
www.EBooksWorld.ir

www.EBooksWorld.ir

Matthew Skelton and Chris O’Dell

Continuous Delivery with
Windows and .NET

www.EBooksWorld.ir

978-1-491-94107-2

[LSI]

Continuous Delivery with Windows and .NET
by Matthew Skelton and Chris O’Dell

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Kristen Brown
Copyeditor: Lindsy Gamble
Proofreader: Jasmine Kwityn

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

February 2016: First Edition

Revision History for the First Edition
2016-01-25: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Continuous Deliv‐
ery with Windows and .NET, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

www.EBooksWorld.ir

http://safaribooksonline.com

Table of Contents

Foreword. ix

Preface. xi

1. Introduction to Continuous Delivery. 1
What Continuous Delivery Is Not 1
The Importance of Automation for Continuous Delivery 3
Why Is Continuous Delivery Needed? 4
Why Windows Needs Special Treatment 4
Terminology Used in This Book 5

2. Version Control. 7
Key Version Control Practices 7
Version Control Technologies 8
Branching Options 11
Use NuGet for Dependencies 13
Summary 14

3. Continuous Integration. 15
CI Servers for Windows and .NET 15
Build Automation 22
Integrating CI with Version Control and Ticket Tracking 25
Patterns for CI Across Multiple Teams 25
Architecture Changes for Better CI 26
Summary 26

4. Deployment Pipelines. 27

vii

www.EBooksWorld.ir

Mapping Out a Deployment Pipeline 27
Tools for Deployment Pipelines 28
Deployment Techniques 32
Automated Testing of Database Changes 35
Summary 38

5. Monitoring, Metrics, and APM. 39
Performance Counters Are Insufficient 39
Record Application Metrics 39
APM Tools Can Complement Monitoring 41
Aggregate Application and Windows Event Logs from All

Machines 43
Summary 46

6. Infrastructure Automation. 47
Shared Versus Dedicated Infrastructure 48
Using a Test-First Approach to Infrastructure 49
Patching and OS Updates 52
Summary 53

7. The Tricky Bits of Continuous Delivery. 55
Organizational Changes 55
Architectural Changes (SOA/Microservices) 57
Operational Features 59
Summary 60

A. Bibliography. 61

B. Case Studies. 63

viii | Table of Contents

www.EBooksWorld.ir

Foreword
Continuous Delivery is widely seen as “state of the art” in today’s
software development process. There are good reasons for this.
Continuous Delivery is grounded in a pragmatic, empirical
approach to software development. At its simplest, Continuous
Delivery is about optimizing the whole software development pro‐
cess—from having an idea to getting that idea into the hands of our
users, in the form of high-quality, working software, as quickly and
efficiently as we can. Then we can figure out what our users make of
our ideas.

We actively seek feedback loops like this within the development
process, and look to optimize them. We encourage the adoption of a
genuinely experimental approach to every aspect of software devel‐
opment. In fact, I think that over the past few years, we are seeing
signs of the software development process maturing.

I think that what we are seeing is the recognition and establishment
of what software engineering should really look like: high quality,
iterative, experimental, empirical—in fact, grounded in the scientific
method. I am probably biased, but I believe that Continuous Deliv‐
ery represents an important step forward in the software develop‐
ment process. It works. It makes the organizations that practice it
more efficient at creating high-quality software that delights their
users.

You will notice that my description did not mention technology at
all. That is because the ideas of Continuous Delivery are not tied to
any specific technology. You can practice this approach to develop‐
ment for any software tech. However, if our aim is to “create a
repeatable, reliable process for software delivery,” then automation
plays an important part. After all, human beings are not really very
good at being repeatable and reliable! So technology, though not the
most important aspect, plays a vital role. On this technology front,
the picture across the software industry is complex. There are at
least two factions: the world of Windows and .NET, and the Unix-
based tribes of the “Open Stack.”

I think it fair to say that some of the initial innovation in the Contin‐
uous Delivery space came from the Open Stack community—unit
test frameworks, build management systems, sophisticated version

www.EBooksWorld.ir

control and dependency management systems, and more recently
support for ideas like “infrastructure as code” and “deployment
pipelines.”

It has never been as simple as “Open Stack has the best tools and
Windows plays catch-up.” The first publicly available Continuous
Integration (build management) system was CruiseControl, fol‐
lowed quite quickly by a “port” to Windows called CruiseCon‐
trol.NET, which was significantly better than the original. So over
time, both worlds have developed their own collections of technol‐
ogy to support Continuous Delivery and its associated practices.
Because many of the people that started the conversation on this
new approach came from the Open Stack world (myself included),
the language that we used and the tools that we described were not
always descriptions or technologies that would resonate with some‐
one from the Windows and .NET world.

It is great to see Matthew and Chris redress the balance. This book is
much more than a simple description of Windows native tooling for
Continuous Delivery, though that information is provided here.
This book explores the ideas of Continuous Delivery and talks about
the broad concepts and philosophy, as well as describing some of the
specific tooling that works in a Windows-native way. In addition, it
also describes some of the tools that are stack-neutral and available
to any software developer whatever their toolset.

Chris and Matthew bring real-world experience to their writing, and
back up their descriptions with firsthand experience of the technol‐
ogies described and case studies from many different organizations.

If you are developing software of any kind in the Windows environ‐
ment, this book is for you. Continuous Delivery is too important an
idea to miss the boat. Enjoy the book!

—Dave Farley
Independent consultant and

coauthor of
Continuous Delivery

www.EBooksWorld.ir

Preface

By re-architecting for Continuous Delivery, and using tools like Chef
and GoCD in combination with Windows and .NET, we were able to

move from infrequent, difficult code deployments to weekly, daily, and
even hourly deployments, whilst improving our availability and mean

time to recovery.
—John Esser, Ancestry.com

Continuous Delivery is a well-defined set of practices and
approaches to releasing software in a reliable way. At the heart of
Continuous Delivery is the automation of software builds, software
testing, and software deployments, including the automated config‐
uration of devices and environments for testing and runtime.

Organizations increasingly rely on software systems to enable and
power their services, sales, or operations (or all three), and so fre‐
quent, reliable, repeatable, and rapid releases are essential in order
to keep pace with demands for change. The practices that form
Continuous Delivery are no longer optional for many organizations,
but rather central to their very survival.

Today, all core software from Microsoft is PowerShell-scriptable,
and teams working with Windows and .NET in 2016 and beyond
are able to use a rich set of PowerShell and HTTP REST APIs in
software packages and products from Microsoft, third-party ven‐
dors, and the open source community. This ability to automate
Windows and .NET is a huge enabler for Continuous Delivery.

Many of the technologies and approaches for Continuous Delivery
are essentially identical across different operating systems, but some
things need special treatment for Windows and .NET. When Jez
Humble and Dave Farley published their groundbreaking book,

xi

www.EBooksWorld.ir

Continuous Delivery [HumbleFarley], in 2010, many of the tools
described were either nonexistent on the Windows platform or did
not support the rich automation capabilities they do now. Our book
acts as an addendum to Jez and Dave’s book to encourage many
more teams working with Windows and .NET to adopt Continuous
Delivery.

Who Should Read This Book
If you build, release, or operate software systems built on .NET or
Windows, then this book is for you. Architects, product managers,
and CxOs in your organization should read Chapter 7, The Tricky
Bits of Continuous Delivery, and start planning some significant
changes.

Product Development Best Practices
While good practices for product development with software, such
as User Stories, are beyond the scope of this book, we refer to them
occasionally. See the excellent book Implementing Lean Software
Development [Poppendieck] for more details.

The Structure of the Book
A successful adoption of Continuous Delivery is built upon solid
foundations of technical excellence, which we describe here:

Version control, branching, and merging (Chapter 2)
Everything in Continuous Delivery flows from sound version
control.

Continuous Integration done well (Chapter 3)
Without CI for application and infrastructure code, Continuous
Delivery is not possible.

Deployment pipelines (Chapter 4)
These are for deployment coordination, sharing information,
and continuous improvement.

Infrastructure automation (Chapter 6)
Well-tested, well-structured code that defines servers and envi‐
ronments is needed.

xii | Preface

www.EBooksWorld.ir

The tricky bits (Chapter 7)
These things are as important as the more technical bits, but
often get forgotten.

Many teams working with Windows/.NET have been slow to adopt
modern, scriptable tools like NuGet and Chocolatey (package man‐
agement), DSC/Chef/Puppet/Ansible (configuration management),
and Vagrant/Packer/ServerSpec (server testing). We have tried to
provide a flavor of the kinds of tools you should expect to use, the
challenges you might face, and enough understanding of the princi‐
ples to go and explore the tools and techniques for yourself.

In summary, enjoy the automation that modern Windows and .NET
tools and software offer, but don’t forget the social, architectural,
and operational challenges that Continuous Delivery requires. We
assure you that the changes will be worth it in the end!

In this book, we use C# (so project files are .csproj) but
most of the advice applies equally well to other .NET
languages like VB.NET or F#.

We hope you find this book useful. We’d love to receive your feed‐
back—send us an email at book@cdwithwindows.net or leave a com‐
ment on the book’s website: http://cdwithwindows.net/.

Acknowledgments
We’d like to thank several people for their comments and support:
first, all the people and organizations featured in the case study
examples (Andy Lole at Carnect, Paul Shannon at 7digital, Steve
Elliott at LateRooms.com, Peter Mounce at JUST EAT, Owain Perry
at JustGiving, and John Esser and Russ Barnet at Ancestry.com).
Second, we’d like to thank our technical reviewers for their insights
(Josef Sin, John Adams, Colin Beales, and Giles Davies from the Vis‐
ual Studio UK team, and Kundana Palagiri and colleagues from the
Microsoft Azure team). Third, we’re grateful to colleagues and
friends who made suggestions, including Matt Richardson, Rob
Thatcher, João Lebre, and Suzy Beck. Finally, we’d like to thank Dave
Farley for writing the Foreword, and the editorial team at O’Reilly
(including Brian Anderson and Kristen Brown) for asking us to
write this book in the first place and making it ready for publication.

Preface | xiii

www.EBooksWorld.ir

http://cdwithwindows.net/

www.EBooksWorld.ir

CHAPTER 1

Introduction to Continuous
Delivery

Continuous Delivery is one of the most valuable approaches to soft‐
ware development to emerge in recent years. At its core, Continuous
Delivery is a set of practices and disciplines that enable organiza‐
tions to reach and maintain a high-speed, predictable, steady, and
safe stream of valuable software changes irrespective of the kind of
software being developed. Continuous Delivery works not just for
web-based software, but also mobile apps, on-premise hosted desk‐
top software, device firmware, and so on.

In 2010, Jez Humble and Dave Farley wrote the book Continuous
Delivery [HumbleFarley] based on their experiences building and
releasing software for clients around the world. Their book is a
hugely valuable collection of techniques, advice, and suggestions for
software delivery and provides the de facto definition of Continuous
Delivery.

What Continuous Delivery Is Not
Many people confuse Continuous Delivery with Continuous
Deployment, but the two are quite different in purpose and execu‐
tion. As seen in Figure 1-1, Continuous Delivery aims to enable reg‐
ular, rapid, reliable software releases through a set of sound practi‐
ces, giving the people who “own” the software product the power to
decide when to release changes. Continuous Delivery is a so-called
pull-based approach, because software is “pulled” through the deliv‐

1

www.EBooksWorld.ir

http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/

ery mechanism when needed, and applies to all kinds of software
(web, desktop, embedded, etc.).

Figure 1-1. Continuous Delivery feedback

In contrast, as shown in Figure 1-2, Continuous Deployment is a
push-based approach: when software developers commit a new fea‐
ture to version control, it is pushed toward the Live systems auto‐
matically after successfully passing through a series of automated
tests and checks. This results in many Production deployments a
day.

Figure 1-2. Continuous Deployment feedback

From our experience, Continuous Deployment is a niche practice
useful for web-based systems in small, highly focused development

2 | Chapter 1: Introduction to Continuous Delivery

www.EBooksWorld.ir

teams. Continuous Delivery suits a much wider range of software
scenarios and is a much more effective approach with management:
“we’re giving you the power to choose when to release new features”
is quite an eye-opener for many in senior management!

