Moni tor. Enter (this);

Consol e. WitelLine("Entered Thread " +
Thr ead. Current Thread. Get HashCode() ) ;

for(int i =1; i <=5 ; i++)
{
Console. WiteLine("Result =" + result++ + " ThreadlD " +
Thr ead. Current Thr ead. Get HashCode() ) ;
Thread. Sl eep(1000) ;

}

Consol e. WiteLi ne("Exiting Thread wittsooksworld.ir
Thr ead. Current Thread. Get HashCode()) ;



//Exit the Critical Section
Monitor. Exit(this);
}

public static void Miin(String[] args)

{
EnterExit e = new EnterExit( );

if(args.Length > 0)
{
Thread ntl1 =
new Thread(new ThreadStart(e. NonCritical Section));
ntl. Start( );

Thread nt2 =
new Thread(new ThreadStart(e. NonCritical Section));
nt2. Start( );
}

el se

{
Thread ctl = new Thread(new ThreadStart(e.Critical Section));
ctl.Start( );

Thread ct2 = new Thread(new ThreadStart(e.Critical Section));
ct2.Start( );
}
}
}
}

When you run the application without providing an input parameter you will get the output from the Cri ti cal Secti on() method
as follows:

Entered Thread 2

Result = 0 Threadl D 2
Result = 1 Threadl D 2
Result = 2 Threadl D 2
Result = 3 Threadl D 2
Result = 4 Threadl D 2

Exiting Thread 2
Entered Thread 3

Result = 5 Threadl D 3
Result = 6 Threadl D 3
Result = 7 Threadl D 3
Result = 8 Threadl D 3
Result = 9 Threadl D 3

Exiting Thread 3

Conversely, when you provide an input parameter, the corresponding output will be from the NonCri ti cal Secti on() method:

Entered Thread 2
Result = 0 Threadl D 2
Entered Thread 3

Result = 1 Threadl D 3
Result = 2 Threadl D 2
Result = 3 Threadl D 3
Result = 4 Threadl D 2
Result = 5 Threadl D 3
Result = 6 Threadl D 2
Result = 7 Threadl D 3 www.EBooksWorld.ir



Result = 8 Threadl D 2
Resul t 9 Threadl D 3
Exiting Thread 2
Exiting Thread 3

In the above example, we declare an Ent er Exi t class with a global r esul t variable and two methods:

NonCritical Section() andCritical Section(). Inthe NonCritical Section() sectionwe don't specify any monitors
to lock the section, while in the Cri ti cal Secti on() method we lock the critical section using a monitor. Both the methods
modify the value of resul t .

The critical section is defined as the code block between the Moni t or. Ent er (t hi s) and Moni t or. Exi t (t hi s) lines. The
t hi s parameter indicates that the lock should be held on the current object in consideration. It is always confusing to decide on
which object to pass into the Ent er () method as a parameter. When you need to lock the object so that no other thread can
access the object under consideration, pass at hi s pointer as the parameter. For example, in the Account W apper example
previously discussed, we passed the Account object to the Moni t or, rather than at hi s pointer of the Account W apper
object. This was because our intention was to lock the Account object and not the Account W apper object. We don't want
multiple threads to access the Account object, but we don't mind multiple threads accessing Account W apper object.

In the Mai n() method, we run the appropriate methods based on the arguments provided. If no argument is supplied, we use the
Critical Section() method and, if any argument is supplied, we use the NonCri ti cal Secti on() method. In both the
cases, we have two threads accessing the methods, started from the Mai n() method, at the same time and changing the r esul t
variable. Though they are declared sequentially, the For loop and the sleep time will ensure that the threads will try to compete for

resources.

Comparing the outputs of the critical and non-critical sections makes the concept of critical sections clear. If you observe the
output from the NonCri ti cal Secti on() method, both the threads nt 1 and nt 2 are changing the r esul t variable at the same
time, thus resulting in a mixed output. This is because there are no locks in the NonCri ti cal Secti on() method and thus the
method is not thread-safe. Multiple threads can access the method and so the global variable at the same time. On the other
hand, if you observe the output from the Cri ti cal Secti on() method, it is clear that until the thread ct 1 exits the critical
section, no other thread (ct 2 in this case) is allowed access to the critical section.

The Wait() and Pulse() Mechanism

The Wai t () and Pul se() mechanism is used for interaction between threads. When a Wi t () method is issued on an object,
the thread that is accessing that object waits until it gets a signal to wake up. The Pul se() and Pul seAl | () are used for
signaling to waiting thread(s). The following listing is an example of how the Wi t () and Pul se() methods work,

Wi t AndPul se. cs:

The Wai t () and Pul se() methods can be called only within the Ent er () and Exi t () code block.

usi ng System
usi ng System Thr eadi ng;

nanespace Wit AndPul se

{
public class LockMe

{
}

public class WitPul sel
{

private int result = O;
private LockMe | M

public WiitPul sel()

{

}
public WitPul sel(LockMe |)

{
}

this. IM=1; www.EBooksworld.ir



}

public void Critical Section()
{
Monitor. Enter(this. _IM;
//Enter the Critical Section

Consol e. WiteLine("WaitPul sel: Entered Thread " +
Thread. Current Thread. Get HashCode() ) ;

for(int i =1; i <=5; i++)
{
Monitor. Wait(this. IM;
Consol e. Wi teLi ne("WitPul sel: WkeUp");
Consol e. WiteLine("WaitPul sel: Result =" + result++ +
" ThreadlD " +
Thr ead. Current Thr ead. Get HashCode() ) ;
Monitor. Pul se(this. IM;

}

Consol e. WiteLine("WaitPul sel: Exiting Thread " +
Thr ead. Current Thread. Get HashCode()) ;

//Exit the Critical Section
Monitor. Exit(this. IM;
}

public class WitPul se2

{

private int result = O;
i nternal LockMe |IM

public WiitPul se2()

{
}

public WitPul se2(LockMe 1)
{

}

public void Critical Section()
{

this. IM=1;

Monitor. Enter(this. IM;
//Enter the Critical Section

Consol e. Wi teLine("WaitPul se2: Entered Thread " +
Thr ead. Current Thread. Get HashCode()) ;

for(int i =1; i <=5; i++)
{
Monitor. Pul se(this. IM;
Consol e. WiteLine("WaitPul se2: Result = " + result++ +

" Threadl D " +

Thr ead. Current Thr ead. Get HashCode() ) ;
Monitor. Wait(this. IM;
Consol e. Wi teLi ne("WitPul se2: WkeUp") ;

}

Consol e. WiteLine("WaitPul se2: Exiting Thread " +
Thr ead. Current Thread. Get HashCode()) ;
//Exit the Critical Section

Monitor.Exit(this. IM;
www.EBookswWorld.ir



}

public class C assFor Main

{
public static void Main(String[] args)
{
LockMe | = new LockMe();
Wai t Pul sel el = new WaitPul sel(1l);
WAi t Pul se2 e2 = new Wit Pul se2(1);
Thread t1 = new Thread(new ThreadStart(el.Critical Section));
tl.Start( );
Thread t2 = new Thread(new ThreadStart(e2.Critical Section));
t2.Start( );
//Wait till the user enters sonething
Consol e. ReadLi ne();
}
}
}

The output from WAi t AndPul se is:

Wi t Pul sel: Entered Thread 2

Wi t Pul se2: Entered Thread 3

Wai t Pul se2: Result = 0 Threadl D 3
Wi t Pul sel: WokeUp
Wi t Pul sel: Resul t
Wi t Pul se2: WbkeUp
Wi t Pul se2: Result = 1 Threadl D 3

Wai t Pul sel: WkelUp

Wai t Pul sel: Result = 1 ThreadlD 2
Wi t Pul se2: WokeUp

Wi t Pul se2: Result = 2 Threadl D 3

Wi t Pul sel: WokeUp

Wai t Pul sel: Result = 2 ThreadlD 2
Wi t Pul se2: WokeUp

Wai t Pul se2: Result = 3 Threadl D 3

Wi t Pul sel: WokeUp

Wai t Pul sel: Result = 3 ThreadlD 2
Wi t Pul se2: WbkeUp

Wai t Pul se2: Result = 4 Threadl D 3

Wi t Pul sel: WbkeUp

Wi t Pul sel: Resul t 4 Threadl D 2
Wai t Pul sel: Exiting Thread 2

Wi t Pul se2: WokeUp

Wit Pul se2: Exiting Thread 3

Wai t Pul sel: Exiting Thread 2

Wi t Pul se2: WkeUp

Wai t Pul se2: Exiting Thread 3

0 Threadl D 2

In the Mai n() method, we create a LockMe object called 1. Then we create two objects of type Wai t Pul sel and Wi t Pul se2,
and pass them as delegates so that the threads can call the Cri ti cal Secti on() method of both the objects. Note that the
LockMe object instance in WAi t Pul sel is the same as the LockMe object instance in Wai t Pul se2, as the object has been
passed by reference to their respective constructors. After initializing the objects, we create two threads, t 1 and t 2, and pass
them the two Cri ti cal Secti on() methods respectively.

Assuming that Wai t Pul sel. Critical Secti on() gets called first, then thread t 1 enters the critical section of the method with
a lock on the LockMe object and then executes Moni t or WA&IEB¢oksiiothierf or loop. By executing Moni t or . Wi t (), itis waiting
for a runtime notification ( Moni t or . Pul se()) from another thread to be woken up. We lock the LockMe object because we



want only one thread to access the shared LockMe instance at any point of time.

Note that when the thread executes the Moni t or . Wai t () method, it releases the lock on the LockMe object temporarily, so that
other threads can access it. After thread t 1 goes into the waiting state, thread t 2 is free to access the LockMe object. Even
though the LockMe object is a separate object (Wai t Pul sel and Wi t Pul se2), they both refer to the same object reference.
Thread t 2 acquires the lock on the LockMe object and enters the Wai t Pul se2. Critical Secti on() method. As soon as it
enters the f or loop, it sends a run-time notification ( Moni t or . Pul se()) to the thread that is waiting on the LockMe object (t 1
in this case) and goes off to the waiting state. As a result, t 1 wakes up and acquires the lock on the LockMe object. Thread t 1
then accesses the r esul t variable and sends a run-time notification to the thread waiting on the LockMe object (thread t 2 in this
case). This cycle continues until the f or loop ends.

If you compare the description above with the output of the program, the concept will be crystal clear. It is important to note that
every Ent er () method should be accompanied by an Exi t () method or else the program will never quit.

The Ent er () method takes an object as a parameter. If the object parameter is nul | , a method variable, or an object of a value
type like an integer an exception will be thrown.

The TryEnter() Method

The Tr yEnt er () method of the Moni t or class is similar to the Ent er () method in that it tries to acquire an exclusive lock on
an object. However, it does not block like the Ent er () method. If the thread enters successfully then the Tr yEnt er () method
will return t r ue.

Two of the three overloads of Tr yEnt er () take a timeout parameter representing the amount of time to wait for the lock. Let's
see an example of how to use TryEnt er (), Moni t or TryEnt er. cs:

usi ng System
usi ng System Thr eadi ng;

nanespace MonitorTryEnter

{
public class TryEnter

{
public TryEnter()
{
}

public void Critical Section()
{
bool b = Monitor.TryEnter(this, 1000);
Consol e. WiteLine("Thread " +
Thr ead. Current Thr ead. Get HashCode() +
" TryEnter Value " + b);

for (|nt i = l, i <= 3’ |++)
{
Thread. Sl eep(1000);
Consol e. WitelLine(i + " " +
Thread. Current Thread. Get HashCode() + " ");

}

Monit or. Exit (this);
}

public static void Main()

{
TryEnter a = new TryEnter();
Thread t1 = new Thread(new ThreadStart(a.Critical Section));
Thread t2 = new Thread(new ThreadStart(a.Critical Section));
tl.Start();
t2.Start();

} www.EBookswWorld.ir



One possible output from Moni t or Tr yEnt er is:

Thread 2 TryEnter Val ue True
Thread 3 TryEnter Value False 1 2
3

WWMNN PP

2
3
2
3

TryEnt er () is useful in situations where contention is likely to occur and you don't want to put the thread sleep for an
unspecified period of time. A good example of this is dialing in to an ISP. Assume there are two applications A and B that both
want to dial in to an ISP using the same modem. There is only one modem connection available and once the connection is
established, we do not know how much time the connected application will stay connected. Suppose application A dials the ISP
first and after some time application B wants to dial; there is no point in application B waiting indefinitely, as we don't know how
long application A will remain connected. In this case, application B could use Tr yEnt er () to determine whether the modem is
already locked by anyother application (A in this case), rather than waiting indefinitely using the Ent er () method.

The lock Statement

The | ock keyword can be used as an alternative to the methods of the Moni t or class. The following two blocks of code are
equivalent:

Moni t or . Ent er ( x)
Moni t or . Exi t (X)

| ock(this)
{

}

The following example, Locki ng. cs, uses the | ock keyword instead of the explicit Moni t or methods:

usi ng System
usi ng System Thr eadi ng;

nanmespace Lock

{
public class LockWrd

{
private int result = 0;
public void Critical Section()
{
| ock(this)
{
/[l Enter the Critical Section
Consol e. WiteLine("Entered Thread " +
Thr ead. Current Thr ead. Get HashCode() ) ;

for(int i = 1; i <= 5; i++4)
{
Console. WiteLine("Result =" + result++ + " ThreadlD " +
Thr ead. Current Thr ead. Get HashCode() ) ;
Thr ead. Sl eep(1000) ;

}

Consol e. WiteLine("Exiting Thread " + _
Thr ead. Cur r ent ¥ ERE R Y ashcode() ) ;



}
}

public static void Main()

{
LockWwbrd e = new LockWord();

Thread t1 = new Thread(new ThreadStart(e.Critical Section));
tl.Start();

Thread t2
t2.Start();

new Thread(new ThreadStart(e.Critical Section));

The output from Locki ng. ¢s will be the same as for Moni t or Ent er Exi t (when a parameter has been supplied):

Entered Thread 2

Result = 0 Threadl D 2
Result = 1 Threadl D 2
Result = 2 Threadl D 2
Result = 3 Threadl D 2
Result = 4 Threadl D 2

Exiting Thread 2
Entered Thread 3

Result = 5 Threadl D 3
Result = 6 Threadl D 3
Result = 7 Threadl D 3
Result = 8 Threadl D 3
Result = 9 Threadl D 3

Exiting Thread 3

The ReaderWriterLock Class

A Reader Wi t er Lock defines the lock that implements single-writer and multiple-reader semantics. This class is popularly used

in file operations where the file can be read by multiple threads but can be updated by one and only one thread. The four main
methods in the Reader Wi t er Lock class are:

m Acqui r eReader Lock() : This overloaded method acquires a reader lock, using either an integer or a Ti meSpan for the
timeout value. The timeout can be an invaluable tool used to detect deadlocks.

m AcquireWiterLock(): This overloaded method acquires a writer lock, using either an integer or a Ti meSpan for the
timeout value.

m Rel easeReader Lock() : Releases the reader lock.

m Rel easeWiterLock(): Releases the writer lock.

Using the Reader Wi t er Lock class, any number of threads can safely read data concurrently. Only when threads are
updating is data locked. Reader threads can acquire a lock only if there are no writers holding the lock. Writer threads can
acquire lock only if there are no readers or writers holding the lock.

The following listing, ReadW i t eLock. cs, demonstrates the use of the Reader Wi t er Lock() lock:

usi ng System
usi ng System Thr eadi ng;

www.EBooksWorld.ir
nanmespace ReadWitelock



{

public class ReadWite

{ private ReaderWiterLock rw;
private int x;
private int vy;
public ReadWite()
{ rw = new Reader WiterLock();
}
public void Readlnts(ref int a, ref int b)
{ rw . Acqui r eReader Lock( Ti meout.Infinite);
try
{
a = this.x;
b =this.y;
}
finally
{
rw . Rel easeReader Lock() ;
}
}
public void Witelnts(int a, int b)
{ rw . Acqui reWiterLock(Tinmeout.Infinite);
try
{
this.x = a;
this.y = b;
Console. WiteLine("x =" 4+ this.x +" y =" +this.y +
' ThreadlD = " +
Thread. Current Thread. Get HashCode()) ;
}
finally
{
rw . Rel easeWiterLock();
}
}
}
public class RWApp
{

private ReadWite rw = new ReadWite();

public static void Main(String[] args)

{
RWApp e = new RWApp();

/IWiter Threads

Thread wt1 = new Thread(new ThreadStart(e. Wite));
wtl. Start();

Thread w2 = new Thread(new ThreadStart(e. Wite));
wt2. Start();

/| Reader Threads
Thread rtl1 = new Thread(new ThreadStart (e. Read));

rel. Start(); www.EBooks\Worldr
Thread rt2 = new Thread(new ThreadStart e.%a j);



rt2.Start();

}
private void Wite()
{
int a = 10;
int b = 11;
Consol e. WiteLing("***x**x* \Wjteg ****kxkkxu),
for (int i = 0; i < 5; |i++)
{
this.rw Witelnts(a++, b++);
Thr ead. Sl eep(1000) ;
}
}
private void Read()
{
int a = 10;
int b = 11;
Consol e. WiteLine("*****x*x  Ragd *****x*xxxu).
for (int i =0; i < 5; i++)
{
this.rw Readlnts(ref a, ref b);
Console. WiteLine("For i =" +i +" a="+a+"b="+0Db+
" ThreadlD = " +
Thr ead. Current Thr ead. Get HashCode() ) ;
Thr ead. Sl eep(1000) ;
}
}
}

}

An example output from ReadW i t eLock could be as follows:

*kkkkkkk*x

Read *kkkkkkkx

For i =0 a=0Db =0 ThreadlD = 5
Kk kkkk*k*x Read *kkkkkhkkkk

For i =0 a=0b =0 ThreadlD = 4
*kkkkk*k*x Wlte *kkkkk k%

x =10y = 11 ThreadlD = 3

*kkkk k)% Wlte *kkk Kk Kk k%

x =10y = 11 Threadl D = 2

For i =1 a =10 b = 11 ThreadlD = 4
Xx =11y = 12 Threadl D = 3

x =11y = 12 ThreadlD = 2

For i =1 a =11 b = 12 ThreadlD = 5
For i =2 a =11 b = 12 ThreadlD = 4
X = 12y = 13 Threadl D = 3

Xx =12 y = 13 ThreadlD = 2

For i =2 a =12 b = 13 ThreadlD = 5
For i =3 a =12 b = 13 ThreadlD = 4
x =13 y 14 ThreadlD = 3

x =13y 14 ThreadlD = 2

For i =3 a =13 b = 14 ThreadlD = 5
For i =4 a =13 b = 14 Threadl D = 4
x =14 y = 15 ThreadlD = 3

X =14 y = 15 ThreadlD = 2

For i =4 a =14 b = 15 ThreadlD = 5

In the above listing, threads wt 1 and wt 2 are writer threa&@"fh'%ﬁc%?{l’ﬁpg'\?vriter locks in the Wi t el nt s() method and threads



rt1landrt 2 are reader threads that acquire reader locks in the Readl nt s() method. In the Wi t el nt s() method, the
instance variables x and y are changed to the new values a and b respectively. When thread wt 1 or wt 2 acquires a writer lock by
calling Acqui reW it er Lock(), no other thread (including the reader threads rt 1 and r t 2) is allowed access to the object until
the thread releases the lock by calling the Rel easeW i t er Lock() method. This behavior is similar to that of Monitors. In the
Readl nt s() method, threads rt 1 and r t 2 acquire reader locks by calling the Acqui r eReader Lock() method. In the

Readl nt s() method, both the threads rt 1 and r t 2 can be given concurrent access to the instance variables x and y. Until the
reader threads release their reader locks, neither of the writer threads (Wt 1 and wt 2) is given access to the object. Only reader
threads can have concurrent access to the object after acquiring the reader lock.

Monitors might be "too safe" for threads that plan only to read the data rather than modify it. Monitors also have a performance hit
associated with them and, for read-only type access, this performance hit is not necessary. The Reader Wi t er Lock class offers
an elegant solution to dealing with read-and-write access to data by allowing any number of concurrent threads to read the data. It
locks the data only when threads are updating the data. Reader threads can acquire a lock if and only if there are no writer threads
holding the lock. Writer threads can acquire the lock if and only if there are no reader or writer threads holding the lock. Thus, the
Reader Wi t er Lock behaves in the same way as a critical section. Reader Wi t er Lock also supports a timeout value that can
be very useful in detecting deadlocks.

Manual Synchronization

The third synchronization strategy concerns manual techniques and the .NET Framework provides a classic suite of techniques.
They give the programmer the ability to create and manage multithreaded applications using a low-level threading APl analogous
to the WIN32 Threading API.

The table overleaf shows some of the classes in the Syst em Thr eadi hg namespace that can be used for Manual
Synchronization.

Class Description

Aut oReset Event The Aut oReset Event class is used to make a thread wait until some event puts it in the
signaled state by calling the Set () method. A signaled state indicates that there are no threads
waiting. The Aut oReset Event is automatically reset to non-signaled by the system after a single
waiting thread has been released. If no threads are waiting, the event object's state remains
signaled. The Aut oReset Event corresponds to a Win32 Cr eat eEvent call, specifying f al se
for the bManual Reset argument.

Manual Reset Event The Manual Reset Event class is also used to make a thread wait until some event puts it in
the signaled state by calling Set () method. The state of a Manual Reset Event object remains
signaled until it is set explicitly to the non-signaled state by the Reset () method. The
Manual Reset Event corresponds to a Win32 Cr eat eEvent call, specifying t r ue for the
bManual Reset argument.

Mut ex A Mut ex lock provides cross-process as well as cross-thread synchronization. The state of the
Mut ex is signaled if no thread owns it. The Mut ex class doesn't have all of the wait-and-pulse
functionality of the Moni t or class, but it does offer the creation of named mutexes (using the
overloaded constructor) that can be used between processes. The benefit of using a Mut ex over
a Moni t or is that a Mut ex can be used across processes whereas a Moni t or cannot.

Interl ocked The I nt er | ocked class provides methods for atomic, non-blocking integer updates that are
shared between multiple threads. The threads of different processes can use this mechanism if
the variable is in shared memory.

The ManualResetEvent Class

A Manual Reset Event object can possess only one of the two states; signaled (true) or non-signaled (f al se) . The

Manual Reset Event class inherits from the Wai t Handl e class and the Manual Reset Event constructor takes in a parameter
that affirms the initial state of the object. The Set () and Reset () methods return a Boolean value indicating whether the change
has taken place successfully or not.

The following listing, NETThr eadEvent s. cs, shows the use of the Manual Reset Event class with a non-signaled state. First
we create an object called mansi g and give it a value of f al se. The Wai t One() method will wait until the nansi g turns into

t r ue or the time value expires. Since the time duration elapsed while waiting, and the value of mansi g was not settot r ue, it

stopped blocking and returned with a value of f al se:

usi ng System www.EBooksWorld.ir
usi ng System Thr eadi ng;



nanespace NETThreadEvents

{
public class NonSi gnal edvanual
{
public static void Main()
{
Manual Reset Event mansi g;
mansi g = new Manual Reset Event (fal se) ;
Consol e. Wit eLi ne(" Manual Reset Event Before WaitOne " );
bool b = nmansi g. Wai t One( 1000, fal se);
Consol e. Wit eLi ne("Manual Reset Event After WaitOne " + b);
}
}
}

The output from NETThr eadEvent s with a value of f al se is:

Manual Reset Event Bef ore Wit One
Manual Reset Event After \Wait One Fal se

In NETThr eadEvent s. cs, we construct a Manual Reset Event object with a value of f al se. The Boolean value f al se sets
the initial state of the Manual Reset Event object to non-signaled. Then we call the Wai t One() method of the base class

Wai t Handl e. The Wai t One() method takes two parameters. The first one is the number of milliseconds for which we want the
thread to wait at the Wai t One() method; the thread therefore waits for one second before quitting. The second parameter is the
exi t Cont ext . If you are already in the synchronization domain for the context and want to exit the synchronization context or if
you want to reacquire the synchronization context, you should set this parameter tot r ue.

The program blocks for one second at the Wi t One() method and then quits because of the timeout. The state of the
Manual Reset Event is still f al se, thus the Boolean b returned by Wi t One() is f al se. Now let's figure out what will happen
if we set the state of Manual Reset Event to signaled (true) when we create it:

usi ng System
usi ng System Thr eadi ng;
nanespace NETThreadEvents

{
public class NonSi gnal edManual

{
public static void Min()

{
Manual Reset Event nansi g;
mansi g = new Manual Reset Event (true);
Consol e. Wit eLi ne(" Manual Reset Event Before WaitOne ");
bool b = nmansi g. Wi t One( 1000, fal se);
Consol e. Wit eLi ne("Manual Reset Event After WaitOne " + b);
Consol e. ReadLi ne() ;

The output from NETThr eadEvent s with a value of t r ue is:

Manual Reset Event Bef ore Wit One
Manual Reset Event After WaitOne True

By changing initial state of the Manual Reset Event to signaled, the thread does not wait at the Wai t One() method even though
we specified the timeout value of 1,000 milliseconds. When the Manual Reset Event was non-signaled in the previous sample,
the thread waited for the state to change to signaled, but it timed out after 1,000 milliseconds. The state is already signaled, so the
thread has no reason to wait on the Wi t One() method. TevcEamgavineg.istate of the Manual Reset Event to non-signaled, we
have to call the Reset () method of Manual Reset Event, and to change the state to signaled, we have to call the Set ()



method.

The following listing, Manual Reset . cs, shows the usage of the Reset () method, and the next, Manual Set . cs, shows the
usage of the Set () method:

usi ng System
usi ng System Thr eadi ng;

nanmespace Mnual Reset

{

cl ass Reset
{
[ STAThr ead]
static void Main()
{
Manual Reset Event manRE;
manRE = new Manual Reset Event (true);
bool state = manRE. Wit One( 1000, true);
Consol e. Wi teLi ne("Manual Reset Event After first WaitOne " +
state);
/I Change the state to non-signal ed
manRE. Reset () ;
state = nmanRE. Wi t One( 5000, true);
Consol e. Wit eLi ne("Manual Reset Event After second WaitOne " +
state);

The output from Manual Reset is:

Manual Reset Event After first WaitOne True
Manual Reset Event After second Wit One Fal se

In Manual Reset , we set the state of the Manual Reset Event object to signaled (Tr ue) in its constructor. As a result, the thread
does not does not wait at the first WAi t One() method and returns t r ue. Then we reset the state of the Manual Reset Event
object to non-signaled ( f al se) , so we see that the thread has to wait for five seconds until it times out.

In Manual Set . cs we use the Set () method:

usi ng System
usi ng System Threadi ng;

nanmespace Mnual Set

{

cl ass Set
{
[ STAThr ead]
static void Main(string[] args)
{
Manual Reset Event manRE;
manRE = new Manual Reset Event (fal se);
Consol e. WiteLine("Before WaitOne");
bool state = nanRE. Wai t One( 5000, true);
Consol e. Wit eLi ne("Manual Reset Event After first WaitOne " +
state);

/1 Change the state to signal ed
manRE. Set () ;
state = manRE. Wai t One( 5000, true); _
ooksWaorld.ir "

Consol e. Wit eLi ne(" Manual Reset Event " Ar1°8F"86¢ond vai t One +



state);

The output from Manual Set is:

Bef ore Wai t One
Manual Reset Event After first WaitOne Fal se
Manual Reset Event After second Wait One True

In Manual Set, we set the initial state of the Manual Reset Event object to non-signaled (f al se) . As a result, the thread has
to wait on the first Wai t One() method. Then we set the state to signaled using the Set () method, and the thread refuses to wait
on the second Wai t One() method, and quits.

Just as the Vi t One() method waits for a single event object to become signaled, the Wai t Al | () method waits for all the event
objects to become t r ue or signaled, or it will stay there until the timeout occurs and the Wi t Any() method waits for any of the
event objects to become t r ue or signaled.

The AutoResetEvent Class

The Aut oReset Event class works in a similar way to the Manual Reset Event class. It waits for the timeout to take place or the
event to be signaled and then notifies the waiting threads about the event. One important difference between

Manual Reset Event and Aut oReset Event is that Aut oReset Event changes state at the Wai t One() method. The following
listing shows the usage of the Aut oReset Event class:

usi ng System
usi ng System Thr eadi ng;

namespace Aut oReset
{
cl ass Auto
{
[ STAThr ead]
static void Min()
{
Aut oReset Event aRE;
aRE = new Aut oReset Event (true);
Consol e. WiteLine("Before First WaitOne ");
bool state = aRE. Wit One(1000,true);
Consol e. WiteLine("After First WaitOne " + state);
state = aRE. i t One( 5000, true);
Consol e. WiteLine("After Second WaitOne " + state);

The output from Aut oReset is the same as that from the Manual Reset example shown earlier:

Before First WitOne
After First WaitOne True
After Second Wit One Fal se

In Aut oReset , the differences between the Aut oReset Event and Manual Reset Event are clear. The state of the event object
changes from signaled to non-signaled at the first WAi t One( ), and then it changes state again from non-signaled to signaled at
the second Wi t One() method. As a result, the thread does not wait at the first Wai t One() method and has to wait at the
second Wai t One() method until the time expires.

www.EBookswWorld.ir
The Mutex Class



Like the Manual Reset Event and the Aut oReset Event classes, the Mut ex class is also derived from the Wai t Handl e class.
It is very similar to the Moni t or class with the exception that it can be used for interprocess synchronization. Let's look at an
example, W oxMut ex. cs:

usi ng System
usi ng System Thr eadi ng;

nanmespace W oxMit ex

{
cl ass NETMut ex

{
static Mutex nmyMitex;

public static void Main()
{
myMiut ex = new Mutex(true, "WROX");
NETMut ex nm = new NETMut ex();
Thread t = new Thread(new ThreadStart(nm Run));
t.Start();
Consol e. WiteLine("Thread Sleep for 5 sec");
Thr ead. Sl eep(5000) ;
Consol e. Wi teLine("Thread Wke Up");
myMut ex. Rel easeMut ex() ;
Consol e. WiteLine("Before WaitOne");
my Mut ex. Vi t One() ;
Consol e. WiteLine("Lock owned by Main Thread");

}

public void Run()
{
Consol e. WiteLine("In Run");
my Mut ex. Vi t One() ;
Consol e. WiteLine("Thread sl eeping for 10 secs");
Thr ead. Sl eep(10000) ;
Consol e. WiteLine("End of Run() nethod");

The output from W oxMut ex is:

Thread will sleep for 5 seconds
In Run met hod

Thread Wke Up

Thread will sleep for 10 seconds
Bef ore Wit One

End of Run met hod

Lock owned by Main Thread

In W oxMut ex, we construct a Mut ex with a Boolean value indicating that the calling thread should have initial ownership of the
Mut ex, and a string that is the name of the Mut ex. We then create a thread, which calls the Run() method. The Mut ex is still
owned by the main thread. In the Run() method, the thread t has to wait until the main thread releases the ownership of the

Mut ex. Thus, the thread t waits at the Wai t One() method call in the Run() method. After sleeping for five seconds, the main
thread releases the Mut ex lock. Thread t then gets the ownership of the Mut ex lock and then goes off for a sleep. Now, the

Mai n() method will not be able to acquire the ownership of the Mut ex until the thread t releases the ownership or aborts. In this
case, thread t times out and dies, so the ownership of the Mut ex is transferred back to the main thread.

The Interlocked Class

I nt er | ocked synchronizes access to an integer variablesthatisbeingishared by a number of threads. The operation is carried
out in an atomic manner. Let's see an example, W oxI nt er | ocked. cs:



usi ng System
usi ng System Thr eadi ng;

nanmespace W oxInterl ocked

{
cl ass WnterlLocked
{
publ i ¢ Manual Reset Event a = new Manual Reset Event (f al se) ;
private int i = b5;
public void Run(object s)
{
Interl ocked. I ncrenent(ref i);
Consol e. WiteLine("{0} {1}",
Thr ead. Current Thread. Get HashCode () , i);
}
}
public class M nApp
{
public static void Min()
{
Manual Reset Event nmR = new Manual Reset Event (f al se) ;
W nt er Locked wL. = new W nt er Locked();
for(int i = 1; i <= 10; i++)
{
Thr eadPool . QueueUser Wor kl t em( new Wit Cal | back(wL. Run), 1);
}
nmR. Vi t One( 10000, true);
}
}
}

The output for W ox| nt er Locked is:

Thread ID = 2 Count =1
Thread ID = 2 Count = 2
Thread ID = 2 Count = 3
Thread ID = 2 Count = 4
Thread ID = 2 Count = 5
Thread ID = 2 Count = 6
Thread ID = 2 Count = 7
Thread ID = 2 Count = 8
Thread ID = 2 Count = 9
Thread ID = 2 Count = 10

W oxI nt er Locked shows the use of the | nt er | ocked class. We increment the value of the global variable i in an atomic
manner. Like the | ncr ement () method, there is also a Decr ement () method that reduces the value of a variable by one. In the
same manner, the Exchange() method changes the value of two variables passed to it as ByRef parameters.

Static Variables and Methods and Synchronization

Variables and methods that are st at i ¢ are affected differently from instance variables and methods in a synchronization lock.
st ati ¢ variables are class variables, whereas variables that belong to an object are object or instance variables. In other words,
there will be only one instance of a st at i ¢ variable and a st at i ¢ method will be shared by multiple objects of the same class
and every object of the same class has its own set of instance variables and methods. So, if you synchronize a st at i ¢ variable
or a st ati ¢ method, the lock is applied on the entire class. As a result, no other object will be allowed to use the stati c
variables of the class.

The ThreadStaticAttribute Class www.EBooksworld.ir



ThreadStati cAttri bute isused on astati c variable to create a separate variable for each thread executing it, rather than
sharing (default behavior) the st at i ¢ variable across threads. This means that a st at i ¢ variable with the

ThreadSt ati cAttri but e is not shared across different threads accessing it. Each thread accessing it will have a separate
copy of the same variable. If one thread modifies the variable, another thread accessing it will not be able to see the changes. This
behavior is contrary to the default behavior of st at i ¢ variables. In short, Thr eadSt ati cAttri but e gives us the best of both
worlds (st at i ¢ and instance).

