
M A N N I N G

Michael S. Mikowski
Josh C. Powell

FOREWORD BY Gregory D. Benson

JavaScript end-to-end

www.EBooksWorld.ir

http://www.it-ebooks.info/

Single Page Web Applications

www.EBooksWorld.ir

http://www.it-ebooks.info/

www.EBooksWorld.ir

http://www.it-ebooks.info/

Single Page Web
 Applications

JAVASCRIPT END-TO-END

MICHAEL S. MIKOWSKI
JOSH C. POWELL

M A N N I N G

Shelter Island

www.EBooksWorld.ir

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical proofreader: John J. Ryan III
Shelter Island, NY 11964 Production editor: Janet Vail

Copyeditor: Benjamin Berg
Proofreader: Toma Mulligan

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617290756
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

www.EBooksWorld.ir

www.manning.com
http://www.it-ebooks.info/

 To my parents, wife, and children.
 You have taught me so much, and I love you all.

 —M.S.M.

 To my wife, Marianne. Thank you for your extraordinary patience
 with all the time I took writing the book. I love you.

 —J.C.P.
www.EBooksWorld.ir

http://www.it-ebooks.info/

www.EBooksWorld.ir

http://www.it-ebooks.info/

brief contents
PART 1 INTRODUCING SPAS1

1 ■ Our first single page application 3

2 ■ Reintroducing JavaScript 23

PART 2 THE SPA CLIENT ...59

3 ■ Develop the Shell 61

4 ■ Add feature modules 95

5 ■ Build the Model 139

6 ■ Finish the Model and Data modules 178

PART 3 THE SPA SERVER ...227

7 ■ The web server 229

8 ■ The server database 265

9 ■ Readying our SPA for production 313
vii

www.EBooksWorld.ir

http://www.it-ebooks.info/

www.EBooksWorld.ir

http://www.it-ebooks.info/

contents
foreword xv
preface xvii
acknowledgments xviii
about this book xx
about the cover illlustration xxiv

PART 1 INTRODUCING SPAS ...1

1 Our first single page application 3
1.1 Definition, a little history, and some focus 4

A little history 4 ■ What took JavaScript SPAs so long? 5
Our focus 8

1.2 Build our first SPA 9
Define the goal 9 ■ Start the file structure 10 ■ Set up Chrome
Developer Tools 10 ■ Develop the HTML and CSS 11 ■ Add
the JavaScript 12 ■ Inspect our application using Chrome
Developer Tools 17

1.3 The user benefits of a well-written SPA 20

1.4 Summary 21
ix

www.EBooksWorld.ir

http://www.it-ebooks.info/

CONTENTSx

2 Reintroducing JavaScript 23
2.1 Variable scope 25

2.2 Variable hoisting 28
2.3 Advanced variable hoisting and the execution context

object 29
Hoisting 29 ■ Execution context and the execution context object 31

2.4 The scope chain 34

2.5 JavaScript objects and the prototype chain 37
The prototype chain 40

2.6 Functions—a deeper look 45
Functions and anonymous functions 45 ■ Self-executing anonymous
functions 46 ■ The module pattern—bringing private variables to
JavaScript 49vClosures 54

2.7 Summary 57

PART 2 THE SPA CLIENT..59

3 Develop the Shell 61
3.1 Grok the Shell 62

3.2 Set up the files and namespaces 63
Create the file structure 63 ■ Write the application HTML 64
Create the root CSS namespace 65 ■ Create the root JavaScript
namespace 67

3.3 Create the feature containers 68
Pick a strategy 69 ■ Write the Shell HTML 69 ■ Write the Shell
CSS 70

3.4 Render the feature containers 72
Convert the HTML to JavaScript 72 ■ Add an HTML template to
our JavaScript 74 ■ Write the Shell stylesheet 75 ■ Direct the
application to use the Shell 77

3.5 Manage the feature containers 78
Write a method to extend or retract the chat slider 78 ■ Add the chat
slider click event handler 81

3.6 Manage application state 85
Understand the behavior browser users expect 85 ■ Pick a strategy
to manage history controls 85 ■ Change the anchor when a history
event occurs 86 ■ Use the anchor to drive the application state 88
3.7 Summary 94

www.EBooksWorld.ir

http://www.it-ebooks.info/

CONTENTS xi

4 Add feature modules 95
4.1 The feature module strategy 96

A comparison with third-party modules 97 ■ Feature modules and
fractal MVC pattern 99

4.2 Set up feature module files 101
Plan the file structure 101 ■ Populate the files 102 ■ What
we’ve wrought 107

4.3 Design method APIs 108
The anchor interface pattern 109 ■ Chat configuration
APIs 109 ■ The Chat initialization API 111 ■ The Chat
setSliderPosition API 112 ■ Configuration and initialization
cascade 112

4.4 Implement the feature API 114
The stylesheets 114 ■ Modify Chat 119 ■ Clean up the
Shell 125 ■ Walk through the execution 130

4.5 Add frequently needed methods 132
The removeSlider method 132 ■ The handleResize method 134

4.6 Summary 137

5 Build the Model 139
5.1 Understand the Model 140

What we’re going to build 141 ■ What the Model does 142
What the Model does not do 142

5.2 Set up the Model and other files 143
Plan the file structure 143 ■ Populate the files 145
Use the unified touch-mouse library 150

5.3 Design the people object 150
Design the person objects 151 ■ Design the people object API 153
Document the people object API 156

5.4 Build the people object 157
Create a fake people list 157 ■ Start the people object 159
Finish the people object 163 ■ Test the people object API 170

5.5 Enable sign-in and sign-out in the Shell 172
Design the user sign-in experience 173 ■ Update the Shell
JavaScript 173 ■ Update the Shell stylesheet 175 ■ Test sign-in
and sign-out using the UI 176

5.6 Summary 177
www.EBooksWorld.ir

http://www.it-ebooks.info/

CONTENTSxii

6 Finish the Model and Data modules 178
6.1 Design the chat object 179

Design methods and events 179 ■ Document the chat object API 182

6.2 Build the chat object 183
Start the chat object with the join method 183 ■ Update Fake to
respond to chat.join 185 ■ Test the chat.join method 187 ■ Add
messaging to the chat object 188 ■ Update Fake to emulate
messaging 193 ■ Test chat messaging 195

6.3 Add Avatar support to the Model 196
Add Avatar support to the chat object 196 ■ Modify Fake to
emulate avatars 198 ■ Test avatar support 199 ■ Test-driven
development 199

6.4 Complete the Chat feature module 201
Update the Chat JavaScript 202 ■ Update the stylesheets 209
Test the Chat UI 213

6.5 Create the Avatar feature module 214
Create the Avatar JavaScript 215 ■ Create the Avatar stylesheet 219
Update the Shell and the browser document 220 ■ Test the Avatar
feature module 221

6.6 Data binding and jQuery 222

6.7 Create the Data module 223

6.8 Summary 226

PART 3 THE SPA SERVER ...227

7 The web server 229
7.1 The role of the server 229

Authentication and authorization 230 ■ Validation 230
Preservation and synchronization of data 231

7.2 Node.js 231
Why Node.js? 231 ■ Create ‘Hello World’ using Node.js 232
Install and use Connect 236 ■ Add Connect middleware 237
Install and use Express 237 ■ Add Express middleware 240
Use environments with Express 241 ■ Serving static files with
Express 242

7.3 Advanced routing 243
User CRUD routes 243 ■ Generic CRUD routing 249 ■ Place
routing in a separate Node.js module 251
www.EBooksWorld.ir

http://www.it-ebooks.info/

CONTENTS xiii

7.4 Adding authentication and authorization 255
Basic Authentication 256

7.5 Web sockets and Socket.IO 257
Simple Socket.IO 257 ■ Socket.IO and messaging servers 260
Updating JavaScript with Socket.IO 261

7.6 Summary 264

8 The server database 265
8.1 The role of the database 266

Select the data store 266 ■ Eliminate data transformations 266
Move the logic where you need it 267

8.2 An introduction to MongoDB 268
Document-oriented storage 268 ■ Dynamic document
structure 269 ■ Get started with MongoDB 270

8.3 Use the MongoDB driver 271
Prepare the project files 271 ■ Install and connect to MongoDB 272
Use MongoDB CRUD methods 274 ■ Add CRUD to the server
application 277

8.4 Validate client data 281
Validate the object type 281 ■ Validate the object 283

8.5 Create a separate CRUD module 290
Prepare the file structure 291 ■ Move CRUD into its own module 293

8.6 Build the Chat module 299
Start the chat module 299 ■ Create the adduser message handler 302
Create the updatechat message handler 306 ■ Create disconnect message
handlers 308 ■ Create the updateavatar message handler 309

8.7 Summary 312

9 Readying our SPA for production 313
9.1 Optimize our SPA for search engines 314

How Google crawls an SPA 314

9.2 The cloud and third-party services 317
Site analytics 317 ■ Logging client-side errors 319 ■ Content
delivery networks 321

9.3 Caching and cache busting 322
Caching opportunities 322 ■ Web storage 323 ■ HTTP
caching 324 ■ Server caching 327 ■ Database query caching 333
9.4 Summary 334

www.EBooksWorld.ir

http://www.it-ebooks.info/

CONTENTSxiv

appendix A JavaScript coding standard 335
A.1 Why we need a coding standard 335
A.2 Code layout and comments 336

Lay out your code for readability 336 ■ Comment to explain and
document 343

A.3 Variable names 345
Reduce and improve comments with a naming convention 346
Use naming guidelines 347 ■ Put the guidelines to use 354

A.4 Variable declaration and assignment 354
A.5 Functions 356
A.6 Namespaces 358
A.7 File names and layout 359
A.8 Syntax 360

Labels 360 ■ Statements 360 ■ Other syntax 363

A.9 Validating code 363
Install JSLint 364 ■ Configure JSLint 364 ■ Use JSLint 365

A.10 A template for modules 366
A.11 Summary 368

appendix B Testing an SPA 369
B.1 Set up test modes 370
B.2 Select a test framework 373
B.3 Set up nodeunit 374
B.4 Create the test suite 375

Get Node.js to load our modules 375 ■ Set up a single nodeunit
test 378 ■ Create our first real test 379 ■ Map the events and
tests 380 ■ Create the test suite 382

B.5 Adjust SPA modules for tests 392
B.6 Summary 395

index 397
www.EBooksWorld.ir

http://www.it-ebooks.info/

foreword
I wrote my first JavaScript single page web application (SPA) in 2006, although we
didn’t call it that at the time. This was quite a change for me. Earlier in my career I
had focused on low-level Linux kernel hacking and parallel and distributed comput-
ing, and the user interface was always a simple command line. After receiving tenure
at the University of San Francisco in 2006, I started an ambitious distributed comput-
ing project called River (http://river.cs.usfca.edu) that required an interactive graph-
ical interface to facilitate distributed machine management and debugging.

 Alex Russell had just coined the term “comet” and we were inspired and deter-
mined to use this technology and the web browser for the interface. We had quite a
challenge trying to wrangle JavaScript to enable real-time interaction. Though we
were able to get something working, it wasn’t as effective as we had hoped. The chal-
lenge was that we had to develop just about everything ourselves, as the libraries and
techniques available today simply didn’t exist. The first version of jQuery, for example,
wasn’t released until later that year.

 In July 2011, I was Director of Research at SnapLogic, Inc. (http://snaplogic.com)
when Mike Mikowski joined the company as UI Architect. We worked together on the
team that designed the next generation data integration product. Mike and I spent
countless hours discussing core issues in software engineering and language design.
We learned a lot from each other. Mike also shared drafts of the book you’re now
reading and that is when I learned about his and Josh’s method of building SPAs. It
was clear that they had developed several generations of commercial SPAs and had
xv

www.EBooksWorld.ir

http://river.cs.usfca.edu
http://snaplogic.com
http://www.it-ebooks.info/

FOREWORDxvi

used this experience to refine techniques and architectures that are comprehensive,
clear, and comparatively simple.

 Since my time with Project River in 2006, the ingredients to develop browser-native
SPAs have matured to the point where they are generally superior to third-party plug-
ins like Java or Flash. There are many fine books that focus on these ingredients, like
HTML, CSS, JavaScript, jQuery, NodeJS, and HTTP. Unfortunately, few books do a good
job of showing how to bring these ingredients together.

 This book is the exception. It shows in detail the well-tested recipes needed to
build compelling SPAs using JavaScript end-to-end. It shares insights gained over many
generations of SPA refinement. One could say Mike and Josh have made many mis-
takes so that you don’t have to. With this book, you can focus on the purpose of the
application instead of its implementation.

 The solutions in this book use modern web standards, and should be long-lived
and work across many browsers and devices. I really wish today’s technologies and this
book existed when we worked on Project River in 2006. We would have certainly used
them both!

GREGORY D. BENSON

PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF SAN FRANCISCO
www.EBooksWorld.ir

http://www.it-ebooks.info/

preface
Josh and I met when I was job hunting and he offered me a web architect position in
the summer of 2011. Though I ultimately decided to take another offer, we got along
really well and had some interesting discussions about single page web applications
(SPAs) and the future of the internet. One day, Josh naively suggested we write a book
together. I foolishly agreed, and we sealed our collective fates for hundreds of week-
ends to come. We expected this would be a rather slim book, under 300 pages. The
idea was to provide an over-the-shoulder view of an experienced developer creating a
production-ready SPA using JavaScript end-to-end. We would use only best-in-class
tools and techniques to provide a world-class user experience. The concepts would
apply to anyone developing a JavaScript SPA, whether they developed it as we do in
the book, or decided to use one of the framework libraries that are available.

 When first published in the Manning Early Access Program, nearly a thousand peo-
ple purchased the book in the first month. We listenened to their feedback and also
spoke to thousands of developers and influencers at meetups, universities, and industry
conferences to learn why SPAs fascinate people. What we heard was a thirst for knowl-
edge about this topic. We found that developers are yearning to learn a better way to
build their web applications. So we added coverage of more topics. For example, the
chapter-length appendix B was added to show in detail how to set up headless SPA testing
because many felt the coverage of testing in the manuscript wasn’t enough.

 We still have an over-the-shoulder view of development of a production-ready SPA,
and we also cover quite a few additional topics that our readers really wanted. And our
“little” book grew to around double our original estimate. We hope you enjoy it.
xvii

MICHAEL S. MIKOWSKI

www.EBooksWorld.ir

http://www.it-ebooks.info/

acknowledgments
The authors would like to thank

■ Joey Brooks, the recruiter responsible for introducing the two of us. It’s all your
fault, Joey.

■ John Resig and all the jQuery developers, for creating a fantastically focused,
extensible, and capable library. jQuery makes SPA development faster, more
reliable, and a lot more fun.

■ Ian Smith, for writing and maintaining TaffyDB, a powerful tool for in-browser
data manipulation.

■ Niels Johnson (a.k.a “Spikels”), who offered to proofread our material in
exchange for early access. I think we got the better part of the deal, as his
reviews were amazingly detailed and very useful for final editing.

■ Michael Stephens at Manning, who helped us get our first outline together and
set up the structure of the book.

■ Bert Bates, who knows how to write technical books better than most people on
the planet. He really helped us consider our audience as we wrote.

■ Karen Miller, our development editor, who worked with us the majority of the
time on this book, pushing us and others involved in the process and keeping
things moving along.

■ Benjamin Berg, our copyeditor; Janet Vail, our production editor, who was fan-
tastically communicative and effective in getting the book to press; and every-
one else at Manning who helped out with the book.
xviii

www.EBooksWorld.ir

http://www.it-ebooks.info/

ACKNOWLEDGMENTS xix

■ Ernest Friedman-Hill, our technical illustration advisor, who provided the ideas
behind some of the most compelling illustrations in the book.

■ John J. Ryan, for his careful technical proofread of the final manuscript shortly
before it went into production.

■ All the reviewers, who provided detailed analysis of our writing and our code so
we could simplify and enhance it as needed: Anne Epstein, Charles Engelke,
Curtis Miller, Daniel Bretoi, James Hatheway, Jason Kaczor, Ken Moore, Ken
Rimple, Kevin Martin, Leo Polovets, Mark Ryall, Mark Torrance, Mike Green-
halgh, Stan Bice, and Wyatt Barnett.

■ The thousands of MEAP purchasers, conference attendees, and colleagues,
who challenged us to optimize the solutions presented in the book.

Mike would also like to thank
■ Josh Powell, for asking me to write this book. What a great idea and a wonderful

learning experience. Now can I have my life back, please?
■ Greg Benson, for writing the foreword, and reminding me that it isn’t spelled

“forward.”
■ Gaurav Dhillon, John Schuster, Steve Goodwin, Joyce Lam, Tim Likarish, and

others at the SnapLogic team, who understood the value of economy and ele-
gance of design.

■ Anees Iqbal, Michael Lorton, David Good, and others from the GameCrush
team. Product development at GameCrush wasn’t perfect, but it is the closest I
have ever seen.

■ My parents, for buying a computer and refusing to buy any software for it. This
was great motivation to learn how to code.

■ Everyone I forgot. Murphy’s Law, subsection 8, clearly indicates I have forgotten
someone very important but will remember them only after publication. For
this, I am truly sorry and hope you will forgive me.

Josh would like to thank
■ Mike Mikowski, for agreeing to write this book with me. I am so glad I did not have

to undertake writing an entire book on my own. Sucker! I mean...thank you.
■ Luca Powell, my brother, for having the courage to follow his dreams and build

a business and to be himself. He is an inspiration.
■ The rest of my family and friends, without whom I wouldn’t be the person I am

today.
■ John Kelly, for giving me the freedom to finish up the book and understanding

that these things take time. Wow, do they take time!
■ Mark Torrance, for mentoring me as I grew an experienced engineering team

and for giving me the freedom to begin writing this book.
■ Wilson Yeung and Dave Keefer, for pushing me to learn deeper in the web

stack. You’ve had a major impact on my career and software engineering knowl-

edge and experience.

www.EBooksWorld.ir

http://www.it-ebooks.info/

about this book
When we considered writing this book we intended to focus about two-thirds on the
development of the SPA client. The other third was to focus on the web server and the
services needed to provide an SPA. But we couldn’t decide what to use for our web
server. We had written scores of web servers for traditional and SPA sites using Ruby/
Rails, Java/Tomcat, mod_perl, and other platforms, but they all had shortcomings,
especially when supporting an SPA, that left us wanting more.

 We had recently switched to a “pure” JavaScript stack using Node.js as the web
server and MongoDB as the database. Though there were challenges, we found the
experience liberating and compelling. The benefits of the common language and
data format were usually so profound that they significantly outweighed any language-
specific features we lost from the polyglot-stack.

 We felt that presenting the “pure” JavaScript stack provided by far the most value
to our readers, because we know of no other book that shows how to put all the pieces
together. And we expect this stack will continue to gain popularity and become one of
the most commonly used stacks for single page applications.

Roadmap
Chapter 1 is an introduction to Single Page Applications. JavaScript SPAs are defined
and compared to other kinds of SPAs. Traditional web sites and SPAs are compared, and
the opportunities, benefits, and challenges of using an SPA are discussed. The reader is
guided through the development of an SPA that is usable by the end of the chapter.

 Chapter 2 covers the capabilities and features of JavaScript essential to building an
xx

SPA. Since nearly all of the code in an SPA is written in JavaScript, and not just an

www.EBooksWorld.ir

http://www.it-ebooks.info/

ABOUT THIS BOOK xxi

afterthought added on to provide some user interaction, it’s extremely important to
understand how the language works. Variables, format, and functions are discussed, as
well as more advanced topics such as execution context, closures, and object prototypes.

 Chapter 3 introduces the SPA architecture used throughout the book. It also intro-
duces the Shell as the primary user interface module. The Shell coordinates feature
modules and browser-wide events and data such as the URL and cookies. An event han-
dler is implemented and the anchor interface pattern is used to manage page state.

 Chapter 4 details feature modules which provide well-defined and scoped capabili-
ties to the SPA. Well-written feature modules are compared to third-party JavaScript.
Isolation is advocated to help ensure quality and modularity.

 Chapter 5 illustrates how to build the Model module that consolidates all business
logic into a single namespace. The Model isolates its clients from data management
and interaction with the server. The People API is designed and developed here. The
Model is tested using the Fake data module and the JavaScript console.

 Chapter 6 completes the work on the Model. The Chat API is designed and devel-
oped here and again tested using the Fake Data modules and the JavaScript console.
The Data module is introduced, and the application is adjusted to use “live” data from
the web server.

 Chapter 7 introduces Node.js as the web server. Since most of the code in an SPA is
in the client side, the backend can be written in any language that performs well
enough to keep up with the demands of the application. Writing the backend in
JavaScript keeps our programming environments consistent and simplifies full-stack
development. If you’ve never used Node.js before, this is an excellent introduction,
and even if you’re an experienced Node.js developer, this chapter provides insight
into the server’s role in an SPA.

 Chapter 8 pushes further down the stack into the database. We use MongoDB
because it’s a production proven database that stores data in JSON documents, the
same format in which the data will be consumed by the client. We provide a basic
introduction for people who haven’t used MongoDB, before delving into the role of
the database in an SPA.

 Chapter 9 covers some conceptual details of an SPA that are different than a tradi-
tional MVC web application: optimizing SPAs for search engines, collecting analytics
on SPAs, and error logging in SPAs. We also cover some areas of interest to traditional
web applications that are especially important in SPA development: quickly serving
static content through CDNs, and caching at every level of the stack.

 Appendix A goes into our JavaScript coding standards in great detail; they may or
may not work for you but we’ve found them to be an invaluable guide to structuring
the JavaScript in an SPA in a way that’s testable, maintainable, and very readable. We
cover why a coding standard is important, organizing and documenting code,
naming variables and methods, protecting namespaces, organizing files, and using
JSLint to validate JavaScript. We also include a two-page reference to keep on hand
as you code.
www.EBooksWorld.ir

http://www.it-ebooks.info/

ABOUT THIS BOOKxxii

 Appendix B covers testing in an SPA. Testing an SPA could be a book on its own,
but it’s such an important and critical topic that we couldn’t ignore it. We cover set-
ting up test modes, selecting a testing framework, creating a test suite, and adjusting
SPA modules for test settings.

Audience
This book is intended for web developers, architects, and product managers with at
least a smattering of JavaScript, HTML, and CSS experience. If you’ve never even dab-
bled in web development, this book is not for you, although you’re welcome to buy it
anyway (go ahead, daddy needs a new car). Many books are available that do a great
job teaching beginner website development and design, but this isn’t one of them.

 This book does aspire to be a great guide to designing and building large-scale
Single Page Web Applications (SPAs) using JavaScript end-to-end. We use JavaScript as
the language of the database, the web server, and the browser application. About two-
thirds of the book is devoted to client development. The last third shows how to build
a server using JavaScript tools such as Node.js and MongoDB. If you’re locked in to
another server platform, most of the logic should be easy to translate, although the
messaging service almost requires an event-driven web server.

Code conventions and downloads
Source code in listings or in text appears in a fixed-width font like this to separate
it from ordinary text. Code annotations accompany the listings, highlighting impor-
tant concepts.

 Source code for the examples in this book can be downloaded from the pub-
lisher’s website at www.manning.com/SinglePageWebApplications.

Software and hardware requirements
If you’re using a recent Mac OSX or Linux computer, you should have little or no trou-
ble with any of the exercises in the book, assuming you install the specified software as
we go along.

 If you’re using Windows, you should have little or no trouble with any exercises
in parts 1 and 2 of the book. Part 3 requires some tools that are not available or
limited on Windows. We recommend using a freely available virtual machine (see
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html)
and Linux distribution (we recommend Ubuntu Server 13.04, see http://
www.ubuntu.com/download/server).

Author Online
Purchase of Single Page Web Applications includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/

SinglePageWebApplications. This page provides information on how to get on the

www.EBooksWorld.ir

http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
www.manning.com/SinglePageWebApplications
www.manning.com/SinglePageWebApplications
http://www.ubuntu.com/download/server
http://www.ubuntu.com/download/server
www.manning.com/SinglePageWebApplications
http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii

forum once you’re registered, what kind of help is available, and the rules of con-
duct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors whose contribution to the Author Online forum remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest their
interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors
MICHAEL S. MIKOWSKI is an award-winning industrial designer and SPA architect with
13 years’ experience as a full-stack web developer and architect. He spent nearly four
years as development manager for an HP/HA platform that served hundreds of mil-
lions of requests per day using mod_perl application servers in large clusters.

 He began working on commercial single page web applications (SPAs) in 2007
when he developed the AMD “Where to Buy” site when hosting constraints prevented
most other solutions. After that, he was enamoured with the possibilities of SPAs and
proceeded to design and develop many similar solutions. He firmly believes that
design for quality, creative destruction, minimalism, and targeted testing techniques
can remove complexity and confusion from SPA development.

 Mike is a contributor to a number of open source projects, and has published a
number of jQuery plugins. He has presented at HTML5 developer conferences in 2012
and 2013, Developer Week 2013, University of San Francisco, and various companies.
Recently he has worked as a UI architect, consultant, and Director of UX engineering.

JOSH C. POWELL has worked with the web since IE 6 was the good browser. A software
engineer and web architect with over 13 years of experience, he loves the craft of
developing web applications and building teams to do the same. He’s currently
immersed in playing with different single page web application technologies and lov-
ing every minute of it.

 By some quirk of nature, he’s energized by public speaking and has presented on
single page applications and JavaScript at conferences such as the HTML 5 Developers
Conference and NoSQL Now!, to universities and to Silicon Valley companies like
Engine Yard, RocketFuel, and many others. He’s also written articles for www.learning
jquery.com and various online magazines.
www.EBooksWorld.ir

www.learning jquery.com
www.learning jquery.com
http://www.it-ebooks.info/

about the cover illlustration
The figure on the cover of Single Page Web Applications is captioned “Gobenador de la
Abisinia,” or the governor of Abyssinia, today called Ethiopia. The illustration is
taken from a Spanish compendium of regional dress customs first published in
Madrid in 1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas
del Mundo desubierto, dibujados y grabados con la mayor exactitud por
R.M.V.A.R. Obra muy util y en special para los que tienen la del viajero
universal.

 Which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers.

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing. The
“Gobenador de la Abisinia” is just one of many figures in this colorful collection.
Their diversity speaks vividly of the uniqueness and individuality of costumes from dif-
ferent countries around the world just 200 years ago.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of life of two centuries ago
brought back to life by the pictures from this collection.
xxiv

www.EBooksWorld.ir

http://www.it-ebooks.info/

Part 1

Introducing SPAs

In the time it takes to read this page, 35 million person minutes will be spent
waiting for traditional website pages to load. That’s enough spinning icon time
for the Curiosity Lander to fly to Mars and back 96 times. The productivity cost
of traditional websites is astonishing, and the cost to a business can be devastat-
ing. A slow website can drive users away from your site—and into the welcoming
wallets of smiling competitors.

 One reason traditional websites are slow is because popular MVC server
frameworks are focused on serving page after page of static content to an essen-
tially dumb client. When we click a link in a traditional website slideshow, for
example, the screen flashes white and everything reloads over several seconds:
the navigation, ads, headlines, text, and footer are all rendered again. Yet the
only thing that changes is the slideshow image and perhaps the description text.
Worse, there’s no indicator when some element of the page becomes functional.
For example, sometimes a link can be clicked as soon as it appears on a web
page; other times we have to wait until the redrawing is 100% complete plus five
seconds. This slow, inconsistent, and clunky experience is becoming unaccept-
able for an increasingly sophisticated web consumer.

 Prepare to learn about another—and dare we say better—approach to devel-
oping web applications, the single page web application (SPA). An SPA delivers a
desktop application in the browser. The result is a highly responsive experience
that surprises and delights users instead of confusing and annoying them. In
part 1 we learn:

■ What an SPA is and the advantages it provides over traditional websites
■ How an SPA approach can make our web application a great deal more
responsive and compelling

www.EBooksWorld.ir

http://www.it-ebooks.info/

■ How to improve our JavaScript skills for SPA development
■ How to build an example SPA

Product design is increasingly seen as the decisive factor in the success of commercial
and enterprise web applications. SPAs are often the best choice to provide the optimal
user experience. As a result, we expect the demand for user-focused design to drive
SPA adoption and sophistication.
www.EBooksWorld.ir

http://www.it-ebooks.info/

Our first single
 page application
This book is intended for web developers, architects, and product managers with
at least a smattering of JavaScript, HTML, and CSS experience. If you’ve never even
dabbled in web development, this book is not for you, although you’re welcome to
buy it anyway (go ahead, daddy needs a new car). Many books are available that do
a great job teaching beginner website development and design, but this isn’t one
of them.

 This book does aspire to be a great guide to designing and building large-scale sin-

This chapter covers
■ Defining single page web applications
■ Comparing the most popular single page application

platforms—Java, Flash, and Javascript
■ Writing our first JavaScript single page application
■ Inspecting the application using Chrome Developer

Tools
■ Exploring the user benefits of single page applications
3

gle page web applications [SPAs] using JavaScript end to end. In fact, as figure 1.1

www.EBooksWorld.ir

http://www.it-ebooks.info/

4 CHAPTER 1 Our first single page application

depicts, we use JavaScript as the language of the database, the web server, and the
browser application.

 We’ve spent the last six years leading the development of numerous large-scale
commercial and enterprise SPAs. During that time we’ve constantly updated our prac-
tices to meet the challenges we’ve found. We share these practices in this book as they
have helped us develop faster, provide a better user experience, ensure quality, and
improve team communication.

1.1 Definition, a little history, and some focus
An SPA is an application delivered to the browser that doesn’t reload the page during
use. Like all applications, it’s intended to help the user complete a task, such as “write
a document” or “administer a web server.” We can think of an SPA as a fat client that’s
loaded from a web server.

1.1.1 A little history

SPAs have been around for a long time. Let’s look at some early examples:

■ Tic-Tac-Toe—http://rintintin.colorado.edu/~epperson/Java/TicTacToe.html.
Hey, we didn’t say this would be pretty. This application challenges us to beat a
formidable and ruthless computer nemesis in a game of Tic-Tac-Toe. The Java
plugin is required—see http://www.java.com/en/download/index.jsp. You
may have to grant permission for your browser to run this applet.

■ Flash Spacelander—http://games.whomwah.com/spacelander.html. This is one
of the earlier Flash games, written by Duncan Robertson circa 2001. The Flash
plugin is required—see http://get.adobe.com/flashplayer/.

■ JavaScript mortgage calculator—http://www.mcfedries.com/creatingawebpage/
mortgage.htm. This calculator seems almost as old as JavaScript itself, but it
works nicely. No plugin is required.

The astute reader—and even a few slovenly ones1—will notice that we’ve provided
examples of three of the most popular SPA platforms: Java applets, Flash/Flex, and

Database

JavaScript

Server

JavaScript

Client

JavaScript

Figure 1.1 JavaScript end-to-end
1 If you’re reading this chapter as you eat potato chips off your chest, you’re slovenly.

www.EBooksWorld.ir

http://rintintin.colorado.edu/~epperson/Java/TicTacToe.html
http://www.java.com/en/download/index.jsp
http://games.whomwah.com/spacelander.html
http://get.adobe.com/flashplayer/
http://www.mcfedries.com/creatingawebpage/mortgage.htm
http://www.mcfedries.com/creatingawebpage/mortgage.htm
http://www.it-ebooks.info/

5Definition, a little history, and some focus

JavaScript. And those same readers may have noticed that only the JavaScript SPA works
without the overhead or security concerns of a third-party plugin.

 Today, JavaScript SPAs are often the best choice of the three. But JavaScript took a
while to become competitive, or even possible, for most SPA uses. Let’s take a look at
why.

1.1.2 What took JavaScript SPAs so long?

Flash and Java applets had evolved nicely by the year 2000. Java was being used to
deliver complex applications and even a complete office suite via the browser.2 Flash
had become the platform of choice for delivering rich browser games and, later,
video. On the other hand, JavaScript was still mostly relegated to little more than
mortgage calculators, form validation, roll-over effects, and pop-up windows. The
problem was that we couldn’t rely on JavaScript (or the rendering methods it used) to
provide critical capabilities consistently on popular browsers. Even so, JavaScript SPAs
promised a number of enticing advantages over Flash and Java:

■ No plugin required—Users access the application without concern for plugin
installation, maintenance, and OS compatibility. Developers also don’t need to
worry about a separate security model, which reduces development and mainte-
nance headaches.3

■ Less bloat—An SPA using JavaScript and HTML should use significantly fewer
resources than a plugin that requires an additional run-time environment.

■ One client language—Web architects and most developers have to know many
languages and data formats—HTML, CSS, JSON, XML, JavaScript, SQL, PHP/
Java/Ruby/Perl, and so on. Why write applets in Java, or Flash applications in
ActionScript, when we’re already using JavaScript elsewhere on our pages?
Using a single programming language for everything on the client is a great way
to reduce complexity.

■ A more fluid and interactive page—We’ve all seen a Flash or Java application on a
web page. Often the application is displayed in a box somewhere and many
details are different than the HTML elements that surround it: the graphical
widgets are different, the right-click is different, the sounds are different, and
interaction with the rest of the page is limited. With a JavaScript SPA, the entire
browser window is the application interface.

As JavaScript has matured, most of its weaknesses have been either fixed or mitigated
and its advantages have increased in value:

■ The web browser is the world’s most widely used application—Many people have a
browser window always open and use it throughout the day. Access to a
JavaScript application is one more bookmark click away.

2 Applix (VistaSource) Anywhere Office
3 Can you say “same origin policy”? If you’ve ever developed in Flash or Java, you almost certainly are familiar
with this challenge.

www.EBooksWorld.ir

http://www.it-ebooks.info/

6 CHAPTER 1 Our first single page application

■ JavaScript in the browser is one of the world’s most widely distributed execution
environments—By December 2011, nearly one million Android and iOS mobile
devices were being activated every day. Each of these devices has a robust
JavaScript execution environment built into the OS. More than one billion
robust JavaScript implementations have shipped in the last three years on
phone, tablet, laptop, and desktop computers around the world.

■ Deployment of JavaScript is trivial—A JavaScript application can be made available
to more than a billion web users by hosting it on an HTTP server.

■ JavaScript is useful for cross-platform development—Now we can create SPAs using
Windows, Mac OS X, or Linux, and we can deploy a single application not only
to all desktop machines but also to tablets and smart phones. We can thank con-
verging implementations of standards across browsers, and mature libraries
such as jQuery and PhoneGap that smooth over inconsistencies.

■ JavaScript has become surprisingly fast and can, at times, rival compiled languages—Its
speedup is thanks to ongoing and heated competition between Mozilla Firefox,
Google Chrome, Opera, and Microsoft. Modern JavaScript implementations
enjoy advanced optimizations such as JIT compilation to native machine code,
branch prediction, type-inference, and multi-threading.4

■ JavaScript has evolved to include advanced features—These features include the
JSON native object, native jQuery-style selectors, and more consistent AJAX
capabilities. Push messaging has become far easier with mature libraries like
Strophie and Socket.IO.

■ HTML5, SVG, and CSS3 standards and support have advanced—These advance-
ments allow for the rendering of pixel-perfect graphics that can rival the speed
and quality produced by Java or Flash.

■ JavaScript can be used throughout a web project—Now we can use the excellent
Node.js web server and data stores such as CouchDB or MongoDB, both of
which communicate in JSON, a JavaScript data format. We can even share librar-
ies between the server and the browser.

■ Desktop, laptop, and even mobile devices have become more powerful—The ubiquity of
multi-core processors and gigabytes of RAM means processing that used to be
accomplished on the server can now be distributed to the client browsers.

JavaScript SPAs are becoming increasingly popular due to these advantages, and the
demand for experienced JavaScript developers and architects has blossomed. Appli-
cations that were once developed for many operating systems (or for Java or Flash)
are now delivered as a single JavaScript SPA. Startups have embraced Node.js as the
web server of choice, and mobile application developers are using JavaScript and
PhoneGap to create “native” applications for multiple mobile platforms using a single
code base.

4 See http://iq12.com/blog/as3-benchmark/ and http://jacksondunstan.com/articles/1636 for some com-

parisons to Flash ActionScript 3.

www.EBooksWorld.ir

http://iq12.com/blog/as3-benchmark/
http://jacksondunstan.com/articles/1636
http://www.it-ebooks.info/

7Definition, a little history, and some focus

 JavaScript isn’t perfect, and we don’t have to look far to find omissions, inconsis-
tencies, and other aspects to dislike. But this is true of all languages. Once you
become comfortable with its core concepts, employ best practices, and learn what
parts to avoid, JavaScript development can be pleasant and productive.

Generated JavaScript: One destination, two paths
We’ve found it easier to develop SPAs using JavaScript directly. We call these native
JavaScript SPAs. Another surprisingly popular approach is to use generated
JavaScript, where developers write code in another language which is then converted
to JavaScript. This conversion occurs either at runtime or during a separate genera-
tion stage. Notable JavaScript generators include:

■ Google Web Toolkit (GWT)—See http://code.google.com/webtoolkit/. GWT gen-
erates JavaScript from Java.

■ Cappuccino—See http://cappuccino.org/. Cappuccino uses Objective-J, a clone
of the Objective-C language from Mac OS X. Cappuccino itself is a port of the
Cocoa application framework, again from OS X.

■ CoffeeScript—See http://coffeescript.org/. CoffeeScript turns a custom lan-
guage that provides some syntactic sugar into JavaScript.

Given that Google uses GWT for Blogger, Google Groups, and many other sites, we
can safely say that generated JavaScript SPAs are widely used. This raises the ques-
tion: why bother writing in one high-level language and then converting it to another?
Here are a number of reasons generated JavaScript remains popular, and why these
reasons aren’t as compelling as they once were:

■ Familiarity—The developers can use a more familiar or simpler language. The
generator and framework allows them to develop without having to learn the
vagaries of JavaScript. The problem is that something eventually gets lost in
translation. When this happens, the developers have to inspect the generated
JavaScript and understand it to get things to work right. We feel we’re more
effective when we work directly in JavaScript instead of working through a lan-
guage abstraction layer.

■ Framework—The developers appreciate that GWT provides the cohesive system
of matching libraries built for server and client. This is a persuasive argument,
particularly if the team already has a lot of expertise and products that are in
production.

■ Multiple targets—The developers can have the generator write for multiple tar-
gets, such as one file for Internet Explorer and one for the rest of the world’s
browsers. Although generating code for different targets sounds nice, we think
it’s even more effective to deploy a single JavaScript source for all browsers.
Thanks to converging browser implementations and mature cross-browser librar-
ies like jQuery, it’s now much easier to write a sophisticated SPA that runs
across all major browsers without modification.
www.EBooksWorld.ir

http://code.google.com/webtoolkit/
http://cappuccino.org/
http://coffeescript.org/
http://www.it-ebooks.info/

8 CHAPTER 1 Our first single page application

1.1.3 Our focus

This book shows how to develop engaging, robust, scalable, and maintainable SPAs
using JavaScript end to end.5 Unless otherwise noted, when we refer to an SPA from this
point forward, we mean a native JavaScript SPA, where the business and presentation
logic is written directly in JavaScript and executed by the browser. This JavaScript ren-
ders the interface using browser technologies such as HTML5, CSS3, Canvas, or SVG.

SPAs can use any number of server technologies. Because so much of the web
application moves to the browser, the server requirements are often significantly
reduced. Figure 1.2 illustrates how the business logic and generation of HTML
migrates from the server to the client.

5 Another title for this book might have been Building Single Page Web Applications Using Best Practices. But that

(continued)
■ Maturity—The developers consider JavaScript insufficiently structured for large-

scale application development. Yet JavaScript has evolved to become a much
better language, with impressive strengths and manageable weaknesses. Devel-
opers from strongly typed languages like Java sometimes feel the lack of type
safety is unforgivable. And some developers from inclusive frameworks like Ruby
on Rails bemoan the apparent lack of structure. Thankfully, we can mitigate
these issues through a combination of code validation tools, code standards,
and the use of mature libraries.

We believe native JavaScript SPAs are usually the better choice today. And that’s
what we design and build in this book.

Database

Data storage
Data retrieval
Business logic

Server

Authentication
Authorization

Validation
Business logic

HTML generation

HTML rendering
Decorative JS

Data storage
Data retrieval

Authentication
Authorization

Validation

HTML rendering
Decorative JS

Business logic JS
HTML generation

Client

Database

Tr
ad

iti
on

al
S

PA

Server Client

Figure 1.2 Responsibilities of the database, server, and client
seemed too wordy.

www.EBooksWorld.ir

http://www.it-ebooks.info/

9Build our first SPA

We focus on the backend in chapters 7 and 8, where we use a web server and database
with JavaScript as their control languages. You may not have this choice or may prefer
a different backend. That’s okay—most of the SPA concepts and techniques we use in
this book work well regardless of what backend technologies you use. But if you want
to use JavaScript end-to-end, we’ve got you covered.

 Our client libraries include jQuery for DOM manipulation with plugins for history
management and event handling. We use TaffyDB2 to provide high-performance,
data-centric models. Socket.IO provides seamless near-real-time messaging between
the web server and the client. On the server, we use Node.js for our event-based web
server. Node.js uses the Google V8 JavaScript engine and excels at handling tens of
thousands of concurrent connections. We also use Socket.IO on the web server. Our
database is MongoDB, a noSQL database that uses the JavaScript native data format,
JSON, to store data and also has a JavaScript API and command-line interface. All of
these are proven and popular solutions.

SPA development requires JavaScript coding at a scale at least an order of magni-
tude greater than a traditional website, as much of the application logic moves from
the server to the browser. The development of a single SPA may require many develop-
ers to code concurrently and may result in well over 100,000 lines of code. Conven-
tions and discipline previously reserved for server-side development become a must
for working at this scale. On the other hand, the server software is simplified and rele-
gated to authentication, validation, and data services. Keep this in mind as we proceed
through our examples.

1.2 Build our first SPA
It’s now time to develop an SPA. We’ll use best practices and explain them as we go.

1.2.1 Define the goal

Our first SPA will have the modest goal of providing a chat slider at the bottom right of
the browser window, similar to one you might see on Gmail or Facebook. When we
load the application, the slider will be retracted; when we click on the slider, it’ll
extend, as shown in figure 1.3. Clicking again will retract it.

Figure 1.3 The chat slider

(1) Click here (2) Slides out retracted and extended

www.EBooksWorld.ir

http://www.it-ebooks.info/

10 CHAPTER 1 Our first single page application

SPAs usually do many other things besides opening and closing a chat slider—like
sending and receiving chat messages. We’ll omit such pesky details to keep this intro-
duction relatively simple and brief. To pervert a famous saying, one can’t conquer
SPAs in a day. Fear not, we’ll return to sending and retrieving messages in chapters 6
and 8.

 In the next few sections, we’ll set up a file for SPA development, introduce some of
our favorite tools, develop the code for the chat slider, and highlight some best prac-
tices. We’ve given you a lot to absorb here, and you’re not expected to understand
everything right now—particularly some of the JavaScript tricks we’re using. We’ll
have a lot more to say about each of these topics in the next few chapters, but for now,
relax, don’t sweat the small stuff, and take in the lay of the land.

1.2.2 Start the file structure

We’ll create our application in a single file, spa.html, using only jQuery as our one
external library. Usually, it’s better to have separate files for CSS and JavaScript, but
starting with a single file is handy for development and examples. We start by defining
where we’ll place our styles and our JavaScript. We’ll also add a <div> container where
our application will write HTML entities, as shown in listing 1.1:

<!doctype html>
<html>
<head>
 <title>SPA Chapter 1 section 1.2.2</title>
 <style type="text/css"></style>
 <script type="text/javascript"></script>
</head>
<body>
 <div id="spa"></div>
</body>
</html>

Now that we have the file ready, let’s set up Chrome Developer Tools to inspect the
application in its current state.

1.2.3 Set up Chrome Developer Tools

Let’s use Google Chrome to open our listing—spa.html. We should see a blank
browser window, because we haven’t added any content. But activities are going on
under the hood. Let’s use Chrome Developer Tools to inspect them.

 We can open Chrome Developer Tools by clicking on the wrench in the upper-
right corner of Chrome, selecting Tools, and then Developer Tools (Menu > Tools >
Developer Tools). This will display the Developer Tools, as shown in figure 1.4. If we
don’t see the JavaScript console, we can display it by clicking on the Activate console

Listing 1.1 A toe in the pool—spa.html

Add a style tag to
contain our CSS selectors.
Loading CSS before
JavaScript generally results
in faster page rendering,
and is best practice.

Create a div with an ID
of spa. The JavaScript
will control the contents
of this container.

Add a
script tag

to contain our
JavaScript.
button at the bottom left. The console should be blank, which means we have no

www.EBooksWorld.ir

http://www.it-ebooks.info/

11Build our first SPA

JavaScript warnings or errors. This is good, because currently we have no JavaScript.
The Elements section above the console shows the HTML and structure of our page.

 Although we use Chrome Developer Tools here and throughout the book, other
browsers have similar capabilities. Firefox, for example, has Firebug, and both IE and
Safari provide their own version of Developer Tools.

 When we present listings in this book, we’ll often use the Chrome Developer Tools
to ensure our HTML, CSS, and JavaScript all play nicely together. Now let’s create our
HTML and CSS.

1.2.4 Develop the HTML and CSS

We’ll need to add a single chat slider container to our HTML. Let’s begin by styling the
containers in the <style> section in the spa.html file. The adjustments to the <style>
section are shown in the following listing:

<!doctype html>
<html>
<head>
 <title>SPA Chapter 1 section 1.2.4</title>
 <style type="text/css">
 body {
 width : 100%;
 height : 100%;
 overflow : hidden;
 background-color : #777;

Listing 1.2 HTML and CSS—spa.html

Elements inspector tab

Activate console log

Figure 1.4 Google Chrome Developer Tools

Define the <body> tag to fill
the entire browser window
and hide any overflow. Set the
background color to mid-gray.
 }

www.EBooksWorld.ir

http://www.it-ebooks.info/

12 CHAPTER 1 Our first single page application

 #spa {
 position : absolute;
 top : 8px;
 left : 8px;
 bottom : 8px;
 right : 8px;
 border-radius : 8px 8px 0 8px;
 background-color : #fff;
 }
 .spa-slider {
 position : absolute;
 bottom : 0;
 right : 2px;
 width : 300px;
 height : 16px;
 cursor : pointer;
 border-radius : 8px 0 0 0;
 background-color : #f00;
 }
 </style>
 <script type="text/javascript"></script>
</head>
<body>
 <div id="spa">
 <div class="spa-slider"></div>
 </div>
</body>
</html>

When we open spa.html in our browser, we
should see the slider retracted, as shown in figure
1.5. We’re using a liquid layout where the inter-
face adapts to the display size and the slider
always stays anchored at the bottom-right corner.
We didn’t add any borders to our containers
because they add to container width and can
impede development, as we have to resize con-
tainers to accommodate those borders. It’s handy
to add borders after the basic layout is created
and verified, as we do in later chapters.

 Now that we have the visual elements in place, it’s time to use JavaScript to make
the page interactive.

1.2.5 Add the JavaScript

We want to employ best practices with our JavaScript. One tool that will help is JSLint,
written by Douglas Crockford. JSLint is a JavaScript validator that ensures that our
code doesn’t break many sensible JavaScript best practices. And we also want to use
jQuery, a Document Object Model (DOM) toolkit written by John Resig. jQuery pro-

Define a container to
hold all the content
of our SPA.

Define the spa-slider class
so the chat slider container is
anchored to the bottom-right
corner of its container. Set the
background color to red, and
round the top-left corner.

Retracted

Figure 1.5 Chat slider retracted—
spa.html
vides simple cross-browser tools to easily implement the slider animation.

www.EBooksWorld.ir

http://www.it-ebooks.info/

13Build our first SPA

 Before we get into writing the JavaScript, let’s outline what we want to do. Our first
script tag will load the jQuery library. Our second script tag will contain our JavaScript
which we’ll break into three parts:

1 A header that declares our JSLint settings.
2 A function called spa that creates and manages the chat slider.
3 A line to start the spa function once the browser’s Document Object Model

(DOM) is ready.

Let’s take a closer look at what we need the spa function to do. We know from experience
that we’ll want a section where we declare our module variables and include configu-
ration constants. We’ll need a function that toggles the chat slider. And we’ll need a func-
tion that receives the user click event and calls the toggle function. Finally, we’ll need
a function that initializes the application state. Let’s sketch an outline in more detail:

/* jslint settings */

// Module /spa/
// Provides chat slider capability
 // Module scope variables
 // Set constants
 // Declare all other module scope variables

 // DOM method /toggleSlider/
 // alternates slider height

 // Event handler /onClickSlider/
 // receives click event and calls toggleSlider

 // Public method /initModule/
 // sets initial state and provides feature
 // render HTML
 // initialize slider height and title
 // bind the user click event to the event handler

// Start spa once DOM is ready

This is a good start! Let’s keep the comments just as they are and add our code. We
have kept the comments in bold for clarity.

 /* jslint settings */

 // Module /spa/
 // Provides chat slider capability
 //
 var spa = (function ($) {
 // Module scope variables
 var
 // Set constants
 configMap = { },

Listing 1.3 JavaScript development, first pass—spa.html

Listing 1.4 Javascript development, second pass— spa.html
 // Declare all other module scope variables

www.EBooksWorld.ir

http://www.it-ebooks.info/

 the
ork

 our
use

rom
that
hed
out
est.
14 CHAPTER 1 Our first single page application

 $chatSlider,
 toggleSlider, onClickSlider, initModule;

 // DOM method /toggleSlider/
 // alternates slider height
 //
 toggleSlider = function () {};

 // Event handler /onClickSlider/
 // receives click event and calls toggleSlider
 //
 onClickSlider = function (event) {};

 // Public method /initModule/
 // sets initial state and provides feature
 //
 initModule = function ($container) {
 // render HTML
 // initialize slider height and title
 // bind the user click event to the event handler
 };
 }());

 // Start spa once DOM is ready

Now let’s make a final pass at spa.html as shown in listing 1.5. We load the jQuery
library and then we include our own JavaScript, which has our JSLint settings, our spa
module, and a line to start the module once the DOM is ready. The spa module is now
fully functional. Don’t worry if you don’t “get” everything right away—there’s lots to
take in here, and we’ll be covering everything in more detail in upcoming chapters.
This is just an example to show you what can be done:

<!doctype html>
<html>
<head>
 <title>SPA Chapter 1 section 1.2.5</title>
 <style type="text/css">
...
 </style>

 <script type="text/javascript" src=
 "http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js">
 </script>

 <script type="text/javascript">
 /*jslint browser : true, continue : true,
 devel : true, indent : 2, maxerr : 50,
 newcap : true, nomen : true, plusplus : true,
 regexp : true, sloppy : true, vars : true,
 white : true
 */
 /*global jQuery */

Listing 1.5 JavaScript development, third pass—spa.html

Include the jQuery library from
Google Content Delivery Netw

(CDN), which lightens the load on
servers and is often faster. Beca

many other websites use jQuery f
the Google CDN, chances are high
the user’s browser has already cac

this library and will use it with
having to make an HTTP requ

Include JSLint
settings. We
use JSLint to

ensure our
code is free
of common
JavaScript
mistakes.

Don't worry
about what the
settings mean

right now.
Appendix A

covers JSLint in
more detail.
// Module /spa/

www.EBooksWorld.ir

http://www.it-ebooks.info/

les
ed.
figu-
on-
e
ap.

Add t

i
heig
it’s

so, it
ma

Add t

i
heig

it’s
so, it

ma
15Build our first SPA

// Provides chat slider capability
//
var spa = (function ($) {
 // Module scope variables
 var
 // Set constants
 configMap = {
 extended_height : 434,
 extended_title : 'Click to retract',
 retracted_height : 16,
 retracted_title : 'Click to extend',
 template_html : '<div class="spa-slider"><\/div>'
 },

 // Declare all other module scope variables
 $chatSlider,
 toggleSlider, onClickSlider, initModule;

 // DOM method /toggleSlider/
 // alternates slider height
 //
 toggleSlider = function () {
 var
 slider_height = $chatSlider.height();

 // extend slider if fully retracted
 if (slider_height === configMap.retracted_height) {
 $chatSlider
 .animate({ height : configMap.extended_height })
 .attr('title', configMap.extended_title);
 return true;
 }

 // retract slider if fully extended
 else if (slider_height === configMap.extended_height) {
 $chatSlider
 .animate({ height : configMap.retracted_height })
 .attr('title', configMap.retracted_title);
 return true;
 }

 // do not take action if slider is in transition
 return false;
 }

 // Event handler /onClickSlider/
 // receives click event and calls toggleSlider
 //
 onClickSlider = function (event) {
 toggleSlider();
 return false;
 };
 // Public method /initModule/
 // sets initial state and provides feature
 //
 initModule = function ($container) {

Package our
code into
the spa

namespace.
More details

on this
practice are
provided in
chapter 2.

Declare all variab
before they are us
Store module con
ration values in c
figMap and stat
values in stateM

Group all Document
Object Model [DOM]

manipulation
methods in a

section.he code to extend
the chat slider. It
nspects the slider
ht to determine if
 fully retracted. If
 uses a jQuery ani-
tion to extend it.

he code to retract
the chat slider. It
nspects the slider
ht to determine if
 fully extended. If
 uses a jQuery ani-
tion to retract it.

Group all event
handler methods in
a section. It is good
practice to keep the
handlers small and
focused. They should
call other methods to
update the display or
adjust business logic.

Group
all public

methods in
a section.
 // render HTML

www.EBooksWorld.ir

http://www.it-ebooks.info/

,

e

 an
e
le.
16 CHAPTER 1 Our first single page application

 $container.html(configMap.template_html);

 $chatSlider = $container.find('.spa-slider');
 // initialize slider height and title
 // bind the user click event to the event handler
 $chatSlider
 .attr('title', configMap.retracted_title)
 .click(onClickSlider);

 return true;
 };

 return { initModule : initModule };
 }(jQuery));

 // Start SPA once DOM is ready
 //
 jQuery(document).ready(
 function () { spa.initModule(jQuery('#spa')); }
);
 </script>
</head>

<body>
 <div id="spa"></div>
</body>
</html>

Don’t worry too much about JSLint validation, as we’ll detail its use in coming chap-
ters. But we’ll cover a few noteworthy concepts now. First, the comments at the top of
the script set our preferences for validation. Second, this script and settings pass vali-
dation without any errors or warning. Finally, JSLint requires that functions be
declared before they’re used, and therefore the script reads “bottom up” with the
highest level functions at the end.

 We use jQuery because it provides optimized, cross-browser utilities for fundamen-
tal JavaScript features: DOM selection, traversal, and manipulation; AJAX methods;
and events. The jQuery $(selector).animate(...) method, for example, provides a
simple way to do something that’s otherwise quite complex: animate the height of the
chat slider from retracted to extended (and vice versa) within a specified time period.
The motion starts slowly, accelerates, and then slows to a stop. This type of motion—
called easing—requires knowledge of frame-rate calculations, trigonometric functions,
and the vagaries of implementation across popular browsers. If we wrote it ourselves,
it would require dozens of additional lines.

 The $jQuery(document).ready(function) also saves us a lot of work. It runs
the function only after the DOM is ready for manipulation. The traditional way to
do this was to use the window.onload event. For a variety of reasons, window.onload

Add code
to fill the

$container
with the slider

template HTML.

Set the title of the
slider, and bind the
onClickSlider

handler to a click
event on the chat

slider.

Find the chat slider
div and store it in a
module-scope variable
$chatSlider. A
module-scope variabl
is available to all
functions in the
spa namespace.

Export public methods by returning
object from our spa namespace. W
export only one method—initModu

Start the SPA only
after the DOM is
ready using the
jQuery ready
method.

Clean up the HTML. Our
JavaScript now renders the chat
slider, so it has been removed
from the static HTML.
isn’t an efficient solution for more demanding SPAs—although it makes little

www.EBooksWorld.ir

http://www.it-ebooks.info/

17Build our first SPA

difference here. But writing the correct code to use across all browsers is painfully
tedious and verbose.6

 jQuery’s benefits, as the previous example shows, usually significantly outweigh its
costs. In this case, it shortened our development time, reduced the length of our script,
and provided robust cross-browser compatibility. The cost of using it is somewhere
between low and negligible, as its library is small when minimized and users likely have
it already cached on their devices anyway. Figure 1.6 shows the completed chat slider.

 Now that we’ve completed the first implementation of our chat slider, let’s look at
how the application actually works using the Chrome Developer Tools.

1.2.6 Inspect our application using Chrome Developer Tools

If you’re comfortable using Chrome Developer Tools, you may skip this section. If not,
we highly encourage you to play along at home.

 Let’s open our file, spa.html, in Chrome. After it loads, let’s immediately open up
the Developer Tools (Menu > Tools > Developer Tools).

 The first thing you may notice is how the DOM has been changed by our module to
include the <div class="spa-slider" ... > element, as shown in figure 1.7. As we
continue, our application will be adding a lot more dynamic elements like this one.

(1) Click here (2) Slides out
Figure 1.6 The completed chat
slider in action—spa.html

JavaScript generated
DOM element

Figure 1.7 Inspecting the elements—spa.html
6 See www.javascriptkit.com/dhtmltutors/domready.shtml to get a taste of the pain.

www.EBooksWorld.ir

www.javascriptkit.com/dhtmltutors/domready.shtml
http://www.it-ebooks.info/

18 CHAPTER 1 Our first single page application

We can explore the JavaScript execution by clicking on the Sources button in the top
menu of the Developer Tools. Then select the file that contains the JavaScript, as
shown in figure 1.8.

 In later chapters we’ll be placing our JavaScript into separate files. But for this
example it’s in our HTML file as shown in figure 1.9. We’ll need to scroll down to find
the JavaScript we want to inspect.

When we navigate to line 76, we should see an if statement, as shown in figure 1.10.
We should like to inspect the code before this statement is executed, so we click on the
left margin to add a breakpoint. Whenever the JavaScript interpreter reaches this line
in the script, it’ll pause so we can inspect elements and variables to better understand
what’s happening.

Select the source

Figure 1.8 Selecting a source file—spa.html

The source file as
loaded from the server

Figure 1.9 Viewing the source file—spa.html

Pick your line here...

... and it is added to
the breakpoints section.

Pause/resume

..
the

Figure 1.10 Setting a breakpoint—spa.html
www.EBooksWorld.ir

http://www.it-ebooks.info/

19Build our first SPA

Now let’s go back to the browser and click on the slider. We’ll see that the JavaScript
has paused at the red arrow at line 76, as in figure 1.11. While the application is
paused, we can inspect variables and elements. We can open the console section and
type in various variables and press Return to see their values in this paused state. We
see that the if statement condition is true (slider_height is 16, and config-
Map.retracted_height is 16), and we can even inspect complex variables like the
configMap object, as shown at the bottom of the console. When we’re done inspect-
ing, we can remove the breakpoint by clicking on the left margin of line 76, and then
clicking the Resume button at the top right (above Watch Expressions).

 Once we click Resume, the script will continue from line 76 and finish toggling the
slider. Let’s return to the Elements tab and look at how the DOM has changed, as
shown in figure 1.12. In this figure we can see that the CSS height property, which was
provided by the spa-slider class (see Matched CSS Rules on the lower right), has
been overridden by an element style (element styles have higher priority over styles
that come from classes or IDs). If we click on the slider again, we can watch the height
change in real-time as the slider retracts.

Variable inspection
using console log

Call stack

Execution
paused here

Figure 1.11 Inspecting values on break—spa.html

Watch this value
change when you
click on the slider.

Element style
always overrides
class or ID style.
Figure 1.12 Viewing DOM changes—spa.html

www.EBooksWorld.ir

http://www.it-ebooks.info/

20 CHAPTER 1 Our first single page application

Our short introduction to Chrome Developer Tools shows only a small portion of
their ability to help us understand and change what’s occurring “under the hood” of
our application. We’ll continue to use these tools as we develop this application, and
we recommend you spend some quality time with the online manual at http://
mng.bz/PzIJ. It’s time well spent.

1.3 The user benefits of a well-written SPA
Now that we’ve built our first SPA, let’s consider the primary benefit of an SPA over a
traditional website: it provides a substantially more engaging user experience. An SPA
can deliver the best of both worlds: the immediacy of a desktop application and the
portability and accessibility of a website.

■ An SPA can render like a desktop application—The SPA redraws the parts of the
interface that need to change only as needed. A traditional website, in compari-
son, redraws the entire page on many user actions, resulting in a pause and a
“flash” while the browser retrieves from the server and then redraws everything
on the page. If the page is large, the server is busy, or the internet connection is
slow, this flash can take several seconds or more, and the user has to guess when
the page is ready to use again. This is a horrible experience when compared to
the rapid rendering and immediate feedback of an SPA.

■ An SPA can respond like a desktop application—The SPA minimizes response time
by moving working (transient) data and processing from the server to the
browser as much as possible. The SPA has the data and business logic needed to
make most decisions locally and therefore quickly. Only data validation, authen-
tication, and permanent storage must remain on the server, for reasons we dis-
cuss in chapters 6-8. A traditional website has most of the application logic on
the server and the user must wait for a request/response/redraw cycle in
response to much of their input. This can take several seconds, compared to
the near immediate response of the SPA.

■ An SPA can notify users of its state like a desktop application—When an SPA does have
to wait on a server, it can dynamically render a progress bar or busy indicator so
the user isn’t befuddled by a delay. Compare this to a traditional website, where
the user actually has to guess when the page is loaded and usable.

■ An SPA is nearly universally accessible like a website—Unlike most desktop applica-
tions, users can access an SPA from any web connection and a decent browser.
Today, the list includes smart phones, tablets, televisions, laptops, and desktop
computers.

■ An SPA can be instantly updated and distributed like a website—The user doesn’t
have to do anything to realize the benefits—when they reload the browser it
works. The hassle of maintaining multiple concurrent versions of software is
largely eliminated.7 The authors have worked on SPAs that have been built and

7 But not completely: what happens if the server-client data exchange format changes, yet many users have the

prior version of software loaded in their browser? This can be accommodated with some forethought.

www.EBooksWorld.ir

http://mng.bz/PzIJ
http://mng.bz/PzIJ
http://www.it-ebooks.info/

21Summary

updated multiple times in a single day. Desktop applications often require a
download and administrative access to install a new version, and the interval
between versions can be many months or years.

■ An SPA is cross-platform like a website—Unlike most desktop applications, a well-
written SPA can work on any operating system that provides a modern HTML5
browser. Though usually this is considered a developer benefit, it’s extremely
useful for many users who have a combination of devices—say Windows at work,
a Mac at home, a Linux server, an Android phone, and an Amazon tablet.

All of these benefits mean that you may want to make your next application an SPA.
Clunky websites that re-render an entire page after each click tend to alienate increas-
ingly sophisticated users. The communicative and responsive interface of a well-writ-
ten SPA, along with the accessibility of the internet, helps keep our customers where
they belong—using our product.

1.4 Summary
The single page application has been around for some time. Flash and Java have, until
recently, been the most widely used SPA client platforms because their capability,
speed, and consistency exceeded those of JavaScript and browser rendering. But
recently, JavaScript and browser rendering have reached a tipping point where they’ve
overcome their most troublesome deficiencies while providing significant advantages
over other client platforms.

 We focus on creating SPAs using native JavaScript and browser rendering, and
when we refer to an SPA we mean a native JavaScript SPA unless otherwise noted. Our
SPA tool chain includes jQuery, TaffyDB2, Node.js, Socket.IO, and MongoDB. All of
these are proven, popular solutions. You may choose to employ alternatives to these
technologies, but the fundamental structure of an SPA would remain regardless of spe-
cific technology decisions.

 The simple chat slider application we developed demonstrates many features of a
JavaScript SPA. It responds immediately to user input, and it uses data stored in the cli-
ent instead of the server to make decisions. We used JSLint to ensure that our applica-
tion didn’t contain common JavaScript mistakes. And we used jQuery to select and
animate the DOM and to handle the event when a user clicks on the slider. We
explored using the Chrome Developer Tools to help us understand how our applica-
tion was working.

 An SPA can provide the best of both worlds—the immediacy of a desktop application
and the portability and accessibility of a website. The JavaScript SPA is available on over
a billion devices that support a modern web browser and that don’t require any propri-
etary plugins. With a little effort, it can support desktops, tablets, and smart phones run-
ning many different operating systems. SPAs are easily updated and distributed, usually
without requiring any action from the user. All of these benefits explain why you may
want to make your next application an SPA.
www.EBooksWorld.ir

http://www.it-ebooks.info/

22 CHAPTER 1 Our first single page application

 In the next chapter, we’ll explore some key JavaScript concepts that are needed for
SPA development, but are frequently ignored or misunderstood. We’ll then build on
this foundation to improve and extend the example SPA we developed in this chapter.
www.EBooksWorld.ir

http://www.it-ebooks.info/

Reintroducing JavaScript
This chapter reviews unique JavaScript concepts that we need to know if we’re to
build a native JavaScript single page application of significant scale. The snippet of
code in listing 2.1 from chapter 1 shows the concepts we’ll be covering. If you
understand all of these how and why concepts then you might skim or skip this
chapter and get straight to work on an SPA in chapter 3.

 To follow along at home you can cut and paste all of the listings in this chapter
into the console log of Chrome Development Tools and press Return to see them
execute. We highly encourage you to join in the fun.

This chapter covers
■ Variable scoping, function hoisting, and the

execution context object
■ Explaining variable scope chains and why we

use them
■ Creating JavaScript objects using prototypes
■ Writing self-executing anonymous functions
■ Using the module pattern and private variables
■ Exploiting closures for fun and profit
23

www.EBooksWorld.ir

http://www.it-ebooks.info/

24 CHAPTER 2 Reintroducing JavaScript

...

var spa = (function ($) {
// Module scope variables
var

configMap = {
extended_height : 434,
extended_title : 'Click to retract',
retracted_height : 16,
retracted_title : 'Click to extend',
template_html : '<div class="spa-slider"></div>'

},
$chatSlider,
toggleSlider, onClickSlider, initModule;

...

// Public method
initModule = function ($container) {

$container.html(configMap.template_html);
$chatSlider = $container.find('.spa-slider');

$chatSlider
.attr('title', configMap.retracted_title)
.click(onClickSlider);

return true;
};

return { initModule : initModule };

}(jQuery));

...

Listing 2.1 Application JavaScript

Self-executing anonymous
functions, module pattern

Prototype-based inheritance,
variable hoisting, variable scope

Anonymous
functions, module
pattern, closures

Module pattern,
scope chain

Self-executing
anonymous functions

Coding standards and JavaScript syntax
JavaScript syntax can be confusing to the uninitiated. It’s important to understand
variable declaration blocks and object literals before moving on. Feel free to skip this
sidebar if you’re already familiar with them. For a complete rundown on what we con-
sider to be important JavaScript syntax and good coding standards, see appendix A.

VARIABLE DECLARATION BLOCKS

var spa = "Hello world!";

JavaScript variables are declared following the var keyword. A variable can contain
any type of data: arrays, integers, floats, strings, and so on. The variable type isn’t
specified, so JavaScript is considered a loosely typed language. Even after a value is
assigned to a variable, the type of value can be changed by assigning a value with a
different type, so it’s also considered a dynamic language.

JavaScript variable declarations and assignments can be chained together following
the var keyword by separating them with commas:
www.EBooksWorld.ir

http://www.it-ebooks.info/

25Variable scope

2.1 Variable scope
A good place to start our discussion is with the behavior of variables and when vari-
ables are in or out of scope.

 Variables are scoped by functions in JavaScript and they’re either global or local.
Global variables are accessible everywhere, and local variables are only accessible where
they are declared. The only block that defines scope for a variable in JavaScript is a
function. That’s it. Global variables are defined outside of a function, whereas local
variables are defined inside of a function. Simple, right?

 Another way to look at it is that functions are like a prison, and the variables
defined inside of the function are like prisoners. Just like a prison contains the pris-
oners and doesn’t let them escape outside of the prison walls, a function contains the
local variables and doesn’t let them escape outside the function, as the following
code shows:

(continued)

var book, shopping_cart,
spa = "Hello world!",
purchase_book = true,
tell_friends = true,
give_5_star_rating_on_amazon = true,
leave_mean_comment = false;

There are many viewpoints on the best format for a variable declaration block. We
prefer variables that are declared but not defined to be at the top, followed by vari-
able declarations with definitions. We also prefer having commas at the end of the
line, as shown here, but we aren’t religious about it and the JavaScript engine
doesn’t care.

OBJECT LITERALS

An object literal is an object defined by a comma separated list of attributes con-
tained in curly braces. Attributes are set with a colon instead of an equals sign. Ob-
ject literals can also contains arrays, which are a comma-separated list of members
surrounded by square brackets. Methods can be defined by setting a function as the
value of one of the attributes:

var spa = {
title: "Single Page Web Applications", //attribute
authors: ["Mike Mikowski", "Josh Powell"], //array
buy_now: function () { //function

console.log("Book is purchased");
}

}

Object literals and variable declaration blocks are used extensively throughout the
book.
www.EBooksWorld.ir

http://www.it-ebooks.info/

26 CHAPTER 2 Reintroducing JavaScript

var regular_joe = 'I am global!';

function prison() {
var prisoner = 'I am local!';

}

prison();
console.log(regular_joe);
console.log(prisoner);

If only it were that simple. The first gotcha
you’ll likely encounter with JavaScript scop-
ing is that it’s possible to declare a global
variable while inside of a function simply by
omitting the var declaration, as figure 2.1
shows. And as with all programming lan-
guages, global variables are almost always a
Bad Idea.

function prison () {
prisoner_1 = 'I have escaped!';
var prisoner_2 = 'I am locked in!';

}

prison();
console.log(prisoner_1);

console.log(prisoner_2);

Outputs “I am global!”

Outputs “Error: prisoner is not defined”

JavaScript 1.7, 1.8, 1.9+, and block scope
JavaScript 1.7 introduces a new block-scope constructor, the let statement. Unfor-
tunately, even though standards exist for JavaScript 1.7, 1.8, and 1.9, not even 1.7
is consistently deployed across all browsers. Until browsers are compatible with
these JavaScript updates, we’ll pretend that JavaScript 1.7+ doesn't exist. Still, let’s
take a look at how it works.

let (prisoner = 'I am in prison!') {
console.log(prisoner);

}
console.log(prisoner);

To use JavaScript 1.7, put the version in the type attribute of the script tag:

<script type="application/javascript;version=1.7">

This is only a brief taste of JavaScript 1.7+; there are many additional changes and
new features.

Outputs “I am
in prison!”

Outputs “Error: prisoner
isn’t defined”

Outputs: “I have escaped!”
Outputs an error: prisoner_2 is not defined

function leaky() {
 var local=1;
 global=2;
}

Function scope

Global scope

global=2;

Figure 2.1 If you forget the var keyword when
you declare a local variable in a function, you
create a global variable instead.
www.EBooksWorld.ir

http://www.it-ebooks.info/

27Variable scope

This isn’t good—don’t let your prisoners escape. Another place this gotcha shows up
often is when we forget the var when declaring the counter in for loops. Try the fol-
lowing definitions for the prison function one at a time:

// wrong
function prison () {

for(i = 0; i < 10; i++) {
//...

}
}
prison();
console.log(i); // i is 10
delete window.i;

// permissible
function prison () {

for(var i = 0; i < 10; i++) {
//...

}
}
prison();
console.log(i); // i is not defined

// best
function prison () {

var i;
for (i = 0; i < 10; i++) {
// ...

}
}
prison();
console.log(i); // i is not defined

We like this version better because declaring the variable at the top of the function
makes its scope perfectly clear. Declaring a variable inside the for loop initializer
might fool some people into thinking the variable’s scope is limited to the for loop, as
it would be in some other languages.

 We extend this logic to solve and combine all of the JavaScript declarations and
most assignments at the top of the function they’re declared in, so that the scope of
the variable is clear:

function prison() {
var prisoner = 'I am local!',

warden = 'I am local too!',
guards = 'I am local three!'

;
}

By consolidating the local variable definitions using commas, we make them easy to
see and, perhaps more importantly, make it less likely that a typo could inadvertently
sneak in and create a global variable instead of a local one. Also, did you notice how
nicely lined up they were? See how the semicolon at the end acts to the eye like a clos-

ing tag for the variable declaration block? We talk about this and other methods of

www.EBooksWorld.ir

http://www.it-ebooks.info/

28 CHAPTER 2 Reintroducing JavaScript

formatting JavaScript for readability and understandability in the JavaScript Coding
Standards in appendix A. Another interesting feature of JavaScript, variable hoisting,
is related to this method of declaring local variables. Let’s look at that next.

2.2 Variable hoisting
When a variable is declared in JavaScript, its declaration is said to be hoisted to the top
of its functional scope and the variable is assigned the value of undefined. This has
the effect of making it so that a variable declared anywhere in a function exists
throughout the entire function, though its value is undefined until it’s assigned a
value, as illustrated in figure 2.2.

function prison () {
console.log(prisoner);
 var prisoner = 'Now I am defined!';

console.log(prisoner);
}
prison();

Contrast the code in the figure with an attempt to access a variable not declared
locally or globally, which results in a runtime JavaScript error that will stop JavaScript
from executing at that statement:

function prison () {

 console.log(prisoner);

}
prison();

Because variable declarations are always hoisted to the top of your functional scope,
the best practice is to always declare your variables at the top of your functions, prefer-
ably with a single var statement. This matches what JavaScript does and avoids the
type of confusion we illustrated in the previous figure.

function prison () {
console.log(prisoner);
var prisoner, warden, guards;

console.log(prisoner);
prisoner = 'prisoner assigned';

function hoisted() {
console.log(v);
var v=1;

}

function hoisted() {
 var v;
 console.log(v);
 v=1;
}

Figure 2.2 JavaScript variable declarations are “hoisted” to the beginning of the function they appear
in, but initializations stay where they are. The JavaScript engine doesn’t actually rewrite the code: the
declaration is rehoisted every time the function is invoked.

Outputs “prisoner is
undefined”

Outputs “Now I
am defined!”

Outputs “error: prisoner is not
defined” and the JavaScript
engine stops executing code.

Outputs “undefined”

Outputs “undefined”
www.EBooksWorld.ir

http://www.it-ebooks.info/

29Advanced variable hoisting and the execution context object

console.log(prisoner);
}
prison();

This scope and hoisting behavior can sometimes combine to cause some surprising
behavior. Take the following code:

var regular_joe = 'Regular Joe';
function prison () {

console.log(regular_joe);
}
prison();

When prison is executed and regular_joe is requested by console.log(), the
JavaScript engine first checks whether regular_joe has been declared in the local
scope. Because regular_joe isn’t declared in the local scope, the JavaScript engine
then checks the global scope and finds that it’s defined there and returns that value.
This is called walking up the scope chain. But what if the variable is also declared in the
local scope?

var regular_joe = 'regular_joe is assigned';
function prison () {

console.log(regular_joe);
 var regular_joe;
}
prison();

Does this seem counterintuitive or confusing? Let’s walk through the way JavaScript
handles hoisting under the covers.

2.3 Advanced variable hoisting and the execution context object
All the concepts we’ve covered so far are generally regarded as necessary to know in
order to be successful as a JavaScript developer. Let’s take it a step beyond that and see
what happens under the hood: you’ll be one of the few who understands how
JavaScript really works. We’ll start with one of JavaScript’s more “magical” features:
variable and function hoisting.

2.3.1 Hoisting

Like all forms of magic, the trick becomes almost disappointing when the secret is
revealed. The secret is that the JavaScript engine makes two passes over code when it
comes into scope. On the first pass it initializes variables and on the second pass it exe-
cutes code. I know, simple; I have no idea why it’s not usually described in these terms.
Let’s go into more detail on what the JavaScript engine does during the first pass
because it has some interesting repercussions.

Outputs “prisoner assigned”

regular_joe is defined
in the global scope

‘Regular Joe’ global variable
regular_joe is logged
inside of the prison function

Outputs “undefined”. The declaration
of regular_joe is hoisted to the top
of the function and that hoisted
declaration is checked before looking for
regular_joe in the global scope.
www.EBooksWorld.ir

http://www.it-ebooks.info/

Outpu
ar

Sin
w

from
n

declar
30 CHAPTER 2 Reintroducing JavaScript

 On the first pass, the JavaScript engine walks through the code and does three things:

1 Declares and initializes the function arguments.
2 Declares the local variables, including anonymous functions assigned to a local

variable, but doesn’t initialize them.
3 Declares and initializes functions.

function myFunction(arg1, arg2) {
var local_var = 'foo',

a_function = function () {
console.log('a function');

};

function inner () {
console.log('inner');

}

}
myFunction(1,2);

Values are not assigned to local variables during the first pass because code may have
to be executed to determine the value and the first pass doesn’t execute code. Values
are assigned to the arguments, because any code needed to determine an argument’s
value was run before the argument was passed into the function.

 We can demonstrate that the values of the arguments are set in the first pass by
comparing them to the code demonstrating function hoisting from the end of the last
section.

var regular_joe = 'regular_joe is assigned';
function prison () {

console.log(regular_joe);
 var regular_joe;
}
prison();

regular_joe is undefined before it’s declared in the prison function, but if
regular_joe is also passed in as an argument, it has a value before it’s declared.

var regular_joe = 'regular_joe is assigned';
function prison (regular_joe) {

console.log(regular_joe);
 var regular_joe;

console.log(regular_joe);
}

prison('the regular_joe argument');

Listing 2.2 The first pass

Listing 2.3 Variables are undefined before they are declared

Listing 2.4 Variables have a value before they’re declared

B Declares and initializes
the function argumentsC Declares the local

variables, including
anonymous functions

assigned to a local
variable, but doesn’t

initialize them. D Declares and
initializes functions

Outputs “undefined”. The declaration
of regular_joe is hoisted to the top
of the function and that hoisted
declaration is checked before looking
for regular_joe in the global scope.

Outputs “the regular_joe
argument”. Arguments are
assigned a value during the first
pass. Without understanding the
two passes the JavaScript engine
makes, it looks like the regular_joe
argument would be overwritten by
the regular_joe local variable

ts “the regular_joe
gument”. Surprise!
ce regular_joe
as assigned a value
 the argument, it’s

ot overwritten with
undefined when it’s
declaration being hoisted.
declared. This

ation is redundant.

www.EBooksWorld.ir

http://www.it-ebooks.info/

31Advanced variable hoisting and the execution context object

If your head is spinning from this, that’s okay. Though we’ve explained that the
JavaScript engine makes two passes over a function when it executes, and that on the
first pass it stores the variables, we haven’t seen how it stores the variables. Seeing how
the JavaScript engine stores variables will hopefully clear up any remaining confusion.
The JavaScript engine stores variables as attributes on an object referred to as the exe-
cution context object.

2.3.2 Execution context and the execution context object

Every time a function is invoked, there’s a new execution context. The execution con-
text is a concept, the concept of a running function—it’s not an object. It’s like think-
ing of an athlete in a running context or a jumping context. We could say a running
athlete instead of an athlete in a running context, just like we could say a running
function, but that’s not how the jargon works. We say the execution context.

 The execution context is made up of everything that happens while that function
is executing. This is separate from a function declaration, because the function decla-
ration describes what will happen when the function is executed. The execution con-
text is the execution of the function.

 All of the variables and functions defined in a function are considered part of the
execution context. The execution context is a part of what developers are referring to
when they talk about a function’s scope. A variable is considered “in scope” if it’s acces-
sible in the current execution context, which is another way of saying the variable is in
scope if it’s accessible while the function is running.

 The variables and functions that are part of the execution context are stored on
the execution context object, an implementation of the ECMA standard for the execution
context. The execution context object is an object in the JavaScript engine, and not a
variable directly accessible in JavaScript. It’s easy enough to access indirectly, as every
time you use a variable you’re accessing an attribute of an execution context object.

 Earlier, we discussed how the JavaScript engine makes two passes over an execu-
tion context, declaring and initializing the variables, but where does it store these vari-
ables? The JavaScript engine declares and initializes the variables as attributes on the
execution context object. For an example of how the variables are stored, take a look
at table 2.1.

It’s possible that you’ve never heard of the execution context object. It’s not some-

Table 2.1 Execution context object

Code Execution context object

var example_variable = "example",
another_example = "another";

{
example_variable: "example",
another_example: "another"

};
thing commonly discussed in the web developer community, probably because the

www.EBooksWorld.ir

http://www.it-ebooks.info/

 a
 aa

s
ut
tion
32 CHAPTER 2 Reintroducing JavaScript

execution context object is buried in the implementation of JavaScript and not
directly accessible during development.

 Understanding the execution context object will be key to understanding the rest
of the chapter, so let’s walk through the lifecycle of an execution context object and
the JavaScript code that creates it.

outer(1);

function outer(arg) {

var local_var = 'foo';

function inner () {
console.log('inner');

}

inner();

}

Now that the arguments and functions have been declared and assigned, and the local
variables have been declared, a second pass is made, executing the JavaScript and
assigning the definitions of the local variables.

outer(1);

function outer(arg) {

var local_var = 'foo';

function inner () {
console.log('inner');

}

inner();

}

Listing 2.5 Execution context object—first pass

Listing 2.6 Execution context object—second pass

{aaaaaaaaaaaa
}aaaaaaaaaaaa

An empty execution
context object is

created when
outer is invoked.

{
 arg : 1
}

 Arguments are declared
and assigned

{aaaaaaaaaaaaaaaaaaaa
 aarg : 1,aa
 local_var: undefined
}aaaaaaaaaaaaaaaaaaaa

Local variables are declared but
not assigned

{
 arg : 1,
 local_var : undefined,
 inner : function () {
 console.log('inner');
 }
}

Functions are declared and assigned,
but not executed.

Nothing happens; code isn’t
executed on the first pass

{
 arg: 1,aa
 local_var: undefined,aa
 inner: function () {aa
 console.log('inner');aaaa
 }aa
}

{
 arg: 1,
 local_var: 'foo',
 inner: function () {
 console.log('inner');
 }
};

Local variables are assigned as code is
executed.

{
 arg: 1,
 local_var: 'foo',
 inner: function () {
 console.log('inner');
 }
}

The attributes representing variables on thi
execution context object remain the same, b
when function inner is invoked, a new execu

context object is created inside of this one.

www.EBooksWorld.ir

http://www.it-ebooks.info/

33Advanced variable hoisting and the execution context object

This can go many layers deep, as functions can be invoked inside of an execution con-
text. Invoking a function inside of an execution context creates a new execution con-
text nested inside the existing execution context. Okay, head spinning again; it’s
picture time. See figure 2.3.

1 Everything inside of the <script> tag is in the global execution context.
2 Invoking first_function creates a new execution context inside the global

execution context. When first_function runs, it has access to the variables of
the execution context in which it was invoked. In this case, first_function has
access to the variables defined in the global execution context and the local
variables defined in first_function. These variables are said to be in scope.

3 Invoking second_function creates a new execution context inside of the
first_function execution context. second_function has access to the vari-
ables from the first_function execution context because it was invoked inside
of it. second_function also has access to variables in the global execution con-
text and the local variables defined in second_function. These variables are
said to be in scope.

4 second_function is invoked again, this time in the global execution context.
This second_function doesn’t have access to the variables in the
first_function execution context because this time second_function wasn’t
invoked in the first_function execution context. Said another way, this time
when second_function is called, it doesn’t have access to the variables defined
in first_function because it wasn’t called inside of first_function.

This second_function execution context doesn’t have access to the variables
from the previous time second_function was invoked either, because they occur

<script>
var global_var;

first_function();

function first_function() {
 var first_var;
 second_function();
}

function second_function() {
 var second_var;
}

second_function();
</script>

second_function() execution context

second_function() execution context

first_function() execution context
Global execution context

B

C

D

E

Figure 2.3 Calling a function creates an execution context.
in different execution contexts. Said another way, when you call a function, you

www.EBooksWorld.ir

http://www.it-ebooks.info/

34 CHAPTER 2 Reintroducing JavaScript

don’t have access to local variables created the last time the function was called,
and the next time you call this function you won’t have access to the local variables
from this function call. These inaccessible variables are said to be out of scope.

The order in which the JavaScript engine looks in the execution context objects to
access variables that are “in scope” is referred to as the scope chain, which, together
with the prototype chain, describes the order in which JavaScript accesses variables and
their attributes. We’ll discuss these concepts in the next few sections.

2.4 The scope chain
Up until now we’ve mostly limited our discussion of variable scope to global and local.
This is a good starting point, but scoping is more nuanced, as implied in the discus-
sion of nested execution contexts in the last section. Variable scope is more accurately
thought of as a chain, as seen in figure 2.4. When looking for the definition of a vari-
able, the JavaScript engine first looks at the local execution context object. If the defi-
nition isn’t there, it jumps up the scope chain to the execution context it was created
in and looks for the variable definition in that execution context object, and so on
until it finds the definition or reaches the global scope.

 Let’s modify an earlier example to illustrate the scope chain. The code in listing 2.7
will print the following:

I am here to save the day!
regular_joe is assigned

var regular_joe;

Nested
scope

var regular_joe;

Nested
scope

var regular_joe;

Figure 2.4 During runtime JavaScript searches the scope hierarchy to resolve variable names.
undefined

www.EBooksWorld.ir

http://www.it-ebooks.info/

 set
.

35The scope chain

var regular_joe = 'I am here to save the day!';

// logs 'I am here to save the day!'
console.log(regular_joe);
function supermax(){

var regular_joe = 'regular_joe is assigned';

// logs 'regular_joe is assigned'
console.log(regular_joe);

function prison () {
var regular_joe;
console.log(regular_joe);

}

// logs 'undefined'
prison();

}
supermax();

During runtime, JavaScript searches the scope hierarchy to resolve variable names. It
starts with the current scope, and then works its way back to the top-level scope, the
window (browsers) or global (node.js) object. It uses the first match it finds and the
search stops. Note that this implies that variables in more deeply nested scopes can hide
variables in more global scopes by replacing them for their current scope. This can be
either good or bad, depending on whether you’re expecting it to happen. In real code
you should strive to make variable names unique to the extent possible: the code we just
looked at, in which the same name is introduced into three different nested scopes, is
hardly an example of best practice and is used only to illustrate the point.

 In the listing, the value of a variable called regular_joe is requested from three
scopes:

1 The last line of the listing, console.log(regular_joe), is in the global scope.
JavaScript starts searching for a regular_joe property of the global execution
context object. It finds one with the value I am here to save the day and
uses it.

2 At the last line of the supermax function, we see console.log(regular_joe).
This call is within the supermax execution context. JavaScript starts searching
for a regular_joe property of the supermax execution context object. It finds
one with the value of regular_joe is assigned and uses that.

3 At the last line of the prison function, we see console.log(regular_joe). This
call is within the prison execution context within the supermax execution con-
text. JavaScript starts searching for a regular_joe property of the prison exe-
cution context object. It finds one with a value of undefined and uses that.

In this example, the value of regular_joe is defined for all three scopes. In the next
version of the code, in listing 2.8, we define it only in the global scope. Now the pro-

Listing 2.7 Scope chain example—regular_joe defined at each calling scope

regular_joe is
in the global scope

Calling scope: global.
Closest match in scope

chain: the global
regular_joe.

Calling scope:
global -> supermax(). Closest match
in scope chain: the regular_joe
defined in supermax().

Calling scope:
global -> supermax() -> prison().
Closest match in scope chain: the
regular_joe defined in prison().
gram prints “I am here to save the day!” three times:

www.EBooksWorld.ir

http://www.it-ebooks.info/

reg
in

glo

).

36 CHAPTER 2 Reintroducing JavaScript

var regular_joe = 'I am here to save the day!';
// logs 'I am here to save the day!'
console.log(regular_joe);
function supermax(){

// logs 'I am here to save the day!'
console.log(regular_joe);

function prison () {
console.log(regular_joe);

}

// logs 'I am here to save the day!'
prison();

}
// logs 'I am here to save the day'. Twice.
supermax();

It’s important to remember that when we request a variable value, the result may
come from anywhere in the scope chain. It’s up to us to control and understand
where in the chain our values are derived from, lest we shall fall into tortured coding
chaos. The JavaScript coding standards in appendix A outline a number of techniques
to help us in this effort, and we’ll use them as we go along.

Listing 2.8 Scope chain example—regular_joe defined only in one scope

ular_joe is set
 the global scope.

Calling scope: global,
which is found.

Calling scope:
bal -> supermax().
Closest match in scope

chain: the global
regular_joe.

Calling scope:
global -> supermax() -> prison(
Closest match in scope chain: the global
regular_joe.

Global variables and the window object
What we typically call global variables are properties of the top-level object of the ex-
ecution environment. The top-level object of the browser is the window object; in
node.js, the top-level object is called global, and variable scope works differently.

The window object contains many properties which themselves contain objects,
methods (onload, onresize, alert, close...), DOM elements (document,
frames...) and other variables. All these properties are accessed by using the syntax
window.property.

window.onload = function(){
window.alert('window loaded');

}

The top-level object for node.js is called global. Because node.js is a network server
and not a browser, the functions and properties which are available are significantly
different.

When JavaScript in a browser checks for the existence of a global variable, it looks
at the window object.

var regular_joe = 'Global variable';
console.log(regular_joe); // 'Global variable'
console.log(window.regular_joe); // 'Global variable'
console.log(regular_joe === window.regular_joe); // true
www.EBooksWorld.ir

http://www.it-ebooks.info/

37JavaScript objects and the prototype chain

JavaScript has a parallel concept to the scope chain, known as the prototype chain, that
defines where an object looks for the definitions of its attributes. Let’s take a look at
prototypes and the prototype chain.

2.5 JavaScript objects and the prototype chain
JavaScript objects are prototype-based, whereas the other most widely used languages
today all use class-based objects. In a class-based system, an object is defined by
describing what it’ll look like with a class. In prototype-based systems, we create an
object that looks like what we want all objects of that type to look like, and then tell
the JavaScript engine that we want more objects that look like that.

 Not to stretch a metaphor too far, but if architecture were a class-based system, an
architect would draw up the blueprints of a house and then have houses built based
on that blueprint. If architecture were prototype-based, the architect would build a
house and then have houses built to look like that one.

 Let’s build on our earlier prisoner example and compare what it takes in each sys-
tem to create a single prisoner with properties for the name, prisoner ID, length of
prison sentence in years, and number of years probation.

The prototype-based object is simpler and quicker to write when there’s only one
instance of an object. In class-based systems you have to define a class, define a con-
structor, and then instantiate an object that is a member of that class. A prototype-
based object is simply defined in place.

 The prototype-based system shines for the simple one object use case, but it can
also support the more complex use case of having multiple objects that share similar
characteristics. Let’s take the previous example of prisoners and let the code change
the name and id of the prisoners, but keep the same preset years in sentence and years
until probation.

 As you can see in table 2.3, the two kinds of programming follow a similar
sequence, and if you’re used to classes, adjusting to prototypes shouldn’t be much of a
stretch. But the devil is in the details, and if you’re coming from a class-based system
and jump into JavaScript without learning the prototype-based approach, it’s easy to

Table 2.2 Simple object creation: class versus prototype

Class-based Prototype-based

public class Prisoner {
public int sentence = 4;
public int probation = 2;
public string name = "Joe";
public int id = 1234;

}

Prisoner prisoner = new Prisoner();

var prisoner = {
sentence : 4,
probation : 2,
name : 'Joe',
id : 1234

};
www.EBooksWorld.ir

http://www.it-ebooks.info/

38 CHAPTER 2 Reintroducing JavaScript

get tripped up on something that seems like it should be simple. Let’s step through
the sequence and see what we can learn.

 In each method, we first create the template for our objects. The template is
called the class in class-based programming and the prototype object in prototype-based
programming, but they serve the same purpose: acting as a framework from which
objects will be created.

 Second, we create a constructor. In class-based languages, the constructor is
defined inside of the class so it’s clear when instantiating the object which constructor
goes with which class. In JavaScript, the object constructor is set outside of the proto-
type, so an additional step is needed to link them together.

 Finally, the objects are instantiated.
 JavaScript’s use of the new operator is a departure from its prototype-based roots,

perhaps as an attempt to make it more comprehensible to developers familiar with
class-based inheritance. Unfortunately, we think it clouds the issue and makes some-
thing that should be unfamiliar (and therefore studied) appear to be familiar, causing

Table 2.3 Multiple objects: class versus prototype

Class-based Prototype-based

/* step 1 */
public class Prisoner {
public int sentence = 4;
public int probation = 2;
public string name;
public string id;

/* step 2 */
public Prisoner(string name,

string id) {

this.name = name;
this.id = id;

}
}

/* step 3 */
Prisoner firstPrisoner
= new Prisoner("Joe","12A");

Prisoner secondPrisoner
= new Prisoner("Sam","2BC");

1 Define the class
2 Define the class constructor
3 Instantiate the objects

// * step 1 *
var proto = {
sentence : 4,
probation : 2

};

//* step 2 *
var Prisoner =

function(name, id){
this.name = name;
this.id = id;

};

//* step 3 *
Prisoner.prototype = proto;

// * step 4 *
var firstPrisoner =
new Prisoner('Joe','12A');

var secondPrisoner =
new Prisoner('Sam','2BC');

1 Define prototype object
2 Define the object constructor
3 Link constructor to prototype
4 Instantiate the objects
www.EBooksWorld.ir

http://www.it-ebooks.info/

e Now
pris
ma
39JavaScript objects and the prototype chain

developers to jump in until they run into issues and spend hours trying to figure out a
bug caused by mistaking JavaScript for a class-based system.

 As an alternative to using the new operator, the method Object.create has been
developed and is used to add a more prototype-based feel to JavaScript object cre-
ation. We use the Object.create method exclusively throughout the book. Creating
prisoners from the prototype-based example from table 2.3 using Object.create
would look like this:

var proto = {
sentence : 4,
probation : 2

};

var firstPrisoner = Object.create(proto);
firstPrisoner.name = 'Joe';
firstPrisoner.id = '12A';

var secondPrisoner = Object.create(proto);
secondPrisoner.name = 'Sam;
secondPrisoner.id = '2BC';

Object.create takes the prototype as an argument and returns an object; in this way
you can define the common attributes and methods on a prototype object and use it to
create many objects sharing the same properties. Having to set the name and id on each
of them manually is a pain because having to repeat code isn’t very clean. As an alter-
native, a common pattern for using Object.create is to use a factory function that cre-
ates and returns the final object. We name all our factory functions make<object_name>.

var proto = {
sentence : 4,
probation : 2

};

var makePrisoner = function(name, id) {

var prisoner = Object.create(proto);
prisoner.name = name;
prisoner.id = id;

return prisoner;
};

var firstPrisoner = makePrisoner('Joe', '12A');

var secondPrisoner = makePrisoner('Sam', '2BC');

Though there are a number of alternative methods to create objects in JavaScript (it’s
another oft-debated developer topic), it’s generally considered a best practice to use
Object.create. We prefer this method as it clearly illustrates how the prototype is set.

Listing 2.9 Using Object.create to create objects

Listing 2.10 Use of Object.create with a factory function

makePrisoner
is the factory
function; it creates
prisoner objects.

The object creation is
identical to the previous
listing, just wrapped insid
of the factory function.

 we can create new
oners by calling the
kePrisoner function
and passing in their

name and id.
The new operator is, unfortunately, perhaps the most commonly used method to create

www.EBooksWorld.ir

http://www.it-ebooks.info/

40 CHAPTER 2 Reintroducing JavaScript

objects. We say unfortunate because it misleads developers into thinking the language
is class-based and obscures the nuances of the prototype-based system.

Now that we’ve seen how JavaScript uses prototypes to create objects sharing the same
properties, let’s dig into the prototype chain and talk about how the JavaScript engine
implements finding the value of attributes on an object.

2.5.1 The prototype chain

Attributes on an object are implemented and function differently in prototype-based
JavaScript than in a class-based system. There are enough similarities that most of the
time we can get along without a clear understanding, but when the differences rear
their ugly heads, we pay the price in frustration and lost productivity. Just like learning
the basic differences between prototypes and classes is worth it up front, so is learning
about the prototype chain.

