

 Professional C# 6 and .NET Core 1.0

Christian Nagel

 [image: Wiley Logo]

Professional C# 6 and .NET Core 1.0

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-09660-3

ISBN: 978-1-119-09671-9 (ebk)

ISBN: 978-1-119-09663-4 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016932153

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

This book is dedicated to my family—Angela,
Stephanie, and Matthias—I love you all!

About the Author

CHRISTIAN NAGEL is Microsoft MVP for Visual Studio and Development Technologies, and has been Microsoft Regional Director for more than 15 years. Christian is an associate of thinktecture and founder of CN innovation, where he offers training and consulting on how to develop solutions using the Microsoft platform. He draws on more than 25 years of software development experience.

[image:]

Christian started his computing career with PDP 11 and VAX/VMS systems at Digital Equipment Corporation, covering a variety of languages and platforms. Since 2000, when .NET was just a technology preview, he has been working with various technologies to build .NET solutions. Currently, he mainly coaches people on development of Universal Windows Platform apps and ASP.NET MVC, using several Microsoft Azure service offerings.

Even after many years in software development, Christian still loves learning and using new technologies and teaching others how to use the new technologies in various forms. Using his profound knowledge of Microsoft technologies, he has written numerous books, and is certified as Microsoft Certified Trainer and Certified Solution Developer. Christian speaks at international conferences such as TechEd, BASTA!, and TechDays. He founded INETA Europe to support .NET user groups. You can contact Christian via his website www.cninnovation.com and follow his tweets at @christiannagel.

About the Technical Editor

ISTVÁN NOVÁK is an associate and the chief technology consultant with SoftwArt, a small Hungarian IT consulting company. He works as a software architect and community evangelist. In the last 25 years, he has participated in more than 50 enterprise software development projects. In 2002, he coauthored the first Hungarian book about .NET development. In 2007, he was awarded the Microsoft Most Valuable Professional (MVP) title, and in 2011 he became a Microsoft Regional Director. István coauthored Visual Studio 2010 and .NET 4 Six-in-One (Wiley, 2010) and Beginning Windows 8 Application Development (Wiley, 2012), and he authored Beginning Visual Studio LightSwitch Development (Wiley, 2011). István holds master’s degree from the Technical University of Budapest, Hungary and also has a doctoral degree in software technology. He lives in Dunakeszi, Hungary, with his wife and two daughters. He is a passionate scuba diver. You may have a good chance of meeting him underwater in the Red Sea, any season of the year.

[image:]

Credits

SENIOR ACQUISITIONS EDITOR

Ken Brown

PROJECT EDITOR

Charlotte Kughen

TECHNICAL EDITOR

István Novák

PRODUCTION EDITOR

Dassi Zeidel

MANAGER OF CONTENT DEVELOPMENT & ASSEMBLY

Mary Beth Wakefield

PRODUCTION MANAGER

Kathleen Wisor

MARKETING DIRECTOR

David Mayhew

MARKETING MANAGER

Carrie Sherrill

PROFESSIONAL TECHNOLOGY & STRATEGY DIRECTOR

Barry Pruett

BUSINESS MANAGER

Amy Knies

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Patrick Redmond

PROOFREADER

Amy J. Schneider

INDEXER

John Sleeva

COVER DESIGNER

Wiley

COVER IMAGE

© Digital Storn/Shutterstock

Acknowledgments

I WANT TO THANK Charlotte Kughen, who made my text so much more readable. Often I was working late at night writing while .NET Core was continuously evolving. Charlotte was of enormous help to change my ideas into great readable text. I’m almost sure that Charlotte now knows a lot more about programming than she would like to. Special thanks also goes to István Novák, who has authored several great books. Despite all the issues we had with the fast-evolving .NET Core and the interim builds I was using while working on the book, István challenged me to enhance the code samples that allow you—the reader—to better follow the flow. Thank you, Charlotte and István—you’ve been of great help for the quality of this book.

I also would like to thank Kenyon Brown and Jim Minatel and everyone else at Wiley who helped to get edition 10 of this great book to be published. I also want to thank my wife and children for supporting my writing. You understood and helped with the time I was working on the book, including evenings, nights, and weekends. Angela, Stephanie, and Matthias—you are my loved ones. This would not have been possible without you.

CONTENTS

	Introduction

	The Significance of .NET Core

	The Significance of C#

	What’s New in C# 6

	What’s New with the Universal Windows Platform

	What You Need to Write and Run C# Code

	What This Book Covers

	Conventions

	Source Code

	Errata

	p2p.wrox.com

	Part I: The C# Language

	Chapter 1: .NET Application Architectures

	Choosing Your Technologies

	Reviewing .NET History

	.NET 2015

	Hello, World

	Compiling with .NET 4.6

	Compiling with .NET Core CLI

	Application Types and Technologies

	Developer Tools

	Summary

	Chapter 2: Core C#

	Fundamentals of C#

	Creating Hello, World! with Visual Studio

	Working with Variables

	Using Predefined Data Types

	Controlling Program Flow

	Working with Enumerations

	Getting Organized with Namespaces

	Understanding the Main Method

	Using Comments

	Understanding C# Preprocessor Directives

	C# Programming Guidelines

	Summary

	Chapter 3: Objects and Types

	Creating and Using Classes

	Classes and Structs

	Classes

	Anonymous Types

	Structs

	Passing Parameters by Value and by Reference

	Nullable Types

	Enumerations

	Partial Classes

	Extension Methods

	The Object Class

	Summary

	Chapter 4: Inheritance

	Inheritance

	Types of Inheritance

	Implementation Inheritance

	Modifiers

	Interfaces

	is and as Operators

	Summary

	Chapter 5: Managed and Unmanaged Resources

	Resources

	Memory Management Under the Hood

	Strong and Weak References

	Working with Unmanaged Resources

	Unsafe Code

	Platform Invoke

	Summary

	Chapter 6: Generics

	Generics Overview

	Creating Generic Classes

	Generics Features

	Generic Interfaces

	Generic Structs

	Generic Methods

	Summary

	Chapter 7: Arrays and Tuples

	Multiple Objects of the Same and Different Types

	Simple Arrays

	Multidimensional Arrays

	Jagged Arrays

	Array Class

	Arrays as Parameters

	Enumerators

	Tuples

	Structural Comparison

	Summary

	Chapter 8: Operators and Casts

	Operators and Casts

	Operators

	Type Safety

	Comparing Objects for Equality

	Operator Overloading

	Implementing Custom Index Operators

	User-Defined Casts

	Summary

	Chapter 9: Delegates, Lambdas, and Events

	Referencing Methods

	Delegates

	Lambda Expressions

	Events

	Summary

	Chapter 10: Strings and Regular Expressions

	Examining System.String

	String Formats

	Regular Expressions

	Summary

	Chapter 11: Collections

	Overview

	Collection Interfaces and Types

	Lists

	Queues

	Stacks

	Linked Lists

	Sorted List

	Dictionaries

	Sets

	Performance

	Summary

	Chapter 12: Special Collections

	Overview

	Working with Bits

	Observable Collections

	Immutable Collections

	Concurrent Collections

	Summary

	Chapter 13: Language Integrated Query

	LINQ Overview

	Standard Query Operators

	Parallel LINQ

	Expression Trees

	LINQ Providers

	Summary

	Chapter 14: Errors and Exceptions

	Introduction

	Exception Classes

	Catching Exceptions

	User-Defined Exception Classes

	Caller Information

	Summary

	Chapter 15: Asynchronous Programming

	Why Asynchronous Programming Is Important

	Asynchronous Patterns

	Foundation of Asynchronous Programming

	Error Handling

	Cancellation

	Summary

	Chapter 16: Reflection, Metadata, and Dynamic Programming

	Inspecting Code at RunTime and Dynamic Programming

	Custom Attributes

	Using Reflection

	Using Dynamic Language Extensions for Reflection

	The Dynamic Type

	Dynamic Language Runtime

	Hosting the DLR ScriptRuntime

	DynamicObject and ExpandoObject

	Summary

	Part II: .NET Core and Windows Runtime

	Chapter 17: Visual Studio 2015

	Working with Visual Studio 2015

	Creating a Project

	Exploring and Coding a Project

	Building a Project

	Debugging Your Code

	Refactoring Tools

	Architecture Tools

	Analyzing Applications

	Summary

	Chapter 18: .NET Compiler Platform

	Introduction

	Compiler Pipeline

	Syntax Analysis

	Semantics Analysis

	Code Transformation

	Visual Studio Code Refactoring

	Summary

	Chapter 19: Testing

	Overview

	Unit Testing with MSTest

	Unit Testing with xUnit

	UI Testing

	Web Testing

	Summary

	Chapter 20: Diagnostics and Application Insights

	Diagnostics Overview

	Tracing with EventSource

	Creating Custom Listeners

	Working with Application Insights

	Summary

	Chapter 21: Tasks and Parallel Programming

	Overview

	Parallel Class

	Tasks

	Cancellation Framework

	Data Flow

	Summary

	Chapter 22: Task Synchronization

	Overview

	Threading Issues

	The lock Statement and Thread Safety

	Interlocked

	Monitor

	SpinLock

	WaitHandle

	Mutex

	Semaphore

	Events

	Barrier

	ReaderWriterLockSlim

	Timers

	Summary

	Chapter 23: Files and Streams

	Introduction

	Managing the File System

	Enumerating Files

	Working with Streams

	Using Readers and Writers

	Compressing Files

	Watching File Changes

	Working with Memory Mapped Files

	Communicating with Pipes

	Using Files and Streams with the Windows Runtime

	Summary

	Chapter 24: Security

	Introduction

	Verifying User Information

	Encrypting Data

	Access Control to Resources

	Distributing Code Using Certificates

	Summary

	Chapter 25: Networking

	Networking

	The HttpClient Class

	Working with the WebListener Class

	Working with Utility Classes

	Using TCP

	Using UDP

	Using Sockets

	Summary

	Chapter 26: Composition

	Introduction

	Architecture of the Composition Library

	Defining Contracts

	Exporting Parts

	Importing Parts

	Summary

	Chapter 27: XML and JSON

	Data Formats

	Reading and Writing Streamed XML

	Using the DOM in .NET

	Using XPathNavigator

	Serializing Objects in XML

	LINQ to XML

	JSON

	Summary

	Chapter 28: Localization

	Global Markets

	Namespace System.Globalization

	Resources

	Localization with WPF

	Localization with ASP.NET Core

	Localization with the Universal Windows Platform

	Creating Custom Cultures

	Summary

	Part III: Windows Apps

	Chapter 29: Core XAML

	Uses of XAML

	XAML Foundation

	Dependency Properties

	Routed Events

	Attached Properties

	Markup Extensions

	Summary

	Chapter 30: Styling XAML Apps

	Styling

	Shapes

	Geometry

	Transformation

	Brushes

	Styles and Resources

	Templates

	Animations

	Visual State Manager

	Summary

	Chapter 31: Patterns with XAML Apps

	Why MVVM?

	Defining the MVVM Pattern

	Sharing Code

	Sample Solution

	Models

	View Models

	Views

	Messaging Using Events

	IoC Container

	Using a Framework

	Summary

	Chapter 32: Windows Apps: User Interfaces

	Overview

	Navigation

	Layout

	Commands

	Compiled Data Binding

	Controls

	Summary

	Chapter 33: Advanced Windows Apps

	Overview

	App Lifetime

	Application Execution States

	Navigation State

	Sharing Data

	App Services

	Camera

	Geolocation and MapControl

	Sensors

	Summary

	Chapter 34: Windows Desktop Applications with WPF

	Introduction

	Controls

	Layout

	Triggers

	Menu and Ribbon Controls

	Commanding

	Data Binding

	TreeView

	DataGrid

	Summary

	Chapter 35: Creating Documents with WPF

	Introduction

	Text Elements

	Flow Documents

	Fixed Documents

	XPS Documents

	Printing

	Summary

	Chapter 36: Deploying Windows Apps

	Deployment as Part of the Application Life Cycle

	Planning for Deployment

	Traditional Deployment

	ClickOnce

	UWP Apps

	Summary

	Part IV: Web Applications and Services

	Chapter 37: ADO.NET

	ADO.NET Overview

	Using Database Connections

	Commands

	Asynchronous Data Access

	Transactions

	Summary

	Chapter 38: Entity Framework Core

	History of Entity Framework

	Introducing Entity Framework

	Using Dependency Injection

	Creating a Model

	Working with Object State

	Conflict Handling

	Using Transactions

	Summary

	Chapter 39: Windows Services

	What Is a Windows Service?

	Windows Services Architecture

	Creating a Windows Service Program

	Monitoring and Controlling Windows Services

	Troubleshooting and Event Logging

	Summary

	Chapter 40: ASP.NET Core

	ASP.NET Core 1.0

	Web Technologies

	ASP.NET Web Project

	Startup

	Adding Static Content

	Request and Response

	Dependency Injection

	Routing Using Map

	Using Middleware

	Session State

	Configuring ASP.NET

	Summary

	Chapter 41: ASP.NET MVC

	Setting Up Services for ASP.NET MVC 6

	Defining Routes

	Creating Controllers

	Creating Views

	Submitting Data from the Client

	Working with HTML Helpers

	Getting to Know Tag Helpers

	Implementing Action Filters

	Creating a Data-Driven Application

	Implementing Authentication and Authorization

	Summary

	Chapter 42: ASP.NET Web API

	Overview

	Creating Services

	Creating an Async Service

	Creating a .NET Client

	Writing to the Database

	Creating Metadata

	Creating and Using OData Services

	Summary

	Chapter 43: WebHooks and SignalR

	Overview

	Architecture of SignalR

	A Simple Chat Using SignalR

	Grouping Connections

	Architecture of WebHooks

	Creating Dropbox and GitHub Receivers

	Summary

	Chapter 44: Windows Communication Foundation

	WCF Overview

	Creating a Simple Service and Client

	Contracts

	Service Behaviors

	Binding

	Hosting

	Clients

	Duplex Communication

	Routing

	Summary

	Chapter 45: Deploying Websites and Services

	Deploying Web Applications

	Preparing for Deployment

	Deploying to Internet Information Server

	Deploying to Microsoft Azure

	Deploying to Docker

	Summary

	Advert

	EULA

List of Illustrations

	Chapter 1

	Figure 1.1

	Figure 1.2

	Figure 1.3

	Figure 1.4

	Figure 1.5

	Chapter 2

	Figure 2.1

	Figure 2.2

	Figure 2.3

	Figure 2.4

	Figure 2.5

	Figure 2.6

	Figure 2.7

	Figure 2.8

	Figure 2.9

	Chapter 5

	Figure 5.1

	Figure 5.2

	Figure 5.3

	Figure 5.4

	Figure 5.5

	Figure 5.6

	Figure 5.7

	Chapter 7

	Figure 7.1

	Figure 7.2

	Figure 7.3

	Figure 7.4

	Figure 7.5

	Figure 7.6

	Figure 7.7

	Chapter 8

	Figure 8.1

	Chapter 11

	Figure 11.1

	Figure 11.2

	Figure 11.3

	Figure 11.4

	Figure 11.5

	Chapter 12

	Figure 12.1

	Figure 12.2

	Chapter 14

	Figure 14.1

	Chapter 15

	Figure 15.1

	Figure 15.2

	Chapter 16

	Figure 16.1

	Figure 16.2

	Figure 16.3

	Chapter 17

	Figure 17.1

	Figure 17.2

	Figure 17.3

	Figure 17.4

	Figure 17.5

	Figure 17.6

	Figure 17.7

	Figure 17.8

	Figure 17.9

	Figure 17.10

	Figure 17.11

	Figure 17.12

	Figure 17.13

	Figure 17.14

	Figure 17.15

	Figure 17.16

	Figure 17.17

	Figure 17.18

	Figure 17.19

	Figure 17.20

	Figure 17.21

	Figure 17.22

	Figure 17.23

	Figure 17.24

	Figure 17.25

	Figure 17.26

	Figure 17.27

	Figure 17.28

	Figure 17.29

	Figure 17.30

	Figure 17.31

	Figure 17.32

	Figure 17.33

	Figure 17.34

	Figure 17.35

	Figure 17.36

	Figure 17.37

	Figure 17.38

	Figure 17.39

	Figure 17.40

	Figure 17.41

	Figure 17.42

	Figure 17.43

	Figure 17.44

	Figure 17.45

	Figure 17.46

	Figure 17.47

	Figure 17.48

	Figure 17.49

	Figure 17.50

	Figure 17.51

	Figure 17.52

	Figure 17.53

	Figure 17.54

	Figure 17.55

	Figure 17.56

	Figure 17.57

	Figure 17.58

	Figure 17.59

	Chapter 18

	Figure 18.1

	Figure 18.2

	Figure 18.3

	Figure 18.4

	Figure 18.5

	Figure 18.6

	Figure 18.7

	Figure 18.8

	Chapter 19

	Figure 19.1

	Figure 19.2

	Figure 19.3

	Figure 19.4

	Figure 19.5

	Figure 19.6

	Figure 19.7

	Figure 19.8

	Figure 19.9

	Figure 19.10

	Figure 19.11

	Figure 19.12

	Figure 19.13

	Figure 19.14

	Figure 19.15

	Figure 19.16

	Figure 19.17

	Figure 19.18

	Chapter 20

	Figure 20.1

	Figure 20.2

	Figure 20.3

	Figure 20.4

	Figure 20.5

	Figure 20.6

	Figure 20.7

	Figure 20.8

	Figure 20.9

	Chapter 22

	Figure 22.1

	Figure 22.2

	Chapter 23

	Figure 23.1

	Figure 23.2

	Figure 23.3

	Figure 23.4

	Chapter 24

	Figure 24.1

	Figure 24.2

	Chapter 25

	Figure 25.1

	Figure 25.2

	Figure 25.3

	Figure 25.4

	Figure 25.5

	Chapter 26

	Figure 26.1

	Figure 26.2

	Figure 26.3

	Figure 26.4

	Figure 26.5

	Figure 26.6

	Figure 26.7

	Figure 26.8

	Chapter 28

	Figure 28.1

	Figure 28.2

	Figure 28.3

	Figure 28.4

	Figure 28.5

	Figure 28.6

	Figure 28.7

	Figure 28.8

	Figure 28.9

	Figure 28.10

	Figure 28.11

	Figure 28.12

	Chapter 29

	Figure 29.1

	Chapter 30

	Figure 30.1

	Figure 30.2

	Figure 30.3

	Figure 30.4

	Figure 30.5

	Figure 30.6

	Figure 30.7

	Figure 30.8

	Figure 30.9

	Figure 30.10

	Figure 30.11

	Figure 30.12

	Figure 30.13

	Figure 30.14

	Figure 30.15

	Figure 30.16

	Figure 30.17

	Figure 30.18

	Figure 30.19

	Figure 30.20

	Figure 30.21

	Figure 30.22

	Figure 30.23

	Figure 30.24

	Figure 30.25

	Figure 30.26

	Figure 30.27

	Figure 30.28

	Figure 30.29

	Figure 30.30

	Figure 30.31

	Figure 30.32

	Chapter 31

	Figure 31.1

	Figure 31.2

	Figure 31.3

	Figure 31.4

	Figure 31.5

	Figure 31.6

	Figure 31.7

	Figure 31.8

	Figure 31.9

	Figure 31.10

	Figure 31.11

	Chapter 32

	Figure 32.1

	Figure 32.2

	Figure 32.3

	Figure 32.4

	Figure 32.5

	Figure 32.6

	Figure 32.7

	Figure 32.8

	Figure 32.9

	Figure 32.10

	Figure 32.11

	Figure 32.12

	Figure 32.13

	Figure 32.14

	Figure 32.15

	Figure 32.16

	Figure 32.17

	Figure 32.18

	Figure 32.19

	Figure 32.20

	Figure 32.21

	Figure 32.22

	Figure 32.23

	Figure 32.24

	Figure 32.25

	Figure 32.26

	Figure 32.27

	Figure 32.28

	Figure 32.29

	Figure 32.30

	Chapter 33

	Figure 33.1

	Figure 33.2

	Figure 33.3

	Figure 33.4

	Figure 33.5

	Figure 33.6

	Figure 33.7

	Figure 33.8

	Figure 33.9

	Figure 33.10

	Figure 33.11

	Figure 33.12

	Figure 33.13

	Figure 33.14

	Figure 33.15

	Figure 33.16

	Figure 33.17

	Chapter 34

	Figure 34.1

	Figure 34.2

	Figure 34.3

	Figure 34.4

	Figure 34.5

	Figure 34.6

	Figure 34.7

	Figure 34.8

	Figure 34.9

	Figure 34.10

	Figure 34.11

	Figure 34.12

	Figure 34.13

	Figure 34.14

	Figure 34.15

	Figure 34.16

	Figure 34.17

	Figure 34.18

	Figure 34.19

	Figure 34.20

	Figure 34.21

	Figure 34.22

	Figure 34.23

	Figure 34.24

	Figure 34.25

	Figure 34.26

	Figure 34.27

	Figure 34.28

	Figure 34.29

	Figure 34.30

	Chapter 35

	Figure 35.1

	Figure 35.2

	Figure 35.3

	Figure 35.3

	Figure 35.4

	Figure 35.5

	Figure 35.6

	Figure 35.7

	Figure 35.8

	Figure 35.9

	Figure 35.10

	Figure 35.11

	Figure 35.12

	Figure 35.13

	Figure 35.14

	Chapter 36

	Figure 36.1

	Figure 36.2

	Figure 36.3

	Figure 36.4

	Figure 36.5

	Figure 36.6

	Figure 36.7

	Figure 36.8

	Figure 36.9

	Figure 36.10

	Figure 36.11

	Figure 36.12

	Figure 36.13

	Chapter 37

	Figure 37.1

	Figure 37.2

	Chapter 38

	Figure 38.1

	Chapter 39

	Figure 39.1

	Figure 39.2

	Figure 39.3

	Figure 39.4

	Figure 39.5

	Figure 39.6

	Figure 39.7

	Figure 39.8

	Figure 39.9

	Figure 39.10

	Figure 39.11

	Figure 39.12

	Figure 39.13

	Figure 39.14

	Figure 39.15

	Figure 39.16

	Chapter 40

	Figure 40.1

	Figure 40.2

	Figure 40.3

	Figure 40.4

	Figure 40.5

	Figure 40.6

	Figure 40.7

	Figure 40.8

	Figure 40.9

	Figure 40.10

	Figure 40.11

	Figure 40.12

	Figure 40.13

	Figure 40.14

	Figure 40.15

	Figure 40.16

	Figure 40.17

	Figure 40.18

	Chapter 41

	Figure 41.1

	Figure 41.2

	Figure 41.3

	Figure 41.4

	Figure 41.5

	Figure 41.6

	Figure 41.7

	Figure 41.8

	Figure 41.9

	Figure 41.10

	Figure 41.11

	Figure 41.12

	Figure 41.13

	Figure 41.14

	Figure 41.15

	Figure 41.16

	Chapter 42

	Figure 42.1

	Figure 42.2

	Figure 42.3

	Figure 42.4

	Chapter 43

	Figure 43.1

	Figure 43.2

	Figure 43.3

	Figure 43.4

	Figure 43.5

	Figure 43.6

	Figure 43.7

	Figure 43.8

	Figure 43.9

	Figure 43.10

	Figure 43.11

	Chapter 44

	Figure 44.1

	Figure 44.2

	Figure 44.3

	Figure 44.4

	Figure 44.5

	Figure 44.6

	Figure 44.7

	Figure 44.8

	Figure 44.9

	Figure 44.10

	Figure 44.11

	Figure 44.12

	Chapter 45

	Figure 45.1

	Figure 45.2

	Figure 45.3

	Figure 45.4

	Figure 45.5

	Figure 45.6

	Figure 45.7

	Figure 45.8

	Figure 45.9

	Figure 45.10

	Figure 45.11

	Figure 45.12

	Figure 45.13

	Figure 45.14

	Figure 45.15

	Figure 45.16

	Figure 45.17

	Figure 45.18

			

Guide

	Cover

	Table of Contents

	1

Pages

	ix

	xi

	xiii

	xv

	li

	1

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	73

	74

	75

	76

	77

	78

	79

	80

	81

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	123

	124

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

	161

	162

	163

	164

	165

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	196

	197

	198

	199

	200

	201

	202

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	224

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	236

	237

	238

	239

	240

	241

	242

	243

	244

	245

	246

	247

	248

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

	263

	264

	265

	267

	268

	269

	270

	271

	272

	273

	274

	275

	276

	277

	278

	279

	280

	281

	282

	283

	284

	285

	287

	288

	289

	290

	291

	292

	293

	294

	295

	296

	297

	298

	299

	300

	301

	302

	303

	304

	305

	306

	307

	308

	309

	310

	311

	312

	313

	314

	315

	316

	317

	318

	319

	320

	321

	322

	323

	324

	325

	326

	327

	328

	329

	330

	331

	332

	333

	334

	335

	336

	337

	339

	340

	341

	342

	343

	344

	345

	346

	347

	348

	349

	350

	351

	352

	353

	354

	355

	356

	357

	358

	359

	360

	361

	362

	363

	364

	365

	366

	367

	368

	369

	370

	371

	372

	373

	374

	375

	376

	377

	378

	379

	380

	381

	382

	383

	384

	385

	386

	387

	388

	389

	390

	391

	392

	393

	394

	395

	396

	397

	398

	399

	400

	401

	402

	403

	404

	405

	406

	407

	408

	409

	410

	411

	412

	413

	414

	415

	416

	417

	418

	419

	420

	421

	422

	423

	424

	425

	426

	427

	428

	429

	430

	431

	432

	433

	434

	435

	436

	437

	438

	439

	440

	441

	442

	444

	445

	446

	447

	448

	449

	450

	451

	453

	455

	456

	457

	458

	459

	460

	461

	462

	463

	464

	465

	466

	467

	468

	469

	470

	471

	472

	473

	474

	475

	477

	478

	479

	480

	481

	482

	483

	484

	485

	486

	487

	488

	489

	491

	492

	493

	494

	495

	496

	497

	498

	499

	500

	501

	502

	503

	504

	505

	507

	508

	509

	511

	512

	513

	515

	516

	517

	518

	519

	520

	521

	522

	523

	524

	525

	526

	527

	528

	529

	530

	531

	532

	533

	534

	535

	536

	537

	538

	539

	541

	542

	543

	544

	545

	546

	547

	548

	549

	550

	551

	552

	553

	554

	555

	556

	557

	558

	559

	560

	561

	562

	563

	564

	565

	566

	567

	569

	570

	571

	572

	573

	574

	575

	576

	577

	578

	580

	581

	582

	583

	584

	585

	586

	587

	588

	589

	591

	592

	593

	594

	595

	596

	597

	598

	599

	600

	601

	602

	603

	604

	605

	606

	607

	608

	609

	610

	611

	613

	614

	615

	616

	617

	618

	619

	620

	621

	622

	623

	624

	625

	626

	627

	628

	629

	630

	631

	632

	633

	634

	635

	637

	638

	639

	640

	641

	642

	643

	644

	645

	646

	647

	648

	649

	650

	651

	652

	653

	654

	655

	656

	657

	658

	659

	660

	661

	662

	663

	664

	665

	666

	667

	668

	669

	670

	671

	672

	673

	674

	675

	676

	677

	678

	679

	681

	682

	683

	684

	685

	686

	688

	689

	690

	691

	692

	693

	694

	695

	696

	697

	698

	699

	700

	701

	702

	703

	704

	705

	706

	707

	708

	709

	710

	711

	712

	713

	714

	715

	716

	717

	718

	719

	720

	721

	722

	723

	724

	725

	726

	727

	728

	729

	730

	731

	732

	733

	734

	735

	736

	737

	738

	739

	740

	741

	742

	743

	744

	745

	746

	747

	749

	750

	751

	752

	753

	754

	755

	756

	757

	758

	759

	760

	761

	762

	763

	764

	765

	766

	767

	768

	769

	770

	771

	772

	773

	774

	775

	776

	777

	778

	781

	782

	783

	784

	785

	786

	787

	788

	789

	790

	791

	792

	793

	794

	795

	796

	797

	798

	799

	800

	801

	802

	803

	804

	805

	806

	807

	808

	809

	810

	811

	812

	813

	814

	815

	816

	817

	818

	819

	820

	821

	822

	823

	824

	825

	826

	827

	828

	829

	830

	831

	832

	833

	834

	835

	836

	837

	838

	839

	840

	841

	842

	843

	844

	845

	846

	847

	849

	850

	851

	852

	853

	854

	855

	856

	857

	858

	859

	860

	861

	862

	863

	864

	865

	866

	867

	868

	869

	871

	872

	873

	874

	875

	876

	877

	878

	879

	880

	881

	882

	883

	884

	885

	886

	887

	888

	889

	890

	891

	892

	893

	894

	895

	896

	897

	898

	899

	900

	901

	902

	903

	904

	905

	906

	907

	908

	909

	910

	911

	912

	913

	916

	917

	918

	919

	920

	921

	922

	923

	924

	925

	926

	927

	928

	929

	930

	931

	932

	933

	934

	935

	936

	937

	938

	939

	940

	941

	942

	943

	944

	945

	946

	947

	948

	949

	951

	952

	953

	954

	955

	956

	957

	958

	959

	960

	962

	963

	964

	965

	966

	967

	968

	969

	971

	972

	973

	974

	975

	976

	977

	978

	979

	980

	981

	982

	983

	984

	985

	986

	987

	988

	989

	991

	992

	993

	994

	995

	996

	997

	998

	999

	1000

	1001

	1002

	1003

	1004

	1005

	1006

	1007

	1008

	1009

	1010

	1011

	1012

	1013

	1014

	1015

	1016

	1017

	1018

	1019

	1020

	1022

	1023

	1024

	1025

	1026

	1027

	1028

	1029

	1030

	1031

	1032

	1033

	1034

	1035

	1036

	1037

	1038

	1039

	1040

	1041

	1042

	1043

	1044

	1045

	1046

	1047

	1048

	1049

	1050

	1051

	1052

	1053

	1054

	1055

	1056

	1057

	1058

	1059

	1060

	1061

	1062

	1063

	1064

	1065

	1066

	1067

	1068

	1069

	1070

	1071

	1072

	1073

	1074

	1075

	1076

	1077

	1078

	1079

	1080

	1081

	1082

	1083

	1084

	1085

	1086

	1087

	1088

	1089

	1090

	1091

	1092

	1093

	1094

	1095

	1096

	1097

	1098

	1099

	1100

	1101

	1102

	1103

	1104

	1105

	1106

	1107

	1108

	1109

	1110

	1111

	1112

	1113

	1114

	1115

	1116

	1117

	1118

	1119

	1120

	1121

	1122

	1123

	1125

	1126

	1127

	1128

	1129

	1130

	1131

	1132

	1133

	1134

	1135

	1136

	1137

	1138

	1139

	1141

	1143

	1144

	1145

	1146

	1147

	1148

	1149

	1150

	1151

	1152

	1153

	1154

	1155

	1156

	1157

	1158

	1159

	1160

	1161

	1162

	1163

	1164

	1165

	1166

	1167

	1168

	1169

	1170

	1171

	1172

	1173

	1174

	1175

	1176

	1177

	1178

	1179

	1180

	1181

	1182

	1183

	1184

	1185

	1186

	1187

	1188

	1189

	1190

	1191

	1192

	1193

	1194

	1195

	1196

	1197

	1198

	1199

	1200

	1201

	1202

	1203

	1204

	1205

	1206

	1207

	1208

	1209

	1210

	1211

	1212

	1213

	1214

	1215

	1216

	1217

	1218

	1219

	1220

	1221

	1222

	1223

	1224

	1225

	1226

	1227

	1228

	1229

	1230

	1231

	1232

	1233

	1234

	1235

	1236

	1237

	1238

	1239

	1240

	1241

	1242

	1243

	1244

	1245

	1246

	1247

	1248

	1249

	1250

	1251

	1252

	1253

	1255

	1256

	1257

	1258

	1259

	1260

	1261

	1262

	1263

	1264

	1265

	1266

	1267

	1268

	1269

	1270

	1271

	1272

	1273

	1274

	1275

	1276

	1277

	1278

	1279

	1280

	1281

	1282

	1283

	1284

	1285

	1286

	1287

	1288

	1289

	1290

	1291

	1292

	1293

	1294

	1295

	1296

	1297

	1298

	1299

	1300

	1301

	1302

	1303

	1304

	1305

	1306

	1307

	1308

	1309

	1311

	1312

	1313

	1314

	1315

	1316

	1317

	1318

	1319

	1320

	1321

	1322

	1323

	1324

	1325

	1326

	1327

	1328

	1329

	1330

	1331

	1332

	1333

	1334

	1335

	1336

	1337

	1338

	1339

	1340

	1341

	1342

	1343

	1344

	1345

	1346

	1347

	1348

	1349

	1350

	1351

	1352

	1353

	1354

	1355

	1356

	1357

	1358

	1359

	1360

	1361

	1362

	1363

	1364

	1365

	1366

	1367

	1368

	1369

	1370

	1371

	1372

	1373

	1374

	1375

	1376

	1377

	1378

	1379

	1380

	1381

	1382

	1383

	1384

	1385

	1386

	1387

	1388

	1389

	1390

	1391

	1392

	1393

	1394

	1395

	1396

	1397

	1398

	1399

	1401

	1402

	1403

	1404

	1405

	1406

	1407

	1408

	1409

	1410

	1411

	1412

	1413

	1414

	1415

	1416

	1465

Introduction

IF YOU WERE TO DESCRIBE THE C# LANGUAGE and .NET as the most significant technology for developers available, you would not be exaggerating. .NET is designed to provide an environment within which you can develop almost any application to run on Windows. Runs on Windows—wait, I would have said that with previous versions of the .NET Framework. The new version, .NET Core 1.0 not only runs on Windows, but it also runs on Linux and Mac systems. The C# programming language is designed specifically to work with .NET. By using C#, you can, for example, write a web page, a Windows Presentation Foundation (WPF) application, a REST web service, a component of a distributed application, a database access component, a classic Windows desktop application, or even a Universal Windows Platform (UWP) app that enables online and offline capabilities. This book covers .NET Core 1.0 and also the full .NET Framework stack, .NET Framework 4.6. If you code using any of the prior versions, there may be sections of the book that will not work for you.

Where possible, samples of this book make use of .NET Core 1.0. The book code is built on a Windows system, but you can run the samples on other platforms as well; small changes might be needed to run them on Linux. Read Chapter 1, “.NET Application Architectures,” to see how to build the applications for the Linux platform. What’s not possible to run on Linux? WPF applications still need the full .NET Framework and run only on Windows. UWP apps are using .NET Core, but also require the Windows Runtime. These apps require Windows as well. These UI technologies are covered in Part III of the book, “Core Apps.”

So what’s the big deal about .NET and C#?

The Significance of .NET Core

To understand the significance of .NET Core, you must consider the long-lived .NET Framework. The .NET Framework 1.0 was released in the year 2002. Since then about every two years a new major release has been made available. With Visual Studio 2013 we had C# 5 and .NET 4.5. The .NET Framework 4.5 is huge, with more than 20,000 classes.

NOTE Get into more details of the releases of the .NET Framework and C# in Chapter 1.

What are the problems with this huge framework? How is this solved with .NET Core?

For new developers, getting into this huge framework is not easy. Many things exist that are important for legacy applications, but they’re not really important for new applications. For experienced developers it’s not that easy to decide between these technologies to select the best one. You have to decide between ASP.NET Web Forms and ASP.NET MVC for web applications, decide between Windows Forms and WPF or the Universal Windows Platform for client applications, decide between the Entity Framework and LINQ to SQL for data access, decide between ArrayList and List<T> for storing collections. . . . For some experienced developers the choice is obvious; for most it’s not that easy. It’s even more difficult for developers just starting with .NET.

.NET Core is based on smaller units, small NuGet packages. The Console class is only needed with console applications. With the .NET Framework, the Console class is available with mscorlib, an assembly that’s referenced by every .NET application. Using .NET Core, you have to explicitly decide to use the System.Console NuGet package. Otherwise, the Console class is not available.

Smaller packages also allow you to get rid of parts of the framework more easily. In case you need older collection classes for legacy applications, they are available with the NuGet package System.Collections.NonGeneric. With new applications you can define a list of packages that can be used, and System.Collections.NonGeneric can be excluded from this list.

Nowadays, development is going a lot faster. With many products, customers receive ongoing updates of products instead of receiving new versions every 2 years. Even Windows, with Windows 10, is on this fast pace. Customers receive smaller features with each update, but they receive them at a faster pace. Having 2-year release cycles with the .NET Framework nowadays is not fast enough. Some technologies, like the Entity Framework, already circumvented the problem by offering new features via NuGet packages that can be released independently of the .NET Framework.

Updating smaller pieces allows for faster innovation. .NET Core, which is based on many small NuGet packages, can be changed more easily. .NET Core and ASP.NET are now open source. You can find the source code for .NET Core at http://www.github.com/dotnet and for ASP.NET at http://www.github.com/aspnet.

When .NET was released, Windows had a big market share both on the client and on the server. Now the world is more fragmented. Companies decided against running server-side code with ASP.NET because it didn’t run on Linux. ASP.NET Core 1.0 with .NET Core can run on Linux.

.NET Core is platform-independent and supports Windows, Linux, and Mac systems. For client applications, you can use .NET with Xamarin on iPhone and Android.

The .NET Framework required having the same version of the .NET runtime that was used during development to be installed on the target system. Many application developments have been restricted by the version of the .NET Framework to use based on client needs. This is not only an issue for client-based application development but also for the server. I had to switch back to older .NET runtime versions because my provider didn’t support the newest one. With .NET Core, the runtime is delivered with the application.

When ASP.NET was built, compatibility with the predecessor technology Active Server Pages (ASP) that was built with JavaScript or VBScript code running on the server was an important aspect. Nowadays this is not needed anymore. ASP.NET Web Forms was built with the idea that the developer doesn’t need to know anything about JavaScript and HTML, and everything could be done with server-side code. Now, because of the huge number of JavaScript frameworks and enhancements in HTML, more control on JavaScript and HTML is needed.

With the new version of ASP.NET, performance has a big role in the framework architecture. You only have performance impacts for the things you really need. In case you don’t have static files with your web application, you have to explicitly decide on using it, otherwise you don’t pay a performance impact for this. With fine-grained control you can decide what features you need.

To get an even bigger performance improvement, .NET Core can be built to native code. This is possible not only on Windows but also on Linux and Mac systems. With this you can get performance improvement especially on program startup, and you use less memory.

Now there’s an issue with legacy applications. Most applications can’t switch that easily to .NET Core. The full .NET Framework—running just on Windows—is evolving as well. It’s not evolving in such big steps as .NET Core, but it is a mature framework. At the time of this writing, .NET 4.6.1 is released, with small updates compared to the previous versions. Applications that have been written with Windows Forms or ASP.NET Web Forms still need to use the full framework, but they can take advantage of the enhancements of .NET 4.6.1. Using .NET 4.6.1, you can also use NuGet packages built for .NET Core. Many new NuGet packages are built in a portable manner. With ASP.NET MVC 5 web applications you can also decide to change to ASP.NET MVC 6 running on ASP.NET Core 1.0. ASP.NET Core 1.0 allows using either .NET Core or .NET 4.6. This can make the switch easier. However, for running ASP.NET MVC on Linux, you need to migrate the ASP.NET MVC application to use .NET Core, but running on Linux wasn’t available previously as well.