The Importance of Automation for Continuous
Delivery
In Continuous Delivery, we aim to automate all the repetitive, error-
prone activities that humans do that can lead to inconsistent, unreli‐
able, or unrepeatable processes and outputs:

• Software compilation and unit testing (“builds”)
• Software testing (component, service, integration, and UI)
• Deployment of software and infrastructure through all environ‐

ments, including Production
• Configuration of applications and infrastructure (including net‐

works, DNS, virtual machines [VMs], and load balancers)
• Database changes (reference data, schema changes, and data

migrations)
• Approval of everyday IT changes (“standard changes”)
• The tracking and tracing of change history and authorizations
• Testing of Production systems

We use the word “Production” to refer to the environ‐
ment where your software is serving customers. This is
sometimes called “Live,” but we feel this is a loaded
term likely to cause confusion.

These are all areas where we can get computers to do a much better
job than humans: more consistent, more repeatable, more reliable.
Areas that we leave for human input are limited to those areas where
humans add a huge amount of value: software development itself,
test strategy and approaches, exploratory testing [Hendrickson],
performance test analysis, and deployment and rollback decisions.

The Importance of Automation for Continuous Delivery | 3

www.EBooksWorld.ir

Why Is Continuous Delivery Needed?
Developing and operating modern software successfully requires a
combination of good tools, well-trained and well-socialized people,
good team discipline, a clear and shared purpose, and well-aligned
financial and organizational goals. Too many organizations believe
that they can do without one or more of these ingredients, but the
result is that software is expensive, late, or faulty, and often all three.

By adopting Continuous Delivery, organizations can lay the founda‐
tions for highly effective software delivery and operations, consis‐
tently producing high-quality software that works well in Produc‐
tion and delights clients and customers.

Why Windows Needs Special Treatment
Many of the tools commonly used for Continuous Delivery are not
available natively for the Windows platform, so we need to find
Windows-native approaches that achieve the same ends.

In particular, package management (in the form of NuGet and
Chocolatey) has only been available on the Windows platform since
2010, whereas operating systems such as Linux and BSD (and more
recently Mac) have used package management for software distribu‐
tion and installation since at least 1997. Other good approaches
being adopted on Windows are:

• Plain text files for configuration of applications and services
(rather than the Windows Registry or databases)

• Controlling application behavior from the command line (rather
than a GUI)

• A multivendor, open source–friendly approach to software in the
Windows ecosystem

• Easily scriptable package management with declarative depen‐
dencies

Many of the new and forthcoming features in Windows Server 2016
and Visual Studio 2015/Visual Studio Online (VSO) are designed
with Continuous Delivery in mind.

4 | Chapter 1: Introduction to Continuous Delivery

www.EBooksWorld.ir

PowerShell provides a command-line interface to Win‐
dows for controlling application and system behavior
and configuration. As a result, PowerShell is now the
primary means of automating Windows components
and .NET software.

The tips and advice in this book will help you navigate the route to
Continuous Delivery on the Windows/.NET platform. Real-world
case studies with Windows/.NET software show that successful
companies around the world are using the techniques.

Terminology Used in This Book
We’ll use these terms throughout the book:

Artifact
Immutable, versioned files or collections of files that are used
for deployments

Continuous Delivery (CD)
Reliable software releases through build, test, and deployment
automation

Continuous Integration (CI)
Integrating work from developers as soon as possible, many
times a day

Cycle time
The time spent by the team working on an item until the item is
delivered (in a Continuous Delivery context)

DBA
Database administrator

DSC
Desired State Configuration

DSL
Domain-specific language

IIS
Internet Information Services

Terminology Used in This Book | 5

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/mt173057.aspx

Infrastructure
Servers, networks, storage, DNS, virtualization—things that
support the platform

Infrastructure configuration management (or just config manage‐
ment)

See Infrastructure as code

Infrastructure as code
Treating infrastructure as if it were software, and using software
development techniques (such as test-driven development)
when developing infrastructure code

LDAP
Lightweight Directory Access Protocol

On-premise
Self-hosted systems, managed internally by the organization—
the opposite of SaaS-hosted systems

Package management
Software and established practices for dependency management
via named collections of files with specific version numbers

Production
The environment where the software runs and serves custom‐
ers, also known as Live

SCCM
System Center Configuration Manager

Software-as-a-Service (SaaS)
Hosted software services—the opposite of on-premise or self-
hosted systems

SysAdmin
System administrator

Test-driven development (TDD)
Evolving software in a safe, stepwise way, emphasizing main‐
tainability and clarity of purpose

User interface (UI)
Also known as graphical user interface (GUI)

Version control system (VCS)
Sometimes called source code control or revision control

6 | Chapter 1: Introduction to Continuous Delivery

www.EBooksWorld.ir

CHAPTER 2

Version Control

Controlling versions of text files (code, configuration, static data,
etc.) is a crucial facet of Continuous Delivery. Version control pro‐
vides traceability, predictability, and repeatability, because we’re
forced to treat the version control system as the definitive source of
truth. Version control is also a central communication mechanism
between teams and team members, indicating the intent and pur‐
pose of our changes so that people can make better decisions.

Key Version Control Practices
Some important principles for version control in a Continuous
Delivery context are:

• Commits to version control should be cohesive and meaningful,
helping people to see why a change was made.

• Commits should happen many times per day—if your version
control system or practices work against multiple daily com‐
mits, you’re likely using the wrong approach.

• Branch as little as possible (see “Branching Options” on page
11)—use techniques such as feature toggles to manage partially
completed work. Focus on completing a small number of
changes rather than tackling many things in parallel.

• Any non-trunk branches should be short-lived—especially fea‐
ture branches.

7

www.EBooksWorld.ir

Furthermore, for Continuous Delivery, we tend to prefer many
smaller repositories to one large repository, using package manage‐
ment to bring together dependent modules (see “Use NuGet to
Manage Internal Dependencies” on page 14).

Carnect: Version Control Changes for
Continuous Delivery

Carnect is a leading car rental booking engine and solutions pro‐
vider working worldwide with a portfolio of over 500 car rental
suppliers. Founded in Hamburg in 1999 as MicronNexus GmbH,
Carnect in 2007 joined TUI Group, the largest leisure, travel, and
tourism company in the world.

Carnect provides digital content via white-label websites and vehi‐
cle booking services via web APIs; their systems run on the Win‐
dows platform using a mixture of VB.NET and C# components.
The Carnect teams began adopting elements of Continuous Deliv‐
ery in early 2015, with a focus on build automation, automated
tests, and repeatable deployments.

Andy Lole, CTO at Carnect, explains that:

The combination of .NET on Windows and tools like GitHub,
JIRA, and TeamCity works really well for us. The tech teams at
Carnect love the development speed and power of .NET, but
using TFS for version control was really hurting our ability to
release in a controlled and repeatable manner. By moving our
code to GitHub and wiring it up to JIRA and TeamCity we can
safely run much faster and more consistently than before.

The need to trace a change from version control through a build to
a deployed package was a big factor in adopting newer practices,
and this new ability has helped the teams to track down within
minutes problems that used to take days to resolve.

Version Control Technologies
In 2015 and beyond, you should choose or switch to a hosted (SaaS)
version control solution unless you have a very clear understanding
of why you need a self-hosted (on-premise) tool. Only those organi‐
zations with an excellent capability in infrastructure and security
management should consider on-premise version control. If you’re
certain that self-hosted/on-premise is right for you, then good

8 | Chapter 2: Version Control

www.EBooksWorld.ir

options are GitHub Enterprise, Bitbucket Server (formerly Stash),
and RhodeCode.

The most effective SaaS version control providers for Windows
and .NET software include:

• GitHub
• Bitbucket
• Visual Studio Online
• CodebaseHQ
• CloudForge

The SaaS hosting solution acts as the definitive central location for
code integration and collaboration.

Modern SaaS version control tools provide enterprise-
level features such as integration with LDAP and fine-
grained security permissions control, along with pri‐
vate repositories. Using a SaaS provider does not mean
that your files need to be open sourced.

You will also need client tools to run on each workstation, build
agent, or server. Client tools are generally free of charge.

Git
Git is currently the de facto standard for version control and is a
powerful, safe, and flexible version control tool. You should choose a
Git-based solution for Continuous Delivery with Windows
and .NET unless you have a good reason to use a different tool, and
invest in Git training for everyone using version control, including
SysAdmins and DBAs.

Free client tools for Git on Windows include:

Git for Windows (or git bash)
Good for cross-platform work

GitHub for Windows
A GUI tool from GitHub

Atlassian SourceTree
Rich GUI tool for beginners and experts

Version Control Technologies | 9

www.EBooksWorld.ir

https://enterprise.github.com/home
https://www.atlassian.com/software/bitbucket/server
https://rhodecode.com/
https://github.com/
https://bitbucket.org/
http://www.visualstudioonline.com/
https://www.codebasehq.com/
http://www.cloudforge.com/
https://git-scm.com/download/win
https://desktop.github.com/
https://www.sourcetreeapp.com/

POSH-git
PowerShell environment for Git

Git Extensions
Git integration for Visual Studio

TFS 2013 or later
(Using the Git option for version control)

In practice, if you choose to use Git, you will need a hosted solution
such as GitHub, Bitbucket, or Visual Studio Online.

Mercurial
Mercurial is similar to Git. Some Windows and .NET-based tools
support Mercurial, but with the popularity of Git and GitHub, along
with Git’s superior branch handling, it’s unlikely that Mercurial will
provide much benefit over Git for most teams.

If you need to use Mercurial on Windows, one of the best client
tools is currently Atlassian SourceTree. SourceTree is a free down‐
load and supports Git as well as Mercurial.

Subversion
Subversion is a well-established version control system that can
work well for small- to medium-sized repositories in a Continuous
Delivery context. Subversion uses a central server for the definitive
repository copy along with operations such as svn log for seeing
history. This means that some operations (particularly viewing the
log) are slow compared to similar operations in Git or Mercurial.

Compelling reasons to use Subversion include TortoiseSVN, which
provides rich integration with the Windows Explorer shell, and Sub‐
version’s native support for binary files, making updates and fresh
checkouts (for CI) much quicker than with Git for large numbers of
binary files.

TFS
Until the release of Team Foundation Server (TFS) 2013, the Team
Foundation Version Control (TFVC) component of TFS alone pro‐
vided version control features using a central server. The early ver‐
sions of TFS/TFVC (2005, 2008, 2010, and 2012) possessed several

10 | Chapter 2: Version Control

www.EBooksWorld.ir

https://github.com/dahlbyk/posh-git
http://gitextensions.github.io/
http://blogs.msdn.com/b/mvpawardprogram/archive/2013/11/13/git-for-tfs-2013.aspx
https://mercurial.selenic.com/
https://www.atlassian.com/software/sourcetree/overview
http://tortoisesvn.net/

features of Microsoft’s legacy Visual Source Safe VCS that were
incompatible with Continuous Delivery [Hammer].

However, TFS 2013 added support for Git repositories, thereby
combining the richness of Visual Studio with the flexibility and
power of Git. Future versions of TFS and Visual Studio Online will
provide support for accessing Git repositories over SSH (currently,
only Git over HTTPS is supported). With TFS 2015 there is also
expanded support for the cloud-based Visual Studio Online, inte‐
gration with Azure, and native integration with GitHub.

With strong support for Git, as well as programmability via REST
APIs and agile-oriented features, TFS 2015 promises to be a much
better fit for Continuous Delivery than previous versions.

Branching Options
A developer has a problem to fix, so they create a feature branch. Now

they have two problems to fix.
—Anon.

Modern version control systems allow for branching of the source
code, thereby allowing for multiple parallel streams of work on the
same project. This is an alluring prospect that gives the illusion that
multiple development streams can be achieved on the same code‐
base without impacting one another. Unfortunately, this method is
fraught with issues when the time comes to bring these parallel
streams back together.