 JavaScript uses the prototype chain to resolve property values. The prototype chain
describes how the JavaScript engine looks from object to the object's prototype to the
prototype's prototype in order to locate the value of a property of the object. When
we request an object’s property, the JavaScript engine first looks for the property
directly on the object. If it can’t find the property there, it looks at the prototype
(stored in the __proto__ property of objects) and sees if the prototype contains the
requested property.

 If the JavaScript engine can’t find the property in the objects prototype, it checks
the prototype’s prototype (the prototype is just an object, so it has a prototype as well).
And so on. This prototype chain ends when JavaScript reaches the generic Object
prototype. If JavaScript can’t find the requested property anywhere in the chain, it
returns undefined. The details can get intricate as the JavaScript engine checks up the
prototype chain, but for the purposes of this book we just need to remember that if a

Object.create for older browsers
Object.create works in IE 9+, Firefox 4+, Safari 5+, and Chrome 5+. In order to be
compatible across older browsers (we’re looking at you IE 6, 7, and 8!), we need to
define Object.create when it doesn’t exist and leave it unchanged for browsers
that have already implemented it.

// Cross-browser method to support Object.create()

var objectCreate = function (arg){
if (! arg) { return {}; }
function obj() {};
obj.prototype = arg;
return new obj;

};

Object.create = Object.create || objectCreate;
property isn’t found on the object, the prototype is checked.

www.EBooksWorld.ir

http://www.it-ebooks.info/

41JavaScript objects and the prototype chain

This climb up the prototype chain is similar to the JavaScript engine’s climb up the
scope chain to find a variable’s definition. As you can see in figure 2.5, the concept is
nearly identical to the scope chain from figure 2.4.

 You can climb the prototype chain manually with the __proto__ property.

var proto = {
sentence : 4,
probation : 2

};

var makePrisoner = function(name, id) {

var prisoner = Object.create(proto);
prisoner.name = name;
prisoner.id = id;

return prisoner;
};

var firstPrisoner = makePrisoner('Joe', '12A');

// The entire object, including properties of the prototype
// {"id": "12A", "name": "Joe", "probation": 2, "sentence": 4}
console.log(firstPrisoner);

// Just the prototype properties
// {"probation": 2, "sentence": 4}
console.log(firstPrisoner.__proto__);

toString:function()

firstPrisoner.__proto__.__proto__

firstPrisoner.__proto__

firstPrisoner

sentence: 4

name: joe

Figure 2.5 During runtime JavaScript searches the prototype chain to resolve property values.
// The prototype is an object with a prototype. Since one

www.EBooksWorld.ir

http://www.it-ebooks.info/

42 CHAPTER 2 Reintroducing JavaScript

// wasn't set, the prototype is the generic object prototype,
// represented as empty curly braces.
// {}
console.log(firstPrisoner.__proto__.__proto__);

// But the generic object prototype has no prototype
// null
console.log(firstPrisoner.__proto__.__proto__.__proto__);

// and trying to get the prototype of null is an error
// "firstPrisoner.__proto__.__proto__.__proto__ is null"
console.log(firstPrisoner.__proto__.__proto__.__proto__.__proto__);

If we request firstPrisoner.name, JavaScript will find the name of the prisoner
directly on the object and return Joe. If we request firstPrisoner.sentence,
JavaScript won’t find the property on the object, but would find it in the prototype
and return the value of 4. And if we request firstPrisoner.toString(), we’ll get the
string [object Object] because the base Object prototype has that method. Finally, if
we request firstPrisoner.hopeless, we’ll get undefined, as that property is nowhere
to be found in the prototype chain. These results are summarized in table 2.4.

Table 2.4 Prototype chain

Requested property Prototype chain

firstPrisoner {
id: '12A',
name: 'Joe',

__proto__: {
probation: 2,
sentence: 4,

__proto__: {
toString : function () {}

}
}

}

firstPrisoner.name {
id: '12A',
name: 'Joe',

__proto__: {
probation: 2,
sentence: 4,

__proto__: {
toString : function () {}

}
}

}

firstPrisoner object
created above, its prototype,
and the prototype’s prototype,
the JavaScript base object.

name is accessed directly
on the firstPrisoner
object.
www.EBooksWorld.ir

http://www.it-ebooks.info/

43JavaScript objects and the prototype chain

firstPrisoner.sentence {
id: '12A',
name: 'Joe',

__proto__: {
probation: 2,
sentence: 4,

__proto__: {
toString : function () {}

}
}

}

firstPrisoner.toString {
id: '12A',
name: 'Joe',

 __proto__: {
probation: 2,
sentence: 4,

__proto __ :
toString : function () {

[native code]
}

}
}

}

firstPrisoner.hopeless {
id: '12A',
name: 'Joe',

__proto__: {
probation: 2,
sentence: 4,

__proto __ :
toString : function () {

[native code]
}

}
}

}

Table 2.4 Prototype chain (continued)

Requested property Prototype chain

sentence attribute isn’t
accessible on the
firstPrisoner object,
so it looks to the prototype,
where it finds it.

toString() isn’t available
on the object or its prototype,

so it looks at the prototype’s
prototype, which happens to

be the base JavaScript object.

hopeless isn't defined
on the object . . .

. . . or the
prototype . . .

. . . or the
prototype's
prototype, so its
value is undefined.
www.EBooksWorld.ir

http://www.it-ebooks.info/

.s

o
the

Con
w

ype

ed
44 CHAPTER 2 Reintroducing JavaScript

Another way to demonstrate the prototype chain is to see what happens when we
change a value on an object set by the prototype.

var proto = {
sentence : 4,
probation : 2

};

var makePrisoner = function(name, id) {

var prisoner = Object.create(proto);
prisoner.name = name;
prisoner.id = id;

return prisoner;
};

var firstPrisoner = makePrisoner('Joe', '12A');

// Both of these output 4
console.log(firstPrisoner.sentence);
console.log(firstPrisoner.__proto__.sentence);
firstPrisoner.sentence = 10;

// Outputs 10
console.log(firstPrisoner.sentence);

// Outputs 4
console.log(firstPrisoner.__proto__.sentence);
delete firstPrisoner.sentence;

// Both of these output 4
console.log(firstPrisoner.sentence);
console.log(firstPrisoner.__proto__.sentence);

So what happens, I can hear you thinking, if we change the value of the attribute on
the prototype object?

PROTOTYPE MUTATIONS

One powerful—and potentially dangerous—behavior that prototype inheritance pro-
vides is the ability to mutate all objects based on a prototype at once. For those famil-
iar with static variables, attributes on the prototype act like static variables for objects
created from the prototype. Let’s check out our code one more time.

var proto = {
sentence : 4,
probation : 2

};

Listing 2.11 Overwriting the prototype

firstPrisoner
entence doesn’t

find a sentence
attribute on the

firstPrisoner
bject, so it looks at
 object’s prototype

and finds it. Set the object’s
sentence
property to 10.

firm that the value
as set to 10 on the

object... ...but the protot
of that object
remains untouch
and is still 4

To get the attribute
back to the value of

the prototype, we
delete the attribute

from the object.
The next time, the JavaScript engine can no
longer find the attribute on the object and
must look back up the prototype chain to

find the attribute on the prototype object.
var makePrisoner = function(name, id) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

45Functions—a deeper look

var prisoner = Object.create(proto);
prisoner.name = name;
prisoner.id = id;

return prisoner;
};

var firstPrisoner = makePrisoner('Joe', '12A');

var secondPrisoner = makePrisoner('Sam', '2BC');

If, after the preceding example, we inspect firstPrisoner or secondPrisoner, we’ll
find that the inherited property sentence is set to 4.

...

// Both of these output '4'
console.log(firstPrisoner.sentence);
console.log(secondPrisoner.sentence);

If we change the prototype object, for example by setting proto.sentence = 5, then all
objects created after and before will reflect this value. Thus firstPrisoner.sentence
and secondPrisoner.sentence are set to 5.

...
proto.sentence = 5;

// Both of these output '5'
console.log(firstPrisoner.sentence);
console.log(secondPrisoner.sentence);

This behavior has good and bad points. The important thing is that it’s consistent
across JavaScript environments and that we know about it so we can code accordingly.

 Now that we know how objects inherit properties from other objects using proto-
types, let’s look at how functions work, because they may also behave differently than
you’d expect. We’ll also investigate how these differences can provide some useful
capabilities that we take advantage of throughout the book.

2.6 Functions—a deeper look
Functions are first-class objects in JavaScript. They can be stored in variables, given
attributes, and even be passed as arguments into function calls. They’re used to con-
trol variable scope and provide private variables and methods. Understanding func-
tions is one of the keys to understanding JavaScript and an important foundation for
building professional single page applications.

2.6.1 Functions and anonymous functions

An important feature of a function in JavaScript is that it’s an object, just like any
other object. We all have probably seen a JavaScript function declared like this:

function prison () {}

But we can also store functions in variables:
var prison = function prison () {};

www.EBooksWorld.ir

http://www.it-ebooks.info/

46 CHAPTER 2 Reintroducing JavaScript

We can decrease the redundancy (and the chance we’ll mismatch the names) by mak-
ing it an anonymous function, which is just the label given to a function declaration
without a name. Here’s an anonymous function being saved to a local variable:

var prison = function () {};

Functions saved to a local variable are called the same way we would expect a function
to be called:

var prison = function () {
console.log('prison called');

};
prison();

2.6.2 Self-executing anonymous functions

One problem we constantly face in JavaScript is that everything defined in the global
scope is available everywhere. Sometimes you don’t want to share with everyone and
you don’t want third-party libraries to share their internal variables with you because
it’s easy to step over each other’s libraries and cause difficult-to-diagnose problems.
Using what we know about functions, we could wrap the entire program in a function,
call that function, and then our variables wouldn’t be accessible to any external code.

var myApplication = function () {
var private_variable = "private";

};

myApplication();

//outputs an error saying the variable in undefined.
console.log(private_variable);

But that’s a wordy and awkward way to have to do it. It’d be nice if we didn’t have to
define a function, save it to a variable, and then execute that function. It sure would
be nice to have a shorthand approach. Guess what... we do!

(function () {
var private_variable = "private";

})();

//outputs an error saying the variable in undefined.
console.log(private_variable);

This is referred to as a self-executing anonymous function because it’s defined without
being given a name or saved to a variable, and is executed immediately. All we do is
surround the function with parentheses, followed by a pair of parentheses to execute
the function as shown in table 2.5. The syntax isn’t that surprising when seen next to
an explicitly called function.

 Self-executing anonymous functions are used to contain variable scope and pre-
vent variables from leaking out into other places in the code. This can be used to cre-
ate JavaScript plugins that won’t conflict with application code because they don’t add
any variables to the global namespace. In the next section we’ll demonstrate an even

Outputs “prison
called”
www.EBooksWorld.ir

http://www.it-ebooks.info/

b

47Functions—a deeper look

more advanced use case that we use throughout the book. It’s called the module pattern
and it gives us access to define private variables and methods. First, let’s see how vari-
able scope works in a self-executing anonymous function. If this looks familiar it’s
because it’s exactly the same as before, just using the new syntax:

// error message "local_var is not defined"
console.log(local_var);

(function () {

// local_var is undefined
console.log(local_var);

var local_var = 'Local Variable!';

// local_var is 'Local Variable!'
console.log(local_var);

}());

// error message "local_var is not defined"
console.log(local_var);

Compare that with:

console.log(global_var);
var global_var = 'Global Variable!';

console.log(global_var);

Here the global namespace is polluted with the global_var variable and runs the risk
of conflicting with other variables of the same name used in our code or in external
JavaScript libraries used in our projects. Pollution of the global namespace is a term you

Table 2.5 Explicit invocation versus self-executing functions. These have the
 same effect: creating a function and then calling it immediately

Explicit invocation Self-executing function

var foo = function () {
// do something

};
foo();

(function () {
// do something

})();

When the local
variable is declared
inside of the function,
it is not accessible
outside of that
function.

Inside of the self-
executing anonymous

function and before
the declaration, the

variable is undefined
ecause the variable is

declared during the
JavaScript engine’s
first pass over the

function and not
initialized until it hits

the declaration during
the second pass.

After the variable is declared
and assigned a value inside
the function, the value of that
variable is available.

Outside of the self-executing
anonymous function, the
variable is not defined.

global_var is undefined,
but is still declared.

global_var is
"Global Variable!"
might hear often in JavaScript circles—this is what it refers to.

www.EBooksWorld.ir

http://www.it-ebooks.info/

48 CHAPTER 2 Reintroducing JavaScript

 One problem that can be solved with a self-executing anonymous functions is that
global variables can be overwritten by a third-party library, or even unintentionally by
your own code. By passing a value into a self-executing anonymous function as a
parameter, you’re guaranteeing that the value of that parameter will be what you
expect it to be for that execution context because outside code can’t affect it.

 First, let’s see how to pass a parameter into a self-executing anonymous function.

(function (what_to_eat) {

var sentence = 'I am going to eat a ' + what_to_eat;
console.log(sentence);

})('sandwich');

If that syntax throws you for a loop, it’s just passing the value sandwich into the anon-
ymous function as the first parameter. Let’s compare that syntax against a normal
function:

var eatFunction = function (what_to_eat) {
var sentence='I am going to eat a ' + what_to_eat;
console.log(sentence);

};
eatFunction('sandwich');

// is the same as

(function (what_to_eat) {
var sentence = 'I am going to eat a ' + what_to_eat;
console.log(sentence);

})('sandwich');

The only difference is that the variable eatFunction has been removed and the func-
tion definition is surrounded by parentheses.

 One famous example of preventing a variable from being overwritten uses the
jQuery and Prototype JavaScript libraries. They both make extensive use of the one
character variable $. If you include both of them in your application, then the library
that was added last gets control over the $. The technique of passing in a variable to
the self-executing anonymous function can be used to ensure that jQuery can use the
$ variable for a block of code.

 For this example, you should know that the jQuery and $ variables are aliases of
each other. By passing the jQuery variable into the self-executing anonymous function
that uses it as the $ parameter, you prevent the $ from being taken over by the Proto-
type library:

(function ($) {

 console.log($);
})(jQuery);

Outputs “I’m going
to eat a sandwich”.

The value sandwich is
passed into the

anonymous function as
the first parameter,
what_to_eat.

$ is the prototype function
up until this point.

$ is the jQuery object within the function
scope. This is a simple example: even
functions defined inside of the self-
executing anonymous function will

reference the jQuery object through the $.

www.EBooksWorld.ir

http://www.it-ebooks.info/

 is

a

49Functions—a deeper look

2.6.3 The module pattern—bringing private variables to JavaScript

It’s great that we can wrap our application in a self-executing anonymous function to
protect our application from third-party libraries (and protect them from us), but a
single page application is huge and can’t be defined in one file. It sure would be nice
if there were a way to break up that file into modules, each with their own private vari-
ables. Okay, you can see where I’m going with this... we can!

 Let’s see how to break our code up into multiple files, but still take advantage of
the self-executing anonymous function to control the scope of our variables.

var prison = (function () {
var prisoner_name = 'Mike Mikowski',

 jail_term = '20 year term';

return {
prisoner: prisoner_name + ' - ' + jail_term,
sentence: jail_term

};
})();

// this is undefined, no prisoner_name for you.
console.log(prison.prisoner_name);

// this outputs 'Mike Mikowski - 20 year term'
console.log(prison.prisoner);

// this outputs '20 year term'
console.log(prison.sentence);

Our self-executing anonymous function is immediately executed and returns an
object with the properties prisoner and sentence. The anonymous function isn’t
stored in the prison variable because the anonymous function was executed—the

Still not used to that self-executing anonymous function syntax?
Let’s take another look at it. This funny looking syntax:

var prison = (function() {
return 'Mike is in prison';

})();

Is practically the same as this syntax:

function makePrison() {
return 'Mike is in prison';

}
var prison = makePrison();

In both cases that value of prison is “Mike is in prison”. The only practical difference
is that instead of saving the makePrison function when it only needs to be used one
time, the function is created and invoked without saving it anywhere.

The return value of the self-
executing anonymous function
stored in the prison variable.

The self-executing
nonymous function is

returning an object
with just the attri-

butes we want on the
prison variable.

prison.prisoner_name is
undefined because it is not an attribute

on the object returned by the self-
executing anonymous function.
return value of the anonymous function is stored in the prison variable.

www.EBooksWorld.ir

http://www.it-ebooks.info/

ed
e
ng

pr
st

,
50 CHAPTER 2 Reintroducing JavaScript

 Instead of adding the variables prisoner_name and jail_term to the global scope,
only the variable prison is added. In bigger modules, the reduction in global variables
can be even more significant.

 One problem with our object is that the variables defined in the self-executing
anonymous function are gone once the function stops executing, so they can’t be
changed. prisoner_name and jail_term aren’t properties of the object saved to the
variable prison, so they can’t be accessed this way. They are variables used to define
the attributes prisoner and sentence on the object returned from the anonymous
function, and those attributes can be accessed on the prison variable.

...

// outputs undefined
console.log(prison.jail_term);
prison.jail_term = 'Sentence commuted';

// this now outputs 'Sentence commuted', but...
console.log(prison.jail_term);

// this outputs 'Mike Mikowski - 20 year term'... sorry Mike
console.log(prison.prisoner);

prison.prisoner doesn’t get updated for a few reasons. First, jail_term isn’t an attri-
bute on the prison object or prototype; it was a variable in the execution context that
created the object and saved to the prison variable, and that execution context no lon-
ger exists because the function finished executing already. Second, these attributes
are set one time when the anonymous function is executed and are never updated. To
make them update, we have to turn the attributes into methods that access the vari-
ables every time they’re invoked.

var prison = (function () {
var prisoner_name = 'Mike Mikowski',

jail_term = '20 year term';

return {
prisoner: function () {

return prisoner_name + ' - ' + jail_term;
},
setJailTerm: function (term) {

jail_term = term;
}

};
})();

 // this outputs 'Mike Mikowski - 20 year term'
 console.log(prison.prisoner());

 prison.setJailTerm('Sentence commuted');

 // this now outputs 'Mike Mikowski - Sentence commuted'
 console.log(prison.prisoner());

prison.jail_term is undefin
because it’s not an attribute on th
object returned by the self-executi
anonymous function.

prison is an
object, so you can

still define a
jail_term

attribute on it...

...but
ison.prisoner

ill won’t be updated.

Returning an
object with

two methods.

Every time prisoner() is invoked
it looks up the prisoner_name
and jail_term again.

Every time setJailTerm()
is invoked, it looks up the
jail_term and sets it.
www.EBooksWorld.ir

http://www.it-ebooks.info/

51Functions—a deeper look

Even though the self-executing anonymous function is done executing, the variables
prisoner_name and jail_term remain accessible to the prisoner and setJailTerm
methods. prisoner_name and jail_term now act like private attributes for the prison
object. They can only be accessed by methods on the object returned from the anony-
mous function and aren’t directly accessible on the object or the object’s prototype.
And you’d heard closures were hard. Wait, I’m sorry... I haven’t explained how that’s a
closure yet, have I? Okay, let’s take a few steps back and walk up to it.

WHAT IS A CLOSURE?

As an abstract concept, closures can be difficult to wrap your head around, so before
answering the question “What is a closure?” we’ll need to set some background. Please
bear with us, as you’ll get the answer to this question by the end of this section.

 As programs run, they take up and use the computer’s memory for all sorts of
things, such as storing the values of variables. If programs ran and never freed up
memory that was no longer needed, the computer would eventually crash. In some
languages, like C, memory management has to be handled by the programmer and a
lot of time is spent by programmers writing code to make sure that memory is freed
up when it can.

 Other languages, like Java and JavaScript, implement a system for automatically
freeing up memory by removing code from the computer’s memory when it’s no lon-
ger needed. These automated systems are called garbage collectors, presumably because
unneeded variables taking up space stink. There are opinions as to which system is
better, automated or manual, but that’s beyond the scope of this book. It’s enough to
know that JavaScript has a garbage collector.

 When a function is finished executing, a naive approach to memory management
would be to remove everything that was created inside of that function from memory.
After all, the function is finished executing, so it would seem that we don’t need access
to anything inside of that execution context anymore.

var prison = function () {
var prisoner = 'Josh Powell';

};

prison();

Once prison is done executing, we no longer need access to the prisoner variable, so
Josh is free to go. This pattern is verbose, so let’s turn it back into that self-executing
anonymous function pattern.

(function () {
var prisoner = 'Josh Powell';

})();

Same thing here: the function is executed and when it’s done the prisoner variable
doesn’t need to be kept in memory any longer. Bye bye, Josh!

 Let’s stick this in our module pattern.
www.EBooksWorld.ir

http://www.it-ebooks.info/

52 CHAPTER 2 Reintroducing JavaScript

var prison = (function () {
var prisoner = 'Josh Powell';

return { prisoner: prisoner };

})();

// outputs 'Josh Powell'
console.log(prison.prisoner);

We still don’t need access to the prisoner variable after the anonymous function has
executed. Because the string Josh Powell is now stored in prison.prisoner, there’s
no reason to keep the prisoner variable in the module in memory because it’s no lon-
ger accessible. Though it may seem otherwise, the value of prison.prisoner is the
string Josh Powell; it doesn’t point to the prisoner variable.

var prison = (function () {
var prisoner = 'Josh Powell';

return {
prisoner: function () {

return prisoner;
}

}
})();

// outputs 'Josh Powell'
console.log(prison.prisoner());

Now, the prisoner variable is accessed every time prison.prisoner is executed.
prison.prisoner() returns the current value of the prisoner variable. If the garbage
collector came and removed it from memory, invoking prison.prisoner would
return undefined instead of Josh Powell.

 Now, finally, we can answer the question “What is a closure?” A closure is the pro-
cess of preventing the garbage collector from removing a variable from memory by
keeping access to the variable outside the execution context in which it was created. A
closure is created when the prisoner function is saved on the prison object. The clo-
sure is created by saving a function, with dynamic access to the prisoner variable, out-
side of the current execution context, which prevents the garbage collector from
removing the prisoner variable from memory.

 Let’s look at a few more examples of closures.

var makePrison = function (prisoner) {
return function () {
return prisoner;

}
};

var joshPrison = makePrison('Josh Powell');
var mikePrison = makePrison('Mike Mikowski');

// outputs 'Josh Powell', prisoner variable is saved in a closure.
// The closure is created because of the anonymous function returned
// from the makePrison call that accesses the prisoner variable.

We’re going to become very familiar
with saving a variable or function to a
property of the same name on the object
returned from the module pattern: we
use it throughout the book.
console.log(joshPrison());

www.EBooksWorld.ir

http://www.it-ebooks.info/

53Functions—a deeper look

// outputs 'Mike Mikowski',the prisoner variable is saved in a closure.
// The closure is created because of the anonymous function returned
// from the makePrison call that accesses the prisoner variable.
console.log(mikePrison());

Another common use of closures is to save variables for use when an Ajax call returns.
When using methods in a JavaScript object, this refers to the object:

var prison = {
names: 'Mike Mikowski and Josh Powell',
who: function () {
return this.names;

}
};

// returns 'Mike Mikowski and Josh Powell'
prison.who();

If your method makes an Ajax call using jQuery, then this no longer refers to your
object; it refers to the Ajax call:

var prison = {
names: 'Josh Powell and Mike Mikowski',
who: function () {
$.ajax({

success: function () {
console.log(this.names);

}
});

}
};

// outputs undefined, 'this' is the ajax object
prison.who();

So how do you refer to the object? Closures to the rescue! Remember, a closure is cre-
ated by taking a function that has access to a variable in the current execution context
and saving it to a variable outside of the current execution context. In the following
example, it’s created by saving this to that, and accessing that in the function that
executes when the Ajax call is returned. The Ajax call is asynchronous, so the
response comes outside of the execution context where the Ajax call is made.

var prison = {
names: 'Mike Mikowski and Josh Powell',
who: function () {
var that = this;
$.ajax({

success: function () {
console.log(that.names);

}
});

}
};

// outputs 'Mike Mikowski and Josh Powell'

The Ajax call is asynchronous,
so the call to who() is
finished executing by the time
the response comes back.
prison.who();

www.EBooksWorld.ir

http://www.it-ebooks.info/

54 CHAPTER 2 Reintroducing JavaScript

Even though who() has finished executing by the time the Ajax call has returned, the
that variable wasn’t garbage collected and is available for use by the success method.

 Hopefully, we’ve presented closures in a way that makes it easy to grasp what they
are and how they work. Now that we have a grasp of what a closure is, let’s dig into the
mechanics of closures and see how they’re implemented.

2.6.4 Closures

How do closures work? Now we understand what a closure, but not how it is imple-
mented. The answer lies with execution context objects. Let’s take a look at an exam-
ple from the last section:

var makePrison = function (prisoner) {
return function () {
return prisoner;

}
};

var joshPrison = makePrison('Josh Powell');
var mikePrison = makePrison('Mike Mikowski');

// outputs 'Josh Powell'
console.log(joshPrison());

// outputs 'Mike Mikowski'
console.log(mikePrison());

When makePrison is invoked, an execution context object for that specific invocation is
created and prisoner is assigned the value passed in. Remember that an execution
context object is part of the JavaScript engine and isn’t directly accessible in
JavaScript.

 In the preceding example, we make two calls to makePrison, saving the results to
joshPrison and mikePrison. Because the return value of makePrison is a function,
when we assign it to the joshPrison variable, the reference count to that specific exe-
cution context object is one, and because the count remains greater than zero, that
specific execution context object is retained by the JavaScript engine. If that count
were to drop to zero, then the JavaScript engine would know that object could be gar-
bage collected.

 When makePrison is called again and assigned to mikePrison, a new execution
context object is created and the reference count to that execution context object is
also set to one. At that point, we have two pointers to two execution context objects,
both with a reference count of one, even though both were created by executing the
same function.

 If we were to invoke joshPrison again, it would use the value set on the execution
context object created when makePrison was invoked and saved to joshPrison. The
only way to purge the retained execution context object (besides closing the web
page, smarty pants) is to delete the joshPrison variable. When we do, the reference
count to that execution context object drops to 0, and it may be removed at

JavaScript’s leisure.

www.EBooksWorld.ir

http://www.it-ebooks.info/

55Functions—a deeper look

 Let’s get a few execution context objects going at once and see what happens:

var curryLog, logHello, logStayinAlive, logGoodbye;

curryLog = function (arg_text){
var log_it = function (){ console.log(arg_text); };
return log_it;

};

logHello = curryLog('hello');
logStayinAlive = curryLog('stayin alive!');
logGoodbye = curryLog('goodbye');

// This creates no reference to the execution context,
// and therefore the execution context object can be
// immediately purged by the JavaScript garbage collector
curryLog('fred');

logHello(); // logs 'hello'
logStayinAlive(); // logs 'stayin alive!'
logGoodbye(); // logs 'goodbye'
logHello(); // logs 'hello' again

// destroy reference to 'hello' execution context
delete window.logHello;

// destroy reference to 'stayin alive!' execution context
delete window.logStayinAlive;

logGoodbye(); // logs 'goodbye'
logStayinAlive(); // undefined - execution context destroyed

We must remember that a unique execution context object is created every time a
function is called. After the function completes, the execution object is immediately
discarded unless the caller retains a reference to it. If a function returns a number, you
can’t typically retain a reference to a function’s execution context object. On the
other hand, if a function returns a more complex structure like a function, an object,
or an array, creating a reference to the execution context is often accomplished—
sometimes mistakenly—by storing the return value to a variable.

 It’s possible to create chains of execution context references many layers deep.
And this is a good thing when we want it (think object inheritance). But there are times
when we don’t want closures like this, as they could create runaway memory usage
(think memory leak). Rules and tools are presented in appendix A that can help you
avoid unintended closures.

Listing 2.12 Execution context objects

Closures—one more time!
Before moving on, because closures are such an important and confusing part of
JavaScript, let’s take one more stab at an explanation. If you’ve got closures down
cold, feel free to move on.
www.EBooksWorld.ir

http://www.it-ebooks.info/

56 CHAPTER 2 Reintroducing JavaScript

That brings us back to our first example, so let’s examine why scoped_var is accessible
after the Ajax call returns.

function sendAjaxRequest() {
var scoped_var = 'yay';
$.ajax({
success: function () {

console.log(scoped_var);
}

});
}
sendAjaxRequest();

It’s accessible because the success method is defined in the execution context created
when sendAjaxRequest was called, and scoped_var was in scope at the time. If clo-

(continued)

var menu, outer_function,
 food = 'cake';

outer_function = function () {
var fruit, inner_function;

fruit = 'apple';

inner_function = function () {
return { food: food, fruit: fruit };

}

return inner_function;
};

menu = outer_function();

// returns { food: 'cake', fruit: 'apple' }
menu();

When outer_function is executed, it creates an execution context.
inner_function is defined inside of that execution context

Because inner_function is defined inside the outer_function execution context,
it has access to all of the variables in scope in outer_function—in this case food,
fruit, outer_function, inner_function, and menu.

When outer_function is finished executing, you might expect everything inside of
that execution context to be destroyed by the garbage collector. You’d be wrong.

It’s not destroyed because a reference to the inner_function has been saved in
the global scope in the variable menu. Because the inner_function needs to retain
access to all of the variables that were in scope where it was declared, it “closes
over” the outer_function execution context to prevent the garbage collector from
removing it. This is a closure.

Logs “yay” when the
Ajax call successfully
completes
sures are still unclear to you, don’t be dismayed. Closures are one of the more difficult

www.EBooksWorld.ir

http://www.it-ebooks.info/

57Summary

JavaScript concepts, and if after reading this section a few times you still don’t get it,
just move on; it could be a concept that you need some more practical experience
with in order to understand. Hopefully, by the end of this book you’ll have enough
practical experience that it’ll become second nature to you.

 And this concludes our head-long and sometimes deep dive into the particulars of
JavaScript. The review wasn’t comprehensive, but instead focused on the concepts
we’ve found necessary to develop large-scale SPAs. We hope you enjoyed the ride.

2.7 Summary
In this chapter we’ve covered some concepts that, though not unique to JavaScript,
are sometimes not found in other widely used programming languages. Knowledge of
these topics will be important to writing a single page application—without this knowl-
edge you could end up feeling lost as we build out the application.

 Understanding variable scoping, and variable and function hoisting, is fundamen-
tal to demystifying variables in JavaScript. Understanding the execution context object
is important for understanding how scoping and hoisting work.

 Knowing how to create objects in JavaScript using prototypes makes it possible to
write reusable code in native JavaScript. Without an understanding of prototype-based
objects, engineers often revert to using a library to write reusable code, depending on
a class-based model provided by a library that’s actually a wrapper on top of the proto-
type-based model. If, after learning the prototype-based method, you still prefer to use
a class-based system, you’ll still be able to take advantage of the prototype-based model
for the simple use cases. For building our single page application, we’ll be using the
prototype-based model for two reasons: we believe it’s simpler to use for our use cases,
and it’s the JavaScript way and we’re coding in JavaScript.

 Writing self-executing anonymous functions will contain your variable scope, help
prevent you from inadvertently polluting the global namespace, and help you write
libraries and a codebase that don’t conflict with other libraries.

 Understanding the module pattern and how to use private variables allows you to
cultivate a thoughtful public API for your objects and to hide all of the messy internal
methods and variables that other objects don’t need access to. This keeps your API
nice and clean and makes it obvious which methods you should be consuming and
which are meant to be private helper methods for the API.

 Finally, we spent a good deal of time diving into one of the most difficult JavaScript
concepts: closures. If you don’t fully understand closures just yet, hopefully there will
be enough practical experience throughout the book to cement your understanding.

 With these concepts in mind, let’s move on to the next chapter and start building a
production-quality SPA.
www.EBooksWorld.ir

http://www.it-ebooks.info/

www.EBooksWorld.ir

http://www.it-ebooks.info/

Part 2

The SPA client

An SPA client provides much more than a traditional website user inter-
face (UI). Though some say that SPA clients can be as responsive as desktop
applications, it’s more accurate to say that well-written SPA clients are desktop
applications.

 Like desktop applications, SPA clients differ substantially from traditional web
pages. When we replace a traditional website with an SPA, the entire software stack
changes—from the database server through the HTML templating. Companies
that have had the vision to successfully transition from traditional websites to SPAs
have understood that the old practices and structures must change. They’ve refo-
cused engineering talent, discipline, and testing on the client. The server remains
important, but it’s focused on providing JSON data services.

 So let’s forget everything we know about traditional website client develop-
ment. All right, not everything—it’s still good to know JavaScript, HTML5, CSS3,
SVG, CORS, and a bunch of other acronyms. But we need to remember as we
proceed through these chapters that we’ll be building a desktop application, not a
traditional website. In part 2 we learn how to:

■ Build and test a highly scalable, testable, and capable SPA client
■ Make the Back button, bookmarks, and other history controls work as

expected
■ Design, implement, and test robust feature modules and their APIs
■ Make our UI work seamlessly on mobile devices and desktops
■ Organize modules and namespaces to greatly improve testing, team devel-

opment, and design-for-quality.
www.EBooksWorld.ir

http://www.it-ebooks.info/

One thing we don’t discuss is how to use a particular SPA framework library. We have
many reasons for this (see the sidebar in chapter 6 for an in-depth discussion). We want
to explain the inner workings of well-written SPAs instead of the implementation intri-
cacies that apply to only a single framework library. Instead, we use an architecture
refined over six years and many commercial products. This architecture encourages
testability, readability, and design-for-quality. It also makes dividing work between many
client developers simple and enjoyable. With this approach, readers who want to use a
framework library can make an informed decision and use it with greater success.
www.EBooksWorld.ir

http://www.it-ebooks.info/

Develop the Shell
In this chapter, we describe the Shell, a required component of our architecture.
We develop a page layout that contains our feature containers, and then adjust
the Shell to render them. Next we show how the Shell manages feature contain-
ers by having it extend and retract the chat slider. We then have it capture the
user click event to open and close the slider. Finally, we use the URI anchor as our
state API using the anchor interface pattern. This provides users the browser
controls they expect—controls like Forward and Back buttons, browser history,
and bookmarks.

This chapter covers
■ Describing the Shell module and its place in

our architecture
■ Structuring your files and namespaces
■ Creating and styling feature containers
■ Using an event handler to toggle a feature

container
■ Using the anchor interface pattern to manage

application state
61

www.EBooksWorld.ir

http://www.it-ebooks.info/

62 CHAPTER 3 Develop the Shell

 By the end of this chapter we’ll have built the foundation for a scalable and man-
ageable SPA. But let’s not get too far ahead of ourselves. First we must understand the
Shell.

3.1 Grok the Shell
The Shell is the master controller for our SPA and is required in our architecture. We
can compare the role of the Shell module to the shell of an airplane:

An airplane’s shell (also called the monocoque or airframe) provides shape and
structure to the vehicle. Assemblies like the seats, tray tables, and the engines are
attached to it using various fasteners. All assemblies are built to work as independently
as possible because nobody likes it when Aunt Milly opens her tray table and it causes
the jet to promptly bank hard to the right.

The Shell module provides shape and structure to our application. Feature modules
like chat, sign-in, and navigation are “attached” to the Shell with APIs. All feature mod-
ules are built to work as independently as possible because nobody likes it when Aunt
Milly types “ROTFLMAO!!! UR totally pwned!” into her chat slider and the application
promptly closes her browser window.

 The Shell is just one piece of an architecture which we refined over many
commercial projects. This architecture—and where the Shell fits in—is shown in fig-
ure 3.1. We like to write the Shell first because it’s central to our architecture. It
coordinates the feature modules with the business logic and universal browser inter-
faces like the URI or cookies. When the user clicks the Back button, signs in, or does
anything else that changes the bookmark-able state of the application, the Shell
coordinates the change.
Figure 3.1 The Shell in our SPA architecture

www.EBooksWorld.ir

http://www.it-ebooks.info/

63Set up the files and namespaces

Those of you comfortable with the Model-View-Controller (MVC) architecture may
consider the Shell the master controller, as it coordinates the controllers of all the
subordinate feature modules.

 The Shell is responsible for the following:

■ Rendering and managing the feature containers
■ Managing the application state
■ Coordinating feature modules

The next chapter will detail the coordination of feature modules. This chapter covers
rendering the feature containers and managing the application state. First let’s pre-
pare our files and namespaces.

3.2 Set up the files and namespaces
We’ll set up our files and namespaces according to the code standards found in
appendix A. In particular, we’ll have one JavaScript file per JavaScript namespace, and
use self-executing anonymous functions to prevent pollution of the global namespace.
We’ll also set up CSS files in a parallel structure. This convention speeds development,
improves quality, and eases maintenance. Its value increases as we add more modules
and developers to the project.

3.2.1 Create the file structure

We’ve selected spa for the root namespace of our application. We synchronize the
JavaScript and CSS file names, the JavaScript namespace, and the CSS selector names.
This makes it much easier to track which JavaScript goes with which CSS.

PLAN THE DIRECTORIES AND FILES

Web developers often place their HTML file in a directory and then place their CSS
and JavaScript in subdirectories. We see no reason to break convention. Let’s create
the directories and files as shown in listing 3.1:

spa
+-- css
| +-- spa.css
| `-- spa.shell.css
+-- js
| +-- jq
| +-- spa.js
| `-- spa.shell.js
+-- layout.html
`-- spa.html

Listing 3.1 Files and directories, first pass

spa is our root directory
and our root namespace.

This is the directory
that contains all of

our stylesheet files.

This is the directory that
contains all our JavaScript files.

This is the directory that
contains jQuery JavaScript

files, including plugins.

spa.js provides our
root JavaScript

namespace, spa. This
has a corresponding
stylesheet at css/

spa.css.

spa.shell.js provides the Shell
namespace, spa.shell. This has
a corresponding stylesheet at css/
spa.shell.css.

This is the file read
by the browser to
run our SPA.

www.EBooksWorld.ir

http://www.it-ebooks.info/

64 CHAPTER 3 Develop the Shell

Now that we have the basics in place, let’s get jQuery installed.

INSTALL JQUERY AND A PLUGIN

jQuery and its plugins are often offered as either minified or regular files. We almost
always install the regular files because this helps in debugging, and we minimize as
part of our build system anyway. Don’t worry about what they do yet—we’ll get to that
later in the chapter.

 The jQuery library provides useful cross-platform DOM manipulation and other
utilities. We’re using version 1.9.1, which is available from http://docs.jquery.com/
Downloading_jQuery. Let’s place it in our jQuery directory:

...
+-- js
| +-- jq
| | +-- jquery-1.9.1.js
...

The jQuery uriAnchor plugin provides utilities to manage the anchor component of
the URI. It’s available from github at https://github.com/mmikowski/urianchor.
Let’s place it in the same jQuery directory:

...
+-- js
| +-- jq
| | +-- jquery.uriAnchor-1.1.3.js
...

Our files and directories should now look like listing 3.2:

spa
+-- css
| +-- spa.css
| `-- spa.shell.css
+-- js
| +-- jq
| | +-- jquery-1.9.1.js
| | `-- jquery.uriAnchor-1.1.3.js
| +-- spa.js
| `-- spa.shell.js
+-- layout.html
`-- spa.html

Now that we have all of our files in place, it’s time to start writing some HTML, CSS,
and JavaScript.

3.2.2 Write the application HTML

When we open our browser document (spa/spa.html) we can bask in all the SPA
goodness we’ve wrought so far. Of course, because this is an empty file, the goodness
provided is limited to a bug-free, highly secure blank page that does absolutely noth-

Listing 3.2 Files and directories after adding jQuery and plugin
ing. Let’s change the “blank page” part.

www.EBooksWorld.ir

http://docs.jquery.com/Downloading_jQuery
http://docs.jquery.com/Downloading_jQuery
https://github.com/mmikowski/urianchor
http://www.it-ebooks.info/

65Set up the files and namespaces

 The browser document (spa/spa.html) will always remain small. Its only role is to load
libraries and stylesheets, and then start our application. Let’s fire up our favorite text edi-
tor and add all the code we’ll need to get through this chapter, as shown in listing 3.3:

<!doctype html>
<html>
<head>

<title>SPA Starter</title>

<!-- stylesheets -->
<link rel="stylesheet" href="css/spa.css" type="text/css"/>
<link rel="stylesheet" href="css/spa.shell.css" type="text/css"/>

<!-- third-party javascript -->
<script src="js/jq/jquery-1.9.1.js" ></script>
<script src="js/jq/jquery.uriAnchor-1.1.3.js"></script>

<!-- our javascript -->
<script src="js/spa.js" ></script>
<script src="js/spa.shell.js"></script>
<script>

$(function () { spa.initModule($('#spa')); });
</script>

</head>
<body>
 <div id="spa"></div>
</body>
</html>

The performance conscious developers in the audience might ask “Why don’t we put
scripts at the end of the body container like traditional web pages?” That is a fair ques-
tion, because this usually allows the page to render faster, as static HTML and CSS can
be displayed before the JavaScript finishes loading. SPAs don’t work like that, though.
They generate the HTML with JavaScript, and therefore placing the scripts outside the
header doesn’t result in faster rendering. Instead, we keep all of the external scripts in
the head section to improve organization and legibility.

3.2.3 Create the root CSS namespace

Our root namespace is spa, and per our convention from appendix A our root
stylesheet should be called spa/css/spa.css. We previously created this file, but now it’s
time to populate it. Because this is our root stylesheet, it’ll have a few more sections
than our other CSS files. Let’s again use our favorite text editor to add the rules we
need, as shown in listing 3.4:

/*
* spa.css

Listing 3.3 Application HTML—spa/spa.html

Listing 3.4 The root CSS namespace—spa/css/spa.css

Load stylesheets first. This
optimizes performance. If we
add third-party stylesheets,
we should load them first.

Load third-party
JavaScript next. At
present, the only

third-party scripts
we’re loading are

jQuery and the
plugin for anchor

manipulation.

Load our JavaScript
libraries next. They

should be ordered by
depth of namespace.

This is important
because our

namespace object,
spa, must be

declared before we
can declare its

children,
for example,

spa.shell.

Initialize the application once the DOM is ready.
Those familiar with jQuery will notice our code

uses shorthand, as $(function (...
could’ve been written as

$(document).ready(function (...
* Root namespace styles

www.EBooksWorld.ir

http://www.it-ebooks.info/

on’t
ant

nts.

66 CHAPTER 3 Develop the Shell

*/

/** Begin reset */
* {
margin : 0;
padding : 0;
-webkit-box-sizing : border-box;
-moz-box-sizing : border-box;
box-sizing : border-box;

}
h1,h2,h3,h4,h5,h6,p { margin-bottom : 10px; }
ol,ul,dl { list-style-position : inside;}

/** End reset */

/** Begin standard selectors */
 body {

font : 13px 'Trebuchet MS', Verdana, Helvetica, Arial, sans-serif;
color : #444;
background-color : #888;

}
a { text-decoration : none; }
a:link, a:visited { color : inherit; }
a:hover { text-decoration: underline; }

strong {
font-weight : 800;
color : #000;

}
/** End standard selectors */

/** Begin spa namespace selectors */
#spa {
position : absolute;
top : 8px;
left : 8px;
bottom : 8px;
right : 8px;

min-height : 500px;
min-width : 500px;
overflow : hidden;

background-color : #fff;
border-radius : 0 8px 0 8px;

}
/** End spa namespace selectors */

/** Begin utility selectors */
.spa-x-select {}
.spa-x-clearfloat {
height : 0 !important;
float : none !important;
visibility : hidden !important;
clear : both !important;

}
/** End utility selectors */

Reset most selectors. We don’t trust
browser defaults. CSS authors will
recognize this as a common practice,
though not without controversy.

Adjust standard selectors. We again d
trust browser defaults, and we also w
to ensure a common look across the
application for certain types of eleme
These can—and will—be adjusted by
more specific selectors in other files.

Define namespace selectors.
Generally, this is the selector
for an element using the root
name, for example, #spa.

Provide utility selectors for use
across all other modules. These
are prefixed with spa-x-.
www.EBooksWorld.ir

http://www.it-ebooks.info/

t

f

T
m

67Set up the files and namespaces

Per our code standards, all CSS IDs and class names in this file are preceded by the
spa- prefix. Now that we’ve created the root application CSS, we’ll create the corre-
sponding JavaScript namespace.

3.2.4 Create the root JavaScript namespace

Our root namespace is spa, and per our convention from appendix A, our root
JavaScript should be called spa/js/spa.js. The minimal JavaScript required is var spa =
{};. But, we want to add a method to initialize the application, and we want to ensure
that the code will pass JSLint. We can use the template from appendix A and pare it
down because we don’t need all the sections. Let’s open the file with our second-most-
favorite text editor and populate it as shown in listing 3.5:

/*
* spa.js
* Root namespace module

*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa */

var spa = (function () {
var initModule = function ($container) {

$container.html(
'<h1 style="display:inline-block; margin:25px;">'

+ 'hello world!'
+ '</h1>'

);
};

return { initModule: initModule };
}());

We want to ensure our code doesn’t have any common errors or bad practices. Appen-
dix A shows how to install and run the valuable JSLint utility, which does just that. It
describes what all the /*jslint ... */ switches at the top of our files mean. Besides
the appendix, we also discuss JSLint further in chapter 5.

 Let’s check our code by typing jslint spa/js/spa.js at the command line—we
shouldn’t see any warnings or errors. We can now open our browser document (spa/
spa.html) and see the contract-mandated “hello world” demonstration as shown in fig-
ure 3.2.

 Now that we’ve greeted the world and are emboldened by the savory flavor of suc-
cess, let’s embark on a more ambitious quest. In the next section, we start building our

Listing 3.5 The root JavaScript namespace—spa/js/spa.js

Set JSLint switches per the
module template in appendix A.

Tell JSLint to expect
he spa and $ global

variables. If we find
ourselves adding our
own variables to this
list after spa, we’re

probably doing
something wrong.

Use the module pattern
rom chapter 2 to create

our “spa” namespace.
his module exports one
ethod, initModule,

which, as the name
suggests, is a function

that initializes the
application.
first “real-world” SPA.

www.EBooksWorld.ir

http://www.it-ebooks.info/

68 CHAPTER 3 Develop the Shell

3.3 Create the feature containers
The Shell creates and manages the containers our feature modules will use. Our chat
slider container, for example, will follow popular convention and be anchored on the
bottom right of the browser window. The Shell is responsible for the slider container,
but won’t manage the behavior inside of the container—that’s reserved for the chat
feature module, which we’ll discuss in chapter 6.

 Let’s place our chat slider in a layout that’s relatively complete. Figure 3.3 shows a
wireframe of the containers we’d like to see.

Figure 3.2 Obligatory
“hello world” screenshot

Body

Logo

Content
Modal

Chat slider

Footer

search

Sign-in / account slider

Navigation

Header
Figure 3.3 Application containers wireframe

www.EBooksWorld.ir

http://www.it-ebooks.info/

69Create the feature containers

Of course, this is only a wireframe. We need to convert this into HTML and CSS. Let’s
discuss how we might do that.

3.3.1 Pick a strategy

We’ll develop the HTML and CSS for our feature containers in a single-layout docu-
ment file at spa/layout.html. Only after we’ve tweaked our containers to our liking
will we move the code to the Shell’s CSS and JavaScript files. This approach is usually
the fastest and most efficient means to develop the initial layout because we can pro-
ceed without worrying about interactions with most other code.

 First we’ll write the HTML, and then later we’ll add the styles.

3.3.2 Write the Shell HTML

One great feature of HTML5 and CSS3 is that we really can separate styling from the
content. The wireframe shows the containers we want and how they’ll be nested. This
is all we need to write the HTML for our containers with confidence. Let’s open our
layout document (spa/layout.html) and enter the HTML shown in listing 3.6:

<!doctype html>
<html>
<head>

<title>HTML Layout</title>
<link rel="stylesheet" href="css/spa.css" type="text/css"/>

</head>
<body>

<div id="spa">
<div class="spa-shell-head">

<div class="spa-shell-head-logo"></div>
<div class="spa-shell-head-acct"></div>
<div class="spa-shell-head-search"></div>

</div>
<div class="spa-shell-main">

<div class="spa-shell-main-nav"></div>
<div class="spa-shell-main-content"></div>

</div>
<div class="spa-shell-foot"></div>
<div class="spa-shell-chat"></div>
<div class="spa-shell-modal"></div>

</div>
</body>
</html>

Now we should validate the HTML to ensure it’s without error. We like to use the ven-
erable Tidy tool, which can find missing tags and other common HTML errors. You
can find Tidy online at http://infohound.net/tidy/, or download the source at http:
//tidy.sourceforge.net/. If you’re using a Linux distribution like Ubuntu or Fedora,
Tidy is probably readily available in the standard software repositories. Now let’s give

Listing 3.6 Create HTML for the containers—spa/layout.html

Nest the logo,
the account

settings (acct),
and the search
box inside of the
head container.

Place the navigation
(nav) and content
containers inside the
main container.

Create a footer
container.

Anchor the chat
container to the

bottom right of the
outer container.

Create a modal
container that floats
above other content.
these containers some style.

www.EBooksWorld.ir

http://infohound.net/tidy/
http: //tidy.sourceforge.net/
http: //tidy.sourceforge.net/
http://www.it-ebooks.info/

70 CHAPTER 3 Develop the Shell

3.3.3 Write the Shell CSS

We’ll write our CSS to provide a liquid layout where the width and height of our con-
tent will adjust to fill the browser window at all but the most extreme sizes. We’ll give
our feature containers background colors so we can easily see them. We’ll also avoid
any borders, because they can change the size of the CSS boxes. This introduces
unwanted tedium into our rapid prototype process. Once we’re happy with the pre-
sentation of our containers, we can return to add borders as necessary.

Let’s add the CSS to the <head> section of our layout document (spa/layout.html). We
can place it right after the spa.css stylesheet link as shown in listing 3.7. All changes
are shown in bold:

...
<head>
<title>HTML Layout</title>
<link rel="stylesheet" href="css/spa.css" type="text/css"/>
<style>

.spa-shell-head, .spa-shell-head-logo, .spa-shell-head-acct,

.spa-shell-head-search, .spa-shell-main, .spa-shell-main-nav,

.spa-shell-main-content, .spa-shell-foot, .spa-shell-chat,

.spa-shell-modal {
 position : absolute;
}
.spa-shell-head {
 top : 0;
 left : 0;
 right : 0;
 height : 40px;
}
.spa-shell-head-logo {
 top : 4px;
 left : 4px;
 height : 32px;
 width : 128px;
 background : orange;
}
.spa-shell-head-acct {
 top : 4px;
 right : 0;
 width : 64px;

Listing 3.7 Create CSS for the containers—spa/layout.html

Liquid layouts
As our layout grows more complex, we may need to use JavaScript to provide its
liquidity. Often a window resize event handler is used to determine the browser win-
dow size and then recalculate and apply new CSS dimensions. We illustrate this tech-
nique in chapter 4.
 height : 32px;

www.EBooksWorld.ir

http://www.it-ebooks.info/

71Create the feature containers

 background : green;
}
.spa-shell-head-search {
 top : 4px;
 right : 64px;
 width : 248px;
 height : 32px;
 background : blue;
}

.spa-shell-main {
 top : 40px;
 left : 0;
 bottom : 40px;
 right : 0;
}
.spa-shell-main-content,
.spa-shell-main-nav {
 top : 0;
 bottom : 0;
}
.spa-shell-main-nav {
 width : 250px;
 background : #eee;
}
.spa-x-closed .spa-shell-main-nav {
 width : 0;
}

.spa-shell-main-content {
 left : 250px;
 right : 0;
 background : #ddd;
}
.spa-x-closed .spa-shell-main-content {
 left : 0;
}

.spa-shell-foot {
 bottom : 0;
 left : 0;
 right : 0;
 height : 40px;
}
.spa-shell-chat {
 bottom : 0;
 right : 0;
 width : 300px;
 height : 15px;
 background : red;
 z-index : 1;
}
.spa-shell-modal {
 margin-top : -200px;
 margin-left : -200px;

 top : 50%;

www.EBooksWorld.ir

http://www.it-ebooks.info/

72 CHAPTER 3 Develop the Shell

 left : 50%;
 width : 400px;
 height : 400px;
 background : #fff;
 border-radius : 3px;
 z-index : 2;
}

 </style>
</head>

...

When we open our browser document (spa/layout.html), we should see a page that
looks amazingly similar to our wireframe, as shown in figure 3.4. When we resize the
browser window, we can see the feature containers also resize as needed. Our liquid
layout does have a limitation—if we make the width or height less than 500 pixels,
scrollbars are shown. We do this because we can’t squeeze our content below this size.

We can use Chrome Developer Tools to try out some of our newly defined styles that
aren’t used in the initial display. For example, let’s add the class spa-x-closed to the
spa-shell-main container. This will close the navigation bar on the left of the page.
Removing the class will return the navigation bar, as shown in figure 3.5.

3.4 Render the feature containers
The layout document (spa/layout.html) we created is a nice foundation. Now we’re
going to use it in our SPA. The first step is to have the Shell render the containers
instead of using static HTML and CSS.

3.4.1 Convert the HTML to JavaScript

We’ll need our JavaScript to manage all our document changes; therefore, we need to
convert the HTML developed earlier into a JavaScript string. We’ll keep the HTML

Figure 3.4 HTML and CSS for
containers—spa/layout.html
indentation to ease legibility and maintainability as shown in listing 3.8:

www.EBooksWorld.ir

http://www.it-ebooks.info/

73Render the feature containers

 var main_html = String()
+ '<div class="spa-shell-head">'

+ '<div class="spa-shell-head-logo"></div>'
+ '<div class="spa-shell-head-acct"></div>'
+ '<div class="spa-shell-head-search"></div>'

+ '</div>'
+ '<div class="spa-shell-main">'

+ '<div class="spa-shell-main-nav"></div>'
+ '<div class="spa-shell-main-content"></div>'

+ '</div>'
+ '<div class="spa-shell-foot"></div>'
+ '<div class="spa-shell-chat"></div>'
+ '<div class="spa-shell-modal"></div>';

We aren’t worried about any performance penalty of concatenated strings. Once we
get to production, the JavaScript minifier will join the string for us.

Listing 3.8 Concatenating the HTML template

Added class

Figure 3.5 Double-click in the HTML to add a class in Chrome Developer Tools

Configure your editor!
A professional developer should be using a professional-grade text editor or IDE. Most
of these have regular expression and macro support. We should be able to automate
converting HTML into a JavaScript string. For example, the venerable vim editor can
be configured so that two keystrokes will format HTML into a JavaScript concatenated
string. We can add the following to our ~/.vimrc file:
www.EBooksWorld.ir

http://www.it-ebooks.info/

t
e

e
.
a
f
n
.

s
 and
nce.

74 CHAPTER 3 Develop the Shell

3.4.2 Add an HTML template to our JavaScript

It’s now time to take a bold step and create our Shell. When we initialize the Shell,
we’d like to have it fill the page element of our choice with the feature containers.
While we’re at it, we’d like to cache the jQuery collection objects. We can use the
module template from appendix A along with the JavaScript string we just created to
accomplish this. Let’s fire up our text editor and create the file shown in listing 3.9.
Please pay careful attention to the annotations, as they provide useful details:

/*
* spa.shell.js
* Shell module for SPA

*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa */

spa.shell = (function () {
//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var

configMap = {
main_html : String()

+ '<div class="spa-shell-head">'
+ '<div class="spa-shell-head-logo"></div>'
+ '<div class="spa-shell-head-acct"></div>'
+ '<div class="spa-shell-head-search"></div>'

+ '</div>'
+ '<div class="spa-shell-main">'

+ '<div class="spa-shell-main-nav"></div>'
+ '<div class="spa-shell-main-content"></div>'

+ '</div>'
+ '<div class="spa-shell-foot"></div>'
+ '<div class="spa-shell-chat"></div>'
+ '<div class="spa-shell-modal"></div>'

},
stateMap = { $container : null },
jqueryMap = {},

Listing 3.9 Starting the Shell—spa/js/spa.shell.js

(continued)
vmap <silent> ;h :s?^\(\s*\)+ '\([^']\+\)',*\s*$?\1\2?g<CR>
vmap <silent> ;q :s?^\(\s*\)\(.*\)\s*$? \1 + '\2'?<CR>

Once we restart vim, we can visually select the HTML to change. When we press ;q
the selection will be formatted; when we press ;h we will undo the format.

Declare all variables tha
are available across th

namespace—spa.shell
in this case—in th

“Module Scope” section
See appendix A for

complete discussion o
this and other sections i

the templatePlace static
configuration

values in
configMap.

Indent HTML
strings. This aid
comprehension
eases maintena

Place dynamic
information shared
across the module
in stateMap.

Cache jQuery
collections in
jqueryMap.

Declare all module
scope variables in
this section. Many
are assigned later.
setJqueryMap, initModule;

www.EBooksWorld.ir

http://www.it-ebooks.info/

”
’t
s.

Us

fu
alm

w

can

im
s
.

75Render the feature containers

 //----------------- END MODULE SCOPE VARIABLES ---------------

 //-------------------- BEGIN UTILITY METHODS -----------------
 //--------------------- END UTILITY METHODS ------------------

 //--------------------- BEGIN DOM METHODS --------------------
 // Begin DOM method /setJqueryMap/
 setJqueryMap = function () {

 var $container = stateMap.$container;
 jqueryMap = { $container : $container };

 };
 // End DOM method /setJqueryMap/
 //--------------------- END DOM METHODS ----------------------

 //------------------- BEGIN EVENT HANDLERS -------------------
 //-------------------- END EVENT HANDLERS --------------------

 //------------------- BEGIN PUBLIC METHODS -------------------
 // Begin Public method /initModule/
 initModule = function ($container) {

 stateMap.$container = $container;
 $container.html(configMap.main_html);
 setJqueryMap();
 };
 // End PUBLIC method /initModule/

 return { initModule : initModule };
 //------------------- END PUBLIC METHODS ---------------------
}());

Now we have a module that renders the feature containers, but we still have to popu-
late the CSS file and instruct the root namespace module (spa/js/spa.js) to use the
Shell module (spa/js/spa.shell.js) instead of presenting the time-honored “hello
world” text. Let’s get to it.

3.4.3 Write the Shell stylesheet

Using our handy namespacing conventions presented in appendix A, we know we need
to put our spa-shell-* selectors into a file named spa/css/spa.shell.css. We can copy
the CSS we developed in spa/layout.html directly into that file, as shown in listing 3.10:

/*
* spa.shell.css
* Shell styles

*/

.spa-shell-head, .spa-shell-head-logo, .spa-shell-head-acct,

.spa-shell-head-search, .spa-shell-main, .spa-shell-main-nav,

.spa-shell-main-content, .spa-shell-foot, .spa-shell-chat,

Listing 3.10 The Shell CSS, take 1—spa/css/spa.shell.css

Reserve the “Utility Methods
section for functions that don

interact with page element

Place functions
that create and

manipulate page
elements in the “DOM

Methods” section.

e setJqueryMap
to cache jQuery
collections. This

nction should be in
ost every shell and
feature module we
rite. The use of the
jqueryMap cache
 greatly reduce the
number of jQuery

document
transversals and

prove performance.

Reserve an
"Event Handlers"
section for jQuery

event handler
functions.

Create the initModule public method, which
will be used to initialize the module.

Place publicly available method
in the “Public Methods” section

Export public methods explicitly by
returning them in a map. At present

only initModule is available.
www.EBooksWorld.ir

http://www.it-ebooks.info/

76 CHAPTER 3 Develop the Shell

.spa-shell-modal {
position : absolute;

}
.spa-shell-head {

top : 0;
left : 0;
right : 0;
height : 40px;

}
.spa-shell-head-logo {

top : 4px;
left : 4px;
height : 32px;
width : 128px;
background : orange;

}
.spa-shell-head-acct {

top : 4px;
right : 0;
width : 64px;
height : 32px;
background : green;

}
.spa-shell-head-search {

top : 4px;
right : 64px;
width : 248px;
height : 32px;
background : blue;

}

.spa-shell-main {
top : 40px;
left : 0;
bottom : 40px;
right : 0;

}
.spa-shell-main-content,
.spa-shell-main-nav {

top : 0;
bottom : 0;

}
.spa-shell-main-nav {

width : 250px;
background : #eee;

}
.spa-x-closed .spa-shell-main-nav {

width : 0;
}

.spa-shell-main-content {
left : 250px;
right : 0;
background : #ddd;

}

Define shared
CSS rules.

Use the parent classes to affect child
elements. This is perhaps one of the
most powerful capabilities of CSS, and
not used nearly often enough.

Indent derived selectors and
place immediately below the
parent selector. Derived selectors
are selectors clearly dependent
.spa-x-closed .spa-shell-main-content { on a parent for meaning.

www.EBooksWorld.ir

http://www.it-ebooks.info/

77Render the feature containers

left : 0;
}

.spa-shell-foot {
bottom : 0;
left : 0;
right : 0;
height : 40px;

}
.spa-shell-chat {

bottom : 0;
right : 0;
width : 300px;
height : 15px;
background : red;
z-index : 1;

}
.spa-shell-modal {

margin-top : -200px;
margin-left : -200px;
top : 50%;
left : 50%;
width : 400px;
height : 400px;
background : #fff;
border-radius : 3px;
z-index : 2;

}

All Selectors have the spa-shell- prefix. This has multiple benefits:

■ It shows that these classes are controlled by the Shell module (spa/js/
spa.shell.js).

■ It prevents namespace collisions with third-party scripts and our other modules.
■ When we’re debugging and inspecting the document HTML, we can immedi-

ately see which elements are generated and controlled by the shell module.

All of these benefits prevent us from descending into the fiery depths of CSS-selector-
name-goulash hell. Anyone who’s ever managed stylesheets on even a moderate scale
should know exactly what we’re talking about.

3.4.4 Direct the application to use the Shell

Now let’s modify our root namespace module (spa/js/spa.js) to use the Shell instead
of slavishly copying “hello world” into the DOM. The following adjustment shown in
bold should do the trick:

/*
* spa.js
* Root namespace module

*/
...
/*global $, spa */
www.EBooksWorld.ir

http://www.it-ebooks.info/

78 CHAPTER 3 Develop the Shell

var spa = (function () {
var initModule = function ($container) {

 spa.shell.initModule($container);
};

return { initModule: initModule };
}());

We should now be able to open our browser document (spa/spa.html) and see some-
thing similar to figure 3.6. We can use Chrome Developer Tools to confirm the document
generated by our SPA (spa/spa.html) matches our layout document (spa/layout.html).

With this foundation in place, we’ll begin the work to have the Shell manage the fea-
ture containers. It might also be a good time to take a break, as the next section is
fairly ambitious.

3.5 Manage the feature containers
The Shell renders and controls the feature containers. These are “top level” contain-
ers—usually DIVs—that hold feature content. The Shell initializes and coordinates all
the feature modules in the application. And the Shell directs feature modules to cre-
ate and manage all content inside feature containers. We’ll discuss feature modules
further in chapter 4.

 In this section, we’ll first write a method to extend and retract the chat slider fea-
ture container. We’ll then build the click event handler so the slider may be opened
or closed whenever the user wishes. Then we’ll check our work and talk about the
next big thing—managing the page state using the URI hash fragment.

3.5.1 Write a method to extend or retract the chat slider

We’ll be moderately ambitious with our chat slider function. We need it production-
quality, but it doesn’t have to be extravagant. Here are the requirements we want to

Figure 3.6 It’s like deja vu
all over again—spa/spa.html
achieve:

www.EBooksWorld.ir

http://www.it-ebooks.info/

togg
m

Req
2:

singl

or r
ch
79Manage the feature containers

1 Enable developers to configure the speed and height of slider motions.
2 Create a single method to extend or retract the chat slider.
3 Avoid a race condition where the slider may be extending and retracting at the

same time.
4 Enable developers to pass in an optional callback to be invoked on completion

of a slider motion.
5 Create test code to ensure the slider is functioning properly.

Let’s adjust the Shell to meet these requirements as shown in listing 3.11.1 All changes
are shown in bold. Please review the annotations as they detail how the changes per-
tain to the requirements:

...
spa.shell = (function () {

//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var
configMap = {

main_html : String()
...
chat_extend_time : 1000,
chat_retract_time : 300,
chat_extend_height : 450,
chat_retract_height : 15

},
stateMap = { $container : null },
jqueryMap = {},

setJqueryMap, toggleChat, initModule;
//----------------- END MODULE SCOPE VARIABLES ---------------

//-------------------- BEGIN UTILITY METHODS -----------------
//--------------------- END UTILITY METHODS ------------------

//--------------------- BEGIN DOM METHODS --------------------
// Begin DOM method /setJqueryMap/
setJqueryMap = function () {
var $container = stateMap.$container;

jqueryMap = {
 $container : $container,
 $chat : $container.find('.spa-shell-chat')

 };
};
// End DOM method /setJqueryMap/

 // Begin DOM method /toggleChat/
 // Purpose : Extends or retracts chat slider

 // Arguments :
 // * do_extend - if true, extends slider; if false retracts

1 Now would be a good time to thank your favorite celestial bodies for jQuery, as this would be a lot harder

Listing 3.11 The Shell, revised to extend and retract the chat slider—spa/js/spa.shell.js

Store the retract and extend times and heights
in the module configuration map per
Requirement 1: “Enable developers to configure
the speed and height of slider motions.”

Add the toggleChat
method to our list of
module-scope variables.

Cache the chat slider jQuery
collection in jqueryMap.

Add the
leChat

ethod per
uirement
“Create a
e method
to extend
etract the
at slider.”
without it.

www.EBooksWorld.ir

http://www.it-ebooks.info/

Pr

decl
action

Re
“

con
the s

e
retr

Invok

a
co

Requ

de

option
to be
com
slid

ds
act

est
 is
80 CHAPTER 3 Develop the Shell

 // * callback - optional function to execute at end of animation
 // Settings :
 // * chat_extend_time, chat_retract_time
 // * chat_extend_height, chat_retract_height
 // Returns : boolean
 // * true - slider animation activated
 // * false - slider animation not activated
 //
 toggleChat = function (do_extend, callback) {
 var
 px_chat_ht = jqueryMap.$chat.height(),
 is_open = px_chat_ht === configMap.chat_extend_height,
 is_closed = px_chat_ht === configMap.chat_retract_height,
 is_sliding = ! is_open && ! is_closed;

 // avoid race condition
 if (is_sliding){ return false; }

 // Begin extend chat slider
 if (do_extend) {
 jqueryMap.$chat.animate(
 { height : configMap.chat_extend_height },
 configMap.chat_extend_time,

 function () {
 if (callback){ callback(jqueryMap.$chat); }

 }
);
 return true;
 }
 // End extend chat slider

 // Begin retract chat slider
 jqueryMap.$chat.animate(
 { height : configMap.chat_retract_height },
 configMap.chat_retract_time,
 function () {
 if (callback){ callback(jqueryMap.$chat); }
 }
);
 return true;
 // End retract chat slider
 };
 // End DOM method /toggleChat/
//--------------------- END DOM METHODS ----------------------

//------------------- BEGIN EVENT HANDLERS -------------------
//-------------------- END EVENT HANDLERS --------------------

//------------------- BEGIN PUBLIC METHODS -------------------
// Begin Public method /initModule/
initModule = function ($container){

 // load HTML and map jQuery collections
stateMap.$container = $container;
$container.html(configMap.main_html);
setJqueryMap();

 // test toggle

event a race
condition by
ining to take
 if the slider
is already in
motion, per

quirement 3:
Avoid a race
dition where
lider may be
xtending and
acting at the
same time.”

e a callback
after the

nimation is
mplete, per
irement 4:

“Enable
velopers to
pass in an
al callback

 invoked on
pletion of a
er motion.”

Extend the slider 3 secon
after page load, and retr
it after 8 seconds, per
Requirement 5: “Create t
code to ensure the slider
functioning properly.”
 setTimeout(function () {toggleChat(true); }, 3000);

www.EBooksWorld.ir

http://www.it-ebooks.info/

d
xt
p
 1:
to
er
.”

onC

m
fun
81Manage the feature containers

 setTimeout(function () {toggleChat(false);}, 8000);
};
// End PUBLIC method /initModule/

return { initModule : initModule };
//------------------- END PUBLIC METHODS ---------------------

}());

If you are playing along at home, let’s first check our code with JSLint by typing jslint
spa/js/spa.shell.js in the command line—we shouldn’t see any warnings or
errors. Next let’s reload the browser document (spa/spa.html) and see the chat slider
extend after three seconds and retract after eight seconds. Now that we have the slider
moving, we can employ a user’s mouse-click to toggle its position.

3.5.2 Add the chat slider click event handler

Most users expect to click on a chat slider and see it extend or retract, as this is the
common convention. Here are the requirements we want to achieve:

1 Set tool-tip text to prompt user action, for example “Click to retract.”
2 Add a click event handler to call toggleChat.
3 Bind the click event handler to the jQuery event.

Let’s adjust the Shell to meet these requirements as shown in listing 3.12. All changes
are again shown in bold, and the annotations detail how the changes pertain to the
requirements.

...
spa.shell = (function () {

//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var
configMap = {

...
chat_retract_height : 15,
chat_extended_title : 'Click to retract',
chat_retracted_title : 'Click to extend'

},
stateMap = {

$container : null,
is_chat_retracted : true

},
jqueryMap = {},

setJqueryMap, toggleChat, onClickChat, initModule;
//----------------- END MODULE SCOPE VARIABLES ---------------
...
//--------------------- BEGIN DOM METHODS --------------------
// Begin DOM method /setJqueryMap/
...

Listing 3.12 The Shell, revised to handle chat slider click events—spa/js/spa.shell.js

Add retracted an
extended title te

to the configMa
per Requirement

“Set tool-tip text
prompt us

action..

Add is_chat_retracted to the
stateMap. It’s good practice to list all
keys used in the stateMap so they can
be easily found and inspected. This is
used by our toggleChat method.

Add
lickChat
to our list of
odule-scope

ction names.
// End DOM method /setJqueryMap/

www.EBooksWorld.ir

http://www.it-ebooks.info/

 the
ap
 per
 to

82 CHAPTER 3 Develop the Shell

// Begin DOM method /toggleChat/
// Purpose : Extends or retracts chat slider
...

 // State : sets stateMap.is_chat_retracted
 // * true - slider is retracted

 // * false - slider is extended
//
toggleChat = function (do_extend, callback) {
var

px_chat_ht = jqueryMap.$chat.height(),
is_open = px_chat_ht === configMap.chat_extend_height,
is_closed = px_chat_ht === configMap.chat_retract_height,
is_sliding = ! is_open && ! is_closed;

// avoid race condition
if (is_sliding) { return false; }

// Begin extend chat slider
if (do_extend) {

jqueryMap.$chat.animate(
{ height : configMap.chat_extend_height },
configMap.chat_extend_time,
function () {
 jqueryMap.$chat.attr(
 'title', configMap.chat_extended_title
);
 stateMap.is_chat_retracted = false;

if (callback) { callback(jqueryMap.$chat); }
}

);
return true;

}
// End extend chat slider

// Begin retract chat slider
jqueryMap.$chat.animate(

{ height : configMap.chat_retract_height },
configMap.chat_retract_time,
function () {

jqueryMap.$chat.attr(
 'title', configMap.chat_retracted_title
);
stateMap.is_chat_retracted = true;
if (callback) { callback(jqueryMap.$chat); }

}
);
return true;
// End retract chat slider

};
// End DOM method /toggleChat/
//--------------------- END DOM METHODS ----------------------

//------------------- BEGIN EVENT HANDLERS -------------------
onClickChat = function (event) {

 toggleChat(stateMap.is_chat_retracted);
return false;

Update the toggleChat API docs
to indicate how stateMap.is
_chat_retracted is set by this
method.

Adjust toggleChat to control
hover text as well as the stateM
.is_chat_retracted value
Requirement 1: “Set tool-tip text
prompt user action...”

Add the onClickChat event handler
per Requirement 2: “Add a click event
 }; handler to call toggleChat.”

www.EBooksWorld.ir

http://www.it-ebooks.info/

83Manage the feature containers

//-------------------- END EVENT HANDLERS --------------------

//------------------- BEGIN PUBLIC METHODS -------------------
// Begin Public method /initModule/
initModule = function ($container) {
// load HTML and map jQuery collections
stateMap.$container = $container;
$container.html(configMap.main_html);
setJqueryMap();

 // initialize chat slider and bind click handler
 stateMap.is_chat_retracted = true;
 jqueryMap.$chat
 .attr('title', configMap.chat_retracted_title)
 .click(onClickChat);

};
// End PUBLIC method /initModule/

return { initModule : initModule };
//------------------- END PUBLIC METHODS ---------------------

}());

Those playing along at home should again check our code by typing jslint spa/js/
spa.shell.js at the command line. We again shouldn’t see any warnings or errors.

 There’s an aspect of jQuery event handlers that we think is crucial to remember: the
return value is interpreted by jQuery to specify its continued handling of the event. We
usually return false from our jQuery event handlers. Here’s what that does:

■ It tells jQuery to prevent the default action—like following a link, or selecting
text—from occurring. The same effect can be acquired by invoking event.pre-
ventDefault() in the event handler.

■ It tells jQuery to stop the event from triggering the same event on the parent
DOM element (this behavior is often called bubbling). The same effect can be
acquired by invoking event.stopPropagation() in the event handler.

■ It concludes the handler execution. If the clicked element has other handlers
bound to it after this handler, the next one in line will be executed. (If we don’t
want subsequent handlers to execute, we can invoke event.preventImmedi-
atePropagation().)

These three actions are usually what we want our event handlers to do. Soon we’ll
write event handlers where we do not want these actions. These event handlers will
return the true value.

 The Shell doesn’t need to necessarily handle the click. It could instead provide the
capability to manipulate the slider as a callback to the chat module—and we encourage
this. But, because we haven’t written that module yet, we have handled the click event
in the Shell for now.

 Now let’s add a little flair to our Shell styles. Listing 3.13 shows the changes:

Initialize the event
handler by setting
stateMap.is_chat
_retracted and the
hover text. Then bind
the handler to a click
event per Requirement
3: “Bind the click event
handler to the jQuery
event.”
www.EBooksWorld.ir

http://www.it-ebooks.info/

84 CHAPTER 3 Develop the Shell

...

.spa-shell-foot {
...

}
.spa-shell-chat {

bottom : 0;
right : 0;
width : 300px;
height : 15px;
cursor : pointer;
background : red;
border-radius : 5px 0 0 0;
z-index : 1;

}
 .spa-shell-chat:hover {
 background : #a00;

}

.spa-shell-modal { ... }

...

When we reload the browser document (spa/spa.html) we can click on the slider and
see it extend as shown in figure 3.7:

 The slider extends much more slowly than it retracts. We can change the speed of
the slider by changing the configuration in the Shell (spa/js/spa.shell.js), for example:

...
configMap = {

 main_html : String()
 ...
 chat_extend_time : 250,
 chat_retract_time : 300,
 ...
 },
...

In the next section, we’ll adjust our application to better manage its state. When we’re
finished, all browser history features like Bookmarks, the Forward button, and the
Back button will work for the chat slider as the user expects.

Listing 3.13 Adding some flair to the Shell—spa/css/spa.shell.css

Change the cursor to a pointer
when hovering over the slider. This
informs the user that something
will happen if they click.

Round a
corner to
make the

slider look
nicer.

Change the slider color when the
cursor hovers over the slider. This
reinforces the message to the user
that an action is available on click.

(1) Click here (2) Slides out
Figure 3.7 Extending the
chat slider—spa/spa.html
www.EBooksWorld.ir

http://www.it-ebooks.info/

85Manage application state

3.6 Manage application state
In computer science, a state is a unique configuration of information in an applica-
tion. Desktop and web applications generally try to maintain some state between ses-
sions. For example, when we save a word processing document and then open it again
at a later date, the document is restored. The application may also restore the window
size, our preferences, and the cursor and page location. Our SPA needs to manage
state too, because people who use browsers have come to expect certain behaviors.

3.6.1 Understand the behavior browser users expect

Desktop and web applications vary widely in what aspect of state they maintain. A
desktop application can omit a Previous button if it doesn’t provide a “go back” capa-
bility. But in a web application we’ve got the browser’s Back button—one of the most
frequently used browser controls—staring our user in the face, begging to be
clicked—and we can’t remove it.

 And the same goes for the Forward button, the Bookmark button, and View his-
tory. The users expect these history controls to work. If they don’t, our users get cranky,
and our application will never win a Webby. Table 3.1 illustrates the approximate desk-
top application counterparts to these history controls.

Because we do aspire to win a Webby, we have to ensure these history controls work as
our users expect. Next we’ll discuss strategies to provide the behaviors our users
expect.

3.6.2 Pick a strategy to manage history controls

An optimal strategy to provide history controls should meet these requirements:

1 The history controls should work as the user expects, per table 3.1.
2 Development to support history controls should be reasonably inexpensive. It

shouldn’t require significantly more time or complexity in comparison to devel-
opment without history controls.

3 The application should perform well. The application shouldn’t take longer to
respond to user actions, and the user interface shouldn’t be more complicated
as a result.

Table 3.1 Browser versus desktop controls

Browser control Desktop control Comments

Back button Undo Revert to prior state

Forward button Redo Restore state from recent “undo” or “back” motion

Bookmark Save As Store application state for future use or reference

View history Undo History View steps in undo/redo sequence
www.EBooksWorld.ir

http://www.it-ebooks.info/

86 CHAPTER 3 Develop the Shell

Let’s consider some strategies using the chat slider and the following user interaction
as our example:

1 Susan visits our SPA and clicks on the chat slider to open it.
2 She bookmarks the SPA, and then browses to other sites.
3 Later, she decides to return to our application and clicks on her bookmark.

Let’s consider three strategies to make Susan’s bookmark work as expected. Please
don’t worry about memorizing them; we just want to illustrate their relative merits: 2

Strategy 1—On the click, the event handler directly calls the toggleChat routine, and
ignores the URI. When Susan returns to her bookmark, the slider will be presented in
its default position—closed. Susan isn’t pleased because the bookmark didn’t work as
expected. James the developer isn’t pleased either, because his product manager finds
the usability of the application unacceptable and is pestering him about it.

Strategy 2—On the click, the event handler directly calls the toggleChat routine,
and then modifies the URI to record this state. When Susan returns to her bookmark,
the application must recognize the parameter in the URI and act on it. Susan is
pleased. James the developer is not pleased because he must now support two condi-
tions that will open the slider: a run-time click event, and a load-time URI parameter.
And James’s product manager isn’t too happy either because supporting this dual-
path approach is slower and prone to bugs and inconsistencies.

Strategy 3—On the click, the event handler changes the URI and then promptly
returns. The Shell hashchange event handler picks up the change, and dispatches to
the toggleChat routine. When Susan returns to her bookmark, the URI is parsed by
the same routine and the open slider is restored. Susan is pleased because the book-
mark works as expected. James the developer is pleased as well, because he can use one
code path to implement all bookmark-able states. And James’s product manager is pleased
too, because development is fast and comparatively bug-free.

 Our preferred solution is Strategy 3 as it supports all history controls (requirement
A). It addresses and minimizes development concerns (requirement B). And it ensures
application performance by adjusting only the parts of the page that need to be
changed when a history control is used (requirement C). This solution, where the URI
always drives the page state, we call the anchor interface pattern, as shown in figure 3.8.

 We’ll return to this pattern in chapter 4. Now that we have selected our strategy,
let’s implement it.

3.6.3 Change the anchor when a history event occurs

The anchor component of a URI instructs the browser what part of a page to show.
Other common names for the anchor are the bookmark component or the hash fragment.
The anchor always starts with a # symbol, and is shown in bold in the following code:

http://localhost/spa.html#!chat=open

2 There are other strategies—like the use of a persistent cookie or an iframe—but these are frankly too limited

and convoluted to merit consideration.

www.EBooksWorld.ir

http://www.it-ebooks.info/

87Manage application state

Traditionally, web developers have used the anchor mechanism to enable users to eas-
ily “jump” between sections of a long document. For example, a web page that has a
table of contents at the top might link all the section titles to their corresponding sec-
tions within the document. And each of the sections may have a “back to top” link at
the end. Blogs and forums still use this mechanism extensively.

 One exceptional feature of the anchor component is that the browser does not
reload the page when it’s changed. The anchor component is a client-side-only con-
trol, which makes it an ideal place to store our application state. This technique is
used by many SPAs.

 We refer to an application state change that we want to keep in the browser history
as a history event. Because we decided that opening or closing the chat is a history event
(you missed the meeting), we can have our click event handler change the anchor to
express the chat slider state. We can use the uriAnchor jQuery plugin to do the heavy
lifting. Let’s revise the Shell so a user click changes the URI as shown in listing 3.14. All
changes are shown in bold.

...
//------------------- BEGIN EVENT HANDLERS -------------------

 onClickChat = function (event) {
 if (toggleChat(stateMap.is_chat_retracted)) {
 $.uriAnchor.setAnchor({
 chat : (stateMap.is_chat_retracted ? 'open' : 'closed')
 });
 }
 return false;
 };

//-------------------- END EVENT HANDLERS --------------------
...

Now when we click on the slider, we see the anchor in the URI change—but only if
toggleChat succeeds and returns true. For example, when we click the chat slider
open and then closed, we see the following:

http://localhost/spa.html#!chat=closed

Listing 3.14 The uriAnchor jQuery plugin at play—spa/js/spa.shell.js

User is
off site.

User selects
bookmark.

Page and
slider are
rendered.

Anchor
change event

triggered.

Event is
captured by
the Shell.

User is
on site.

Update the URI
parameter that

drives slider position.

User clicks on
 toggle slider

control.

The Shell dispatches
an event handler

that adjusts the position.

Figure 3.8 The anchor interface pattern
www.EBooksWorld.ir

http://www.it-ebooks.info/

88 CHAPTER 3 Develop the Shell

We need to ensure that when the anchor changes, only the part of the application that
needs adjustment is changed. This makes the application much faster and avoids the
disturbing “flicker” that happens when parts of the page are unnecessarily cleared and
re-rendered. For example, let’s say Susan is viewing a list of a thousand user profiles
when she opens the chat slider. If she clicks the Back button, the application should
simply close the slider—the profiles shouldn’t be re-rendered.

 We ask ourselves three questions to determine whether the change from an event
is worthy of history support:

■ How strongly will the user want to bookmark the change that has occurred?
■ How strongly will the user want to revert to the page state before the change?
■ How expensive will this be?

Although the incremental cost to maintain a state is usually minor using the anchor
interface pattern, there are some situations where it can be expensive or impossible.
For example, an online purchase would be very difficult to reverse when a user clicks
the Back button. In such a situation, we need to avoid a history entry completely.
Lucky for us, our uriAnchor plugin supports this.

3.6.4 Use the anchor to drive the application state

We want the anchor component to always drive the bookmark-able application state.
This ensures history functions always work as expected. The following pseudo-code
outlines how we like to handle a history event:

■ When a history event occurs, change the anchor component of the URI to
reflect the changed state:
– The handler that received the event calls a Shell utility to change the anchor.
– The event handler then exits.

■ A Shell hashchange event handler notices the URI change and acts on it:

– It compares the current state to the state proposed by the new anchor.
– It tries to change the sections of the application that need adjustment as

determined by the comparison.
– If it can’t make the requested changes, it maintains the current state and

restores the anchor to match it.

Now that we’ve sketched out the pseudo-code, let’s get to work converting it into the
real thing.

About that exclamation point
The exclamation point following the hash symbol (#!) in the example URI is used to
inform Google and other search engines that this URI may be indexed for search.
We’ll cover more about search engine optimization in chapter 9.
www.EBooksWorld.ir

http://www.it-ebooks.info/

ex

ob
is
b
J

o

r
an

co
n

or-

te

akes
we
, for
t :
d
e
lue
89Manage application state

CHANGE THE SHELL TO USE THE ANCHOR COMPONENT

Let’s revise the Shell to use the anchor component to drive the application state, as
shown in listing 3.15. There’s a fair bit of new code here, but don’t get discouraged—
all will be explained in due time:

...
spa.shell = (function () {

//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var
configMap = {

 anchor_schema_map : {
 chat : { open : true, closed : true }

 },
 main_html : String()

...
},
stateMap = {

$container : null,
 anchor_map : {},

is_chat_retracted : true
},
jqueryMap = {},

copyAnchorMap, setJqueryMap, toggleChat,
changeAnchorPart, onHashchange,
onClickChat, initModule;

//----------------- END MODULE SCOPE VARIABLES ---------------

//------------------- BEGIN UTILITY METHODS ------------------
// Returns copy of stored anchor map; minimizes overhead

 copyAnchorMap = function () {
 return $.extend(true, {}, stateMap.anchor_map);
 };

//-------------------- END UTILITY METHODS -------------------

//--------------------- BEGIN DOM METHODS --------------------
...
// Begin DOM method /changeAnchorPart/
// Purpose : Changes part of the URI anchor component
// Arguments:
// * arg_map - The map describing what part of the URI anchor
// we want changed.
// Returns : boolean
// * true - the Anchor portion of the URI was update
// * false - the Anchor portion of the URI could not be updated
// Action :
// The current anchor rep stored in stateMap.anchor_map.
// See uriAnchor for a discussion of encoding.
// This method
// * Creates a copy of this map using copyAnchorMap().
// * Modifies the key-values using arg_map.
// * Manages the distinction between independent

Listing 3.15 Using the anchor to drive application state—spa/js/spa.shell.js

Define the map used by
uriAnchor for validation.

Store the current anchor values
in a map in the module state,
stateMap.anchor_map.

Declare three additional
methods: copyAnchorMap,
changeAnchorPart, and
onHashchange.

Use the
jQuery

tend()
utility to
copy an

ject. This
 required
ecause all
avaScript
bjects are
passed by
eference,
d copying

one
rrectly is

on-trivial.

Add the
changeAnch
Part utility to
atomically upda
the anchor. It t
a map of what
want to change
example { cha
'open' }, an
updates only th
specified key-va
in the anchor
component.
// and dependent values in the encoding.

www.EBooksWorld.ir

http://www.it-ebooks.info/

if

r

s

90 CHAPTER 3 Develop the Shell

// * Attempts to change the URI using uriAnchor.
// * Returns true on success, and false on failure.
//
changeAnchorPart = function (arg_map) {
var

 anchor_map_revise = copyAnchorMap(),
 bool_return = true,

 key_name, key_name_dep;

// Begin merge changes into anchor map
KEYVAL:
for (key_name in arg_map) {

if (arg_map.hasOwnProperty(key_name)) {

 // skip dependent keys during iteration
 if (key_name.indexOf('_') === 0) { continue KEYVAL; }

 // update independent key value
 anchor_map_revise[key_name] = arg_map[key_name];

 // update matching dependent key
 key_name_dep = '_' + key_name;
 if (arg_map[key_name_dep]) {
 anchor_map_revise[key_name_dep] = arg_map[key_name_dep];
 }
 else {
 delete anchor_map_revise[key_name_dep];
 delete anchor_map_revise['_s' + key_name_dep];
 }
 }
 }
 // End merge changes into anchor map

 // Begin attempt to update URI; revert if not successful
 try {
 $.uriAnchor.setAnchor(anchor_map_revise);
 }
 catch (error) {
 // replace URI with existing state
 $.uriAnchor.setAnchor(stateMap.anchor_map,null,true);
 bool_return = false;
 }
 // End attempt to update URI...

 return bool_return;
 };
 // End DOM method /changeAnchorPart/

//--------------------- END DOM METHODS ----------------------

//------------------- BEGIN EVENT HANDLERS -------------------
// Begin Event handler /onHashchange/
// Purpose : Handles the hashchange event
// Arguments:
// * event - jQuery event object.
// Settings : none

 // Returns : false
// Action :

Don’t set the anchor
it doesn’t pass the
schema (uriAncho
will throw an
exception). When thi
occurs, revert the
anchor component to
its previous state.

Add the onHashchange event
handler to handle URI anchor changes.
Use the uriAnchor plugin to convert
the anchor into a map and compare to
the previous state to determine action.
If the proposed anchor change is
// * Parses the URI anchor component
invalid, resets the anchor back to its
prior value.

www.EBooksWorld.ir

http://www.it-ebooks.info/

91Manage application state

// * Compares proposed application state with current
// * Adjust the application only where proposed state
// differs from existing
//
onHashchange = function (event) {
var

anchor_map_previous = copyAnchorMap(),
anchor_map_proposed,
_s_chat_previous, _s_chat_proposed,
s_chat_proposed;

// attempt to parse anchor
try { anchor_map_proposed = $.uriAnchor.makeAnchorMap(); }
catch (error) {

$.uriAnchor.setAnchor(anchor_map_previous, null, true);
return false;

}
stateMap.anchor_map = anchor_map_proposed;

// convenience vars
_s_chat_previous = anchor_map_previous._s_chat;
_s_chat_proposed = anchor_map_proposed._s_chat;

// Begin adjust chat component if changed
if (! anchor_map_previous

|| _s_chat_previous !== _s_chat_proposed
) {

s_chat_proposed = anchor_map_proposed.chat;
switch (s_chat_proposed) {

case 'open' :
toggleChat(true);

break;
case 'closed' :

toggleChat(false);
break;
default :

toggleChat(false);
delete anchor_map_proposed.chat;
$.uriAnchor.setAnchor(anchor_map_proposed, null, true);

}
}
// End adjust chat component if changed

return false;
};
// End Event handler /onHashchange/

// Begin Event handler /onClickChat/
onClickChat = function (event) {
changeAnchorPart({

chat: (stateMap.is_chat_retracted ? 'open' : 'closed')
});
return false;

};
// End Event handler /onClickChat/
//-------------------- END EVENT HANDLERS --------------------

Revise the onClickChat event
handler to only modify the chat
parameter of the anchor.
www.EBooksWorld.ir

http://www.it-ebooks.info/

92 CHAPTER 3 Develop the Shell

//------------------- BEGIN PUBLIC METHODS -------------------
// Begin Public method /initModule/
initModule = function ($container) {
... // configure uriAnchor to use our schema
$.uriAnchor.configModule({

schema_map : configMap.anchor_schema_map
});

// Handle URI anchor change events.
 // This is done /after/ all feature modules are configured
// and initialized, otherwise they will not be ready to handle
// the trigger event, which is used to ensure the anchor
// is considered on-load
//
$(window)

.bind('hashchange', onHashchange)

.trigger('hashchange');

};
// End PUBLIC method /initModule/

return { initModule : initModule };
//------------------- END PUBLIC METHODS ---------------------

}());

Now that we’ve adjusted the code, we should see that all history controls—the For-
ward button, the Back button, bookmarks, and browser history—all work as expected.
And the anchor should “fix itself” if we manually change it to have parameters or val-
ues that we don’t support—for example, try replacing the anchor in the browser
address bar with #!chat=barney and press Return.

 Now that we have the history controls working, let’s discuss how we use the anchor
to drive the application state. We’ll start by showing how we use the uriAnchor to
encode and decode the anchor.

UNDERSTAND HOW URIANCHOR ENCODES AND DECODES THE ANCHOR

We use the jQuery hashchange event to recognize a change in the anchor component.
Application state is encoded using the concept of independent and dependent key-value
pairs. Take for example the following anchor shown in bold:

http://localhost/spa.html#!chat=profile:on:uid,suzie|status,green

The independent key in this example is profile, and it has a value of on. Keys that further
define the profile state are dependent keys, and they follow the colon (:) delimiter. This
includes the key uid with a value of suzie, and the key status with the value of green.

 The uriAnchor plugin, js/jq/jquery.uriAnchor-1.1.3.js, takes care of encoding and
decoding dependent and independent values for us. We can use the $.uriAnchor
.setAnchor() method to change the browser URI to match the earlier example:

var anchorMap = {
 profile : 'on',
 _profile : {

Configure the
uriAnchor plugin to
test against a schema.

Bind the hashchange
event handler and
immediately trigger it so
the module considers the
bookmark on initial load.
 uid : 'suzie',

www.EBooksWorld.ir

http://www.it-ebooks.info/

93Manage application state

 status : 'green'
 }
};
$.uriAnchor.setAnchor(anchorMap);

The makeAnchorMap method can be used to read and parse the anchor into a map:

var anchorMap = $.uriAnchor.makeAnchorMap();
console.log(anchorMap);

// If the URI anchor component in the browser is
// http://localhost/spa.html#!chat=profile:on:uid,suzie|status,green
//
// Then console.log(anchorMap) should show the
// following:
//
// { profile : 'on',
// _profile : {
// uid : 'suzie',
// status : 'green'
// }
// };
//

Hopefully you now better understand how uriAnchor can be used to encode and
decode the application state expressed in the URI anchor component. Now let’s take a
closer look at how we use the URI anchor component to drive the application state.

UNDERSTAND HOW ANCHOR CHANGES DRIVE APPLICATION STATE

Our history control strategy is that any event that changes a bookmark-able state
should do two things:

1 Change the anchor.
2 Promptly return.

We added the changeAnchorPart method to the Shell, which allowed us to update
only part of the anchor while ensuring independent and dependent keys and values
are properly handled. It unified the logic for anchor management, and it is the only
means by which the anchor is modified by our application.

 When we say “promptly return,” we mean that after the anchor has been changed,
the event handler’s work is done. It doesn’t change the page elements. It doesn’t
update variables or flags. It doesn’t pass Go or collect 200 dollars. It simply returns
directly back to its calling event. This is illustrated in our onClickChat event handler:

onClickChat = function (event) {
changeAnchorPart({
chat: (stateMap.is_chat_retracted ? 'open' : 'closed')

});
return false;

};

This event handler uses changeAnchorPart to change the chat parameter of the

anchor and then promptly returns. Because the anchor component is changed, this

www.EBooksWorld.ir

http://www.it-ebooks.info/

94 CHAPTER 3 Develop the Shell

initiates a hashchange browser event. The Shell listens for hashchange events and
takes action based on the anchor contents. For example, if the Shell notices the chat
value has changed from opened to closed it closes the chat slider.

 You might think of the anchor—modified by the changeAnchorPart method—as
the API for bookmark-able states. The beauty of this approach is that it doesn’t matter
why the anchor was changed—it could be that our application modified it, or the user
clicked a bookmark, or played with the Forward or Back buttons, or directly typed
into the browser address bar. In any case, it always works correctly and uses only a sin-
gle execution path.

3.7 Summary
We’ve finished implementing two of the primary responsibilities of the Shell. We cre-
ated and styled feature containers, and we created a framework to drive application
state using the URI anchor. We updated our chat slider to help illustrate these concepts.

 Our work with the Shell isn’t complete, because we’ve yet to tackle its third pri-
mary responsibility: coordinating feature modules. Our next chapter shows how to
build feature modules, how to configure and initialize them from the Shell, and how
to call them. Isolating features into their own modules greatly improves reliability,
maintainability, scalability, and workflow. It also encourages the use and development
of third-party modules. So stick around—this is where the rubber hits the road.
www.EBooksWorld.ir

http://www.it-ebooks.info/

Add feature modules
Before you begin, you should have completed chapters 1-3 of this book. You should
also have the project files from chapter 3 as we’ll be building on them. We recom-
mend you copy all the files and the whole directory structure you created in chap-
ter 3 into a new “chapter_4” directory so you may update them there.

 A feature module provides a well-defined and scoped capability to the SPA. In this
chapter we move the chat slider capability introduced in chapter 3 into a feature mod-
ule and improve its capabilities. Besides the chat slider, examples of other feature
modules might include an image viewer, an account management panel, or a work-

This chapter covers
■ Defining feature modules and how they fit into our

architecture
■ Comparing feature modules and third-party modules
■ Explaining the fractal MVC design pattern and its

role in our architecture
■ Setting up files and directories for feature modules
■ Defining and implementing the feature module APIs
■ Implementing commonly needed feature module

capabilities
95

bench where users might assemble graphical objects.

www.EBooksWorld.ir

http://www.it-ebooks.info/

96 CHAPTER 4 Add feature modules

 We design our feature modules to interface with our application much like third-
party modules do—with well-defined APIs and strong isolation. This allows us to
release sooner with higher quality because we can focus on creating our value-add
core modules while leaving secondary modules to third parties. This strategy also pro-
vides a clear enhancement path, as we can selectively replace third-party modules with
better modules as time and resources permit. As an added benefit, our modules are
easy to reuse across multiple projects.