Here’s a summary of some of the features of .NET Core:

	.NET Core is open source.

	Smaller NuGet packages allow for faster innovation.

	.NET Core supports multiple platforms.

	.NET Core can compile to native code.

	ASP.NET can run on Windows and Linux.

	Existing applications still run and can evolve into the future.

As you can see with the features of .NET Core, this technology made the biggest change for .NET in the history since the first version of .NET. This is a new start. From here we can continue our journey on new developments in a fast pace.

The Significance of C#

When C# was released in the year 2002, it was a language developed for the .NET Framework. C# was designed with ideas from C++, Java, and Pascal. Anders Hejlsberg had come to Microsoft from Borland and brought experience with language development of Delphi. At Microsoft, Hejlsberg worked on Microsoft’s version of Java, named J++, before creating C#.

C# started not only as an object-oriented general purpose programming language but was a component-based programming language that supported properties, events, attributes (annotations), and building assemblies (binaries including metadata).

Over time, C# was enhanced with generics, Language Integrated Query (LINQ), lambda expressions, dynamic features, and easier asynchronous programming. C# is not an easy programming language because of the many features it offers, but it’s continuously evolving with features that are practical to use. With this, C# is more than an object-oriented or component-based language; it also includes ideas of functional programming—things that are of practical use for a general-purpose language developing all kind of applications.

What’s New in C# 6

With C# 6 a new C# compiler is available. It’s not only that a source code cleanup was done; the features of the compiler pipeline can now be used from custom programs, and are used by many features of Visual Studio.

This new compiler platform made it possible to enhance C# with many new features. Although there’s not a feature with such an impact as LINQ or the async keyword, the many enhancements increase developer productivity. What are the changes of C# 6?

static using

The static using declaration allows invoking static methods without the class name:

In C# 5

using System;
// etc.
Console.WriteLine("Hello, World!");

In C# 6

using static System.Console;
// etc.
WriteLine("Hello, World");

The using static keyword is covered in Chapter 2, “Core C#.”

Expression-Bodied Methods

With expression-bodied methods, a method that includes just one statement can be written with the lambda syntax:

In C# 5

public bool IsSquare(Rectangle rect)
{
 return rect.Height == rect.Width;
}

In C# 6

public bool IsSquare(Rectangle rect) => rect.Height == rect.Width;

Expression-bodied methods are covered in Chapter 3, “Objects and Types.”

Expression-Bodied Properties

Similar to expression-bodied methods, one-line properties with only a get accessor can be written with the lambda syntax:

In C# 5

public string FullName
{
 get
 {
 return FirstName +"" + LastName;
 }
}

In C# 6

public string FullName => FirstName +"" + LastName;

Expression-bodied properties are covered in Chapter 3.

Auto-Implemented Property Intializers

Auto-implemented properties can be initialized with a property initializer:

In C# 5

public class Person
{
 public Person()
 {
 Age = 24;
 }
 public int Age {get; set;}
}

In C# 6

public class Person
{
 public int Age {get; set;} = 42;
}

Auto-implemented property initializers are covered in Chapter 3.

Read-Only Auto Properties

To implement read-only properties, C# 5 requires the full property syntax. With C# 6, you can do this using auto-implemented properties:

In C# 5

private readonly int _bookId;
public BookId
{
 get
 {
 return _bookId;
 }
}

In C# 6

public BookId {get;}

Read-only auto properties are covered in Chapter 3.

nameof Operator

With the new nameof operator, names of fields, properties, methods, or types can be accessed. With this, name changes are not missed with refactoring:

In C# 5

public void Method(object o)
{
 if (o == null) throw new ArgumentNullException("o");

In C# 6

public void Method(object o)
{
 if (o == null) throw new ArgumentNullException(nameof(o));

The nameof operator is covered in Chapter 8, “Operators and Casts.”

Null Propagation Operator

The null propagation operator simplifies null checks:

In C# 5

int? age = p == null ? null : p.Age;

In C# 6

int? age = p?.Age;

The new syntax also has an advantage for firing events:

In C# 5

var handler = Event;
if (handler != null)
{
 handler(source, e);
}

In C# 6

handler?.Invoke(source, e);

The null propagation operator is covered in Chapter 8.

String Interpolation

The string interpolation removes calls to string.Format. Instead of using numbered format placeholders in the string, the placeholders can include expressions:

In C# 5

public override ToString()
{
 return string.Format("{0}, {1}", Title, Publisher);
}

In C# 6

public override ToString() => $"{Title} {Publisher}";

The C# 6 sample is reduced that much compared to the C# 5 syntax because it uses not only string interpolation but also an expression-bodied method.

String interpolation can also use string formats and get special features on assigning it to a FormattableString. String interpolation is covered in Chapter 10, “Strings and Regular Expressions.”

Dictionary Initializers

Dictionaries can now be initialized with a dictionary initializer—similar to the collection initializer.

In C# 5

var dict = new Dictionary<int, string>();
dict.Add(3,"three");
dict.Add(7,"seven");

In C# 6

var dict = new Dictionary<int, string>()
{
 [3] ="three",
 [7] ="seven"
};

Dictionary initializers are covered in Chapter 11, “Collections.”

Exception Filters

Exception filters allow you to filter exceptions before catching them.

In C# 5

try
{
 //etc.
}
catch (MyException ex)
{
 if (ex.ErrorCode != 405) throw;
 // etc.
}

In C# 6

try
{
 //etc.
}
catch (MyException ex) when (ex.ErrorCode == 405)
{
 // etc.
}

A big advantage of the new syntax is not only that it reduces the code length but also that the stack trace is not changed—which happens with the C# 5 variant. Exception filters are covered in Chapter 14, “Errors and Exceptions.”

Await in Catch

await can now be used in the catch clause. C# 5 required a workaround.

In C# 5

bool hasError = false;
string errorMessage = null;
try
{
 //etc.
}
catch (MyException ex)
{
 hasError = true;
 errorMessage = ex.Message;
}
if (hasError)
{
 await new MessageDialog().ShowAsync(errorMessage);
}

In C# 6

try
{
 //etc.
}
catch (MyException ex)
{
 await new MessageDialog().ShowAsync(ex.Message);
}

This feature doesn’t need an enhancement of the C# syntax; it’s functionality that’s working now. This enhancement required a lot of investment from Microsoft to make it work, but that really doesn’t matter to you using this platform. For you, it means less code is needed—just compare the two versions.

NOTE The new C# 6 language features are covered in the mentioned chapters, and in all chapters of this book the new C# syntax is used.

What’s New with the Universal Windows Platform

Windows 8 introduced a new programming API, the Windows Runtime. Applications using the Windows Runtime could be made available via the Microsoft Store and were known with many different names. It started with Metro apps or Metro style apps, and they are also known as Modern apps, Windows Store apps (although they can also be installed with PowerShell scripts without using the store), and Universal apps. Probably there are some names I missed. Nowadays, these are just Windows apps, running on the Universal Windows Platform (UWP).

The idea of these apps was to allow end users to find them easily via the Microsoft store and to offer a touch-friendly environment, a modern user interface that looks nice and smooth and allows fluid interactions, and apps that can be trusted. More than that, the users who already know the Windows user interfaces should be attracted to using the new environment.

The first version of the design guidelines was very restrictive and had some flaws. How can I search for stuff in the app? Many users didn’t find the charms bar on the right side, and found out it allowed searching in many apps. Windows 8.1 moved the search to a search box directly on the desktop. Also, users often didn’t find the app bar located at the top or bottom if they didn’t perform a touch gesture from top to bottom or bottom to top.

Windows 10 made the design much more open. You can use the things that are useful for your apps and can decide on the user interface as it best matches your users and apps. Of course, it’s still best to create a nice looking, smooth, and fluid design. It’s better for having users happily interacting with the app, and they should not have a hard time finding out how things can be done.

The new Windows Runtime, Windows Runtime 3.0, steps on the predecessor versions to define an XAML user interface, implements an application lifecycle, and allows background functionality, sharing of data between applications, and more. Indeed, the new version of the runtime offers more features in all the areas.

Windows apps now make use of .NET Core. You can use the same .NET libraries available via NuGet packages with Windows apps. Finally, native code gets compiled for a faster app startup and less memory consumption.

What might be even more important than the additional features offered is the universality that’s now available. The first update of Visual Studio 2013 included a new project type for Windows 8 apps: Universal apps. Here, Universal apps have been done with three projects: one project for the Windows app, one project for the Windows phone app, and a shared code project. It was possible to even share XAML code between these platforms. The new Universal project template consists of one project. You can use the same binary not only for Windows and Windows Phone, but also for the Xbox, Internet of Things (IoT) devices, the HoloLens, and more. Of course, these different platforms offer features that are not available everywhere, but using this differing feature you can still create one binary image that runs on every Windows 10 device.

What You Need to Write and Run C# Code

.NET Core runs on Windows, Linux, and Mac operating systems. You can create and build your programs on any of these operating systems using Visual Studio Code (https://code.visualstudio.com). The best developer tool to use, and the tool used with this book, is Visual Studio 2015. You can use Visual Studio Community 2015 edition (https://www.visualstudio.com), but some features shown are available only with the Enterprise edition of Visual Studio. It will be mentioned where the Enterprise edition is needed. Visual Studio 2015 requires the Windows operating system. Windows 8.1 or later is required.

To build and run WPF applications shown in this book, you need a Windows platform. Running WPF applications is still supported on Windows 7.

For building Universal Windows apps, you can use Windows 8.1 with Visual Studio, but for testing and running these apps, you need a Windows 10 device.

What This Book Covers

This book starts by reviewing the overall architecture of .NET in Chapter 1 to give you the background you need to write managed code. You’ll get an overview about the different application types and learn how to compile with the new development environment CLI. After that, the book is divided into a number of sections that cover both the C# language and its application in a variety of areas.

Part I: The C# Language

This section gives a good grounding in the C# language. This section doesn’t presume knowledge of any particular language, although it does assume you are an experienced programmer. You start by looking at C#’s basic syntax and data types and then explore the object-oriented features of C# before looking at more advanced C# programming topics like delegates, lambda expressions, Language Integrated Query (LINQ), reflection, and asynchronous programming.

Part II: .NET Core and Windows Runtime

This section starts with tools, and it looks at the main integrated development environment (IDE) utilized by C# developers worldwide: Visual Studio 2015. You’ll learn about the tools available with the Enterprise edition of Visual Studio in Chapter 17, “Visual Studio 2015.”

You also learn what’s behind the C# compiler and how you can use the .NET Compiler Platform to change your code programmatically in Chapter 18, “.NET Compiler Platform.”

When you’re creating functionality with C# code, don’t skip the step of creating unit tests. It takes more time in the beginning, but over time you’ll see advantages when you add functionality and maintain code. Chapter 19, “Testing,” covers creating unit tests, web tests, and coded UI tests.

Chapters 20 to 28 cover topics from .NET Core and the Windows Runtime that are independent of application types. In Chapter 20, “Diagnostics and Application Insights,” you’ll learn writing diagnostic information from the application that can also be used in the production environment. Chapters 21, “Tasks and Parallel Programming,” and 22, “Task Synchronization,” cover parallel programming using the Task Parallel Library (TPL) as well as various objects for synchronization. In Chapter 23, “Files and Streams,” you’ll read about accessing the file system and reading files and directories. Using streams, you’ll learn using both streams from the System.IO namespace and streams from the Windows Runtime for programming Windows apps. Chapter 24, “Security,” makes use of streams when you learn about security and how to encrypt data and allow for secure conversion. You’ll also learn the core foundation of networking using sockets, as well as using higher-level abstractions like the HttpClient (Chapter 25, “Networking”). Chapter 26, “Composition,” covers Microsoft Composition that allows creating independence between containers and parts. In Chapter 27, “XML and JSON,” you learn about serializing objects into XML and JSON, as well as different techniques for reading and writing XML. Finally, in Chapter 28, “Localization,” you learn to localize applications using techniques for localizations that are important both for Windows and web applications.

Part III: Windows Apps

This section is about building applications with XAML—both Universal Windows apps and WPF. You’ll learn about the foundation of XAML in Chapter 29, “Core XAML,” with the XAML syntax, dependency properties, and also markup extensions where you can create your own XAML syntax. In Chapter 30, “XAML Styles and Resources,” you learn about styling your XAML-based apps. A big focus on the MVVM (model-view-view model) pattern is in Chapter 31, “Patterns with XAML Apps.” Here you learn to take advantage of the data-binding features of XAML-based applications, which allow sharing a lot of code between UWP apps and WPF applications. You can also share a lot of code for developing for the iPhone and Android platforms using Xamarin. However, developing with Xamarin is not covered in this book. After the introductory chapters covering both UWP apps and WPF applications, two chapters cover the specific features of UWP apps, and two chapters cover WPF applications. In Chapters 32, “Windows Apps: User Interfaces,” and 33, “Advanced Windows Apps,” you learn about specific XAML controls with UWP apps such as the RelativePanel and AdaptiveTrigger, the new compiled binding, and the application life cycle, sharing data, and creating background tasks. Chapters 34, “Windows Desktop Applications with WPF,” and 35, “Creating Documents with WPF,” go into WPF-specific features such as the Ribbon control, TreeView to show hierarchical data, WPF-specific data binding features, creating flow and fixed documents, and creating XML Paper Specification (XPS) files.

This section is concluded with deployment in Chapter 36 to deploy WPF applications using ClickOnce, and information to get UWP apps in the store.

Part IV: Web Applications and Services

In this section you look at web applications and services. You’ll find two chapters about ADO.NET in this section as well. Although you can use ADO.NET (Chapter 37, “ADO.NET”) and the Entity Framework (Chapter 38, “Entity Framework Core”) from client applications as well, typically these technologies are used on the server, and you invoke services from the client.

In Chapter 39, “Windows Services,” you can read how to create your own Windows services that run when the operating system is started.

The new version of ASP.NET, ASP.NET Core 1.0, is covered in Chapter 40. Here you can read the foundation of ASP.NET and get ideas on how ASP.NET MVC 6 is built using these foundations. The features of ASP.NET MVC 6 are covered in Chapter 41.

NOTE ASP.NET Web Forms are not covered in this book, although ASP.NET 4.6 offers new features for ASP.NET Web Forms. This book fully concentrates on the new version of ASP.NET technologies using ASP.NET Core 1.0. For information about ASP.NET Web Forms and ASP.NET MVC 5 you should read Professional C# 5 and .NET 4.5.1.

Chapter 42 covers the REST service features of ASP.NET MVC 6: ASP.NET Web API. Publish and subscribe technologies for web applications, in the form of using the ASP.NET technologies WebHooks and SignalR, are covered in Chapter 43. Chapter 44 discusses an older technology for communication with services using SOAP and WCF.

Again, like the previous section, this section concludes with deployment—deployment of websites running on Internet Information Server (IIS) or using Microsoft Azure to host websites.

Conventions

To help you get the most from the text and keep track of what’s happening, a number of conventions are used throughout the book.

WARNINGS Warnings hold important, not-to-be-forgotten information that is directly relevant to the surrounding text.

NOTE Notes indicate notes, tips, hints, tricks, and/or asides to the current discussion.

As for styles in the text:

	We highlight new terms and important words when we introduce them.

	We show keyboard strokes like this: Ctrl+A.

	We show filenames, URLs, and code within the text like so: persistence.properties.

	We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that's particularly important in the present context or to show changes from a previous code snippet.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually or to use the source code files that accompany the book. All the source code used in this book is available for download at www.wrox.com/go/professionalcsharp6. When at the site, simply locate the book’s title (either by using the Search box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is 978-1-119-09660-3.

After you download the code, just decompress it with your favorite compression tool. Alternatively, you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.aspx to see the code available for this book and all other Wrox books.

With the fast pace of updates with .NET Core, the source code of the book is also available at http://www .github.com/ProfessionalCSharp. Be aware that the source code on GitHub offers living source files that will be updated with minor update versions of Visual Studio, as well as new experimental C# features. For updates to the source code and additional samples done after the release of the book, check the GitHub site. The stable version of the source code that corresponds to the content of the printed book is available from the Wrox site.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty piece of code, we would be grateful for your feedback. By sending in errata you may save another reader hours of frustration, and at the same time you can help provide even higher-quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view all errata that have been submitted for this book and posted by Wrox editors. A complete book list including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml and complete the form there to send us the error you have found. We’ll check the information and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based system for you to post messages relating to Wrox books and related technologies and interact with other readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you can find a number of different forums to help you not only as you read this book, but also as you develop your own applications. To join the forums, just follow these steps:

	Go to p2p.wrox.com and click the Register link.

	Read the terms of use and click Agree.

	Complete the required information to join and any optional information you want to provide, and click Submit.

	You will receive an e-mail with information describing how to verify your account and complete the joining process.

NOTE You can read messages in the forums without joining P2P but to post your own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read messages at any time on the web. If you want to have new messages from a particular forum e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, read the P2P FAQs for answers to questions about how the forum software works as well as many common questions specific to P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

PART I
The C# Language

	Chapter 1: .NET Application Architectures

	Chapter 2: Core C#

	Chapter 3: Objects and Types

	Chapter 4: Inheritance

	Chapter 5: Managed and Unmanaged Resources

	Chapter 6: Generics

	Chapter 7: Arrays and Tuples

	Chapter 8: Operators and Casts

	Chapter 9: Delegates, Lambdas, and Events

	Chapter 10: Strings and Regular Expressions

	Chapter 11: Collections

	Chapter 12: Special Collections

	Chapter 13: Language Integrated Query

	Chapter 14: Errors and Exceptions

	Chapter 15: Asynchronous Programming

	Chapter 16: Reflection, Metadata, and Dynamic Programming

1
.NET Application Architectures

What’s In This Chapter?

	Reviewing the history of .NET

	Understanding differences between .NET Framework 4.6 and .NET Core 1.0

	Assemblies and NuGet Packages

	The Common Language Runtime

	Features of the Windows Runtime

	Programming Hello, World!

	Universal Windows Platform

	Technologies for creating Windows Apps

	Technologies for creating Web Apps

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	DotnetHelloWorld

	HelloWorldApp (.NET Core)

Choosing Your Technologies

In recent years, .NET has become a huge ecosystem for creating any kind of applications on the Windows platform. With .NET you can create Windows apps, web services, web applications, and apps for the Microsoft Phone.

The newest release of .NET is a big change from the last version—maybe the biggest change to .NET since its invention. Much of the .NET code has become open-source code, and you can create applications for other platforms as well. The new version of .NET (.NET Core) and NuGet packages allow Microsoft to provide faster update cycles for delivering new features. It’s not easy to decide what technology should be used for creating applications. This chapter helps you with that. It gives you information about the different technologies available for creating Windows and web applications and services, offers guidance on what to choose for database access, and highlights the differences between .NET and .NET Core.

Reviewing .NET History

To better understand what is available with .NET and C#, it is best to know something about its history. The following table shows the version of .NET in relation to the Common Language Runtime (CLR), the version of C#, and the Visual Studio edition that gives some idea about the year when the corresponding versions have been released. Besides knowing what technology to use, it’s also good to know what technology is not recommended because there’s a replacement.

	.NET
	CLR
	C#
	Visual Studio

	1.0
	1.0
	1.0
	2002

	1.1
	1.1
	1.2
	2003

	2.0
	2.0
	2.0
	2005

	3.0
	2.0
	2.0
	2005 + Extensions

	3.5
	2.0
	3.0
	2008

	4.0
	4.0
	4.0
	2010

	4.5
	4.0
	5.0
	2012

	4.5.1
	4.0
	5.0
	2013

	4.6
	4.0
	6
	2015

	.NET Core 1.0
	CoreCLR
	6
	2015 + Extensions

The following sections cover the details of this table and the progress of C# and .NET.

C# 1.0—A New Language

C# 1.0 was a completely new programming language designed for the .NET Framework. At the time it was developed, the .NET Framework consisted of about 3,000 classes and the CLR.

After Microsoft was not allowed by a court order (filed by Sun, the company that created Java) to make changes to the Java code, Anders Hejlsberg designed C#. Before working for Microsoft, Hejlsberg had his roots at Borland where he designed the Delphi programming language (an Object Pascal dialect). At Microsoft he was responsible for J++ (Microsoft’s version of the Java programming language). Given Hejlsberg’s background, the C# programming language was mainly influenced by C++, Java, and Pascal.

Because C# was created later than Java and C++, Microsoft analyzed typical programming errors that happened with the other languages, and did some things differently to avoid these errors. Some differences include the following:

	With if statements, Boolean expressions are required (C++ allows an integer value here as well).

	It’s permissible to create value and reference types using the struct and class keywords (Java only allows creating custom reference types; with C++ the distinction between struct and class is only the default for the access modifier).

	Virtual and non-virtual methods are allowed (this is similar to C++; Java always creates virtual methods).

Of course there are a lot more changes as you’ll see reading this book.

At this time, C# was a pure object-oriented programming language with features for inheritance, encapsulation, and polymorphism. C# also offered component-based programming enhancements such as delegates and events.

Before the existence of .NET with the CLR, every programming language had its own runtime. With C++, the C++ Runtime is linked with every C++ program. Visual Basic 6 had its own runtime with VBRun. The runtime of Java is the Java Virtual Machine—which can be compared to the CLR. The CLR is a runtime that is used by every .NET programming language. At the time the CLR appeared on the scene, Microsoft offered JScript.NET, Visual Basic .NET, and Managed C++ in addition to C#. JScript.NET was Microsoft’s JavaScript compiler that was to be used with the CLR and .NET classes. Visual Basic.NET was the name for Visual Basic that offered .NET support. Nowadays it’s just called Visual Basic again. Managed C++ was the name for a language that mixed native C++ code with Managed .NET Code. The newer C++ language used today with .NET is C++/CLR.

A compiler for a .NET programming language generates Intermediate Language (IL) code. The IL code looks like object-oriented machine code and can be checked by using the tool ildasm.exe to open DLL or EXE files that contain .NET code. The CLR contains a just-in-time (JIT) compiler that generates native code out of the IL code when the program starts to run.

NOTE IL code is also known as managed code.

Other parts of the CLR are a garbage collector (GC), which is responsible for cleaning up managed memory that is no longer referenced; a security mechanism that uses code access security to verify what code is allowed to do; an extension for the debugger to allow a debug session between different programming languages (for example, starting a debug session with Visual Basic and continuing to debug within a C# library); and a threading facility that is responsible for creating threads on the underlying platform.

The .NET Framework was already huge with version 1. The classes are organized within namespaces to help facilitate navigating the 3,000 available classes. Namespaces are used to group classes and to solve conflicts by allowing the same class name in different namespaces. Version 1 of the .NET Framework allowed creating Windows desktop applications using Windows Forms (namespace System.Windows.Forms), creating web applications with ASP.NET Web Forms (System.Web), communicating with applications and web services using ASP.NET Web Services, communicating more quickly between .NET applications using .NET Remoting, and creating COM+ components for running in an application server using Enterprise Services.

ASP.NET Web Forms was the technology for creating web applications with the goal for the developer to not need to know something about HTML and JavaScript. Server-side controls that worked similarly to Windows Forms itself created HTML and JavaScript.

C# 1.2 and .NET 1.1 was mainly a bug fix release with minor enhancements.

NOTE Inheritance is discussed in Chapter 4, “Inheritance”; delegates and events are covered in Chapter 9, “Delegates, Lambdas, and Events.”

NOTE Every new release of .NET has been accompanied by a new version of the book Professional C#. With .NET 1.0, the book was already in the second edition as the first edition had been published with Beta 2 of .NET 1.0. You’re holding the 10th edition of this book in your hands.

C# 2 and .NET 2 with Generics

C# 2 and .NET 2 was a huge update. With this version, a change to both the C# programming language and the IL code had been made; that’s why a new CLR was needed to support the IL code additions. One big change was generics. Generics make it possible to create types without needing to know what inner types are used. The inner types used are defined at instantiation time, when an instance is created.

This advance in the C# programming language also resulted in many new types in the Framework—for example, new generic collection classes found in the namespace System.Collections.Generic. With this, the older collection classes defined with 1.0 are rarely used with newer applications. Of course, the older classes still work nowadays, even with the new .NET Core version.

NOTE Generics are used all through the book, but they’re explained in detail in Chapter 6, “Generics.” Chapter 11, “Collections,” covers generic collection classes.

.NET 3—Windows Presentation Foundation

With the release of .NET 3.0 no new version of C# was needed. 3.0 was only a release offering new libraries, but it was a huge release with many new types and namespaces. Windows Presentation Foundation (WPF) was probably the biggest part of the new Framework for creating Windows desktop applications. Windows Forms wrapped the native Windows controls and was based on pixels, whereas WPF was based on DirectX to draw every control on its own. The vector graphics in WPF allow seamless resizing of every form. The templates in WPF also allow for complete custom looks. For example, an application for the Zurich airport can include a button that looks like a plane. As a result, applications can look very different from the traditional Windows applications that had been developed up to that time. Everything below the namespace System.Windows belongs to WPF, with the exception of System.Windows.Forms. With WPF the user interface can be designed using an XML syntax: XML for Applications Markup Language (XAML).

Before .NET 3, ASP.NET Web Services and .NET Remoting were used for communicating between applications. Message Queuing was another option for communicating. The various technologies had different advantages and disadvantages, and all had different APIs for programming. A typical enterprise application had to use more than one communication API, and thus it was necessary to learn several of them. This was solved with Windows Communication Foundation (WCF). WCF combined all the options of the other APIs into the one API. However, to support all of the features WCF has to offer, you need to configure WCF.

The third big part of the .NET 3.0 release was Windows Workflow Foundation (WF) with the namespace System.Workflow. Instead of creating custom workflow engines for several different applications (and Microsoft itself created several workflow engines for different products), a workflow engine was available as part of .NET.

With .NET 3.0, the class count of the Framework increased from 8,000 types in .NET 2.0 to about 12,000 types.

NOTE In this book, WPF is covered in Chapters 29, 30, 31, 34, 35, and 36. You can read information about WCF in Chapter 44, “Windows Communication Foundation.”

C# 3 and .NET 3.5—LINQ

.NET 3.5 came together with a new release of C# 3. The major enhancement was a query syntax defined with C# that allows using the same syntax to filter and sort object lists, XML files, and the database. The language enhancements didn’t require any change to the IL code as the C# features used here are just syntax sugar. All of the enhancements could have been done with the older syntax as well, just a lot more code would be necessary. The C# language makes it really easy to do these queries. With LINQ and lambda expressions, it’s possible to use the same query syntax and access object collections, databases, and XML files.

For accessing the database and creating LINQ queries, LINQ to SQL was released as part of .NET 3.5. With the first update to .NET 3.5, the first version of Entity Framework was released. Both LINQ to SQL and Entity Framework offered mapping of hierarchies to the relations of a database and a LINQ provider. Entity Framework was more powerful, but LINQ to SQL was simpler. Over time, features of LINQ to SQL have been implemented in Entity Framework, and now this one is here to stay. (Nowadays it looks very different from the first version released.)

Another technology introduced as part of .NET 3.5 was the System.AddIn namespace, which offers an add-in model. This model offers powerful features that run add-ins even out of process, but it is also complex to use.

NOTE LINQ is covered in detail in Chapter 13, “Language Integrated Query.” The newest version of the Entity Framework is very different from the .NET 3.5 release; it’s described in Chapter 38, “Entity Framework Core.”

C# 4 and .NET 4—Dynamic and TPL

The theme of C# 4 was dynamic—integrating scripting languages and making it easier to use COM integration. C# syntax has been extended with the dynamic keyword, named and optional parameters, and enhancements to co- and contra-variance with generics.

Other enhancements have been made within the .NET Framework. With multi-core CPUs, parallel programming had become more and more important. The Task Parallel Library (TPL), with abstractions of threads using Task and Parallel classes, make it easier to create parallel running code.

Because the workflow engine created with .NET 3.0 didn’t fulfill its promises, a completely new Windows Workflow Foundation was part of .NET 4.0. To avoid conflicts with the older workflow engine, the newer one is defined in the System.Activity namespace.

The enhancements of C# 4 also required a new version of the runtime. The runtime skipped from version 2 to 4.

With the release of Visual Studio 2010, a new technology shipped for creating web applications: ASP.NET MVC 2.0. Unlike ASP.NET Web Forms, this technology required programming HTML and JavaScript, and it used C# and .NET with server-side functionality. As this technology was very new as well as being out of band (OOB) to Visual Studio and .NET, ASP.NET MVC was updated regularly.

NOTE The dynamic keyword of C# 4 is covered in Chapter 16, “Reflection, Metadata, and Dynamic Programming.” The Task Parallel Library is covered in Chapter 21, “Tasks and Parallel Programming.”

Version 5 of ASP.NET and Version 6 of ASP.NET MVC are covered in Chapter 40, “ASP.NET Core,” and Chapter 41, “ASP.NET MVC.”

C# 5 and Asynchronous Programming

C# 5 had only two new keywords: async and await. However, they made programming of asynchronous methods a lot easier. As touch became more significant with Windows 8, it also became a lot more important to not block the UI thread. Using the mouse, users are accustomed to scrolling taking some time. However, using fingers on a touch interface that is not responsive is really annoying.

Windows 8 also introduced a new programming interface for Windows Store apps (also known as Modern apps, Metro apps, Universal Windows apps, and, more recently, Windows apps): the Windows Runtime. This is a native runtime that looks like .NET by using language projections. Many of the WPF controls have been redone for the new runtime, and a subset of the .NET Framework can be used with such apps.

As the System.AddIn framework was much too complex and slow, a new composition framework was created with .NET 4.5: Managed Extensibility Framework with the namespace System.Composition.

A new version of platform-independent communication is offered by the ASP.NET Web API. Unlike WCF, which offers stateful and stateless services as well as many different network protocols, the ASP.NET Web API is a lot simpler and based on the Representational State Transfer (REST) software architecture style.

NOTE The async and await keywords of C# 5 are discussed in detail in Chapter 15, “Asynchronous Programming.” This chapter also shows the different asynchronous patterns that have been used over time with .NET.

Managed Extensibility Framework (MEF) is covered in Chapter 26, “Composition.” Windows apps are covered in Chapters 29 to 33, and the ASP.NET Web API is covered in Chapter 42, “ASP.NET Web API.”

C# 6 and .NET Core

C# 6 doesn’t involve the huge improvements that were made by generics, LINQ, and async, but there are a lot of small and practical enhancements in the language that can reduce the code length in several places. The many improvements have been made possible by a new compiler engine code named Roslyn.

NOTE Roslyn is covered in Chapter 18, “.NET Compiler Platform.”

The full .NET Framework is not the only .NET Framework that was in use in recent years. Some scenarios required smaller frameworks. In 2007, the first version of Microsoft Silverlight was released (code named WPF/E, WPF Everywhere). Silverlight was a web browser plug-in that allowed dynamic content. The first version of Silverlight supported programming only via JavaScript. The second version included a subset of the .NET Framework. Of course, server-side libraries were not needed because Silverlight was always running on the client, but the Framework shipped with Silverlight also removed classes and methods from the core features to make it lightweight and portable to other platforms. The last version of Silverlight for the desktop (version 5) was released in December 2011. Silverlight had also been used for programming for the Windows Phone. Silverlight 8.1 made it into Windows Phone 8.1, but this version of Silverlight is also different from the version on the desktop.

On the Windows desktop, where there is such a huge framework with .NET and the need for faster and faster development cadences, big changes were also required. In a world of DevOps where developers and operations work together or are even the same people to bring applications and new features continuously to the user, there’s a need to have new features available in a fast way. Creating new features or making bug fixes is a not-so-easy task with a huge framework and many dependencies.

With several smaller .NET Frameworks available (e.g. Silverlight, Silverlight for the Windows Phone), it became important to share code between the desktop version of .NET and a smaller version. A technology to share code between different .NET versions is the portable library. Over time, with many different .NET Frameworks and versions, the management of the portable library has become a nightmare.

With all these issues, a new version of .NET is a necessity. (Yes, it’s really a requirement to solve these issues.) The new version of the Framework is invented with the name .NET Core. .NET Core is smaller with modular NuGet packages, has a runtime that’s distributed with every application, is open source, and is available not only for the desktop version of Windows but also for many different Windows devices, as well as for Linux and OS X.

For creating web applications, ASP.NET Core 1.0 is a complete rewrite of ASP.NET. This release is not completely backward compatible to older versions and requires some changes to existing ASP.NET MVC code (with ASP.NET MVC 6). However, it also has a lot of advantages when compared with the older versions, such as a lower overhead with every network request—which results in better performance—and it can also run on Linux. ASP.NET Web Forms is not part of this release because ASP.NET Web Forms was not designed for best performance; it was designed for developer friendliness based on patterns known by Windows Forms application developers.

Of course, not all applications can be changed easily to make use of .NET Core. That’s why the huge framework received improvements as well—even if those improvements are not completed in as fast a pace as .NET Core. The new version of the full .NET Framework is 4.6. Small updates for ASP.NET Web Forms are available on the full .NET stack.

NOTE Roslyn is covered in Chapter 18. The changes to the C# language are covered in all the language chapters in Part I—for example, read-only properties are in Chapter 33, “Objects and Types”; the nameof operator and null propagation are in Chapter 8, “Operators and Casts”; string interpolation is in Chapter 10, “Strings and Regular Expressions”; and exception filters are in Chapter 14, “Errors and Exceptions.”

Where possible, .NET Core is used in this book. You can read more information about .NET Core and NuGet packages later in this chapter.

Choosing Technologies and Going Forward

When you know the reason for competing technologies within the Framework, it’s easier to select a technology to use for programming applications. For example, if you’re creating new Windows applications it’s not a good idea to bet on Windows Forms. Instead, you should use an XAML-based technology, such as Windows apps or Windows desktop applications using WPF.

If you’re creating web applications, a safe bet is to use ASP.NET Core with ASP.NET MVC 6. Making this choice rules out using ASP.NET Web Forms. If you’re accessing a database, you should use Entity Framework rather than LINQ to SQL, and you should opt for the Managed Extensibility Framework instead of System.AddIn.

Legacy applications still use Windows Forms and ASP.NET Web Forms and some other older technologies. It doesn’t make sense to change existing applications just to use new technologies. There must be a huge advantage to making the change—for example, when maintenance of the code is already a nightmare and a lot of refactoring is needed to change to faster release cycles that are being demanded by customers, or when using a new technology allows for reducing the coding time for updates. Depending on the type of legacy application, it might not be worthwhile to switch to a new technology. You can allow the application to still be based on older technologies because Windows Forms and ASP.NET Web Forms will still be supported for many years to come.

The content of this book is based on the newer technologies to show what’s best for creating new applications. In case you still need to maintain legacy applications, you can refer to older editions of this book, which cover ASP.NET Web Forms, Windows Forms, System.AddIn, and other legacy technologies that are still part of and available with the .NET Framework.

.NET 2015

.NET 2015 is an umbrella term for all the .NET technologies. Figure 1.1 gives an overall picture of these technologies. The left side represents the .NET Framework 4.6 technologies such as WPF and ASP.NET 4. ASP.NET Core 1.0 can run on .NET Framework 4.6 as well, as you can see in this figure. The right side represents the new .NET Core technologies. Both ASP.NET Core 1.0 and the Universal Windows Platform (UWP) run on .NET Core. You can also create console applications that run on .NET Core.

[image: Block diagram shows .NET Framework 4.6 technologies such as WPF, ASP.NET 4.x, Core 1.0 and .Net Core 1.0 technologies such as ASP.NET Core 1.0 and Universal Windows Apps along with shared Runtime components, libraries, and compiler.]

Figure 1.1

A part of .NET Core is a new runtime: the CoreCLR. This runtime is used from ASP.NET Core 1.0. Instead of using the CoreCLR runtime, .NET can also be compiled to native code. The UWP automatically makes use of this feature; these .NET applications are compiled to native code before being offered from the Windows Store. You can also compile other .NET Core applications—and the applications running on Linux—to native code.

In the lower part of Figure 1.1, you can see there’s also some sharing going on between .NET Framework 4.6 and .NET Core. Runtime components, such as the code for the garbage collector and the RyuJIT (this is a new JIT compiler to compile IL code to native code) are shared. The garbage collector is used by CLR, CoreCLR, and .NET Native. The RyuJIT just-in-time compiler is used by CLR and CoreCLR. Libraries can be shared between applications based on the .NET Framework 4.6 and .NET Core 1.0. The concept of NuGet packages helps put these libraries in a common package that is available on all .NET platforms. And, of course, the new .NET compiler platform is used by all these technologies.

.NET Framework 4.6

NET Framework 4.6 is the .NET Framework that has been continuously enhanced in the past 10 years. Many of the technologies that have been discussed in the history section are based on this framework. This framework is used for creating Windows Forms and WPF applications. Also, although ASP.NET 5 can run on .NET Core, it can also run on .NET Framework 4.6.

If you want to continue working with ASP.NET Web Forms, ASP.NET 4.6 with .NET Framework 4.6 is the way to go. ASP.NET 4.6 also has new features compared to version 4.5, such as support for HTTP2 (a new version of the HTTP protocol that is discussed in Chapter 25, “Networking”), compilation on the fly with the Roslyn compiler, and asynchronous model binding. However, you can’t switch to .NET Core with ASP.NET Web Forms.

You can find the libraries of the framework as well as the CLR in the directory %windows%\Microsoft .NET\Framework\v4.0.30319.

The classes available with the .NET Framework are organized in namespaces starting with the name System. The following table describes a few of the namespaces to give you an idea about the hierarchy.

	Namespace
	Description

	System.Collections
	This is the root namespace for collections. Collections are also found within sub-namespaces such as System.Collections.Concurrent and System.Collections.Generic.

	System.Data
	This is the namespace for accessing databases. System.Data.SqlClient contains classes to access the SQL Server,

	System.Diagnostics
	This is the root namespace for diagnostics information, such as event logging and tracing (in the namespace System.Diagnostics.Tracing).

	System.Globalization
	This is the namespace that contains classes for globalization and localization of applications.

	System.IO
	This is the namespace for File IO, which are classes to access files and directories. Readers, writers, and streams are here.

	System.Net
	This is the namespace for core networking, such as accessing DNS servers and creating sockets with System.Net.Sockets.

	System.Threading
	This is the root namespace for threads and tasks. Tasks are defined within System.Threading.Tasks.

	System.Web
	This is the root namespace for ASP.NET. Below this namespace, many sub-namespaces are defined, such as System.Web.UI, System.Web.UI.WebControls, and System.Web.Hosting.

	System.Windows
	This is the root namespace for Windows desktop applications with WPF. Example subnamespaces are System.Windows.Shapes, System.Windows.Data, and System.Windows.Documents.

NOTE Some of the new .NET classes use namespaces that start with the name Microsoft instead of System, like Microsoft.Data.Entity for the Entity Framework and Microsoft.Extensions.DependencyInjection for the new dependency injection framework.