Where possible, avoid many long-lived branches, preferring instead
either trunk-based development or short-lived feature branches.
Trunk-based development is the practice of making changes directly
onto the trunk or master branch without feature branches. This
practice requires a discipline in the developers to ensure that the
HEAD of the trunk is always in a releasable state; a stepping-stone
toward trunk-based development is GitHub Flow, the practice of
using pull requests.

Branching Options | 11

www.EBooksWorld.ir

http://blogs.msdn.com/b/willy-peter_schaub/archive/2015/04/09/git-for-the-tfvc-user-workflow-investigations-part-1-making-changes.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2015/08/27/git-experience-futures.aspx
https://www.visualstudio.com/en-us/news/tfs2015-vs.aspx
https://www.visualstudio.com/en-us/news/tfs2015-vs.aspx
http://paulhammant.com/2013/04/05/what-is-trunk-based-development/
https://guides.github.com/introduction/flow/index.html

Do not be tempted to rush into branching just because
your version control tool has good branching support.
Git in particular supports branching well, but Git was
designed for collaboration on the Linux kernel code by
geographically separated individuals. Your software
teams (should) have much better communication than
the Linux kernel team, so give preference to communi‐
cation instead of branching!

Pull Requests
Pull requests, or merge requests, are becoming a popular way to
manage development. They work in a similar way to feature
branches, although on a much smaller scale.

The developer works on a local clone of the codebase, making a
small change that is pushed to her centrally hosted clone. Then,
using the hosted tool, GitHub, Bitbucket Server (formerly Stash), or
something similar, the developer makes a request to the owners of
the origin repository to review and merge the change.

The process stems from open source development where developers
are spread out throughout the world and in various time zones. It
allows for the owners to review and judge each request as to whether
it is suitable for merging. For this scenario it is perfect, although in
larger organizations it can make the flow of changes quite stilted.

The GitFlow model for development work with Git is
popular but in our view can lead to situations where CI
happens less frequently than with other branching
models. GitFlow also has a steep learning curve for
people new to version control. We recommend that
you explore other models before trying GitFlow.

Feature Toggles
Large features and changes are always needed. We can decompose
the work to be as small as possible, yet there will be times when they
are part of something larger that can only work together once fully
implemented. This can still be achieved in trunk-based development
by employing Feature Toggles.

Feature Toggles, at their simplest, can merely be if statements sur‐
rounding the usage of your new functionality. They could also be

12 | Chapter 2: Version Control

www.EBooksWorld.ir

http://nvie.com/posts/a-successful-git-branching-model/
http://martinfowler.com/bliki/FeatureToggle.html

implemented through factory methods or instantiating different
implementations via IoC. The scope and complexity of the toggle
depends on what your feature change is.

For further reading on branching strategies, look up
Steve Smith’s excellent blog series on Version Control
Strategies.

Use NuGet for Dependencies
NuGet is the open source dependency package management tool
for .NET. NuGet is distributed as a Visual Studio Extension and is
preinstalled by default in Visual Studio version 2012 and later.
NuGet can also be used from the command line, which is useful for
automated scripting. The NuGet client tools provide the ability to
both produce and consume packages. NuGet Gallery is the central
package repository used by open source package authors and con‐
sumers.

NuGet is similar in its goals to package managers used in other lan‐
guages, such as Java’s Maven, Ruby’s Gems, and Node’s NPM. It pro‐
vides a way to specify a package for installation and along with it
installs that package’s dependencies at the required versions.

As seen in Figure 2-1, the NuGet Visual Studio Extension provides a
GUI for finding and installing packages from the NuGet Gallery.

Figure 2-1. The NuGet Visual Studio Interface

The following sections cover some good practices for working with
packages and package management.

Use NuGet for Dependencies | 13

www.EBooksWorld.ir

http://martinfowler.com/bliki/InversionOfControl.html
http://www.alwaysagileconsulting.com/articles/version-control-strategies/
http://www.alwaysagileconsulting.com/articles/version-control-strategies/
https://www.nuget.org/

Do Not Store Packages in Version Control
Store only the packages.config files in version control, not actual
packages. Use NuGet Package Restore and the packages will be re-
downloaded, from a local cache if available, to your project at com‐
pile time. This way you can prevent the binaries from bloating your
version control. The restore is an MSBuild step included in the solu‐
tion file and is generally supported on CI servers.

Use NuGet to Manage Internal Dependencies
Your own internally shared libraries are excellent candidates for
NuGet packages. By making your shared libraries available in this
way you are ensuring that the library is built only once, as is the case
with all other artifacts in a Continuous Delivery pipeline.

To generate the NuGet package, simply run the following:

nuget pack MyProject.csproj

Originally, the NuGet package format was for build-
time dependencies only, although several tools now
use the NuGet format for deployable artifacts too. For
a clearer distinction between build-time and run-time
dependencies, use Chocolatey, currently the de facto
apt-get tool for Windows and .NET. In the future,
other package managers may appear, facilitated by the
emerging OneGet packager manager management
framework.

There are various NuGet hosting applications that can be installed
on premise such as Artifactory and ProGet, and SaaS-based tools
such as MyGet and Artifactory Cloud. Some other tools, including
TeamCity and Octopus, support built-in hosting of NuGet feeds; in
fact, TeamCity includes an optional build step to generate NuGet
packages.

Summary
Version control of all text-based files is an essential foundation for
Continuous Delivery. When choosing tools for version control, it’s
important to consider not only developers but also people in testing
and operations.

14 | Chapter 2: Version Control

www.EBooksWorld.ir

https://chocolatey.org/
http://bit.ly/10-things-about-OneGet
http://bit.ly/10-things-about-OneGet
http://inedo.com/proget
https://myget.org/
http://www.jfrog.com/artifactory/versions/

CHAPTER 3

Continuous Integration

Continuous Integration is central to Continuous Delivery. Many
organizations assume that they are “doing CI” if they run a CI Server
(see below), but good CI is a well-defined set of approaches and
good practices, not a tool. We integrate continuously in order to find
code conflicts as soon as possible. That is, by doing Continuous
Integration, we explicitly expect to hit small snags with merges or
component interactions on a regular basis. However, because we are
integrating continuously (many times every day), the size and com‐
plexity of these conflicts or incompatibilities are small, and each
problem is usually easy to correct. We use a CI server to coordinate
steps for a build process by triggering other tools or scripts that
undertake the actual compilation and linking activities. By separat‐
ing the build tasks into scripts, we are able to reuse the same build
steps on the CI server as on our developer workstations, giving us
greater consistency for our builds.

In this chapter, we first look at some commonly used CI servers for
Windows and .NET and their strengths and weaknesses. We then
cover some options for driving .NET builds both from the com‐
mand line and from CI servers.

CI Servers for Windows and .NET
Although CI is a practice or mindset, we can use a CI server to help
us do some heavy lifting. Several CI servers have dedicated Win‐
dows and .NET support, and each has different strengths.
Whichever CI server you choose, ensure that you do not run builds

15

www.EBooksWorld.ir

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

on the CI server itself, but use build agents (“remote agents” or
“build slaves”; see Figure 3-1). Build agents can scale and be config‐
ured much more easily than the CI server; leave the CI server to
coordinate builds done remotely on the agents.

Remote build agents require a physical or virtual
machine, which can be expensive. A possible route to
smaller and cheaper build agents is Windows Nano, a
lightweight version of Windows announced in April
2015.

Figure 3-1. Use remote build agents for CI

AppVeyor
AppVeyor is a cloud-hosted CI service dedicated to building and
testing code on the Windows/.NET platform (see Figure 3-2). The
service has built-in support for version control repositories in online
services such as GitHub, Bitbucket, and Visual Studio Online, as
well as generic version control systems such as Git, Mercurial, and
Subversion. Once you have authenticated with your chosen version
control service, AppVeyor automatically displays all the repositories
available.

The focus on .NET applications allows AppVeyor to make some use‐
ful assumptions about what to build and run within your source
code: solution files (.sln) and project files (.csproj) are auto-detected,
and there is first-class support for NuGet for build dependency
management.

16 | Chapter 3: Continuous Integration

www.EBooksWorld.ir

http://blogs.technet.com/b/windowsserver/archive/2015/04/08/microsoft-announces-nano-server-for-modern-apps-and-cloud.aspx
http://www.appveyor.com/
https://www.visualstudio.com/en-us/get-started/appveyor-and-vso-vs.aspx

Figure 3-2. A successful build in AppVeyor

If all or most of your software is based on .NET and you use cloud-
based services for version control (GitHub, Bitbucket, etc.) and
Azure for hosting, then AppVeyor could work well for you.

Bamboo
Atlassian Bamboo (Figure 3-3) is a cross-platform CI and release
management tool with first-class support for Windows and .NET.
Short build times are essential for rapid feedback after a commit to
version control, and Bamboo supports remote build agents for
speeding up complex builds through parallelization.

Figure 3-3. Bamboo builds

Along with drag-and-drop organization of build plans, Bamboo has
strong integration with Atlassian JIRA to show the status of builds

CI Servers for Windows and .NET | 17

www.EBooksWorld.ir

against JIRA tickets, a useful feature for teams using JIRA for story
tracking.

Bamboo has strong support for working with multiple branches,
both short-lived and longer-term, so it may be especially suitable if
you need to gain control over heavily branched version control
repositories as you move toward trunk-based development.

BuildMaster
BuildMaster from Inedo can provide CI services, along with many
other aspects of software deployment automation (Figure 3-4).
BuildMaster is written in .NET and has first-class support for
both .NET and non-.NET software running on Windows. Its key
differentiators are ease of use, team visibility of build and deploy‐
ment status, and incremental adoption of Continuous Delivery.

Figure 3-4. Deployments in BuildMaster

BuildMaster’s focus on incremental progress toward Continuous
Delivery is particularly useful because moving an existing codebase
to Continuous Delivery in one go is unlikely to succeed. In our
experience, organizations should start Continuous Delivery with
just a single application or service, adding more applications as
teething problems are solved, rather than attempting a “big bang”
approach.

GoCD
GoCD is arguably the most advanced tool for Continuous Delivery
currently available. Almost alone among Continuous Delivery tools,
it has first-class support for fully configurable deployment pipelines,

18 | Chapter 3: Continuous Integration

www.EBooksWorld.ir

https://confluence.atlassian.com/bamboo/using-plan-branches-289276872.html
http://inedo.com/buildmaster
http://www.go.cd

and we look in more depth at this capability later in the book (see
Chapter 4).

GoCD can also act as a CI server, and has a developing plug-in eco‐
system with support for .NET technologies like NuGet. The UI is
particularly clean and well designed. Nonlinear build schemes are
easy to set up and maintain in GoCD, as seen in Figure 3-5.

Figure 3-5. Nonlinear build flows in GoCD

GoCD has strong support for parallelization of builds using build
agents. This can lead to a huge reduction in build times if a build has
multiple independent components (say, several .sln solution files,
each generating separate class libraries or services).

Parallel builds, a clean UI, and support for nonlinear build flows
make GoCD an effective choice for CI for more complex situations.

Jenkins
Jenkins is a well-established CI server, likely the most popular one
for Linux/BSD systems. One of the most compelling features of Jen‐
kins is the plug-in system and the many hundreds of plug-ins that
are available for build and deployment automation.

A very useful feature of Jenkins is the “weather report” (Figure 3-6),
which indicates the trend of builds for a Jenkins job: sunshine indi‐
cates that all is well, whereas rain indicates that the build job is regu‐
larly failing.

CI Servers for Windows and .NET | 19

www.EBooksWorld.ir

http://www.go.cd/community/plugins.html
http://www.go.cd/community/plugins.html
https://jenkins-ci.org/

Figure 3-6. Jenkins build jobs indicate long-term health

A downside of using Jenkins as a CI for .NET builds is that the sup‐
port for .NET ecosystem technologies such as NuGet or Azure is
largely limited to the use of hand-crafted command-line scripts or
early-stage plug-ins. Your mileage may vary!

TeamCity
JetBrains provides the commercial product TeamCity, likely the
most popular in use with .NET projects on Windows. Compared to
other CI tools, the highly polished UI is one of its best features.

TeamCity uses a hierarchical organizational structure—projects
contain subprojects, which in turn contain multiple builds. Each
build consists of an optional version control source, trigger rules,
dependencies, artifact rules, and multiple build steps.