4.1 The feature module strategy
The Shell discussed in chapter 3 is responsible for application-wide tasks like manage-
ment of the URI anchor or cookies, and it dispatches feature-specific tasks to carefully
isolated feature modules. These modules have their own View, Controller, and a slice
of the Model that the Shell shares with them. An overview of the architecture is shown
in figure 4.1:1

 Sample feature modules might include spa.wb.js to handle sketching on a work-
bench, spa.acct.js for account management features like sign-in or sign-out, and
spa.chat.js for the chat interface. Because we seem to be on a roll with chat, we’ll
focus on that module in this chapter.

Figure 4.1 Feature modules in SPA architecture (shown in white)
1 The author has this diagram taped to the wall next to his desk.

www.EBooksWorld.ir

http://www.it-ebooks.info/

97The feature module strategy

4.1.1 A comparison with third-party modules

Feature modules are a lot like third-party modules, which provide all sorts of capabili-
ties to modern websites.2 Example third-party modules include blog commenting (Dis-
Qus, or LiveFyre), advertising (DoubleClick or ValueClick), analytics (Google or Overture),
sharing (AddThis or ShareThis), and social services (Facebook “Like” or Google “+1” but-
tons). They’re enormously popular because website operators can add high-quality
features to their sites at a tiny fraction of the cost, effort, and maintenance than if they
were to develop the features themselves.3 Typically, third-party modules are added to a
website by including a script tag in a static web page, or adding a function invocation
to an SPA. Many features on many websites wouldn’t be possible were it not for third-
party modules, as the costs would otherwise be prohibitive.

 Well-written third-party modules share these common characteristics:

■ They render in their own container, which may be provided for them, or they
append to the documents themselves.

■ They provide a well-defined API to control their behaviors.
■ They avoid corrupting the host page by keeping their JavaScript, data, and CSS care-

fully isolated.

Third-party modules have some disadvantages. The primary problem is that the
“third-party” has its own business goals, which may be at odds with our own. This can
manifest itself in many ways:

■ We’re dependent on their code and services. If they fail or go out of business, their
service can be lost. If they screw up a release, they can even prevent our site
from working. Sadly, this happens a lot more often than it should.

■ They’re often slower than custom modules due to server chatter or feature bloat. If
one third-party module is slow, it may slow down our entire application.

■ Privacy is a concern because each third-party module has its own Terms of Ser-
vice, in which their lawyers almost always reserve the right to change at a
moment’s notice.

■ Features often don’t integrate seamlessly due to a mismatch of data, style, or lack of
flexibility.

■ Cross-feature communication may be difficult or impossible if we can’t integrate
their third-party data to our SPA.

■ Customization of the module may be difficult or impossible.

Our feature modules keep the positive characteristics of third-party modules, but
because there is no third party, we avoid their disadvantages. This means that for a

2 To learn more about third-party modules and how they’re created, see Third-Party JavaScript by Ben Vinegar
and Anton Kovalyov (Manning, 2012).

3 It’s hard to gauge exactly how popular third-party modules are, but it’s hard to find a commercial website with-
out at least one. At the time of this writing, for example, we counted at least 16 major third-party modules in

use at TechCrunch.com, with at least five analytics services alone—and a whopping 53 script tags.

www.EBooksWorld.ir

http://www.it-ebooks.info/

98 CHAPTER 4 Add feature modules

given feature, the Shell provides a container that the feature module populates and
controls, as shown in figure 4.2. The feature module provides a consistent API to the
Shell for configuration, initialization, and use. The feature is kept isolated from other
features by using unique and coordinated JavaScript and CSS namespaces, and by not
allowing any external calls except to shared utilities.

 Developing feature modules as if they were a third-party module allows us to take
advantage of the benefits of third-party-style JavaScript:

■ Teams can be more effective because developers can distribute responsibility based
on the module. Let’s face it: if you’re working on a team, the only module that
isn’t third-party to you is the one for which you’re responsible. Team members
who aren’t responsible for a module only need to know its API to use it.

■ The application tends to perform well as the modules manage only the portion of
the application for which they’re responsible, and they’re optimized for our use
without the bloat of unused or unwanted capabilities.

■ Code maintenance and reuse is much easier because modules are kept neatly iso-
lated. Many of the more sophisticated jQuery plugins, such as a date picker, are
effectively third-party applications. Think of how much easier it is to use a date
picker plugin than it is to write your own.

And, of course, there’s one other, huge advantage to developing our feature modules
like third-party modules: we’re well positioned to use third-party modules for non-
core features of our web application, and then selectively replace them—as time and
resources allow—with our own feature modules, which can be better integrated,
faster, less invasive, or all of the above.

http://www.awesomesite.com/our/spa.html

Josh: Hi Mike
Mike: Hey Josh, what’s
happening?

Looking for itinerary insp...

Chatting with Josh=

Send

The Shell
Defines the page and the

feature containers. Manages
application-wide features such
as cookies and the URI anchor.

Feature model
Provides a well-scoped capability
to the application. The module
creates and manages its own

content (typically HTML or SVG)
in a container provided by the Shell.

Figure 4.2 Shell and feature module responsibilities
www.EBooksWorld.ir

http://www.it-ebooks.info/

99The feature module strategy

4.1.2 Feature modules and fractal MVC pattern

Many web developers are familiar with the Model-View-Controller (MVC) design pattern
because it’s presented in many frameworks such as Ruby on Rails, Django (Python),
Catalyst (Perl), Spring MVC (Java), or MicroMVC (PHP). Because so many readers are
familiar with this pattern, we’ll explain how our SPA architecture relates to it, particu-
larly to the feature modules.

 Let’s recall that MVC is a pattern used to develop an application. Its parts include:

■ The Model, which provides the data and business rules of the application.
■ The View, which provides the sensory (usually visual, but also often audio) rep-

resentation of the Model’s data.
■ The Controller, which converts requests from the user into commands that

update the Model and/or View of an application.

Developers familiar with a web MVC framework should be comfortable with most of
this chapter. The greatest difference between a traditional web developer’s view of an
MVC framework and our SPA architecture is as follows:

■ Our SPA moves as much of the application to the browser as possible.
■ We recognize the MVC pattern is repeated as if in a fractal.

A fractal is a pattern that displays self-
similarity on all levels. A simple example
is illustrated in figure 4.3, where from a
distance we see a general pattern, and as
we look closer we see the pattern repeat-
ing at finer levels of detail.

 Our SPA architecture employs a repeating MVC pattern
at multiple levels, so we call it Fractal Model-View-Controller,
or FMVC. This concept isn’t new, and developers have
been discussing it with the same name for at least a
decade. How much of the fractal we see is a matter of per-
spective. When we view our web application from a dis-
tance, as in figure 4.4, we see a single MVC pattern—the
Controller handles the URI and user input, interacts with
the Model, and provides us with a View in the browser.

 When we zoom in a bit, as seen in figure 4.5, we see
that the web application is split into two parts: the server side, which employs an MVC
pattern to feed data to the client, and an SPA, which employs MVC to allow the user to
view and interact with the browser Model. The server’s Model includes the data from
the database, whereas the View is the presentation of the data that gets sent to the
browser, and the Controller is the code that orchestrates data management and com-
munication with the browser. On the client, the Model includes the data that’s been
received from the server, the View is the user interface, and the Controller is the logic

Figure 4.3 Box fractal

Model
View

Controller

Web application

Figure 4.4 Our web applica-
tion from a distance
that orchestrates the client data with the interface.

www.EBooksWorld.ir

http://www.it-ebooks.info/

100 CHAPTER 4 Add feature modules

When we zoom in closer still, as in figure 4.6, we see yet more MVC patterns. The
server application, for example, employs an MVC pattern to provide an HTTP data API.
The database that the server application uses employs its own MVC pattern. On the cli-
ent, the client application uses an MVC pattern, yet the Shell calls subordinate feature
modules, which themselves use MVC patterns.

Almost all modern websites fit this pattern, even if the developers don’t recognize it.
For example, once a developer adds a commenting feature from DisQus or LiveFyre to
their blog—or virtually any other
third-party module—they’re adding
another MVC pattern.

 Our SPA architecture embraces
this fractal MVC pattern. In other
words, our SPA works nearly the same
way whether integrating a third-party
feature or a feature module we write
ourselves. Figure 4.7 shows how our
Chat module will employ its own
MVC pattern.

 We’ve covered where feature mod-
ules fit into our architecture, how
they’re similar to third-party modules,

Model
View

Controller

Server Client

Model
View
Controller

Web application

Figure 4.5 Our
web application
a little closer

Model
View

Controller

Server applicationDatabase Client application

Model
View
Controller

Web application

Model
View

Controller

Model
View

Controller

Feature

Figure 4.6 Our web application up close and personal

Model
(spa.model.js)

View
(spa.chat.js,

DOM methods)

Controller
(spa.chat.js,

event handlers)

Figure 4.7 The MVC pattern as it appears in our Chat
feature module
www.EBooksWorld.ir

http://www.it-ebooks.info/

101Set up feature module files

and how they employ fractal MVC. In the next section, we’ll put these concepts to use
and create our first feature module.

4.2 Set up feature module files
The first SPA feature module we’ll create will be the chat feature module, which we’ll
refer to as Chat for the remainder of the chapter. We chose this feature because we
already have completed significant work on it in chapter 3, and because the conver-
sion helps highlight the defining characteristics of a feature module.

4.2.1 Plan the file structure

We recommend you copy the whole directory structure you created in chapter 3 into a
new “chapter_4” directory so we may update them there. Let’s review our file struc-
ture as we left it in chapter 3 as shown in listing 4.1:

spa
+-- css
| +-- spa.css
| `-- spa.shell.css
+-- js
| +-- jq
| | +-- jquery-1.9.1.js
| | `-- jquery.uriAnchor-1.1.3.js
| +-- spa.js
| `-- spa.shell.js
+-- layout.html
`-- spa.html

Here are the changes we wish to make:

■ Create a namespaced stylesheet for Chat.
■ Create a namespaced JavaScript module for Chat.
■ Create a stub for the browser Model.
■ Create a utility module that provides common routines for use by all other

modules.
■ Modify the browser document to include the new files.
■ Delete the file we used to develop the layout.

When we’re finished, our updated files and directories should look like listing 4.2. All
the files we’ll have to create or modify are shown in bold:

spa
+-- css
| +-- spa.chat.css
| +-- spa.css

Listing 4.1 File structure from chapter 3

Listing 4.2 Revised file structure for Chat

Add the stylesheet
for Chat.
| `-- spa.shell.css

www.EBooksWorld.ir

http://www.it-ebooks.info/

d

102 CHAPTER 4 Add feature modules

+-- js
| +-- jq
| | +-- jquery-1.9.1.js
| | `-- jquery.uriAnchor-1.1.3.js
| +-- spa.chat.js
| +-- spa.js
| +-- spa.model.js
| +-- spa.shell.js
| `-- spa.util.js
`-- spa.html

Now that we’ve identified the files we want to add or modify, let’s fire up our trusty
text editor and get the job done. We’re going to consider each file exactly in the order
we’ve presented it.

4.2.2 Populate the files

Our first file to consider is the Chat stylesheet, spa/css/spa.chat.css. We’ll create a file
and populate it with the contents shown in listing 4.3. Initially, it will be a stub:4

/*
* spa.chat.css
* Chat feature styles

*/

Next let’s create our Chat feature module, spa/js/spa.chat.js, as shown in listing 4.4,
using our module template from appendix A. This is just the first pass, and we’ll have
it fill the chat slider container with some trivial HTML:

/*
* spa.chat.js
* Chat feature module for SPA

*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/

/*global $, spa */

spa.chat = (function () {

Listing 4.3 Our stylesheet (stub)—spa/css/spa.chat.css

4 A stub is purposely incomplete or a placeholder resource. For example, in chapter 5 we create a “stub” data

Listing 4.4 Our Chat module, with limited capability—spa/js/spa.chat.js

Add the JavaScript
for Chat.

Add the JavaScript
for the Model.

Modify the Shell
to use Chat.Add our new

utility module.

Modify the browser document
to include the new files.Delete the layout

evelopment file, spa/
layout.html.

Create namespace
of this module,
spa.chat.
module that fakes communication with the server.

www.EBooksWorld.ir

http://www.it-ebooks.info/

103Set up feature module files

//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var
configMap = {

main_html : String()
+ '<div style="padding:1em; color:#fff;">'

+ 'Say hello to chat'
+ '</div>',

settable_map : {}
},
stateMap = { $container : null },
jqueryMap = {},

setJqueryMap, configModule, initModule
;

//----------------- END MODULE SCOPE VARIABLES ---------------

//------------------- BEGIN UTILITY METHODS ------------------
//-------------------- END UTILITY METHODS -------------------

//--------------------- BEGIN DOM METHODS --------------------
// Begin DOM method /setJqueryMap/
setJqueryMap = function () {
var $container = stateMap.$container;
jqueryMap = { $container : $container };

};
// End DOM method /setJqueryMap/
//---------------------- END DOM METHODS ---------------------

//------------------- BEGIN EVENT HANDLERS -------------------
//-------------------- END EVENT HANDLERS --------------------

//------------------- BEGIN PUBLIC METHODS -------------------
// Begin public method /configModule/
// Purpose : Adjust configuration of allowed keys
// Arguments : A map of settable keys and values
// * color_name - color to use
// Settings :
// * configMap.settable_map declares allowed keys
// Returns : true
// Throws : none
//
configModule = function (input_map) {
spa.util.setConfigMap({

input_map : input_map,
settable_map : configMap.settable_map,
config_map : configMap

});
return true;

};
// End public method /configModule/

// Begin public method /initModule/
// Purpose : Initializes module
// Arguments :
// * $container the jquery element used by this feature
// Returns : true

Store HTML template for chat
slider in configMap. Feel
free to replace our inane stock
message with your own.

Create configModule
method. Whenever a feature
module accepts settings, we
always use the same method
name and the same spa.util
.setConfigMap utility.

Add initModule method.
Almost all our modules have
this method. It starts the
module execution.
// Throws : none

www.EBooksWorld.ir

http://www.it-ebooks.info/

104 CHAPTER 4 Add feature modules

//
initModule = function ($container) {
$container.html(configMap.main_html);
stateMap.$container = $container;
setJqueryMap();
return true;

};
// End public method /initModule/

// return public methods
return {
configModule : configModule,
initModule : initModule

};
//------------------- END PUBLIC METHODS ---------------------

}());

Now let’s create our Model as shown in listing 4.5. This is also a stub. Like all our mod-
ules, the file name (spa.model.js) indicates the namespace it provides (spa.model):

/*
* spa.model.js
* Model module

*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/

/*global $, spa */

spa.model = (function (){ return {}; }());

Let’s create a general utility module so we may share common routines across all mod-
ules as shown in listing 4.6. The makeError method can be used to easily create error
objects. The setConfigMap method provides an easy and consistent way to change set-
tings for modules. Because these are public methods, we detail their use for the bene-
fit of other developers:

/*
* spa.util.js
* General JavaScript utilities
*
* Michael S. Mikowski - mmikowski at gmail dot com
* These are routines I have created, compiled, and updated
* since 1998, with inspiration from around the web.
*

Listing 4.5 Our model (stub)—spa/js/spa.model.js

Listing 4.6 Common utilities—spa/js/spa.util.js

Fill chat slider container
with our HTML template.

Export module methods, configModule
and initModule. These are standard
methods for nearly all feature modules.
* MIT License

www.EBooksWorld.ir

http://www.it-ebooks.info/

105Set up feature module files

*
*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa */

spa.util = (function () {
var makeError, setConfigMap;

// Begin Public constructor /makeError/
// Purpose: a convenience wrapper to create an error object
// Arguments:
// * name_text - the error name
// * msg_text - long error message
// * data - optional data attached to error object
// Returns : newly constructed error object
// Throws : none
//
makeError = function (name_text, msg_text, data) {
var error = new Error();
error.name = name_text;
error.message = msg_text;

if (data){ error.data = data; }

return error;
};
// End Public constructor /makeError/

// Begin Public method /setConfigMap/
// Purpose: Common code to set configs in feature modules
// Arguments:
// * input_map - map of key-values to set in config
// * settable_map - map of allowable keys to set
// * config_map - map to apply settings to
// Returns: true
// Throws : Exception if input key not allowed
//
setConfigMap = function (arg_map){
var

input_map = arg_map.input_map,
settable_map = arg_map.settable_map,
config_map = arg_map.config_map,
key_name, error;

for (key_name in input_map){
if (input_map.hasOwnProperty(key_name)){

if (settable_map.hasOwnProperty(key_name)){
config_map[key_name] = input_map[key_name];

}
else {

error = makeError('Bad Input',

'Setting config key |' + key_name + '| is not supported'

www.EBooksWorld.ir

http://www.it-ebooks.info/

106 CHAPTER 4 Add feature modules

);
throw error;

}
}

}
};
// End Public method /setConfigMap/

return {
makeError : makeError,
setConfigMap : setConfigMap

};
}());

Finally, we can tie all of these changes together by modifying our browser document
to load the new JavaScript and CSS files. First we’ll load our stylesheets and then our
JavaScript. JavaScript library inclusion order is important: third-party libraries should
be loaded first as they’re often a prerequisite, and this practice also helps overcome
occasional bone-headed third-party namespace snafus (see the sidebar “Why our
libraries are loaded last”). Our libraries come next, and must be ordered by
namespace hierarchy—for example, modules that supply the namespaces of spa,
spa.model, and spa.model.user must be loaded in that order. Any ordering beyond
that is convention and isn’t a requirement. We like this convention: root -> core utili-
ties -> Model -> browser utilities -> Shell -> feature modules.

Let’s update our browser document as shown in listing 4.7. Changes from chapter 3
are shown in bold:

<!doctype html>
<!--
 spa.html
 spa browser document
-->

<html>
<head>

Listing 4.7 Changes to the browser document—spa/spa.html

Why our libraries are loaded last
We like our libraries to have final claim on namespaces, and so we load them last. If
some rogue third-party library claims the spa.model namespace, our libraries will
“take it back” when they load. If this happens, our SPA has a good chance to continue
functioning, although the third-party feature probably wouldn’t work. If the library order
were reversed, our SPA would almost certainly be completely hosed. We’d rather fix
a problem with, say, a third-party comments feature than explain to the CEO why our
website completely stopped working at midnight.

Add headers to allow

<!-- ie9+ rendering support for latest standards --> IE9+ to work.

www.EBooksWorld.ir

http://www.it-ebooks.info/

th
s

Inc
sty
M
Ja
i

order
main

Lo
mo

e the
.

 of
a

107Set up feature module files

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>SPA Chapter 4</title>

 <!-- third-party stylesheets -->

 <!-- our stylesheets -->
<link rel="stylesheet" href="css/spa.css" type="text/css"/>
<link rel="stylesheet" href="css/spa.chat.css" type="text/css"/>
<link rel="stylesheet" href="css/spa.shell.css" type="text/css"/>

<!-- third-party javascript -->
 <script src="js/jq/jquery-1.9.1.js"></script>

<script src="js/jq/jquery.uriAnchor-1.1.3.js"></script>

<!-- our javascript -->
<script src="js/spa.js" ></script>

 <script src="js/spa.util.js" ></script>
 <script src="js/spa.model.js"></script>
<script src="js/spa.shell.js"></script>
<script src="js/spa.chat.js" ></script>
<script>
$(function () { spa.initModule($('#spa')); });

</script>

</head>
<body>
<div id="spa"></div>
</body>
</html>

Now let’s have the Shell configure and initialize Chat as shown in listing 4.8. All
changes are shown in bold:

...
// configure uriAnchor to use our schema
$.uriAnchor.configModule({
schema_map : configMap.anchor_schema_map
});

// configure and initialize feature modules
spa.chat.configModule({});
spa.chat.initModule(jqueryMap.$chat);

// Handle URI anchor change events
...

We’re now finished with our first pass. Although this is a fair amount of work, many of
these steps won’t be needed for future feature modules. Now let’s take a look at what
we’ve created.

4.2.3 What we’ve wrought

When we load our browser document (spa/spa.html), the chat slider should look like

Listing 4.8 Shell revision—spa/js/spa.shell.js

Change title to reflect new chapter. Sorry
Toto, we’re not in chapter 3 anymore.

Add a
ird-party
tylesheet
section.

lude our
lesheets.
irror the
vaScript
nclusion
 to ease
tenance.

ad feature
dules after

the Shell.

Include third-party JavaScript first. Se
sidebar on why this is a good practice

Include our libraries in the order
namespace. At minimum, the sp
namespace must be loaded first.

Include our utility library, which
shares routines with all modules.

Include the browser Model,
which is currently a stub.
figure 4.8.

www.EBooksWorld.ir

http://www.it-ebooks.info/

108 CHAPTER 4 Add feature modules

The Say hello to chat text shows that Chat was configured and initiated properly and
that it has provided the chat slider content. But this presentation is far from impres-
sive. In the next section, we’ll significantly improve the chat interface.

4.3 Design method APIs
According to our architecture, the Shell can call any subordinate module in the SPA.
Feature modules should only call shared utility modules; calls between feature mod-
ules are not allowed. The only other source of data or capabilities for the feature
module should come from the Shell in the form of arguments provided to the mod-
ule’s public methods, like during configuration or initialization. Figure 4.9 illus-
trates this layering.

 This isolation is deliberate as it helps prevent feature-specific flaws from propagat-
ing to the application level or to other features.5

Figure 4.8 Our updated browser document—spa/spa.html

Figure 4.9 Feature modules close up—allowable calls
5 Communication between feature modules should always be coordinated by the Shell or the Model.

www.EBooksWorld.ir

http://www.it-ebooks.info/

109Design method APIs

4.3.1 The anchor interface pattern

Recall in chapter 3 that we want the URI anchor to always drive page state, and not the
other way around. Sometimes the execution path can seem hard to follow, as the Shell
is responsible for the URI anchor management, yet Chat is responsible for the slider
presentation. We rely on the anchor interface pattern to support URI anchor and user-
event-driven states using the same jQuery hashchange event in both cases. This single
path to change application state ensures history-safe URLs,6 consistent behavior, and
helps accelerate development because there is only one state change mechanism. The
pattern is shown in figure 4.10.

We already implemented much of the behavior of Chat in the last chapter. Now let’s
move the remaining chat code to its own module. Let’s also specify the APIs that both
Chat and the Shell will use to communicate. This will benefit us immediately and also
make code reuse much simpler. The API specifications need to detail which resources
are required and which capabilities will be provided. They should be considered “liv-
ing documents” and be updated whenever an API is changed.

 One common public method that we want Chat to provide is configModule, which
we’ll use to change settings prior to initialization. Chat, like every feature module,
should usually have an initialization method, initModule, that we’ll then use to direct
the module to offer its capability to the user. We also want Chat to provide a set-
SliderPosition method so the Shell may request a slider position. We’ll design the
APIs for these methods in the following sections.

4.3.2 Chat configuration APIs

When we configure a module, we adjust settings that we don’t expect to change during
a user session. With Chat the following settings fit that criteria:

■ A function that provides the capability to adjust the chat URI anchor parameter.
■ An object that provides methods for sending and receiving messages (from the

Model).

6 “History-safe” means the browser history controls, like the Forward, Back, bookmarks, and browser history, all

User is
off site.

User selects
bookmark.

Page and
slider are
rendered.

Anchor
change event

triggered.

Event is
captured by
the Shell.

User is
on site.

Update the URI
parameter that

drives slider position.

User clicks on
 toggle slider

control.

The Shell dispatches
an event handler

that adjusts the position.

Figure 4.10 The anchor interface pattern for Chat
work as the user expects.

www.EBooksWorld.ir

http://www.it-ebooks.info/

110 CHAPTER 4 Add feature modules

■ An object that provides methods to interact with a list of users (from the
Model).

■ Any number of behavior settings such as slider opened height, slider open time,
and slider close time.

Based on these expectations, we can devise the Chat configModule API specification
shown in listing 4.9. This documentation isn’t used by JavaScript:

// Begin public method /configModule/
// Example : spa.chat.configModule({ slider_open_em : 18 });
// Purpose : Configure the module prior to initialization
// Arguments :
// * set_chat_anchor - a callback to modify the URI anchor to
// indicate opened or closed state. This callback must return
// false if the requested state cannot be met
// * chat_model - the chat model object provides methods
// to interact with our instant messaging
// * people_model - the people model object which provides
// methods to manage the list of people the model maintains
// * slider_* settings. All these are optional scalars.
// See mapConfig.settable_map for a full list
// Example: slider_open_em is the open height in em's
// Action :
// The internal configuration data structure (configMap) is
// updated with provided arguments. No other actions are taken.
// Returns : true
// Throws : JavaScript error object and stack trace on
// unacceptable or missing arguments
//

Now that we have an API for our Chat configuration, let’s work on a specification for
the setChatAnchor callback in the Shell. Listing 4.10 is a good start. This documenta-

Listing 4.9 Chat API specification for configModule—spa/js/spa.chat.js

The dirt on JavaScript arguments
Remember that only simple values—strings, numbers, and booleans—are passed di-
rectly to functions. All complex data types in JavaScript (like objects, arrays, and func-
tions) are passed by reference. This means they are never copied as they can be in
some other languages. Instead, a memory location value is passed. This is usually
much faster than copying, but the downside is that it’s easy to accidentally change
an object or array that has been passed in by reference.

When a function expects a reference to a function as an argument, the reference is
commonly called a callback. Callbacks are powerful, but they can become difficult to
manage. We show how one can reduce the use of callbacks in chapters 5 and 6 by
using jQuery global custom events instead.
tion isn’t used by JavaScript:

www.EBooksWorld.ir

http://www.it-ebooks.info/

111Design method APIs

// Begin callback method /setChatAnchor/
// Example : setChatAnchor('closed');
// Purpose : Change the chat component of the anchor
// Arguments:
// * position_type - may be 'closed' or 'opened'
// Action :
// Changes the URI anchor parameter 'chat' to the requested
// value if possible.
// Returns :
// * true - requested anchor part was updated
// * false - requested anchor part was not updated
// Throws : none
//

Now that we’ve completed designing the Chat configuration API and the Shell call-
back API, let’s move on to Chat initialization.

4.3.3 The Chat initialization API

When we initialize one of our feature modules, we ask it to render HTML and begin offer-
ing its capabilities to the user. Unlike configuration, we expect that a feature module
may be initialized many times during a user session. In the case of Chat, we want to send
a single jQuery collection as the argument. The jQuery collection will contain one ele-
ment—the one to which we want to append the chat slider. Let’s sketch the API as shown
in listing 4.11. This documentation isn’t used by JavaScript:

// Begin public method /initModule/
// Example : spa.chat.initModule($('#div_id'));
// Purpose :
// Directs Chat to offer its capability to the user
// Arguments :
// * $append_target (example: $('#div_id')).
// A jQuery collection that should represent
// a single DOM container
// Action :
// Appends the chat slider to the provided container and fills
// it with HTML content. It then initializes elements,
// events, and handlers to provide the user with a chat-room
// interface
// Returns : true on success, false on failure
// Throws : none
//

The last API we’ll specify in this chapter will be for the Chat setSliderPosition
method. This will be used to open and close the chat slider. We’ll work on this in the
next section.

Listing 4.10 Shell API specification for setChatAnchor callback—spa/js/spa.shell.js

Listing 4.11 Chat API specification for initModule—spa/js/spa.chat.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

112 CHAPTER 4 Add feature modules

4.3.4 The Chat setSliderPosition API

We’ve decided to have Chat provide a public method, setSliderPosition, that will
enable the Shell to request a slider position. Our decision to tie the slider position
into the URI anchor raises some interesting issues we need to address:

■ Chat may not always be able to adjust the slider to the requested position. For
example, it may decide that the slider can’t be opened because the user isn’t
signed in. We’ll have setSliderPosition return true or false so the Shell will
know if the request succeeded.

■ If the Shell invokes a setSliderPosition callback, and the callback can’t
honor the request (in other words, it returns false), the Shell will need to
revert the URI anchor chat parameter to the value prior to the request.

Let’s specify an API, as shown in listing 4.12, that meets these requirements. This doc-
umentation isn’t used by JavaScript:

// Begin public method /setSliderPosition/
//
// Example : spa.chat.setSliderPosition('closed');
// Purpose : Ensure chat slider is in the requested state
// Arguments:
// * position_type - enum('closed', 'opened', or 'hidden')
// * callback - optional callback at end of animation.
// (callback receives slider DOM element as argument)
// Action :
// Leaves slider in current state if it matches requested,
// otherwise animate to requested state.
// Returns :
// * true - requested state achieved
// * false - requested state not achieved
// Throws : none
//

With this API defined, we’re almost ready to write some code. But before we do, let’s
look at how configuration and initialization will cascade through our application.

4.3.5 Configuration and initialization cascade

Our configuration and initialization follow a common pattern. First, a script tag in our
browser document configures and initializes our root namespace module, spa.js. Then
our root module then configures and initializes the Shell module, spa.shell.js. The
Shell module then configures and initializes our feature module, spa.chat.js. This
cascade of configuration and initialization is shown in figure 4.11.

 All of our modules provide a public initModule method. We provide a config-
Module method only if we need to support settings. At this stage of development, only
Chat can be configured.

Listing 4.12 Chat API specification for setSliderPosition—spa/js/spa.chat.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

113Design method APIs

When we load the browser document (spa/spa.html), it loads all our CSS and
JavaScript files. Next a script in the page does the initial housekeeping and initializes
the root namespace module (spa/js/spa.js), presenting it a page element (the spa
div) for it to use:

$(function (){

// housekeeping here ...

// if we needed to configure the root module,
// we would invoke spa.configModule first

spa.initModule($('#spa'));

}());

When initialized, the root namespace module (spa/js/spa.js) does any root-level
housekeeping, then configures and initializes the Shell (spa/js/spa.shell.js), provid-
ing it with a page element ($container) for it to use:

var initModule = function ($container){

// housekeeping here ...

// if we needed to configure the Shell,
// we would invoke spa.shell.configModule first

spa.shell.initModule($container);

};

The Shell (spa/js/spa.shell.js) then does any Shell-level housekeeping and configures
and initializes all its feature modules, like Chat (spa/js/spa.chat.js), providing it with a
page element (jqueryMap.$chat) for it to use:

initModule = function ($container) {

// housekeeping here ...

1 Configure the root module.

2 Initialize the root module.

3 Configure the Shell.

4 Initialize the Shell.

5 Configure feature module.

6 Initialize feature module.

1

1

2

3

4

5

6

2
spa.html

3

4
spa.js

5

6
spa.shell.js spa.chat.js

Browser document Root module The Shell Feature module

Figure 4.11 Configuration and initialization cascade
// configure and initialize feature modules

www.EBooksWorld.ir

http://www.it-ebooks.info/

114 CHAPTER 4 Add feature modules

spa.chat.configModule({});
spa.chat.initModule(jqueryMap.$chat);

// ...

};

It’s important that we’re comfortable with this cascade because it’s the same for all fea-
ture modules. We may, for example, wish to split some function of Chat (spa/js/
spa.chat.js) into a subordinate module that handles the online user list—we’ll call it
the Roster—and create its file at spa/js/spa.chat.roster.js. We’d then have Chat use
the spa.chat.roster.configModule method to configure the module, and the
spa.chat.roster.initModule method to initialize it. Chat would also provide a
jQuery container to the Roster, where it would show the list of users.

 Now that we have reviewed the cascade of configuration and initialization, we’re
ready to update our application to the APIs we’ve designed. We’re going to make some
changes that will break things for a bit, so if you’re playing along at home don’t
panic—we’ll get things fixed soon enough.

4.4 Implement the feature API
Our primary goal in this section is to implement the API we’ve defined. And, because
we’ll have the “code up on blocks” as they say, we’d like to take care of a few secondary
objectives as well:

■ Complete moving Chat configuration and implementation to its own module.
The only aspect of Chat that the Shell should have to worry about is the URI
anchor management.

■ Update the chat feature to look more, well, chatty.

The files we’ll need to update and a summary of how they’ll need to change are pre-
sented in listing 4.13.

spa
+-- css
| +-- spa.chat.css # Move chat styles from spa.shell.css, enhance
| `-- spa.shell.css # Remove chat styles
`-- js

+-- spa.chat.js # Move capabilities from the Shell, implement APIs
`-- spa.shell.js # Removed Chat capabilities

and add setSliderPosition callback per API

We’ll modify these files in exactly the order presented.

4.4.1 The stylesheets

We want to move all our Chat styles to their own stylesheet (spa/css/spa.chat.css) and
improve our layout as we do so. Our local CSS layout specialist has provided a nice

Listing 4.13 Files we’ll be changing during our API implementation
plan, as shown in figure 4.12.

www.EBooksWorld.ir

http://www.it-ebooks.info/

115Implement the feature API

Note how we namespaced our CSS as we did with our JavaScript. This has numerous
advantages:

■ We don’t need to worry about collisions with our other modules because we’re
guaranteeing a unique prefix for all class names: spa-chat.

■ Collisions with third-party packages are almost always avoided. And even if by
some odd chance they aren’t, the fix (changing a prefix) is trivial.

■ It helps debugging a great deal, because when we inspect an element con-
trolled by Chat, its class name points us to the originating feature module,
spa.chat.

■ The names indicate what contains (and therefore controls) what. For example,
note how spa-chat-head-toggle is contained within spa-chat-head, which is
contained within spa-chat.

Most of this styling is boilerplate stuff (sorry, CSS-layout-specialist-guy). But we have a
few points that will make our work special. First, the spa-chat-sizer element needs
to have a fixed height. This will provide room for the chat and message areas even
when the slider retracts. If this element isn’t included, the slider contents get
“scrunched” when the slider is retracted, and this is at best confusing to the user. Sec-
ond, our layout guy wants us to remove all references to absolute pixels in favor of rel-
ative measurements such as ems and percentages. This will enable our SPA to present
equally well on low-density and high-density displays.

.spa-chat

.spa-chat-head

.spa-chat-head-toggle

.spa-chat-head-title

.spa-chat-sizer

.spa-chat-msgs

.spa-chat-box

.spa-chat-box input

.spa-chat-closer

.spa-chat-box div

Figure 4.12 3D view of elements and selectors—spa/css/spa.chat.css

Pixels versus relative units
HTML gurus often go through serious contortions to use relative measurements when
developing CSS, eschewing the use of px units altogether so that their creation can
work well on any size display. We’ve observed a phenomenon that’s making us re-
consider the value of such an effort: browsers lie about their pixel dimensions.
www.EBooksWorld.ir

http://www.it-ebooks.info/

116 CHAPTER 4 Add feature modules

With all that planning behind us, we can now add the CSS that meets the specifica-
tions into spa.chat.css, as shown in listing 4.14:

/*
* spa.chat.css
* Chat feature styles

*/

.spa-chat {
position : absolute;
bottom : 0;
right : 0;
width : 25em;
height : 2em;
background : #fff;
border-radius : 0.5em 0 0 0;
border-style : solid;
border-width : thin 0 0 thin;
border-color : #888;
box-shadow : 0 0 0.75em 0 #888;
z-index : 1;

}

.spa-chat-head, .spa-chat-closer {
position : absolute;
top : 0;
height : 2em;
line-height : 1.8em;

Listing 4.14 Adding enhanced Chat styles—spa/css/spa.chat.css

(continued)
Consider the latest ultra-high resolution displays on laptops, tablets, and smart-
phones. The browsers on these devices don’t correlate px in the browser directly with
the physical screen pixels available. Instead, they normalize the px unit so the view-
ing experience approximates a traditional desktop monitor with a pixel density some-
where between 96 and 120 pixels per inch.

The result is that a 10 px square box rendered on a smart phone browser may actu-
ally be 15 or 20 physical pixels on each side. This means px has become a relative
unit as well, and compared to all the other units (%, in, cm, mm, em, ex, pt, pc) it’s
often more reliable. We have, among other devices, a 10.1-inch and 7-inch tablet
with the exact same resolution of 1280 by 800 and the same OS. A 400 px square
box fits onto the 10.1-inch tablet screen; it doesn’t on the 7-inch tablet though.
Why? Because the amount of physical pixels used per px is higher on the smaller
tablet. It appears the scaling is 1.5 pixels per px for the larger tablet, and 2 pixels
per px for the smaller tablet.

We don’t know what the future holds, but we’ve recently felt a lot less guilty when
using the px unit.

Define spa-chat class for the chat
slider. We include subtle drop
shadows. Like all other Chat selectors,
we’ve converted to relative units.

Add common rules for both the spa-
chat-head and spa-chat-closer
classes. Doing this helps us employ the DRY
(Don’t Repeat Yourself) maxim. But if we’ve
said it once we’ve said it a thousand times:
we hate that acronym.
border-bottom : thin solid #888;

www.EBooksWorld.ir

http://www.it-ebooks.info/

e

s

e
117Implement the feature API

cursor : pointer;
background : #888;
color : white;
font-family : arial, helvetica, sans-serif;
font-weight : 800;
text-align : center;

}

.spa-chat-head {
left : 0;
right : 2em;
border-radius : 0.3em 0 0 0;

}

.spa-chat-closer {
right : 0;
width : 2em;

}
.spa-chat-closer:hover {
background : #800;

}

.spa-chat-head-toggle {
position : absolute;
top : 0;
left : 0;
width : 2em;
bottom : 0;
border-radius : 0.3em 0 0 0;

}

.spa-chat-head-title {
position : absolute;
left : 50%;
width : 16em;
margin-left : -8em;

}

.spa-chat-sizer {
position : absolute;
top : 2em;
left : 0;
right : 0;

}

.spa-chat-msgs {
position : absolute;
top : 1em;
left : 1em;
right : 1em;
bottom : 4em;
padding : 0.5em;
border : thin solid #888;
overflow-x : hidden;
overflow-y : scroll;

}

Add the unique rules for the spa-chat-
head class. We expect the element with
this class will contain the spa-chat-
head-toggle and spa-chat-head-
title class elements.

Define a spa-chat-closer class to provide a little [x]
on the top-right corner. Note that this isn’t contained in th
header, as we want the header to be a hotspot for opening
and closing the slider, and the closer has a different
function. We’ve also added a derived :hover pseudo-clas
here to highlight the element when the cursor is over it.

Create the spa-chat-head-toggle class for
the toggle button. As the name suggests, we plan
that an element with this style will be contained
within an element of the spa-chat-head class.

Create the spa-chat-head-title class. Again, as th
name suggests, we expect that an element with this style
will be contained within an element of the spa-chat-
head class. We employ the standard “negative margin”
trick to center the element (see Google for details).

Define the spa-chat-sizer class
so we can provide a fixed-size element
to contain slider contents.

Add the spa-chat-messages class to be used by an
element where we expect chat messages to be displayed. We
hide the overflow on the x-axis and provide a vertical scrollbar
always (we could use overflow-y: auto but that causes a
jarring text flow problem when the scrollbar appears).

Create the spa-chat-box class for
an element that we expect to contain
.spa-chat-box { an input field and the Send button.

www.EBooksWorld.ir

http://www.it-ebooks.info/

118 CHAPTER 4 Add feature modules

position : absolute;
height : 2em;
left : 1em;
right : 1em;
bottom : 1em;
border : thin solid #888;
background : #888;

}

.spa-chat-box input[type=text] {
float : left;
width : 75%;
height : 100%;
padding : 0.5em;
border : 0;
background : #ddd;
color : #404040;

}
.spa-chat-box input[type=text]:focus {

background : #fff;
}

.spa-chat-box div {
float : left;
width : 25%;
height : 2em;
line-height : 1.9em;
text-align : center;
color : #fff;
font-weight : 800;
cursor : pointer;

}
.spa-chat-box div:hover {
background-color: #444;
color : #ff0;

}

.spa-chat-head:hover .spa-chat-head-toggle {
background : #aaa;

}

Now that we have the stylesheet for Chat, we can remove prior definitions in the
Shell’s stylesheet at spa/css/spa.shell.css. First, let’s remove .spa-shell-chat from
the list of absolute position selectors. The change should look like the following (we
can omit the comment):

.spa-shell-head, .spa-shell-head-logo, .spa-shell-head-acct,

.spa-shell-head-search, .spa-shell-main, .spa-shell-main-nav,

.spa-shell-main-content, .spa-shell-foot, /* .spa-shell-chat */
.spa-shell-modal {
position : absolute;

}

Define a rule that styles “any text input inside
of any element with the .spa-chat-box
class.” This will be our chat input field.

Create a derived :focus pseudo-
class so that when a user selects the
input, contrast is increased.

Define a rule that styles “any div element
inside of the .spa-chat-box class.”
This will be our Send button.

Create a derived :hover pseudo-class
that will highlight the Send button when
the user hovers the mouse over it.

Define a selector that highlights the
element styled with the spa-chat-
head-toggle whenever the cursor
hovers anywhere over an element of
the spa-chat-head class.
www.EBooksWorld.ir

http://www.it-ebooks.info/

119Implement the feature API

We also want to remove any .spa-shell-chat classes in spa/css/spa.shell.css. There
are two to delete, as the following shows:

/* delete these from spa/css/spa.shell.css
.spa-shell-chat {
bottom : 0;
right : 0;
width : 300px;
height : 15px;
cursor : pointer;
background : red;
border-radius : 5px 0 0 0;
z-index : 1;

}
.spa-shell-chat:hover {
background : #a00;

} */

Finally, let’s hide the modal container so it doesn’t get in the way of our chat slider:

...

.spa-shell-modal {

...
display: none;

}
...

At this point, we should be able to open our browser document (spa/spa.html) and
not see any errors in the Chrome Developer Tools JavaScript console. But the chat
slider will no longer be visible. Stay calm and carry on—we’ll fix this when we finish
modifying Chat in the next section.

4.4.2 Modify Chat

We’ll now modify Chat to implement the APIs we designed earlier. Here are the
changes we have planned:

■ Add the HTML for our more detailed chat slider.
■ Expand the configuration to include settings like slider height and retract time.
■ Create the getEmSize utility that converts em units to px (pixels).
■ Update setJqueryMap to cache many of the new elements of the updated chat

slider.
■ Add the setPxSizes method that sets the slider dimensions using pixel units.
■ Implement the setSliderPosition public method to match our API.
■ Create the onClickToggle event handler to change the URI anchor and

promptly return.
■ Update the configModule public method documentation to match our API.
■ Update the initModule public method to match our API.

Let’s update Chat to implement these changes as shown in listing 4.15. The API speci-

fications we designed earlier were copied into this file and used as a guideline during

www.EBooksWorld.ir

http://www.it-ebooks.info/

Mo

th
120 CHAPTER 4 Add feature modules

implementation. This accelerated development and ensured accurate documentation
for future maintenance. All changes are shown in bold:

/*
* spa.chat.js
* Chat feature module for SPA

*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/

/*global $, spa, getComputedStyle */

spa.chat = (function () {
//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var
configMap = {

main_html : String()
 + '<div class="spa-chat">'

 + '<div class="spa-chat-head">'
 + '<div class="spa-chat-head-toggle">+</div>'
 + '<div class="spa-chat-head-title">'
 + 'Chat'
 + '</div>'
 + '</div>'
 + '<div class="spa-chat-closer">x</div>'
 + '<div class="spa-chat-sizer">'
 + '<div class="spa-chat-msgs"></div>'
 + '<div class="spa-chat-box">'
 + '<input type="text"/>'
 + '<div>send</div>'
 + '</div>'
 + '</div>'
 + '</div>',

settable_map : {
 slider_open_time : true,

 slider_close_time : true,
 slider_opened_em : true,
 slider_closed_em : true,
 slider_opened_title : true,
 slider_closed_title : true,

 chat_model : true,
 people_model : true,
 set_chat_anchor : true

},

 slider_open_time : 250,
 slider_close_time : 250,

Listing 4.15 Modify Chat to meet API specifications—spa/js/spa.chat.js

Use the feature
module template
from appendix A.

Use an HTML
template to fill
the chat slider
container.

ve all chat
settings to
is module.
 slider_opened_em : 16,

www.EBooksWorld.ir

http://www.it-ebooks.info/

s
121Implement the feature API

 slider_closed_em : 2,
 slider_opened_title : 'Click to close',
 slider_closed_title : 'Click to open',

 chat_model : null,
 people_model : null,
 set_chat_anchor : null

},
stateMap = {

 $append_target : null,
 position_type : 'closed',
 px_per_em : 0,
 slider_hidden_px : 0,
 slider_closed_px : 0,
 slider_opened_px : 0

},
jqueryMap = {},

setJqueryMap, getEmSize, setPxSizes, setSliderPosition,
onClickToggle, configModule, initModule
;

//----------------- END MODULE SCOPE VARIABLES ---------------

//------------------- BEGIN UTILITY METHODS ------------------
 getEmSize = function (elem) {
 return Number(
 getComputedStyle(elem, '').fontSize.match(/\d*\.?\d*/)[0]
);
 };

//-------------------- END UTILITY METHODS -------------------

//--------------------- BEGIN DOM METHODS --------------------
// Begin DOM method /setJqueryMap/
setJqueryMap = function () {

 var
 $append_target = stateMap.$append_target,
 $slider = $append_target.find('.spa-chat');

 jqueryMap = {
 $slider : $slider,
 $head : $slider.find('.spa-chat-head'),
 $toggle : $slider.find('.spa-chat-head-toggle'),
 $title : $slider.find('.spa-chat-head-title'),
 $sizer : $slider.find('.spa-chat-sizer'),
 $msgs : $slider.find('.spa-chat-msgs'),
 $box : $slider.find('.spa-chat-box'),
 $input : $slider.find('.spa-chat-input input[type=text]') };

};
// End DOM method /setJqueryMap/

// Begin DOM method /setPxSizes/
setPxSizes = function () {

Add the
getEmSize
method to
convert the
em display
unit to pixels
so we can use
measurement
in jQuery.

Update setJqueryMap to cache a larger number
of jQuery collections. We prefer to use classes

instead of IDs because it allows us to add more than
one chat slider to a page without refactoring.

Add the setPxSize method to calculate the
pixel sizes for elements managed by this module.
var px_per_em, opened_height_em;

www.EBooksWorld.ir

http://www.it-ebooks.info/

122 CHAPTER 4 Add feature modules

 px_per_em = getEmSize(jqueryMap.$slider.get(0));

 opened_height_em = configMap.slider_opened_em;

stateMap.px_per_em = px_per_em;
stateMap.slider_closed_px = configMap.slider_closed_em * px_per_em;
stateMap.slider_opened_px = opened_height_em * px_per_em;
jqueryMap.$sizer.css({

height : (opened_height_em - 2) * px_per_em
});

};
// End DOM method /setPxSizes/

 // Begin public method /setSliderPosition/
 // Example : spa.chat.setSliderPosition('closed');

 // Purpose : Move the chat slider to the requested position
 // Arguments : // * position_type - enum('closed', 'opened', or 'hidden')
 // * callback - optional callback to be run end at the end
 // of slider animation. The callback receives a jQuery
 // collection representing the slider div as its single
 // argument
 // Action :
 // This method moves the slider into the requested position.
 // If the requested position is the current position, it
 // returns true without taking further action
 // Returns :
 // * true - The requested position was achieved
 // * false - The requested position was not achieved
 // Throws : none
 //
 setSliderPosition = function (position_type, callback) {
 var
 height_px, animate_time, slider_title, toggle_text;

 // return true if slider already in requested position
 if (stateMap.position_type === position_type){
 return true;
 }

 // prepare animate parameters
 switch (position_type){
 case 'opened' :
 height_px = stateMap.slider_opened_px;
 animate_time = configMap.slider_open_time;
 slider_title = configMap.slider_opened_title;
 toggle_text = '=';
 break;

 case 'hidden' :
 height_px = 0;
 animate_time = configMap.slider_open_time;
 slider_title = '';
 toggle_text = '+';
 break;

 case 'closed' :
 height_px = stateMap.slider_closed_px;

Add the setSlider-
Position method as
detailed earlier in this
chapter.
 animate_time = configMap.slider_close_time;

www.EBooksWorld.ir

http://www.it-ebooks.info/

123Implement the feature API

 slider_title = configMap.slider_closed_title;
 toggle_text = '+';
 break;
 // bail for unknown position_type
 default : return false;
 }

 // animate slider position change
 stateMap.position_type = '';
 jqueryMap.$slider.animate(
 { height : height_px },
 animate_time,
 function () {
 jqueryMap.$toggle.prop('title', slider_title);
 jqueryMap.$toggle.text(toggle_text);
 stateMap.position_type = position_type;
 if (callback) { callback(jqueryMap.$slider); }
 }
);
 return true;
};
// End public DOM method /setSliderPosition/
//---------------------- END DOM METHODS ---------------------

//------------------- BEGIN EVENT HANDLERS -------------------
onClickToggle = function (event){
 var set_chat_anchor = configMap.set_chat_anchor;
 if (stateMap.position_type === 'opened') {
 set_chat_anchor('closed');
 }
 else if (stateMap.position_type === 'closed'){
 set_chat_anchor('opened');
 } return false;
};
//-------------------- END EVENT HANDLERS --------------------

//------------------- BEGIN PUBLIC METHODS -------------------
// Begin public method /configModule/
// Example : spa.chat.configModule({ slider_open_em : 18 });
// Purpose : Configure the module prior to initialization
// Arguments :
// * set_chat_anchor - a callback to modify the URI anchor to
// indicate opened or closed state. This callback must return
// false if the requested state cannot be met
// * chat_model - the chat model object provides methods
// to interact with our instant messaging
// * people_model - the people model object which provides
// methods to manage the list of people the model maintains
// * slider_* settings. All these are optional scalars.
// See mapConfig.settable_map for a full list
// Example: slider_open_em is the open height in em's

Update the
onClick
event handler
to make a call
to change the
URI anchor and
then promptly
exit, leaving the
hashchange
event handler
in the Shell to
pick up the
change.

Update our configModule method to meet our
API specification. Use the

spa.util.setConfigMap utility, as we do
with all our feature modules that can be configured.
// Action :

www.EBooksWorld.ir

http://www.it-ebooks.info/

to
he
ee
ith
124 CHAPTER 4 Add feature modules

// The internal configuration data structure (configMap) is
// updated with provided arguments. No other actions are taken.
// Returns : true
// Throws : JavaScript error object and stack trace on
// unacceptable or missing arguments
//
configModule = function (input_map) {

spa.util.setConfigMap({
input_map : input_map,
settable_map : configMap.settable_map,
config_map : configMap

});
return true;

};
// End public method /configModule/

// Begin public method /initModule/
// Example : spa.chat.initModule($('#div_id'));
// Purpose : Directs Chat to offer its capability to the user
// Arguments :
// * $append_target (example: $('#div_id')).
// A jQuery collection that should represent
// a single DOM container
// Action :
// Appends the chat slider to the provided container and fills
// it with HTML content. It then initializes elements,
// events, and handlers to provide the user with a chat-room
// interface
// Returns : true on success, false on failure
// Throws : none
//
initModule = function ($append_target) {
 $append_target.append(configMap.main_html);
 stateMap.$append_target = $append_target;
 setJqueryMap();
 setPxSizes();

 // initialize chat slider to default title and state
 jqueryMap.$toggle.prop('title', configMap.slider_closed_title);
 jqueryMap.$head.click(onClickToggle);
 stateMap.position_type = 'closed';

return true;
};
// End public method /initModule/

// return public methods
return {
 setSliderPosition : setSliderPosition,

configModule : configModule,
initModule : initModule

};
//------------------- END PUBLIC METHODS ---------------------
}());

At this point we should be able to load our browser document (spa/spa.html) and not

Update our initModule method
meet the API specification. As with t
Shell, this routine generally has thr
parts: (1) fill the feature container w
HTML, (2) cache jQuery collections,
and (3) initialize event handlers.

Neatly export our public
methods: configModule,
initModule, and
setSliderPosition.
see any errors in the Chrome Developer Tools JavaScript console. We should see the

www.EBooksWorld.ir

http://www.it-ebooks.info/

125Implement the feature API

top portion of the chat slider. But if we click on it we should see an error message like
“set_chat_anchor is not a function” in the console. We’ll fix that next when we clean
up the Shell.

4.4.3 Clean up the Shell

We’ll now finish our changes with an update to the Shell. Here’s what we want to do:

■ Remove most chat slider settings and capabilities, as these have been moved to
Chat.

■ Revise the onHashchange event handler to fall back to a valid position if it can’t
set a requested slider position.

■ Add the setChatAnchor method to meet the API we designed earlier.
■ Improve the initModule documentation.
■ Update initModule to configure Chat using the API we designed earlier.

Let’s modify the Shell as shown in listing 4.16. Note how any new API specifications we
developed earlier were placed directly in this file and used as a guideline during
implementation. All changes are shown in bold:

/*
* spa.shell.js
* Shell module for SPA

*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa */

spa.shell = (function () {
//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var
configMap = {

anchor_schema_map : {
chat : { opened : true, closed : true }

},
main_html : String()

+ '<div class="spa-shell-head">'
+ '<div class="spa-shell-head-logo"></div>'
+ '<div class="spa-shell-head-acct"></div>'
+ '<div class="spa-shell-head-search"></div>'

+ '</div>'
+ '<div class="spa-shell-main">'

+ '<div class="spa-shell-main-nav"></div>'
+ '<div class="spa-shell-main-content"></div>'

+ '</div>'
+ '<div class="spa-shell-foot"></div>'

Listing 4.16 Clean up the Shell—spa/js/spa.shell.js

Change our anchor states to be
opened and closed consistently
in both Chat and the Shell.

Remove chat slider

+ '<div class="spa-shell-modal"></div>' HTML and settings.

www.EBooksWorld.ir

http://www.it-ebooks.info/

126 CHAPTER 4 Add feature modules

},

stateMap = { anchor_map : {} },
jqueryMap = {},

copyAnchorMap, setJqueryMap,
changeAnchorPart, onHashchange,
setChatAnchor, initModule;

//----------------- END MODULE SCOPE VARIABLES ---------------

//------------------- BEGIN UTILITY METHODS ------------------
// Returns copy of stored anchor map; minimizes overhead
copyAnchorMap = function () {
return $.extend(true, {}, stateMap.anchor_map);

};
//-------------------- END UTILITY METHODS -------------------

//--------------------- BEGIN DOM METHODS --------------------
// Begin DOM method /setJqueryMap/
setJqueryMap = function () {
var $container = stateMap.$container;
jqueryMap = { $container : $container };

};
// End DOM method /setJqueryMap/

// Begin DOM method /changeAnchorPart/
// Purpose : Changes part of the URI anchor component
// Arguments :
// * arg_map - The map describing what part of the URI anchor
// we want changed.
// Returns :
// * true - the Anchor portion of the URI was updated
// * false - the Anchor portion of the URI could not be updated
// Actions :
// The current anchor rep stored in stateMap.anchor_map.
// See uriAnchor for a discussion of encoding.
// This method
// * Creates a copy of this map using copyAnchorMap().
// * Modifies the key-values using arg_map.
// * Manages the distinction between independent
// and dependent values in the encoding.
// * Attempts to change the URI using uriAnchor.
// * Returns true on success, and false on failure.
//
changeAnchorPart = function (arg_map) {
var

anchor_map_revise = copyAnchorMap(),
bool_return = true,
key_name, key_name_dep;

// Begin merge changes into anchor map
KEYVAL:
for (key_name in arg_map) {

if (arg_map.hasOwnProperty(key_name)) {

// skip dependent keys during iteration
if (key_name.indexOf('_') === 0) { continue KEYVAL; }

Remove toggleChat from
list of module-scope variables.

Remove the toggleChat
method. Remove Chat
element from jqueryMap.
// update independent key value

www.EBooksWorld.ir

http://www.it-ebooks.info/

127Implement the feature API

anchor_map_revise[key_name] = arg_map[key_name];

// update matching dependent key
key_name_dep = '_' + key_name;
if (arg_map[key_name_dep]) {

anchor_map_revise[key_name_dep] = arg_map[key_name_dep];
}
else {

delete anchor_map_revise[key_name_dep];
delete anchor_map_revise['_s' + key_name_dep];

}
}

}
// End merge changes into anchor map

// Begin attempt to update URI; revert if not successful
try {

$.uriAnchor.setAnchor(anchor_map_revise);
}
catch (error) {

// replace URI with existing state
$.uriAnchor.setAnchor(stateMap.anchor_map,null,true);
bool_return = false;

}
// End attempt to update URI...

return bool_return;
};
// End DOM method /changeAnchorPart/
//--------------------- END DOM METHODS ----------------------

//------------------- BEGIN EVENT HANDLERS -------------------
// Begin Event handler /onHashchange/
// Purpose : Handles the hashchange event
// Arguments :
// * event - jQuery event object.
// Settings : none
// Returns : false
// Actions :
// * Parses the URI anchor component
// * Compares proposed application state with current
// * Adjust the application only where proposed state
// differs from existing and is allowed by anchor schema
//

onHashchange = function (event) {
var

 _s_chat_previous, _s_chat_proposed, s_chat_proposed,
 anchor_map_proposed,
 is_ok = true,
 anchor_map_previous = copyAnchorMap();

// attempt to parse anchor
try { anchor_map_proposed = $.uriAnchor.makeAnchorMap(); }
catch (error) {

$.uriAnchor.setAnchor(anchor_map_previous, null, true);
return false;
}

www.EBooksWorld.ir

http://www.it-ebooks.info/

n.

#

alse
ition
 the
t
128 CHAPTER 4 Add feature modules

stateMap.anchor_map = anchor_map_proposed;

// convenience vars
_s_chat_previous = anchor_map_previous._s_chat;
_s_chat_proposed = anchor_map_proposed._s_chat;

// Begin adjust chat component if changed
if (! anchor_map_previous
|| _s_chat_previous !== _s_chat_proposed

) {
s_chat_proposed = anchor_map_proposed.chat;
switch (s_chat_proposed) {

case 'opened' :
is_ok = spa.chat.setSliderPosition('opened');

break;
case 'closed' :

is_ok = spa.chat.setSliderPosition('closed');
break;
default :

spa.chat.setSliderPosition('closed');
delete anchor_map_proposed.chat;
$.uriAnchor.setAnchor(anchor_map_proposed, null, true);

}
}
// End adjust chat component if changed

 // Begin revert anchor if slider change denied
 if (! is_ok){
 if (anchor_map_previous){
 $.uriAnchor.setAnchor(anchor_map_previous, null, true);
 stateMap.anchor_map = anchor_map_previous;
 } else {
 delete anchor_map_proposed.chat;
 $.uriAnchor.setAnchor(anchor_map_proposed, null, true);
 }
 }
 // End revert anchor if slider change denied

 return false;
 };
 // End Event handler /onHashchange/
 //-------------------- END EVENT HANDLERS --------------------

 //---------------------- BEGIN CALLBACKS ---------------------
 // Begin callback method /setChatAnchor/
 // Example : setChatAnchor('closed');
 // Purpose : Change the chat component of the anchor
 // Arguments:
 // * position_type - may be 'closed' or 'opened'
 // Action :
 // Changes the URI anchor parameter 'chat' to the requested
 // value if possible.
 // Returns :
 // * true - requested anchor part was updated
 // * false - requested anchor part was not updated
 // Throws : none

Use the public method
Chat method,
setSliderPositio

Clear the
URI anchor

parameter Chat
if the provided

position isn’t
allowed by the
uriAnchor
settings and
revert to the

default position.
We can test this

by typing
!chat=fred

as the URI
anchor. React properly when

setSliderPosition returns a f
value (which means the change in pos
request was denied). Either revert to
prior position anchor value, or, if tha
doesn’t exist, employ the default.

Create the callback
setChatAnchor.
It’s provided to Chat
as a safe way to
request a URI change.
 //

www.EBooksWorld.ir

http://www.it-ebooks.info/

Docum
initM
129Implement the feature API

setChatAnchor = function (position_type){
 return changeAnchorPart({ chat : position_type });
};
// End callback method /setChatAnchor/
//----------------------- END CALLBACKS ----------------------

//------------------- BEGIN PUBLIC METHODS -------------------
// Begin Public method /initModule/
// Example : spa.shell.initModule($('#app_div_id'));

 // Purpose :
// Directs the Shell to offer its capability to the user
// Arguments :
// * $container (example: $('#app_div_id')).
// A jQuery collection that should represent
// a single DOM container
// Action :
// Populates $container with the shell of the UI
// and then configures and initializes feature modules.
// The Shell is also responsible for browser-wide issues
// such as URI anchor and cookie management.
// Returns : none
// Throws : none
//
initModule = function ($container) {
// load HTML and map jQuery collections
stateMap.$container = $container;
$container.html(configMap.main_html);
setJqueryMap();

// configure uriAnchor to use our schema
$.uriAnchor.configModule({

schema_map : configMap.anchor_schema_map
});

// configure and initialize feature modules
 spa.chat.configModule({
 set_chat_anchor : setChatAnchor,
 chat_model : spa.model.chat,
 people_model : spa.model.people

 });
 spa.chat.initModule(jqueryMap.$container);

// Handle URI anchor change events.
// This is done /after/ all feature modules are configured
// and initialized, otherwise they will not be ready to handle
// the trigger event, which is used to ensure the anchor
// is considered on-load
//
$(window)

.bind('hashchange', onHashchange)

.trigger('hashchange');

};
// End PUBLIC method /initModule/

return { initModule : initModule };
//------------------- END PUBLIC METHODS ---------------------

ent the
odule
routine.

Replace the chat slider
click binding with Chat
configuration and
initialization.
}());

www.EBooksWorld.ir

http://www.it-ebooks.info/

130 CHAPTER 4 Add feature modules

When we open the browser document (spa/spa.html) we should now see something
similar to figure 4.13. We think this revised chat slider is significantly more dashing. It
doesn’t display messages yet—we’ll get to that capability in chapter 6.

 Now that the code is working nicely, let’s analyze some key revisions by walking
through the execution of our application.

4.4.4 Walk through the execution

This section highlights the revisions we made to our application in the last section. We
look at how the application is configured and initialized, and then explore what hap-
pens when a user clicks on the chat slider.

 When we load our browser document (spa/spa.html), a script initializes our root
namespace (spa/js/spa.js), presenting it with a page element (the #spa div) for it to use:

$(function (){ spa.initModule($('#spa')); });

The root namespace module (spa/js/spa.js) then initializes the Shell (spa/js/
spa.shell.js), presenting it with a page element ($container) for it to use:

var initModule = function ($container){
spa.shell.initModule($container);

};

The Shell (spa/js/spa.shell.js) then configures and initializes Chat (spa/js/
spa.chat.js). But this time both steps are a bit different. The configuration now
matches the API we defined earlier. The set_chat_anchor configuration is the call-
back that follows the specification we created earlier:

...
// configure and initialize feature modules
spa.chat.configModule({

set_chat_anchor : setChatAnchor,
chat_model : spa.model.chat,
people_model : spa.model.people

});
spa.chat.initModule(jqueryMap.$container);

Figure 4.13 Our more
dashing Chat slider
...

www.EBooksWorld.ir

http://www.it-ebooks.info/

131Implement the feature API

Chat initialization is also subtly different: instead of providing a container to use, the
Shell now provides a container to which Chat will append a chat slider. This is a good
arrangement if you trust the module author. And we do.

...
// * set_chat_anchor - a method modify to modify the URI anchor to
// indicate opened or closed state. Return false if requested
// state cannot be met.

...

When the user clicks on the slider toggle button, Chat uses the set_chat_anchor call-
back to request that the URI anchor chat parameter be changed to opened or closed,
and then returns. The Shell still handles hashchange events, as we see in spa/js/
spa.shell.js:

initModule = function ($container){
...
$(window)
.bind('hashchange', onHashchange)

...

So when the user clicks on the slider, the hashchange event is caught by the Shell,
which dispatches to the onHashchange event handler. If the chat component of the
URI anchor has changed, this routine calls spa.chat.setSliderPosition to request
the new position:

// Begin adjust chat component if changed
if (! anchor_map_previous
|| _s_chat_previous !== _s_chat_proposed
) {
s_chat_proposed = anchor_map_proposed.chat;
switch (s_chat_proposed) {

case 'opened' :
is_ok = spa.chat.setSliderPosition('opened');

break;
case 'closed' :

is_ok = spa.chat.setSliderPosition('closed');
break;
...

}
}
// End adjust chat component if changed

If the position is valid, the slider moves to the requested position and the URI anchor
chat parameter is changed.

 The changes we’ve made result in an implementation that meets our design goals.
The URI controls the chat slider state, and we’ve also moved all Chat UI logic and code
to our new feature module. The slider also looks and works better. Now let’s add some
other public methods that are commonly found in many feature models.
www.EBooksWorld.ir

http://www.it-ebooks.info/

132 CHAPTER 4 Add feature modules

4.5 Add frequently needed methods
A few public methods are needed frequently enough in feature modules that they’re
worth discussing in their own right. The first is a reset method (removeSlider); the
second is a window resize method (handleResize). We’re going to implement both.
First, let’s declare these method names in Chat at the bottom of the Module Scope
Variables section, and also export them as public methods at the end of the module,
as shown in listing 4.17. Changes are shown in bold:

...

jqueryMap = {},

setJqueryMap, getEmSize, setPxSizes, setSliderPosition,
onClickToggle, configModule, initModule,
removeSlider, handleResize
;

//----------------- END MODULE SCOPE VARIABLES ---------------
...

// return public methods
return {
setSliderPosition : setSliderPosition,
configModule : configModule,
initModule : initModule,
removeSlider : removeSlider,
handleResize : handleResize

};
//------------------- END PUBLIC METHODS ---------------------

}());

Now with the method names declared, we’ll implement them in the following sec-
tions, starting with the remove method.

4.5.1 The removeSlider method

We find that we want a remove method for many of our feature modules. If we imple-
ment authentication, for example, we may want to completely remove the chat slider
when a user signs out. Usually, this sort of action is taken either to improve perfor-
mance or enhance security—assuming the remove method does a good job of deleting
obsolete data structures.

 Our method will need to delete the DOM container that Chat has appended and
otherwise unwind our initialization and configuration, in that order. Listing 4.18 con-
tains the code changes for the removeSlider method. Changes are shown in bold:

...
// End public method /initModule/

Listing 4.17 Declare method function names—spa/js/spa.chat.js

Listing 4.18 removeSlider method—spa/js/spa.chat.js
// Begin public method /removeSlider/

www.EBooksWorld.ir

http://www.it-ebooks.info/

133Add frequently needed methods

// Purpose :
// * Removes chatSlider DOM element
// * Reverts to initial state
// * Removes pointers to callbacks and other data
// Arguments : none
// Returns : true
// Throws : none
//
removeSlider = function () {
// unwind initialization and state
// remove DOM container; this removes event bindings too
if (jqueryMap.$slider) {

jqueryMap.$slider.remove();
jqueryMap = {};

}
stateMap.$append_target = null;
stateMap.position_type = 'closed';

// unwind key configurations
configMap.chat_model = null;
configMap.people_model = null;
configMap.set_chat_anchor = null;

return true;
};
// End public method /removeSlider/

// return public methods
...

We don’t try to get too clever with any remove method. The point is to lay waste to any
prior configuration and initialization, and that’s it. We carefully ensure that data
pointers are removed. This is important so that reference counts to data structures
can drop to 0, which allows garbage collection to do its job. This is one reason why we
always list potential configMap and stateMap keys at the top of the module—so we can see
what we need to clean up.

 We can test the removeSlider method by opening the Chrome Developer Tools
JavaScript console and entering the following (don’t forget to press Return!):

spa.chat.removeSlider();

When we inspect the browser window we can see the chat slider has been removed. If
we want to get it back, we can enter the following lines into the JavaScript console:

spa.chat.configModule({ set_chat_anchor: function (){ return true; } });
spa.chat.initModule($('#spa'));

The chat slider we “restored” with the JavaScript console isn’t fully functional, as we
have provided a null function for the set_chat_anchor callback. In real use, we
would always reenable the chat module from the Shell where we have access to the
required callback.
www.EBooksWorld.ir

http://www.it-ebooks.info/

sa
we

h

134 CHAPTER 4 Add feature modules

 We could do a lot more with this method—like having the slider disappear grace-
fully—but we’ll leave that as an exercise for the reader. Let’s now implement another
method which is commonly required by feature modules, handleResize.

4.5.2 The handleResize method

The second method common to many feature modules is handleResize. With good use
of CSS, most content in an SPA can be made to work within a window that’s a reasonable
size. But there are some cases where most doesn’t work and some recalculation is
required. Let’s first implement the handleResize method as shown in listing 4.19 and
then discuss its use. Changes are shown in bold:

...
configMap = {

...
slider_opened_em : 18,
...

slider_opened_min_em : 10,
window_height_min_em : 20,
...

},

...

// Begin DOM method /setPxSizes/
setPxSizes = function () {
var px_per_em, window_height_em, opened_height_em;

px_per_em = getEmSize(jqueryMap.$slider.get(0));
window_height_em = Math.floor(

 ($(window).height() / px_per_em) + 0.5
);

 opened_height_em
 = window_height_em > configMap.window_height_min_em
 ? configMap.slider_opened_em
 : configMap.slider_opened_min_em;

stateMap.px_per_em = px_per_em;
stateMap.slider_closed_px = configMap.slider_closed_em * px_per_em;
stateMap.slider_opened_px = opened_height_em * px_per_em;
jqueryMap.$sizer.css({

height : (opened_height_em - 2) * px_per_em
});

};
// End DOM method /setPxSizes/

...

// Begin public method /handleResize/
// Purpose :
// Given a window resize event, adjust the presentation
// provided by this module if needed

Listing 4.19 Add the handleResize method—spa/js/spa.chat.js

Increase the height
of the opened
slider a bit.

Add configuration for
a minimum opened
slider height.

Add configuration for the threshold widow height. If
the window height is less than the threshold, we want
to set the slider to the minimized height. If the height
is greater than or equal to the threshold, we want to
set the slider to the normal height.

Calculate window
height in em units.

Here is the
“secret

uce” where
 determine

the slider
opened

height by
comparing

the current
window

eight to the
threshold.

Add the handleResize
documentation and
method.
// Actions :

www.EBooksWorld.ir

http://www.it-ebooks.info/

135Add frequently needed methods

// If the window height or width falls below
// a given threshold, resize the chat slider for the
// reduced window size.
// Returns : Boolean
// * false - resize not considered
// * true - resize considered
// Throws : none
//
handleResize = function () {
// don't do anything if we don't have a slider container
if (! jqueryMap.$slider) { return false; }

setPxSizes();
if (stateMap.position_type === 'opened'){

jqueryMap.$slider.css({ height : stateMap.slider_opened_px });
}
return true;

};
// End public method /handleResize/

// return public methods
...

The handleResize event doesn’t call itself. Now we might be tempted to implement a
window.resize event handler for every feature module, but that would be a bad idea.
The trouble is that the frequency at which a window.resize event fires varies wildly by
browser. Let’s say we have five feature modules, all of which have window.resize event
handlers, and our user decided to resize the browser. If the window.resize event fires
every 10 milliseconds, and the resulting graphical changes are sufficiently complex,
this can easily bring an SPA—and possibly the entire browser and OS it’s running on—
to its knees.

 A better approach is to have a Shell event handler capture resize events and then
have it call all subordinate feature module handleResize methods. This allows us to
throttle the resize handling and dispatch from one event handler. Let’s implement
this strategy in the Shell as shown in listing 4.20. Changes are shown in bold:

...
//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var
configMap = {

...
resize_interval : 200,
...

},
stateMap = {

$container : undefined,
anchor_map : {},
resize_idto : undefined

},

Listing 4.20 Add the onResize event handler—spa/js/spa.shell.js

Recalculate the pixel
sizes each time the
handleResize
method is called.

Ensure the slider height is set
to the value calculated in

setPxSizes if it’s extended
during resize.

Create a 200-millisecond
interval in our settings to
consider resize events.

Set up a state variable to retain
the resize timeout ID (see more
later in this section).
jqueryMap = {},

www.EBooksWorld.ir

http://www.it-ebooks.info/

on
lo
136 CHAPTER 4 Add feature modules

copyAnchorMap, setJqueryMap,
changeAnchorPart, onHashchange, onResize,
setChatAnchor, initModule;

//----------------- END MODULE SCOPE VARIABLES ---------------

...

//------------------- BEGIN EVENT HANDLERS -------------------

...
 // Begin Event handler /onResize/
onResize = function (){
if (stateMap.resize_idto){ return true; }

spa.chat.handleResize();
 stateMap.resize_idto = setTimeout(
 function (){ stateMap.resize_idto = undefined; },
 configMap.resize_interval

);

return true;
};
// End Event handler /onResize/

//-------------------- END EVENT HANDLERS --------------------

...

initModule = function (){
...
$(window)

.bind('resize', onResize)
.bind('hashchange', onHashchange)

.trigger('hashchange');
};
// End PUBLIC method /initModule/
...

We want to adjust our stylesheet so we can better see the fruits of our labor. In listing 4.21
we adjust spa.css to decrease the minimal window size, move to relative units, and
remove the gratuitous border around the content. Changes are shown in bold:

...

/** Begin reset */
* {
margin : 0;
padding : 0;
-webkit-box-sizing : border-box;
-moz-box-sizing : border-box;
box-sizing : border-box;

}
h1,h2,h3,h4,h5,h6,p { margin-bottom : 6pt; }
ol,ul,dl { list-style-position : inside;}

/** End reset */

/** Begin standard selectors */

Listing 4.21 Style changes to emphasize onResize—spa/css/spa.css

Run the
Resize
gic only if
no resize
timer is

currently
running.

The timeout function clears its
own timeout ID, so once every
200 milliseconds during a resize,
stateMap.resize_idto
will be undefined, and the full
onResize logic will run.

Return true from the
window.resize event
handler so that jQuery doesn’t
preventDefault() or
stopPropagation().

Bind the
window.resize event.

Move to relative
units for margin
(points).

Move to relative
units on font
body { size (points).

www.EBooksWorld.ir

http://www.it-ebooks.info/

137Summary

font : 10pt 'Trebuchet MS', Verdana, Helvetica, Arial, sans-serif;
...

/** End standard selectors */

/** Begin spa namespace selectors */
#spa {
position : absolute;
top : 0;
left : 0;
bottom : 0;
right : 0;

 background : #fff;
min-height : 15em;
min-width : 35em;
overflow : hidden;

}
/** End spa namespace selectors */

/** Begin utility selectors */

...

We can now watch the resize event work by opening our browser document (spa/
spa.html) and then increasing or decreasing the browser window height. Figure 4.14
compares the slider presentation before and after the threshold has been reached:

 Of course, there’s always room for more flourish. A nice enhancement would be to
have the slider maintain a minimum distance from the top border. For example, if the
window were 0.5 em over the threshold, the slider could be made to be precisely 0.5
em shorter than normal. This would provide a better user experience with optimal
chat space and a smoother adjustment during resizing. The implementation isn’t hard
and is left as an exercise for the reader.

4.6 Summary
This chapter showed how feature modules can be employed to take advantage of the
good aspects of third-party modules without all of their disadvantages. We defined what
feature modules are, compared them to third-party modules, and discussed how they fit
into our architecture. We explored how our application—and that of most websites—

Remove the 8-pixel offset from
the #spa div. This makes it flush
with the window on all sides.

Significantly reduce minimum width
and height of the #spa div. Convert
measurements to relative units (ems).

Remove the border
rounding as it’s no
longer needed.
Figure 4.14 A comparison of chat slider sizes before and after threshold

www.EBooksWorld.ir

http://www.it-ebooks.info/

138 CHAPTER 4 Add feature modules

contains a fractal repetition of MVC patterns, and how this manifests itself in feature
modules. We then created a feature module starting with the code we developed in
chapter 3. In our first pass, we added all the files we needed and added basic capabili-
ties. Then we designed our APIs and implemented them during a second pass. Finally,
we added some frequently needed feature module methods and detailed their use.

 Now it’s time to centralize our business logic into the Model. In the next few chap-
ters we develop the Model and show how to embody the business logic for the user,
people, and chat. We use jQuery events to trigger DOM changes instead of relying on
fragile callbacks, and we simulate a “live” chat session. Stick with us—this is where we
take our SPA from a fancy demo to a near-complete client application.
www.EBooksWorld.ir

http://www.it-ebooks.info/

Build the Model
This chapter builds on code we’ve written in chapters 3 and 4 of this book. Before
starting, you should have the project files from chapter 4, as we’ll be adding to
them. We recommend you copy the entire directory structure you created in chap-
ter 4 into a new “chapter_5” directory and update it there.

 In this chapter we design and build the people object portion of the Model.
The Model provides the business logic and data to the Shell and feature modules.
The Model is independent of the user interface (UI) and isolates it from logic and
data management. The Model is itself isolated from the web server through the use

This chapter covers
■ Defining the Model and how it fits into our architecture
■ The relationship between the Model, Data, and Fake

modules
■ Setting up files for the Model
■ Enabling touch devices
■ Designing the people object
■ Building the people object and testing the API
■ Updating the Shell so users may sign in and sign out
139

of a Data module.

www.EBooksWorld.ir

http://www.it-ebooks.info/

140 CHAPTER 5 Build the Model

 We want our SPA to use the people object to manage a list of people, which
includes the user as well as people with whom they’re chatting. After we modify and
test the Model, we update the Shell so that a user may sign in and sign out. Along
the way, we add touch controls so we can use our SPA on a smart phone or tablet.
Let’s get started by getting a better understanding of what the Model does and how
it fits into our architecture.

5.1 Understand the Model
In chapter 3 we introduced the Shell module, which is responsible for application-
wide tasks like URI anchor management and application layout. The Shell dispatches
feature-specific tasks to carefully isolated feature modules that we introduced in chap-
ter 4. These modules have their own View, Controller, and a slice of the Model that
the Shell shares with them. An overview of the architecture is shown in figure 5.1.1

 The Model consolidates all business logic and data in one namespace. The Shell or
feature modules never communicate with the web server directly, but instead interact
with the Model. The Model is itself isolated from the web server through the use of
the Data module. This isolation results in faster development and higher quality, as we
shall soon see.

 This chapter begins the development and use of the Model. In chapter 6, we’ll
complete this work. Let’s look at what we’ll accomplish over these two chapters and
the corresponding capabilities the Model will need to have.

1 Groups of modules that use shared utilities are surrounded by a dashed-line box. For example, the Chat, Ava-
tar, and Shell modules all use the “Browser utilities” and the “Base utilities,” whereas the Data and Model mod-

Figure 5.1 The Model in our SPA architecture
ules use only the “Base utilities.”

www.EBooksWorld.ir

http://www.it-ebooks.info/

141Understand the Model

5.1.1 What we’re going to build

Before we discuss the Model, it’s useful to refer to an example application. Fig-
ure 5.2 illustrates the capabilities we plan to add to our SPA by the end of chapter 6.
The Shell will manage the sign-in process—we can see the signed-in user in the top
right. The Chat feature module will manage the chat window, which is shown at bot-
tom right. And the Avatar feature module will manage the colored boxes represent-
ing people shown on the left. Let’s consider the business logic and data we’ll need
per module:

■ The Shell will need a representation of the current user to manage the sign-in
and sign-out process. It’ll need methods to determine who the current user is,
and to change the user if desired.

■ The Chat feature module will also need to be able to inspect the current user
(“Josh” in this example), and determine if he is authorized to send or receive
messages. It’ll need to determine the person with whom the user is chatting—if
any. It’ll need to inquire about the list of online people so it may show them on
the left of the chat slider. Finally, it’ll need methods to send messages and to
select a person to chat with.

■ The Avatar feature module will also need to inspect the current user (“Josh”),
and determine if he is authorized to see and interact with the avatars. It’ll also
need the current user identification so it may outline the associated avatar in
blue. It’ll also need to determine the person with whom the user is chatting
(“Betty”) so it may outline this person’s avatar in green. Finally, it’ll need meth-
ods to set and retrieve avatar details (such as color and position) for all people
currently online.
Figure 5.2 A vision of the our SPA in the near future

www.EBooksWorld.ir

http://www.it-ebooks.info/

142 CHAPTER 5 Build the Model

We have a lot of overlap in the business logic and data our modules require. For exam-
ple, we know the current user object is required by the Shell as well as the Chat and
Avatar modules. We also know we’ll need to provide a roster of online users to both
Chat and Avatar. A few strategies come to mind on how we might manage this overlap:

■ Build the required logic and data in every feature module.
■ Build parts of the logic and data in different feature modules. For example, we

might consider Chat to be the owner of the people object, and the Avatar to be
the owner of the chat object. We would then make calls between our modules
to share information.

■ Build a central Model to consolidate our logic and data.

The first option of maintaining parallel data and methods in different modules is
amusingly error-prone and labor intensive. If we do this, we might rather seek an
exciting career flipping burgers. And yes, I would like fries with that.

 The second option works better, but only for a while. Once logic and data reach a
moderate level of complexity, the amount of cross-module dependencies results in the
dreaded “SPA-ghetti” code.

 The final option, using a Model, is by far the best option in our experience, and
also provides benefits which aren’t immediately obvious. Let’s take a look at what a
well-written Model should do.

5.1.2 What the Model does

The Model is where the Shell and all of our feature modules access data and business
logic in our SPA. If we need to sign in, we invoke a method provided by the Model. If
we want to get a list of people, we get it from the Model. If we want to get avatar infor-
mation... well, you get the idea. Any data or logic that we want to share between fea-
ture modules, or is central to the application, should go into the Model. If you’re
comfortable with Model-View-Controller (MVC) architecture, you should be comfort-
able with the Model.

 Just because all business logic and data are accessed through the Model doesn’t
mean we have to use only one (potentially huge) JavaScript file to provide it. We can
use namespacing to break up our Model into more manageable parts. For example, if
we have a Model that has a people object and a chat object, we could place the peo-
ple logic in spa.model.people.js, and the chat logic in spa.model.chat.js, and then
consolidate them in our main Model file, spa.model.js. Using such a technique, the
interface presented to the Shell doesn’t change, regardless of the number of files used
by the Model.

5.1.3 What the Model does not do

The Model doesn’t require a browser. This means the Model must not assume the presence
of a document object or that browser-specific methods like document.location are
available. It’s good MVC hygiene to have the Shell and (especially) the feature mod-

ules render the representation of Model data. And this separation makes automated

www.EBooksWorld.ir

http://www.it-ebooks.info/

143Set up the Model and other files

unit and regression testing much simpler. We’ve found that as you get into browser
interaction, the value of automated testing diminishes greatly as the cost of implemen-
tation rises. But by avoiding the DOM, we can test everything up to the UI without hav-
ing to run a browser.

The Model doesn’t provide general purpose utilities. Instead, we use a general utility library
(spa/js/spa.util.js) that doesn’t require the DOM. We package these utilities separately
because we’ll use them with multiple SPAs. The Model, on the other hand, is often tai-
lored for a specific SPA.

The Model doesn’t communicate directly with the server. We have a separate module for
that called Data. The Data module is responsible for getting all the data the Model
requires from the server.

 Now that we have a better understanding of the Model’s role in our architecture,
let’s set up the files we’ll need in this chapter.

5.2 Set up the Model and other files
We need to add and modify a number of files to support building our Model. We also
want to add the Avatar feature module files now, as we’ll need them soon enough.

5.2.1 Plan the file structure

We recommend you copy the whole directory structure you created in chapter 4 into a
new “chapter_5” directory so we can update them there. Let’s review our file structure
as we left it in chapter 4, as shown in listing 5.1:

Unit and regression testing
Development teams must decide when to invest in automated testing. Automating
the tests of Model API is almost always a good investment because the tests can be
isolated to use the same data for each API call. Automating the tests of a UI is much
more expensive due to the many variables that aren’t easily controlled or predicted.
For example, it can be difficult and expensive to simulate how quickly a user might
click on one button and then another, or to foresee how data will propagate through
the system when a user is involved, or to know how fast a network will perform. For
these reasons, web page testing is often performed manually, with the help of a few
tools like HTML validators and link checkers.

A well designed SPA has independent Data, Model, and feature module (View + Con-
troller) layers. We ensure our Data and Model have well-defined APIs and are isolated
from the feature modules, and as a result we don’t have to use a browser to test
these layers. Instead we can inexpensively employ automated unit and regression test-
ing using a JavaScript execution environment like Node.js or Java’s Rhino. In our ex-
perience, the View and Controller layers are still best tested manually by real people.
www.EBooksWorld.ir

http://www.it-ebooks.info/

144 CHAPTER 5 Build the Model

spa
+-- css
| +-- spa.chat.css
| +-- spa.css
| `-- spa.shell.css
+-- js
| +-- jq
| | +-- jquery-1.9.1.js
| | `-- jquery.uriAnchor-1.1.3.js
| +-- spa.js
| +-- spa.chat.js
| +-- spa.model.js
| +-- spa.shell.js
| `-- spa.util.js
`-- spa.html

Here are the modifications we plan to make:

■ Create our namespaced CSS stylesheet for Avatar.
■ Modify our namespaced CSS stylesheet for the Shell to support user sign-in.
■ Include the jQuery plugin for unified touch and mouse input.
■ Include the jQuery plugin for global custom events.
■ Include the JavaScript library for the browser database.
■ Create our namespaced Avatar module. This is a placeholder for chapter 6.
■ Create our namespaced Data module. This will provide an interface to “real”

data from the server.
■ Create our namespaced Fake module. This will provide an interface to “fake”

data that we use for testing.
■ Create our namespaced browser utilities modules so we can share common rou-

tines that require a browser.
■ Modify our namespaced Shell module to support user sign-in.
■ Modify our browser document to include the new CSS and JavaScript files.

Our updated files and directories should look like listing 5.2. We show all files we’ll
have to create or modify in bold:

spa
+-- css
| +-- spa.avtr.css
| +-- spa.chat.css
| +-- spa.css
| `-- spa.shell.css
+-- js
| +-- jq
| | +-- jquery-1.9.1.js

Listing 5.1 File structure from chapter 4

Listing 5.2 Updated file structure

Create the Avatar
stylesheet.

Modify the Shell
stylesheet for

sign-in.

Include the jQuery
plugin for unified touch
and mouse input.
| | +-- jquery.event.ue-0.3.2.js

www.EBooksWorld.ir

http://www.it-ebooks.info/

d
145Set up the Model and other files

| | +-- jquery.event.gevent-0.1.9.js
| | +-- jquery.uriAnchor-1.1.3.js
| | `-- taffydb-2.6.2.js
| +-- spa.js
| +-- spa.avtr.js
| +-- spa.chat.js
| +-- spa.data.js
| +-- spa.fake.js
| +-- spa.model.js
| +-- spa.shell.js
| +-- spa.util_b.js
| `-- spa.util.js
`-- spa.html

Now that we’ve identified the files we want to add or modify, let’s fire up our trusty
text editor and get the job done. It turns out the best order to consider each file in is
exactly the order presented. If you’re playing along at home, you can build the files as
we walk through the code.

5.2.2 Populate the files

Our first file to consider is spa/css/spa.avtr.css. We’ll create the file and populate it
with the contents shown in listing 5.3. Initially, it’ll be a stub:

/*
* spa.avtr.css
* Avatar feature styles

*/

The next three files are libraries. Let’s download them into the spa/js/jq directory.

■ The spa/js/jq/jquery.event.ue-0.3.2.js file is available at https://github.com/
mmikowski/jquery.event.ue. It provides unified touch and mouse input.

■ The spa/js/jq/jquery.event.gevent-0.1.9.js file is available at https://
github.com/mmikowski/jquery.event.gevent and is required to use global cus-
tom events.

■ The spa/js/jq/taffydb-2.6.2.js file provides our client database. It may be
found at https://github.com/typicaljoe/taffydb. It’s not a jQuery plugin, and
if we were dealing with a larger project we’d place this in a separate spa/js/lib
directory.

The next three JavaScript files—spa/js/spa.avtr.js, spa/js/spa.data.js, and spa/js/
spa.fake.js—will be stubs. Their contents are shown in listings 5.4, 5.5, and 5.6.
They’re mostly identical—each has a header, followed by our JSLint options, and then
a namespace declaration that is congruent with the file name. We’ve shown the
unique parts in bold:

Listing 5.3 Our Avatar stylesheet (stub) — spa/css/spa.avtr.css

Include the gevent
plugin—this is require
to use jQuery global
custom events.

Include the
browser database,

TaffyDB. Create our Avatar
feature module.

Create our
Data module. Create our Fake

module.

Create our
browser utilities.

Modify the Shell
for sign-in.
www.EBooksWorld.ir

https://github.com/mmikowski/jquery.event.ue
https://github.com/mmikowski/jquery.event.ue
https://github.com/mmikowski/jquery.event.gevent
https://github.com/mmikowski/jquery.event.gevent
https://github.com/typicaljoe/taffydb
http://www.it-ebooks.info/

146 CHAPTER 5 Build the Model

/*
 * spa.avtr.js
 * Avatar feature module
*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa */
spa.avtr = (function () { return {}; }());

/*
 * spa.data.js
 * Data module
*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa */
spa.data = (function () { return {}; }());

/*
 * spa.fake.js
 * Fake module
*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa */
spa.fake = (function () { return {}; }());

Recall that the /*jslint ...*/ and /*global ...*/ sections are used when we run
JSLint to check our code for common errors. The /*jslint ...*/ section sets prefer-
ences for validation. For example, browser : true tells the JSLint validator to assume
that we’ll run this JavaScript in a browser, and therefore we’ll have a document object
(among other things). The /*global $, spa */ section tells the JSLint validator that
the variables $ and spa are defined outside of this module. Without this information,

Listing 5.4 Create the Avatar feature module—spa/js/spa.avtr.js

Listing 5.5 Create the Data module—spa/js/spa.data.js

Listing 5.6 Create the Fake data module—spa/js/spa.fake.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

147Set up the Model and other files

the validator would complain that these variables aren’t defined before being used.
See appendix A for a full discussion of our JSLint settings.

 Next we can add our browser utilities file, spa/js/spa.util_b.js. This module pro-
vides common routines that work only in a browser environment. In other words, the
browser utilities won’t normally work with Node.js, whereas our standard utilities
(spa/js/spa.util.js) will. Figure 5.3 shows this module in our architecture.

 Our browser utilities will provides the encodeHtml and decodeHtml utilities which,
not surprisingly, can be used to encode and decode special characters used in HTML
like & or <.2 It’ll also provide the getEmSize utility, which can calculate the number of
pixels for the em unit in the browser. Sharing these utilities ensures they’re imple-
mented consistently and also minimizes the amount of code we need to write. Let’s
fire up our text editor and create the file as shown in listing 5.7. The methods are
shown in bold:

/**
* spa.util_b.js
* JavaScript browser utilities
*
* Compiled by Michael S. Mikowski
* These are routines I have created and updated
* since 1998, with inspiration from around the web.
* MIT License

*/

/*jslint browser : true, continue : true,

2 These methods are important to prevent cross-site-scripting attacks when we present data that comes from

Listing 5.7 Create the browser utilities module—spa/js/spa.util_b.js

Figure 5.3 The browser utilities module provides utilities that require a browser to run
user input.

www.EBooksWorld.ir

http://www.it-ebooks.info/

e
nd.

r

.

148 CHAPTER 5 Build the Model

devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa, getComputedStyle */

spa.util_b = (function () {
'use strict';
//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var
configMap = {

regex_encode_html : /[&"'><]/g,
regex_encode_noamp : /["'><]/g,
html_encode_map : {

'&' : '&',
'"' : '"',
"'" : ''',
'>' : '>',
'<' : '<'

}
},

decodeHtml, encodeHtml, getEmSize;

configMap.encode_noamp_map = $.extend(
{}, configMap.html_encode_map

);
delete configMap.encode_noamp_map['&'];
//----------------- END MODULE SCOPE VARIABLES ---------------

//------------------- BEGIN UTILITY METHODS ------------------
// Begin decodeHtml
// Decodes HTML entities in a browser-friendly way
// See http://stackoverflow.com/questions/1912501/\
// unescape-html-entities-in-javascript
//

 decodeHtml = function (str) {
return $('<div/>').html(str || '').text();

};
// End decodeHtml

// Begin encodeHtml
// This is single pass encoder for html entities and handles
// an arbitrary number of characters
//
encodeHtml = function (input_arg_str, exclude_amp) {
var

input_str = String(input_arg_str),
regex, lookup_map
;

if (exclude_amp) {
lookup_map = configMap.encode_noamp_map;
regex = configMap.regex_encode_noamp;

Use strict pragma (we’ll
talk about this in a bit).

Use configMap to store
module configurations.

Create a modified copy
of the configuration used
to encode entities ...

... but remov
the ampersa

Create the decodeHtml
method to convert browse
entities like & into a
displayed character like &

Create the encodeHtml
method to convert special
characters like & into an HTML
encoded value like &.
}

www.EBooksWorld.ir

http://www.it-ebooks.info/

r
149Set up the Model and other files

else {
lookup_map = configMap.html_encode_map;
regex = configMap.regex_encode_html;

}
return input_str.replace(regex,

function (match, name) {
return lookup_map[match] || '';

}
);

};
// End encodeHtml

// Begin getEmSize
// returns size of ems in pixels
//
getEmSize = function (elem) {
return Number(

getComputedStyle(elem, '').fontSize.match(/\d*\.?\d*/)[0]
);

};
// End getEmSize

// export methods
return {
decodeHtml : decodeHtml,
encodeHtml : encodeHtml,
getEmSize : getEmSize

};
//------------------- END PUBLIC METHODS ---------------------

}());

The final file to consider is the browser document. We’ll update it to use all our new
CSS and JavaScript files, as shown in listing 5.8. The changes from chapter 4 are shown
in bold:

<!doctype html>
<!--

spa.html
spa browser document

-->

<html>
<head>

<!-- ie9+ rendering support for latest standards -->
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">

<meta http-equiv="X-UA-Compatible" content="IE=edge"/>
<title>SPA Chapters 5-6</title>

<!-- third-party stylesheets -->

<!-- our stylesheets -->
<link rel="stylesheet" href="css/spa.css" type="text/css"/>

Listing 5.8 Update the browser document—spa/spa.html

Create the getEmSize
method to calculate the
pixel size of the em unit.

Neatly export all
public methods.

Change the title. We’re
not in Kansas or chapte
4 anymore, Toto.
<link rel="stylesheet" href="css/spa.shell.css" type="text/css"/>

www.EBooksWorld.ir

http://www.it-ebooks.info/

Inc
cl

d

t
s

I
un
eve

In
Fake

In
Avat
150 CHAPTER 5 Build the Model

<link rel="stylesheet" href="css/spa.chat.css" type="text/css"/>
<link rel="stylesheet" href="css/spa.avtr.css" type="text/css"/>

<!-- third-party javascript -->
<script src="js/jq/taffydb-2.6.2.js" ></script>
<script src="js/jq/jquery-1.9.1.js" ></script>
<script src="js/jq/jquery.uriAnchor-1.1.3.js" ></script>
<script src="js/jq/jquery.event.gevent-0.1.9.js"></script>
<script src="js/jq/jquery.event.ue-0.3.2.js" ></script>

<!-- our javascript -->
<script src="js/spa.js" ></script>
<script src="js/spa.util.js" ></script>
<script src="js/spa.data.js" ></script>
<script src="js/spa.fake.js" ></script>
<script src="js/spa.model.js" ></script>
<script src="js/spa.util_b.js"></script>
<script src="js/spa.shell.js" ></script>
<script src="js/spa.chat.js" ></script>
<script src="js/spa.avtr.js" ></script>
<script>
$(function () { spa.initModule($('#spa')); });

</script>

</head>
<body>
<div id="spa"></div>
</body>
</html>

Now that everything is in place, let’s talk about adding touch controls to our SPA.