.NET Core 1.0

.NET Core 1.0 is the new .NET that is used by all new technologies and has a big focus in this book. This framework is open source—you can find it at http://www.github.com/dotnet. The runtime is the CoreCLR repository; the framework containing collection classes, file system access, console, XML, and a lot more is in the CoreFX repository.

Unlike the .NET Framework, where the specific version you needed for the application had to be installed on the system, with .NET Core 1.0 the framework, including the runtime, is delivered with the application. Previously there were times when you might have had problems deploying an ASP.NET web application to a shared server because the provider had older versions of .NET installed; those times are gone. Now you can deliver the runtime with the application and are not dependent on the version installed on the server.

.NET Core 1.0 is designed in a modular approach. The framework splits up into a large list of NuGet packages. With the application you decide what packages you need. The .NET Framework was growing larger and larger when new functionality was added. It was not possible to remove old functionality that’s no longer needed, such as the old collection classes that are unnecessary because of the generic collection classes that were added, .NET Remoting that has been replaced by the new communication technology, or LINQ to SQL that has been updated to Entity Framework. Applications can break when something is removed. This does not apply to .NET Core, as the application distributes the parts of the framework that it needs.

The framework of .NET Core is currently as huge as .NET Framework 4.6 is. However, this can change, and it can grow even bigger, but because of the modularity that growth potential is not an issue. .NET Core is already so huge that we can’t cover every type in this book. Just have a look at http://www.github.com/dotnet/corefx to see all the sources. For example, old nongeneric collection classes are already covered with .NET Core to make it easier to bring legacy code to the new platform.

.NET Core can be updated at a fast pace. Even updating the runtime doesn’t influence existing applications because the runtime is installed with the applications. Now Microsoft can improve .NET Core, including the runtime, with faster release cycles.

NOTE For developing apps using .NET Core, Microsoft created new command-line utilities named .NET Core Command line (CLI). These tools are introduced later in this chapter through a “Hello, World!” application in the section “Compiling with CLI.”

Assemblies

Libraries and executables of .NET programs are known by the term assembly. An assembly is the logical unit that contains compiled IL code targeted at the .NET Framework.

An assembly is completely self-describing and is a logical rather than a physical unit, which means that it can be stored across more than one file. (Indeed, dynamic assemblies are stored in memory, not on file.) If an assembly is stored in more than one file, there will be one main file that contains the entry point and describes the other files in the assembly.

The same assembly structure is used for both executable code and library code. The only difference is that an executable assembly contains a main program entry point, whereas a library assembly does not.

An important characteristic of assemblies is that they contain metadata that describes the types and methods defined in the corresponding code. An assembly, however, also contains assembly metadata that describes the assembly. This assembly metadata, contained in an area known as the manifest, enables checks to be made on the version of the assembly and on its integrity.

Because an assembly contains program metadata, applications or other assemblies that call up code in a given assembly do not need to refer to the registry, or to any other data source, to find out how to use that assembly.

With the .NET Framework 4.6, assemblies come in two types: private and shared assemblies. Shared assemblies don’t apply to the Universal Windows Platform because all the code is compiled to one native image.

Private Assemblies

Private assemblies normally ship with software and are intended to be used only with that software. The usual scenario in which you ship private assemblies is when you supply an application in the form of an executable and a number of libraries, where the libraries contain code that should be used only with that application.

The system guarantees that private assemblies will not be used by other software because an application may load only private assemblies located in the same folder that the main executable is loaded in, or in a subfolder of it.

Because you would normally expect that commercial software would always be installed in its own directory, there is no risk of one software package overwriting, modifying, or accidentally loading private assemblies intended for another package. And, because private assemblies can be used only by the software package that they are intended for, you have much more control over what software uses them. There is, therefore, less need to take security precautions because there is no risk, for example, of some other commercial software overwriting one of your assemblies with some new version of it (apart from software designed specifically to perform malicious damage). There are also no problems with name collisions. If classes in your private assembly happen to have the same name as classes in someone else’s private assembly, that does not matter because any given application can see only the one set of private assemblies.

Because a private assembly is entirely self-contained, the process to deploy it is simple. You simply place the appropriate file(s) in the appropriate folder in the file system. (No registry entries need to be made.) This process is known as zero impact (xcopy) installation.

Shared Assemblies

Shared assemblies are intended to be common libraries that any other application can use. Because any other software can access a shared assembly, more precautions need to be taken against the following risks:

	Name collisions, where another company’s shared assembly implements types that have the same names as those in your shared assembly. Because client code can theoretically have access to both assemblies simultaneously, this could be a serious problem.

	The risk of an assembly being overwritten by a different version of the same assembly; the new version is incompatible with some existing client code.

The solution to these problems is placing shared assemblies in a special directory subtree in the file system, known as the global assembly cache (GAC). With private assemblies, this can be done by simply copying the assembly into the appropriate folder, but with shared assemblies it must be specifically installed into the cache. This process can be performed by a number of .NET utilities and requires certain checks on the assembly, as well as setting up of a small folder hierarchy within the assembly cache used to ensure assembly integrity.

To prevent name collisions, shared assemblies are given a name based on private key cryptography. (Private assemblies are simply given the same name as their main filename.) This name is known as a strong name; it is guaranteed to be unique and must be quoted by applications that reference a shared assembly.

Problems associated with the risk of overwriting an assembly are addressed by specifying version information in the assembly manifest and by allowing side-by-side installations.

NuGet Packages

In the early days, assemblies were reusable units with applications. That use is still possible (and necessary with some assemblies) when you’re adding a reference to an assembly for using the public types and methods from your own code. However, using libraries can mean a lot more than just adding a reference and using it. Using libraries can also mean some configuration changes, or scripts that can be used to take advantage of some features. This is one of the reasons to package assemblies within NuGet packages.

A NuGet package is a zip file that contains the assembly (or multiple assemblies) as well as configuration information and PowerShell scripts.

Another reason for using NuGet packages is that they can be found easily; they’re available not only from Microsoft but also from third parties. NuGet packages are easily accessible on the NuGet server at http://www.nuget.org.

From the references within a Visual Studio project, you can open the NuGet Package Manager (see Figure 1.2. There you can search for packages and add them to the application. This tool enables you to search for packages that are not yet released (include prerelease option) and define the NuGet server where the packages should be searched.

[image: Screenshot shows NuGet Package Manager window with search box including prerelease option, list of packages along with version number. Detailed description of the EntityFramework package is shown on the right side.]

Figure 1.2

NOTE When you use third-party packages from the NuGet server, you’re always at risk if a package is available at a later time. You also need to check about the support availability of the package. Always check for project links with information about the package before using it. With the package source, you can select Microsoft and .NET to only get packages supported by Microsoft. Third-party packages are also included in the Microsoft and .NET section, but they are third-party packages that are supported by Microsoft.

You can also use your own NuGet server with your development team. You can define to only allow packages from your own server to be used by the development team.

Because .NET Core is so modular, all applications—other than the simplest ones—need additional NuGet packages. To make it easier for you to find the package, with every sample application that’s built with .NET Core this book shows a table that lists packages and namespaces that need to be added.

NOTE More information about the NuGet Package Manager is covered in Chapter 17, “Visual Studio 2015.”

Common Language Runtime

The Universal Windows Platform makes use of Native .NET to compile IL to native code. With all other scenarios, with both applications using the .NET Framework 4.6 and applications using .NET Core 1.0, a Common Language Runtime (CLR) is needed. However, .NET Core uses the CoreCLR whereas the .NET Framework uses the CLR. So, what’s done by a CLR?

Before an application can be executed by the CLR, any source code that you develop (in C# or some other language) needs to be compiled. Compilation occurs in two steps in .NET:

	Compilation of source code to Microsoft Intermediate Language (IL)

	Compilation of IL to platform-specific native code by the CLR

The IL code is available within a .NET assembly. During runtime, a Just-In-Time (JIT) compiler compiles IL code and creates the platform-specific native code.

The new CLR and the CoreCLR include a new JIT compiler named RyuJIT. The new JIT compiler is not only faster than the previous one; it also has better support for the Edit & Continue feature while debugging with Visual Studio. The Edit & Continue feature enables you to edit the code while debugging, and you can continue the debug session without the need to stop and restart the process.

The runtime also includes a type system with a type loader that is responsible for loading types from assemblies. Security infrastructure with the type system verifies whether certain type system structures are permitted—for example, with inheritance.

After creating instances of types, the instances also need to be destroyed and memory needs to be recycled. Another feature of the runtime is the garbage collector. The garbage collector cleans up memory from the managed heap that isn’t referenced anymore. Chapter 5, “Managed and Unmanaged Resources,” explains how this is done and when it happens.

The runtime is also responsible for threading. Creating a managed thread from C# is not necessarily a thread from the underlying operating system. Threads are virtualized and managed by the runtime.

NOTE How threads can be created and managed from C# is covered in Chapter 21, “Tasks and Parallel Programming,” and in Chapter 22, “Task Synchronization.”

.NET Native

A new feature of .NET 2015 is to compile a managed program to native code, .NET Native. With Windows apps this generates optimized code that can have a startup time that’s up to 60 percent faster and uses 15 to 20 percent less memory.

.NET Native started with compiling UWP apps to native code for apps deployed to the Windows Store. Now, .NET Native is also available with other .NET Core applications. You can compile .NET Core applications running on both Windows and Linux to native code. Of course, you need different native images on each of these platforms. Behind the scenes, .NET Native shares the C++ optimizer for generating the native code.

Windows Runtime

Starting with Windows 8, the Windows operating system offers another framework: the Windows Runtime. This runtime is used by the Windows Universal Platform and was version 1 with Windows 8, version 2 with Windows 8.1, and version 3 with Windows 10.

Unlike the .NET Framework, this framework was created using native code. When it’s used with .NET applications, the types and methods contained just look like .NET. With the help of language projection, the Windows Runtime can be used with the JavaScript, C++, and .NET languages, and it looks like it’s native to the programming environment. Methods are not only behaving differently in regard to case sensitivity; the methods and types can also have different names depending on where they are used.

The Windows Runtime offers an object hierarchy organized in namespaces that start with Windows. Looking at these classes, there’s not a lot with duplicate functionality to the .NET Framework; instead, extra functionality is offered that is available for apps running on the Universal Windows Platform.

	Namespace
	Description

	Windows.ApplicationModel
	This namespace and its subnamespaces, such as Windows.ApplicationModel.Contracts, define classes to manage the app lifecycle and communication with other apps.

	Windows.Data
	Windows.Data defines subnamespaces to work with Text, JSON, PDF, and XML data.

	Windows.Devices
	Geolocation, smartcards, point of service devices, printers, scanners, and other devices can be accessed with subnamespaces of Windows.Devices.

	Windows.Foundation
	Windows.Foundation defines core functionality. Interfaces for collections are defined with the namespace Windows.Foundation.Collections. You will not find concrete collection classes here. Instead, interfaces of .NET collection types map to the Windows Runtime types.

	Windows.Media
	Windows.Media is the root namespace for playing and capturing video and audio, accessing playlists, and doing speech output.

	Windows.Networking
	This is the root namespace for socket programming, background transfer of data, and push notifications.

	Windows.Security
	Classes from Windows.Security.Credentials offer a safe store for passwords; Windows.Security.Credentials.UI offers a picker to get credentials from the user.

	Windows.Services.Maps
	This namespace contains classes for location services and routing.

	Windows.Storage
	With Windows.Storage and its subnamespaces, it is possible to access files and directories as well as use streams and compression.

	Windows.System
	The Windows.System namespace and its subnamespaces give information about the system and the user, but they also offer a Launcher to launch other apps.

	Windows.UI.Xaml
	In this namespace, you can find a ton of types for the user interface.

Hello, World

Let’s get into coding and create a Hello, World application. Since the 1970s, when Brian Kernighan and Dennis Ritchie wrote the book The C Programming Language, it’s been a tradition to start learning programming languages using a Hello, World application. Interestingly, the syntax for Hello, World changed with C# 6; it’s the first time this simple program has looked different since the invention of C#.

The first samples will be created without the help of Visual Studio so you can see what happens behind the scenes by creating the application with command-line tools and a simple text editor (such as Notepad). Later, you’ll switch to using Visual Studio because it makes programming life easier.

Type the following source code into a text editor, and save it with a .cs extension (for example, HelloWorld.cs). The Main method is the entry point for a .NET application. The CLR invokes a static Main method on startup. The Main method needs to be put into a class. Here, the class is named Program, but you could call it by any name. WriteLine is a static method of the Console class. All the static members of the Console class are opened with the using declaration in the first line. using static System.Console opens the static members of the Console class with the result that you don’t need to type the class name calling the method WriteLine (code file Dotnet/HelloWorld.cs):

using static System.Console;

class Program
{
 static void Main()
 {
 WriteLine("Hello, World!");
 }
}

As previously mentioned, the syntax of Hello, World changed slightly with C# 6. Previous to C# 6, using static was not available, and only a namespace could be opened with the using declaration. Of course, the following code still works with C# 6 (code file Dotnet/HelloWorld2.cs):

using System;

class Program
{
 static void Main()
 {
 Console.WriteLine("Hello, World!");
 }
}

The using declaration is there to reduce the code with opening a namespace. Another way to write the Hello, World program is to remove the using declaration and add the System namespace to the Console class with the invocation of the WriteLine method (code file Dotnet/HelloWorld3.cs):

class Program
{
 static void Main()
 {
 System.Console.WriteLine("Hello, World!");
 }
}

After writing the source code, you need to compile the code to run it.

Compiling with .NET 4.6

You can compile this program by simply running the C# command-line compiler (csc.exe) against the source file, like this:

csc HelloWorld.cs

If you want to compile code from the command line using the csc command, you should be aware that the .NET command-line tools, including csc, are available only if certain environment variables have been set up. Depending on how you installed .NET (and Visual Studio), this may or may not be the case on your machine.

NOTE If you do not have the environment variables set up, you have three options: The first is to add the path to the call of the csc executable. It is located at %Program Files%\MsBuild\14.0\Bin\csc.exe With the dotnet tools installed, you can also find the csc at %ProgramFiles%\dot.net\bin\csc.exe. The second option is to run the batch file %Microsoft Visual Studio 2015%\Common7\Tools\vsvars32.bat from the command prompt before running csc, where %Microsoft Visual Studio 2015% is the folder to which Visual Studio 2015 has been installed. The third, and easiest, way is to use the Visual Studio 2015 command prompt instead of the Windows command prompt. To find the Visual Studio 2015 command prompt from the Start menu, select Programs ➪ Microsoft Visual Studio 2015 ➪ Visual Studio Tools. The Visual Studio 2015 command prompt is simply a command prompt window that automatically runs vsvars32.bat when it opens.

Compiling the code produces an executable file named HelloWorld.exe, which you can run from the command line. You can also run it from Windows Explorer as you would run any other executable. Give it a try:

> csc HelloWorld.cs
Microsoft (R) Visual C# Compiler version 1.1.0.51109
Copyright (C) Microsoft Corporation. All rights reserved.
> HelloWorld
Hello World!

Compiling an executable this way produces an assembly that contains Intermediate Language (IL) code. The assembly can be read using the Intermediate Language Disassembler (IL DASM) tool. If you run ildasm.exe and open HelloWorld.exe, you see that the assembly contains a Program type and a Main method as shown in Figure 1.3.

[image: Screenshot shows a DASM window displaying a tree with the main nodes Helloworld.exe and Program. The sub nodes are Manifest, .class private cuto ansi, Main:void(), and .ctor:void().]

Figure 1.3

Double-click the MANIFEST node in the tree view to reveal metadata information about the assembly (see Figure 1.4). This assembly makes use of the mscorlib assembly (because the Console class is located there), and some configuration and version of the HelloWorld assembly.

[image: Screenshot shows a window for MANIFEST displaying the metadata information using HelloWorld assembly.]

Figure 1.4

Double-click the Main method to reveal the IL code of this method (see Figure 1.5). No matter what version of the Hello, World code you compiled, the result is the same. The string Hello, World! is loaded before calling the method System.Console.WriteLine that is defined within the mscorlib assembly passing the string. One feature of the CLR is the JIT compiler. The JIT compiler compiles IL code to native code when running the application.

[image: Screenshot shows a window for Program::Main : void() displaying the IL code.]

Figure 1.5

Compiling with .NET Core CLI

Using the new .NET Core Command line (CLI), some preparations need to be done to compile the application without the help of Visual Studio. Let’s have a look at the new tools next to compile the Hello, World sample application.

Setting Up the Environment

In case you have Visual Studio 2015 with the latest updates installed, you can immediately start with the CLI tools. Otherwise, you need to install .NET Core and the CLI tools. You can find instructions for the download at http://dotnet.github.io for Windows, Linux, and OS X.

With Windows, different versions of .NET Core runtimes as well as NuGet packages are installed in the user profile. As you work with .NET, this folder increases in size. Over time as you create multiple projects, NuGet packages are no longer stored in the project itself; they’re stored in this user-specific folder. This has the advantage that you do not need to download NuGet packages for every different project. After you have this NuGet package downloaded, it’s on your system. Just as different versions of the NuGet packages as well as the runtime are available, all the different versions are stored in this folder. From time to time it might be interesting to check this folder and delete old versions you no longer need.

Installing .NET Core CLI tools, you have the dotnet tools as an entry point to start all these tools. Just start

> dotnet

to see all the different options of the dotnet tools available.

The repl (read, eval, print, loop') command is good to learn and test simple features of C# without the need to create a program. Start repl with the dotnet tool:

> dotnet repl

This starts an interactive repl session. You can enter the following statements for a Hello, World using a variable:

> using static System.Console;
> var hello ="Hello, World!";
> WriteLine(hello);

The output you’ll see as you enter the last statement is the Hello, World! string.

Building the Application

The dotnet tools offer an easy way to create a Hello, World application. You create a new directory HelloWorldApp, and change to this directory with the command prompt. Then enter this command:

> dotnet new

This command creates a Program.cs file that includes the code for the Hello, World program, a NuGet.config file that defines the NuGet server where NuGet packages should be loaded, and project.json, the new project configuration file.

NOTE With dotnet new you can also create the initial files needed for libraries and ASP.NET web applications (with the option ––type). You can also select other programming languages, such as F# and Visual Basic (with the option ––lang).

The created project configuration file is named project.json. This file is in JavaScript Object Notation (JSON) format and defines the framework application information such as version, description, authors, tags, dependencies to libraries, and the frameworks that are supported by the application. The generated project configuration file is shown in the following code snippet (code file HelloWorldApp/project.json):

{
 "version":"1.0.0-*",
 "compilationOptions": {
 "emitEntryPoint": true
 },

 "dependencies": {
 "NetStandard.Library":"1.0.0-*"
 },

 "frameworks" : {
 "netstandardapp1.5": {
 "imports":"dnxcore50"
 }
 },
"runtimes" : {
 "ubuntu.14.04-x64": { },
 "win7-x64": { },
 "win10-x64": { },
 "osx.10.10-x64": { },
 "osx.10.11-x64": { }
 }
}

With the compilationOptions settings, the emitEntryPoint is set. This is necessary if you create a Main method as a program entry point. This Main method is invoked when you run the application. This setting is not needed with libraries.

With the dependencies section, you can add all dependencies of the program, such as additional NuGet packages needed to compile the program. By default, NetStandard.Library is added as a dependency. NetStandard.Library is a reference NuGet package—a package that references other NuGet packages. With this you can avoid adding a lot of other packages, such as System.Console for the Console class, System.Collections for generic collection classes, and many more. NetStandard.Library 1.0 is a standard that defines a list of assemblies that all .NET platforms must support. At the website https://github.com/dotnet/corefx/blob/master/Documentation/project-docs/standard-platform.md you can find a long list of assemblies and their version numbers that are part of 1.0 and the assemblies that are added with 1.1, 1.2, 1.3, and 1.4 of the .NET standard.

Having a dependency on NetStandard.Library 1.0, you can support the .NET Framework 4.5.2 and up (support for .NET 4, 4.5, 4.5.1 ended in January 2016), .NET Core 1.0, the UWP 10.0, and other .NET Frameworks such as Windows Phone Silverlight 8.0, Mono, and Mono/Xamarin. Changing to version 1.3 restricts the support to .NET 4.6, .NET Core 1.0, UWP 10.0, and Mono/Xamarin platforms. Version 1.4 restricts support to .NET 4.6.1, .NET Core 1.0, and Mono/Xamarin platforms, but you get newer versions and a larger list of assemblies available.

The frameworks section in project.json lists the .NET Frameworks that are supported by your application. By default, the application is only built for .NET Core 1.0 as specified by the netstandardapp1.5 moniker. netstandardapp1.5 is used with applications built for .NET Core. With libraries, you can use the moniker netstandard1.0. This allows using the library both from .NET Core applications and applications using the .NET Framework. The imports section within netstandardapp1.5 references the older name dnxcore50, which maps the old moniker to the new one. This allows packages that still use the old name to be used.

.NET Core is the new open source version of the framework that is available on Windows, Linux, and OS X. The runtime that should be supported needs to be added to the runtimes section. The previous code snippet shows support for the Ubuntu Linux distribution, Windows 7 (which also allows running the app on Windows 8), Windows 10, and OS X.

Adding the string net46, the program is built for the .NET Framework, version 4.6, as well:

 "frameworks" : {
 "netstandardapp1.5" : { }
 "net46" : { }
 }

Adding net46 to the frameworks section also results in no more support for non-Windows runtimes, and thus you need to remove these runtimes.

You can also add additional metadata, such as a description, author information, tags, project, and license URL:

"version":"1.0.0-*",
"description":"HelloWorld Sample App for Professional C#",
"authors": ["Christian Nagel"],
"tags": ["Sample","Hello","Wrox"],
"projectUrl":"http://github.com/professionalCSharp/",
"licenseUrl":"",

As you add multiple frameworks to the project.json file, you can specify dependencies that are specific to every framework in a dependencies section below the framework. The dependencies specified in the dependencies section that is at the same hierarchical level as the frameworks section specify the dependencies common to all frameworks.

After having the project structure in place, you can download all dependencies of the application using the command

> dotnet restore

while your command prompt is positioned in the same directory where the project.json file resides. This command downloads all dependencies needed for the application, as defined in the project.json file. Specifying the version 1.0.0-* gets version 1.0.0 and the latest available version for the *. In the file project.lock.json you can see what NuGet packages with which version were retrieved, including dependencies of dependencies. Remember, the packages are stored in a user-specific folder.

To compile the application, start the command dotnet build and you can see output like this—compiling for .NET Core 1.0 and .NET Framework 4.6:

> dotnet build
Compiling HelloWorldApp for .NETStandardApp, Version=1.5"
Compilation succeeded.
 0 Warning(s)
 0 Error(s)
Time elapsed 00:00:02.6911660

Compiling HelloWorldApp for .NETFramework,Version=v4.6
Compilation succeeded.
 0 Warning(s)
 0 Error(s)
Time elapsed 00:00:03.3735370

As a result of the compilation process, you find the assembly containing the IL code of the Program class within the bin/debug/[netstandardapp1.5|net46] folder. If you compare the build of .NET Core with .NET 4.6, you will find a DLL containing the IL code with .NET Core, and an EXE containing the IL code with .NET 4.6. The assembly generated for .NET Core has a dependency to the System.Console assembly, whereas the .NET 4.6 assembly finds the Console class in the mscorlib assembly.

You can also compile the program to native code using this command line:

> dotnet build --native

Compiling to native code results in a faster startup of the application as well as less memory consumption. The native compilation process compiles the IL code of the application as well as all dependencies to a single native image. Don’t expect that all functionality of .NET Core will be available to compile to native code, but as time continues and development from Microsoft proceeds, more and more applications can be compiled to native code.

To run the application, you can use the dotnet command

> dotnet run

To start the application using a specific version of the framework, you can use the option –framework. This framework must be configured with the project.json file:

> dotnet run --framework net46

You can also run the application starting the executable that you can find in the bin/debug directory.

NOTE As you’ve seen building and running the Hello, World app on Windows, the dotnet tools work the same on Linux and OS X. You can use the same dotnet commands on either platform. Before using the dotnet commands, you just need to prepare the infrastructure using the sudo utility for Ubuntu Linux and install a PKG package on OS X as described at http://dotnet.github.io. After installing the .NET Core CLI, you can use the dotnet tools in the same way as you’ve seen in this section—with the exception that the .NET Framework 4.6 is not available. Other than that, you can restore NuGet packages and compile and run the application with dotnet restore, dotnet compile, and dotnet run.

The focus of this book is on Windows, as Visual Studio 2015 offers a more powerful development platform than is available on the other platforms, but many code samples from this book are based on .NET Core, and you will be able to run them on other platforms as well. You can also use Visual Studio Code, a free development environment, to develop applications directly on Linux and OS X. See the section “Developer Tools” later in this chapter for more information about different editions of Visual Studio.

Packaging and Publishing the Application

With the dotnet tool you can also create a NuGet package and publish the application for deployment.

The command dotnet pack creates a NuGet package that you can put on a NuGet server. Developers can now reference the package using this command:

> dotnet pack

Running this command with the HelloWorldApp creates the file HelloWorldApp.1.0.0.nupkg that contains the assemblies for all supported frameworks. A NuGet package is a ZIP file. If you rename this file with a .zip extension, you can easily look into it to see the content. With the sample app, two folders are created named dnxcore500 and net46 that contain the respective assemblies. The file HelloWorldApp.nuspec is an XML file that describes the NuGet package, lists the content for supported frameworks, and lists assembly dependencies that are required before the NuGet package can be installed.

To publish the application, on the target system the runtime is needed as well. The files that are needed for publishing can be created with the dotnet publish command:

> dotnet publish

Using optional arguments, you can specify only a specific runtime to publish for (option -r) or a different output directory (option -o). After running this command on a Windows system you can find a win7-x64 folder with all the files needed on the target system. Be aware that with .NET Core the runtime is included; thus it doesn’t matter what runtime version is installed.

Application Types and Technologies

You can use C# to create console applications; with most samples in the first chapters of this book you’ll do that exact thing. For real programs, console applications are not used that often. You can use C# to create applications that use many of the technologies associated with .NET. This section gives you an overview of the different types of applications that you can write in C#.

Data Access

Before having a look at the application types themselves, let’s look at technologies that are used by all application types: access to data.

Files and directories can be accessed by using simple API calls; however, the simple API calls are not flexible enough for some scenarios. With the stream API you have a lot of flexibility, and the streams offer many more features such as encryption or compression. Readers and writers make using streams easier. All of the different options available here are covered in Chapter 23, “Files and Streams.” It’s also possible to serialize complete objects in XML or JSON format. Chapter 27, “XML and JSON,” discusses these options.

To read and write to databases, you can use ADO.NET directly (see Chapter 37, “ADO.NET”), or you can use an abstraction layer, the ADO.NET Entity Framework (Chapter 38, “Entity Framework Core”). Entity Framework offers a mapping of object hierarchies to the relations of a database.

The ADO.NET Entity Framework made it through several iterations. The different versions of the Entity Framework are worth discussing; this gives you good information about why NuGet packages are a good idea. You’ll also learn what parts of the Entity Framework shouldn’t be used going forward.

The following table describes the different versions of the Entity Framework and each version’s new features.

	Entity Framework
	Description

	1.0
	Available with .NET 3.5 SP1. This version offered a mapping through an XML file to map tables to objects.

	4.0
	With .NET 4, Entity Framework made a jump from version 1 to 4.

	4.1
	Code First Support.

	4.2
	Bug fixes.

	4.3
	Migrations added.

	5.0
	Released together with .NET 4.5 and offering performance improvements, supporting new SQL Server features.

	6.0
	Moved to a NuGet package.

	7.0
	A complete rewrite, also supporting NoSQL, running on Windows apps as well.

Let’s get into some details. Entity Framework was originally released as part of the .NET Framework classes that come preinstalled with the .NET Framework. Entity Framework 1 was part of the first service pack of .NET 3.5, which was a feature update: .NET 3.5 Update 1.

The second version had so many new features that the decision was made to move to version 4 together with .NET 4. After that, Entity Framework was released at a faster cadence than the .NET Framework. To get a newer version of Entity Framework, a NuGet package had to be added to the application (versions 4.1, 4.2, 4.3). There was a problem with this approach. Classes that have already been delivered with the .NET Framework had to be used as is. Just additional features, such as Code First, have been added with NuGet packages.

With .NET 4.5, Entity Framework 5.0 was released. Again some of the classes come with the preinstalled .NET Framework, and additional features are part of NuGet packages. The NuGet package also made it possible to allow installing the NuGet package for Entity Framework 5.0 with .NET 4.0 applications. However, in reality the package decided (via a script) in a case when Entity Framework 5.0 is added to a .NET 4.0 project that the result would be Entity Framework 4.4 because some of the types required belong to .NET 4.5 and are not part of .NET 4.

The next version of Entity Framework solved this problem by moving all the Entity Framework types to a NuGet package; the types that come with the Framework itself are ignored. This allows using version 6.0 with older versions of the Framework; you aren’t restricted to 4.5. To not conflict with classes of the Framework, some types moved to a different namespace. Some features of ASP.NET Web Forms had an issue with that because original classes of the Entity Framework have been used, and these do not map that easily to the new classes.

During the different releases, Entity Framework gives different options for mapping the database tables to classes. The first two options were Database First and Model First. With both of these options, the mapping was done via XML files. The XML file is presented via a graphical designer, and it’s possible to drag entities from the toolbox to the designer for doing the mapping.

With version 4.1, mapping via code was added: Code First. Code First doesn’t mean that the database can’t exist beforehand. Both are possible: A database can be created dynamically, but also the database can exist before you write the code. Using Code First, you don’t do the mapping via XML files. Instead, attributes or a fluent API can define the mapping programmatically.

Entity Framework Core 1.0 is a complete redesign of Entity Framework, as is reflected with the new name. Code needs to be changed to migrate applications from older versions of Entity Framework to the new version. Older mapping variants, such as Database First and Model First, have been dropped, as Code First is a better alternative. The complete redesign was also done to support not only relational databases but also NoSQL. Azure Table Storage is one of the options where Entity Framework can now be used.

Windows Desktop Applications

For creating Windows desktop applications, two technologies are available: Windows Forms and Windows Presentation Foundation. Windows Forms consists of classes that wrap native Windows controls; it’s based on pixel graphics. Windows Presentation Foundation (WPF) is the newer technology and is based on vector graphics.

WPF makes use of XAML in building applications. XAML stands for eXtensible Application Markup Language. This way to create applications within a Microsoft environment was introduced in 2006 and is part of the .NET Framework 3.0. .NET 4.5 introduced new features to WPF, such as ribbon controls and live shaping.

XAML is the XML declaration used to create a form that represents all the visual aspects and behaviors of the WPF application. Though you can work with a WPF application programmatically, WPF is a step in the direction of declarative programming, which the industry is moving to. Declarative programming means that instead of creating objects through programming in a compiled language such as C#, Visual Basic, or Java, you declare everything through XML-type programming. Chapter 29, “Core XAML,” introduces XAML (which is also used with XML Paper Specification, Windows Workflow Foundation, and Windows Communication Foundation). Chapter 30 covers XAML styles and resources. Chapter 34, “Windows Desktop Applications with WPF,” gives details on controls, layout, and data binding. Printing and creating documents is another important aspect of WPF that’s covered in Chapter 35, “Creating Documents with WPF.”

What’s the future of WPF? Isn’t the UWP the UI platform to use for new applications going forward? UWP has advantages in supporting mobile devices as well. As long as some of your users have not upgraded to Windows 10, you need to support older operating systems such as Windows 7. UWP apps don’t run on Windows 7 or Windows 8. You can use WPF. In case you also would like to support mobile devices, it’s best to do as much code sharing as possible. You can create apps with both WPF and UWP by using as much common code as possible by supporting the MVVM pattern. This pattern is covered in Chapter 31, “Patterns with XAML Apps.”

Universal Windows Platform

The Universal Windows Platform (UWP) is a strategic platform from Microsoft. When you use the UWP to create Windows apps, you’re limited to Windows 10 and newer versions of Windows. But you’re not bound to the desktop version of Windows. With Windows 10 you have a lot of different options, such as Phone, Xbox, Surface Hub, HoloLens, and IoT. There’s one API that works on all these devices!

One API for all these devices? Yes! Each device family can add its own Software Development Kit (SDK) to add features that are not part of the API that’s available for all devices. Adding these SDKs does not break the application, but you need to programmatically check whether an API from such an SDK is available on the platform the app is running. Depending on how many API calls you need to differentiate, the code might grow into a mess; dependency injection might be a better option.

NOTE Dependency injection is discussed in Chapter 31, along with other patterns useful with XAML-based applications.

You can decide what device families to support with your applications. Not all device families will be useful for every app.

Will there be newer versions of Windows after Windows 10? Windows 11 is not planned. With Windows apps (which are also known as Metro apps, Windows Store apps, Modern apps, and Universal Windows apps) you’ve targeted either Windows 8 or Windows 8.1. Windows 8 apps typically were also running on Windows 8.1, but not the other way around. Now this is very different. When you create an app for the Universal Windows Platform, you target a version such as 10.0.10130.0 and define what minimum version is available and what latest version was tested, and the assumption is that it runs on future versions as well. Depending on the features you can use for your app and what version you’re expecting the user to have, you can decide what minimum version to support. Personal users will typically automatically update to newer versions; Enterprise users might stick to older versions.

Windows Apps running on the Universal Windows Platform make use of the Windows Runtime and .NET Core. The most important chapters for these app types are Chapter 32, “Windows Apps: User Interfaces,” and Chapter 33, “Advanced Windows Apps.” These apps are also covered in many other chapters, such as Chapter 23 and Chapters 29 through 31.

SOAP Services with WCF

Windows Communication Foundation (WCF) is a feature-rich technology that was meant to replace all communication technologies that were available before WCF by offering SOAP-based communication with all the features used by standards-based web services such as security, transactions, duplex and one-way communication, routing, discovery, and so on. WCF provides you with the ability to build your service one time and then expose this service in many ways (even under different protocols) by making changes within a configuration file. WCF is a powerful but complex way to connect disparate systems. Chapter 44, “Windows Communication Foundation,” covers this in detail.

Web Services with the ASP.NET Web API

An option that is a lot easier for communication and fulfills more than 90 percent of requirements by distributed applications is the ASP.NET Web API. This technology is based on REST (Representational State Transfer), which defines guidelines and best practices for stateless and scalable web services.

The client can receive JSON or XML data. JSON and XML can also be formatted in a way to make use of the Open Data specification (OData).

The features of this new API make it easy to consume from web clients using JavaScript and also by using the Universal Windows Platform.

The ASP.NET Web API is a good approach for creating microservices. The approach to build microservices defines smaller services that can run and be deployed independently, having their own control of a data store.

With ASP.NET 5, the older version of ASP.NET Web API that was separated from ASP.NET MVC now merged with ASP.NET MVC 6 and uses the same types and features.

NOTE The ASP.NET Web API and more information on microservices are covered in Chapter 42.

WebHooks and SignalR

For real-time web functionality and bidirectional communication between the client and the server, WebHooks and SignalR are ASP.NET technology that can be used.

SignalR allows pushing information to connected clients as soon as information is available. SignalR makes use of the WebSocket technology, and it has a fallback to a pull-based mechanism of communication in case WebSockets are not available.

WebHooks allows you to integrate with public services, and these services can call into your public ASP.NET Web API service. WebHooks is a technology to receive push notification from services such as GitHub or Dropbox and many other services.

The foundation of SignalR connection management, grouping of connections, and authorization and integration of WebHooks are discussed in Chapter 43, “WebHooks and SignalR.”

Windows Services

A web service, whether it’s done with WCF or ASP.NET Web Services, needs a host to run. Internet Information Server is usually a good option because of all the services it offers, but it can also be a custom program. With the custom option, creating a background process that runs with the startup of Windows is a Windows Service. This is a program designed to run in the background in Windows NT kernel–based operating systems. Services are useful when you want a program to run continuously and be ready to respond to events without having been explicitly started by the user. A good example is the World Wide Web Service on web servers, which listens for web requests from clients.

It is easy to write services in C#. .NET Framework base classes are available in the System.ServiceProcess namespace that handles many of the boilerplate tasks associated with services. In addition, Visual Studio .NET enables you to create a C# Windows Service project, which uses C# source code for a basic Windows Service. Chapter 39, “Windows Services,” explores how to write C# Windows Services.

Web Applications

The original introduction of ASP.NET 1 fundamentally changed the web programming model. ASP.NET 5 is the new major release, which allows the use of .NET Core for high performance and scalability. This new release can also run on Linux systems, which was a high demand.

With ASP.NET 5, ASP.NET Web Forms is no longer covered (this can still be used and is updated with .NET 4.6), so this book has a focus on the modern technology ASP.NET MVC 6, which is part of ASP.NET 5.

ASP.NET MVC is based on the well-known Model View Controller (MVC) pattern for easier unit testing. It also allows a clear separation for writing user interface code with HTML, CSS, and JavaScript, and it only uses C# on the backend.

NOTE Chapter 41, “ASP.NET MVC,” covers ASP.NET MVC 6.

Microsoft Azure

Nowadays you can’t ignore the cloud when considering the development picture. Although there’s not a dedicated chapter on cloud technologies, Microsoft Azure is referenced in several chapters in this book.

Microsoft Azure offers Software as a Service (SaaS), Infrastructure as a Service (IaaS), and Platform as a Service (PaaS), and sometimes offerings are in between these categories. Let’s have a look at some Microsoft Azure offerings.

Software as a Service

SaaS offers complete software; you don’t have to deal with management of servers, updates, and so on. Office 365 is one of the SaaS offerings for using e-mail and other services via a cloud offering. A SaaS offering that’s relevant for developers is Visual Studio Online, which is not Visual Studio running in the browser. Visual Studio Online is the Team Foundation Server in the cloud that can be used as a private code repository, for tracking bugs and work items, and for build and testing services.

Infrastructure as a Service

Another service offering is IaaS. Virtual machines are offered by this service offering. You are responsible for managing the operating system and maintaining updates. When you create virtual machines, you can decide between different hardware offerings starting with shared Cores up to 32 cores (at the time of this writing, but things change quickly). 32 cores, 448 GB RAM, and 6,144 GB local SSD belong to the “G-Series” of machines, which is named after Godzilla.

With preinstalled operating systems you can decide between Windows, Windows Server, Linux, and operating systems that come preinstalled with SQL Server, BizTalk Server, SharePoint, and Oracle.

I use virtual machines often for environments that I need only for several hours a week, as the virtual machines are paid on an hourly basis. In case you want to try compiling and running .NET Core programs on Linux but don’t have a Linux machine, installing such an environment on Microsoft Azure is an easy task.

Platform as a Service

For developers, the most relevant part of Microsoft Azure is PaaS. You can access services for storing and reading data, use computing and networking capabilities of app services, and integrate developer services within the application.

For storing data in the cloud, you can use a relational data store SQL Database. SQL Database is nearly the same as the on-premise version of SQL Server. There are also some NoSQL solutions such as DocumentDB that stores JSON data, and Storage that stores blobs (for example, for images or videos) and tabular data (which is really fast and offers huge amounts of data).