A build can run a single build step, which triggers a script, or multi‐
ple build steps can be specified to run in sequence to compose the
required steps. TeamCity includes preconfigured build steps for
many common actions, such as compiling a Visual Studio solution
and generating NuGet packages.

A running build will display a live log of progress and a full history
kept for a configurable amount of time.

TeamCity includes support for triggering builds from
branches and pull requests merged into the HEAD of
trunk. Using this feature allows for testing of a pull
request before finally merging.

TeamCity also exposes a REST API allowing for scripting and a
library of over 100 plug-ins available to use.

20 | Chapter 3: Continuous Integration

www.EBooksWorld.ir

1 https://msdn.microsoft.com/en-us/Library/vs/alm/Build/overview

TFS Build / VSO
Team Foundation Server Build (often known as TFS) is Microsoft’s
CI and deployment solution and has undergone several iterations,
the most recent being TFS 2015 (self-hosted) or Visual Studio
Online (VSO). The versions of TFS prior to TFS 2015 are “notori‐
ously unfriendly to use” [Hammer] and have very limited support
for non-developers using version control and CI because in practice
they require the use of Visual Studio, a tool rarely installed on the
workstations of DBAs or SysAdmins. The pre-2015 versions of TFS
Build also used an awkward XML-based build definition scheme,
which was difficult for many to work with.

However, with TFS Build 2015 and Visual Studio Online, Microsoft
has made a significant improvement in many areas, with many parts
rewritten from the ground up. Here is the advice from the Microsoft
Visual Studio team on using TFS 2015/VSO for CI:

If you are new to Team Foundation Server (TFS) and Visual Studio
Online, you should use this new system [TFS 2015]. Most custom‐
ers with experience using TFS and XAML builds will also get better
outcomes by using the new system.
The new builds are web- and script-based, and highly customizable.
They leave behind many of the problems and limitations of the
XAML builds.1

—Visual Studio team

TFS Build 2015 supports a wide range of build targets and technolo‐
gies, including many normally associated with the Linux/Mac plat‐
form, reflecting the heterogeneous nature of many technology
stacks these days. The CI features have been revamped, with the live
build status view (shown in Figure 3-7) being particularly good.

CI Servers for Windows and .NET | 21

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/Library/vs/alm/Build/overview
https://msdn.microsoft.com/Library/vs/alm/Build/feature-overview
https://www.visualstudio.com/en-us/products/what-is-visual-studio-online-vs.aspx

Figure 3-7. Live build status view in TFS 2015

Crucially for Continuous Delivery, TFS Build 2015 uses standard
build scripts to run CI builds, meaning that developers can run the
same builds as the CI server, reducing the chances of running into
the problem of “it builds fine on my machine but not on the CI
server”. TFS Build 2015/VSO appears to have very capable CI
features.

Build Automation
Build Automation in .NET usually includes four distinct steps:

Build
Compiling the source code

Test
Executing unit, integration, and acceptance tests

Package
Collating the compiled code and artifacts

Deploy
Getting the package onto the server and installed

If any of the steps fails, subsequent steps should not be executed;
instead, error logs should be available to the team so that investiga‐
tions can begin.

22 | Chapter 3: Continuous Integration

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/Library/vs/alm/Build/overview
https://msdn.microsoft.com/en-us/Library/vs/alm/Build/overview
https://msdn.microsoft.com/en-us/Library/vs/alm/Build/overview

Build Automation Tools
The various CI servers described in the previous chapter co-
ordinate steps for a build process by triggering other tools or scripts.
For the step of building and compiling source files there are various
options in the .NET space. A description of a select few follow.

MSBuild
MSBuild is the default build toolset for .NET, and uses an XML
schema describing the files and steps needed for the compilation. It
is the process with which Visual Studio itself compiles the solutions,
and MSBuild is excellent for this task. Visual Studio is dependent on
MSBuild but MSBuild is not dependent on Visual Studio, so the
build tools can be installed as a distinct package on build agents,
thereby avoiding extra licensing costs for Visual Studio.

The solution (.sln) and project (.csproj) files make up almost the
entirety of the scripts for MSBuild. These are generally auto-
generated and administered through Visual Studio. MSBuild also
provides hooks for packaging, testing, and deployment.

Builds with MSBuild can be speeded up significantly
using the /maxcpucount (or /m) setting. If you have
four available CPU cores, then call MSBuild like this:
msbuild.exe MySolution.sln /maxcpucount:4, and
MSBuild will automatically use up to four separate
build processes to build the solution.

PSake
PSake is a PowerShell-based .NET build tool that takes an impera‐
tive “do this” approach that is contrary to the declarative “this is
what I want” approach of NAnt. Several emerging .NET Continuous
Delivery tools use PSake as their build tool.

Ruby/Rake
Rake saw great popularity as a build automation tool of choice from
late 2009. At the time, it was a great improvement over MSBuild and
NAnt—the previous popular tools. With NAnt being XML-based,
it’s extremely difficult to write as a script (e.g., with control state‐
ments such as loops and ifs). Rake provided all of this, as it is a task-
based DSL written in Ruby.

Build Automation | 23

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/bb651793.aspx
https://github.com/psake/psake/wiki

The downside of Rake is that Ruby is not at home in Windows.
Ruby must be installed on the machine and so a version must be
chosen. There’s no easy way to manage multiple Ruby versions in
Windows so the scripts tend to be frozen in time and locked to the
version that has been installed.

NAnt
NAnt is a tool that used to be popular. It is XML-driven and
unwieldy. Replace it with another tool if NAnt is still in use.

Batch Script
If the CI server you are using does not support PowerShell and
other tools such as Ruby cannot be installed, then batch scripting
can be used for very small tasks. It is not recommended and can
quickly result in unmanageable and unreadable files.

7digital: Continuous Integration for
Continuous Delivery

7digital is the power behind innovative digital listening experiences.
Music streaming and download services are powered by their API
technology—an offering that includes everything needed to create
and run streaming and download products, including easy payment
transactions, user management, and locker storage.

7digital’s RESTful API platform is largely powered by Windows
and .NET technologies. This platform provides access to catalog
metadata, streaming, and downloading of music files. The API is
composed of smaller, internal APIs, each focused on a specific area
and developed by product-focused teams.

The API development teams use a trunk-based approach to source
control. Commits are made to the trunk and feature branches are
heavily discouraged. Their deployment pipeline is fast and trust‐
worthy so that releases happen regularly and as such keep the
amount of change in each release as small as possible. Rollbacks are
also an essential factor in the deployment pipeline, which allows
7digital to quickly recover from any issues with a release.

Paul Shannon, VP Technology at 7digital, says:

We use a combination of TeamCity and Octopus to facilitate a
simple and effective automated deployment process. This per‐
mits us to move quickly, confidently deploying the changes we

24 | Chapter 3: Continuous Integration

www.EBooksWorld.ir

push into the trunk. Our approach to always be confident that
our code integrates cleanly has significantly reduced the amount
of time code is in the development pipeline before it is released,
which provides value to our customers more quickly and reduces
risk.

This approach was adopted in 2008 as part of a wider strategy
toward Continuous Delivery. The larger part of this strategy
involved breaking down the original monolithic API into the
smaller components, allowing the teams to move faster. It also
included a focus on improving strategies for testing, which in turn
gave the developers faith in their code changes.

Integrating CI with Version Control and Ticket
Tracking
Most CI servers provide hooks that allow for integration with ver‐
sion control and ticketing systems. With these features we can
enable the CI server to trigger a build on the commit of a changeset,
to link a particular changeset with a ticket, and to list artifacts gener‐
ated from builds from within the ticket.

This allows the ticket tracker to store a direct link to code changes,
which can be used to answer questions relating to actual changes
made when working on this ticket.

Patterns for CI Across Multiple Teams
Effective CI should naturally drive us to divide the coding required
for User Stories into developer- or team-sized chunks so that there is
less need to branch code. Contract tests between components (with
consumer-driven contracts) help to detect integration problems
early, especially where work from more than one team needs to be
integrated.

Clear ownership of code is crucial for effective Continuous Delivery.
Generally speaking, avoid the model of “any person can change any‐
thing,” as this model works only for highly disciplined engineering-
driven organizations. Instead, let each team be responsible for a set
of components or services, acting as gatekeepers of quality (see
“Organizational Changes” on page 55).

Integrating CI with Version Control and Ticket Tracking | 25

www.EBooksWorld.ir

http://www.alwaysagileconsulting.com/application-pattern-consumer-driven-contracts/

Architecture Changes for Better CI
We can make CI faster and more repeatable for .NET code by
adjusting the structure of our code in several ways:

• Use smaller, decoupled components
• Use exactly one .sln file per component or service
• Ensure that a solution produces many assemblies/DLLs but only

one component or service
• Ensure that each .csproj exists in only one .sln file, not shared

between many
• Use NuGet to package internal libraries as described in “Use

NuGet to Manage Internal Dependencies” on page 14

The new project.json project file format for DNX (the
upcoming cross-platform development and execution
environment for .NET) looks like a more CI-friendly
format compared to the traditional .csproj format. In
particular, the Dependencies feature of project.json
helps to define exactly which dependencies to use.

Cleanly separated libraries and components that express their
dependencies via NuGet packaging tend to produce builds that are
easier to debug due to better-defined dependencies compared to
code where projects sit in many solutions.

Summary
Continuous Integration is the first vital step to achieving Continu‐
ous Delivery. We have covered the various options for CI servers,
version control systems, build automation, and package manage‐
ment in the Windows and .NET World.

When choosing any tools, it is important to find those that facilitate
the desired working practices you and your team are after, rather
than simply selecting a tool based on its advertised feature set. For
effective Continuous Delivery we need to choose Continuous Inte‐
gration tooling that supports the continuous flow of changes from
development to automated build and test of deployment packages.

26 | Chapter 3: Continuous Integration

www.EBooksWorld.ir

http://docs.asp.net/en/latest/dnx/projects.html
https://github.com/aspnet/Home/wiki/Project.json-file

CHAPTER 4

Deployment Pipelines

Deployment pipelines are a key part of Continuous Delivery. A
deployment pipeline is a series of steps that occur between CI and
Production deployment, coordinated by a software tool. We use a
deployment pipeline for several reasons:

• To automate the different build, test, and deployment activities
• To visualize the progress of software toward Production
• To find and reduce bottlenecks or wait times in the deployment

process

Done well, a deployment pipeline acts as a realization of part of a
Value Stream Map, which makes the deployment pipeline a useful
tool for sharing information with people in the organization who
are familiar with Value Stream Mapping as a key part of modern
business practices. Many people simply reuse their CI tool for man‐
aging their deployment pipeline, but this may omit the valuable
orchestration and visualization that more specialized deployment
pipeline tools provide.

Mapping Out a Deployment Pipeline
To start with, build a so-called “walking skeleton” deployment pipe‐
line, with each stage between code commit and Production repre‐
sented as a simple echo hello, world! activity.

As described by Alistair Cockburn on alistair.cockburn.us:

27

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Value_stream_mapping

A Walking Skeleton is a tiny implementation of the system that per‐
forms a small end-to-end function. It need not use the final archi‐
tecture, but it should link together the main architectural compo‐
nents. The architecture and the functionality can then evolve in
parallel.

As you find time to automate more and more of the pipeline, you’ll
reduce manual steps while still retaining the coordination of the
tool.

Tools for Deployment Pipelines
The following sections provide an overview of a few tools that work
well with Windows and .NET to orchestrate and visualize deploy‐
ment pipelines.

GoCD
GoCD from ThoughtWorks is by far the most advanced tool for
Continuous Delivery deployment pipelines. GoCD was designed
specifically to support Continuous Delivery deployment pipelines
and offers sophisticated features such as the Value Stream Map (seen
in Figure 4-1), diamond dependencies, massively parallel builds
(using remote build agents), NuGet packages as a build trigger, and
an intuitive user interface that is friendly enough for developers, IT
operations people, and commercial/product people alike.