5.2.3 Use the unified touch-mouse library

Smartphones and tablets are currently outselling traditional laptops and desktops
worldwide. We expect the mobile device sales to continue to exceed traditional com-
puting devices and grow as a percentage of active SPA-capable devices. Soon the
majority of potential customers who wish to use our site may be using a touch device.

 We recognize this trend and have included the unified touch-mouse interface
library—jquery.event.ue-0.3.2.js—in this chapter. This library, although not per-
fect, does a lot of magic in making an application work seamlessly across touch and
pointer interfaces; it handles multi-touch, pinch-to-zoom, drag-and-drop, and long-
press along with the more pedestrian events. We’ll detail its use as we update our UI in
this and future chapters.

 We’ve now readied our files for the changes we’ll be applying. When we load our
browser document (spa/spa.html), we should see the same page as we left it in chap-
ter 4 without any errors. Now let’s start building our Model.

5.3 Design the people object
In this chapter we’ll build the people object portion of the Model, as shown in figure 5.4.

Include our
Avatar stylesheet.

lude the
ient-side
atabase
library.

Include the geven
events library. Thi
is required to use
global custom
events.

nclude the
ified input
nt plugin.

Include our
Data module.clude our

 module.
Include our
browser utilities.

clude our
ar feature

module.
www.EBooksWorld.ir

http://www.it-ebooks.info/

151Design the people object

We expect our model to be split into two sections: a chat object and a people object.
Here is the specification we first sketched in chapter 4:

...
// * chat_model - the chat model object provides methods
// to interact with our instant messaging
// * people_model - the people model object which provides methods
// to interact with the list of people the model maintains

...

The description provided for the people object—“an object that provides methods to
interact with the list of people the Model maintains”—is a good start, but it’s not
detailed enough for implementation. Let’s design the people object starting with the
objects we will use to represent each person in our list.

5.3.1 Design the person objects

We’ve decided that the people object should manage a list of persons. Experience has
shown us that a person is well represented by an object. Therefore our people object
will manage many person objects. Here are the minimal properties we think each
person object should have:

■ id—The server ID. This will be defined for all objects sent from the backend.
■ cid—The client ID. This should always be defined, and usually will be the same

as the ID; but if we create a new person object on the client and the backend
has not yet been updated, the server ID will be undefined.

■ name—The name of the person.
■ css_map—A map of display properties. We’ll need this to support avatars.

A UML class diagram of a person object is shown in table 5.1:

Figure 5.4 In this section we start the design of our Model with the people object
www.EBooksWorld.ir

http://www.it-ebooks.info/

152 CHAPTER 5 Build the Model

Before we consider what methods a person object should have, let’s consider the types
of persons our people object might need to manage. Figure 5.5 shows a mockup of
what we’d like our user to see, with some notes about people.

Table 5.1 A UML class diagram of a person object

person

Attribute name Attribute type

id string

cid string

name string

css_map map

Method name Return type

get_is_user() boolean

get_is_anon() boolean

Doing without a client ID property
These days, we rarely use a separate property for client ID. Instead we use a single
ID property and apply a unique prefix for IDs that are client-generated. For example,
a client ID might look like x23, whereas an ID that originated from the backend might
look like 50a04142c692d1fd18000003 (especially if you’re using MongoDB). Be-
cause the backend-generated ID can never start with an x, it’s easy to determine
where any ID was generated. Most of the application logic doesn’t need to worry
about where an ID originated. The only time it becomes important is when we sync to
the backend.

The current user.
People will need to

sign in and out.

We probably shouldn’t
let the user chat

unless they sign in.

A list of people,
sorted alphabetically

Figure 5.5 A mockup of our SPA with notes about people
www.EBooksWorld.ir

http://www.it-ebooks.info/

153Design the people object

It appears the people object will need to identify four types of persons:

1 The current user person
2 The anonymous person
3 The person with whom the user is chatting
4 Other online persons

At present we’re only concerned with the current user person and the anonymous
person—we’ll worry about online persons in the next chapter. We should like to have
methods to help us identify these types of users:

■ get_is_user()—Return true if the person object is the current user.
■ get_is_anon()—Return true if the person object is anonymous.

Now that we’ve detailed person objects, let’s consider how the people object will man-
age them.

5.3.2 Design the people object API

The people object API will consist of methods and jQuery global custom events. We’ll
consider method calls first.

DESIGN PEOPLE METHOD CALLS

We want our Model to always have a current user object available. If a person isn’t
signed in, the user object should be the anonymous person object. Of course, this
implies we should provide a means for a person to sign in and sign out. The list of
people on the left column of the chat slider indicates we’d like to maintain a list of
online people with whom we can chat, and that we’d like them returned in alphabeti-
cal order. Given these requirements, this list of methods seems about right:

■ get_user()—Return the current user person object. If the current user isn’t
signed in, return the anonymous person object.

■ get_db()—Get the collection of all the person objects including the current
user. We’d like the person list to always be in alphabetical order.

■ get_by_cid(<client_id>)—Get the person object associated with a unique
client ID. Though the same could be accomplished by getting the collection
and searching for the person object by client ID, we expect this capability to be
used often enough that a dedicated method can help avoid errors and provide
opportunity for optimization.

■ login(<user_name>)—Sign in as the user with the specified user name. We’ll
avoid the complexity of sign-in authentication as it’s outside the scope of this
book, and there are many examples to be had elsewhere. When a user signs in,
the current user object should change to reflect the new identity. We should
also publish an event called spa-login with the current user object as data.

■ logout()—Revert the current user object to the anonymous person. We should
publish an event called spa-logout with the former user object as data.
www.EBooksWorld.ir

http://www.it-ebooks.info/

154 CHAPTER 5 Build the Model

Both the login() and logout() method descriptions state that we’ll publish events as
part of their response. The next section discusses what these events are and why we
use them.

DESIGN PEOPLE EVENTS

We use events to publish data asynchronously. For example, if the people list changes,
the Model may want to publish a spa-listchange event which shares an updated list
of people.3 Methods in our feature modules or the Shell that are interested in this
event may register with the Model to receive it—this is often called subscribing to an
event. When the spa-listchange event occurs, the subscribing methods are notified
and receive the data that the Model publishes. For example, we may have a method in
Avatar to add a new graphical avatar, and a method in Chat to add to the list of per-
sons shown in the chat slider. Figure 5.6 shows how events are broadcast to subscribing
feature modules and the Shell.

 We’d like the Model to publish at least two event types as part of the people object
API:4

■ spa-login should be published when the sign-in process is complete. This
won’t happen right away, as the sign-in process usually requires a round-trip to
the backend. The updated current user object should be supplied as the event
data.

■ spa-logout should be published when the sign-out process is complete. The
previous user object should be supplied as the event data.

Events are often a preferable manner to distribute asynchronous data. The classic
JavaScript implementation uses callbacks, and this results in a tangle of code that’s
hard to debug and keep modular. Events allow module code to remain independent

3 Other names for the event mechanism include push communications, or pub-sub (short for publish-subscribe).
4 We use a namespace prefix (spa-) for all published event names. This helps avoid potential conflicts with

Figure 5.6 Events are broadcast
from our Model and can be received
by subscribed methods in our feature
modules or the Shell
third-party JavaScript and libraries.

www.EBooksWorld.ir

http://www.it-ebooks.info/

e

Defin
fo
jQ

Thi
ob

user
Have
box

fun
$lis
is in
al

We c

T

$
in

no
155Design the people object

yet use the same data. For these reasons, we strongly prefer events when distributing
asynchronous data from the Model.

 Since we’re already using jQuery, it’s a wise choice to use jQuery global custom
events as our publishing mechanism. We have created a global custom event plugin to
provide this capability.5 jQuery global custom events perform well and have the same
familiar interface as other jQuery events. Any jQuery collection may subscribe to a
specific global custom event and invoke a function when it occurs. An event often has
data associated with it. A spa-login event, for example, may pass along the freshly
updated user object. When an element is removed from the document, any function
that is subscribed “on” that deleted element is automatically removed. Listing 5.9 illus-
trates these concepts. We can open the browser document (spa/spa.html), open the
JavaScript console, and test:

$('body').append('<div id="spa-chat-list-box"/>');

var $listbox = $('#spa-chat-list-box');
$listbox.css({

position: 'absolute', 'z-index' : 3,
top : 50, left : 50, width : 50, height :50,
border : '2px solid black', background : '#fff'

});
var onListChange = function (event, update_map) {

$(this).html(update_map.list_text);
alert('onListChange ran');

};

$.gevent.subscribe(
$listbox,
'spa-listchange',
onListChange

);

$.gevent.publish(
'spa-listchange',
[{ list_text : 'the list is here' }]

);

$listbox.remove();
$.gevent.publish('spa-listchange', [{}]);

If you’re already comfortable with jQuery event handling, this is probably all old news,
and that’s good news. If not, don’t worry about it too much. Just be glad that this

5 Prior to version 1.9.0, jQuery supported this natively. Of course, they removed it shortly before we went to

Listing 5.9 Use of jQuery global custom events

Append a
<div> to th
page body.

Create a $listbox
jQuery collection. Style

it so we can see it.

e a handler we plan to use
r the spa-listchange
uery global custom event.

s method expects an event
ject and a map detailing a
 list update as arguments.
 the handler open an alert
so we can verify when it is

invoked.

Have the $listbox jQuery collection
subscribe to the spa-listchange
custom global event with the
onListChange function. When the
spa-listchange event occurs,
onListChange is invoked with the event
object as the first argument, followed by any
other arguments published by the event. The
value of this in onListChange will be
the DOM element used by $listbox.

The onListChange
ction subscribed on the
tbox jQuery collection

voked by this event. The
ert box should appear.
an close the alert box. When we remove the

$listbox collection
elements from the
DOM, the subscription
is no longer valid and
the subscription to
onListChange is
removed.

he onListChange
function bound on

listbox will not be
voked, and we should
t see the alert box.
press just to make our lives more, um, interesting.

www.EBooksWorld.ir

http://www.it-ebooks.info/

156 CHAPTER 5 Build the Model

behavior is consistent with all other jQuery events. It’s also powerful, exceedingly well
tested, and leverages the same code as jQuery internal methods. Why learn two event
mechanisms when you can use just one? That’s a strong argument for using jQuery global
custom events—and a strong argument against using a “framework” library that intro-
duces a redundant and subtly different event mechanism.

5.3.3 Document the people object API

Let’s now consolidate all of this thinking to a relatively terse format that we can put
into our Model module for reference. The Listing 5.10 is a good first attempt:

// The people object API
// ---------------------
// The people object is available at spa.model.people.
// The people object provides methods and events to manage
// a collection of person objects. Its public methods include:
// * get_user() - return the current user person object.
// If the current user is not signed-in, an anonymous person
// object is returned.
// * get_db() - return the TaffyDB database of all the person
// objects - including the current user - pre-sorted.
// * get_by_cid(<client_id>) - return a person object with
// provided unique id.
// * login(<user_name>) - login as the user with the provided
// user name. The current user object is changed to reflect
// the new identity.
// * logout()- revert the current user object to anonymous.
//
// jQuery global custom events published by the object include:
// * 'spa-login' is published when a user login process
// completes. The updated user object is provided as data.
// * 'spa-logout' is published when a logout completes.
// The former user object is provided as data.
//
// Each person is represented by a person object.
// Person objects provide the following methods:
// * get_is_user() - return true if object is the current user
// * get_is_anon() - return true if object is anonymous
//
// The attributes for a person object include:
// * cid - string client id. This is always defined, and
// is only different from the id attribute
// if the client data is not synced with the backend.
// * id - the unique id. This may be undefined if the
// object is not synced with the backend.
// * name - the string name of the user.
// * css_map - a map of attributes used for avatar
// presentation.
//

Now that we’ve completed a specification for the people object, let’s build it and test the

Listing 5.10 The people object API
API. After that, we’ll adjust the Shell to use the API so a user may sign in and sign out.

www.EBooksWorld.ir

http://www.it-ebooks.info/

157Build the people object

5.4 Build the people object
Now that we’ve designed the people object, we can build it. We’re going to use a Fake
module to provide mock data to the Model. This will allow us to proceed without hav-
ing a server or feature module in place. Fake is a key enabler of rapid development,
and we’re going to fake it until we make it.

 Let’s revisit our architecture and see how Fake can help improve development.
Our fully implemented architecture is shown in figure 5.7.

 Well, that’s nice, but we can’t get there in one pass. We’d rather develop without
requiring a web server or a UI. We want to focus on the Model at this stage and not be
distracted by other modules. We can use the Fake module to emulate Data and the
server connection, and we can use the JavaScript console to make API calls directly
instead of using the browser window. Figure 5.8 illustrates what modules we need
when we develop in this manner.

 Let’s sweep away all the unused code and see what modules are left, as shown in
figure 5.9.

 Through the use of the Fake module and the JavaScript console, we’re able to
focus solely on the development and testing of the Model. This is especially beneficial
for a module as important as the Model. As we progress, we should keep in mind that the
“backend” is emulated by the Fake module in this chapter. Now that we’ve outlined a develop-
ment strategy, let’s start work on the Fake module.

5.4.1 Create a fake people list

What we call “real” data is usually sent from the web server to the browser. But what if
we’re tired and had a long day at work, and don’t have the energy for “real” data?
That’s all right—sometimes it’s OK to fake it. We discuss how to fake data openly and

Figure 5.7 The Model in our SPA architecture
www.EBooksWorld.ir

http://www.it-ebooks.info/

158 CHAPTER 5 Build the Model

honestly in this section. We hope we’ll provide everything you ever wanted to know
about fake data but may have been to afraid to ask.

 We’ll use a module called Fake during development to provide mock data and
methods to the application. We’ll set an isFakeData flag in our Model to instruct it to
use the Fake module instead of using “real” web server data and methods from the
Data module. This enables rapid, focused development that’s independent of the
server. Because we’ve done a good job outlining how person objects are going to
behave, we should be able to fake our data pretty easily. First we’d like to create a
method that returns data for a list of fake persons. Let’s fire up our text editor and
create spa.fake.getPeopleList as shown in listing 5.11:

/*
* spa.fake.js
* Fake module

*/

Listing 5.11 Add a mock user list to Fake—spa/js/spa.fake.js

Figure 5.8 We use a mock data module called Fake during development

Figure 5.9 Here are all the
modules we use to develop
and test our Model
www.EBooksWorld.ir

http://www.it-ebooks.info/

159Build the people object

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa */

spa.fake = (function () {
'use strict';
var getPeopleList;

getPeopleList = function () {
return [

{ name : 'Betty', _id : 'id_01',
css_map : { top: 20, left: 20,

'background-color' : 'rgb(128, 128, 128)'
}

},
{ name : 'Mike', _id : 'id_02',

css_map : { top: 60, left: 20,
'background-color' : 'rgb(128, 255, 128)'

}
},
{ name : 'Pebbles', _id : 'id_03',

css_map : { top: 100, left: 20,
'background-color' : 'rgb(128, 192, 192)'

}
},
{ name : 'Wilma', _id : 'id_04',

css_map : { top: 140, left: 20,
'background-color' : 'rgb(192, 128, 128)'

}
}

];
};

return { getPeopleList : getPeopleList };
}());

We introduced the 'use strict' pragma in this module as shown in bold. If you’re
serious about large-scale JavaScript projects—and we know you are—we encourage
you to consider using the strict pragma within a namespace function scope. When in strict
mode, JavaScript is more likely to throw exceptions when unsafe actions are taken,
such as using undeclared global variables. It also disables confusing or poorly consid-
ered features. Though it’s tempting, don’t use the strict pragma in the global scope, as
it can break the JavaScript of other, lesser third-party developers who aren’t as enlight-
ened as you. Now let’s use this fake person list in our Model.

5.4.2 Start the people object

We’ll now start building the people object in the Model. When it’s initialized (using
the spa.model.initModule() method), we’ll first create the anonymous person
www.EBooksWorld.ir

http://www.it-ebooks.info/

160 CHAPTER 5 Build the Model

object using the same makePerson constructor as we used to create other person
objects. This ensures that this object has the same methods and attributes of other
person objects regardless of future changes to the constructor.

 Next we’ll use the fake people list provided by spa.fake.getPeopleList() to cre-
ate a TaffyDB collection of person objects. TaffyDB is a JavaScript data store designed
for use in a browser. It provides many database-style capabilities, like selecting an array
of objects by matching properties. For example, if we have a TaffyDB collection of
person objects named people_db, we might select an array of persons with the name
of Pebbles like so:

found_list = people_db({ name : 'Pebbles' }).get();

Finally, we’ll export the people object so that we can test our API. At this time we’ll
provide two methods to interact with person objects: spa.model.people.get_db()
will return the TaffyDB people collection, and spa.model.people.get_cid_map() will
return a map with the client IDs as the keys. Let’s fire up the trusty text editor and start
our Model as shown in listing 5.12. This is just our first pass, so don’t feel you have to
understand everything yet:

/*
* spa.model.js
* Model module

*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global TAFFY, $, spa */

spa.model = (function () {
'use strict';
var

Listing 5.12 Start building the Model—spa/js/spa.model.js

Why we like TaffyDB
We like TaffyDB because it’s focused on providing rich data management capabilities
in the browser, and it doesn’t try to do anything else (like introducing a subtly different
event model that’s redundant with jQuery). We like to use optimal, focused tools like
TaffyDB. If, for some reason, we need different data management capabilities, we
can swap it out with another tool (or write our own) without having to refactor our en-
tire application. Please see http://www.taffydb.com for thorough documentation on
this handy tool.

Reserve a special ID for
the “anonymous” person.
configMap = { anon_id : 'a0' },

www.EBooksWorld.ir

http://www.taffydb.com
http://www.it-ebooks.info/

R

ke

pe

e.
 use
,
ke
data C

per
prot

m

pe

hod
ject

A

o

161Build the people object

stateMap = {
 anon_user : null,
people_cid_map : {},
people_db : TAFFY()

},

isFakeData = true,

personProto, makePerson, people, initModule;

personProto = {
get_is_user : function () {
return this.cid === stateMap.user.cid;

},
get_is_anon : function () {
return this.cid === stateMap.anon_user.cid;

}
};

makePerson = function (person_map) {
var person,
cid = person_map.cid,
css_map = person_map.css_map,
id = person_map.id,
name = person_map.name;

if (cid === undefined || ! name) {
throw 'client id and name required';

}

person = Object.create(personProto);
person.cid = cid;
person.name = name;
person.css_map = css_map;

if (id) { person.id = id; }

stateMap.people_cid_map[cid] = person;

stateMap.people_db.insert(person);
return person;

};

people = {
get_db : function () { return stateMap.people_db; },
get_cid_map : function () { return stateMap.people_cid_map; }

};

initModule = function () {
var i, people_list, person_map;

// initialize anonymous person
stateMap.anon_user = makePerson({
cid : configMap.anon_id,
id : configMap.anon_id,
name : 'anonymous'

});
stateMap.user = stateMap.anon_user;

eserve the anon_user key
in our state map to store the
anonymous person object.

Reserve the
people_cid_map key
in our state map to store a
map of person objects
keyed by client ID.Reserve the people_db

y in our state map to store
a TaffyDB collection of

rson objects. Initialize it
as an empty collection.

Set isFakeData to tru
This flag tells the Model to
the example data, objects
and methods from the Fa
module instead of actual
from the Data module.reate a prototype for

son objects. Use of a
otype usually reduces
emory requirements

and improves the
rformance of objects.

Add a makePerson met
that creates a person ob
and stores it in a TaffyDB
collection. Ensure it also
updates the index in the
people_cid_map.Use Object.create

(<prototype>) to
create our object from a
prototype and then add

instance-specific
properties.

Define the
people object.

Add the get_db
method to return the
TaffyDB collection of
person objects.

dd the get_cid_map
method to return a map
f person objects keyed

by client ID. Make the anonymous person
object in initModule to
ensure it has the same methods
and attributes of other person
objects regardless of future
changes. This is an example of
“design for quality.”

Get the list of online
people from the

Fake module and
add them to the
people_db
if (isFakeData) {TaffyDB collection.

www.EBooksWorld.ir

http://www.it-ebooks.info/

U
get

e
from

162 CHAPTER 5 Build the Model

people_list = spa.fake.getPeopleList();
for (i = 0; i < people_list.length; i++) {

person_map = people_list[i];
makePerson({

cid : person_map._id,
css_map : person_map.css_map,
id : person_map._id,
name : person_map.name

});
}

}
};

return {
initModule : initModule,
people : people

};
}());

Of course, nothing calls spa.model.initModule() yet. Let’s fix that by updating our
root namespace module, spa/js/spa.js, as shown in listing 5.13:

...
var spa = (function () {

'use strict';
var initModule = function ($container) {
spa.model.initModule();
spa.shell.initModule($container);

};

return { initModule: initModule };
}());

Now let’s load our browser document (spa/spa.html) to make sure that the page
works as before—if it does not or there are errors in the console, we did something
wrong and should retrace our steps to here. Although it might look the same, under
the hood the code is working differently. Let’s open the Chrome Developer Tools
JavaScript console to test the people API. We can get the people collection and
explore some of the benefits of TaffyDB as shown in listing 5.14. Typed input is shown
in bold; output is shown in italics:

// get the people collection
var peopleDb = spa.model.people.get_db();

// get list of all people
var peopleList = peopleDb().get();

// show our list of people
peopleList;
>> [>Object, >Object, >Object, >Object, >Object]

Listing 5.13 Add Model initialization to root namespace module—spa/js/spa.js

Listing 5.14 Playing with fake people and liking it

Add the use
strict
pragma. Initialize the

Model before
the Shell.

Get the TaffyDB collection
populated with person objects.

se the TaffyDB
() method to

xtract an array
 the collection

Inspect the list of users.
The >Object presented
is expandable. We can
click on the > symbol to

see its properties.

www.EBooksWorld.ir

http://www.it-ebooks.info/

pe

W
m

an

on

en

ct

 ID.

Ch
of th
pe
163Build the people object

// show the names of all people in our list
peopleDb().each(function(person, idx){console.log(person.name);});
>> anonymous
>> Betty
>> Mike
>> Pebbles
>> Wilma

// get the person with the id of 'id_03':
var person = peopleDb({ cid : 'id_03' }).first();

// inspect the name attribute
person.name;
>> "Pebbles"

// inspect the css_map attribute
JSON.stringify(person.css_map);
>> "{"top":100,"left":20,"background-color":"rgb(128, 192, 192)"}""

// try an inherited method
person.get_is_anon();
>> false

// the anonymous person should have an id of 'a0'
person = peopleDb({ id : 'a0' }).first();

// use the same method
person.get_is_anon();
>> true

person.name;
>> "anonymous"

// check our person_cid_map too...
var personCidMap = spa.model.people.get_cid_map();

personCidMap['a0'].name;
>> "anonymous"

This testing shows that we’ve been successful in building part of the people object. In
the next section we’ll finish the job.

5.4.3 Finish the people object

We need to update both the Model and the Fake modules to ensure the people object
API meets the specifications we wrote earlier. Let’s update the Model first.

UPDATE THE MODEL

We want our people object to fully support the concept of a user. Let’s consider the
new methods we’ll need to add:

■ login(<user_name>) will start the sign-in process. We’ll need to create a new
person object and add it to the people list. When the sign-in process is complete,
we’ll emit an spa-login event that publishes the current user object as data.

Iterate over all
rson objects and
print the name.
e use the each
ethod provided
by the TaffyDB
collection. This
method takes a

function as its
argument, which

receives a
person object
d index number

as arguments.

Display
another

expected
property,

css_map.

Filter the TaffyDB collecti
using peopleDb(
<match_map>) and th
extract the first object of
the returned array using
the first() method.

Ensure our person
object has the name
property we expect.

Ensure our person object has the
get_is_anon method and provides the corre
results—Pebbles isn’t the anonymous person.

Get the anonymous
person object by its

Ensure this person object has
the get_is_anon method
and works as expected.

eck the name
e anonymous
rson object.

Test getting a person
object by client ID.
www.EBooksWorld.ir

http://www.it-ebooks.info/

164 CHAPTER 5 Build the Model

■ logout() will start the sign-out process. When a user signs out, we’ll delete the
user person object from the people list. When the sign-out process is complete,
we’ll emit an spa-logout event with the prior user object as data.

■ get_user() will return the current user person object. If someone has not
signed in, the user object will be the anonymous person object. We’ll use a
module state variable (stateMap.user) to store the current user person object.

We need to add a number of other capabilities to support these methods:

■ Because we’ll be using a Socket.IO connection to send and receive messages to
the Fake module, we’ll use a mock sio object in the login(<user_name>)
method.

■ Because we’ll be creating a new person object with login(<username>), we’ll
use the makeCid() method to create a client ID for the signed-in user. We’ll use
a module state variable (stateMap.cid_serial) to store a serial number used
to create this ID.

■ Because we’ll be removing the user person object from the people list, we’ll
need a method to remove a user. We’ll use a removePerson(<client_id>)
method to do this.

■ Because the sign-in process is asynchronous (it only completes when the Fake
module returns a userupdate message), we’ll use a completeLogin method to
finish the process.

Let’s update the Model with these changes as shown in listing 5.15. All changes are
shown in bold:

/*
 * spa.model.js
 * Model module
*/

/*jslint browser : true, continue : true,
 devel : true, indent : 2, maxerr : 50,
 newcap : true, nomen : true, plusplus : true,
 regexp : true, sloppy : true, vars : false,
 white : true
*/
/*global TAFFY, $, spa */

spa.model = (function () {
 'use strict';
 var
 configMap = { anon_id : 'a0' },
 stateMap = {
 anon_user : null,
 cid_serial : 0,
 people_cid_map : {},

Listing 5.15 Finish the people object of the Model—spa/js/spa.model.js
 people_db : TAFFY(),

www.EBooksWorld.ir

http://www.it-ebooks.info/

165Build the people object

 user : null
 },

 isFakeData = true,

 personProto, makeCid, clearPeopleDb, completeLogin,
 makePerson, removePerson, people, initModule;

 // The people object API
 // ---------------------
 // The people object is available at spa.model.people.
 // The people object provides methods and events to manage
 // a collection of person objects. Its public methods include:
 // * get_user() - return the current user person object.
 // If the current user is not signed-in, an anonymous person
 // object is returned.
 // * get_db() - return the TaffyDB database of all the person
 // objects - including the current user - presorted.
 // * get_by_cid(<client_id>) - return a person object with
 // provided unique id.
 // * login(<user_name>) - login as the user with the provided
 // user name. The current user object is changed to reflect
 // the new identity. Successful completion of login
 // publishes a 'spa-login' global custom event.
 // * logout()- revert the current user object to anonymous.
 // This method publishes a 'spa-logout' global custom event.
 //
 // jQuery global custom events published by the object include:
 // * spa-login - This is published when a user login process
 // completes. The updated user object is provided as data.
 // * spa-logout - This is published when a logout completes.
 // The former user object is provided as data.
 //
 // Each person is represented by a person object.
 // Person objects provide the following methods:
 // * get_is_user() - return true if object is the current user
 // * get_is_anon() - return true if object is anonymous
 //
 // The attributes for a person object include:
 // * cid - string client id. This is always defined, and
 // is only different from the id attribute
 // if the client data is not synced with the backend.
 // * id - the unique id. This may be undefined if the
 // object is not synced with the backend.
 // * name - the string name of the user.
 // * css_map - a map of attributes used for avatar
 // presentation.
 //
 personProto = {
 get_is_user : function () {
 return this.cid === stateMap.user.cid;
 },
 get_is_anon : function () {
 return this.cid === stateMap.anon_user.cid;
 }

Include the API
documentation
we previously
developed.
 };

www.EBooksWorld.ir

http://www.it-ebooks.info/

166 CHAPTER 5 Build the Model

 makeCid = function () {
 return 'c' + String(stateMap.cid_serial++);
 };

 clearPeopleDb = function () {
 var user = stateMap.user;
 stateMap.people_db = TAFFY();
 stateMap.people_cid_map = {};
 if (user) {
 stateMap.people_db.insert(user);
 stateMap.people_cid_map[user.cid] = user;
 }
 };

 completeLogin = function (user_list) {
 var user_map = user_list[0];
 delete stateMap.people_cid_map[user_map.cid];
 stateMap.user.cid = user_map._id;
 stateMap.user.id = user_map._id;
 stateMap.user.css_map = user_map.css_map;
 stateMap.people_cid_map[user_map._id] = stateMap.user;

 // When we add chat, we should join here
 $.gevent.publish('spa-login', [stateMap.user]);
 };

 makePerson = function (person_map) {
 var person,
 cid = person_map.cid,
 css_map = person_map.css_map,
 id = person_map.id,
 name = person_map.name;

 if (cid === undefined || ! name) {
 throw 'client id and name required';
 }

 person = Object.create(personProto);
 person.cid = cid;
 person.name = name;
 person.css_map = css_map;

 if (id) { person.id = id; }

 stateMap.people_cid_map[cid] = person;

 stateMap.people_db.insert(person);
 return person;
 };

 removePerson = function (person) {
 if (! person) { return false; }
 // can't remove anonymous person
 if (person.id === configMap.anon_id) {
 return false;
 }

 stateMap.people_db({ cid : person.cid }).remove();

Add a client ID
generator.

Usually the client
ID of a person

 object is the
same as the

server ID. But
those created on

the client and not
yet saved to the

backend don’t yet
have a server ID.

Add a method to remove all
person objects except the
anonymous person, and, if a
user is signed in, the current
user object.

Add a method to
complete user

sign-in when the
backend sends

confirmation and
data for the user.

This routine
updates the
current user

information, and
then publishes the

success of the
sign-in using an
spa-login

event.

Create a method to
remove a person
object from the people
list. We add a few
checks to avoid logical
inconsistencies—for
example, we won’t
remove the current
user or anonymous
person objects.
 if (person.cid) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

.

l
.

167Build the people object

 delete stateMap.people_cid_map[person.cid];
 }
 return true;
 };

 people = (function () {
 var get_by_cid, get_db, get_user, login, logout;

 get_by_cid = function (cid) {
 return stateMap.people_cid_map[cid];
 };

 get_db = function () { return stateMap.people_db; };

 get_user = function () { return stateMap.user; };

 login = function (name) {
 var sio = isFakeData ? spa.fake.mockSio : spa.data.getSio();

 stateMap.user = makePerson({
 cid : makeCid(),
 css_map : {top : 25, left : 25, 'background-color':'#8f8'},
 name : name
 });

 sio.on('userupdate', completeLogin);

 sio.emit('adduser', {
 cid : stateMap.user.cid,
 css_map : stateMap.user.css_map,
 name : stateMap.user.name
 });
 };

 logout = function () {
 var is_removed, user = stateMap.user;
 // when we add chat, we should leave the chatroom here

 is_removed = removePerson(user);
 stateMap.user = stateMap.anon_user;

 $.gevent.publish('spa-logout', [user]);
 return is_removed;
 };

 return {
 get_by_cid : get_by_cid,
 get_db : get_db,
 get_user : get_user,
 login : login,
 logout : logout
 };
 }());

 initModule = function () {
 var i, people_list, person_map;

 // initialize anonymous person
 stateMap.anon_user = makePerson({
 cid : configMap.anon_id,

Define the people
closure. This allows
us to share only the
methods we want.

Define the
get_by_cid
method in the

people
closure. This is
a convenience
method that’s

easy
to implement.

Define the
get_db

 method in the
people

 closure. This
returns the

TaffyDB
collection of

person
 objects.

Send an adduser
 message to the

backend along
with all the user
details. Adding a

user and signing in
are the same thing

in this context.

Define the
logout

 method in the
people

closure. This
publishes an

spa-logout
event.

Define the get_user
method in the people

closure. This returns
the current user
person object

Define the login method in
the people closure. We don’t

do any fancy credentia
checking here

Register a callback to
complete sign-in when the
backend publishes a
userupdate message.

Neatly export all of
our public people
methods.
 id : configMap.anon_id,

www.EBooksWorld.ir

http://www.it-ebooks.info/

168 CHAPTER 5 Build the Model

 name : 'anonymous'
 });
 stateMap.user = stateMap.anon_user;

 if (isFakeData) {
 people_list = spa.fake.getPeopleList();
 for (i = 0; i < people_list.length; i++) {
 person_map = people_list[i];
 makePerson({
 cid : person_map._id,
 css_map : person_map.css_map,
 id : person_map._id,
 name : person_map.name
 });
 }
 }
 };

 return {
 initModule : initModule,
 people : people
 };
}());

Now that we’ve updated the Model, we can proceed with the Fake module.

UPDATE THE FAKE MODULE

Our Fake module needs to be updated to provide a mock Socket.IO connection
object, sio. We want this to emulate the capabilities we need to sign in and sign out:

■ The mock sio object must provide the ability to register callbacks for a mes-
sage. We only need to support a callback for a single message, userupdate, to
test sign-in and sign-out. In the Model we register the completeLogin method
for this message.

■ When a user signs in, the mock sio object will receive an adduser message from
the Model along with the a map of user data as its argument. We emulate a
server response by waiting three seconds and then executing the userupdate
callback. We purposely delay this response so we might spot any race conditions
in the sign-in process.

■ We don’t need to worry about sign-out with the mock sio object just yet, as the
Model currently handles that condition.

Let’s update the Fake module with these changes as shown in listing 5.16. All changes
are shown in bold:

...

spa.fake = (function () {
'use strict';
var getPeopleList, fakeIdSerial, makeFakeId, mockSio;

Listing 5.16 Add a mock socket object with latency to Fake—spa/js/spa.fake.js

Add new module-
scope variables.
www.EBooksWorld.ir

http://www.it-ebooks.info/

od
k
g.

obje
Th

public
on a

k

169Build the people object

fakeIdSerial = 5;

 makeFakeId = function () {
return 'id_' + String(fakeIdSerial++);

};

getPeopleList = function () {
return [

{ name : 'Betty', _id : 'id_01',
css_map : { top: 20, left: 20,

'background-color' : 'rgb(128, 128, 128)'
}

},
{ name : 'Mike', _id : 'id_02',

css_map : { top: 60, left: 20,
'background-color' : 'rgb(128, 255, 128)'

}
},
{ name : 'Pebbles', _id : 'id_03',

css_map : { top: 100, left: 20,
'background-color' : 'rgb(128, 192, 192)'

}
},
{ name : 'Wilma', _id : 'id_04',

css_map : { top: 140, left: 20,
'background-color' : 'rgb(192, 128, 128)'

}
}

];
};

 mockSio = (function () {
var on_sio, emit_sio, callback_map = {};

 on_sio = function (msg_type, callback) {
 callback_map[msg_type] = callback;

};

 emit_sio = function (msg_type, data) {

 // respond to 'adduser' event with 'userupdate'
 // callback after a 3s delay
 //
 if (msg_type === 'adduser' && callback_map.userupdate) {

 setTimeout(function () {
 callback_map.userupdate(

 [{ _id : makeFakeId(),
 name : data.name,
 css_map : data.css_map

 }]
);

 }, 3000);
 }

 };

 return { emit : emit_sio, on : on_sio };
 }());

Create a meth
to make a moc
server ID strinAdd a mock

server ID serial
number counter.

Define the
mockSio
ct closure.
is has two
 methods:
nd emit.

Create the on_sio method
for the mockSio closure. This
method registers a callback for
a message type. For example,
on_sio(‘updateuser,’
onUpdateuser); would
register an onUpdateuser
function as a callback for the
updateuser message type.
The callback will receive
message data as arguments.

Create the emit_sio method for the
mockSio closure. The method emulates

sending a message to the server. In this first
pass, we’ll only handle the adduser

message type. When received, we wait 3
seconds to simulate network latency and
then invoke the updateuser callback.

Export the public methods for our moc
mockSio object. We export on_sio
as on and emit_sio as emit so we

can emulate a real SocketIO object.

www.EBooksWorld.ir

http://www.it-ebooks.info/

ry
be to
 event
at
d the
to the

Have

co
subsc

the
l

even
functi

“!Go
and th
argum

the c

Confi
use

as exp
170 CHAPTER 5 Build the Model

 return {
 getPeopleList : getPeopleList,
 mockSio : mockSio
 };
}());

Now that we’ve completed updating the Model and Fake, we can test sign-in and sign-
out.

5.4.4 Test the people object API

As we planned, isolating the Model allows us to test the sign-in and sign-out process
without the time and expense of setting up a server or preparing a UI. Beyond the saved
expense, it ensures higher quality because our test results aren’t distorted by interface
or data bugs, and we’re testing a known data set. This method also allows us to proceed
without needing other development groups to complete their components.

 Let’s load our browser document (spa/spa.html) to ensure the application works
as before. We can then open the JavaScript console and test the login, logout, and
other methods as shown in listing 5.17. Typed input is shown in bold; output is shown
in italics:

// create a jQuery collection
$t = $('<div/>');

// Have $t subscribe to global custom events with test functions
$.gevent.subscribe($t, 'spa-login', function () {
 console.log('Hello!', arguments); });

$.gevent.subscribe($t, 'spa-logout', function () {
 console.log('!Goodbye', arguments); });

// get the current user object
var currentUser = spa.model.people.get_user();

// confirm it is anonymous
currentUser.get_is_anon();
>> true

// get the people collection
var peopleDb = spa.model.people.get_db();

// show the names of all people in our list
peopleDb().each(function(person, idx){console.log(person.name);});
>> anonymous
>> Betty
>> Mike
>> Pebbles
>> Wilma

Listing 5.17 Test sign-in and sign-out using the JavaScript console

Add the mockSio
object to the public
Fake API.

Create a jQuery collection ($t) that isn’t
attached to the browser document. We’ll
use this for event testing.

Have the $t jQue
collection subscri
the spa-login
with a function th
prints “Hello!” an
list of arguments
console.

 the $t
jQuery

llection
ribe to
 spa-
ogout
t with a
on that
prints

odbye”
e list of
ents to
onsole.

Confirm the user object is the
anonymous person object.

rm the
r list is
ected.
// sign-in as 'Alfred'; get current user within 3s!

www.EBooksWorld.ir

http://www.it-ebooks.info/

secon
the
l

ev
publis
invo
func
sub
on

collec
the
l

event,
we

“
m

alon
the

argu
171Build the people object

spa.model.people.login('Alfred');
currentUser = spa.model.people.get_user();

// confirm the current user is no longer anonymous
currentUser.get_is_anon();
>> false

// inspect the current user id and cid
currentUser.id;
>> undefined

currentUser.cid;
>> "c0"

// wait 3s ...
>> Hello! > [jQuery.Event, Object]

// revisit the people collection
peopleDb().each(function(person, idx){console.log(person.name);});
>> anonymous
>> Betty
>> Mike
>> Pebbles
>> Wilma
>> Alfred

// sign-out and watch for the event
spa.model.people.logout();
>> !Goodbye [jQuery.Event, Object]

// look at the people collection and current user
peopleDb().each(function(person, idx){console.log(person.name);});
>> anonymous
>> Betty
>> Mike
>> Pebbles
>> Wilma

currentUser = spa.model.people.get_user();
currentUser.get_is_anon();
>> true

This testing is reassuring. We’ve shown that the people object does a good job of
meeting its goals. We can sign in and sign out and the Model behaves as defined. And
because the Model doesn’t require a UI or a server, it’s easy to create a test suite to
ensure all methods meet their design specification. This suite can be run without a
browser by using jQuery with Node.js. See appendix B for a review of how this can be
accomplished.

 This might be a good time to take a break. In the next section we’ll update our

Log in as Alfred.

Ensure the user object is no longer
the anonymous person object. Even
though the backend has yet to
respond, the user has been set and so
get_is_anon() returns false.

Wait 3
ds and
 spa-
ogin

ent will
h. This
kes the
tion we
scribed
the $t
jQuery
tion to
 spa-
ogin

 and so
see the
Hello!”
essage
g with
 list of
ments.

Inspect the user object id. We can see that Alfred is
added to the client but id is undefined. This means
the Model has yet to respond to the login request.

List each person in the
people collection and

ensure we see “Alfred.”

Invoke the logout() method. This does a bit of house
cleaning and publishes the spa-logout event almost
immediately. This invokes the function we subscribed on the $t
jQuery collection to spa-logout event, and so we see the
“!Goodbye” message along with a list of arguments.

Confirm the list of people
no longer contains Alfred.

Confirm the current user object is
the anonymous person object.
interface so the user may sign in and sign out.

www.EBooksWorld.ir

http://www.it-ebooks.info/

172 CHAPTER 5 Build the Model

5.5 Enable sign-in and sign-out in the Shell
Up to this point we’ve isolated our Model development from the UI as shown in fig-
ure 5.10:

Now that we’ve tested the Model thoroughly, we want a user to sign in and sign out
through the UI instead of the JavaScript console. We’ll now employ the Shell to do just
that, as shown in figure 5.11.

 Of course, before we can build the UI, we must agree on how it should work. We’ll
do that next.

Figure 5.10 Testing the Model using the JavaScript console

Figure 5.11 In this section we add a graphical sign-in capability to the Shell
www.EBooksWorld.ir

http://www.it-ebooks.info/

173Enable sign-in and sign-out in the Shell

5.5.1 Design the user sign-in experience

We’d like to keep the user experience simple and familiar. As is the popular conven-
tion, we’d like the user to click on the top-right of the page to begin the sign-in pro-
cess. The steps we envision are illustrated in figure 5.12.

1 If the user isn’t signed in, the top-right area (the “user area”) will prompt Please
Sign-in. When the user clicks on this text, a sign-in dialog will appear.

2 Once the user completes the dialog form and clicks on the OK button, the sign-
in processing begins.

3 The sign-in dialog is removed, and the user area shows ... processing ... while the
sign-in is underway (our Fake module always takes three seconds for this step).

4 Once the sign-in process is complete, the user area shows the name of the
signed-in user.

A signed-in user may sign out by clicking on the user area. This will revert the text
back to Please Sign-in.

 Now that we have the user experience designed, we can update the Shell to make it
happen.

5.5.2 Update the Shell JavaScript

Because we put all of our data handling and logic into our Model, we can have the
Shell handle the view and control roles only. While we’re under the hood, as they say,
we can also easily add support for touch devices (such as tablets and mobile phones).
Let’s modify the Shell as shown in listing 5.18. Changes are shown in bold:

...

spa.shell = (function () {
'use strict';
//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var
configMap = {

anchor_schema_map : {
chat : { opened : true, closed : true }

},
resize_interval : 200,

Listing 5.18 Update the Shell to add sign-in—spa/js/spa.shell.js

1

2

3 4

Figure 5.12 The sign-in
process as seen by the
user

Use the strict
pragma.
main_html : String()

www.EBooksWorld.ir

http://www.it-ebooks.info/

jQ

ethod.
ent is

rds, not
pt for a
oke

me>).
ned in,

gin
is
 area

ing
in”
r
vided
ser

e
ent.
174 CHAPTER 5 Build the Model

+ '<div class="spa-shell-head">'
+ '<div class="spa-shell-head-logo">'

+ '<h1>SPA</h1>'
+ '<p>javascript end to end</p>'

+ '</div>'
+ '<div class="spa-shell-head-acct"></div>'

+ '</div>'
+ '<div class="spa-shell-main">'

+ '<div class="spa-shell-main-nav"></div>'
+ '<div class="spa-shell-main-content"></div>'

+ '</div>'
+ '<div class="spa-shell-foot"></div>'
+ '<div class="spa-shell-modal"></div>'

},
...
copyAnchorMap, setJqueryMap, changeAnchorPart,
onResize, onHashchange,

onTapAcct, onLogin, onLogout,
setChatAnchor, initModule;

...
// Begin DOM method /setJqueryMap/
setJqueryMap = function () {

var $container = stateMap.$container;

jqueryMap = {
$container : $container,
$acct : $container.find('.spa-shell-head-acct'),
$nav : $container.find('.spa-shell-main-nav')

};
};
// End DOM method /setJqueryMap/

...
 onTapAcct = function (event) {
 var acct_text, user_name, user = spa.model.people.get_user();
 if (user.get_is_anon()) {
 user_name = prompt('Please sign-in');
 spa.model.people.login(user_name);
 jqueryMap.$acct.text('... processing ...');
 }
 else {
 spa.model.people.logout();
 }
 return false;
 };

 onLogin = function (event, login_user) {
 jqueryMap.$acct.text(login_user.name);
 };

 onLogout = function (event, logout_user) {
 jqueryMap.$acct.text('Please sign-in');
 };

 //-------------------- END EVENT HANDLERS --------------------

Give the header a nicer look
and provide an element for
account name.

Declare the onTapAcct,
onLogin, and onLogout
event handlers.

Add to our
uery cache

map.

Add the onTapAcct m
When the account elem
tapped, if the user is
anonymous (in other wo
logged in), then we prom
user name and then inv
spa.model.people
.login(<user_na
If the user is already sig
we invoke the
spa.model.people
.logout() method.

Create the onLo
event handler. Th
updates the user
(in the top-right
corner) by replac
the “Please Sign-
text with the use
name. This is pro
by the login_u
object that’s
distributed by th
spa-login ev

Create the onLogout event
handler. This reverts the user area
text back to “Please Sign-in.”
 ...

www.EBooksWorld.ir

http://www.it-ebooks.info/

Crea
ind
.

sh
h
l
d

select
modi

par
(p) ins

log
175Enable sign-in and sign-out in the Shell

initModule = function ($container) {

...
$.gevent.subscribe($container, 'spa-login', onLogin);

 $.gevent.subscribe($container, 'spa-logout', onLogout);

 jqueryMap.$acct
.text('Please sign-in')
.bind('utap', onTapAcct);

};
// End PUBLIC method /initModule/

return { initModule : initModule };
//------------------- END PUBLIC METHODS ---------------------

}());

The changes we made are easy to understand once we’re comfortable with the pub-
lish-subscribe nature of jQuery global custom events. Now let’s tweak the CSS to show
our user area correctly.

5.5.3 Update the Shell stylesheet

Our stylesheet changes aren’t anything fancy. We add or modify a few selectors to
make the user area look nice, and we clean up some cruft along the way. Listing 5.19
shows the changes we need in bold:

...

.spa-shell-head-logo {
top : 4px;
left : 8px;
height : 32px;
width : 128px;

}
 .spa-shell-head-logo h1 {
 font : 800 22px/22px Arial, Helvetica, sans-serif;

 margin : 0;
 }
 .spa-shell-head-logo p {
 font : 800 10px/10px Arial, Helvetica, sans-serif;

 margin : 0;
 }

.spa-shell-head-acct {
top : 4px;

 right : 0;
 width : 210px;
 height : 32px;
 line-height : 32px;
 background : #888;
 color : #fff;
 text-align : center;
 cursor : pointer;

Listing 5.19 Add styles for user area in the Shell stylesheet—spa/css/spa.shell.css

Have the $container
jQuery collection
subscribe the onLogin
and onLogout event
handlers to the spa-
login and spa-
logout events
respectively.

Initialize the user
area text. Bind a
touch or mouse click
on the user area to
the onTapAcct
event handler.

Update the spa-shell-
head-logo class to move
our logo area away from the
edge a bit.

Create and indent the .spa-
shell-head-logo h1 derived
selector. This modifies the header1
(h1) style inside the logo div.

te and
ent the
spa-
ell-
ead-
ogo p
erived

or. This
fies the
agraph
ide the
o div. Delete the .spa-

shell-head-
search selector.

Modify the .spa-shell-
head-acct selector so the
user area text will be more
legible.
 overflow : hidden;

www.EBooksWorld.ir

http://www.it-ebooks.info/

176 CHAPTER 5 Build the Model

 text-overflow : ellipsis;
}

...

.spa-shell-main-nav {
width : 400px;
background : #eee;
z-index : 1;

}
...
.spa-shell-main-content {

left : 400px;
right : 0;
background : #ddd;

}
...

Now with our CSS in place, let’s test the changes.

5.5.4 Test sign-in and sign-out using the UI

When we load our browser document (spa/spa.html), we should see a page with
“Please sign in” in the user area in the top-right of the window. When we click on this,
we should be presented with a dialog as shown in figure 5.13.

 Once we enter a user name and click OK, the dialog should close and we should
see “... processing ...”6 for three seconds in the user area, after which the spa-login
event should be published. The handler in the Shell subscribed to this event should
then update the user name in the upper-right of the window, as shown in figure 5.14.

 We ensure a good experience by keeping the user apprised of what’s happening
throughout the process. This is a hallmark of good design—consistently providing

6 Before we went public with the site, we’d probably use a nice “in-progress” animated graphic instead of the

Modify the .spa-shell-main-nav
selector to make it wider and ensure its
z-index is “above” any spa-shell-
main-content class container.

Modify the .spa-shell-main-content
selector to accommodate the increased width
of any adjacent spa-shell-main-nav
class container.

Figure 5.13 Screenshot of sign-in dialog
text. A number of web sites provide quality custom in-progress graphics for free.

www.EBooksWorld.ir

http://www.it-ebooks.info/

177Summary

immediate feedback can make even a relatively slow application seem snappy and
responsive.

5.6 Summary
In this chapter we introduced the Model and discussed how it fits into our architec-
ture. We outlined what the Model should and should not do. We then set up the files
required to build and test the Model.

 We designed, specified, developed, and tested one part of the Model—the people
object. We used a Fake module to provide a controlled data set to the Model, and we
used the JavaScript console to test the people object API. Isolating the Model in this
way resulted in faster development and more controlled testing. We also modified our
SPA to use a mouse-touch plugin so that mobile users may use it.

 In the final section we modified the Shell to present the sign-in and sign-out capa-
bilities to the user. We used the API provided by the people object to provide this capa-
bility. We also ensured a positive user experience by having our SPA provide feedback
immediately after user input.

 In the next chapter, we’ll add the chat object to the Model. This will allow us to
complete the Chat feature module and create an Avatar feature module. Then we’ll
prepare the client to work with a real web server.

Figure 5.14 Screenshot after completion of sign-in
www.EBooksWorld.ir

http://www.it-ebooks.info/

Finish the Model
 and Data modules
This chapter concludes the work on the Model and feature modules begun in
chapter 5. Before starting, you should have the project files from chapter 5, as we’ll
be adding to them. We recommend you copy the entire directory structure you cre-
ated in chapter 5 into a “chapter_6” directory and update them there.

 In this chapter we design and build the chat object portion of the Model. We
then complete the Chat slider UI by having it use and respond to the chat object API.
We also add an Avatar feature module which also uses the chat object API to display
on-screen representations of online people. We discuss how we accomplish data

This chapter covers
■ Designing the chat object portion of the Model
■ Implementing the chat object and testing its API
■ Completing the Chat feature module
■ Creating a new Avatar feature module
■ Using jQuery for data binding
■ Communicating with the server using the Data module
178

www.EBooksWorld.ir

http://www.it-ebooks.info/

179Design the chat object

binding using jQuery. Finally, we complete the client portion of the SPA with the addi-
tion of the Data module.

 Let’s start by designing the chat object.

6.1 Design the chat object
In this chapter we will build the chat object portion of the Model as shown in fig-
ure 6.1.

 In the last chapter we designed, built, and tested the people object portion of the
Model. In this chapter we’ll design, build, and test the chat object. Let’s revisit the API
specification we first presented in chapter 4:

...
// * chat_model - the chat model object provides methods
// to interact with our instant messaging
// * people_model - the people model object which provides methods
// to interact with the list of people the model maintains

...

The description provided for the chat object—“an object that provides methods to
interact with our instant messaging”—is a good start but too broad for implementa-
tion. Let’s design the chat object by first analyzing what we’d like it to accomplish.

6.1.1 Design methods and events

We know we want the chat object to provide instant messaging capabilities, but we
need to determine what those capabilities are in detail. Let’s consider figure 6.2,
which shows a mockup of the SPA with some notes about our chat interface.

 We know from experience that we’ll probably need to initialize a chat room. We also

Figure 6.1 We’ll work the Model’s chat object in this chapter
expect that the user may change the chatee (the person with whom they’re chatting), and

www.EBooksWorld.ir

http://www.it-ebooks.info/

180 CHAPTER 6 Finish the Model and Data modules

may send messages to this person. And from our discussion about avatars, we know the
user may update avatar information. The user won’t be the only source driving the UI,
as we expect other people to join and leave the chat room, send and receive messages,
and change avatar information. Based on this analysis, we can list the capabilities that
we need to be exposed by the chat object API:

■ Provide methods to join or leave a chat room.
■ Provide a method to change the chatee.
■ Provide a method to send messages to other people.
■ Provide a method to tell the server that an avatar has been updated by the user.
■ Publish an event if the chatee is changed for any reason. For example, if the

chatee goes offline or a new chatee is selected by the user.
■ Publish an event when the message pane needs to change for any reason. For

example, if the user sends or receives a message.
■ Publish an event if the list of online persons changes for any reason. For example,

if a person joins or leaves the chat room, or if an avatar is moved by any user.

Our chat object API will use two channels of communication. One channel is the clas-
sic method-return-value mechanism. This channel is synchronous—the data transfer
happens in a known sequence. The chat object may invoke external methods and
receive information as return values. And other code may invoke the chat object’s
public methods and receive information from the return values.

 The other channel of communication that will be used by the chat object is the
event mechanism. This channel is asynchronous—events may happen at any time
regardless of the actions of the chat object. The chat object will receive events (like
messages from the server) and publish events for use by the UI.

 Let’s start designing the chat object by first considering the synchronous methods
we will provide.

We need to be notified
of incoming messages.

We must be able
to send messages.

The “chatee” is Betty.
The user needs to

modify this on a whim.

The user needs this
list of people online

kept up to date.

We probably need
to join a chat room.

Figure 6.2 A mockup of our SPA—chat focus
www.EBooksWorld.ir

http://www.it-ebooks.info/

181Design the chat object

DESIGN CHAT METHODS

As we discussed in chapter 5, a method is a publicly exposed function, like
spa.model.chat.get_chatee, which can be used to perform an action and return
data synchronously. Given our requirements, this list of methods seems about right:

■ join()—Join the chat. If the user is anonymous, this method should abort and
return false.

■ get_chatee()—Return the person object of the user with whom we’re chat-
ting. If there’s no chatee, return null.

■ set_chatee(<person_id>)—Set the chatee to the person object uniquely
identified by person_id. This method should publish an spa-setchatee event
with chatee information provided as data. If a matching person object can’t be
found in the collection of online people, set the chatee to null. If the
requested person is already the chatee, return false.

■ send_message(<msg_text>)—Send a message to the chatee. We should pub-
lish an spa-updatechat event with message information provided as data. If the
user is anonymous or the chatee is null, this method should take no action and
return false.

■ update_avatar(<update_avatar_map>)—Adjust avatar information for a per-
son object. The argument (update_avatar_map) should include the properties
person_id and css_map.

These methods appear to meet our requirements. Now let's consider in more detail
the events that the chat object should publish.

DESIGN CHAT EVENTS

As we discussed earlier, events are used to publish data asynchronously. For example,
if a message is received, the chat object will need to notify subscribed jQuery collec-
tions of the change and provide the data necessary to update the presentation.

 We expect that the collection of online people, and the chatee, will change often.
These changes won’t always be due to the user’s actions—for example, a chatee may
send a message at any time. Here are the events that should communicate these
changes to the feature modules:

■ spa-listchange should be published when the list of online people changes.
An updated people collection should be provided as data.

■ spa-setchatee should be published when the chatee changes. A map of the
old and new chatee should be provided as data

■ spa-updatechat should be published when a new message is sent or received. A
map of message information should be provided as data.

As we did in chapter 5, we’ll use jQuery global events as our publishing mechanism.
Now that we’ve thought through the methods and events we will need, let’s proceed to
documentation and implementation.
www.EBooksWorld.ir

http://www.it-ebooks.info/

182 CHAPTER 6 Finish the Model and Data modules

6.1.2 Document the chat object API

Let’s consolidate our plans into an API specification that we can place into the Model
code for reference.

// The chat object API
// -------------------
// The chat object is available at spa.model.chat.
// The chat object provides methods and events to manage
// chat messaging. Its public methods include:
// * join() - joins the chat room. This routine sets up
// the chat protocol with the backend including publishers
// for 'spa-listchange' and 'spa-updatechat' global
// custom events. If the current user is anonymous,
// join() aborts and returns false.
// * get_chatee() - return the person object with whom the user
// is chatting. If there is no chatee, null is returned.
// * set_chatee(<person_id>) - set the chatee to the person
// identified by person_id. If the person_id does not exist
// in the people list, the chatee is set to null. If the
// person requested is already the chatee, it returns false.
// It publishes a 'spa-setchatee' global custom event.
// * send_msg(<msg_text>) - send a message to the chatee.
// It publishes a 'spa-updatechat' global custom event.
// If the user is anonymous or the chatee is null, it
// aborts and returns false.
// * update_avatar(<update_avtr_map>) - send the
// update_avtr_map to the backend. This results in an
// 'spa-listchange' event which publishes the updated
// people list and avatar information (the css_map in the
// person objects). The update_avtr_map must have the form
// { person_id : person_id, css_map : css_map }.
//
// jQuery global custom events published by the object include:
// * spa-setchatee - This is published when a new chatee is
// set. A map of the form:
// { old_chatee : <old_chatee_person_object>,
// new_chatee : <new_chatee_person_object>
// }
// is provided as data.
// * spa-listchange - This is published when the list of
// online people changes in length (i.e. when a person
// joins or leaves a chat) or when their contents change
// (i.e. when a person's avatar details change).
// A subscriber to this event should get the people_db
// from the people model for the updated data.
// * spa-updatechat - This is published when a new message
// is received or sent. A map of the form:
// { dest_id : <chatee_id>,
// dest_name : <chatee_name>,
// sender_id : <sender_id>,

Listing 6.1 The chat object API—spa/js/spa.model.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

183Build the chat object

// msg_text : <message_content>
// }
// is provided as data.
//

Now that we’ve completed a specification for the chat object, let’s implement it and
test the API. After that, we’ll adjust the Shell and the feature modules to use the chat
object API to provide new capabilities.

6.2 Build the chat object
Now that we’ve designed the chat object API we can build it. As in chapter 5, we’re
going to use the Fake module and the JavaScript console to avoid the use of a web
server or a UI. As we progress, we should keep in mind that the “backend” is emulated by the
Fake module in this chapter.

6.2.1 Start the chat object with the join method

In this section we’ll create the chat object in the Model so that we may:

■ Sign in using the spa.model.people.login(<username>) method.
■ Join the chat room using the spa.model.chat.join() method.
■ Register a callback to publish an spa-listchange event whenever the Model

receives a listchange message from the backend. This indicates the list of users
has changed.

Our chat object will rely on the people object to handle the sign-in and to maintain
the list of online people. It won’t allow an anonymous user to join a chat room. Let’s
start building the chat object in the Model as shown in listing 6.2. Changes are shown
in bold:

spa.model = (function () {
...

stateMap = {
...
is_connected : false,
...

},
...

personProto, makeCid, clearPeopleDb, completeLogin,
makePerson, removePerson, people, chat, initModule;

...
 // The chat object API

// -------------------
// The chat object is available at spa.model.chat.
// The chat object provides methods and events to manage
// chat messaging. Its public methods include:
// * join() - joins the chat room. This routine sets up
// the chat protocol with the backend including publishers

Listing 6.2 Start our chat object—spa/js/spa.model.js

Create the
stateMap.is_connected
flag to indicate if the user is
currently in the chat room.
// for 'spa-listchange' and 'spa-updatechat' global

www.EBooksWorld.ir

http://www.it-ebooks.info/

184 CHAPTER 6 Finish the Model and Data modules

// custom events. If the current user is anonymous,
// join() aborts and returns false.
// ...
//
// jQuery global custom events published by the object include:
// ...
// * spa-listchange - This is published when the list of
// online people changes in length (i.e. when a person
// joins or leaves a chat) or when their contents change
// (i.e. when a person's avatar details change).
// A subscriber to this event should get the people_db
// from the people model for the updated data.
// ...
//

 chat = (function () {
var
 _publish_listchange,
 _update_list, _leave_chat, join_chat;

 // Begin internal methods
 _update_list = function(arg_list) {
 var i, person_map, make_person_map,
 people_list = arg_list[0];

 clearPeopleDb();

 PERSON:
 for (i = 0; i < people_list.length; i++) {

 person_map = people_list[i];

 if (! person_map.name) { continue PERSON; }

 // if user defined, update css_map and skip remainder
 if (stateMap.user && stateMap.user.id === person_map._id) {

 stateMap.user.css_map = person_map.css_map;
 continue PERSON;
 }

 make_person_map = {
 cid : person_map._id,
 css_map : person_map.css_map,
 id : person_map._id,
 name : person_map.name

 };

 makePerson(make_person_map);
 }

 stateMap.people_db.sort('name');
 };

_publish_listchange = function (arg_list) {
 _update_list(arg_list);
 $.gevent.publish('spa-listchange', [arg_list]);
 };
 // End internal methods

 _leave_chat = function () {

Create a chat
namespace.

Create the _update_list
method to refresh the
people object when a new
people list is received.

Create the _publish
_listchange method

to publish an spa-
listchange global
jQuery event with an

updated people list as its
data. We expect to use

this method whenever a
listchange message

is received from the
backend.

Create the _leave_chat
method, which sends a

leavechat message to
the backend and cleans up

state variables.
 var sio = isFakeData ? spa.fake.mockSio : spa.data.getSio();

www.EBooksWorld.ir

http://www.it-ebooks.info/

rts
the

er
185Build the chat object

 stateMap.is_connected = false;
 if (sio) { sio.emit('leavechat'); }
 };

join_chat = function () {
var sio;

 if (stateMap.is_connected) { return false; }

 if (stateMap.user.get_is_anon()) {
 console.warn('User must be defined before joining chat');

 return false;
 }

 sio = isFakeData ? spa.fake.mockSio : spa.data.getSio();
 sio.on('listchange', _publish_listchange);
 stateMap.is_connected = true;
 return true;

 };

 return {
 _leave : _leave_chat,
 join : join_chat

 };

}());

initModule = function () {
// initialize anonymous person
stateMap.anon_user = makePerson({
cid : configMap.anon_id,
id : configMap.anon_id,
name : 'anonymous'

});
stateMap.user = stateMap.anon_user;

};

return {
initModule : initModule,
chat : chat,
people : people

};
}());

This is our first pass implementation of the chat object. Instead of adding more meth-
ods, we want to test the ones we’ve created so far. In the next section we’ll update the
Fake module to emulate the server interaction we need for testing.

6.2.2 Update Fake to respond to chat.join

Now we need to update the Fake module so it can emulate the server responses we
need to test the join method. The changes we need include:

■ Include the signed-in user in the mock people list.
■ Emulate the receipt of a listchange message from the server.

Create the join_chat
method so we may join

the chat room. This
checks if the user has

already joined the chat
(stateMap.is

_connected) so that
it doesn’t register the

listchange callback
more than once.

Neatly
export all

public chat
methods.

Remove the code that inse
the mock people list into
people object, as this is
now provided when the us
joins the chat.

Add chat as a
public object.
www.EBooksWorld.ir

http://www.it-ebooks.info/

186 CHAPTER 6 Finish the Model and Data modules

The first step is simple: we create a person map and push it into the people list that
Fake manages. The second step is trickier, so stick with me here: the chat object regis-
ters a handler for a listchange message from the backend only after the user has signed
in and joined a chat. Therefore, we can add a private send_listchange function that
will send a mock people list only once this handler is registered. Let’s employ these
changes as shown in listing 6.3. Changes are shown in bold:

...
spa.fake = (function () {

'use strict';
var peopleList, fakeIdSerial, makeFakeId, mockSio;

fakeIdSerial = 5;

makeFakeId = function () {
return 'id_' + String(fakeIdSerial++);

};

peopleList = [
{ name : 'Betty', _id : 'id_01',

css_map : { top: 20, left: 20,
'background-color' : 'rgb(128, 128, 128)'

}
},
{ name : 'Mike', _id : 'id_02',

css_map : { top: 60, left: 20,
'background-color' : 'rgb(128, 255, 128)'

}
},
{ name : 'Pebbles', _id : 'id_03',

css_map : { top: 100, left: 20,
'background-color' : 'rgb(128, 192, 192)'

}
},
{ name : 'Wilma', _id : 'id_04',

css_map : { top: 140, left: 20,
'background-color' : 'rgb(192, 128, 128)'

}
}

];

mockSio = (function () {
var

on_sio, emit_sio,
send_listchange, listchange_idto,
callback_map = {};

on_sio = function (msg_type, callback) {
callback_map[msg_type] = callback;

};

emit_sio = function (msg_type, data) {
var person_map;

Listing 6.3 Update Fake to simulate join server messages—spa/js/spa.fake.js

Create peopleList to
store the mock people list
as an array of maps.
www.EBooksWorld.ir

http://www.it-ebooks.info/

.

coll
isn
br
187Build the chat object

// Respond to 'adduser' event with 'userupdate'
// callback after a 3s delay.
if (msg_type === 'adduser' && callback_map.userupdate) {

setTimeout(function () {
 person_map = {

 _id : makeFakeId(),
 name : data.name,

 css_map : data.css_map
 };
 peopleList.push(person_map);
 callback_map.userupdate([person_map]);
 }, 3000);
 }
 };

 // Try once per second to use listchange callback.
 // Stop trying after first success.
 send_listchange = function () {
 listchange_idto = setTimeout(function () {

 if (callback_map.listchange) {
 callback_map.listchange([peopleList]);
 listchange_idto = undefined;
 }

 else { send_listchange(); }
 }, 1000);

 };

 // We have to start the process ...
 send_listchange();

return { emit : emit_sio, on : on_sio };
}());

 return { mockSio : mockSio };
}());

Now that we’ve completed part of the chat object, let’s test it as we did with the peo-
ple object in chapter 5.

6.2.3 Test the chat.join method

Before we continue building our chat object, we should ensure the capabilities we
have implemented so far work as expected. First let’s load our browser document
(spa/spa.html), open the JavaScript console, and ensure that the SPA shows no
JavaScript errors. Then, using the console, we may test our methods as shown in list-
ing 6.4. Typed input is shown in bold; output is shown in italics:

// create a jQuery collection
var $t = $('<div/>');

Listing 6.4 Test spa.model.chat.join() without a UI or server

Revise the
response to

an adduser
message

(which occurs
when the user

signs in) to
push the user
definition into

the mock
people list.

Add a send_listchange function that
emulates the receipt of a listchange

message from the backend. Once per
second, this method looks for the

listchange callback (which the chat
object registers only after a user
has signed in and joined the chat

room). If the callback is
found, it is executed using the

mock peopleList as its argument, and
send_listchange stops polling.

Add this line to start the
send_listchange function

Remove the getPeopleList
method since the desired data
is now provided by the
listchange handler.

Create a jQuery
ection ($t) that
’t attached to the
owser document.
We’ll use this for

Have the $t jQuery collection
subscribe to the spa-login

event with a function that
prints “Hello!” and the list of

arguments to the console.
// Have $t subscribe to global custom events with test functionsevent testing.

www.EBooksWorld.ir

http://www.it-ebooks.info/

Ha
col

lis
wit

prin

a

er

n
hod.Tr

w

sp
 the

ou’ll
 sign-
” At
n

e
-

.

p

Confir
and an
the p
This
we ha

Less
af

spa
even

functi

lis

coll

messa

-
s
r
e
.

188 CHAPTER 6 Finish the Model and Data modules

$.gevent.subscribe($t, 'spa-login', function () {
 console.log('Hello!', arguments); });

$.gevent.subscribe($t, 'spa-listchange', function () {
 console.log('*Listchange', arguments); });

// get the current user object
var currentUser = spa.model.people.get_user();

// confirm this is not yet signed-in
currentUser.get_is_anon();
>> true

// try to join chat without being signed-in
spa.model.chat.join();
>> User must be defined before joining chat

// sign-in, wait 3s. The UI updates too!
spa.model.people.login('Fred');
>> Hello! > [jQuery.Event, Object]

// get the people collection
var peopleDb = spa.model.people.get_db();

// show the names of all people in the collection.
peopleDb().each(function(person, idx){console.log(person.name);});
>> anonymous
>> Fred

// join the chat
spa.model.chat.join();
>> true
// the spa-listchange event should fire almost immediately.
>> *Listchange > [jQuery.Event, Array[1]]

// inspect the user list again. We see the people list has
// been updated to show all online people.
var peopleDb = spa.model.people.get_db();
peopleDb().each(function(person, idx){console.log(person.name);});
>> Betty
>> Fred
>> Mike
>> Pebbles
>> Wilma

We’ve completed and tested the first installment of the chat object, where we may
sign in, join a chat, and inspect the people list. Now we want the chat object to handle
sending and receiving messages.

6.2.4 Add messaging to the chat object

Sending and receiving messages aren’t quite as simple as they seem. As FedEx will tell
you, we have to deal with logistics—the management of the transfer and receipt of the
message. We’ll need to:

ve the $t jQuery
lection subscribe

to the spa-
tchange event
h a function that
ts “*Listchange”

and the list of
rguments to the

console.

Get the current us
object from the
people object.

Confirm the user isn’t yet signed i
using the get_is_anon() mety to join the chat

ithout signing in.
Per our API

ecification, we’re
denied.

Sign in as Fred. In the user area in
top-right corner of the browser, y
see the text proceed from “Please
in” to “... processing ...” to “Fred.
the end of sign-in, the spa-logi
event will publish. This invokes th
function we subscribed to the spa
login event on the $t jQuery
collection, so we see the “Hello!”
message and the list of arguments

Get the TaffyDB
eople collection

from the
people object.

m that only Fred
onymous are in

eople collection.
makes sense, as
ven’t yet joined

the chat.

Join the
chat.

 than one second
ter join(), the
-listchange
t should publish.
This invokes the

on we subscribed
to the spa-

tchange event
on the $t jQuery
ection, and so we

see the “Hello!”
ge along with the

list of arguments.

Confirm we see a Socket.IO
style array of argument

returned. An updated use
list is the first in th

argument array

Get the updated
people list.Confirm the people list

now contains our mock
chat-party along with
our user, Fred.
■ Maintain a record of the chatee—the person with whom the user is chatting.

www.EBooksWorld.ir

http://www.it-ebooks.info/

Add
g
s

an
189Build the chat object

■ Send metadata such as the sender ID, name, and the recipient ID along with the
message.

■ Gracefully handle the condition where a latent connection might result in our
user sending a message to an offline person.

■ Publish jQuery custom global events when messages are received from the back-
end so that our jQuery collections may subscribe to these events and have func-
tions act upon them.

First let’s update our Model as shown in listing 6.5. Changes are shown in bold:

...
completeLogin = function (user_list) {

...
stateMap.people_cid_map[user_map._id] = stateMap.user;
chat.join();
$.gevent.publish('spa-login', [stateMap.user]);

};
...

people = (function () {
...
logout = function () {

var is_removed, user = stateMap.user;

chat._leave();
is_removed = removePerson(user);
stateMap.user = stateMap.anon_user;

$.gevent.publish('spa-logout', [user]);
return is_removed;

};
...

}());

// The chat object API
// -------------------
// The chat object is available at spa.model.chat.
// The chat object provides methods and events to manage
// chat messaging. Its public methods include:
// * join() - joins the chat room. This routine sets up
// the chat protocol with the backend including publishers
// for 'spa-listchange' and 'spa-updatechat' global
// custom events. If the current user is anonymous,
// join() aborts and returns false.
// * get_chatee() - return the person object with whom the user
// is chatting with. If there is no chatee, null is returned.
// * set_chatee(<person_id>) - set the chatee to the person
// identified by person_id. If the person_id does not exist
// in the people list, the chatee is set to null. If the

Listing 6.5 Add messaging to the Model--spa/js/spa.model.js

Have completeLogin
method invoke chat.join()
so a user will automatically join

the chat room once sign-in is
complete.

Have the people._logout
method invoke chat._leave()
so a user will automatically exit
the chat room once sign-out is
complete.

 the API docs for
et_chatee(),
et_chatee(),
d send_msg().
// person requested is already the chatee, it returns false.

www.EBooksWorld.ir

http://www.it-ebooks.info/

190 CHAPTER 6 Finish the Model and Data modules

// It publishes a 'spa-setchatee' global custom event.
// * send_msg(<msg_text>) - send a message to the chatee.
// It publishes a 'spa-updatechat' global custom event.
// If the user is anonymous or the chatee is null, it
// aborts and returns false.
// ...
//
// jQuery global custom events published by the object include:
// * spa-setchatee - This is published when a new chatee is
// set. A map of the form:
// { old_chatee : <old_chatee_person_object>,
// new_chatee : <new_chatee_person_object>
// }
// is provided as data.
// * spa-listchange - This is published when the list of
// online people changes in length (i.e. when a person
// joins or leaves a chat) or when their contents change
// (i.e. when a person's avatar details change).
// A subscriber to this event should get the people_db
// from the people model for the updated data.
// * spa-updatechat - This is published when a new message
// is received or sent. A map of the form:
// { dest_id : <chatee_id>,
// dest_name : <chatee_name>,
// sender_id : <sender_id>,
// msg_text : <message_content>
// }
// is provided as data.
//
chat = (function () {

var
_publish_listchange, _publish_updatechat,
_update_list, _leave_chat,

get_chatee, join_chat, send_msg, set_chatee,

chatee = null;

// Begin internal methods
_update_list = function(arg_list) {
var i, person_map, make_person_map,

people_list = arg_list[0],
is_chatee_online = false;

clearPeopleDb();

PERSON:
for (i = 0; i < people_list.length; i++) {

person_map = people_list[i];

if (! person_map.name) { continue PERSON; }

// if user defined, update css_map and skip remainder
if (stateMap.user && stateMap.user.id === person_map._id) {

stateMap.user.css_map = person_map.css_map;
continue PERSON;

}

Add the API
docs for spa-
setchatee

and spa-
updatechat

events.

Add the
is_chatee_online flag.
www.EBooksWorld.ir

http://www.it-ebooks.info/

ate-
e

ent
sage
.

191Build the chat object

make_person_map = {
cid : person_map._id,
css_map : person_map.css_map,
id : person_map._id,
name : person_map.name

};

if (chatee && chatee.id === make_person_map.id) {
 is_chatee_online = true;
}
makePerson(make_person_map);

}

stateMap.people_db.sort('name');
 // If chatee is no longer online, we unset the chatee
 // which triggers the 'spa-setchatee' global event
 if (chatee && ! is_chatee_online) { set_chatee(''); }

 };

 _publish_listchange = function (arg_list) {
 _update_list(arg_list);
 $.gevent.publish('spa-listchange', [arg_list]);
 };

 _publish_updatechat = function (arg_list) {
 var msg_map = arg_list[0];

 if (! chatee) { set_chatee(msg_map.sender_id); }
 else if (msg_map.sender_id !== stateMap.user.id
 && msg_map.sender_id !== chatee.id
) { set_chatee(msg_map.sender_id); }

 $.gevent.publish('spa-updatechat', [msg_map]);
 };
 // End internal methods

 _leave_chat = function () {
 var sio = isFakeData ? spa.fake.mockSio : spa.data.getSio();

 chatee = null;
 stateMap.is_connected = false;

 if (sio) { sio.emit('leavechat'); }
 };

 get_chatee = function () { return chatee; };

 join_chat = function () {
 var sio;

 if (stateMap.is_connected) { return false; }

 if (stateMap.user.get_is_anon()) {
 console.warn('User must be defined before joining chat');
 return false;
 }

 sio = isFakeData ? spa.fake.mockSio : spa.data.getSio();
 sio.on('listchange', _publish_listchange);
 sio.on('updatechat', _publish_updatechat);
 stateMap.is_connected = true;

Add code to set
is_chatee_online flag to

true if the chatee person object
is found in the updated user list.

Add code to set
the chatee

person object
to null if it’s

not found in
the updated

user list.

Create the
_publish_upd
chat convenienc
method. This will
publish the spa-
updatechat ev
with a map of mes
details as the data

Create the get_chatee
method to return the
chatee person object.

Bind _publish
_update chat to

handle
updatechat

messages received
from the backend.

As a result, an
spa-

updatechat
event is published

whenever a
message is

received.
www.EBooksWorld.ir

http://www.it-ebooks.info/

ge s
th
Th

t
d

hod
ee

ided
e as

nd
192 CHAPTER 6 Finish the Model and Data modules

 return true;
 };
 send_msg = function (msg_text) {

 var msg_map,
 sio = isFakeData ? spa.fake.mockSio : spa.data.getSio();

 if (! sio) { return false; }
 if (! (stateMap.user && chatee)) { return false; }

 msg_map = {
 dest_id : chatee.id,

 dest_name : chatee.name,
 sender_id : stateMap.user.id,
 msg_text : msg_text

 };

 // we published updatechat so we can show our outgoing messages
 _publish_updatechat([msg_map]);
 sio.emit('updatechat', msg_map);
 return true;
 };

 set_chatee = function (person_id) {
 var new_chatee;
 new_chatee = stateMap.people_cid_map[person_id];
 if (new_chatee) {
 if (chatee && chatee.id === new_chatee.id) {
 return false;
 }
 }
 else {
 new_chatee = null;
 }

 $.gevent.publish('spa-setchatee',
 { old_chatee : chatee, new_chatee : new_chatee }
);
 chatee = new_chatee;
 return true;
 };

 return {
 _leave : _leave_chat,
 get_chatee : get_chatee,
 join : join_chat,
 send_msg : send_msg,
 set_chatee : set_chatee
 };
}());

initModule = function () { ...
};

return {
initModule : initModule,
chat : chat,
people : people

};

Create the send_msg
method to send a text messa
and associated details.

Add code to abort
ending a message if
ere’s no connection.
e logic also aborts if

either the user or
chatee isn’t set.

Add code to construc
a map of message an
associated details.

Add code to publish
spa-updatechat

events so the user
may see their

messages in the chat
window.

Create the
set_chatee met
to change the chat
object to the one
provided. If the prov
chatee is the sam
the current one, the
code does nothing a
returns false.

Add code to
publish an spa-

setchattee event
with a map of the

old_chatee and
new_chatee as

data.

Neatly export our new public
methods: get_chatee,
send_msg, and set_chatee.
}());

www.EBooksWorld.ir

http://www.it-ebooks.info/

193Build the chat object

We’ve completed our second-pass implementation of the chat object, where we added
messaging capabilities. As before, we want to check our work before adding more
capabilities. In the next section we’ll update the Fake module to emulate the server
interaction we need.

6.2.5 Update Fake to emulate messaging

Now we need to update the Fake module so it can emulate the server responses we
need to test the messaging methods. The changes we need include:

■ Emulate the response to an outgoing updatechat message by responding with
an incoming updatechat message from the current chatee.

■ Emulate an unsolicited incoming updatechat message coming from the Wilma
person.

■ Emulate the response to an outgoing leavechat message. This message is sent
when the user signs out. We can unbind chat message callbacks at this point.

Let’s update Fake to employ these changes as shown in listing 6.6. Changes are shown
in bold:

...
mockSio = (function () {
var

on_sio, emit_sio, emit_mock_msg,
send_listchange, listchange_idto,
callback_map = {};

on_sio = function (msg_type, callback) {
callback_map[msg_type] = callback;

};

emit_sio = function (msg_type, data) {
var person_map;

// Respond to 'adduser' event with 'userupdate'
// callback after a 3s delay.
if (msg_type === 'adduser' && callback_map.userupdate) {

setTimeout(function () {
person_map = {

_id : makeFakeId(),
name : data.name,
css_map : data.css_map

};
peopleList.push(person_map);
callback_map.userupdate([person_map]);

}, 3000);
}

// Respond to 'updatechat' event with an 'updatechat'
// callback after a 2s delay. Echo back user info.
if (msg_type === 'updatechat' && callback_map.updatechat) {

Listing 6.6 Add mock messages to Fake—spa/js/spa.fake.js

Add declaration for
mock message function,
emit_mock_msg.

Create code to
respond to a
sent message
with a mock
response after a
2 second delay.
 setTimeout(function () {

www.EBooksWorld.ir

http://www.it-ebooks.info/

e

ng
194 CHAPTER 6 Finish the Model and Data modules

 var user = spa.model.people.get_user();
 callback_map.updatechat([{
 dest_id : user.id,
 dest_name : user.name,
 sender_id : data.dest_id,
 msg_text : 'Thanks for the note, ' + user.name
 }]);
 }, 2000);
}

if (msg_type === 'leavechat') {
 // reset login status
 delete callback_map.listchange;
 delete callback_map.updatechat;

 if (listchange_idto) {
 clearTimeout(listchange_idto);
 listchange_idto = undefined;
 }
 send_listchange();
}

};

emit_mock_msg = function () {
setTimeout(function () {
 var user = spa.model.people.get_user();
 if (callback_map.updatechat) {
 callback_map.updatechat([{
 dest_id : user.id,
 dest_name : user.name,
 sender_id : 'id_04',
 msg_text : 'Hi there ' + user.name + '! Wilma here.'
 }]);
 }
 else { emit_mock_msg(); }
}, 8000);

};

// Try once per second to use listchange callback.
// Stop trying after first success.
send_listchange = function () {

listchange_idto = setTimeout(function () {
if (callback_map.listchange) {

callback_map.listchange([peopleList]);
emit_mock_msg();
listchange_idto = undefined;

}
else { send_listchange(); }

}, 1000);
};

// We have to start the process ...
send_listchange();

return { emit : emit_sio, on : on_sio };
}());

return { mockSio : mockSio };

Create code to clear the callbacks
used by chat if leavechat
message is received. This means
the user has signed out.

Add code to try to send a mock
message to the signed-in user onc
every 8 seconds. This will succeed
only after a user is signed in when
the updatechat callback is set.
On success, the routine does not
call itself again and therefore no
further attempts to send a mock
message will be made.

Add the code to start tryi
to send a mock message
after the user signs in.
}());

www.EBooksWorld.ir

http://www.it-ebooks.info/

Have

co
su

to th
updat

even
funct
print

me

cha

e

Three
later a
login

publis
this invo

f
subscr

$t for th

 a

ting
 Do
8
fore
a
m

This m
returns f

becaus
haven
recipie
195Build the chat object

Now that we have the chat object and Fake updated, we can test messaging.

6.2.6 Test chat messaging

Now we can test setting the chatee, sending messages, and receiving them. Let’s load
our browser document (spa/spa.html) and open the JavaScript console and ensure
there are no errors. We can then test as shown in listing 6.7. Typed input is shown in
bold; output is shown in italics:

// create a jQuery collection
var $t = $('<div/>');

// bind functions to test global events
$.gevent.subscribe($t, 'spa-login', function(event, user) {
 console.log('Hello!', user.name); });

$.gevent.subscribe($t, 'spa-updatechat', function(event, chat_map) {
 console.log('Chat message:', chat_map);

});

$.gevent.subscribe($t, 'spa-setchatee',
function(event, chatee_map) {
console.log('Chatee change:', chatee_map);

});

$.gevent.subscribe($t, 'spa-listchange',
 function(event, changed_list) {
 console.log('*Listchange:', changed_list);

});

// sign-in, wait 3s
spa.model.people.login('Fanny');
>> Hello! Fanny
>> *Listchange: [Array[5]]

// try to send a message without setting chatee
spa.model.chat.send_msg('Hi Pebbles!');
>> false

// wait about 8 seconds for a test message to come in
>> Chatee change: Object {old_chatee: null, new_chatee: Object}
>> Chat message: Object {dest_id: "id_5", dest_name: "Fanny",
>> sender_id: "id_04", msg_text: "Hi there Fanny! Wilma here."}

Listing 6.7 Test the exchange of messages

Create a jQuery collection ($t) that isn’t
attached to the browser document. We’ll

use this for event testing. Have the $t jQuery collection
subscribe to the spa-login event
with a function that prints “Hello!”
and the user name to the console.

 the $t
jQuery

llection
bscribe
e spa-
echat
t with a
ion that
s “Chat
ssage:”
and the
t_map.

Have the $t jQuery collection subscribe
to the spa-setchatee event with a
function that prints “Chatee change:”
and the chatee_map.

Have the $t jQuery collection
subscribe to the spa-listchang
event with a function that prints
“*Listchange:” and the changed
_list.

Sign in as
Fanny.

seconds
n spa-
event is
hed and
kes the
unction
ibed on
e event. An spa-listchange event is

also published and this invokes
the function subscribed on $t
for the event.

Try to send
message
without set
a chatee.
this within
seconds, be
we receive
message fro
Wilma.

In a few seconds an spa-setchatee event
is published and this invokes the function

subscribed on $t for the event.

ethod
alse
e a we
’t set a
nt yet.
www.EBooksWorld.ir

http://www.it-ebooks.info/

This
return

on

ch
the

w
i

is

the
o
r.

se to
d an
hat

ed
 the

ibed
vent.

ee

at

es

196 CHAPTER 6 Finish the Model and Data modules

// receipt of a message sets the chatee
spa.model.chat.send_msg('What is up, tricks?');
>> Chat message: Object {dest_id: "id_04", dest_name: "Wilma",
>> sender_id: "id_5", msg_text: "What is up tricks?"}
>> true

>> Chat message: Object {dest_id: "id_5", dest_name: "Fanny",
>> sender_id: "id_04", msg_text: "Thanks for the note, Fanny"}

// Set the chatee to Pebbles
spa.model.chat.set_chatee('id_03');
>> Chatee change: Object {old_chatee: Object, new_chatee: Object}

 >> true

// Send a message
spa.model.chat.send_msg('Hi Pebbles!')
>> Chat message: Object {dest_id: "id_03", dest_name: "Pebbles",
>> sender_id: "id_5", msg_text: "Hi Pebbles!"}
>> true
>> Chat message: Object {dest_id: "id_5", dest_nam: "Fanny",
>> sender_id: "id_03", msg_text: "Thanks for the note, Fanny"}

Our chat object is nearly complete. All we need now is to add the Avatar support.
Once we have accomplished that, we’ll update the user interface.

6.3 Add Avatar support to the Model
The Avatar capability is relatively easy to add because we can build on the messaging
infrastructure of the chat object. The primary reason we present this capability is to
show other uses for near-real-time messaging. The fact that it shows well at confer-
ences is just icing on the cake. First we’ll update the Model.

6.3.1 Add Avatar support to the chat object

The changes we require for the chat object to support avatars are relatively modest.
We only need to add the update_avatar method, which will send an updateavatar
message to the backend with a map describing which avatar changed and how. We
expect the backend to send a listchange message when an avatar is updated, and the
code to handle that message is already written and tested.

 Let’s update the Model as shown in listing 6.8. Changes are shown in bold:

 method
s true
success.

Set the
atee to
person
ith ID
d_03.

Send a “What
up, tricks?”
message to the
chatee. This is
last person wh
sent to the use

An spa-updatechat event is published, which
invokes the function subscribed on $t for the event.

We see a respon
our message an
spa-updatec
event is publish
and this invokes
function subscr
on $t for the e

The spa-setchat
event is published.

The spa-
updatech
message is
published,
which invok
the function
subscribed
on $t.

Another automated
response is received.

Confirm the set_chatee method
returns true on success.

Send a “Hi Pebbles!”
message to our current
chatee, Pebbles. This method returns

true on success.
www.EBooksWorld.ir

http://www.it-ebooks.info/

Ad
197Add Avatar support to the Model

...
// If the user is anonymous or the chatee is null, it
// aborts and returns false.
// * update_avatar(<update_avtr_map>) - send the
// update_avtr_map to the backend. This results in an
// an 'spa-listchange' event which publishes the updated
// people list and avatar information (the css_map in the
// person objects). The update_avtr_map must
// have the form { person_id : person_id, css_map : css_map }
//
// jQuery global custom events published by the object include:

...
chat = (function () {

var
_publish_listchange, _publish_updatechat,
_update_list, _leave_chat,

get_chatee, join_chat, send_msg,
set_chatee, update_avatar,

chatee = null;
...

// avatar_update_map should have the form:
// { person_id : <string>, css_map : {
// top : <int>, left : <int>,
// 'background-color' : <string>
// }};
//
update_avatar = function (avatar_update_map) {
 var sio = isFakeData ? spa.fake.mockSio : spa.data.getSio();
 if (sio) {
 sio.emit('updateavatar', avatar_update_map);

 }
};

return {
_leave : _leave_chat,
get_chatee : get_chatee,
join : join_chat,
send_msg : send_msg,
set_chatee : set_chatee,
update_avatar : update_avatar

};
}());

...

We’ve completed adding all the methods and events we designed for the chat object.
In the next section we’ll update the Fake module to emulate the server interaction to
support avatars.

Listing 6.8 Update the Model to support avatars—spa/js/spa.model.js

d documentation
from our API
specification.

Declare the
update_avatar
method variable.

Create the update_avatar
method. We send an
updateavatar message to
the backend with a map as data.

Add update_avatar
to the list of exported
public methods.
www.EBooksWorld.ir

http://www.it-ebooks.info/

198 CHAPTER 6 Finish the Model and Data modules

6.3.2 Modify Fake to emulate avatars

Our next step is to modify the Fake module to support sending an updateavatar mes-
sage to the backend whenever the user drops an avatar to a new location or clicks on
the avatar to change its color. When Fake receives this message, it should:

■ Simulate sending an updateavatar message to the server.
■ Simulate receiving a listchange message from the server with an updated peo-

ple list.
■ Execute the callback registered for the listchange message, providing it the

updated people list.

These three steps can be accomplished as shown in listing 6.9. Changes are shown in
bold:

...
emit_sio = function (msg_type, data) {

var person_map, i;

...
if (msg_type === 'leavechat') {

// reset login status
delete callback_map.listchange;
delete callback_map.updatechat;

if (listchange_idto) {
clearTimeout(listchange_idto);
listchange_idto = undefined;

}
send_listchange();

}

// simulate send of 'updateavatar' message and data to server
if (msg_type === 'updateavatar' && callback_map.listchange) {
 // simulate receipt of 'listchange' message
 for (i = 0; i < peopleList.length; i++) {
 if (peopleList[i]._id === data.person_id) {
 peopleList[i].css_map = data.css_map;
 break;
 }
 }
 // execute callback for the 'listchange' message
 callback_map.listchange([peopleList]);
}

};
...

Now that we have the chat object and Fake updated, we can test avatars.

Listing 6.9 Modify Fake to support avatars—spa/js/spa.fake.js

Declare the i
loop variable.

Create a handler for receipt of an
updateavatar message.

Find the person object
specified by the data from
the updateavatar
message and change its
css_map property.

Execute the callback
registered for the
listchange message.
www.EBooksWorld.ir

http://www.it-ebooks.info/

’t
’ll

n

$

Get th
for ID

i

e
,

nge
ject.
199Add Avatar support to the Model

6.3.3 Test avatar support

This is our final bit of Model testing. Again, let’s load our browser document (spa/
spa.html) and ensure the SPA works as before. We’ll open the JavaScript console and
test our update_avatar method as shown in listing 6.10. Typed input is shown in bold;
output is shown in italics:

// create a jQuery collection
var $t = $('<div/>');

// bind functions to test global events
$.gevent.subscribe($t, 'spa-login', function(event, user) {
 console.log('Hello!', user.name); });

$.gevent.subscribe($t, 'spa-listchange',
 function(event, changed_list) {
 console.log('*Listchange:', changed_list);
});

// sign-in, wait 3s
spa.model.people.login('Jessy');
>> Hello! Jessy
>> *Listchange: [Array[5]]

// get the Pebbles person
var person = spa.model.people.get_by_cid('id_03');

// inspect avatar information
JSON.stringify(person.css_map);
>> "{"top":100,"left":20,
>> "background-color":"rgb(128, 192, 192)"}"

// update the avatar information
spa.model.chat.update_avatar({
 person_id : 'id_03', css_map : {} });
>> *Listchange: [Array[5]]

// get Pebbles again
person = spa.model.people.get_by_cid('id_03');

// and now inspect
JSON.stringify(person.css_map);
>> {}

We’ve completed the chat object. As with the people object from chapter 5, the test-
ing is reassuring, and we can add to a test suite for use without a server or browser.

6.3.4 Test-driven development

All those test-driven development (TDD) freaks out there are probably looking at all
this manual testing and thinking “Gosh, why not just put this into a test suite that can

Listing 6.10 Test the update_avatar method

Create a jQuery collection ($t) that isn
attached to the browser document. We
use this for event testing.

Have the $t
jQuery collection
subscribe to the
spa-login
event with a

function that
prints to the

console. Have the $t jQuery collectio
subscribe to the spa-
listchange event with a
function that prints
“*Listchange:” and the
changed_list.

Sign in as
Jessy.

Three seconds
later an spa-
login event is

published and
this invokes the

function
subscribed on
t for the event.

e person object
 id_03, Pebbles.

Inspect the avatar
nformation for the

Pebbles person.

An spa-listchang
event is also published
which invokes the
associated function
subscribed on $t for
the event.

Use the update_avatar method to cha
the css_map for the Pebbles person ob

Confirm the
update_avatar
method publishes an
spa-listchange
event, which invokes
the function subscribed
on $t for the event. The updated

css_map for
the Pebbles

person object.
www.EBooksWorld.ir

http://www.it-ebooks.info/

f

t.
200 CHAPTER 6 Finish the Model and Data modules

run automatically?” Being aspiring freaks ourselves, we can—and we did. Check out
appendix B to see how one can use Node.js to automate this process.

 We actually found a few issues as the result of the test suite. Most were specific to
testing, so we will leave those to the appendix. But there were two bona fide bugs we
needed to fix: our sign-out mechanism wasn’t quite right, as it wasn’t clearing the user
list properly, and the chatee object wasn’t being updated properly after an
spa.model.chat.update_avatar method call. Let’s fix both of those now as shown in
listing 6.11. Changes are shown in bold:

...
people = (function () {
...
logout = function () {

var user = stateMap.user;

chat._leave();
stateMap.user = stateMap.anon_user;
clearPeopleDb();

$.gevent.publish('spa-logout', [user]);
};
...

}());

chat = (function () {
...
// Begin internal methods
_update_list = function(arg_list) {

var i, person_map, make_person_map, person,
people_list = arg_list[0],
is_chatee_online = false;

clearPeopleDb();

PERSON:
for (i = 0; i < people_list.length; i++) {

person_map = people_list[i];

if (! person_map.name) { continue PERSON; }

// if user defined, update css_map and skip remainder
if (stateMap.user && stateMap.user.id === person_map._id) {

stateMap.user.css_map = person_map.css_map;
continue PERSON;

}

make_person_map = {
cid : person_map._id,
css_map : person_map.css_map,
id : person_map._id,
name : person_map.name

};
 person = makePerson(make_person_map);

Listing 6.11 Fix sign-out and chatee object update—spa/js/spa.model.js

Remove the
is_removed variable.

Clear the people Taffy
collection on logout.

Declare the
person object.

Assign the results o
makePerson to
the person objec
www.EBooksWorld.ir

http://www.it-ebooks.info/

201Complete the Chat feature module

 if (chatee && chatee.id === make_person_map.id) {
is_chatee_online = true;
chatee = person;

}
}

stateMap.people_db.sort('name');

// If chatee is no longer online, we unset the chatee
// which triggers the 'spa-setchatee' global event
if (chatee && ! is_chatee_online) { set_chatee(''); }

};
...

}());
...

This is a good point to take a break. In the remainder of the chapter we’ll return to the
UI and finish the Chat feature module using the chat and people object APIs provided
by the Model. We’ll also create an Avatar feature module.

6.4 Complete the Chat feature module
In this section we’ll update the Chat feature module shown in figure 6.3. We can now
take advantage of the Model’s chat and people objects to provide a simulated chat
experience. Let’s revisit the Chat UI we mocked up earlier and decide how to modify
it to work with the chat object. Figure 6.4 shows what we’d like to accomplish. We can
distill this mockup into a list of capabilities that we’d like to add to the Chat feature
module. These include:

■ Change the design of the chat slider to include the people list.
■ When the user signs in, perform the following actions: join the chat, open the

chat slider, change the chat slider title, and display the list of online people.