The following listing shows the use of Thr eadSt ati cAttri bute (W oxShared. cs):

usi ng System
usi ng System Thr eadi ng;

nanespace WoxStatic

{
class ThreadStatic
{
[ System ThreadStati cAttribute()]
public static int x = 1;
public static int y = 1;
public void Run()
{
for (int i =1; i <= 10; i++)
{
Thread t2 = Thread. Current Thread;
X++;
y++;
Consol e. WiteLine("i =" + i +
" ThreadlD = " + t2.GetHashCode() +
" X(static attribute)=" + x +
Ty =" +y);
Thr ead. Sl eep(1000) ;
}
}
}
public class MainApp
{
public static void Main()
{
ThreadStatic tS = new ThreadStatic();
Thread t1 = new Thread(new ThreadStart(tS. Run));
Thread t2 = new Thread(new ThreadStart(tS. Run));
tl.Start();
t2.Start();
}
}
}

The output from W oxSt ati c is:

i =1 ThreadlD = 2 x(static attribute)= 1y = 2
i =1 ThreadlD = 3 x(static attribute)= 1y =3
i =2 ThreadlD = 2 x(static attribute)= 2y =4
i =2 ThreadlD = 3 x(static attribute)= 2y =5
i = 3 ThreadlD = 2 x(static attribute)= 3y =6
i = 3 ThreadlD = 3 x(static attribute)= 3y =7
i = 4 ThreadlD = 2 x(static attribute)=4y =8
i =4 ThreadlD = 3 x(static attribute)=4y =9
i =5 ThreadlD = 2 x(static attribute)= 5y = 10
i =5 ThreadlD = 3 x(static attribute)= WQW% = &doridir
i =6 ThreadlD = 2 x(static attribute)= 6y = 12



i =6 ThreadlD = 3 x(static attribute)= 6 y = 13
i =7 ThreadlD = 2 x(static attribute)= 7y = 14
i =7 ThreadlD = 3 x(static attribute)= 7 y = 15
i = 8 ThreadlD = 2 x(static attribute)= 8 y = 16
i = 8 ThreadlD = 3 x(static attribute)= 8y = 17
i =9 ThreadlD = 2 x(static attribute)= 9 y = 18
i =9 ThreadlD = 3 x(static attribute)= 9 y = 19
i = 10 ThreadlD = 2 x(static attribute)= 10 y = 20
i = 10 ThreadlD = 3 x(static attribute)= 10 y = 21

We all know a st at i ¢ variable is a class variable and its value remains the same across multiple objects of the class.

ThreadSt ati cAttri but e allows each thread accessing a st at i ¢ variable to have its own copy. In W oxSt at i ¢, variable x
has ThreadSt ati cAttri but e applied to it. As a result, each of the threads t 1 and t 2 will have a separate copy of the st ati c
variable x and changes made to x by thread t 1 will not be visible to thread t 2. On the other hand, changes made to the variable
y by thread t 1 will be visible to thread t 2. If you observe the output of the program, variable x is incremented separately for
threadst1l andt 2.

The difference between a st at i ¢ variable with a ThreadSt ati cAttri but e and an instance variable is that the st ati c
variable does not require an object to access it, whereas an exception will be thrown if you try to access an instance variable
without creating the instance of an object.

Synchronization and Performance

Synchronization carries the overhead of the time required to acquire the synchronization lock. As a result, the performance is
always poorer than the non-thread-safe version. As multiple threads might be trying to access objects at the same time to acquire
the synchronization lock, the performance of the entire application might be affected inadvertently. This is a tradeoff a developer
must be aware of when designing larger applications. The important part is that these thread contentions are not visible until a
thorough stress test is performed. Stress testing is extremely important in designing large-scale multithreaded applications. The
developer has to balance these factors:

m To be safe, synchronize as much as possible. This makes the program slower, at worst no better than its single-threaded
version.

m For performance, synchronize as little as possible.

Multithreaded design is a continual tradeoff between these two factors.

‘ 48 FREV < Day Day Up >

www.EBookswWorld.ir



‘ 48 FREV < Day Day Up >

Beware of Deadlocks

Though essential for thread safety, synchronization, if not used properly, can cause deadlocks. As such, it is very important to
understand what deadlocks are and how to avoid them. Deadlocks occur when two or more threads are waiting for two or more
locks to be freed and the circumstances in the program logic are such that the locks will never be freed. Figure 3 illustrates a
typical deadlock scenario.

Thread 1 Thread 2
n’.r.,l
L1
2 J;ll
L L2

d'.'_|| ! blocks here
L1. waiting for L1

: o, 1 Dlocks here
=== Executing Thread 1§ waiting for L2

== Waiting Thread L2 B

Figure 3

In the figure, Thread 1 acquires lock L1 on an object by entering its critical section. In this critical section, Thread 1 is supposed to
acquire lock L2. Thread 2 acquires lock L2 and is supposed to acquire lock L1. So, now Thread 1 cannot acquire lock L2 because
Thread 2 owns it and Thread 2 cannot acquire lock L1 because Thread 1 owns it. As a result, both the threads enter into an infinite
wait or deadlock.

One of the best ways to prevent the potential for deadlock is to avoid acquiring more than one lock at a time, which is often
practicable. However, if that is not possible, you need a strategy that ensures you acquire multiple locks in a consistent, defined
order. Depending on each program design, the synchronization strategies to avoid deadlocks may vary. There is no standard
strategy that can be applied to avoid all deadlocks. Most of the time, deadlocks are not detected until the application is deployed
on a full-scale basis. We can consider ourselves lucky if we are able to detect deadlocks in our program during the testing phase.

A critical, but often overlooked element of any locking strategy is documentation. Unfortunately, even in cases where a good
synchronization strategy is designed to avoid deadlocks, much less effort is made in documenting it. At the minimum, every
method should have documentation associated with it that specifies the locks that it acquires and describes the critical sections
within that method.

Let's take a look at an example, Deadl ock. cs:

usi ng System
usi ng System Thr eadi ng;

nanespace DeadlLock

{

class DL
{
int field 1 = 0;
private object lock 1 = new int[1];
int field 2 = 0;
private object lock 2 = new int[1];

public void First(int val)

{
| ock(lock 1)

{
Consol e. WiteLine("First: Acquired lock 1." +
Thread. Current Thread. Get HashCode() +
" Now Sl eepi Hgﬂl\).l?.BOOkSVVOHd.iI’



/1 Try commenting Thread. Sl eep()
Thr ead. Sl eep(1000) ;
Consol e. WiteLine("First: Acquired lock 1:" +
Thread. Current Thread. Get HashCode() +
Now wants | ock_2");

 ock(l ock 2)

{
Console. WiteLine("First: Acquired lock 2:" +

Thr ead. Current Thr ead. Get HashCode() ) ;

field 1 = val
field 2 = val
}
}
}
public void Second(int val)
{
| ock(l ock 2)
{
Consol e. WiteLine("Second: Acquired lock 2:" +
Thr ead. Current Thr ead. Get HashCode() ) ;
| ock(l ock_1)
{
Consol e. Wi teLine("Second: Acquired lock _1:" +
Thread. Current Thread. Get HashCode()); field 1 = val
field 2 = val
}
}

}
}

public class MainApp
{
DL d = new DL();

public static void Main()

{
Mai nApp m = new Mai nApp();
Thread t1 = new Thread(new ThreadStart(m Runl));
tl.Start();
Thread t2 = new Thread(new ThreadStart(m Run2));
t2.Start();
}
public void Runl()
{
this.d. First(10);
}
public void Run2()
{
this.d. Second(10);
}

}
}

The output from DeadLock is:

First: Acquired | ock_1:2 Now Sl eeping
Second: Acqui red | ock_2:3 www.EBooksWorldir
First: Acquired lock_1:2 Now wants | ock_2



In DeadLock, thread t 1 calls the Fi r st () method, acquires | ock_1, and goes to sleep for one second. In the meantime, thread
t 2 calls the Second() method and acquires | ock_2. Then it tries to acquire | ock_1 in the same method. But| ock_1 is owned
by thread t 1, so thread t 2 has to wait until thread t 1 releases | ock_1. When thread t 1 wakes up, it tries to acquire | ock_2.
Now | ock_2 is owned by thread t 2 and thread t 1 cannot acquire it until thread t 2 releases | ock_2. This results in a deadlock
and a hung program. Commenting out the Thr ead. Sl eep() line from the method Fi r st () does not result in deadlock, at least
temporarily, because, thread t 1 acquires | ock_2 before thread t 2. But, in real-world scenarios, instead of Thr ead. Sl eep(),
we might connect to a database resulting in thread t 2 acquiring | ock_2 before thread t 1, and it will result in a deadlock. The
example shows how important it is to carve out a good locking scheme in any multithreaded application. A good locking scheme
may incorporate the acquisition of lock by all the threads in a well defined manner. In the case of the example above, thread t 2
should not acquire | ock_2 until it is release by thread t 2 or thread t 2 should not acquire | ock 1 until thread t 1 releases it.
These decisions depend on specific application scenarios and cannot be generalized in any way. Testing of the locking scheme is
equally important, because deadlocks usually occur in deployed systems due to lack of stress and functional testing.

| @ FREY < Day Day Up > | NEXT

www.EBookswWorld.ir



[ & FREY < Day Day Up > | NEXT P

End-to-End Examples

In this section of the chapter we will take a look at two larger examples. First, we'll take a look at creating thread-safe wrappers
and then move on to a database connection pool.

Writing Your Own Thread-Safe Wrappers

The general idea of writing our own wrapper comes from the fact that you may not want to make every class in our library thread-
safe, as synchronization has performance penalties associated with it. You would like to give the application developer a choice of
whether to use a synchronized class or not. As the application developer would neither like to take the risk of a deadlock nor want
to pay the performance penalty of using a thread-safe class in a single-threaded environment, they might prefer to have a choice
of having a built-in synchronized wrapper for the same class in the library rather than writing a specific one. Collection classes like
ArraylLi st and Hasht abl e in the Syst em Col | ect i ons namespace already have this feature. You can decide whether you
want to use a thread-safe Hasht abl e or not during initialization of the Hasht abl e. You can initialize a thread-safe Hasht abl e
by calling the shared Synchr oni zed() method of the Hasht abl e class as shown below:

Hasht abl e h;
h = Hasht abl e. Synchroni zed(new Hasht abl e());

It would be good to give the application developer such a choice. In this example, we will attempt to develop a class and a
synchronized wrapper for the class. We will develop a Book Collection library and Figure 4 shows the UML representation of the
Book Collection library.

<intgrfacgs=

IBookCollection Book
wCloar] +Maime | SN
+ISBN : string
wAthor @ sting
+Pullishear | SAFiRgE

"

BookLib

+bk ; Hashtable = new Hashtables(10)

+Chzar(}

+hdd|in n ; Baok)

+GetBookiin ISBM : sting) © Book

+aSynchronided() & Dol

+SymcRoat() © chject

+Synchronized]) : Booklib

+ESynchronizedin b : BookLin) : BookLib
+Eynchronizedin ace ;- IBsakCollection) ; IBockCollection

SyncBooklib Test
-syncRoot ¢ object -ac | BookLib
Diapbdaly | obgacl - i =0
+SyrcBockLibiin st © 1BaokCollaction) Maindin args ; stringl
Funil

Figure 4

The program is very simple, but the concept of having intrinsic synchronization support is very important. By adding intrinsic
synchronization support to our library, we will allow the developer to choose between a synchronized and non-synchronized
environment for the same class. For example, programmers who do not need synchronization can instantiate an object as follows:

BookLi b b = new BookLi b()

while programmers who use our type in a thread-hot environment can use the thread-safe wrappers as follows:

www.EBookswWorld.ir
BookLi b b = new BookLi b()



b = b. Synchroni zed()

The following is the complete BookLi b. ¢cs source along with its synchronized wrapper:

usi ng System
usi ng System Thr eadi ng;
usi ng System Col | ecti ons;

i nterface |BookCollection

{
void Cear();
voi d Add(Book n);
Book Get Book(string |SBN);
bool 1sSynchronized { get; }
obj ect SyncRoot { get; }

}

public class Book

{
public string Nane;
public string | SBN;
public string Author
public string Publisher;

}

cl ass BookLi b : | BookColl ection

{
i nternal Hashtabl e bk = new Hasht abl e(10);

public virtual void dear()

{
}

public virtual void Add(Book b)
{

this.bk.Cear();

Consol e. Wi teLine("Addi ng Book for Threadl D:" +

Thr ead. Current Thread. Get HashCode()) ;
Thr ead. Sl eep(2000) ;
bk. Add(b. 1 SBN, b);

}

public virtual Book GetBook(string |SBN)

{
Consol e. WiteLine("CGetting Book for Threadl D:" +

Thread. Current Thread. Get HashCode()) ;
return (Book)bk[ I SBN|

}

public virtual bool [|sSynchronized

{
}
public virtual object SyncRoot

{
}

get { return(false); }

get { return(this); }

publ i c BookLi b Synchronized()

{ . . www.EBooksWorld.ir
return Synchronized(this);



}

public static BookLib Synchroni zed(BookLi b bc)

{
if (bc == null)

{

t hrow new Argunent Nul | Exception("bc");

}

if (bc.GetType() == typeof (SyncBookLi b))
{

t hrow new | nval i dOper ati onExcepti on(
"BookLi b reference is already synchronized.");

}

return new SyncBookLi b(bc);
}

public static |IBookCollection Synchronized(lBookCol |l ection acc)

{

if (acc == null)
{

t hrow new Argunent Nul | Exception("acc");
}
if (acc. GetType() == typeof (SyncBooklLi b))
{

t hrow new | nval i dOper ati onExcepti on(
"BookLi b reference is already synchronized.");

}

return new SyncBookLi b(acc);

}
}

seal ed class SyncBookLi b : BookLib
{

private object syncRoot;

private object booklib

i nt ernal SyncBookLi b(l BookCol | ecti on acc)
{

bookl i b = acc;

syncRoot = acc. SyncRoot;
}

public override void O ear()

{
| ock(syncRoot)

{

base. C ear();

}
}

public override void Add(Book b)

{
| ock(syncRoot)

{
base. Add(b) ;

}
}

?Ub|IC overri de Book CetBook(string I%ﬁmyEBmmﬁNmmn



| ock(syncRoot)

{
return (Book)bk[I SBN];
}
}
public override bool |sSynchronized
{
get{ return(true); }
}
public override object SyncRoot
{
get { return(syncRoot); }
}
}
cl ass Test
{

private static BookLib acc;
private static int n =0

static void Miin(string[] args)
{

acc = new BookLi b();

if (args.Length > 0)
{
acc = acc. Synchroni zed();
/1 OR BookLi b. Synchr oni zed(acc);

}

Thread[] threads = {new Thread(new ThreadStart(Run)),
new Thread(new ThreadStart (Run)),
new Thread(new ThreadStart (Run))};

foreach (Thread t in threads)

{
t.Start();

}

foreach (Thread t in threads)

{
t.Join();

}

for (int i =0; i < n; i++)
{
Book bk = acc. Get Book(i.ToString());

if (bk '= null)

{
Consol e. WiteLine("Book : " + bk.Nane);
Console. WiteLine("I'SBN : " + bk.ISBN)
Consol e. WiteLine("Publisher : " + bk.Publisher);
Consol e. WiteLine("Author : " + bk.Author);
}

}
Consol e. WiteLine("Total Nunber of books added " + n);

}

static void Run()

t )
i i i ; .EBooksWorld.
for (int i =0; i < 2; i++) www.EBooksWorld.ir



Book bk = new Book();

bk. Aut hor = "Tej aswi Redkar";
bk. Name = "A" + i;

bk. Publ i sher = "Wox";

bk. 1 SBN = (n++).ToString();
acc. Add( bk) ;

In the above example, we first declare an interface | BookCol | ect i on, which has the following methods and properties for
handling collection of books:

m Cl ear () - Method to clear the book collection

m Add() - Method to add a book to the book collection

Cet Book() - Method to get a book from the book collection

I sSynchr oni zed() - Read-only property used to check whether the collection is synchronized or not

SyncRoot () - Read-only property to get the synchronized root of the collection

Next we declare a class called Book representing a book in the collection. For example, the collection might be a library or a book
store, but the representation of the Book class is the same in both.

The BookLi b class implements the | BookCol | ect i on interface. As a result, the BookLi b class must implement all the
methods and properties of the | BookCol | ect i on interface. We declare a Hasht abl e called bk as the collection that will
contain our books. The Key of the Book object will be its ISBN number. In the Add() method, we add a Book object to the
Hasht abl e. In the Get Book() method, we retrieve the Book object if its ISBN number is supplied.

Now we must address any synchronization issues. In the Synchr oni zed() method, we create an object of type SyncBookLi b
and return a reference to it. SyncBookLi b is the synchronized version of the BookLi b class. SyncBookLi b inherits from the
BookLi b class, thus inheriting all the properties and methods that the BookLi b class has already implemented. The difference
between SyncBookLi b and BookLi b class is that in the SyncBookLi b class, we lock all the critical sections using monitors
(using the lock keyword). For example, the O ear (), Get Book(), and Add() methods have locks in their implementations thus
making them thread-safe, whereas, in the BookLi b class, there are no locks in any of the methods.

In the Test class, we create a synchronized BookLi b if we pass any command-line argument. If there are no command-line
arguments passed, we create a non thread-safe BookLi b object. Then we create three threads that add some books to our book
library. When you run the application, the difference between the execution of synchronized BookLi b and non-synchronized
BookLi b will be clear. In the synchronized version, only one thread can access the library at any point of time. So, the other two
threads have to wait until the first thread has finished adding books to the BookLi b. This is not the case if we use the non-
synchronized version; all the threads are given concurrent access to the BookLi b object instance.

The output from BookLi b with a command-line argument (thread-safe) will be as follows:

Addi ng Book for Threadl D: 2
Addi ng Book for Threadl D:3
Addi ng Book for Threadl D: 4
Addi ng Book for Threadl D: 2
Addi ng Book for ThreadlD: 3
Addi ng Book for ThreadlD: 4

Book : AO

ISBN : O

I SBN : W ox

Aut hor : Tejaswi Redkar

Book : A0

ISBN : 1

I SBN : W ox

Aut hor : Tejaswi Redkar

Book : AO

|SBN : 2 www.EBooksWorld.ir

I SBN : W ox



Aut hor : Tejaswi Redkar

Book : Al

ISBN : 3

I SBN : W ox

Aut hor : Tejaswi Redkar
Book : Al

ISBN : 4

I SBN : W ox

Aut hor : Tejaswi Redkar
Book : Al

ISBN : 5

| SBN : W ox

Aut hor : Tejaswi Redkar
Total Nunber of books added 6

The output from BookLi b with no command-line argument (non-thread-safe will be as follows:

Addi ng Book for ThreadlD: 3
Addi ng Book for ThreadlD: 4
Addi ng Book for Threadl D: 2
Addi ng Book for Threadl D:3
Addi ng Book for ThreadlD: 4
Addi ng Book for Threadl D: 2
Getting Book for Threadl D7

Book : A0
ISBN : O
I SBN : W ox

Aut hor : Tejaswi Redkar
Getting Book for Threadl D: 7

Book : A0
ISBN : 1
| SBN : W ox

Aut hor : Tejaswi Redkar
CGetting Book for ThreadlD: 7

Book : A0
ISBN : 2
| SBN : W ox

Aut hor : Tejaswi Redkar
CGetting Book for Threadl D: 7

Book : Al
ISBN : 3
I SBN : W ox

Aut hor : Tejaswi Redkar
Getting Book for Threadl D7

Book : Al
ISBN : 4
I SBN : W ox

Aut hor : Tejaswi Redkar
Getting Book for Threadl D:. 7

Book : Al
ISBN : 5
| SBN : W ox

Aut hor : Tejaswi Redkar
Total Nunber of books added 6

A Database Connection Pool

Object pools are very common in enterprise software development where instantiation of objects has to be controlled in order to
improve the performance of the application. For example, database connections are expensive objects to be created every time
we need to connect to a database. So, instead of wasting resotseesvinrinstantiating the database connection for every database
call, we can pool and reuse some connection objects that we have already created and thus gain a performance advantage by



saving the time and resources required to create a new connection object for every database call.

Object pooling is similar to a book library. The book library maintains a pool of similar books. When the demand for that particular
book increases, the library buys more, else the readers just keep on reusing the same books. In Object Pooling, first we check the
pool to see whether the object has already been created and pooled, if it is pooled, we get the pooled object; else we create a new
one and pool it for future use. Object pooling is extensively used in large-scale application servers like Enterprise Java Beans
(EJB) Servers, MTS/COM+, and even the .NET Framework.

In this section, we will develop a database connection pool for pooling database connections. Database connections are
expensive to create. In a typical web application there might be thousands of users trying to access the web site at the same time.
If most of these hits need database access to serve dynamic data and we go on creating new database connection for each user,
we are going to affect the application performance negatively. Creating a new object requires new memory allocation. Memory
allocation reduces application performance and, as a result, the web site will either slow down considerably in delivering the
dynamic content, or crash after a critical point is reached. Connection pooling maintains a pool of created objects, so the
application that needs a database connection can just borrow a connection from the pool and then return it to the pool when the
job is done, rather than creating a new database connection. Once data is served to one user, the connection will be returned
back to the pool for future use.

Implementing the Pool

Let's start by taking a look at a UML diagram that depicts our database connection pool application. Figure 5 show the
bj ect Pool class and the DBConnect i onSi ngl et on class that inherits the OGbj ect Pool class.

ObjectPoal

DBConect anSingleton

Figure 5

The ObjectPool Class

Let's start our discussion of the Cbj ect Pool class by listing it in its entirety:

using System
usi ng System Col | ecti ons;
usi ng System Ti ners;

nanmespace W oxCS

{

public abstract class bject Pool

{
/l Last Checkout tinme of any object fromthe pool.
private | ong |astCheckQut;

/I Hasht abl e of the checked-out objects

private static Hashtabl e | ocked; . EBookaWorldir



/I Hasht abl e of avail abl e objects
private static Hashtabl e unl ocked;

/1 Cl ean-Up interval
internal static |ong GARBAGE | NTERVAL = 90 * 1000; // 90 seconds
static Object Pool ()
{
| ocked = Hasht abl e. Synchroni zed( new Hasht abl e());
unl ocked = Hasht abl e. Synchroni zed(new Hasht abl e());

}

i nternal bj ect Pool ()

{
| ast CheckQut = Dat eTi ne. Now. Ti cks;

/I Create a Tinme to track the expired objects for cleanup.
System Tiners. Tiner aTimer = new System Tinmers. Tiner();
aTi mer . Enabl ed = true;
aTiner.Interval = GARBAGE | NTERVAL;
aTi mer . El apsed += new

System Ti mers. El apsedEvent Handl er (Col | ect Gar bage) ;

}

protected abstract object Create();
protected abstract bool Validate(object 0);
protected abstract void Expire(object 0);

i nternal object GetbjectFronmPool ()
{
| ong now = Dat eTi ne. Now. Ti cks;
_last CheckQut = now,
object o = null;

| ock(this)
{
try
{
foreach (DictionaryEntry nyEntry in unl ocked)
{
0 = nyEntry. Key;
if (Validate(o))
{
unl ocked. Renove(0);
| ocked. Add(o, now);
return(o);
}
el se
{
unl ocked. Renove(0);
Expire(o);
o = null;
}
}
} catch (Exception){}
0 = Create();
| ocked. Add(o, now);
}

return(o);

}

. . . . .EBopksWorld.i
i nternal void ReturnQbject ToPool (obJWeWcV\f 85) oreir



if (o!=null)
{
| ock(this)
{
| ocked. Renove(0) ;
unl ocked. Add(o, DateTi nme. Now. Ti cks);
}
}
}

private void Col |l ect Gar bage(obj ect sender,
System Ti nmer s. El apsedEvent Args ea)

{
| ock(this)
{
obj ect o;
| ong now = Dat eTi ne. Now. Ti cks;
| Di cti onaryEnunmerator e = unl ocked. Get Enuner at or () ;

try
{
whi | e(e. MoveNext ())

{

0 = e. Key;

if ((now - ((long) unlocked] o ])) > GARBAGE | NTERVAL )
{

unl ocked. Renove(0);
Expi re(o);
o = null;
}
}
}
catch (Exception){}
}
}
}
}

The bj ect Pool base class contains two important methods; Get Cbj ect Fr onPool (), which gets an object from the pool, and
Ret ur nObj ect ToPool (), which returns object to the Pool. The object pool is implemented as two hashtables, one called

| ocked and the other called unl ocked. The | ocked hashtable contains all the objects that are currently in use and unl ocked
contains all the objects that are free and available for use. The Cbj ect Pool also contains three Must Over ri de methods
Create(), Val idate(), and Expi re(), that must be implemented by the derived classes.

In total, there are three critical sections in the Obj ect Pool class:

m While getting an object to the pool, Get Obj ect Fr onPool () is used - A lock is needed while adding an object to the pool
because the content of the | ocked and unl ocked hashtables change and we do not want any race condition here.

= While returning an object to the pool, Ret ur nObj ect ToPool () is used - Again, a lock is needed while returning an object to
the pool because the content of the | ocked and unl ocked hashtables will change and a new object will be available for use.

Here also we cannot afford to have a race condition, because, we do not want multiple threads accessing the same hashtable
at the same time.

m  While cleaning up the expired objects from the pool, Col | ect Gar bage() - In this method, we go over the unl ocked
hashtable to find and remove expired objects from the pool. The content of the unl ocked hashtable may change and we
need the removal of expired objects to be atomic.

In the Get Obj ect Fr onPool () method, we iterate over the unl ocked hashtable to get the first available object. The
Val i dat e() method is used to validate the specific objectwiigddelviod@t e() method may vary in specific implementations
based on the type of the pooled object. For example, if the object is a database connection, the derived class of the object pool



needs to implement the Val i dat e() method to check whether the connection to the database is open or closed. If the validation
of the pooled object succeeds, we remove the object from the unl ocked hash table and put it in the | ocked hashtable. The

| ocked hashtable contains the objects that are currently in use. If the validation fails, we kill the object with the Expi r e()
method. The Expi r e() method also needs to be implemented by the derived class and is specific to the specific type of pooled
object. For example, in the case of a database connection, the expired object will close the database connection. If a pooled
object is not found, that is if the unl ocked hashtable is empty, we create a new object using the Cr eat e() method and put the
object in the | ocked hashtable.

The Ret ur nObj ect ToPool () method implementation is much simpler. We just have to remove the object from the | ocked
hashtable and put it back in the unl ocked hash table for recycling. In this whole recycling process, we have to take into
consideration the memory usage of the application. Object pooling is directly proportional to memory usage. So, the more objects
we pool, the more memory we will be using. To control memory usage, we should periodically garbage-collect the objects that are
pooled. This can be achieved by assigning a timeout period to every pooled object. If the pooled object is not used within the
timeout period, it will be garbage-collected. As a result, the memory usage of the object pool will vary depending on the load on the
system. The Col | ect Gar bage() method is used for handling the garbage collection of the pooled object. This method is called
by the aTi ner delegate that is initialized in the Obj ect Pool constructor. In our example, we set the garbage-collection interval to
90 seconds in the GARBAGE CCOLLECT constant.

We haven't implemented any database connection-specific code so we can assume that the Obj ect Pool class can be used
for the pooling any type of .NET Framework objects.

The DBConnectionSingleton Class

The DBConnect i onSi ngl et on class is the implementation of a database connection-specific object pool. The main purpose of
this class is to provide database connection-specific implementations of the Creat e(), Validate(), and Expire() methods
inherited from the Cbj ect Pool class. The class also provides methods called Bor r owDBConnecti on() and

Ret ur nDBConnect i on() for borrowing and returning database connection objects from the object pool.

The complete listing of the DBConnect i onSi ngl et on class is as follows:

usi ng System
usi ng System Data. Sql Cient;

nanmespace W oxCS

{

public seal ed cl ass DBConnectionSingl eton : Object Pool

{
private DBConnectionSingleton() {}

public static readonly DBConnectionSingleton Instance =
new DBConnecti onSi ngl eton();

private static string _connectionString =
@ server=(local); Trusted Connection=yes; dat abase=nort hw nd";

public static string ConnectionString

{

set

{

_connectionString = val ue;

get
{

return connectionString;

}
}

protected override object Create()

{

Sql Connection tenp = new Sgl Connect i ong connectionString);
. www.EBooksWorld.ir
tenmp. Open();



return(tenp);

}
protected override bool Validate(object o)
{
try
{
Sql Connection tenmp = (Sql Connecti on)o;
return(
I ((tenp. State. Equal s(System Dat a. Connecti onState. C osed))));
iatch (Sql Exception)
{ return false;
}
}
protected override void Expire(object 0)
{
try
{
((Sqgl Connection) o ).C ose();
iatch (Sql Exception)
{
}
}
public Sgl Connecti on BorrowDBConnecti on()
{
try
{
return((Sql Connecti on)base. Get Obj ect FronPool ());
iatch (Exception e)
{
throw e;
}
}
public void ReturnDBConnection(Sqgl Connection c)
{ base. Ret ur nObj ect ToPool (c);
}
}
}

As you are dealing with the Sgl Connect i on object, the Expi r e() method closes the Sql Connect i on, the Cr eat e() method
creates the Sgl Connect i on, and the Val i dat e() method checks whether the Sql Connect i on is open or not. The whole
synchronization issue is hidden from the client application using the DBConnect i onSi ngl et on object instance.

Why Use a Singleton?

The Singleton is a popular creational design pattern, which is used when you need to have only one instance of an object. The
intent of the Singleton pattern as defined in Design Patterns (ISBN 0-201-70265-7) is to ensure a class has only one instance, and
provide a global point of access to it. To implement a Singleton, we need a Pri vat e constructor so that the client application is
not able to create a new object whenever it wants to, and the st ati ¢ ReadOnl y property instance is used to create the only
instance of the Singleton class. The .NET Framework, during the JIT process, will initialize the st at i ¢ property when (and only
when) any method uses this static property. If the property is not used, then the instance is not created. More precisely, the class
gets constructed and loaded when any st at i ¢ member of the class is used by any caller. This feature is called lazy initialization
and gives the effect of the creation of the object only on the first call to the instance property. The .NET Framework guarantees the
thread safety of shared type initializations inherently. So we do not have to worry about the thread safety of the

DBConnect i onSi ngl et on object because only one instgnga-pidtaniligwer be created during the lifetime of the application. The
st at i ¢ variable instance holds the only instance of the DBConnect i onSi ngl et on class object.



Using the Database Connection Pool

The database connection pool is now ready for use and the Obj ect Pool Test er application in the code download for this
chapter can be used to test it.

Below we show some code snippets of how to instantiate and use the database connection pool:

/1 Initialize the Pool
DBConnect i onSi ngl et on pool ;
pool = DBConnecti onSi ngl et on. I nstance

/1 Set the ConnectionString of the DatabaseConnecti onPool
DBConnect i onSi ngl et on. ConnectionString =

"server=(local); User |D=sa; Password=; dat abase=nort hw nd"
/1 Borrow the Sql Connection object fromthe pool
Sqgl Connecti on nyConnecti on = pool . BorrowbBConnecti on()

/!l Return the Connection to the pool after using it
pool . Ret ur nDBConnect i on( myConnect i on)

In the above examples, we initialize the DBConnect i onSi ngl et on object from the instance property of the

DBConnect i onSi ngl et on class. As discussed above, we are assured that with the use of the Singleton design pattern we have
one and only one instance of the DBConnect i onSi ngl et on object. We set the Connect i onSt ri ng property of the database
connection to the Northwind database on the local SQL Server machine. Now, we can borrow database connections from the
object pool using the Bor r owDBConnect i on() method of the pool object, and return the database connection by calling the

r et urnDBConnecti on() method of the pool object. The following screenshot shows the Cbj ect Pool Test er application in
action. If you really want to explore how the pooling application works, the best way is to open the project in Visual Studio .NET
and step through the Obj ect Pool Test er application in Debug mode.

Ll:!t:-ji'r.'llJLu.Hll.-tl.-r = 0] x|
Daisbese Conemction
Caonnacton Srng |1p-'-.-r|r- {locall Tusted_Canneciion=a5 databasgsnarfsind
Sql Quary saba * ki Sustoman LI
Dhustpan
<HowlatnSet> il
¢Customarss
£CusiomeDaAL FERCustoma il
LCompanytlamerAlirads FuladosiedCompamSlamer
LCamactamss»kana Aadem O Canlaclf{ame
LComac TaexSakes FépnsdaniahediConactT ey
eaddress¥Obere S 5T¢Mddrass? LI
4| FREV < Day Day Up >

www.EBookswWorld.ir



| 4 FREV | < Day Day Up > | NE<T |

Summary

Synchronization is an extremely important concept in this multithreaded world of enterprise computing. It is extensively used in
popular applications like databases, message queues, and even web servers. Any developer developing multithreaded
applications needs to have their synchronization concepts crystal clear. Rather than getting overwhelmed with the locking features
and trying to make every object thread-safe, the developer should focus on deadlock scenarios and try to resolve as many
deadlock conditions as possible right from the design stage of the application. It is also important to understand the performance
hit associated with synchronization and how it will affect the overall performance of your application. In this chapter, along with the
synchronization support in the .NET Framework, we also developed a couple of useful applications:

m A custom thread-safe wrapper. In this example, you learned how you can add intrinsic synchronization support to your library
and give the application developer the choice of using synchronization or not. This will help the developer focus on their own
application rather than worrying about the thread safety of the library.

m A database connection pool. In this example, you developed a generic object pool that can be used for pooling any type of
similar objects. Following that, we developed a database connection pool inheriting from the object pool. The object pool can
be reused to pool any kind of object.

L= < Day Day Up > e

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Chapter 4: Threading Design Principles

Overview

Most highly scalable systems are highly concurrent in nature, meaning the existence of more than one request for the same object
at the same time. However, it is a huge challenge to write code that is both highly concurrent and thread safe, which means that
when one or more threads are accessing shared data, there is no possibility that the data could be corrupted or made
inconsistent.

If we use multithreading techniques with a formal threading model, we can write highly scalable code that can work in a concurrent
fashion. In the previous chapters, we learned when to use threading and all the details about threading, including the threading
traps. In this chapter, we'll learn all about the threading models supported by .NET and how to take advantage of these threading
models, as well as some models we can impose on top of .NET to help us design our code.

By default all the .NET applications are multithreaded, which was not the case in VB6. In Windows Forms applications, there is a
special thread called the Ul thread that controls all the user interface-related functions such as keyboard activities and mouse
activities. When long-running, time-consuming processes are running on the Ul thread, the application will become unresponsive.
If you run such tasks on a newly spun thread different from the default Ul thread, your application will behave better, and your user
interface will respond better. However, if you thought that creating numerous Thr ead objects is the only way to achieve this, you
would be wrong. You can use several techniques in addition to multithreading, including implementing asynchronous programming
and using Ti ner -based functions, as you saw in Chapter 2.