Figure 4-1. GoCD Value Stream Map view

A powerful feature for larger organizations is the rich role-based
security model, which allows us to model permissions that reflect
team security boundaries: for regulated sectors where developers

28 | Chapter 4: Deployment Pipelines

www.EBooksWorld.ir

http://www.go.cd/
http://blogs.msdn.com/b/eric_brechner/archive/2015/07/01/diamond-dependencies.aspx

cannot deploy to Production, for example, this is a major enabler.
GoCD also provides traceability for the activity in each pipeline
stage, showing what or who triggered a step. Rollbacks with GoCD
are as simple as a single button click.

GoCD inherently supports nonlinear deployment pipelines, which
enables teams to make informed decisions about what tests to run
before deployment; this contrasts with some tools that encourage
software to pass through many stages or environments every time.
For large, complicated .NET software systems, GoCD is a major
enabler for Continuous Delivery.

Octopus
Octopus is a deployment tool for .NET with a flexible plug-in sys‐
tem based on PowerShell. It uses NuGet packages as its artifact for‐
mat and can connect to remote NuGet feeds to find and deploy
NuGet packages. Octopus has special features for handling .NET
applications, IIS, Windows Services, and Azure, so many deploy‐
ment tasks are very straightforward. As seen in Figure 4-2, the con‐
cept of environments in Octopus means that deployment scripts can
easily be targeted to all environments or just, for example, Produc‐
tion.

Figure 4-2. Octopus showing several environments

With its REST API, Octopus integrates well with other API-driven
Continuous Delivery tools such as TeamCity and GoCD; in these
cases, TeamCity or GoCD typically handles the CI and deployment
pipeline coordination, calling into Octopus to carry out the
Windows-specific or .NET-specific deployment tasks.

Tools for Deployment Pipelines | 29

www.EBooksWorld.ir

https://octopus.com/

1 The deployment pipeline feature is due to be available in an update to TFS 2015.

TeamCity
TeamCity is a CI server, but has many features that make it useful
for deployment pipelines, including native NuGet support, powerful
artifact filtering, and integration with a large number of other tools.
Also, as seen in Figure 4-3, many tools integrate well with TeamCity,
such as Octopus, making a cohesive ecosystem of tools for Continu‐
ous Delivery.

Figure 4-3. TeamCity Build Chains

TeamCity uses build chains to provide deployment pipelines, with
downstream stages triggered by a successful upstream stage.

VSO
Microsoft’s Visual Studio Online suite offers a release management
workflow based on deployment pipelines, as seen in Figure 4-4.1

Figure 4-4. Visual Studio Online release management workflow

30 | Chapter 4: Deployment Pipelines

www.EBooksWorld.ir

https://www.jetbrains.com/teamcity/
http://bit.ly/vso_release

VSO offers clean, browser-based tools that provide useful metrics,
custom deployment workflows, support for on-premise deploy‐
ments, and deep integration with Azure.

Other Tools
Inedo BuildMaster has support for .NET-based deployment pipe‐
lines using chained builds, as well as built-in features for dealing
with change control rules.

Jenkins has a Delivery Pipeline Plugin that provides a visual map of
a deployment pipeline.

IBM UrbanCode Deploy is a tool for automating application deploy‐
ments designed to facilitate rapid feedback and Continuous Delivery
in agile development.

XebiaLabs XL Deploy offers point-and-click configuration of
deployment pipelines combined with advanced reporting for regula‐
tory compliance.

LateRooms: Deployment Pipelines for
Continuous Delivery

LateRooms.com is the United Kingdom’s leading hotel booking spe‐
cialist, providing discounted accommodation throughout the UK,
Europe, and the rest of the world, with more than 150,000 listed
properties worldwide. The LateRooms technology stack is largely
based on Windows and .NET (with Node.js on Linux for some
frontend parts). By early 2012, the existing monolithic .NET appli‐
cation and release process had become cumbersome. Merging the
code from multiple branches took up to six weeks, and the merged
code would take a full week to deploy. Waiting months for a new
feature was hurting the business; changes were needed because rival
websites were adding features more frequently, and the hotel book‐
ing market is highly competitive.

In early 2012, the tech teams decided to make a major series of
changes in two parts over the next three years. First, they split the
codebase into smaller, discrete chunks, improving the build and
deployment automation, which reduced the cycle time from
months down to days or weeks (depending on the component).
They then focused on automating their infrastructure provisioning
and deployment (initially a combination of physical machines and

Tools for Deployment Pipelines | 31

www.EBooksWorld.ir

http://inedo.com/buildmaster
https://wiki.jenkins-ci.org/display/JENKINS/Delivery+Pipeline+Plugin
https://developer.ibm.com/urbancode/products/urbancode-deploy/
https://xebialabs.com/products/xl-deploy/

VMware ESXi/vSphere machines). This second stage further
reduced cycle time to the point where code committed to version
control could be live in production within a few hours—a massive
700x speed improvement over a few years before.

Steve Elliott, Development Lead at LateRooms.com, notes that:

Automating our builds and deployments has massively reduced
rollbacks by allowing us to roll forwards much easier, and since
we’ve introduced more infrastructure automation, inconsisten‐
cies between environments have been minimised as well. Using
MSDeploy has worked well for us for .NET deployments, some
odd cases aside. Being able to consistently configure IIS without
having to do it manually has helped a lot of the teams using it.

The teams use GoCD for builds and deployment pipelines, and are
currently experimenting with using a separate Continuous Integra‐
tion server for the CI part of each team’s builds. Source code was
stored in Subversion, but a migration to GitHub is under way to
allow the teams to take advantage of the rich workflow provided by
Git and GitHub.

Deployment Techniques
There is more to deployments in Continuous Delivery than simply
copying a package to a server. Our aim is seamless deployments
without downtime and to achieve this we need to make use of vari‐
ous techniques, which we cover in this section.

Use Blue-Green Deployment for Seamless Deploys
With blue-green deployment, a Production environment is split into
two equal and parallel groups of servers. Each “slice” is referred to as
blue or green and initially only one half receives live traffic
(Figure 4-5). The flow of traffic can be controlled by a programmed
routing service, a load balancer, or a low-TTL DNS weighting
between nodes.

32 | Chapter 4: Deployment Pipelines

www.EBooksWorld.ir

Figure 4-5. Traffic being routed to the blue slice via configuration

The slice not receiving live traffic can be used for preproduction
testing of the next version of the code. Because both halves of Pro‐
duction are identical, this is a safe way to test a code release. The
process of going live is to switch the flow of traffic from one slice to
the other.

With blue-green, application rollbacks are simple and seamless;
merely switch the flow of traffic back to the previously live slice.

Canary Deployments
A Canary, or Pilot, deployment is when prerelease/beta changes are
deployed to a very small subset of the Production instances, possibly
only a single instance, to serve live traffic. This allows for a sanity
check of the prerelease before promoting it to the rest of the Pro‐
duction servers. Canary releases catch issues with a release package
such as misconfigurations and unrealized breaking changes. They
also allow for a final verification of how a new feature will behave
under live traffic while maintaining minimal impact on the rest of
the platform. These instances are heavily monitored with specific
thresholds—such as not having an increased error rate—defined in
advance that must be achieved to allow promotion of the prerelease.

Deployment Techniques | 33

www.EBooksWorld.ir

http://martinfowler.com/bliki/CanaryRelease.html

With load balancing of requests, you can tweak how much traffic
the canary server receives—a low weighting would send a fraction of
the traffic handled by the other servers. There should only be one
Canary version being tested at a time so as to avoid managing multi‐
ple versions in Production, and it should be quick and easy to
remove or roll back the instance in the event of a bad release.

A Dark Deployment is similar, except that it is not included in the
load balancer and does not receive live traffic. Instead, it allows for
smoke tests to be run using Production configuration before pro‐
moting the prerelease. This has less risk of affecting consumers, but
does not verify performance with live traffic.

Postdeployment Checks
It is important that the deployment pipeline includes methods to
rapidly verify that a deployment has been successful. Deployment
verification tests (DVTs) should be kicked off immediately after a
deployment package has been released to the server. These checks
are very lightweight and are centered around ensuring that the
mechanics of a deployment were successful, while smoke tests, as
described later, are to ensure the application itself is behaving as
expected.

Tests should include verifying the files are in the expected location,
application pools exist with the correct settings, services have been
started, and that a health check URL can be successfully hit. If these
checks fail, then the deployment was not a success and should be
investigated further. These checks should highlight if the issue was
caused by a bug in the deployment process itself, in which case a
rollback may not fix the issue. The tests should help locate the fail‐
ure in the process. As such, DVTs should also be run when deploy‐
ing to preproduction environments as tests for your deployment
process.

Smoke Tests
Smoke tests are a very small subset of your automated end-to-end
tests that are run against the environment after a deployment, for
example, signing up a user and performing a checkout, or process‐
ing a single batch request. These verify that the main path of the
application is successful. They differ from the DVTs in that they
exercise the system as an end user would.

34 | Chapter 4: Deployment Pipelines

www.EBooksWorld.ir

It is important to resist the temptation to run your full suite of end-
to-end tests as smoke tests. The value of these tests is in a fast confir‐
mation that the system is operating as expected after deployment
rather than fully testing the application itself.

Decouple File Delivery from Code Availability
In Continuous Delivery, it is useful to split the deployment of new
software into two separate parts:

• Delivery of files onto a server
• Making the new software active

On Windows, we have several options for this. If our software runs
in IIS, we can deliver the new code to a new folder on disk, and then
simply repoint the IIS Virtual Directory to the new folder in order to
make the new code live. For non-IIS code, we can use NTFS volume
mount points to control the location where software is presented
to the operating system, taking advantage of the Add-

PartitionAccessPath and Remove-PartitionAccessPath Power‐
Shell cmdlets to automate the reconfiguration of the mount points.

Script a Rollback Procedure Too
An excellent way to ensure confidence in your Continuous Delivery
process is to have a simple and scripted process for returning to a
known good state—a quick rollback procedure.

The most effective rollback is simply to redeploy the previous soft‐
ware version using the deployment pipeline. By redeploying the pre‐
vious artifacts you are releasing proven code and not that which
may contain an untested hotfix hastily added under pressure. After a
rollback has been deployed, the DVTs and smoke tests should be
run to ensure the rollback was successful. In order for rollbacks to
work, each release needs to be incremental, avoiding breaking
changes and supporting backward compatibility.

Automated Testing of Database Changes
The speed and volume of changes to modern software systems
means that making database changes manually is risky and error-
prone. We need to store database scripts, reference data, and config‐
uration files in version control and use techniques such as TDD, CI,

Automated Testing of Database Changes | 35

www.EBooksWorld.ir

http://bit.ly/1lr7oCV
http://bit.ly/1lr7oCV
http://bit.ly/1PdYU03
http://bit.ly/1PdYU03
http://bit.ly/1U9oVeS

and automated acceptance testing to gain confidence that our data‐
base changes will both work correctly and not cause the loss of val‐
uable data when deployed to Production.

Consider that different approaches to database change
automation may be useful at different stages of a sys‐
tem’s lifecycle: large-scale refactorings are better-suited
to database comparison tools, whereas steady, ongoing
development work may work well with a migrations
approach. Each approach has merits in different cir‐
cumstances.

Database Unit Testing
Many teams working with SQL Server use stored procedures to
implement business logic in the data tier. It can be difficult to prac‐
tice Continuous Delivery with significant business logic in the data‐
base; however, we can make stored procedures easier to test by using
tools such as tSQLt, MSTest, SQL Test, and DBTestDriven. By run‐
ning unit tests against stored procedures, these tools help us to prac‐
tice TDD for database code, reducing errors and helping us to refac‐
tor more easily.

We can also make use of LocalDB, a lightweight, developer-friendly
version of SQL Server designed for testing, which can remove the
need for a full SQL Server installation.

EF Code-First Migrations
Microsoft’s Entity Framework (EF) provides C#-driven migrations
(called EF Code-first Migrations). Migrations are written in C# and
can be exported as SQL for review by a DBA. If you’re using EF6,
then EF Code-first Migrations could work well.