If we find the chatee, update
it to the new person object.
Figure 6.3 The Chat feature module in our SPA architecture

www.EBooksWorld.ir

http://www.it-ebooks.info/

202 CHAPTER 6 Finish the Model and Data modules

■ Update the online people list whenever it changes.
■ Highlight the chatee in the online people list and update the display whenever

the list changes.
■ Empower the user to send a message and select a chatee from the online peo-

ple list.
■ Display messages from the user, other people, and the system in the message

log. These messages should all look different, and the message log should scroll
smoothly from the bottom up.

■ Revise the interface to support touch controls.
■ When the user signs out, perform the following actions: change the title of the

chat slider, erase the message log, and retract the slider.

Let’s start by updating the JavaScript.

6.4.1 Update the Chat JavaScript

We need to update the Chat JavaScript to add the capabilities we just discussed. The
primary changes include:

■ Revise the HTML template to include the people list.
■ Create the scrollChat, writeChat, writeAlert, and clearChat methods to

manage the message log.
■ Create user input event handlers, onTapList and onSubmitMsg, to allow the

user to select a chatee from the people list and send a message. Ensure that
touch events are supported.

■ Create the onSetchatee method to handle the Model-published spa-setchatee
event. This will change the display of the chatee, change the chat slider title, and
provide a system alert in the message window.

■ Create the onListchange method to handle the Model-published spa-

listchange event. This will render the people list with the chatee highlighted.
■ Create the onUpdatechat method to handle the Model-published spa-update-

chat event. This will display new messages sent by the user, the server, or other

Use different colors for
alerts, our posts, and
incoming messages.

User may select a
person from list to chat.
The highlighted person

is always the chatee.

Show an updated list
of online people.

Set the title to
show with whom
we are chatting.

Figure 6.4 What we want in the Chat UI
people.

www.EBooksWorld.ir

http://www.it-ebooks.info/

203Complete the Chat feature module

■ Create the onLogin and onLogout methods to handle the Model-published
spa-login and spa-logout events. The onLogin handler will open the chat
slider when a user signs in. The onLogout handler will clear the message log,
reset the title, and close the chat slider.

■ Subscribe to all Model-published events and then bind all user input events.

Let’s update the JavaScript file as shown in listing 6.12. Changes are shown in bold:

...
/*global $, spa */

spa.chat = (function () {
 'use strict';

//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var

configMap = {
main_html : String()

+ '<div class="spa-chat">'
+ '<div class="spa-chat-head">'

+ '<div class="spa-chat-head-toggle">+</div>'
+ '<div class="spa-chat-head-title">'

+ 'Chat'
+ '</div>'

+ '</div>'
+ '<div class="spa-chat-closer">x</div>'
+ '<div class="spa-chat-sizer">'
 + '<div class="spa-chat-list">'
 + '<div class="spa-chat-list-box"></div>'
 + '</div>'
 + '<div class="spa-chat-msg">'
 + '<div class="spa-chat-msg-log"></div>'
 + '<div class="spa-chat-msg-in">'

Listing 6.12 Update the Chat JavaScript file—spa/js/spa.chat.js

About those event handler names
We know some of you out there are thinking “Is there a reason why the method name
onSetchatee isn’t onSetChatee?” Well, there is.

Our naming convention for event handlers is on<Event>[<Modifier>], where the
Modifier is an option. This usually works great, as most events are single syllables.
Examples include onTap or onTapAvatar. This convention is handy so we can trace
the handler precisely to the event that it’s handling.

Like all conventions, there are edge cases that can get confusing. In the case of on-
Listchange, for example, we’ve followed our convention: the event name is
listchange, not listChange. Thus onListchange is correct, whereas onListChange
is not. The same holds true for onSetchatee and onUpdatechat.

Removed getComputedStyle from
the global symbol list. This was used by
getEmSize, which has been moved to

our browser utilities module.

Add the use
strict pragma.

Update the
slider template

to include the
people list and

other
refinements.
 + '<form class="spa-chat-msg-form">'

www.EBooksWorld.ir

http://www.it-ebooks.info/

(s
204 CHAPTER 6 Finish the Model and Data modules

 + '<input type="text"/>'
 + '<input type="submit" style="display:none"/>'
 + '<div class="spa-chat-msg-send">'
 + 'send'
 + '</div>'
 + '</form>'
 + '</div>'

+ '</div>'
+ '</div>'

+ '</div>',
...
slider_closed_em : 2,
slider_opened_title : 'Tap to close',
slider_closed_title : 'Tap to open',
slider_opened_min_em : 10,
...

},
...
setJqueryMap, setPxSizes, scrollChat,
writeChat, writeAlert, clearChat,
setSliderPosition,
onTapToggle, onSubmitMsg, onTapList,
onSetchatee, onUpdatechat, onListchange,
onLogin, onLogout,
configModule, initModule,
removeSlider, handleResize;

//----------------- END MODULE SCOPE VARIABLES ---------------

 //------------------- BEGIN UTILITY METHODS ------------------
 //-------------------- END UTILITY METHODS -------------------

//--------------------- BEGIN DOM METHODS --------------------
// Begin DOM method /setJqueryMap/
setJqueryMap = function () {
var

$append_target = stateMap.$append_target,
$slider = $append_target.find('.spa-chat');

jqueryMap = {
$slider : $slider,
$head : $slider.find('.spa-chat-head'),
$toggle : $slider.find('.spa-chat-head-toggle'),
$title : $slider.find('.spa-chat-head-title'),
$sizer : $slider.find('.spa-chat-sizer'),
$list_box : $slider.find('.spa-chat-list-box'),
$msg_log : $slider.find('.spa-chat-msg-log'),
$msg_in : $slider.find('.spa-chat-msg-in'),
$input : $slider.find('.spa-chat-msg-in input[type=text]'),
$send : $slider.find('.spa-chat-msg-send'),
$form : $slider.find('.spa-chat-msg-form'),
$window : $(window)

};
};
// End DOM method /setJqueryMap/

// Begin DOM method /setPxSizes/

Change the click
to tap so that
those with touch
devices understand.

Declare the new
methods to handle
user and Model
events.

Remove the
getEmSize

method, as it’s now
available from our

browser utilities
pa.util_b.js)

Update
the jQuery

collection cache
for the modified

chat slider.
setPxSizes = function () {

www.EBooksWorld.ir

http://www.it-ebooks.info/

t
u

n

at
ge
er,
 to
ut.
205Complete the Chat feature module

var px_per_em, window_height_em, opened_height_em;

px_per_em = spa.util_b.getEmSize(jqueryMap.$slider.get(0));
window_height_em = Math.floor(
(jqueryMap.$window.height() / px_per_em) + 0.5

);
...

}
...
// Begin public method /setSliderPosition/
...
setSliderPosition = function (position_type, callback) {

var
height_px, animate_time, slider_title, toggle_text;

// position type of 'opened' is not allowed for anon user;
// therefore we simply return false; the shell will fix the
// uri and try again.
if (position_type === 'opened'
 && configMap.people_model.get_user().get_is_anon()
){ return false; }

// return true if slider already in requested position
if (stateMap.position_type === position_type){
 if (position_type === 'opened') {
 jqueryMap.$input.focus();
 }
return true;

}

// prepare animate parameters
switch (position_type){
case 'opened' :

...
 jqueryMap.$input.focus();
break;
...

}
...

};
// End public DOM method /setSliderPosition/

 // Begin private DOM methods to manage chat message
 scrollChat = function() {

var $msg_log = jqueryMap.$msg_log;
$msg_log.animate(
 { scrollTop : $msg_log.prop('scrollHeight')
 - $msg_log.height()
 },
 150
);

 };

 writeChat = function (person_name, text, is_user) {
 var msg_class = is_user

 ? 'spa-chat-msg-log-me' : 'spa-chat-msg-log-msg';

Use
getEmSize

from the
browser utilities.

Get the jQuery collection
for the window from the

jqueryMap cache.

Add code to refuse
o open the slider if
ser is anonymous.
The Shell callback

will adjust the URI
accordingly.

Add code to
focus on the

input box when
the slider is

opened.

Begin the sectio
for all DOM
methods used to
manipulate the
message log.

Create the
scrollChat

method to
provide smooth
scrolling of the
message log as

text appears.

Create the writeCh
method to append to the messa

log. If the originator is the us
use a different style. Be sure

encode the HTML outp
 jqueryMap.$msg_log.append(

www.EBooksWorld.ir

http://www.it-ebooks.info/

P
h

p

er-
the
ge.

m

206 CHAPTER 6 Finish the Model and Data modules

 '<div class="' + msg_class + '">'
 + spa.util_b.encodeHtml(person_name) + ': '
 + spa.util_b.encodeHtml(text) + '</div>'
);

 scrollChat();

 };

 writeAlert = function (alert_text) {
 jqueryMap.$msg_log.append(

 '<div class="spa-chat-msg-log-alert">'
 + spa.util_b.encodeHtml(alert_text)
 + '</div>'

);
 scrollChat();

 };

 clearChat = function () { jqueryMap.$msg_log.empty(); };
 // End private DOM methods to manage chat message
//---------------------- END DOM METHODS ---------------------

//------------------- BEGIN EVENT HANDLERS -------------------
onTapToggle = function (event) {
...

};

 onSubmitMsg = function (event) {
 var msg_text = jqueryMap.$input.val();
 if (msg_text.trim() === '') { return false; }
 configMap.chat_model.send_msg(msg_text);

 jqueryMap.$input.focus();
 jqueryMap.$send.addClass('spa-x-select');

 setTimeout(
 function () { jqueryMap.$send.removeClass('spa-x-select'); },

 250
);
 return false;

 };

 onTapList = function (event) {
 var $tapped = $(event.elem_target), chatee_id;
 if (! $tapped.hasClass('spa-chat-list-name')) { return false; }

 chatee_id = $tapped.attr('data-id');
 if (! chatee_id) { return false; }

 configMap.chat_model.set_chatee(chatee_id);
 return false;

 };

 onSetchatee = function (event, arg_map) {
 var
 new_chatee = arg_map.new_chatee,
 old_chatee = arg_map.old_chatee;

 jqueryMap.$input.focus();
 if (! new_chatee) {

Create the
writeAlert method
to append system alerts
to the message log. Be
sure to encode the
HTML output.

Create the
clearChat

method to clear
the message log.

End the section for all
DOM methods used to

manipulate the
message log.

lace user event
andlers at the

top of this
section and

lace the Model
event handlers
at the bottom.

Rename onClickToggle
event handler to
onTapToggle.

Create the onSubmitMsg event handler for a us
generated event when submitting a message to send. Use
model.chat.send_msg method to send the messa

Create the
onTapList

handler for a user-
generated event

when they click or
tap on a person

name. Use the
odel.chat.set
_chatee method

to set the chatee.
Create the onSetchatee
event handler for the Model-
published event spa-
setchatee. This handler
selects the new chatee and
deselects the old one. It also
changes the chat slider title
and notifies the user that the
chatee has changed.
 if (old_chatee) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

t

s
g

u

207Complete the Chat feature module

 writeAlert(old_chatee.name + ' has left the chat');
 }
 else {

 writeAlert('Your friend has left the chat');
 }
 jqueryMap.$title.text('Chat');
 return false;
 }

 jqueryMap.$list_box
 .find('.spa-chat-list-name')
 .removeClass('spa-x-select')
 .end()

 .find('[data-id=' + arg_map.new_chatee.id + ']')
 .addClass('spa-x-select');

 writeAlert('Now chatting with ' + arg_map.new_chatee.name);
 jqueryMap.$title.text('Chat with ' + arg_map.new_chatee.name);
 return true;

 };

 onListchange = function (event) {
 var
 vlist_html = String(),
 people_db = configMap.people_model.get_db(),
 chatee = configMap.chat_model.get_chatee();

 people_db().each(function (person, idx) {
 var select_class = '';

 if (person.get_is_anon() || person.get_is_user()
) { return true;}

 if (chatee && chatee.id === person.id) {
 select_class=' spa-x-select';
 }
 list_html

 += '<div class="spa-chat-list-name'
 + select_class + '" data-id="' + person.id + '">'
 + spa.util_b.encodeHtml(person.name) + '</div>';

 });

 if (! list_html) {
 list_html = String()

 + '<div class="spa-chat-list-note">'
 + 'To chat alone is the fate of all great souls...

'
 + 'No one is online'

 + '</div>';
 clearChat();
 }
 // jqueryMap.$list_box.html(list_html);
 jqueryMap.$list_box.html(list_html);

 };

 onUpdatechat = function (event, msg_map) {
 var
 is_user,

Create the
onListchange
event handler for the
Model-published even
spa-listchange.
This handler gets the
current people
collection and render
the people list, makin
sure the chatee is
highlighted if defined.

Create the
onUpdatechat

event handler
 for the Model-

published
event spa-

pdatechat. This
handler updates the

display of the
message log. If the

originator of the
message is the user,

it clears the input
area and refocus. It
also sets the chatee
to the sender of the

message.
 sender_id = msg_map.sender_id,

www.EBooksWorld.ir

http://www.it-ebooks.info/

i

208 CHAPTER 6 Finish the Model and Data modules

 msg_text = msg_map.msg_text,
 chatee = configMap.chat_model.get_chatee() || {},
 sender = configMap.people_model.get_by_cid(sender_id);

 if (! sender) {
 writeAlert(msg_text);
 return false;
 }

 is_user = sender.get_is_user();

 if (! (is_user || sender_id === chatee.id)) {
 configMap.chat_model.set_chatee(sender_id);
 }

 writeChat(sender.name, msg_text, is_user);

 if (is_user) {
 jqueryMap.$input.val('');
 jqueryMap.$input.focus();
 }

 };

 onLogin = function (event, login_user) {
 configMap.set_chat_anchor('opened');

 };

 onLogout = function (event, logout_user) {
 configMap.set_chat_anchor('closed');
 jqueryMap.$title.text('Chat');

 clearChat();
 };

//-------------------- END EVENT HANDLERS -------------------
...

initModule = function ($append_target) {
 var $list_box;

 // load chat slider html and jquery cache
stateMap.$append_target = $append_target;
$append_target.append(configMap.main_html);
setJqueryMap();
setPxSizes();

// initialize chat slider to default title and state
jqueryMap.$toggle.prop('title', configMap.slider_closed_title);
stateMap.position_type = 'closed';

 // Have $list_box subscribe to jQuery global events
 $list_box = jqueryMap.$list_box;
 $.gevent.subscribe($list_box, 'spa-listchange', onListchange);
 $.gevent.subscribe($list_box, 'spa-setchatee', onSetchatee);
 $.gevent.subscribe($list_box, 'spa-updatechat', onUpdatechat);
 $.gevent.subscribe($list_box, 'spa-login', onLogin);
 $.gevent.subscribe($list_box, 'spa-logout', onLogout);

 // bind user input events
 jqueryMap.$head.bind('utap', onTapToggle);
 jqueryMap.$list_box.bind('utap', onTapList);

Create the onLogin
event handler for the
Model-published event
spa-login. This handler
opens the chat slider.

Create the
onLogout

event handler
for the Model-

published event
spa-logout.

This handler
clears the chat
slider message
log, resets the

chat slider title,
and closes the

chat slider.

Modify initModule
to append the updated
slider template to the
container specified by
the caller.

Subscribe to all
Model-published

events first.

Bind all user
nput events next.

Binding before
subscribing could

result in a race
condition
 jqueryMap.$send.bind('utap', onSubmitMsg);

www.EBooksWorld.ir

http://www.it-ebooks.info/

209Complete the Chat feature module

 jqueryMap.$form.bind('submit', onSubmitMsg);
};
// End public method /initModule/
...

Now that we have the JavaScript in place, let’s revise the stylesheets to match.

6.4.2 Update the stylesheets

We now will update the stylesheets for our enhanced interface. First we wish to update
our root stylesheet to prevent selection of text on most elements. This removes an
annoying user experience that’s especially noticeable on touch devices. The update is
shown in listing 6.13. Changes are shown in bold:

...
/** Begin reset */

...
h1,h2,h3,h4,h5,h6,p { margin-bottom : 6pt; }
ol,ul,dl { list-style-position : inside;}

* {
-webkit-user-select : none;
 -khtml-user-select : none;

Listing 6.13 Update the root stylesheet—spa/css/spa.css

Template systems and you
Our SPA uses simple string concatenation to generate HTML, which is perfectly ac-
ceptable for our purposes. But there comes a time when we require more sophisti-
cated HTML generation. That’s when it’s time to consider a template system.

Template systems convert data into display elements. We can divide template sys-
tems broadly by the language the developer uses to direct element generation. The
Embedded style allows us to embed the host language—in our case, JavaScript—
directly in the template. The Toolkit style provides a domain-specific template lan-
guage (DSL) independent of the host language.

We don’t recommend use of any Embedded style systems because they make it far
too easy to intermingle business logic with display logic. The most popular JavaScript
Embedded style system is probably provided by underscore.js’s template method, but
there are many others.

We’ve noticed that Toolkit style systems in other languages have tended to become
preferred over time. This is probably because these systems tend to encourage clean
segregation of display and business logic. Many good Toolkit style template systems
are available for SPAs. At the time of this writing, popular and well-tested Toolkit style
template systems include Handlebars, Dust, and Mustache. We feel they’re all worthy
of your consideration.

Add a selector that prevents text
selection for all elements. We really
look forward to the day when we can
drop all these vendor prefixes like -moz
or -ms or -webkit. This change
would be one-sixth the size if we could!
 -moz-user-select : -moz-none;

www.EBooksWorld.ir

http://www.it-ebooks.info/

210 CHAPTER 6 Finish the Model and Data modules

 -o-user-select : none;
 -ms-user-select : none;
 user-select : none;

 -webkit-user-drag : none;
 -moz-user-drag : none;
 user-drag : none;

 -webkit-tap-highlight-color : transparent;
 -webkit-touch-callout : none;

}

input, textarea, .spa-x-user-select {
 -webkit-user-select : text;
 -khtml-user-select : text;
 -moz-user-select : text;
 -o-user-select : text;
 -ms-user-select : text;
 user-select : text;

}

/** End reset */
...

We now need to update our Chat stylesheet. The primary changes include:

■ Style an online people list to be shown on the left side of the slider.
■ Make the slider wider to accommodate the people list.
■ Style the message window.
■ Remove all spa-chat-box* and spa-chat-msgs* selectors.
■ Add styles for messages received from the user, the chatee, and the system.

These updates are shown in listing 6.14. Changes are shown in bold:

...

.spa-chat {
...
right : 0;
width : 32em;
height : 2em;
...

}
...
.spa-chat-sizer {

position : absolute;
top : 2em;
left : 0;
right : 0;

}
.spa-chat-list {
 position : absolute;
 top : 0;
 left : 0;

Listing 6.14 Update the Chat stylesheet—spa/css/spa.chat.css

Add a selector that makes an
exception for input fields, text
areas, or any element that has an
spa-x-user-select class.

Make the chat slider class
10em wider to accommodate
the people list.

Create a class to style
the people list container
on the left one-third of
the chat slider.
 bottom : 0;

www.EBooksWorld.ir

http://www.it-ebooks.info/

211Complete the Chat feature module

 width : 10em;
}

.spa-chat-msg {
 position : absolute;
 top : 0;
 left : 10em;
 bottom : 0;
 right : 0;

}

.spa-chat-msg-log,

.spa-chat-list-box {
 position : absolute;
 top : 1em;
 overflow-x : hidden;

}

.spa-chat-msg-log {
 left : 0em;
 right : 1em;
 bottom : 4em;
 padding : 0.5em;
 border : thin solid #888;
 overflow-y : scroll;

}

.spa-chat-msg-log-msg {
 background-color : #eee;

}

.spa-chat-msg-log-me {
 font-weight : 800;
 color : #484;

}

.spa-chat-msg-log-alert {
 font-style : italic;
 background : #a88;
 color : #fff;

}

.spa-chat-list-box {
 left : 1em;
 right : 1em;
 bottom : 1em;
 overflow-y : auto;
 border-width : thin 0 thin thin;
 border-style : solid;
 border-color : #888;
 background-color : #888;
 color : #ddd;
 border-radius : 0.5em 0 0 0;

}

.spa-chat-list-name, .spa-chat-list-note {
 width : 100%;

Create a class to style
the message container
on the right two-thirds
of the chat slider.

Create common rules to
style both the message
log container and the
people list container.

Add rules to style
the message log
container.

Create a class to style
normal messages.

Create a class to
style messages
sent by the user.

Create a class to style
system-alert messages.

Add rules to the style-
people-list container.

Create common rules to
style both a person name
and a single notification
shown in the people list.
 padding : 0.1em 0.5em;

www.EBooksWorld.ir

http://www.it-ebooks.info/

212 CHAPTER 6 Finish the Model and Data modules

}

.spa-chat-list-name {
 cursor : pointer;

}

 .spa-chat-list-name:hover {
 background-color : #aaa;
 color : #888;
 }

 .spa-chat-list-name.spa-x-select {
 background-color : #fff;
 color : #444;
 }

.spa-chat-msg-in {
 position : absolute;
 height : 2em;
 left : 0em;
 right : 1em;
 bottom : 1em;
 border : thin solid #888;
 background : #888;

}

.spa-chat-msg-in input[type=text] {
 position : absolute;
 width : 75%;
 height : 100%;
 line-height : 100%;
 padding : 0 0.5em;
 border : 0;
 background : #ddd;
 color : #666;

}

 .spa-chat-msg-in input[type=text]:focus {
 background : #ff8;
 color : #222;
 }

.spa-chat-msg-send {
 position : absolute;
 top : 0;
 right : 0;
 width : 25%;
 height : 100%;
 line-height : 1.9em;
 text-align : center;
 color : #fff;
 font-weight : 800;
 cursor : pointer;

}

 .spa-chat-msg-send:hover,
 .spa-chat-msg-send.spa-x-select {

Add rules to style a
person name shown
in the people list.

Create a class to style
the user input area.

Create a selector to style
the input field within the
the user input area.

Create a dependent
selector that turns the
input field background
yellow when it is in focus.

Create a class to style
the send button.
 background : #444;

www.EBooksWorld.ir

http://www.it-ebooks.info/

213Complete the Chat feature module

 color : #ff0;
 }

.spa-chat-head:hover .spa-chat-head-toggle {
background : #aaa;

}

Now with our stylesheet in place, let’s see how well our updated Chat UI works.

6.4.3 Test the Chat UI

When we load our browser document (spa/spa.html), we should now see a page with
“Please sign in” in the user area on the upper-right. When we click on this, we can sign
in as before. The user area will present “... processing ...” for 3 seconds, and then show
the user name in the user area. At that time, the chat slider should open and the inter-
face should look like that shown in Figure 6.5.

After a few seconds, we’ll receive our first message from Wilma. We can respond, and
then select Pebbles and send her a message. The chat interface should look similar to
figure 6.6.

Figure 6.5 Our up-
dated chat interface
after sign-in
Figure 6.6 The chat
slider after a bit of use

www.EBooksWorld.ir

http://www.it-ebooks.info/

214 CHAPTER 6 Finish the Model and Data modules

We have now used the Model’s chat and people APIs to provide all the capabilities we
want in our Chat feature module. Now we’d like to add the Avatar feature module.

6.5 Create the Avatar feature module
In this section we create the Avatar feature module as shown in figure 6.7.

The chat object already provides for managing avatar information. We just need to
decide on some details. Let’s revisit the Avatar UI as shown in figure 6.8.

 Each online person has an avatar that’s shaped like a box with a thick border and
with their name displayed in the center. The avatar that represents the user should
have a blue border. The avatar for the chatee should have a green border. When we

Figure 6.7 The Avatar feature module in our SPA architecture
Figure 6.8 Avatars as we’d like them presented

www.EBooksWorld.ir

http://www.it-ebooks.info/

.

215Create the Avatar feature module

tap or click on an avatar, it should change color. After a long press or touch on an ava-
tar, its appearance should change and we should be able to drag it to a new location.

 We will develop our Avatar module using the typical process for feature modules:

■ Create a JavaScript file for the feature module using an isolated namespace.
■ Create the stylesheet file for the feature module with classes prefixed by the

namespace.
■ Update the browser document to include the new JavaScript and stylesheet

files.
■ Adjust the Shell to configure and initialize the new module.

We’ll follow these steps in the following sections.

6.5.1 Create the Avatar JavaScript

Our first step in adding the Avatar feature module is to create the JavaScript file. Since
the module uses many of the same events as the Chat module, we can copy spa/js/
spa.chat.js to spa/js/spa.avtr.js and then adjust accordingly. Listing 6.15 is our freshly
minted feature module file. Because this is so similar to Chat, we don’t offer an in-
depth discussion. But the interesting parts have been annotated:

/*
* spa.avtr.js
* Avatar feature module

*/

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa */

spa.avtr = (function () {
'use strict';
//---------------- BEGIN MODULE SCOPE VARIABLES --------------
var
configMap = {

chat_model : null,
people_model : null,

settable_map : {
chat_model : true,
people_model : true

}
},

stateMap = {
drag_map : null,

Listing 6.15 Create the Avatar JavaScript—spa/js/spa.avtr.js

Employ the use
strict pragma

Declare configuration properties for
the people and chat objects.

Declare state properties to
allow us to track a dragged
$drag_target : null, avatar between event handlers.

www.EBooksWorld.ir

http://www.it-ebooks.info/

d

.

ich
 the
ent
ent
tar.
ent.

v
s is

ing
216 CHAPTER 6 Finish the Model and Data modules

drag_bg_color: undefined
},

jqueryMap = {},

getRandRgb,
setJqueryMap,
updateAvatar,
onTapNav, onHeldstartNav,
onHeldmoveNav, onHeldendNav,
onSetchatee, onListchange,
onLogout,
configModule, initModule;

//----------------- END MODULE SCOPE VARIABLES ---------------

//------------------- BEGIN UTILITY METHODS ------------------
getRandRgb = function (){
var i, rgb_list = [];
for (i = 0; i < 3; i++){

rgb_list.push(Math.floor(Math.random() * 128) + 128);
}
return 'rgb(' + rgb_list.join(',') + ')';

};
//-------------------- END UTILITY METHODS -------------------

//--------------------- BEGIN DOM METHODS --------------------
setJqueryMap = function ($container) {
jqueryMap = { $container : $container };

};

updateAvatar = function ($target){
var css_map, person_id;

css_map = {
top : parseInt($target.css('top'), 10),
left : parseInt($target.css('left'), 10),
'background-color' : $target.css('background-color')

};
person_id = $target.attr('data-id');

configMap.chat_model.update_avatar({
person_id : person_id, css_map : css_map

});
};
//---------------------- END DOM METHODS ---------------------

//------------------- BEGIN EVENT HANDLERS -------------------
onTapNav = function (event){
var css_map,

$target = $(event.elem_target).closest('.spa-avtr-box');

if ($target.length === 0){ return false; }
$target.css({ 'background-color' : getRandRgb() });
updateAvatar($target);

};

onHeldstartNav = function (event){
var offset_target_map, offset_nav_map,

Create a utility to
generate a random

RGB color string.

Create the updateAvatar method to rea
the css values from the provided $target
avatar, and then invoke the
model.chat.update_avatar method

Create the onTapNav event handler, wh
is triggered when a user clicks or taps on

navigation area. This handler uses ev
delegation, as it only reacts if the elem

beneath the tap target is an ava
Otherwise, it ignores the ev

Create the
OnHeldstartNa
event handler. Thi
triggered when the
user starts a dragg
motion in the
navigation area.
$target = $(event.elem_target).closest('.spa-avtr-box');

www.EBooksWorld.ir

http://www.it-ebooks.info/

er

es

217Create the Avatar feature module

if ($target.length === 0){ return false; }

stateMap.$drag_target = $target;
offset_target_map = $target.offset();
offset_nav_map = jqueryMap.$container.offset();

offset_target_map.top -= offset_nav_map.top;
offset_target_map.left -= offset_nav_map.left;

stateMap.drag_map = offset_target_map;
stateMap.drag_bg_color = $target.css('background-color');

$target
.addClass('spa-x-is-drag')
.css('background-color','');

};

onHeldmoveNav = function (event){
var drag_map = stateMap.drag_map;
if (! drag_map){ return false; }

drag_map.top += event.px_delta_y;
drag_map.left += event.px_delta_x;

stateMap.$drag_target.css({
top : drag_map.top, left : drag_map.left

});
};

onHeldendNav = function (event) {
var $drag_target = stateMap.$drag_target;
if (! $drag_target){ return false; }

$drag_target
.removeClass('spa-x-is-drag')
.css('background-color',stateMap.drag_bg_color);

stateMap.drag_bg_color= undefined;
stateMap.$drag_target = null;
stateMap.drag_map = null;
updateAvatar($drag_target);

};

onSetchatee = function (event, arg_map) {
var

$nav = $(this),
new_chatee = arg_map.new_chatee,
old_chatee = arg_map.old_chatee;

// Use this to highlight avatar of user in nav area
// See new_chatee.name, old_chatee.name, etc.

// remove highlight from old_chatee avatar here
if (old_chatee){

$nav
.find('.spa-avtr-box[data-id=' + old_chatee.cid + ']')
.removeClass('spa-x-is-chatee');

}

// add highlight to new_chatee avatar here

Create the onHeldmoveNav event
handler, which is triggered when the
user is in the process of dragging an
avatar. This is executed frequently, so
calculations are kept to a minimum.

Create the onHeldendNav event
handler. This is triggered when the us
releases an avatar after a drag. The
handler returns the dragged avatar
back to its original color. It then invok
the updateAvatar method to read
the avatar details and invoke the
model.chat.update_avatar
(<update_map>) method.

Create the onSetchatee event
handler. This is invoked when the Model
publishes an spa-setchatee event.
In this module, we set the outline of the
chatee avatar to green.
if (new_chatee){

www.EBooksWorld.ir

http://www.it-ebooks.info/

218 CHAPTER 6 Finish the Model and Data modules

$nav
.find('.spa-avtr-box[data-id=' + new_chatee.cid + ']')
.addClass('spa-x-is-chatee');

}
};

onListchange = function (event){
var

$nav = $(this),
people_db = configMap.people_model.get_db(),
user = configMap.people_model.get_user(),
chatee = configMap.chat_model.get_chatee() || {},
$box;

$nav.empty();
// if the user is logged out, do not render
if (user.get_is_anon()){ return false;}

people_db().each(function (person, idx){
var class_list;
if (person.get_is_anon()){ return true; }
class_list = ['spa-avtr-box'];

if (person.id === chatee.id){
class_list.push('spa-x-is-chatee');

}
if (person.get_is_user()){

class_list.push('spa-x-is-user');
}

$box = $('<div/>')
.addClass(class_list.join(' '))
.css(person.css_map)
.attr('data-id', String(person.id))
.prop('title', spa.util_b.encodeHtml(person.name))
.text(person.name)
.appendTo($nav);

});
};

onLogout = function (){
jqueryMap.$container.empty();

};
//-------------------- END EVENT HANDLERS --------------------

//------------------- BEGIN PUBLIC METHODS -------------------
// Begin public method /configModule/
// Example : spa.avtr.configModule({...});
// Purpose : Configure the module prior to initialization,
// values we do not expect to change during a user session.
// Action :
// The internal configuration data structure (configMap)
// is updated with provided arguments. No other actions
// are taken.
// Returns : none
// Throws : JavaScript error object and stack trace on
// unacceptable or missing arguments

Create the onListchange event handler.
This is invoked when the Model publishes an
spa-listchange event. In this module,
we redraw the avatars.

Create the onLogout event handler. This is invoked
when the Model publishes an spa-logout event.
In this module, we remove all avatars.
//

www.EBooksWorld.ir

http://www.it-ebooks.info/

219Create the Avatar feature module

configModule = function (input_map) {
spa.util.setConfigMap({

input_map : input_map,
settable_map : configMap.settable_map,
config_map : configMap

});
return true;

};
// End public method /configModule/

// Begin public method /initModule/
// Example : spa.avtr.initModule($container);
// Purpose : Directs the module to begin offering its feature
// Arguments : $container - container to use
// Action : Provides avatar interface for chat users
// Returns : none
// Throws : none
//
initModule = function ($container) {
setJqueryMap($container);

// bind model global events
$.gevent.subscribe($container, 'spa-setchatee', onSetchatee);
$.gevent.subscribe($container, 'spa-listchange', onListchange);
$.gevent.subscribe($container, 'spa-logout', onLogout);

// bind actions
$container

.bind('utap', onTapNav)

.bind('uheldstart', onHeldstartNav)

.bind('uheldmove', onHeldmoveNav)

.bind('uheldend', onHeldendNav);

return true;
};
// End public method /initModule/

// return public methods
return {
configModule : configModule,
initModule : initModule

};
//------------------- END PUBLIC METHODS ---------------------

}());

Now that we have the JavaScript portion of the module complete, we can create the
associated stylesheet.

6.5.2 Create the Avatar stylesheet

Our Avatar module draws boxes to graphically represent a user. We can define a sin-
gle class (spa-avtr-box) to style the box. This class can then be modified to high-
light the user (spa-x-is-user), highlight the chatee (spa-x-is-chatee), or
highlight a box that’s being dragged (spa-x-is-drag). These selectors are shown in
listing 6.16:

Create the code to
bind Model-published
events first.

Create the code to bind browser
events next. Doing this before the
Model events could result in a
race condition.
www.EBooksWorld.ir

http://www.it-ebooks.info/

220 CHAPTER 6 Finish the Model and Data modules

/*
* spa.avtr.css
* Avatar feature styles

*/

.spa-avtr-box {
position : absolute;
width : 62px;
padding : 0 4px;
height : 40px;
line-height : 32px;
border : 4px solid #aaa;
cursor : pointer;
text-align : left;
overflow : hidden;
text-overflow : ellipsis;
border-radius : 4px;
text-align : center;

}
.spa-avtr-box.spa-x-is-user {
border-color : #44f;

}

.spa-avtr-box.spa-x-is-chatee {
border-color : #080;

}
.spa-avtr-box.spa-x-is-drag {
cursor : move;
color : #fff;
background-color : #000;
border-color : #800;

}

With the module files complete, we now need to adjust two additional files: the Shell
and the browser document.

6.5.3 Update the Shell and the browser document

If we want to use the newly created feature module, we need to update the Shell to
configure and initialize it, as shown in listing 6.17:

...
initModule = function ($container) {
...
// configure and initialize feature modules
spa.chat.configModule({

set_chat_anchor : setChatAnchor,
chat_model : spa.model.chat,

Listing 6.16 Create the Avatar stylesheet—spa/css/spa.avtr.css

Listing 6.17 Update the Shell to configure and initialize Avatar—spa/js/spa.shell.js

Create the class used
to style the avatars.

Add a text-overflow:
ellipsis rule to elegantly
truncate long text. We have to set
the overflow:hidden rule as
well or this won’t work.

Create a derived selector to style
the avatar that represents the user.

Create a derived selector
to style the avatar that
represents the chatee.

Create a derived selector
to style an avatar that is
being moved by the user.
people_model : spa.model.people

www.EBooksWorld.ir

http://www.it-ebooks.info/

221Create the Avatar feature module

});
spa.chat.initModule(jqueryMap.$container);

spa.avtr.configModule({
chat_model : spa.model.chat,

 people_model : spa.model.people
});
spa.avtr.initModule(jqueryMap.$nav);

// Handle URI anchor change events.
...

};
...

The last step when creating a feature module is to update the browser document to
include the JavaScript and stylesheet files. This step was already accomplished in chap-
ter 5, but for the sake of completeness, the changes are shown again in listing 6.18:

...
<!-- our stylesheets -->
<link rel="stylesheet" href="css/spa.css" type="text/css"/>
<link rel="stylesheet" href="css/spa.shell.css" type="text/css"/>
<link rel="stylesheet" href="css/spa.chat.css" type="text/css"/>
<link rel="stylesheet" href="css/spa.avtr.css" type="text/css"/>

...
<!-- our javascript -->

...
<script src="js/spa.shell.js" ></script>
<script src="js/spa.chat.js" ></script>
<script src="js/spa.avtr.js" ></script>

...

The creation and integration of the Avatar feature module is complete. Now let’s test
it out.

6.5.4 Test the Avatar feature module

When we load our browser document (spa/spa.html), we should see a page with
“Please sign in” in the user area on the upper-right. When we click on this, we can sign
in as before. Once the chat slider opens, we should see an interface that looks like fig-
ure 6.9.

 We can now drag the avatars around (they all start in the top-left corner) by hold-
dragging them. A tap on an avatar will result in a color change. After a little tapping
and dragging, we should see the interface look something like figure 6.10. The user
avatar has a blue border, the chatee has a green border, and any avatar that is being
dragged has a black-white-red color scheme:

 We’ve implemented all the features we discussed at the beginning of this chapter.
Now let’s look at how we accomplished one facet of our work that is a popular topic
these days—data binding.

Listing 6.18 Update the browser document for avatars—spa/spa.html

First configure the
feature module . . .

. . . then
initialize it.
www.EBooksWorld.ir

http://www.it-ebooks.info/

222 CHAPTER 6 Finish the Model and Data modules

6.6 Data binding and jQuery
Data binding is a mechanism to ensure that when Model data changes, the interface is
changed to reflect it; and, conversely, when the user changes the interface, the Model
data is updated accordingly. This is nothing new—if you’ve ever worked on a UI
you’ve implemented data binding as a matter of course.

 We implemented data binding in this chapter using jQuery methods. When the
Model data changes in our SPA, we publish jQuery global custom events. Our jQuery
collections subscribe to specific custom global events and invoke functions to update
their presentation when the events occur. And when the users modify data on-screen,
they trigger event handlers that invoke methods to update the Model. It’s simple and
provides a good deal of flexibility in how and when the data and presentation are

Figure 6.9
Avatars shown af-
ter sign-in

Figure 6.10
Avatars at play
www.EBooksWorld.ir

http://www.it-ebooks.info/

223Create the Data module

updated. Data binding using jQuery isn’t hard, and it isn’t mysteriously magical
either—which is a good thing.

Now let’s finish the client portion of the SPA by adding the Data module and making a
few minor tweaks.

6.7 Create the Data module
In this section we create the Data module as shown in figure 6.11.

 This will prepare the client to use “real” data and services from the server instead of
our Fake module. The application will not work after we have completed this section, as
the required server capabilities aren’t yet in place. That will come in chapters 7 and 8.

Beware SPA “framework” libraries bearing gifts
Some SPA “framework” libraries promise “automatic two-way data binding” which
certainly sounds good. But we’ve learned a few points of caution about such promis-
es in spite of the impressive canned demos:

■ We’ll need to learn the language of the library—its API and terminology to make
it do the things a well-groomed presenter can do. This can be a significant
investment.

■ The library author often has a vision of how an SPA is supposed to be struc-
tured. If our SPA doesn’t meet that vision, retrofitting can get expensive.

■ Libraries can be big, buggy, and offer another layer of complexity where things
can go wrong.

■ The library’s data binding may often not meet our SPA requirements.

Let’s focus on that last point. Perhaps we’d like a user to be able to edit a row in a
table, and when finished, either accept the entire row or cancel (in which case the
row should revert back to old values). And, when the user is done editing rows, we’d
like to have the user accept or cancel the entire edited table. And only then would we
even consider saving the table to the backend.

The probability of a framework library supporting this kind of reasonable interaction
“out-of-the-box” is low. So if we go with a library, we’ll need to create a custom over-
ride method to circumvent the default behavior. If we have to do that just a few times,
we can easily end up with more code, more layers, more files, and more complexity
than if we’d written the damn thing ourselves in the first place.

After a few well-intended attempts, we’ve learned to approach framework libraries
with caution. We’ve found they can add complexity to an SPA rather than making de-
velopment better, faster, or easier to understand. That doesn’t mean we should nev-
er use framework libraries—they have their place. But our example SPAs (and quite
a few in production) work fine with just jQuery, some plugins, and a few specialized
tools like TaffyDb. Often, simpler is better.
www.EBooksWorld.ir

http://www.it-ebooks.info/

224 CHAPTER 6 Finish the Model and Data modules

We’ll need to add the Socket.IO library to the list of libraries we load, as this will be
our message transport mechanism. This is accomplished as shown in listing 6.19.
Changes are shown in bold:

...
<!-- third-party javascript -->
<script src="socket.io/socket.io.js" ></script>
<script src="js/jq/taffydb-2.6.2.js" ></script>

...

We wish to ensure that the Data module is initialized prior to the Model or the Shell,
as shown in listing 6.20. Changes are shown in bold:

...
var spa = (function () {

'use strict';
var initModule = function ($container) {
spa.data.initModule();
spa.model.initModule();
spa.shell.initModule($container);

};

return { initModule: initModule };
}());

Next we update the Data module as shown in listing 6.21. This module manages all
the connections to the server in our architecture, and all data communicated between
the client and server flows through this module. All that this module does may not be

Listing 6.19 Include the Socket.IO library in the browser document—spa/spa.html

Listing 6.20 Initialize Data in the root namespace module—spa/js/spa.js

Figure 6.11 The Data model in our SPA architecture

Ensure Data is
initialized before the
Model and the Shell.
www.EBooksWorld.ir

http://www.it-ebooks.info/

hod,

ect.

s
s

.

225Create the Data module

clear at present, but don’t worry—we’ll cover Socket.IO in further detail in the next
chapter. Changes are shown in bold:

...
/*global $, io, spa */

spa.data = (function () {
'use strict';

 var
 stateMap = { sio : null },
 makeSio, getSio, initModule;

 makeSio = function (){
 var socket = io.connect('/chat');

 return {
 emit : function (event_name, data) {
 socket.emit(event_name, data);

 },
 on : function (event_name, callback) {
 socket.on(event_name, function (){

 callback(arguments);
 });
 }

 };
 };

 getSio = function (){
 if (! stateMap.sio) { stateMap.sio = makeSio(); }
 return stateMap.sio;

 };

 initModule = function (){};

 return {
 getSio : getSio,
 initModule : initModule

 };
}());

Our final step in preparation to use server data is to tell the Model to stop using fake
data, as shown in listing 6.22. Changes are shown in bold:

...
spa.model = (function () {

'use strict';
var
configMap = { anon_id : 'a0' },
stateMap = {

...
},
isFakeData = false,

Listing 6.21 Update the Data module—spa/js/spa.data.js

Listing 6.22 Update the Model to use “real” data—spa/js/spa.model.js

Create the socket
connection using the
/chat namespace.

Write the code
to return our

methods for an
sio object

Ensure the emit method
sends data associated
with a given event name
to the server.Ensure the on method

registers a callback for
a given event name. Any

event data received
from the server will be

passed back to the
callback.

Create a getSio met
which tries to always
return a valid sio obj

Create an initModule method. Thi
doesn’t do anything yet, but we alway
want to ensure it’s available and that
our root namespace module (spa/
js/spa.js) invokes it before the
initialization of the Model or the Shell

Neatly
export all

public data
methods.
...

www.EBooksWorld.ir

http://www.it-ebooks.info/

226 CHAPTER 6 Finish the Model and Data modules

After this last change, when we load our browser document (spa/spa.html) we’ll find
our SPA won’t function as before, and we’ll see errors in the console. If we want to con-
tinue development without the server, we can easily “flip the switch” and revert the
isFakeData assignment to true.1 Now we’re ready to add the server to our SPA.

6.8 Summary
In this chapter we concluded our work on the Model. We methodically designed,
specified, developed, and tested the chat object. As in chapter 5, we used mock data
from a Fake module to speed development. We then updated the Chat feature mod-
ule to use the chat and people object APIs provided by the Model. We also created the
Avatar feature module, which also used the same APIs. We then discussed data binding
using jQuery. Finally, we added a Data module that will communicate with the Node.js
server using Socket.IO. In chapter 8 we’ll set up the server to work with the Data mod-
ule. In the next chapter, we’ll get familiar with Node.js.
1 Our browser may complain about not being able to find the Socket.IO library, but this should be harmless.

www.EBooksWorld.ir

http://www.it-ebooks.info/

Part 3

The SPA server

When a user navigates through a traditional website, the server burns lots of
processing power to generate and send page after page of content to the browser.
The SPA server is quite different. Most of the business logic—and all of the HTML
templating and presentation logic—is moved to the client. The server remains
important, but it becomes leaner and more focused on services like persistent
data storage, data validation, user authentication, and data synchronization.

 Historically, web developers had to spend a good deal of time developing logic
to transform one data format to another, much like shoveling dirt from one giant,
musty dirt pile to another—and just about as productive. Web developers have
also had to master many different languages and toolkits. A traditional website
stack might require detailed knowledge of SQL, Apache2, mod_rewrite,
mod_perl2, Perl, DBI, HTML, CSS, and JavaScript. Learning all these languages
and switching between them is expensive and annoying. Even worse, if we need to
move some logic from one part of the application to the other, we get to rewrite
it in a completely different language. In part 3 we learn:

■ The fundamentals of Node.js and MongoDB
■ How to stop wasting server cycles on data transformations and instead use

the JSON data format throughout the SPA stack
■ How to build an HTTP server application and interact with the database

using only one language—JavaScript
■ The challenges of SPA deployment and how we can resolve them

We use JSON and JavaScript end-to-end in our stack. This eliminates the overhead
of data transformations. And it significantly reduces the number of languages and
development environments we need to master. The result is a better product

that’s significantly less expensive to develop, deliver, and maintain.

www.EBooksWorld.ir

http://www.it-ebooks.info/

www.EBooksWorld.ir

http://www.it-ebooks.info/

The web server
This chapter discusses the logic and code a server needs to support an SPA. It also
provides a good introduction to Node.js. If after reading this chapter you’re really
excited and want to build out a fully production-ready application using Node.js,
we suggest checking out the book Node.js in Action (Manning 2013).

7.1 The role of the server
An SPA moves much of the business logic found on the server in a traditional web-
site to the browser. But we still need some server Ying to match the browser client
Yang. There are areas where the web server must be involved to achieve a desired

This chapter covers
■ The role of the web server when supporting an SPA
■ Using JavaScript as the web server language with Node.js
■ Using Connect middleware
■ Using the Express framework
■ Configuring Express to support an SPA architecture
■ Routing and CRUD
■ Messaging using Socket.IO and why we care
229

effect—for example, security—or where the server is better suited to the task than

www.EBooksWorld.ir

http://www.it-ebooks.info/

230 CHAPTER 7 The web server

the client. The most common responsibilities of an SPA web server include authentica-
tion and authorization, data validation, and data storage and synchronization.

7.1.1 Authentication and authorization

Authentication is the process of making sure that someone is who they say they are. The
server is needed because we should never rely solely on data provided from the client.
If authentication was handled solely on the client side, a malicious hacker could
reverse-engineer the authentication mechanism and create the necessary credentials
to impersonate a user and steal their account. Authentication is often initiated by the
user entering a user name and password.

 Increasingly, developers are turning to third-party authentication services, such as
those provided by Facebook or Yahoo. When authenticating with a third party, the
user is required to provide credentials—typically a username and password—for the
third-party service. If, for example, we use Facebook authentication, the user will be
expected to provide the username and password for their Facebook account to the
Facebook server. The third-party server then communicates with our server to
authenticate the user. The advantage to users is they can reuse a username and pass-
word they’ve already memorized. The advantage to developers is they get to out-
source most of the tedious details of implementation and get access to the third
party’s user population.

Authorization is the processes of ensuring that only people and systems that are sup-
posed to have access to data are able to receive it. This can be accomplished by tying
permissions to a user, so that when the user signs in there’s a record of what they’re
permitted to see. It’s important that authorization be handled on the server so that no
unauthorized data is ever sent to the client. Otherwise, our malicious hacker could
again reverse-engineer our application and access sensitive information they’re not
supposed to see. A side benefit of authorization is that because it only sends data that
a user is authorized to see, it minimizes the amount of data sent to the client, poten-
tially making the transaction much quicker.

7.1.2 Validation

Validation is a quality control process, ensuring that only accurate and reasonable
data can be saved. Validation helps prevent errors from being saved and propagated
to other users or systems. For example, an airline might validate that when a user
selects a flight date for purchasing a ticket, they’re selecting a date in the future that
has available seats. Without this validation, the airline could overbook flights, book
seats on flights that don’t exist, or book seats on flights that have already departed.

 It’s important that validation occur on both the client side and the server: it should
be implemented on the client for a speedy response, and it should be validated on the
server because it should never trust code from the client to be valid. All sorts of issues
could result in the server receiving invalid data:
www.EBooksWorld.ir

http://www.it-ebooks.info/

231Node.js

■ A programming error could damage or omit client validation from the SPA.
■ A different client may lack validation—web server applications often have mul-

tiple clients accessing the same server.
■ A once-valid option could become invalid by the time the data is submitted (say,

the seat was booked by someone else just after the user clicked Submit).
■ Our malicious hacker might again appear and attempt to hijack or break the

site by stuffing our data store with corrupt data.

The classic example of improper server validation is the SQL-injection attacks which
have embarrassed many notable organizations that really should have known better.
We don’t want to join that club, do we?

7.1.3 Preservation and synchronization of data

Although an SPA can save data in the client, that data is transitory and is easily modi-
fied or deleted outside of control of the SPA. In most cases, the client should be used
only for temporary storage, with the server being responsible for long-term storage.

 Data may also need to be synchronized between multiple clients, like when a per-
son’s online status needs to be shared with everyone who’s viewing their home page.
The simplest way to accomplish this is to have the client send the status to the server,
have the server save it, and then broadcast the status to all authenticated clients. Syn-
chronizing may also be used with transient data; for example, when we use a chat server
to dispatch messages to an authenticated client: though the server doesn’t store the
data, it has the critical task of routing the messages to the correct authenticated clients.

7.2 Node.js
Node.js is a platform that uses JavaScript as its control language. When we use it as an
HTTP server, it’s philosophically similar to Twisted, Tornado, or mod_perl. Many other
popular web server platforms, in contrast, are split into two components: the HTTP
server and the application process container. Examples include Apache/PHP, Passen-
ger/Ruby, or Tomcat/Java.

 Writing the HTTP server and application together enables us to easily complete
some tasks that are difficult on platforms with separate HTTP and application compo-
nents. If, for example, we want to write our logs to an in-memory database, we can do
so without having to worry about where the HTTP server stops and the application
server begins.

7.2.1 Why Node.js?

We’ve selected Node.js as our server platform because it has capabilities that make it a
great choice for a modern SPA:

■ The server is the application. The result is not having to worry about setting up
and interfacing with a separate application server. Everything is controlled in
one place, by one process.
www.EBooksWorld.ir

http://www.it-ebooks.info/

232 CHAPTER 7 The web server

■ The server application language is JavaScript, meaning we can eliminate the
cognitive load of writing the server application in one language and the SPA in
another. It also means we can share code between the client and server, which
has many advantages. For example, we might use the same data validation
libraries on both the SPA and the server.

■ Node.js is non-blocking and event-driven. In a nutshell, this means a single
Node.js instance on modest hardware can handle tens or hundreds of thou-
sands of concurrent open connections, such as those used in real-time messag-
ing, which is often a highly desired feature of modern SPAs.

■ Node.js is fast, well supported, and has a rapidly growing body of modules and
developers.

Node.js handles network requests differently than most other server platforms. Most
HTTP servers maintain a pool of processes or threads that are kept ready to service
incoming requests. Node.js, in contrast, only has one event queue that processes each
incoming request as it happens, and even splits up the processing of parts of an
incoming request into separate events in the main event queue. What this means in
practice is that Node.js doesn’t tend to wait around for a long event to finish before
processing other events. If a particular database query is taking a long time, Node.js
goes right on processing other events. When the database query does finish, an event
is placed in the queue so that the controlling routine may use the results.

 Without further ado, let’s get into Node.js and see how to create a web server appli-
cation with it.

7.2.2 Create ‘Hello World’ using Node.js

Let’s go to the Node.js site (http://nodejs.org/#download) and download and install
Node.js. There are many ways to download and install it; the simplest, if you’re not famil-
iar with the command line, is probably to use the installer for your operating system.

 The Node Package Manager, npm, is installed along with Node.js. It is similar to
Perl’s CPAN, Ruby’s gem, or Python’s pip. On our command, it downloads and installs
packages, resolving dependencies along the way. It’s much easier than manually doing
this ourselves. Now that we have Node.js and npm installed, let’s create our first server.
The Node.js website (http://nodejs.org) has an example of a simple Node web server,
so we’ll use that. Let’s create a directory called webapp and make it our working direc-
tory. Then we can create a file in it called app.js with the code in listing 7.1:

/*
* app.js - Hello World

*/

/*jslint node : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,

Listing 7.1 Create a simple node server application—webapp/app.js
regexp : true, sloppy : true, vars : false,

www.EBooksWorld.ir

http://nodejs.org/#download
http://nodejs.org
http://www.it-ebooks.info/

233Node.js

white : true
*/
/*global */

var http, server;

http = require('http');
server = http.createServer(function (request, response) {

response.writeHead(200, { 'Content-Type': 'text/plain' });
response.end('Hello World');

}).listen(3000);

console.log('Listening on port %d', server.address().port);

Open a terminal, navigate to the directory where we saved our app.js file, and start the
server with the following command:

node app.js

You should see Listening on port 3000. When we open a web browser (on the same
computer) and go to http://localhost:3000, we should see Hello World appear in
the browser. Wow, that was simple! A server in only seven lines of code. I don’t know
how you feel right about now, but I was delighted to have a web server application
written and running in minutes. Now let’s walk through what the code means.

 Our first section is our standard heading with JSLint settings. It allows us to validate
our server JavaScript just like we do with our client:

/*
* app.js - Hello World

*/

/*jslint node : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global */

The next line declares the module-scope variable we will be using:

var http, server;

The next line tells Node.js to include the http module for use in this server applica-
tion. It’s similar to using HTML script tags to include JavaScript files for use by the
browser. The http module is a core Node.js module used to create an HTTP server,
and we store the module in the variable http:

http = require('http');

Next we use the http.createServer method to create an HTTP server. We provide it
an anonymous function that will be called whenever the Node.js server receives a
request event. The function receives a request object and a response object as argu-
ments. The request object is the HTTP request sent by the client:
server = http.createServer(function (request, response) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

234 CHAPTER 7 The web server

Inside our anonymous function, we begin defining the response to the HTTP request.
The next line creates the HTTP headers using the response argument. We provide a 200
HTTP response code to indicate success, and we provide an anonymous object with the
property Content-Type and the value text/plain. This tells the browser what sort of
content to expect in the message:

response.writeHead(200, { 'Content-Type': 'text/plain' });

The next line uses the response.end method to send the string 'Hello World' to the
client and let Node.js know that we’re done with this response:

response.end('Hello World');

We then close the anonymous function and the call to the createServer method. The
code then chains a call to the listen method on the http object. The listen method
instructs the http object to listen on port 3000:

}).listen(3000);

Our last line prints to the console when this server application is started. We are able
to use an attribute from the server object we created earlier to report the port that is
being used:

console.log('Listening on port %d', server.address().port);

We’ve used Node.js to create a very basic server. It’s worth spending some time playing
around with the request and response arguments passed to the anonymous function
in the http.createServer method. Let’s start by logging the request argument in
listing 7.2. The new line is shown in bold:

/*
 * app.js - Basic logging
*/
...
var http, server;

http = require('http');
server = http.createServer(function (request, response) {

console.log(request);
response.writeHead(200, { 'Content-Type': 'text/plain' });
response.end('Hello World');

}).listen(3000);

console.log('Listening on port %d', server.address().port);

When we restart the web application, we’ll see the object logged, shown in list-
ing 7.3, in the terminal where the Node.js application is running. Don’t worry too
much about the structure of the object right now; we’ll go over the parts we need to
know later.

Listing 7.2 Add simple logging to a node server application—webapp/app.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

235Node.js

{ output: [],
outputEncodings: [],
writable: true,
_last: false,
chunkedEncoding: false,
shouldKeepAlive: true,
useChunkedEncodingByDefault: true,
sendDate: true,
_hasBody: true,
_trailer: '',
finished: false,

... // down another 100 or so lines of code

Some notable properties of the request object include:

■ ondata—A method that gets called when the server starts receiving data from
the client, for example when POST variables are set. This is a substantially differ-
ent method of getting arguments from the client than most frameworks. We’ll
abstract this away so that the full list of parameters is available in a variable.

■ headers—All of the headers from the request.
■ url—The page that was requested without the host. For example, http://

www.singlepagewebapp.com/test will have a url of /test.
■ method—The method used to make the request: GET or POST.

Armed with the knowledge of these attributes, we can start to write a rudimentary
router in listing 7.4. Changes are shown in bold:

/*
 * app.js - Basic routing
*/
...
var http, server;

http = require('http');
server = http.createServer(function (request, response) {
 var response_text = request.url === '/test'
 ? 'you have hit the test page'
 : 'Hello World';

response.writeHead(200, { 'Content-Type': 'text/plain' });
response.end(response_text);

}).listen(3000);

console.log('Listening on port %d', server.address().port);

We could continue to write our own router, and for simple applications that is a rea-
sonable choice. We have larger aspirations for our server application, however, and
we’d like to use a framework that the Node.js community has developed and tested.

Listing 7.3 The request object

Listing 7.4 Add simple routing to a node server application—webapp/app.js

Check the request
object for the URL of
the requesting page.
The first framework we will consider is Connect.

www.EBooksWorld.ir

http://www.it-ebooks.info/

236 CHAPTER 7 The web server

7.2.3 Install and use Connect

Connect is an extensible middleware framework that adds capabilities like basic authen-
tication, session management, static file serving, and form handling to a Node.js web
server. It’s not the only framework available, but it’s simple and relatively standard.
Connect allows us to inject middleware functions between the receipt of a request and
the final response. Generally, a middleware function takes an incoming request, per-
forms some actions on it, and then hands the request to the next middleware function
or ends the response using the response.end method.

 The best way to become familiar with Connect and the middleware pattern is to
use it. Let’s ensure webapp is our working directory, and install connect. Type the fol-
lowing at the command line:

npm install connect

This will create a folder called node_modules and install the Connect framework
inside of it. The node_modules directory is the folder that all of the modules for your
Node.js application go in. npm will install modules in this directory, and when we write
our own modules, this is where they’ll go. We can modify our server application as
shown in listing 7.5. Changes are shown in bold:

/*
* app.js - Simple connect server

*/
...
var
 connectHello, server,
 http = require('http'),
 connect = require('connect'),
 app = connect(),
 bodyText = 'Hello Connect';

connectHello = function (request, response, next) {
 response.setHeader('content-length', bodyText.length);
 response.end(bodyText);
};

app.use(connectHello);
server = http.createServer(app);

server.listen(3000);
console.log('Listening on port %d', server.address().port);

This Connect server behaves very much like our first node server in the previous sec-
tion. We define our first middleware function, connectHello, and then tell the Con-
nect object, app, to use this method as its one and only middleware function. Since
the connectHello function invokes the response.end method, it concludes the server
response. Let’s build on this by adding more middleware.

Listing 7.5 Modify the node server application to use Connect—webapp/app.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

237Node.js

7.2.4 Add Connect middleware

Let’s say that we want to log every time someone accesses a page. We do that using a
built-in middleware function that Connect provides. Listing 7.6 shows the addition of
the connect.logger() middleware function. Changes are shown in bold:

/*
 * app.js - Simple connect server with logging
*/
...
var

connectHello, server,
http = require('http'),
connect = require('connect'),

app = connect(),
bodyText = 'Hello Connect';

connectHello = function (request, response, next) {
response.setHeader('content-length', bodyText.length);
response.end(bodyText);

};

app
.use(connect.logger())
.use(connectHello);

server = http.createServer(app);

server.listen(3000);
console.log('Listening on port %d', server.address().port);

All we did was add connect.logger() as middleware before our connectHello mid-
dleware. Now every time a client issues an HTTP request to the server application, the
first middleware function that gets invoked is connect.logger(), which prints out log
information to the console. The next middleware function that gets called is the one
we defined, connectHello, which, as before, sends Hello Connect to the client and
ends the response. When we point our browser to http://localhost:3000, we should
see something like the following in the Node.js console log:

Listening on port 3000
127.0.0.1 - - [Wed, 01 May 2013 19:27:12 GMT] "GET / HTTP/1.1" 200 \
13 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.31 \
(KHTML, like Gecko) Chrome/26.0.1410.63 Safari/537.31"

Even though Connect is a higher-level abstraction than Node.js, we would like even
more capability. It’s time to upgrade to Express.

7.2.5 Install and use Express

Express is a lightweight web framework designed after Sinatra, a lightweight Ruby web
framework. In an SPA we don’t need to take full advantage of every feature that
Express offers, but it does provide a richer feature set than Connect—in fact, it is built

Listing 7.6 Add logging to a node server application using Connect—webapp/app.js
on top of Connect.

www.EBooksWorld.ir

http://www.it-ebooks.info/

238 CHAPTER 7 The web server

 Let’s ensure webapp is our working directory and install Express. Instead of using
the command line like we did with Connect, we’ll use a manifest file called pack-
age.json to tell npm what modules and versions our application needs to run correctly.
This comes in handy when installing the application on a remote server or when
someone downloads and installs our application on their machine. Let’s create pack-
age.json to install Express as shown in listing 7.7:

{
"name" : "SPA",
"version" : "0.0.3",
"private" : true,
"dependencies" : {
"express" : "3.2.x"

}
}

The name attribute is the name of our application; it can be whatever we want it to be.
The version attribute is the version of your application, and it should use a major,
minor, and patch version scheme (<major>.<minor>.<patch>). Setting the private
attribute to true tells npm not to publish your application. Finally, the dependencies
attribute describes the modules and versions we want npm to install. In this case we
only have one module, express. Let’s first remove the existing webapp/
node_modules directory and then use npm to install Express:

npm install

When adding new modules with the npm command, we can use the --save option to
automatically update package.json to contain the new module. This is handy during
development. Notice also how we specified the version we wanted for Express as
"3.2.x" which means we want Express version 3.2, with the latest patch. This is a rec-
ommended version declaration, as patches rarely break APIs but instead fix bugs or
help ensure backward capability.

 Now let’s edit app.js to use Express. We’ll be a little stricter in this implementation
by using the 'use strict' pragma and putting in a few section delimiters, as shown in
listing 7.8. Changes are shown in bold:

/*
* app.js - Simple express server

*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 http = require('http'),
 express = require('express'),

Listing 7.7 Create a manifest for npm install—webapp/package.json

Listing 7.8 Create a node server application using Express—webapp/app.js
 app = express(),

www.EBooksWorld.ir

http://www.it-ebooks.info/

239Node.js

 server = http.createServer(app);
// ------------- END MODULE SCOPE VARIABLES ---------------

// ------------- BEGIN SERVER CONFIGURATION ---------------
app.get('/', function (request, response) {
 response.send('Hello Express');
});
// -------------- END SERVER CONFIGURATION ----------------

// ----------------- BEGIN START SERVER -------------------
server.listen(3000);
console.log(
 'Express server listening on port %d in %s mode',
 server.address().port, app.settings.env
);
// ------------------ END START SERVER --------------------

When looking at this small example, it might not be immediately apparent why
Express is simpler to use, so let’s walk through the lines and see. First, we load the
express and http modules (shown in bold):

// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 http = require('http'),
 express = require('express'),

app = express(),
server = http.createServer(app);

// ------------- END MODULE SCOPE VARIABLES ---------------

We then create an app object using express. This object has methods for setting the
routes and other properties of the application. We also create the HTTP server
object, which we will use later (shown in bold):

// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var

http = require('http'),
express = require('express'),

 app = express(),
 server = http.createServer(app);
// ------------- END MODULE SCOPE VARIABLES ---------------

Next we define the routing for our application by using the app.get method:

// ------------- BEGIN SERVER CONFIGURATION ---------------
app.get('/', function (request, response) {

response.send('Hello Express');
});
// -------------- END SERVER CONFIGURATION ----------------

Express makes routing in Node.js simple thanks to a rich set of methods like get. The
first argument to app.get is a pattern to compare with the request URL. For example,
if a browser on our development box makes a request to http://localhost:3000 or

http://localhost:3000/, the GET request string will be '/' which matches the pattern.

www.EBooksWorld.ir

http://www.it-ebooks.info/

240 CHAPTER 7 The web server

The second argument is a callback function that’s executed when a match occurs. The
request and response objects are arguments provided to the callback function.
Query string parameters can be found in request.params.

 Our third and final section starts the server and logs to the console:

// ----------------- BEGIN START SERVER -------------------
server.listen(3000);
console.log(

'Express server listening on port %d in %s mode',
server.address().port, app.settings.env

);

Now that we have a working Express application, let’s add some middleware.

7.2.6 Add Express middleware

Since Express is built on top of Connect, we can also call and pass along middleware
using similar syntax. Let’s add the logging middleware for our app, as shown in 7.9.
The changes are shown in bold.

/*
* app.js - Simple express server with logging

*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
app.use(express.logger());
app.get('/', function (request, response) {
 response.send('Hello Express');
});
// -------------- END SERVER CONFIGURATION ----------------

Express provides all of the Connect middleware methods so that we don’t have to
require Connect in the page. Running the preceding code will result in the app log-
ging requests to the console, just like connect.logger did in the last section.

 We can organize our middleware using the Express app.configure method, as in
listing 7.10. Changes are shown in bold.

/*
* app.js - Express server with middleware

*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
app.configure(function () {
 app.use(express.logger());
 app.use(express.bodyParser());
 app.use(express.methodOverride());
});
app.get('/', function (request, response) {

Listing 7.9 Add Express logging middleware to our application—webapp/app.js

Listing 7.10 Use configure to organize our Express middleware—webapp/app.js
 response.send('Hello Express');

www.EBooksWorld.ir

http://www.it-ebooks.info/

241Node.js

});
// -------------- END SERVER CONFIGURATION ----------------
...

This configuration adds two new middleware methods: bodyParser and methodOver-
ride. bodyParser decodes forms and will be used extensively later. methodOverride is
used for creating RESTful services. The configure method also lets us change our con-
figuration depending on the Node.js environment in which the application is running.

7.2.7 Use environments with Express

Express supports the concept of switching configurations based on an environment
setting. Example environments include development, testing, staging, and produc-
tion. Express can determine which environment is being used by reading the
NODE_ENV environment variable and will then respond by setting its configuration
accordingly. If you’re using Windows, you would start the server application like this:

SET NODE_ENV=production node app.js

Using a Mac or Linux, set it like this:

NODE_ENV=production node app.js

If you’re using something else, we have every confidence that you can figure it out.
 We can use any string for an environment name when we run an Express server

application. If no NODE_ENV variable is set, it uses development by default.
 Let’s adjust our application to adjust itself to the environment being provided. We

want to use the bodyParser and methodOverride middleware in every environment.
In the development environment we would like the application to log HTTP requests
and detailed errors. In the production environment we only want to log error summa-
ries, as shown in listing 7.11. Changes are shown in bold:

...
// ------------- BEGIN SERVER CONFIGURATION ---------------
app.configure(function () {
 app.use(express.bodyParser());
 app.use(express.methodOverride());
});

app.configure('development', function () {
 app.use(express.logger());
 app.use(express.errorHandler({
 dumpExceptions : true,
 showStack : true
 }));
});

app.configure('production', function () {
 app.use(express.errorHandler());
});

Listing 7.11 Support different environments with Express—webapp/app.js

Add bodyParser and
methodOverride middleware
to every environment.

For the development environment,
add the logger and configure the
errorHandler method to dump
exceptions and show the stack trace.

For the production environment, add
the errorHandler middleware
using the default options.
app.get('/', function (request, response) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

242 CHAPTER 7 The web server

 response.send('Hello Express');
});
// -------------- END SERVER CONFIGURATION ----------------
...

We can test these configurations by running the application in development mode
(node app.js) and loading the page in a browser. You should see the log output in the
Node.js console. Next, we can stop the server and run it in production mode
(NODE_ENV=production node app.js). When we reload the page in the browser, there
should be no entry in the log.

 Now that we have a good understanding of some of the fundamentals of Node.js,
Connect, and Express, let’s move on to more advanced routing methods.

7.2.8 Serving static files with Express

As you might expect, serving static files with Express requires adding a bit of middleware
and a little redirection. Let’s copy the contents of the spa directory from chapter 6 into
a public directory as shown in listing 7.12.

webapp
 +-- app.js
 +-- node_modules/...
 +-- package.json
 `-- public # contents of 'spa' copied here
 +-- css/...
 +-- js/...
 `-- spa.html

Now we can adjust the application to serve the static files, as shown in listing 7.13.
Changes are shown in bold.

/*
* app.js - Express server static files

*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
app.configure(function () {
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(express.static(__dirname + '/public'));
 app.use(app.router);
});

app.configure('development', function () {
 app.use(express.logger());
 app.use(express.errorHandler({
 dumpExceptions : true,
 showStack : true
 }));

Listing 7.12 Add the public directory for static files

Listing 7.13 Serve static files with Express—webapp/app.js

Define the root directory for static files as
<current_directory>/public.

Add the router middleware
after the static files.
});

www.EBooksWorld.ir

http://www.it-ebooks.info/

243Advanced routing

app.configure('production', function () {
 app.use(express.errorHandler());
});

app.get('/', function (request, response) {
 response.redirect('/spa.html');
});
// -------------- END SERVER CONFIGURATION ----------------
...

Now when we run the application (node app.js) and point our browser to http://
localhost:3000, we should see our SPA as we left it in chapter 6. We can’t sign in yet,
though, as the backend isn’t ready for that yet.

 Now that we have a good feel for Express middleware, let’s look at advanced rout-
ing, which we will need for web data services.

7.3 Advanced routing
Until now, all our application has done is provide a route for the root of the web appli-
cation and returned some text to the browser. In this section we’ll:

■ Use the Express framework to provide CRUD routes for managing user objects.
■ Set response properties, such as content type, for all routes used for CRUD.
■ Make the code generic so that it works for all CRUD routes.
■ Place the routing logic into a separate module.

7.3.1 User CRUD routes

CRUD operations (Create, Read, Update, Delete) are the major operations often required
for persistent storage of data. Wikipedia has a great in-depth discussion if you need a
refresher or are hearing about CRUD for the first time. One common design pattern
in web applications used to implement CRUD is known as REST, or Representational State
Transfer. REST uses strict and well-defined semantics to define what the verbs GET, POST,
PUT, PATCH, and DELETE do. If you know and love REST, by all means feel free to imple-
ment it; it’s a perfectly valid method of exchanging data between distributed systems,
and Node.js even has many modules intended to help out with that.

 We’ve implement basic CRUD routes for our user object and have opted not to
implement REST in this example for a few reasons. One challenge is that many brows-
ers have yet to implement native REST verbs, so PUT, PATCH, and DELETE are often
implemented by passing extra form parameters or a header in a POST. This means a
developer can’t easily tell what verb is being used in a request, but instead must hunt
through the headers of the data being sent. REST is also not a perfect mapping to
CRUD, even though the REST verbs look similar to the CRUD operations. Finally, the
web browser can get in the way when processing status codes. For example, instead of
passing a 302 status code to the client SPA, the browser may intercept the code and try
to do “the right thing” and redirect to a different resource. This may not always be the
behavior we want.

Redirect requests to the root
directory to our browser
document, /spa.html.
 We can get started by listing all of our users.

www.EBooksWorld.ir

http://www.it-ebooks.info/

244 CHAPTER 7 The web server

MAKE A ROUTE TO GET A USER LIST

We can make a simple route to provide a list of users. Notice that we set the contentType
of the response object to json. This sets the HTTP headers to let the browser know the
response is in the JSON format, as shown in listing 7.14. Changes are shown in bold:

/*
* app.js - Express server with advanced routing

*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
...
// all configurations below are for routes
app.get('/', function (request, response) {
 response.redirect('/spa.html');
});

app.get('/user/list', function (request, response) {
 response.contentType('json');
 response.send({ title: 'user list' });
});
// -------------- END SERVER CONFIGURATION ----------------
...

The user-list route expects an HTTP GET request. This is just fine if we are retrieving
data. In our next route, we will use a POST so that we can send copious amounts of data
to the server.

MAKE A ROUTE TO CREATE A USER OBJECT

When we make a route to create a user object, we need to process POST data from the
client. Express provides a shortcut method, app.post, which handles POST requests
that match a provided pattern. We can add the following to our server application, as
shown in listing 7.15. Changes are shown in bold:

/*
* app.js - Express server with advanced routing

*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
...

app.get('/user/list', function (request, response) {
response.contentType('json');
response.send({ title: 'user list' });

});

app.post('/user/create', function (request, response) {
response.contentType('json');
response.send({ title: 'user created' });

});
// -------------- END SERVER CONFIGURATION ----------------

Listing 7.14 Make a route to get a user list—webapp/app.js

Listing 7.15 Make a route to create a user object—webapp/app.js
...

www.EBooksWorld.ir

http://www.it-ebooks.info/

245Advanced routing

We haven’t done anything with the posted data yet; we’ll cover that in the next chapter.
If we navigate to http://localhost:3000/user/create with our browser, we’ll see a 404
error and the message Cannot GET /user/create. This is because the browser is sending
a GET request and this route only handles POSTs. Instead we can use the command line
to create a user:

curl http://localhost:3000/user/create -d {}

and the server should respond with:

{"title":"User created"}

Now that we have a route to create a user object, we want to create a route to read a
user object.

MAKE A ROUTE TO READ A USER OBJECT

The route to read a user object is similar to the create route, but uses the GET method
and has an additional argument passed in through the URL: the ID of the user. This
route is created by using a colon to define a parameter in the route path, as shown in
listing 7.16. Changes are shown in bold:

/*
* app.js - Express server with advanced routing

*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
...

app.post('/user/create', function (request, response) {
response.contentType('json');

Listing 7.16 Make a route to read a user object—webapp/app.js

CURLing and WGETing
If you’re using a Mac or Linux box, you can use curl to test out your API and skip the
browser. We can test the URL we just created by doing a POST to user/create:

curl http://localhost:3000/user/create -d {}
{"title":"User created"}

The -d is used to send data and the empty object literal sends no data over. Instead
of opening a browser to test a route, using curl can dramatically speed up your de-
velopment time. To discover more about curl’s capabilities, type curl -h at the
command prompt.

One can get similar results with wget:

wget http://localhost:3000/user/create --post-data='{}' -O -

To discover more about wget’s capabilities, type wget -h at the command prompt.
response.send({ title: 'user created' });

www.EBooksWorld.ir

http://www.it-ebooks.info/

246 CHAPTER 7 The web server

});

app.get('/user/read/:id', function (request, response) {
response.contentType('json');
response.send({
title: 'user with id ' + request.params.id + ' found'

});
});
// -------------- END SERVER CONFIGURATION ----------------
...

The user :id parameter at the end of the route is accessible through the
request.params object. The route of /user/read/:id makes the user ID accessible at
request.params['id'] or request.params.id. If the requested URL was http://
localhost:3000/user/read/12 then the value of request.params.id would be 12. Give
it a try, and also notice that this route works no matter what the value of id is—it accepts
just about anything as long as there’s a valid value. There are more examples in table 7.1.

It’s good that the routes with anything are caught, but what if our ID will always be a
number? We don’t want the router to intercept a path that doesn’t have a number as
the ID. Express provides the capability to only accept routes that contain numbers by
adding a regular expression pattern, [(0-9)]+, into the route definition, as shown in
listing 7.17. Changes are shown in bold:

/*
* app.js - Express server with advanced routing

*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
...

app.get('/user/read/:id([0-9]+)', function (request, response) {
response.contentType('json');
response.send({
title: 'user with id ' + request.params.id + ' found'

});
});
// -------------- END SERVER CONFIGURATION ----------------
...

Table 7.1 Routes and their results

Try these in the browser Output in Node.js terminal

/user/read/19 {"title":"User with id 19 found"}

/user/read/spa {"title":"User with id spa found"}

/user/read/ Cannot GET /user/read/

/user/read/? Cannot GET /user/read/?

Listing 7.17 Constrain the route to only numeric IDs—webapp/app.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

247Advanced routing

Table 7.2 shows that the route will now only accept numbered IDs.

MAKE ROUTES TO UPDATE OR DELETE A USER

The routes for updating and deleting a user are much the same as those for reading a
user at this point, though in the next chapter the actions they take on the user object
will be much different. We add the routes for updating and deleting a user in listing 5.18.
Changes are shown in bold:

/*
 * app.js - Express server with advanced routing
*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
...

app.get('/user/read/:id([0-9]+)', function (request, response) {
 response.contentType('json');
 response.send({
 title: 'user with id ' + request.params.id + ' found'
 });
});

app.post('/user/update/:id([0-9]+)',
 function (request, response) {
 response.contentType('json');
 response.send({
 title: 'user with id ' + request.params.id + ' updated'
 });
 }
);

app.get('/user/delete/:id([0-9]+)',
 function (request, response) {
 response.contentType('json');
 response.send({
 title: 'user with id ' + request.params.id + ' deleted'
 });
 }
);
// -------------- END SERVER CONFIGURATION ----------------
...

Creating these basic routes was easy, but you may have noticed that we’re having to set

Table 7.2 Routes and their results

Try these in the browser Result

/user/read/19 {"title":"User with id 19 found"}

/user/read/spa Cannot GET /user/read/spa

Listing 7.18 Define routes for CRUD—webapp/app.js
the contentType for every response. That’s error-prone and inefficient—a better way

www.EBooksWorld.ir

http://www.it-ebooks.info/

248 CHAPTER 7 The web server

would be if we could set the contentType for all responses to these user CRUD opera-
tions. Ideally, we’d like to create a route that intercepts all incoming user routes and
sets the response contentType to json. Two complications stand in our way:

1 Some of the requests are using the GET method, and others are using POST.
2 After setting the response’s contentType, we want the router to work as before.

Fortunately, Express again delivers. In addition to the app.get and app.post meth-
ods, there’s an app.all method that will intercept routes regardless of their method
type. Express also lets us pass control back to the router to see if any other routes
match the request by setting and calling a third argument in the router callback
method. The third argument is called next by convention, and immediately passes
control to the next middleware or route. We add the app.all method in listing 7.19.
Changes are shown in bold:

/*
 * app.js - Express server with advanced routing
*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
...
// all configurations below are for routes
app.get('/', function (request, response) {
 response.redirect('/spa.html');
});

app.all('/user/*?', function (request, response, next) {
 response.contentType('json');
 next();
});

app.get('/user/list', function (request, response) {
 // REMOVE response.contentType('json');
 response.send({ title: 'user list' });
});

app.post('/user/create', function (request, response) {
 // REMOVE response.contentType('json');
 response.send({ title: 'user created' });
});

app.get('/user/read/:id([0-9]+)',
 function (request, response) {
 // REMOVE response.contentType('json');
 response.send({
 title: 'user with id ' + request.params.id + ' found'
 });
 }
);

app.post('/user/update/:id([0-9]+)',

Listing 7.19 Using app.all() to set common attributes—webapp/app.js
 function (request, response) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

249Advanced routing

 // REMOVE response.contentType('json');
 response.send({
 title: 'user with id ' + request.params.id + ' updated'
 });
 }
);

app.get('/user/delete/:id([0-9]+)',
 function (request, response) {
 // REMOVE response.contentType('json');
 response.send({
 title: 'user with id ' + request.params.id + ' deleted'
 });
 }
);
// -------------- END SERVER CONFIGURATION ----------------
...

In the route pattern, /user/*?, the * will match anything and the ? makes it optional.
/user/*? will match any of the following routes:

■ /user
■ /user/
■ /user/12
■ /user/spa
■ /user/create
■ /user/delete/12

Now that our user routing is in place, it’s easy to imagine the number of routes
exploding as we add object types. Do we really need to define five new routes for every
type of object? Fortunately, no. We can make these routes generic and place them in
their own module.

7.3.2 Generic CRUD routing

We already know that we can use route parameters to accept arguments from the cli-
ent, but we can also use them to make our routes generic. We just need to tell Express
to use a portion of the URI as a parameter. This will do the trick:

app.get('/:obj_type/read/:id([0-9]+)',
function (request, response) {
response.send({

title: request.params.obj_type + ' with id '
+ request.params.id + ' found'

});
}

);

Now when we request /horse/read/12 we will get the object type (horse) in the
request parameter, request.params.obj_type, and the response JSON will be { title:
"horse with id 12 found" }. Applying that logic to the rest of our methods, we end up
with the code in listing 7.20. All changes are shown in bold.
www.EBooksWorld.ir

http://www.it-ebooks.info/

250 CHAPTER 7 The web server

/*
* app.js - Express server with generic routing

*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
...
// all configurations below are for routes
app.get('/', function (request, response) {

response.redirect('/spa.html');
});

app.all('/:obj_type/*?', function (request, response, next) {
response.contentType('json');
next();

});

app.get('/:obj_type/list', function (request, response) {
response.send({ title: request.params.obj_type + ' list' });

});

app.post('/:obj_type/create', function (request, response) {
response.send({ title: request.params.obj_type + ' created' });

});

app.get('/:obj_type/read/:id([0-9]+)',
function (request, response) {
response.send({
 title: request.params.obj_type

+ ' with id ' + request.params.id + ' found'
});

}
);

app.post('/:obj_type/update/:id([0-9]+)',
function (request, response) {
response.send({
 title: request.params.obj_type

+ ' with id ' + request.params.id + ' updated'
});

}
);

app.get('/:obj_type/delete/:id([0-9]+)',
function (request, response) {
response.send({
 title: request.params.obj_type

+ ' with id ' + request.params.id + ' deleted'
});

}
);
// -------------- END SERVER CONFIGURATION ----------------
...

Now when we start up the application (node app.js) and point our browser to http:

Listing 7.20 Complete generic CRUD routes—webapp/app.js
//localhost:3000, we will see our familiar SPA, as shown in figure 7.1:

www.EBooksWorld.ir

http://www.it-ebooks.info/

251Advanced routing

This shows that our static file configuration allowed the browser to read all the HTML,
JavaScript, and CSS files. But we still also have access to our CRUD API. If we point our
browser to http://localhost:3000/user/read/12, we should see something like:

{
title: "user with id 12 found"

}

What if we were to have a file at <root_directory>/user/read/12 (don’t laugh, you
know this stuff happens)? In our case, the file would be returned instead of a CRUD
response. This is because the express.static middleware is added before the router,
as shown next:

...
app.configure(function () {

app.use(express.bodyParser());
app.use(express.methodOverride());
app.use(express.static(__dirname + '/public'));
app.use(app.router);

});
...

If, however, we reversed the order and put the router first, the CRUD response would
be returned instead of the static file. The benefit of this arrangement might be faster
response to a CRUD request; the downside is slower and more complicated file access.
The smart thing to do is to place all the CRUD requests under a single root name like
/api/1.0.0/ so that dynamic and static content are neatly separated.

 Now we have the basics of a clean, generic router to manage any object type. Obvi-
ously, this doesn’t take into account authorization issues, but we’ll get to that logic a
little later. First, let’s first move all the routing logic into a separate module.

7.3.3 Place routing in a separate Node.js module

Keeping all of your routes defined in the main app.js file is rather like writing client-

Figure 7.1 Our SPA in
the browser—http://
localhost:3000
side JavaScript in the HTML page—it clutters up your app and doesn’t maintain a

www.EBooksWorld.ir

http://www.it-ebooks.info/

252 CHAPTER 7 The web server

clean separation of responsibilities. Let’s start by looking a little closer at the Node.js
module system, which is Node.js’s way of including modular code.

NODE MODULES

Node modules are loaded with the function require.

var spa = require('./routes');

The string passed in to require specifies the path to the file to be loaded. There are a
few different syntax rules to be memorized, so have patience. For your convenience,
these are described in table 7.3.

Inside of a node module, variables scoped with var are constrained to the module and
don’t need a self-executing anonymous function to keep the variable out of the global
scope like the client side requires. Instead, there’s the module object. The value
assigned to the module.exports attribute is provided as the return value of the
require method. Let’s create the routes module, as shown in listing 7.21:

module.exports = function () {
console.log('You have included the routes module.');

};

The module.exports value can be any data type such as a function, object, array, string,
number, or boolean. In this case, routes.js sets the value of module.exports to an
anonymous function. Let’s require routes.js in app.js and store the return value in the
routes variable. We can then invoke the returned function as shown in listing 7.22.

Table 7.3 Node search path logic for require

Syntax Search paths, in order of precedence

require(
 './routes.js'
);

app/routes.js

require(
'./routes'
);

app/routes.js
app/routes.json
app/routes.node

require(
'../routes.js'
);

../routes.js

require(
'routes'
);

app/node_modules/routes.js
app/node_modules/routes/index.js
<system_install>/node_modules/routes.js
<system_install>/node_modules/routes/index.js

This syntax is also used to refer to core node.js modules, such as the http module.

Listing 7.21 Create the routes module—webapp/routes.js
Changes are shown in bold:

www.EBooksWorld.ir

http://www.it-ebooks.info/

r
l so
into

 to
ed
he
 an

n
253Advanced routing

/*
* app.js - Express server with sample module

*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 http = require('http'),
 express = require('express'),
 routes = require('./routes'),
 app = express(),
 server = http.createServer(app);

routes();
// ------------- END MODULE SCOPE VARIABLES ---------------
...

When we type node app.js at the command prompt, we should see the following:

You have included the routes module.
Express server listening on port 3000 in development mode

Now that we have added our routes module, let’s move our router configuration to it.

MOVE ROUTING TO A MODULE

When we create a non-trivial application we like to define our routing in a single file
in the main application folder. In a larger application with lots of routes, we can
define them in a routes folder with as many files as we need.

 Since our next app will be non-trivial, let’s create a file in the root spa directory
called routes.js and copy the existing routes into the module.exports function. It
should look like listing 7.23.

/*
 * routes.js - module to provide routing
*/
/*jslint node : true, continue : true,
 devel : true, indent : 2, maxerr : 50,
 newcap : true, nomen : true, plusplus : true,
 regexp : true, sloppy : true, vars : false,
 white : true
*/
/*global */

// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var configRoutes;
// ------------- END MODULE SCOPE VARIABLES ---------------

// ---------------- BEGIN PUBLIC METHODS ------------------
configRoutes = function (app, server) {

Listing 7.22 Include a module and use the return value—webapp/app.js

Listing 7.23 Place routes in a separate module—webapp/routes.js

The app and serve
variables aren’t globa
they must be passed
the function. Node.js
goes to great lengths
not let variables defin
in one module or in t
main application have
impact on variables i
other modules.
 app.get('/', function (request, response) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

 can
/

.

254 CHAPTER 7 The web server

 response.redirect('/spa.html');
 });

 app.all('/:obj_type/*?', function (request, response, next) {
 response.contentType('json');
 next();
 });

 app.get('/:obj_type/list', function (request, response) {
 response.send({ title: request.params.obj_type + ' list' });
 });

 app.post('/:obj_type/create', function (request, response) {
 response.send({ title: request.params.obj_type + ' created' });
 });

 app.get('/:obj_type/read/:id([0-9]+)',
 function (request, response) {
 response.send({
 title: request.params.obj_type
 + ' with id ' + request.params.id + ' found'
 });
 }
);

 app.post('/:obj_type/update/:id([0-9]+)',
 function (request, response) {
 response.send({
 title: request.params.obj_type
 + ' with id ' + request.params.id + ' updated'
 });
 }
);

 app.get('/:obj_type/delete/:id([0-9]+)',
 function (request, response) {
 response.send({
 title: request.params.obj_type
 + ' with id ' + request.params.id + ' deleted'
 });
 }
);
};
module.exports = { configRoutes : configRoutes };
// ----------------- END PUBLIC METHODS -------------------

Now we can adjust webapp/app.js to use the routing module, as shown in listing 7.24.
Changes are shown in bold.

/*
* app.js - Express server with routes module

*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------

Listing 7.24 Update server application to use external routes—webapp/app.js

Set the content
type of json.

We export a method that
be invoked when webapp
app.js is read to use it
'use strict';

www.EBooksWorld.ir

http://www.it-ebooks.info/

255Adding authentication and authorization

var
http = require('http'),
express = require('express'),

 routes = require('./routes'),

app = express(),
server = http.createServer(app);

// ------------- END MODULE SCOPE VARIABLES ---------------

// ------------- BEGIN SERVER CONFIGURATION ---------------
app.configure(function () {

app.use(express.bodyParser());
app.use(express.methodOverride());
app.use(express.static(__dirname + '/public'));
app.use(app.router);

});

app.configure('development', function () {
app.use(express.logger());
app.use(express.errorHandler({
dumpExceptions : true,
showStack : true

}));
});

app.configure('production', function () {
app.use(express.errorHandler());

});

routes.configRoutes(app, server);
// -------------- END SERVER CONFIGURATION ----------------

// ----------------- BEGIN START SERVER -------------------
server.listen(3000);
console.log(

'Express server listening on port %d in %s mode',
server.address().port, app.settings.env

);
// ------------------ END START SERVER --------------------

This leaves us with a pretty clean app.js: it loads the needed library modules, creates
our Express application, configures our middleware, adds our routes, and starts the
server. What it doesn’t do is persist your data to a database by actually performing any
of the requested actions. We’ll hook that up in the next chapter after setting up Mon-
goDB and connecting it to our Node.js application. Before doing that, let’s take a look
at some other things we might need first.

7.4 Adding authentication and authorization
Now that we’ve created the routes for performing CRUD actions on our objects, we
should add authentication. We can do this the hard way and code it ourselves, or do it
the easy way and take advantage of another Express middleware. Hmm. Think...
think, which to choose?

Load the routes
module.

Use the configRoutes
method to set up the routes.
www.EBooksWorld.ir

http://www.it-ebooks.info/

256 CHAPTER 7 The web server

7.4.1 Basic Authentication

Basic Authentication is an HTTP/1.0 and 1.1 standard for how a client provides a user-
name and password when making a request; it’s commonly referred to as basic auth.
Remember that middleware is called in the order it’s added to the application, so if you
want the application to authorize access to the routes, the middleware needs to be
added before the router middleware. That’s easy enough to do as shown in listing 7.25.
Changes are shown in bold:

/*
* app.js - Express server with basic auth

*/
...
// ------------- BEGIN SERVER CONFIGURATION ---------------
app.configure(function () {

app.use(express.bodyParser());
app.use(express.methodOverride());

 app.use(express.basicAuth('user', 'spa'));
app.use(express.static(__dirname + '/public'));
app.use(app.router);

});
...

In this case, we’ve hard-coded the app to
expect the user to be user and the pass-
word to be spa. basicAuth also accepts a
function as the third parameter, which
can be used to provide more advanced
mechanisms, like looking up user details
in a database. That function should
return true if the user is valid, and false
when the user is not. When we restart the
server and reload the browser, it should
open an alert dialog that looks like fig-
ure 7.2, requiring a valid User Name and Password before allowing access.

 If we enter the wrong password, it’ll keep prompting until we get it right. Pressing
the Cancel button will bring us to a page that says Unauthorized.

 Basic authentication is not recommended for use in a production app. It sends the
credentials for every request in plain text—security experts call this a large attack vector.
And even if we use SSL (HTTPS) to encrypt the transmission, we only have one layer of
security between the client and server.

 Rolling your own authentication mechanism is getting passé these days. Many start-
ups and even larger more established companies are using third-party authentication
from the likes of Facebook or Google. There are many online tutorials showing how

Listing 7.25 Add basic auth to our server application—webapp/app.js

Figure 7.2 Chrome’s authentication dialog
to integrate with these services; the Node.js middleware Passport can get you started.

www.EBooksWorld.ir

http://www.it-ebooks.info/

257Web sockets and Socket.IO

7.5 Web sockets and Socket.IO
Web sockets are an exciting technology that’s gaining widespread browser support.
Web sockets allow the client and server to maintain a persistent, lightweight, and bi-
directional communication channel over a single TCP connection. This lets the cli-
ent or server push messages in real-time without the overhead and latency of an
HTTP request-response cycle. Prior to web sockets, developers had employed alter-
nate—but less efficient—techniques to provide similar capabilities. These tech-
niques included using Flash sockets; long-polling, where the browser opens a request
to a server and then reinitializes the request when there’s a response or when the
request times out; and server polling at close intervals (say, once per second).

 The trouble with web sockets is that the specifications haven’t yet been finalized
and older browsers will never support it. Socket.IO is a Node.js module that gracefully
resolves the latter concern, as it provides browser-to-server messaging over web sockets
if available, but will degrade to use other techniques if sockets aren’t available.

7.5.1 Simple Socket.IO

Let’s create a simple Socket.IO application that updates a counter on the server every
second and pushes the current count to connected clients. We can install Socket.IO by
updating our package.json as shown in listing 7.26. Changes are shown in bold:

{
"name" : "SPA",
"version" : "0.0.3",
"private" : true,
"dependencies" : {
"express" : "3.2.x",

 "socket.io" : "0.9.x"
}

}

Now we can run npm install to ensure both Express and Socket.IO are installed.
 Let’s add two files, a server application named webapp/socket.js and browser doc-

ument named webapp/socket.html. Let’s start by building a server application that
can serve static files and that has a timer that increments once per second. Since we
know we are going to use Socket.IO, we will include that library too. Listing 7.27 shows
our new socket.js server application:

/*
* socket.js - simple socket.io example

*/

/*jslint node : true, continue : true,
devel : true, indent : 2, maxerr : 50,

Listing 7.26 Installing Socket.IO—webapp/package.json

Listing 7.27 Begin the server application—webapp/socket.js
newcap : true, nomen : true, plusplus : true,

www.EBooksWorld.ir

http://www.it-ebooks.info/

t

e
y.
258 CHAPTER 7 The web server

regexp : true, sloppy : true, vars : false,
white : true

*/
/*global */

// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var

countUp,

http = require('http'),
express = require('express'),
socketIo = require('socket.io'),

app = express(),
server = http.createServer(app),
countIdx = 0
;

// ------------- END MODULE SCOPE VARIABLES ---------------

// --------------- BEGIN UTILITY METHODS ------------------
countUp = function () {

countIdx++;
console.log(countIdx);

};
// ---------------- END UTILITY METHODS -------------------

// ------------- BEGIN SERVER CONFIGURATION ---------------
app.configure(function () {

app.use(express.static(__dirname + '/'));
});

app.get('/', function (request, response) {
response.redirect('/socket.html');

});
// -------------- END SERVER CONFIGURATION ----------------

// ----------------- BEGIN START SERVER -------------------
server.listen(3000);
console.log(

'Express server listening on port %d in %s mode',
 server.address().port, app.settings.env

);

setInterval(countUp, 1000);
// ------------------ END START SERVER --------------------

When we start the server—node socket.js—we see it logging a constantly increment-
ing number in the terminal. Now, let’s create the webapp/socket.html shown in list-
ing 7.28 to display this number. We’ll include jQuery because it makes grabbing the
body tag simple:

<!doctype html>
<!-- socket.html - simple socket example -->
<html>

Listing 7.28 Create the browser document—webapp/socket.html

Create a module-scope
count variable.

Create a utility to incremen
the count and log it.

Direct the application to
serve static files from th
current working director

Use the JavaScript
setInterval function to
call the countUp function
every 1000 milliseconds.
<head>

www.EBooksWorld.ir

http://www.it-ebooks.info/

259Web sockets and Socket.IO

<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"

></script>
</head>
<body>

Loading...
</body>
</html>

We should now be able to load http://localhost:3000 and see the nearly blank
page. Getting Socket.IO to send this information to the client takes just two additional
lines in our server application, as shown in listing 7.29. Changes are shown in bold:

...
 server = http.createServer(app),
 io = socketIo.listen(server),
 countIdx = 0
 ;
// ------------- END MODULE SCOPE VARIABLES ---------------

// --------------- BEGIN UTILITY METHODS ------------------
countUp = function () {
 countIdx++;
 console.log(countIdx);
 io.sockets.send(countIdx);
};
// ---------------- END UTILITY METHODS -------------------

// ------------- BEGIN SERVER CONFIGURATION ---------------
...