‘ 48 FREV < Day Day Up >

www.EBookswWorld.ir



| 4m FREY < Day Day Up > | NEXT P

Multiple Threads in Applications

If you programmed in versions of VB prior to .NET, you might know that VB supported multiple threads within a COM container,
such as MTS or COM+. Well, although multiple threads were supported by VB5/6, the threading model they supported was Single
Threaded Apartments (STA). If you come from Visual C++ then you'd have options to build both MTA (Multi Threaded
Apartments) and STA applications. However, the .NET Framework does not retain the concept of Apartments and it manages all
of the threads within AppDomains. By default, all .NET applications are multithreaded and any code can access any object at any
time. Thus, we have to be very careful with static resources in the managed code.

The .NET Framework supports both managed and unmanaged threads and all the Win32 threading models such as STA and
MTA. When you are trying to access COM components from managed code, unmanaged threads are created by the legacy COM
components. Threads in the .NET Framework are created using the Thr ead object, whether managed or unmanaged.

If you have ever programmed multithreaded programs using the Win32 APIs, you may remember that Win32 supported user-
interface threads and worker threads. As you learned in Chapter 1, the threading names have now changed into Apartment
Model Threading and Free Threading respectively. The .NET Framework supports two basic threading models, which are
Apartment Model Threaded or Single Threaded Apartment (STA) components, and Free Threaded or Multi Threaded
Apartment (MTA) components. When we create a thread in .NET, by default it is an MTA thread.

You should only use the STA threading model when you're going to access STA-based COM components such as VB6 COM
components. Otherwise, you shouldn't mark the current thread as STA, since it involves a significant performance hit to the
application.

To reiterate what you learned earlier, an apartment is the logical container within the AppDomai n for sharing threads in the same
context. Objects reside inside an AppDomai n and the context is created when an object is created during the activation process.

‘ .‘ PREY < Day Day Up > ME®T ‘

www.EBookswWorld.ir



‘ 48 FREV < Day Day Up >

STA Threading Model

An STA thread apartment works using a concept called Object-per-Client model, meaning the code that creates the STA thread
apartment owns its threads. There will only be one thread in any apartment as shown in Figure 1.

AppDomain X
 Theead N Thresd
STA Apartment X STA Apartment ¥
Figure 1

In STA threading, all the calls to a thread will be placed in a queue and the calls will be processed one by one. Therefore, the STA
thread will never execute multiple methods simultaneously. STA threads have their own private data and they don't share data
between threads. This makes the threading model safe and avoids any data corruption and synchronization problems. However,
this does restrict the options available to the developer, and performance suffers, as data has to be copied with every thread
created.

As you can see from the diagram, AppDonai n X has two STA threads, X and Y, running inside, and each of the STA Apartments
has only one thread. The term Thread Affinity is used when defining the relationship between the thread and the code that
creates the thread. When a call is made to an STA apartment thread, then calls between the caller and the thread are handled by
the contexts in the AppDonai n, and the contexts maintain the thread affinity.

If your managed application is going to use unmanaged legacy COM components, then it is very important to know the threading
model of the COM components before accessing them. If you don't mark the correct threading mode in your application, there
could be some unexpected bugs and catastrophic errors in your application. The threading model information can be found in the
registry under the HKEY_CLASSES ROOT\ CLSI D\ {O ass I D of the COM conponent} \InProcServer 32 key.

If you want to specify that you are using the Apartment Threading model, then apply the STAThr eadAt t ri but e attribute on the
Mai n () method.

[ STAThreadAttri but e]
static void Min()

{
}

This attribute should only be used if we're trying to access legacy STA components from the managed code. Otherwise, mark the
Mai n() method as MTAThr eadAt tri but e:

[ MTAThr eadAttri but e]
static void Min()

{
}

The same principal applies for ASP.NET applications. If your ASP.NET page is accessing an STA COM component, then you
have to use the ASPConpat directive at the top of the ASP.NET page:

<%@ Page AspConpat="true" %
www.EBooksWorld.ir



By default, all the ASP.NET pages are multithreaded and when we use the AspConpat directive, the ASP.NET page is marked as
STA. This will ensure the ASP.NET page is compatible with the threading model of a COM component.

When you mark the ASP.NET page to run under the STA threading model, the performance of the application may suffer.

Note If you are using VB.NET then you can use Cr eat eCbj ect statement to instantiate COM objects. Since C#
doesn't allow late binding, the only way to call COM objects in late binding mode is to use reflection.

m < Day Day Up > m

www.EBooksWorld.ir



‘ 48 FREV < Day Day Up >

MTA Threading Model

The biggest difference between an STA and an MTA threaded apartment is that an MTA apartment can have more than one
thread running simultaneously in the same apartment using all the shared data available in the apartment. This is illustrated in

Figure 2.

AppDomain X
Theead Thireasd
Thereasd Thread
MTA Apartment X MTA Apartment Y

Figure 2

Since the MTA model supports simultaneous multiple thread execution, it becomes the caller's responsibility to synchronize the
global data between multiple threads. Many of these issues were covered in the previous chapter.

Specifying the Threading Model

The threading model for a thread can be set using the Apar t ment St at e property of the Thr ead class. The Apart nent St at e
enumeration defines the types of threading models supported by .NET.

Enumeration Value Meaning

MTA Creates a multi-threaded apartment
STA Creates a single-threaded apartment
Unknown The apartment property of the Thr ead class is not set

As we've already learned, you should only mark the thread as STA thread if you are going to access an STA-threaded legacy
COM component. Otherwise, your threading model is in the default MTA threading model.

Designing Threaded Applications

A multithreaded program has two or more threads (flows of control) and can achieve significant performance gains with
concurrency, with or without parallel thread execution. Concurrent thread execution means that two or more threads are executing
at the same time. Parallelism occurs when two or more threads execute simultaneously across two or more processors.

In this section, we'll talk about real threading considerations and issues. Before you start developing applications, you should ask
yourself these questions:

1. Is it possible to subdivide the application to run on different threads?
2. Ifitis possible to subdivide, how do | subdivide and what are the criteria for subdividing?

3. What would be the relationship between the main thread and the worker threads? This defines how the tasks in the
application will relate to each other.

You can determine the answer to the first question by inspecting the application. For example, does your application require heavy
I/O operations, such as reading an XML file or querying a database, or perform a lot of CPU-intensive processing, such as
encrypting and decrypting data, or hashing? If so, these operations could block your application's main thread.

If you've identified that parts of your application are potentialwandidatesdfor separate threads, then you should ask yourself the
following questions:



1. Does each of the tasks identified use separate global resources?

For example, if you've identified two potential threads for your application and they are both going to use the same global
resource, such as a global variable or a Dat aSet object, then if both threads try to access the global resource at the same
time, you could get inconsistent or corrupt data, as shown in the previous chapter. The only way to prevent this kind of
problem is by using locks on the global resources, which could leave the other thread waiting. If both of the tasks are going
to use the same global resource then it is not a good idea to break the task into two. For some resources, you could use
the Moni t or class to prevent the threads from locking up. Again, this was shown in Chapter 3.

2. Over how long a period may the thread need to be blocked?

It is not always possible to build applications that use independent global resources. For example, let's say two tasks in
your application rely on a single global Dat aSet object. If the first task takes a long time to fill the Dat aSet object (let's
say it fills about 50,000 rows from the database), then you would typically lock the Dat aSet object to prevent concurrency
problems. Here a pseudo-code version of the first task:

Open the Database connection

Lock the gl obal DataSet object

Perform the query

Fill the DataSet with 50,000 rows fromthe database
Unl ock the DataSet object

aprwdPE

In this case, the second task needs to wait for a long time before it can access the Dat aSet object, which happens only
when the first task finishes its execution and releases the lock. This is a potential problem and it will likely remove the
concurrency of your application. There is a better way to address this problem:

Open the Dat abase connection

Performthe query

Fill the local DataSet with 50,000 rows fromthe database
Lock the gl obal DataSet object

Set the |ocal database to gl obal dataset (DSA obal = DSLocal)
Unl ock the gl obal DataSet object

cukrwbdE

In this way, we're not locking the global Dat aSet object until we need to update it and so we're reducing the time the lock
on the global object is held.

3. Does the execution of one task depend on the other task?

For example, the tasks that you've identified could be querying the database and displaying the data in a Dat aGri d
control. You can split the task into two by querying the database as the first task, and displaying the result in the Dat aGri d

as the second task. The second task does not want to start until the first task has complete. Therefore, separating the
guerying and displaying the data in a Dat aGr i d into two separate concurrently running tasks is not a viable option. One

way around this is to have the first task raise an event when completed, and fire a new thread when this happens.
Alternatively, you could use a timer that checks to see if is completed through a public field, and continues the execution of
the thread when it has.

Threads and Relationships

The threads spun from a multithreaded application may or may not be related to each other. For example, in every application
there will be a main thread that spins other threads and so the main thread becomes the controller of all other threads in the
application. There are few common methods that can be used to define the relationship between the threads in a multithreaded
application:

m Main and Worker thread model
m Peer thread model
m Pipeline thread model

We will detail each of these models, including some code so that you can see how they might be implemented in your
applications. www.EBooksWorld.ir



Main and Worker Thread Model

This is the commonest model and the one used throughout this book so far. It is illustrated in Figure 3:

Agohcatien &
£l i L T N Miel: Sevvice
= i . ACchid the
Worker Thead )
< - L 4 Daisbese
- = T Dy sowmastfang

Figure 3

In the Main and Worker thread model, the main thread receives all input and passes it to other threads to perform particular tasks.
The main thread may or may not wait for the worker threads to finish. In this model, the worker threads don't interact directly with
the input sources as they read their input from the main thread. For example, we could have three buttons on a Windows Forms
application that trigger three separate events:

m Get data from a web service
m Get data from a database
m Do something else such as parsing an XML file

This is the simplest threading model. The main thread is contained within the Mai n() method, and the model is very common in
client GUI applications.

Let's look at some code to demonstrate this. We'll use a form like the following:

8 Main /Worker Thread Examn =10 x|

Calculate Factors Calculate Factonals

When you click on a button, it will fire off a worker thread that will perform some calculations and return the results in the space
below the buttons. We won't detail the Ul code here; the full code can be downloaded from the http://www.Apress.com, but here
are the relevant sections:

public class Mai nWrker

{
public ArrayList Cal cul ateFactors(int nunber)
{
i f (nunmber < 3)
return null;
el se

{
ArrayLi st factors = new Arraylist();

factors. Add("1"); www.EBooksWorld.ir
for (int current = 2; current <= nunber - 1; current++)


http://www.Apress.com

{
if ((int)(Math. Floor(nunber / current) * current) == nunber)

factors. Add(current. ToString());
}
factors. Add(nunber. ToString());
return factors;
}
}

public long Cal cul ateFactorial (i nt nunber)
{
if (nunber < 0)
return -1;

if (nunmber == 0)
return 1;
el se
{
| ong returnVal ue = 1;
for (int current=1; current <= nunber; current++)
returnVal ue *= current;
return returnVal ue;
}
}

The above methods are quite straightforward and are wrapped in a class for modularity reasons. The first returns an Arr ayLi st
containing all of the factors of the number passed to it, whereas the second simply returns a Long. Remember that factorials very
quickly get very large. The factorial of 13 is 6,227,020,800. The factorial method doesn't tie up the processor for very long, but it
can be used to illustrate this model.

public frmCal cul at e()

{
/1
/1l Required for Wndows Form Designer support
/1
InitializeConmponent();
//Add any initialization after the InitializeConponent() call
t hreadMet hods = new Mai nWor ker () ;
}

The constructor just contains an instantiation of a new Mai n\Wor ker object that will be used in the methods. Below we show the
methods used for the button click event handlers:

private void cndFactors dick(object sender, System EventArgs e)

{
Thread cal cul ateFactors = new
Thread(new ThreadStart (FactorsThread));
cal cul ateFactors. Start();
}

voi d FactorsThread()

{
ArrayLi st val = threadMethods. Cal cul at eFact or s(200);

StringBuilder sb = new StringBuilder();

for (int count = 0; count <= val.Count - 1; count++)

{
sb. Append((string)val [count]);

if (count < val.Count - 1)

www.EBookswWorld.ir



sb. Append(", ");
}

// Create and invoke the delegate with the new val ue
Updat eVal ue updVvVal = new Updat eVal ue(Di spl ayVal ue) ;
string[] Arugs = {sb.ToString()};

this. | nvoke(updVal, Arugs) ;

The cndFact ors_Cl i ck() method instantiates a new thread with the Fact or sThr ead() method, which formats and acts
upon the result contained in Mai nWor ker . Cal cul at eFact ors().

This method will need to be wrapped because thread methods cannot have return values.

private void cndFactorial dick(object sender, System EventArgs e)

{
Thread cal cul ateFactorial =
new Thread(new ThreadStart (Factorial Thread));
cal cul ateFactorial.Start();
}
private void Factorial Thread()
{
I ong val = threadMet hods. Cal cul at eFact ori al (20);
/I Create and invoke the del egate with the new val ue
Updat eVal ue updVal = new Updat eVal ue(Di spl ayVal ue) ;
string[] Arugs = {val.ToString()};
this. | nvoke(updVval , Arugs);
}

The Fact ori al Thread() method is much simpler. Whenever the cndFact ori al button is clicked, the main thread fires off a
new thread and updates the | bl Resul t text label when the results have been achieved.

This was a straightforward example of main and worker threads in actions. Obviously, this example can easily be changed to deal
with a connection to a database, or other more time-consuming activities.

However, you need to take care of several issues relating to threads when you use this mode. You can have threads spawning
threads, threads accessing the same resource, and threads going into an infinite loop.
This is the simplest model, but also the one that requires most work from the developer.

In addition, the threads are completely independent of each other, each being controlled entirely by its parent - in this case the
main thread.

Peer Thread Model

The next threading model we will describe is the Peer threading model. In this threading model, each thread will receive its own
input from the appropriate sources and process that input accordingly. This model is illustrated in Figure 4.

www.EBookswWorld.ir



Sockal

Application A
v
3
| x Worker Thiead A 4 = Do Something
& 3
¥ c
5 Worker Threod B A4 ¢ D Semathing
&
Irgul
L
SyalemSpecific Py
[swch 85 8
DirectoryChangs Event)
Figure 4

In the figure above, the Ul thread will receive the input from the keyboard and mouse and it can work accordingly. Worker Thread A
will listen to a particular socket and process input as it comes in from that socket, and in the same way Worker Thread B will wait
for a system event and act accordingly. In this model, all the threads execute concurrently without blocking or waiting for other

threads.
We can amend the previous example so that the Cal cul at eFact or s() method notices when the factorial thread finishes, and

discovers the factors of this number. We will use the factorial of 8 in this example. In this example, however, we won't be using a
socket, but just the setting of a variable. The principles will be the same for sockets; you would either continuously listen, or to

save processor cycles, sleep intermittently.

So, let's change the Wor ker Thr ead class first:

public class PeerThread

{

private int factorial;

public ArrayList Calcul ateFactors(int numnber)

{
i f (number < 3)
return null;
el se
{
ArrayLi st factors = new ArraylList();
factors. Add("1");
for (int current = 2; current <= nunber - 1; current++)
{
if ((int)(Math. Floor(nunber / current) * current) == nunber)
factors. Add(current. ToString());
}
factors. Add( nunber. ToString());
return factors;
}
}
public ArraylLi st Cal cul ateFactors()
{
for(int count = 1; count<=30; count++)
{
Thr ead. Sl eep( Ti meSpan. FronSeconds(1));
if (factorial > 0)
br eak;
else if (count == 30 && factorial == 0)
return null;
}

Arrayli st returnValue = Cal cul ateFactors(factorial);
return returnVal ue; www.EBooksWorld.ir

}



public long Cal cul ateFactorial (i nt nunber)

{
factorial = O;
if (nunmber < 0) return -1;
if (nunmber == 0) return 1;
int returnvalue = 1;
for (int current = 1; current <= nunber; current++)
returnVal ue *= current;
factorial = returnVal ue;
return returnVal ue;
}

First, we'll explain the small changes. A pri vat e field has been created that will store the result of the factorial when it has been
calculated. In addition, the class has been renamed to Peer Thr ead. The Cal cul at eFact or s() method now has an overload,
so that if it isn't passed an argument it performs the business end of this model.

All that happens is that the thread monitors the state of the f act ori al field, as if it were a socket, say. It checks to see if it is
anything other than 0, and if so, it calls the Cal cul at eFact or s() method with the value of f act ori al as its argument and
returns the ArrayLi st that it produces. We have also made a change in that we reset the f act ori al field at the start of the
Cal cul at eFact ori al () method so there will always be some work to do. At the end of this method, we set f act ori al to
equal the factorial.

Now, the f r mCal cul at e class needs altering also. Observe the following changes:

private PeerThread threadMet hods;

public frnCal cul ate()
{
/1
/'l Required for Wndows Form Designer support
/1
InitializeConponent();

/1 Add any initialization after the InitializeConponent() call
t hr eadMet hods = new Peer Thread() ;

private void NewractorsThread()
{
Arrayli st val = threadMet hods. Cal cul at eFactors();
cal cul at eFactorial . Join();
StringBuilder sb = new StringBuilder();
for (int count = 0; count <= val.Count - 1; count++)

{
sb. Append((String)val [count]);
if (count < val.Count - 1)
sb. Append(", ");
}

// Create and invoke the delegate with the new val ue
Updat eVal ue updval = new Updat eVal ue(Di spl ayVal ue);
string[] Arugs = {sb.ToString()};

this. |l nvoke(updVval , Arugs);

private void cndFactorial _Cick(object sender, System EventArgs e)
{ www.EBooksWorld.ir

Thread Cal cul at eFactors = new



Thread(new ThreadSt art ( NewFact or sThread)) ;
Thread cal cul ateFactorial = new

Thread(new ThreadStart (Factorial Thread));
cal cul ateFactors. Start();
cal cul ateFactorial.Start();

}

Apart from defining the new t hr eadMet hods field as a new Peer Thr ead class, there are two important changes. We define a
new method called NewFact or sThr ead(), which will call the Cal cul at eFact or s() method of the Peer Thr ead class with
no arguments. The rest of this method is the same.

Inthe cndFact ori al _C i ck() method, instead of just firing up the Fact ori al Thread() method in a thread, we fire up the
Fact or sThread() as well, and execute them out of sequence so that cal cul at eFact or s may have to wait for

cal cul at eFact ori al . You should be able to see how this can be tied into a network socket, and we will see an example of
monitoring such a socket in Chapter 7.

The common problems that could occur with this kind of model are those of deadlocks and blocking. If you have a thread
continually listening at a socket and getting its parameters from that socket, then that socket may need to be locked from other
threads. This means, therefore, that this is a very good model to use for manager classes. We could use a thread to monitor a
socket and then fire off new threads to process the contents. However, do not have more than one thread monitoring the same
socket. In addition, if the thread is continually checking the socket or other resource, then it may consume more processor cycles
than is necessary. As seen in the above example, you can use Thr ead. Sl eep() to reduce the processor cycles expended.

As you will see, this example is also very similar to the Pipeline Thread Model in concept, but we are simulating a Peer Thread
Model. If you click on the Calculate Factorials button, unless you have a very fast machine, you should have time to click on
Calculate Factors, which will enable you to calculate and display the factors of 200, before it overwrites the textbox with the factors
of 8!, or 40320.

Pipeline Thread Model

The Pipeline thread model is based on a series of tasks, each of which depends on the previous task. Have a look at Figure 5
which illustrates the situation:

Application A
bk T | = Wiorkkgr Thread &4 = Tk 4
=
5 L2
- Worker Thread B 4 . Task 2
§
]
E T
Workae Thread © - 3 Task 3

Figure 5

In the figure above, the main thread creates a series of threads, each of which will wait until the previous thread is finished
executing. This kind of threading relationship is good if your task has certain stages and each of these stages is dependent on
another. For example, your task could be processing input data and the process could have a few sub-tasks such as:

m Filter all the non-valid characters, such as <, >, |, etc.

m Check if the data is formatted correctly

m Format all the numbers with currency sign and decimal points
m Process the input

In this kind of situation, the next task can only be started if the previous task has finished. In the previous model, this is in effect
what we were doing, as the f act ori al field was only set at the end of the thread. However, the proper way to implement the

Pipeline thread model is to explicitly test that the thread has ended.

A few changes need to be made to the Peer thread example to make it part of the Pipeline model. First, we'll show the code for
frmCal cul at e:

www.EBookswWorld.ir



private PipelineThread threadMet hods;
private Thread cal cul ateFactori al ;

public frntCal cul ate()

{
t hreadMet hods = new Pi pel i neThread();
}
voi d NewFact or sThr ead()
{

ArrayLi st val = threadMethods. Cal cul at eFactors();
cal cul at eFactorial . Join();

As you can see, the changes are minimal here. The only interesting changes are the line that rescopes cal cul at eFact ori al ,
and the cal cul at eFact ori al . Joi n() line. This instructs the Cal cul at eFact or s thread to wait until

cal cul at eFact ori al has completed before executing. The Joi n() call has to be within the thread whose execution you want
to pause, and it is called on the thread it is waiting for. This inevitably means that the thread variable has to be rescoped to be at
least class wide so that it can be accessed from other threads.

public class PipelineThread

public ArraylList Cal cul ateFactors()

{
Arrayli st returnValue = Cal cul ateFactors(factorial);
return returnVal ue;

Again, the changes here are small. The above method no longer has to check if f act or i al has been set, and is able to thus
execute since it can assume the factorial has been calculated. This example could be useful when, for instance, you are waiting
on a Dat aSet to fill, before performing some further calculations. This would enable the thread to fire as soon as the thread that
fills the Dat aSet is complete. Of course, in a real application, error checking would have to be implemented as the thread could
have completed but ended abruptly because of an error, or because of an Abort () instruction from another thread.

The traps you have to watch out for are the same traps that can occur with any thread. The first thread could be placed in an
infinite loop, in which case, the second thread would never execute. By ensuring this can never happen in your first thread, you
ensure that the second thread will execute and complete. In addition, you have to watch out for the thread ending unpredictably,
due to an error or otherwise, as mentioned in the previous paragraph.

This concludes the discussion of the three models that can be applied to threading. By modeling your application to one of these,
you should become familiar with the structure of the code you would need to use.

1 .- FREW < Day Day Up > | MNE®T ‘

www.EBookswWorld.ir



| 4 FREV | < Day Day Up >

Summary

In this chapter, the various threading models that can be applied to your application, why you should use them, and how to
implement them have been described. You should now be confident in your knowledge of:

m Different types of basic threading model, such as STA and MTA apartments
= How to specify the threading model
m The different models of threads that can be applied and their relationships to each other

This chapter should help you design your threaded application - your application will fit into one or more of the models described
above, and so the code examples given should help you to build the code you need. With the .NET Framework, threads are far
more powerful, but also far more prone to errors than they used to be. By being aware of which model your application fits into,
you can look out for these potential errors.

m < Day Day Up > m

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Chapter 5: Scaling Threaded Applications

Overview

The goal of multithreading our applications so far has been to try to make as much use of the computer's processor as possible.
So, it would seem that all we need to do is allocate each independent task to a different thread, and let the processor make sure
that it's always processing commands on one of them. Well, for small systems this is pretty much the case. But as systems grow
larger, and the number of threads grows, the operating system can spend much of its time allocating locks, and sorting out
contention between threads, and little of its time actually processing our program's instructions. In order to make our applications
scale, we'll have to take a bit more control of threads.

For some situations where the threads are short-lived, for example, it is efficient to use a pool of threads for performing tasks
rather than creating and then subsequently deleting an entirely new thread for each task. A task, in this context, could be a single
method execution, or a number of methods. The process of pre-allocating a collection, or pool, of threads prior to their actual
usage and for reuse later in an application is known as thread pooling.

This chapter aims to provide a detailed insight into thread pooling, and covers the following topics:
= What thread pooling is
m The need for thread pooling
m The concept of thread pooling
m The role of the CLR in thread pooling
m Glitches involved in thread pooling and their solutions
m The size of a thread pool
m Exploring the .NET ThreadPool class
m Programming thread pools in C#

As you'll discover, the Common Language Runtime (CLR) of the .NET Framework plays a major role in the thread pooling process.

lm < Day Day Up > m

www.EBooksWorld.ir



& FREV < Day Day Up > MET iy

What is Thread Pooling?

Thread pooling is the process of creating a collection of threads during the initialization of a multithreaded application, and then
reusing those threads for new tasks as and when required, instead of creating new threads. The number of threads for the
process is usually fixed depending on the amount of memory available, and the needs of the application. However, it might be
possible to increase the number of available threads. Each thread in the pool is given a task and, once that task has completed,
the thread returns to the pool and waits for the next assignment.

The Need for Thread Pooling

Thread pooling is essential in multithreaded applications for the following reasons.

m Thread pooling improves the response time of an application as threads are already available in the thread pool waiting for
their next assignment and do not need to be created from scratch

m Thread pooling saves the CLR from the overhead of creating an entirely new thread for every short-lived task and reclaiming
its resources once it dies

m Thread pooling optimizes the thread time slices according to the current process running in the system
m Thread pooling enables us to start several tasks without having to set the properties for each thread

m Thread pooling enables us to pass state information as an object to the procedure arguments of the task that is being
executed

m Thread pooling can be employed to fix the maximum number of threads for processing a particular request

The Concept of Thread Pooling

One of the major problems affecting the responsiveness of a multithreaded application is the time involved in spawning threads for
each task.

For example, a web server is a multithreaded application that can service several client requests simultaneously. Let's suppose
that ten clients are accessing the web server at the same time:

m |f the server operates a one thread per client policy, it will spawn ten new threads to service these clients, which entails the
overhead of first creating those threads and then of managing them throughout their lifetime. It's also possible that the
machine will run out of resources at some point.

m Alternatively, if the server uses a pool of threads to satisfy those requests, then it will save the time involved in the spawning
of those threads each time a request from a client comes in. It can manage the number of threads created, and can reject
client requests if it is too busy to handle them. This is exactly the concept behind thread pooling.

The .NET CLR maintains a pool of threads for servicing requests. If our application requests a new thread from the pool, the CLR
will try to fetch it from the pool. If the pool is empty, it will spawn a new thread and give it to us. When our code using the thread
terminates, the thread is reclaimed by .NET and returned to the pool. The number of threads in the thread pool is limited by the
amount of memory available.

To recap then, the factors affecting the threading design of a multithreaded application are:
m The responsiveness of the application
m The allocation of thread management resources
m Resource sharing
m Thread synchronization

Responsiveness of the application and resource sharing are addressed by this chapter on thread pooling. The remaining factors
have been covered in the previous chapters of this book.

www.EBookswWorld.ir



& FREV < Day Day Up > MET iy

The CLR and Threads

The CLR was designed with the aim of creating a managed code environment offering various services such as compilation,
garbage collection, memory management, and, as we'll see, thread pooling to applications targeted at the .NET platform.

Indeed, there is a remarkable difference between how Win32 and the .NET Framework define a process that hosts the threads
that our applications use. In a traditional multithreaded Win32 application, each process is made up of collections of threads. Each
thread in turn consists of Thread Local Storage (TLS) and Call Stacks for providing time slices in the case of machines that have a
single CPU. Single processor machines allot time slices for each thread to execute based on the thread priority. When the time
slice for a particular thread is exhausted, it is suspended and some other thread is allowed to perform its task. In the case of the
.NET Framework, each Win32 process can be sub-divided logically into what are known as Application Domains that host the
threads along with the TLS and call stack. It's worthwhile to note that communication between application domains is handled by a
concept called Remoting in the .NET Framework.

Having gained a basic understanding on concepts of thread pooling and the .NET process, let's dig into how the CLR provides us
with thread pooling functionality for .NET applications.

The Role of the CLR in Thread Pooling

The CLR forms the heart and soul of the .NET Framework offering several services to managed applications, thread pooling being
one of them. For each task queued in the thread pool (work items), the CLR assigns a thread from the pool (a worker thread)
and then releases the thread back to the pool once the task is done.

Thread pools are always implemented by the CLR using a multithreaded apartment (MTA) model by employing high performance

queues and dispatchers through preemptive multitasking. This is a process in which CPU time is split into several time slices. In
each time slice, a particular thread executes while other threads wait. Once the time slice is exhausted, other threads are allowed
to use the CPU based on the highest priority of the remaining threads. The client requests are queued in the task queue and each
item in this queue is dispatched to the first available thread in the thread pool.

Once the thread completes its assigned task, it returns to the pool and waits for the next assignment from the CLR. The thread
pool can be fixed or of dynamic size. In the former case, the number of threads doesn't change during the lifetime of the pool.
Normally, this type of pool is used when we are sure of the amount of resources available to our application, so that a fixed
number of threads can be created at the time of pool initialization. This would be the case when we are developing solutions for an
intranet or even in applications where we can tightly define the system requirements of the target platform. Dynamic pool sizes are
employed when we don't know the amount of resources available, as in the case of a web server that will not know the number of
client requests it will be asked to handle simultaneously.

Caveats to Thread Pooling

There is no doubt that thread pooling offers us a lot of advantages when building multithreaded applications, but there are some
situations where we should avoid its use. The following list indicates the drawbacks and situations where we should avoid using
thread pooling:

m The CLR assigns the threads from the thread pool to the tasks and releases them to the pool once the task is completed.
There is no direct way to cancel a task once it has been added to the queue.

m Thread pooling is an effective solution for situations where tasks are short lived, as in the case of a web server satisfying the
client requests for a particular file. A thread pool should not be used for extensive or long tasks.

m Thread pooling is a technique to employ threads in a cost-efficient manner, where cost efficiency is defined in terms of
quantity and startup overhead. Care should be exercised to determine the utilization of threads in the pool. The size of the
thread pool should be fixed accordingly.

m All the threads in the thread pool are in multithreaded apartments. If we want to place our threads in single-thread apartments
then a thread pool is not the way to go.

= If we need to identify the thread and perform various operations, such as starting it, suspending it, and aborting it, then thread
pooling is not the way of doing it.

m Also, it is not possible to set priorities for tasks employing thread pooling.
www.EBooksWorld.ir
m There can be only one thread pool associated with any given Application Domain.



m If the task assigned to a thread in the thread pool becomes locked, then the thread is never released back to the pool for
reuse. These kinds of situations can be avoided by employing effective programmatic skills.

The Size of the Thread Pool

The .NET Framework provides the Thr eadPool class located in the Syst em Thr eadi hg namespace for using thread pools in
our applications. The number of tasks that can be queued into a thread pool is limited by the amount of memory in your machine.
Likewise, the number of threads that can be active in a process is limited by the number of CPUs in your machine. That is
because, as we already know, each processor can only actively execute one thread at a time. By default, each thread in the thread
pool uses the default task and runs at default priority in a multithreaded apartment. The word default seems to be used rather
vaguely here. That is no accident. Each system can have default priorities set differently. If, at any time, one of the threads is idle
then the thread pool will induce worker threads to keep all processors busy. If all the threads in the pool are busy and work is
pending in the queue then it will spawn new threads to complete the pending work. However, the number of threads created can't
exceed the maximum number specified. By default, 25 thread pool threads can be created per processor. However, this number
can be changed by editing the Cor Set MaxThr eads member defined in nscor ee. h file. In the case of additional thread
requirements, the requests are queued until some thread finishes its assigned task and returns to the pool. The .NET Framework
uses thread pools for asynchronous calls, establishing socket connections, and registered wait operations.

| 4m PREY < Day Day Up > | MEXT

www.EBookswWorld.ir



4 FREV < Day Day Up >

Exploring the ThreadPool Class

In this section, we will be exploring the various aspects of the Thr eadPool class and will see how they can be employed to create
thread pools in our .NET applications. The Thr eadPool class provides a pool of threads that can be used to do the following
things:

m Process work items

m Process asynchronous I/O calls
m Process timers

= Wait on behalf of other threads

The following table gives the list of methods of the Thr eadPool class and their functionality.

Method Name Functionality

Bi ndHandl e This method binds the OS handle to the thread pool

Get Avai | abl eThr eads This method indicates the number of work items that can be added to the
work items queue

Get MaxThr eads This method indicates the number of requests that the thread pool can
gueue simultaneously

QueueUser Wor kil tem This method queues a work item to the thread pool

Regi st er Wai t For Si ngl eCbj ect This method registers a delegate, which waits for a i t Handl e

Unsaf eQueueUser Wr kl t em This is the unsafe version of the QueueUser Wor ki t en{) method

Unsaf eRegi st er Wai t For Si ngl eCbj ect This is the unsafe version of the Regi st er Wai t For Si ngl eCbj ect ()
method

Of the above methods, QueueUser Wr kl t em() and Regi st er Wi t For Si ngl eCbj ect () play the most important roles in
thread pooling. Let's dig into the details of each method. Here we'll see both their syntax and a sample call in C#:

The Bi ndHandl e() method binds an operating system handle to the thread pool. It's a way to call
Bi ndl oConpl et i onCal | back; Several classes in the BCL - such as Socket and Fi | eSt r eam- use it internally to bind their

handles to an I/0O completion port of the CLR-created thread-pool. The client application usually doesn't need to call this method
directly; this functionality is indirectly accessed when methods such as Begi nRead or Begi nRecei ve are called.

public static bool BindHandl e(lntPtr osHandl e);

osHandle refers to the | nt Pt r type holding the OS handle. The return value is a Boolean where t r ue indicates binding to the
handle. This method throws a Securi t yExcept i on if the caller does not have the required permission.

The Get Avai | abl eThr eads() method indicates the number of thread pool requests that can be added before reaching the

maximum specified limit:

public static void GetAvail abl eThreads(out int worker Threads,
out int conpletionPortThreads);

wor ker Thr eads refers to the number of worker threads of the thread pool while conpl et i onPort Thr eads refers to the
number of asynchronous I/O threads.

The Get MaxThr eads() method returns the maximum number of concurrent requests that a thread pool can handle. Any
requests above this limit are queued until some of the threads in the thread pool are freed up:

public static void Get MaxThreads(out i ntwwartkesThrdéads,
out int conpl etionPort Threads);



wor ker Thr eads refers to the number of worker threads of the thread pool while the conpl et i onPort Thr eads refers to the
number of asynchronous I/O threads.

QueueUser Wor kil t em() is an overloaded method that queues a work item to the thread pool. It may be called in the following
two forms. In the first case, the method queues the specified work item to the thread pool and calls the specified delegate
associated with it. This case has the following syntax:

public static bool QueueUserWrkltenm(WitcCallback cal |l Back);

Here cal | Back refers to the delegate to be invoked when the thread in the thread pool takes the work item. The return val ue
true indicates the method succeeded and f al se indicates failure.