FluentMigrator
FluentMigrator is an open source .NET database migrations frame‐
work with excellent support for many different databases, including
SQL Server, Postgres, MySql, Oracle, Jet, and Sqlite. Installation is
via a NuGet package, and migrations are written in C#. Each migra‐
tion is explicitly annotated with an integer indicating the order in
which the migrations are to be run.

36 | Chapter 4: Deployment Pipelines

www.EBooksWorld.ir

http://tsqlt.org/
https://msdn.microsoft.com/en-us/library/vstudio/ms182487(v=vs.140).aspx
https://www.red-gate.com/products/sql-development/sql-test/
http://www.dbtestdriven.com/
http://blogs.msdn.com/b/sqlexpress/archive/2011/10/28/localdb-where-is-my-database.aspx
http://bit.ly/1OuflBZ
https://github.com/schambers/fluentmigrator/wiki

If database changes are driven largely by developers, or if you need
to target several different database technologies (say SQL Server,
Postgres, and Oracle), then FluentMigrator is a good choice.

Flyway
Flyway is an advanced open source database migration tool. It
strongly favors simplicity and convention over configuration. Fly‐
way has APIs for both Java and Android and several command-line
clients (for Windows, Mac OSX, and Linux).

Flyway uses plain SQL files for migrations, and also has an API for
hooking in Java-based and custom migrations.

Notably, Flyway has support for a wide range of databases, including
SQL Server, SQL Azure, MySQL, MariaDB, PostgreSQL, Oracle,
DB2, Redshift, H2, Hsql, Derby, SQLite, and others.

Redgate Tools
Redgate provides a variety of tools for SQL Server aimed at database
change and deployment automation, including SQL Source Control,
ReadyRoll (for SQL migrations), SQL CI (for automated testing),
SQL Release (for release control via Octopus), and DLM Dashboard
(for tracking database changes through environments).

The Redgate tool suite arguably provides the greatest flexibility for
database Continuous Delivery. DBA-driven changes via SSMS are
supported with SQL Source Control, while developer-driven
changes can use a declarative SSDT approach or ReadyRoll migra‐
tions. For organizations working with .NET and SQL Server that
need flexibility and choice about how database changes are made
and deployed, especially those that need input from DBAs, Redgate
tools work extremely well.

SSDT
SQL Server Data Tools (SSDT) is Microsoft’s declarative approach to
database change automation. SSDT is aimed at developers using
Visual Studio and has tight integration with other Microsoft tooling,
particularly tools for Business Intelligence (BI). Some teams success‐
fully use SSDT in combination with other tools (Redgate, tSQLt,
etc.) to compensate for some of the features SSDT lacks (such as ref‐
erence data management).

Automated Testing of Database Changes | 37

www.EBooksWorld.ir

http://flywaydb.org/
http://www.red-gate.com/
https://msdn.microsoft.com/en-us/library/hh272686(v=vs.103).aspx

Other
DBMaestro provides tools for SQL Server and Oracle, with a strong
focus on policy enforcement. If you’re working in a regulated indus‐
try, the DBMaestro tools could work well.

Summary
We have looked at a collection of tools that work well for visualizing
and orchestrating a Continuous Delivery deployment pipeline. A
well-implemented deployment pipeline really helps to elevate the
understanding of the progress of changes toward Production across
the organization. We have also outlined some techniques for ensur‐
ing that our deployments are seamless and reliable.

38 | Chapter 4: Deployment Pipelines

www.EBooksWorld.ir

http://www.dbmaestro.com/products-solutions/all-about-teamwork/

CHAPTER 5

Monitoring, Metrics, and APM

The CI and deployment pipeline tests give us confidence that our
change will work in Production. This confidence comes from a
combination of functional testing, covering the user-facing behavior
of the system, and technical/performance testing, covering opera‐
tional aspects of the system. However, after we have released our
code to Production, how do we verify that the state of your system is
still good and has not degraded? This is where monitoring comes in.

Performance Counters Are Insufficient
Windows provides Performance Counters to allow monitoring of
server health. These standard counters will provide information
such as memory and CPU usage and some generic .NET framework
information such as number of exceptions thrown and time spent in
garbage collection. However, these do not tell you if your app is
working as expected, only whether the machine is under any load,
and custom performance counters are tricky to work with.

Record Application Metrics
Open source tooling can be used very effectively for gathering appli‐
cation metrics. StatsD and Graphite are a common pairing; hosted
on Linux, they are cost-effective to set up.

StatsD listens for statistics, like counters and timers, sent over UDP
or TCP, and sends aggregates to the Graphite backend. Graphite
(Figure 5-1) provides querying and graphing tools to visualize the

39

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx

metrics. Many open source .NET clients exist that make it simpler to
add StatsD metrics to your applications; they can be found in the
NuGet package collection at http://nuget.org/.

Figure 5-1. Graphite Composer

For further reading on Graphite, refer to the book
Monitoring with Graphite by Jason Dixon.

Cloud-hosted metrics and monitoring tools such as DataDog, Data‐
Loop, and ServerDensity provide native support for Windows
servers and can easily be integrated with other tools. In particular,
UpGuard (formerly ScriptRock), as shown in Figure 5-2, has power‐
ful capabilities for detecting and visualizing configuration differ‐
ences.

40 | Chapter 5: Monitoring, Metrics, and APM

www.EBooksWorld.ir

http://nuget.org/
http://bit.ly/mon-graphite-1e
https://www.datadoghq.com/
https://www.dataloop.io/
https://www.dataloop.io/
https://www.serverdensity.com/
https://www.scriptrock.com/product

Figure 5-2. UpGuard (formerly ScriptRock)

Application metrics collected and analyzed with modern tools can
be a very powerful way of understanding the inner workings of your
platform.

APM Tools Can Complement Monitoring
Application Performance Management (APM) tools such as New‐
Relic and AppDynamics use agents installed on your servers to col‐
lect monitoring data, which is sent back to a central server. They are
great as a way to get immediate insight into a Production platform;
they automatically collect and aggregate data on server health and
application health. They hook into the .NET runtime and collect
more detail about the application, such that if an exception is
thrown, it can collect a stacktrace. They allow for digging into per‐
formance issues, including highlighting potentially slow database
queries. They can also provide alerts based on the data collected.

In a distributed system they will automatically add correlation data
allowing tracing of a single request through all components that
have had the APM agent installed. This allows the tool to build up a
picture of the platform and highlight any particularly non-
performant components.

APM Tools Can Complement Monitoring | 41

www.EBooksWorld.ir

Use Developer Metrics Tooling
For web applications, you can get powerful insights into your appli‐
cation’s performance and behavior by using Glimpse (Figure 5-3),
which traces a wide range of execution details and presents them in
a “head-up display.”

Figure 5-3. Glimpse for development metrics

The metrics include detailed statistics on HTTP, server-side metrics
(including SQL execution), and AJAX (asynchronous JavaScript).

With Visual Studio 2015 and later you can use the Application
Insights service from Microsoft to instrument and monitor your
web application (Figure 5-4).

Application Insights can also monitor non-.NET applications
including J2EE Java, JavaScript, Python, and Ruby.

42 | Chapter 5: Monitoring, Metrics, and APM

www.EBooksWorld.ir

http://getglimpse.com/
https://www.visualstudio.com/en-us/products/application-insights-vs.aspx
https://www.visualstudio.com/en-us/products/application-insights-vs.aspx
https://azure.microsoft.com/en-gb/documentation/articles/app-insights-platforms/

Figure 5-4. Application Insights

Aggregate Application and Windows Event
Logs from All Machines
Historically, application logs were often used to record only errors
and exceptional conditions. However, with the power and features
of modern log aggregation tools, we can use logging as a way to gain
deep insights into how our software is operating (Figure 5-5). In a
Windows context, we can aggregate (bring together) logs from the
Windows Event Log subsystem and our own application logs writ‐
ten with frameworks such as log4net or Serilog and search all the log
entries using a web browser.

Aggregate Application and Windows Event Logs from All Machines | 43

www.EBooksWorld.ir

https://logging.apache.org/log4net/
http://serilog.net/

Figure 5-5. Log aggregation

The ability to search across all logs for time-coincident events or a
specific text string is hugely powerful, especially if we use log aggre‐
gation tools that are available in upstream environments. In fact, if
we use log aggregation tools on developer machines, we can reduce
our reliance on the debugger for some diagnostic activities.

There are several log aggregation tools that work well with Windows
and .NET, including:

• ELK (Elastic Search, LogStash, Kibana; on premise): Use NxLog
as a log forwarder (or the default forwarder if Java is available)

• LogEntries (hosted): Provides good integrations with other tools
alongside metrics capture

• Loggly (hosted)
• NewRelic (hosted)
• Papertrail (hosted)
• Seq (on premise or hosted): Good for structured event data

It’s also worth investigating Serilog (possibly together with Seq), an
advanced .NET logging framework that uses structured logging to

44 | Chapter 5: Monitoring, Metrics, and APM

www.EBooksWorld.ir

https://www.elastic.co/products
http://nxlog.org/
https://logentries.com/
https://www.loggly.com/
http://newrelic.com/
https://papertrailapp.com/
http://getseq.net/
http://serilog.net/
https://getseq.net/
http://bit.ly/structured-logging

capture more detailed and meaningful log output. Serilog replaces
log4net as the logging library for application code.

JUST EAT: Utilizing Metrics for Successful
Continuous Delivery

JUST EAT is the world’s leading online takeaway ordering service.
With almost 1,200 orders placed per minute at peak times in the
UK and just 45 minutes on average from checkout to delivery, the
platform has to be designed from the ground up to be resilient and
scalable.

JUST EAT’s platform is primarily .NET/C#, hosted on Windows. It
is entirely hosted in Amazon Web Services (AWS) and uses a com‐
bination of SQL Server and DynamoDB as datastores. The platform
is shipped by a number of loosely coupled, small, cross-functional
teams. The teams are responsible for their aspects of the product,
from editor through to operating in Production. This includes the
developers supporting their code out of hours.

In an increasingly distributed system, this was necessary. Recogniz‐
ing this, JUST EAT has invested a significant amount of time and
effort into achieving their Continuous Delivery pipeline, supported
by near real-time monitoring (Statsd, Graphite, Grafana), alerting
(Seyren), and centralized logging (ELK stack) to make it reasonable
for engineers to debug in Production where necessary.

This culture of operations has seen JUST EAT through a very suc‐
cessful IPO in early 2014 and high growth since then. The JUST
EAT platform is more reliable and improving constantly, at the
same time as confidently shipping ever more changes to help feed
hungry customers. This gives JUST EAT a competitive advantage.

Peter Mounce, Senior Software Engineer at JUST EAT, explains:

Full stack developers are recruited, then molded into engineers as
they learn the skills required to not only ship software into pro‐
duction, but make sure it stays there peacefully. Structured logs
are preferred over debuggers. Metrics are reviewed regularly;
dashboards are designed for context, but not as the end result.
Rather, automated alerts are designed from the point of view of
their being continuously running, environment-independent
tests. Automation is written so that as far as possible, the com‐
puter does the work. Failure is expected, and recovery modes are
designed in. Incidents are seized upon as learning opportunities.
Continuous, data-driven experimentation is starting to take hold.

Aggregate Application and Windows Event Logs from All Machines | 45

www.EBooksWorld.ir

Summary
Using dedicated tools for metrics collection, APM, and log aggrega‐
tion, we can continuously verify that the state of our deployed soft‐
ware is healthy and has not degraded. We can use the insights from
these tools in our development teams to improve the quality of the
software on a frequent, ongoing basis.

46 | Chapter 5: Monitoring, Metrics, and APM

www.EBooksWorld.ir

CHAPTER 6

Infrastructure Automation

For software targeting Windows and .NET, infrastructure is no
longer the bottleneck it once was. VMs can be built and provisioned
within minutes, whether we’re using on-premise Hyper-V or
VMware, or commodity public cloud such as AWS or Azure. How‐
ever, Continuous Delivery needs repeatability of infrastructure con‐
figuration, which means automation, not point-and-click or man‐
ually executed PowerShell commands.