Web apps can be used to host your ASP.NET MVC solution, and API Apps can be used to host your ASP.NET Web API services.

Visual Studio Online is part of the Developer Services offerings. Here you also can find Visual Studio Application Insights. With faster release cycles, it’s becoming more and more important to get information about how the user uses the app. What menus are never used because the users probably don’t find them? What paths in the app is the user is taking to fulfill his or her tasks? With Visual Studio Application Insights, you can get good anonymous user information to find out the issues users have with the application, and with DevOps in place you can do quick fixes.

NOTE In Chapter 20, “Diagnostics and Application Insights,” you can read about tracing features and also how to use the Visual Studio Application Insights offering of Microsoft Azure. Chapter 45, “Deployment of Websites and Services,” not only shows deployment to the local Internet Information Server (IIS) but also describes deployment to Microsoft Azure Web Apps.

Developer Tools

This final part of the chapter, before we switch to a lot of C# code in the next chapter, covers developer tools and editions of Visual Studio 2015.

Visual Studio Community

This edition of Visual Studio is a free edition with features that the Professional edition previously had. There’s a license restriction for when it can be used. It’s free for open-source projects and training, and also free to academic and small professional teams. Unlike the Express editions of Visual Studio that previously have been the free editions, this product allows using add-ins with Visual Studio.

Visual Studio Professional with MSDN

This edition includes more features than the Community edition, such as the CodeLens and Team Foundation Server for source code management and team collaboration. With this edition, you also get an MSDN subscription that includes several server products from Microsoft for development and testing.

Visual Studio Enterprise with MSDN

Visual Studio 2013 had Premium and Ultimate editions. Visual Studio 2015 instead has the Enterprise edition. This edition offers Ultimate features with a Premium price model. Like the Professional edition, this edition contains a lot of tools for testing, such as Web Load & Performance Testing, Unit Test Isolation with Microsoft Fakes, and Coded UI Testing. (Unit testing is part of all Visual Studio editions.) With Code Clone you can find code clones in your solution. Visual Studio Enterprise also contains architecture and modeling tools to analyze and validate the solution architecture.

NOTE Be aware that with an MSDN subscription you’re entitled to free use of Microsoft Azure up to a specific monthly amount that is contingent on the type of the MSDN subscription you have.

NOTE Chapter 17, “Visual Studio 2015,” includes details on using several features of Visual Studio 2015. Chapter 19, “Testing,” gets into details of unit testing, web testing, and creating Coded UI tests.

NOTE For some of the features in the book—for example, the Coded UI Tests —you need Visual Studio Enterprise. You can work through most parts of the book with the Visual Studio Community edition.

Visual Studio Code

Visual Studio Code is a completely different development tool compared to the other Visual Studio editions. While Visual Studio 2015 offers project-based features with a rich set of templates and tools, Visual Studio is a code editor with little project management support. However, Visual Studio Code runs not only on Windows, but also on Linux and OS X.

With many chapters of this book, you can use Visual Studio Code as your development editor. What you can’t do is create WPF, UWP, or WCF applications, and you also don’t have access to the features covered in Chapter 17, “Visual Studio 2015.” You can use Visual Studio Code for .NET Core console applications, and ASP.NET Core 1.0 web applications using .NET Core.

You can download Visual Studio Code from http://code.visualstudio.com.

Summary

This chapter covered a lot of ground to review important technologies and changes with technologies. Knowing about the history of some technologies helps you decide which technology should be used with new applications and what you should do with existing applications.

You read about the differences between .NET Framework 4.6 and .NET Core 1.0, and you saw how to create and run a Hello, World application with all these environments without using Visual Studio.

You’ve seen the functions of the Common Language Runtime (CLR) and looked at technologies for accessing the database and creating Windows apps. You also reviewed the advantages of ASP.NET Core 1.0.

Chapter 2 steps into using Visual Studio to create the Hello, World application and goes on to discuss the syntax of C#.

2
Core C#

What’s In This Chapter?

	Creating Hello, World! with Visual Studio

	Declaring variables

	Initialization and scope of variables

	Predefined C# data types

	Dictating execution flow within a C# program

	Enumerations

	Namespaces

	The Main method

	Using internal comments and documentation features

	Preprocessor directives

	Guidelines and conventions for good programming in C#

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	HelloWorldApp

	VariablesSample

	VariableScopeSample

	IfStatement

	ForLoop

	EnumerationsSample

	NamespacesSample

	ArgumentsSample

	StringSample

Fundamentals of C#

Now that you understand more about what C# can do, you need to know how to use it. This chapter gives you a good start in that direction by providing a basic understanding of the fundamentals of C# programming, which is built on in subsequent chapters. By the end of this chapter, you will know enough C# to write simple programs (though without using inheritance or other object-oriented features, which are covered in later chapters).

Creating Hello, World! with Visual Studio

Chapter 1, “.NET Application Architectures,” explains how to write a “Hello, World!” C# program using the csc Compiler for .NET 4.6 and using dotnet tools for .NET Core 1.0. You can also create it with Visual Studio 2015, which is done in this chapter.

NOTE In the first chapters of this book, Visual Studio is used as a code editor and compiler without employing all the other features of Visual Studio. Chapter 17, “Visual Studio 2015,” covers more about all the other options and features offered by Visual Studio.

Creating a Solution

First, create a solution file within Visual Studio. A solution enables you to group multiple projects and to open all the projects of a solution together.

You can create an empty solution by selecting File ➪ New Project and then selecting Installed ➪ Templates ➪ Other Project Types ➪ Visual Studio Solutions. Select the Blank Solution template (see Figure 2.1). With the New Project dialog, you can define the name of the solution as well as the directory where the solution should be stored. You can also define whether the solution should be added to a Git repository for source control management.

[image: Screenshot shows a new project creation window with selected blank solution template, tree for recent, installed, online on the left side, search field and text boxes for name, location, solution name and OK button.]

Figure 2.1

After creating the solution, you see the content of the solution within the Solution Explorer (see Figure 2.2). Currently, there’s only a solution file without any content.

[image: Screenshot shows a Solution Explorer window listing a solution file Solution CoreCSharpSamples with zero projects, a search field, buttons for home, settings in the menu.]

Figure 2.2

Creating a New Project

Now add a new project to create the Hello, World! app. Right-click the solution in Solution Explorer, or use the Menu button on the keyboard to open the context menu (refer to Figure 2.2), and open the application context menu and select Add ➪ New Project to open the Add New Project dialog. Alternatively, you can select File ➪ Add ➪ New Project. In the Add New Project dialog, select the Console Application (Package) template to create a console application targeting .NET Core. You can find this project type in the tree within Installed ➪ Templates ➪ Visual C# ➪ Web (see Figure 2.3). Set the name of the application to HelloWorldApp.

[image: Image described by surrounding text.]

Figure 2.3

NOTE To open the context menu of an application, you have different options: right-click while selecting the item where the context menu should be opened (or left-click if you are left-handed), or select the item and press the menu key on the keyboard (usually located between the Alt and Ctrl keys on the right side). If your keyboard doesn’t have a menu key, press Shift + F10. Lastly, if you have a touch pad, you can make a two-finger touch.

The Solution Explorer is no longer empty. It now shows the project and all the files belonging to the project (see Figure 2.4).

[image: Screenshot shows a Solution Explorer window displaying a tree for a project HelloWorldApp and its files along with search field, buttons for home, settings in the menu.]

Figure 2.4

In Chapter 1, the project file was created by the dotnet tool, now it is created from a Visual Studio template. Two Frameworks—.NET 4.6 and .NET Core 1.0 are specified. With both frameworks, the NetStandard.Library 1.0 is referenced (code file HelloWorldApp/project.json):

{
 "version":"1.0.0-*",
 "description":"",
 "authors": [""],
 "tags": [""],
 "projectUrl":"",
 "licenseUrl":"",

 "dependencies": {
 "NETStandard.Library":"1.0.0-*"
 },

"frameworks": {
 "net46": { },
 "netstandardapp1.5": {
 "dependencies": { },
 "imports":"dnxcore50"
 }
 },
 "runtimes": {
 "win7-x64": { },
 "win10-x64": { }
 }
}

The generated C# source file Program.cs contains a Main method within the Program class that itself is defined within the namespace HelloWorldApp (code file HelloWorldApp/Program.cs):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace HelloWorldApp
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

Change this to the Hello, World! app. You need to open the namespace for using the WriteLine method of the Console class, and you need to invoke the WriteLine method. You also change the namespace for the Program class. The Program class is now defined within the namespace Wrox.HelloWorldApp (code file HelloWorldApp/Program.cs):

using static System.Console;

namespace Wrox.HelloWorldApp
{
 class Program
 {
 static void Main()
 {
 WriteLine("Hello, World!");
 }
 }
}

Select the project in Solution Explorer and use the context menu to open Properties (or View ➪ Property Pages) to open the project configuration (see Figure 2.5). On the Application tab, you can select the name of the application, the default namespace (this is only used for new items added), and the version of the .NET Core version that should be used for the solution. In case you select a version that is different from your default selection, a global.json file is created that contains this configuration setting.

[image: Screenshot shows a project configuration window for HelloWorldApp with application tab selected, fields for default namespace, web root, solution DNX SDK version, configuration and platform.]

Figure 2.5

Compiling and Running the Program

The Build menu offers different options for building the program. You can either use Build ➪ Build Solution to build all projects of the solution, or you can build a single project with Build ➪ Build HelloWorldApp. Also have a look at the other options available with the Build menu.

To generate persistent files, you can check the Produce Outputs on Build option on the Build tab in the project properties (see Figure 2.6).

[image: Screenshot shows a project configuration window for HelloWorldApp with highlighted build tab, marked checkbox for produce outputs on build and unmarked checkbox for Compile TypeScript on build.]

Figure 2.6

After building the program with the Produce Outputs on Build option selected, you can see in File Explorer the directory artifacts that contains subdirectories for all the supported .NET Framework versions listed with the binaries.

You can run the application from within Visual Studio by using Debug ➪ Start Without Debugging. This starts the app as shown in Figure 2.7.

[image: Screenshot shows a command prompt window with message Hello World! Press any key to continue.]

Figure 2.7

NOTE Be sure to not start the app with Debug ➪ Start Debugging; if you do you will not see the output of the app because the console window immediately closes after the app completes. You can use this method to run the app either with setting breakpoints and debugging into the app, or by adding a ReadLine method before the end of the Main method.

You can use the Debug tab in the project properties to configure the runtime version that should be used while running the app (see Figure 2.8).

[image: Screenshot shows a project configuration window for HelloWorldApp with highlighted Debug tab on the left side, fields for profile, launch, command et cetera along with Add, Browse, New and Remove buttons.]

Figure 2.8

TIP When you have multiple projects in the same solution, you can define what project should run by selecting the project in Solution Explorer and opening the context menu. In the context menu click Set as Startup Project (or Project ➪ Set as Startup Project). Alternatively, you can select the solution in the Solution Explorer, and select Set Startup Projects to open the property page for the solution where you can select what should be the startup project. You can also define multiple projects to start.

Taking a Closer Look at the Code

Now let’s concentrate on the C# source code. First, I have a few general comments about C# syntax. In C#, as in other C-style languages, statements end in a semicolon (;) and can continue over multiple lines without needing a continuation character. Statements can be joined into blocks using curly braces ({}). Single-line comments begin with two forward slash characters (//), and multiline comments begin with a slash and an asterisk (/*) and end with the same combination reversed (*/). In these aspects, C# is identical to C++ and Java but different from Visual Basic. It is the semicolons and curly braces that give C# code such a different visual appearance from Visual Basic code. If your background is predominantly Visual Basic, take extra care to remember the semicolon at the end of every statement. Omitting this is usually the biggest single cause of compilation errors among developers who are new to C-style languages. Another thing to remember is that C# is case sensitive. That means the variables named myVar and MyVar are two different variables.

The first few lines in the previous code example are related to namespaces (mentioned later in this chapter), which is a way to group associated classes. The namespace keyword declares the namespace with which your class should be associated. All code within the braces that follow it is regarded as being within that namespace. The using declaration specifies a namespace that the compiler should look at to find any classes that are referenced in your code but aren’t defined in the current namespace. This serves the same purpose as the import statement in Java and the using namespace statement in C++.

using static System.Console;

namespace Wrox
{

The reason for the presence of the using static declaration in the Program.cs file is that you are going to use a library class: System.Console. The using static System.Console declaration enables you to refer to the static members of this class and omit the namespace and class names. Just declaring using System; instead, you need to add the class name for calling the WriteLine method:

using System;

// etc.
Console.WriteLine("Hello World!");

Omitting the complete using declaration, you need to add the namespace name invoking the WriteLine method:

System.Console.WriteLine("Hello World!");

The standard System namespace is where the most commonly used .NET types reside. It is important to realize that everything you do in C# depends on .NET base classes. In this case, you are using the Console class within the System namespace to write to the console window. C# has no built-in keywords of its own for input or output; it is completely reliant on the .NET classes.

NOTE Because almost every sample in this and the next chapters makes use of static members of the Console class, we will assume that a using static System.Console; statement is present in the file for all code snippets.

Within the source code, a class called Program is declared. However, because it has been placed in a namespace called Wrox.HelloWorldApp, the fully qualified name of this class is Wrox.HelloWorldApp.Program:

namespace Wrox.HelloWorldApp
{
 class Program
 {

All C# code must be contained within a class. The class declaration consists of the class keyword, followed by the class name and a pair of curly braces. All code associated with the class should be placed between these braces.

The class Program contains a method called Main. Every C# executable (such as console applications, Windows applications, Windows services, and web applications) must have an entry point—the Main method (note the capital M).

static void Main()
{

The method is called when the program is started. This method must return either nothing (void) or an integer (int). Note the format of method definitions in C#:

[modifiers] return_type MethodName([parameters])
{
 // Method body. NB. This code block is pseudo-code.
}

Here, the first square brackets represent certain optional keywords. Modifiers are used to specify certain features of the method you are defining, such as from where the method can be called. In this case the Main method doesn’t have a public access modifier applied. You can do this in case you need a unit test for the Main method. The runtime doesn’t need the public access modifier applied, and it still can invoke the method. The static modifier is required as the runtime invokes the method without creating an instance of the class. The return type is set to void, and in the example parameters are not included.

Finally, we come to the code statement themselves:

WriteLine("Hello World!");

In this case, you simply call the WriteLine method of the System.Console class to write a line of text to the console window. WriteLine is a static method, so you don’t need to instantiate a Console object before calling it.

Now that you have had a taste of basic C# syntax, you are ready for more detail. Because it is virtually impossible to write any nontrivial program without variables, we start by looking at variables in C#.

Working with Variables

You declare variables in C# using the following syntax:

datatype identifier;

For example:

int i;

This statement declares an int named i. The compiler won’t actually let you use this variable in an expression until you have initialized it with a value.

After it has been declared, you can assign a value to the variable using the assignment operator, =:

i = 10;

You can also declare the variable and initialize its value at the same time:

int i = 10;

If you declare and initialize more than one variable in a single statement, all the variables will be of the same data type:

int x = 10, y =20; // x and y are both ints

To declare variables of different types, you need to use separate statements. You cannot assign different data types within a multiple-variable declaration:

int x = 10;
bool y = true; // Creates a variable that stores true or false
int x = 10, bool y = true; // This won't compile!

Notice the // and the text after it in the preceding examples. These are comments. The // character sequence tells the compiler to ignore the text that follows on this line because it is included for a human to better understand the program; it’s not part of the program itself. Comments are explained further later in this chapter in the “Using Comments” section.

Initializing Variables

Variable initialization demonstrates an example of C#’s emphasis on safety. Briefly, the C# compiler requires that any variable be initialized with some starting value before you refer to that variable in an operation. Most modern compilers will flag violations of this as a warning, but the ever-vigilant C# compiler treats such violations as errors. This prevents you from unintentionally retrieving junk values from memory left over from other programs.

C# has two methods for ensuring that variables are initialized before use:

	Variables that are fields in a class or struct, if not initialized explicitly, are by default zeroed out when they are created (classes and structs are discussed later).

	Variables that are local to a method must be explicitly initialized in your code prior to any statements in which their values are used. In this case, the initialization doesn’t have to happen when the variable is declared, but the compiler checks all possible paths through the method and flags an error if it detects any possibility of the value of a local variable being used before it is initialized.

For example, you can’t do the following in C#:

static int Main()
{
 int d;
 WriteLine(d); // Can't do this! Need to initialize d before use
 return 0;
}

Notice that this code snippet demonstrates defining Main so that it returns an int instead of void.

If you attempt to compile the preceding lines, you receive this error message:

Use of unassigned local variable 'd'

Consider the following statement:

Something objSomething;

In C#, this line of code would create only a reference for a Something object, but this reference would not yet actually refer to any object. Any attempt to call a method or property against this variable would result in an error.

To instantiate a reference object in C#, you must use the new keyword. You create a reference as shown in the previous example and then point the reference at an object allocated on the heap using the new keyword:

objSomething = new Something(); // This creates a Something on the heap

Using Type Inference

Type inference makes use of the var keyword. The syntax for declaring the variable changes by using the var keyword instead of the real type. The compiler “infers” what the type of the variable is by what the variable is initialized to. For example:

var someNumber = 0;

becomes:

int someNumber = 0;

Even though someNumber is never declared as being an int, the compiler figures this out and someNumber is an int for as long as it is in scope. Once compiled, the two preceding statements are equal.

Here is a short program to demonstrate (code file VariablesSample/Program.cs):

using static System.Console;

namespace Wrox
{
 class Program
 {
 static void Main()
 {
 var name ="Bugs Bunny";
 var age = 25;
 var isRabbit = true;
 Type nameType = name.GetType();
 Type ageType = age.GetType();
 Type isRabbitType = isRabbit.GetType();
 WriteLine($"name is type {nameType}");
 WriteLine($"age is type {ageType}");
 WriteLine($"isRabbit is type {isRabbitType}");
 }
 }
}

The output from this program is as follows:

name is type System.String
age is type System.Int32
isRabbit is type System.Bool

There are a few rules that you need to follow:

	The variable must be initialized. Otherwise, the compiler doesn’t have anything from which to infer the type.

	The initializer cannot be null.

	The initializer must be an expression.

	You can’t set the initializer to an object unless you create a new object in the initializer.

Chapter 3, “Objects and Types,” examines these rules more closely in the discussion of anonymous types.

After the variable has been declared and the type inferred, the variable’s type cannot be changed. When established, the variable’s type strong typing rules that any assignment to this variable must follow the inferred type.

Understanding Variable Scope

The scope of a variable is the region of code from which the variable can be accessed. In general, the scope is determined by the following rules:

	A field (also known as a member variable) of a class is in scope for as long as its containing class is in scope.

	A local variable is in scope until a closing brace indicates the end of the block statement or method in which it was declared.

	A local variable that is declared in a for, while, or similar statement is in scope in the body of that loop.

Scope Clashes for Local Variables

It’s common in a large program to use the same variable name for different variables in different parts of the program. This is fine as long as the variables are scoped to completely different parts of the program so that there is no possibility for ambiguity. However, bear in mind that local variables with the same name can’t be declared twice in the same scope. For example, you can’t do this:

int x = 20;
// some more code
int x = 30;

Consider the following code sample (code file VariableScopeSample/Program.cs):

using static System.Console;

namespace VariableScopeSample
{
 class Program
 {
 static int Main()
 {
 for (int i = 0; i < 10; i++)
 {
 WriteLine(i);
 } // i goes out of scope here
 // We can declare a variable named i again, because
 // there's no other variable with that name in scope
 for (int i = 9; i >= 0; i -)
 {
 WriteLine(i);
 } // i goes out of scope here.
 return 0;
 }
 }
}

This code simply prints out the numbers from 0 to 9, and then back again from 9 to 0, using two for loops. The important thing to note is that you declare the variable i twice in this code, within the same method. You can do this because i is declared in two separate loops, so each i variable is local to its own loop.

Here’s another example (code file VariableScopeSample2/Program.cs):

static int Main()
{
 int j = 20;
 for (int i = 0; i < 10; i++)
 {
 int j = 30; // Can't do this — j is still in scope
 WriteLine(j + i);
 }
 return 0;
}

If you try to compile this, you’ll get an error like the following:

error CS0136: A local variable named 'j' cannot be declared in
this scope because that name is used in an enclosing local scope
to define a local or parameter

This occurs because the variable j, which is defined before the start of the for loop, is still in scope within the for loop and won’t go out of scope until the Main method has finished executing. Although the second j (the illegal one) is in the loop’s scope, that scope is nested within the Main method’s scope. The compiler has no way to distinguish between these two variables, so it won’t allow the second one to be declared.

Scope Clashes for Fields and Local Variables

In certain circumstances, however, you can distinguish between two identifiers with the same name (although not the same fully qualified name) and the same scope, and in this case the compiler allows you to declare the second variable. That’s because C# makes a fundamental distinction between variables that are declared at the type level (fields) and variables that are declared within methods (local variables).

Consider the following code snippet (code file VariableScopeSample3/Program.cs):

using static System.Console;

namespace Wrox
{
 class Program
 {
 static int j = 20;
 static void Main()
 {
 int j = 30;
 WriteLine(j);
 return;
 }
 }
}

This code will compile even though you have two variables named j in scope within the Main method: the j that was defined at the class level and doesn’t go out of scope until the class Program is destroyed (when the Main method terminates and the program ends), and the j defined within Main. In this case, the new variable named j that you declare in the Main method hides the class-level variable with the same name, so when you run this code, the number 30 is displayed.

What if you want to refer to the class-level variable? You can actually refer to fields of a class or struct from outside the object, using the syntax object.fieldname. In the previous example, you are accessing a static field (you find out what this means in the next section) from a static method, so you can’t use an instance of the class; you just use the name of the class itself:

// etc.
static void Main()
{
 int j = 30;
 WriteLine(j);
 WriteLine(Program.j);
}
// etc.

If you are accessing an instance field (a field that belongs to a specific instance of the class), you need to use the this keyword instead.

Working with Constants

As the name implies, a constant is a variable whose value cannot be changed throughout its lifetime. Prefixing a variable with the const keyword when it is declared and initialized designates that variable as a constant:

const int a = 100; // This value cannot be changed.

Constants have the following characteristics:

	They must be initialized when they are declared. After a value has been assigned, it can never be overwritten.

	The value of a constant must be computable at compile time. Therefore, you can’t initialize a constant with a value taken from a variable. If you need to do this, you must use a read-only field (this is explained in Chapter 3).

	Constants are always implicitly static. However, notice that you don’t have to (and, in fact, are not permitted to) include the static modifier in the constant declaration.

At least three advantages exist for using constants in your programs:

	Constants make your programs easier to read by replacing magic numbers and strings with readable names whose values are easy to understand.

	Constants make your programs easier to modify. For example, assume that you have a SalesTax constant in one of your C# programs, and that constant is assigned a value of 6 percent. If the sales tax rate changes later, you can modify the behavior of all tax calculations simply by assigning a new value to the constant; you don’t have to hunt through your code for the value .06 and change each one, hoping you will find all of them.

	Constants help prevent mistakes in your programs. If you attempt to assign another value to a constant somewhere in your program other than at the point where the constant is declared, the compiler flags the error.

Using Predefined Data Types

Now that you have seen how to declare variables and constants, let’s take a closer look at the data types available in C#. As you will see, C# is much stricter about the types available and their definitions than some other languages.

Value Types and Reference Types

Before examining the data types in C#, it is important to understand that C# distinguishes between two categories of data type:

	Value types

	Reference types

The next few sections look in detail at the syntax for value and reference types. Conceptually, the difference is that a value type stores its value directly, whereas a reference type stores a reference to the value.

These types are stored in different places in memory; value types are stored in an area known as the stack, and reference types are stored in an area known as the managed heap. It is important to be aware of whether a type is a value type or a reference type because of the different effect each assignment has. For example, int is a value type, which means that the following statement results in two locations in memory storing the value 20:

// i and j are both of type int
i = 20;
j = i;

However, consider the following example. For this code, assume you have defined a class called Vector and that Vector is a reference type and has an int member variable called Value:

Vector x, y;
x = new Vector();
x.Value = 30; // Value is a field defined in Vector class
y = x;
WriteLine(y.Value);
y.Value = 50;
WriteLine(x.Value);

The crucial point to understand is that after executing this code, there is only one Vector object: x and y both point to the memory location that contains this object. Because x and y are variables of a reference type, declaring each variable simply reserves a reference—it doesn’t instantiate an object of the given type. In neither case is an object actually created. To create an object, you have to use the new keyword, as shown. Because x and y refer to the same object, changes made to x will affect y and vice versa. Hence, the code will display 30 and then 50.

If a variable is a reference, it is possible to indicate that it does not refer to any object by setting its value to null:

y = null;

If a reference is set to null, then clearly it is not possible to call any nonstatic member functions or fields against it; doing so would cause an exception to be thrown at runtime.

In C#, basic data types such as bool and long are value types. This means that if you declare a bool variable and assign it the value of another bool variable, you will have two separate bool values in memory. Later, if you change the value of the original bool variable, the value of the second bool variable does not change. These types are copied by value.

In contrast, most of the more complex C# data types, including classes that you yourself declare, are reference types. They are allocated upon the heap, have lifetimes that can span multiple function calls, and can be accessed through one or several aliases. The CLR implements an elaborate algorithm to track which reference variables are still reachable and which have been orphaned. Periodically, the CLR destroys orphaned objects and returns the memory that they once occupied back to the operating system. This is done by the garbage collector.

C# has been designed this way because high performance is best served by keeping primitive types (such as int and bool) as value types, and larger types that contain many fields (as is usually the case with classes) as reference types. If you want to define your own type as a value type, you should declare it as a struct.

.NET Types

The C# keywords for data types—such as int, short, and string—are mapped from the compiler to .NET data types. For example, when you declare an int in C#, you are actually declaring an instance of a .NET struct: System.Int32. This might sound like a small point, but it has a profound significance: It means that you can treat all the primitive data types syntactically, as if they are classes that support certain methods. For example, to convert an int i to a string, you can write the following:

string s = i.ToString();

It should be emphasized that behind this syntactical convenience, the types really are stored as primitive types, so absolutely no performance cost is associated with the idea that the primitive types are notionally represented by .NET structs.

The following sections review the types that are recognized as built-in types in C#. Each type is listed, along with its definition and the name of the corresponding .NET type. C# has 15 predefined types, 13 value types, and 2 (string and object) reference types.

Predefined Value Types

The built-in .NET value types represent primitives, such as integer and floating-point numbers, character, and Boolean types.

Integer Types

C# supports eight predefined integer types, shown in the following table.

	Name
	.NET Type
	Description
	Range (min:max)

	sbyte
	System.SByte
	8-bit signed integer
	-128:127 (-27:27–1)

	short
	System.Int16
	16-bit signed integer
	-32,768:32,767 (-215:215–1)

	int
	System.Int32
	32-bit signed integer
	-2,147,483,648:2,147,483,647 (-231:231–1)

	long
	System.Int64
	64-bit signed integer
	-9,223,372,036,854,775,808: 9,223,372,036,854,775,807 (-263:263–1)

	byte
	System.Byte
	8-bit unsigned integer
	0:255 (0:28–1)

	ushort
	System.UInt16
	16-bit unsigned integer
	0:65,535 (0:216–1)

	uint
	System.UInt32
	32-bit unsigned integer
	0:4,294,967,295 (0:232–1)

	ulong
	System.UInt64
	64-bit unsigned integer
	0:18,446,744,073,709,551,615 (0:264–1)

Some C# types have the same names as C++ and Java types but have different definitions. For example, in C# an int is always a 32-bit signed integer. In C++ an int is a signed integer, but the number of bits is platform-dependent (32 bits on Windows). In C#, all data types have been defined in a platform-independent manner to allow for the possible future porting of C# and .NET to other platforms.

A byte is the standard 8-bit type for values in the range 0 to 255 inclusive. Be aware that, in keeping with its emphasis on type safety, C# regards the byte type and the char type as completely distinct types, and any programmatic conversions between the two must be explicitly requested. Also be aware that unlike the other types in the integer family, a byte type is by default unsigned. Its signed version bears the special name sbyte.

With .NET, a short is no longer quite so short; it is now 16 bits long. The int type is 32 bits long. The long type reserves 64 bits for values. All integer-type variables can be assigned values in decimal or hex notation. The latter requires the 0x prefix:

long x = 0x12ab;

If there is any ambiguity about whether an integer is int, uint, long, or ulong, it defaults to an int. To specify which of the other integer types the value should take, you can append one of the following characters to the number:

uint ui = 1234U;
long l = 1234L;
ulong ul = 1234UL;

You can also use lowercase u and l, although the latter could be confused with the integer 1 (one).

Floating-Point Types

Although C# provides a plethora of integer data types, it supports floating-point types as well.

	Name
	.NET Type
	Description
	Significant Figures
	Range (Approximate)

	float
	System.Single
	32-bit, single-precision floating point
	7
	±1.5 × 10245 to ±3.4 × 1038

	double
	System.Double
	64-bit, double-precision floating point
	15/16
	±5.0 × 102324 to ±1.7 × 10308

The float data type is for smaller floating-point values, for which less precision is required. The double data type is bulkier than the float data type but offers twice the precision (15 digits).

If you hard-code a non-integer number (such as 12.3), the compiler will normally assume that you want the number interpreted as a double. To specify that the value is a float, append the character F (or f) to it:

float f = 12.3F;

The Decimal Type

The decimal type represents higher-precision floating-point numbers, as shown in the following table.

	Name
	.NET Type
	Description
	Significant Figures
	Range (Approximate)

	decimal
	System.Decimal
	128-bit, high-precision decimal notation
	28
	±1.0 × 10228 to ±7.9 × 1028

One of the great things about the .NET and C# data types is the provision of a dedicated decimal type for financial calculations. How you use the 28 digits that the decimal type provides is up to you. In other words, you can track smaller dollar amounts with greater accuracy for cents or larger dollar amounts with more rounding in the fractional portion. Bear in mind, however, that decimal is not implemented under the hood as a primitive type, so using decimal has a performance effect on your calculations.

To specify that your number is a decimal type rather than a double, a float, or an integer, you can append the M (or m) character to the value, as shown here:

decimal d = 12.30M;

The Boolean Type

The C# bool type is used to contain Boolean values of either true or false.

	Name
	.NET Type
	Description
	Significant Figures
	Range

	bool
	System.Boolean
	Represents true or false
	NA
	true or false

You cannot implicitly convert bool values to and from integer values. If a variable (or a function return type) is declared as a bool, you can only use values of true and false. You get an error if you try to use zero for false and a nonzero value for true.

The Character Type

For storing the value of a single character, C# supports the char data type.

	Name
	.NET Type
	Values

	char
	System.Char
	Represents a single 16-bit (Unicode) character

Literals of type char are signified by being enclosed in single quotation marks—for example, 'A'. If you try to enclose a character in double quotation marks, the compiler treats the character as a string and throws an error.

As well as representing chars as character literals, you can represent them with four-digit hex Unicode values (for example, '\u0041'), as integer values with a cast (for example, (char)65), or as hexadecimal values (for example,'\x0041'). You can also represent them with an escape sequence, as shown in the following table.

	Escape Sequence
	Character

	\'
	Single quotation mark

	\"
	Double quotation mark

	\\
	Backslash

	\0
	Null

	\a
	Alert

	\b
	Backspace

	\f
	Form feed

	\n
	Newline

	\r
	Carriage return

	\t
	Tab character

	\v
	Vertical tab

Predefined Reference Types

C# supports two predefined reference types, object and string, described in the following table.

	Name
	.NET Type
	Description

	object
	System.Object
	The root type. All other types (including value types) are derived from object.

	string
	System.String
	Unicode character string

The object Type

Many programming languages and class hierarchies provide a root type, from which all other objects in the hierarchy are derived. C# and .NET are no exception. In C#, the object type is the ultimate parent type from which all other intrinsic and user-defined types are derived. This means that you can use the object type for two purposes:

	You can use an object reference to bind to an object of any particular subtype. For example, in Chapter 8, “Operators and Casts,” you see how you can use the object type to box a value object on the stack to move it to the heap; object references are also useful in reflection, when code must manipulate objects whose specific types are unknown.

	The object type implements a number of basic, general-purpose methods, which include Equals, GetHashCode, GetType, and ToString. Responsible user-defined classes might need to provide replacement implementations of some of these methods using an object-oriented technique known as overriding, which is discussed in Chapter 4, “Inheritance.” When you override ToString, for example, you equip your class with a method for intelligently providing a string representation of itself. If you don’t provide your own implementations for these methods in your classes, the compiler picks up the implementations in object, which might or might not be correct or sensible in the context of your classes.

You examine the object type in more detail in subsequent chapters.

The string Type

C# recognizes the string keyword, which under the hood is translated to the .NET class, System.String. With it, operations like string concatenation and string copying are a snap:

string str1 ="Hello";
string str2 ="World";
string str3 = str1 + str2; // string concatenation

Despite this style of assignment, string is a reference type. Behind the scenes, a string object is allocated on the heap, not the stack; and when you assign one string variable to another string, you get two references to the same string in memory. However, string differs from the usual behavior for reference types. For example, strings are immutable. Making changes to one of these strings creates an entirely new string object, leaving the other string unchanged. Consider the following code (code file StringSample/Program.cs):

using static System.Console;

class Program
{
 static void Main()
 {
 string s1 ="a string";
 string s2 = s1;
 WriteLine("s1 is" + s1);
 WriteLine("s2 is" + s2);
 s1 ="another string";
 WriteLine("s1 is now" + s1);
 WriteLine("s2 is now" + s2);
 }
}

The output from this is as follows:

s1 is a string
s2 is a string
s1 is now another string
s2 is now a string

Changing the value of s1 has no effect on s2, contrary to what you’d expect with a reference type! What’s happening here is that when s1 is initialized with the value a string, a new string object is allocated on the heap. When s2 is initialized, the reference points to this same object, so s2 also has the value a string. However, when you now change the value of s1, instead of replacing the original value, a new object is allocated on the heap for the new value. The s2 variable still points to the original object, so its value is unchanged. Under the hood, this happens as a result of operator overloading, a topic that is explored in Chapter 8. In general, the string class has been implemented so that its semantics follow what you would normally intuitively expect for a string.

String literals are enclosed in double quotation marks ("."); if you attempt to enclose a string in single quotation marks, the compiler takes the value as a char and throws an error. C# strings can contain the same Unicode and hexadecimal escape sequences as chars. Because these escape sequences start with a backslash, you can’t use this character unescaped in a string. Instead, you need to escape it with two backslashes (\\):

string filepath ="C:\\ProCSharp\\First.cs";

Even if you are confident that you can remember to do this all the time, typing all those double backslashes can prove annoying. Fortunately, C# gives you an alternative. You can prefix a string literal with the at character (@) and all the characters after it are treated at face value; they aren’t interpreted as escape sequences:

string filepath = @"C:\ProCSharp\First.cs";

This even enables you to include line breaks in your string literals:

string jabberwocky = @"'Twas brillig and the slithy toves
Did gyre and gimble in the wabe.";

In this case, the value of jabberwocky would be this:

'Twas brillig and the slithy toves
Did gyre and gimble in the wabe.

C# 6 defines a new string interpolation format that is marked by using the $ prefix. You’ve previously seen this prefix in the section “Working with Variables.” You can change the earlier code snippet that demonstrated string concatenation to use the string interpolation format. Prefixing a string with $ enables you to put curly braces into the string that contains a variable—or even a code expression. The result of the variable or code expression is put into the string at the position of the curly braces:

public static void Main()
{
 string s1 ="a string";
 string s2 = s1;
 WriteLine($"s1 is {s1}");
 WriteLine($"s2 is {s2}");
 s1 ="another string";
 WriteLine($"s1 is now {s1}");
 WriteLine($"s2 is now {s2}");
}

NOTE Strings and the features of string interpolation are covered in detail in Chapter 10, “Strings and Regular Expressions.”

Controlling Program Flow

This section looks at the real nuts and bolts of the language: the statements that allow you to control the flow of your program rather than execute every line of code in the order it appears in the program.

Conditional Statements

Conditional statements enable you to branch your code depending on whether certain conditions are met or what the value of an expression is. C# has two constructs for branching code: the if statement, which tests whether a specific condition is met, and the switch statement, which compares an expression with several different values.

The if Statement

For conditional branching, C# inherits the C and C++ if.else construct. The syntax should be fairly intuitive for anyone who has done any programming with a procedural language:

if (condition)
 statement(s)
else
 statement(s)

If more than one statement is to be executed as part of either condition, these statements need to be joined into a block using curly braces ({.}). (This also applies to other C# constructs where statements can be joined into a block, such as the for and while loops):

bool isZero;
if (i == 0)
{
 isZero = true;
 WriteLine("i is Zero");
}
else
{
 isZero = false;
 WriteLine("i is Non-zero");
}

If you want to, you can use an if statement without a final else statement. You can also combine else if clauses to test for multiple conditions (code file IfStatement/Program.cs):

using static System.Console;

namespace Wrox
{
 class Program
 {
 static void Main()
 {
 WriteLine("Type in a string");
 string input;
 input = ReadLine();
 if (input =="")
 {
 WriteLine("You typed in an empty string.");
 }
 else if (input.Length < 5)
 {
 WriteLine("The string had less than 5 characters.");
 }
 else if (input.Length < 10)
 {
 WriteLine("The string had at least 5 but less than 10 Characters.");
 }
 WriteLine("The string was" + input);
 }
 }

There is no limit to how many else ifs you can add to an if clause.

Note that the previous example declares a string variable called input, gets the user to enter text at the command line, feeds this into input, and then tests the length of this string variable. The code also shows how easy string manipulation can be in C#. To find the length of input, for example, use input.Length.

Another point to note about the if statement is that you don’t need to use the braces when there’s only one statement in the conditional branch:

if (i == 0)
 WriteLine("i is Zero"); // This will only execute if i == 0
WriteLine("i can be anything"); // Will execute whatever the
 // value of i

However, for consistency, many programmers prefer to use curly braces whenever they use an if statement.

TIP Not using curly braces with if statements can lead to errors in maintaining the code. It happens too often that a second statement is added to the if statement that runs no matter whether the if returns true or false. Using curly braces every time avoids this coding error.

A good guideline in regard to the if statement is to allow programmers to not use curly braces only when the statement is written in the same line as the if statement. With this guideline, programmers are less likely to add a second statement without adding curly braces.

The if statements presented also illustrate some of the C# operators that compare values. Note in particular that C# uses == to compare variables for equality. Do not use = for this purpose. A single = is used to assign values.