In the second case, the method queues the specified work item to the thread pool, invokes the specified delegate, and specifies
the object to be passed to the delegate when the work item is executed in the pool. In this case the method call has the following
syntax:

public static bool QueueUserWrkltenm( WaitcCallback call back,
obj ect state);

cal | Back refers to the delegate to be invoked when the thread in the thread pool services the work item, while st at e refers to
the object containing the state that is being passed to the delegate when the servicing of the work item occurs. The return value
t r ue indicates the method succeeded and f Fal se indicates failure.

Regi st er Wai t For Si ngl eCbj ect () is also an overloaded method. It registers a delegate that waits for a Wai t Handl e. This
class encapsulates all the objects of the operating system that wait for exclusive access to shared resources.

The method takes the following four forms. In the first case, the method registers a delegate and waits for the Wai t Handl e
indicated by the timeout in milliseconds, which is given by a 32-bit signed integer. This overloaded form of the method has the
following syntax in C#:

public static RegisteredWitHandl e Regi st er\WitFor Si ngl ehj ect (
Wi t Handl e wai t obj ect,
WAi t O Ti mer Cal | back cal | Back,
obj ect state,
int mllisecondsTi meCutlnterval,
bool executeOnl yOnce);

In the above syntax, the wai t Obj ect refers to the Wi t Handl e and the cal | Back refers to the Wai t O Ti nmer Cal | back
delegate to be invoked. The st at e parameter refers to the Qbj ect to be passed to the delegate. The

m | |i secondsTi neQut | nt erval parameter refers to the timeout in milliseconds; if its value is 0 then the function tests the
object state and returns immediately, on the other hand if its value is - 1 the function waits forever. The execut eOnl yOnce
parameter indicates whether the thread has to wait on the wai t Gbj ect parameter after the delegate has been invoked or not.
The Regi st er edWai t Handl e parameter encapsulates the native handle.

This method throws an Ar gunent Qut Of RangeExcepti on ifthem | | i secondsTi neQut | nt er val parameter is less than - 1.

In the second case, the method does the same thing as specified in the first case but waits for the Wai t Handl e indicated by a
timeout in milliseconds that is given by a 32-bit unsigned integer. This overloaded form of the method has the following syntax:

public static RegisteredWitHandl e Regi st erWitFor Si ngl ehj ect (
Wi t Handl e wai t obj ect,
Wai t Or Ti ner Cal | back cal | Back,
obj ect state,
long mllisecondsTi neQutl nterval,
bool executeOnl yOnce);

www.EBooksWorld.ir
In the third case, the method waits for the Wi t Handl e indicated by the timeout given by the Ti neSpan value. This overloaded



form of the method has the following syntax:

public static RegisteredWitHandl e Regi sterWitForSi ngl ethj ect (
Wi t Handl e wai t obj ect,
Wai t Or Ti ner Cal | back cal | Back,
obj ect state,
Ti meSpan ti neout,
bool executeOnl yOnce);

In the fourth case, the timeout is given in milliseconds by an unsigned integer and because unsigned integers are not part of the
common type system, this method is not CLS compliant:

public static RegisteredWitHandl e Regi st er\WitFor Si ngl ehj ect (
Wi t Handl e wai t obj ect,
WAi t O Ti mer Cal | back cal | Back,
obj ect state,
uint mllisecondsTi meQutlnterval,
bool executeOnl yOnce);

The Unsaf eQueueUser Wor ki t em() method is the unsafe version of the QueueUser Wor ki t en() method. It is unsafe
because it does not propagate the calling stack to the worker thread, which means that the code can lose the calling stack and, in
doing so, gain security privileges it should not be able to. It has the following syntax:

public static bool UnsafeQueueUserWrkltem( Wit Call back call Back,
obj ect state);

The Unsaf eRegi st er Wi t For Si ngl eObj ect () method is the unsafe version of the Regi st er Wai t For Si ngl eObj ect ()
method and takes the following four forms:

public static RegisteredWitHandl e Unsaf eRegi st er Wi t For Si ngl e(hj ect (
Wi t Handl e wai t obj ect,
Wai t Or Ti ner Cal | back cal | Back,
obj ect state,
int mllisecondsTi neCQutlnterval,
bool executeOnl yOnce);

public static RegisteredWitHandl e Unsaf eRegi st er Wi t For Si ngl e(hj ect (
Wi t Handl e wai t obj ect,
Wai t Or Ti ner Cal | back cal | Back,
obj ect state,
long mllisecondsTi neQutl nterval,
bool executeOnl yOnce);
public static Regi steredWitHandl e Unsaf eRegi st er Wi t For Si ngl eObj ect (
Wi t Handl e wai t Obj ect,
WAi t O Ti mer Cal | back cal | Back,
obj ect state,
Ti meSpan ti neout,
bool executeOnl yOnce);

public static Regi steredWitHandl e Unsaf eRegi st er Wi t For Si ngl eObj ect (
Wi t Handl e wai t Obj ect,
Wai t O Ti ner Cal | back cal | Back,
obj ect state,
uint mllisecondsTi meQutlnterval,
bool executeOnl yOnce);

www.EBooksWorld.ir
These unsafe methods should not be used when queuing work items from code you don't fully trust, and in general should not



normally be used.

| 4 FREV | < Day Day Up >

www.EBooksWorld.ir



‘ 48 FREV < Day Day Up >

Programming the Thread Pool in C#

The previous sections of the chapter dealt with theoretical aspects of using thread pools in the .NET Framework. Now it's time for
us to cover the programmatic aspects of creating and using thread pools in .NET applications from a C# perspective. As described
in the previous section, the Syst em Thr eadi hg nhamespace contains the Thr eadPool class that we can use to create a thread

pool in .NET applications.

Before we start coding, there are two important rules that we must be clear about concerning the Thr eadPool class. They are:
m There can be only one Thr eadPool object per application domain

m A ThreadPool objectis created for the first time when we call the Thr eadPool . QueueUser Wor kil t en() method, or when
a callback method is called through a timer or registered wait operation (which use the application domain thread pool
internally)

First, let's see through examples how a Thr eadPool class can be beneficial over starting individual Thr eads. In the next
example (Thr eadDenp. cs) we will use independent Thr eads to start two long tasks and in the following example
(Thr eadPool Denp. cs), we will start the same two tasks, but using a Thr eadPool :

usi ng System
usi ng System Thr eadi ng;

cl ass Thr eadDenp

{
public void LongTask1()
{
for (int i = 0; i <= 999; |++)
{
Consol e. WiteLine("Long Task 1 is being executed");
}
}
public void LongTask2()
{
for(int i = 0; i <= 999; i++)
{
Consol e. WiteLine("Long Task 2 is being executed");
}
}
static void Main()
{
ThreadDeno td = new ThreadDeno();
for(int i =0; i < 50; i++)
{
Thread t1 = new Thread(new ThreadStart (td. LongTaskl));
tl.Start();
Thread t2 = new Thread(new ThreadStart (td. LongTask2));
t2.Start();
}
Consol e. Read() ;
}
}

In the above example, we start two separate tasks LongTask1 and LongTask?2 using independent threadst 1 and t 2. Note that

we call threads repeatedly, in a loop, to stress the processing power of the operating system, so that we can get a better view of
the benefits of using a Thr eadPool . The Thr eadPool Denp class below shows the usage of the Thr eadPool class.
www.EBooksWorld.ir



usi ng System
usi ng System Thr eadi ng;

cl ass Thr eadPool Denp

{
public void LongTaskl(object obj)
{
for(int i = 0; i <= 999; i++)
{
Consol e. WiteLine("Long Task 1 is being executed");
}
}
public void LongTask2(object obj)
{
for(int i = 0; i <= 999; i++)
{
Consol e. WiteLine("Long Task 2 is being executed");
}
}
static void Min()
{
Thr eadPool Deno t pd = new Thr eadPool Deno() ;
for(int i = 0; i < 50; i++)
{
Thr eadPool . QueueUser Wr kIl t en{ new Wi t Cal | back(t pd. LongTaskl));
Thr eadPool . QueueUser Wr kl t em( new Wi t Cal | back(t pd. LongTask2));
}
Consol e. Read() ;
}
}

Let's dissect the above example. It comprises two separate tasks called LongTask1 and LongTask?2 that do the simple job of
outputting a message to the console in a loop. A Thr eadPool class can be employed to start these two tasks without setting the
properties of threads for each individual task by passing the delegate of the procedure to the WAi t Cal | back() method, as given

by the following block of code:

Thr eadPool . QueueUser Wor kI t em( new Wi t Cal | back(t pd. LongTask1));
Thr eadPool . QueueUser Wor kl t em( new Wi t Cal | back(t pd. LongTask2));

Note that the QueueUser Wor kI t emis a static method in the Thr eadPool class and hence can be called directly by the class
(Thr eadPool ). The example also has a Consol e. Read() statement, which holds the input on the console until the user presses

the Enter key (or any other key).

By running the Thr eadDeno and Thr eadPool Deno applications (separately, one after the other), we can compare the thread
usage using the Windows Task Manager. The numbers on each operating system will be different depending on the power of the
operating system, but relatively, results will be the same.

Threads usage of Thr eadDeno application:

www.EBookswWorld.ir



My it ] [0 - [ 15 M o
WINGORD . EE s 00 [aEa a0 17, 772K 5
Wt e on 0 m Q0T 180K 3
AN, 88 L U Lap i FAL. ] fL]
VA _DaT e Bl 134 00 D00 2,028 K 2
Ilmhln‘tn!' = [aE ] |, BE0 K 7
Loy awe A Ol [aE 1,8 K 3 =
Syitem e Proteds [ T 16K
Sysham B o0 LoE ]l ] 202K +
Pl ol B0 00 [aEiidii] 23K 7
oot o B o LeR i) 1,99 K L]
Spooksy g 4 o D3 2,284 K ¥
el 1% 00 [iEiidii] HOE &
HTVIOEE EWE o R [rp i) LR 2
rporsr eos 1562 O (il (0 3,658 K 3
L ) L Q00 MaK 2
oo, 1548 00 =00 AP 1
QML a0 EXE IT=5 OO [aE ks ] 5,37 K 17 _:_I
b P
Processes: 44 fCH.ILBam-'I.m Il L 264 140K | 630786 | &
Thread usage of the Thr eadPool Deno application:
T waniduws Task Manager _.m!l
-
oo
1]
1]
oo
oo
L M
Eirtkrrey e e 00 0: 0002 [T 3 =
System [de Frocess o 0o Fl ] s 15K 1
S & 0o ['HFE-= HZEK L]
wrthest gun 0 W 0; (- Fee= 4 F ]
wwchost eue ¥z 00 [H R ] 1,908 K L]
b, ol 420 0D [T ik} 2K L]
Ee ] % 0o 0; (-0 MK L]
SETES. B e 0o 00023 RO0EE n
Flpair, fxn 1512 0b 0 000 JEEE 3
PESERC B a0 0o 0: 0000 SR 3
PCCTRmON. 808 is6s 00 (1B S FAZE 3
SUTLOGK. B 174 o0 ;0231 T 1 :J
o |
Processes: 44 CPUUsege: 100  |Mem Usage: ZSL000K | 633148 | &

By comparing these screenshots, it is evident that using a Thr eadPool not only helps reduce the thread usage of the application,
but also reduces the CPU time, as well as the memory used by the application.

The next example (Thr eadPool St at e. cs) shows how to pass and return values from a thread in a thread pool. The thread pool
framework only allows us to pass a single object parameter, but often we may want to pass several parameters to the method that
we wish to be executed by a thread from the pool. However, we can easily wrap up all of the necessary parameters into a class
and can pass an instance of that class as an argument to the QueueUser Wor ki t en() method:

usi ng System
usi ng System Threadi ng;

class nj State

{
protected internal String inargl;
protected internal String inarg2;
protected internal String outval;
}

cl ass ThreadPool St at e

{
public void Taskl(object stateObj)

{
hj State St oj ;

Sthj = (Obj State)statej; www.EBooksiworldir



Consol e. WiteLine("lnput Argunent 1 in task 1. " + StQbj.inargl);
Consol e. WiteLine("lnput Argunent 2 in task 1: " + StQbj.inarg2);

Stbj .outval = "From Taskl " + StQoj.inargl + " " + StObj.inarg2;
}
public void Task2(object stateQbj)
{
bj State St bj;
StOhj = (oj State)statedhj;
Consol e. WiteLine("Input Argunent 1 in task 2: " + StCbj.inargl);
Consol e. WiteLine("lnput Argunent 2 in task 2: " + StQbj.inarg2);
St bj .outval = "From Task2 " + StObj.inargl + " " + StCObj.inargz;
}
static void Min()
{
bj State Sthj1 = new hj State();
hj State Sthj2 = new hj State();
Stbjl.inargl = "String Paranl of task 1";
Sthjl.inarg2 = "String Paran? of task 1";
Sthj2.inargl = "String Paranl of task 2";
StObj 2.inarg2 = "String ParanR of task 2";
Thr eadPool State tps = new ThreadPool State();
/1 Queue a task
Thr eadPool . QueueUser Wor kil t em{ new Wi t Cal | back(tps. Taskl), StObj1l);
/1 Queue another task
Thr eadPool . QueueUser Wor ki t em{ new Wi t Cal | back(t ps. Task2), St Obj2);
Consol e. Read() ;
}
}

The output from Thr eadPool St at e will be:

| nput Ar gunent
I nput Ar gunent
I nput Argunent
I nput Ar gunent

in task 1: String Paranl of task 1
intask 1: String ParanR of task 1
in task 2: String Paraml of task 2
in task 2: String ParanR of task 2

NEFE NP

Let's explore the above example step by step. This example is pretty similar to the previous example except for the passing of an
object; we are passing the input and output parameters to tasks queued in the thread pool using the Cbj St at e object.

The Obj St at e object contains two input parameters and one output parameter, all of type St ri ng, as given by the following
code block:

internal class Obj State

{
protected internal String inargl;
protected internal String inarg2;
protected internal String outval;
}

Next we define two methods, t ask1 and t ask2, and pass an instance of Obj St at e as a parameter to each of them. The
procedures t ask1 and t ask2 concatenate the values of the input parameters i nar g1 and i nar g2 of the passed Obj St at e
object and store the result in the out val class variable. This is given by the following code block:

public void Taskl(object state(j)
{

G)J State St GJJ ; www.EBookswWorld.ir
StChj = (nj State)statej;



Consol e. WiteLine("lnput Argunent 1 in task 1:
Consol e. WiteLine("Input Argument 2 in task 1:

Stvj .outval = "From Taskl " + StQoj.inargl +
}
public void Task2(object state(j)
{
bj State St bj;
St = (Obj State)statelbj;
Consol e. WiteLine("lnput Argunent 1 in task 2:
Consol e. WiteLine("Input Argument 2 in task 2:
Stvj .outval = "From Task2 " + Stoj.inargl +
}

+ Stbj.inargl);
+ St Qbj . inarg2);
+ St Obj.inargz;

+ Stbj.inargl);
+ St bj.inarg2);
+ St Obj.inargz;

In the Mai n() method we queue these two tasks in the thread pool employing the QueueUser Wor ki t em() method of the

Thr eadPool class, as given by the following code block:

static void Min()

{
hj State Sthj1 = new Obj State();
bj State Sthj2 = new Obj State();
Sthjl.inargl = "String Paraml of task 1";
Sthjl.inarg2 = "String Paran2 of task 1";
Stbj2.inargl = "String ParamL of task 2";
Sthj2.inarg2 = "String Paran2 of task 2";
Thr eadPool State tps = new ThreadPool State();
/1 Queue a task
Thr eadPool . QueueUser Wor kIl t em( new Wit Cal | back(tps. Taskl), StCbj1l);
/1 Queue anot her task
Thr eadPool . QueueUser Wor kl t em( new Wi t Cal | back(t ps. Task2), StObj2);
Consol e. Read() ;
}

We can also queue work items that have wait operations involved with them to the thread pool by employing
Regi st er Wai t For Si ngl eCbj ect () to which Wi t Handl e is passed as an argument. This Wi t Handl e signals the method
wrapped in a Wai t O Ti mer Cal | back delegate. In this case, the thread pool creates a background thread to invoke the callback

method. The following example (RegWai t . ¢cs) demonstrates this concept:

usi ng System
usi ng System Threadi ng;

public class RegWiit
{

private static int i = 0;

public static void Main()

{
Aut oReset Event arev = new Aut oReset Event (fal se);
Thr eadPool . Regi st er Wai t For Si ngl eObj ect
(arev, new WAi tOr Ti ner Cal | back(workitenm), null, 2000, false);
arev. Set ();
Consol e. Read() ;
}
public static void workiten(object O, bool signaled)
{
i += 1;
Consol e. WiteLine("Thread Pool Wrk Item | nvoked: " +

i.ToString()); www.EBooksWorld.ir



The output from the above example will be something like:

Thread Pool Wrk Item | nvoked:
Thread Pool Work |Item | nvoked:
Thread Pool Work Item | nvoked:
Thread Pool Work Item | nvoked:

AWN PR

The output will continue with a new line printed every 2 seconds and the value of i incremented by one until the user presses the
Enter key to invoke the Consol e. Read() statement.

To start, an Aut oReset Event object called ar ev is created with an initial state of non-signaled to signal the execution of queued
work items:

Aut oReset Event arev = new Aut oReset Event (f al se);

We invoke the Regi st er Wai t For Si ngl eCObj ect () method with nul | for the state parameter, 2000 milliseconds as the
timeout value and f al se for the execut eOnceOnl y parameter. Regi st er Wai t For Si ngl ehj ect () registers a delegate and
signals the work item at the specified time interval. In our example, it is set to 2 seconds as given by the following piece of code:

Thr eadPool . Regi st er Wai t For Si ngl eQbj ect
(arev, new WaitOr Ti ner Cal | back(workiten), null, 2000, false);

To raise the event we need to use the Set () method of the Aut oReset Event object:

arev. Set ()

This example concludes the practical session on using thread pools in C# applications; in the next section we will examine
scalability and build a thread pool manager application.

A Multi-Threaded Microsoft Message Queue (MSMQ) Listener

In this section, we will leverage the Thr eadPool to send and listen to the messages from MSMQ. MSMQ is a distributed queue in
which one application can send messages to another application asynchronously.

In a typical scenario, we have an MSMQ server that maintains the list of queues we want to send messages to. MSMQ Senders
make a connection to the MSMQ Server (to a particular queue) and send messages to that queue. An MSMQ receiver receives

messages sent by the MSMQ Senders. The MSMQ Receiver has to listen on a specific queue to receive messages sent on that
queue. Thus, the MSMQ Server acts as a broker between the MSMQ Sender(s) and the MSMQ Receiver. The MSMQ Sender is
unaware of the MSMQ Receiver and vice-versa.

In our application, we will develop an MSMQ Sender Windows Forms Application and an MSMQ Receiver as a Console
application. In our MSMQ Sender Application (MSMQUI . c¢s), we send the messages to the queue using a Thr eadPool :

int count = Convert.Tol nt32(count Txt. Text);
whi | e(count > 0)
{
Thr eadPool . QueueUser Wr kl t em( new Wi t Cal | back( SendMessage),
count. ToString());
count - -;

}

In the above code snippet (from MSMQUI . cs), we create a counter to send messages to the MSMQ. We put the messages into
the Thr eadPool as the st at e object and give a reference of the SendMessage() method to the Wai t Cal | back delegate.
SendMessage() is the method that will be called by the ThweEdPe\obritorsend the message. In other words, the
SendMessage() method will do the actual job of sending the message to the MSMQ.



public void SendMessage(obj ect state)
{

}

nmessageQueuel. Send (state. ToString());

The SendMessage() method converts the st at e object to string and send it to the MSMQ.

The MSMQUI application looks like the following screenshot when executed.

el =108 =]
Create Queus
Enter Cus F
rcl A
wprivated smpfirsty a1 | F
rd M Jnt [in}

In the MSMQ Receiver (MSMQLi st ener . cs), we receive the message notification from the MSMQ Server asynchronously

whenever a message arrives into the queue. For this reason, we create the MSMQ Event Handler and pass the
MessageRecei ved() method name to the Recei veConpl et edEvent Handl er delegate.

this. _ml. Recei veConpl eted += new
Syst em Messagi ng. Recei veConpl et edEvent Handl er (t hi s. MessageRecei ved) ;

To start receiving messages from MSMQ, we need to call the Begi nRecei ve() method on the message queue object.

_nqgl . Begi nRecei ve(new Ti neSpan(0, 0, 2));

The Begi nRecei ve() method takes a Ti meSpan object to indicate how long the Receiver should wait till the message arrives
into the queue. If the Ti meSpan is not supplied, the application will block on the Begi nRecei ve() method till a message arrives
into MSMQ.

The MessageRecei ved() method is called by the MSMQ event handler when a message arrives into the queue:

public void MessageRecei ved(object source,
Syst em Messagi ng. Recei veConpl et edEvent Args asyncResul t)
{
MessageQueue nmg = nul | ;
try
{
/1 Connect to the queue.
my = (MessageQueue) source;
System Messagi ng. Message m =
ng. EndRecei ve(asyncResul t. AsyncResul t);
/'l Process the nmessage here.
/1 Consol e. WiteLi ne(m Body. ToString());
Thr eadPool . QueueUser Wor kit em
(new Wit Cal | back(l nvokeMDAO), m Body);

}
cat ch( MessageQueueExcepti on)

{
}

cat ch( Exception ex) www.EBooksWorld.ir



{
Consol e. Wi telLi ne(ex. Message) ;

}
finally
{
this. ngl. Begi nRecei ve(new Ti neSpan(0, 0, 2));
}
}
static void | nvokeMDAQ( obj ect state)
{
MDAO nd = new MDAQ();
nmd. AccessDat abaseOr DoSonel nport ant Wor k( st ate) ;
}

To get the arrived message, we have to call the EndRecei ve() method on the message queue object. After we get the

Syst em Messagi ng. Message object, it is up to us to do whatever processing we want on to this object. Typically in a real-world
application, we would call Syst em Ent er pri seSer vi ces (COM+) object and that would in-turn update some database or
forward the message to some other object for processing. Here we can use the Thr eadPool to keep the object invocation under
control. We put the body of the message into the Thr eadPool and pass the name of the | nvokeMDAQ( ) method to the

Wai t Cal | back delegate. The | nvokeMDAQ() method invokes a method on the object and prints message on the console. As
discussed earlier, we can invoke a Syst em Ent er pri seSer vi ces (COM+) component in the | nvokeMDAQ() method. This
would indirectly control the number of created COM+ objects, which would be directly proportional to the numbers of threads
created by the Thr eadPool . Finally, we have to call the Begi nRecei ve() method again to restart the async wait. If this method
is not called, the message receiver stops receiving messages from the MSMQ.

| 4m FREY < Day Day Up > | NEXT P

www.EBookswWorld.ir



4 FREV < Day Day Up >

Scalability in .NET

If you have a multiprocessor system, then you'll see threads really show their worth. The Windows OS manages the allocation of
threads to processors and, as you have seen throughout this book, firing any process automatically starts a thread. The .NET
Framework does not provide fine-grained control of the processor allocation, preferring to allow the operating system to control the
scheduling, as it will have more information on the loading of the processors than the CLR would. It does, however, provide some
control over which processor an entire process runs on. However, this applies to all of its threads, so its use is not applicable to
this book.

If you have only one thread, the main thread, then every task within that thread will operate on the same processor. However, if a
new thread is fired, then the operating system schedules which processor it should be executed on. This decision as to which
processor will run the thread does itself consume some processor resources and so, for small tasks, it isn't generally worth it as
the time to execute may be only as long as the time it takes for the OS to allocate the task to a processor. However, this allocation
has been taking less and less time in successive versions of Windows, and for anything other than the most trivial of tasks, when
using threads, you should find a performance improvement by creating a new thread to execute your task. It is in symmetric multi-
processor (SMP) systems that the benefits of threading are really shown, as the processors can be used to their full effect to
distribute the load of the application.

In the next section, we describe how to create a thread pool manager with which you can create and manage threads, and which
will ensure that a maximum and minimum number of threads exist in a pool and that idle threads get reused.

A Thread Pool Manager

Throughout this book, you have seen different ways of creating threads and in this chapter we have described the Thr eadPool
class to make use of the operating system's own thread pool for short-lived threads. We can implement a half-way house between
the two, however. We can create a class that will keep a pool of a specified number of threads to be supplied to any requesting
application. This will enable the threads to be managed more easily by your code, and also allow for faster thread execution as
you may be able to use a previously instantiated thread object. This class will draw together much of the knowledge acquired so
far, and you will be able to use it in your own multithreaded applications. We will explain this class as we go along, and at the end
provide an application to test that this assembly is working as expected.

So, let's get started and explain the code of our thread pool manager contained in a file named My Thr eadPool . cs:

usi ng System
usi ng System Text;
usi ng System Thr eadi ng

nanmespace GenThr eadPool

{

The above declarations show that the only additional external assembly needed is Syst em dl | . The GenThr eadPool
namespace is defined to contain all of the relevant classes for this project. Below we show the interface called | Thr eadPool that
will be used for the GenThr eadPool | npl class:

public interface | ThreadPool

{
voi d AddJob(System Threadi ng. Thread j obToRun);
Stats Get Stats();

}
}

This defines two methods for the thread pool, AddJob() and Get St at s(), which will be detailed in the following definitions of
the GenThr eadPool | npl class, which generates the thread pool that we will be using:

public class GenThreadPool | npl : | ThreadPool
{

private int maxThreads; www.EBooksWorld.ir
private int _minThreads;



private int max| dl eTi e;
private static bool debug;
private ArraylList _pendi ngJobs;

private ArraylList avail abl eThreads;

public bool Debug

{
get

{

return debug;

set

{

}
}

debug = val ue;

public ArrayList Pendi ngJobs

{
get

{

return this. pendingJobs;

set

{

this. pendi ngJobs = val ue;

}

}
public ArrayList Avail abl eThreads
{
get
{
return this. avail abl eThreads;
}
}
public int MaxldleTine
{
get
{
return this. maxldl eTine;
}
set
{
this. maxldl eTine = val ue
}
}
public int MaxThreads
{
get
{
return this._ maxThreads;
}
set
{
this. maxThreads = val ue;
}
}
public int M nThreads
{

get

www.EBookswWorld.ir



{

return this. mnThreads;

set

{
this. m nThreads = val ue;
}
}

This class implements the | Thr eadPool interface, which we defined earlier, and then goes on to define a few Pr i vat e fields.
The properties are just wrappers around the relevant Pri vat e members to prevent users from altering the values directly, in case
further rules need to be added later. The fields m maxThr eads, m m nThr eads, and m_rmaxI dl eTi me specify the maximum

and minimum number of threads in the pool, and how long in milliseconds to allow a thread to remain idle before removing it from
the pool. There are three constructors for this class:

publi ¢ GenThreadPool | npl ()
{
maxThr eads 1;
m nThr eads 0;
_max| dl eTi ne = 300;
this. pendi ngJobs =
Arrayli st. Synchroni zed (new ArrayList() );

this. avail abl eThreads =
Arrayli st. Synchroni zed (new ArrayList());

debug = fal se;

The default constructor only permits one thread to be present in the pool, and will destroy it after only 0.3 seconds. It also performs

some lazy initialization, creating an array list to contain the jobs awaiting a thread, and the threads not yet allocated to a method
call. The m debug flag, when set to t r ue, would allow further debugging information while testing:

publi ¢ GenThreadPool I npl (i nt nmaxThreads, int m nThreads,
i nt maxl dl eTi nme)
{

maxThr eads = nmaxThr eads;
_m nThreads = m nThr eads;
max| dl eTi re = max! dl eTi ne;

this. _pendi ngJobs =
Arrayli st. Synchroni zed (new ArrayList());
this. avail abl eThreads =

ArraylLi st. Synchroni zed (new ArrayList());

debug = fal se;
I ni t Avai | abl eThreads();
}

When a GenThr eadPool | npl class is instantiated with three integers, we specify how the minimum and maximum number of
threads, and the idle time of the threads. It also fires off the | ni t Avai | abl eThr eads() method, detailed below:

private void InitAvail abl eThreads()

{
if(this. nmnThreads > 0)
for(int i = 0; i < this. mnThreads; i++)
{

Thread t = new

Thread(new ThreadSt art ( new, GEaR9Qlo{Lihi s, this).run ));

Thr eadEl ement e = new Thr eadEl enent (t);



e.ldle = true;
_avai |l abl eThr eads. Add (e);
}

Consol e.WiteLine("Initialized the ThreadPool .
+ " Nunber of Avail able threads:
+ this. avail abl eThreads. Count);

This creates the threads needed for the pool on instantiation. The default constructor only specified one thread, so it wasn't

necessary before. This cycles through, creating the maximum number of threads allowed by the pool, specified in
m_nmax Thr eads. Below is the constructor for four arguments:

public GenThreadPool | mpl (i nt maxThreads, int m nThreads,
i nt max!|dl eTi ne, bool debug )

{
_maxThreads = maxThr eads;
m nThreads = ni nThr eads;
max| dl eTi re = nmax| dl eTi ne;

this. pendi ngJobs =

Arrayli st. Synchroni zed (new ArrayList());
this. avail abl eThreads =

Arrayli st. Synchroni zed (new ArrayList());

_debug = debug_;
I ni t Avai | abl eThreads();

This constructor does the same as the above, only allowing us to set the debugging flag. We now go on to describe the business
end of this class, the AddJob() method:

public void AddJob(Thread job)
{

if(job == null)return;
| ock(this)
{

The above method actually adds a job to the pool. If the job passed as a parameter is non-existent, then it exits the method.
Otherwise, it provides a lock on the GenThr eadPool | npl instance to ensure that no other thread or process can add or remove
a job:

pendi ngJobs. Add (j ob);

int index = findFirstldl eThread();

i f(_debug)
Console. WiteLine("First Idle Thread is " + index);
i f(index == -1)
{
i f(( maxThreads == -1)

|| ( avail abl eThreads. Count < naxThreads))
{
i f( debug)
Consol e. WitelLine("Creating a new thread");
Thread t = new Thread(new www.EBooksWorldir
ThreadStart (new GenPool (this, this).run ));



The job is added to an Ar r ayLi st , which will store all the jobs awaiting execution and completion. The

Fi ndFi rstldl eThread() method returns the index of a thread contained within m avai | abl eThr eads that is currently idle
and so available for use. If the method returns - 1, then there are no idle threads and the pool needs to attempt to create a new
one. The Run() method of the GenPool class is fired inside this thread:

Thr eadEl emrent e = new ThreadEl ement (t);

e.ldle = fal se;
e.get WThread(). Start();

try
{

}
cat ch( Qut OF Menor yExcept i on)

{

avai |l abl eThreads. Add (e);

Consol e. WiteLine("CQut of Menory");
avai | abl eThreads. Add (e);
Consol e. Wit eLi ne("Added Job again");

}

return;

}

i f(_debug)
Consol e. WiteLine("No Threads Available .."
+ this.GetStats(). ToString());

The Thr eadEl enent class is another helper class that will be defined later. It adds some additional properties to a standard
thread so that the pool can manage it effectively. The thread's St art () method is fired before it is added to the
m_avai | abl eThr eads collection.

el se
{
try
{
i f( debug)
Consol e. WiteLine("Using an existing thread...");

((ThreadEl enrent) _avai |l abl eThreads[index]).ldle = fal se;

Above, we start to detail the condition whereby a thread is deemed idle and so free for allocation to a new job. Firstly, we convert
the thread explicitly into a Thr eadEl ement and change its idle flag:

| ock(((ThreadEl enent) avail abl eThreads[i ndex]).get WThread ())
{
Moni t or . Pul se((
(ThreadEl enent) avail abl eThreads[i ndex]).get WThread ());

Here we lock the thread so that it cannot be affected by any other process. We then alert all waiting threads that it is now available
for use, so we issue a Moni t or . Pul se() instruction, and then release the lock:

}

cat ch(Exception ex)

{

Consol e.WiteLine ("Error while reusing thread " + ex.Message );
www.EBooksWorld.ir



i f( debug)
{
Consol e. WiteLine("Value of index is " + index );
Consol e. WiteLine ("Size of available threads is " +
this. avail abl eThreads. Count);
Consol e. WiteLine ("Available Threads is "
+ this. avail abl eThreads .1sSynchroni zed );
}
}

}//end of else

Y/ /1 ock
}//end of nmethod

Finally, we catch any exceptions and output the results to the command line, providing more useful debugging information if the
t hi s. Debug flag has been set. That completes the AddJob() method so now let's look at the implementation of the
Get St at s() method:

public Stats Get Stats()
{

Stats stats = new Stats();

stats. maxThr eads maxThr eads;

stats. m nThreads = m nThreads;

stats. maxl dl eTinme = naxl|dl eTi ne;

st ats. pendi ngJobs = pendi ngJobs. Count;
stats. numThreads = avail abl eThreads. Count;

stats.jobslnProgress =
avai |l abl eThreads. Count - findldl eThreadCount ();

return stats;

The Get St at s() method returns a St at s() structure, which we will define later. As we will see, it contains the minimum and
maximum number of threads, as well as other values set in the constructor. Now let's look at the Fi ndl dl eThr eadCount ()
method:

public int FindldleThreadCount ()

{
int idleThreads = 0;
for (int i = 0; i < availableThreads. Count; i++)
{
i f(((ThreadEl ement) _avail abl eThreads[i]).ldl e)
i dl eThr eads++;
}

return idleThreads;

}

This method is one called earlier in the class and it simply goes through the array list of threads and returns the how many of them
are idle. We also used the Fi ndFi rst | dl eThr ead() method so let's see it:

public int FindFirstldl eThread()
{

for (int i = 0; i < availableThreads. Count; i++)

{ . . www.EBooksWorld.ir
i f(((ThreadEl enent) avail abl eThreads[i]).ldle )



return i;

}

return -1;

}

As we can see, the method returns the index of the first idle thread in the array list. We will also need the following method:

public int FindThread()
{

for(int i = 0; i < availabl eThreads. Count; i++)

{
i f(((ThreadEl enent) avail abl eThreads[i])

. Cet MyThr ead()
. Equal s (Thread. Current Thread ))
return i;

}

return -1;

}

This method is used to determine in which index position in the array list the current thread is located. We'll also need the
following method:

public void RenoveThread()

{
for(int i =0 ; i < availableThreads. Count; i++)
{
i f(((ThreadEl enent) avail abl eThreads[i])
. Cet MyThr ead()
.Equal s (Thread. Current Thread ))
{
avai | abl eThr eads. RenmoveAt (i);
return;
}
}
}

This removes the current thread from the array list of threads. This is, of course, used to remove a thread from the pool when it is
finished with and has been idle for longer than the time specified int hi s. Max| dl eTi ne. Now we start to define the rest of the
classes for this assembly:

public class GenPool
{
private bject _|ock;
private GenThreadPool | npl gn;

public GenPool (Object |ock , GenThreadPool | npl gn)
{

this. lock = lock ;

this._gn = gn;
}

The GenPool class executes all of the pending threads, and once complete, after the period specified in MaxI dl eTi e, will
remove them from the pool. It checks to see if there are any threads available on the GenThr eadPool | npl passed as a

reference to the constructor, and it locks the values of the object passed as the first parameter. In general, this will be the same

GenThr eadPool | mpl object passed as the second argument: _
www.EBooksWorld.ir



public void Run()

{
Thread job = null;
try
{
whi |l e(true)
{
whi | e(true)
{
| ock(this._lock )
{
i f(_gn. Pendi ngJobs. Count == 0)
{
int index = gn.findThread();
if(index == -1)return
((ThreadEl enent) gn. Avai |l abl eThreads[index]).ldle =
true;
br eak;
}

job = (Thread) gn.Pendi ngJobs[O0];
gn. Pendi ngJobs. RenoveAt (0);
}//end of |ock

This Run() method starts a loop to attempt to find a thread in the pool that matches the current thread, and begin its execution.