The browser document requires just an additional six lines to enable Socket.IO, as
shown in listing 7.30. Changes are shown in bold:

<!doctype html>
<!-- socket.html - simple socket example -->
<html>
<head>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"
 ></script>
 <script src="/socket.io/socket.io.js"></script>
 <script>
 io.connect().on('message', function (count) {
 $('body').html(count);
 });
 </script>
</head>
<body>
 Loading...
</body>

Listing 7.29 Add web sockets to the server application—webapp/socket.js

Listing 7.30 Add web sockets to the browser document—webapp/socket.html

Instruct Socket.IO to listen
using our HTTP server.

Send the count to all
listening sockets.
</html>

www.EBooksWorld.ir

http://www.it-ebooks.info/

260 CHAPTER 7 The web server

The JavaScript file /socket.io/socket.io.js is provided by the Socket.IO installa-
tion so there’s no need to create one; it’s also a “magical” file that doesn’t actually
exist on the server, so don’t go looking for it. io.connect() returns a Socket.IO con-
nection and the on method is similar to the bind method in jQuery, in that it tells it to
watch for a certain kind of Socket.IO event. In this case, the event we’re looking for is
any message coming over the connection. Then we use jQuery to update the body
with the new count. You went looking for the socket.io.js file on the server, didn’t you?

 If we open http://localhost:3000/ in a browser we should see the counter incre-
menting. When we open another tab to the same location we should see another
counter incrementing at the same number and rate because countIdx is a module-
scope variable in the server application.

7.5.2 Socket.IO and messaging servers

When we use Socket.IO to route messages between clients and servers, we’re creating
a messaging server. An example of another messaging server is Openfire, which serves
messages using XMPP, the protocol used by Google Chat and Jabber. A messaging
server must maintain connections to all clients so they can receive and respond to
messages quickly. They should also minimize the size of the message by avoiding
unnecessary data.

 Traditional web servers such as Apache2 are poor messaging servers because they
create and assign a process (or thread) for every connection, and each process must live
for as long as its connection persists. As you might guess, after a few hundred or thousand
connections, a web server will have all its resources consumed by all the processes
used to service the connections. Apache2 was never designed for this; it was written as
a content server, where the idea is to push data out as fast as possible in response to a
request and then close the connection as fast as possible. For these types of uses,
Apache2 is a great choice—just ask YouTube.

 Node.js, by comparison, is an excellent messaging server. Thanks to its event
model, it doesn’t create a process for every connection. Instead it does some bookkeep-
ing when a connection is opened or closed, and some maintenance in between.
Therefore it can handle tens or hundreds of thousands of concurrent connections on
modest hardware. Node.js doesn’t do any significant work until a messaging event—
like a request or a response—occurs on one or more of its open connections.

 The number of messaging clients Node.js can handle depends on the actual work-
load the server encounters. If the clients are relatively quiet and the server tasks are
lightweight, the server can handle lots of clients. If the clients are chatty and the server
tasks are heavier, the server can handle a lot less. It’s conceivable in a high-volume envi-
ronment that a load balancer would route traffic between a cluster of Node.js servers
that provides messaging, another cluster of Node.js servers that provides dynamic web
content, and a cluster of Apache2 servers that provides static content.

 There are many benefits of using Node.js over other messaging protocols such as

XMPP. Here are just a few:

www.EBooksWorld.ir

http://www.it-ebooks.info/

261Web sockets and Socket.IO

■ Socket.IO makes cross-browser messaging in a web app almost trivial. We’ve
used XMPP before for a production application. Trust us: it’s a lot more work
just for the software.

■ We can avoid maintaining a separate server and configuration. Again, another
big win.

■ We can work with native JSON protocol instead of a different language. XMPP is
XML and requires sophisticated software to encode and decode.

■ We don’t have to worry (at least initially) about the dreaded “same domain” pol-
icy that plagues other messaging platforms. This browser policy prevents con-
tent from loading into browsers if it doesn’t come from the same server as the
JavaScript that’s using it.

Now let’s look at a use of Socket.IO that’s sure to impress: dynamically updating our SPA.

7.5.3 Updating JavaScript with Socket.IO

One challenge with an SPA is ensuring the client software matches the server applica-
tion. Imagine if Bobbie loaded our SPA into her browser, and five minutes later we
update our server application. Now Bobbie has a problem, because our updated
server communicates in a new data format, yet Bobbie’s SPA still expects the old. One
way to resolve this situation is to force Bobbie to reload the entire SPA when it recog-
nizes it’s out of date—say after we sent it a message announcing the server update. But
we can get even fancier—we can selectively update only the JavaScript that has
changed in the SPA without forcing the entire application to reload.

 So how do we do this magical update? There are three parts to consider:

1 Watching the JavaScript files to detect when they’re modified.
2 Notifying the client the file has been updated.
3 Updating the client side JavaScript when it’s notified of the change.

The first part, detecting when the file is modified, can be accomplished using the
native node file system module fs. The second is a matter of sending a Socket.IO noti-
fication to the browser as described in the previous section, and updating the client
can be accomplished through injecting a new script tag when receiving a notification.
We can update our server application from the last example as shown in listing 7.31.
Changes are shown in bold:

/*
* socket.js - dynamic JS loading example

*/

/*jslint node : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,

Listing 7.31 Update the server application to watch files—webapp/socket.js
white : true

www.EBooksWorld.ir

http://www.it-ebooks.info/

p

e

262 CHAPTER 7 The web server

*/
/*global */

// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var

setWatch,

http = require('http'),
express = require('express'),
socketIo = require('socket.io'),
fsHandle = require('fs'),

app = express(),
server = http.createServer(app),
io = socketIo.listen(server),
watchMap = {}
;

// ------------- END MODULE SCOPE VARIABLES ---------------

// --------------- BEGIN UTILITY METHODS ------------------
setWatch = function (url_path, file_type) {
 console.log('setWatch called on ' + url_path);

 if (! watchMap[url_path]) {
 console.log('setting watch on ' + url_path);

 fsHandle.watchFile(

 url_path.slice(1),
 function (current, previous) {

 console.log('file accessed');
 if (current.mtime !== previous.mtime) {
 console.log('file changed');
 io.sockets.emit(file_type, url_path);

 }
 }

);
 watchMap[url_path] = true;

 }
};
// ---------------- END UTILITY METHODS -------------------

// ------------- BEGIN SERVER CONFIGURATION ---------------
app.configure(function () {
 app.use(function (request, response, next) {

 if (request.url.indexOf('/js/') >= 0) {
 setWatch(request.url, 'script');

 }
 else if (request.url.indexOf('/css/') >= 0) {
 setWatch(request.url, 'stylesheet');
 }
 next();

 });
app.use(express.static(__dirname + '/'));

});

Load the file system
module into fsHandle.

Instruct the file system
module to watch the file
for changes.

Trim the / from url_path, as the
file system module needs the relative
path from the current directory.

Compare the
modified

timestamps
(mtime) of the
current state of
the file with the
revious state of
the file to see if

it has been
modified.

Emit a script or
stylesheet event to th
client containing the path
of the file that changed.

Use custom
middleware to
set a watch for

any statically
served files.

If the requested file is in
the js folder, consider
it a script file.

If the requested file
is in the css folder,
consider it a
stylesheet file.
app.get('/', function (request, response) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

t
.

W

t

up

J
file

o
d

263Web sockets and Socket.IO

response.redirect('/socket.html');
});
// -------------- END SERVER CONFIGURATION ----------------

// ----------------- BEGIN START SERVER -------------------
server.listen(3000);
console.log(

'Express server listening on port %d in %s mode',
server.address().port, app.settings.env

);
// ------------------ END START SERVER --------------------

Now that we’ve prepared the server application, let’s look at the client, starting with the
JavaScript file we’ll be updating and then the index page. Our data file, webapp/js/
data.js, consists of one line assigning some text to a variable, as shown in listing 7.32:

var b = 'SPA';

Changes to our browser document need to be a little more substantial, as shown in
listing 7.33. Changes are shown in bold:

<!doctype html>
<!-- socket.html - dynamic JS loading example -->
<html>
<head>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"
 ></script>
 <script src="/socket.io/socket.io.js"></script>
 <script id="script_a" src="/js/data.js"></script>
 <script>
 $(function () {
 $('body').html(b);
 });
 io.connect('http://localhost').on('script', function (path) {
 $('#script_a').remove();
 $('head').append(
 '<script id="script_a" src="'
 + path +
 '"></scr' + 'ipt>'
);
 $('body').html(b);
 });
 </script>
</head>
<body>
 Loading...
</body>
</html>

Listing 7.32 Create a data file—webapp/js/data.js

Listing 7.33 Update the browser document—webapp/socket.html

Include the JavaScrip
file we’ll be updating

hen the page
first loads, set
he HTML body
to the value of
the b variable

set in the
data.js file.

When we receive a script
event emitted from the

server, execute this function.
Remove the old

script tag and
inject a new one

pointing to the
dated JavaScript

file. This will
execute the

avaScript in that
 and, in the case
f webapp/js/
ata.js, reload

the b variable.

Replace the HTML body
with the update value of
the b variable.
www.EBooksWorld.ir

http://www.it-ebooks.info/

264 CHAPTER 7 The web server

Now we can make the magic happen. First, let’s start our server application (type node
socket.js on the command line). Next, let’s open our browser document (webapp/
socket.html). We should see SPA in our browser body. Let’s then edit the webapp/js/
data.js file and change the value of SPA to the meaning of life is a rutabaga or
some other equally pithy comment. When we return to the browser, we should see the
display change (without reloading the browser) from SPA to the aforementioned
pithy comment. There may be a delay of a few seconds because the watchFile com-
mand can take that long to notice a file change.1

7.6 Summary
In this chapter, we’ve seen that although much of the logic of an SPA has been moved
to the client, the server is still responsible for authentication, data validation, and data
storage. We’ve set up a Node.js server and used the Connect and Express middleware
to make routing, logging, and authentication easier.

 Separating the routing and configuration logic into different files makes it easier
to comprehend, and Express gives us the capability to define different configurations
for different environments. Express provided us the tools to easily create CRUD routes
that work for all our object types.

 We haven’t yet tackled how to validate and store data—that comes in the next
chapter, when we bring the application and the data together.

1 In a production setting we generally want to keep file polling (fstats) to a minimum, as it can be a real drag
on performance. The fileWatch method can have options set so that files are polled less frequently. For
example, we might poll once every 30,000 milliseconds (30 seconds) instead of the default of 0 (which we can

only assume means “check really, really often”).

www.EBooksWorld.ir

http://www.it-ebooks.info/

The server database
This chapter builds on code we’ve written in chapter 7. We recommend copying
the entire directory structure for that chapter into a new “chapter_8” directory and
updating the files there.

 In this chapter, we add the database to our SPA for persistent data storage. This
completes our vision of using JavaScript end-to-end—on the database, the server,
and the browser. When we’re finished, we’ll be able to start our Node.js server
application and invite our friends to sign in to the SPA with their computer or
touch device. They can then chat with each other or make changes to avatars that
everyone can see in near-real time. Let’s get started by looking more closely at the
role of the database.

This chapter covers
■ The role of the database in an SPA
■ Using JavaScript as the database language with

MongoDB
■ Understanding the Node.js MongoDB driver
■ Implementing CRUD operations
■ Using JSV for data validation
■ Pushing data changes to the client with Socket.IO
265

www.EBooksWorld.ir

http://www.it-ebooks.info/

266 CHAPTER 8 The server database

8.1 The role of the database
We use the database server to provide reliable, persistent storage of data. We rely on
the server for this role because data stored on the client is transitory and prone to
application errors, user error, and user tampering. Client-side data is also difficult to
share peer-to-peer and is available only when the client is online.

8.1.1 Select the data store

We have many options to consider when selecting a server storage solution: relational
databases, key/value stores, and NoSQL databases to name a few. But what’s the best
option? Like many questions in life, the answer is “it depends.” We’ve worked with web
applications where many of these solutions were used concurrently for different pur-
poses. Many people have written volumes on the merits of various data stores such as
relational databases (like MySQL), key-value stores (like memcached), graph databases
(like Neo4J), or document databases (like Cassandra or MongoDB). Discussion of the
relative merits of these solutions is outside of the scope of this book, though the
authors tend to be agnostic and think that each of these has its place.

 Let’s envision that we’ve created an SPA that’s a word processor. We might use a
round-robin file system data store for the bulk files, but index them using a MySQL
database. In addition, we may store authentication objects in MongoDB. In any case,
the user will almost certainly expect to save their documents to the server for long-
term storage. Sometimes the user may want to read from or save to a file on their local
disk, and we almost certainly should provide that option. But the use case for local
storage continues to diminish as the value and reliability of networks, remote storage,
and accessibility continue to improve.

 We’ve selected MongoDB as our data store for a number of reasons: it has proven
reliable, it’s scalable, it has good performance, and—unlike some other NoSQL
options—it’s positioned to be a general purpose database. We find it well-suited for
SPAs because it enables us to use JavaScript and JSON from one end of the SPA to the
other. Its command-line interface uses JavaScript as its query language, so we can eas-
ily test JavaScript constructs while exploring a database, or manipulate data using the
exact same expressions as we do in our server or browser environment. It uses JSON as
its storage format and its data management tools are purpose-built for JSON.

8.1.2 Eliminate data transformations

Consider the traditional web application written in MySQL/Ruby on Rails (or
mod_perl, PHP, ASP, Java, or Python) and JavaScript: the developer must write code to
convert from SQL -> Active Record -> JSON on the way to the client, and then JSON ->
Active Record -> SQL on the way back (see figure 8.1). That’s three languages (SQL,
Ruby, JavaScript), three data formats (SQL, Active Record, JSON), and four data trans-
formations. At best, this wastes a great deal of server power that could be better used
elsewhere. At worst, each transformation provides an opportunity to introduce bugs,

and it can require a great deal of effort to implement and maintain.

www.EBooksWorld.ir

http://www.it-ebooks.info/

267The role of the database

We use MongoDB, Node.js, and a native JavaScript SPA, so our data mapping looks like
this: JSON -> JSON -> JSON on the way to the client, and then JSON -> JSON -> JSON on
the way back (see figure 8.2). We work with one language (JavaScript), one data for-
mat (JSON), and no data transformations. This brings powerful simplicity to a once
complex system.

 The simplicity of this setup also enables us to be flexible when deciding where to
place our application logic.

8.1.3 Move the logic where you need it

In our traditional web application example, consider how we choose where to place
some application logic. Perhaps we should place it in a stored SQL procedure? Or per-
haps we should embed the logic in the server application? Maybe we should put the
logic on the client? If we need to move from one layer to another, it usually requires a
great deal of effort because the layers use different languages and data formats. In
other words, it was often enormously expensive to be wrong (imagine rewriting logic
from Java to JavaScript, for example). That leads to compromised “safe” choices that
limit the capability of the application.

 The use of a single language and data format greatly reduces the expense of
changing our minds. This allows us to be much more inventive during development
because the cost of being wrong is minimal. If we need to move some logic from the server
to the client, we can use the same JavaScript with little or no or alteration.

 Now let’s take a deeper look at our database of choice, MongoDB.

Traditional web application

JSON to
ActiveRecord

ActiveRecord to
JSON

ActiveRecord
to SQL

SQL to
ActiveRecord

Ruby on Rails
server

Database

http://website.com

Figure 8.1 Data transformations in a web application

Single page web application

JSON to JSON

JSON to JSON

JSON to JSON

JSON to JSON

Node.js
server

MongoDB

http://website.com
Figure 8.2 With MongoDB, Node.js, and an SPA there’s no data transformation

www.EBooksWorld.ir

http://www.it-ebooks.info/

268 CHAPTER 8 The server database

8.2 An introduction to MongoDB
According to the MongoDB website, MongoDB is “a scalable, high-performance, open
source NoSQL database” using document-oriented storage with dynamic schemas that
offer “simplicity and power.” Let’s step through what that means:

■ Scalable, high performance—MongoDB is designed to scale horizontally, using less-
expensive servers. With relational databases, the only easy way to scale your
database is to buy better hardware.1 With MongoDB you can easily add another
server to provide more capacity or performance.

■ Document-oriented storage—MongoDB stores data in the JSON document format
instead of in tables with columns and rows. Documents, which are roughly
equivalent to SQL rows, are stored in collections, which are similar to SQL
tables.

■ Dynamic schemas—Whereas relational databases require a schema to define what
data can be stored in what tables, MongoDB doesn’t. You can store any JSON
document in a collection. Individual documents within the same collection can
have completely different structures, and a document structure may be com-
pletely changed during a document update.

The first point about performance will appeal to everyone, especially operations man-
agers. The second two points are of particular interest to SPA developers and are
worth exploring in detail. If you are already familiar with MongoDB, feel free to skip
to section 8.3, where we hook it up to our Node.js application.

8.2.1 Document-oriented storage

MongoDB stores data in JSON documents, which makes it a great match for most SPAs.
JSON documents from our SPA can be stored and retrieved without transformation.2

This is compelling because we don’t have to spend development or processing time
transforming data back and forth from our native format. When we find a problem in
the data on the client side, it’s simple to check whether it’s found in the database
because the formats are identical.

 Not only does this result in a simpler development and a simpler application, but
it also provides performance benefits. Instead of the server having to manipulate
data from format to format, it passes it along. This has an impact on the cost of host-
ing and scaling the application as well, as the servers have to perform less work. In
this case, the work isn’t offloaded onto the client; it’s just gone because of the single
data format. This doesn’t necessarily mean that Node.js + MongoDB is faster than
Java + PostgreSQL—many other factors impact overall speed of the application—but

1 Yes, you can create relational database clusters and replicas, but they typically require a good deal of expertise
to configure and maintain. Buying a faster server is a lot easier.

2 Compare this with a relational database, where we first have to convert to SQL to store the documents, and

then convert it back to JSON on retrieval.

www.EBooksWorld.ir

http://www.it-ebooks.info/

269An introduction to MongoDB

it does mean that everything else being equal, a single data format should provide
better performance.

8.2.2 Dynamic document structure

MongoDB doesn’t constrain the structure of documents. Instead of defining a struc-
ture, we can just start adding documents to collections. We don’t even have to create
a collection first—inserting data into a non-existent collection creates it. Compare this
to a relational database, where you must define tables and schemas explicitly, and any
change in data structure requires a change in schema. Having a database that doesn’t
require a schema has some interesting benefits:

■ Document structure is flexible. MongoDB will store the documents regardless of
structure. If the document structure changes frequently or is unstructured,
MongoDB will store them without need for adjustment.

■ Application changes often don’t require database changes. When we update a docu-
ment to have new or different attributes, we can deploy the application and it’ll
start storing the new document structure immediately. On the other hand, we
may need to adjust the code to account for document attributes that don’t exist
in previously saved documents.

■ No schema changes to cause downtime and delays. We don’t have to lock parts of the
database to accommodate a document structure change. But as before, we may
need to adjust our application.

■ Specialized knowledge of schema design isn’t needed. Being schema-less means there’s
an entire sphere of knowledge that doesn’t need to be mastered to build an
application. That means the applications are easier for generalists to build and
may require less planning to get up and running.

But there are downsides to not having a schema:

■ No document structure enforcement. Document structure isn’t enforced at the data-
base level, and any changes to their structure aren’t automatically propagated
to existing documents. This can be especially painful when multiple applica-
tions are using the same collection.

■ No document structure definition. There’s no place in the database for a database
engineer or the application to determine what structure the data should have.
It’s more difficult to determine the purpose of a collection by inspecting the
documents because there’s no guarantee the structure is the same from docu-
ment to document.

■ Not well-defined. Document databases aren’t well-defined mathematically. When
storing data in a relational database, there are often mathematically proven best
practices to follow to make the data access as flexible and fast as possible. Opti-
mizations aren’t nearly as well-defined for MongoDB, although some traditional
methods, such as creating indexes, are supported.
www.EBooksWorld.ir

http://www.it-ebooks.info/

270 CHAPTER 8 The server database

Now that we have a feel for how MongoDB stores data, let’s start using it.

8.2.3 Get started with MongoDB

A good way to start with MongoDB is to install it and then interact with collections and
documents using the MongoDB shell. First, let’s install MongoDB from the MongoDB
website, http://www.mongodb.org/downloads, and then start the server mongodb pro-
cess. The startup procedure varies by OS, so please consult the documentation for
details (http://docs.mongodb.org/manual/tutorial/manage-mongodb-processes/).
Once we’ve started the database, let’s open a terminal and start the shell by typing
mongo (mongo.exe on Windows). You should see something like this:

MongoDB shell version: 2.4.3
connecting to: test
>

One important concept to take into account when interacting with MongoDB is that
you don’t manually create databases or collections: they’re created when they’re
needed. In order to “create” a new database, issue the command to use that database.
In order to “create” a collection, insert a document into the collection. If you refer-
ence a collection that doesn’t exist in a query, the query won’t fail; it’ll act like the col-
lection exists but won’t actually create it until you insert a document. Table 8.11 shows
some common operations. We recommend you try them out in order using “spa” as
the database_name.

Table 8.1 Basic MongoDB shell commands

Command Description

show dbs Show a list of all the databases in this MongoDB
instance.

use database_name Switch the current database to the
database_name. If the database doesn’t exist yet,
it’ll create it the first time a document is inserted
into a collection on that database.

db Current database.

help Get general help. db.help() will provide help on
db methods.

db.getCollectionNames() Get a list of all collections available in the current
database.

db.collection_name A collection in the current database.

db.collection_name.insert({
'name': 'Josh Powell' })

Insert a document with the field name with a
value of “Josh Powell” into the collection_name
collection.

db.collection_name.find() Return all documents in the collection_name

collection.

www.EBooksWorld.ir

http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/tutorial/manage-mongodb-processes/
http://www.it-ebooks.info/

271Use the MongoDB driver

Of course, MongoDB has many more capabilities than presented in the table. For exam-
ple, there are methods to sort, return a subset of the existing fields, upsert documents,
increment or otherwise modify an attribute, manipulate arrays, add an index, and
much, much more. For a more in-depth examination of all that MongoDB offers, check
out MongoDB in Action (Manning 2011), the online MongoDB manual (http://
docs.mongodb.org/manual/), or the Little MongoDB Book (http://openmymind.net/
mongodb.pdf). We’ve now run through some basic MongoDB commands, so let’s hook
our application up to MongoDB. First, we’ll need to prepare the project files.

8.3 Use the MongoDB driver
An application in a given language requires a database driver to efficiently interface
with MongoDB. Without a driver, the only way to interact with MongoDB would be
through the shell. A number of MongoDB drivers have been written in various lan-
guages, including one for JavaScript in Node.js. A good driver handles many low-level
tasks around interacting with a database without troubling the developer. Some exam-
ples include reconnecting to the database in case of a lost connection, managing the
connections to replica sets, buffer pooling, and cursor support.

8.3.1 Prepare the project files

In this chapter, we build on the work we completed in chapter 7. We’ll copy our entire
file structure from chapter 7 into a new “chapter_8” directory where we’ll continue
our work. Listing 8.1 shows our file structure after we have completed the copy. Files
and directories we will be removing are shown in bold:

db.collection_name.find({ 'name' :
'Josh Powell' })

Return all documents in the collection_name collec-
tion that have the field name with a value of “Josh
Powell.”

db.collection_name.update({
'name': 'Josh Powell' }, {'name':
'Mr. Joshua C. Powell'})

Find all documents with a name of “Josh Powell”
and replace them with {'name': 'Mr.
Joshua C. Powell'}.

db.collection_name.update({
'name': 'Mr. Joshua C. Powell' },
{$set: {'job': 'Author'} })

Find all documents with a name of “Mr. Joshua C.
Powell” and add or modify the attributes provided
by the $set attribute.

db.collection_name.remove({
'name': 'Mr. Joshua C. Powell' })

Remove all documents with the field name with a
value of “Mr. Joshua C. Powell” from the
collection_name collection.

exit Exit the MongoDB shell.

Table 8.1 Basic MongoDB shell commands (continued)

Command Description
www.EBooksWorld.ir

http://docs.mongodb.org/manual/
http://docs.mongodb.org/manual/
http://openmymind.net/mongodb.pdf
http://openmymind.net/mongodb.pdf
http://www.it-ebooks.info/

272 CHAPTER 8 The server database

chapter_8
`-- webapp

|-- app.js
|-- js
| `-- data.js
|-- node_modules
|-- package.json
|-- public
| |-- css/
| |-- js/
| `-- spa.html
|-- routes.js
|-- socket.html
`-- socket.js

Let’s remove the js directory, the socket.html file, and the socket.js file. We should also
remove the node_modules directory, as that will be regenerated during module instal-
lation. Our updated structure should then look like listing 8.2:

chapter_8
`-- webapp

|-- app.js
|-- package.json
|-- public
| |-- css/
| |-- js/
| `-- spa.html
`-- routes.js

Now with our directory copied and tidied up, we’re ready to attach MongoDB to our
application. Our first step is to install the MongoDB driver.

8.3.2 Install and connect to MongoDB

We find that the MongoDB driver is a good solution for many applications. It’s simple,
fast, and easy to understand. If we need more capability we might consider using an
Object Document Mapper (ODM). An ODM is analogous to an Object Relational Mapper
(ORM) frequently used for relational databases. There are a few options available: Mon-
goskin, Mongoose, and Mongolia to name a few.

 We’ll be using the basic MongoDB driver for our application because most of our
associations and higher-level data modelling are handled on the client. We don’t want
any ODM validation features, as we’ll be validating our document structure using a
general purpose JSON schema validator. We’ve made that choice because the JSON
schema validator is standards-compliant and works on both the client and the server,
whereas the ODM validations only work on the server at this time.

Listing 8.1 Copy files from chapter 7

Listing 8.2 Remove some files and directories we no longer need
www.EBooksWorld.ir

http://www.it-ebooks.info/

t
ver,
.

lar
273Use the MongoDB driver

 We can use our package.json to install the MongoDB driver. As before, we’ll spec-
ify the major and minor versions of the module, but request the latest patch version,
as shown in listing 8.3. Changes are shown in bold:

{ "name" : "SPA",
"version" : "0.0.3",
"private" : true,
"dependencies" : {
"express" : "3.2.x",
"mongodb" : "1.3.x",
"socket.io" : "0.9.x"

}
}

We can run npm install to install all the modules in the manifest, including the Mon-
goDB driver. Let’s edit the routes.js file to include mongodb and start a connection, as
shown in listing 8.4. Changes are shown in bold:

/*
 * routes.js - module to provide routing
*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 configRoutes,
 mongodb = require('mongodb'),

 mongoServer = new mongodb.Server(
 'localhost',
 mongodb.Connection.DEFAULT_PORT
),
 dbHandle = new mongodb.Db(
 'spa', mongoServer, { safe : true }
);

dbHandle.open(function () {
 console.log('** Connected to MongoDB **');
});
// ------------- END MODULE SCOPE VARIABLES ---------------
...

We can also remove basic auth from our server application, as shown in listing 8.5.

/*
 * app.js - Express server with routing
*/
...

Listing 8.3 Update the manifest for npm install—webapp/package.json

Listing 8.4 Open a MongoDB connection—webapp/routes.js

Listing 8.5 Remove basic auth from our server application—webapp/app.js

Include the MongoDB
connector.

Configure the
MongoDB server

connection object,
passing in the

URL
(localhost)

and port.

Create the MongoDB database handle,
passing in the server connection objec
and a set of options. As of the 1.3.6 dri
the safe setting has been deprecated
Setting { w : 1 } should provide simi
results for a single MongoDB server.

Open the
database

connection.
Add a callback
function to be

executed when
the connection
has completed.
// ------------- BEGIN SERVER CONFIGURATION ---------------

www.EBooksWorld.ir

http://www.it-ebooks.info/

;
.

274 CHAPTER 8 The server database

app.configure(function () {
app.use(express.bodyParser());
app.use(express.methodOverride());
app.use(express.static(__dirname + '/public'));
app.use(app.router);

});
...

Now we can start our server application (node app.js at the command prompt) and
see the following output:

Express server listening on port 3000 in development mode
** Connected to MongoDB **

Now that we’ve connected our server application to MongoDB, let’s explore basic
Create-Read-Update-Delete (CRUD) operations.

8.3.3 Use MongoDB CRUD methods

Before we update our server application further, we’d like to get comfortable with
MongoDB CRUD methods. Let’s open a terminal and start the MongoDB shell by typ-
ing mongo. We can then create some documents in a collection (using the insert
method) as shown in listing 8.6. Our input is shown in bold:

> use spa;
switched to db spa
> db.user.insert({
 "name" : "Mike Mikowski",
 "is_online" : false,
 "css_map":{"top":100,"left":120,
 "background-color":"rgb(136, 255, 136)"
 }
});

> db.user.insert({
 "name" : "Mr. Joshua C. Powell, humble humanitarian",
 "is_online": false,
 "css_map":{"top":150,"left":120,
 "background-color":"rgb(136, 255, 136)"
 }
});

> db.user.insert({
 "name": "Your name here",
 "is_online": false,
 "css_map":{"top":50,"left":120,
 "background-color":"rgb(136, 255, 136)"
 }
});

> db.user.insert({
 "name": "Hapless interloper",

Listing 8.6 Create some documents in MongoDB

The line app.use(express.basicAuth('user', 'spa'))
has been deleted
www.EBooksWorld.ir

http://www.it-ebooks.info/

275Use the MongoDB driver

 "is_online": false,
 "css_map":{"top":0,"left":120,
 "background-color":"rgb(136, 255, 136)"
 }
});

We can read these document to ensure they have been added correctly (using the find
method) as shown in listing 8.7. Our input is shown in bold:

> db.user.find()
{ "_id" : ObjectId("5186aae56f0001debc935c33"),

"name" : "Mike Mikowski",
"is_online" : false,
"css_map" : {
"top" : 100, "left" : 120,
"background-color" : "rgb(136, 255, 136)"

}
},
{ "_id" : ObjectId("5186aaed6f0001debc935c34"),

"name" : "Mr. Josh C. Powell, humble humanitarian",
"is_online" : false,
"css_map" : {
"top" : 150, "left" : 120,
"background-color" : "rgb(136, 255, 136)"

}
}
{ "_id" : ObjectId("5186aaf76f0001debc935c35"),

"name" : "Your name here",
"is_online" : false,
"css_map" : {
"top" : 50, "left" : 120,
"background-color" : "rgb(136, 255, 136)"

}
}
{ "_id" : ObjectId("5186aaff6f0001debc935c36"),

"name" : "Hapless interloper",
"is_online" : false,
"css_map" : {
"top" : 0, "left" : 120,
"background-color" : "rgb(136, 255, 136)"

}
}

Note that MongoDB automatically adds a unique ID field, named _id, to any docu-
ment that’s inserted. Hmm, though the name field for one of our authors is obviously
correct (although perhaps an understatement), it seems too formal. Let’s remove the
stuffiness and update the document (using the update method) as shown in listing 8.8.
Our input is shown in bold:

Listing 8.7 Read documents from MongoDB
www.EBooksWorld.ir

http://www.it-ebooks.info/

276 CHAPTER 8 The server database

> db.user.update(
 { "_id" : ObjectId("5186aaed6f0001debc935c34") },
 { $set : { "name" : "Josh Powell" } }
);

db.user.find({
 "_id" : ObjectId("5186aaed6f0001debc935c34")
});

{ "_id" : ObjectId("5186aaed6f0001debc935c34"),
"name" : "Josh Powell",
"is_online" : false,
"css_map" : {
"top" : 150, "left" : 120,
"background-color" : "rgb(136, 255, 136)"

}
}

We couldn’t help but notice that a hapless interloper has entered our database. Like a
red-shirted crew member in a Star Trek landing party, a hapless interloper shouldn’t
make it past the end of a scene. We’d hate to break with tradition, so let’s dispatch this
interloper forthwith and delete the document (using the remove method) as shown in
listing 8.9. Our input is shown in bold:

> db.user.remove(
 { "_id" : ObjectId("5186aaff6f0001debc935c36") }
);

> db.user.find()
{ "_id" : ObjectId("5186aae56f0001debc935c33"),

"name" : "Mike Mikowski",
"is_online" : false,
"css_map" : {
"top" : 100, "left" : 120,
"background-color" : "rgb(136, 255, 136)"

}
}
{ "_id" : ObjectId("5186aaed6f0001debc935c34"),

"name" : "Josh Powell",
"is_online" : false,
"css_map" : {
"top" : 150, "left" : 120,
"background-color" : "rgb(136, 255, 136)"

}
}
{ "_id" : ObjectId("5186aaf76f0001debc935c35"),

"name" : "Your name here",
"is_online" : false,
"css_map" : {
"top" : 50, "left" : 120,

Listing 8.8 Update a document in MongoDB

Listing 8.9 Delete a document from MongoDB
www.EBooksWorld.ir

http://www.it-ebooks.info/

)

277Use the MongoDB driver

"background-color" : "rgb(136, 255, 136)"
}

}

We’ve now completed the Create-Read-Update-Delete operations using the MongoDB
console. Now let’s update our server application to support these operations.

8.3.4 Add CRUD to the server application

Because we’re using Node.js, the interaction with MongoDB is going to be different
than most other languages because JavaScript is event-based. Now that we have some
documents in the database to play around with, let’s update our router to use MongoDB
to fetch a list of user objects, as shown in listing 8.10. Changes are shown in bold:

/*
 * routes.js - module to provide routing
*/
...
// ---------------- BEGIN PUBLIC METHODS ------------------
configRoutes = function (app, server) {
 ...
 app.get('/:obj_type/list', function (request, response) {
 dbHandle.collection(
 request.params.obj_type,
 function (outer_error, collection) {
 collection.find().toArray(
 function (inner_error, map_list) {
 response.send(map_list);
 }
);
 }
);
 });
...
};

module.exports = { configRoutes : configRoutes };
// ----------------- END PUBLIC METHODS -------------------
...

Before looking at the results in your browser, you may want to get a browser extension
or add-on that makes the JSON more human-readable. We use JSONView 0.0.32 on
Chrome and JSONovich 1.9.5 on Firefox. Both of these are available through the
respective vendor add-on sites.

 We can start our application by typing node app.js in the terminal. When we point
our browser to http://localhost:3000/user/list, we should see a JSON document pre-
sentation similar to figure 8.3:

Listing 8.10 Update our router to retrieve a user list—webapp/routes.js

Use the
dbHandle object

to retrieve the
collection specified
in :obj_type in
the URL, and pass
in a callback to be

executed.
Find all documents in the
(dbHandle.collection
collection and transform the
results into an array.Send the list of JSON

objects back to the client.
www.EBooksWorld.ir

http://www.it-ebooks.info/

278 CHAPTER 8 The server database

We can now add the remaining CRUD operations as shown in listing 8.11. Changes are
shown in bold:

/*
 * routes.js - module to provide routing
*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 configRoutes,
 mongodb = require('mongodb'),

 mongoServer = new mongodb.Server(
 'localhost',
 mongodb.Connection.DEFAULT_PORT
),
 dbHandle = new mongodb.Db(
 'spa', mongoServer, { safe : true }
),

 makeMongoId = mongodb.ObjectID;
// ------------- END MODULE SCOPE VARIABLES ---------------

// ---------------- BEGIN PUBLIC METHODS ------------------
configRoutes = function (app, server) {
 app.get('/', function (request, response) {
 response.redirect('/spa.html');

Listing 8.11 Add the MongoDB driver and CRUD to our router—routes.js

Figure 8.3 Response
from MongoDB through
Node.js to client

Copy the ObjectID function
into a makeMongoId
module-scope variable.
This is a convenience. Note
that we now open the
database connection at
the end of the module.
 });

www.EBooksWorld.ir

http://www.it-ebooks.info/

279Use the MongoDB driver

 app.all('/:obj_type/*?', function (request, response, next) {
 response.contentType('json');
 next();
 });

 app.get('/:obj_type/list', function (request, response) {
 dbHandle.collection(
 request.params.obj_type,
 function (outer_error, collection) {
 collection.find().toArray(
 function (inner_error, map_list) {
 response.send(map_list);
 }
);
 }
);
 });

 app.post('/:obj_type/create', function (request, response) {
 dbHandle.collection(
 request.params.obj_type,
 function (outer_error, collection) {
 var
 options_map = { safe: true },
 obj_map = request.body;

 collection.insert(
 obj_map,
 options_map,
 function (inner_error, result_map) {
 response.send(result_map);
 }
);
 }
);
 });

 app.get('/:obj_type/read/:id', function (request, response) {
 var find_map = { _id: makeMongoId(request.params.id) };
 dbHandle.collection(
 request.params.obj_type,
 function (outer_error, collection) {
 collection.findOne(
 find_map,
 function (inner_error, result_map) {
 response.send(result_map);
 }
);
 }
);
 });

 app.post('/:obj_type/update/:id', function (request, response) {
 var
 find_map = { _id: makeMongoId(request.params.id) },
 obj_map = request.body;

Add the capability to list every
user. This was shown earlier in
the section. Don’t add it twice.

Insert the document into MongoDB. The
safe option specifies that the callback
won’t be executed until after the
document is successfully inserted into
MongoDB; otherwise the callback will be
executed immediately without waiting
for a success response. It’s up to you if
you want to be quicker or safer. This
isn’t strictly required here, as we had set
our default safe option when we
configured the database handle. Also see
our earlier note about the new w option
which deprecates the safe option.

Use the findOne method provided by
the Node.js MongoDB driver to find and
return the first document matching the
search parameters. Since there should
be only one object of a particular ID,
one is all we need returned.
www.EBooksWorld.ir

http://www.it-ebooks.info/

280 CHAPTER 8 The server database

 dbHandle.collection(
 request.params.obj_type,
 function (outer_error, collection) {
 var
 sort_order = [],
 options_map = {
 'new' : true, upsert: false, safe: true
 };

 collection.findAndModify(
 find_map,
 sort_order,
 obj_map,
 options_map,
 function (inner_error, updated_map) {
 response.send(updated_map);
 }
);
 }
);
 });

 app.get('/:obj_type/delete/:id', function (request, response) {
 var find_map = { _id: makeMongoId(request.params.id) };

 dbHandle.collection(
 request.params.obj_type,
 function (outer_error, collection) {
 var options_map = { safe: true, single: true };

 collection.remove(
 find_map,
 options_map,
 function (inner_error, delete_count) {
 response.send({ delete_count: delete_count });
 }
);
 }
);
 });
};

module.exports = { configRoutes : configRoutes };
// ----------------- END PUBLIC METHODS -------------------

// ------------- BEGIN MODULE INITIALIZATION --------------
dbHandle.open(function () {
 console.log('** Connected to MongoDB **');
});
// -------------- END MODULE INITIALIZATION ---------------

We now have user CRUD operations working from the client through the Node.js
server and into MongoDB and back again. Now we would like the application to vali-
date data received from the client.

Use the findAndModify method provided by
the Node.js MongoDB driver. This method will find
all documents matching the search criteria and
replace them with the object found in obj_map.
Yes, we know the name is misleading, but we didn’t
write the MongoDB driver, now did we?

Use the remove method to
remove all documents
matching the attributes of
the object map. We pass in
single: true as an
option so that it only deletes
one document at most.

Add a module
initialization
section.
www.EBooksWorld.ir

http://www.it-ebooks.info/

281Validate client data

8.4 Validate client data
MongoDB doesn’t have a mechanism to define what can and can’t be added to a col-
lection. We’ll need to validate client data ourselves before saving it. We want our data
transfer to work as shown in figure 8.5:

Our first step is to define what types of objects are valid.

8.4.1 Validate the object type

As it is now, we’re accepting any route and passing objects to MongoDB without even
verifying if it’s an allowable type. For example, a POST to create a horse will work. The
following is an example using wget. Our input is shown in bold:

Create a new MongoDB collection of horses
wget http://localhost:3000/horse/create \
 --header='content-type: application/json' \
 --post-data='{"css_map":{"color":"#ddd"},"name":"Ed"}'\
 -O -

Add another horse
wget http://localhost:3000/horse/create \
 --header='content-type: application/json' \
 --post-data='{"css_map":{"color":"#2e0"},"name":"Winney"}'\
 -O -

Check the corral
wget http://localhost:3000/horse/list -O -

[{
"css_map": {

"color": "#ddd"
},
"name": "Ed",
"_id": "51886ac7e7f0be8d20000001"

},
{
"css_map": {

"color": "#2e0"
},
"name": "Winney",
"_id": "51886adae7f0be8d20000002"

Client Routes.js MongoDB

Validate object type
Validate object

Insert to MongoDB

Store in JSON

Send JSON
response

Send JSON
response

Figure 8.4
Validate client
data—the path
through the code
}]

www.EBooksWorld.ir

http://www.it-ebooks.info/

t
to
ler.

t

282 CHAPTER 8 The server database

This is even worse than it may appear. MongoDB will not only store the document, but
it’ll create a completely new collection (as it did in our example), which consumes a fair
amount of resources. We couldn’t go to production like this, as a simple script kiddie
could easily overwhelm the server(s) in minutes by running a script that creates thou-
sands of new MongoDB collections.3 We should allow access only to approved object
types, as shown in figure 8.5.

 This is easy enough to implement. We can create a map of allowable object types
and then check against it in the router. Let’s modify the routes.js file to do this, as
shown in listing 8.12. Changes are shown in bold:

/*
 * routes.js - module to provide routing
*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
...
 makeMongoId = mongodb.ObjectID,
 objTypeMap = { 'user': {} };<=
// ------------- END MODULE SCOPE VARIABLES ---------------

// ---------------- BEGIN PUBLIC METHODS ------------------
configRoutes = function (app, server) {
 app.get('/', function (request, response) {
 response.redirect('/spa.html');
 });

 app.all('/:obj_type/*?', function (request, response, next) {
 response.contentType('json');
 if (objTypeMap[request.params.obj_type]) {
 next();
 }
 else {
 response.send({ error_msg : request.params.obj_type

Listing 8.12 Validate the incoming routes—routes.js

Client Routes.js MongoDB

Validate object type
Insert to MongoDB

Store in JSON

Send JSON
response

Send JSON
response

Figure 8.5
Validation of ob-
ject type

Declare and assign
a map of allowed
object types.

If the object type
(:obj_type) is
defined in the objec
type map, move on
the next route hand

If the object type
(:obj_type) is
not defined in the
object type map,

send a JSON
response telling

he client this is an
invalid route.
3 On my 64-bit developer box, each nearly empty collection grabs around 64MB of disk space.

www.EBooksWorld.ir

http://www.it-ebooks.info/

283Validate client data

 + ' is not a valid object type'
 });
 }
 });
...

We don’t want to stop with just ensuring the object type is allowed. We also want to
ensure the client data is structured as we expect. Let’s do that next.

8.4.2 Validate the object

The browser client sends a JSON document to the server to represent an object. As
many readers are surely aware, JSON has displaced XML for many web APIs because it’s
more compact and often easier to process.

 One stellar feature that XML provides is the ability to define a Document Type Defini-
tion (DTD) that describes allowable content. JSON has a similar, although less mature,
standard that can ensure document content similar to a DTD. It’s called a JSON schema.

JSV is a validator that uses a JSON schema. It can be used in the browser and the
server, so we don’t have to write or maintain two separate (and always subtly conflict-
ing) validation libraries. Here are the steps we need to validate our objects:

■ Install the JSV node module
■ Create a JSON schema
■ Load JSON schemas
■ Create a validation function
■ Validate incoming data

Our first step is to install JSV.

INSTALL THE JSV NODE MODULE

Update the package.json file to include JSV 4.0.2. It should now look like listing 8.13:

{ "name" : "SPA",
"version" : "0.0.3",
"private" : true,
"dependencies" : {
"express" : "3.2.x",
"mongodb" : "1.3.x",
"socket.io" : "0.9.x",
"JSV" : "4.0.x"

}
}

When we run npm install, npm should pick up the changes and install JSV.

CREATE A JSON SCHEMA

Before we can validate a user object, we must decide what properties are allowed and
what values they might take. The JSON schema provides us a nice, standard mechanism
to describe these constraints, as shown in listing 8.14. Be sure to pay careful attention

Listing 8.13 Update the manifest to include JSV—webapp/package.json
to the annotations, as they explain the constraints.

www.EBooksWorld.ir

http://www.it-ebooks.info/

,

 be
h"
284 CHAPTER 8 The server database

{ "type" : "object",
 "additionalProperties" : false,
 "properties" : {
 "_id" : {
 "type" : "string",
 "minLength" : 25,
 "maxLength" : 25
 },
 "name" : {
 "type" : "string",
 "minLength" : 2,
 "maxLength" : 127
 },
 "is_online" : {
 "type" : "boolean"
 },
 "css_map": {
 "type" : "object",
 "additionalProperties" : false,
 "properties" : {
 "background-color" : {
 "required" : true,
 "type" : "string",
 "minLength" : 0,
 "maxLength" : 25
 },
 "top" : {
 "required" : true,
 "type" : "integer"
 },
 "left" : {
 "required" : true,
 "type" : "integer"
 }
 }
 }
 }
}

You may have noticed that we have defined a schema that constrains an object and
constrains an object within that object. This illustrates how a JSON schema can be infi-
nitely recursive. JSON schemas may extend other schemas too, much like XML. If you
want to learn more about JSON schemas, check out the official website at json-
schema.org. Now we can load our schema and ensure any user object we receive con-
tains only the data we allow.

Listing 8.14 Create the user schema—webapp/user.json

This object represents the schema for an object
("type" : "object"). Note that it could represent the
constraints for a Boolean, an integer, a string, or an array.

The object type can accept
or deny properties not
explicitly declared. If false
the validator won’t allow
undeclared properties. The
correct choice is almost
always false.

The properties
value provides a

map of properties
for the object

schema, keyed by
property name.

The _id property is a string, and must
25 characters in length ("minLengt
: 25, "maxLength" : 25).

The name property
is similar to _id,

although it allows a
variable length.

The is_online property
must be true or false.

The css_map
property must be

an object, and
doesn’t allow

undeclared
properties.

The css_map object’s background-
color property is required, is a string, and
may be up to 25 characters long.

The css_map
object’s top

property must
exist and must
be an integer.

The css_map object’s
left property must
exist and must be an
integer.
www.EBooksWorld.ir

http://www.it-ebooks.info/

a
to
ap
285Validate client data

LOAD JSON SCHEMAS

Let’s load our schema documents into memory when the server is started. This will
avoid expensive file seeks while our server application is running. We can load one
schema document per object type defined in the object type map (objTypeMap) as
shown in listing 8.15. Changes are shown in bold:4

/*
 * routes.js - module to provide routing
*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 loadSchema, configRoutes,
 mongodb = require('mongodb'),
 fsHandle = require('fs'),

 mongoServer = new mongodb.Server(
 'localhost',
 mongodb.Connection.DEFAULT_PORT
),
 dbHandle = new mongodb.Db(
 'spa', mongoServer, { safe : true }
),

 makeMongoId = mongodb.ObjectID,
 objTypeMap = { 'user': {} };
// ------------- END MODULE SCOPE VARIABLES ---------------

// --------------- BEGIN UTILITY METHODS ------------------
loadSchema = function (schema_name, schema_path) {
 fsHandle.readFile(schema_path, 'utf8', function (err, data) {
 objTypeMap[schema_name] = JSON.parse(data);
 });
};
// ---------------- END UTILITY METHODS -------------------

// ---------------- BEGIN PUBLIC METHODS ------------------
...
// ----------------- END PUBLIC METHODS -------------------

// ------------- BEGIN MODULE INITIALIZATION --------------
dbHandle.open(function () {
 console.log('** Connected to MongoDB **');
});

// load schemas into memory (objTypeMap)
(function () {
 var schema_name, schema_path;
 for (schema_name in objTypeMap) {
 if (objTypeMap.hasOwnProperty(schema_name)) {
 schema_path = __dirname + '/' + schema_name + '.json';

Listing 8.15 Load schemas in our router—webapp/routes.js

Include the file
system module.

Create a
loadSchema
utility to read in
file and store it in
the object type m
(objTypeMap).

Read a file for each object type
defined in objTypeMap. In
this case we have one object
type: user.
4 Windows users will need to replace forward slashes (/) with double back slashes (\\) for file system paths.

www.EBooksWorld.ir

http://www.it-ebooks.info/

286 CHAPTER 8 The server database

 loadSchema(schema_name, schema_path);
 }
 }
}());
// -------------- END MODULE INITIALIZATION ---------------

Now that we have our schemas loaded, we can create a validation function.

CREATE A VALIDATION FUNCTION

Now that we have the user JSON schema loaded, we want to compare incoming client
data against the schema. Listing 8.16 shows a simple function to do just that. Changes
are shown in bold:

/*
 * routes.js - module to provide routing
*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 loadSchema, checkSchema, configRoutes,
 mongodb = require('mongodb'),
 fsHandle = require('fs'),
 JSV = require('JSV').JSV,

 mongoServer = new mongodb.Server(
 'localhost',
 mongodb.Connection.DEFAULT_PORT
),
 dbHandle = new mongodb.Db(
 'spa', mongoServer, { safe : true }
),
 validator = JSV.createEnvironment(),

 makeMongoId = mongodb.ObjectID,
 objTypeMap = { 'user': {} };
// ------------- END MODULE SCOPE VARIABLES ---------------

// --------------- BEGIN UTILITY METHODS ------------------
loadSchema = function (schema_name, schema_path) {
 fsHandle.readFile(schema_path, 'utf8', function (err, data) {
 objTypeMap[schema_name] = JSON.parse(data);
 });
};

checkSchema = function (obj_type, obj_map, callback) {
 var

Listing 8.16 Add a function to validate documents—webapp/routes.js

Parse the data in the file into a JSON object and store it
in the object map. We use an external function

(loadSchema) as it’s generally bad practice to declare
a function within a loop, and JSLint will complain.

Include the JSV
module.

Create the JSV validator
environment.

The validator takes
three arguments:
the object, the

object schema
name to validate

against
(obj_type), and

a callback
function.
 schema_map = objTypeMap[obj_type],

www.EBooksWorld.ir

http://www.it-ebooks.info/

th
287Validate client data

 report_map = validator.validate(obj_map, schema_map);

 callback(report_map.errors);
};
// ---------------- END UTILITY METHODS -------------------

// ---------------- BEGIN PUBLIC METHODS ------------------
...

Now that we have a JSON schema loading and a validation function, we can validate
incoming client data.

VALIDATE INCOMING CLIENT DATA

Now we can complete validation. We just need to adjust the routes that accept client
data—create and update—to use the validator. In each case, we want to perform the
requested action if the list of errors is empty. Otherwise we want to return an error
report, as shown in listing 8.17. Changes are shown in bold:

/*
 * routes.js - module to provide routing
*/
...
// ---------------- BEGIN PUBLIC METHODS ------------------
configRoutes = function (app, server) {
 ...
 app.post('/:obj_type/create', function (request, response) {
 var
 obj_type = request.params.obj_type,
 obj_map = request.body;

 checkSchema(
 obj_type, obj_map,
 function (error_list) {
 if (error_list.length === 0) {
 dbHandle.collection(
 obj_type,
 function (outer_error, collection) {
 var options_map = { safe: true };

 collection.insert(
 obj_map,
 options_map,
 function (inner_error, result_map) {
 response.send(result_map);
 }
);
 }
);
 }
 else {
 response.send({
 error_msg : 'Input document not valid',
 error_list : error_list

Listing 8.17 Create and update routes with validation—webapp/routes.js

Once the validation
has been run, invoke
the callback with

the list of errors. If
e error list is empty,

the object is valid.

Call the validation function
(checkSchema) defined in the last
section, using the object type, the object
map, and a callback function as arguments.
 });

www.EBooksWorld.ir

http://www.it-ebooks.info/

288 CHAPTER 8 The server database

 }
 }
);
 });

 ...

 app.post('/:obj_type/update/:id', function (request, response) {
 var
 find_map = { _id: makeMongoId(request.params.id) },
 obj_map = request.body,
 obj_type = request.params.obj_type;

 checkSchema(
 obj_type, obj_map,
 function (error_list) {
 if (error_list.length === 0) {
 dbHandle.collection(
 obj_type,
 function (outer_error, collection) {
 var
 sort_order = [],
 options_map = {
 'new' : true, upsert: false, safe: true
 };

 collection.findAndModify(
 find_map,
 sort_order,
 obj_map,
 options_map,
 function (inner_error, updated_map) {
 response.send(updated_map);
 }
);
 }
);
 }
 else {
 response.send({
 error_msg : 'Input document not valid',
 error_list : error_list
 });
 }
 }
);
 });
 ...
};

module.exports = { configRoutes : configRoutes };
// ----------------- END PUBLIC METHODS -------------------
...

Now that we have completed validation, let’s see how we’ve done. First we should
make sure all our modules pass JSLint (jslint user.json app.js routes.js), and
then start the application (node app.js). Then we can use our deft wget skills to POST

Check to see if the error list is
empty. If it is, then create or
update the object as before.

If the error list
isn’t empty, send
an error report.
bad and good data, as shown in listing 8.18. Our input is shown in bold:

www.EBooksWorld.ir

http://www.it-ebooks.info/

289Validate client data

Try invalid data
wget http://localhost:3000/user/create \
 --header='content-type: application/json' \
 --post-data='{"name":"Betty",
 "css_map":{"background-color":"#ddd",
 "top" : 22 }
 }' -O -

--2013-06-07 22:20:17-- http://localhost:3000/user/create
Resolving localhost (localhost)... 127.0.0.1
Connecting to localhost (localhost)|127.0.0.1|:3000... connected.
HTTP request sent, awaiting response... 200 OK
Length: 354 [application/json]
Saving to: â€˜STDOUTâ€™
...
{ "error_msg": "Input document not valid",
 "error_list": [
 {
 "uri": "urn:uuid:8c05b92a...",
 "schemaUri": "urn:uuid:.../properties/css_map/properties/left",
 "attribute": "required",
 "message": "Property is required",
 "details": true
 }
]
}
...
Oops, we missed the "left" property. Let's fix that:
wget http://localhost:3000/user/create \
 --header='content-type: application/json' \
 --post-data='{"name":"Betty",
 "css_map":{"background-color":"#ddd",
 "top" : 22, "left" : 500 }
 }' -O -
--2013-05-07 22:24:02-- http://localhost:3000/user/create
Resolving localhost (localhost)... 127.0.0.1
Connecting to localhost (localhost)|127.0.0.1|:3000... connected.
HTTP request sent, awaiting response... 200 OK
Length: 163 [application/json]
Saving to: â€˜STDOUTâ€™
...
 {
 "name": "Betty",
 "css_map": {
 "background-color": "#ddd",
 "top": 22,
 "left": 500
 },
 "_id": "5189e172ac5a4c5c68000001"
 }
...
Success!

Listing 8.18 POST bad and good data using deft wget skills
www.EBooksWorld.ir

http://www.it-ebooks.info/

290 CHAPTER 8 The server database

Updating a user with wget is left as an exercise for the reader.
 In the next section we’ll move the CRUD capability into a separate module. This

will result in cleaner, easier to understand, and more maintainable code.

8.5 Create a separate CRUD module
At this point, the logic for CRUD operations and routing is contained in the routes.js
file as shown in figure 8.6.

 We have the server accepting calls from the client, validating the data, and saving it
to the database. The only way to validate and save the data is through calling the
routes with an HTTP call. If this were all we needed for the application, then it’d prob-
ably makes sense to stop here with no further abstraction. But our SPA will need to cre-
ate and modify objects through web socket connections as well. Therefore, we’ll
create a CRUD module that has all of the logic for validating and managing our docu-
ments in the database. The router will then use the CRUD module for any required
CRUD operations.

 Before we create the CRUD module, we want to emphasize why we waited until now
to create it. We like to keep our code as direct and simple as possible, but not simpler.
If we have to do an operation only once in the code, we prefer to usually have it inline
or at least as a local function. But when we find that we need to perform an operation
two or more times, we want to abstract it. Though this may not save initial coding
time, it almost always saves maintenance time, as we centralize the logic into a single
routine and avoid subtle errors that can result in variances in implementation. Of
course, it takes good judgment to determine how far to take this philosophy. For
example, we feel abstracting all for loops is generally not a good idea even though it’s
thoroughly possible with JavaScript.

 After we move the MongoDB connection and validations over to a separate CRUD
module, our router will no longer be concerned with the implementation of data stor-
age and will act more like a controller: it dispatches requests to other modules instead
of performing actions itself, as shown in figure 8.7.

Client Routes.js MongoDB

Validate object type
Validate object

Insert to MongoDB

Store in JSON

Send JSON
response

Send JSON
response

Figure 8.6 Path through code
www.EBooksWorld.ir

http://www.it-ebooks.info/

291Create a separate CRUD module

Our first step in creating the CRUD module will be to prepare the file structure.

8.5.1 Prepare the file structure

Our file structure has remained consistent since the beginning of this chapter. Now
that we need to add an additional module, we need to rethink it a bit. Our current
structure is shown in listing 8.19:

chapter_8
`-- webapp

|-- app.js
|-- node_modules/
|-- package.json
|-- public
| |-- css/
| |-- js/
| `-- spa.html
|-- user.json
`-- routes.js

We’d rather keep our modules in a separate directory called lib. This will tidy up the
webapp directory and keep our modules out of the node_modules directory. The
node_modules directory should only contain external modules added through npm
install so that it can be deleted and recreated without interfering with our modules.
Listing 8.20 shows how we want to structure our files. Changes are shown in bold:

chapter_8
`-- webapp

|-- app.js
|-- lib
| |-- crud.js
| |-- routes.js
| `-- user.json
|-- node_modules/

Listing 8.19 Our current file structure

Listing 8.20 A new and enlightened file structure

Client Routes.js CRUD.js MongoDB

Call CRUD

Store in JSON

Send JSON
response

Validate object type
Validate object

Insert to MongoDB

Send JSON
response

Send JSON
response

Figure 8.7 Code path on the server
|-- package.json

www.EBooksWorld.ir

http://www.it-ebooks.info/

292 CHAPTER 8 The server database

|-- public
|-- css/
|-- js/
`-- spa.html

Our first step toward file enlightenment is to move our routes file into webapp/lib.
Once we’ve done that, we need to update our server application to point to the new
path, as shown in listing 8.21. Changes are shown in bold:

/*
* app.js - Express server with routing

*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var

http = require('http'),
express = require('express'),
routes = require('./lib/routes'),
app = express(),
server = http.createServer(app);

// ------------- END MODULE SCOPE VARIABLES ---------------
...

Our next step is to include the CRUD module in our routes module, as shown in list-
ing 8.22. Changes are shown in bold:

/*
* routes.js - module to provide routing

*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var

loadSchema, checkSchema, configRoutes,
mongodb = require('mongodb'),
fsHandle = require('fs'),
JSV = require('JSV').JSV,

 crud = require('./crud'),
...

We can create our CRUD module and sketch its API. We’ll use module.exports to
share the CRUD methods, as shown in listing 8.23.

/*
* crud.js - module to provide CRUD db capabilities

*/

Listing 8.21 Revise app.js to require moved routes.js—webapp/app.js

Listing 8.22 Adjust the routes module to require CRUD—webapp/lib/routes.js

Listing 8.23 Create the CRUD module—webapp/lib/crud.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

293Create a separate CRUD module

/*jslint node : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global */

// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var

checkType, constructObj, readObj,
updateObj, destroyObj;

// ------------- END MODULE SCOPE VARIABLES ---------------

// ---------------- BEGIN PUBLIC METHODS ------------------
checkType = function () {};
constructObj = function () {};
readObj = function () {};
updateObj = function () {};
destroyObj = function () {};

module.exports = {
makeMongoId : null,
checkType : checkType,
construct : constructObj,
read : readObj,
update : updateObj,
destroy : destroyObj

};
// ----------------- END PUBLIC METHODS -----------------

// ------------- BEGIN MODULE INITIALIZATION --------------
console.log('** CRUD module loaded **');
// -------------- END MODULE INITIALIZATION ---------------

When we start the server with node app.js it should run without any errors:

** CRUD module loaded **
Express server listening on port 3000 in development mode
** Connected to MongoDB **

Note that we’ve added two public methods beyond basic CRUD operations. The first is
makeMongoId, which provides the capability to make a MongoDB ID object. The sec-
ond is checkType, which we intend to use to check allowable object types. Now that we
have our files in place, we can move our CRUD logic into the proper module.

8.5.2 Move CRUD into its own module

We can complete the CRUD module by copying our methods from the routes mod-
ule and then replacing the HTTP-specific parameters with general ones. We won’t go
into the minutia as we feel the conversion is obvious. The completed module is
shown in listing 8.24. Please pay attention to the annotations as they provide some

Use construct as our
method name because
create is a root method
on the JavaScript Object
prototype.

Use destroy as our
method name because
delete is a reserved
word in JavaScript.
additional insight:

www.EBooksWorld.ir

http://www.it-ebooks.info/

294 CHAPTER 8 The server database

/*
 * crud.js - module to provide CRUD db capabilities
*/

/*jslint node : true, continue : true,
 devel : true, indent : 2, maxerr : 50,
 newcap : true, nomen : true, plusplus : true,
 regexp : true, sloppy : true, vars : false,
 white : true
*/
/*global */

// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 loadSchema, checkSchema, clearIsOnline,
 checkType, constructObj, readObj,
 updateObj, destroyObj,

 mongodb = require('mongodb'),
 fsHandle = require('fs'),
 JSV = require('JSV').JSV,

 mongoServer = new mongodb.Server(
 'localhost',
 mongodb.Connection.DEFAULT_PORT
),
 dbHandle = new mongodb.Db(
 'spa', mongoServer, { safe : true }
),
 validator = JSV.createEnvironment(),

 objTypeMap = { 'user' : {} };
// ------------- END MODULE SCOPE VARIABLES ---------------

// ---------------- BEGIN UTILITY METHODS -----------------
loadSchema = function (schema_name, schema_path) {
 fsHandle.readFile(schema_path, 'utf8', function (err, data) {
 objTypeMap[schema_name] = JSON.parse(data);
 });
};

checkSchema = function (obj_type, obj_map, callback) {
 var
 schema_map = objTypeMap[obj_type],
 report_map = validator.validate(obj_map, schema_map);

 callback(report_map.errors);
};

clearIsOnline = function () {
 updateObj(
 'user',
 { is_online : true },
 { is_online : false },

Listing 8.24 Move logic to our CRUD module—webapp/lib/crud.js

Include libraries required
for CRUD per webapp/
lib/routes.js.

Create the database connection
variables (mongodb and
dbHandle) and the JSON schema
validator per webapp/lib/
routes.js.

Declare the allowable object
types map (objTypeMap) per
webapp/lib/routes.js.Add schema loading

and checking
utilities per

webapp/lib/
routes.js.

Create a clearIsOnline method to
be executed once MongoDB is connected.
It ensures all users are marked as offline
when the server is started.
 function (response_map) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

ch
fo

hor
thi

su

ob
l

s

fro

r
.
l.
295Create a separate CRUD module

 console.log('All users set to offline', response_map);
 }
);
};
// ----------------- END UTILITY METHODS ------------------

// ---------------- BEGIN PUBLIC METHODS ------------------
checkType = function (obj_type) {
 if (! objTypeMap[obj_type]) {
 return ({ error_msg : 'Object type "' + obj_type
 + '" is not supported.'
 });
 }
 return null;
};

constructObj = function (obj_type, obj_map, callback) {
 var type_check_map = checkType(obj_type);
 if (type_check_map) {
 callback(type_check_map);
 return;
 }

 checkSchema(
 obj_type, obj_map,
 function (error_list) {
 if (error_list.length === 0) {
 dbHandle.collection(
 obj_type,
 function (outer_error, collection) {
 var options_map = { safe: true };

 collection.insert(
 obj_map,
 options_map,
 function (inner_error, result_map) {
 callback(result_map);
 }
);
 }
);
 }
 else {
 callback({
 error_msg : 'Input document not valid',
 error_list : error_list
 });
 }
 }
);
};

readObj = function (obj_type, find_map, fields_map, callback) {
 var type_check_map = checkType(obj_type);
 if (type_check_map) {
 callback(type_check_map);

Create a method to
eck if an object type,
r example, user or
se, is supported by

s module. At present
user is the only

pported object type.

Move logic to create
(construct) an

ject from webapp/
ib/routes.js to
this module. Use the
ame logic but adjust
to be more general.
This facilitates calls

m the routes module
and other modules. Add logic to ensure the

requested object type is
supported. If not, return
a JSON error document.

Create the read method pe
webapp/lib/routes.js

Adjust the logic to be more genera

Ensure the
requested

object type is
supported. If
not, return a

JSON error
document.
 return;

www.EBooksWorld.ir

http://www.it-ebooks.info/

r
.
l.
296 CHAPTER 8 The server database

 }

 dbHandle.collection(
 obj_type,
 function (outer_error, collection) {
 collection.find(find_map, fields_map).toArray(
 function (inner_error, map_list) {
 callback(map_list);
 }
);
 }
);
};

updateObj = function (obj_type, find_map, set_map, callback) {
 var type_check_map = checkType(obj_type);
 if (type_check_map) {
 callback(type_check_map);
 return;
 }

 checkSchema(
 obj_type, set_map,
 function (error_list) {
 if (error_list.length === 0) {
 dbHandle.collection(
 obj_type,
 function (outer_error, collection) {
 collection.update(
 find_map,
 { $set : set_map },
 { safe : true, multi : true, upsert : false },
 function (inner_error, update_count) {
 callback({ update_count : update_count });
 }
);
 }
);
 }
 else {
 callback({
 error_msg : 'Input document not valid',
 error_list : error_list
 });
 }
 }
);
};

destroyObj = function (obj_type, find_map, callback) {
 var type_check_map = checkType(obj_type);
 if (type_check_map) {
 callback(type_check_map);
 return;
 }

Create the update method pe
webapp/lib/routes.js

Adjust the logic to be more genera

Ensure the requested
object type is supported.
If not, return a JSON
error document.

Create the delete (destroy)
method per webapp/lib/
routes.js. Adjust the logic

to be more general.

Ensure the requested
object type is supported.
If not, return a JSON
error document.
 dbHandle.collection(

www.EBooksWorld.ir

http://www.it-ebooks.info/

297Create a separate CRUD module

 obj_type,
 function (outer_error, collection) {
 var options_map = { safe: true, single: true };

 collection.remove(find_map, options_map,
 function (inner_error, delete_count) {
 callback({ delete_count: delete_count });
 }
);
 }
);
};

module.exports = {
 makeMongoId : mongodb.ObjectID,
 checkType : checkType,
 construct : constructObj,
 read : readObj,
 update : updateObj,
 destroy : destroyObj
};
// ----------------- END PUBLIC METHODS -----------------

// ------------- BEGIN MODULE INITIALIZATION --------------
dbHandle.open(function () {
 console.log('** Connected to MongoDB **');
 clearIsOnline();
});

// load schemas into memory (objTypeMap)
(function () {
 var schema_name, schema_path;
 for (schema_name in objTypeMap) {
 if (objTypeMap.hasOwnProperty(schema_name)) {
 schema_path = __dirname + '/' + schema_name + '.json';
 loadSchema(schema_name, schema_path);
 }
 }
}());
// -------------- END MODULE INITIALIZATION ---------------

The routes module now becomes much simpler, as most logic and many dependen-
cies have been moved to the CRUD module. A revised routes file should look like list-
ing 8.25. Changes are shown in bold:

/*
 * routes.js - module to provide routing
*/

/*jslint node : true, continue : true,
 devel : true, indent : 2, maxerr : 50,
 newcap : true, nomen : true, plusplus : true,
 regexp : true, sloppy : true, vars : false,

Listing 8.25 Our modified routes module—webapp/lib/routes.js

Neatly export all our
public methods.

Call the
clearIsOnline

method once
MongoDB is
connected.

Initialize the in-
memory schema

storage per
webapp/lib/
routes.js.
 white : true

www.EBooksWorld.ir

http://www.it-ebooks.info/

Rem
type
this i

mo
safer
CRUD

Use the
read

an o
resp

CRUD
data
eithe

the res

Use t

me

r

Use
re

un
th

su

obj

Us
de

e
e
e
.

298 CHAPTER 8 The server database

*/
/*global */

// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 configRoutes,
 crud = require('./crud'),
 makeMongoId = crud.makeMongoId;
// ------------- END MODULE SCOPE VARIABLES ---------------

// ---------------- BEGIN PUBLIC METHODS ------------------
configRoutes = function (app, server) {
 app.get('/', function (request, response) {
 response.redirect('/spa.html');
 });

 app.all('/:obj_type/*?', function (request, response, next) {
 response.contentType('json');
 next();
 });

 app.get('/:obj_type/list', function (request, response) {
 crud.read(
 request.params.obj_type,
 {}, {},
 function (map_list) { response.send(map_list); }
);
 });

 app.post('/:obj_type/create', function (request, response) {
 crud.construct(
 request.params.obj_type,
 request.body,
 function (result_map) { response.send(result_map); }
);
 });

 app.get('/:obj_type/read/:id', function (request, response) {
 crud.read(
 request.params.obj_type,
 { _id: makeMongoId(request.params.id) },
 {},
 function (map_list) { response.send(map_list); }
);
 });

 app.post('/:obj_type/update/:id', function (request, response) {
 crud.update(
 request.params.obj_type,
 { _id: makeMongoId(request.params.id) },
 request.body,
 function (result_map) { response.send(result_map); }
);
 });

 app.get('/:obj_type/delete/:id', function (request, response) {

Most variable declarations are
moved to the CRUD module
and removed here.

Remove
the utilities

section.

ove the object-
 check here, as
s now handled

by the CRUD
dule. It’s much
 to rely on the
 module to do

this check.

 CRUD module
method to get
bject list. The
onse from the
module can be
or an error. In
r case, return

ults unaltered.

he CRUD module
construct

thod to create a
user. Return the

esults unaltered.

 the CRUD module
ad method to get

a single object.
Return the results
altered. Note that
is is different than

our prior read
method, as a

ccessful response
returns a single

ect inside an array.

e the CRUD module
stroy method to

remove a single
object. Return the
results unaltered.

Use the CRUD modul
update method to updat

a single object. Return th
results unaltered
 crud.destroy(

www.EBooksWorld.ir

http://www.it-ebooks.info/

299Build the Chat module

 request.params.obj_type,
 { _id: makeMongoId(request.params.id) },
 function (result_map) { response.send(result_map); }
);
 });
};

module.exports = { configRoutes : configRoutes };
// ----------------- END PUBLIC METHODS -------------------

Now our routes module is much smaller and uses the CRUD module to service routes.
And, perhaps more importantly, our CRUD module is ready to be used by the chat
module we’ll build in the next section.

8.6 Build the Chat module
We want our server application to provide chat capabilities to our SPA. Until now,
we’ve been building out the client, UI, and supporting framework on the server. See
figure 8.8 to see how our application should look once chat is implemented.

We’ll have a working chat server by the end of this section. We’ll start by creating a
chat module.

8.6.1 Start the chat module

Socket.IO should be installed in our webapp directory already. Please ensure your
webapp/package.json manifest has the correct modules listed:

Export our configuration
method as before.Remove the

initialization section.

Figure 8.8 Finished Chat application
www.EBooksWorld.ir

http://www.it-ebooks.info/

300 CHAPTER 8 The server database

{ "name" : "SPA",
"version" : "0.0.3",
"private" : true,
"dependencies" : {
"express" : "3.2.x",
"mongodb" : "1.3.x",
"socket.io" : "0.9.x",
"JSV" : "4.0.x"

}
}

Once our manifest matches the example, we can run npm install, and npm will
ensure socket.io and all other required modules are installed.

 Now we can build our chat messaging module. We want to include the CRUD mod-
ule because we’re certain we’ll need it for our messages. We’ll construct a chatObj
object and export it using module.exports. At first this object will have a single method
called connect that will take the http.Server instance (server) as an argument and
will begin listening for socket connections. Our first pass is shown in listing 8.26:

/*
* chat.js - module to provide chat messaging

*/

/*jslint node : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global */

// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var

chatObj,
socket = require('socket.io'),
crud = require('./crud');

// ------------- END MODULE SCOPE VARIABLES ---------------

// ---------------- BEGIN PUBLIC METHODS ------------------
chatObj = {

connect : function (server) {
var io = socket.listen(server);
return io;

}
};

module.exports = chatObj;
// ----------------- END PUBLIC METHODS -------------------

You may recall from chapter 6 that the client will be sending messages to the server—

Listing 8.26 Our first pass at the chat messaging module—webapp/lib/chat.js
adduser, updatechat, leavechat, disconnect, and updateavatar—using the /chat

www.EBooksWorld.ir

http://www.it-ebooks.info/

r

 a
he
.

301Build the Chat module

namespace. Let’s set up our chat client to handle these messages as shown in listing 8.27.
Changes are shown in bold:

/*
 * chat.js - module to provide chat messaging
*/
...
// ---------------- BEGIN PUBLIC METHODS ------------------
chatObj = {
 connect : function (server) {
 var io = socket.listen(server);

 // Begin io setup
 io
 .set('blacklist' , [])
 .of('/chat')
 .on('connection', function (socket) {
 socket.on('adduser', function () {});
 socket.on('updatechat', function () {});
 socket.on('leavechat', function () {});
 socket.on('disconnect', function () {});
 socket.on('updateavatar', function () {});
 }
);
 // End io setup

 return io;
 }
};

module.exports = chatObj;
// ----------------- END PUBLIC METHODS -------------------

Let’s return to the routes module, where we’ll include the chat module and then use
the chat.connect method to initialize the Socket.IO connection. We provide the
http.Server instance (server) as the argument, as shown in listing 8.28. Changes are
shown in bold:

/*
 * routes.js - module to provide routing
*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 configRoutes,
 crud = require('./crud'),
 chat = require('./chat'),
 makeMongoId = crud.makeMongoId;
// ------------- END MODULE SCOPE VARIABLES ---------------

Listing 8.27 Set up our app and outline message handlers—webapp/lib/chat.js

Listing 8.28 Update the routes module to initialize chat—webapp/lib/routes.js

Configure Socket.IO not to blacklist o
disconnect any other message.
Enabling disconnect allows us to
be notified when a client is dropped
using the Socket.IO heartbeat.

Configure Socket.IO
to respond to

messages in the
/chat namespace.

Define a function
that’s invoked when
client connects on t
/chat namespace

Create handlers for
messages in the

/chat namespace.
// ---------------- BEGIN PUBLIC METHODS ------------------

www.EBooksWorld.ir

http://www.it-ebooks.info/

302 CHAPTER 8 The server database

configRoutes = function (app, server) {
 ...

 chat.connect(server);
};

module.exports = { configRoutes : configRoutes };
// ----------------- END PUBLIC METHODS -------------------

When we start the server with node app.js we should see info - socket.io started
in the Node.js server log. We can also access http://localhost:3000 as before to man-
age user objects or view our application in the browser.

 We’ve declared all our message handlers, but now we need to make them respond.
Let’s start with the adduser message handler.

8.6.2 Create the adduser message handler

When a user attempts to sign in, the client sends an adduser message with user data to
our server application. Our adduser message handler should:

■ Try to find the user object with the provided username in MongoDB using the
CRUD module.

■ If an object with the requested username is found, use the found object.
■ If an object with the requested username is not found, create a new user object

with the provided username and insert it into the database. Use this newly cre-
ated object.

Why web sockets?
Web sockets have some distinct advantages over other near-real-time communica-
tion techniques used in the browser:

■ A web socket data frame requires only two bytes to maintain a data connection,
whereas an AJAX HTTP call (used in long-polling) often transfers kilobytes of
information per frame (the actual amount varies according to the number and
size of cookies).

■ Web sockets compare favorably to long-polling. They typically use about 1-2% of
the network bandwidth and have one-third the latency. Web sockets also tend to
be more firewall-friendly.

■ Web sockets are full-duplex, whereas most other solutions are not and require
the equivalent of two connections.

■ Unlike Flash sockets, web sockets work on any modern browser on nearly any
platform—including mobile devices like smart phones and tablets.

Though Socket.IO favors web sockets, it’s comforting to know that it’ll negotiate the
best connection possible if web sockets aren’t available.
www.EBooksWorld.ir

http://www.it-ebooks.info/

ut
lis

e
e.
303Build the Chat module

■ Update the user object in MongoDB to indicate the user is online (is_online:
true).

■ Update the chatterMap to store the user ID and a socket connection as key-
value pairs.

Let’s implement this logic as shown in listing 8.29. Changes are shown in bold:

/*
 * chat.js - module to provide chat messaging
*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 emitUserList, signIn, chatObj,
 socket = require('socket.io'),
 crud = require('./crud'),

 makeMongoId = crud.makeMongoId,
 chatterMap = {};
// ------------- END MODULE SCOPE VARIABLES ---------------

// ---------------- BEGIN UTILITY METHODS -----------------
// emitUserList - broadcast user list to all connected clients
//
emitUserList = function (io) {
 crud.read(
 'user',
 { is_online : true },
 {},
 function (result_list) {
 io
 .of('/chat')
 .emit('listchange', result_list);
 }
);
};

// signIn - update is_online property and chatterMap
//
signIn = function (io, user_map, socket) {
 crud.update(
 'user',
 { '_id' : user_map._id },
 { is_online : true },
 function (result_map) {
 emitUserList(io);
 user_map.is_online = true;
 socket.emit('userupdate', user_map);
 }
);

Listing 8.29 Create the adduser message handler—webapp/lib/chat.js

Declare the utility
methods,
emitUserList
and SignOn.

Add a
chatterMap to
correlate user IDs

to socket
connections.

Add the
emitUserList

ility to broadcast the
t of online people to

all connected clients.

Broadcast the list of
online people as a
listchange message.
Provide the new list of
online people as data.

Add the signIn utility
to sign in an existing
user by updating their
status (is_online :
true).

Once the user is
signed in, call

emitUserList
to broadcast the

list of online people
to all connected

clients.

Add the user to the
chatterMap and save the
user ID as an attribute on th
socket so it’s easily accessibl
 chatterMap[user_map._id] = socket;

www.EBooksWorld.ir

http://www.it-ebooks.info/

304 CHAPTER 8 The server database

 socket.user_id = user_map._id;
};
// ----------------- END UTILITY METHODS ------------------

// ---------------- BEGIN PUBLIC METHODS ------------------
chatObj = {
 connect : function (server) {
 var io = socket.listen(server);

 // Begin io setup
 io
 .set('blacklist' , [])
 .of('/chat')
 .on('connection', function (socket) {

 // Begin /adduser/ message handler
 // Summary : Provides sign in capability.
 // Arguments : A single user_map object.
 // user_map should have the following properties:
 // name = the name of the user
 // cid = the client id
 // Action :
 // If a user with the provided username already exists
 // in Mongo, use the existing user object and ignore
 // other input.
 // If a user with the provided username does not exist
 // in Mongo, create one and use it.
 // Send a 'userupdate' message to the sender so that
 // a login cycle can complete. Ensure the client id
 // is passed back so the client can correlate the user,
 // but do not store it in MongoDB.
 // Mark the user as online and send the updated online
 // user list to all clients, including the client that
 // originated the 'adduser' message.
 //
 socket.on('adduser', function (user_map) {
 crud.read(
 'user',
 { name : user_map.name },
 {},
 function (result_list) {
 var
 result_map,
 cid = user_map.cid;

 delete user_map.cid;

 // use existing user with provided name
 if (result_list.length > 0) {
 result_map = result_list[0];
 result_map.cid = cid;
 signIn(io, result_map, socket);
 }

 // create user with new name

Document the
adduser

message handler.

Update the
adduser message
handler to accept a
user_map object

from the client.

Use the crud.read method
to find all users with the
provided username.

If a user object with the
provided username is

found, call the signIn
utility using the found

object. The signIn
utility will send an

updateuser message to
the client and provide the
user_map as data. It will
also call emitUserList

to broadcast the list of
online people to all

connected clients.

www.EBooksWorld.ir

http://www.it-ebooks.info/

305Build the Chat module

 else {
 user_map.is_online = true;
 crud.construct(
 'user',
 user_map,
 function (result_list) {
 result_map = result_list[0];
 result_map.cid = cid;
 chatterMap[result_map._id] = socket;
 socket.user_id = result_map._id;
 socket.emit('userupdate', result_map);
 emitUserList(io);
 }
);
 }
 }
);
 });
 // End /adduser/ message handler

 socket.on('updatechat', function () {});
 socket.on('leavechat', function () {});
 socket.on('disconnect', function () {});
 socket.on('updateavatar', function () {});
 }
);
 // End io setup

 return io;
 }
};

module.exports = chatObj;
// ----------------- END PUBLIC METHODS -------------------

It can take a while to adjust to the callback method of thinking, but typically when we
call a method, and when that method finishes, the callback we provided gets exe-
cuted. In essence it turns procedural code like so:

var user = user.create();

if (user) {
//do things with user object

}

Into event-driven code like this:

user.create(function (user) {
// do things with user object

});

We use callbacks because many function calls in Node.js are asynchronous. In the pre-
ceding example, when we invoke user.create, the JavaScript engine will keep on exe-
cuting the subsequent code without waiting for the invocation to complete. One

If a user with the
provided username is

not found, create a
new object and store

it in the MongoDB
collection. Add the
user object to the

chatterMap and
save the user ID as an

attribute on the
socket so it is easily
accessible. Then call
emitUserList to
broadcast the list of
online people to all
connected clients.
www.EBooksWorld.ir

http://www.it-ebooks.info/

306 CHAPTER 8 The server database

guaranteed way to use the results immediately after they’re ready is to use a callback.5

If you’re familiar with the jQuery AJAX call, it uses the callback mechanism:

$.ajax({
'url': '/path',
'success': function (data) {
// do things with data

}
});

We can now point our browser to localhost:3000 and sign in. We encourage those play-
ing along at home to give it a try. Now let’s get people chatting.

8.6.3 Create the updatechat message handler

A fair amount of code was required to implement sign-in. Our application now keeps
track of users in MongoDB, managing their state, and broadcasts a list of online peo-
ple to all connected clients. Handling chat messaging is comparatively simple, espe-
cially now that we have the sign-in logic complete.

 When the client sends an updatechat message to our server application, it’s
requesting delivery of a message to someone. Our updatechat message handler
should:

■ Inspect the chat data and retrieve the recipient.
■ Determine if the intended recipient is online.

■ If the recipient is online, send the chat data to the recipient on their socket.
■ If the recipient is not online, send new chat data to the sender on their socket.

The new chat data should notify the sender that the intended recipient is not
online.

Let’s implement this logic as shown in listing 8.30. Changes are shown in bold:

/*
 * chat.js - module to provide chat messaging
*/
...
// ---------------- BEGIN PUBLIC METHODS ------------------
chatObj = {
 connect : function (server) {
 var io = socket.listen(server);

 // Begin io setup
 io
 .set('blacklist' , [])
 .of('/chat')

5 Another mechanism is called promises, and is generally more flexible than vanilla callbacks. Promise libraries
include Q (npm install q) and Promised-IO (npm install promised-io). jQuery for Node.js also pro-

Listing 8.30 Add the updatechat message handler—webapp/lib/chat.js
vides a rich and familiar set of promise methods. Appendix B shows the use of jQuery with Node.js.

www.EBooksWorld.ir

http://www.it-ebooks.info/

307Build the Chat module

 .on('connection', function (socket) {

 ...
 // Begin /adduser/ message handler
 ...
 socket.on('adduser', function (user_map) {
 ...
 });
 // End /adduser/ message handler

 // Begin /updatechat/ message handler
 // Summary : Handles messages for chat.
 // Arguments : A single chat_map object.
 // chat_map should have the following properties:
 // dest_id = id of recipient
 // dest_name = name of recipient
 // sender_id = id of sender
 // msg_text = message text
 // Action :
 // If the recipient is online, the chat_map is sent to her.
 // If not, a 'user has gone offline' message is
 // sent to the sender.
 //
 socket.on('updatechat', function (chat_map) {
 if (chatterMap.hasOwnProperty(chat_map.dest_id)) {
 chatterMap[chat_map.dest_id]
 .emit('updatechat', chat_map);
 }
 else {
 socket.emit('updatechat', {
 sender_id : chat_map.sender_id,
 msg_text : chat_map.dest_name + ' has gone offline.'
 });
 }
 });
 // End /updatechat/ message handler

 socket.on('leavechat', function () {});
 socket.on('disconnect', function () {});
 socket.on('updateavatar', function () {});
 }
);
 // End io setup

 return io;
 }
};

module.exports = chatObj;
// ----------------- END PUBLIC METHODS -------------------

We can now point our browser to localhost:3000 and sign in. If we sign in to another
browser window as a different user, we can pass messages back and forth. As always, we
encourage those playing along at home to give it a try. The only capabilities that don’t
yet work are disconnect and avatars. Let’s take care of disconnect next.

Document the
updatechat
message handler.

Add the chat_map
argument which

contains the chat
data from the client.

If the intended
recipient is online

(the user ID is in the
chatterMap),

forward the
chat_map to the

recipient client
through the

appropriate socket.

If the intended
recipient is not

online, return a new
chat_map to the

sender to indicate the
requested recipient is

no longer online.
www.EBooksWorld.ir

http://www.it-ebooks.info/

g
308 CHAPTER 8 The server database

8.6.4 Create disconnect message handlers

A client can close the session one of two ways. First, the user may click on their user-
name in the top-right corner of the browser window to sign out. This sends a
leavechat message to the server. Second, the user may close the browser window. This
results in a disconnect message to the server. In either case, Socket.IO does a good
job of cleaning up the socket connection.

 When our server application receives a leavechat or a disconnect message, it
should take the same two actions. First, it should mark the person associated with the
client as offline (is_online : false). Second, it needs to broadcast the updated list of
online people to all connected clients. This logic is shown in listing 8.31. Changes are
shown in bold:

/*
* chat.js - module to provide chat messaging

*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var

emitUserList, signIn, signOut, chatObj,
socket = require('socket.io'),
crud = require('./crud'),

makeMongoId = crud.makeMongoId,
chatterMap = {};

// ------------- END MODULE SCOPE VARIABLES ---------------

// ---------------- BEGIN UTILITY METHODS -----------------
...

// signOut - update is_online property and chatterMap
//
signOut = function (io, user_id) {

crud.update(
'user',
{ '_id' : user_id },
{ is_online : false },
function (result_list) { emitUserList(io); }

);
delete chatterMap[user_id];

};
// ----------------- END UTILITY METHODS ------------------

// ---------------- BEGIN PUBLIC METHODS ------------------
chatObj = {

connect : function (server) {
var io = socket.listen(server);

// Begin io setup
io

.set('blacklist' , [])

Listing 8.31 Add disconnect methods—webapp/lib/chat.js

Sign out a user by settin
the is_online
attribute to false.

After a user signs out,
emit the new online
people list to all
connected clients.

The signed-out user is
removed from the
chatterMap.
.of('/chat')

www.EBooksWorld.ir

http://www.it-ebooks.info/

309Build the Chat module

.on('connection', function (socket) {

...
// Begin disconnect methods
socket.on('leavechat', function () {
 console.log(
 '** user %s logged out **', socket.user_id
);
 signOut(io, socket.user_id);
});

socket.on('disconnect', function () {
 console.log(
 '** user %s closed browser window or tab **',
 socket.user_id
); signOut(io, socket.user_id);
});
// End disconnect methods

socket.on('updateavatar', function () {});
}

);
// End io setup

return io;
}

};

module.exports = chatObj;
// ----------------- END PUBLIC METHODS -------------------

Now we can open up multiple browser windows, point them to http://localhost:3000,
and sign in as different users by clicking at the top-right corner of each window. We
can then send message between users. We did intentionally leave one flaw as an exer-
cise for our readers: the server application will allow the same user to log in on multi-
ple clients. This shouldn’t be possible. You should be able to fix this by inspecting the
chatterMap in the adduser message handler.

 We have one feature yet to implement: synchronizing avatars.

8.6.5 Create the updateavatar message handler

Web socket messaging can be used for all kinds of server-client communication. When
we need near-real-time communication with the browser, it’s often the best choice. To
demonstrate another use of Socket.IO, we’ve built avatars into our chat that users can
move around the screen and change color. When anyone changes an avatar, Socket.IO
immediately pushes those updates to other users. Let’s walk through what that looks
like in figures 8.9, 8.10, and 8.11.

 The client-side code for this has been demonstrated in chapter 6, and we’ve
arrived at the moment where we put it all together. The server-side code to enable this
is dramatically small now that we’ve set up the Node.js server, MongoDB, and
Socket.IO. We just add a message handler adjacent to the others in lib/chat.js as

shown in listing 8.32:

www.EBooksWorld.ir

http://www.it-ebooks.info/

310 CHAPTER 8 The server database

Figure 8.9 Avatar
when signing in

Figure 8.10 Moving
an avatar

Figure 8.11
Avatars when others
are signed in

www.EBooksWorld.ir

http://www.it-ebooks.info/

311Build the Chat module

/*
* chat.js - module to provide chat messaging

*/
...
// ---------------- BEGIN PUBLIC METHODS ------------------
chatObj = {

connect : function (server) {
var io = socket.listen(server);

// Begin io setup
io

.set('blacklist' , [])

.of('/chat')

.on('connection', function (socket) {

...

// End disconnect methods

// Begin /updateavatar/ message handler
// Summary : Handles client updates of avatars
// Arguments : A single avtr_map object.
// avtr_map should have the following properties:
// person_id = the id of the persons avatar to update
// css_map = the css map for top, left, and
// background-color
// Action :
// This handler updates the entry in MongoDB, and then
// broadcasts the revised people list to all clients.
//
socket.on('updateavatar', function (avtr_map) {
 crud.update(
 'user',
 { '_id' : makeMongoId(avtr_map.person_id) },
 { css_map : avtr_map.css_map },
 function (result_list) { emitUserList(io); }
);
}); // End /updateavatar/ message handler

}
);
// End io setup

return io;
}

};

module.exports = chatObj;
// ----------------- END PUBLIC METHODS -------------------

Let’s start the server with node app.js, point our browser to http://localhost:3000/,
and sign in. Let’s also open a second browser window and sign in with a different user
name. At this point we may only see one avatar because the two may overlap. We can
move an avatar by using a long-press-drag motion. We can change its color by clicking

Listing 8.32 Behold the avatars—webapp/lib/chat.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

312 CHAPTER 8 The server database

or tapping on it. This works on desktops and touch devices. In any case, our server
application synchronizes the avatars in near-real time.

 Messaging is the key to near-real-time collaboration. With web sockets, we can cre-
ate applications where distant people can work together to solve a puzzle, design an
engine, or draw a picture—the possibilities are endless. This is the promise of the real-
time web, and we’re seeing more of it every day.

8.7 Summary
In this chapter we set up MongoDB, connected it to Node.js, and performed some basic
CRUD operations. We introduced MongoDB and discussed its many benefits and pit-
falls. We’ve also demonstrated how to validate data before inserting it into the database
using the same code that the client uses. This reuse saves us the familiar pain of writing
a validator for the server in one language and rewriting it in JavaScript for the browser.

 We introduced Socket.IO and showed how to use it to provide chat messaging. We
moved our CRUD capabilities into a separate module so it could easily service both the
HTTP API and Socket.IO. And we used messaging to provide near-real-time synchroni-
zation of avatars across many clients.

 In the next chapter we’ll take a look at how we make our SPA ready for production.
We’ll review some of the problems we have encountered when hosting SPAs, and dis-
cuss how we can solve them.
www.EBooksWorld.ir

http://www.it-ebooks.info/

Readying our
 SPA for production
This chapter builds on code we’ve written in chapter 8. We recommend copying
the entire directory structure of that chapter into a new “chapter_9” directory and
updating the files there.

 We’ve finished writing a responsive SPA using a well-tested architecture, but some
challenges remain that are less about programming and more about operations.

 We need to adjust our SPA so that users can use Google and other search
engines to find what they need. Our web server needs to interact with the crawler
robots that index our content differently because the crawlers don’t execute the

This chapter covers
■ Optimizing SPAs for search engines
■ Using Google Analytics
■ Placing static content on a content delivery

network (CDN)
■ Logging client errors
■ Caching and cache busting
313

JavaScript our SPA uses to generate the content. We also want to use analytics tools.

www.EBooksWorld.ir

http://www.it-ebooks.info/

314 CHAPTER 9 Readying our SPA for production

On a traditional website, analytics data is typically collected through a JavaScript snip-
pet added to every HTML page. Because all of the HTML in an SPA is generated by
JavaScript, we need a different approach.

 We also want to want to adjust our SPA to provide detailed logging on traffic, user
behavior, and errors. Server logging provides much of this insight on traditional web-
sites. SPAs move most of the user interaction logic to the client, so a different
approach is required. We want our SPA to be very responsive. One method to improve
response time is to use a content delivery network (CDN) to serve static files and data.
Another method is to use HTTP and server caching.

 Let’s get started by making our SPA content searchable.

9.1 Optimize our SPA for search engines
When Google and other search engines index websites, they don’t execute JavaScript.
This seems to put SPAs at a tremendous disadvantage compared to a traditional web-
site. Not being on Google could easily mean the death of a business, and this daunting
pitfall could tempt the uninformed to abandon SPAs.

SPAs actually have an advantage over traditional websites in search engine optimi-
zation (SEO) because Google and others have recognized the challenge. They have
created a mechanism for SPAs to not only have their dynamic pages indexed, but also
optimize their pages specifically for crawlers. This section focuses on the biggest
search engine, Google, but other large search engines such as Yahoo and Bing sup-
port the same mechanism.

9.1.1 How Google crawls an SPA

When Google indexes a traditional website, its web crawler (called a Googlebot) first
scans and indexes the content of the top-level URI (for example, www.myhome.com).
Once this is complete, it then it follows all of the links on that page and indexes those
pages as well. It then follows the links on the subsequent pages, and so on. Eventually
it indexes all the content on the site and associated domains.

 When the Googlebot tries to index an SPA, all it sees in the HTML is a single empty
container (usually an empty div or body tag), so there’s nothing to index and no links
to crawl, and it indexes the site accordingly (in the round circular “folder” on the
floor next to its desk).

 If that were the end of the story, it would be the end of SPAs for many web applica-
tions and sites. Fortunately, Google and other search engines have recognised the
importance of SPAs and provided tools to allow developers to provide search informa-
tion to the crawler that can be better than traditional websites.

 The first key to making our SPA crawlable is to realize that our server can tell if a
request is being made by a crawler or by a person using a web browser and respond
accordingly. When our visitor is a person using a web browser, respond as normal, but
for a crawler, return a page optimized to show the crawler exactly what we want to in a

format the crawler can easily read.

www.EBooksWorld.ir

http://www.it-ebooks.info/

315Optimize our SPA for search engines

For the home page of our site, what does a crawler-optimized page look like? It’s prob-
ably our logo or other primary image we’d like appearing in search results, some SEO-
optimized text explaining what the application does, and a list of HTML links to only
those pages we want Google to index. What the page doesn’t have is any CSS styling or
complex HTML structure applied to it. Nor does it have any JavaScript, or links to
areas of the site we don’t want Google to index (like legal disclaimer pages or other
pages we don’t want people to enter through a Google search). Figure 9.1 shows how
a page might be presented to a browser and to the crawler.

 The links on the page aren’t followed by the crawler the same way a person follows
links because we apply the special characters #! (pronounced hash bang) in our URI
anchor component. For instance, if in our SPA a link to the user page looks like
/index.htm#!page=user:id,123, the crawler would see the #! and know to look for a
web page with the URI /index.htm?_escaped_fragment_=page=user:id,123. Know-
ing that the crawler will follow the pattern and look for this URI, we can program the
server to respond to that request with an HTML snapshot of the page that would nor-
mally be rendered by JavaScript in the browser. That snapshot will be indexed by
Google, but anyone clicking on our listing in Google search results will be taken to
/index.htm#!page=user:id,123. The SPA JavaScript will take over from there and
render the page as expected.