For Windows and .NET, our future-proof infrastructure or platform
choices are currently:

IaaS
VMs running on commodity cloud

PaaS
Effectively just Microsoft Azure, using features such as Azure
Cloud Services

In the future, we will see containerization technologies like Docker
for running Windows-specific workloads, but these remain Linux-
only at the time of writing. Microsoft is working in partnership with
Docker to extend the Docker API to support containers running
Windows.

47

www.EBooksWorld.ir

http://azure.microsoft.com/en-gb/services/cloud-services/
http://azure.microsoft.com/en-gb/services/cloud-services/
http://azure.microsoft.com/en-gb/blog/containers-docker-windows-and-trends/
http://azure.microsoft.com/en-gb/blog/containers-docker-windows-and-trends/
https://blog.docker.com/2015/08/tp-docker-engine-windows-server-2016/
https://blog.docker.com/2015/08/tp-docker-engine-windows-server-2016/

Most organizations that need pools of VMs for testing
should use commodity cloud providers like Amazon
AWS, Microsoft Azure, ElasticHosts, or Rackspace.
The real costs of building and maintaining a self-
hosted VM infrastructure (sometimes called “private
cloud”) are much higher than most people realize,
because many costs (power, cooling, resilience, train‐
ing, disaster recovery) are hidden. Unless your organi‐
zation has niche requirements (such as high through‐
put, low latency, or compliance restrictions), you
should plan to use commodity cloud infrastructure.

Shared Versus Dedicated Infrastructure
For Continuous Delivery to be effective, we need to minimize any
friction caused by shared infrastructure. If several product teams are
regularly waiting for another team to finish using a testing environ‐
ment, it becomes difficult to maintain regular, reliable releases.

Some infrastructure and tools are worth sharing so that we have a
single source of truth: the version control system, the artifact reposi‐
tory, and some monitoring and metrics tools. Most other tools and
technologies should be aligned and dedicated to a specific group of
products or services. Dedicated infrastructure costs more in terms
of hardware, but usually saves a significant amount of money in
time wasted waiting for environments or retesting after another
team broke a shared environment.

An effective pattern for shared environments is to limit
the testing time to 20 or 30 minutes, including deploy‐
ments; if the new features deployed by one team do not
pass automated checks in that time window, the code is
automatically rolled back and the team must fix the
problems before trying again.

Avoid deploying applications and services from multiple teams onto
the same virtual or physical hardware. This “deployment multi-
tenancy” leads to conflicts between teams over deployment risks and
reconfiguration. Specifically, a team running its software on a set of
Windows machines should be able to choose to run iisreset at any
time, knowing that they will affect only their own services (see Fig‐
ures 6-1 and 6-2).

48 | Chapter 6: Infrastructure Automation

www.EBooksWorld.ir

https://aws.amazon.com/windows/
https://aws.amazon.com/windows/
http://azure.microsoft.com/
https://www.elastichosts.co.uk/
http://www.rackspace.co.uk/cloud/servers

Figure 6-1. Deployment multitenancy—iisreset causes friction

Figure 6-2. Deployment single tenancy—iisreset affects just one
team

Using a Test-First Approach to Infrastructure
Automation is of little use if we cannot test the resulting infrastruc‐
ture before we use it. Test-first approaches to software (such as
TDD) have worked well for application software, and we should use
similar test-first approaches for infrastructure code too.

To do this effectively with Windows and .NET, we can use Packer
and Boxstarter for building base images; Vagrant for VM develop‐
ment; ServerSpec for declarative server testing; a configuration
management tool like Chef, Puppet, Ansible, and/or PowerShell
DSC; and a CI server with remote agents (such as TeamCity or
GoCD).

Use Packer, Boxstarter, and ISO files to create base Windows images,
which we can then use in a traditional TDD-style coding loop:

1. Write a failing server test (such as expecting a .NET application
to be deployed in IIS on the VM).

2. Implement enough logic to make the test pass (perhaps deploy
the application using MSDeploy).

3. Refactor the code to be cleaner and more maintainable.

Using a Test-First Approach to Infrastructure | 49

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Test-driven_development
https://packer.io/
http://boxstarter.org/
https://www.vagrantup.com/
http://serverspec.org/
https://www.chef.io/
https://puppetlabs.com/
http://www.ansible.com/
https://technet.microsoft.com/en-gb/library/dn249912.aspx
https://technet.microsoft.com/en-gb/library/dn249912.aspx
https://www.jetbrains.com/teamcity/
http://www.go.cd/
http://www.hurryupandwait.io/blog/creating-windows-base-images-for-virtualbox-and-hyper-v-using-packer-boxstarter-and-vagrant

4. Push the configuration changes to version control.
5. Wait for the CI system to

a. Pull the changes from version control,
b. Build the changes using Vagrant and ServerSpec, and
c. Show that our tests have passed (a “green” build).

6. Repeat.

By building and testing our VM images and configuration manage‐
ment scripts using TDD and CI, we help to ensure that all changes
to servers are tracked and derived from version control (Figure 6-3).
This reduces the problems that beset many Windows server envi‐
ronments, caused by manual or opaque SCCM-driven configura‐
tion.

Figure 6-3. Use the base images to follow a TDD-style cycle

50 | Chapter 6: Infrastructure Automation

www.EBooksWorld.ir

http://owainperry.com/2013/09/04/building-a-virtual-machine-compiler-using-vagrant-and-chef/
http://owainperry.com/2013/09/04/building-a-virtual-machine-compiler-using-vagrant-and-chef/

Some organizations and teams using Windows
and .NET have tried to use raw PowerShell to automate
the configuration and/or provisioning of infrastruc‐
ture. Almost invariably, these PowerShell-only
attempts seem to progress well for a few months until
they reach a certain size and complexity, when they
begin to fail. The lack of tests begins to become a
major problem as the code becomes unwieldy and brit‐
tle, resembling a poorly written version of Chef or
Puppet! A better approach is to build on a foundation
of Chef/Puppet/Ansible/DSC.

JustGiving: Infrastructure Automation for
Continuous Delivery

JustGiving is the world’s largest fundraising platform. During 2014
alone, JustGiving has helped tens of millions of people raise over
$700 million.

Founded in 2000, JustGiving’s platform is based substantially on
Windows and .NET technologies, with some Linux-based auxiliary
services. In 2013, the company began a program of modernizing its
13-year-old codebase and infrastructure, and has adopted an archi‐
tecture of microservices running on AWS.

The JustGiving technology teams use GitHub for version control
(with GitHub Flow as the branching/review model), JIRA for issue
tracking, TeamCity for builds and Continuous Integration, Artifac‐
tory for deployable artifacts, and GoCD for Continuous Delivery
deployment pipelines.

Crucially, by using Chef for server configuration management, the
JustGiving teams treat infrastructure as code, and all infrastructure
changes use the GitHub/TeamCity/GoCD build and deployment
process to test and roll out changes, just like application code. This
allows the teams to spin up and shut down AWS environments on
demand, including entire copies of the Production environment.

Owain Perry, Software Architect at JustGiving, says:

We’re very happy with our Windows-on-AWS architecture.
Although Windows historically presented some challenges com‐
pared to Linux—particularly around software updates—we’ve
found that modern .NET-friendly tooling like NuGet, Chocola‐
tey, GoCD, Artifactory, and TeamCity help us to make changes
quickly and safely. Ultimately, this means we can scale up our

Using a Test-First Approach to Infrastructure | 51

www.EBooksWorld.ir

systems rapidly in times of high demand, particularly when a
charity campaign goes viral.

The combination of automated build and deployment and automa‐
ted infrastructure configuration is enhanced with powerful log
aggregation and search capabilities provided by an in-house Elastic‐
Search/LogStash/Kibana (ELK) system, allowing searching and
alerting across all application and infrastructure components.

Patching and OS Updates
Our approach to OS patching and Windows Updates needs to be
compatible with Continuous Delivery. For Windows and .NET, this
means that we need to reconsider how tools like SCCM, WSUS, and
WUFB can interact with servers in our infrastructure, particularly
when we have Chef/Puppet/Ansible/DSC controlling aspects of
server configuration.

In practice, whether we use commodity cloud or self-hosted infra‐
structure, this means following the pattern set by commodity cloud
providers like AWS and Azure:

• Server images are provided prepatched to a known patch level.
• Product teams regularly update their base images to newer ver‐

sions, retesting their code.
• Software and infrastructure is designed to cope with servers

being rebooted for patching during the day (for zero-day vul‐
nerabilities).

It is crucial to establish a boundary between the configuration
undertaken by Chef/Puppet/Ansible/DSC and the configuration
undertaken by SCCM/WSUS/WUFB. Several organizations have
had success with letting SCCM/WSUS handle OS-level patches and
updates, leaving all other updates and patches (such as for SQL
Server) to the scriptable configuration tool. The goal is to avoid the
fights that occur with a split-brain configuration approach.

52 | Chapter 6: Infrastructure Automation

www.EBooksWorld.ir

http://www.microsoft.com/en-gb/server-cloud/products/system-center-2012-r2-configuration-manager/
https://technet.microsoft.com/en-us/windowsserver/bb332157.aspx
http://blogs.windows.com/bloggingwindows/2015/05/04/announcing-windows-update-for-business/

Summary
For Continuous Delivery, we need to treat infrastructure as code,
using proven techniques like TDD. We should expect to take advan‐
tage of existing tools for infrastructure automation and configura‐
tion rather than “rolling our own,” and we need to consider the pos‐
sible negative effects of shared servers.

Summary | 53

www.EBooksWorld.ir

www.EBooksWorld.ir

CHAPTER 7

The Tricky Bits of Continuous
Delivery

In the previous chapters, we have covered some approaches for solv‐
ing some of the technical challenges of achieving Continuous Deliv‐
ery with Windows and .NET. However, tooling alone will not result
in Continuous Delivery for your software. Continuous Delivery also
requires changes to your organization and practices, and we explore
these more tricky aspects in this chapter.

Organizational Changes
Organizations can make Continuous Delivery easier by making
some changes to the shape, size, and responsibilities of teams. One
of the most effective changes is to align software delivery teams with
a product or service: the team works on a program of changes and
features for one or more product and service, but only that team.
Instead of projects we use programs of work that have a clear and
consistent timeline over many months and years.

This alignment with products and services typically helps to work
around the problems of Conway’s law—the tendency to push the
software we build into shapes that resemble the communication
structures in the organization. This alignment with services works
well with recent practices such as DevOps, where responsibility for
the build and operation of software systems is shared between sev‐
eral teams with complementary skills, as shown in Figures 7-1 and
7-2.

55

www.EBooksWorld.ir

http://www.melconway.com/Home/Conways_Law.html
http://theagileadmin.com/what-is-devops/

Figure 7-1. Function-focused teams produce a need for handoffs

Figure 7-2. Cross-functional product-focused teams

To aid Continuous Delivery, development tasks need to be
approached in a manner that promotes continuous flow and short
feedback loops. There are various agile methodologies aimed toward
these goals such as Scrum, Kanban, and XP. Any of these methodol‐
ogies may work for your team—it is something you will need to
experiment with. The key factors are to keep work in progress
(WIP) limits low, highlight any blocked tasks, and fully complete
tasks to “release” before moving on to another task. It is essential to
keep the work “flowing.” The Theory of Constraints, as described in
The Goal [GoldrattCox] and more recently The Phoenix Project
[Kim], is an approach for highlighting bottlenecks in the develop‐
ment process and as such, in preventing a buildup of incomplete
changes from becoming stalled.

Organizations should expect to allocate the equivalent of around
one person on build and deployment activities per development
team of 8–10 people (what Amazon has referred to as a two-pizza
team). Build and deployment are so fundamental to Continuous
Delivery that they need strong, ongoing investment if Continuous
Delivery is to be successful.

56 | Chapter 7: The Tricky Bits of Continuous Delivery

www.EBooksWorld.ir

http://blog.jasoncrawford.org/two-pizza-teams
http://blog.jasoncrawford.org/two-pizza-teams

Testing for Continuous Delivery looks very different from tradi‐
tional approaches. Instead of separate QA or Release Testing teams,
we embed testers within product/service teams, so that the valuable
questioning mindset of the tester can complement the optimistic
mindset of the developer, and we build quality in.