You can see above that it locks the object passed in as a parameter to the constructor, and if there are no pending jobs, then it
just finds the thread in the pool that matches the current one, returning - 1 if there isn't one. If there is a pending job, then it

retrieves the first one, and then removes it from the queue:

//run the job
job. Start ();

}

It then begins execution of the method on the pending thread, and returns to the start of the loop:

try
{
I ock(this)
{
if( gn. Maxldl eTime == -1)
Monitor. Wait (this);
el se Monitor.VWait (this, gn.MxIdleTine);
}
}

In the next part of the loop (once it has no more pending jobs), it locks the current object and waits for the thread to be free for
execution for the period specified in Max| dl eTi ne.

I ock(_I ock)
{
i f(_gn. Pendi ngJobs. Count == 0)
{
if( gn.MnThreads !'= -1 & gn. Avail abl eThr eads. Count >
_gn. M nThr eads)
{
_gn.renmoveThread();
return;
} www.EBooksWorld.ir

}



Finally, it locks the object again, and if there are no pending jobs and there are more than the minimum required number of
threads, then it removes the thread from the pool. We now move on to the Thr eadEl enent class:

public class ThreadEl enment
{
private bool idle;
private Thread _thread;

publ i ¢ ThreadEl enent (Thread th)
{

this. thread = th;

this. idle = true;

A Thr eadEl enent i s what is stored in the thread pool, and takes a thread as the parameter for its constructor. It sets the
thread as idle on construction of this object:

public bool Idle
{

get

{

return this. idle;

set

{
this. idle = val ue;
}

}
public Thread Get MyThread(){return this. thread;}

The above code is straightforward. The | dl e property essentially defines when the thread's execution is complete, and the
Get My Thr ead() method just returns the Thr ead object. Now look at the following structure:

public struct Stats

{
public int maxThreads;
public int mnThreads;
public int maxldleTine;
public int nunThreads;
public int pendi ngJobs;
public int jobslnProgress;

Here we define the St at s structure that we mentioned earlier, which stores all of the statistics of the thread pool. The fields are
self-describing. ToSt ri ng() is the only method:

public override String ToString()
{
StringBuilder sb = new StringBuilder ("MwxThreads = ");
sb. Append( maxThr eads) ;
sb. Append("\nM nThreads = ");
sb. Append(m nThr eads) ;
sb. Append("\ nMaxl dl eTime = ");
sb. Append( max! dl eTi ne) ;
sb. Append("\ nPendi ng Jobs = ");

sb. Append( pendi ngJobs) ; www.EBooksWorld.ir
sb. Append("\nJobs In Progress = ");



This ToSt ri ng() method returns the structure in a string format, using St ri ngBui | der to build up the string. The 107
argument initializes the St ri ngBui | der's size to 107 characters, as it is fair to assume that there are not likely to be more than
99,999 threads. If so, then St ri ngBui | der will resize itself anyway. This capacity specification allows a small performance
boost.

If you have an application that is firing methods repeatedly on different threads, this class can manage the process and help
ensure that too many threads aren't spawned. Apart from containing a maximum and minimum number of threads, it will reuse an
existing thread if possible. You can now compile this project into a DLL, and use this class from within other projects. Below is

}

sb. Append(j obsl nProgress);

return sb. ToString ();

code that will allow you to test this thread pool class, Test GenThr eadPool . cs:

usi ng System
usi ng System Thr eadi ng;
usi ng GenThr eadPool ;

nanespace Test GenThr eadPool

{

public class Test Perfornmance

{

public int count;
private Object [|ock = new Object();

publ i c Test Performance(l ThreadPool pool, int tines)

{

count = O;

Dat eTine start =System DateTi ne . Now,

Consol e. WiteLine("Start Tinme for Job is "
+ System Dat eTi ne . Now) ;

for (int i =0; i < times; i++)
{
Thread t1 = new Thread(
new ThreadStart (new Job(this).Run ));
pool . AddJob(t1);

}

Console. WiteLine("End Tine for Job is " +
System Dat eTi e . Now) ;

Consol e. Wi teLi ne("Performance using Pool[in nms]: ");
Consol e. WitelLine(""
+ (System DateTime. Now - start).ToString());

count = O0;
start Syst em Dat eTi me. Now,

Consol e.WiteLine("Start Tinme for JobThread is " +
System Dat eTi ne. Now. ToString());

for (int i =0; i < tinmes; i++)

{
Thread jt = new Thread(new ThreadStart (new Job(this).Run));
jt.Start();

}

while (true)
{ www.EBookswWorld.ir



| ock (_I ock)
{
if (count == tines)
br eak;

try
{

}
catch
{
}

}

Consol e. WiteLine("End Tine for JobThread is "

+ System Dat eTi ne. Now. ToString());
Consol e. Wi teLine("Performance using no Pool[in nms]: ");
Consol e. WiteLine(""

+ (System DateTime. Now - start).ToString());

Thread. Sl eep(1000) ;

}

seal ed cl ass JobThread

{
private Object |ock = new Object();

private TestPerformance tpf;

public JobThread(Test Perfornmance tpf )
{

this.tpf = tpf_;
}

public void Run()

{
I ock( I ock)

{

t pf. count ++;

}
}
}

seal ed cl ass Job

{
private Object |ock = new Object();

private TestPerformance tpf;

public Job(Test Performance tpf )
{

}

this.tpf = tpf ;

public void Run()
{

}
}
}

t pf. count ++;

}

cl ass Test Pool
{
static void Main(string[] args)
{
GenThr eadPool . | ThreadPool tp = )
new GenThr eadPool | npl (200, 30&WW§88$$¥$%%);



Test Performance p = new Test Performance (tp, 100);

}
}

The above application just mechanically attempts to add new threads to an instance of the thread pool, with the debug flag set to
t r ue. It is quite straightforward, but the best way to see this thread pool in action is to try it out in your own applications. You can

use this class, once it is compiled.

| 4 FREV | < Day Day Up > | NE<T |

www.EBooksWorld.ir



| 4 FREV | < Day Day Up > | NE<T |

Summary

In this chapter, we have seen how thread pooling can be used when a thread is required for a relatively short duration. Thread
pooling allows recycling of threads. A thread is assigned a task and, when that task has completed, it returns to the pool and waits
for the next assignment. We also covered the various aspects of using thread pools in .NET applications. We started defining
what a thread pool is and then why we might choose to use one in our applications. We also covered the role of CLR in creating
the thread pool followed by the glitches involved in using a thread pool.

We later covered some more scalability issues, as the Thr eadPool class isn't suitable for applications that may need to fire a
number of long-lived threads. We discussed the creation of a Thr eadPool manager class and mentioned how SMP systems can
dramatically increase the performance of an application if it is threaded.

[ 4 FREY | < Day Day Up > | nEXT [ :

www.EBooksWorld.ir



[ & FREY < Day Day Up > | NEXT P

Chapter 6: Debugging and Tracing Threads

Overview

Debugging and tracing are two techniques frequently, and often necessarily, employed by developers. The former allows a
developer to analyze an application's variables and code, and step through the program's code flow. The latter allows us to trace
the behavior of our application, displaying information in a listener (a log file, the Windows event log, or similar). They are
fundamental to creating robust applications because they provide an easy way to monitor and understand how our application is
working. The big difference between the two techniques is that tracing can be done during an application's run time, while the
debugger is used at design time, before releasing the final version of our application.

Desktop application developers have traditionally had access to excellent debugging support, with the ability to use breakpoints
and examine the contents of variables. .NET is no exception in this regard, but the issues inherent in using breakpoints in a
multithreaded application deserve some attention, and will be the focus of this chapter.

Outside the desktop, developers have long suffered from the lack of a good debugger for web applications written in environments
such as ASP. In order to understand a variable's value, or the code's flow, and every common task usually done with a debugger,
ASP developers often had to populate their code with Response. Wit e() statements, echoing messages like Entered the

function, Exited from the loop, and so on. Then when they had finished testing the ASP application, they needed to remove all the
undesired statements. That's not the best way to debug a program.

Fortunately, .NET brings debugging functionality to the next generation of ASP developers by providing four useful classes:
Tr ace, Debug, Bool eanSwi t ch, and TraceSwi t ch. In addition, any .NET language can use these classes so every developer

who chooses to use Visual Studio .NET to create applications can perform debugging operations using its visual tools.

The various tracing and debugging techniques are especially useful for applications that use threads. If implemented well, these
techniques allow developers to trace each thread's behavior, discovering any application anomalies, such as unexpected resource
consumption, contention bugs, and so on.

In this chapter, we will analyze both tracing and debugging aspects in the following order:
m Using Visual Studio .NET debugging analysis and its powerful tools
m Using the .NET tracing classes in order to implement these features in our code
m Putting it all together by creating an application that uses tracing

For this chapter, Visual Studio .NET is necessary to make use of much of the tracing and debugging features shown. However, by
using the / d: TRACE=TRUE switch, some tracing functionality can be achieved using the command line.

tm < Day Day Up > m

www.EBookswWorld.ir



‘ 48 FREV < Day Day Up >

Creating the Application Code

Usually, when you create an application (or part of one), you write the code and then try to run the application. Sometimes it works
as you expected it to; often it doesn't. When it doesn't, you try to discover what could be happening by examining more carefully
the code that you wrote. In Visual Studio .NET, you can use the debugger by choosing some breakpoints to stop the application's
execution near or just before the guilty method, then step through lines of code, examining variable values to understand precisely
what went wrong. Finally, when all is working you can build the release version (a version without the symbols used by the
debugging tools) of our application, and distribute it.

In this type of program, during the development process, you can also insert tracing functionality. In fact, even if the program
works very well, there will be always a case where something has not been foreseen (especially when some external, possibly
third-party, components fail). In that case, if you have filled the code with tracing instructions, you can turn on tracing and examine
the resulting log file to understand what might have happened. Moreover, tracing functionality is useful to discover where an
application consumes resources or where it spends too much time performing a task. In applications that use threads, you should
use tracing functionality because otherwise it can be difficult to observe each thread's behavior, identify race conditions, and spot
potential deadlocks or time-consuming contention.

Tracing, debugging, and performance techniques are often known as instrumentation. This term refers to the capacity to monitor
an application's performance and behavior, and diagnose errors and bugs. So, an application that supports instrumentation has to
include:

m Debugging: Fixing errors and bugs during an application's development
m Code tracing: Receiving information in a listener program during an application's execution
m Performance counters: Using techniques to monitor an application's performance

Let's examine what the .NET Framework provides for us to add instrumentation to our applications.

‘ 4| FREV < Day Day Up >

www.EBookswWorld.ir



4 FREV < Day Day Up >

Debugging Your Code

Usually, when you test your application and see that its behavior is not what you expect it to be, you start examining more carefully
the code written. If you are using Visual Studio .NET to create your application, it provides many amazing tools to visually debug
the application. In addition, whatever language you choose to develop your application in, it will use the same debugger with the
same tools. Moreover, the basic debugger's functionalities have been inherited from the Visual Basic 6 and Visual C++ IDEs,
resulting in something that should be familiar for most developers. However, we will not spend too much time on the debugger in
general, and will focus this discussion mostly on those features directly relevant to threading.

The new debugger provides:

m The same tool to debug different applications created using different languages, and the ability to debug applications written
in mixed languages

m The ability to debug SQL Server stored procedures

m The ability to debug .NET Framework and Win32 native code, so that if you are debugging your Visual C# .NET application
and your thread uses a COM+ component, you can debug both the applications using the same debugger

= A more powerful and enhanced remote debugger

If you already have experience with the Visual Basic 6 debugger, you will know that some functionality has been removed. The
most relevant is the ability to change the code and continue with its execution. Using the Visual Studio .NET debugger, this feature
is no longer available, because each modification to the code requires a new compilation.

In this section of the book, we will analyze the debugging tools provided by the Visual Studio .NET IDE that are especially useful
during the testing and error discovery phase of multithreaded application development.

Visual Studio .NET Debugger

Using the Visual Studio .NET debugger, as you know, you can break the execution of your application at a specified point simply
by inserting a breakpoint near the line of the code you wish to inspect. When the application is suspended, the debugger provides
many tools to examine and edit the content of variables, examine the memory and call stack, and more.

Configuring Debugger Parameters

In order to make use of the Visual Studio .NET debugger, you have to build the application using the Debug configuration. In that
way, you will fill the application with symbolic debugging information rather than optimize the code. When everything appears to
work fine, you would release your application after recompiling the code, choosing the Release configuration, which removes
debugging information and optimizes the code.

When a new debugger session begins, a lot of resources are loaded into the memory. In fact, the debugger fills the memory with
various code to allow us to debug unmanaged code, SQL Server stored procedures, and more. It is therefore a good idea to
remove these features when you don't need them. You can change the debugger's settings inside the Property Pages dialog box
that can be found by right-clicking on the project in the Solution Explorer and selecting Properties. For a Windows application, the
following dialog box will appear:

www.EBookswWorld.ir



x|

L g T !.. e Tadag) -'I Paiires: | T b | Ciordfu i i el

Pr pe tap Bt Actom

g Corfaur W Deopee e & Gaart proje
S ST T Coagar i OO

7 St Ul

™ wrwearaged code detuggig
I g, Server debgang

After compiling a Debug configured project, the output directory will contain the exe or dl | file and a pdb (program database) file.
Because IL keeps the values of parameters and private members inside arrays, the original names of these variables are lost - as
well as some other information relevant to debugging. When a project is compiled for debugging, or the / debug: f ul | switch is
used on the command-line compiler, a pdb file is generated at the same time. The exe or dl | file contains an absolute path
pointing to the pdb file and if the debugger doesn't find the program database file, it starts to search in the same application path
and in the directory specified in the Property Pages dialog box. Finally, if the debugger can't find the pdb file in any directory, it will
regenerate a new one.

Debugger Windows

Once you have loaded your project into Visual Studio .NET you are ready to debug your application by simply running it, waiting for
the code to reach a breakpoint, then using either the F10 or F11 key to step over and step into method calls in our code,
respectively. If you are not working with the release version of your application, you will see the IDE showing many docked
windows. During your debugging session these windows will be filled with the variables' values, objects' dumps, call stack,
disassembly code, and more. Let's start examining more closely these debugging tools, and how they can be used to assist in the
debugging of your threaded application.

The Locals Window

This window allows you to examine and modify each variable's content defined locally in the method you are debugging (including
parameters to the method). For example, debugging the following Mai n() method of Tr aceSwi t chExanpl e, you will retrieve
just the content of two variables: f s and t , as shown in the following screenshot:

Liocak x|
R e T 5
L Plofnirg Tywime. [0 Fisns Team
i Riofhirg Sywines, Phyaading, Thinad
.
Relaca [ B voacr

You can activate this window selecting the Debug | Window | Locals menu, or you can press Ctrl+Alt+V, release, and press L.
The Watch Window

You can drag variables from the source code and drop them over the Watch window in order to inspect their values and structure.
In the following screenshot, a Bool eanSwi t ch object from an example later in the chapter has been dropped into the window.

'-:.Irl.:-- 0} L-:..:..- \ j
www.EBooksWorld.ir
You can expand tree nodes by clicking the plus sign and then examine and change object property values. You can activate up to

&

=T

Jgvaeny |




four Watch windows by pressing Ctrl+Alt+W, then releasing, and pressing a key between 1 and 4.

You can also add a variable to the Watch window by selecting it in the source code and choosing Add Watch from the context
menu.

The Command Window - Immediate Window

This window provides a text field where you can query a variable's contents and change variable values. When you need to
retrieve the variable's content you have to use a question mark before the expression. In the following screenshot, the Enabl ed
property of the Bool eanSwi t ch object has been examined, changed to f al se, and displayed again.

In addition, this window allows you to make use of various IDE commands, such as creating a new file or project, finding a string,
or whatever else you usually do within the Visual Studio .NET menu. To switch from Immediate mode to Command mode you
simply have to write the >cnd statement. Once in Command mode, you will be assisted by the IDE in finding the desired
commands by the IntelliSense functionality. You switch back to Immediate mode by using the >i nred command.

You can activate this window by selecting Debug | Window | Immediate, or you can press Ctrl+Alt+.

Stepping Through the Code

Now that we have briefly described the more useful debugger windows, we can focus our attention on code navigation. The Visual
Studio .NET debugger allows developers to step between code lines of both single and multiple source code files, observing the
program behavior at run time. Moreover, you can debug unmanaged code and Microsoft SQL Server stored procedures. The
debugger provides three different ways to step through the code:

m Step Into: Pressing the F11 key you will go through the code one step at a time, entering method bodies that you find on your
way (where source code and debug symbols are available).

m Step Over: Pressing the F10 key you will go one step forward in the code executing every method you encounter but without
stepping into it (executing the method as one line).

m Step Out: Pressing Shift+F11, you will execute all the remaining code within the body of the method that you are currently
stepped into, and step onto the next line in the method that called it.

Each time you step to the next line of code by pressing these keys, you are executing the highlighted code.

Another useful feature provided by the Visual Studio .NET debugger is the Run To Cursor functionality. Selecting it from the context
menu over the source code, you can execute all the lines between the highlighted line and the line where the cursor is placed.

Finally, the Visual Studio .NET debugger provides a way to change the execution point of our application. You can decide to move
your application's execution point by launching the debugger and choosing the Set Next Statement item in the context menu. Be
careful when using this feature, because every line of code between the old and the new position will fail to be executed.

Setting Breakpoints

In large source code applications, it is not practical to step through all the preceding code before arriving at the method you are
interested in debugging. The debugger offers the possibility to set breakpoints in the code. As the name says, a breakpoint is a
point where the execution of your program is to be suspended. You can specify breakpoints both before and after launching the
debugger session, by simply placing the cursor on the line and pressing the F9 key - or by clicking in the left margin. A red
highlight will be placed over the line to let you know that you have just added a breakpoint to the code, and a glyph will be added
to the left margin of the source window. In order to remove a breakpoint you can either click over the glyph or press the F9 key
again.

You can manage all the set breakpoints from a single dialogy@sing/theiBreakpointswindow.



Using this window, you can add a new breakpoint, delete one or all breakpoints, disable all breakpoints, add and remove window's
columns, and view breakpoint properties.

By using breakpoints, you can suspend execution of a thread and examine its current stackframe contents.

Selecting the breakpoint properties option from the window above a new dialog box will be shown and you can specify to activate
a breakpoint only when a specific variable changes its content. You have to specify the variable's name choosing the has changed

radio button in the breakpoint property pages. This again can be useful in threaded scenarios, as you can detect when something
unexpected occurs.

Finally, the Hit Count... button from the same dialog box allows developers to enable a breakpoint only when it has reached the
specified hit count. Again this is useful in debugging threads as it allows you to see how? often a thread is spawned.

Hrmllnel'u'_llm Hit Covmt

& braakpont ik ht when the brosiport location & resched and the condition &
satisfisd. The hit count & the nurber of times e braskpont has baan bt

Weter the breakpont s b

Ereia abways -

orek winen #e hit count i equal o
brogk whon i kit count is 8 mukipls of
broadk: wihon tha bt count i greater thanor egual o

|c-c|4:wea|ueu|

From the combo box, you can select the condition that you want to assign to the breakpoint. For example, you can activate the

breakpoint in a loop only when you are near to exiting from it. You can select the break when the hit count is equal to an item by
assigning a value to the text field that will appear next to the combobox.

In order to execute all the code lines until the breakpoint is reached you have to press the F5 key, select the Debug | Start menu, or
press the Start button on the standard toolbar.

Debugging Threads

The Visual Studio .NET debugger provides a special window to manage threads during debugging sessions. You can display this
window by selecting Debug | Windows | Threads, or by pressing Ctrl+Alt+H.

[ [ LA By er iy Gangerd = |

i 1 iC Mo Dotagrsg Detagoing Winitng Thread M T a

The Threads window contains the following columns:

www.EBookswWorld.ir



Column
name

ID

Name
Location
Priority
Suspend

Description

The thread's unique identifier assigned by the operating system.

The thread's name. You can specify it in the code using the Name property of the Thr ead object.
The method or memory address in which the thread is currently executing.

The thread's priority.

A counter for determining how often the thread has been suspended. The counter zero in the screenshot
above indicates that the thread has never been suspended.

You can switch between threads by simply double-clicking on the item within the Threads window. Moreover, by right-clicking on a
thread, you can choose the Freeze menu item that will pause the thread's execution. To roll back the frozen thread state, you select

the Thaw menu item.

< Day Day Up > [ nExT o |

www.EBooksWorld.ir



4 FREV < Day Day Up >

Code Tracing

The next code instrumentation technique that we will analyze is tracing. In a multi-threaded application, this technique is especially
important. You can trace a thread's behavior and interaction when more than one task has been started. As we will see later, this
is not possible using the debugger. The .NET Framework provides some useful classes that allow developers to implement tracing
functionality simply. Let's examine the tracing classes from the Syst em Di agnost i cs namespace that the .NET Framework

offers:

m Trace: This class has many static methods that write messages to a listener. By default, the debug output windows in
VS.NET will be used as the listener application, but thanks to the Li st ener s collection, you can add different listeners such
as a text file listener, or the Windows event log listener.

m Debug: This class has the same methods as the Tr ace class, writing information to a listener application. The largest
difference between these two classes is in their usage; Tr ace is useful at run time, Debug is used at development time.

m Bool eanSwi t ch: This class allows us to define a switch that turns on or off the tracing messages.
m TraceSw t ch: This class provides four different tracing levels allowing developers to choose the severity of the messages
to send to the listener.
The Trace Class

In this section, we will analyze the most frequently used methods of the Tr ace class. It is provided by the .NET Framework and
encapsulates all the necessary methods to implement tracing functionality easily. The Tr ace class is contained in the

Syst em Di agnosti cs namespace and provides many static methods for sending messages to the listener application. As you
know, static methods mean that you do not have to instantiate a new object from the Tr ace class and can use the method
directly. For example:

static void Min()
{

}

Trace. WitelLine(t. ThreadState);

The code snippet above uses the Wit eLi ne () method to output the thread state, followed by a carriage return, to the listener
application. The following table lists some of the other static methods provided by the Tr ace class:

Method Description

Assert Displays the specified string message when the condition provided to the method evaluates to
(condition, f al se. When you do not specify the message text, the Call Stack is displayed instead.
message)

Fai | (message) Similar to the Assert () method, this writes the specified text to the Call Stack when a failure

occurs. The Assert () method differs because Fai | () cannot specify a condition before displaying
the error. In fact, the Fai | () method is usually placed in the cat ch statement of at ry- cat ch-

fi nal | y instruction. You could also place it anywhere in your code that you are sure could never be
reached - such as in the default case of a switch statement where you believe you've allowed for all

possibilities.
Wite (message | @ Writes the specified text message, or object name, to the listener application.
object)
Witelf Writes the specified message text into the listener application if the specified condition is t r ue.
(condition,
message)
Wi teLine Writes the specified message text, or object name, followed by a carriage return.

(message | object)

www.EBookswWorld.ir



Witelinelf Writes the specified message text followed by a carriage return if the specified condition is t r ue.
(condition,
message)

The behavior of these methods depends on the listener application chosen. For example, the Assert () method displays a
message box when the default listener is specified.

Default Listener Application

The Tr ace class provides a Li st ener s collection that allows us to add a new listener application. When no new listener object
is added to the collection, the Tr ace class uses the default listener application: the Output debug window. This window is provided
by the Visual Studio .NET IDE during debugging. Let's see a simple example, Tr aceExanpl el:

static void Main()

{
Trace. WiteLine("Entered Main()");

for (int i =0; i < 6; i++)
Trace. WiteLine(i);

Trace. WiteLine("Exiting from Main()");
}

The code is really simple; it writes tracing information when entering and exiting from the Mai n() method, plus the variable's
values in the loop. In the next screenshot, you can see how the Visual Studio .NET Output listener shows the information:

output_______ 5
| Carbnay j
Iefaultbomain' : Losded "criwizetimicrosale . pat) frasewscklvl. 0. 3708 =:.-:-.-I|:-.'I'.:;I
"Tresteluamplel’ Lesged "CIy7L Teateloamplel DLA) Tracelaamp lel . exne’
Trace Exawp L 3 Lomsded ‘o Lo e, i 00.0 K LELT
TrateExanplel.exg' 1 Loaded "ct FESAAT TE L ppaec’\ S tam Xml) 1. 033000 BT el
Entered in Baimil
1
5
3
4
P
Exiting from Hais|
The progras '[1100] TraceEnaspliel.exe” has exived with ocods O (O
al | L

The Tr ace class also provides two useful methods to assert error notification: Assert () and Fai | () . The former allows
developer to check a condition provided as parameter and write a message into the listener when this condition is f al se. The
latter writes a message into the listener each time a failure occurs. When no other listener is added to the collection, the
Assert () method displays a message box to inform the user about an assertion failure. The following snippet of code,
TraceAssert. cs, can be tested when the SQL Server service has been stopped deliberately in order to raise a connection
exception:

using System

usi ng System Dat a;

usi ng System Data. Sql Cient;
usi ng System Thr eadi ng;

usi ng System Di agnosti cs;

namespace TraceAssert

{

class d assl

{
[ STAThr ead]

static void Miin(string[] args)
{
/[l Create a thread

Thread t; www.EBooksWorld.ir
t = new Thread(new ThreadStart (DBThread));



/] Start the thread
t.Start();
}
private static void DBThread()
{
// Create a connection object
Sqgl Connecti on dbConn = new
Sql Connecti on("server =. ; dat abase=pubs; ui d=sa; pwd=") ;

/1 Create a command object to execute a SQ st atenent
Sql Conmand dbConm = new
Sql Command( " SELECT * FROM " + "aut hors", dbConn);

Sql Dat aReader dr = nul | ;
Trace. WiteLine(DateTime. Now + " - Executing SQ. statenment");

try
{

/1 Open the connection to the database
dbConn. Open();

/1l Assert that the connection opened
Trace. Assert (dbConn. St ate == Connecti onSt at e. Open,
"Error", "Connection failed...");

/1 Execute the SQ. statenent
dr = dbConm Execut eReader ( CommandBehavi or. Cl oseConnecti on);

/1 Assert that the statenment executed K
Trace. Assert(dr != null, "Error",
"The Sqgl Dat aReader is null!");

while (dr.Read())

{
/1 Readi ng records
}
}
catch
{
/1l Log the error to the Trace application
Trace. Fail ("An error occurred in database access");
}
finally
{
if ((dr.1sC osed == false) && (dr!l=null))
dr.d ose();
}

In the Mai n() method, a new thread is created and started. The new thread runs the code within the DBThr ead() method. This
code simply tries to contact the pubs SQL Server database, and retrieve all the data contained within the aut hor s table. If the
SQL Server service were not available, the following assertion failure would be displayed upon execution of the code:

www.EBookswWorld.ir



Assertion Failed: Abort=0Quit, Retry=Debug, lgnore=Continue x

- Erroe
Cornection Faled, ..

&t Clags]l DEThread() olsviluppoltraceasserticass ). cs(5a)

ot | ey |||

The row that raises that assertion is:

Trace. Assert (dbConn. State == Connecti onSt at e. Open,
"Error", "Connection failed...");

As you can see, the first parameter checks whether the state of the connection is Qpen. It will be set to f al se when the
connection has not been opened, so the assertion will be displayed. As you will see later in the chapter, you can deactivate tracing
messaging using the application configuration file. In that way, you can decide whether or not to display assert messages at run
time.

Using Different Listener Applications

In this section, we will see how to change the default listener application. The Tr ace class (and the Debug class as you will see
later) exposes the Li st ener s collection, which contains a collection of listener applications. Without adding any new listener
class, the Def aul t TraceLi st ener will point to the Output debug window provided by Visual Studio .NET. However, the .NET
Framework provides another two classes that can be used as listener applications:

Class Description
Event LogTr acelLi st ener Using this class, you will redirect tracing messages to the Windows Event Log

Text WiterTraceli stener Using this class you will redirect tracing messages to a text file, or to a stream

In a multi-threaded application, you change the default listener with one of the listed listeners if you need to trace an application's
behavior during its execution outside of Visual Studio .NET. Naturally, the Output debug window is available only during debug.
Using these two classes, you could choose whether trace messages are placed in the Windows Event log, or inside a text file.
Usually, when you know that your application will run in an operating system equipped with the Event Log, the

Event LogTr acelLi st ener class is the best solution to choose. The reasons include:

m The Event Log is managed by the operating system.
m The Event Log allows administrators to specify security settings for the log.

m The Event Log has to be read with the Event Viewer. This displays in a better visual environment than occurs with text file in
Notepad.

Changing the default listener is simple, so let's see an example, Tr aceEvent Log. cs:

static void Main(string[] args)

{
/!l Create a trace listener for the event |og.
Event LogTraceli stener eltl = new EventLogTraceli stener("TraceLog");
/1 Add the event log trace |listener to the collection.
Trace. Li steners. Add(el tl);
/1 Wite output to the event | og.
Trace. WiteLine("Entered in Main()");
}

Firstly, we have to create a new listener object. In the example above, a new Event LogTr acelLi st ener has been created in
order to use the Windows event log as listener application. The class constructor accepts a string where we can specify the name
of the source that has written an entry. The constructor wil}jRstartialeadiew Event Log object assigning the specified source
name to the Sour ce property of the Event Log class, automatically.



The next step is adding the new listener object to the Li st ener s collection using the Add() method and providing the reference
to the listener object. Finally, we can start to write tracing messages that will be redirected to the listener application.

Opening up the Windows event log using the Event Viewer application, you should see the new entry appearing in the Application
Log section:

=10] =
goon Yew || == OEEFRE @
rlarl ApplcationLog 1 eveniiz)
D Evert viewes o) LTYDE [ Date [Tme  [Sowrce [ category[Bvern [imer |
I.H-\'fl'm"ﬂ'il Lindormation 15002007 60815 Traoeag HMore [ 1% ]
13 Secuniby Lo
| S L
‘ 5|

You can double-click the item inside the Application Log report to examine the message:

I nfosrmaticn Properties _ﬂil

Event |

Diale IS0 Sowce Teacelog +
Tima 1EAS Category.  hong

Typs nlomafion  EventiDc 0 *
Usar A &

Compuler  SANMNNGT

Do erprimsn
Enderad in Main

L]

51

The code that we have examined above adds a new listener to the Li st ener s collection so that you will receive tracing

messages both in the Output debug window, and in the event log. If you want to remove the default listener in order to use just the
event log application, you have to call the RenoveAt () method, as illustrated in the code below:

static void Main(string[] args)
{
I/l Create a trace listener for the event |og.
Event LogTraceli stener eltl = new EventLogTracelLi stener("TracelLog");
/1 Renove the default |istener Trace. Listeners. RenmoveAt (0);
/1 Add the event log trace listener to the collection. Trace.Listeners. Add(eltl);
/!l Wite output to the event log. Trace. WiteLine("Entered in Main()");

The TextWriterTraceListener Class

We are going to conclude our listener explanation by examining the Text Wi t er Tr aceLi st ener class. It is useful when you
have to write our tracing messages to a text file or directly in a console application. In fact, during the creation of a

Text Wi terTraceli st ener object, you can specify either a Text Wi t er object, or a St r eamobject. Using a St r eamobject
allows you to specify more details on how the file stream is handled. The following snippet of code, Tr aceConsol e. cs, shows
how to trace messages in a Console application:

static void Main(string[] args)

{
/! Renove the default |istener www.EBooksWorld.ir
Trace. Li steners. RenoveAt (0);



/1 Add a consol e listener
Trace. Li steners. Add(new TextWiterTraceLi stener(Console.Qut));

/1 Wite a trace nessage
Trace. WiteLine("Entered in Main()");

Specifying the Consol e. Qut streaming in the class's constructor, our Console application will display tracing messages:

LRl Trad eormoe’ bin ', TraceCa

4 | | 3

Finally, let's see how to add text log files as listener. We have to add a new Text Wit er TracelLi st ener object, specifying a

Fi | eSt r eamobject in its constructor. When the application ends, you have to use the static Cl ose() method provided by the

Tr ace class in order to close the log writing all the tracing messages. In the following code, Debuggi ng. cs, a thread is started
that traces both main and secondary thread messages:

private static void WitingThread()
{
/1 Trace an info nessage
Trace. WitelLine(DateTinme.Now + " - Entered WitingThread()");

/1l Sleeping for one sec....
Thr ead. Current Thr ead. Sl eep(1000);

/1 Trace an info nessage
Trace. WitelLine(DateTine.Now + " - Slept for 1 second...");

The Wi tingThread() method is simply used by the thread to sleep for a second and write some tracing messages.

Here, we create a new Fi | eSt r eamobject, either creating or opening the Debuggi ng. | og file, if it already exists. Then, we add
the new listener into the Li st ener s collection by creating a new instance of the Text Wi t er Tr aceLi st ener class within the
Add() method:

static void Main(string[] args)
{
/]l Create a file listener
FileStream fs = new
| O FileStream("C.\ Debuggi ng.l og", 10 FileMde. QpenO Create);
Trace. Li steners. Add(new Text WiterTracelLi stener(fs));

After starting the thread, the code waits for the carriage return key from the user and then closes the listener application and
flushes all the tracing messages to the log file:

/1 Wite the line only when the switch is on
Trace. WitelLine(DateTime. Now + " - Entered Main()");

/1 Create a thread
Thread t;
t = new Thread(new ThreadStart(WitingThread));

// Start the thread

t.Start(); www.EBooksWorld.ir



/1 Wit for the user carriage return
Consol e. Read() ;

/!l Close the file listener flushing the trace nmessages
Trace. Cl ose();

The output of the code will be something similar to this:

30/04/2002 16:38:15 - Entered Main()
30/04/2002 16:38:15 - Entered into WritingThread()
30/04/2002 16:38:16 - Slept for one second...