In C#, the expression in the if clause must evaluate to a Boolean. It is not possible to test an integer directly (returned from a function, for example). You have to convert the integer that is returned to a Boolean true or false, for example, by comparing the value with zero or null:

if (DoSomething() != 0)
{
 // Non-zero value returned
}
else
{
 // Returned zero
}

The switch Statement

The switch / case statement is good for selecting one branch of execution from a set of mutually exclusive ones. It takes the form of a switch argument followed by a series of case clauses. When the expression in the switch argument evaluates to one of the values beside a case clause, the code immediately following the case clause executes. This is one example for which you don’t need to use curly braces to join statements into blocks; instead, you mark the end of the code for each case using the break statement. You can also include a default case in the switch statement, which executes if the expression doesn’t evaluate to any of the other cases. The following switch statement tests the value of the integerA variable:

switch (integerA)
{
 case 1:
 WriteLine("integerA = 1");
 break;
 case 2:
 WriteLine("integerA = 2");
 break;
 case 3:
 WriteLine("integerA = 3");
 break;
 default:
 WriteLine("integerA is not 1, 2, or 3");
 break;
}

Note that the case values must be constant expressions; variables are not permitted.

Though the switch.case statement should be familiar to C and C++ programmers, C#’s switch.case is a bit safer than its C++ equivalent. Specifically, it prohibits fall-through conditions in almost all cases. This means that if a case clause is fired early on in the block, later clauses cannot be fired unless you use a goto statement to indicate that you want them fired, too. The compiler enforces this restriction by flagging every case clause that is not equipped with a break statement as an error:

Control cannot fall through from one case label ('case 2:') to another

Although it is true that fall-through behavior is desirable in a limited number of situations, in the vast majority of cases it is unintended and results in a logical error that’s hard to spot. Isn’t it better to code for the norm rather than for the exception?

By getting creative with goto statements, you can duplicate fall-through functionality in your switch.cases. However, if you find yourself really wanting to, you probably should reconsider your approach. The following code illustrates both how to use goto to simulate fall-through, and how messy the resultant code can be:

// assume country and language are of type string
switch(country)
{
 case"America":
 CallAmericanOnlyMethod();
 goto case"Britain";
 case"France":
 language ="French";
 break;
 case"Britain":
 language ="English";
 break;
}

There is one exception to the no-fall-through rule, however, in that you can fall through from one case to the next if that case is empty. This allows you to treat two or more cases in an identical way (without the need for goto statements):

switch(country)
{
 case"au":
 case"uk":
 case"us":
 language ="English";
 break;
 case"at":
 case"de":
 language ="German";
 break;
}

One intriguing point about the switch statement in C# is that the order of the cases doesn’t matter—you can even put the default case first! As a result, no two cases can be the same. This includes different constants that have the same value, so you can’t, for example, do this:

// assume country is of type string
const string england ="uk";
const string britain ="uk";
switch(country)
{
 case england:
 case britain: // This will cause a compilation error.
 language ="English";
 break;
}

The previous code also shows another way in which the switch statement is different in C# compared to C++: In C#, you are allowed to use a string as the variable being tested.

Loops

C# provides four different loops (for, while, do. . .while, and foreach) that enable you to execute a block of code repeatedly until a certain condition is met.

The for Loop

C# for loops provide a mechanism for iterating through a loop whereby you test whether a particular condition holds true before you perform another iteration. The syntax is

for (initializer; condition; iterator):
 statement(s)

where:

	The initializer is the expression evaluated before the first loop is executed (usually initializing a local variable as a loop counter).

	The condition is the expression checked before each new iteration of the loop (this must evaluate to true for another iteration to be performed).

	The iterator is an expression evaluated after each iteration (usually incrementing the loop counter).

The iterations end when the condition evaluates to false.

The for loop is a so-called pretest loop because the loop condition is evaluated before the loop statements are executed; therefore, the contents of the loop won’t be executed at all if the loop condition is false.

The for loop is excellent for repeating a statement or a block of statements for a predetermined number of times. The following example demonstrates typical usage of a for loop. It writes out all the integers from 0 to 99:

for (int i = 0; i < 100; i = i + 1)
{
 WriteLine(i);
}

Here, you declare an int called i and initialize it to zero. This is used as the loop counter. You then immediately test whether it is less than 100. Because this condition evaluates to true, you execute the code in the loop, displaying the value 0. You then increment the counter by one, and walk through the process again. Looping ends when i reaches 100.

Actually, the way the preceding loop is written isn’t quite how you would normally write it. C# has a shorthand for adding 1 to a variable, so instead of i = i + 1, you can simply write i++:

for (int i = 0; i < 100; i++)
{
 // etc.
}

You can also make use of type inference for the iteration variable i in the preceding example. Using type inference, the loop construct would be as follows:

for (var i = 0; i < 100; i++)
{
 // etc.
}

It’s not unusual to nest for loops so that an inner loop executes once completely for each iteration of an outer loop. This approach is typically employed to loop through every element in a rectangular multidimensional array. The outermost loop loops through every row, and the inner loop loops through every column in a particular row. The following code displays rows of numbers. It also uses another Console method, Console.Write, which does the same thing as Console.WriteLine but doesn’t send a carriage return to the output (code file ForLoop/Program.cs):

using static System.Console;

namespace Wrox
{
 class Program
 {
 static void Main()
 {
 // This loop iterates through rows
 for (int i = 0; i < 100; i+=10)
 {
 // This loop iterates through columns
 for (int j = i; j < i + 10; j++)
 {
 Write($" {j}");
 }
 WriteLine();
 }
 }
 }
}

Although j is an integer, it is automatically converted to a string so that the concatenation can take place.

The preceding sample results in this output:

 0 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29
 30 31 32 33 34 35 36 37 38 39
 40 41 42 43 44 45 46 47 48 49
 50 51 52 53 54 55 56 57 58 59
 60 61 62 63 64 65 66 67 68 69
 70 71 72 73 74 75 76 77 78 79
 80 81 82 83 84 85 86 87 88 89
 90 91 92 93 94 95 96 97 98 99

It is technically possible to evaluate something other than a counter variable in a for loop’s test condition, but it is certainly not typical. It is also possible to omit one (or even all) of the expressions in the for loop. In such situations, however, you should consider using the while loop.

The while Loop

Like the for loop, while is a pretest loop. The syntax is similar, but while loops take only one expression:

while(condition)
 statement(s);

Unlike the for loop, the while loop is most often used to repeat a statement or a block of statements for a number of times that is not known before the loop begins. Usually, a statement inside the while loop’s body will set a Boolean flag to false on a certain iteration, triggering the end of the loop, as in the following example:

bool condition = false;
while (!condition)
{
 // This loop spins until the condition is true.
 DoSomeWork();
 condition = CheckCondition(); // assume CheckCondition() returns a bool
}

The do. . .while Loop

The do...while loop is the post-test version of the while loop. This means that the loop’s test condition is evaluated after the body of the loop has been executed. Consequently, do...while loops are useful for situations in which a block of statements must be executed at least one time, as in this example:

bool condition;
do
{
 // This loop will at least execute once, even if Condition is false.
 MustBeCalledAtLeastOnce();
 condition = CheckCondition();
} while (condition);

The foreach Loop

The foreach loop enables you to iterate through each item in a collection. For now, don’t worry about exactly what a collection is (it is explained fully in Chapter 11, “Collections”); just understand that it is an object that represents a list of objects. Technically, for an object to count as a collection, it must support an interface called IEnumerable. Examples of collections include C# arrays, the collection classes in the System.Collections namespaces, and user-defined collection classes. You can get an idea of the syntax of foreach from the following code, if you assume that arrayOfInts is (unsurprisingly) an array of ints:

foreach (int temp in arrayOfInts)
{
 WriteLine(temp);
}

Here, foreach steps through the array one element at a time. With each element, it places the value of the element in the int variable called temp and then performs an iteration of the loop.

Here is another situation where you can use type inference. The foreach loop would become the following:

foreach (var temp in arrayOfInts)
{
 // etc.
}

temp would be inferred to int because that is what the collection item type is.

An important point to note with foreach is that you can’t change the value of the item in the collection (temp in the preceding code), so code such as the following will not compile:

foreach (int temp in arrayOfInts)
{
 temp++;
 WriteLine(temp);
}

If you need to iterate through the items in a collection and change their values, you must use a for loop instead.

Jump Statements

C# provides a number of statements that enable you to jump immediately to another line in the program. The first of these is, of course, the notorious goto statement.

The goto Statement

The goto statement enables you to jump directly to another specified line in the program, indicated by a label (this is just an identifier followed by a colon):

goto Label1;
 WriteLine("This won't be executed");
Label1:
 WriteLine("Continuing execution from here");

A couple of restrictions are involved with goto. You can’t jump into a block of code such as a for loop, you can’t jump out of a class, and you can’t exit a finally block after try...catch blocks (Chapter 14, “Errors and Exceptions,” looks at exception handling with try.catch.finally).

The reputation of the goto statement probably precedes it, and in most circumstances, its use is sternly frowned upon. In general, it certainly doesn’t conform to good object-oriented programming practices.

The break Statement

You have already met the break statement briefly—when you used it to exit from a case in a switch statement. In fact, break can also be used to exit from for, foreach, while, or do...while loops. Control switches to the statement immediately after the end of the loop.

If the statement occurs in a nested loop, control switches to the end of the innermost loop. If the break occurs outside a switch statement or a loop, a compile-time error occurs.

The continue Statement

The continue statement is similar to break, and you must use it within a for, foreach, while, or do...while loop. However, it exits only from the current iteration of the loop, meaning that execution restarts at the beginning of the next iteration of the loop rather than restarting outside the loop altogether.

The return Statement

The return statement is used to exit a method of a class, returning control to the caller of the method. If the method has a return type, return must return a value of this type; otherwise, if the method returns void, you should use return without an expression.

Working with Enumerations

An enumeration is a user-defined integer type. When you declare an enumeration, you specify a set of acceptable values that instances of that enumeration can contain. Not only that, but you can also give the values user-friendly names. If, somewhere in your code, you attempt to assign a value that is not in the acceptable set of values to an instance of that enumeration, the compiler flags an error.

Creating an enumeration can save you a lot of time and headaches in the long run. At least three benefits exist to using enumerations instead of plain integers:

	As mentioned, enumerations make your code easier to maintain by helping to ensure that your variables are assigned only legitimate, anticipated values.

	Enumerations make your code clearer by allowing you to refer to integer values by descriptive names rather than by obscure “magic” numbers.

	Enumerations make your code easier to type. When you begin to assign a value to an instance of an enumerated type, Visual Studio 2015 uses IntelliSense to pop up a list box of acceptable values to save you some keystrokes and remind you of the possible options.

You can define an enumeration as follows:

public enum TimeOfDay
{
 Morning = 0,
 Afternoon = 1,
 Evening = 2
}

In this case, you use an integer value to represent each period of the day in the enumeration. You can now access these values as members of the enumeration. For example, TimeOfDay.Morning returns the value 0. You will typically use this enumeration to pass an appropriate value into a method and iterate through the possible values in a switch statement (code file EnumerationSample/Program.cs):

class Program
{
 static void Main()
 {
 WriteGreeting(TimeOfDay.Morning);
 }

 static void WriteGreeting(TimeOfDay timeOfDay)
 {
 switch(timeOfDay)
 {
 case TimeOfDay.Morning:
 WriteLine("Good morning!");
 break;
 case TimeOfDay.Afternoon:
 WriteLine("Good afternoon!");
 break;
 case TimeOfDay.Evening:
 WriteLine("Good evening!");
 break;
 default:
 WriteLine("Hello!");
 break;
 }
 }
}

The real power of enums in C# is that behind the scenes they are instantiated as structs derived from the base class—System.Enum. This means it is possible to call methods against them to perform some useful tasks. Note that because of the way the .NET Framework is implemented, no performance loss is associated with treating the enums syntactically as structs. In practice, after your code is compiled, enums exist as primitive types, just like int and float.

You can retrieve the string representation of an enum, as in the following example, using the earlier TimeOfDay enum:

TimeOfDay time = TimeOfDay.Afternoon;
WriteLine(time.ToString());

This returns the string Afternoon.

Alternatively, you can obtain an enum value from a string:

TimeOfDay time2 = (TimeOfDay) Enum.Parse(typeof(TimeOfDay),"afternoon", true);
WriteLine((int)time2);

The preceding code snippet illustrates both obtaining an enum value from a string and converting to an integer. To convert from a string, you need to use the static Enum.Parse method, which, as shown, takes three parameters. The first is the type of enum you want to consider. The syntax is the keyword typeof followed by the name of the enum class in brackets. (Chapter 8 explores the typeof operator in more detail.) The second parameter is the string to be converted, and the third parameter is a bool indicating whether case should be ignored while the conversion is done. Finally, note that Enum.Parse actually returns an object reference—you need to explicitly convert this to the required enum type (this is an example of an unboxing operation). For the preceding code, this returns the value 1 as an object, corresponding to the enum value of TimeOfDay.Afternoon. Converting explicitly to an int, this produces the value 1 again.

Other methods on System.Enum do things such as return the number of values in an enum definition or list the names of the values. Full details are in the MSDN documentation.

Getting Organized with Namespaces

As discussed earlier in this chapter, namespaces provide a way to organize related classes and other types. Unlike a file or a component, a namespace is a logical, rather than a physical, grouping. When you define a class in a C# file, you can include it within a namespace definition. Later, when you define another class that performs related work in another file, you can include it within the same namespace, creating a logical grouping that indicates to other developers using the classes how they are related and used:

using System;

namespace CustomerPhoneBookApp
{
 public struct Subscriber
 {
 // Code for struct here..
 }
}

Placing a type in a namespace effectively gives that type a long name, consisting of the type’s namespace as a series of names separated with periods (.), terminating with the name of the class. In the preceding example, the full name of the Subscriber struct is CustomerPhoneBookApp.Subscriber. This enables distinct classes with the same short name to be used within the same program without ambiguity. This full name is often called the fully qualified name.

You can also nest namespaces within other namespaces, creating a hierarchical structure for your types:

namespace Wrox
{
 namespace ProCSharp
 {
 namespace Basics
 {
 class NamespaceExample
 {
 // Code for the class here..
 }
 }
 }
}

Each namespace name is composed of the names of the namespaces it resides within, separated with periods, starting with the outermost namespace and ending with its own short name. Therefore, the full name for the ProCSharp namespace is Wrox.ProCSharp, and the full name of the NamespaceExample class is Wrox.ProCSharp.Basics.NamespaceExample.

You can use this syntax to organize the namespaces in your namespace definitions too, so the previous code could also be written as follows:

namespace Wrox.ProCSharp.Basics
{
 class NamespaceExample
 {
 // Code for the class here..
 }
}

Note that you are not permitted to declare a multipart namespace nested within another namespace.

Namespaces are not related to assemblies. It is perfectly acceptable to have different namespaces in the same assembly or to define types in the same namespace in different assemblies.

You should define the namespace hierarchy prior to starting a project. Generally the accepted format is CompanyName.ProjectName.SystemSection. In the previous example, Wrox is the company name, ProCSharp is the project, and in the case of this chapter, Basics is the section.

The using Directive

Obviously, namespaces can grow rather long and tiresome to type, and the capability to indicate a particular class with such specificity may not always be necessary. Fortunately, as noted earlier in this chapter, C# allows you to abbreviate a class’s full name. To do this, list the class’s namespace at the top of the file, prefixed with the using keyword. Throughout the rest of the file, you can refer to the types in the namespace simply by their type names:

using System;
using Wrox.ProCSharp;

As mentioned earlier, many C# files have the statement using System; simply because so many useful classes supplied by Microsoft are contained in the System namespace.

If two namespaces referenced by using statements contain a type of the same name, you need to use the full (or at least a longer) form of the name to ensure that the compiler knows which type to access. For example, suppose classes called NamespaceExample exist in both the Wrox.ProCSharp.Basics and Wrox.ProCSharp.OOP namespaces. If you then create a class called Test in the Wrox.ProCSharp namespace, and instantiate one of the NamespaceExample classes in this class, you need to specify which of these two classes you’re talking about:

using Wrox.ProCSharp.OOP;
using Wrox.ProCSharp.Basics;

namespace Wrox.ProCSharp
{
 class Test
 {
 static void Main()
 {
 Basics.NamespaceExample nSEx = new Basics.NamespaceExample();
 // do something with the nSEx variable.
 }
 }
|

Your organization will probably want to spend some time developing a namespace convention so that its developers can quickly locate functionality that they need and so that the names of the organization’s homegrown classes won’t conflict with those in off-the-shelf class libraries. Guidelines on establishing your own namespace convention, along with other naming recommendations, are discussed later in this chapter.

Namespace Aliases

Another use of the using keyword is to assign aliases to classes and namespaces. If you need to refer to a very long namespace name several times in your code but don’t want to include it in a simple using statement (for example, to avoid type name conflicts), you can assign an alias to the namespace. The syntax for this is as follows:

using alias = NamespaceName;

The following example (a modified version of the previous example) assigns the alias Introduction to the Wrox.ProCSharp.Basics namespace and uses this to instantiate a NamespaceExample object, which is defined in this namespace. Notice the use of the namespace alias qualifier (::). This forces the search to start with the Introduction namespace alias. If a class called Introduction had been introduced in the same scope, a conflict would occur. The :: operator enables the alias to be referenced even if the conflict exists. The NamespaceExample class has one method, GetNamespace, which uses the GetType method exposed by every class to access a Type object representing the class’s type. You use this object to return a name of the class’s namespace (code file NamespaceSample/Program.cs):

using Introduction = Wrox.ProCSharp.Basics;
using static System.Console;

class Program
{
 static void Main()
 {
 Introduction::NamespaceExample NSEx =
 new Introduction::NamespaceExample();
 WriteLine(NSEx.GetNamespace());
 }
}

namespace Wrox.ProCSharp.Basics
{
 class NamespaceExample
 {
 public string GetNamespace()
 {
 return this.GetType().Namespace;
 }
 }
}

Understanding the Main Method

As described at the beginning of this chapter, C# programs start execution at a method named Main. Depending on the execution environment there are different requirements.

	Have a static modifier applied

	Be in a class with any name

	Return a type of int or void

Although it is common to specify the public modifier explicitly—because by definition the method must be called from outside the program—it doesn’t actually matter what accessibility level you assign to the entry-point method; it will run even if you mark the method as private.

The examples so far have shown only the Main method without any parameters. However, when the program is invoked, you can get the CLR to pass any command-line arguments to the program by including a parameter. This parameter is a string array, traditionally called args (although C# accepts any name). The program can use this array to access any options passed through the command line when the program is started.

The following example loops through the string array passed in to the Main method and writes the value of each option to the console window (code file ArgumentsSample/Program.cs):

using System;
using static System.Console;

namespace Wrox
{
 class Program
 {
 static void Main(string[] args)
 {
 for (int i = 0; i < args.Length; i++)
 {
 WriteLine(args[i]);
 }
 }
 }
}

For passing arguments to the program when running the application from Visual Studio 2015, you can define the arguments in the Debug section of the project properties as shown in Figure 2.9. Running the application reveals the result to show all argument values to the console.

[image: Screenshot shows a project configuration window for ArgumentsSample with highlighted Debug tab on the left side, fields for profile, launch, command et cetera along with Add, Browse, New and Remove buttons.]

Figure 2.9

Using Comments

The next topic—adding comments to your code—looks very simple on the surface, but it can be complex. Comments can be beneficial to other developers who may look at your code. Also, as you will see, you can use comments to generate documentation of your code for other developers to use.

Internal Comments Within the Source Files

As noted earlier in this chapter, C# uses the traditional C-type single-line (//..) and multiline (/* .. */) comments:

// This is a single-line comment
/* This comment
 spans multiple lines. */

Everything in a single-line comment, from the // to the end of the line, is ignored by the compiler, and everything from an opening /* to the next */ in a multiline comment combination is ignored. Obviously, you can’t include the combination */ in any multiline comments, because this will be treated as the end of the comment.

It is possible to put multiline comments within a line of code:

WriteLine(/* Here's a comment! */"This will compile.");

Use inline comments with care because they can make code hard to read. However, they can be useful when debugging if, for example, you temporarily want to try running the code with a different value somewhere:

DoSomething(Width, /*Height*/ 100);

Comment characters included in string literals are, of course, treated like normal characters:

string s ="/* This is just a normal string .*/";

XML Documentation

In addition to the C-type comments, illustrated in the preceding section, C# has a very neat feature: the capability to produce documentation in XML format automatically from special comments. These comments are single-line comments, but they begin with three slashes (///) instead of the usual two. Within these comments, you can place XML tags containing documentation of the types and type members in your code.

The tags in the following table are recognized by the compiler.

	Tag
	Description

	<c>
	Marks up text within a line as code—for example, <c>int i = 10;</c>.

	<code>
	Marks multiple lines as code.

	<example>
	Marks up a code example.

	<exception>
	Documents an exception class. (Syntax is verified by the compiler.)

	<include>
	Includes comments from another documentation file. (Syntax is verified by the compiler.)

	<list>
	Inserts a list into the documentation.

	<para>
	Gives structure to text.

	<param>
	Marks up a method parameter. (Syntax is verified by the compiler.)

	<paramref>
	Indicates that a word is a method parameter. (Syntax is verified by the compiler.)

	<permission>
	Documents access to a member. (Syntax is verified by the compiler.)

	<remarks>
	Adds a description for a member.

	<returns>
	Documents the return value for a method.

	<see>
	Provides a cross-reference to another parameter. (Syntax is verified by the compiler.)

	<seealso>
	Provides a “see also” section in a description. (Syntax is verified by the compiler.)

	<summary>
	Provides a short summary of a type or member.

	<typeparam>
	Describes a type parameter in the comment of a generic type.

	<typeparamref>
	Provides the name of the type parameter.

	<value>
	Describes a property.

Add some XML comments to the Calculator.cs file from the previous section. You add a <summary> element for the class and for its Add method, and a <returns> element and two <param> elements for the Add method:

// MathLib.cs
namespace Wrox.MathLib
{
 ///<summary>
 /// Wrox.MathLib.Calculator class.
 /// Provides a method to add two doublies.
 ///</summary>
 public class Calculator
 {
 ///<summary>
 /// The Add method allows us to add two doubles.
 ///</summary>
 ///<returns>Result of the addition (double)</returns>
 ///<param name="x">First number to add</param>
 ///<param name="y">Second number to add</param>
 public static double Add(double x, double y) => x + y;
 }
}

Understanding C# Preprocessor Directives

Besides the usual keywords, most of which you have now encountered, C# also includes a number of commands that are known as preprocessor directives. These commands are never actually translated to any commands in your executable code, but they affect aspects of the compilation process. For example, you can use preprocessor directives to prevent the compiler from compiling certain portions of your code. You might do this if you are planning to release two versions of it—a basic version and an enterprise version that will have more features. You could use preprocessor directives to prevent the compiler from compiling code related to the additional features when you are compiling the basic version of the software. In another scenario, you might have written bits of code that are intended to provide you with debugging information. You probably don’t want those portions of code compiled when you actually ship the software.

The preprocessor directives are all distinguished by beginning with the # symbol.

NOTE C++ developers will recognize the preprocessor directives as something that plays an important part in C and C++. However, there aren’t as many preprocessor directives in C#, and they are not used as often. C# provides other mechanisms, such as custom attributes, that achieve some of the same effects as C++ directives. Also, note that C# doesn’t actually have a separate preprocessor in the way that C++ does. The so-called preprocessor directives are actually handled by the compiler. Nevertheless, C# retains the name preprocessor directive because these commands give the impression of a preprocessor.

The following sections briefly cover the purposes of the preprocessor directives.

#define and #undef

#define is used like this:

  #define DEBUG

This tells the compiler that a symbol with the given name (in this case DEBUG) exists. It is a little bit like declaring a variable, except that this variable doesn’t really have a value—it just exists. Also, this symbol isn’t part of your actual code; it exists only for the benefit of the compiler, while the compiler is compiling the code, and has no meaning within the C# code itself.

#undef does the opposite, and removes the definition of a symbol:

  #undef DEBUG

If the symbol doesn’t exist in the first place, then #undef has no effect. Similarly, #define has no effect if a symbol already exists.

You need to place any #define and #undef directives at the beginning of the C# source file, before any code that declares any objects to be compiled.

#define isn’t much use on its own, but when combined with other preprocessor directives, especially #if, it becomes very powerful.

NOTE Incidentally, you might notice some changes from the usual C# syntax. Preprocessor directives are not terminated by semicolons and they normally constitute the only command on a line. That’s because for the preprocessor directives, C# abandons its usual practice of requiring commands to be separated by semicolons. If the compiler sees a preprocessor directive, it assumes that the next command is on the next line.

#if, #elif, #else, and #endif

These directives inform the compiler whether to compile a block of code. Consider this method:

int DoSomeWork(double x)
{
 // do something
 #if DEBUG
 WriteLine($"x is {x}");
 #endif
}

This code compiles as normal except for the Console.WriteLine method call contained inside the #if clause. This line is executed only if the symbol DEBUG has been defined by a previous #define directive. When the compiler finds the #if directive, it checks to see whether the symbol concerned exists, and compiles the code inside the #if clause only if the symbol does exist. Otherwise, the compiler simply ignores all the code until it reaches the matching #endif directive. Typical practice is to define the symbol DEBUG while you are debugging and have various bits of debugging-related code inside #if clauses. Then, when you are close to shipping, you simply comment out the #define directive, and all the debugging code miraculously disappears, the size of the executable file gets smaller, and your end users don’t get confused by seeing debugging information. (Obviously, you would do more testing to ensure that your code still works without DEBUG defined.) This technique is very common in C and C++ programming and is known as conditional compilation.

The #elif (=else if) and #else directives can be used in #if blocks and have intuitively obvious meanings. It is also possible to nest #if blocks:

#define ENTERPRISE
#define W10
// further on in the file
#if ENTERPRISE
 // do something
 #if W10
 // some code that is only relevant to enterprise
 // edition running on W10
 #endif
#elif PROFESSIONAL
 // do something else
#else
 // code for the leaner version
#endif

#if and #elif support a limited range of logical operators too, using the operators !, ==, !=, and ||. A symbol is considered to be true if it exists and false if it doesn’t. For example:

#if W10 && (ENTERPRISE==false) // if W10 is defined but ENTERPRISE isn't

#warning and #error

Two other very useful preprocessor directives are #warning and #error. These will respectively cause a warning or an error to be raised when the compiler encounters them. If the compiler sees a #warning directive, it displays whatever text appears after the #warning to the user, after which compilation continues. If it encounters a #error directive, it displays the subsequent text to the user as if it is a compilation error message and then immediately abandons the compilation, so no IL code is generated.

You can use these directives as checks that you haven’t done anything silly with your #define statements; you can also use the #warning statements to remind yourself to do something:

#if DEBUG && RELEASE
 #error"You've defined DEBUG and RELEASE simultaneously!"
#endif
#warning"Don't forget to remove this line before the boss tests the code!"
 WriteLine("*I hate this job.*");

#region and #endregion

The #region and #endregion directives are used to indicate that a certain block of code is to be treated as a single block with a given name, like this:

#region Member Field Declarations
 int x;
 double d;
 Currency balance;
#endregion

This doesn’t look that useful by itself; it doesn’t affect the compilation process in any way. However, the real advantage is that these directives are recognized by some editors, including the Visual Studio editor. These editors can use the directives to lay out your code better on the screen. You find out how this works in Chapter 17.

#line

The #line directive can be used to alter the filename and line number information that is output by the compiler in warnings and error messages. You probably won’t want to use this directive very often. It’s most useful when you are coding in conjunction with another package that alters the code you are typing before sending it to the compiler. In this situation, line numbers, or perhaps the filenames reported by the compiler, don’t match up to the line numbers in the files or the filenames you are editing. The #line directive can be used to restore the match. You can also use the syntax #line default to restore the line to the default line numbering:

#line 164"Core.cs" // We happen to know this is line 164 in the file
 // Core.cs, before the intermediate
 // package mangles it.
// later on
#line default // restores default line numbering

#pragma

The #pragma directive can either suppress or restore specific compiler warnings. Unlike command-line options, the #pragma directive can be implemented on the class or method level, enabling fine-grained control over what warnings are suppressed and when. The following example disables the “field not used” warning and then restores it after the MyClass class compiles:

#pragma warning disable 169
public class MyClass
{
 int neverUsedField;
}
#pragma warning restore 169

C# Programming Guidelines

This final section of the chapter supplies the guidelines you need to bear in mind when writing C# programs. These are guidelines that most C# developers use. When you use these guidelines, other developers will feel comfortable working with your code.

Rules for Identifiers

This section examines the rules governing what names you can use for variables, classes, methods, and so on. Note that the rules presented in this section are not merely guidelines: they are enforced by the C# compiler.

Identifiers are the names you give to variables, to user-defined types such as classes and structs, and to members of these types. Identifiers are case sensitive, so, for example, variables named interestRate and InterestRate would be recognized as different variables. Following are a few rules determining what identifiers you can use in C#:

	They must begin with a letter or underscore, although they can contain numeric characters.

	You can’t use C# keywords as identifiers.

The following table lists the C# reserved keywords.

	abstract
	event
	new
	struct

	as
	explicit
	null
	switch

	base
	extern
	object
	this

	bool
	false
	operator
	throw

	break
	finally
	out
	true

	byte
	fixed
	override
	try

	case
	float
	params
	typeof

	catch
	for
	private
	uint

	char
	foreach
	protected
	ulong

	checked
	goto
	public
	unchecked

	class
	if
	readonly
	unsafe

	const
	implicit
	ref
	ushort

	continue
	in
	return
	using

	decimal
	int
	sbyte
	virtual

	default
	interface
	sealed
	void

	delegate
	internal
	short
	volatile

	do
	is
	sizeof
	while

	double
	lock
	stackalloc
	

	else
	long
	static
	

	enum
	namespace
	string
	

If you need to use one of these words as an identifier (for example, if you are accessing a class written in a different language), you can prefix the identifier with the @ symbol to indicate to the compiler that what follows should be treated as an identifier, not as a C# keyword (so abstract is not a valid identifier, but @abstract is).

Finally, identifiers can also contain Unicode characters, specified using the syntax \uXXXX, where XXXX is the four-digit hex code for the Unicode character. The following are some examples of valid identifiers:

	Name

	Überfluß

	_Identifier

	\u005fIdentifier

The last two items in this list are identical and interchangeable (because 005f is the Unicode code for the underscore character), so obviously these identifiers couldn’t both be declared in the same scope. Note that although syntactically you are allowed to use the underscore character in identifiers, this isn’t recommended in most situations. That’s because it doesn’t follow the guidelines for naming variables that Microsoft has written to ensure that developers use the same conventions, making it easier to read one another’s code.

NOTE You might wonder why some newer keywords added with the recent versions of C# are not in the list of reserved keywords. The reason is that if they had been added to the list of reserved keywords, it would have broken existing code that already made use of the new C# keywords. The solution was to enhance the syntax by defining these keywords as contextual keywords; they can be used only in some specific code places. For example, the async keyword can be used only with a method declaration, and it is okay to use it as a variable name. The compiler doesn’t have a conflict with that.

Usage Conventions

In any development language, certain traditional programming styles usually arise. The styles are not part of the language itself but rather are conventions—for example, how variables are named or how certain classes, methods, or functions are used. If most developers using that language follow the same conventions, it makes it easier for different developers to understand each other’s code—which in turn generally helps program maintainability. Conventions do, however, depend on the language and the environment. For example, C++ developers programming on the Windows platform have traditionally used the prefixes psz or lpsz to indicate strings—char *pszResult; char *lpszMessage;—but on Unix machines it’s more common not to use any such prefixes: char *Result; char *Message;.

Notice from the sample code in this book that the convention in C# is to name variables without prefixes: string Result; string Message;.

NOTE The convention by which variable names are prefixed with letters that represent the data type is known as Hungarian notation. It means that other developers reading the code can immediately tell from the variable name what data type the variable represents. Hungarian notation is widely regarded as redundant in these days of smart editors and IntelliSense.

Whereas many languages’ usage conventions simply evolved as the language was used, for C# and the whole of the .NET Framework, Microsoft has written very comprehensive usage guidelines, which are detailed in the .NET/C# MSDN documentation. This means that, right from the start, .NET programs have a high degree of interoperability in terms of developers being able to understand code. The guidelines have also been developed with the benefit of some 20 years’ hindsight in object-oriented programming. Judging by the relevant newsgroups, the guidelines have been carefully thought out and are well received in the developer community. Hence, the guidelines are well worth following.

Note, however, that the guidelines are not the same as language specifications. You should try to follow the guidelines when you can. Nevertheless, you won’t run into problems if you have a good reason for not doing so—for example, you won’t get a compilation error because you don’t follow these guidelines. The general rule is that if you don’t follow the usage guidelines, you must have a convincing reason. When you depart from the guidelines you should be making a conscious decision rather than simply not bothering. Also, if you compare the guidelines with the samples in the remainder of this book, you’ll notice that in numerous examples I have chosen not to follow the conventions. That’s usually because the conventions are designed for much larger programs than the samples; although the guidelines are great if you are writing a complete software package, they are not really suitable for small 20-line standalone programs. In many cases, following the conventions would have made the samples harder, rather than easier, to follow.

The full guidelines for good programming style are quite extensive. This section is confined to describing some of the more important guidelines, as well as those most likely to surprise you. To be absolutely certain that your code follows the usage guidelines completely, you need to refer to the MSDN documentation.

Naming Conventions

One important aspect of making your programs understandable is how you choose to name your items—and that includes naming variables, methods, classes, enumerations, and namespaces.

It is intuitively obvious that your names should reflect the purpose of the item and should not clash with other names. The general philosophy in the .NET Framework is also that the name of a variable should reflect the purpose of that variable instance and not the data type. For example, height is a good name for a variable, whereas integerValue isn’t. However, you are likely to find that principle is an ideal that is hard to achieve. Particularly when you are dealing with controls, in most cases you’ll probably be happier sticking with variable names such as confirmationDialog and chooseEmployeeListBox, which do indicate the data type in the name.

The following sections look at some of the things you need to think about when choosing names.

Casing of Names

In many cases you should use Pascal casing for names. With Pascal casing, the first letter of each word in a name is capitalized: EmployeeSalary, ConfirmationDialog, PlainTextEncoding. Notice that nearly all the names of namespaces, classes, and members in the base classes follow Pascal casing. In particular, the convention of joining words using the underscore character is discouraged. Therefore, try not to use names such as employee_salary. It has also been common in other languages to use all capitals for names of constants. This is not advised in C# because such names are harder to read—the convention is to use Pascal casing throughout:

const int MaximumLength;

The only other casing convention that you are advised to use is camel casing. Camel casing is similar to Pascal casing, except that the first letter of the first word in the name is not capitalized: employeeSalary, confirmationDialog, plainTextEncoding. Following are three situations in which you are advised to use camel casing:

	

For names of all private member fields in types:

 private int subscriberId;

Note, however, that often it is conventional to prefix names of member fields with an underscore:

 private int _subscriberId;

	

For names of all parameters passed to methods:

 public void RecordSale(string salesmanName, int quantity);

	

To distinguish items that would otherwise have the same name. A common example is when a property wraps around a field:

 private string employeeName;
 public string EmployeeName
 {
 get
 {
 return employeeName;
 }
 }

If you are wrapping a property around a field, you should always use camel casing for the private member and Pascal casing for the public or protected member, so that other classes that use your code see only names in Pascal case (except for parameter names).

You should also be wary about case sensitivity. C# is case sensitive, so it is syntactically correct for names in C# to differ only by the case, as in the previous examples. However, bear in mind that your assemblies might at some point be called from Visual Basic applications—and Visual Basic is not case sensitive. Hence, if you do use names that differ only by case, it is important to do so only in situations in which both names will never be seen outside your assembly. (The previous example qualifies as okay because camel case is used with the name that is attached to a private variable.) Otherwise, you may prevent other code written in Visual Basic from being able to use your assembly correctly.

Name Styles

Be consistent about your style of names. For example, if one of the methods in a class is called ShowConfirmationDialog, then you should not give another method a name such as ShowDialogWarning or WarningDialogShow. The other method should be called ShowWarningDialog.

Namespace Names

It is particularly important to choose Namespace names carefully to avoid the risk of ending up with the same name for one of your namespaces as someone else uses. Remember, namespace names are the only way that .NET distinguishes names of objects in shared assemblies. Therefore, if you use the same namespace name for your software package as another package, and both packages are used by the same program, problems will occur. Because of this, it’s almost always a good idea to create a top-level namespace with the name of your company and then nest successive namespaces that narrow down the technology, group, or department you are working in or the name of the package for which your classes are intended. Microsoft recommends namespace names that begin with <CompanyName>.<TechnologyName>, as in these two examples:

WeaponsOfDestructionCorp.RayGunControllers
WeaponsOfDestructionCorp.Viruses

Names and Keywords

It is important that the names do not clash with any keywords. In fact, if you attempt to name an item in your code with a word that happens to be a C# keyword, you’ll almost certainly get a syntax error because the compiler will assume that the name refers to a statement. However, because of the possibility that your classes will be accessed by code written in other languages, it is also important that you don’t use names that are keywords in other .NET languages. Generally speaking, C++ keywords are similar to C# keywords, so confusion with C++ is unlikely, and those commonly encountered keywords that are unique to Visual C++ tend to start with two underscore characters. As with C#, C++ keywords are spelled in lowercase, so if you hold to the convention of naming your public classes and members with Pascal-style names, they will always have at least one uppercase letter in their names, and there will be no risk of clashes with C++ keywords. However, you are more likely to have problems with Visual Basic, which has many more keywords than C# does, and being non-case-sensitive means that you cannot rely on Pascal-style names for your classes and methods.

Check the MSDN documentation at http://msdn.microsoft.com/library. In Development Tools and Languages, C# reference, you find a long list of C# keywords that you shouldn’t use with classes and members. Also check the list of Visual Basic keywords if Visual Basic could be used as a language accessing your classes.

Use of Properties and Methods

One area that can cause confusion regarding a class is whether a particular quantity should be represented by a property or a method. The rules are not hard and fast, but in general you should use a property if something should look and behave like a variable. (If you’re not sure what a property is, see Chapter 3.) This means, among other things, that

	Client code should be able to read its value. Write-only properties are not recommended, so, for example, use a SetPassword method, not a write-only Password property.

	Reading the value should not take too long. The fact that something is a property usually suggests that reading it will be relatively quick.

	Reading the value should not have any observable and unexpected side effect. Furthermore, setting the value of a property should not have any side effect that is not directly related to the property. Setting the width of a dialog has the obvious effect of changing the appearance of the dialog on the screen. That’s fine, because that’s obviously related to the property in question.

	It should be possible to set properties in any order. In particular, it is not good practice when setting a property to throw an exception because another related property has not yet been set. For example, to use a class that accesses a database, you need to set ConnectionString, UserName, and Password, and then the author of the class should ensure that the class is implemented such that users can set them in any order.

	Successive reads of a property should give the same result. If the value of a property is likely to change unpredictably, you should code it as a method instead. Speed, in a class that monitors the motion of an automobile, is not a good candidate for a property. Use a GetSpeed method here; but Weight and EngineSize are good candidates for properties because they will not change for a given object.

If the item you are coding satisfies all the preceding criteria, it is probably a good candidate for a property. Otherwise, you should use a method.

Use of Fields

The guidelines are pretty simple here. Fields should almost always be private, although in some cases it may be acceptable for constant or read-only fields to be public. Making a field public may hinder your ability to extend or modify the class in the future.