Architectural Changes (SOA/Microservices)
The fast rate of release in a Continuous Delivery environment pro‐
motes certain architectural approaches of a platform. Releasing
often, with small changes, is extremely difficult to do with a mono‐
lithic architecture.

We recommend rearranging the architecture into smaller, focused,
domain-specific applications—a service-oriented architecture
(SOA) or even one composed of microservices. These architectures
come with their own challenges: data consistency, service availabil‐
ity, and partition tolerance (known as the CAP theorem). The bene‐
fit of a distributed system is that it allows for each of the compo‐
nents to change and evolve with only loose coupling between them.

If the contracts between each component are well defined and sta‐
ble, this approach allows for individual components to be develop‐
ing and releasing change at the same time. The overall rate of
change will greatly increase over that of a monolith where change
has to be highly coordinated.

Read Up on Distributed Systems Theory

As you are developing a distributed system it is worth‐
while reading up on some of the theory and learning
from the experience of other companies using these
techniques: CAP theorem, fault tolerance, high availa‐
bility, correlation IDs for transaction tracing, Netflix’s
Simian Army, and so on.

Architectural Changes (SOA/Microservices) | 57

www.EBooksWorld.ir

https://www.thoughtworks.com/insights/blog/enabling-continuous-delivery-enterprises-testing
http://buildqualityin.com/

Ancestry.com: Software Architecture Changes for
Continuous Delivery

Ancestry.com is the world’s largest online resource for family his‐
tory with more than two million paying subscribers across all its
sites. Ancestry.com began its extensive and unique collection of bil‐
lions of historical records around 1996 and is now the worldwide
leader in online family history research.

Between 2010 and 2012, the number of Ancestry.com subscribers
doubled (from 1 million to 2 million), along with the number of
page views (25 million per day to 50 million per day). The existing
software systems, built on Windows and .NET, were becoming
increasingly difficult to change and release; a software architecture
designed for 100,000 users was showing strain at approaching two
million users, and the new users were demanding more new fea‐
tures, more quickly.

Almost every part of the system was tightly coupled to another part,
resulting in a “big blob” monolithic system that was difficult to
change, test, and release. The Ancestry.com teams knew that to
move faster, they needed to adopt Continuous Delivery practices,
with small, incremental changes flowing regularly toward Produc‐
tion. Crucially, the teams realized that Continuous Delivery
required a major change in the Ancestry.com software and systems
architecture and began “adopting product architectures that permit
work to flow in small, decoupled batches” [Reinertsen]. Ances‐
try.com began creating a software architecture designed for agility.

Russ Barnet, Chief Architect at Ancestry.com, explains that:

What we learnt is that software architecture affects agility and
Continuous Delivery capability as much or more than other fac‐
tors. Process and tool improvements alone are insufficient; good
architecture techniques enable effective Continuous Delivery at
large scale.

John Esser, Director of Engineering Productivity at Ancestry.com,
adds:

By re-architecting for Continuous Delivery, and using tools like
Chef and GoCD in combination with Windows and .NET, we
were able to move from infrequent, difficult code deployments to
weekly, daily, and even hourly deployments, whilst improving
our availability and mean time to recovery.

58 | Chapter 7: The Tricky Bits of Continuous Delivery

www.EBooksWorld.ir

Implemented on the Windows/.NET platform, the new software
architecture had three key architectural principles:

• Many small, single-responsibility components (rather than
fewer components with multiple responsibilities)

• Components that could be separately deployable
• Components that could be rolled back independently, with for‐

ward and backward compatibility

The 40 tech teams at Ancestry.com also addressed key operational
challenges around fault detection and recoverability by exposing
the runtime status of each component so that deep-level checks
could reveal exactly where faults had occurred. Combined with
explicit service-level agreement (SLA) checks on inbound and out‐
bound API calls, these changes helped significantly improve the
operability of the Ancestry.com systems.

Operational Features
Many organizations treat functional and nonfunctional require‐
ments separately, with nonfunctional aspects often deprioritized or
given to IT Operations teams to handle. This approach is not suit‐
able for Continuous Delivery, because Continuous Delivery needs
high-quality, well-tested, production-ready software, not just a set of
user-visible features that seem to work on a developer’s laptop or in
a UAT (User Acceptance Test[ing]) environment.

There are many invisible considerations that we need to address for
Continuous Delivery, including performance, resilience, deployabil‐
ity, security, and availability. The ability to test new code—testability
—becomes an important consideration for Continuous Delivery; we
generally prefer code that is more easily testable than code that is,
say, more clever but less testable.

There are several useful techniques for addressing operational con‐
cerns. Rather than separating functional and nonfunctional require‐
ments, organizations should prioritize these requirements together
in a single backlog, pairing up a Product Owner and a Tech Lead if
necessary. We can also identify an IT Operations role as a secondary
user type (or persona) and write User Stories for them: “As an IT
Ops person, I need an automated way to check the runtime status of
a component so that I can diagnose health problems within 60 sec‐

Operational Features | 59

www.EBooksWorld.ir

onds,” for instance. Some organizations place a kind of “tax” on
product budgets—usually around 20%–30% of the total product
budget—which is used for operational concerns. The tax is essen‐
tially an honest way of accounting for the operational costs incurred
with modern, complex software systems; either we pay for them up
front with a slice of the product budget, or the organization pays for
them in unplanned downtime, security breaches, or rework after
failed technical testing.

Summary
Continuous Delivery requires changes not only to the technologies
and techniques we use for building and deploying software but also
to the way in which we structure our teams, our software architec‐
ture, and our approach to operational concerns. These tricky aspects
are essential for a sustainable approach to Continuous Delivery that
will provide lasting results regardless of the tooling and technologies
used.

60 | Chapter 7: The Tricky Bits of Continuous Delivery

www.EBooksWorld.ir

APPENDIX A

Bibliography

• [AmblerSadalage] Scott Ambler and Pramod Sadalage. Refactor‐
ing Databases (Addison-Wesley, 2006).

• [GoldrattCox] Eliyahu M. Goldratt and Jeff Cox. The Goal: A
Process of Ongoing Improvement (North River Press, 1984).

• [Hammer] Derek Hammer. “TFS is destroying your develop‐
ment capacity.” Blog post: http://www.derekhammer.com/
2011/09/11/tfs-is-destroying-your-development-capacity.html,
2011.

• [Hendrickson] Elisabeth Hendrickson. Explore It!: Reduce Risk
and Increase Confidence with Exploratory Testing (Pragmatic
Bookshelf, 2013).

• [HumbleFarley] Jez Humble and Dave Farley. Continuous Deliv‐
ery: Reliable Software Releases through Build, Test, and Deploy‐
ment Automation (Addison-Wesley, 2010).

• [Kim] Gene Kim, Kevin Behr, and George Spafford. The Phoe‐
nix Project: A Novel About IT, DevOps, and Helping Your Busi‐
ness Win (IT Revolution Press, 2013).

• [Laycock] Rachel Laycock. “Continuous Delivery on Windows.”
Articles in ThoughtWorks P2 magazine: http://thought‐
works.github.io/p2/issue06/cd-in-windows-part-1/, 2013–2014.

• [MannsRising] Mary Lynn Manns and Linda Rising. Fearless
Change (Addison-Wesley, 2005).

61

www.EBooksWorld.ir

http://www.derekhammer.com/2011/09/11/tfs-is-destroying-your-development-capacity.html
http://www.derekhammer.com/2011/09/11/tfs-is-destroying-your-development-capacity.html
http://thoughtworks.github.io/p2/issue06/cd-in-windows-part-1/
http://thoughtworks.github.io/p2/issue06/cd-in-windows-part-1/

• [Nygard] Michael Nygard. Release It!: Design and Deploy
Production-Ready Software (Pragmatic Bookshelf, 2007).

• [Poppendieck] Mary Poppendieck and Tom Poppendieck.
Implementing Lean Software Development: From Concept to Cash
(Addison-Wesley, 2006).

• [Reinertsen] Don Reinertsen. Principles of Product Development
Flow (Celeritas Publishing, 2009).

• [SmithSkelton] Steve Smith and Matthew Skelton (eds). Build
Quality In (LeanPub, 2014).

62 | Appendix A: Bibliography

www.EBooksWorld.ir

APPENDIX B

Case Studies

7digital
“7digital: Continuous Integration for Continuous Delivery” on
page 24

Ancestry.com
“Ancestry.com: Software Architecture Changes for Continuous
Delivery” on page 58

Carnect
“Carnect: Version Control Changes for Continuous Delivery”
on page 8

JUST EAT
“JUST EAT: Utilizing Metrics for Successful Continuous Deliv‐
ery” on page 45

JustGiving
“JustGiving: Infrastructure Automation for Continuous Deliv‐
ery” on page 51

LateRooms
“LateRooms: Deployment Pipelines for Continuous Delivery”
on page 31

63

www.EBooksWorld.ir

About the Authors
Chris O’Dell has developed software with Microsoft technologies
for over 10 years. Between 2012 and 2014, she led the API team at
7digital, a leading provider of music streaming services worldwide;
she currently works on the platform engineering team at JUST EAT
in London. In all of her roles she has promoted practices we now
know as Continuous Delivery, including TDD, version control, and
Continuous Integration. Chris is a contributor to the book Build
Quality In [SmithSkelton].

Matthew Skelton has been developing software on Microsoft Win‐
dows since 1998, and has consistently pushed quality and repeatabil‐
ity (version control, testability, logging for traceability, etc.) within
every company he has worked at. Between 2011 and 2014, he was
Build and Deployment Architect at Trainline, the UK’s busiest travel
booking site, where he led the transition from manual deployments
to per-team deployment pipelines for Continuous Delivery. Mat‐
thew is Principal Consultant at Skelton Thatcher Consulting and
coeditor of (and a contributor to) the book Build Quality In [Smith‐
Skelton].

www.EBooksWorld.ir

	Cover
	WebOps
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	The Structure of the Book
	Acknowledgments

	Chapter 1. Introduction to Continuous Delivery
	What Continuous Delivery Is Not
	The Importance of Automation for Continuous Delivery
	Why Is Continuous Delivery Needed?
	Why Windows Needs Special Treatment
	Terminology Used in This Book

	Chapter 2. Version Control
	Key Version Control Practices
	Version Control Technologies
	Git
	Mercurial
	Subversion
	TFS

	Branching Options
	Pull Requests
	Feature Toggles

	Use NuGet for Dependencies
	Do Not Store Packages in Version Control
	Use NuGet to Manage Internal Dependencies

	Summary

	Chapter 3. Continuous Integration
	CI Servers for Windows and .NET
	AppVeyor
	Bamboo
	BuildMaster
	GoCD
	Jenkins
	TeamCity
	TFS Build / VSO

	Build Automation
	Build Automation Tools

	Integrating CI with Version Control and Ticket Tracking
	Patterns for CI Across Multiple Teams
	Architecture Changes for Better CI
	Summary

	Chapter 4. Deployment Pipelines
	Mapping Out a Deployment Pipeline
	Tools for Deployment Pipelines
	GoCD
	Octopus
	TeamCity
	VSO
	Other Tools

	Deployment Techniques
	Use Blue-Green Deployment for Seamless Deploys
	Canary Deployments
	Postdeployment Checks
	Smoke Tests
	Decouple File Delivery from Code Availability
	Script a Rollback Procedure Too

	Automated Testing of Database Changes
	Database Unit Testing
	EF Code-First Migrations
	FluentMigrator
	Flyway
	Redgate Tools
	SSDT
	Other

	Summary

	Chapter 5. Monitoring, Metrics, and APM
	Performance Counters Are Insufficient
	Record Application Metrics
	APM Tools Can Complement Monitoring
	Use Developer Metrics Tooling

	Aggregate Application and Windows Event Logs from All Machines
	Summary

	Chapter 6. Infrastructure Automation
	Shared Versus Dedicated Infrastructure
	Using a Test-First Approach to Infrastructure
	Patching and OS Updates
	Summary

	Chapter 7. The Tricky Bits of Continuous Delivery
	Organizational Changes
	Architectural Changes (SOA/Microservices)
	Operational Features
	Summary

	Appendix A. Bibliography
	Appendix B. Case Studies