 This provides SPA developers with the opportunity to tailor their site specifically
for Google and specifically for users. Instead of having to write text that’s both legi-
ble and attractive to a person and understandable by a crawler, pages can be opti-
mized for each without worrying about the other. The crawler’s path through our
site can be controlled, allowing us to direct people from Google search results to a
specific set of entrance pages. This will require more work on the part of the engi-
neer to develop, but it can have big pay-offs in terms of search result position and

Figure 9.1 Client and crawler views of a home page
customer retention.

www.EBooksWorld.ir

http://www.it-ebooks.info/

316 CHAPTER 9 Readying our SPA for production

 At the time of this writing, the Googlebot announces itself as a crawler to the
server by making requests with a user-agent string of Googlebot/2.1 (+http://
www.googlebot.com/bot.html). Our Node.js application can check for this user
agent string in the middleware and send back the crawler-optimized home page if the
user agent string matches. Otherwise, we can handle the request normally. Alterna-
tively, we could hook it into our routing middleware as shown in listing 9.1:

...
var agent_text = 'Enter the modern single page web application(SPA).'

+ 'With the near universal availability of capable browsers and '
+ 'powerful hardware, we can push most of the web application to'
+ ' the browser; including HTML rendering, data, and business '
+ 'logic. The only time a client needs to communicate with the '
+ 'server is to authenticate or synchronize data. This means users'
+ ' get a fluid, comfortable experience whether they\'re surfing '
+ 'at their desk or using a phone app on a sketch 3G connection.'
+ '

'
+ ';Home
'
+ 'About
'
+ 'Buy Now!
'
+ 'Contact Us
';

app.all('*', function (req, res, next) {
if (req.headers['user-agent'] ===

'Googlebot/2.1 (+http://www.googlebot.com/bot.html)') {
res.contentType('html');
res.end(agent_text);

}
else {
 next();
}

});
...

This arrangment seems like it would be complicated to test, since we don’t own a
Googlebot. Google offers a service to do this for publicly available production websites
as part of its Webmaster Tools (http://support.google.com/webmasters/bin/
answer.py?hl=en&answer=158587), but an easier way to test is to spoof our user-agent
string. This used to require some command-line hackery, but Chrome Developer
Tools makes this as easy as clicking a button and checking a box:

1 Open the Chrome Developer Tools by clicking the button with three horizontal
lines to the right of the Google Toolbar, and then selecting Tools from the
menu and clicking on Developer Tools.

Listing 9.1 Detect a Googlebot and serve alternative content in the routes.js file

The HTML to be provided
to the web crawler

Detect the Googlebot by looking at the
user agent string; other crawlers use a

different user agent that with some
research can be targeted as well. If the

crawler is detected, the contentType
is set to HTML and the text is sent to it,

bypassing the normal routing code.
If the user agent isn’t a

crawler, call next() to
proceed to the next route

for normal processing.
www.EBooksWorld.ir

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=158587
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=158587
http://www.it-ebooks.info/

317The cloud and third-party services

2 In the lower-right corner of the screen is a gears icon: click on that and see
some advanced developer options such as disabling cache and turning on log-
ging of XmlHttpRequests.

3 In the second tab, labelled Overrides, click the check box next to the User
Agent label and select any number of user agents from the drop-down from
Chrome, to Firefox, to IE, iPads, and more. The Googlebot agent isn’t a default
option. In order to use it, select Other and copy and paste the user-agent string
into the provided input.

4 Now that tab is spoofing itself as a Googlebot, and when we open any URI on
our site, we should see the crawler page.

Obviously, different applications will have different needs with regard to what to do
with web crawlers, but always having one page returned to the Googlebot is probably
not enough. We’ll also need to decide what pages we want to expose and provide ways
for our application to map the _escaped_fragment_=key=value URI to the content
we want to show them. Whatever the case, this book should provide you with the tools
to decide how to best abstract the crawler content for your application. You may want
to get fancy and tie the server response in to the front end framework, but we usually
take the simpler approach here and create custom pages for the crawler and put them
in a separate router file for crawlers.

 There are also a lot more legitimate crawlers out there, so once we’ve adjusted our
server for the Google crawler we can expand to include them as well.

9.2 The cloud and third-party services
Many companies have services that help build and manage applications, which can
save a great deal of development and maintenance. If we’re a smaller operation, we
may want to take advantage of some of these services. Three important services—site
analytics, client logging, and CDNs—are particularly important for SPA development.

9.2.1 Site analytics

An important tool in the web developer’s toolbelt is the ability to acquire analytics
about the site they’re working on. With traditional websites, developers have come to
depend on tools like Google Analytics and New Relic to provide detailed analysis of
how people are using the sites and to find any bottlenecks in application or business
performance (how effectively the site is generating sales). A slightly different
approach using the same tools will make them every bit as effective on an SPA.

 Google Analytics provides a simple way to get statistics about how popular our SPA
and its various states are, as well as how traffic is coming to our site. We can use Google
Analytics in a traditional website by pasting a snippet of JavaScript code onto every
HTML page on the site and making a few small modifications to categorize pages. We
could use this approach with our SPA, but then we’d only get analytics on the initial
page load. There are two paths we can use to enable our SPA to take full advantage of

Google Analytics:

www.EBooksWorld.ir

http://www.it-ebooks.info/

318 CHAPTER 9 Readying our SPA for production

1 Use Google Events to track hashtag changes
2 Use Node.js to record server-side

We’ll begin by looking at Google Events.

GOOGLE EVENTS

Google has long recognized the need to record and classify events on pages—SPA
development may be fairly new, but Ajax has been around a long time (in web years, a
really long time... since 1999!). Tracking events is easy, though it’s more manual work
then tracking page views. In a traditional website, the snippet of JavaScript code
makes a call to _trackPageView on the _gaq object. It allows us to pass in custom vari-
ables to set information about the page the snippet is on. That call sends the informa-
tion to Google by requesting an image and passing along parameters on the end of
the request. Those parameters are used by Google’s servers to process information
about that page view. Using Google Events makes a different call on the _gaq object: it
calls _trackEvent and takes some parameters. _trackEvent then loads an image with
some parameters on the end of it that Google uses to process the information about
that event.

 The steps to set up and use event tracking are fairly straightforward:

1 Set up tracking for our site on the Google Analytics site.
2 Call the _trackEvent method.
3 View the reports.

The _trackEvent method takes two required parameters and three optional ones:

_trackEvent(category, action, opt_label, opt_value, opt_noninteraction)

The parameter details are:

■ category is required and is used to name the group of events this belongs to. It
will show up in our reporting to categorize events.

■ action is required and defines the specific action we’re tracking with each event.
■ opt_label is an optional parameter used to add additional data about the event.
■ opt_value is an optional parameter used to provide numerical data about the

event.
■ opt_noninteraction is an optional parameter used to tell Google not to use

this event in bounce rate calculations.

For example, if in our SPA we want to track when a user opens a chat window, we
might make the following _trackEvent call:

_trackEvent('chat', 'open', 'home page');

This call would then show up in reports letting us know that a chat event occurred,
the user opened the chat window, and the user did this on the home page. Another
call might be:
_trackEvent('chat', 'message', 'game');

www.EBooksWorld.ir

http://www.it-ebooks.info/

319The cloud and third-party services

This would record that a chat event occurred, the user sent a message, and did it on
the game page. Like the traditional website approach, it’s up to the developer to
decide how to organize and track different events. As a shortcut, instead of coding
each event into the client-side models, we can insert the _trackEvent calls into the cli-
ent-side router (the code that watches the hashtag for changes) and then parse those
changes into categories, actions, and labels and call the _trackEvent method using
those changes as parameters.

SERVER-SIDE GOOGLE ANALYTICS

Tracking on the server side is useful if we want to get information about what data is
being requested from the server, but it can’t be used to track client interactions that
don’t make requests to the server side, which there’s quite a bit of in SPAs. It may seem
less useful because it can’t track client-side actions, but it’s useful to be able to track
requests that are making it past the client cache. It can help us track down server
requests that are running too slow and other behaviors. Though this is still able to
provide helpful insights, if we have to choose one, we go with the client.

 Since JavaScript is used on the server, it seems likely that we could modify the
Google Analytics code to be used from the server. It’s not only possible, but like many
things that seem like a good idea, it has probably already been implemented by the
community. A quick search turns up node-googleanalytics and nodealytics as community-
developed projects.

9.2.2 Logging client-side errors

In a traditional website, when there’s an error on the server, it’s written to a log file. In
an SPA, when a client hits a similar error, there’s nothing in place to record it. We’ll
have to either manually write code to track errors ourselves or look to a third-party ser-
vice for help. Handling it ourselves gives us the flexibility to do whatever we want to
with the error, but using a third-party service gives us the opportunity to spend our
time and resources on something else. Besides, they’ve likely implemented far more
than we’d have time to. It’s also not all or nothing—we can use a third-party service
and then if there are errors we want tracked or escalated in a way that the service
doesn’t provide, we can implement the desired capability ourselves.

THIRD-PARTY CLIENT LOGGING

There are several third-party services that collect and aggregate errors and metrics
data generated by our application:

■ Airbrake specializes in Ruby on Rails applications, but has experimental
JavaScript support.

■ Bugsense specializes in mobile application solutions. Their product works with
JavaScript SPAs and native mobile applications. If we have a mobile-focused
application, they may be a good choice.

■ Errorception is dedicated to logging JavaScript errors and is therefore a good

choice for an SPA client. They’re not as established as Airbrake or Bugsense but

www.EBooksWorld.ir

http://www.it-ebooks.info/

320 CHAPTER 9 Readying our SPA for production

we like their moxy. Errorception keeps a developer blog (http://blog.errorcep-
tion.com), where we can gain insight on JavaScript error logging.

■ New Relic is fast becoming an industry standard for web application perfor-
mance monitoring. Its performance monitoring includes error logging and
performance metrics for each step of the request/response cycle, from how
long the query took in the database to how long the browser took to render the
CSS styles. The service provides an impressive amount of insight into perfor-
mance on both the client and the server.

At the time of writing, we tend to prefer New Relic or Errorception. Whereas New
Relic provides more data, we’ve found Errorception superior when dealing with
JavaScript errors, as well as easy to set up.

LOGGING CLIENT-SIDE ERRORS MANUALLY

When it comes down to it, all these services use one of these two methods to send
JavaScript errors:

1 Catching errors with the window.onerror event handler.
2 Surrounding code with a try/catch block and sending back what it catches.

The window.onerror event is the basis of most of the third-party applications. onerror
fires for runtime errors, but not for compilation errors. onerror is somewhat contro-
versial because of uneven browser support and potential security holes, but it’s a
major weapon in our arsenal for logging client-side JavaScript errors.

<script>
var obj;
obj.push('string');

windor.onerror = function (error) {
// do something with the error

}

</script>

The try/catch method requires wrapping a try/catch block around the main call in
our SPA. This will catch any synchronous errors generated by our application; unfortu-
nately it’ll also prevent them from bubbling up to window.onerror or being displayed
in the error console. It won’t catch any errors in asynchronous calls like those made in
event handlers or in setTimeout or setInterval functions. That means having to
wrap all of the code in our asynchronous function with a try/catch block.

<script>
setTimeout(function () {
try {

var obj;
obj.push('string');

} catch (error) {

Results in an error
because there’s no push
method on undefined.

The error is accessible inside
this block; the attributes on the
error object vary by browser.
// do something with error

www.EBooksWorld.ir

http://blog.errorception.com
http://blog.errorception.com
http://www.it-ebooks.info/

321The cloud and third-party services

}
}), 1);

</script>

Having to do that for all of our asynchronous calls would get tedious, and prevent
reporting of the errors to the console. Wrapping code in a try/catch block also pre-
vents the code in that block from being compiled in advance, causing it to run slower.
A good compromise approach for an SPA is to wrap our init call in a try/catch
block, log the error to the console inside the catch, and send it off via Ajax, then use
window.onerror to catch all of our asynchronous errors and send them off via Ajax.
No need to log the asynchronous errors to the console manually because they’ll still
appear there on their own.

<script>
$(function () {

try {
spa.initModule($('#spa'));

} catch (error) {
// log the error to the console
// then send it to a third party logging service

}
});

window.onerror = function (error) {
// do something with asynchronous errors

};

</script>

Now that we understand which errors are happening on the client, we can focus on
how to deliver content to site visitors more quickly.

9.2.3 Content delivery networks

A content delivery network (CDN) is a network set up to deliver static files as quickly as pos-
sible. It could be as simple as a single Apache server sitting next to our application
server, or a worldwide infrastructure with dozens of data centers. In any case, it makes
sense to have a separate server set up to deliver our static files, so as to not burden our
application server with that task. Node.js is particularly ill-suited to delivering large
static content files (images, CSS, JavaScript), because this usage can’t take advantage of
the asynchronous nature of Node.js. Apache, with its pre-fork, is much better suited.

 Because we’re well-versed in Apache, we could throw together our own “one-server
CDN” until we get ready to scale the site; otherwise there are many third-party CDNs we
can use. Three big ones are Amazon, Akamai, and Edgecast. Amazon has the Cloudfront
product, and Akamai and Edgecast resell through other companies like Rackspace, Dis-
tribution Cloud, and others. In fact, there are so many CDN companies out there that
there’s a website dedicated to selecting the right provider: www.cdnplanet.com.

 Another benefit of using a globally distributed CDN is that our content is served
from the closest server, making the time it takes to serve up those files much shorter.

When we consider the performance benefits, using a CDN is often an easy choice.

www.EBooksWorld.ir

www.cdnplanet.com
http://www.it-ebooks.info/

322 CHAPTER 9 Readying our SPA for production

9.3 Caching and cache busting
Caching is incredibly important to making our application run fast. There’s no faster
form of data retrieval than client-side caching, and server caching is often far superior
to having to request and calculate the same information over again. There are many
places in our SPA that have the potential to cache data and thus speed up that part of
our application. We’ll go through them all:

■ Web storage
■ HTTP caching
■ Server caching
■ Database caching

It’s crucial to think about data freshness when caching. We don’t want to be serving
stale data to our applications users, but at the same time we want to be responding to
requests as quickly as possible.

9.3.1 Caching opportunities

Each of these caches has different responsibilities and interacts with the client to
speed up the application in different ways.

■ Web storage stores strings in the client and is accessible to the application. Use
these to store finished HTML from data already retrieved from the server and
processed.

■ HTTP caching is client-side caching that stores responses from the server. There’s
a lot of detail to learn in order to properly control this style of caching, but after
learning and implementing it, we’ll get a lot of caching almost for free.

■ Server caching with Memcached and Redis are often used to cache processed
server responses. This is the first form of caching that can store data for differ-
ent users so that if one user requests some information, it’s already cached the
next time someone else requests it, saving a trip to the database.

■ Database caching, or query caching, is used by databases to cache the results of a
query so that if it’s turned on, subsequent identical queries return the cache
instead of gathering the data again.

Figure 9.2 shows a typical request/response cycle with all of the caching opportuni-
ties. We can see how each level of caching can speed up the response by shortcut-
ting the cycle at various stages. HTTP caching and database caching are the simplest
to implement, usually only requiring the setting of some configurations, whereas
web storage and server caching are more involved, requiring more effort on the part
of the developer.
www.EBooksWorld.ir

http://www.it-ebooks.info/

323Caching and cache busting

9.3.2 Web storage

Web storage, also known as DOM storage, comes in two types: local and session storage.
They’re supported by all modern browsers, including IE8+. They’re simple key/value
stores where both the key and the value must be a string. Session storage only stores the
data for the current tab session—closing the tab will close the session and clear the data.
Local storage will keep the storage cached with no expiration date. In either case, the
data is only available to the web page that stored it. For the SPA, this means that the
entire site has access to the storage. One excellent way to use web storage is to store pro-
cessed HTML strings, enabling a request to bypass the entire request/response cycle
and proceed directly to displaying the result. Figure 9.3 shows the details.

 We use local storage to store non-sensitive information that we want to persist
beyond the current browser session. We use session storage to store data that won’t
persist beyond the current session.

User
action

Local /
session
storage

HTTP
cache?

Database
cache?

Query
database

Process
query

Process
data

Process
response

Display

Yes Yes

No No No No

Yes Yes

Respond
to client

Server-
side

cache?

Cached for everyone
Slower

Cached for individual
Fastest

No cache
Slowest

Figure 9.2 Shortcutting the request/response cycle with caching

User
action

HTTP
cache?

Database
cache?

Query
database

Process
query

Process
data

Process
response

Yes

No No No No

Yes Yes

Respond
to client

Server-
side

cache?

Cached for everyone
Slower

No cache
Slowest

Local /
session
storage

Display

Yes

Cached for individual
Fastest
Figure 9.3 Web storage

www.EBooksWorld.ir

http://www.it-ebooks.info/

 the

ith

hey
y
e

in
324 CHAPTER 9 Readying our SPA for production

Since web storage can only save string values, typically JSON or HTML is saved. Saving
JSON is redundant with using an HTTP cache in an SPA, which we’ll discuss in the next
section, and still requires some processing to be used. Often it’s better practice to
store an HTML string so we can save the client the processing required to create it in
the first place. This kind of storage can be abstracted into a JavaScript object, which
handles the particulars for us.

 Session storage only stores data for the current session, so we can sometimes get
away with not thinking too much about the stale data problem—but not always. When
we do need to worry about stale data, one method used to force a data refresh is to
encode the time into the cache key. If we want data to expire every day, we can include
the day’s date in the key. If we want the data to expire every hour, we can encode the
hour in there as well. This won’t handle every scenario, but is probably the simplest in
terms of execution, as shown in listing 9.2:

SPA.storage = (function () {

var generateKey = function (key) {
var date = new Date(),

datekey = new String()
+ date.getYear()
+ date.getMonth()
+ date.getDay();

return key + datekey;
};

return {

'set': function (key, value) {
sessionStorage.setItem(generateKey(key), value);

},

'get': function (key) {
return sessionStorage.getItem(generateKey(key));

},

'remove': function (key) {
sessionStorage.removeItem(generateKey(key));

},

'clear': function () {
sessionStorage.clear();

}

}
})();

9.3.3 HTTP caching

HTTP caching occurs when the browser caches data sent to it from the server, accord-
ing to some attributes the server set in the header or according to an industry stan-

Listing 9.2 Encoding the time in the cache key

Appends the current date on the key,
forcing the session to only cache the
data for one day. It’s a quick trick to
make sure that the cached data isn’t
returned after a certain interval.

These methods abstract
sessionStorage, so
that we can replace it w
localStorage (or
anything else) at a later
date without having to
change all of our code. T
also call generateKe
to append the date, so w
don’t have to code that
to every storage usage.
dard set of default caching guidelines. Though it can be slower than web storage

www.EBooksWorld.ir

http://www.it-ebooks.info/

325Caching and cache busting

because the results still need to be processed, it’s often much simpler and still faster
than server-side caching. Figure 9.4 shows where HTTP caching sits in the request/
response cycle.

HTTP caching is used to store server responses in the client, to keep from doing
another round trip. There are two patterns that it can follow:

1 Serve directly from cache without checking the server for freshness.
2 Check the server for freshness and serve from cache if fresh, and from server

response if stale.

Serving directly from cache without checking for freshness of data is the quickest,
because we forgo a round trip to the server. This is safer to do for images, CSS, and
JavaScript files, but we can also set our application up so that it’ll cache data for a
length of time as well. For example, if we have an application that only updates some
kinds of data once a day at midnight, then we could direct clients to cache data until
just after midnight.

 Sometimes that doesn’t provide up-to-date enough information. In those cases the
browser can be instructed to check back with the server to see if the data is still fresh.

 Let’s get down to the nitty-gritty and see how this caching works. HTTP caching
works by having the client look at the headers of the response sent from the server.
There are three primary attributes that the client looks for: max-age, no-cache, and
last-modified. Each of these contributes toward telling the client how long to cache
the data.

MAX-AGE

In order for the client to use data from its cache without attempting to contact the server,
the header of the initial response must have the max-age set in the Cache-Control
header. This value tells the client how long to cache the data before making another
request. The max-age value is in seconds. This is both a powerful capability and a poten-

Local /
session
storage

Display

Yes

User
action

Database
cache?

Query
database

Process
query

Process
data

No No No No

Yes Yes

Respond
to client

Server-
side

cache?

Cached for everyone
Slower

No cache
Slowest

Display

Yes

User
action

Database
cache?

Query
database

Process
query

Process
data

No No No

Yes Yes

Respond
to client

Cached for everyone
Slower

No cache

Server-
side

cache?

Slowest

Local /
session
storage

No

Cached for individual
Fastest

HTTP
cache?

Process
response

Yes

Figure 9.4 HTTP caching
tially dangerous one. It’s powerful because it’s the quickest possible way to access data;

www.EBooksWorld.ir

http://www.it-ebooks.info/

326 CHAPTER 9 Readying our SPA for production

apps running with data cached in this way will be very fast once the data has been loaded.
It’s dangerous because the client no longer checks with the server for changes, so we’ll
have to be deliberate with them.

 When using Express, we can set the Cache-Control header with the max-age
attribute.

res.header("Cache-Control", "max-age=28800");

Once the cache is set in this way, the only way to bust the cache and force the client to
make a new request is to change the name of the file.

 Obviously, changing the names of files every time we push to production isn’t
desirable. Fortunately, changing parameters passed in to the file will bust the cache.
This is typically done by appending a version number or some integer that our build
system increments with every deployment. There are many ways to accomplish this,
but the one we prefer is to have a separate file that has our incrementing value in it
and append that number onto the end of our filename. Because the index page is
static, we can set up our deployment tool to generate the finished HTML file and
include the version number on the end of our includes. Let’s take a look at listing 9.3
for an example of what the cache buster would look like in the finished HTML.

<html>
<head>
 <link rel="stylesheet" type="text/css"
 href="/path/to/css/file?version=1.1 /><
 <script src="/path/to/js/file?version=1.1"></script>
</head>
<body>

</body>
</html>

Another use of max-age is to set it to 0, which tells the client that the content should
always be revalidated. When this is set, the client will always check with the server to
make sure that the content is still valid, but the server is still free to reply with a 302
response, informing the client that the data isn’t stale and should be served from
cache. A side effect of setting max-age=0 is that intermediate servers—those servers sit-
ting between the client and the end server—can still respond with a stale cache as
long as they also set a warning flag on the response.

 Now, if we wish to prevent the intermediate servers from ever using its cache, then
we’ll want to look into the no-cache attribute.

NO-CACHE

The no-cache attribute, according to the spec, works in a manner similar enough to
setting max-age=0 to be confusing. It tells the client to revalidate with the server
before using the data in cache, but it also tells intermediate servers that they can’t

Listing 9.3 Bust the max-age cache

The cache buster,
version=1.1
serve up stale content, even with a warning message. An interesting situation has come

www.EBooksWorld.ir

http://www.it-ebooks.info/

327Caching and cache busting

up in the last few years, because IE and Firefox have started to interpret this setting to
mean they shouldn’t cache this data under any circumstances. That means the client
won’t even ask the server if the data it last received is fresh before reserving it; the cli-
ent won’t ever store the data in its cache. That can make resources loaded with the
no-cache header to be unnecessarily slow. If the desired behavior is to prevent clients
from caching the resource, then the no-store attribute should be used instead.

NO-STORE

The no-store attribute informs clients and intermediate servers to never store any
information about this request/response in their cache. Though this helps improve
the privacy of such transmissions, it’s by no means a perfect form of security. In prop-
erly implemented systems, any trace of the data will be gone; there’s a chance that the
data could pass through improperly or maliciously coded systems and is vulnerable to
eavesdropping.

LAST-MODIFIED

If no Cache-Control is set, then the client depends on an algorithm based on the
last-modified date to determine how long to cache the data. Typically this is one-
third of the time since the last-modified date. So, if an image file was last modified
three days ago, when it’s requested, the client will default to serving it from cache for
one day before checking with the server again. This results in a largely random
amount of time a resource will be served from cache, dependent on how long it has
been since the file was last pushed to production.

 There are many other attributes dealing with caches, but mastering these basic
attributes will significantly speed up application load time. HTTP caching enables cli-
ents of our application to serve up resources it has seen before without needing to
request the information again, or with a minimum of overhead in asking the server if
the resource is still fresh. This speeds up our application on subsequent requests, but
what about identical requests made by other clients? HTTP caching doesn’t help
there; instead the data will need to be cached on the server.

9.3.4 Server caching

The fastest way for a server to respond to a client-side request with dynamic data is to
serve it from a cache. This removes the processing time it takes to query the database
and marshal the query response into a JSON string. Figure 9.5 shows where server
caching fits into the request/response cycle.

 Two popular methods of caching data on the server are Memcached and Redis.
According to memcached.org, “Memcached is an in-memory key-value store for small
chunks of arbitrary data.” It’s purpose-built as a temporary cache of data retrieved
from a database, API call, or processed HTML. When the server runs out of memory,
it’ll automatically start dropping data based on a least recently used (LRU) algorithm.
Redis is an advanced key-value store and can be used to store more complex data struc-
tures, such as strings, hashes, lists, sets, and sorted sets.
www.EBooksWorld.ir

http://www.it-ebooks.info/

328 CHAPTER 9 Readying our SPA for production

The overall idea for the cache is to reduce server load and speed response time. When
a request for data is received, the application first checks whether the response for
this query has been stored in cache. If the application finds the data, it serves it to the
client. If the data isn’t cached, it instead makes a comparatively expensive database
query and transforms the data into JSON. It then stores the data in the cache and
replies to the client with the results.

 When we use a cache, we must consider when the cache needs to be “busted.” If
only our application writes to the cache, then it can either clear or regenerate the
cache when the data changes. If other applications also write to the cache, then we
need them to update the cache as well. There are a few methods to work around this:

1 We can invalidate caches after a set length of time and force a refresh of the data.
If we do this once an hour then there will be up to 24 times throughout the day
with a cache-free response. Obviously, this won’t work for all applications.

2 We can check the last updated time of the data, and if it’s the same or earlier
than the cache timestamp. This will take longer to process than the first option,
but it may not take as long as a complex request takes, and we’ll be assured that
the data is fresh.

Which option we choose is dependent on the needs of our application.
 Server caching is overkill for our SPA. MongoDB offers excellent performance for

our sample data set. And we don’t process the MongoDB response—we just pass it
along to the client.

 So when should we consider adding server caching to our web application? When
we find our database or web server is becoming a bottleneck. Usually it’ll reduce the
load on both the server and the database, and improve response time. It’s certainly
worth trying before purchasing an expensive new server. But remember that server
caching requires another service (like Memcached or Redis) that will need to be mon-

Cached for individual
Fastest

HTTP
cache?

Process
response

Yes

Local /
session
storage

Display

Yes

User
action

Database
cache?

Query
database

Process
query

Process
data

No No No No

Yes

No cache
Slowest

Yes

Respond
to client

Server-
side

cache?

Cached for everyone
Slower

Database
cache?

NoServer-
side

cache?

Cached for everyone
Slower

Figure 9.5 Server caching
itored and maintained, and it also adds complexity to our application.

www.EBooksWorld.ir

http://www.it-ebooks.info/

329Caching and cache busting

 Node.js has drivers for both Memcached and Redis. Let’s add Redis to our applica-
tion and use it to cache data about our users. We can visit http://redis.io and follow
the instructions to install Redis on our system. Once installed and running, we can
confirm it’s available by starting the Redis shell with the command redis-cli.

 Let’s update the npm manifest to install the Redis driver as shown in listing 9.4.
Changes are shown in bold:

{ "name" : "SPA",
"version" : "0.0.3",
"private" : true,
"dependencies" : {
"express" : "3.2.x",
"mongodb" : "1.3.x",
"socket.io" : "0.9.x",
"JSV" : "4.0.x",
"redis" : "0.8.x"
}

}

Before we get started, let’s think about what we’ll need to be able to do with a cache.
Two things that come to mind are setting a cache key-value pair and getting the cache
value by key. We also will probably want to be able to delete a cache key. With that, let’s
set up the node module by creating a cache.js file in the lib directory and filling it in
with the node module pattern and methods to get, set, and delete from the cache.
See listing 9.5 for how to connect Node.js to Redis and set up the skeleton of the
cache file.

/*
* cache.js - Redis cache implementation

*/

/*jslint node : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global */

// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var

redisDriver = require('redis'),
redisClient = redisDriver.createClient(),
makeString, deleteKey, getValue, setValue;

// ------------- END MODULE SCOPE VARIABLES ---------------

// ---------------- BEGIN PUBLIC METHODS ------------------

Listing 9.4 Update the npm manifest to include redis—webapp/package.json

Listing 9.5 Start the redis cache—webapp/cache.js
deleteKey = function (key) {};

www.EBooksWorld.ir

http://redis.io
http://www.it-ebooks.info/

[

330 CHAPTER 9 Readying our SPA for production

getValue = function (key, hit_callback, miss_callback) {};

setValue = function (key, value) {};

module.exports = {
deleteKey : deleteKey,
getValue : getValue,
setValue : setValue

};
// ----------------- END PUBLIC METHODS -------------------

Now, let’s start filling in these methods; the finished methods are in listing 9.6. We’ll
start with setValue because that one is the simplest. Redis has a lot of different data
types that, depending on the type of data we’re caching, could be useful. For this exam-
ple, we’ll stick with the basic string key-value pair. Using the Redis driver to set a value
is as simple as calling redis.set(key, value);. There’s no callback, because we’re
going to assume this method works and let the call work asynchronously and discard
failures. We could do something fancier and increment a value in Redis to keep track
of failures if we wanted to. We encourage interested readers to explore this approach.

 The getValue method takes three arguments: the key to search for, a callback for
a cache hit (hit_callback), and a callback for a cache miss (miss_callback). When
this method is invoked, it requests that Redis return the value associated with the key.
If there’s a hit (the value is not null), it invokes the hit_callback with the value as its
argument. If there’s a miss (the value is null), it invokes the miss_callback. Any logic
for querying a database is left to the caller, as we want this code focused on caching.

 The deleteKey method calls redis.del and passes in the Redis key. We don’t use a
callback because we’ll be doing this asynchronously and assume it works.

 The makeString utility is used to convert keys and values before we present them
to Redis. We need this, because otherwise the Redis Node driver would use the
toString() method on keys and values. This results in strings that look something
like [Object object], which isn’t what we want.

 Our updated cache module is shown in listing 9.6. Changes are shown in bold:

/*
 * cache.js - Redis cache implementation
*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 redisDriver = require('redis'),
 redisClient = redisDriver.createClient(),
 makeString, deleteKey, getValue, setValue;
// ------------- END MODULE SCOPE VARIABLES ---------------

// --------------- BEGIN UTILITY METHODS ------------------
makeString = function (key_data) {

Listing 9.6 Final Redis cache file—webapp/lib/cache.js

The makeString
method is used to

convert objects to a
JSON string;

otherwise the Redis
client calls the
toString()
method on the

input, which
creates keys like

Object object]
which aren’t useful.
 return (typeof key_data === 'string')

www.EBooksWorld.ir

http://www.it-ebooks.info/

a

e of

kes
.

331Caching and cache busting

 ? key_data
 : JSON.stringify(key_data);
};
// ---------------- END UTILITY METHODS -------------------

// ---------------- BEGIN PUBLIC METHODS ------------------
deleteKey = function (key) {
 redisClient.del(makeString(key));
};

getValue = function (key, hit_callback, miss_callback) {
 redisClient.get(
 makeString(key),
 function(err, reply) {
 if (reply) {
 console.log('HIT');
 hit_callback(reply);
 }
 else {
 console.log('MISS');
 miss_callback();
 }
 }
);
};

setValue = function (key, value) {
 redisClient.set(
 makeString(key), makeString(value)
);
};

module.exports = {
 deleteKey : deleteKey,
 getValue : getValue,
 setValue : setValue
};
// ----------------- END PUBLIC METHODS -------------------

Now that we have the cache file set, we can take advantage of it in the crud.js file by
adding five lines of code, as seen in listing 9.7. Changes are shown in bold:

/*
 * crud.js - module to provide CRUD db capabilities
*/
...
// ------------ BEGIN MODULE SCOPE VARIABLES --------------
'use strict';
var
 ...
 JSV = require('JSV').JSV,
 cache = require('./cache'),

 mongoServer = new mongodb.Server(

Listing 9.7 Reading from the cache—webapp/lib/crud.js

The deleteKey
method uses the

Redis del
command to delete
a key and its value.

The getValue
method takes the

key and two
callback methods

as arguments. The
first callback is

invoked if a match
is found, otherwise

the second
callback is invoked.

The setValue method uses the
Redis set command for storing
string. Redis has different
commands, depending on the typ
object being stored; it does more
than just store strings, which ma
for a more flexible caching system

Include the cache module
in our CRUD module.
 ...

www.EBooksWorld.ir

http://www.it-ebooks.info/

p
ey.
332 CHAPTER 9 Readying our SPA for production

// ------------- END MODULE SCOPE VARIABLES ---------------

...

// ---------------- BEGIN PUBLIC METHODS ------------------

...

readObj = function (obj_type, find_map, fields_map, callback) {
 var type_check_map = checkType(obj_type);
 if (type_check_map) {
 callback(type_check_map);
 return;
 }

 cache.getValue(find_map, callback, function () {
 dbHandle.collection(
 obj_type,
 function (outer_error, collection) {
 collection.find(find_map, fields_map).toArray(
 function (inner_error, map_list) {
 cache.setValue(find_map, map_list);
 callback(map_list);
 }
);
 }
);
 });
};
...

destroyObj = function (obj_type, find_map, callback) {
 var type_check_map = checkType(obj_type);
 if (type_check_map) {
 callback(type_check_map);
 return;
 }

 cache.deleteKey(find_map);
 dbHandle.collection(
 obj_type,
 function (outer_error, collection) {
 var options_map = { safe: true, single: true };
 collection.remove(find_map, options_map,
 function (inner_error, delete_count) {
 callback({ delete_count: delete_count });
 }
);
 }
);
};

...
// ----------------- END PUBLIC METHODS -------------------
...

We ensure that the key is removed from the Redis database when an object is deleted.

Add a
cache.getValue

call, and pass the
previous call to
mongo in the
callback to be

executed in case of a
cache miss.

Use find_ma
as our cache k

Add the item to the
cache with a call to

cache.setValue
when there’s a

cache miss.

Close the
cache.getValue call.

Remove the search key
from Redis using the

cache.deleteKey
method when we

delete an object from
the database.
But this is far from ideal. It doesn’t ensure that all instances of cached data are

www.EBooksWorld.ir

http://www.it-ebooks.info/

333Caching and cache busting

deleted; it only ensures that the cached data associated with the key used to delete the item
is removed. We could, for example, delete an employee by ID who was just fired, but
the user might still log in and cause havoc in the system because the information
might be cached using a username-and-password key. The same issue can happen when
updating an object.

 This isn’t an easy problem to resolve and is one reason why server caching is often
put off until it’s necessary to invest the time in it to scale the system. Some possible
solutions include expiring cached records after a length of time (minimizes the cache
mismatch window), clearing the entire user cache when deleting or updating a user
(safer, but results in more cache misses), or manually keeping track of cached objects
(more error-prone for developers).

 There are many more opportunities and challenges in server caching—enough to
fill a book on its own—but hopefully this is enough to get you started. Now let’s take a
look at the final caching method: caching data in the database.

9.3.5 Database query caching

Query caching happens when the database caches the results to particular queries. In
relational databases, this is particularly important because of the need to translate the
results into a form that the application can read. The query cache stores this trans-
lated result. Take a look at figure 9.6 to see where query caching resides in the
request/response cycle.

 With MongoDB, this is handled automatically for us using the file system of the OS.
Instead of caching the results to a particular query, MongoDB tries to hold the entire
index in memory, resulting in extremely quick queries when the entire dataset can be
held in memory. MongoDB, or rather the operating system’s subsystem memory, will
dynamically allocate memory based on the needs of the server. That means MongoDB
will have the entire supply of free RAM available to it without having to guess how
much to allocate, and will automatically free up memory for other processes when it’s

Yes

Respond
to client

Server-
side

cache?

Cached for individual
Fastest

HTTP
cache?

Process
response

Yes

Local /
session
storage

Display

Yes

User
action

Query
database

Process
query

No No No No

No cache
Slowest

Cached for everyone
Slower

Database
cache?

Process
data

Yes

Query
database

No cache
Slowest
Figure 9.6 Query caching

www.EBooksWorld.ir

http://www.it-ebooks.info/

334 CHAPTER 9 Readying our SPA for production

needed. Caching behavior such as Least Recently Used algorithms work according to
the behavior of the operating system.

9.4 Summary
In this chapter, we answered some common questions that occur when hosting an SPA
website. We showed how we can adjust our SPA so it can be indexed by a search
engine, how to use analytics tools (like Google Analytics), and how to log application
errors to a server. Finally, we discussed how to cache at every layer of the application,
what practical benefit each layer of caching provides, and how to take advantage of it.

 Our advice on how to build a robust, testable, and scalable SPA is nearly complete.
We strongly encourage you to read appendices A and B, as both cover important top-
ics that are covered in significant depth. Appendix A shows the code standards we
used throughout most of the book; appendix B shows how to use test modes and auto-
mation to easily identify, isolate, and fix software defects.

 In part 1 of this book, we built our first SPA and discussed why SPAs are an excellent
choice for many websites. In particular, SPAs can provide an incredibly responsive and
interactive user experience that a traditional website can’t touch. Next we reviewed
some JavaScript programming concepts that need to be understood to successfully
implement a large-scale SPA.

 In part 2, we proceeded to design and implement an SPA using a well-tested archi-
tecture. We didn’t use a “framework” library because we wanted to illustrate the inner
workings of an SPA. You should be able to use this architecture to develop your own
SPA, or tackle the challenge of learning one of the many framework libraries with the
experience necessary to judge if it provides the tools you need.

 In part 3, we set up a Node.js and MongoDB server to provide a CRUD backend for
our SPA. We used Socket.IO to provide responsive and lightweight full-duplex commu-
nication between client and server. We also eliminated the marshalling of data
between data formats that we often see in traditional websites.

 In the end, we find ourselves with an entire stack that uses JavaScript as its lan-
guage and JSON as its data format. This elegant simplicity provides benefits that are
compounded at each step of the development process. For example, the use of a sin-
gle language provides the opportunity to move and share code between the client and
server, which can signicantly reduce the size and complexity of our code. It also saves
us time and avoids confusion, as there is little context switching between languages or
data formats. And the benefits extend into testing, as not only can we have signifi-
cantly less code to test, but we can also use the same test framework for almost all the
code without the overhead and expense of a browser test suite.

 We hope that you’ve enjoyed the book and learned as much as we did writing it.
The best way to continue learning about single page web applications is to continue
developing them. We’ve tried hard to provide you with all the tools you need to do it
using JavaScript end-to-end.
www.EBooksWorld.ir

http://www.it-ebooks.info/

appendix A
JavaScript coding standard

Coding standards are contentious. Almost everyone agrees you should have one,
but few seem to agree on what the standard should be. Let’s consider why a coding
standard is especially important for JavaScript.

A.1 Why we need a coding standard
Having a well-defined standard for a loosely typed, dynamic language like JavaScript
is almost certainly more important than with stricter languages. JavaScript’s very

This appendix covers:
■ Exploring why a coding standard is important
■ Laying out and documenting code consistently
■ Naming variables consistently
■ Isolating code using namespaces
■ Organizing files and ensuring consistent syntax
■ Validating code using JSLint
■ Using of a template that embodies the standard
335

www.EBooksWorld.ir

http://www.it-ebooks.info/

336 APPENDIX A JavaScript coding standard

flexibility can make it a Pandora’s box of coding syntax and practice. Whereas stricter
languages provide structure and consistency inherently, JavaScript requires discipline
and an applied standard to achieve the same effect.

 What follows is the standard we’ve used and revised over many years. It’s fairly com-
prehensive and cohesive, and we use it consistently throughout the book. Its presenta-
tion here isn’t very concise because we’ve added many explanations and examples.
Most of it has been condensed into a three-page cheat-sheet found at https://
github.com/mmikowski/spa.

 We’re not presumptive enough to think this coding standard is right for everyone:
you should use or ignore this standard for your work as you see fit. In any event, we
hope the concepts discussed will encourage you to review your own practices. We
strongly recommend any team agree on a standard before embarking on a large proj-
ect to avoid experiencing their own Tower of Babble.

 Experience and research show we’ll spend more time maintaining code than writ-
ing it. Our standard therefore favors readability over speed of creation. We’ve found
that code which is written to be understood tends to be more carefully considered and
better constructed the first time around.

 We’ve found that a successful coding standard:

■ Minimizes the chance of coding errors.
■ Results in code suitable for large-scale projects and teams—consistent, read-

able, extensible, and maintainable.
■ Encourages code efficiency, effectiveness, and reuse.
■ Encourages the use of JavaScript’s strengths and avoids its weaknesses.
■ Is used by all members of the development team.

Martin Fowler once famously said, “Any fool can write code that a computer can
understand. Good programmers write code that humans can understand.” Though
well-defined and comprehensive standards don’t ensure human-readable JavaScript,
they sure can help—just as dictionaries and grammar guides help ensure human-
readable English.

A.2 Code layout and comments
Laying out your code in a consistent and considered manner is one of the best way to
increase comprehension. It’s also one of the more contentious issue in code stan-
dards.1 So when you read this section, relax. Have a decaf latte, get a spearmint tea-
leaf pedicure, and open your mind. It’ll be fun. Really.

A.2.1 Lay out your code for readability

What if we omitted all headers, punctuation, spacing and capitalization from this
book? Well, the book would have come out months earlier, but our audience would

1 Legions of developers have spent countless hours rabidly flaming each other over the use of tabs alone—

search the internet for “tabs versus spaces” if you need more proof.

www.EBooksWorld.ir

https://github.com/mmikowski/spa
https://github.com/mmikowski/spa
http://www.it-ebooks.info/

337Code layout and comments

probably find it unintelligible. Perhaps that is why our editor insisted that we format
and apply conventions to our writing so that you, dear reader, would have a fighting
chance at understanding the content.

 JavaScript code has two audiences that need to understand it—the machines that
will execute it and the humans who will maintain or extend it. Typically, our code will
be read by humans many more times than it’s written. We format and apply conven-
tions to our code so that our fellow developers (and that includes ourselves a few
weeks from now) will have a fighting chance at understanding the content.

USE CONSISTENT INDENTATION AND LINE LENGTHS

We probably all have noticed the text columns in a newspaper are between 50 and 80
characters in length. Lines longer that 80 characters are progressively harder for the
human eye to follow. Bringhurst’s authoritative book, The Elements of Typographic Style,
recommends line lengths between 45-75 characters for optimal reading comprehen-
sion and comfort, with 66 considered the optimal.

 Longer lines are also hard to read on computer displays. Today more and more
web pages have multi-column layouts—even though this is notoriously expensive to
implement well. The only reason a web developer is going to go though such trouble
is if there’s a problem with long lines (or if they get paid by the hour).

 Proponents for wider tab stops (4-8 spaces) say it makes their code more legible.
But they often also advocate long line lengths to compensate for the wide tabs. We
take the other approach: short tab width (2 spaces) and shortish line length (78 char-
acters) work together to provide a narrower, more legible document with significant
content per line. The short tab stop also recognizes that an event-driven language like
JavaScript is typically more indented than a purely procedural language due to the
proliferation of callbacks and closures.

■ Indent two spaces per code level.
■ Use spaces, not tabs to indent as there’s not a standard for the placement of tab

stops.
■ Limit lines to 78 characters.

Narrower documents also work better across all displays, allowing an individual to
open six views of files concurrently on two high-definition displays, or easily read a sin-
gle document on the smaller screens found on notebooks, tablets, or smart phones.
They also fit nicely as listings on e-readers or in a printed book format, which makes
our editor much happier.2

ORGANIZE YOUR CODE IN PARAGRAPHS

English and other written languages are presented in paragraphs to help the reader
understand when one topic is complete and another is to be presented. Computer
languages also benefit from this convention. These paragraphs can be annotated as a

2 The line length limit for listings in this book is actually 72 characters, and losing those last six characters was

painful.

www.EBooksWorld.ir

http://www.it-ebooks.info/

m

338 APPENDIX A JavaScript coding standard

whole. Through the appropriate use of white space3 our JavaScript can read like a
well-formated book.

■ Organize your code in logical paragraphs and place blank lines between each.
■ Each line should contain at most one statement or assignment although we do

allow multiple variable declarations per line.
■ Place white space between operators and variables so that variables are easier to spot.
■ Place white space after every comma.
■ Align like operators within paragraphs.
■ Indent comments the same amount as the code they explain.
■ Place a semicolon at the end of every statement.
■ Place braces around all statements in a control structure. Control structures

include for, if, and while constructs, among others. Perhaps the most com-
mon violation of this guideline is to omit braces for a single line if statement.
Don’t do this. Always use braces so it’s easy to add statements without acciden-
tally introducing bugs.

 // initialize variables
 var first_name='sally';var rot_delta=1;
 var x_delta=1;var y_delta=1; var coef=1;
 var first_name = 'sally', x, y, r, print_msg, get_random;
 // put important text into div id sl_foo
 print_msg = function (msg_text) {
 // .text() prevents xss injection
 $('#sl').text(msg_text)
 };
 // get a random number
 get_random = function (num_arg){
 return Math.random() * num_arg;
 };
 // initialize coordinates
 x=get_random(10);
 y=get_random(20);
 r=get_random(360);
 // adjust coordinates
 x+=x_delta*coef;
 y+=y_delta*coef;
 r+=rot_delta*coef;
 if (first_name === 'sally') print_msg('Hello Sally!)

Listing A.1 Not like this

This comment states
the obvious.

We should not make
ultiple assignments

on a single line.

This comment is
easily outdated.

Every comment
should be indented

the same level as the
code it describes.

This statement is not
terminated with a semicolon.

We cannot easily see the comment
because it is hidden in a mass of text.

These equations
are hard to read.

All if statements
should use

braces.
3 White space is any combination of space, line breaks, or tabs. But don’t use tabs.

www.EBooksWorld.ir

http://www.it-ebooks.info/

339Code layout and comments

 var
 x, y, r, print_msg, get_random,
 coef = 0.5
 rot_delta = 1,
 x_delta = 1,
 y_delta = 1,
 first_name = 'sally'
 ;

 // function to write text to message container
 print_msg = function (msg_text) {
 // .text() prevents xss injection
 $('#sl').text(msg_text);
 };

 // function to return a random number
 get_random = function (num_arg) {
 return Math.random() * num_arg;
 };

 // initialize coordinates
 x = get_random(10);
 y = get_random(20);
 r = get_random(360);

 // adjust to offsets
 x += x_delta * coef;
 y += y_delta * coef;
 r += rot_delta * coef;

 if (first_name === 'sally'){ print_msg('Hello Sally!); }

When we lay out our code, we want to aim for clarity and not reduced byte-count.
Once our code reaches production, our JavaScript will be concatenated, minified, and
compressed before it reaches our users. As a result, the tools we use to aid comprehen-
sion—white space, comments, and more descriptive variable names—will have little to
no effect on the performance.

BREAK LINES CONSISTENTLY

We should place a statement on a single line if it doesn’t exceed the maximum line
length. But that is often not possible, so we have to break it into two or more lines.
These guidelines will help reduce errors and improve cognition:

■ Break lines before operators as one can easily review all operators in the left
column.

■ Indent subsequent lines of the statement one level, for example two spaces in
our case.

■ Break lines after comma separators.
■ Place a closing bracket or parenthesis on its own line. This clearly indicates the

conclusion of the statement without forcing the reader to scan horizontally for

Listing A.2 But like this

Remove the
obvious comment. Put one or more declarations

on a single line, but only one
assignment per line.

Add an empty
line before the
next paragraph.
Change the
comment to
describe the
paragraph.

Indent the
comment the
same level as

the paragraph
described.

Add the missing semicolon.
All statements should be
terminated with semicolons.

Add an empty line before the next
paragraph. Change the comment
to describe the paragraph.

Add another
paragraph.

Paragraphs make
comments much

easier to see.
Add spaces and align like elements
to make similar statements more
readable.

Use braces for all
if statements

and control
structures.
the semicolon.

www.EBooksWorld.ir

http://www.it-ebooks.info/

K

340 APPENDIX A JavaScript coding standard

 long_quote = 'Four score and seven years ago our ' +
'fathers brought forth on this continent, a new '
'nation conceived in Liberty, ' +
'and dedicated to the proposition that ' +
'all men are created equal.';

cat_breed_list = ['Abyssinian' , 'American Bobtail'
, 'American Curl' , 'American Shorthair' , 'American Whiterhair'
, 'Balinese', 'Balinese-Javanese' , 'Birman' , 'Bombay'];

long_quote = 'Four score and seven years ago our '
+ 'fathers brought forth on this continent, a new '
+ 'nation, conceived in Liberty, '
+ 'and dedicated to the proposition that '
+ 'all men are created equal.';

cat_breed_list = [
'Abyssinian', 'American Bobtail', 'American Curl',
'American Shorthair', 'American Whiterhair', 'Balinese',
'Balinese-Javanese', 'Birman', 'Bombay'

];

We’ll install JSLint a little later in this appendix, which will help us check our syntax.

USE K&R STYLE BRACKETING

K&R style bracketing balances the use of vertical space with readability. It should be
used when formatting objects and maps, arrays, compound statements, or invocations.
A compound statement contains one or more statements enclosed in curly braces.
Examples include if, while, and for statements. An invocation like alert('I have
been invoked!'); calls a function or a method.

■ Prefer single lines when possible. For example, do not unnecessarily break a
short array declaration into three lines when it can fit on one.

■ Place the opening parenthesis, brace or bracket at the end of the opening line.
■ Indent the code inside the delimiters (parenthesis, brace, or bracket) one

level—for example, two spaces.
■ Place the closing parenthesis, brace or bracket on its own line with the same

indentation as the opening line.

var invocation_count, full_name, top_fruit_list,
full_fruit_list, print_string;

invocation_count = 2;
full_name = 'Fred Burns';

Listing A.3 Not like this

Listing A.4 But like this

Listing A.5 Not like this

It’s so easy to
miss a trailing

“+” on ragged
line endings.

Placing commas
in front has
merit, but it’s not
our standard.

Where does the
statement end?

eep scanning for
that semicolon...

Line up the
operators on
the left side.

Trailing commas
are easier to

maintain.
Place the closing

bracket on its
own line. The

next statement
is easy to spot.

This is awfully

top_fruit_list = sparse and long.

www.EBooksWorld.ir

http://www.it-ebooks.info/

341Code layout and comments

[
'Apple',
'Banana',
'Orange'

];

full_fruit_list =
['Apple','Apricot','Banana','Blackberry','Blueberry',

'Currant','Cherry','Date','Grape','Grapefruit',
'Guava','Kiwi','Kumquat','Lemon','Lime',
'Lychee','Mango','Melon','Nectarine','Orange',
'Peach','Pear','Pineapple','Raspberry','Strawberry',
'Tangerine' ,'Ugli'

];

print_string = function (text_arg)
{

var char_list = text_arg.split(''), i;

for (i = 0; i < char_list.length; i++)
{
document.write(char_list[i]);

}

return true;
};

print_string('We have counted '
+ String(invocation_count)
+ ' invokes to date!

);

var
run_count, full_name, top_fruit_list,
full_fruit_list, print_string;

run_count = 2;
full_name = 'Fred Burns';

top_fruit_list = ['Apple', 'Banana', 'Orange'];
full_fruit_list = [

'Apple', 'Apricot', 'Banana', 'Blackberry', 'Blueberry',
'Currant', 'Cherry', 'Date', 'Grape', 'Grapefruit',
'Guava', 'Kiwi', 'Kumquat', 'Lemon', 'Lime',
'Lychee', 'Mango', 'Melon', 'Nectarine', 'Orange',
'Peach', 'Pear', 'Pineapple', 'Raspberry', 'Strawberry',
'Tangerine', 'Ugli'

];

print_string = function (text_arg) {
var text_arg, char_list, i;

char_list = input_text.split('');

for (i = 0; i < char_list.length; i++) {
document.write(char_list[i]);

Listing A.6 But like this

What a mess! Try to
pick out a fruit
using human eyes.

The GNU style
bracketing results
in longer pages.

These all fit
on one line.

Vertical
alignment

does wonders
for readability.

Match the closing bracket
to the overhang in K&R
bracketing.
}

www.EBooksWorld.ir

http://www.it-ebooks.info/

es

s
342 APPENDIX A JavaScript coding standard

return true;
};

print_string('We have counted '
+ String(run_count)
+ ' invocations to date!

);

Adjusting elements to line up vertically really helps comprehension, but also can be time-
consuming if you don’t have a powerful text editor. Vertical text selection—as provided
by Vim, Sublime, WebStorm, and others—is helpful in aligning values. WebStorm even
provides tools to auto-align map values, which is a great time-saver. If your editor doesn’t
allow for vertical selection, we highly recommend you consider changing editors.

USE WHITE SPACE TO DISTINGUISH FUNCTIONS AND KEYWORDS

Many languages have the concept of an article—words like an, a or the. One purpose of
an article is to alert the reader or listener that the next word will be a noun or noun
phrase. White space can be used with functions and keywords for a similar effect.

■ Follow a function with no space between the function keyword and the opening
left parenthesis, (.

■ Follow a keyword with a single space and then its opening left parenthesis, (.
■ When formatting a for statement, add a space after each semicolon.

mystery_text = get_mystery ('Hello JavaScript Denizens');

for(x=1;x<10;x++){console.log(x);}

mystery_text = get_mystery('Hello JavaScript Denizens');

for (x = 1; x < 10; x++) { console.log(x); }

This convention is common with other dynamic languages like Python, Perl, or PHP.

QUOTE CONSISTENTLY

We prefer single quotes over double quotes for string delimiters, as the HTML standard
attribute delimiter is double quotes. And HTML is typically quoted often in SPAs.
HTML delimited with single quotes requires less character escaping or encoding. The

Listing A.7 Not like this

Listing A.8 But like this

Is get_mystery a
keyword or a
custom function?

The lack of spaces mak
for a blob of text.

Nestled
parenthesis mean
this is a function.

Spaces make this
more readable.
result is shorter, easier to read, and less likely to have errors.

www.EBooksWorld.ir

http://www.it-ebooks.info/

343Code layout and comments

html_snip = "<input name=\"alley_cat\" type=\"text\" value=\"bone\">";

html_snip = '<input name="alley_cat" type="text" value="bone">';

Many languages like Perl, PHP, and Bash have the concept of interpolating and non-
interpolating quotes. Interpolating quotes expand variable values found inside, whereas
non-interpolating quotes don’t. Typically, double quotes (") are interpolating, and single
quotes (') are not. JavaScript quotes never interpolate, yet both single and double
quotes may be used with no variance in behavior. Our use is therefore consistent with
other popular languages.

A.2.2 Comment to explain and document

Comments can be even more important than the code they reference because they
can convey critical details that aren’t otherwise obvious. This is especially evident in
event-driven programming, as the number of callbacks can make tracing code execu-
tion a big time sink. This doesn’t mean that adding more comments is always better.
Strategically placed, informative, and well-maintained comments are highly valued,
whereas a clutter of inaccurate comments can be worse than no comments at all.

EXPLAIN CODE STRATEGICALLY

Our standard is intended to minimize comments and maximize their value. We mini-
mize comments by using conventions to make the code as self-evident as possible. We
maximize their value by aligning them to the paragraphs they describe and ensuring
their content is of value to the reader.

var
welcome_to_the = '<h1>Welcome to Color Haus</h1>',
houses_we_use = ['yellow','green','little pink'],
the_results, make_it_happen, init;

// get house spec
var make_it_happen = function (house) {

var
sync = houses_we_use.length,
spec = {},
i;

for (i = 0; i < sync; i++) {
...
// 30 more lines

}
return spec;

};

var init = function () {

Listing A.9 Not like this

Listing A.10 But like this

Listing A.11 Not like this
// houses_we_use is an array of house colors.

www.EBooksWorld.ir

http://www.it-ebooks.info/

344 APPENDIX A JavaScript coding standard

// make_it_happen is a function that returns a map of building specs
//
var the_results = make_it_happen(houses_we_use);

// And place welcome message into our DOM
$('#welcome').text(welcome_to_the);
// And now our specifications
$('#specs').text(JSON.stringify(the_results));

};

init();

var
 welcome_html = '<h1>Welcome to Color Haus</h1>',
 house_color_list = ['yellow','green','little pink']
 spec_map, get_spec_map, run_init;

// Begin /get_spec_map/
// Get a specification map based on colors
get_spec_map = function (color_list_arg) {
 var
 color_count = color_list_arg.length,
 spec_map = {},
 i;
 for (i = 0; i < color_count; i++) {
 // ... 30 more lines
 }
 return spec_map;
};
// End /get_spec_map/

run_init = function () {
 var spec_map = getSpecMap(house_color_list);

 $('#welcome').html(welcome_html);
 $('#specs').text(JSON.stringify(spec_map));

};

run_init();

Consistent, meaningful variable names can provide more information with fewer com-
ments. Our section on variable naming appears a little later in the appendix, but let’s
look at a few highlights. Variables that refer to functions all have a verb as their first
word—get_spec_map, run_init. Other variables are named to help us understand
their content—welcome_html is an HTML string, house_color_list is an array of
color names, and spec_map is a map of specifications. This helps reduce the number
of comments we need to add or maintain to make the code understandable.

DOCUMENT YOUR APIS AND TODOS

Comments can also provide more formal documentation for your code. We need to
be careful though—documentation about general architecture shouldn’t be buried in
one of dozens of JavaScript files, but instead should go into a dedicated architecture

Listing A.12 But like this

Use consistent
and meaningful
variable names

instead of
comments to

explain as much
as possible.

Use Begin and
End delimiters
to clearly define
longer sections.
www.EBooksWorld.ir

http://www.it-ebooks.info/

345Variable names

document. But documentation about a function or an object API can and often
should be placed right next to the code.

■ Explain any non-trivial function by specifying its purpose, the arguments or settings
it uses, the values it returns, and any exception it throws.

■ If you disable code, explain why with a comment of the following format: //
TODO date username - comment. The user name and date are valuable in decid-
ing the freshness of the comment, and can be also used by automated tools to
report on TODO items in the code base.

// BEGIN DOM Method /toggleSlider/
// Purpose : Extends and retracts chat slider
// Required Arguments :
// * do_extend (boolean) true extends slider, false retracts
// Optional Arguments :
// * callback (function) executed after animation is complete
// Settings :
// * chat_extend_time, chat_retract_time
// * chat_extend_height, chat_retract_height
// Returns : boolean
// * true - slider animation activated
// * false - slider animation not activated
// Throws : none
//
toggleSlider = function(do_extend, callback) {

// ...
};
// END DOM Method /toggleSlider/

// BEGIN TODO 2012-12-29 mmikowski - debug code disabled
// alert(warning_text);
// ... (lots more lines) ...
//
// END TODO 2012-12-29 mmikowski - debug code disabled

Some people say you should always delete code immediately and recover it from
source control if you need it again. But we have found that commenting-out code
which we’ll likely need again is more efficient than trying to find the version where the
disabled code was pristine and then merging it back. After the code has been disabled
for a while, you can safely remove it.

A.3 Variable names
Ever notice how books often include an ad-hoc naming convention in their code list-
ings? For example, you’ll see lines like person_str = 'fred';. The author typically
does this because he doesn’t want to insert a clumsy, time-and-focus-sapping reminder

Listing A.13 Example of API documentation for a function

Listing A.14 Example of disabled code
later about what the variable represents. The name is self-evident.

www.EBooksWorld.ir

http://www.it-ebooks.info/

346 APPENDIX A JavaScript coding standard

 Everyone that codes uses a naming convention, whether they realize it or not.4 A
good naming convention provides the greatest value when all members of a team
understand it and use it. When they do, they’re liberated from dull code tracing and
arduous comment maintenance, and can instead focus on the purpose and logic of
the code.

A.3.1 Reduce and improve comments with a naming convention

Consistent and descriptive names are extremely important for enterprise-class
JavaScript applications, as they can greatly speed cognition and also help avoid com-
mon errors. Consider this completely valid and realistic JavaScript code:

var creator = maker('house');

Now let’s rewrite it using our naming conventions, which we’ll discuss shortly:

var make_house = curry_build_item({ item_type : 'house' });

Example B certainly seems more descriptive. With our convention, we can tell the
following:

■ make_house is an object constructor.
■ The called function is a currying function—it employs a closure to maintain a

state and returns a function.
■ The called function takes a string argument that indicates a type.
■ The variables are local in scope.

Now we could figure all of that out for example A by looking at the context of the code.
Maybe it’ll take us 5, 30, or 60 minutes to trace all the functions and variables. And then
we’ll need to remember it all while working with or around this code. Not only will we lose
time, but we might lose focus on what we’re trying to accomplish in the first place.

 This avoidable expense will be incurred every time a new developer works with this
code. And remember, after a few weeks away from this code, any developer—includ-
ing the original author—is effectively a new developer. Obviously, this is horribly inef-
ficient and error-prone.

 Lets see how example A would look if we used comments to provide the same
amount of meaning as in example B:

// 'creator' is an object constructor we get by
// calling 'maker'. The first positional argument

4 A bit like “if you choose not to decide you still have made a choice” (“Freewill” by Rush, Permanent Waves

Listing A.15 Example A

Listing A.16 Example B

Listing A.17 Example A with comments
album, 1980)

www.EBooksWorld.ir

http://www.it-ebooks.info/

347Variable names

// of 'maker' must be a string, and it directs
// the type of object constructor to be returned.
// 'maker' uses a closure to remember the type
// of object the returned function is to
// meant to create.

var creator = maker('house');

Not only is example A with comments much more verbose than example B, it also
took much longer to write, probably because we tried to convey the same amount of
information as the naming convention. It gets worse: the comments are prone to
become inaccurate over time as the code changes and developers exert their laziness.
Let’s say we decide to change a few names a few weeks later:

// 'creator' is an object constructor we get by
// calling 'maker'. The first positional argument
// of 'maker' must be a string, and it directs
// the type of object constructor to be returned.
// 'maker' uses a closure to remember the type
// of object the returned function is to
// meant to create.

var maker = builder('house');

Oh dear, we forgot to update the comments that referenced the variable names we
just changed. Now the comments are completely wrong and misleading. Not only
that, but all these comments obscure the code because the listing is nine times longer.
It would be better to have no comments at all. Compare that to if we wanted to change
variable names in example B:

var make_abode = curry_make_item({ item_type : 'abode' });

These revisions are immediately correct, as there are no comments to adjust. As this
shows, a well-considered naming convention is a great way to self-document code
by the original author, with greater precision and without a clutter of comments that
are near-impossible to maintain. It helps speed development, improve quality, and
ease maintenance.

A.3.2 Use naming guidelines

A variable name can convey a lot of information, as we have illustrated above. Let’s
step through some guidelines we’ve found most useful.

USE COMMON CHARACTERS

Though much of our team might think it clever to name a variable queensrÿche
_album_name, those who try to find the ÿ key on their keyboard might have different

Listing A.18 Example A with comments after variable name changes

Listing A.19 Example B with the names changed

Whoops!
wrong name.Incorrect—it’s

builder now.

Darn it ... builder
not maker,

better fix this.
Arrghh! Let
someone else fix
this—I’ve got new
code to write!
www.EBooksWorld.ir

http://www.it-ebooks.info/

348 APPENDIX A JavaScript coding standard

and significantly more negative opinions. It’s better to limit variable names to charac-
ters available on most of the world’s keyboards.

■ Use a-z, A-Z, 0-9, undescore, and $ characters in variable names.
■ Don’t begin a variable name with a number.

COMMUNICATE VARIABLE SCOPE

Our JavaScript files and modules have a one-to-one correspondence, similar to
Node.js (we detail this later in the appendix). We’ve found it useful to distinguish
between variables that are available anywhere in the module, and those that have a
more limited scope.

■ Use camel case when the variable is full-module scope (it can be accessed any-
where in a module namespace).

■ Use underscores when the variable is not full-module scope (variables local to a
function within a module namespace).

■ Make sure all module scope variables have at least two syllables so that the
scope is clear. For example, instead of using a variable called config we can use
the more descriptive and obviously module-scoped configMap.

RECOGNIZE THAT VARIABLE TYPE IS IMPORTANT

Just because JavaScript allows you to play fast and loose with variable types doesn’t
mean you should. Consider the following example:

var x = 10, y = '02', z = x + y;
console.log (z); // '1002'

In this case, JavaScript converts x into a string and concatenates it to y (02) to get the
string 1002. Which is probably not what was intended. The results of type conversion
can have more profound effects as well:

var
x = 10,
z = [03, 02, '01'],
i , p;

for (i in z) {
p = x + z[i];
console.log(p.toFixed(2));

}

// Output:
// 13.00
// 12.00
// TypeError: Object 1001 has no method 'toFixed'

We’ve found that unintentional type conversion like this is much more common than

Listing A.20 Implicit conversion of type

Listing A.21 The dark side of type conversion
intentional, and this often leads to difficult to find and solve bugs. We hardly ever purposely

www.EBooksWorld.ir

http://www.it-ebooks.info/

349Variable names

change a variable’s type because (among other reasons) doing so is almost always too
confusing or difficult to manage to be worth the benefit. 5 Therefore, when we name
our variables, we often want to convey the variable type we intend it to contain

NAMING BOOLEANS

When a boolean represents a state, we use the word is; for example, is_retracted or
is_stale. When we use a boolean to direct an action, say as in a function argument,
we use the word do, as in do_retract or do_extend. And when we use a boolean to
indicate ownership, we use has; for example, has_whiskers or has_wheels. Table A.1
shows some examples.

NAMING STRINGS

Our earlier example shows that it’s useful if we know we’re using a string variable.
Table A.2 is a chart of indicators that we commonly use with strings.

NAMING INTEGERS

JavaScript doesn’t expose integers as a supported variable type, but there are many
instances where the language won’t work properly unless we provide an integer. When

5 More recent versions of Firefox’s JavaScript JIT compiler recognize this fact and use a technique called type

Table A.1 Example regular expression names

Indicator Local scope Module scope

bool [generic] bool_return boolReturn

do (requests action) do_retract doRetract

has (indicates inclusion) has_whiskers hasWhiskers

is (indicates state) is_retracted isRetracted

Table A.2 Example string name

Indicator Local scope Module scope

str [generic] direction_str directionStr

id (identifier) email_id emailId

date email_date emailDate

html body_html bodyHtml

msg (message) employee_msg employeeMsg

name employee_name employeeName

text email_text emailText

type item_type itemType
inference to realize a 20-30% performance gain in real-world code.

www.EBooksWorld.ir

http://www.it-ebooks.info/

350 APPENDIX A JavaScript coding standard

iterating over an array, for example, the use of a floating-point number as an index
doesn’t work right:

var color_list = ['red', 'green', 'blue'];

color_list[1.5] = 'chartreuse';

console.log(color_list.pop()); // 'blue'
console.log(color_list.pop()); // 'green'
console.log(color_list.pop()); // 'red'
console.log(color_list.pop()); // undefined - where did 'chartreuse' go?
console.log(color_list[1.5]); // oh, there it is

console.log(color_list); // shows [1.5: "chartreuse"]

Other built-ins also expect integer values, like the string substr() method. So when
it’s important that the number you’re using is an integer, you can use indicators, as
shown in table A.3.

NAMING NUMBERS

We can use other indicators (see table A.4) if it’s important to understand that we’re
dealing with non-integer numbers.

NAMING REGULAR EXPRESSIONS

We typically prefix a regular expression with regex, as in table A.5.

Table A.3 Example integer names

Indicator Local scope Module scope

int [generic] size_int sizeInt

none (convention) i, j, k (not allowed in module scope)

count employee_count employeeCount

index employee_index employeeIndex

time (milliseconds) retract_time retractTime

Table A.4 Example number names

Indicator Local scope Module scope

num [generic] size_num sizeNum

none (convention) x, y, z (not allowed in module scope)

coord (coordinate) x_coord xCoord

ratio sales_ratio salesRatio
www.EBooksWorld.ir

http://www.it-ebooks.info/

351Variable names

NAMING ARRAYS

Here are a few guidelines we have found useful in naming arrays:

■ An array variable name should be a singular noun followed by the word “list”.
■ Prefer the noun-“List” form for module-scoped arrays.

Table A.6 shows some examples.

NAMING MAPS

JavaScript doesn’t officially have a map data type—it just has objects. But we’ve found it
useful to distinguish between simple objects used only to store data (maps) and full-
featured objects. This map structure is analogous to a map in Java, a dict in Python, an
associative array in PHP, or a hash in Perl.

 When we name a map, we usually want to emphasize the developer’s intent and
include the word map in the name. Typically, the structure is a noun followed by the
word map, and it’s always singular. See table A.7 for example map names.

Sometimes the key of a map is an unusual or a distinguishing feature. In such cases,
we indicate the key in the name, for example, receipt_timestamp_map.

NAMING OBJECTS

Objects typically have a concrete “real world” analog and we name them accordingly:

■ An object variable name should be a noun followed by an optional modifier—
employee or receipt.

■ Make sure a module-scoped object variable name has two syllables or more so
the scope is clear—storeEmployee or salesReceipt.

■ Prefix jQuery objects with a $. This is a common convention these days, and

Table A.5 Example regular expression names

Indicator Local scope Module scope

regex regex_filter regexFilter

Table A.6 Example array names

Indicator Local scope Module scope

list timestamp-list timestampList

list color_list colorList

Table A.7 Example map names

Indicator Local scope Module scope

map employee_map employeeMap

map receipt_timestamp_map receiptTimestampMap
jQuery objects (or collections as they’re sometimes called) are prevalent in SPAs.

www.EBooksWorld.ir

http://www.it-ebooks.info/

352 APPENDIX A JavaScript coding standard

Table A.8 shows some examples.

If we expect a jQuery collection to contain multiple entries, we make it plural.

NAMING FUNCTIONS

A function almost always performs an action on an object. Therefore we always like to
place the action verb as the first part of a function name:

■ Name functions should always include a verb followed by a noun, for example,
get_record or empty_cache_map.

■ Module-scoped functions should always contain two or more syllables so the
scope is clear, for example, getRecord or emptyCacheMap.

■ Use consistent verb meanings. Table A.9 shows consistent meanings for com-
mon verbs.

Table A.8 Example object names

Indicator Local scope Module scope

none (singular noun) employee storeEmployee

none (singular noun) receipt salesReceipt

$ $area_tabs $areaTabs

Table A.9 Example function names

Indicator Meaning of indicator Local scope Module scope

fn [generic] Generic function indicator. fn_sync fnSync

curry Return a function as specified by
argument(s).

curry_make_user curryMakeUser

destroy,
remove

Remove a data structure, such as an
array. Implies that data references will
be tidied up as needed.

destroy_entry,
remove_element

destroyEntry,
removeElement

empty Remove some or all members of a
data structure without removing the
container—for example, remove all
elements of an array but leave the
array intact.

empty_cache_map emptyCacheMap

fetch Return data fetched from an external
source, such as from an AJAX or web
socket call.

fetch_user_list fetchUserList

get Return data from an object or other
internal data structure.

get_user_list getUserList

make Return newly constructed object
(doesn’t use the new operator)

make_user makeUser
www.EBooksWorld.ir

http://www.it-ebooks.info/

353Variable names

We’ve found the make constructor verb, and the distinctions between fetch/get and
store/save, especially valuable in communicating intent across a development team.
Also, using onEventname for event handlers has become common and useful. The
general form is on<eventname><modifier> where the modifier is optional. Note that we
keep the event name as a single word. For example, onMouseover not onMouseOver, or
on_dragstart not on_drag_start.

NAMING VARIABLES WITH UNKNOWN TYPES

Sometimes we really don’t know what data types our variables contain. There are two
situations where this is common:

■ We’re writing a polymorphic function—one that accepts multiple data types.
■ We’re receiving data from an external data source, such as an AJAX or web

socket feed.

In these cases, the primary feature of the variable is the uncertainty of its data type.
We’ve settled on a practice of ensuring the word data is in the name (see table A.10).

Now that we’ve reviewed our naming guidelines, let’s put them to use.

on Event handler. The event should be a
single word as in the HTML markup.

on_mouseover onMouseover

save Save data to an object or other internal
data structure.

save_user_list saveUserList

set Initialize or update values as provided
by arguments.

set_user_name setUserName

store Send data to an external source for
storage, for example via an AJAX call.

store_user_list storeUserList

update Similar to set, but has a “was previ-
ously initialized” connotation

update_user_list updateUserList

Table A.10 Example data names

Local scope Module scope Notes

http_data,
socket_data

httpData,
socketData

Unknown data type received from an HTTP
feed or web socket

arg_data, data --- Unknown data type received as an argument

Table A.9 Example function names (continued)

Indicator Meaning of indicator Local scope Module scope
www.EBooksWorld.ir

http://www.it-ebooks.info/

e
d,

st
354 APPENDIX A JavaScript coding standard

A.3.3 Put the guidelines to use

Let’s compare an object prototype before and after we apply naming guidelines.

doggy = {
temperature : 36.5,
name : 'Guido',
greeting : 'Grrrr',
speech : 'I am a dog',
height : 1.0,
legs : 4,
ok : check,
remove : destroy,
greet_people : greet_people,
say_something : say_something,
speak_to_us : speak,
colorify : flash,
show : render

};

dogPrototype = {
body_temp_c : 36.5,
dog_name : 'Guido',
greet_text : 'Grrrr',
speak_text : 'I am a dog',
height_in_m : 1.0,
leg_count : 4,

check_destroy : checkDestroy,
destroy_dog : destroyDog,
print_greet : printGreet,
print_name : printName,
print_speak : printSpeak,
show_flash : showFlash,
redraw_dog : redrawDog

};

These examples are snippets from two web page examples—listings/apx0A/

bad_dog.html and listings/apx0A/good_dog.html found in the book resources.
You’re encouraged to download and compare them to see which is more comprehen-
sible and maintainable.

A.4 Variable declaration and assignment
Variables can be assigned to functions pointers, object pointers, array pointers,

Listing A.22 Not like this

Listing A.23 But like this

We have no idea what
temperature is—a method, a
string, or an object? If it’s a number,
what are the units—F or C?This property is

also misleading.
We might guess a

string or a method.

legs implies a
collection, like

an array or a
map. Yet here

it’s used to store
an integer count.

The methods mapping is horrible—
there’s no parallel structure between th
keys and the function that is reference
so tracing through the code is a
nightmare. Also, the function names
don’t always indicate an action. The
worst offender is probably ok, which
implies a boolean status. But it isn’t.

Providing units in the name
lets us know we have a
number and its scale.

The name indicator
tells us we have a

ring value, as do the
text values below it.

Count indicates
an integer value.

Action verbs indicate we have
methods. Note how the names
are aligned, which helps when
tracing through the code.
strings, numbers, null, or undefined. Some JavaScript implementations may make

www.EBooksWorld.ir

http://www.it-ebooks.info/

355Variable declaration and assignment

internal distinctions between integers, 32-bit signed, and 64-bit double-precision float-
ing point numbers, but there’s no formal interface to enforce this typing.

■ Use {} or [] instead of new Object() or new Array() to create a new object, map,
or array. Remember, a map is a simple data-only object with no methods. If you
require object inheritance, use the createObject utility shown in chapter 2 and
in Section A.5 of this appendix.

■ Use utilities to copy objects and arrays. Simple variables such as booleans, strings,
or numbers are copied when they’are assigned. For example, new_str = this_str
will copy the underlying data (in this case, a string) to new_str. Complex variables
in JavaScript, such as arrays and objects, are not copied when they’re assigned;
instead the pointer to the data structure is copied. For example, second_map =
first_map, will result in second_map pointing to the same data as first_map, and
any manipulations of second_map will be reflected in first_map. Copying arrays
and objects correctly is not always obvious or easy. We highly recommend the use
of well-tested utilities for this purpose, such as those provided by jQuery.

■ Explicitly declare all variables first in the functional scope using a single var key-
word. JavaScript scopes variables by function and doesn’t provide block scope.
Therefore if you declare a variable anywhere within a function, it’ll be initialized
with a value of undefined immediately on invocation of the function. Placing all
the variable declarations first recognizes this behavior. It also makes the code eas-
ier to read and to detect undeclared variables (which are never acceptable).

var getMapCopy = function (arg_map) {
var key_name, result_map, val_data;

result_map = {};

for (key_name in arg_map) {
if (arg_map.hasOwnProperty(key_name)) {
val_data = arg_map[key_name];
if (val_data) { result_map[key_name] = val_data; }

}
}

return result_map;
};

Declaring a variable is not the same as assigning a value to it: declaring informs the
JavaScript engine that the variable exists within a scope. Assigning provides the vari-
able a value (instead of undefined). As a convenience, you may combine declaration
and assignment with the var statement, but it’s not required.

■ Don’t use blocks as JavaScript doesn’t provide block scope.6 Defining variables
in blocks can confuse programmers who are experienced with other C family
languages. Define variables in functional scope instead.

■ Assign all functions to variables. This reinforces the fact that JavaScript treats
functions as first-class objects.

6 This is mostly true, but Firefox’s JavaScript, as of version 1.7, introduced the let statement, which can be used

Declarations
only—many

per line

Assignment only—
one per line

Conditional
assignment
to provide block scope. But it’s not supported by all major browsers and, therefore, should be ignored.

www.EBooksWorld.ir

http://www.it-ebooks.info/

t

356 APPENDIX A JavaScript coding standard

// BAD
function getMapCopy(arg_map) { ... };

// GOOD
var getMapCopy = function (arg_map) { ... };

■ Use named arguments whenever requiring three or more arguments in a func-
tion, as positional arguments are easy to forget and aren’t self-documenting.

// BAD
var coor_map = refactorCoords(22, 28, 32, 48);

// BETTER
var coord_map = refactorCoords({ x1:22, y1:28, x2:32, y2:48 });

■ Use one line per variable assignment. Order them alphabetically or in logical
groups when possible. More than one declaration may be placed on a single line:

// vars for lasso and drag function
var

$cursor = null, // current highlighted list item
scroll_up_intid = null, // interval Id for scroll up
index, length, ratio
;

A.5 Functions
Functions play a central role in JavaScript: they organize code, provide a container for
variable scope, and they provide an execution context which can be used to construct
prototype-based objects. So though we have few guidelines for functions, we hold
them quite dear.

■ Use the factory pattern for object constructors, as it better illustrates how
JavaScript objects actually work, is fast, and can be used to provide class-like
capabilities like object count.

var createObject, extendObject,
sayHello, sayText, makeMammal,
catPrototype, makeCat, garfieldCat;

// ** Utility function to set inheritance
// Cross-browser method to inherit Object.create()
// Newer js engines (v1.8.5+) support it natively

var objectCreate = function (arg) {
if (! arg) { return {}; }
function obj() {};
obj.prototype = arg;
return new obj;

};

Object.create = Object.create || objectCreate;

// ** Utility function to extend an object
extendObject = function (orig_obj, ext_obj) {

var key_name;

Declaration
and assignmen

Multiple declarations
on a single line
for (key_name in ext_obj) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

357Functions

if (ext_obj.hasOwnProperty(key_name)) {
orig_obj[key_name] = ext_obj[key_name];

}
}

};

// ** object methods...
sayHello = function () {

console.warn(this.hello_text + ' says ' + this.name);
};

sayText = function (text) {
console.warn(this.name + ' says ' + text);

};

// ** makeMammal constructor
makeMammal = function (arg_map) {

var mammal = {
is_warm_blooded : true,
has_fur : true,
leg_count : 4,
has_live_birth : true,
hello_text : 'grunt',
name : 'anonymous',
say_hello : sayHello,
say_text : sayText

};
extendObject(mammal, arg_map);
return mammal;

};

// ** use mammal constructor to create cat prototype
catPrototype = makeMammal({

has_whiskers : true,
hello_text : 'meow'

});

// ** cat constructor
makeCat = function(arg_map) {

var cat = Object.create(catPrototype);
extendObject(cat, arg_map);
return cat;

};

// ** cat instance
garfieldCat = makeCat({

name : 'Garfield',
weight_lbs : 8.6

});

// ** cat instance method invocations
garfieldCat.say_hello();
garfieldCat.say_text('Purr...');

■ Avoid pseudoclassical object constructors—those that take a new keyword. If
you call such a constructor without the new keyword, the global namespace gets
corrupted. If you must keep such a constructor, its first letter should be capital-

ized so it may be recognized as a pseudo classical constructor.

www.EBooksWorld.ir

http://www.it-ebooks.info/

358 APPENDIX A JavaScript coding standard

■ Declare all functions before they are used—remember that declaring functions
is not the same as assigning a value to them.

■ When a function is to be invoked immediately, wrap the function in parenthesis
so that it’s clear that the value being produced is the result of the function and
not the function itself: spa.shell = (function () { ... }());

A.6 Namespaces
Much early JavaScript code was relatively small and used alone on a single web page.
These scripts could (and often did) use global variables with few repercussions. But as
JavaScript applications have become more ambitious and third-party libraries have
become common, the chance that someone else is going to want the global i variable
rises steeply. And when two code bases claim the same global variable, all hell can
break loose.7

 We can greatly minimize this problem by using only a single global function inside
of which all our other variables are scoped as illustrated here:

var spa = (function () {
// other code here

var initModule = function () {
console.log('hi there');

};

return { initModule : initModule };
}());

We call this single global function (spa, in this example) our namespace. The function
we assign to it executes on load, and of course, any local variables assigned within that
function won’t be available to the global namespace. Note that we did make the init-
Module method available. So other code can call the initialization function, but it can’t
access anything else. And it has to use our spa prefix:

// from another library, call the spa initialization function
spa.initModule();

We can subdivide the namespace so that we aren’t forced to cram a 50KB application
into a single file. For example, we can create the namespaces of spa, spa.shell, and
spa.slider:

// In the file spa.js:
var spa = (function () {

// some code here
}());

// In the file spa.shell.js:
var spa.shell = (function () {

7 The author once worked on an application where a third-party library suddenly and mistakenly claimed the
global variable util (they should have used JSLint...). Though our application had only three namespaces,
util was one of them. The conflict crashed our application, and it took four hours to diagnose and work

around the problem. We were significantly less than happy.

www.EBooksWorld.ir

http://www.it-ebooks.info/

359File names and layout

// some code here
}());

// In the file spa.slider.js:
var spa.slider = (function () {
// some code here

}());

This namespacing is key to creating manageable code in JavaScript.

A.7 File names and layout
Namespacing is the foundation of our file naming and layout. Here are the general
guidelines:

■ Use jQuery for DOM manipulations.
■ Investigate third-party code like jQuery plugins before building your own—bal-

ance the cost of integration and bloat versus the benefits of standardization and
code consistency.

■ Avoid embedding JavaScript code in HTML; use external libraries instead.
■ Minify, obfuscate, and gzip JavaScript and CSS before go-live. For example, use

Uglify to minify and obsfucate Javascript during preparation, and use Apache2/
mod_gzip to gzip the files on delivery.

JavaScript file guidelines are as follows:

■ Include third-party JavaScript files first in our HTML so their functions may be
evaluated and made ready for our application.

■ Include our JavaScript files next, in order of namespace. You can’t load
namespace spa.shell, for example, if the root namespace, spa, has not yet
been loaded.

■ Give all JavaScript files a .js suffix.
■ Store all static JavaScript files under a directory called js.
■ Name JavaScript files according to the namespace they provide, one

namespace per file. Examples:

spa.js // spa.* namespace
spa.shell.js // spa.shell.* namespace
spa.slider.js // spa.slider.* namespace

■ Use the template to start any JavaScript module file. One is found at the end of
this appendix.

We maintain a parallel structure between JavaScript and CSS files and class names:

■ Create a CSS file for each JavaScript file that generates HTML. Examples:

spa.css // spa.* namespace
spa.shell.css // spa.shell.* namespace
spa.slider.css // spa.slider.* namespace
■ Give all CSS files a .css suffix.

www.EBooksWorld.ir

http://www.it-ebooks.info/

360 APPENDIX A JavaScript coding standard

■ Store all CSS files under a directory called css.
■ Prefix CSS selectors according to the name of the module they support. This

practice helps greatly to avoid unintended interaction with classes from third-
party modules. Examples:

spa.css defines #spa, .spa-x-clearall
spa.shell.css defines

#spa-shell-header, #spa-shell-footer, .spa-shell-main

■ Use <namespace>-x-<descriptor> for state-indicator and other shared class
names. Examples include spa-x-select and spa-x-disabled. Place these in
the root namespace stylesheet, for example spa.css.

These are simple guidelines and easy to follow. The resulting organization and consis-
tency make the correlation between CSS and JavaScript much easier to understand.

A.8 Syntax
This section is a survey of JavaScript syntax and the guidelines we follow.

A.8.1 Labels

Statement labels are optional. Only these statements should be labeled: while, do,
for, switch. Labels should always be uppercase and should be a singular noun:

var
horseList = [Anglo-Arabian', 'Arabian', 'Azteca', 'Clydsedale'],
horseCount = horseList.length,
breedName, i
;

HORSE:
for (i = 0; i < horseCount; i++) {

breedName = horseList[i];
if (breedName === 'Clydsedale') { continue HORSE; }
// processing for non-bud horses follows below
// ...

}

A.8.2 Statements

Common JavaScript statements are listed next, along with our suggested use.

CONTINUE

We avoid use of the continue statement unless we use a label. It otherwise tends to
obscure the control flow. The inclusion of a label also makes continue more resilient.

// discouraged
continue;

// encouraged
continue HORSE;

DO
A do statement should have the following form:

www.EBooksWorld.ir

http://www.it-ebooks.info/

361Syntax

do {
// statements

} while (condition);

Always end a do statement with a semicolon.

FOR

A for statement should have one of the forms illustrated next:

for (initialization; condition; update) {
// statements

}

for (variable in object) {
if (filter) {
// statements

}
}

The first form should be used with arrays and with loops of a known number of iterations.
 The second form should be used with objects and maps. Be aware that members

with attributes and methods added to the prototype of the object will be included in
the enumeration. Use the hasOwnProperty method to filter the true properties:

for (variable in object) {
if (object.hasOwnProperty(variable)) {
// statements

}
}

IF

The if statement should have one of the forms illustrated as follows. An else keyword
should begin its own line:

if (condition) {
// statements

}

if (condition) {
// statements

}
else {

// statements
}

if (condition) {
// statements

}
else if (condition) {

// statements
}
else {

// statements
}

www.EBooksWorld.ir

http://www.it-ebooks.info/

362 APPENDIX A JavaScript coding standard

RETURN

A return statement shouldn’t use parentheses around the return value. The return
value expression must start on the same line as the return keyword in order to avoid
semicolon insertion.

SWITCH

A switch statement should have the following form:

switch (expression) {
case expression:
// statements

break;
case expression:
// statements

break;
default:
// statements

}

Each group of statements (except the default) should end with break, return, or
throw; fall-through should only be used with great caution and accompanying com-
ments, and even then you should rethink the need for it. Is the terseness really worth
the trade-off in legibility? Probably not.

TRY

A try statement should have one of the following forms:

try {
// statements

}
catch (variable) {

// statements
}

try {
// statements

}
catch (variable) {

// statements
}
finally {

// statements
}

WHILE

A while statement should have the following form:

while (condition) {
// statements

}

While statements should be avoided as they tend to induce endless loop conditions.
Favor using the for statement when possible.
www.EBooksWorld.ir

http://www.it-ebooks.info/

363Validating code

WITH

The with statement should be avoided. Use the object.call() family of methods
instead to adjust the value of this during function invocation.

A.8.3 Other syntax

Of course there’s more to JavaScript than just labels and statements. Here are some
additional guidelines we follow:

AVOID THE COMMA OPERATOR

Avoid the use of the comma operator (as found in some for loop constructs). This
doesn’t apply to the comma separator, which is used in object literals, array literals, var
statements, and parameter lists.

AVOID ASSIGNMENT EXPRESSIONS

Avoid using assignments in the condition part of if and while statements—don’t
write if (a = b) { ... as it’s not clear if you intended to test for equality or a success-
ful assignment.

ALWAYS USE === AND !== COMPARISONS

It is almost always better to use the === and !== operators. The == and != operators do
type coercion. In particular, don’t use == to compare against falsey values. Our JSLint
configuration doesn’t allow type coercion. If you want to test if a value is truthy or
falsey, use a construct like this:

if (is_drag_mode) { // is_drag_mode is truthy!
runReport();

}

AVOID CONFUSING PLUSES AND MINUSES

Be careful to not follow a + with a + or a ++. This pattern can be confusing. Insert
parentheses between them to make your intention clear.

// confusing:
total = total_count + +arg_map.cost_dollars;

// better:
total = total_count + (+arg_map.cost_dollars);

This prevents the + + from being misread as ++. The same guideline applies for the
minus sign, -.

DON’T USE EVAL

Be careful—eval has evil aliases. Don’t use the Function constructor. Don’t pass
strings to setTimeout or setInterval. Use a parser instead of eval to convert JSON
strings into internal data structures.

A.9 Validating code
JSLint is a JavaScript validation tool written and maintained by Douglas Crockford. It’s
very popular and useful in spotting code errors and ensuring fundamental guidelines

are followed. If you’re creating professional-grade JavaScript, you should be using

www.EBooksWorld.ir

http://www.it-ebooks.info/

364 APPENDIX A JavaScript coding standard

JSLint or a similar validator. It helps us avoid numerous types of bugs and significantly
shortens development time.

A.9.1 Install JSLint

1 Download the latest jslint4java distribution, such as jslint4java-2.0.2.zip,
from http://code.google.com/p/jslint4java/

2 Unpack and install per the instructions for your platform.

If you have Node.js installed, you may install a different version like so: npm install
-g jslint. This version runs much faster, although it’s untested with the listings in
this book.

A.9.2 Configure JSLint

Our module template includes the configuration for JSLint. These settings are used to
match our coding standard:

/*jslint browser : true, continue : true,
devel : true, indent : 2, maxerr : 50,
newcap : true, nomen : true, plusplus : true,
regexp : true, sloppy : true, vars : false,
white : true

*/
/*global $, spa, <other external vars> */

■ browser : true—Allow browser keywords like document, history, clearInter-
val, and so on.

■ continue : true—Allow the continue statement.
■ devel : true—Allow development keywords like alert, console, and so forth.
■ indent : 2—Expect two-space indentation.
■ maxerr : 50—Abort JSLint after 50 errors.
■ newcap : true—Tolerate leading underscores.

If you’re running OS X or Linux
You may move the jar file, for example sudo mv jslint4java-2.0.2.jar /usr/
local/lib/, and then create the following wrapper in /usr/local/bin/jslint:

#!/bin/bash
See http://code.google.com/p/jslint4java/

for jsfile in $@;
do /usr/bin/java \

-jar /usr/local/lib/jslint4java-2.0.1.jar \
"$jsfile";

done

Make sure jslint is executable—sudo chmod 755 /usr/local/bin/jslint
■ nomen : true—Tolerate uncapitalized constructors.

www.EBooksWorld.ir

http://code.google.com/p/jslint4java/
http://www.it-ebooks.info/

365Validating code

■ plusplus : true—Tolerate ++ and - -.
■ regexp : true—Allow useful but potentially dangerous regular expression

constructions.
■ sloppy : true—Don’t require the use strict pragma.
■ vars : false—Don’t allow multiple var statements per functional scope.
■ white : true—Disable JSLint’s formatting checks.

A.9.3 Use JSLint

We can use JSLint from the command line whenever we want to check code validity.
The syntax is:

jslint filepath1 [filepath2, ... filepathN]
example: jslint spa.js
example: jslint *.js

We’ve written a git commit hook to test all changed JavaScript files before allowing a
commit into the repository. The following shell script can be added as repo/.git/
hooks/pre-commit.

#!/bin/bash

See www.davidpashley.com/articles/writing-robust-shell-scripts.html
unset var check
set -u;
exit on error check
set -e;

BAIL=0;
TMP_FILE="/tmp/git-pre-commit.tmp";
echo;
echo "JSLint test of updated or new *.js files ...";
echo " We ignore third_party libraries in .../js/third_party/...";
git status \

| grep '.js$' \
| grep -v '/js/third_party/' \
| grep '#\s\+\(modified\|new file\)' \
| sed -e 's/^#\s\+\(modified\|new file\):\s\+//g' \
| sed -e 's/\s\+$//g' \
| while read LINE; do

echo -en " Check ${LINE}: ... "
CHECK=$(jslint $LINE);
if ["${CHECK}" != ""]; then

echo "FAIL";
else

echo "pass";
fi;

done \
| tee "${TMP_FILE}";

echo "JSlint test complete";
if grep -s 'FAIL' "${TMP_FILE}"; then

echo "JSLint testing FAILED";

echo " Please use jslint to test the failed files and ";

www.EBooksWorld.ir

http://www.it-ebooks.info/

e
e
e
.

sectio
ma

O
th

brow
ha

modu
a sh

Cre
the
exe

Java
one n

def
file n

prec
the
spa.

the
366 APPENDIX A JavaScript coding standard

echo " commit again once they pass the check.";
exit 1;

fi
echo;
exit 0;

You may need to modify it somewhat for your purposes. Also, please ensure it’s execut-
able (in Mac or Linux, chmod 755 pre-commit).

A.10 A template for modules
Experience has shown that breaking a module into consistent sections is a valuable
practice. It assists our comprehension and navigation, and it reminds us of good cod-
ing practice. The template we’ve settled on after hundreds of modules over many
projects is shown next, with some sample code sprinkled in:

/*
 * module_template.js
 * Template for browser feature modules

*/

/*jslint browser : true, continue : true,
 devel : true, indent : 2, maxerr : 50,
 newcap : true, nomen : true, plusplus : true,
 regexp : true, sloppy : true, vars : false,
 white : true
*/

/*global $, spa */

spa.module = (function () {

 //---------------- BEGIN MODULE SCOPE VARIABLES --------------
 var
 configMap = {
 settable_map : { color_name: true },
 color_name : 'blue'
 },
 stateMap = { $container : null },
 jqueryMap = {},

 setJqueryMap, configModule, initModule;
 //----------------- END MODULE SCOPE VARIABLES ---------------

 //------------------- BEGIN UTILITY METHODS ------------------
 // example : getTrimmedString
 //-------------------- END UTILITY METHODS -------------------

 //--------------------- BEGIN DOM METHODS --------------------

Listing A.24 Recommended module template

Include purpose, author, and
copyright information in the
header. This ensures this
information is not lost regardless
of any file transfer method.

Include JSLint
settings in the

header. We
recommend a

commit-hook to
ensure only

JavaScript that
passes JSLint can
be submitted to

a code repository.

Declare and initialize modules-scope variables. W
commonly include configMap to store modul

configurations, stateMap to store run-time stat
values, and jqueryMap to cache jQuery collections

Group all private utility
methods in their own

n. These methods don't
nipulate the Document
bject Model (DOM) and
erefore don't require a
ser to run. If a method

s utility beyond a single
le, we should move it to

Group all private DOM methods in their own section. These methods
access and modify the DOM and therefore require a browser to run. An
example DOM method might move a CSS sprite. The setJqueryMap

ate a namespace for
 module using a self-
cuting function. This

prevents accidental
creation of global

Script variables. Only
amespace should be

ined per file, and the
ame should correlate
isely. For example, if

 module provides the
shell namespace,
 file name should be
spa.shell.js.
ared utility library such
as spa.util.js.

method should be used to cache jQuery collections.

www.EBooksWorld.ir

http://www.it-ebooks.info/

G

s
h

bu

D

e

367A template for modules

 // Begin DOM method /setJqueryMap/
 setJqueryMap = function () {
 var $container = stateMap.$container;

 jqueryMap = { $container : $container };
 };
 // End DOM method /setJqueryMap/
 //---------------------- END DOM METHODS ---------------------

 //------------------- BEGIN EVENT HANDLERS -------------------
 // example: onClickButton = ...
 //-------------------- END EVENT HANDLERS --------------------

 //------------------- BEGIN PUBLIC METHODS -------------------
 // Begin public method /configModule/
 // Purpose : Adjust configuration of allowed keys
 // Arguments : A map of settable keys and values
 // * color_name - color to use
 // Settings :
 // * configMap.settable_map declares allowed keys
 // Returns : true
 // Throws : none
 //
 configModule = function (input_map) {
 spa.butil.setConfigMap({
 input_map : input_map,
 settable_map : configMap.settable_map,
 config_map : configMap
 });
 return true;
 };
 // End public method /configModule/

 // Begin public method /initModule/
 // Purpose : Initializes module
 // Arguments :
 // * $container the jquery element used by this feature
 // Returns : true
 // Throws : nonaccidental
 //
 initModule = function ($container) {
 stateMap.$container = $container;
 setJqueryMap();
 return true;
 };
 // End public method /initModule/

 // return public methods
 return {
 configModule : configModule,
 initModule : initModule
 };
 //------------------- END PUBLIC METHODS ---------------------
}());

roup all private event
handlers in their own

ection. These methods
andle events such as a
tton click, a key press,

a browser window
resize, or receipt of a
web socket message.