The previous guidelines should give you a foundation of good practices, and you should use them in conjunction with a good object-oriented programming style.

A final helpful note to keep in mind is that Microsoft has been relatively careful about being consistent and has followed its own guidelines when writing the .NET base classes, so a very good way to get an intuitive feel for the conventions to follow when writing .NET code is to simply look at the base classes—see how classes, members, and namespaces are named, and how the class hierarchy works. Consistency between the base classes and your classes will facilitate readability and maintainability.

Summary

This chapter examined some of the basic syntax of C#, covering the areas needed to write simple C# programs. We covered a lot of ground, but much of it will be instantly recognizable to developers who are familiar with any C-style language (or even JavaScript).

You have seen that although C# syntax is similar to C++ and Java syntax, there are many minor differences. You have also seen that in many areas this syntax is combined with facilities to write code very quickly—for example, high-quality string handling facilities. C# also has a strongly defined type system, based on a distinction between value and reference types. Chapters 3 and 4 cover the C# object-oriented programming features.

3
Objects and Types

What’s In This Chapter?

	The differences between classes and structs

	Class members

	Expression-bodied members

	Passing values by value and by reference

	Method overloading

	Constructors and static constructors

	Read-only fields

	Enumerations

	Partial classes

	Static classes

	The Object class, from which all other types are derived

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	MathSample

	MethodSample

	StaticConstructorSample

	StructsSample

	PassingByValueAndByReference

	OutKeywordSample

	EnumSample

	ExtensionMethods

Creating and Using Classes

So far, you’ve been introduced to some of the building blocks of the C# language, including variables, data types, and program flow statements, and you have seen a few very short complete programs containing little more than the Main method. What you haven’t seen yet is how to put all these elements together to form a longer, complete program. The key to this lies in working with classes—the subject of this chapter. Note Chapter 4, “Inheritance,” covers inheritance and features related to inheritance.

NOTE This chapter introduces the basic syntax associated with classes. However, we assume that you are already familiar with the underlying principles of using classes—for example, that you know what a constructor or a property is. This chapter is largely confined to applying those principles in C# code.

Classes and Structs

Classes and structs are essentially templates from which you can create objects. Each object contains data and has methods to manipulate and access that data. The class defines what data and behavior each particular object (called an instance) of that class can contain. For example, if you have a class that represents a customer, it might define fields such as CustomerID, FirstName, LastName, and Address, which are used to hold information about a particular customer. It might also define functionality that acts upon the data stored in these fields. You can then instantiate an object of this class to represent one specific customer, set the field values for that instance, and use its functionality:

class PhoneCustomer
{
 public const string DayOfSendingBill ="Monday";
 public int CustomerID;
 public string FirstName;
 public string LastName;
}

Structs differ from classes because they do not need to be allocated on the heap (classes are reference types and are always allocated on the heap). Structs are value types and are usually stored on the stack. Also, structs cannot derive from a base struct.

You typically use structs for smaller data types for performance reasons. In terms of syntax, however, structs look very similar to classes; the main difference is that you use the keyword struct instead of class to declare them. For example, if you wanted all PhoneCustomer instances to be allocated on the stack instead of the managed heap, you could write the following:

struct PhoneCustomerStruct
{
 public const string DayOfSendingBill ="Monday";
 public int CustomerID;
 public string FirstName;
 public string LastName;
}

For both classes and structs, you use the keyword new to declare an instance. This keyword creates the object and initializes it; in the following example, the default behavior is to zero out its fields:

var myCustomer = new PhoneCustomer(); // works for a class
var myCustomer2 = new PhoneCustomerStruct();// works for a struct

In most cases, you use classes much more often than structs. Therefore, this chapter covers classes first and then the differences between classes and structs and the specific reasons why you might choose to use a struct instead of a class. Unless otherwise stated, however, you can assume that code presented for a class works equally well for a struct.

NOTE An important difference between classes and structs is that objects of type of class are passed by reference, and objects of type of a struct are passed by value. This is explained later in this chapter in the section “Passing Parameters by Value and by Reference.”

Classes

A class contains members, which can be static or instance members. A static member belongs to the class; an instance member belongs to the object. With static fields, the value of the field is the same for every object. With instance fields, every object can have a different value. Static members have the static modifier attached.

The kind of members are explained in the following table.

	Member
	Description

	Fields
	A field is a data member of a class. It is a variable of a type that is a member of a class.

	Constants
	Constants are associated with the class (although they do not have the static modifier). The compiler replaces constants everywhere they are used with the real value.

	Methods
	Methods are functions associated with a particular class.

	Properties
	Properties are sets of functions that can be accessed from the client in a similar way to the public fields of the class. C# provides a specific syntax for implementing read and write properties on your classes, so you don’t have to use method names that are prefixed with the words Get or Set. Because there’s a dedicated syntax for properties that is distinct from that for normal functions, the illusion of objects as actual things is strengthened for client code.

	Constructors
	Constructors are special functions that are called automatically when an object is instantiated. They must have the same name as the class to which they belong and cannot have a return type. Constructors are useful for initialization.

	Indexers
	Indexers allow your object to be accessed the same way as arrays. Indexers are explained in Chapter 8, “Operators and Casts.”

	Operators
	Operators, at their simplest, are actions such as + or –. When you add two integers, you are, strictly speaking, using the + operator for integers. C# also allows you to specify how existing operators will work with your own classes (operator overloading). Chapter 8 looks at operators in detail.

	Events
	Events are class members that allow an object to notify a subscriber whenever something noteworthy happens, such as a field or property of the class changing, or some form of user interaction occurring. The client can have code, known as an event handler, that reacts to the event. Chapter 9, “Delegates, Lambdas, and Events,” looks at events in detail.

	Destructors
	The syntax of destructors or finalizers is similar to the syntax for constructors, but they are called when the CLR detects that an object is no longer needed. They have the same name as the class, preceded by a tilde (~). It is impossible to predict precisely when a finalizer will be called. Finalizers are discussed in Chapter 5, “Managed and Unmanaged Resources.”

	Types
	Classes can contain inner classes. This is interesting if the inner type is only used in conjunction with the outer type.

Let’s get into the details of class members.

Fields

Fields are any variables associated with the class. You have already seen fields in use in the PhoneCustomer class in the previous example.

After you have instantiated a PhoneCustomer object, you can then access these fields using the object.FieldName syntax, as shown in this example:

var customer1 = new PhoneCustomer();
customer1.FirstName ="Simon";

Constants can be associated with classes in the same way as variables. You declare a constant using the const keyword. If it is declared as public, then it is accessible from outside the class:

class PhoneCustomer
{
 public const string DayOfSendingBill ="Monday";
 public int CustomerID;
 public string FirstName;
 public string LastName;
}

It’s a good idea not to declare fields public. If you change a public member of a class, every caller that’s using this public member needs to be changed as well. For example, in case you want to introduce a check for the maximum string length with the next version, the public field needs to be changed to a property. Existing code that makes use of the public field must be recompiled for using this property (although the syntax from the caller side looks the same with properties). If instead you just change the check within an existing property, the caller doesn’t need to be recompiled for using the new version.

It’s good practice to declare fields private and use properties to access the field, as described in the next section.

Properties

The idea of a property is that it is a method or a pair of methods dressed to look like a field. Let’s change the field for the first name from the previous example to a private field with the variable name _firstName. The property named FirstName contains a get and set accessor to retrieve and set the value of the backing field:

class PhoneCustomer
{
 private string _firstName;
 public string FirstName
 {
 get { return _firstName; }
 set { firstName = value; }
 }
 // etc.
}

The get accessor takes no parameters and must return the same type as the declared property. You should not specify any explicit parameters for the set accessor either, but the compiler assumes it takes one parameter, which is of the same type again, and which is referred to as value.

Let’s get into another example with a different naming convention. The following code contains a property called Age, which sets a field called age. In this example, age is referred to as the backing variable for the property Age:

private int age;
public int Age
{
 get { return age; }
 set { age = value; }
}

Note the naming convention used here. You take advantage of C#’s case sensitivity by using the same name—Pascal-case for the public property, and camel-case for the equivalent private field if there is one. In earlier .NET versions, this naming convention was preferred by Microsoft’s C# team. Recently they switched to the naming convention to prefix field names by an underscore. This provides an extremely convenient way to identify fields in contrast to local variables.

NOTE Microsoft teams use either one or the other naming convention. For using private members of types, .NET doesn’t have strict naming conventions. However, within a team the same convention should be used. The .NET Core team switched to using an underscore to prefix fields, which is the convention used in this book in most places (see https://github.com/dotnet/corefx/blob/master/Documentation/coding-guidelines/coding-style.md).

Auto-Implemented Properties

If there isn’t going to be any logic in the properties set and get, then auto-implemented properties can be used. Auto-implemented properties implement the backing member variable automatically. The code for the earlier Age example would look like this:

public int Age { get; set; }

The declaration of a private field is not needed. The compiler creates this automatically. With auto-implemented properties, you cannot access the field directly as you don’t know the name the compiler generates.

By using auto-implemented properties, validation of the property cannot be done at the property set. Therefore, with the Age property you could not have checked to see if an invalid age is set.

Auto-implemented properties can be initialized using a property initializer:

public int Age { get; set; } = 42;

Access Modifiers for Properties

C# allows the set and get accessors to have differing access modifiers. This would allow a property to have a public get and a private or protected set. This can help control how or when a property can be set. In the following code example, notice that the set has a private access modifier but the get does not. In this case, the get takes the access level of the property. One of the accessors must follow the access level of the property. A compile error is generated if the get accessor has the protected access level associated with it because that would make both accessors have a different access level from the property.

public string Name
{
 get
 {
 return _name;
 }
 private set
 {
 _name = value;
 }
}

Different access levels can also be set with auto-implemented properties:

public int Age { get; private set; }

NOTE You can also define properties that only have a get or set accessor. Before creating a property with only a set accessor, it’s a good practice to create a method instead. You can use properties with only a get accessor for read-only access. Auto-implemented properties with only get accessors are new with C# 6 and discussed in the section “Readonly Members.”

NOTE Some developers may be concerned that the previous sections have presented a number of situations in which standard C# coding practices have led to very small functions—for example, accessing a field via a property instead of directly. Will this hurt performance because of the overhead of the extra function call? The answer is no. There’s no need to worry about performance loss from these kinds of programming methodologies in C#. Recall that C# code is compiled to IL, then JIT compiled at runtime to native executable code. The JIT compiler is designed to generate highly optimized code and will ruthlessly inline code as appropriate (in other words, it replaces function calls with inline code). A method or property whose implementation simply calls another method or returns a field will almost certainly be inlined.

Usually you do not need to change the inlining behavior, but you have some control to inform the compiler about inlining. Using the attribute MethodImpl, you can define that a method should not be inlined (MethodImplOptions.NoInlining), or inlining should be done aggressively by the compiler (MethodImplOptions.AggressiveInlining). With properties, you need to apply this attribute directly to the get and set accessors. Attributes are explained in detail in Chapter 16, “Reflection, Metadata, and Dynamic Programming.”

Methods

Note that official C# terminology makes a distinction between functions and methods. In C# terminology, the term “function member” includes not only methods, but also other nondata members of a class or struct. This includes indexers, operators, constructors, destructors, and—perhaps somewhat surprisingly—properties. These are contrasted with data members: fields, constants, and events.

Declaring Methods

In C#, the definition of a method consists of any method modifiers (such as the method’s accessibility), followed by the type of the return value, followed by the name of the method, followed by a list of input arguments enclosed in parentheses, followed by the body of the method enclosed in curly braces:

[modifiers] return_type MethodName([parameters])
{
 // Method body
}

Each parameter consists of the name of the type of the parameter, and the name by which it can be referenced in the body of the method. Also, if the method returns a value, a return statement must be used with the return value to indicate each exit point, as shown in this example:

public bool IsSquare(Rectangle rect)
{
 return (rect.Height == rect.Width);
}

If the method doesn’t return anything, specify a return type of void because you can’t omit the return type altogether; and if it takes no arguments, you still need to include an empty set of parentheses after the method name. In this case, including a return statement is optional—the method returns automatically when the closing curly brace is reached.

Expression-Bodied Methods

If the implementation of a method consists just of one statement, C# 6 gives a simplified syntax to method definitions: expression-bodied methods. You don’t need to write curly brackets and the return keyword with the new syntax. The operator => (the lambda operator) is used to distinguish the declaration of the left side of this operator to the implementation that is on the right side.

The following example is the same method as before, IsSquare, implemented using the expression-bodied method syntax. The right side of the lambda operator defines the implementation of the method. Curly brackets and a return statement are not needed. What’s returned is the result of the statement, and the result needs to be of the same type as the method declared on the left side, which is a bool in this code snippet:

public bool IsSquare(Rectangle rect) => rect.Height == rect.Width;

Invoking Methods

The following example illustrates the syntax for definition and instantiation of classes, and definition and invocation of methods. The class Math defines instance and static members (code file MathSample/Math.cs):

public class Math
{
 public int Value { get; set; }

 public int GetSquare() => Value * Value;

 public static int GetSquareOf(int x) => x * x;

 public static double GetPi() => 3.14159;

}

The Program class makes use of the Math class, calls static methods, and instantiates an object to invoke instance members (code file MathSample/Program.cs);

using static System.Console;

namespace MathSample
{
 class Program
 {
 static void Main()
 {
 // Try calling some static functions.
 WriteLine($"Pi is {Math.GetPi()}");
 int x = Math.GetSquareOf(5);
 WriteLine($"Square of 5 is {x}");

 // Instantiate a Math object
 var math = new Math(); // instantiate a reference type

 // Call instance members
 math.Value = 30;
 WriteLine($"Value field of math variable contains {math.Value}");
 WriteLine($"Square of 30 is {math.GetSquare()}");
 }
 }

Running the MathSample example produces the following results:

Pi is 3.14159
Square of 5 is 25
Value field of math variable contains 30
Square of 30 is 900

As you can see from the code, the Math class contains a property that contains a number, as well as a method to find the square of this number. It also contains two static methods: one to return the value of pi and one to find the square of the number passed in as a parameter.

Some features of this class are not really good examples of C# program design. For example, GetPi would usually be implemented as a const field, but following good design would mean using some concepts that have not yet been introduced.

Method Overloading

C# supports method overloading—several versions of the method that have different signatures (that is, the same name but a different number of parameters and/or different parameter data types). To overload methods, simply declare the methods with the same name but different numbers of parameter types:

class ResultDisplayer
{
 public void DisplayResult(string result)
 {
 // implementation
 }

 public void DisplayResult(int result)
 {
 // implementation
 }
}

It’s not just the parameter types that can differ; the number of parameters can differ too, as shown in the next example. One overloaded method can invoke another:

class MyClass
{
 public int DoSomething(int x)
 {
 return DoSomething(x, 10); // invoke DoSomething with two parameters
 }

 public int DoSomething(int x, int y)
 {
 // implementation
 }
}

NOTE With method overloading, it is not sufficient to only differ overloads by the return type. It’s also not sufficient to differ by parameter names. The number of parameters and/or types needs to difffer.

Named Arguments

Invoking methods, the variable name need not be added to the invocation. However, if you have a method signature like the following to move a rectangle

public void MoveAndResize(int x, int y, int width, int height)

and you invoke it with the following code snippet, it’s not clear from the invocation what numbers are used for what:

r.MoveAndResize(30, 40, 20, 40);

You can change the invocation to make it immediately clear what the numbers mean:

r.MoveAndResize(x: 30, y: 40, width: 20, height: 40);

Any method can be invoked using named arguments. You just need to write the name of the variable followed by a colon and the value passed. The compiler gets rid of the name and creates an invocation of the method just like the variable name would not be there—so there’s no difference within the compiled code.

You can also change the order of variables this way, and the compiler rearranges it to the correct order. The real advantage to this is shown in the next section with optional arguments.

Optional Arguments

Parameters can also be optional. You must supply a default value for optional parameters, which must be the last ones defined:

public void TestMethod(int notOptionalNumber, int optionalNumber = 42)
{
 WriteLine(optionalNumber + notOptionalNumber);
}

This method can now be invoked using one or two parameters. Passing one parameter, the compiler changes the method call to pass 42 with the second parameter.

TestMethod(11);
TestMethod(11, 22);

NOTE Because the compiler changes methods with optional parameters to pass the default value, the default value should never change with newer versions of the assembly. With a change of the default value in a newer version, if the caller is in a different assembly that is not recompiled, it would have the older default value. That’s why you should have optional parameters only with values that never change. In case the calling method is always recompiled when the default value changes, this is not an issue.

You can define multiple optional parameters, as shown here:

public void TestMethod(int n, int opt1 = 11, int opt2 = 22, int opt3 = 33)
{
 WriteLine(n + opt1 + opt2 + opt3);
}

This way, the method can be called using 1, 2, 3, or 4 parameters. The first line of the following code leaves the optional parameters with the values 11, 22, and 33. The second line passes the first three parameters, and the last one has a value of 33:

TestMethod(1);
TestMethod(1, 2, 3);

With multiple optional parameters, the feature of named arguments shines. Using named arguments you can pass any of the optional parameters—for example, this example passes just the last one:

TestMethod(1, opt3: 4);

NOTE Pay attention to versioning issues when using optional arguments. One issue is to change default values in newer versions; another issue is to change the number of arguments. It might look tempting to add another optional parameter as it is optional anyway. However, the compiler changes the calling code to fill in all the parameters, and that’s the reason earlier compiled callers fail if another parameter is added later on.

Variable Number of Arguments

Using optional arguments, you can define a variable number of arguments. However, there’s also a different syntax that allows passing a variable number of arguments—and this syntax doesn’t have versioning issues.

Declaring the parameter of type array—the sample code uses an int array—and adding the params keyword, the method can be invoked using any number of int parameters.

public void AnyNumberOfArguments(params int[] data)
{
 foreach (var x in data)
 {
 WriteLine(x);
 }
}

NOTE Arrays are explained in detail in Chapter 7, “Arrays and Tuples.”

As the parameter of the method AnyNumberOfArguments is of type int[], you can pass an int array, or because of the params keyword, you can pass one or any number of int values:

AnyNumberOfArguments(1);
AnyNumberOfArguments(1, 3, 5, 7, 11, 13);

If arguments of different types should be passed to methods, you can use an object array:

public void AnyNumberOfArguments(params object[] data)
{
 // etc.

Now it is possible to use any type calling this method:

AnyNumberOfArguments("text", 42);

If the params keyword is used with multiple parameters that are defined with the method signature, params can be used only once, and it must be the last parameter:

WriteLine(string format, params object[] arg);

Now that you’ve looked at the many aspects of methods, let’s get into constructors, which are a special kind of methods.

Constructors

The syntax for declaring basic constructors is a method that has the same name as the containing class and that does not have any return type:

public class MyClass
{
 public MyClass()
 {
 }
 // rest of class definition

It’s not necessary to provide a constructor for your class. We haven’t supplied one for any of the examples so far in this book. In general, if you don’t supply any constructor, the compiler generates a default one behind the scenes. It will be a very basic constructor that initializes all the member fields by zeroing them out (null reference for reference types, zero for numeric data types, and false for bools). Often, that is adequate; if not, you need to write your own constructor.

Constructors follow the same rules for overloading as other methods—that is, you can provide as many overloads to the constructor as you want, provided they are clearly different in signature:

 public MyClass() // zeroparameter constructor
 {
 // construction code
 }

 public MyClass(int number) // another overload
 {
 // construction code
 }

However, if you supply any constructors that take parameters, the compiler does not automatically supply a default one. This is done only if you have not defined any constructors at all. In the following example, because a one-parameter constructor is defined, the compiler assumes that this is the only constructor you want to be available, so it does not implicitly supply any others:

public class MyNumber
{
 private int _number;
 public MyNumber(int number)
 {
 _number = number;
 }
}

If you now try instantiating a MyNumber object using a no-parameter constructor, you get a compilation error:

var numb = new MyNumber(); // causes compilation error

Note that it is possible to define constructors as private or protected, so that they are invisible to code in unrelated classes too:

public class MyNumber
{
 private int _number;
 private MyNumber(int number) // another overload
 {
 _number = number;
 }
}

This example hasn’t actually defined any public, or even any protected, constructors for MyNumber. This would actually make it impossible for MyNumber to be instantiated by outside code using the new operator (though you might write a public static property or method in MyNumber that can instantiate the class). This is useful in two situations:

	If your class serves only as a container for some static members or properties, and therefore should never be instantiated. With this scenario, you can declare the class with the modifier static. With this modifier the class can contain only static members and cannot be instantiated.

	If you want the class to only ever be instantiated by calling a static member function (this is the so-called factory pattern approach to object instantiation). An implementation of the Singleton pattern is shown in the following code snippet.

public class Singleton
{
 private static Singleton s_instance;

 private int _state;
 private Singleton(int state)
 {
 _state = state;
 }

 public static Singleton Instance
 {
 get { return s_instance ?? (s_instance = new MySingleton(42); }
 }
}

The Singleton class contains a private constructor, so you can instantiate it only within the class itself. To instantiate it, the static property Instance returns the field s_instance. If this field is not yet initialized (null), a new instance is created by calling the instance constructor. For the null check, the coalescing operator is used. If the left side of this operator is null, the right side of this operator is processed and the instance constructor invoked.

NOTE The coalescing operator is explained in detail in Chapter 8.

Calling Constructors from Other Constructors

You might sometimes find yourself in the situation where you have several constructors in a class, perhaps to accommodate some optional parameters for which the constructors have some code in common. For example, consider the following:

class Car
{
 private string _description;
 private uint _nWheels;

 public Car(string description, uint nWheels)
 {
 _description = description;
 _nWheels = nWheels;
 }

 public Car(string description)
 {
 _description = description;
 _nWheels = 4;
 }
 // etc.

Both constructors initialize the same fields. It would clearly be neater to place all the code in one location. C# has a special syntax known as a constructor initializer to enable this:

class Car
{
 private string _description;
 private uint _nWheels;

 public Car(string description, uint nWheels)
 {
 _description = description;
 _nWheels = nWheels;
 }

 public Car(string description): this(description, 4)
 {
 }
 // etc

In this context, the this keyword simply causes the constructor with the nearest matching parameters to be called. Note that any constructor initializer is executed before the body of the constructor. Suppose that the following code is run:

var myCar = new Car("Proton Persona");

In this example, the two-parameter constructor executes before any code in the body of the one-parameter constructor (though in this particular case, because there is no code in the body of the one-parameter constructor, it makes no difference).

A C# constructor initializer may contain either one call to another constructor in the same class (using the syntax just presented) or one call to a constructor in the immediate base class (using the same syntax, but using the keyword base instead of this). It is not possible to put more than one call in the initializer.

Static Constructors

One feature of C# is that it is also possible to write a static no-parameter constructor for a class. Such a constructor is executed only once, unlike the constructors written so far, which are instance constructors that are executed whenever an object of that class is created:

class MyClass
{
 static MyClass()
 {
 // initialization code
 }
 // rest of class definition
}

One reason for writing a static constructor is if your class has some static fields or properties that need to be initialized from an external source before the class is first used.

The .NET runtime makes no guarantees about when a static constructor will be executed, so you should not place any code in it that relies on it being executed at a particular time (for example, when an assembly is loaded). Nor is it possible to predict in what order static constructors of different classes will execute. However, what is guaranteed is that the static constructor will run at most once, and that it will be invoked before your code makes any reference to the class. In C#, the static constructor is usually executed immediately before the first call to any member of the class.

Note that the static constructor does not have any access modifiers. It’s never called explicitly by any other C# code, but always by the .NET runtime when the class is loaded, so any access modifier such as public or private would be meaningless. For this same reason, the static constructor can never take any parameters, and there can be only one static constructor for a class. It should also be obvious that a static constructor can access only static members, not instance members, of the class.

It is possible to have a static constructor and a zero-parameter instance constructor defined in the same class. Although the parameter lists are identical, there is no conflict because the static constructor is executed when the class is loaded, but the instance constructor is executed whenever an instance is created. Therefore, there is no confusion about which constructor is executed or when.

If you have more than one class that has a static constructor, the static constructor that is executed first is undefined. Therefore, you should not put any code in a static constructor that depends on other static constructors having been or not having been executed. However, if any static fields have been given default values, these are allocated before the static constructor is called.

The next example illustrates the use of a static constructor. It is based on the idea of a program that has user preferences (which are presumably stored in some configuration file). To keep things simple, assume just one user preference—a quantity called BackColor that might represent the background color to be used in an application. Because we don’t want to get into the details of writing code to read data from an external source here, assume also that the preference is to have a background color of red on weekdays and green on weekends. All the program does is display the preference in a console window, but that is enough to see a static constructor at work.

The class UserPreferences is declared with the static modifier; thus it cannot be instantiated and can only contain static members. The static constructor initializes the BackColor property depending on the day of the week (code file StaticConstructorSample/UserPreferences.cs):

public static class UserPreferences
{
 public static Color BackColor { get; }

 static UserPreferences()
 {
 DateTime now = DateTime.Now;
 if (now.DayOfWeek == DayOfWeek.Saturday
 || now.DayOfWeek == DayOfWeek.Sunday)
 {
 BackColor = Color.Green;
 }
 else
 {
 BackColor = Color.Red;
 }
 }
}

This code makes use of the System.DateTime struct that is supplied with the .NET Framework. DateTime implements a static property Now that returns the current time. DayOfWeek is an instance property of DateTime that returns an enum value of type DayOfWeek.

Color is defined as an enum type and contains a few colors. The enum types are explained in detail later in the section Enums (code file StaticConstructorSample/Enum.cs):

 public enum Color
 {
 White,
 Red,
 Green,
 Blue,
 Black
 }

The Main method just invokes the WriteLine method and writes the user preferences back color to the console (code file StaticConstructorSample/Program.cs):

class Program
{
 static void Main()
 {
 WriteLine(
 $"User-preferences: BackColor is: {UserPreferences.BackColor}");
 }
}

Compiling and running the preceding code results in the following output:

User-preferences: BackColor is: Color Red

Of course, if the code is executed during the weekend, your color preference would be Green.

Readonly Members

If you do not want to change a data member after initialization, the readonly keyword can be used. Let’s get into the details of readonly fields and readonly properties.

Readonly Fields

To guarantee that fields of an object cannot be changed, fields can be declared with the readonly modifier. Fields with the readonly modifier can be assigned only values from constructors. This is different from the const modifier. With the const modifier, the compiler replaces the variable by its value everywhere it is used. The compiler already knows the value of the constant. Read-only fields are assigned during runtime from a constructor. Contrary to const fields, read-only fields can be instance members. For using a read-only field as a class member, the static modifier needs to be assigned to the field.

Suppose that you have a program that edits documents, and for licensing reasons you want to restrict the number of documents that can be opened simultaneously. Assume also that you are selling different versions of the software, and it’s possible for customers to upgrade their licenses to open more documents simultaneously. Clearly, this means you can’t hard-code the maximum number in the source code. You would probably need a field to represent this maximum number. This field has to be read in—perhaps from a registry key or some other file storage—each time the program is launched. Therefore, your code might look something like this:

public class DocumentEditor
{
 private static readonly uint s_maxDocuments;

 static DocumentEditor()
 {
 s_maxDocuments = DoSomethingToFindOutMaxNumber();
 }
}

In this case, the field is static because the maximum number of documents needs to be stored only once per running instance of the program. This is why it is initialized in the static constructor. If you had an instance readonly field, you would initialize it in the instance constructor(s). For example, presumably each document you edit has a creation date, which you wouldn’t want to allow the user to change (because that would be rewriting the past!).

As noted earlier, date is represented by the class System.DateTime. The following code initializes the _creationTime field in the constructor using the DateTime struct. After initialization of the Document class, the creation time cannot be changed anymore:

 public class Document
 {
 private readonly DateTime _creationTime;
 public Document()
 {
 _creationTime = DateTime.Now;
 }
 }

CreationDate and MaxDocuments in the previous code snippet are treated like any other field, except that because they are read-only they cannot be assigned outside the constructors:

void SomeMethod()
{
 s_maxDocuments = 10; // compilation error here. MaxDocuments is readonly
}

It’s also worth noting that you don’t have to assign a value to a readonly field in a constructor. If you don’t do so, it is left with the default value for its particular data type or whatever value you initialized it to at its declaration. That applies to both static and instance readonly fields.

Readonly Properties

It is possible to create a read-only property by simply omitting the set accessor from the property definition. Thus, to make Name a read-only property, you would do the following:

private readonly string _name;

public string Name
{
 get
 {
 return _name;
 }
}

Declaring the field with the readonly modifier only allows initializing the value of the property in the constructor.

It is similarly possible to create a write-only property by omitting the get accessor. However, this is regarded as poor programming practice because it could be confusing to authors of client code. In general, it is recommended that if you are tempted to do this, you should use a method instead.

Auto-implemented Readonly Properties

C# 6 offers a simple syntax with auto-implemented properties to create read-only properties accessing read-only fields. These properties can be initialized using property initializers.

public string Id { get; } = Guid.NewGuid().ToString();

Behind the scenes, the compiler creates a read-only field and a property with a get accessor to this field. The code from the initializer moves to the implementation of the constructor and is invoked before the constructor body is called.

Of course, read-only properties can also be initialized from the constructor as shown with this code snippet:

public class Person
{
 public Person(string name)
 {
 Name = name;
 }
 public string Name { get; }
}

Expression-Bodied Properties

Another extension with C# 6 in regard to properties are expression-bodied properties. Similar to expression-bodied methods, expression-bodied properties don’t need curly brackets and return statements. Expression-bodied properties are properties with the get accessor, but you don’t need to write the get keyword. Just the implementation of the get accessor follows the lambda operator. With the Person class, the FullName property is implemented using an expression-bodied property and returns with this property the values of the FirstName and LastName properties combined:

public class Person
{
 public Person(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;
 }
 public string FirstName { get; }
 public string LastName { get; }
 public string FullName => $"{FirstName} {LastName}";
}

Immutable Types

If a type contains members that can be changed, it is a mutable type. With the readonly modifier, the compiler complains if the state is changed. The state can only be initialized in the constructor. If an object doesn’t have any members that can be changed—only readonly members—it is an immutable type. The content can only be set on initialization time. This is extremely useful with multithreading, as multiple threads can access the same object with the information it can never change. Because the content cannot change, synchronization is not necessary.

An example of an immutable type is the String class. This class does not define any member that is allowed to change its content. Methods such as ToUpper (which changes the string to uppercase) always return a new string, but the original string passed to the constructor remains unchanged.

Anonymous Types

Chapter 2, “Core C#,” discusses the var keyword in reference to implicitly typed variables. When used with the new keyword, anonymous types can be created. An anonymous type is simply a nameless class that inherits from object. The definition of the class is inferred from the initializer, just as with implicitly typed variables.

For example, if you needed an object containing a person’s first, middle, and last name, the declaration would look like this:

var captain = new
{
 FirstName ="James",
 MiddleName ="T",
 LastName ="Kirk"
};

This would produce an object with FirstName, MiddleName, and LastName properties. If you were to create another object that looked like this:

var doctor = new
{
 FirstName ="Leonard",
 MiddleName = string.Empty,
 LastName ="McCoy"
};

then the types of captain and doctor are the same. You could set captain = doctor, for example. This is only possible if all the properties match.

If the values that are being set come from another object, then the initializer can be abbreviated. If you already have a class that contains the properties FirstName, MiddleName, and LastName and you have an instance of that class with the instance name person, then the captain object could be initialized like this:

var captain = new
{
 person.FirstName,
 person.MiddleName,
 person.LastName
};

The property names from the person object would be projected to the new object named captain, so the object named captain would have the FirstName, MiddleName, and LastName properties.

The actual type name of these new objects is unknown. The compiler “makes up” a name for the type, but only the compiler is ever able to make use of it. Therefore, you can’t and shouldn’t plan on using any type reflection on the new objects because you will not get consistent results.

Structs

So far, you have seen how classes offer a great way to encapsulate objects in your program. You have also seen how they are stored on the heap in a way that gives you much more flexibility in data lifetime but with a slight cost in performance. This performance cost is small thanks to the optimizations of managed heaps. However, in some situations all you really need is a small data structure. In those cases, a class provides more functionality than you need, and for best performance you probably want to use a struct. Consider the following example:

public class Dimensions
{
 public double Length { get; set; }
 public double Width { get; set; }
}

This code defines a class called Dimensions, which simply stores the length and width of an item. Suppose you’re writing a furniture-arranging program that enables users to experiment with rearranging their furniture on the computer, and you want to store the dimensions of each item of furniture. It might seem as though you’re breaking the rules of good program design by making the fields public, but the point is that you don’t really need all the facilities of a class for this. All you have is two numbers, which you’ll find convenient to treat as a pair rather than individually. There is no need for a lot of methods, or for you to be able to inherit from the class, and you certainly don’t want to have the .NET runtime go to the trouble of bringing in the heap, with all the performance implications, just to store two doubles.

As mentioned earlier in this chapter, the only thing you need to change in the code to define a type as a struct instead of a class is to replace the keyword class with struct:

public struct Dimensions
{
 public double Length { get; set; }
 public double Width { get; set; }
}

Defining functions for structs is also exactly the same as defining them for classes. The following code demonstrates a constructor and a property for a struct (code file StructsSample/Dimension.cs):

public struct Dimensions
{
 public double Length { get; set; }
 public double Width { get; set; }

 public Dimensions(double length, double width)
 {
 Length = length;
 Width = width;
 }

 public double Diagonal => Math.Sqrt(Length * Length + Width * Width);
}

Structs are value types, not reference types. This means they are stored either in the stack or inline (if they are part of another object that is stored on the heap) and have the same lifetime restrictions as the simple data types:

	Structs do not support inheritance.

	There are some differences in the way constructors work for structs. If you do not supply a default constructor, the compiler automatically creates one and initializes the members to its default values.

	With a struct, you can specify how the fields are to be laid out in memory (this is examined in Chapter 16, which covers attributes).

Because structs are really intended to group data items together, you’ll sometimes find that most or all of their fields are declared as public. Strictly speaking, this is contrary to the guidelines for writing .NET code—according to Microsoft, fields (other than const fields) should always be private and wrapped by public properties. However, for simple structs, many developers consider public fields to be acceptable programming practice.

The following sections look at some of these differences between structs and classes in more detail.

Structs Are Value Types

Although structs are value types, you can often treat them syntactically in the same way as classes. For example, with the definition of the Dimensions class in the previous section, you could write this:

 var point = new Dimensions();
 point.Length = 3;
 point.Width = 6;

Note that because structs are value types, the new operator does not work in the same way as it does for classes and other reference types. Instead of allocating memory on the heap, the new operator simply calls the appropriate constructor, according to the parameters passed to it, initializing all fields. Indeed, for structs it is perfectly legal to write this:

 Dimensions point;
 point.Length = 3;
 point.Width = 6;

If Dimensions were a class, this would produce a compilation error, because point would contain an uninitialized reference—an address that points nowhere, so you could not start setting values to its fields. For a struct, however, the variable declaration actually allocates space on the stack for the entire struct, so it’s ready to assign values to. The following code, however, would cause a compilation error, with the compiler complaining that you are using an uninitialized variable:

 Dimensions point;
 double D = point.Length;

Structs follow the same rule as any other data type: Everything must be initialized before use. A struct is considered fully initialized either when the new operator has been called against it or when values have been individually assigned to all its fields. Also, of course, a struct defined as a member field of a class is initialized by being zeroed out automatically when the containing object is initialized.

The fact that structs are value types affects performance, though depending on how you use your struct, this can be good or bad. On the positive side, allocating memory for structs is very fast because this takes place inline or on the stack. The same is true when they go out of scope. Structs are cleaned up quickly and don’t need to wait on garbage collection. On the negative side, whenever you pass a struct as a parameter or assign a struct to another struct (as in A = B, where A and B are structs), the full contents of the struct are copied, whereas for a class only the reference is copied. This results in a performance loss that varies according to the size of the struct, emphasizing the fact that structs are really intended for small data structures.

Note, however, that when passing a struct as a parameter to a method, you can avoid this performance loss by passing it as a ref parameter—in this case, only the address in memory of the struct will be passed in, which is just as fast as passing in a class. If you do this, though, be aware that it means the called method can, in principle, change the value of the struct. This is shown later in this chapter in the section “Passing Parameters by Value and by Reference.”

Structs and Inheritance

Structs are not designed for inheritance. This means it is not possible to inherit from a struct. The only exception to this is that structs, in common with every other type in C#, derive ultimately from the class System.Object. Hence, structs also have access to the methods of System.Object, and it is even possible to override them in structs; an obvious example would be overriding the ToString method. The actual inheritance chain for structs is that each struct derives from the class, System.ValueType, which in turn derives from System.Object. ValueType does not add any new members to Object but provides override implementations of some members of the base class that are more suitable for structs. Note that you cannot supply a different base class for a struct: Every struct is derived from ValueType.

Constructors for Structs

You can define constructors for structs in exactly the same way that you can for classes.

That said, the default constructor, which initializes all fields to zero values, is always present implicitly, even if you supply other constructors that take parameters.

With C# 6 it’s also possible to implement a default constructor and supplying initial values for fields (this wasn’t possible in earlier C# versions). You just need to initialize every data member:

public Dimensions()
{
 Length = 0;
 Width = 1;
}
public Dimensions(double length, double width)
{
 Length = length;
 Width = width;
}

Incidentally, you can supply a Close or Dispose method for a struct in the same way you do for a class. The Dispose method is discussed in detail in Chapter 5.

Passing Parameters by Value and by Reference

Let’s assume you have a type named A with a property of type int named X. The method ChangeA receives a parameter of type A and changes the value of X to 2 (code file PassingByValueAndByReference/Program.cs):

public static void ChangeA(A a)
{
 a.X = 2;
}

The Main method creates an instance of type A, initializes X to 1, and invokes the ChangeA method:

static void Main()
{
 A a1 = new A { X = 1 };
 ChangeA(a1);
 WriteLine($"a1.X: {a1.X}");
}

What would you guess is the output? 1 or 2?

The answer is . . . it depends. You need to know if A is a class or a struct. Let’s start with A as a struct:

public struct A
{
 public int X { get; set; }
}

Structs are passed by value; with that the variable a from the ChangeA method gets a copy from the variable a1 that is put on the stack. Only the copy is changed and destroyed at the end of the method ChangeA. The content of a1 never changes and stays 1.

This is completely different with A as a class:

public class A
{
 public int X { get; set; }
}

Classes are passed by reference. This way, a is a variable that references the same object on the heap as the variable a1. When ChangeA changes the value of the X property of a, the change makes it a1.X because it is the same object. Here, the result is 2.

ref Parameters

You can also pass structs by reference. Changing the declaration of the ChangeA method by adding the ref modifier, the variable is passed by reference—also if A is of type struct:

public static void ChangeA(ref A a)
{
 a.X = 2;
}

It’s good to know this from the caller side as well, so with method parameters that have the ref modifier applied, this needs to be added on calling the method as well:

static void Main()
{
 A a1 = new A { X = 1 };
 ChangeA(ref a1);
 WriteLine($"a1.X: {a1.X}");
}

Now the struct is passed by reference likewise the class type, so the result is 2.