The Tr ace class provides a useful property called | ndent Level for indenting tracing messages. For instance, you could use

different indent levels for tracing messages written by the main and secondary threads. Adding the following lines to the code
above, we can accomplish this task easily:

private static void WitingThread()

{
/1l Setting indent |evel

Trace. | ndent Level = 2;

/1 Trace an info nessage
Trace. WiteLine(DateTinme.Now + " - Entered WitingThread()");

/1 Sleeping for one sec....
Thr ead. Current Thr ead. Sl eep(1000);

/1 Trace an info message
Trace. WiteLine(DateTinme.Now + " - Slept for 1 second...");

The output of the modified code is:

30/04/2002 16:40:07 - Entered Main()
30/04/2002 16:40:07 - Entered into WritingThread()
30/04/2002 16:40:08 - Slept for one second...

You can increment or decrement the level of the indentation using the | ndent () and Uni ndent () methods, respectively.

Tracing Switches

When you are near to the application deployment phase, you will probably want to remove all the tracing and debugging
messages from the code. However, you do not have to look for every trace instruction and remove it. You can use compilation
flags during the application building. From the Visual Studio .NET IDE, you can right-click on the project name within the Solution
Explorer window, selecting the Properties item from the context menu. The following dialog box will appear:

www.EBookswWorld.ir



et i) Doty Pages

F e ate (el il raon
r

WETIE

P Enatble tuld warnings

™ Trest compier mamings & oMo
CoStoral compilstion comBant

F' Cefine DERG conssant

F [efine TRACE ooratard

LA [Oralarys

Exarrgile . CErmreD = 8 Py, Cor et s 100 Coriturtde True

0K I Cargd | | Hadip |

You simply need to uncheck the Define DEBUG constant and Define TRACE constant checkboxes, recompile the solution, and all the
Trace and Debug statements will be stripped from the application.

In order to remove tracing functionalities, you can even use the csc. exe command-line compiler. Simply use the
/ d: TRACE=FALSE / d: DEBUG=FAL SE switches when compiling.

Adding switches to the traced code allows us to activate/deactivate tracing messages at run time. By simply declaring a value in
the configuration file of our application, you can activate the trace functionality without rebuilding the entire solution. Naturally, you
have to build the application to maintain tracing information, and this results in a greater final application size and slower
performance, even when the switches are turned off.

The Bool eanSwi t ch and Tr aceSwi t ch classes are provided by the .NET Framework to implement these switches. Let's first
examine the Bool eanSwi t ch class.

The BooleanSwitch Class

Using this class in the traced code, you can decide to activate/deactivate messages by simply changing a value in the application
configuration file. The Wi teLinel f() and Wi t el f () methods will be useful to write messages depending on the Enabl ed
property provided by the Bool eanSwi t ch class. In order to add switches to your application you have to follow these few steps:

1. Add an application configuration file either manually, or by selecting Add New Item... from the Project menu within Visual
Studio .NET, and choosing the Text File template from the dialog box choosing the App. conf i g filename.

2. Open the configuration file in order to insert the necessary XML tags to inform the application about the switch name and
value. Specifying a value equal to O will deactivate tracing functionality, and a value of 1 activate it:

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<system di aghosti cs>
<swi t ches>
<add nane="MySwi tch" val ue="1" />
</ sw t ches>
</ syst em di agnosti cs>
</ configuration>

3. Create a new Bool eanSwi t ch object in the code that has the same name as that specified in the configuration file. You
could also use the Enabl ed property in conjunction with the Tr ace static methods. Let's continue our Debuggi ng
example, by declaring a global Bool eanSwi t ch object in order to use it everywhere in the code:

Bool eanSwi t ch bs;

static void Miin(string[] args)

{
/1l Create a Boolean switch called Myawdsebksworld.ir
bs = new Bool eanSwi tch("MySwi tch",



"Enabl e/ Di sable tracing functionalities");

/1 Create a file listener
FileStreamfs = new Fil eStrean("C:\Debuggi ng. | og",
Fi | eMbde. OpenOr Creat e) ;
Trace. Li steners. Add(new Text Wi terTracelLi stener(fs));

/[l Wite the line only when the switch is on
Trace. WiteLinel f(bs. Enabl ed, DateTi ne. Now +
" - Entered in Main()");

In the Mai n() method we create the object, specifying the same name used in the configuration file plus a brief description. The
W it eLi nel f () method will write the message only if the Enabl ed property has been set to 1 in the configuration file.

The TraceSwitch Class

This class is an enhanced version of the Bool eanSwi t ch class because it allows us to choose whether to deactivate tracing
functionality or display messages using an importance-based hierarchy. The following table lists the levels:

Trace level Description

0 None: Tracing is deactivated.

1 TraceError: Only the error messages will be written to the listener application.

2 TraceWar ni ng: Error and warning messages will be written to the listener application.

3 Tracel nf or mati on: Error, warning, and information messages will be written to the listener application.
4 TraceVer bose: All kinds of messages will be written to the listener application.

So, when an error occurs, you can change the application configuration file, specifying to write just the error messages that you
have added to the code to focus our attention just on these messages. The configuration file is the same as for the

Bool eanSwi t ch example. What changes is the code, as we have to instantiate an object from the Tr aceSwi t ch class.
Moreover, we will use the enumeration values within the class to specify the level of the tracing messages. Let's see an example,
TraceSwi t chExanpl e. cs:

usi ng System

usi ng System Thr eadi ng;

usi ng System |G

usi ng System Dat a;

using System Data. Sql dient;
usi ng System Di agnosti cs;

namespace TraceSwi t chExampl e

{

class O assl

{

private static TraceSwitch ts;

[ STAThr ead]
static void Main(string[] args)
{
/'l Create a boolean switch called MySw tch
ts = new TraceSwitch("MySwitch", "Four different trace |evels");
/1 Create a file |listener
FileStream fs = new Fil eStream( @C: \ Debuggi ng. | og",
Fi | eMode. OpenOr Creat e) ;
Trace. Li st eners. Add(new Text WiterTracelLi stener(fs));

. . www.EBogksWorld.ir
/1 Wite the line only when the swtch is set



/1 to Tracelnformation | evel or above.
Trace. WitelLinelf(ts. Tracel nfo, DateTi nme. Now +
" - Entered in Main()");

/'l Create a thread
Thread t;
t = new Thread(new ThreadStart (DBThread));

// Start the thread
t.Start();

/1 Wit for the user carriage return
Consol e. Read() ;

/1 Close the file listener flushing the trace nmessages
Trace. Cl ose();

We start by declaring a global Tr aceSwi t ch object and then create a new object, giving it the name specified in the configuration
file. We add a text file log listener to the application. We then start a new thread that contacts the pubs database within SQL
Server in order to retrieve all the records from the aut hor s table.

If the thread has been omitted, the Open() method raises an exception that generates a trace error message:

private static void DBThread()
{
/1 Trace an info nessage
Trace. WiteLinelf(ts. Tracel nfo, DateTinme. Now +
" - Entered in DBThread()");

/1l Create a connection object
Sqgl Connecti on dbConn = new
Sql Connecti on("server =. ; dat abase=pubs; ui d=sa; pwd=") ;

/1l Create a command object to execute a SQ statenent
Sqgl Command dbConm = new Sql Cormmand(" SELECT * FROM aut hors", dbConn);
Sql Dat aReader dr = nul|;

try
{
Trace. WiteLinelf(ts. Tracel nfo, DateTinme. Now +
" - Executing SQ statenent");
/] Execute the SQ statenent
dr = dbComm Execut eReader ( CommandBehavi or. Cl oseConnecti on);

whil e (dr. Read())
{
/1 Readi ng records
}
}
catch (Exception ex)
{
Trace. WiteLinelf(ts. TraceError, DateTi me. Now +
" - Error: + ex. Message);

}
finally

{
if ((dr.1sClosed == false) & (dr != null))

dr. d ose();

www.EBookswWorld.ir



Here is the output from the code when the value 1 is specified in the configuration file, which specifies Tr aceErr or:

19/04/2002 17:52:23 - Error: ExecuteReader requires an open and available Connection. The
connection's current state is Closed.
Slept for 1 second...

Here is the output when the value 3 is specified in the configuration file, which specifies Tr acel nf or mat i on:

19/04/2002 17:54:23 - Entered Main()

19/04/2002 17:54:23 - Entered DBThread()

19/04/2002 17:54:24 - Executing SQL statement

19/04/2002 17:54:24 - Error: ExecuteReader requires an open and available Connection. The
connection's current state is Closed.

The Debug Class

The Debug class provides the same functionality as the Tr ace class. You will find that it exposes the same methods and
properties, with the same tracing results.

When you change the listener application using the Li st ener s collection provided by the Tr ace class, you will change the
listener application for Debug messages as well.

The big difference between these two classes is in the context in which you should use them. The Debug class is useful when you

need to add information during debugging sessions. Before deploying our application, you will build the release version that will
remove debug information from our code, automatically. Therefore, you would add Tr ace class functionalities when you need to

check our application during the run time phase.

tm < Day Day Up > m

www.EBookswWorld.ir



1 .- FREW < Day Day Up > | MNE®T ‘

The Datalmport Example

At this point we are ready to concentrate our attention on a practical example that will be useful to demonstrate what we have
seen thus far. The Dat al nport example, included here, is a typical application that waits for files to arrive in a specific directory
before importing them into a SQL Server database. The code for this application, as with the rest of the code in this book, can be
found at the Apress web site. Below we outline the classes that will be used in this example:

m Fi| eSyst emat cher: This allows developers to specify the directory to monitor and to raise an event when something
changes (for example, a new file is created or removed). This class is contained in the Syst em | Onamespace of the .NET
Framework class library.

m Text WiterTraceLi st ener: This implements our own tracing functionality.
m Thread: This, which you've seen many times before, allows us to start a new thread to import data into the database.
m Many classes from the Sgl Cl i ent namespace necessary to manage the SQL Server database connection and update.

The first release of the Dat al nport application contains some logical errors that you will discover using tracing functionality. In
that way you can have a good example about log (trace) files and their importance.

To learn more about the ADO.NET classes, please refer to Professional ADO.NET Programming (ISBN 1-86100-527-X), or
ADO.NET Programmer's Reference (ISBN 1-86100-558-X).

The Code

Let's start analyzing the code of the Dat al nport example:

usi ng System

usi ng System |G

usi ng System Dat a;

usi ng System Data. Sql Cient;
usi ng System Threadi ng;

usi ng System Di agnosti cs;

nanespace Datal nportl

{
cl ass Dat al nport

{

First of all, we referenced all the necessary namespaces to use the Fi | eSyst em\Mat cher, Thread, and SQL Server classes:

public static Bool eanSwitch bs;

[ STAThr ead]

static void Main(string[] args)
{

/! Renove the default |istener
Trace. Li st eners. RenoveAt (0);

/'l Create and add the new |listener
bs = new Bool eanSwitch("DI Switch", "Datal nport switch");
Trace. Li steners. Add(new Text WiterTracelLi st ener(
new Fil eStream( @C:. \ Datal nport.log", FileMde. OpenOrCreate)));

Then the code removes the default listener and creates a pgw gexti\idier Tr aceLi st ener object that points to
C.\ Dat al nport.| og:



/1 Create a Fil eSystemiatcher object used to nonitor
/'l the specified directory
Fi | eSyst emMat cher fsw = new Fil eSyst emat cher () ;

/1l Set the path to watch and specify the file
/!l extension to nmonitor for

fsw Path = @C \temp";

fswFilter = "*. xmd";

/1 No need to go into subdirs
fsw. I ncl udeSubdirectories = fal se;

/1 Add the handler to manage the raised event

/1 when a new file is created

fsw. Created += new Fil eSyst enEvent Handl er (OnFi | eCr eat ed) ;
/1l Enable the object to raise the event

f sw. Enabl eRai si ngEvents = true;

Here the code creates a Fi | eSyst em\\at cher object used to monitor the C: \ t enp directory specified in the Pat h property. The
Fi | t er property is useful to filter through each file within the directory looking for just the ones with the specified file extension.
The I ncl udeSubdi r ect ori es property determines whether to extend the file monitoring to subdirectories. Next, we want to
receive file creation events so we have to specify the Cr eat ed event provided by the Fi | eSyst emat cher class. Using the

Fi | eSyst enEvent Handl er we can specify the event handler that will be called when a new XML file is created in the target
directory. Finally, the code enables the Fi | eSyst emMat cher object to raise events.

try
{
/1 Call the waitforchanged nmethod in
/1 an infinite | oop. Wen the event is raised
/1l the OnFileCreated will be contacted.
Wai t For ChangedResul t res;
whi | e(true)
{
res = fsw Wit ForChanged( Wt cher ChangeTypes. Cr eat ed) ;
Trace. WiteLinel f(bs. Enabl ed, DateTi me. Now +
" - Found: + res.Name + " file");

The above code implements an infinite loop, which waits for the file creation event to be raised. The Wai t For ChangedResul t
object will contain information about the file created. For example, the code uses the Nane property to trace the name of the
discovered file.

catch (Exception e)
{
Trace. WiteLinel f(bs. Enabl ed, DateTi me. Now +
" - An exception occurred while waiting for file: ");
Trace. I ndent ();
Trace. WitelLinel f(bs. Enabl ed, DateTinme.Now + " - " + e.ToString());
Trace. Uni ndent () ;
}
finally
{
f sw. Enabl eRai si ngEvents = fal se;
Trace. WiteLinel f(bs. Enabl ed, DateTi me. Now +
" Directory nonitoring stopped");
Trace. C ose();

}

www.EBookswWorld.ir



The above Mai n() method ends by tracing some useful messages and any exceptions. The OnFi | eCr eat ed() static method is
detailed below:

private static void OnFil eCreated(Obj ect source,
Fi | eSystenEvent Args e)
{

try

{
/1l Create a new object fromthe
/1 InportData class to process the
/1l incoming file
ImportData id = new InportData();
id. mstrFileName = e. Ful |l Pat h;

/!l Create and start the thread

Thread t = new Thread(new ThreadStart(id.Inmport));
t. Name = "Datal nport Thr ead";

t.Start();

Inside the OnFi | eCr eat ed event handler a new thread will be started. This thread will use the | nport () method of the custom
| mpor t Dat a class to import the XML file into the database. Since at this point we know the full path of the discovered file (the

Fi | eSyst emEvent Ar gs parameter contains this information) and since we need it even in the | npor t Dat a class, we can use
the m st r Fi | eNane variable provided by the class:

catch

{
Trace. WiteLinel f(bs. Enabl ed, DateTi me. Now +
" - An exception occurred while queuing file : "); Trace.lndent();
Trace. WiteLinel f(bs. Enabl ed, DateTinme.Now + " - " + e.ToString());
Trace. Uni ndent () ;

}

finally

{
Trace. Fl ush();

}

cl ass | nportData

{
/1 Path and filenane of the retrieved file
public string mstrFileNane = null;

public void Inport()
{
/1 Declare Sql objects to contact the database
Sqgl Connecti on dbConn = new
Sql Connecti on("server=. ; dat abase=pubs; ui d=sa; pwd=") ;
Sql Dat aAdapt er da = new Sql Dat aAdapt er (
"SELECT * FROM aut hors", dbConn);
Dat aSet ds = new Dat aSet ();

Sql CommandBui | der sa = new Sgl CormandBui | der (da) ;

Inside the | nport () method, the code starts by creating and setting all the necessary classes to contact the aut hor s table
within the SQL Server pubs database. The Sql Connect i on object allows us to specify database connection parameters. The
Sql Dat aAdapt er object connects to the database using the connection object executing the SQL statement specified as the first
parameter. Finally, the Sql ConmandBui | der examines the SQL statement specified in the Sql Dat aAdapt er constructor,
creating | NSERT, MODI FY, and DELETE statements automatically. They are needed when we use the Updat e() method exposed
by the Sql Dat aAdapt er class to physically change the database with new information:

try www.EBooksWorld.ir

{



Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" - Filling the DataSet.");

/1 Fill a dataset with data within the authors table

da.Fill(ds);

Here the Fi | | () method from the Sql Dat aAdapt er class is used to fill the Dat aSet object specified in its parameter, with the

results of the SQL query specified earlier. The Dat aSet is an in-memory representation of the database data and so it will be
formatted as the aut hor s table and filled with every record contained in the table:

/'l Read the XML file filling another dataset
Dat aSet dsMerge = new Dat aSet () ;

Trace. WitelLinel f(Datal nmport.bs. Enabl ed, DateTi me. Now +
" - Reading XML file.");

dsMer ge. ReadXm (m strFil eNanme, Xm ReadMbde. | nf er Schemm) ;

Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" - DataSet filled with data.");

Here the code uses the discovered file to fill another Dat aSet object. This time the ReadXnl () method has been used. The

power of the Dat aSet object is just right in front of you. You can manage data provided by both database and XML document in

exactly the same way. The Dat aSet object maintains an XML data representation of the records within itself:

/'l Update the database tracing the
/1l total tinme needed to conclude the operation
Dat eTi ne ti ne;
time = DateTi ne. Now,
Trace. WiteLinelf(Datal nport.bs. Enabled, tinme +
" - Updating database.");
da. Updat e(dsMer ge) ;
Dat eTi ne tinez;
ti me2 = DateTi me. Now,
Trace. WiteLinel f(Datal nport.bs. Enabled, time2 +
" - Database updated successfully.");
Trace. I ndent () ;
Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" - Total TIME " + tine2.Subtract(tinme) + " second/s");
Trace. Uni ndent () ;

Finally, the code uses the Updat e() method provided by the Sql Dat aAdapt er class to write new records to the aut hor s

table. Note the tracing information used in this snippet of code; this provides detailed information by adding performance
messages. The Dat eTi ne class has been used to retrieve the total time in seconds needed to update the database:

catch (Sqgl Exception sex)

{
Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" - A SQ exception occurred during file processing: ");
Trace. I ndent ();
Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now
+ " - " + sex.ToString());
Trace. Uni ndent () ;
}
catch (Exception ex)
{

Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" - A general exception occurred during file processing: ");
Trace. I ndent ();
Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" - " + ex.ToString());
Trace. Uni ndent () ; www.EBooksWorldir



finally
{

}

Trace. Fl ush();

Then, after writing the code for catching and dealing with any exceptions that may occur, the code is complete.

Testing the Application
To test the application you have to follow these steps:
m Create a C: \ t enp directory to contain the XML file
m Run the Dat al nport application
m Copythe aut hors. xni file into the C. \ t enp directory

As a final result you should find the Dat al nport . | og file in the C:\directory having content similar to this:

01/05/2002 12:23:01 - Found: authors.xml file
01/05/2002 12:23:01 - Filling the DataSet.

01/05/2002 12:23:02 - Reading XML file.

01/05/2002 12:23:02 - DataSet filled with data.
01/05/2002 12:23:02 - Updating database.

01/05/2002 12:23:02 - Database updated successfully.
01/05/2002 12:23:03 - Total TIME: 0 second/s

The aut hor s. xm file is not that large so the total time is less than one second.

Logical Errors

All seems to be working well, but obviously, everything hasn't been accounted for. So far, we have tested our application with a
very small file size, so when the application receives the file creation event and opens the file, the process that copies it into the
directory finishes its task of closing the file. What happens when you receive a huge file? Well, when the thread tries to access the
XML file and fill the Dat aSet object, it receives an access-denied error caused by attempting to open a file already in use by the
copier task. Try to test the application again by copying the huge_aut hor s. xni file instead. Since you have used tracing
messages, you may find the following error in the log file:

4/14/2002 1:29:00 PM - Found: huge_authors.xml file
4/14/2002 1:29:00 PM - Filling the DataSet.
4/14/2002 1:29:00 PM - Reading XML file.
4/14/2002 1:29:00 PM - A general exception occurred during file processing:

4/14/2002 1:29:00 PM - System.|O.IOException: The process cannot access the file
"C:temp\huge_authors.xml" because it is being used by another process.

at System.lO.___Error.WnIOError(Int32 errorCode, String str)

at System.lO.FileStream..ctor(String path, FileMode mode, FileAccess access, FileShare
share, Int32 bufferSize, Boolean useAsync, String msgPath, Boolean bFromProxy)

at System.lO.FileStream..ctor(String path, FileMode mode, FileAccess access, FileShare
share)

at System.Xml.XmIDownloadManager.GetStream(Uri uri, (Credentials credentials)

at System.Xml.XmlUrlResolver.GetEntity(Uri absoluteUri, String role, Type ofObjectToReturn)

at System.Xml.XmlITextReader.CreateScanner()

at System.Xml.XmlITextReader.Init()

at System.Xml.XmlITextReader.Read()

at System.Xml.XmIReader.MoveToContent()

at System.Data.DataSet.ReadXml(XmIReader reader, XmIReadMode mode)

at System.Data.DataSet.ReadXmli(String fileName, XmIReadMode mode)

This is a kind of error that the debugger often fails to catchwhecmusethedime used to launch it and the time to step through the
code is often sufficient to copy the file. It may also not occur on your machine. It depends on the speed of your disk access and



the amount of memory you have (so how much the application is slowed down).

The error message suggests a possible solution that you should add to the application to resolve the error. Before calling the
ReadXm () method, you should try to open the file with exclusive access. If an error occurs, then you can suspend the thread for
few seconds, trying again when the file can be processed. Let's see how the code changes in Dat al nport 2, by adding the

Cet Fi | eAccess() method:

private bool GetFileAccess()
{
Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" Trying to get exclusive access to the
+ mstrFileNane + " file.");

try
{
FileStream fs = File.Qpen(m strFil eNane,
Fi | eMbde. Append,
Fi |l eAccess. Wi te,
Fi | eShar e. None) ;
fs.C ose();
Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" - Access to the + mstrFil eNane + file all owed.");
return true;

}

cat ch
{
Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" - Access denied to the " + mstrFileNane + " file.");
return false;

}

}

The Get Fi | eAccess() method has been added in order to return a Boolean value indicating whether you can have exclusive
access to the file or not. The method simply tries to open the file with the share access property set to None:

public void Inport()

{
/1 Declare Sql objects to contact the database
Sqgl Connecti on dbConn = new
Sql Connecti on("server =. ; dat abase=pubs; ui d=sa; pwd=") ;
Sql Dat aAdapt er da = new Sql Dat aAdapt er (
"SELECT * FROM aut hors", dbConn);
Dat aSet ds = new DataSet();
Sql CommandBui | der sa = new Sgl ConmandBui | der (da) ;
try
{
while (CetFil eAccess() == false)
{

Thr ead. Sl eep(5000) ;

Trace. WiteLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" - Slept 5 seconds... Try to access to the "
+ mstrFileNane + " file, again.");

}

Trace. WitelLinel f(Datal nport.bs. Enabl ed, DateTi ne. Now +
" - Filling the DataSet.");

/1 Fill a dataset with data within the

/1 authors table

da. Fill(ds);

www.EBookswWorld.ir



The | nport () method provided by the | npor t Dat a class will try to get exclusive access to the file. If the file is still opened by
the copier task, the thread will be suspended for five seconds. So, the Get Fi | eAccess() method will be called until the source
file can be opened.

We have seen practically how the tracing functionalities can be useful to understand the application behavior during run-time
execution.

[ & FrEv | < Day Day Up > | NEXT @ |

www.EBooksWorld.ir



[ & FrEv | < Day Day Up > | NEXT @ |

Summary

In this chapter we have seen how the Visual Studio .NET debugger can be used to observe an application's behavior during its
execution. Also, we have seen which powerful tools the debugger provides, to allow us to examine and change a variable's value,
and more.

In the second part of the chapter, we covered the tracing functionality provided by the .NET with three classes: Trace, Debug,
and Swi t ch. We started listing the most useful tracing functionalities focusing on the ability to activate tracing by modifying
values within the application configuration file.

Finally, we have seen a practical example where the tracing technique helps developers to find and correct bugs and logical
errors.

m < Day Day Up > m

www.EBooksWorld.ir



| 4 FREV | < Day Day Up > | NE<T |

Chapter 7: Networking and Threading

Overview

In the previous chapters of this book, we've taken an in-depth look at threading in C# and .NET and discussed the various
concepts and techniques associated with programming multithreaded applications. Now that you are a threading expert, we're
going to build a simple multithreaded client-server application in C# and put to use some of the concepts that we have discussed
thus far.

There are certain application needs for which the effective use of threads and asynchronous programming is indispensable, such
as network communication, effective user interfaces, and disk input/output, to just name a few. In all these cases, a single-
threaded application can freeze or appear to have crashed while it's waiting for an operation to complete. This is also true in the
case of a network application where latency is often the most important criterion, especially with users that have low speed
connections. In the sample application showcased in this chapter, we are going to utilize the Syst em Net namespace and

briefly explore the networking capabilities of .NET, especially since the multi-user and asynchronous nature of network
applications make them ideal candidates for threading.

In particular, we will discuss the following:
m Developing network applications in .NET using the Syst em Net namespace
m Developing a simple multithreaded client-server application based on TCP/IP
m Using intrinsic .NET functionality to implement asynchronous operations

m Using asynchronous message transfers between a client and a remote server

| 4 FREV | < Day Day Up >

www.EBooksWorld.ir



& FREV < Day Day Up > MET iy

Networking in .NET

Prior to the advent of the .NET Framework, the ability to develop sophisticated Windows-based networking applications was
limited to advanced C++ programmers using the convoluted WinSock library for the most part. There was, of course, the W nl net
control that Visual Basic developers could utilize in order to accomplish relatively simple tasks. Other controls were available for
other languages. However, one did not have to attempt too much before facing functional impediments with the simple and limited
services offered in that control.

Fortunately, the Syst em Net namespace within the .NET Framework brings a slew of effective functionality packaged in a simple
and consistent object model. The ease of use of these classes does not compromise functionality, as almost all the core functions
of WinSock 2.0 have been wrapped and abstracted in the Syst em Net namespace. Developers can easily develop at any level
from sockets all the way up to HTTP. Also, unlike the raw use of the WinSock library, the Syst em Net namespace relieves
developers from having the dubious pleasure of manually coding many imperative resource management tasks, such as dealing
with overlapped IO and completion ports.

So, without further delay, let's briefly explore the Syst em Net namespace.

System.Net Namespace
The Syst em Net namespace actually comprises two namespaces, Syst em Net and Syst em Net . Socket .

We will primarily be using the Syst em Net . Socket s namespace in our application. The layered approach of the Syst em Net
classes provides applications with the ability to access networks with various levels of control based on the demands of the
application. In addition to the extensive support for sockets, Syst em Net classes also offer an impressive array of functionality to
use with the HTTP protocol. For the most part, the Syst em Net offerings are categorized in three layers, Application protocols,
Transport protocols, and Web protocols. The Syst em Net . Socket s namespace consists primarily of classes and utilities for
dealing with the transport protocol. Let's look at some of the more important classes within the Syst em Net namespace, as listed
in the table opposite.

Class Description

Aut hori zati on Provides authentication messaging for a web server.

Cooki e Provides a set of properties and methods used to manage cookies. This class cannot be
inherited.

Dns Simple domain name resolution functionality.

EndPoi nt Identifies a network address. This is an abstract class.

A obal ProxySel ecti on Global default proxy instance for all HTTP requests.

Ht t pVer si on

Ht t pWebRequest

Ht t pWWebResponse

| PAddr ess

| PEndPoi nt

| PHost Entry

Net wor kCr edent i al

Socket Addr ess
Socket Per ni ssi on

Webd i ent

WebExcepti on

Defines the HTTP version numbers supported by the Ht t pWebRequest and
Ht t pWebResponse cl asses.

HTTP-specific implementation of the WebRequest class.
HTTP-specific implementation of the WebResponse class.

Internet Protocol (IP) address.

A network endpoint consisting of an IP address and a port number.
Container class for Internet host address information.

Provides credentials for password-based authentication schemes such as basic, digest,
NTLM, and Kerberos authentication.

Stores serialized information from EndPoi nt -derived classes.
Controls rights to make or accept socket connections.

Provides common methods for sending data to and receiving data from a resource
identified by a URI.

The exception that is throwaBwhiewaid.error occurs while accessing resources via the
HTTP protocol.



WebPer m ssi on Controls rights to access HTTP Internet resources.

WebPer m ssi onAttri bute | Specifies permission to access Internet resources.

WebPr oxy Contains HTTP proxy settings for the WebRequest class.
WebRequest Makes a request to a Uniform Resource Identifier (URI). This class is abstract.
WebResponse Provides a response from a Uniform Resource Identifier (URI). This class is abstract.

As you can see, the Syst em Net namespace contains a cornucopia of classes and utilities that are quite useful for a wide range
of web and network programming needs.

System.Net.Sockets Namespace

The Syst em Net . Socket s namespace primarily focuses on the transport layer: the socket layer for which it contains a
comprehensive set of classes. These classes do an excellent job of abstracting much of the complexity associated with socket
programming, while offering a powerful and productive socket stack that also adheres to the Berkeley socket. Lastly, built-in
support for TCP and UDP is well integrated in the classes of the Syst em Net . Socket s. The table below lists the classes of the
System Net . Socket s namespace.

Class Description

Li nger Qpti on Contains information about the amount of time it will remain available after closing with the
presence of pending data (the socket's linger time).

Miul ti cast Opti on | Contains IP address values for IP multicast packets.
Net wor kSt r eam Provides the underlying stream of data for network access.
Socket Implements the Berkeley sockets interface.

Socket Exception | The exception that is thrown when a socket error occurs.

Tcpdient Provides client connections for TCP network services.
TcplLi st ener Listens for connections from TCP network clients. This is essentially the TCP server class.
Udpd i ent Provides User Datagram Protocol (UDP) network services.

A varying level of control is offered to the developer, such as lower-level classes like the Socket class, and higher-level classes,
such as the Tcpd i ent class, which offers slightly less control with added productivity. An in-depth discussion of these classes
would go beyond the scope of this book - Professional .NET Network Programming (ISBN 1-86100-735-3) is the ideal book for
this, but we will take a closer look at some of the above classes as we design and develop our sample application a little later in
this chapter.

tm < Day Day Up > m’

www.EBookswWorld.ir



4 FREV < Day Day Up >

Creating the Sample Application

Now that you've had a brief introduction to network programming in .NET, let's actually start discussing the application that we are
going to build in this chapter. The purpose of this example is to create a simple application to familiarize you with the use of
threading in building networking applications in .NET. The application will actually consist of two small Windows Form applications,
with one acting as the server and the other as the client. We will be using Visual Studio .NET to design and implement these
applications.

Design Goals

We want to create two applications that interact with one another. The first application is a multithreaded/multi-user stock quote
server program that looks up stock quotes from a database table and sends the data back to the requesting client asynchronously.
The second application is the client and simply queries the server with a stock symbol for which it wishes to get the quote
information. All this will happen asynchronously, such that the client's user interface is not paused while the server is responding
to the request.

Within the .NET Framework there are a number of methods that will handle the asynchronous operations for us; with these
methods the need to explicitly spawn and manage the required threads ourselves is removed.

The list below outlines and summarizes the basic requirements we are going to abide by when building the applications:

m There will be two autonomous applications (one serving as the client and the other as the server) that can communicate with
each other over the Internet

m The user interface of the client should not pause or freeze because of slow network connections, or any other delays, when
querying the server for stock quotes

m The server should be capable of handling numerous simultaneous client connections and queries, and have the ability to
communicate with the client in an asynchronous manner

m Network settings must be abstracted away from the application and be modifiable

To help us understand the typical user interaction within the application, let's look at a simple UML sequence diagram overleaf.

Enter stock guote

Asyne message call for quote
Check for quate
>

Return résults

<.é'-s'.-l'u: meassage (quote nesult)

Figure 1

So far, we've discussed the basic design guidelines for the applications from a very high-level standpoint. If you are like most
developers, you probably can't wait to see some code. So without further delay, let's actually start building the two applications and
examining code segments and concepts as we go along (as always, the code is available at http://www.apress.com).

Building the Application

As mentioned before, the sample application in this chapter really consists of two autonomous applications: a client and a server.
The two applications will communicate with each other via g spegific JS&R/P port, which can be changed by altering the
configuration file of the application (as we'll see later, both the client and the server need the same configuration file). Enough


http://www.apress.com

said, let's start by building our client application, which performs the simple task of querying the server for the result of a stock
quote.