Event handlers should
generally call DOM

methods to adjust the
OM instead of making

changes themselves.

Group all callback
methods in their own

section. If we have
callbacks, we usually
place them between

vent handlers and public
methods. They’re quasi-

public methods, since
they’re used by external

modules to which they
have been provided.

Group all public
methods in their own

section. These methods
are part of a module’s

public interface. This
section should include
the configModule

and initModule
methods if they’re

provided.

Neatly return the
public methods in
an object.
www.EBooksWorld.ir

http://www.it-ebooks.info/

368 APPENDIX A JavaScript coding standard

A.11 Summary
A good coding standard is required for one or many developers to work most effec-
tively. The standard we present is comprehensive and cohesive, but we recognize it
may not be right for every team. In any event, we hope it encourages our readers to
think about common issues and how a convention may solve or mitigate them. We
strongly advise any team to agree on a standard before embarking on a large project.

 Code will be read many times more than it will be written, so we optimize for read-
ability. We limit our lines to 78 characters and use a two-space indentation. We don’t
allow tab stops. We group our lines into logical paragraphs to help readers understand
our intent, and we break lines consistently. K&R style is used for bracketing, and
whitespace is used to differentiate keywords from functions. We prefer to use the single
quote when defining string literals. We favor conventions over comments to convey
what the code is doing. Descriptive and consistent variable names are key to conveying
our intent without over-using comments. When we comment, we document strategi-
cally by paragraph. Non-trivial internal interfaces are documented consistently.

 We protect our code from unwanted interaction with other scripts through the use
of namespaces. Self-executing functions are used to provide namespaces. We subdi-
vide our root namespace to organize our code and provide reasonable file size and
scope. Our JavaScript files each contain a single namespace, and their filename
reflects the namespace they provide. We create a parallel namespace for CSS selectors
and files.

 We installed and configured JSLint. Our code is always validated using JSLint
before we allow it to be checked into our code base. We use consistent settings for val-
idation. We presented a module template that embodies many of the conventions pre-
sented and that includes our JSLint settings in the header.

 A coding standard is meant to liberate developers from menial tasks through the
introduction of a common dialect and consistent structure. This allows them to
instead focus their creative energy on the logic that matters. A good standard provides
a clarity of intent crucial for the success of large-scale projects.
www.EBooksWorld.ir

http://www.it-ebooks.info/

appendix B
Testing an SPA

This appendix builds on code we’ve completed in chapter 8. Before starting, you
should have the project files from chapter 8, as we’ll be adding to them. We recom-
mend you copy the entire directory structure you created in chapter 8 into a new
“appendix_B” directory and update them there.

 We’re fans of test-driven development and have worked gonzo projects where the
generation of tests was automated. A permutation tool was used to automatically gen-
erate thousands of regression tests by simply describing the APIs and their expected
behavior. If a developer modified code, it had to pass the regression tests before it
could be checked in to the repository. And when a new API was introduced, the devel-
oper added the description to the configuration, and hundreds or thousands of new
tests were generated automatically. This practice resulted in exceptional quality, as

This appendix covers
■ Setting up test modes
■ Selecting a test framework
■ Setting up nodeunit
■ Creating a test suite
■ Adjusting SPA modules for test settings
369

code coverage was great, and we rarely had a regression of any sort.

www.EBooksWorld.ir

http://www.it-ebooks.info/

370 APPENDIX B Testing an SPA

 Although we love these sorts of regression tests, we won’t be so ambitious in this
appendix. We only have enough space and time to get your feet wet, not give you a
bath. Instead we’ll set up test modes, discuss their use, and then create a test suite
using jQuery and a test framework. We’re testing later than we’d like for a real proj-
ect—we prefer to write our tests along with our code because it helps clarify what the
code is supposed to do. And, as if to prove the point, we found and fixed two issues
while writing this appendix.1 Now let’s discuss the test modes we want for an SPA.

B.1 Set up test modes
We use at least four different test modes when developing an SPA. These modes
should generally be used in the order presented:

1 Test the Model without a browser using fake data (mode 1).
2 Test the user interface using fake data (mode 2).
3 Test the Model without a browser using live data (mode 3).
4 Test the Model and user interface using live data (mode 4).

We need to be able switch easily between test modes so we may quickly identify, isolate,
and solve issues. A corollary to this goal is that we should use the same code for all
modes. We want to run tests without a browser (modes 1 and 3), and with a browser
(modes 2 and 4).

 Figure B.1 shows the modules used when we test the Model without a browser
using fake data (mode 1). This test mode should typically be used first to ensure the
Model API works exactly as designed.

1 If you must know, they were: 1) The online person list wasn’t being properly cleared on sign-out, and 2) calls
to spa.model.chat.get_chatee() were returning an out-of-date object after the chatee’s avatar had been

Figure B.1 Testing the Model without a browser using fake data (mode 1)
updated. Both bugs are fixed in chapter 6.

www.EBooksWorld.ir

http://www.it-ebooks.info/

371Set up test modes

Figure B.2 shows the modules used when we test the user interface using fake data
(mode 2). This is a great mode to isolate View- and Controller-related bugs after the
Model has been tested.

 Figure B.3 shows the modules used when we test the Model without a browser
using live data (mode 3). This helps isolate problems with the server API.

 Figure B.4 shows the modules used when we test the user interface using live data
(mode 4). This allows the user to test the full stack, and is really the full application.
Test freaks (or aspiring freaks like ourselves) call this integration testing.

 We minimize the number of issues we find in mode 4 if we do a good job testing
with the other modes. And once we do find an issue in mode 4, we should try to

Figure B.2 Testing the View and Controller using fake data (mode 2)
Figure B.3 Testing the Model using the test suite and live data (mode 3)

www.EBooksWorld.ir

http://www.it-ebooks.info/

372 APPENDIX B Testing an SPA

isolate it in a simpler mode, starting at mode 1. When it comes to resolving issues
effectively, mode 4 is like the moon—it’s an interesting place to visit, but you don’t
want to live there.

 In this section, we’ll make the changes necessary so we can use the browser inter-
face with both live and fake data (modes 2 and 4). Here’s what we need to do:

■ Create the spa.model.setDataMode Model method to switch between fake and
live data.

■ Update the Shell to inspect the value of a URI query argument, fake, during ini-
tialization. Have it then set the data mode using spa.model.setDataMode.

The spa.model.setDataMode method is easy to add to the Model, as we only need to
change the module-scope isFakeData variable. The following listing shows the
update. Changes are shown in bold:

...
spa.model = (function () {
 'use strict';
 var
 configMap = { anon_id : 'a0' },
 stateMap = { ...
 },

 isFakeData = true,

 personProto, makeCid, clearPeopleDb, completeLogin,
 makePerson, removePerson, people, chat, initModule,
 setDataMode;
...

Listing B.1 Add setDataMode to the Model—webapp/public/js/spa.model.js

Figure B.4 Integration testing with live data (mode 4)

Default to
fake data.

Set the isFakeData
module-scope variable.
 setDataMode = function (arg_str) {

www.EBooksWorld.ir

http://www.it-ebooks.info/

373Select a test framework

 isFakeData = arg_str === 'fake'
 ? true : false;
 };

 return {
 initModule : initModule,
 chat : chat,
 people : people,
 setDataMode: setDataMode
 };
}());

Our next step is to adjust the Shell to read the URI query arguments on initialization
and then call spa.model.setDataMode (you know, the method we just added). This
change is surgical, as shown in the following listing. Changes are shown in bold:

...
 //------------------- BEGIN PUBLIC METHODS -------------------
 // Begin Public method /initModule/
 ...
 //
 initModule = function ($container) {
 var data_mode_str;

 // set data to fake if URI query argument set
 data_mode_str
 = window.location.search === '?fake'
 ? 'fake' : 'live';
 spa.model.setDataMode(data_mode_str);

 // load HTML and map jQuery collections
 stateMap.$container = $container;
 $container.html(configMap.main_html);
 setJqueryMap();
 ...

First let’s enter our webapp directory and install the modules (npm install) and then
start the node application (node app.js). When we open our browser document with
the fake flag (http://localhost:3000/spa.html?fake), fake data will be used with the
interface (mode 2).2 If we open the browser document without the fake flag (http:
//localhost:3000/spa.html), live data will be used instead (mode 4). In the upcoming
sections we’ll discuss how to test our SPA without the browser (modes 1 and 3). First, let’s
decide on a test framework.

B.2 Select a test framework
We’ve designed our SPA architecture so we may easily test the Model without the use
of a browser. We’ve found that when the Model works exactly as designed, the expense
to fix user interface bugs tends to be trivial. We’ve also found that humans are often
(but not always) more effective at interface testing than scripts are.

Listing B.2 Set data mode in the Shell—webapp/public/js/spa.shell.js

Add to
export list.
2 Yes, we know the query argument parsing is a hack. In production we’d use a much more robust library routine.

www.EBooksWorld.ir

http://www.it-ebooks.info/

374 APPENDIX B Testing an SPA

 Instead of a browser, we’ll use Node.js to test the Model. This will allow us to eas-
ily and automatically run test suites during development and prior to deployment.
And because we’re not dependent on a browser, tests are simpler to write, maintain,
and extend.

 Node.js has many test frameworks that have years of use and refinement. Let’s be
wise and use one instead of hacking our own. Here’s a list of some that we found inter-
esting for one reason or another:3

■ jasmine-jquery—Can “watch” jQuery events.
■ mocha—Popular and similar to nodeunit but with better reporting.
■ nodeunit—Popular, with simple yet powerful tools.
■ patr—Uses promises (similar to jQuery $.Deferred objects) for asynchronous

testing.
■ vows—Popular asynchronous BDD framework.
■ zombie—Popular full-stack headless featuring a WebKit engine.

Zombie is inclusive and is intended to test the user interface as well as the Model. It
even includes its own instance of the WebKit rendering engine so tests can check ren-
dered elements. We won’t pursue this kind of testing here because it’s expensive and
tedious to install, set up, and maintain—and this is an appendix, not another book.
Although we find jasmine-jquery and patr interesting for the reasons listed here, we
feel they don’t have the level of support we need. Mocha and vows are popular, but we
want to start simpler.

 This leaves us with nodeunit, which is popular, powerful, simple, and also inte-
grates nicely with our IDE. Let’s set it up.

B.3 Set up nodeunit
Before we can install nodeunit, we need to ensure Node.js is installed as outlined in
chapter 7. Once Node.js is available, we need to install two npm packages to get node-
unit ready to run our test suite:

■ jquery—We need to install the Node.js version of jQuery because our Model
uses global custom events, and this requires jQuery and the jquery.event.gevent
plugin. As an added bonus, installation of this package provides a mocked
browser environment. So if we wanted to test DOM manipulation we could.

■ nodeunit—This provides the nodeunit command-line tool. When we run our
test suite, we’ll use the nodeunit command instead of node.

We like to install these packages system-wide so they can be used by all Node.js proj-
ects. We may do so using the -g switch and installing them as root (or administrator, if
you’re on Windows). The following should work for Linux and Mac:

3 See https://github.com/joyent/node/wiki/modules#testing for an exhaustive list.

www.EBooksWorld.ir

https://github.com/joyent/node/wiki/modules#testing
http://www.it-ebooks.info/

375Create the test suite

$ sudo npm install -g jquery
$ sudo npm install -g nodeunit

Note that you may need to tell your execution environment where to find the system
Node.js libraries by setting the NODE_PATH environment variable. In Linux or Mac, this
can be done by adding to your ~/.bashrc file:

$ echo 'export NODE_PATH=/usr/lib/node_modules' >> ~/.bashrc

This will ensure the NODE_PATH is set every time you start a new terminal session.4 Now
that we have Node.js, jQuery, and nodeunit installed, let’s prepare our modules for
testing.

B.4 Create the test suite
As of chapter 6, we have all the ingredients for successful testing of our Model using
known data (thanks to the Fake module) and a well-defined API. Figure B.5 shows how
we plan to test the Model:5

 Before we can start testing, we need to get Node.js to load our modules. Let’s do
that next.

B.4.1 Get Node.js to load our modules

Node.js handles global variables differently than browsers. Unlike browser JavaScript,
variables in a file are local by default. Effectively, Node.js wraps all library files in an

Listing B.3 Installing jQuery and nodeunit system-wide

4 For a currently running session, type export PATH=/usr/lib/node_modules. Depending on how Node.js
is installed, the path may vary. On Mac, you might try /usr/local/share/npm/lib/node_modules.

5 The astute interloper will notice that this figure is a lazy, pixel-perfect copy of one presented earlier. We

Figure B.5 Testing the Model using the test suite and fake data (mode 1)
should get paid by the column-inch...

www.EBooksWorld.ir

http://www.it-ebooks.info/

376 APPENDIX B Testing an SPA

anonymous function. The way we make a variable available across all modules is to
make it a property of the top-level object. And the-top level object in Node.js is not
window, like it is in browsers, but is instead called—wait for it—global.

 Our modules are designed for use by the browser. But with ingenuity, we can have
Node.js use them with little modification. Here’s how we do it: our entire application
runs in the single namespace (object) of spa. So if we declare a global.spa attribute in
our Node.js test script before we load our modules, everything should work as expected.

 Now before all that evaporates from our short-term memories, let’s start our test
suite, webapp/public/nodeunit_suite.js, as shown in the following listing.

/*
 * nodeunit_suite.js
 * Unit test suite for SPA
 *
 * Please run using /nodeunit <this_file>/
*/

/*jslint node : true, continue : true,
 devel : true, indent : 2, maxerr : 50,
 newcap : true, nomen : true, plusplus : true,
 regexp : true, sloppy : true, vars : false,
 white : true
*/
/*global spa */

// our modules and globals
global.spa = null;

We only need to adjust the root JavaScript file (webapp/public/js/spa.js) to finish
loading our modules. Our adjustment allows the test suite to use the correct global
spa variable as shown in the next listing. Changes are shown in bold:

/*
 * spa.js
 * Root namespace module
*/
...
/*global $, spa:true */

spa = (function () {
 'use strict';
 var initModule = function ($container) {
 spa.data.initModule();
 spa.model.initModule();

 if (spa.shell && $container) {
 spa.shell.initModule($container);
 }
 };

 return { initModule: initModule };

Listing B.4 Declare our namespace in the test suite—webapp/public/nodeunit_suite.js

Listing B.5 Adjust our root SPA JavaScript—webapp/public/js/spa.js

Add the node: true switch
to have JSLint assume the
Node.js environment.

Create a global.spa
attribute so the SPA
modules can use the spa
namespace when they load.

Add spa: true to the
configuration so that JSLint
will allow us to assign to
the spa global variable.

Remove the var
declaration.

Adjust the application so
that it can run without the
user interface (the Shell).
}());

www.EBooksWorld.ir

http://www.it-ebooks.info/

377Create the test suite

Now that we’ve created a global.spa variable, we can load our modules much like
we did with our browser document (webapp/public/spa.html). First we’ll load our
third-party modules like jQuery and TaffyDB, and make sure their global variables are
also available (jQuery, $, and TAFFY, if you must know). Then we can load our jQuery
plugins and then our SPA modules. We won’t load our Shell or feature modules,
because we don’t need them to test the Model. Let’s update our unit test file while
these thoughts still linger in our consciousness. Changes are shown in bold:

...
/*global $, spa */

// third-party modules and globals
global.jQuery = require('jquery');
global.TAFFY = require('./js/jq/taffydb-2.6.2.js').taffy;
global.$ = global.jQuery;
require('./js/jq/jquery.event.gevent-0.1.9.js');

// our modules and globals
global.spa = null;
require('./js/spa.js');
require('./js/spa.util.js');
require('./js/spa.fake.js');
require('./js/spa.data.js');
require('./js/spa.model.js');

// example code
spa.initModule();
spa.model.setDataMode('fake');

var $t = $('<div/>');
$.gevent.subscribe(
 $t, 'spa-login',
 function (event, user){
 console.log('Login user is:', user);
 }
);

spa.model.people.login('Fred');

Whoops, we got ambitious and snuck in a short test script at the end of our listing.
Although we eventually want to use nodeunit to run this file, we’ll use Node.js to run it
first to ensure it’s loading the libraries properly. Indeed, when we run our test suite
using Node.js we see something like this:

$ node nodeunit_suite.js
Login user is: { cid: 'id_5',

name: 'Fred',
css_map: { top: 25, left: 25, 'background-color': '#8f8' },
___id: 'T000002R000003',
___s: true,
id: 'id_5' }

Listing B.6 Adding the libraries and our modules—webapp/public/nodeunit_suite.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

st
o
t

378 APPENDIX B Testing an SPA

If you’re playing along at home, please be patient. It takes three seconds before we see
any output because the Fake module pauses that long before completing a sign-in
request. And it takes another eight seconds after the output for Node.js to finish run-
ning. That’s because Fake module uses timers when emulating the server (timers are
created by the setTimeout and setInterval methods). Until those timers are com-
plete, Node.js considers the program “running” and doesn’t exit. We’ll come back to
this issue later. Now let’s get familiar with nodeunit.

B.4.2 Set up a single nodeunit test

Now that we have Node.js loading our libraries, we can focus on setting up our node-
unit tests. First let’s get comfortable with nodeunit all by itself. The steps to running a
successful test are as follows:

■ Declare the test functions.
■ In each test function, tell the test object how many assertions to expect using

test.expect(<count>).
■ In each test, run the assertions; for example test.ok(true);.
■ At the end of each test, tell the test object that this test is complete using

test.done().
■ Export the list of tests to be run in order. Each test will be run only after the prior

test is complete.
■ Run the test suite using nodeunit <filename>.

Listing B.7 shows a nodeunit script using these steps for a single test. Please read the
annotations as they provide helpful insight:

/*jslint node : true, sloppy : true, white : true */

// A trivial nodeunit example

// Begin /testAcct/
var testAcct = function (test) {

test.expect(1);
test.ok(true, 'this passes');
test.done();

};
// End /testAcct/

module.exports = { testAcct : testAcct };

When we run nodeunit nodeunit_test.js we should see the following output:

$ nodeunit_test.js
✔ testAcct

Listing B.7 Our first nodeunit test—webapp/public/nodeunit_test.js

Declare a test function called
testAcct. We can name a te
whatever we want; it just has t
be a function that takes a tes
object as its only argument.

Tell the test object
that we plan to run

a single assertion.

Invoke our first (and only)
assertion in this example.Invoke

test.done() so
that nodeunit may

proceed to the next
test (or exit).

Export our tests in the
order we want
nodeunit to run them.
OK: 1 assertions (3ms)

www.EBooksWorld.ir

http://www.it-ebooks.info/

379Create the test suite

Now let’s combine our nodeunit experience with the code we want tested.

B.4.3 Create our first real test

We’ll now convert our first example into a real test. We can use nodeunit and jQuery
deferred objects to avoid the pitfalls of testing event-driven code. First, we rely on the
fact that nodeunit won’t proceed to a new test until the prior test declares it’s finished
by executing test.done(). This makes testing easier to write and understand. Second,
we can use a deferred object in jQuery to invoke test.done() only after the required
spa-login event has been published. This then allows the script to proceed to the next
test. Let’s update our test suite as shown in listing B.8. Changes are shown in bold:

...
// our modules and globals
global.spa = null;
require('./js/spa.js');
require('./js/spa.util.js');
require('./js/spa.fake.js');
require('./js/spa.data.js');
require('./js/spa.model.js');

// Begin /testAcct/ initialize and login
var testAcct = function (test) {
 var $t, test_str, user, on_login,
 $defer = $.Deferred();

 // set expected test count
 test.expect(1);

 // define handler for 'spa-login' event
 on_login = function (){ $defer.resolve(); };

 // initialize
 spa.initModule(null);
 spa.model.setDataMode('fake');

 // create a jQuery object and subscribe
 $t = $('<div/>');
 $.gevent.subscribe($t, 'spa-login', on_login);

 spa.model.people.login('Fred');

 // confirm user is no longer anonymous
 user = spa.model.people.get_user();
 test_str = 'user is no longer anonymous';
 test.ok(! user.get_is_anon(), test_str);

 // declare finished once sign-in is complete
 $defer.done(test.done);
};
// End /testAcct/ initial setup and login

module.exports = { testAcct : testAcct };

Listing B.8 Our first real test—webapp/public/nodeunit_suite.js
www.EBooksWorld.ir

http://www.it-ebooks.info/

380 APPENDIX B Testing an SPA

When we run the test suite using nodeunit ./nodeunit_suite.js we should see the
following output:

$ nodeunit nodeunit_test.js
✔ testAcct

OK: 1 assertions (3320ms)

Now that we’ve successfully implemented a single test, let’s map out the tests we want
to have in our suite and discuss how we’ll ensure they execute in the correct sequence.

B.4.4 Map the events and tests

When we tested the Model manually in chapters 5 and 6, waiting for some process to
complete before typing in the next test came naturally. It’s obvious to humans that we
must wait for sign-in to complete before we can test messaging. But this isn’t obvious
to a test suite.

 We must map out a sequence of events and tests for our test suite to work. One
benefit of writing test suites is that it makes us analyze and understand our code
more completely. Sometimes we find more bugs when writing tests than when run-
ning them.

 Let’s first design a test plan for our suite. We want to test the Model as our imagi-
nary user, Fred, puts our SPA through its paces. Here is what we’d like Fred to do, with
labels:

■ testInitialState—Test the initial state of the Model.
■ loginAsFred—Sign in as Fred and test the user object before the process

completes.
■ testUserAndPeople—Test the online-user list and the user details.
■ testWilmaMsg—Receive a message from Wilma and test the message details.
■ sendPebblesMsg—Change the chatee to Pebbles and send her a message.
■ testMsgToPebbles—Test the content of the message sent to Pebbles.
■ testPebblesResponse—Test the content of a response message sent by Pebbles.
■ updatePebblesAvtr—Update data for Pebbles’ avatar.
■ testPebblesAvtr—Test the update of Pebbles’ avatar.
■ logoutAsFred—Sign out as Fred.
■ testLogoutState—Test the state of the Model after sign-out.

Our test framework, nodeunit, runs tests in the order presented, and won’t proceed to
the next test until the prior test has declared that it has finished. This works to our
advantage, as we want to ensure that specific events have occurred before certain tests
are run. For example, we want a user sign-in event to occur before we test the online
person list. Let’s map out our test plan with the events that need to occur before we
can proceed from each test, as shown in listing B.9. Note that our test names match
the labels from our plan exactly, and they’re human-readable:
www.EBooksWorld.ir

http://www.it-ebooks.info/

381Create the test suite

// Begin /testInitialState/
 // initialize our SPA
 // test the user in the initial state
 // test the list of online persons
 // proceed to next test without blocking
// End /testInitialState/

// Begin /loginAsFred/
 // login as 'Fred'
 // test user attributes before login completes
 // proceed to next test when both conditions are met:
 // + login is complete (spa-login event)
 // + the list of online persons has been updated
 // (spa-listchange event)
// End /loginAsFred/

// Begin /testUserAndPeople/
 // test user attributes
 // test the list of online persons
 // proceed to next test when both conditions are met:
 // + first message has been received (spa-updatechat event)
 // (this is the example message from 'Wilma')
 // + chatee change has occurred (spa-setchatee event)
// End /testUserAndPeople/

// Begin /testWilmaMsg/
 // test message received from 'Wilma'
 // test chatee attributes
 // proceed to next test without blocking
// End /testWilmaMsg/

// Begin /sendPebblesMsg/
 // set_chatee to 'Pebbles'
 // send_msg to 'Pebbles'
 // test get_chatee() results
 // proceed to next test when both conditions are met:
 // + chatee has been set (spa-setchatee event)
 // + message has been sent (spa-updatechat event)
// End /sendPebblesMsg/

// Begin /testMsgToPebbles/
 // test the chatee attributes
 // test the message sent
 // proceed to the next test when
 // + A response has been received from 'Pebbles'
 // (spa-updatechat event)
// End /testMsgToPebbles/

// Begin /testPebblesResponse/
 // test the message received from 'Pebbles'
 // proceed to next test without blocking
// End /testPebblesResponse/

// Begin /updatePebblesAvtr/
 // invoke the update_avatar method

Listing B.9 Test plan with blocking events detailed
 // proceed to the next test when

www.EBooksWorld.ir

http://www.it-ebooks.info/

382 APPENDIX B Testing an SPA

 // + the list of online persons has been updated
 // (spa-listchange event)
// End /updatePebblesAvtr/

// Begin /testPebblesAvtr/
 // get 'Pebbles' person object using get_chatee method
 // test avatar details for 'Pebbles'
 // proceed to next test without blocking
// End /testPebblesAvtr/

// Begin /logoutAsFred/
 // logout as fred
 // proceed to next test when
 // + logout is complete (spa-logout event)
// End /logoutAsFred/

// Begin /testLogoutState/
 // test the list of online persons
 // test user attributes
 // proceed without blocking
// End /testLogoutState/

This plan is linear and easy to understand. In the next section, we’ll put our plan into
practice.

B.4.5 Create the test suite

We can now add some utilities and incrementally add tests to our suite. At each step
we’ll run the suite to check our progress.

ADD TESTS FOR INITIAL STATE AND SIGN-IN
We’ll begin our test suite by writing some utilities and adding our first three tests to
check the initial Model state, have Fred sign in, and then check the user and person
list attributes. We’ve found that tests typically fall into two categories:

1 Validation tests where many assertions (like user.name === 'Fred') are used
to check the correctness of program data. These tests often don’t block.

2 Control tests that perform actions like signing in, sending a message, or updat-
ing an avatar. These tests rarely have many assertions and often block progress
until an event-based condition is met.

We’ve found it is best to embrace this natural division, and we name our tests accord-
ingly. Validation tests are named test<something>, and the control tests are named
after what they do, like loginAsFred.

 The loginAsFred test requires that the sign-in be complete and the list of online
users be updated before allowing nodeunit to proceed to the testUserAndPeople test.
This is accomplished by having the $t jQuery collection subscribe handlers for the
spa-login and spa-listchange events. The test suite then uses jQuery deferred
objects to ensure these events occur before loginAsFred executes test.done().

 Let’s update the test suite as shown in listing B.10. As always, please read the anno-
tations as they provide additional insight. The comments we built for our test plan in
listing B.9 are shown in bold:
www.EBooksWorld.ir

http://www.it-ebooks.info/

.

383Create the test suite

...
/*global $, spa */

// third-party modules and globals
...

// our modules and globals
...

var
 // utility and handlers
 makePeopleStr, onLogin, onListchange,

 // test functions
 testInitialState, loginAsFred, testUserAndPeople,

 // event handlers
 loginEvent, changeEvent, loginData, changeData,

 // indexes
 changeIdx = 0,

 // deferred objects
 $deferLogin = $.Deferred(),
 $deferChangeList = [$.Deferred()];

// utility to make a string of online person names
makePeopleStr = function (people_db) {
 var people_list = [];
 people_db().each(function(person, idx) {
 people_list.push(person.name);
 });
 return people_list.sort().join(',');
};

// event handler for 'spa-login'
onLogin = function (event, arg) {
 loginEvent = event;
 loginData = arg;
 $deferLogin.resolve();
};

// event handler for 'spa-listchange'
onListchange = function (event, arg) {
 changeEvent = event;
 changeData = arg;
 $deferChangeList[changeIdx].resolve();
 changeIdx++;
 $deferChangeList[changeIdx] = $.Deferred();
};

// Begin /testInitialState/
testInitialState = function (test) {
 var $t, user, people_db, people_str, test_str;
 test.expect(2);

 // initialize our SPA

Listing B.10 Add our first two tests—webapp/public/nodeunit_suite.js

Declare the first three
test methods using
descriptive names so that
our report reads easily.

Create the makePeopleStr
utility. As you might gather from
the name, this makes a string
containing the names of the
people found in a TaffyDB
collection. This enables the suite
to test the list of online people
with a simple string comparison

Create a method to handle an
spa-login custom global
event. When this is executed,
it invokes $deferLogin
.resolve().

Create a method to handle an spa-
listchange custom global event.
When this is executed, it invokes
$deferChangeList[idxChange]
.resolve(), and then pushes a new
jQuery deferred object into
$deferChangeList for subsequent
spa-listchange events.
 spa.initModule(null);

www.EBooksWorld.ir

http://www.it-ebooks.info/

384 APPENDIX B Testing an SPA

 spa.model.setDataMode('fake');

 // create a jQuery object
 $t = $('<div/>');

 // subscribe functions to global custom events
 $.gevent.subscribe($t, 'spa-login', onLogin);
 $.gevent.subscribe($t, 'spa-listchange', onListchange);

 // test the user in the initial state
 user = spa.model.people.get_user();

 test_str = 'user is anonymous';
 test.ok(user.get_is_anon(), test_str);

 // test the list of online persons
 test_str = 'expected user only contains anonymous';

 people_db = spa.model.people.get_db();
 people_str = makePeopleStr(people_db);
 test.ok(people_str === 'anonymous', test_str);

 // proceed to next test without blocking
 test.done();
};
// End /testInitialState/

// Begin /loginAsFred/
loginAsFred = function (test) {
 var user, people_db, people_str, test_str;
 test.expect(6);

 // login as 'Fred'
 spa.model.people.login('Fred');
 test_str = 'log in as Fred';
 test.ok(true, test_str);

 // test user attributes before login completes
 user = spa.model.people.get_user();
 test_str = 'user is no longer anonymous';
 test.ok(! user.get_is_anon(), test_str);

 test_str = 'usr name is "Fred"';
 test.ok(user.name === 'Fred', test_str);

 test_str = 'user id is undefined as login is incomplete';
 test.ok(! user.id, test_str);

 test_str = 'user cid is c0';
 test.ok(user.cid === 'c0', test_str);

 test_str = 'user list is as expected';
 people_db = spa.model.people.get_db();
 people_str = makePeopleStr(people_db);
 test.ok(people_str === 'Fred,anonymous', test_str);

 // proceed to next test when both conditions are met:
 // + login is complete (spa-login event)
 // + the list of online persons has been updated
 // (spa-listchange event)
 $.when($deferLogin, $deferChangeList[0])

Make a jQuery collection, $t, which
we can use to subscribe handlers to
custom global events.

Subscribe to the jQuery custom
global events needed to confirm
completion of loginAsFred.

The event spa-login is
handled by onLogin, and the
spa-listchange event is

handled by onListchange.

The testInitialState test proceeds
without blocking the next test by
unconditionally invoking test.done().

Have loginAsFred use jQuery
deferred objects to ensure

required events have completed before
declaring test.done. The sign-in

process must be completed
($deferLogin.is_resolved()
=== true) and the online person list

must have been updated
($deferChangeList[0]

.is_resolved === true). The
$.when(<deferred objects>)
.then(<function>) statement

implements this logic.
 .then(test.done);

www.EBooksWorld.ir

http://www.it-ebooks.info/

385Create the test suite

};
// End /loginAsFred/

// Begin /testUserAndPeople/
testUserAndPeople = function (test) {
 var
 user, cloned_user,
 people_db, people_str,
 user_str, test_str;
 test.expect(4);

 // test user attributes
 test_str = 'login as Fred complete';
 test.ok(true, test_str);

 user = spa.model.people.get_user();
 test_str = 'Fred has expected attributes';
 cloned_user = $.extend(true, {}, user);

 delete cloned_user.___id;
 delete cloned_user.___s;
 delete cloned_user.get_is_anon;
 delete cloned_user.get_is_user;

 test.deepEqual(
 cloned_user,
 { cid : 'id_5',
 css_map : { top: 25, left: 25, 'background-color': '#8f8' },
 id : 'id_5',
 name : 'Fred'
 },
 test_str
);

 // test the list of online persons
 test_str = 'receipt of listchange complete';
 test.ok(true, test_str);

 people_db = spa.model.people.get_db();
 people_str = makePeopleStr(people_db);
 user_str = 'Betty,Fred,Mike,Pebbles,Wilma';
 test_str = 'user list provided is expected - ' + user_str;

 test.ok(people_str === user_str, test_str);

 test.done();
};
// End /testUserAndPeople/

module.exports = {
 testInitialState : testInitialState,
 loginAsFred : loginAsFred,
 testUserAndPeople : testUserAndPeople
};
// End of test suite

Test the attributes of the
signed-in user and the
online person list.

Don’t block the testUserAndPeople
test from proceeding at this time because
there isn’t a test that follows it. We’ll
change that when we add more tests.

Export the tests in the order we’d like
them executed. When we run our test
suite using nodeunit, the test names
will be displayed.
When we run our test suite (nodeunitnodeunit_suite.js) we should see output like so:

www.EBooksWorld.ir

http://www.it-ebooks.info/

r
386 APPENDIX B Testing an SPA

$ nodeunit nodeunit_suite.js
✔ testInitialState
✔ loginAsFred
✔ testUserAndPeople

OK: 12 assertions (4223ms)

The suite takes about 12 seconds to return control to the console because JavaScript
has active timers that need to complete. Don’t worry about that—it’ll be a non-issue by
the time we complete the test suite. Now let’s add tests for message transactions.

ADD TESTS FOR MESSAGE TRANSACTIONS

We’ll now add the next four tests from our test plan. These are a nice logical group, as
they all test issues with sending and receiving messages. The tests include testWil-
maMsg, sendPebblesMsg, testMsgToPebbles, and testPebblesResponse. We feel the
names provide a good summary of what each test does.

 When we add our tests, we’ll need a few more jQuery deferred objects to ensure
serial progression. Listing B.11 shows this implementation. Please read the annota-
tions as they detail how blocking is accomplished on these new tests. All changes are
shown in bold:

...
var
 // utility and handlers
 makePeopleStr, onLogin, onListchange,
 onSetchatee, onUpdatechat,

 // test functions
 testInitialState, loginAsFred, testUserAndPeople,
 testWilmaMsg, sendPebblesMsg, testMsgToPebbles,
 testPebblesResponse,

 // event handlers
 loginEvent, changeEvent, chateeEvent, msgEvent,
 loginData, changeData, msgData, chateeData,

 // indexes
 changeIdx = 0, chateeIdx = 0, msgIdx = 0,

 // deferred objects
 $deferLogin = $.Deferred(),
 $deferChangeList = [$.Deferred()],
 $deferChateeList = [$.Deferred()],
 $deferMsgList = [$.Deferred()];

// utility to make a string of online person names

...

// event handler for 'spa-updatechat'
onUpdatechat = function (event, arg) {
 msgEvent = event;
 msgData = arg;

Listing B.11 Add tests for message transactions—webapp/public/nodeunit_suite.js

Declare two new
event handlers.

Declare fou
new test
names.

Declare
variables to
hold event

handler data.

Declare index
variables for
deferred object lists.

Declare lists of
jQuery deferred
objects used by
event handlers.

Add the global custom event
handler for spa-updatechat.
This will get called when a new
 $deferMsgList[msgIdx].resolve();
message is received or sent.

www.EBooksWorld.ir

http://www.it-ebooks.info/

A

o

l

.

387Create the test suite

 msgIdx++;
 $deferMsgList[msgIdx] = $.Deferred();
};

// event handler for 'spa-setchatee'
onSetchatee = function (event, arg) {
 chateeEvent = event;
 chateeData = arg;
 $deferChateeList[chateeIdx].resolve();
 chateeIdx++;
 $deferChateeList[chateeIdx] = $.Deferred();
};

// Begin /testInitialState/
testInitialState = function (test) {
 ...
 // subscribe functions to global custom events
 $.gevent.subscribe($t, 'spa-login', onLogin);
 $.gevent.subscribe($t, 'spa-listchange', onListchange);
 $.gevent.subscribe($t, 'spa-setchatee', onSetchatee);
 $.gevent.subscribe($t, 'spa-updatechat', onUpdatechat);
 ...
};
// End /testInitialState/

...
// Begin /testUserAndPeople/
testUserAndPeople = function (test) {
 ...
 test.ok(people_str === user_str, test_str);

 // proceed to next test when both conditions are met:
 // + first message has been received (spa-updatechat event)
 // (this is the example message from 'Wilma')
 // + chatee change has occurred (spa-setchatee event)
 $.when($deferMsgList[0], $deferChateeList[0])
 .then(test.done);
};
// End /testUserAndPeople/

// Begin /testWilmaMsg/
testWilmaMsg = function (test) {
 var test_str;
 test.expect(4);

 // test message received from 'Wilma'
 test_str = 'Message is as expected';
 test.deepEqual(
 msgData,
 { dest_id: 'id_5',
 dest_name: 'Fred',
 sender_id: 'id_04',
 msg_text: 'Hi there Fred! Wilma here.'
 },
 test_str
);

dd the global custom
event handler for

spa-setchatee.
This will get called
when the chatee is

changed for any
reason. The chatee
could change if the
user selects a new

chatee, or if the
current chatee goes

ffline, or if we receive
a message from a

person different than
the current chatee.

Have the jQuery
collection $t
subscribe the

onUpdatechat
handler for the

spa-updatechat
custom global event.

Have the jQuery collection
$t subscribe the

onSetchatee handler
for the spa-setchatee

custom global event.

Don’t proceed from the
testUserAndPeople test unti

after the first message has been
processed and the first chatee

change has occurred. Use jQuery
deferred objects and the

$.when().then() construct
to implement this blocking

Add the test to check the
message from Wilma along with
the new chatee attributes.
 // test chatee attributes

www.EBooksWorld.ir

http://www.it-ebooks.info/

ere

ess
388 APPENDIX B Testing an SPA

 test.ok(chateeData.new_chatee.cid === 'id_04');
 test.ok(chateeData.new_chatee.id === 'id_04');
 test.ok(chateeData.new_chatee.name === 'Wilma');

 // proceed to next test without blocking
 test.done();
};
// End /testWilmaMsg/

// Begin /sendPebblesMsg/
sendPebblesMsg = function (test) {
 var test_str, chatee;
 test.expect(1);

 // set_chatee to 'Pebbles'
 spa.model.chat.set_chatee('id_03');

 // send_msg to 'Pebbles'
 spa.model.chat.send_msg('whats up, tricks?');

 // test get_chatee() results
 chatee = spa.model.chat.get_chatee();
 test_str = 'Chatee is as expected';
 test.ok(chatee.name === 'Pebbles', test_str);

 // proceed to next test when both conditions are met:
 // + chatee has been set (spa-setchatee event)
 // + message has been sent (spa-updatechat event)
 $.when($deferMsgList[1], $deferChateeList[1])
 .then(test.done);
};
// End /sendPebblesMsg/

// Begin /testMsgToPebbles/
testMsgToPebbles = function (test) {
 var test_str;
 test.expect(2);

 // test the chatee attributes
 test_str = 'Pebbles is the chatee name';
 test.ok(
 chateeData.new_chatee.name === 'Pebbles',
 test_str
);

 // test the message sent
 test_str = 'message change is as expected';
 test.ok(msgData.msg_text === 'whats up, tricks?', test_str);

 // proceed to the next test when
 // + A response has been received from 'Pebbles'
 // (spa-updatechat event)
 $deferMsgList[2].done(test.done);
};
// End /testMsgToPebbles/

// Begin /testPebblesResponse/
testPebblesResponse = function (test) {

Proceed from the
testWilmaMsg

test to the next
without blocking.

Add the sendPebblesMsg test wh
Fred sets Pebbles as the chatee and
sends her a message. Like most tests
that perform actions, there are few
assertions and the code blocks progr
until events have occurred.

Don’t proceed from the
sendPebblesMsg

test until after the
second message has
been processed and

the second chatee
change has occurred.
Use jQuery deferred

objects and the
$.when().then()

construct to
implement this

blocking.

Add the test to check the
message sent to Pebbles.

Don’t proceed from the
testMsgToPebbles
test until after the third

message (Pebbles’
response) has been

processed.
Add the
testPebblesResponse
test to check the message
sent from Pebbles.
 var test_str;

www.EBooksWorld.ir

http://www.it-ebooks.info/

389Create the test suite

 test.expect(1);

 // test the message received from 'Pebbles'
 test_str = 'Message is as expected';
 test.deepEqual(
 msgData,
 { dest_id: 'id_5',
 dest_name: 'Fred',
 sender_id: 'id_03',
 msg_text: 'Thanks for the note, Fred'
 },
 test_str
);

 // proceed to next test without blocking
 test.done();
};
// End /testPebblesResponse/

module.exports = {
 testInitialState : testInitialState,
 loginAsFred : loginAsFred,
 testUserAndPeople : testUserAndPeople,
 testWilmaMsg : testWilmaMsg,
 sendPebblesMsg : sendPebblesMsg,
 testMsgToPebbles : testMsgToPebbles,
 testPebblesResponse : testPebblesResponse
};
// End of test suite

When we run our test suite (nodeunitnodeunit_suite.js) we should see output like so:

$ nodeunit nodeunit_suite.js
✔ testInitialState
✔ loginAsFred
✔ testUserAndPeople
✔ testWilmaMsg
✔ sendPebblesMsg
✔ testMsgToPebbles
✔ testPebblesResponse

OK: 20 assertions (14233ms)

The suite takes just as long to return from execution as before, but now we see the
new tests. Specifically, the suite is now waiting for, and then testing, the message
Wilma sends to the user. Now let’s add more tests to complete our test suite.

ADD TESTS FOR AVATARS, SIGN-OUT, AND SIGNED-OUT STATE

We’ll now complete our test suite by adding the four remaining tests from our plan.
Again, we use deferred objects to ensure certain events are received before we allow
one test to proceed to another. Listing B.12 shows the additional tests. Changes are
shown in bold:

Proceed from
testPebblesResponse
without blocking.

Add the new tests
to our suite.
www.EBooksWorld.ir

http://www.it-ebooks.info/

390 APPENDIX B Testing an SPA

...
var
 // utility and handlers
 makePeopleStr, onLogin, onListchange,
 onSetchatee, onUpdatechat, onLogout,

 // test functions
 testInitialState, loginAsFred, testUserAndPeople,
 testWilmaMsg, sendPebblesMsg, testMsgToPebbles,
 testPebblesResponse, updatePebblesAvtr, testPebblesAvtr,
 logoutAsFred, testLogoutState,

 // event handlers
 loginEvent, changeEvent, chateeEvent, msgEvent, logoutEvent,
 loginData, changeData, msgData, chateeData, logoutData,
 ...

 $deferMsgList = [$.Deferred()],
 $deferLogout = $.Deferred();

...
// event handler for 'spa-setchatee'
...
// event handler for 'spa-logout'
onLogout = function (event, arg) {
 logoutEvent = event;
 logoutData = arg;
 $deferLogout.resolve();
};

// Begin /testInitialState/
testInitialState = function (test) {
 ...
 $.gevent.subscribe($t, 'spa-updatechat', onUpdatechat);
 $.gevent.subscribe($t, 'spa-logout', onLogout);

 // test the user in the initial state
...
// End /testPebblesResponse/

// Begin /updatePebblesAvtr/
updatePebblesAvtr = function (test) {
 test.expect(0);

 // invoke the update_avatar method
 spa.model.chat.update_avatar({
 person_id : 'id_03',
 css_map : {
 'top' : 10, 'left' : 100,
 'background-color' : '#ff0'
 }
 });

 // proceed to the next test when
 // + the list of online persons has been updated
 // (spa-listchange event)

Listing B.12 Additional tests—webapp/public/nodeunit_suite.js
 $deferChangeList[1].done(test.done);

www.EBooksWorld.ir

http://www.it-ebooks.info/

391Create the test suite

};
// End /updatePebblesAvtr/

// Begin /testPebblesAvtr/
testPebblesAvtr = function (test) {
 var chatee, test_str;
 test.expect(1);

 // get 'Pebbles' person object using get_chatee method
 chatee = spa.model.chat.get_chatee();

 // test avatar details for 'Pebbles'
 test_str = 'avatar details updated';
 test.deepEqual(
 chatee.css_map,
 { top : 10, left : 100,
 'background-color' : '#ff0'
 },
 test_str
);

 // proceed to next test without blocking
 test.done();
};
// End /testPebblesAvtr/

// Begin /logoutAsFred/
logoutAsFred = function(test) {
 test.expect(0);

 // logout as fred
 spa.model.people.logout();

 // proceed to next test when
 // + logout is complete (spa-logout event)
 $deferLogout.done(test.done);
};
// End /logoutAsFred/

// Begin /testLogoutState/
testLogoutState = function (test) {
 var user, people_db, people_str, user_str, test_str;
 test.expect(4);

 test_str = 'logout as Fred complete';
 test.ok(true, test_str);

 // test the list of online persons
 people_db = spa.model.people.get_db();
 people_str = makePeopleStr(people_db);
 user_str = 'anonymous';
 test_str = 'user list provided is expected - ' + user_str;

 test.ok(people_str === 'anonymous', test_str);

 // test user attributes
 user = spa.model.people.get_user();
 test_str = 'current user is anonymous after logout';
 test.ok(user.get_is_anon(), test_str);
www.EBooksWorld.ir

http://www.it-ebooks.info/

392 APPENDIX B Testing an SPA

 test.ok(true, 'test complete');

 // Proceed without blocking
 test.done();
};
// End /testLogoutState/

module.exports = {
 testInitialState : testInitialState,
 loginAsFred : loginAsFred,
 testUserAndPeople : testUserAndPeople,
 testWilmaMsg : testWilmaMsg,
 sendPebblesMsg : sendPebblesMsg,
 testMsgToPebbles : testMsgToPebbles,
 testPebblesResponse : testPebblesResponse,
 updatePebblesAvtr : updatePebblesAvtr,
 testPebblesAvtr : testPebblesAvtr,
 logoutAsFred : logoutAsFred,
 testLogoutState : testLogoutState
};
// End of test suite

When we run our test suite (nodeunitnodeunit_suite.js) we should see output like
so:

$ nodeunit nodeunit_suite.js
✔ testInitialState
✔ loginAsFred
✔ testUserAndPeople
✔ testWilmaMsg
✔ sendPebblesMsg
✔ testMsgToPebbles
✔ testPebblesResponse
✔ updatePebblesAvtr
✔ testPebblesAvtr
✔ logoutAsFred
✔ testLogoutState

OK: 25 assertions (14234ms)

We’ve completed the test suite according to our plan. We can run this suite automati-
cally before checking updates into a repository (think “commit hook”). Such a prac-
tice shouldn’t slow us down but instead accelerate our development by preventing
regressions and ensuring quality. This is an example of designing quality into a prod-
uct instead of testing the product only after it has been “finished.”

 Alas, one glaring problem remains: the test suite currently never exits. Sure, the ter-
minal shows 25 assertions being completed, but control is never returned to the termi-
nal or any other calling process. This prevents us from automating the run of the test
suite. In the next section we’ll discuss why this happens and what we can do about it.

B.5 Adjust SPA modules for tests
One troublesome question Node.js (and by extension, nodeunit) encounters is how does

it know when execution of a test suite is complete? This is an example of the classic computer

www.EBooksWorld.ir

http://www.it-ebooks.info/

393Adjust SPA modules for tests

science halting problem, and isn’t trivial in any event-driven language. In general, Node.js
considers an application complete when it can find no code to execute and it has no
pending transactions.

 Up to this point, our code has been designed for continuous use without consid-
eration for an exit condition outside of closing the browser tab. When a tester uses
mode 2 (testing in a browser using fake data) and signs out, our Fake module starts
a setTimeout in anticipation of another sign-in.

 Our test suite, like some film genres, requires an explicit ending. Therefore, if we
intend to ever see our test suite complete this side of a SIGTERM or SIGKILL, we need to
use a test setting.6 A test setting is a configuration or directive required for testing, but
not required for “production” use.

 As you might gather, we’d rather minimize test settings so we can prevent them
from introducing their own bugs. Sometimes, they’re unavoidable. In this case we
need a test setting to stop our Fake module from constantly respawning timers. This
will allow our suite to exit so we can use scripts to automate the run of the test suite
and interpret the results.

 We can perform the following steps to prevent Fake from restarting timers after
sign-out:

■ In the test suite, add a true argument to the sign-out call like so:
spa.model.people(true). This directive (which we call the do_not_reset flag)
informs the Model that after a sign-out, we don’t want it to reset values in prep-
aration for another sign-in.

■ In the Model’s spa.model.people.logout method, accept an optional do_not
_reset argument. Pass this value as the single argument to the chat._leave
method.

■ In the Model’s spa.model.chat._leave method, accept an optional do_not
_reset argument. Pass this value as the data when sending the leavechat mes-
sage to the back end.

■ Change Fake (webapp/public/js/spa.fake.js) to ensure the leavechat callback
treats the received data as a do_not_reset flag. When the leavechat callback
sees that the data it received has the value of true, it should not restart timers
after sign-out.

Though that’s more work than we’d hoped (we were looking for no additional work),
this only requires minor surgery on three files. Let’s start with the test suite and add
the do_not_reset directive to our logout method call as shown in listing B.13. The
one-word addition is shown in bold:

6 Let’s be clear—we need this program to exit because our automated commit hook will rely on analysis of the

exit code. No exit means no exit code, which means no automation, which of course is unacceptable.

www.EBooksWorld.ir

http://www.it-ebooks.info/

394 APPENDIX B Testing an SPA

...
// Begin /logoutAsFred/
logoutAsFred = function(test) {
 test.expect(0);

 // logout as fred
 spa.model.people.logout(true);

 // proceed to next test when
 // + logout is complete (spa-logout event)
 $deferLogout.done(test.done);
};
// End /logoutAsFred/
...

Now let’s add the do_not_reset argument in the Model as shown in the following list-
ing. Changes are shown in bold:

 ...
 people = (function () {
 ...
 logout = function (do_not_reset) {
 var user = stateMap.user;

 chat._leave(do_not_reset);
 stateMap.user = stateMap.anon_user;
 clearPeopleDb();

 $.gevent.publish('spa-logout', [user]);
 };
 ...
 }());
 ...
 chat = (function () {
 ...
 _leave_chat = function (do_not_reset) {
 var sio = isFakeData ? spa.fake.mockSio : spa.data.getSio();
 chatee = null;
 stateMap.is_connected = false;
 if (sio) { sio.emit('leavechat', do_not_reset); }
 };
 ...
 }());
 ...

Finally, let’s update the Fake module to consider the do_not_reset directive when
sending a leavechat message. Changes are shown in bold:

...

Listing B.13 Add do_not_reset to suite—webapp/public/nodeunit_suite.js

Listing B.14 Add do_not_reset to the Model—webapp/public/js/spa.model.js

Listing B.15 Add do_not_reset to Fake—webapp/public/js/spa.fake.js
mockSio = (function () {

www.EBooksWorld.ir

http://www.it-ebooks.info/

395Summary

...
emit_sio = function (msg_type, data) {
...
if (msg_type === 'leavechat') {

// reset login status
delete callback_map.listchange;
delete callback_map.updatechat;

if (listchange_idto) {
clearTimeout(listchange_idto);
listchange_idto = undefined;

}
if (! data) { send_listchange(); }

}
...

After the updates, we can run nodeunit nodeunit_suite.js and watch the test suit
run and exit:

$ nodeunite nodeunit_suite.js
✔ testInitialState
✔ loginAsFred
✔ testUserAndPeople
✔ testWilmaMsg
✔ sendPebblesMsg
✔ testMsgToPebbles
✔ testPebblesResponse
✔ updatePebblesAvtr
✔ testPebblesAvtr
✔ logoutAsFred
✔ testLogoutState

OK: 25 assertions (14234ms)
$

The exit code of the suite will be the number of failed assertions. Therefore if all the
tests pass, the exit code will be 0 (we can inspect the exit code on Linux and Mac
using echo $?). A script can use this exit status (and other output) to do things like
block the deployment of a build, or send an email to a concerned developer or proj-
ect manager.

B.6 Summary
Testing is a practice that helps us develop faster and better. A well-run project is
designed from the start for multiple test modes, and tests are written with the code to
help identify and resolve issues quickly and efficiently. Almost everyone has worked at
some time on a project where each advancement seemed to come with a matching
failure in stuff that used to work. Consistent, early, and well-designed tests can prevent
regressions and facilitate rapid progress.

 This appendix showed four test modes and discussed how to set them up and when
to use them. We selected nodeunit as our test framework. We were then able to test
our Model without the use of a web browser. When we created our test suite, we used
www.EBooksWorld.ir

http://www.it-ebooks.info/

396 APPENDIX B Testing an SPA

jQuery deferred objects and test directives to ensure our tests occurred in the correct
sequence. Finally, we showed how to adjust modules so tests can be successfully run in
a test environment.

 We hope you found our presentation enlightening and inspirational. Happy testing!
www.EBooksWorld.ir

http://www.it-ebooks.info/

index
Symbols

_ (underscore) 348
- (minus sign) 363
, (comma) 27
; (semicolon) 342
!= operator 363
!== operator 363
? (question mark) 249
' (single quote) 342
" (double quotes) 342
() parentheses 340, 342
[] brackets 340, 355
{ } (braces) 32, 340, 355
* (asterisk) 249
& character 147
(hash symbol) 86
#! (hash bang) 315
% (percent symbol) 116
+ (plus sign) 363
< > characters 147
== operator 363
=== operator 363
$ character 146, 351–352
$ variable 48

A

action parameter 318
ActionScript 5
additionalProperties value 284
AddThis 97
adduser message handler, Chat

advanced key-value store 327
Airbrake 319
AJAX method 16
Akamai 321
alert method 36
all method, Express 248
Amazon Cloudfront 321
anchor component

for chat feature module 109
managing application state

using
modifying Shell for 89–92
overview 86, 93
uriAnchor plugin 92–93

page reloads using 87
anchor interface pattern 86
animation, using jQuery 16
anon_user key 161
anonymous functions

defined 46
local variables in 47
overview 45
self-executing anonymous

functions 46–48
Apache/Apache2 231, 260
APIs (Application Programming

Interfaces) 97
application state

browser behavior vs. desktop
controls 85

defined 85
managing history controls 85
managing using anchor com-

ponent

overview 86, 93
uriAnchor plugin 92

overview 85, 88, 94
arguments, in JavaScript 110
array data type

naming 351
overview 24

assigning vs. declaring
variables 355

assignment expressions 363
asterisk (*) 249
asynchronous calls 320
asynchronous channels 180
authentication 230
authorization 230
automatic two-way data

binding 223
automating testing 143
Avatar feature module

adding support to Model
module
chat object changes

196–197
fixing errors found during

testing 199–201
testing 199
using Fake module

with 198
JavaScript for 215–219
overview 214
purpose of 141
stylesheet for 219–220
testing 221
updating Shell module
397

module 302–306 modifying Shell for 89–92 for 220–221

www.EBooksWorld.ir

http://www.it-ebooks.info/

INDEX398

B

Back button 85
Basic Authentication, for

servers 256
basicAuth method 256
bloat 5
block scope 26
body element 11
bodyParser method 241
bookmark component 85–86
bool prefix 349
booleans, naming of 349
braces { } 32, 340, 355
break statements 362
breaking lines in code 339–340
browsers

behavior in vs. desktop
controls 85

in JSLint 364
most widely used

application 5
status codes for 243

Bugsense 319
business logic 140

C

C language 51
Cache-Control header 325
caching

database query caching
333–334

HTTP caching
last-modified attribute 327
max-age attribute 325–326
no-cache attribute 326–327
no-store attribute 327

in MongoDB 333
overview 322
server caching 327–333
web storage 323–324

callback 367
callbacks 110
camelCase 348
Cappuccino 7
Cascading Style Sheets 3. See

CSS3
Cascading Style Sheets. See CSS
Cassandra 266
Catalyst 99
category parameter 318
CDN (content delivery

network) 14, 321

chaining, execution context
references 55

chat feature module
adding files for 102–107
adduser message

handler 302–306
anchor interface pattern 109
configuration APIs 109–111
creating 299–302
CSS for 114–119
disconnect message

handlers 308–309
file structure for 101–102
handleResize method

134–137
implementing APIs in

119–125
initialization API 111
initialization cascade for

112–114
overview 201
purpose of 141
removeSlider method

132–134
setSliderPosition API 112
Shell module

modifications 125–130
testing 130–131, 213–214
updateavatar message

handler 309–312
updatechat message

handler 306–307
updating JavaScript for

202–209
updating stylesheet for

209–213
chat object, Model module

adding messaging exchange
to 188–193

code for 183–185
documenting 182–183
events 181
methods 181
overview 179
testing 195–196
testing join method 187–188
using Fake module with

185–187, 193–195
chat slider example

adding chat slider click event
handler 81–84

CSS for 11–12
file structure for 10

inspecting using Chrome
Developer Tools 17–20

JavaScript for 12–17
method to extend and retract

chat slider 78–81
overview 9

chatee 179
Chrome Developer tools 316
cid property, person object 151
class-based objects vs. prototype-

based objects 37–39
clearChat method 202, 206
click event handlers 81–84
client-generated IDs 152
close method 36
Closure Complier 359
closures, in JavaScript 51–57
Cloudfront 321
cm unit 116
code

breaking lines
consistently 339–340

consistent indentation 337
K&R style bracketing 340–342
maintaining 98
organizing code in

paragraphs 337–339
quoting consistently 342–343
standards for 24
using whitespace

effectively 342
CoffeeScript 7
collection_names,

MongoDB 270
comma operator 27, 363
commands, for MongoDB

270–271
comments

documenting APIs 344–345
explaining code

strategically 343–344
communication, between

feature modules 108
completeLogin() method 164
Comprehensive Perl Archive

Network. See CPAN
configMap variable 19, 74,

81, 103
configuration APIs, for chat

feature module 109–111
configure method 240–241
configuring modules 109
Connect framework for

Node.js 236–237

CDN Planet site 321 HTML for 11–12 connect method 260

www.EBooksWorld.ir

http://www.it-ebooks.info/

INDEX 399

console.log() function 29
containers, rendering in

isolated 97
content delivery network. See

CDN
contentType property

234, 244, 247
continue setting, JSLint 364
continue statements 360
Controller (MVC pattern) 99
conventions, in code 9
coord suffix 350
CouchDB 6
count suffix 350
countUp function 258
CPAN (Comprehensive Perl

Archive Network) 232
create method 39
createServer method 233
Crockford, Douglas 363
cross-platform development

6, 21
CRUD (create, read, update,

delete)
database module

adding logic to 293–299
file structure for 291–293
overview 290–299

defined 243
MongoDB driver

methods 274–277
routes for

adding to module 253–255
creating user object

244–245
deleting user 243–249
generic 249–251
getting user list 244
reading user object

245–247
updating user 247–249

crud.js file 292–293
CSS (Cascading Style Sheets) 5

em unit 115
for chat feature module

114–119
for Shell module 70–72,

75–77
naming files 359
prefix for class names 115

css directory 63
css_map property 151, 198
CSS3 (Cascading Style Sheets

3) 6

curry prefix 352
currying functions 346

D

-d option, curl command 245
data binding 222–223
Data module, code for 223–226
databases

and business logic 267
caching queries 333–334
Chat module

adduser message
handler 302–306

creating 299–302
disconnect message

handlers 308–309
updateavatar message

handler 309–312
updatechat message

handler 306–307
CRUD module

adding logic to 293–299
file structure for 291–293
overview 290–299

eliminating data
transformations 266–267

MongoDB
commands for 270–271
CRUD methods for

274–277
document-oriented storage

for 268–269
dynamic structure of

269–270
installing 272–274
overview 268
preparing project for

271–272
updating server for

277–280
types of 266
validating data

creating JSON
schema 283–284

installing JSV module 283
loading JSON

schemas 285–286
object type 281–283
overview 287–290
validation function

286–287
date suffix 349
declaring variables 24, 354–356

DELETE verb 243
dependent key-value pairs 92
deployment

ease of 6
overview 20

desktop applications vs. SPAs 20
desktop controls vs. browser

behavior 85
destroy prefix 352
devel setting, JSLint 364
Developer Tools (Google

Chrome)
inspecting chat slider

example 17–20
overview 10–11

development environment
setting 241

disconnect message handlers,
Chat module 308–309

DisQus 97, 100
Distribution Cloud 321
Django 99
do prefix 349
do statements 360–361
document element

and Model module 142
overview 36

Document Object Model. See
DOM

Document Type Definition. See
DTD

document-oriented storage 268
documenting

chat object 182–183
people object 156
with comments 344–345

dollar sign ($) variable 48
DOM (Document Object

Model) 12
storage 323
using jQuery with 359

DOM methods 366
double quotes (") 342
DoubleClick 97
downloading Node.js 232
drag-and-drop 150
driver, MongoDB

CRUD methods for 274–277
installing 272–274
preparing project for

271–272
updating server for 277–280

DTD (Document Type
Definition) 283

Dust template system 209

curl command 245 decodeHtml utility 147 dynamic language 24

www.EBooksWorld.ir

http://www.it-ebooks.info/

INDEX400

E

each method 163
easing 16
Edgecast 321
Elements of Typographic Style,

The 337
em unit 115, 119, 134
Embedded style template

systems 209
empty prefix 352
encodeHtml utility 147
end method 234
environments for Express

framework 241–242
Errorception 319
errorHandler method 241
eval statements 363
event handlers 367

in chat slider example 81–84
naming of 203

events
for Google Analytics 318–319
handling in jQuery 155
queue in Node.js 232
vs. callbacks 154

evolution of JavaScript 5–8
ex unit 116
exclamation point (!) 88
execution context

chaining references 55
for JavaScript 31–34
object for 31

execution environment 6
exports attribute 252
Express framework for Node.js

adding to application
240–241

overview 237–240
serving static files 242–243
using environments with

241–242
extend() method 89
Extensible Markup Language.

See XML
Extensible Messaging and Pres-

ence Protocol. See XMPP

F

Facebook
"Like" buttons 97
authentication 230

Fake module, using in Model
module 157, 185–187,
193–195

false value 83
feature containers

adding HTML template
74–75

closures 72
defined 78
directing application to use

Shell 77–78
overview 68–69
Shell CSS 70–72, 75–77
Shell HTML 69

feature modules
and MVC pattern 99–101
chat feature module

adding files for 102–107
anchor interface

pattern 109
configuration APIs

109–111
CSS for 114–119
file structure for 101–102
handleResize method

134–137
implementing APIs in

119–125
initialization API 111
initialization cascade

for 112–114
removeSlider method

132–134
setSliderPosition API 112
Shell module

modifications 125–130
testing 130–131

communication between 108
defined 95
initializing 111
overview 96
vs. third-party modules 97–98

fetch prefix 352
file structure

for chat feature module
101–102

for Model module 143–145
for Shell module 63–64
standards for 359–360

fileWatch method 264
find method, MongoDB 270
Firebug 11
Firefox

and JavaScript speed 6

first pass in JavaScript 30, 32
Flash 4–5
Flash Spacelander 4
float data type 24
fluid pages 5
FMVC (Fractal Model-View-

Controller) pattern 99
fn prefix 352
:focus pseudo-class 118
for loop 27, 361
Forward button 85
Fractal Model-View-Controller

pattern. See FMVC
fractal, defined 99
frame element 36
framework libraries, and auto-

matic two-way data
binding 223

fs module 261
functions

anonymous functions 45–46
assigning to variables 355
closures 51–57
execution context 33
first-class objects 45
invoking immediately 358
module pattern 49–54
naming 352–353
overview 45–46
scope of 31
self-executing anonymous

functions 46–48
standards for 356–358

G

gaq object 318
garbage collectors 51
gem command 232
generated JavaScript 7
get method, Express 239
get prefix 352
GET verb 243
get_by_cid() method 153
get_chatee() method 181
get_cid_map() method 160
get_db() method 153, 160
get_is_anon() method 152
get_is_user() method 152
get_user() method 153, 164
getEmSize utility 147
getPeopleList() method 160
global namespace, pollution

of 47

factory pattern 356 Object.create method in 40 global scope 35

www.EBooksWorld.ir

http://www.it-ebooks.info/

INDEX 401

global variables
and window object 36
overview 25

Google
"+1" buttons 97
crawling SPAs 314–317

Google Analytics
events for 318–319
overview 319

Google Chat 260
Google Chrome

and JavaScript speed 6
Developer Tools in

inspecting chat slider exam-
ple using 17–20

overview 10–11
logging XmlHttpRequests

in 317
Object.create method in 40

Google V8 JavaScript engine 9
Googlebot

defined 314
testing 316
user-agent string for 316

GWT (Google Web Toolkit) 7

H

halting problem 392
Handlebars template

system 209
handleResize method 134–137
has prefix 349
hash bang (#!) 315
hash fragment 86
hash symbol (#) 86
hashchange event handler

88, 94, 109, 123, 131
head element 65
headers property 235
height property 19
Hello World server, using

Node.js 232–235
history

"history-safe" 109
managing application

state 85–86
of SPAs 4–5

hoisting of variables 28–31
host page, isolating items

from 97
:hover pseudo-class 118
HTML (Hypertext Markup

Language) 5

template for feature
containers 74–75

html suffix 349
HTML5 (Hypertext Markup

Language 5) 6
HTTP caching

last-modified attribute 327
max-age attribute 325–326
no-cache attribute 326–327
no-store attribute 327

http module, for Node.js 233
HTTPS (Hypertext Transfer

Protocol Secure) 256
human-readable code 336
Hypertext Markup Language 5.

See HTML5
Hypertext Markup Language. See

HTML
Hypertext Transfer Protocol

Secure. See HTTPS

I

:id parameter 246
id property, person object 151
id suffix 349
IDE (Integrated Development

Environment) 73
if statement 18, 361
in unit 116
indent setting, JSLint 364
indentation of code 337
independent key-value pairs 92
index suffix 350
initialization API, for chat

feature module 111
initialization cascade, for chat

feature module 112–114
initializing feature modules 111
initModule function 16, 67, 75,

103, 109, 124
installing

JSLint 364
MongoDB driver 272–274

int suffix 350
integer data type 24
integers, naming of 349–350
Integrated Development

Environment. See IDE
Internet Explorer

Developer Tools in 11
Object.create method in 40

interpolating quotes 343
is prefix 349

isFakeData flag 158
isolation of items from host

page 97

J

Jabber 260
jasmine-jquery framework 374
Java 231
Java applets 4–5
JavaScript

arguments in 110
callbacks in 110
converting HTML to 72–74
evolution of 5–8
execution context 31–34
functions

anonymous functions
45–46

closures 51–57
module pattern 49–54
overview 45–46
self-executing anonymous

functions 46–48
generated 7
Node.js 231
prototype chain

mutations 44–45
overview 40–45

prototype-based objects
37–44

speed of 6
two passes made in 29
used end-to-end in SPAs 3
variables

hoisting of 28–31
scope for 25–28, 34–37

JavaScript mortgage calculator 4
JavaScript Object Notation. See

JSON
join() method

for chat object 187–188
overview 181

jQuery
$ variable 48
advantages of 16
animation using 16
cross-browser compatibility 7
defined 12
DOM manipulation using 9
downloading 64
for Shell module 64
unified touch-mouse

library 150
using for DOM
converting to JavaScript 72–74 is_chatee_online flag 191 manipulations 359

www.EBooksWorld.ir

http://www.it-ebooks.info/

INDEX402

jquery.event.gevent-0.1.9.js
file 148

jquery.event.ue-0.3.2.js file
145, 150

.js files 359
js/jq directory 63, 359
JSLint tool 12, 16

configuring 364–365
installing 364
sections in files 146
using 365–366
variables in 67

JSON (JavaScript Object
Notation)

overview 5–6, 9
schemas

creating 283–284
loading 285–286

viewing in browser 277
JSONovich extension 277
JSONView extension 277
JSV module, installing 283

K

K&R style bracketing 340–342
key/value stores 266, 323

L

labels 360
large attack vector 256
last-modified attribute, HTTP

caching 327
least recently used. See LRU
_leave_chat method 184
leavechat message 193
let statements 26
libraries, loading last 106
liquid layout 70
list suffix 351
listchange message 186–187
listen method 234
LiveFyre 97, 100
loading

libraries 106
modules in Node.js 252–253

local variables
in anonymous functions 47
overview 25

log() function 29
logger() function 237
logging client-side errors

manually 320–321

login() method 153, 163
logout() method 153, 164
long-press gestures 150
loosely typed language 24
LRU (least recently used) 327

M

maintaining code 98
make prefix 352
makeCid() method 164
makeError() method 104
makePerson() method 160
map suffix 351
maps, naming of 351
max-age attribute 325–326
maxerr setting, JSLint 364
Memcached

defined 266
server caching using 327
using with Node.js 329

memory
leaks 55
management 51

messaging servers, and
Socket.IO 260–261

method property 235
methodOverride() method 241
MicroMVC 99
middleware 236
minus sign (-) 363
mm unit 116
mobile devices, memory

improvements to 6
mocha framework 374
mod_perl 231
Model (MVC pattern) 99
Model module

adding Avatar support to
chat object changes

196–197
fixing errors found during

testing 199–201
testing 199
using Fake module

with 198
chat object in

adding messaging exchange
to 188–193

code for 183–185
documenting 182–183
events 181
methods 181
overview 179–180

testing join method
187–188

using Fake module
with 185–187, 193–195

file contents for 145–150
file structure for 143–145
including unified touch-

mouse library 150
overview 141–142
people object in

code for 159–163
documenting 156
events 154–156
methods 153–154
mock user list for 157–159
overview 150–151
providing mock socket.IO

object 168–170
testing 170–171
updating Model for

163–168
using Fake module

with 157
person objects in 151–153
purpose of 140
what Model does not do

142–143
Model-View-Controller pattern.

See MVC
model.js file 142
module pattern

defined 46
in JavaScript 49–54

modules
adjusting for testing 392–395
loading with Node.js

252–253, 375–378
template for 366

mongod command 275
MongoDB 6–9

advantages of 266
caching in 333
commands for 270–271
CRUD module

adding logic to 293–299
file structure for 291–293
overview 290–299

document-oriented storage
for 268–269

driver for
CRUD methods for

274–277
installing 272–274
preparing project for
third-party 319–320 testing 195–196 271–272

www.EBooksWorld.ir

http://www.it-ebooks.info/

INDEX 403

MongoDB (continued)
updating server for

277–280
dynamic structure of 269–270
overview 268
validating data

creating JSON
schema 283–284

installing JSV module 283
loading JSON

schemas 285–286
object type 281–283
overview 287–290
validation function

286–287
MongoDB in Action 271
Mongolia 272
Mongoose 272
Mongoskin 272
msg suffix 349
multi-touch gestures 150
Mustache template system 209
mutations 44–45
MVC (Model-View-Controller)

pattern 99–101, 142
MySQL 266

N

name property, person
object 151

name suffix 349
named arguments 356
namespaces

in Shell module
overview 63
root CSS namespace 65–67
root JavaScript

namespace 67
naming files for 359
standards for 358–359
using prefix 115

naming variables
and variable type 348–349
arrays 351
booleans 349
communicating scope 348
functions 352–353
integers 349–350
maps 351
numbers 350
objects 351–352
overview 346–347

strings 349
unknown types 353
using common

characters 347–348
native JavaScript SPAs 7–8
Neo4J 266
network traffic

and web sockets 302
requests, in Node.js 232

new keyword 357
new operator 38–39, 355
New Relic 320
newcap setting, JSLint 364
no-cache attribute 326–327
no-store attribute 327
NODE_PATH environment

variable 375
node-googleanalytics

project 319
Node.js

advantages of 231–232
downloading 232
Hello World server 232–235
JavaScript engine 9
loading modules in 252–253,

375–378
overview 231
using Connect framework

with 236–237
using Express framework with

adding to application
240–241

overview 237–240
serving static files 242–243
using environments

with 241–242
using Redis with 329–333
web server of choice 6

Node.js in Action 229
nodealytics project 319
nodeunit framework

defined 374
setting up 374–375

nomen setting, JSLint 364
non-interpolating quotes 343
NoSQL databases 266
npm (Node Package Manager)

--save option for 238
defined 232
installing modules using 236
using manifest files with 238

num suffix 350

O

Object Document Mapper. See
ODM

object literals 25
Object Relational Mapper. See

ORM
Object.create method 39, 161
Objective-C 7
Objective-J 7
objects

functions as 45
naming 351–352

ODM (Object Document
Mapper) 272

on method 260
on prefix 353
onClick event handler 123
ondata property 235
onerror event 320
onHeldendNav event

handler 217
onListChange event

handler 202, 207, 218
onload method 16, 36
onLogin event handler

174, 203, 208
onLogout event handler

174, 203, 208, 218
onresize method 36
onSetchatee event handler

202, 206, 217
onSubmitMsg event

handler 202, 206
onTapAcct event handler 174
onTapList event handler

202, 206
onTapNav event handler 216
onTapToggle event handler 206
onUpdatechat event

handler 202, 207
Openfire 260
Opera

and JavaScript speed 6
Object.create method in 40

opt_label parameter 318
opt_noninteraction

parameter 318
opt_value parameter 318
optimizing for search

engines 314–317
ORM (Object Relational

Mapper) 272

regular expressions 350–351 numbers, naming of 350 Overture 97

www.EBooksWorld.ir

http://www.it-ebooks.info/

INDEX404

P

paragraphs, organizing code
in 337–339

parentheses () 340, 342
Passenger 231
passing by reference 110
PATCH verb 243
patr framework 374
patterns for routes 249
pc unit 116
people object, Model module

code for 159–163
documenting 156
events 154–156
methods 153–154
mock user list for 157–159
overview 150–151
providing mock socket.IO

object 168–170
testing 170–171
updating Model for 163–168
using Fake module with 157

people_cid_map key 161
people_db key 161
percent symbol (%) 116
percentages vs. pixels 115–116
person objects, Model

module 151–153
PhoneGap 6
PHP 5, 231
pinch-to-zoom gestures 150
pip command 232
pixels vs. relative units 115–116
plugins 5
plus sign (+) 363
plusplus setting, JSLint 365
pollution of global

namespace 47
post method, Express 244
POST verb 243
prefixes, for class names 115
preventDefault() method 83
preventImmediatePropaga-

tion() method 83
privacy, and third-party

modules 97
production environment

setting 241
production preparations

caching
database query

caching 333–334
HTTP caching 324–327

server caching 327–333
web storage 323–324

logging client-side errors
manually 320–321
third-party 319–320

optimizing for search
engines 314–317

site analytics
events for 318–319
Google Analytics 319

using CDNs 321
properties value 284
__proto__ property 41
prototype chain

mutations 44–45
overview 40–45

prototype-based objects in
JavaScript 37–44

pseudo classical object
constructors 357

pt unit 116
public methods 367
_publish_listchange

method 184
_publish_updatechat

method 191
PUT verb 243
px unit

converting 119
overview 115–116

Q

queries, caching 333–334
question mark (?) 249
queue, in Node.js 232
quoting consistently 342–343

R

Rackspace 321
ratio suffix 350
Redis 327, 329–333
Redo button 85
reference, passing by 110
regex prefix 351
regexp setting, JSLint 365
regression testing 143
regular expressions, naming

of 350–351
relational databases 266
relative units vs. pixels 115–116
reloading pages, and anchor

remove method, MongoDB 271
remove prefix 352
removePerson() method 164
removeSlider() method

132–134
Representational State Transfer.

See REST
request object, Node.js 233, 235
require function, search paths

for 252
resize event 135–136
response object, Node.js 233
responsiveness 20
REST (Representational State

Transfer) 243
return statements 362
reusing code 98
Robertson, Duncan 4
root CSS namespace, in Shell

module 65–67
root JavaScript namespace, in

Shell module 67
root namespace module

112, 130
routes, patterns for 249
routes.js file 292, 297, 301, 316
Ruby on Rails 99, 231

S

Safari
Developer Tools in 11
Object.create method in 40

safe option 279
same origin policy 5
Save As button 85
--save option, npm

command 238
save prefix 353
Scalable Vector Graphics. See

SVG
schemas, and MongoDB 269
scope

communicating with variable
names 348

for variables 25–28, 34–37
in previous versions of

JavaScript 26
of functions 31

script element
location of 65
overview 10

scrollChat method 202
search path for require
overview 322 component 87 function 252

www.EBooksWorld.ir

http://www.it-ebooks.info/

INDEX 405

second pass in JavaScript 32
security, and third-party

plugins 4–5
self-executing anonymous func-

tions
defined 46
overview 46–48
syntax for 49

semicolon ‹;› 342
send_listchange function 186
send_message() method 181
servers

Basic Authentication for 256
caching on 327–333
CRUD routes

adding to module 253–255
creating user object

244–245
deleting user 243–249
generic 249–251
getting user list 244
reading user object

245–247
updating user 247–249

Node.js
advantages of 231–232
Hello World server

232–235
loading modules in

252–253
overview 231
using Connect framework

with 236–237
using Express framework

with 237–243
role of

authentication and
authorization 230

data storage and
synchronization 231

validation 230–231
Socket.IO

and messaging servers
260–261

overview 257–260
sending update application

message 261–264
web sockets 257

set prefix 353
set_chatee() method 181
setDataMode method 372–373
setInterval function 258
setSliderPosition API 112

Shell module
application HTML file 64–65
coordinating communication

between feature
modules 108

enabling sign-in/sign-out in
designing user

experience 173
testing 176–177
updating JavaScript

for 173–175
updating stylesheet

for 175–176
feature containers

adding HTML
template 74–75

converting HTML to
JavaScript 72–74

directing application to use
Shell 77–78

overview 68–69
Shell CSS 70–72, 75–77
Shell HTML 69

file structure for 63–64
jQuery files 64
managing application state

browser behavior vs. desk-
top controls 85

managing history
controls 85–86

overview 85
using anchor

component 86–94
modifying for feature

module 125–130
namespaces in

overview 63
root CSS namespace 65–67
root JavaScript

namespace 67
overview 62–63
updating for Avatar feature

module 220–221
show dbs command 270
sign-in/sign-out

designing user
experience 173

testing 176–177
updating JavaScript for

173–175
updating stylesheet for

175–176
single page applications. See

SPAs

site analytics
events for 318–319
Google Analytics 319

sloppy setting, JSLint 365
smartphones, and unified touch-

mouse library 150
Socket.IO module 9

and messaging servers
260–261

creating mock 168–170
overview 257–260
sending update application

message 261–264
socket.io.js file 260
spa directory 63
spa-listchange event 154, 181
spa-login event 154
spa-logout event 154
spa-setchatee event 181
spa-slider class 12, 19
spa-updatechat event 181
spa.avtr.css file 145, 219
spa.avtr.js file 145, 215
spa.chat.css file 210
spa.chat.js file 203
spa.css file 209
spa.data.js file 145, 225
spa.fake.js file 145, 158, 168,

186, 193, 198
spa.js file 162, 224
spa.model.js file 160, 164,

182–183, 189, 196, 200, 225
spa.shell.css file 175
spa.shell.js file 173, 220
spa.util_b.js file 147
spaces vs. tabs 337
SPAs (single page applications)

advantages of 20–21
and evolution of JavaScript

5–8
history of 4–5
platforms for 4
updating 261–264

Spring MVC 99
SQL (Structured Query

Language) 5
staging environment setting 241
standards, coding 24

advantages of 335–336
code layout

breaking lines
consistently 339–340

consistent indentation 337
K&R style bracketing
ShareThis 97 single quote (') 342 340–342

www.EBooksWorld.ir

http://www.it-ebooks.info/

INDEX406

standards, coding (continued)
organizing code in

paragraphs 337–339
quoting consistently

342–343
using whitespace

effectively 342
comments

documenting APIs 344–345
explaining code

strategically 343–344
file names 359–360
functions 356–358
labels 360
module template 366
namespaces 358–359
statements

continue 360
do 360–361
for 361
if 361
return 362
switch 362
try 362
while 362
with 363

syntax
avoiding assignment

expressions 363
avoiding comma

operator 363
avoiding confusing pluses

and minuses 363
avoiding eval 363
using === and !== for

comparisons 363
validating code with JSLint

configuring 364–365
installing 364
using 365–366

variable names
and variable type 348–349
communicating scope 348
for arrays 351
for booleans 349
for functions 352–353
for integers 349–350
for maps 351
for numbers 350
for objects 351–352
for regular

expressions 350–351
for strings 349
for unknown types 353

using common
characters 347–348

variables, declaring 354–356
state, application

browser behavior vs. desktop
controls 85

defined 85
managing history

controls 85–86
managing using anchor

component
modifying Shell for 89–92
overview 86–88, 93–94
uriAnchor plugin 92–93

overview 85
stateMap.is_connected flag 183
statements, standards for

continue statements 360
do statements 360
for statements 361
if statements 361
return statements 362
switch statements 362
try statements 362
while statements 362
with statements 363

static files, serving with Express
framework 242–243

static method 251
status codes, browser 243
stopPropagation() method 83
store prefix 353
strict pragma 159
string data type

naming 349
overview 24

string suffix 349
Structured Query Language. See

SQL
stub, defined 102
style element 10–11
Subline 342
subscribing to events 154
SVG (Scalable Vector

Graphics) 6
switch statements 362
synchronous channels 180

T

tablets
and px unit 115–116
and unified touch-mouse

library 150

tabs vs. spaces 337
TaffyDB

advantages of 160
defined 160

taffydb-2.6.2.js file 145
TaffyDB2 9
TCP (Transmission Control

Protocol) 231
TDD (test-driven

development) 199
teams 98
TechCrunch.com 97
template for modules 366
template systems 209
test-driven development. See

TDD
testing

adjusting modules for
392–395

chat feature module 130–131
creating test suite

creating tests 379–380
loading modules with

Node.js 375–378
mapping events 380–382
message transaction

tests 386–389
setting up single nodeunit

test 378–379
sign-in tests 382–386
sign-out tests 389–392

setting up nodeunit 374–375
setting up test modes

370–373
using test frameworks

373–374
testing environment setting 241
text editors 73
text suffix 349
third-party libraries

and self-executing anony-
mous functions 48

disadvantages of 97–98
example of 97
loading SPAs last 106
security concerns 4–5
vs. feature modules 97–98

this keyword 53
throw statements 362
Tic-Tac-Toe 4
Tidy tool 69
TODO comments 344–345
Tomcat 231
Toolkit style template
overview 346–347 SPAs on 21 systems 209

www.EBooksWorld.ir

http://www.it-ebooks.info/

INDEX 407

Tornado 231
_trackEvent method 318
_trackPageView method 318
Transmission Control Protocol.

See TCP
try/catch blocks

overview 320
standards for 362

Twisted 231
type attribute 26
type suffix 349
types, and variable names

348–349

U

Uglify 359
undefined value 28, 30, 40, 355
underscore (_) 348
underscore.js 209
Undo button 85
unified touch-mouse library 150
unit testing 143
unknown types, naming of 353
update method, MongoDB 271
update prefix 353
update_avatar() method

181, 196
_update_list method 184
updateavatar message

handler 196, 198, 309–312
updatechat message

handler 193, 306–307
updating applications 261–264
uriAnchor plugin 64, 87, 92–93
url property 235
use command 270
user experience, for sign-in/

sign-out capability 173
user-agent string for

Googlebot 316
userupdate message 164

V

validating code with JSLint
configuring 364–365
installing 364
using 365–366

validating data
creating JSON schema

283–284
installing JSV module 283
loading JSON schemas

285–286
object type 281–283
overview 287–290
validation function 286–287

ValueClick 97
var keyword 24, 26, 28, 252, 355
variables

assigning functions to 355
assigning one per line 356
declaring 24, 354–356
global, and window object 36
hoisting of 28–31
naming of

and variable type 348–349
arrays 351
booleans 349
communicating scope 348
functions 352–353
integers 349–350
maps 351
numbers 350
objects 351–352
overview 346–347
regular expressions

350–351
strings 349
unknown types 353
using common

characters 347–348
scope for 25–28, 34–37
undefined 30

vars setting, JSLint 365

vim editor 73, 342
vows framework 374

W

walking up the scope chain 29
web crawlers 314
web sockets

advantages of using 302
overview 257

web storage 323–324
Webmaster Tools 316
WebStorm 342
wget command 245
while statements 362
white setting, JSLint 365
whitespace

defined 337
in code 342

window object
and global variables 36
onload event 16, 36
resize event 135–136

with statements 363
writeAlert method 202
writeChat method 202

X

XML (Extensible Markup
Language) 5, 88

XmlHttpRequests, logging 317
XMPP (Extensible Messaging

and Presence
Protocol) 260

Y

Yahoo! authentication 230
YUI Compressor 359

Z

utility methods 366 View (MVC pattern) 99 zombie framework 374

www.EBooksWorld.ir

http://www.it-ebooks.info/

Mikowski ● Powell

I
f your website is a jumpy collection of linked pages, you are
behind. Single page web applications are your next step:
pushing UI rendering and business logic to the browser and

communicating with the server only to synchronize data, they
provide a smooth user experience, much like a native applica-
tion. But, SPAs can be hard to develop, manage, and test.

Single Page Web Applications shows how your team can easily
design, test, maintain, and extend sophisticated SPAs using
JavaScript end-to-end, without getting locked into a framework.
Along the way, you’ll develop advanced HTML5, CSS3, and
JavaScript skills, and use JavaScript as the language of the web
server and the database.

What’s Inside
● Design, build, and test a full-stack SPA
● Best-in-class tools like jQuery, Taff yDB,
 Node.js, and MongoDB
● Real-time web with web sockets and Socket.IO
● Touch controls for tablets and smartphones
● Common SPA design mistakes

Th is book assumes basic knowledge of web development. No
experience with SPAs is required.

Th e authors are architects and engineering managers. Michael
Mikowski has worked on many commercial SPAs and a platform
that processes over 100 billion requests per year. Josh Powell has
built some of the most heavily traffi cked sites on the web.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/SinglePageWebApplications

$44.99 / Can $47.99 [INCLUDING eBOOK]

Single Page Web Applications

WEB DEVELOPMENT/JAVASCRIPT

M A N N I N G

“Insights from generations
of SPA refi nement.”—From the Foreword by

 Gregory D. Benson

“Th orough, comprehensive,
 and methodical.”

—Mark Ryall, Th oughtWorks

“Essential reading, even if
 you’re using a framework.”—Ken Rimple

 Author of Spring Roo in Action

“I highly recommend the
techniques outlined here.”—Jason Kaczor, SharePoint MVP

“An excellent guide.”—Mike Greenhalgh, NHS Wales

SEE INSERT

www.EBooksWorld.ir

http://www.it-ebooks.info/

	Single Page Web Applications
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Audience
	Code conventions and downloads
	Software and hardware requirements
	Author Online
	About the authors

	about the cover illlustration
	Part 1: Introducing SPAs
	Chapter 1: Our first single page application
	1.1 Definition, a little history, and some focus
	1.1.1 A little history
	1.1.2 What took JavaScript SPAs so long?
	1.1.3 Our focus

	1.2 Build our first SPA
	1.2.1 Define the goal
	1.2.2 Start the file structure
	1.2.3 Set up Chrome Developer Tools
	1.2.4 Develop the HTML and CSS
	1.2.5 Add the JavaScript
	1.2.6 Inspect our application using Chrome Developer Tools

	1.3 The user benefits of a well-written SPA
	1.4 Summary

	Chapter 2: Reintroducing JavaScript
	2.1 Variable scope
	2.2 Variable hoisting
	2.3 Advanced variable hoisting and the execution context object
	2.3.1 Hoisting
	2.3.2 Execution context and the execution context object

	2.4 The scope chain
	2.5 JavaScript objects and the prototype chain
	2.5.1 The prototype chain

	2.6 Functions—a deeper look
	2.6.1 Functions and anonymous functions
	2.6.2 Self-executing anonymous functions
	2.6.3 The module pattern—bringing private variables to JavaScript
	2.6.4 Closures

	2.7 Summary

	Part 2: The SPA client
	Chapter 3: Develop the Shell
	3.1 Grok the Shell
	3.2 Set up the files and namespaces
	3.2.1 Create the file structure
	3.2.2 Write the application HTML
	3.2.3 Create the root CSS namespace
	3.2.4 Create the root JavaScript namespace

	3.3 Create the feature containers
	3.3.1 Pick a strategy
	3.3.2 Write the Shell HTML
	3.3.3 Write the Shell CSS

	3.4 Render the feature containers
	3.4.1 Convert the HTML to JavaScript
	3.4.2 Add an HTML template to our JavaScript
	3.4.3 Write the Shell stylesheet
	3.4.4 Direct the application to use the Shell

	3.5 Manage the feature containers
	3.5.1 Write a method to extend or retract the chat slider
	3.5.2 Add the chat slider click event handler

	3.6 Manage application state
	3.6.1 Understand the behavior browser users expect
	3.6.2 Pick a strategy to manage history controls
	3.6.3 Change the anchor when a history event occurs
	3.6.4 Use the anchor to drive the application state

	3.7 Summary

	Chapter 4: Add feature modules
	4.1 The feature module strategy
	4.1.1 A comparison with third-party modules
	4.1.2 Feature modules and fractal MVC pattern

	4.2 Set up feature module files
	4.2.1 Plan the file structure
	4.2.2 Populate the files
	4.2.3 What we’ve wrought

	4.3 Design method APIs
	4.3.1 The anchor interface pattern
	4.3.2 Chat configuration APIs
	4.3.3 The Chat initialization API
	4.3.4 The Chat setSliderPosition API
	4.3.5 Configuration and initialization cascade

	4.4 Implement the feature API
	4.4.1 The stylesheets
	4.4.2 Modify Chat
	4.4.3 Clean up the Shell
	4.4.4 Walk through the execution

	4.5 Add frequently needed methods
	4.5.1 The removeSlider method
	4.5.2 The handleResize method

	4.6 Summary

	Chapter 5: Build the Model
	5.1 Understand the Model
	5.1.1 What we’re going to build
	5.1.2 What the Model does
	5.1.3 What the Model does not do

	5.2 Set up the Model and other files
	5.2.1 Plan the file structure
	5.2.2 Populate the files
	5.2.3 Use the unified touch-mouse library

	5.3 Design the people object
	5.3.1 Design the person objects
	5.3.2 Design the people object API
	5.3.3 Document the people object API

	5.4 Build the people object
	5.4.1 Create a fake people list
	5.4.2 Start the people object
	5.4.3 Finish the people object
	5.4.4 Test the people object API

	5.5 Enable sign-in and sign-out in the Shell
	5.5.1 Design the user sign-in experience
	5.5.2 Update the Shell JavaScript
	5.5.3 Update the Shell stylesheet
	5.5.4 Test sign-in and sign-out using the UI

	5.6 Summary

	Chapter 6: Finish the Model and Data modules
	6.1 Design the chat object
	6.1.1 Design methods and events
	6.1.2 Document the chat object API

	6.2 Build the chat object
	6.2.1 Start the chat object with the join method
	6.2.2 Update Fake to respond to chat.join
	6.2.3 Test the chat.join method
	6.2.4 Add messaging to the chat object
	6.2.5 Update Fake to emulate messaging
	6.2.6 Test chat messaging

	6.3 Add Avatar support to the Model
	6.3.1 Add Avatar support to the chat object
	6.3.2 Modify Fake to emulate avatars
	6.3.3 Test avatar support
	6.3.4 Test-driven development

	6.4 Complete the Chat feature module
	6.4.1 Update the Chat JavaScript
	6.4.2 Update the stylesheets
	6.4.3 Test the Chat UI

	6.5 Create the Avatar feature module
	6.5.1 Create the Avatar JavaScript
	6.5.2 Create the Avatar stylesheet
	6.5.3 Update the Shell and the browser document
	6.5.4 Test the Avatar feature module

	6.6 Data binding and jQuery
	6.7 Create the Data module
	6.8 Summary

	Part 3: The SPA server
	Chapter 7: The web server
	7.1 The role of the server
	7.1.1 Authentication and authorization
	7.1.2 Validation
	7.1.3 Preservation and synchronization of data

	7.2 Node.js
	7.2.1 Why Node.js?
	7.2.2 Create ‘Hello World’ using Node.js
	7.2.3 Install and use Connect
	7.2.4 Add Connect middleware
	7.2.5 Install and use Express
	7.2.6 Add Express middleware
	7.2.7 Use environments with Express
	7.2.8 Serving static files with Express

	7.3 Advanced routing
	7.3.1 User CRUD routes
	7.3.2 Generic CRUD routing
	7.3.3 Place routing in a separate Node.js module

	7.4 Adding authentication and authorization
	7.4.1 Basic Authentication

	7.5 Web sockets and Socket.IO
	7.5.1 Simple Socket.IO
	7.5.2 Socket.IO and messaging servers
	7.5.3 Updating JavaScript with Socket.IO

	7.6 Summary

	Chapter 8: The server database
	8.1 The role of the database
	8.1.1 Select the data store
	8.1.2 Eliminate data transformations
	8.1.3 Move the logic where you need it

	8.2 An introduction to MongoDB
	8.2.1 Document-oriented storage
	8.2.2 Dynamic document structure
	8.2.3 Get started with MongoDB

	8.3 Use the MongoDB driver
	8.3.1 Prepare the project files
	8.3.2 Install and connect to MongoDB
	8.3.3 Use MongoDB CRUD methods
	8.3.4 Add CRUD to the server application

	8.4 Validate client data
	8.4.1 Validate the object type
	8.4.2 Validate the object

	8.5 Create a separate CRUD module
	8.5.1 Prepare the file structure
	8.5.2 Move CRUD into its own module

	8.6 Build the Chat module
	8.6.1 Start the chat module
	8.6.2 Create the adduser message handler
	8.6.3 Create the updatechat message handler
	8.6.4 Create disconnect message handlers
	8.6.5 Create the updateavatar message handler

	8.7 Summary

	Chapter 9: Readying our SPA for production
	9.1 Optimize our SPA for search engines
	9.1.1 How Google crawls an SPA

	9.2 The cloud and third-party services
	9.2.1 Site analytics
	9.2.2 Logging client-side errors
	9.2.3 Content delivery networks

	9.3 Caching and cache busting
	9.3.1 Caching opportunities
	9.3.2 Web storage
	9.3.3 HTTP caching
	9.3.4 Server caching
	9.3.5 Database query caching

	9.4 Summary

	appendix A: JavaScript coding standard
	A.1 Why we need a coding standard
	A.2 Code layout and comments
	A.2.1 Lay out your code for readability
	A.2.2 Comment to explain and document

	A.3 Variable names
	A.3.1 Reduce and improve comments with a naming convention
	A.3.2 Use naming guidelines
	A.3.3 Put the guidelines to use

	A.4 Variable declaration and assignment
	A.5 Functions
	A.6 Namespaces
	A.7 File names and layout
	A.8 Syntax
	A.8.1 Labels
	A.8.2 Statements
	A.8.3 Other syntax

	A.9 Validating code
	A.9.1 Install JSLint
	A.9.2 Configure JSLint
	A.9.3 Use JSLint

	A.10 A template for modules
	A.11 Summary

	appendix B: Testing an SPA
	B.1 Set up test modes
	B.2 Select a test framework
	B.3 Set up nodeunit
	B.4 Create the test suite
	B.4.1 Get Node.js to load our modules
	B.4.2 Set up a single nodeunit test
	B.4.3 Create our first real test
	B.4.4 Map the events and tests
	B.4.5 Create the test suite

	B.5 Adjust SPA modules for tests
	B.6 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