What about using the ref modifier with a class type? Let’s change the implementation of the ChangeA method to this:

public static void ChangeA(A a)
{
 a.X = 2;
 a = new A { X = 3 };
}

Using A of type class, what result can be expected now? Of course, the result from the Main method will not be 1 because a pass by reference is done by class types. Setting a.X to 2, the original object a1 gets changed. However, the next line a = new A { X = 3 } now creates a new object on the heap, and a references the new object. The variable a1 used within the Main method still references the old object with the value 2. After the end of the ChangeA method, the new object on the heap is not referenced and can be garbage collected. So here the result is 2.

Using the ref modifier with A as a class type, a reference to a reference (or in C++ jargon, a pointer to a pointer) is passed, which allows allocating a new object, and the Main method shows the result 3:

public static void ChangeA(ref A a)
{
 a.X = 2;
 a = new A { X = 3 };
}

Finally, it is important to understand that C# continues to apply initialization requirements to parameters passed to methods. Any variable must be initialized before it is passed into a method, whether it is passed in by value or by reference.

out Parameters

If a method returns one value, the method usually declares a return type and returns the result. What about returning multiple values from a method, maybe with different types? There are different options to do this. One option is to declare a class and struct and define all the information that should be returned as members of this type. Another option is to use a tuple type. Tuples are explained in Chapter 7. The third option is to use the out keyword.

Let’s get into an example by using the Parse method that is defined with the Int32 type. The ReadLine method gets a string from user input. Assuming the user enters a number, the int.Parse method converts the string and returns the number (code file OutKeywordSample/Program.cs):

string input1 = ReadLine();
int n = int.Parse(input1);
WriteLine($"n: {n}");

However, users do not always enter the data you would like them to enter. In case the user does not enter a number, an exception is thrown. Of course, it is possible to catch the exception and work with the user accordingly, but this is not a good idea to do for a “normal” case. Maybe it can be assumed to be the “normal” case that the user enters wrong data. Dealing with exceptions is covered in Chapter 14, “Errors and Exceptions.”

A better way to deal with the wrong type of data is to use a different method of the Int32 type: TryParse. TryParse is declared to return a bool type whether the parsing is successful or not. The result of the parsing (if it was successful) is returned with a parameter using the out modifier:

public static bool TryParse(string s, out int result);

Invoking this method, the result variable needs to be defined before calling this method. With out parameters, the variable does not need to be initialized beforehand; the variable is initialized within the method. Similar to the ref keyword, the out keyword needs to be supplied on calling the method and not only with the method declaration:

string input2 = ReadLine();
int result;
if (int.TryParse(input2, out result))
{
 WriteLine($"n: {n}");
}
else
{
 WriteLine("not a number");
}

Nullable Types

Variables of reference types (classes) can be null while variables of value types (structs) cannot. This can be a problem with some scenarios, such as mapping C# types to database or XML types. A database or XML number can be null, whereas an int or double cannot be null.

One way to deal with this conflict is to use classes that map to database number types (which is done by Java). Using reference types that map to database numbers to allow the null value has an important disadvantage: It creates extra overhead. With reference types, the garbage collector is needed to clean up. Value types do not need to be cleaned up by the garbage collector; they are removed from memory when the variable goes out of scope.

C# has a solution for this: nullable types. A nullable type is a value type that can be null. You just have to put the ? after the type (which needs to be a struct). The only overhead a value type has compared to the underlying struct is a Boolean member that tells whether it is null.

With the following code snippet, x1 is a normal int, and x2 is a nullable int. Because x2 is a nullable int, null can be assigned to x2:

int x1 = 1;
int? x2 = null;

Because an int cannot have a value that cannot be assigned to int?, passing a variable of int to int? always succeeds and is accepted from the compiler:

int? x3 = x1;

The reverse is not true. int? cannot be directly assigned to int. This can fail, and thus a cast is required:

int x4 = (int)x3;

Of course, the cast generates an exception in a case where x3 is null. A better way to deal with that is to use the HasValue and Value properties of nullable types. HasValue returns true or false, depending on whether the nullable type has a value, and Value returns the underlying value. Using the conditional operator, x5 gets filled without possible exceptions. In a case where x3 is null, HasValue returns false, and here -1 is supplied to the variable x5:

int x5 = x3.HasValue ? x3.Value : -1;

Using the coalescing operator, there’s a shorter syntax possible with nullable types. In a case where x3 is null, -1 is set with the variable x6; otherwise you take the value of x3:

int x6 = x3 ?? -1;

NOTE With nullable types, you can use all operators that are available with the underlying types—for example, +, -, *, / and more with int?. You can use nullable types with every struct type, not only with predefined C# types. You can read more about nullable types and what’s behind the scenes in Chapter 6, “Generics.”

Enumerations

An enumeration is a value type that contains a list of named constants, such as the Color type shown here. The enumeration type is defined by using the enum keyword (code file EnumSample/Color.cs):

public enum Color
{
 Red,
 Green,
 Blue
}

You can declare variables of enum types, such as the variable c1, and assign a value from the enumeration by setting one of the named constants prefixed with the name of the enum type (code file EnumSample/Program.cs):

Color c1 = Color.Red;
WriteLine(c1);

Running the program, the console output shows Red, which is the constant value of the enumeration.

By default, the type behind the enum type is an int. The underlying type can be changed to other integral types (byte, short, int, long with signed and unsigned variants). The values of the named constants are incremental values starting with 0, but they can be changed to other values:

public enum Color : short
{
 Red = 1,
 Green = 2,
 Blue = 3
}

You can change a number to an enumeration value and back using casts.

Color c2 = (Color)2;
short number = (short)c2;

You can also use an enum type to assign multiple options to a variable and not just one of the enum constants. To do this, the values assigned to the constants must be different bits, and the Flags attribute needs to be set with the enum.

The enum type DaysOfWeek defines different values for every day. Setting different bits can be done easily using hexadecimal values that are assigned using the 0x prefix. The Flags attribute is information for the compiler for creating a different string representation of the values—for example, setting the value 3 to a variable of DaysOfWeek results in Monday, Tuesday when the Flags attribute is used (code file EnumSample/DaysOfWeek.cs):

[Flags]
public enum DaysOfWeek
{
 Monday = 0x1,
 Tuesday = 0x2,
 Wednesday = 0x4,
 Thursday = 0x8,
 Friday = 0x10,
 Saturday = 0x20,
 Sunday = 0x40
}

With such an enum declaration, you can assign a variable multiple values using the logical OR operator (code file EnumSample/Program.cs):

DaysOfWeek mondayAndWednesday = DaysOfWeek.Monday | DaysOfWeek.Wednesday;
WriteLine(mondayAndWednesday);

Running the program, the output is a string representation of the days:

Monday, Tuesday

Setting different bits, it is also possible to combine single bits to cover multiple values, such as Weekend with a value of 0x60 by that combines Saturday and Sunday with the logical OR operator, Workday to combine all the days from Monday to Friday, and AllWeek to combine Workday and Weekend with the logical OR operator (code file EnumSample/DaysOfWeek.cs):

[Flags]
public enum DaysOfWeek
{
 Monday = 0x1,
 Tuesday = 0x2,
 Wednesday = 0x4,
 Thursday = 0x8,
 Friday = 0x10,
 Saturday = 0x20,
 Sunday = 0x40,
 Weekend = Saturday | Sunday
 Workday = 0x1f,
 AllWeek = Workday | Weekend
}

With this in place, it’s possible to assign DaysOfWeek.Weekend directly to a variable, but also assigning the separate values DaysOfWeek.Saturday and DaysOfWeek.Sunday combined with the logical OR operator results in the same. The output shown is the string representation of Weekend.

DaysOfWeek weekend = DaysOfWeek.Saturday | DaysOfWeek.Sunday;
WriteLine(weekend);

Working with enumerations, the class Enum is sometimes a big help for dynamically getting some information about enum types. Enum offers methods to parse strings to get the corresponding enumeration constant, and to get all the names and values of an enum type.

The following code snippet uses a string to get the corresponding Color value using Enum.TryParse (code file EnumSample/Program.cs):

Color red;
if (Enum.TryParse<Color>("Red", out red))
{
 WriteLine($"successfully parsed {red}");
}

NOTE Enum.TryParse<T>() is a generic method where T is a generic parameter type. This parameter type needs to be defined with the method invocation. Generic methods are explained in detail in Chapter 6.

The Enum.GetNames method returns a string array of all the names of the enumeration:

foreach (var day in Enum.GetNames(typeof(Color)))
{
 WriteLine(day);
}

When you run the application, this is the output:

Red
Green
Blue

To get all the values of the enumeration, you can use the method Enum.GetValues. Enum.GetValues returns an Array of the enum values. To get the integral value, it needs to be cast to the underlying type of the enumeration, which is done by the foreach statement:

foreach (short val in Enum.GetValues(typeof(Color)))
{
 WriteLine(val);
}

Partial Classes

The partial keyword allows the class, struct, method, or interface to span multiple files. Typically, a code generator of some type is generating part of a class, having the class in multiple files can be beneficial. Let’s assume you want to make some additions to the class that is automatically generated from a tool. If the tool reruns then your changes are lost. The partial keyword is helpful for splitting the class in two files and making your changes to the file that is not defined by the code generator.

To use the partial keyword, simply place partial before class, struct, or interface. In the following example, the class SampleClass resides in two separate source files, SampleClassAutogenerated.cs and SampleClass.cs:

//SampleClassAutogenerated.cs
partial class SampleClass
{
 public void MethodOne() { }
}

//SampleClass.cs
partial class SampleClass
{
 public void MethodTwo() { }
}

When the project that these two source files are part of is compiled, a single type called SampleClass will be created with two methods: MethodOne and MethodTwo.

If any of the following keywords are used in describing the class, the same must apply to all partials of the same type:

	public

	private

	protected

	internal

	abstract

	sealed

	new

	generic constraints

Nested partials are allowed as long as the partial keyword precedes the class keyword in the nested type. Attributes, XML comments, interfaces, generic-type parameter attributes, and members are combined when the partial types are compiled into the type. Given these two source files:

// SampleClassAutogenerated.cs
[CustomAttribute]
partial class SampleClass: SampleBaseClass, ISampleClass
{
 public void MethodOne() { }
}

// SampleClass.cs
[AnotherAttribute]
partial class SampleClass: IOtherSampleClass
{
 public void MethodTwo() { }
}

the equivalent source file would be as follows after the compile:

[CustomAttribute]
[AnotherAttribute]
partial class SampleClass: SampleBaseClass, ISampleClass, IOtherSampleClass
{
 public void MethodOne() { }

 public void MethodTwo() { }
}

NOTE Although it may be tempting to create huge classes that span multiple files and possibly having different developers working on different files but the same class, the partial keyword was not designed for this use. With such a scenario, it would be better to split the big class into several smaller classes, having a class just for one purpose.

Partial classes can contain partial methods. This is extremely useful if generated code should invoke methods that might not exist at all. The programmer extending the partial class can decide to create a custom implementation of the partial method, or do nothing. The following code snippet contains a partial class with the method MethodOne that invokes the method APartialMethod. The method APartialMethod is declared with the partial keyword; thus it does not need any implementation. If there’s not an implementation, the compiler removes the invocation of this method:

//SampleClassAutogenerated.cs
partial class SampleClass
{
 public void MethodOne()
 {
 APartialMethod();
 }

 public partial void APartialMethod();
}

An implementation of the partial method can be done within any other part of the partial class, as shown in the following code snippet. With this method in place, the compiler creates code within MethodOne to invoke this APartialMethod declared here:

// SampleClass.cs
partial class SampleClass: IOtherSampleClass
{
 public void APartialMethod()
 {
 // implementation of APartialMethod
 }
}

A partial method needs to be of type void. Otherwise the compiler cannot remove the invocation in case no implementation exists.

Extension Methods

There are many ways to extend a class. Inheritance, which is covered in Chapter 4, is a great way to add functionality to your objects. Extension methods are another option that can also be used to add functionality to classes. This option is also possible when inheritance cannot be used (for example, the class is sealed).

NOTE Extension methods can be used to extend interfaces. This way you can have common functionality for all the classes that implement this interface. Interfaces are explained in Chapter 4.

Extension methods are static methods that can look like part of a class without actually being in the source code for the class.

Let’s say you want the string type to be extended with a method to count the number of words within a string. The method GetWordCount makes use of the String.Split method to split up a string in a string array, and counts the number of elements within the array using the Length property (code file ExtensionMethods/Program.cs):

public static class StringExtension
{
 public static int GetWordCount(this string s) =>
 s.Split().Length;
}

The string is extended by using the this keyword with the first parameter. This keyword defines the type that is extended.

Even though the extension method is static, you use standard method syntax. Notice that you call GetWordCount using the fox variable and not using the type name:

string fox ="the quick brown fox jumped over the lazy dogs down" +
 "9876543210 times";
int wordCount = fox.GetWordCount();
WriteLine($"{wordCount} words");

Behind the scenes, the compiler changes this to invoke the static method instead:

int wordCount = StringExtension.GetWordCount(fox);

Using the instance method syntax instead of calling a static method from your code directly results in a much nicer syntax. This syntax also has the advantage that the implementation of this method can be replaced by a different class without the need to change the code—just a new compiler run is needed.

How does the compiler find an extension method for a specific type? The this keyword is needed to match an extension method for a type, but also the namespace of the static class that defines the extension method needs to be opened. If you put the StringExtensions class within the namespace Wrox.Extensions, the compiler finds the GetWordCount method only if Wrox.Extensions is opened with the using directive. In case the type also defines an instance method with the same name, the extension method is never used. Any instance method already in the class takes precedence. When you have multiple extension methods with the same name to extend the same type, and when all the namespaces of these types are opened, the compiler results in an error that the call is ambiguous and it cannot decide between multiple implementations. If, however, the calling code is in one of these namespaces, this namespace takes precedence.

NOTE Language Integrated Query (LINQ) makes use of many extension methods. LINQ is discussed in Chapter 13, “Language Integrated Query.”

The Object Class

As indicated earlier, all .NET classes are ultimately derived from System.Object. In fact, if you don’t specify a base class when you define a class, the compiler automatically assumes that it derives from Object. Because inheritance has not been used in this chapter, every class you have seen here is actually derived from System.Object. (As noted earlier, for structs this derivation is indirect—a struct is always derived from System.ValueType, which in turn derives from System.Object.)

The practical significance of this is that—besides the methods, properties, and so on that you define—you also have access to a number of public and protected member methods that have been defined for the Object class. These methods are available in all other classes that you define.

For the time being, the following list summarizes the purpose of each method:

	ToString—A fairly basic, quick-and-easy string representation. Use it when you want a quick idea of the contents of an object, perhaps for debugging purposes. It provides very little choice regarding how to format the data. For example, dates can, in principle, be expressed in a huge variety of formats, but DateTime.ToString does not offer you any choice in this regard. If you need a more sophisticated string representation—for example, one that takes into account your formatting preferences or the culture (the locale)—then you should implement the IFormattable interface (see Chapter 10, “Strings and Regular Expressions”).

	GetHashCode—If objects are placed in a data structure known as a map (also known as a hash table or dictionary), it is used by classes that manipulate these structures to determine where to place an object in the structure. If you intend your class to be used as a key for a dictionary, you need to override GetHashCode. Some fairly strict requirements exist for how you implement your overload, which you learn about when you examine dictionaries in Chapter 11, “Collections.”

	Equals (both versions) and ReferenceEquals—As you’ll note by the existence of three different methods aimed at comparing the equality of objects, the .NET Framework has quite a sophisticated scheme for measuring equality. Subtle differences exist between how these three methods, along with the comparison operator, ==, are intended to be used. In addition, restrictions exist on how you should override the virtual, one-parameter version of Equals if you choose to do so, because certain base classes in the System.Collections namespace call the method and expect it to behave in certain ways. You explore the use of these methods in Chapter 8 when you examine operators.

	Finalize—Covered in Chapter 5, this method is intended as the nearest that C# has to C++-style destructors. It is called when a reference object is garbage collected to clean up resources. The Object implementation of Finalize doesn’t actually do anything and is ignored by the garbage collector. You normally override Finalize if an object owns references to unmanaged resources that need to be removed when the object is deleted. The garbage collector cannot do this directly because it only knows about managed resources, so it relies on any finalizers that you supply.

	GetType—This object returns an instance of a class derived from System.Type, so it can provide an extensive range of information about the class of which your object is a member, including base type, methods, properties, and so on. System.Type also provides the entry point into .NET’s reflection technology. Chapter 16 examines this topic.

	MemberwiseClone—The only member of System.Object that isn’t examined in detail anywhere in the book. That’s because it is fairly simple in concept. It just makes a copy of the object and returns a reference (or in the case of a value type, a boxed reference) to the copy. Note that the copy made is a shallow copy, meaning it copies all the value types in the class. If the class contains any embedded references, then only the references are copied, not the objects referred to. This method is protected and cannot be called to copy external objects. Nor is it virtual, so you cannot override its implementation.

Summary

This chapter examined C# syntax for declaring and manipulating objects. You have seen how to declare static and instance fields, properties, methods, and constructors. You have also seen new features that have been added with C# 6, such as expression-bodied methods and properties, auto-implemented read-only properties, and default constructors with structs.

You have also seen how all types in C# derive ultimately from the type System.Object, which means that all types start with a basic set of useful methods, including ToString.

Inheritance comes up a few times throughout this chapter, and you examine implementation and interface inheritance in C# in Chapter 4.

4
Inheritance

What’s In This Chapter?

	Types of inheritance

	Implementing inheritance

	Access modifiers

	Interfaces

	is and as Operators

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	VirtualMethods

	InheritanceWithConstructors

	UsingInterfaces

Inheritance

The three most important concepts of object-orientation are inheritance, encapsulation, and polymorphism. Chapter 3, “Objects and Types,” talks about creating individual classes to arrange properties, methods, and fields. When members of a type are declared private, they cannot be accessed from the outside. They are encapsulated within the type. This chapter’s focus is on inheritance and polymorphism.

The previous chapter explains that all classes ultimately derive from the class System.Object. This chapter covers how to create a hierarchy of classes and how polymorphism works with C#. It also describes all the C# keywords related to inheritance.

Types of Inheritance

Let’s start by reviewing some object-oriented (OO) terms and look at what C# does and does not support as far as inheritance is concerned.

	Single inheritance—With single inheritance, one class can derive from one base class. This is a possible scenario with C#.

	Multiple inheritance—Multiple inheritance allows deriving from multiple base classes. C# does not support multiple inheritance with classes, but it allows multiple inheritance with interfaces.

	Multilevel inheritance—Multilevel inheritance allows inheritance across a bigger hierarchy. Class B derives from class A, and class C derives from class B. Here, class B is also known as intermediate base class. This is supported and often used with C#.

	Interface inheritance—Interface inheritance defines inheritance with interfaces. Here, multiple inheritance is possible. Interfaces and interface inheritance is explained later in this chapter in the “Interfaces” section.

Let’s discuss some specific issues with inheritance and C#.

Multiple Inheritance

Some languages such as C++ support what is known as multiple inheritance, in which a class derives from more than one other class. With implementation inheritance, multiple inheritance adds complexity and also overhead to the generated code even in cases where multiple inheritance is not used. Because of this, the designers of C# decided not to support multiple inheritance with classes because support for multiple inheritance increases complexity and adds overhead even in cases when multiple inheritance is not used.

C# does allow types to be derived from multiple interfaces. One type can implement multiple interfaces. This means that a C# class can be derived from one other class, and any number of interfaces. Indeed, we can be more precise: Thanks to the presence of System.Object as a common base type, every C# class (except for Object) has exactly one base class, and every C# class may additionally have any number of base interfaces.

Structs and Classes

Chapter 3 distinguishes between structs (value types) and classes (reference types). One restriction of using structs is that they do not support inheritance, beyond the fact that every struct is automatically derived from System.ValueType. Although it’s true that you cannot code a type hierarchy of structs, it is possible for structs to implement interfaces. In other words, structs don’t really support implementation inheritance, but they do support interface inheritance. The following summarizes the situation for any types that you define:

	Structs are always derived from System.ValueType. They can also be derived from any number of interfaces.

	Classes are always derived from either System.Object or a class that you choose. They can also be derived from any number of interfaces.

Implementation Inheritance

If you want to declare that a class derives from another class, use the following syntax:

class MyDerivedClass: MyBaseClass
{
 // members
}

If a class (or a struct) also derives from interfaces, the list of base class and interfaces is separated by commas:

public class MyDerivedClass: MyBaseClass, IInterface1, IInterface2
{
 // members
}

NOTE In case a class and interfaces are used to derive from, the class always must come first—before interfaces.

For a struct, the syntax is as follows (it can only use interface inheritance):

public struct MyDerivedStruct: IInterface1, IInterface2
{
 // members
}

If you do not specify a base class in a class definition, the C# compiler assumes that System.Object is the base class. Hence, deriving from the Object class (or using the object keyword) is the same as not defining a base class.

class MyClass // implicitly derives from System.Object
{
 // members
}

Let’s get into an example to define a base class Shape. Something that’s common with shapes—no matter whether they are rectangles or ellipses—is that they have position and size. For position and size, corresponding classes are defined that are contained within the Shape class. The Shape class defines read-only properties Position and Shape that are initialized using auto property initializers (code file VirtualMethods/Shape.cs):

public class Position
{
 public int X { get; set; }
 public int Y { get; set; }
}

public class Size
{
 public int Width { get; set; }
 public int Height { get; set; }
}

public class Shape
{
 public Position Position { get; } = new Position();
 public Size Size { get; } = new Size();
}

Virtual Methods

By declaring a base class method as virtual, you allow the method to be overridden in any derived classes:

public class Shape
{
 public virtual void Draw()
 {
 WriteLine($"Shape with {Position} and {Size}");
 }
}

In case the implementation is a one-liner, with C# 6, expression bodied methods (using the lambda operator) can also be used with the virtual keyword. This syntax can be used independent of the modifiers applied:

public class Shape
{
 public virtual void Draw() => WriteLine($"Shape with {Position} and {Size}");
}

It is also permitted to declare a property as virtual. For a virtual or overridden property, the syntax is the same as for a non-virtual property, with the exception of the keyword virtual, which is added to the definition. The syntax looks like this:

public virtual Size Size { get; set; }

Of course, it is also possible to use the full property syntax for virtual properties:

private Size _size;
public virtual Size Size
{
 get
 {
 return _size;
 }
 set
 {
 _size = value;
 }
}

For simplicity, the following discussion focuses mainly on methods, but it applies equally well to properties.

The concepts behind virtual functions in C# are identical to standard OOP concepts. You can override a virtual function in a derived class; when the method is called, the appropriate method for the type of object is invoked. In C#, functions are not virtual by default but (aside from constructors) can be explicitly declared as virtual. This follows the C++ methodology: For performance reasons, functions are not virtual unless indicated. In Java, by contrast, all functions are virtual. C# differs from C++ syntax, though, because it requires you to declare when a derived class’s function overrides another function, using the override keyword (code file VirtualMethods/ConcreteShapes.cs):

public class Rectangle : Shape
{
 public override void Draw() =>
 WriteLine($"Rectangle with {Position} and {Size}");
}

This syntax for method overriding removes potential runtime bugs that can easily occur in C++, when a method signature in a derived class unintentionally differs slightly from the base version, resulting in the method failing to override the base version. In C#, this is picked up as a compile-time error because the compiler would see a function marked as override but would not see a base method for it to override.

The Size and Position types override the ToString method. This method is declared as virtual in the base class Object:

public class Position
{
 public int X { get; set; }
 public int Y { get; set; }
 public override string ToString() => $"X: {X}, Y: {Y}";
}

public class Size
{
 public int Width { get; set; }
 public int Height { get; set; }
 public override string ToString() => $"Width: {Width}, Height: {Height}";
}

NOTE The members of the base class Object are explained in Chapter 3.

NOTE When overriding methods of the base class, the signature (all parameter types and the method name) and the return type must match exactly. If this is not the case then you can create a new member that does not override the base member.

Within the Main method, a rectangle named r is instantiated, its properties initialized, and the method Draw invoked (code file VirtualMethods/Program.cs):

var r = new Rectangle();
r.Position.X = 33;
r.Position.Y = 22;
r.Size.Width = 200;
r.Size.Height = 100;
r.Draw();

Run the program to see the output of the Draw method:

Rectangle with X: 33, y: 22 and Width: 200, Height: 100

Neither member fields nor static functions can be declared as virtual. The concept simply wouldn’t make sense for any class member other than an instance function member.

Polymorphism

With polymorphism, the method that is invoked is defined dynamically and not during compile time. The compiler creates a virtual method table (vtable) that lists the methods that can be invoked during runtime, and it invokes the method based on the type at runtime.

Let’s have a look at one example. The method DrawShape receives a Shape parameter and invokes the Draw method of the Shape class (code file VirtualMethods/Program.cs):

public static void DrawShape(Shape shape)
{
 shape.Draw();
}

Use the rectangle created before to invoke the method. Although the method is declared to receive a Shape object, any type that derives from Shape (including the Rectangle) can be passed to this method:

DrawShape(r);

Run the program to see the output of the Rectangle.Draw method instead of the Shape.Draw method. The output line starts with Rectangle. If the method of the base class wouldn’t be virtual or the method from the derived class not overridden, the Draw method of the type of the declared object (the Shape) would be used, and thus the output would start with Shape:

Rectangle with X: 33, y: 22 and Width: 200, Height: 100

Hiding Methods

If a method with the same signature is declared in both base and derived classes but the methods are not declared with the modifiers virtual and override, respectively, then the derived class version is said to hide the base class version.

In most cases, you would want to override methods rather than hide them. By hiding them you risk calling the wrong method for a given class instance. However, as shown in the following example, C# syntax is designed to ensure that the developer is warned at compile time about this potential problem, thus making it safer to hide methods if that is your intention. This also has versioning benefits for developers of class libraries.

Suppose that you have a class called Shape in a class library:

public class Shape
{
 // various members
}

At some point in the future, you write a derived class Ellipse that adds some functionality to the Shape base class. In particular, you add a method called MoveBy, which is not present in the base class:

public class Ellipse: Shape
{
 public void MoveBy(int x, int y)
 {
 Position.X += x;
 Position.Y += y;
 }
}

At some later time, the developer of the base class decides to extend the functionality of the base class and, by coincidence, adds a method that is also called MoveBy and that has the same name and signature as yours; however, it probably doesn’t do the same thing. This new method might be declared virtual or not.

If you recompile the derived class you get a compiler warning because of a potential method clash. However, it can also happen easily that the new base class is used without compiling the derived class; it just replaces the base class assembly. The base class assembly could be installed in the global assembly cache (which is done by many Framework assemblies).

Now let’s assume the MoveBy method of the base class is declared virtual and the base class itself invokes the MoveBy method. What method will be called? The method of the base class or the MoveBy method of the derived class that was defined earlier? Because the MoveBy method of the derived class is not defined with the override keyword (this was not possible because the base class MoveBy method didn’t exist earlier), the compiler assumes the MoveBy method from the derived class is a completely different method that doesn’t have any relation to the method of the base class; it just has the same name. This method is treated the same way as if it had a different name.

Compiling the Ellipse class generates a compilation warning that reminds you to use the new keyword to hide a method. In practice, not using the new keyword has the same compilation result, but you avoid the compiler warning:

public class Ellipse: Shape
{
 new public void Move(Position newPosition)
 {
 Position.X = newPosition.X;
 Position.Y = newPosition.Y;
 }
 //. . . other members
}

Instead of using the new keyword, you can also rename the method or override the method of the base class if it is declared virtual and serves the same purpose. However, in case other methods already invoke this method, a simple rename can lead to breaking other code.

NOTE The new method modifier shouldn’t be used deliberately to hide members of the base class. The main purpose of this modifier is to deal with version conflicts and react to changes on base classes after the derived class was done.

Calling Base Versions of Methods

C# has a special syntax for calling base versions of a method from a derived class: base.<MethodName>. For example, you have the Move method declared in the base class Shape and want to invoke it in the derived class Rectangle to use the implementation from the base class. To add functionality from the derived class, you can invoke it using base (code file VirtualMethods/Shape.cs):

public class Shape
{
 public virtual void Move(Position newPosition)
 {
 Position.X = newPosition.X;
 Position.Y = newPosition.Y;
 WriteLine($"moves to {Position}");
 }
 //. . . other members
}

The Move method is overridden in the Rectangle class to add the term Rectangle to the console. After this text is written, the method of the base class is invoked using the base keyword (code file VirtualMethods/ConcreteShapes.cs):

public class Rectangle: Shape
{
 public override void Move(Position newPosition)
 {
 Write("Rectangle");
 base.Move(newPosition);
 }
 //. . . other members
}

Now move the rectangle to a new position (code file VirtualMethods/Program.cs):

r.Move(new Position { X = 120, Y = 40 });

Run the application to see output that is a result of the Move method in the Rectangle and the Shape classes:

Rectangle moves to X: 120, Y: 40

NOTE Using the base keyword you can invoke any method of the base class—not just the method that is overridden.

Abstract Classes and Methods

C# allows both classes and methods to be declared as abstract. An abstract class cannot be instantiated, whereas an abstract method does not have an implementation and must be overridden in any nonabstract derived class. Obviously, an abstract method is automatically virtual (although you don’t need to supply the virtual keyword, and doing so results in a syntax error). If any class contains any abstract methods, that class is also abstract and must be declared as such.

Let’s change the Shape class to be abstract. With this it is necessary to derive from this class. The new method Resize is declared abstract, and thus it can’t have any implementation in the Shape class (code file VirtualMethods/Shape.cs):

public abstract class Shape
{
 public abstract void Resize(int width, int height); // abstract method
}

When deriving a type from the abstract base class, it is necessary to implement all abstract members. Otherwise, the compiler complains:

public class Ellipse : Shape
{
 public override void Resize(int width, int height)
 {
 Size.Width = width;
 Size.Height = height;
 }
}

Of course, the implementation could also look like the following example. Throwing an exception of type NotImplementationException is also an implementation, just not the implementation that was meant to be and usually just a temporary implementation during development:

public override void Resize(int width, int height)
{
 throw new NotImplementedException();
}

NOTE Exceptions are explained in detail in Chapter 14, “Errors and Exceptions.”

Using the abstract Shape class and the derived Ellipse class, you can declare a variable of a Shape. You cannot instantiate it, but you can instantiate an Ellipse and assign it to the Shape variable (code file VirtualMethods/Program.cs):

Shape s1 = new Ellipse();
DrawShape(s1);

Sealed Classes and Methods

In case it shouldn’t be allowed to create a class that derives from your class, your class should be sealed. Adding the sealed modifier to a class doesn’t allow you to create a subclass of it. Sealing a method means it’s not possible to override this method.

sealed class FinalClass
{
 // etc
}

class DerivedClass: FinalClass // wrong. Cannot derive from sealed class.
{
 // etc
}

The most likely situation in which you’ll mark a class or method as sealed is if the class or method is internal to the operation of the library, class, or other classes that you are writing, to ensure that any attempt to override some of its functionality might lead to instability in the code. For example, maybe you haven’t tested inheritance and made the investment in design decisions for inheritance. If this is the case, it’s better to mark your class sealed.

There’s another reason to seal classes. With a sealed class, the compiler knows that derived classes are not possible, and thus the virtual table used for virtual methods can be reduced or eliminated, which can increase performance. The string class is sealed. As I haven’t seen a single application not using strings, it’s best to have this type as performant as possible. Making the class sealed is a good hint for the compiler.

Declaring a method as sealed serves a purpose similar to that for a class. The method can be an overridden method from a base class, but in the following example the compiler knows another class cannot extend the virtual table for this method; it ends here.

class MyClass: MyBaseClass
{
 public sealed override void FinalMethod()
 {
 // implementation
 }
}

class DerivedClass: MyClass
{
 public override void FinalMethod() // wrong. Will give compilation error
 {
 }
}

In order to use the sealed keyword on a method or property, it must have first been overridden from a base class. If you do not want a method or property in a base class overridden, then don’t mark it as virtual.

Constructors of Derived Classes

Chapter 3 discusses how constructors can be applied to individual classes. An interesting question arises as to what happens when you start defining your own constructors for classes that are part of a hierarchy, inherited from other classes that may also have custom constructors.

Assume that you have not defined any explicit constructors for any of your classes. This means that the compiler supplies default zeroing-out constructors for all your classes. There is actually quite a lot going on under the hood when that happens, but the compiler is able to arrange it so that things work out nicely throughout the class hierarchy, and every field in every class is initialized to whatever its default value is. When you add a constructor of your own, however, you are effectively taking control of construction. This has implications right down through the hierarchy of derived classes, so you have to ensure that you don’t inadvertently do anything to prevent construction through the hierarchy from taking place smoothly.

You might be wondering why there is any special problem with derived classes. The reason is that when you create an instance of a derived class, more than one constructor is at work. The constructor of the class you instantiate isn’t by itself sufficient to initialize the class; the constructors of the base classes must also be called. That’s why we’ve been talking about construction through the hierarchy.

With the earlier sample of the Shape type, properties have been initialized using the auto property initializer:

public class Shape
{
 public Position Position { get; } = new Position();
 public Size Size { get; } = new Size();
}

Behind the scenes, the compiler creates a default constructor for the class and moves the property initializer within this constructor:

public class Shape
{
 public Shape()
 {
 Position = new Position();
 Size = new Size();
 }
 public Position Position { get; };
 public Size Size { get; };
}

Of course, instantiating a Rectangle type that derives from the Shape class, the Rectangle needs Position and Size, and thus the constructor from the base class is invoked on constructing the derived object.

In case you don’t initialize members within the default constructor, the compiler automatically initializes reference types to null and value types to 0. Boolean types are initialized to false. The Boolean type is a value type, and false is the same as 0, so it’s the same rule that applies to the Boolean type.

With the Ellipse class, it’s not necessary to create a default constructor if the base class defines a default constructor and you’re okay with initializing all members to their defaults. Of course, you still can supply a constructor and call the base constructor using a constructor initializer:

public class Ellipse : Shape
{
 public Ellipse()
 : base()
 {
 }
}

The constructors are always called in the order of the hierarchy. The constructor of the class System.Object is first, and then progress continues down the hierarchy until the compiler reaches the class being instantiated. For instantiating the Ellipse type, the Shape constructor follows the Object constructor, and then the Ellipse constructor comes. Each of these constructors handles the initialization of the fields in its own class.

Now, make a change to the constructor of the Shape class. Instead of doing a default initialization with Size and Position properties, assign values within the constructor (code file InheritanceWithConstructors/Shape.cs):

public abstract class Shape
{
 public Shape(int width, int height, int x, int y)
 {
 Size = new Size { Width = width, Height = height };
 Position = new Position { X = x, Y = y };
 }

 public Position Position { get; }
 public Size Size { get; }
}

When removing the default constructor and recompiling the program, the Ellipse and Rectangle classes can’t compile because the compiler doesn’t know what values should be passed to the only nondefault constructor of the base class. Here you need to create a constructor in the derived class and initialize the base class constructor with the constructor initializer (code file InheritanceWithConstructors/ConcreteShapes.cs):

public Rectangle(int width, int height, int x, int y)
 : base(width, height, x, y)
{
}

Putting the initialization inside the constructor block is too late because the constructor of the base class is invoked before the constructor of the derived class is called. That’s why there’s a constructor initializer that is declared before the constructor block.

In case you want to allow creating Rectangle objects by using a default constructor, you can still do this. You can also do it if the constructor of the base class doesn’t have a default constructor. You just need to assign the values for the base class constructor in the constructor initializer as shown. In the following snippet, named arguments are used because otherwise it would be hard to distinguish between width, height, x, and y values passed.

public Rectangle()
 : base(width: 0, height: 0, x: 0, y: 0)
{
}

NOTE Named arguments are discussed in Chapter 3.

As you can see, this is a very neat and well-designed process. Each constructor handles initialization of the variables that are obviously its responsibility; and, in the process, your class is correctly instantiated and prepared for use. If you follow the same principles when you write your own constructors for your classes, even the most complex classes should be initialized smoothly and without any problems.

Modifiers

You have already encountered quite a number of so-called modifiers—keywords that can be applied to a type or a member. Modifiers can indicate the visibility of a method, such as public or private, or the nature of an item, such as whether a method is virtual or abstract. C# has a number of modifiers, and at this point it’s worth taking a minute to provide the complete list.

Access Modifiers

Access modifiers indicate which other code items can view an item.

	Modifier
	Applies to
	Description

	public
	Any types or members
	The item is visible to any other code.

	protected
	Any member of a type, and any nested type
	The item is visible only to any derived type.

	internal
	Any types or members
	The item is visible only within its containing assembly.

	private
	Any member of a type, and any nested type
	The item is visible only inside the type to which it belongs.

	protected internal
	Any member of a type, and any nested type
	The item is visible to any code within its containing assembly and to any code inside a derived type.

NOTE public, protected, and private are logical access modifiers. internal is a physical access modifier whose boundary is an assembly.

Note that type definitions can be internal or public, depending on whether you want the type to be visible outside its containing assembly:

public class MyClass
{
 // etc.

You cannot define types as protected, private, or protected internal because these visibility levels would be meaningless for a type contained in a namespace. Hence, these visibilities can be applied only to members. However, you can define nested types (that is, types contained within other types) with these visibilities because in this case the type also has the status of a member. Hence, the following code is correct:

public class OuterClass
{
 protected class InnerClass
 {
 // etc.
 }
 // etc.
}

If you have a nested type, the inner type is always able to see all members of the outer type. Therefore, with the preceding code, any code inside InnerClass always has access to all members of OuterClass, even where those members are private.

Other Modifiers

The modifiers in the following table can be applied to members of types and have various uses. A few of these modifiers also make sense when applied to types.

	Modifier
	Applies to
	Description

	new
	Function members
	The member hides an inherited member with the same signature.

	static
	All members
	The member does not operate on a specific instance of the class. This is also known as class member instead of instance member.

	virtual
	Function members only
	The member can be overridden by a derived class.

	abstract
	Function members only
	A virtual member that defines the signature of the member but doesn’t provide an implementation.

	override
	Function members only
	The member overrides an inherited virtual or abstract member.

	sealed
	Classes, methods, and properties
	For classes, the class cannot be inherited from. For properties and methods, the member overrides an inherited virtual member but cannot be overridden by any members in any derived classes. Must be used in conjunction with override.

	extern
	Static [DllImport] methods only
	The member is implemented externally, in a different language. The use of this keyword is explained in Chapter 5, “Managed and Unmanaged Resources.“

Interfaces

As mentioned earlier, by deriving from an interface, a class is declaring that it implements certain functions. Because not all object-oriented languages support interfaces, this section examines C#’s implementation of interfaces in detail. It illustrates interfaces by presenting the complete definition of one of the interfaces that has been predefined by Microsoft: System.IDisposable. IDisposable contains one method, Dispose, which is intended to be implemented by classes to clean up code:

public interface IDisposable
{
 void Dispose();
}

This code shows that declaring an interface works syntactically in much the same way as declaring an abstract class. Be aware, however, that it is not permitted to supply implementations of any of the members of an interface. In general, an interface can contain only declarations of methods, properties, indexers, and events.