Creating the Client

Before we start building the application, let's take a moment or two to see the UML view of the client form class, which is going to
contain all the code for the client application:

System.Windows, Forms. Form

L
StockClient

Port & Inleger
-HostName : String
SirBuilder

MyClient
-ReceiveDatal) : Byle

+ My}

EDispose()

+Maind)
EnableComponants()
-InitializeStockWindow )
AuddStock])
+ReceiveStream()
+Sendi)
+MessageAssembler)
+mnuConnest Choki)
+btnGetQuote_Clickl)
+onDigconnectad()
+mnuExit_Click{)

Figure 2

The St ockd i ent application simply has a Windows form and contains all the code for the client application, such as the

pri vat e member variables and the methods. To create the St ockC i ent application, we start by creating a new Windows
Application project in Visual Studio .NET and naming it St ockCl i ent . On the default form, we create three controls on the page;
a textbox called t xt St ock, a button called bt nGet Quot e with its Text property setto Get Quot e, and a new Li st Vi ew
control from the Visual Studio .NET Toolbox called | st Quot es. Change the Nane and Text properties of the form to

St ockd i ent . Also, add a Mai nMenu control to your form, and create a menu item &Fi | e with two sub-items &Connect (called
muConnect ) and E&xi t (called mnuExi t ). Lastly, ensure that all the controls on the form, except the menu, have their

Enabl ed property set to Fal se; these will remain disabled until the user connects to the server.

o] x|

LEﬂmtﬁﬂﬂ
Eile

| ;nmnwu|

We'll start with the set of usi ng directives that reference the namespaces we need:

usi ng System Threadi ng;
usi ng System Net; www.EBooksWorld.ir
usi ng System Net. Socket s;



usi ng System Text;
using System |G
usi ng System Confi gurati on;

We are going to need some pri vat e member variables that will be used throughout the St ockCl i ent application:

private int Port;

private string Host Nane;

private const int packetSize = 1024;

private byte[] ReceiveData = new byte[ packet Si ze];
private Tcpdient Mydient;

private StringBuilder StrBuilder = new StringBuilder();

We will examine the variables and their use later on, but for now let's amend our Li st Vi ewcontrol so that it can keep track of all

the stock quotes that we enter. We need it to contain six columns: one column for each of the returned fields for the stock quote.
The desired fields are Synbol , Pri ce, Change, Bi d, Ask, and Vol une. Let's create a method called
InitializeStockWndow ) to add these columns to the Li st Vi ewcontrol as shown below:

private void InitializeStockWndow)

{
| st Quot es. View = System W ndows. For ms. Vi ew. Det ai | s;
| st Quot es. Col ums. Add(" Synbol ", 60, Horizontal Alignnment. Left);
| st Quot es. Col uims. Add( " Price", 50, Horizontal Alignnment. Left);
| st Quot es. Col utms. Add( " Change", 60, Horizontal Alignnent. Left);
| st Quot es. Col uimms. Add("Bi d*, 50, Horizontal Alignment.Left);
| st Quot es. Col uims. Add( " Ask", 50, Horizontal Alignnent. Left);
| st Quot es. Col umms. Add( " Vol unme", 170, Horizontal Alignment. Left);
}

The code segment above simply enables the grid lines of the Li st Vi ewcontrol, as well as assigning six columns of various
widths to it. We will call this function upon connecting to the server when the application is ready to start retrieving stock quotes
from the server. We also need a method to enable and disable the controls as required, for instance upon the successful
connection, as listed below:

private void Enabl eConponent s(bool enable )

{
t xt St ock. Enabl ed = enabl e;
bt nGet Quot e. Enabl ed = enabl e;
| st Quot es. Enabl ed = enabl e;

}

Now we create a simple delegate called Di sconnect edHandl er, an event called Di sconnect ed, and an implementation of
the event handler called OnDi sconnect ed() which would be called once the event is actually raised. The OnDi sconnect ed()
method simply enables the Connect option in the File menu as well as displaying an error message via a message box. It also
disables the remaining input controls on the form:

public del egate void Di sconnectedHandl er ( object sender );
publ i c event Di sconnectedHandl er Di sconnect ed,;
private void OnDi sconnect ed(obj ect sender)

{
muConnect . Enabl ed = true;
MessageBox. Show( " The connection was |ost!", "D sconnected",
MessageBoxBut t ons. OK, MessageBoxI| con. Error);
Enabl eConponent s(f al se);
}

To bind the OnDi sconnect ed() method to the Di sconnectted venﬁ, we use the code below:
www.EBooksWorld.ir



D sconnected += new Di sconnect edHandl er (OnDi sconnect ed) ;

As you may know, one of the greatest features of .NET is its ability to dynamically bind and unbind event handlers to events at run
time. You can use the += operator to assign a method to an event and, in much the same manner, use the - = operator to detach
an event handler method from an event. Indeed, the ability to dynamically assign functionality to an event is very useful when you
need to start or stop the event handler for an event or need to override the behavior of an event handler. In the case of the

Di sconnect ed event, we assign it to the OnDi sconnect ed delegate. Technically, we have the opportunity to accomplish this
anytime before the invocation of the event. However, it's usually best to declare all the event handlers early on in the application's
execution, so we will declare it in our nuConnect _C i ck event as soon as a connection to the server is established.

Speaking of the muConnect _d i ck event, double-click the Connect sub-item of the File menu to enter code for the actual
connection to the server. This is where we start to get our feet wet in network programming. First we need to instantiate a

Tcpd i ent object, which is a member of the Syst em Net . Socket s namespace. In order to that, we are going to need a host
address and a port with which the client contacts the server. We will abstract that information away from the core of the application
by storing it in an application configuration file. .NET configuration files are well-formed XML files and are accompanied by a useful
namespace in the .NET Framework, Syst em Conf i gur at i on. With that in mind, let's look at the contents of the external
configuration file that we can easily create in Notepad or Visual Studio.NET:

<configuration>
<confi gSecti ons>
<section nane="Host | nfo"
type="Syst em Confi gurati on. Si ngl eTagSecti onHandl er" />
</ confi gSecti ons>
<Host I nf o host nane="| ocal host" port="6800" />
</ configuration>

The XML above contains an entry with two attributes storing the host information. We used | ocal host, and the port could be just
about any port (just as long as it's not a reserved port) and you can choose just about any port number between 1024 and 65000.
Save the file as St ockCl i ent . exe. confi g (the configuration file has the name of the assembly followed by . confi g), and
place it in the bi n subdirectory where the compiled version of the application is going to reside.

Now add the following code to the muConnect _C i ck event handler:

private void muConnect Click(object sender, System EventArgs e)
{
| Di ctionary Host Settings;
try
{
Host Settings =
(I'Dictionary) ConfigurationSettings. Get Config("Hostlnfo");
Host Nane = (string)Host Settings["hostnane"];
Port = (int)HostSettings["port"];
Mydient = new Tcpd i ent(Host Name, Port);
MyCient. Get Strean(). Begi nRead(recei veData, O,
packet Si ze, new AsyncCal | back( Recei veStream), null);
Enabl eConponent s(true);
InitializeStockWndow);
muConnect . Enabl ed = fal se;
D sconnected += new Di sconnect edHandl er( OnDi sconnected );

}

cat ch
{
MessageBox. Show( "Error: Unable to establish a connection!",
"Di sconnect ed", MessageBoxButtons. K, MessageBoxl con. Error);
My ient.C ose();

The first portion of the code above reads the host informatign firemktheconfiguration file. The Host Nane, Port, and MyCl i ent
fields have already been declared as pri vat e at the start of the class. At this point we just declare a local dictionary object to



read in all the attributes of the Host | nf o node in the configuration file.

An instance of the TcpCl i ent class is instantiated by passing the DNS host name and a port number into the constructor. As you
probably know, the host name maps to a specific host (or, more accurately, interface) on the network; the port number identifies
the specific service on that host to connect to. The combination of host name and a service port is typically called an endpoint,
which is represented in the .NET Framework by the EndPoi nt class. The TcpCl i ent class constructor may take in an instance
of the | PEndPoi nt class, but is also overloaded to accept a host name and a service port number.

You can use the DNS class to resolve a host name into an IP address and then use a service port to construct an
| PEndPoi nt class.

If we've done everything right and there is a server running with the same host name and port, a new connection will be
established. Upon obtaining a connection, we must spawn a background thread to get data from the server asynchronously to
enable the input controls for the user to receive stock symbols. Here's where things start to get a little interesting.

As mentioned previously, we need the receiving method of our application to be asynchronous. This is the only way the client can
function without delays and serial user interaction. It is simply unacceptable to have the client application remain suspended while
waiting for data to arrive from the server. Thanks to the .NET Framework, the solution is relatively simple and easy to implement.
We first have to identify the TcpCl i ent's Net wor kSt r eamobject. We can do that by calling the Get St r ean{) method of the
Tcpd i ent object instance, which returns the underlying Net wor kSt r eamused to send and receive data. Get St r eant()
creates an instance of the Net wor kSt r eamclass using the underlying socket as its constructor parameter. The Net wor kSt r eam
class inherits from the St r eamclass, which provides a number of methods and properties used to facilitate network
communications. Once we have an underlying stream, we can use it to send and receive data over the network. Much like its
cousin classes Fi | eSt r eamand Text St r eam the Net wor kSt r eamclass exposes read and write methods designed to send
and receive data in a synchronous manner. Begi nRead() and Begi nW i t e() are nothing more than the asynchronous
versions of those methods. As a matter of fact, most of the methods in the .NET Framework whose names start with Begi n, such
as Begi nRead() and Begi nGet Response(), are intrinsically asynchronous without the programmer having to provide
additional code when they are used with delegates. Therefore, there's no need to manually spawn new threads, and as the
process reading the data is running on a background thread, the main thread of the application is free to remain attentive and
responsive to Ul interaction. Let's look at the signature of the Begi nRead() method:

public override | AsyncResult Begi nRead(
byte[] buffer,
i nt offset,
int size,
AsyncCal | back cal | back,
obj ect state

)
The table below explains each of the parameters of this method.

Parameter Description

buffer A byt e array data buffer in which the data will arrive
of f set The location in buf f er to begin storing the data to
si ze The size of buf f er

cal I back | The delegate to call when the asynchronous call is complete

state An object containing additional information supplied by the client

Before we proceed further, let's take a moment to have a word or two about asynchronous calls, since they are a very important
concept. As mentioned earlier, the problem with synchronous operations is that the working thread can be blocked until a certain
operation is complete and that's not always desirable. Asynchronous calls run in a background thread and allow the initial thread
(the calling thread) to continue as normal. .NET allows asynchronous calls via the help of delegates to just about any class and/or
method. However, certain classes, such as the Net wor kSt r eamclass, contain methods like Begi nRead() that have
asynchronous capabilities built into them. Delegates are used to act as placeholders for the functions against which asynchronous
calls are made. Remember that delegates are essentially type-safe function pointers.

As you can see, the Begi nRead() method requires byte %&goggs%vﬁﬁ%'sred to strings or text streams and, as such, is going to



require a little more processing. We have already defined a variable named Recei veDat a and another integer constant for the
size of the byte array named Packet Si ze. Now we need to pass in the name of the method that is going to actually receive the
data - the method that is going to be invoked by the callback delegate when the data arrives. Bear in mind that this method is
going to be running in a background thread, so we have to be careful if we wish to interact with the Ul. Therefore, we simply spawn
a background thread to receive the data as it arrives from the server over the network by just one line:

Myd i ent. Get Stream(). Begi nRead(recei veData, 0, packetSize,
new AsyncCal | back( Recei veStrean), null);

We create a method called Recei veSt r ean() that deals with the data in the byte packets as it arrives:

private void ReceiveStrean( |AsyncResult ar )

{
i nt ByteCount;
try
{
Byt eCount = Mydient. CGetStream). EndRead(ar);
i f(ByteCount < 1)
{
/1 MessageBox. Show( " Di sconnect ed")
Di sconnect ed(t hi s);
return;
}
MessageAssenbl er (recei veData, 0, ByteCount);
MyClient. Get Strean(). Begi nRead(recei veData, O,
packet Si ze, new AsyncCal | back(Recei veStream), null);
}
cat ch(Exception ex)
{
/1 Display error nessage
object [] Params =
{("An error has occurred" + ex.ToString()).ToString()};
I nvoke( new | nvokeDi spl ay(this.DisplayData), Parans);
}
}

First off, we have to check to see if there are any bytes in the byte array packet. There always has to be something in there. You
can think of this as the pulse of the connection; as long as the client is connected to the server, there will be some data in that
incoming packet, however small. We use the EndRead() method of the St r eamobject to check the current size of the byte
array. We pass an instance of | AsyncResul t into the EndRead() method. The Begi nRead() method of the Get St r eant)
method initiates an asynchronous call to the Recei veSt r ean() method, which is followed by a series of under-the-hood actions
built in by the compiler in order to expedite the asynchronous operation. The Recei veSt r ean() method is then queued on a
thread-pool thread. If the delegate method, Recei veSt r ean{) throws an exception, then the newly created Async thread is
terminated, and another exception is generated in the caller thread. The diagram below further illustrates the situation:

www.EBookswWorld.ir



T Rayse Workim Theesd

| iyt Gethiseem Degmbesd | | L3

Figure 3

If the number returned from the EndRead() method is anything less than one, we know that the connection has been lost and we
can raise the Di sconnect ed event to take care of the appropriate work that needs to be done to handle that situation. However,
if the number of bytes in the byte array is bigger than zero, we can start receiving the incoming data. At this point, we are going to
need the assistance of a helper method to help us construct a string from the data that we retrieve from the server.

In fact, in .NET you can call almost any method asynchronously in much the same manner that we used the Begi nRead()
method. All you have to do is declare a delegate and call that delegate using the Begi nl nvoke() and the Endl nvoke()
methods -methods that are automatically added when you define a delegate. The intricacies of the asynchronous infrastructure are
abstracted away from you and you don't have to worry about background threads and synchronization (not entirely, however). It is
important to note that the Begi nl nvoke() and Endl nvoke() methods are not found with IntelliSense within the VS.NET IDE.

These methods are added at compile time.

OK, now let's move on to the next portion of the code in which you see a call to the MessageAssenbl er () method. Due to the
asynchronous nature of the Begi nRead() method, we really have no way of knowing for sure when and in what quantity the data
will arrive from the server. It could arrive all at once, or it could arrive in a hundred smaller pieces, each being only one or two
characters long. So, we have to perpetually read the data until we receive some sort of a signal indicating the end of the data for
now. In this case, we will append a single character (#) to the end of our message, which will act as a trigger agent for the
MessageAssenbl er () method indicating the end of the incoming string, at which point the MessageAssenbl er class can stop
waiting for more data and work with the data. We'll make use of the St ri ngBui | der class from the Syst em Text namespace -
this class is designed for higher-performance string manipulation operations. Let's take a closer look at the

MessageAssenbl er () method:

private void MessageAssenbl er(byte [] Bytes, int offset , int count)
{
for(int ByteCount = 0; ByteCount < count - 1; ByteCount++)
{
i f(Bytes[ByteCount] == 35) // Check for '"# to signal the end
{
object [] Parans = {StrBuilder.ToString()};
I nvoke(new I nvokeDi spl ay(this.DisplayData), Parans);
StrBuilder = new StringBuilder();
}
el se
{
St rBui | der. Append( (char) Byt es[ Byt eCount]);
}
}

www.EBookswWorld.ir



As you can see, the MessageAssenbl er () method loops through the byte array of data and accumulates the data as pieces of
a string using the instance of the St ri ngBui | der class until it encounters the # character. Once it encounters the # character,
signaling the end of the incoming string, it will stop and flush out the string by calling the ToSt ri ng() method of the

St ri ngBui | der instance. We don't have to worry about manual conversion of bytes to strings at this point since the

St ri ngBui | der class takes care of that for us. It will then call the Di spl ayDat a() method to process the data:

object [] Params = {StrBuilder.ToString()};
I nvoke(new | nvokeDi spl ay(this. Di spl ayData), Paramns);

This is the second time we've encountered something similar to the code above, and you may be wondering what it is doing.
Remember that this method is running in the background worker thread and is in the same thread that the Ul form is. Although we
can call the methods anywhere in the application, it is definitely not a good idea since that operation would not be thread-safe.
Windows Forms are based on Win32 Single Threaded Apartments (STA) and thus are not thread-safe, which means that a form
can't safely switch back and forth between operating threads (including the background threads spawned by an asynchronous
operation) once it has been instantiated. You must call the methods of a form on the same thread in which the form is residing. To
alleviate this issue, the CLR supports the | nvoke() method, which marshals calls between the threads.

If you doubt the above claim, you can always see for yourself by stepping through the code and looking at the Threads window and
seeing the thread ID of the code that indicates the current thread in which the code is executing. By creating a delegate and
calling it through the form's | nvoke() method, it's executed in the form's thread and interaction with the form's controls is safely
executed. Without marshaling, you often find that the code runs just fine and the desired functionality is accomplished initially, but
you can run into problems later on as this can cause instability in the application, with at times unpredictable behavior. This can
get worse the more the application spawns threads. Therefore, don't talk to the GUI without marshaling the threads. In addition,
the signature of the delegate must always match that of the | nvoke() method, and therefore we have to create an object array
and insert the string in it; this is the only way we can use the | nvoke() method. We call on the Di spl ayDat a() method to
display the data as we wish:

private void D splayData(string stocklnfo)

{ if(stocklnfo == "-1")
{ MessageBox. Show( " Synbol not found!", "lnvalid Synbol",
MessageBoxButt ons. OK, MessageBoxl con. Error);
}
el se
{
AddSt ock( st ockl nf o) ;
}
}

Inthe Di spl ayDat a() method, we simply check the string to see whether its value is - 1. As we shall see later, the server has
been configured to simply return a - 1 string if the requested stock quote cannot be returned as we've submitted an invalid symbol.
Of course, in our case, an invalid symbol is any symbol that does not happen to be in our tiny database table of stocks,

t bl _st ocks (which we'll see later). Otherwise, we can go ahead and pass the st ockl nf o variable to the AddSt ock() method,
which will gracefully add it to the | st Quot es control on the form:

private void AddSt ock(string stocklinfo )
{

string [] StockParameter = stocklnfo.Split(new char[] {","});
ListViemtem Item = new ListView tenStockParaneter);

i f(doubl e. Parse(StockParaneter[2]) > 0)

{
Item ForeCol or = Col or. Green;
}
el se if(doubl e. Parse(StockParaneter[2]) < 0)
{

| tem ForeCol or = Col or. Red;

} www.EBookswWorld.ir
| st Quotes. ltens. Add(Iten);



We will be configuring the server to return the data values in a string with the individual values being separated by a comma:

Symbol , Price, Change, Bid, Ask, Volune

So, the very first thing we have to do is to separate the individual values from one another by using the Spl i t () method of the
string class. We then create a new instance of the Li st Vi ew t emclass and pass in the newly created string array as its
constructor parameter. Lastly, we want to be able to color-code the stock quotes in the | st Quot es control such that if the price of
a stock is down, the entire quote is displayed in red, and if the stock price is up, it is displayed in green. To accomplish this, we
just have to convert the second value of the string array, which contains the current stock price, into a Doubl e and check its
value. After setting the color, we can just add a new entry into the | st Quot es control.

We are nearly done with the client code; we just need to create a few smaller methods to finish off. First, we need to add code to
the cl i ck event of bt nGet Quot e:

private void btnGetQuote_Cick(object sender, System EventArgs e)

{
Send(txt Stock. Text. Trim() + "#");

t xt St ock. Text = "";

This method simply gets the string value of the t xt St ock textbox, appends a # character to the end of it to indicate the end of
this string, and passes it to the Send() method. Remember that we needed the # character in the MessageAssenbl er ()
method to tell us when the end of the string was reached.

Once the data is passed on to the Send() method, the Send() method creates a new instance of the St r eanW i t er class by
passing the underlying TcpCl i ent stream to it as its constructor and calling its Wi t e() method, which sends the data across
the socket in the form a stream. We also call the FI ush() method to ensure that the data is sent immediately and is not sitting in
buffer until some point in the future:

private void Send(string sendData )

{
StreamWiter witer = new StreanWiter(Mdient.GetStream());
witer. Wite(sendData);
writer. Flush();

}

We're almost done here, but we have to do some minor clean-up code. For the most part, the Windows Form class does most of
the cleanup by calling on its own Di spose() method and that of its base, but since .NET has non-deterministic garbage
collection, it would a good idea for us to manually close the TcpCl i ent connection. We can write a small function to do that,
which will be called from the Socket Cl i ent _C osi ng() method, which is invoked when the user closes the form:

private void StockCient O osing(object sender , EventArgs e )

{
cl oseConnection();
}
private void cl oseConnection()
{
if( MWdient !'= null)
{
MyCient.C ose();
MWdient = null;
}
}

www.EBooksWorld.ir
We also need to instantiate a copy of the St ockd i ent form in the form's Mai n() method to kick start the application:



public static void Main()
{

}

Application. Run(new StockCient());

Lastly, we need to call the Appl i cati on. Exit() method onthe d i ck event of the exit menu item to shut down the
application:

private void nmuExit_ Cick(object sender, System EventArgs e)

{
}

Application. Exit();

We're done with the client portion of the application.

Creating the Server

OK, let's move on to creating the server application. Due to the multi-client nature of the target environment, we have to take a
slightly different approach while creating the St ockSer ver application. We want to be able to keep track of clients and know
when they connect and disconnect. Client management would be far more effective with the use of a single class instance per
client. Therefore, we are going to have to create a separate client class that will represent the clients that are connected to the
server as you can see in the UML class diagram below:

Sptenn. Wittt Forms Foim

L
StockClient Quadellient

Sigm ¢ Intager =1024

D) @ Byle

Figure 4

A new instance of the Quot ed i ent class is created for each new client that connects to the server and so the St ockSer ver
class and the Quot eCl i ent class have a one-to-many relationship. The Quot eCl i ent class is always instantiated in a newly
spawned thread made to handle the new client that has just connected. The Quot ed i ent class takes in a TcpC i ent object,
responsible for the new client, as its constructor. We will talk about the Quot eCl i ent class a bit more later on. First, let's see
what the user interface is going to look like. The server application is a bit simpler than the client in terms of the Ul. We are going

to have a single Li st Box control to display some information along with the standard Fi | e menu with only the Exi t sub-item. In

addition to those controls, drag and drop a new St at usBar and change its Anchor property to Bot t om Ri ght , such that you
can place it in the lower right portion of the form. Be sure to change the Name and the Text property of the form to
St ockSer ver . Your form should now look something like the form below:

www.EBookswWorld.ir



M stockServer ] = 0] x|
Eiler

LStk g

We will also need a class file that we will call Quot ed i ent . cs. This application is going to access a SQL Server database to
get the stock quote information, and so we are going to need to make references to the necessary data namespaces in addition to
the others shown below:

usi ng System Thr eadi ng;

usi ng System Net ;

usi ng System Net. Socket s;

usi ng System Text;

usi ng System Confi gurati on;
usi ng System Dat a;

using System Data. Sql dient ;

We are also going to need some pr i vat e variables that will be used throughout the application. You will see their use as we
explore the code for this application:

private Thread ListenerThread ;

private TcpListener MyListener ;

private int Port ;

private Tcplient MWdient ;

private int TotalClients = O;

private const int PacketSize = 1024;

private byte[] ReceiveData = new byte[ Packet Si ze];

The server application is going to start running just as soon as it is opened and so we will start by entering some code in the
St ockSer ver _Load() method of the application. We will discuss the server's Li st ener () method, which is the core of the
server itself, shortly; but first we start by spawning a new thread to run our Li st ener () method in the background:

private void StockServer Load(object sender, EventArgs e)

{
| Dictionary HostSettings ;

try

{
Host Settings = ConfigurationSettings. Get Config("Hostlnfo");

Port = int.Parse(HostSettings("port"));
Li stener Thread = new Thread( new ThreadStart (Listener) );
Li stenerThread. Start();
Refreshd i ent St atus();
}

catch( Exception ex )

{
AddSt atus("An error has occurred. JhesS8&NElqid S not running. " +

ex. ToString());



d eanUp();

}
finally
{
Host Settings = null;
}

Just as we did in the client application, we assign the port number from the configuration file into the Por t variable, which we have
already defined. We don't need the host name when creating server listeners since the server itself is the host. Since this
application is really two autonomous parts running entirely independently of each other, please be sure to use to the same
configuration file for both the client and the server as nothing is going to work if the port numbers of the two applications don't
match precisely. If an error occurs, we notify the user by using the AddSt at us() method and do some manual cleaning up by
calling the Cl eanUp() method, both of which we will see later. But for now, let's look at the Li st ener () method:

private void Listener()

{
try
{
MyLi stener = new TcplLi stener(Port);
MyLi stener. Start();
object [] Message =
{"Server started. Awaiting new connections..."};
I nvoke(new | nvokeSt at us(this. AddSt atus), Message);
while (true)
{
Quoted ient NewClient =
new QuoteCd ient(MyLi stener. Accept TcpCient());
NewCl i ent . Di sconnected +=
new Di sconnect edHandl er (onDi sconnect ed) ;
NewCl i ent . QuoteArrived +=
new Quot eArri vedHandl er (CheckQuot e) ;
bj ect [] Connect Message = {"A new client just connected at "
+ Now(). ToShort Ti meString()};
I nvoke(new I nvokeSt atus(this. AddSt atus), Connect Message);
Totaldients += 1;
Refreshd i ent Status();
}
}
catch( Exception ex )
{
object [] Message = {"The server stopped due to an unexpected"
+ "error\r\n" + ex.ToString()};
I nvoke(new | nvokeSt atus(this. AddSt atus), Message);
}
}

This is a very important part of the server application since it basically represents the underlying engine of our server. As you can
see, upon initialization of the port number, we called the Accept Tcpd i ent () method of the TcpLi st ener class instance to
accept incoming requests for connections. In essence, the TcpLi st ener class is the server. It builds upon the Socket class to
provide TCP services at a higher level of abstraction. However, the reason for spawning a new background thread to handle the
Li stener () method is the Accept C i ent () method, which is a synchronous method that waits for connections while keeping
the thread it's running on blocked, therefore we need to run it as a background thread. Once again, since this method is running in
a background thread, we need to marshal between the current working thread and the thread in which the Ul controls are running
by using the | nvoke() method of the form. We also start the asynchronous process of listening for incoming data, which in this
case is going to be stock quote requests from the client. In much the same manner as we did in the client application, we will use

the St r eamRecei ve() method that is located in the Quot eCl i ent class:
www.EBooksWorld.ir



public void StreanRecei ve(l AsyncResult ar)

{
i nt ByteCount;
try
{
| ock(Myd i ent. Get StreanD)
{
Byt eCount = Mydient. Get Stream(). EndRead(ar);
}
i f(ByteCount < 1)
{
Di sconnect ed(t hi s);
return;
}
MessageAssenbl er (Recei veData, 0, ByteCount);
| ock(Mydient. GetStream())
{
Myd ient. Get Strean(). Begi nRead( Recei veData, 0, PacketSi ze,
new AsyncCal | back( St reanReceive), null);
}
}
catch( Exception ex )
{
Di sconnect ed(t hi s);
}
}

The major difference between this and its sister method in the client application arises from the fact that we are now in a
multithreaded, multi-user environment and that we can't just get the default stream and do whatever we want with it. There would
be a very good chance of resource collisions, such that while we're reading data from it here, another thread in our server might
attempt to send data to that same stream; and so we need to use synchronization. For simple synchronization, we are going to
use the keyword | ock to lock the requested stream while we read from it. | ock is the most basic thread synchronization tool
available. Don't forget to use good judgment when it comes to locking resources, as it can be detrimental to your application's
performance if used in excess. For more sophisticated and custom tailored thread synchronizations, you can use some of the
other classes available in the Syst em Thr eadi ng namespace, such as | nt er| ocked, which allows you to increment and
decrement interlocks. Other than that, the Recei veSt r eanm() method is more or less the same as the one in the client

application.

The MessageAssenbl er () method also very closely resembles its counterpart defined in the client application. The only
difference is that it calls the CheckQuot e() method to connect to the database and retrieve the stock quote by raising the
Quot eArri ved event, which is dealt with in the Li st ener () method discussed previously:

private void MessageAssenbl er(byte [] Bytes, int offset, int count)

{ for(int ByteCount = 0; ByteCount < count -1; ByteCount++)
{ i f(Bytes[ByteCount] == 35) // Check for '# to signal the end
{ QuoteArrived(this, StrBuilder.ToString());
StrBuilder = new StringBuilder();
}
el se
{
St r Bui | der. Append( (char) Byt es[ Byt eCount]);
}
}
}

Before we move on to the CheckQuot e() method, let's brieflyreliscigs!the data source from which the server retrieves its quote
information.



We need to start by creating a SQL Server database called St ockDB, which will contain a single table called t bl _st ocks with a
structure as outlined in the following table.

Database setup and population scripts will be available at the Apress web site http://www.apress.com along with all the code
from the book.

Field Description

Synbol The actual stock symbol
Price The last price of the stock
Change | The price change of the stock
Bid The last bid price of the stock
Ask The last bid price of the stock

Vol unme  The total traded volume of the stock in a trading session

That's all we need for the database so back to the code and the CheckQuot e() method. The CheckQuot e() method resides in
the main form of the application and is called by the local event handler when the Quot eArri ve() method is triggered. The role
of this method is to make a connection to the database, query it to retrieve the quote information, and pass the data back to the
client. You can use the Sgl Connect i on control in Visual Studio .NET and follow the wizards to generate a connection string to
the database, or you can simply instantiate the Sql Connect i on class, which resides in the Syst em Dat a. Sql Cl i ent
namespace, and manually assign it a connection string, as shown here:

private void CheckQuote(QuoteC ient sender,
string stockSynbol)

{

/1 Connection string using SQ Server authentication
Sql Connection Sqgl Conn =
new Sgl Connection("Initial Catal og=StockDB;" +
"Data Source=(local);User |D=sa;Password=");
/1 Alternative Connection string using Wndows |ntegrated security
/1 Sgl Connection Sqgl Conn =
/1 new Sqgl Connection("Initial Catal og=StockDB;" +
/1 "Data Source=(local);Integrated Security=SSPI");

string Sqgl Str =
"SELECT synbol, price, change, bid, ask, volune " +
"FROM t bl stocks WHERE synbol ='" + stockSymbol + "'";

Sql Conmand Sql Cnd = new Sgl Command(Sql Str, Sql Conn);

try

{
Sqgl Cd. Connect i on. Open();

int Records = O;
StringBuilder TenpString = new StringBuilder();

Sql Dat aReader sql Dat aRd = Sgl Cnd. Execut eReader () ;

whi | e( sql Dat aRd. Read())

{
for(int FieldCount = 0; FieldCount <= 5; FieldCount++)

{
TempStri ng. Append(
sql Dat aRd. Get Val ue(Fi el dCount). ToString() + ",");
Records += 1; www.EBooksWorld.ir


http://www.apress.com

}
i f(Records == 0)

{
sender.send("-1#");
}
el se
{
TempString. Repl ace(",", "#", TenpString.Length - 1, 1);
sender. send( TenpString. ToString());
}
}
cat ch( Sql Exception sql Ex)
{
object [] Message = {sql Ex. ToString()};
I nvoke(new | nvokeSt at us(this. AddSt atus), Message);
}
cat ch(Exception ex )
{
object [] Message =
{"Unable to retrieve quote information fromthe Database."};
I nvoke(new | nvokeSt at us(this. AddSt atus), Message);
}
finally
{
/1l Close the Connection and the Data Reader
i f(Sgl Conn. State !'= ConnectionState. Cl osed)
Sql Conn. d ose();
sql Dat aRd. Cl ose();
}

We also need a SQL query to return all six fields of the table for the individual stock the client has requested:

string Sql Str =
"SELECT synbol, price, change, bid, ask, volunme " +
"FROM t bl _stocks WHERE synbol ='" + stockSynbol + "'";

Now that we have the necessary SQL string and connection, we can instantiate the Sgql Conmand and Sql Dat aReader objects
to read the data from the database server.

Finally, we execute the query by creating a new Sql Dat aReader class instance, and setting it to the result of the

Execut eReader () method of the Sql Command object. After that, we iterate through each of the columns of returned data and
append the values into a St ri ngBui | der object, with a comma in between each value. If Execut eReader () does not return
any rows of data, then we have to send a string with a value of - 1 back to the user to notify them of the non-existence of the
requested data. Otherwise, we replace the last comma in the string with a # (to indicate the end of string) and send it back to the
client using the Send() method. Lastly, we must ensure that the database connection is closed once we're finished with it. As you
can see, the code in the Fi nal | y clause checks to see if the connection to the database is still open. If so, it will close it.

The Send() method of the server application resides in the Quot eCl i ent class and requires slightly different code from the
same method in the client application. The main difference is that we now are going to send the message asynchronously back to
the client:

public void send(string sendData)
{
byte [] Buffer =
Syst em Text . ASCI | Encodi ng. ASCI | . Get Byt es(sendDat a) ;
| ock(Mydient. GetStream())
{

MyClient.GetStrean().BeginWite(Buffer, 0, Buffer.Length,
null, null); www.EBooksWorld.ir



The Begi nWite() method is quite similar to the Begi nRead() method in terms of interface. We first have to convert the string
message to a byte array, which can be easily accomplished by using the ASCII class in the Syst em Text namespace. Once

again, we have to lock the stream to ensure that other threads are not writing to it as well. That's all that is required to
asynchronously write the data to the client.

Running the Applications

Build each project in its own instance of Visual Studio .NET and don't forget to include the configuration files that we created
earlier in the same directory as the application executables.

OK, let's now run the compiled applications. We need to run the St ockSer ver . exe first so that it will start listening for clients:

[(Bstoasever =0l

il

Sproad Sharee AsesnDg Nisw CORME OO

Tolal Chgess: 0

Now run an instance of the client application. As you probably recall, we had disabled all the Ul controls on the form until the user
successfully connected to the server. So, let's go ahead and click on the Connect item of the menu:

stk chent =|0] =|

All the controls (except the Connect option of the menu) are now enabled and the Li st Vi ewcontrol has been instantiated with all
the right columns. Enter a valid stock symbol fromt bl _st ocks table. Let's try CSCQO, for example:

www.EBookswWorld.ir



B stockChent - nl :I:I
Eﬁﬂlmlmlﬂﬂ IMk |"|":Hﬂl
[ 18./4 ¥ R 18rq 11 3485
: |

The Stock Server successfully returned a quote and, since the change amount is positive, the entire row appears in the color
green. Let's go ahead and create a few other instances of the St ockC i ent class and see if they all function correctly:

|
=L O T —

As you can see, the St ockd i ent and the St ockSer ver applications work very well with each other. The server keeps tracks
of how many clients connect and disconnect and displays it in the Li st Box. In addition, the multithreaded server is very easily
able to handle numerous connections, as well as send and receive data in an asynchronous fashion. You can step through the
code for both the client and the server application and get a better feel for the application workflow.

[ & FrEv | < Day Day Up > | NEXT @ |

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Summary

As we have demonstrated, it is straightforward to develop multithreaded network applications with the .NET Framework. Much of
the plumbing and infrastructure has already been abstracted away in the form of a comprehensive and object-oriented set of
classes. For even greater control over the network sockets, the Syst em Net . Socket class offers plenty of rich functionality. We
also experienced how simple it is to use .NET's intrinsic support for asynchronous operations that run in the background worker
thread without much code.

We hope that you found this book both helpful and enjoyable. The features in .NET give the C# developer more power than they
have ever had - threading being just one of them.

[@rrey | < Day Day Up > e

www.EBooksWorld.ir



| 4 FREV | < Day Day Up > | NE<T |

Appendix A: Customer Support and Feedback

We value feedback from our readers, and we want to know what you think about this book: what you liked, what you didn't like,
and what you think we can do better next time. You can send us your comments by e-mailing <support@apress.com>. Please be
sure to mention the book's ISBN and title in your message.

Source Code and Updates

As you work through the examples in this book, you may choose either to type in all the code by hand, or to use the source code
that accompanies the book. Many readers prefer the former, because it's a good way to get familiar with the coding techniques
that are being used.

Whether you want to type the code in or not, it's useful to have a copy of the source code handy. If you like to type in the code,
you can use our source code to check the results you should be getting - they should be your first stop if you think you might have
typed in an error. By contrast, if you don't like typing, then you'll definitely need to download the source code from our web site!
Either way, the source code will help you with updates and debugging.

Therefore all the source code used in this book is available for download at http://www.apress.com. Once you've logged on to the
web site, simply locate the title (either through our Search facility or by using one of the title lists). Then click on the Source Code
link on the book's detail page and you can obtain all the source code.

The files that are available for download from our site have been archived using WinZip. When you have saved the attachments to
a folder on your hard drive, you need to extract the files using a de-compression program such as WinZip or PKUnzip. When you
extract the files, the code is usually extracted into chapter folders.

lm < Day Day Up > m

www.EBookswWorld.ir


http://www.apress.com

[ & FrEv | < Day Day Up > | NEXT @ |

Errata

We have made every effort to make sure that there are no errors in the text or in the code. However, no one is perfect and
mistakes do occur. If you find an error in this book, like a spelling mistake or a faulty piece of code, we would be very grateful to
hear about it. By sending in errata, you may save another reader hours of frustration, and of course, you will be helping us provide
even higher quality information.

To find known errata and submit new errata, simply go to the appropriate book page on the Apress website at
http://www.apress.com.

| 4 FREV | < Day Day Up >

www.EBooksWorld.ir


http://www.apress.com

| 4 FREV | < Day Day Up >

forums.apress.com

For author and peer discussion, join the Apress discussion groups. If you post a query to our forums, you can be confident that
many Apress authors, editors, and industry experts are examining it. At forums.apress.com you will find a number of different lists
that will help you, not only while you read this book, but also as you develop your own applications.

To sign up for the Apress forums, go to forums.apress.com and select the New User link.

| 4 FREV | < Day Day Up >

www.EBooksWorld.ir



[ & FrEv | < Day Day Up > | NEXT @ |

Index

A Guide to the Index

The index is arranged hierarchically, in alphabetical order, with symbols preceding the letter A. Most second-level entries and

many third-level entries also occur as first-level entries. This is to ensure that users will find the information they require however
they choose to search for it.

Symbols

.NET CLR LocksAndThreads performance category
table of performance counters, 52

.NET Framework
.NET applications multi-threaded by default, 139
.NET runtime and thread management, 28
AppDomain, 21
debugging classes, 193
objects
locking, 91
waiting state, 91
synchronization support, 86
Thread class, creating threads, 140
threading supported, 140
Multiple Threaded Apartment, 140
Single Threaded Apartment, 140

m < Day Day Up >

www.EBooksWorld.ir



‘ 48 FREV < Day Day Up >

Index

A

Abort method, Thread class, 33, 54, 66
destroying threads, 65

AboveNormal value, ThreadPriority enumeration, 43
AcceptTcpClient method, TcpListener class, 248

AcquireReaderLock method, ReaderWriterLock class
synchronized code regions, 102

AcquireWriterLock method, ReaderWriterLock class, 105
synchronized code regions, 102

administrating priorities, 20
AllocateDataSlot method, Thread class, 33
AllocateNamedDataSlot method, Thread class, 33

apartment threading model
compared to free threading, 13
running out of process, 13
specifying, 141
ApartmentState enumeration, System.Threading namespace
members, 143

ApartmentState property, Thread class, 34
specifying threading model, 143

AppDomain class, System namespace, 21, 36

assemblies and, 21

cannot be inherited, 22

executing code within a specified AppDomain, 26

inheritance, 22

methods
CreateDomain method, 26
CurrentDomain property, 27
DocCallBack method, 27
GetCurrentThreadld property, 24, 27
GetData method, 25
SetData method, 24, 25, 27

setting AppDomain data, 23

threads and, 21

AppDomains communication
Remoting handles, 159

application code, debugging, 195

application domains
see AppDomain.
ArgumentOutOfRangeException class, System namespace, 164

ArrayList class, System.Collections namespace, 147
ASCII class, System.Text namespace, 253

ASP.NET pages
multi-threaded by default, 142

AspCompat directive
ASP.NET page marked as STA, 142

assemblies
AppDomain class and, 21

Assert method, Trace class, 203 www.EBooksworld.ir
asserting error notification, 204




asynchronous calls, 239

ATM scenario
achieving thread-safety, 82
working with threads, 81

atomicity
definition, 83

Authorization class, System.Net namespace, 229

AutoResetEvent class, System.Threading namespace, 32
compared to ManualResetEvent class, 110
manual synchronization, 106, 110
Set method, 173
synchronization support, 86

| @ PREV < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

B

BeginRead method, NetworkStream class, 238, 253
parameters, 238

BeginReceive method, MessageQueue class, 175, 176
BeginWrite method, NetworkStream class, 238, 253

BeginXXX methods
intrinsically asynchronous, 238

BelowNormal value, ThreadPriority enumeration, 43

Berkeley socket
classes in System.Net.Sockets nhamespace, 230

BindHandle method, ThreadPool class, 162
permission required, 163
binding/unbinding event handlers at runtime, 236
BooleanSwitch class, System.Diagnostics namespace, 202
Enabled property, 198, 212
tracing switches, 212
breakpoints, setting, 199

Breakpoints window
Breakpoint Hit Count, 200
managing breakpoints, 200

| @ PREV < Day Day Up >

www.EBooksWorld.ir



‘ 48 FREV < Day Day Up >

Index

C

C#
late binding not supported, 142
programming the ThreadPool class, 166

Call Stacks, 159

callbacks, 45
see also TimerCallback delegate.

CLI (Common Language Infrastructure)
synchronization strategies
synchronized code regions, 90, 105
synchronized contexts, 89

clock interrupts, 17
Close method, TextWriterTraceListener class, 209

CLR (CommonLanguageRuntime)
Invoke method, 242

CLR and threads, 159
thread pooling
caveats, 160
role of CLR, 160
size of thread pool, 161

code tracing, 202

changing the default listener, 207
classes, 202
Datalmport example, 217
TextWriterTraceListener class, 209
Trace class, 202

default listener application, 203
tracing switches, 211
using different listener applications, 206
Windows Event log, 207

code, downloading samples, 257

Collection classes
synchronized wrappers, 119

COM components
finding threading model, 141

Command/immediate window, 198

CompareExchange method, Interlocked class
synchronization support, 86

concurrency, 139

Console class, System namespace
Read method, 168, 173
ReadLine method, 37

ContextBoundObject class, System nhamespace
synchronized contexts, 89

Cookie class, System.Net namespace, 229
cooperative multitasking, 8

Created event, FileSystemWatcher class, 219
CreateDomain method, AppDomain class, 26

CriticalSection method www.EBooksWorld.ir
synchronized code regions, 93



CrossAppDomainDelegate class, System namespace, 27
CurrentContext property, Thread class, 34
CurrentCulture property, Thread class, 34
CurrentDomain property, AppDomain class, 27
CurrentPrincipal property, Thread class, 34
CurrentThread property, Thread class, 34
CurrentUICulture property, Thread class, 35

customer support, 258

| 4B FREV : < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

D

database connection pool example, 127
implementing the pool, 127
DBConnectionSingleton class, 132
ObjectPool class, 128
using the database connection pool, 134
why use a singleton?, 134

Datalmport example, 217
classes used, 217
code, 218
logical errors, 223
testing the application, 222

DataSet class, System.Data nhamespace
ReadXml method, 221

deadlocks, 116
detecting, 116
example, 117

Debug class, System.Diagnostics namespace, 202, 216

Debug statements
stripping from application, 212

debugger
see Visual Studio .NET debugger

debugging, 193, 195
.NET classes, 193
ASP applications, 193
creating application code, 194

Decrement method, Interlocked class, 113
synchronization support, 86

DefaultTraceListener class, System.Diagnostics namespace, 206

delegates
asynchronous calls, 239

designing threaded applications, 143
considerations, 144
tasks requiring separate threads, 144

destroying threads, 65
Destroying example, 65

Disabled option, SynchronizationOption enumeration, 90

Dns class, System.Net namespace, 229, 237
resolving host names into IP address, 237

DocCallBack method, AppDomain class, 27

| 4 FREV | < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

E

Enabled property, BooleanSwitch class, 198
Enabled property, ListView control, 233

EndPoint class, System.Net namespace, 229, 237
EndRead method, NetworkStream class, 241
EndReceive method, MessageQueue class, 176

Enter method, Monitor class, 90
entering threads simultaneously, 91
example, 92
should be followed by Exit method, 98

errata, feedback on, 258

event handlers
binding/unbinding at runtime, 236

Event Viewer application
Application Log section, 207

EventLog class, System.Diagnostics namespace
Source property, 207

EventLogTraceListener class, System.Diagnostics namespace, 206
creating, 207

Excel example
administrating priorities, 20

Exchange method, Interlocked class, 113
synchronization support, 86

ExecuteReader method, SqlCommand class
ExecuteReader method, 252

execution branching example, 38
ExecutionOrder example, 73
ExecutionOrder2 example, 74

Exit method, Monitor class, 90
example, 92
should follow each Enter method, 98

, 48 FREV | < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

F

Fail method, Trace class, 203
asserting error notification, 204

FileSystemEventArgs class, System.lO namespace, 220
FileSystemEventHandler delegate, System.lO namespace, 219

FileSystemWatcher class, System.lO namespace
Datalmport example, 217
Filter property, 219
IncludeSubdirectories property, 219
Path property, 219

Fill method, SqglDataAdapter class, 221

Filter property, FileSystemWatcher class, 219
Flush method, StreamWriter class, 244

For loop statement, 98

Form class, System.Windows.Forms namespace
Invoke method, 248
Name property, 233
networking application example
UML view of client form class, 232
Text property, 233

forums.apress.com mailing list, 258

free threading, 7, 13
compared to apartment threading model, 13
spawning new threads, 12

FreeNamedDataSlot method, Thread class, 33
FromMinutes method, TimeSpan class, 56
FromSeconds method, TimeSpan class, 56

| 48 PREV ' < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

G

GetAvailableThreads method, ThreadPool class, 162
workerThreads, 163

GetCurrentThreadld property, AppDomain class, 24, 27
GetData method, AppDomain class, 25

GetData method, Thread class, 33

GetDomain method, Thread class, 33

GetDomainlD method, Thread class, 34

GetHashCode method, Thread class, 34

GetMaxThreads method, ThreadPool class, 162
workerThreads, 163

GetNamedDataSlot method, Thread class, 34
GetStream method, TcpClient class, 238
GlobalProxySelection class, System.Net nhamespace, 229

| 4 FREV | < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

H

Hashtable class, System.Collections namespace
Synchronized method, 119

Highest value, ThreadPriority enumeration, 43
HttpVersion class, System.Net namespace, 229
HttpWebRequest class, System.Net namespace, 229
HttpWebResponse class, System.Net namespace, 229

‘ 48 FREV < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

IAsyncResult interface, System namespace, 240

>immed command
switching to Immediate mode, 198

Immediate window
activating, 198

immutability, 84
IncludeSubdirectories property, FileSystemWatcher class, 219

Increment method, Interlocked class, 113
synchronization support, 86

IndentLevel property, Trace class, 211

inheritance
AppDomain and Thread classes, 22

instrumentation, 194

Interlocked class, System.Threading namespace, 32, 249
Decrement method, 113
example, 112
Exchange method, 113
Increment method, 113
manual synchronization, 106, 112
synchronization support, 86

Interrupt method, Thread class, 34, 57

interrupts, 15
definition, 16

Invoke method, 248
supported by CLR, 242

IPAddress class, System.Net namespace, 229

IPEndPoint class, System.Net namespace, 229
constructing, 237

IPHostENtry class, System.Net namespace, 229

IsAlive property, Thread class, 35, 41
determining if thread has completed executions
example, 41

IsBackground property, Thread class, 35
IsThreadPoolThread property, Thread class, 35

| 48 PREV ' < Day Day Up >

www.EBooksWorld.ir



< Day Day Up >

| 4 FREV |

Index

J

Join method, Thread class, 34, 54, 66
parameters, 67
WaitSleepJoin state, 66

joining threads, 66

< Day Day Up >

| 4 FREV |

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

L

late binding
not supported in C#, 142

lifecycle of threads, 53
destroying threads, 65
interrupting a thread, 57
joining threads, 66
pausing and resuming threads, 58
putting a thread to sleep, 55

LingerOption class, System.Net.Sockets namespace, 230
ListBox control, System.Web.Ul.WebControls nhamespace, 246

listeners
default listener application, 203
tracing, 193
using different listener applications, 206
exposed by Trace class, 203, 206

ListView control, System.Windows.Forms namespace, 233
amending, 234
Enabled property, 233

ListViewltem class, System.Windows.Forms namespace, 243
Locals window, 197

lock keyword
alternative to Monitor class methods, 100
synchronized code regions, 100

locking example, 100
LoopingThreads example, 76
Lowest value, ThreadPriority enumeration, 43

| @ PREV < Day Day Up >

www.EBooksWorld.ir



‘ 48 FREV < Day Day Up >

Index

M

mailing lists, subscribing to forums.apress.com, 258

Main and Worker thread model
common model, 146

MainMenu class, System.Windows.Forms namespace, 233

manual synchronization, 105
AutoResetEvent class, 110
Interlocked class, 112
ManualResetEvent class, 106
Mutex class, 111

ManualResetEvent class, System.Threading namespace, 32
compared to AutoResetEvent class, 110
inherits from the WaitHandle class, 106
manual synchronization, 106
methods
Reset method, 106
Set method, 106
WaitOne method, 108
non-signalled state example, 107
synchronization support, 86

ManualSet example, 108
Message class, System.Messaging namespace, 176

MessageQueue class, System.Messaging namespace, 176
BeginReceive method, 175, 176

MethodImplAttribute class, System.Runtime.CompilerServices namespace, 87

MethodImplOptions enumeration, System.Runtime.CompilerServices namespace
Synchronized field, 87

Microsoft Message Queue
see MSMOQ.

Monitor class, System.Threading namespace, 32
Enter method, 90
Exit method, 90
MonitorEnterExit example, 92
Pulse method, 91, 183
PulseAll method, 91
synchronization support, 86
synchronized code regions, 90
TryEnter method, 99
Wait method, 91
WaitandPulse example, 95

MonitorEnterExit example, 92

MSMQ (Microsoft Message Queue)
see multi-threaded MSMOQ listener example.

MTA threading model, 139, 140, 142
compared to STA threading model, 142
designing threaded applications, 143

MTA value, ApartmentState enumeration, 143

MTAThreadAttribute class, System namespace
specifying Apartment Threading model, 142

MulticastOption class, System.Net.Sockets namespace, 23Qw Esooksworld.ir
Multiple Threaded Apartment



see MTA.
multitasking, 8

multi-threaded applications
additional processor overhead, 68
factors affecting threading design, 159
thread pooling, 158
use of memory, 67

multi-threaded MSMQ listener example, 173
multi-threading, 139

Mutex class, System.Threading namespace, 32, 111
derived from the WaitHandle class, 111
example, 111
interprocess synchronization, 111
manual synchronization, 106, 111
synchronization support, 86
WaitOne method, 112

| 4 FREV | < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

N

Name property, Form class, 233

Name property, Thread class, 35

NETThreadEvents example, 107

NetworkCredential class, System.Net namespace, 229
networking and threading, 227

networking application example
building the application, 232
creating the client, 232
creating the server, 245
creating the client
DisplayData method, 242
MessageAssembler method, 241
ReceiveStream method, 239
SocketClient_Closing method, 244
StockServer_Load method, 247
TcpClient connection, closing, 244
creating the server
CheckQuote method, 250
data source, 250
ListBox control, 246
MessageAssembler method, 249
StreamReceive method, 248
UML class diagram, 245
design goals, 231
UML segence diagram, 231
running the applications, 253

networking in .NET, 228
sample application, 231
System.Net namespace, 228
System.Net.Sockets namespace, 230

NetworkStream class, System.Net.Sockets namespace, 230
inherits from Stream class, 238
methods
BeginRead method, 238
BeginWrite method, 238
creating instance, 238
EndRead method, 240, 241

Normal value, ThreadPriority enumeration, 43
NotSupported option, SynchronizationOption enumeration, 90

| @ PREV < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

O

object-per-client model, 140

objects
locking, 91
waiting state, 91

Out property, Console class, 209

Output debug window
TraceExamplel, 203

overusing threads, 67
problems, 67

| 4 PREV | < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

P

Path property, FileSystemWatcher class, 219

pausing and resuming threads, 58
prime numbers example, 59

Peer thread model, 149

Performance Monitor
viewing threads inside CLR, 52

Pipeline thread model, 153

pre-emptive multitasking, 9, 160
problems with, 9

prime numbers example, 59
Priority property, Thread class, 35

Process class, System.Diagnostics namespace
ProcessorAffinity property, 14

processes
separation of memory and resources, 10
viewing, 10

processor overhead, threads, 68

ProcessorAffinity property, Process class
choosing CPU for processes, 14

Pulse method, Monitor class, 91, 95, 98, 183
PulseAll method, Monitor class, 91
pview

administrating priorities, 20

pviewer
administrating priorities, 20

, 48 FREV | < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

Q

quantum
see time slices.
QueueUserWorkltem method, ThreadPool class, 162, 163, 170, 172

callBack, 163
creating ThreadPool object, 166

(m < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

R

race conditions
ATM scenario, 82
avoiding, 82

read and write access
ReaderWriterLock class, System.Threading namespace, 105

Read method, Console class, 168, 173

ReaderWriterLock class, System.Threading namespace, 32
methods, 102
read and write access, 105
synchronized code regions, 90, 102

ReadLine method, Console class, 37

ReadXml method, DataSet class, 221, 224
ReceiveCompletedEventHandler class, System.Messaging namespace, 175
RegisteredWaitHandle class, System.Threading namespace, 32

RegisterWaitForSingleObject method, ThreadPool class, 162, 172, 173
four forms, 164

ReleaseReaderLock method, ReaderWriterLock class
synchronized code regions, 102

ReleaseWriterLock method, ReaderWriterLock class
synchronized code regions, 102

Remoting
communication between AppDomains, 159

RemoveAt method, TraceListener collection class, 208
Required option, SynchronizationOption enumeration, 90
RequiresNew option, SynchronizationOption enumeration, 90

Reset method, ManualResetEvent class
example, 108
manual synchronization, 106

ResetAbort method, Thread class, 34
Resume method, Thread class, 34
resuming threads, 58

Run To Cursor, 199

[ .‘ PREY . < Day Day Up >

www.EBooksWorld.ir



‘ 48 FREV < Day Day Up >

Index

S

scaling threaded applications, 157
CLR and thrreads, 159
programming the ThreadPool class, 166
multi-threaded MSMQ listener, 173
thread pool manager creation, 177
thread pooling, 158
role of CLR, 160

SecurityException class, System.Security namespace, 163
Set method, AutoResetEvent class, 173

Set method, ManualResetEvent class
manual synchronization, 106
ManualSet example, 109

SetData method, AppDomain class, 24, 25, 27
SetData method, Thread class, 34

setting AppDomain data, 23

setting breakpoints, 199

Shared declaration
Trace class, System.Diagnostics namespace, 202

simple_thread example, 35

Single Threaded Apartment
see STA.

single threaded processes, 11

single-writer and multiple-reader
ReaderWriterLock class, System.Threading namespace, 102

deadlocks, 119
pausing execution of a thread
example, 41

SMP systems
benefits of threading, 177

Socket class, System.Net.Sockets namespace, 230

socket programming, 230

SocketAddress class, System.Net namespace, 229
SocketException class, System.Net.Sockets namespace, 230
SocketPermission class, System.Net namespace, 229
Source property, EventLog class, 207

spawning multiple threads within a thread, 48
performance considerations, 52

SpinWait method, Thread class, 34

SQL Server stored procedures
debugging, 195

SglCommand class, System.Data.SqlClient namespace
ExecuteReader method, 252
SglCommandBuilder class, System.Data.SqlClient namespace, 221

SglConnection class, System.Data.SqlClient namespace, 221

instantiating, 250 www EBooksWorld.ir

SqglDataAdapter class, System.Data.SqlClient namespace, 221



Fill method, 221
Update method, 221, 222

SglDataReader class, System.Data.SqlClient namespace, 252

STA threading model, 140
object-per-client model, 140
safety of, 141

STA value, ApartmentState enumeration, 143

Start method, Thread class, 34, 37
scheduling, 55

STAThreadAttribute class, System namespace
specifying Apartment Threading model, 141

Step Into
Visual Studio .NET Debugger, 199

Step Out
Visual Studio .NET Debugger, 199

Step Over
Visual Studio .NET Debugger, 199

StreamWriter class, System.IO namespace
Flush method, 244
Write method, 244

StringBuilder class, System.Text namespace, 47, 241, 252
ToString method, 242

Supported option, SynchronizationOption enumeration, 90

Suspend method, Thread class, 34, 58
raising ThreadStateException class, 61

Suspend value, ThreadState enumeration, 61
SuspendRequested value, ThreadState enumeration, 61

symmetric multi-processor systems
see SMP systems.

synchronization, 81
database connection pool example, 127
deadlocks, 116
performance and, 115
race conditions, 82
static variables and methods, 113

ThreadStaticAttribute class, 113

thread-safe wrappers example, 119
thread-safety, 81

synchronization strategies

CLlI, 89

manual synchronization, 105
AutoResetEvent class, 110
Interlocked class, 112
ManualResetEvent class, 106
Mutex class, 111
static methods, 113
synchronization and performance, 115

synchronized code regions, 90
CriticalSection method, 93
lock keyword, 100
Monitor class, 90
ReaderWriterLock class, 90, 102

synchronized contexts
ContextBoundObiject class, 89
SynchronizationAttribute class, 89

SynchronizationAttribute class, System.EnterpriseServices namespace
synchronization support, 86 www.EBooksWorld.ir
synchronized contexts, 89



SynchronizationLockException class, System.Threading namespace, 32

SynchronizationOption enumeration, System.EnterpriseServices hamespace, 89
Required value, 90
table of options, 90

synchronized code regions
CriticalSection method, 93
lock keyword, 100
Monitor class, 90
Enter and Exit methods, 91
TryEnter method, 99
Wait and Pulse mechanism, 95
ReaderWriterLock class, System.Threading namespace, 90, 102

synchronized contexts
ContextBoundObject class, 89
SynchronizationAttribute class, 89

Synchronized field, MethodimplOptions enumeration, 87
Synchronized method, Hashtable class, 119, 125

synchronized wrappers
Collection classes, 119

System namespace
AppDomain class, 21, 22, 23, 36
ArgumentOutOfRangeException class, 164
CrossAppDomainDelegate class, 27
IAsyncResult interface, 240
MTAThreadAttribute class, 142
STAThreadAttribute class, 141
TimeSpan class, 46
TimeSpan structure, 175

System.Collections namespace
Arraylist class, 147

System.Configuration namespace, 236

System.Data.SqlClient namespace
Datalmport example, 217
SglCommand class, 252
SglCommandBuilder class, 221
SqglConnection class, 221, 250
SqglDataAdapter class, 221, 222
SqglDataReader class, 252

System.Diagnostics namespace
BooleanSwitch class, 202, 212
Debug class, 202, 216
DefaultTraceListener class, 206
EventLog class, 207
EventLogTracelListener class, 206
Process class, 14
TextWriterTraceListener class, 206, 209, 217, 218
Trace class, 202, 211
TraceSwitch class, 202

System.EnterpriseServices namespace, 176
SynchronizationOption enumeration, 89

System.lO namespace
FileSystemEventArgs class, 220
FileSystemEventHandler delegate, 219
FileSystemWatcher class, 217

System.Messaging namespace
Message class, 176
MessageQueue class
EndReceive method, 176 www.EBooksWorld.ir



ReceiveCompletedEventHandler class, 175

System.Net namespace, 227
functionality, 228
networking in .NET, 228
table of main classes, 228

System.Net.Sockets namespace
contained within System.NET namespace, 228
focuses on transport layer, 230
tableof classes, 230
TcpClient class, 236, 237

System.Runtime.CompilerServices namespace
MethodImplAttribute class, 87
MethodImplOptions enumeration, 87

System.Text namespace
ASCII class, 253
StringBuilder class, 47, 241

System.Threading namespace

classes, 31
classes used for manual synchronization, 105
creating a thread, 35
Interlocked class, 249
Monitor class, 183
Thread class, 28, 153
ThreadAbortException class, 53, 65
ThreadPool class, 161, 162
ThreadPriority enumeration, 43
ThreadStart delegate

execution branching, 38
ThreadState enumeration

values, 53
Timer class, 46
TimerCallback delegate, 46
timers and callbacks, 45

System.Web.Ul.WebControls nhamespace
ListBox control, 246

System.Windows.Forms namespace
ListView control, 233
ListViewltem class, 243
MainMenu class, 233

‘ 48 FREV < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

T

Task Manager
administrating priorities, 20
Excel example, 20
comparing thread usage in examples, 168
CPU utilization
threads, 11
OS processes, 52
Thread Count option, 15
viewing processes, 10

TcpClient class, System.Net.Sockets namespace, 230
GetStream method, 238
instantiating, 236, 237

TcpListener class, System.Net.Sockets namespace, 230
AcceptTcpClient method, 248

Text property, Form class, 233

TextWriterTraceListener class, System.Diagnostics namespace, 206, 209, 218
Close method, 209
creating new instance, 210
Datalmport example, 217

thread abort, 18
Thread Affinity, 141

Thread class, System.Threading namespace, 28, 32
creating threads, 140
Datalmport example, 217
inheritance, 22
methods, 33,41
Abort method, 54, 65, 66
Join method, 54, 66
Sleep method, 41, 54, 88, 153
Start method, 37
Wait method, 54

properties, 34, 41
ApartmentState property, 143
IsAlive property, 41

Thread Local Storage
see TLS.

thread pool manager
creating, 177
FindldleThreadCount function, 184
GenThreadPoollmpl class, 177
implements the IThreadPool interface, 179
specifying min, max and idle time of threads, 180
GetStats function,implementation, 183
IThreadPool interface, 177
AddJob method, 181
Pulse method, Monitor class, 183
ThreadElement class, 182, 187

thread pooling, 158
benefits, 158
concept of, 158
multi-threaded applications, 158
need for, 158

www.EBookswWorld.ir



role of CLR, 160
size of thread pool, 161

thread priorities, 18, 19
administrating priorities, 20

thread sleep, 17
thread_interrupt example, 57
thread_joining example, 66
thread_priority example, 43
thread_priority2 example, 44
thread_sleep example, 41
thread_sleep2 example, 55
thread_sleep3 example, 56
thread_spinning example, 48
thread_spinning2 example, 50
thread_timer example, 46
ThreadAbortException class, System.Threading namespace, 32, 54, 65

ThreadDemo example
ThreadPool class, System.Threading namespace, 166
threads usage, 168

threaded applications
scaling, 157

Threaded_Resource example, 71
Threaded_Search example, 69
ThreadExceptionEventArgs class, System.Threading namespace, 32

threading
see also threads and thread pooling.

threading defined

clock interrupts, 17

executing code within a specified AppDomain, 26

free threading, 7

interrupts, 15

multitasking, 8
cooperativeness, 8
pre-emptive multitasking, 9

multithreaded processes, 12
free threading, 12

processes, 10

setting AppDomain data, 23

single threaded processes, 11

thread abort, 18

thread priorities, 18

thread sleep, 17

time slices, 12

TLS (Threads Local Storage), 15

unmanaged threads, 28

threading opportunities, 68
accessing external resources, 71
background processes, 69

threading traps
execution order, 73
threads in a loop, 76

ThreadInterruptedException class, System.Threading namespace, 32

ThreadPool class, System.Threading namespace, 32, 161
examples
ThreadDemo example, 166 www.EBooksWorld.ir
ThreadPoolDemo example, 166



ThreadPoolState example, 170

exploring, 162

methods, 162
BindHandle method, 163
GetAvailableThreads method, 163
GetMaxThreads method, 163
QueueUserWorkltem method, 163, 170, 172
RegisterWaitForSingleObject method, 164, 172
UnsafeQueueUserWorkltem method, 165
UnsafeRegisterWaitForSingleObject method, 165

programming in C#, 166

rules, 166

ThreadPoolDemo example
ThreadPool class, System.Threading namespace, 166
threads usage, 169

ThreadPoolState example
passing and returning values, 170

ThreadPriority enumeration, System.Threading namespace
defining priorities, 43

threads
see also threading defined, thread pooling, and thread safety.
AppDomain class and, 21
blocking, 54
callbacks, 45
concurrency, 139
creating
multi-threading example, 37
simple_thread example, 35
designing
principles, 139
multi-threaded applications, 159
threaded applications, 143
lifecycle, 53
management and .NET runtime, 28
MTA threading model, 142
networking and, 227
opportunities for, 68
overusing, 67
priorities, 43
scaling threaded applications, 157
spawning multiple threads within a thread, 48
specifying threading model, 143
STA (Single Threaded Apartments), 140
support in .NET and C#, 21
thread pooling, 158
threading traps, 73
timers, 45
TLS and Call Stacks, 159
traps, 73
when to use, 31, 67

threads and relationships, 145
Main and Worker thread model, 146
Peer thread model, 149
Pipeline thread model, 153

Threads window
columns contained, 201
debugging threads, 201

thread-safe wrapper
using, 85

thread-safe wrappers example, 119 www.EBooksWorld.ir
Book Collection Library, 120



thread-safety, 81
costs, 82
ensuring, 82
ways to achieve, 83
making object immutable, 84
synchronize critical sections of code, 83
using a thread-safe wrapper, 85

ThreadStart delegate, System.Threading hamespace
using as parameter of Thread constructor
execution branching example, 38

ThreadStartBranching example, 39

ThreadState enumeration, System.Threading nhamespace
Suspend value, 61
SuspendRequested value, 61
values, 53
WaitSleepJoin state, 55, 57, 66

ThreadState property, Thread class, 35, 53
testing with If statement, 43
using ToString method to write out state, 43

ThreadStateException class, System.Threading namespace, 32, 61

ThreadStaticAttribute class, System namespace
static variables and methods synchronization, 113

time slices, 12

Timeout class, System.Threading namespace, 33

Timer class, System.Threading namespace, 33, 46
TimerCallback delegate, System.Threading namespace, 46
timers, 46

TimeSpan structure, System namespace, 46, 175
FromMinutes method, 56
FromSeconds method, 56
properties and methods, 56

TLS (Thread Local Storage), 11, 15
storing, 17

ToString method, StringBuilder class, 242

Trace class, System.Diagnostics namespace, 202
IndentLevel property, 211
Listeners collection, 203
methods, 203

Assert method, 203

Fail method, 203

Write method, 203

Writelf method, 203, 212

WriteLine method, 203

WriteLinelf method, 203, 212
Shared declaration, 202

Trace statements
stripping from application, 212

TraceExamplel
default listener application, 203

TracelListener collection class, System.Diagnostics namespace
RemoveAt method, 208

TraceSwitch class, System.Diagnostics namespace, 202
hierarchy of levels, 214
TraceSwitch example, 214

tracing, 193
listeners, 193 www.EBooksWorld.ir



tracing switches, 211
BooleanSwitch class, 212
TraceSwitch class, 214

TryEnter method, Monitor class
example, 99
synchronized code regions, 99

| 4 FREV | < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

U

UdpClient class, System.Net.Sockets namespace, 230

Ul thread, 139

Unknown value, ApartmentState enumeration, 143

unmanaged threads, 28

UnsafeQueueUserWorkltem method, ThreadPool class, 162, 165
UnsafeRegisterWaitForSingleObject method, ThreadPool class, 162, 165
Update method, SglDataAdapter class, 221, 222

user-interface threads
see STA threading model.

[ 48 FREV ' < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

V

Visual C++
MTAs and STAs, 140

Visual Studio .NET

ObjectPoolTester application, 135

Output debug window, 203

Solution Explorer window
Properties, 211

Windows Application project
add ListView control, 233
creating, 233

Visual Studio .NET Debugger
compared to Visual Basic 6 debugger, 195
configuring debugger parameters, 196
building the application, 196
features, 195
Run To Cursor, 199
setting breakpoints, 199
stepping through the code, 199
Windows, 197
Breakpoints window, 200
Command/immediate window, 198
Locals window, 197
Threads window, 201
Watch window, 197

, 48 FREV | < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

Index

wW

Wait and Pulse mechanism, 91

Wait method, Monitor class, 91, 95, 98

Wait method, Thread class, 54

WaitandPulse example, 95

WaitCallback delegate class, System.Threading namespace, 174
WaitHandle class, System.Threading namespace, 33

WaitOne method, AutoResetEvent class
changing state, 110, 111

WaitOne method, ManualResetEvent class, 108
WaitOne method, Mutex class, 112

WaitSleepJoin state, ThreadState enumeration, 55, 57, 66
Join method, Thread class, 66

Watch window, 197

WebClient class, System.Net nhamespace, 229
WebException class, System.Net namespace, 229
WebPermission class, System.Net namespace, 229
WebPermissionAttribute class, System.Net namespace, 229
WebProxy class, System.Net namespace, 229
WebRequest class, System.Net namespace, 229
WebResponse class, System.Net namespace, 229

Windows Event log
code tracing, 207
Windows Task Manager

see Task Manager.
WinForms
Ul thread, 139

worker threads, 12, 160, 163
see MTA threading model.

Write method, StreamWriter class, 244
Write method, Trace class, 203

Writelf method, Trace class, 203, 212
WriteLine method, Trace class, 203
WriteLinelf method, Trace class, 203, 212

| 4 FREV < Day Day Up >

www.EBooksWorld.ir



| 4 FREV | < Day Day Up >

List of Figures

Chapter 1: Defining Threads

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Chapter 2: Threading in .NET

Figure 1
Figure 2
Figure 3

Chapter 3: Working with Threads

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Chapter 4: Threading Design Principles

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Chapter 7: Networking and Threading

Figure 1

Figure 2 www.EBookswWorld.ir



Figure 3
Figure 4

| @ PREV < Day Day Up >

www.EBooksWorld.ir



	Table of Contents
	BackCover
	C# Threading Handbook
	Introduction
	What Will You Learn?
	What Do You Need?

	Chapter 1: Defining Threads
	Threading Defined
	Thread Support in .NET and C#
	Summary

	Chapter 2: Threading in .NET
	System.Threading Namespace
	Lifecycle of Threads
	Why Not Thread Everything?
	Threading Opportunities
	Threading Traps
	Summary

	Chapter 3: Working with Threads
	Why Worry About Synchronization?
	.NET Synchronization Support
	.NET Synchronization Strategies
	Beware of Deadlocks
	End-to-End Examples
	Summary

	Chapter 4: Threading Design Principles
	Multiple Threads in Applications
	STA Threading Model
	MTA Threading Model
	Summary

	Chapter 5: Scaling Threaded Applications
	What is Thread Pooling?
	The CLR and Threads
	Exploring the ThreadPool Class
	Programming the Thread Pool in C#
	Scalability in .NET
	Summary

	Chapter 6: Debugging and Tracing Threads
	Creating the Application Code
	Debugging Your Code
	Code Tracing
	The DataImport Example
	Summary

	Chapter 7: Networking and Threading
	Networking in .NET
	Creating the Sample Application
	Summary

	Appendix A: Customer Support and Feedback
	Errata
	forums.apress.com

	Index
	Index_A
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W

	List of Figures