Compare interfaces to abstract classes: An abstract class can have implementations or abstract members without implementation. However, an interface can never have any implementation; it is purely abstract. Because the members of an interface are always abstract, the abstract keyword is not needed with interfaces.

Similarly to abstract classes, you can never instantiate an interface; it contains only the signatures of its members. In addition, you can declare variables of a type of an interface.

An interface has neither constructors (how can you construct something that you can’t instantiate?) nor fields (because that would imply some internal implementation). An interface is also not allowed to contain operator overloads—although this possibility is always discussed with the language design and might change at some time in the future.

It’s also not permitted to declare modifiers on the members in an interface definition. Interface members are always implicitly public, and they cannot be declared as virtual. That’s up to implementing classes to decide. Therefore, it is fine for implementing classes to declare access modifiers, as demonstrated in the example in this section.

For example, consider IDisposable. If a class wants to declare publicly that it implements the Dispose method, it must implement IDisposable, which in C# terms means that the class derives from IDisposable:

class SomeClass: IDisposable
{
 // This class MUST contain an implementation of the
 // IDisposable.Dispose() method, otherwise
 // you get a compilation error.
 public void Dispose()
 {
 // implementation of Dispose() method
 }
 // rest of class
}

In this example, if SomeClass derives from IDisposable but doesn’t contain a Dispose implementation with the exact same signature as defined in IDisposable, you get a compilation error because the class is breaking its agreed-on contract to implement IDisposable. Of course, it’s no problem for the compiler if a class has a Dispose method but doesn’t derive from IDisposable. The problem is that other code would have no way of recognizing that SomeClass has agreed to support the IDisposable features.

NOTE IDisposable is a relatively simple interface because it defines only one method. Most interfaces contain more members. The correct implementation of IDisposable is not really that simple; it’s covered in Chapter 5.

Defining and Implementing Interfaces

This section illustrates how to define and use interfaces by developing a short program that follows the interface inheritance paradigm. The example is based on bank accounts. Assume that you are writing code that will ultimately allow computerized transfers between bank accounts. Assume also for this example that there are many companies that implement bank accounts, but they have all mutually agreed that any classes representing bank accounts will implement an interface, IBankAccount, which exposes methods to deposit or withdraw money, and a property to return the balance. It is this interface that enables outside code to recognize the various bank account classes implemented by different bank accounts. Although the aim is to enable the bank accounts to communicate with each other to allow transfers of funds between accounts, that feature isn’t introduced just yet.

To keep things simple, you keep all the code for the example in the same source file. Of course, if something like the example were used in real life, you could surmise that the different bank account classes would not only be compiled to different assemblies, but also be hosted on different machines owned by the different banks. That’s all much too complicated for the purposes of this example. However, to maintain some realism, you define different namespaces for the different companies.

To begin, you need to define the IBankAccount interface (code file UsingInterfaces/IBankAccount.cs):

namespace Wrox.ProCSharp
{
 public interface IBankAccount
 {
 void PayIn(decimal amount);
 bool Withdraw(decimal amount);
 decimal Balance { get; }
 }
}

Notice the name of the interface, IBankAccount. It’s a best-practice convention to begin an interface name with the letter I, to indicate it’s an interface.

NOTE Chapter 2, “Core C#,” points out that in most cases, .NET usage guidelines discourage the so-called Hungarian notation in which names are preceded by a letter that indicates the type of object being defined. Interfaces are one of the few exceptions for which Hungarian notation is recommended.

The idea is that you can now write classes that represent bank accounts. These classes don’t have to be related to each other in any way; they can be completely different classes. They will all, however, declare that they represent bank accounts by the mere fact that they implement the IBankAccount interface.

Let’s start off with the first class, a saver account run by the Royal Bank of Venus (code file UsingInterfaces/VenusBank.cs):

namespace Wrox.ProCSharp.VenusBank
{
 public class SaverAccount: IBankAccount
 {
 private decimal _balance;

 public void PayIn(decimal amount) => _balance += amount;

 public bool Withdraw(decimal amount)
 {
 if (_balance >= amount)
 {
 _balance -= amount;
 return true;
 }
 WriteLine("Withdrawal attempt failed.");
 return false;
 }

 public decimal Balance => _balance;

 public override string ToString() =>
 $"Venus Bank Saver: Balance = {_balance,6:C}";
 }
}

It should be obvious what the implementation of this class does. You maintain a private field, balance, and adjust this amount when money is deposited or withdrawn. You display an error message if an attempt to withdraw money fails because of insufficient funds. Notice also that because we are keeping the code as simple as possible, we are not implementing extra properties, such as the account holder’s name! In real life that would be essential information, of course, but for this example it’s unnecessarily complicated.

The only really interesting line in this code is the class declaration:

public class SaverAccount: IBankAccount

You’ve declared that SaverAccount is derived from one interface, IBankAccount, and you have not explicitly indicated any other base classes (which means that SaverAccount is derived directly from System.Object). By the way, derivation from interfaces acts completely independently from derivation from classes.

Being derived from IBankAccount means that SaverAccount gets all the members of IBankAccount; but because an interface doesn’t actually implement any of its methods, SaverAccount must provide its own implementations of all of them. If any implementations are missing, you can rest assured that the compiler will complain. Recall also that the interface just indicates the presence of its members. It’s up to the class to determine whether it wants any of them to be virtual or abstract (though abstract functions are only allowed if the class itself is abstract). For this particular example, you don’t have any reason to make any of the interface functions virtual.

To illustrate how different classes can implement the same interface, assume that the Planetary Bank of Jupiter also implements a class to represent one of its bank accounts—a Gold Account (code file UsingInterfaces/JupiterBank.cs):

namespace Wrox.ProCSharp.JupiterBank
{
 public class GoldAccount: IBankAccount
 {
 // etc
 }
}

The details of the GoldAccount class aren’t presented here; in the sample code, it’s basically identical to the implementation of SaverAccount. We stress that GoldAccount has no connection with SaverAccount, other than they both happen to implement the same interface.

Now that you have your classes, you can test them. You first need a few using statements:

using Wrox.ProCSharp;
using Wrox.ProCSharp.VenusBank;
using Wrox.ProCSharp.JupiterBank;
using static System.Console;

Now you need a Main method (code file UsingInterfaces/Program.cs):

namespace Wrox.ProCSharp
{
 class Program
 {
 static void Main()
 {
 IBankAccount venusAccount = new SaverAccount();
 IBankAccount jupiterAccount = new GoldAccount();

 venusAccount.PayIn(200);
 venusAccount.Withdraw(100);
 WriteLine(venusAccount.ToString());

 jupiterAccount.PayIn(500);
 jupiterAccount.Withdraw(600);
 jupiterAccount.Withdraw(100);
 WriteLine(jupiterAccount.ToString());
 }
 }
}

This code produces the following output:

> BankAccounts
Venus Bank Saver: Balance = $100.00
Withdrawal attempt failed.
Jupiter Bank Saver: Balance = $400.00

The main point to notice about this code is the way that you have declared both your reference variables as IBankAccount references. This means that they can point to any instance of any class that implements this interface. However, it also means that you can call only methods that are part of this interface through these references—if you want to call any methods implemented by a class that are not part of the interface, you need to cast the reference to the appropriate type. In the example code, you were able to call ToString (not implemented by IBankAccount) without any explicit cast, purely because ToString is a System.Object method, so the C# compiler knows that it will be supported by any class (put differently, the cast from any interface to System.Object is implicit). Chapter 8, “Operators and Casts,” covers the syntax for performing casts.

Interface references can in all respects be treated as class references—but the power of an interface reference is that it can refer to any class that implements that interface. For example, this allows you to form arrays of interfaces, whereby each element of the array is a different class:

IBankAccount[] accounts = new IBankAccount[2];
accounts[0] = new SaverAccount();
accounts[1] = new GoldAccount();

Note, however, that you would get a compiler error if you tried something like this:

accounts[1] = new SomeOtherClass(); // SomeOtherClass does NOT implement
 // IBankAccount: WRONG!!

The preceding causes a compilation error similar to this:

Cannot implicitly convert type 'Wrox.ProCSharp. SomeOtherClass' to
 'Wrox.ProCSharp.IBankAccount'

Interface Inheritance

It’s possible for interfaces to inherit from each other in the same way that classes do. This concept is illustrated by defining a new interface, ITransferBankAccount, which has the same features as IBankAccount but also defines a method to transfer money directly to a different account (code file UsingInterfaces/ITransferBankAccount):

namespace Wrox.ProCSharp
{
 public interface ITransferBankAccount: IBankAccount
 {
 bool TransferTo(IBankAccount destination, decimal amount);
 }
}

Because ITransferBankAccount is derived from IBankAccount, it gets all the members of IBankAccount as well as its own. That means that any class that implements (derives from) ITransferBankAccount must implement all the methods of IBankAccount, as well as the new TransferTo method defined in ITransferBankAccount. Failure to implement all these methods results in a compilation error.

Note that the TransferTo method uses an IBankAccount interface reference for the destination account. This illustrates the usefulness of interfaces: When implementing and then invoking this method, you don’t need to know anything about what type of object you are transferring money to—all you need to know is that this object implements IBankAccount.

To illustrate ITransferBankAccount, assume that the Planetary Bank of Jupiter also offers a current account. Most of the implementation of the CurrentAccount class is identical to implementations of SaverAccount and GoldAccount (again, this is just to keep this example simple—that won’t normally be the case), so in the following code only the differences are highlighted (code file UsingInterfaces/JupiterBank.cs):

public class CurrentAccount: ITransferBankAccount
{
 private decimal _balance;

 public void PayIn(decimal amount) => _balance += amount;

 public bool Withdraw(decimal amount)
 {
 if (_balance >= amount)
 {
 _balance -= amount;
 return true;
 }
 WriteLine("Withdrawal attempt failed.");
 return false;
 }

 public decimal Balance => _balance;

 public bool TransferTo(IBankAccount destination, decimal amount)
 {
 bool result = Withdraw(amount);
 if (result)
 {
 destination.PayIn(amount);
 }
 return result;
 }

 public override string ToString() =>
 $"Jupiter Bank Current Account: Balance = {_balance,6:C}";

}

The class can be demonstrated with this code:

static void Main()
{
 IBankAccount venusAccount = new SaverAccount();
 ITransferBankAccount jupiterAccount = new CurrentAccount();
 venusAccount.PayIn(200);
 jupiterAccount.PayIn(500);
 jupiterAccount.TransferTo(venusAccount, 100);
 WriteLine(venusAccount.ToString());
 WriteLine(jupiterAccount.ToString());
}

The preceding code produces the following output, which, as you can verify, shows that the correct amounts have been transferred:

> CurrentAccount
Venus Bank Saver: Balance = $300.00
Jupiter Bank Current Account: Balance = $400.00

is and as Operators

Before concluding inheritance with interfaces and classes, we need to have a look at two important operators related to inheritance: the is and as operators.

You’ve already seen that you can directly assign objects of a specific type to a base class or an interface—if the type has a direct relation in the hierarchy. For example, the SaverAccount created earlier can be directly assigned to an IBankAccount because the SaverAccount type implements the interface IBankAccount:

IBankAccount venusAccount = new SaverAccount();

What if you have a method accepting an object type, and you want to get access to the IBankAccount members? The object type doesn’t have the members of the IBankAccount interface. You can do a cast. Cast the object (you can also use any parameter of type of any interface and cast it to the type you need) to an IBankAccount and work with that:

public void WorkWithManyDifferentObjects(object o)
{
 IBankAccount account = (IBankAccount)o;
 // work with the account
}

This works as long as you always supply an object of type IBankAccount to this method. Of course, if an object of type object is accepted, there will be the case when invalid objects are passed. This is when you get an InvalidCastException. It’s never a good idea to accept exceptions in normal cases. You can read more about this in Chapter 14. This is where the is and as operators come into play.

Instead of doing the cast directly, it’s a good idea to check whether the parameter implements the interface IBankAccount. The as operator works similar to the cast operator within the class hierarchy—it returns a reference to the object. However, it never throws an InvalidCastException. Instead, this operator returns null in case the object is not of the type asked for. Here, it is a good idea to verify for null before using the reference; otherwise a NullReferenceException will be thrown later using the following reference:

public void WorkWithManyDifferentObjects(object o)
{
 IBankAccount account = o as IBankAccount;
 if (account != null)
 {
 // work with the account
 }
}

Instead of using the as operator, you can use the is operator. The is operator returns true or false, depending on whether the condition is fulfilled and the object is of the specified type. After verifying whether the condition is true, a cast can be done because now this cast always succeeds:

public void WorkWithManyDifferentObjects(object o)
{
 if (o is IBankAccount)
 {
 IBankAccount account = (IBankAccount)o;
 // work with the account
 }
}

Instead of having bad surprises by exceptions based on casts, conversions within the class hierarchy work well with the is and as operators.

Summary

This chapter described how to code inheritance in C#. The chapter described how C# offers rich support for both multiple interface and single implementation inheritance and explained that C# provides a number of useful syntactical constructs designed to assist in making code more robust. These include the override keyword, which indicates when a function should override a base function; the new keyword, which indicates when a function hides a base function; and rigid rules for constructor initializers that are designed to ensure that constructors are designed to interoperate in a robust manner.

The next chapter shows the details of the interface IDisposable and explains managing resources allocated from native code.

5
Managed and Unmanaged Resources

What’s In This Chapter?

	Allocating space on the stack and heap at runtime

	Garbage collection

	Releasing unmanaged resources using destructors and the System.IDisposable interface

	The syntax for using pointers in C#

	Using pointers to implement high-performance stack-based arrays

	Platform Invoke to access native APIs

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	PointerPlayground

	PointerPlayground2

	QuickArray

	PlatformInvokeSample

Resources

Resources is an overloaded term. One use of the term resources you can find with localization. With localization, resources are used to translate text and images. Based on the user’s culture, the correct resource is loaded. (This is discussed in Chapter 28, “Localization.”) Another use of the term resources you can read in this chapter. Here, resources are used with a different topic: using managed and unmanaged resources—objects that are stored on the managed or the native heap. Although the garbage collector frees up managed objects that are stored in the managed heap, it isn’t responsible for the objects in the native heap. You have to free them on your own.

When you use a managed environment, you can easily be misled to not pay attention to memory management because the garbage collector (GC) deals with that anyway. A lot of work is done by the GC; it’s very practical to know how it works, what the small and the large object heap are, and what data types are stored within the stack. Also, while the garbage collector deals with managed resources, what about unmanaged ones? You have to free them on your own. Probably your programs are fully managed programs, but what about the types of the Framework? For example, file types (discussed in Chapter 23, “Files and Streams”), wrap a native file handle. This file handle needs to be released. To release this handle early, it’s good to know the IDisposable interface and the using statement that’s explained in this chapter.

This chapter starts with various aspects of memory management and memory access. A good understanding of memory management and knowledge of the pointer capabilities provided by C# will better enable you to integrate C# code with legacy code and perform efficient memory manipulation in performance-critical systems.

Memory Management Under the Hood

One of the advantages of C# programming is that the programmer does not need to worry about detailed memory management; the garbage collector deals with the problem of memory cleanup on your behalf. As a result, you get something that approximates the efficiency of languages such as C++ without the complexity of having to handle memory management yourself as you do in C++. However, although you do not have to manage memory manually, it still pays to understand what is going on behind the scenes. Understanding how your program manages memory under the covers will help you increase the speed and performance of your applications. This section looks at what happens in the computer’s memory when you allocate variables.

NOTE The precise details of many of the topics of this section are not presented here. This section serves as an abbreviated guide to the general processes rather than as a statement of exact implementation.

Value Data Types

Windows uses a system known as virtual addressing, in which the mapping from the memory address seen by your program to the actual location in hardware memory is entirely managed by Windows. As a result, each process of a 32-bit application sees 4GB of available memory, regardless of how much hardware memory you actually have in your computer (with 64-bit applications on 64-bit processors this number is greater). This memory contains everything that is part of the program, including the executable code, any DLLs loaded by the code, and the contents of all variables used when the program runs. This 4GB of memory is known as the virtual address space or virtual memory. For convenience, this chapter uses the shorthand memory.

NOTE With .NET Core applications you specify whether to debug 32- or 64-bit applications by selecting the architecture in the Visual Studio Project Properties, Debug settings (see Figure 5.1). When you select x86, you debug a 32-bit application that runs on 32- and 64-bit systems; when you select x64, you debug a 64-bit application that runs on 64-bit systems. In case you don’t see different options here, you have to install the specific runtimes as explained in Chapter 1, “.NET Application Architectures.”

[image: Screenshot shows a project configuration window for PointerPlayground with highlighted Debug tab on the side, fields for profile, launch, command et cetera along with Add, Browse, New and Remove buttons.]

Figure 5.1

Each memory location in the available 4GB is numbered starting from zero. To access a value stored at a particular location in memory, you need to supply the number that represents that memory location. In any compiled high-level language, the compiler converts human-readable variable names into memory addresses that the processor understands.

Somewhere inside a processor’s virtual memory is an area known as the stack. The stack stores value data types that are not members of objects. In addition, when you call a method, the stack is used to hold a copy of any parameters passed to the method. To understand how the stack works, you need to understand the importance of variable scope in C#. If variable a goes into scope before variable b, then b will always go out of scope first. Consider the following code:

{
 int a;
 // do something
 {
 int b;
 // do something else
 }
}

First, the variable a is declared. Then, inside the inner code block, b is declared. Then the inner code block terminates and b goes out of scope, then a goes out of scope. Therefore, the lifetime of b is entirely contained within the lifetime of a. The idea that you always de-allocate variables in the reverse order of how you allocate them is crucial to the way the stack works.

Note that b is in a different block from code (defined by a different nesting of curly braces). For this reason, it is contained within a different scope. This is termed as block scope or structure scope.

You do not know exactly where in the address space the stack is—you don’t need to know for C# development. A stack pointer (a variable maintained by the operating system) identifies the next free location on the stack. When your program first starts running, the stack pointer will point to just past the end of the block of memory that is reserved for the stack. The stack fills downward, from high memory addresses to low addresses. As data is put on the stack, the stack pointer is adjusted accordingly, so it always points to just past the next free location. This is illustrated in Figure 5.2, which shows a stack pointer with a value of 800000 (0xC3500 (in hex); the next free location is the address 799999.

[image: Image described by surrounding text.]

Figure 5.2

The following code tells the compiler that you need space in memory to store an integer and a double, and these memory locations are referred to as nRacingCars and engineSize. The line that declares each variable indicates the point at which you start requiring access to this variable. The closing curly brace of the block in which the variables are declared identifies the point at which both variables go out of scope:

{
 int nRacingCars = 10;
 double engineSize = 3000.0;
 // do calculations;
}

Assuming that you use the stack shown in Figure 5.2, when the variable nRacingCars comes into scope and is assigned the value 10, the value 10 is placed in locations 799996 through 799999, the 4 bytes just below the location pointed to by the stack pointer (4 bytes because that’s how much memory is needed to store an int). To accommodate this, 4 is subtracted from the value of the stack pointer, so it now points to the location 799996, just after the new first free location (799995).

The next line of code declares the variable engineSize (a double) and initializes it to the value 3000.0. A double occupies eight bytes, so the value 3000.0 is placed in locations 799988 through 799995 on the stack, and the stack pointer is decremented by eight, so that it again points to the location just after the next free location on the stack.

When engineSize goes out of scope, the runtime knows that it is no longer needed. Because of the way variable lifetimes are always nested, you can guarantee that whatever happened while engineSize was in scope, the stack pointer is now pointing to the location where engineSize is stored. To remove engineSize from the stack, the stack pointer is incremented by eight and it now points to the location immediately after the end of engineSize. At this point in the code, you are at the closing curly brace, so nRacingCars also goes out of scope. The stack pointer is incremented by 4. When another variable comes into scope after engineSize and nRacingCars have been removed from the stack, it overwrites the memory descending from location 799999, where nRacingCars was stored.

If the compiler hits a line such as int i, j, then the order of variables coming into scope looks indeterminate. Both variables are declared at the same time and go out of scope at the same time. In this situation, it does not matter in what order the two variables are removed from memory. The compiler internally always ensures that the one that was put in memory first is removed last, thus preserving the rule that prohibits crossover of variable lifetimes.

Reference Data Types

Although the stack provides very high performance, it is not flexible enough to be used for all variables. The requirement that the lifetime of a variable must be nested is too restrictive for many purposes. Often, you need to use a method to allocate memory for storing data and keeping that data available long after that method has exited. This possibility exists whenever storage space is requested with the new operator—as is the case for all reference types. That is where the managed heap comes in.

If you have done any C++ coding that required low-level memory management, you are familiar with the heap. The managed heap is not quite the same as the native heap C++ uses, however; the managed heap works under the control of the garbage collector and provides significant benefits compared to traditional heaps.

The managed heap (or heap for short) is just another area of memory from the processor’s available memory. The following code demonstrates how the heap works and how memory is allocated for reference data types:

void DoWork()
{
 Customer arabel;
 arabel = new Customer();
 Customer otherCustomer2 = new EnhancedCustomer();
}

This code assumes the existence of two classes, Customer and EnhancedCustomer. The EnhancedCustomer class extends the Customer class.

First, you declare a Customer reference called arabel. The space for this is allocated on the stack, but remember that this is only a reference, not an actual Customer object. The arabel reference occupies 4 bytes, enough space to hold the address at which a Customer object will be stored. (You need 4 bytes to represent a memory address as an integer value between 0 and 4GB.)

The next line,

arabel = new Customer();

does several things. First, it allocates memory on the heap to store a Customer object (a real object, not just an address). Then it sets the value of the variable arabel to the address of the memory it has allocated to the new Customer object. (It also calls the appropriate Customer constructor to initialize the fields in the class instance, but you don’t need to worry about that here.)

The Customer instance is not placed on the stack—it is placed on the heap. In this example, you don’t know precisely how many bytes a Customer object occupies, but assume for the sake of argument that it is 32. These 32 bytes contain the instance fields of Customer as well as some information that .NET uses to identify and manage its class instances.

To find a storage location on the heap for the new Customer object, the .NET runtime looks through the heap and grabs the first adjacent, unused block of 32 bytes. Again for the sake of argument, assume that this happens to be at address 200000, and that the arabel reference occupied locations 799996 through 799999 on the stack. This means that before instantiating the arabel object, the memory content looks similar to Figure 5.3.

[image: Diagram shows two columns for Stack and heap with each row representing used space, free space or memory address along with a stack pointer.]

Figure 5.3

After allocating the new Customer object, the content of memory looks like Figure 5.4. Note that unlike the stack, memory in the heap is allocated upward, so the free space is above the used space.

[image: Diagram shows two columns for stack and heap with each row representing used space, free space or memory address along with a stack pointer.]

Figure 5.4

The next line of code both declares a Customer reference and instantiates a Customer object. In this instance, space on the stack for the otherCustomer2 reference is allocated and space for the mrJones object is allocated on the heap in a single line of code:

Customer otherCustomer2 = new EnhancedCustomer();

This line allocates 4 bytes on the stack to hold the otherCustomer2 reference, stored at locations 799992 through 799995. The otherCustomer2 object is allocated space on the heap starting at location 200032.

It is clear from the example that the process of setting up a reference variable is more complex than that for setting up a value variable, and there is performance overhead. In fact, the process is somewhat oversimplified here, because the .NET runtime needs to maintain information about the state of the heap, and this information needs to be updated whenever new data is added to the heap. Despite this overhead, you now have a mechanism for allocating variables that is not constrained by the limitations of the stack. By assigning the value of one reference variable to another of the same type, you have two variables that reference the same object in memory. When a reference variable goes out of scope, it is removed from the stack as described in the previous section, but the data for a referenced object is still sitting on the heap. The data remains on the heap until either the program terminates or the garbage collector removes it, which happens only when it is no longer referenced by any variables.

That is the power of reference data types, and you will see this feature used extensively in C# code. It means that you have a high degree of control over the lifetime of your data, because it is guaranteed to exist in the heap as long as you are maintaining some reference to it.

Garbage Collection

The previous discussion and diagrams show the managed heap working very much like the stack, to the extent that successive objects are placed next to each other in memory. This means that you can determine where to place the next object by using a heap pointer that indicates the next free memory location, which is adjusted as you add more objects to the heap. However, things are complicated by the fact that the lives of the heap-based objects are not coupled with the scope of the individual stack-based variables that reference them.

When the garbage collector runs, it removes all those objects from the heap that are no longer referenced. The GC finds all referenced objects from a root table of references and continues to the tree of referenced objects. Immediately after, the heap has objects scattered on it, which are mixed up with memory that has just been freed (see Figure 5.5).

[image: Diagram shows a column with five rows representing memory location in form of stack. Two rows display the word 'Free' and three rows display 'In use'.]

Figure 5.5

If the managed heap stayed like this, allocating space for new objects would be an awkward process, with the runtime having to search through the heap for a block of memory big enough to store each new object. However, the garbage collector does not leave the heap in this state. As soon as the garbage collector has freed all the objects it can, it compacts the heap by moving all the remaining objects to form one continuous block of memory. This means that the heap can continue working just like the stack, as far as locating where to store new objects. Of course, when the objects are moved about, all the references to those objects need to be updated with the correct new addresses, but the garbage collector handles that, too.

This action of compacting by the garbage collector is where the managed heap works very differently from unmanaged heaps. With the managed heap, it is just a question of reading the value of the heap pointer, rather than iterating through a linked list of addresses to find somewhere to put the new data.

NOTE Generally, the garbage collector runs when the .NET runtime determines that garbage collection is required. You can force the garbage collector to run at a certain point in your code by calling System.GC.Collect. The System.GC class is a .NET class that represents the garbage collector, and the Collect method initiates a garbage collection. The GC class is intended for rare situations in which you know that it’s a good time to call the garbage collector; for example, if you have just de-referenced a large number of objects in your code. However, the logic of the garbage collector does not guarantee that all unreferenced objects will be removed from the heap in a single garbage collection pass.

NOTE It is useful to run GC.Collect during testing. With this you can see memory leaks where objects that should have been garbage collected are still alive. Because the garbage collector does a good job, it’s not a good idea to collect memory programmatically in your production code. If you invoke Collect programmatically, objects move faster to the next generation, as shown next. This causes more time for the GC to run.

When objects are created, they are placed within the managed heap. The first section of the heap is called the generation 0 section, or gen 0. As your new objects are created, they are moved into this section of the heap. Therefore, this is where the youngest objects reside.

Your objects remain there until the first collection of objects occurs through the garbage collection process. The objects that remain alive after this cleansing are compacted and then moved to the next section or generational part of the heap—the generation 1, or gen 1, section.

At this point, the generation 0 section is empty, and all new objects are again placed in this section. Older objects that survived the GC (garbage collection) process are further down in the generation 1 section. This movement of aged items actually occurs one more time. The next collection process that occurs is then repeated. This means that the items that survived the GC process from the generation 1 section are moved to the generation 2 section, and the gen 0 items go to gen 1, again leaving gen 0 open for new objects.

NOTE A garbage collection occurs when you allocate an item that exceeds the capacity of the generation 0 section or when a GC.Collect is called.

This process greatly improves the performance of your application. Typically, your youngest objects are the ones that can be collected, and a large number of younger-related objects might be reclaimed as well. If these objects reside next to each other in the heap, then the garbage collection is faster. In addition, because related objects are residing next to each other, program execution is faster all around.

Another performance-related aspect of garbage collection in .NET is how the framework deals with larger objects that are added to the heap. Under the covers of .NET, larger objects have their own managed heap, referred to as the large object heap. When objects greater than 85,000 bytes are utilized, they go to this special heap rather than the main heap. Your .NET application doesn’t know the difference, as this is all managed for you. Because compressing large items in the heap is expensive, it isn’t done for the objects residing in the large object heap.

In an effort to improve GC even more, collections on the generation 2 section and from the large object heap are now done on a background thread. This means that application threads are only blocked for generation 0 and generation 1 collections, which reduces the overall pause time, especially for large-scale server apps. This feature is on by default for both servers and workstations.

Another optimization to help in application performance is GC balancing. This is specific to server GC. Typically a server will have a pool of threads doing roughly the same thing. The memory allocation will be similar across all the threads. For servers there is one GC heap per logical server. So when one of the heaps runs out of memory and triggers a GC, all of the other heaps most likely will benefit from the GC as well. If a thread happens to use a lot more memory than other threads and it causes a GC, the other threads may not be close to requiring the GC so it’s not efficient. The GC will balance the heaps—both the small object heap and also the large object heap. By doing this balancing process, you can reduce unnecessary collection.

To take advantage of hardware with lots of memory, the GC has added the GCSettings.LatencyMode property. Setting the property to one of the values in the GCLatencyMode enumeration gives a little control to how the GC performs collections. The following table shows the possible values for the GCLatencyMode that can be used.

	Member
	Description

	Batch
	Disables the concurrency settings and sets the GC for maximum throughput with the expense of responsiveness. This overrides the configuration setting.

	Interactive
	The default behavior on a workstation. This uses garbage collection concurrency and balances throughput and responsiveness.

	LowLatency
	Conservative GC. Full collections only occur when there is memory pressure on the system. This setting should only be used for short periods of time to perform specific operations.

	SustainedLowLatency
	Does full blocking collections only when there is system memory pressure.

	NoGCRegion
	New with .NET 4.6. With GCSettings, this is a read-only property. You can set it within a code block calling GC.TryStartNoGCRegion and EndNoGCRegion. Invoking TryStartNoGCRegion you define the size of the memory that needs to be available, which the GC tries to reach. After a successful call to TryStartNoGCRegion you define that the garbage collector should not run—until calling EndNoGCRegion.

The amount of time that the LowLatency or NoGCRegion settings are used should be kept to a minimum. The amount of memory being allocated should be as small as possible. An out-of-memory error could occur if you’re not careful.

Strong and Weak References

The garbage collector cannot reclaim memory of an object that still has a reference—that is a strong reference. It can reclaim managed memory that is not referenced from the root table directly or indirectly. However, sometimes it can be missed to release references.

NOTE In case you have objects that reference each other but are not referenced from the root table—for example Object A references B, B references C, and C references A—the GC can destroy all these objects.

When the class or struct is instantiated in the application code, it has a strong reference as long as there is any other code that references it. For example, if you have a class called MyClass and you create a reference to objects based on that class and call the variable myClassVariable as follows, as long as myClassVariable is in scope there is a strong reference to the MyClass object:

var myClassVariable = new MyClass();

This means that the garbage collector cannot clean up the memory used by the MyClass object. Generally this is a good thing because you might need to access the MyClass object. You might create a cache object that has references to several other objects, like this:

var myCache = new MyCache();
myCache.Add(myClassVariable);

Now you’re finished using the myClassVariable. It can go out of scope, or you assign null:

myClassVariable = null;

In case the garbage collector runs now, it can’t release the memory that was referenced by the myClassVariable, because the object is still referenced from the cache object. Such references can easily be missed, and you can avoid this using the WeakReference.

NOTE With events, it’s easy to miss cleaning up of references. Here, you can use weak references as well. Events and weak references with events are covered in Chapter 9, “Delegates, Lambdas, and Events.”

A weak reference allows the object to be created and used, but if the garbage collector happens to run, it collects the object and frees up the memory. This is not something you would typically want to do because of potential bugs and performance issues, but there are certainly situations in which it makes sense. Weak references also don’t make sense with small objects, as weak references have an overhead on their own, and that might be bigger than the small object.

Weak references are created using the WeakReference class. With the constructor, you can pass a strong reference. The sample code creates a DataObject and passes the reference returned from the constructor. On using WeakReference, you can check the IsAlive property. For using the object again, the Target property of WeakReference returns a strong reference. In case the value of the property returned is not null, you can use the strong reference. Because the object could be collected at any time, it’s important that the existence of the object is valid before trying to reference it. After retrieving the strong reference successfully, you can use it in a normal way, and now it can’t be garbage collected because you have a strong reference again:

// Instantiate a weak reference to MathTest object
var myWeakReference = new WeakReference(new DataObject());

if (myWeakReference.IsAlive)
{
 DataObject strongReference = myWeakReference.Target as DataObject;
 if (strongReference != null)
 {
 // use the strongReference
 }
}
else
{
 // reference not available
}

Working with Unmanaged Resources

The presence of the garbage collector means that you usually do not need to worry about objects you no longer need; you simply allow all references to those objects to go out of scope and let the garbage collector free memory as required. However, the garbage collector does not know how to free unmanaged resources (such as file handles, network connections, and database connections). When managed classes encapsulate direct or indirect references to unmanaged resources, you need to make special provisions to ensure that the unmanaged resources are released when an instance of the class is garbage collected.

When defining a class, you can use two mechanisms to automate the freeing of unmanaged resources. These mechanisms are often implemented together because each provides a slightly different approach:

	Declare a destructor (or finalizer) as a member of your class.

	Implement the System.IDisposable interface in your class.

The following sections discuss each of these mechanisms in turn and then look at how to implement the mechanisms together for best results.

Destructors or Finalizers

You have seen that constructors enable you to specify actions that must take place whenever an instance of a class is created. Conversely, destructors are called before an object is destroyed by the garbage collector. Given this behavior, a destructor would initially seem like a great place to put code to free unmanaged resources and perform a general cleanup. Unfortunately, things are not so straightforward.

NOTE Although we talk about destructors in C#, in the underlying .NET architecture these are known as finalizers. When you define a destructor in C#, what is emitted into the assembly by the compiler is actually a Finalize method. It doesn’t affect any of your source code, but you need to be aware of it when examining generated Intermediate Language (IL) code.

The syntax for a destructor will be familiar to C++ developers. It looks like a method, with the same name as the containing class, but prefixed with a tilde (∼). It has no return type, and takes no parameters or access modifiers. Here is an example:

class MyClass
{
 ~MyClass()
 {
 // Finalizer implementation
 }
}

When the C# compiler compiles a destructor, it implicitly translates the destructor code to the equivalent of an override of the Finalize method, which ensures that the Finalize method of the parent class is executed. The following example shows the C# code equivalent to the Intermediate Language (IL) that the compiler would generate for the ∼MyClass destructor:

protected override void Finalize()
{
 try
 {
 // Finalizer implementation
 }
 finally
 {
 base.Finalize();
 }
}

As shown, the code implemented in the ~MyClass destructor is wrapped in a try block contained in the Finalize method. A call to the parent’s Finalize method is ensured by placing the call in a finally block. You can read about try and finally blocks in Chapter 14, “Errors and Exceptions.”

Experienced C++ developers make extensive use of destructors, sometimes not only to clean up resources but also to provide debugging information or perform other tasks. C# destructors are used far less than their C++ equivalents. The problem with C# destructors as compared to their C++ counterparts is that they are nondeterministic. When a C++ object is destroyed, its destructor runs immediately. However, because of the way the garbage collector works when using C#, there is no way to know when an object’s destructor will actually execute. Hence, you cannot place any code in the destructor that relies on being run at a certain time, and you should not rely on the destructor being called for different class instances in any particular order. When your object is holding scarce and critical resources that need to be freed as soon as possible, you do not want to wait for garbage collection.

Another problem with C# destructors is that the implementation of a destructor delays the final removal of an object from memory. Objects that do not have a destructor are removed from memory in one pass of the garbage collector, but objects that have destructors require two passes to be destroyed: The first pass calls the destructor without removing the object, and the second pass actually deletes the object. In addition, the runtime uses a single thread to execute the Finalize methods of all objects. If you use destructors frequently, and use them to execute lengthy cleanup tasks, the impact on performance can be noticeable.

The IDisposable Interface

In C#, the recommended alternative to using a destructor is using the System.IDisposable interface. The IDisposable interface defines a pattern (with language-level support) that provides a deterministic mechanism for freeing unmanaged resources and avoids the garbage collector–related problems inherent with destructors. The IDisposable interface declares a single method named Dispose, which takes no parameters and returns void. Here is an implementation for MyClass:

class MyClass: IDisposable
{
 public void Dispose()
 {
 // implementation
 }
}

The implementation of Dispose should explicitly free all unmanaged resources used directly by an object and call Dispose on any encapsulated objects that also implement the IDisposable interface. In this way, the Dispose method provides precise control over when unmanaged resources are freed.

Suppose that you have a class named ResourceGobbler, which relies on the use of some external resource and implements IDisposable. If you want to instantiate an instance of this class, use it, and then dispose of it, you could do so like this:

var theInstance = new ResourceGobbler();

// do your processing

theInstance.Dispose();

Unfortunately, this code fails to free the resources consumed by theInstance if an exception occurs during processing, so you should write the code as follows using a try block (as covered in detail in Chapter 14):

ResourceGobbler theInstance = null;
try
{
 theInstance = new ResourceGobbler();
 // do your processing
}
finally
{
 theInstance?.Dispose();
}

The using Statement

Using try/finally ensures that Dispose is always called on theInstance and that any resources consumed by it are always freed, even if an exception occurs during processing. However, if you always had to repeat such a construct, it would result in confusing code. C# offers a syntax that you can use to guarantee that Dispose is automatically called against an object that implements IDisposable when its reference goes out of scope. The syntax to do this involves the using keyword—though now in a very different context, which has nothing to do with namespaces. The following code generates IL code equivalent to the try block just shown:

using (var theInstance = new ResourceGobbler())
{
 // do your processing
}

The using statement, followed in brackets by a reference variable declaration and instantiation, causes that variable to be scoped to the accompanying statement block. In addition, when that variable goes out of scope, its Dispose method is called automatically, even if an exception occurs.

NOTE The using keyword has multiple uses with C#. The using declaration is used to import namespaces. The using statement works with objects implementing IDisposable and invokes the Dispose method with the end of the using scope.

NOTE With several classes of the .NET Framework both a Close and a Dispose method exists. If it is common to close a resource (such as a file and a database), both Close and Dispose have been implemented. Here, the Close method simply calls Dispose. This approach provides clarity in the use of these classes and supports the using statement. Newer classes only implement the Dispose method as we’re already used to it.

Implementing IDisposable and a Destructor

The previous sections discussed two alternatives for freeing unmanaged resources used by the classes you create:

	The execution of a destructor is enforced by the runtime but is nondeterministic and places an unacceptable overhead on the runtime because of the way garbage collection works.

	The IDisposable interface provides a mechanism that enables users of a class to control when resources are freed but requires discipline to ensure that Dispose is called.

If you are creating a finalizer, you should also implement the IDisposable interface. You implement IDisposable on the assumption that most programmers will call Dispose correctly, but implement a destructor as a safety mechanism in case Dispose is not called. Here is an example of a dual implementation:

using System;

public class ResourceHolder: IDisposable
{
 private bool _isDisposed = false;

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (!_isDisposed)
 {
 if (disposing)
 {
 // Cleanup managed objects by calling their
 // Dispose() methods.
 }
 // Cleanup unmanaged objects
 }
 _isDisposed = true;
 }

 ~ResourceHolder()
 {
 Dispose (false);
 }

 public void SomeMethod()
 {
 // Ensure object not already disposed before execution of any method
 if(_isDisposed)
 {
 throw new ObjectDisposedException("ResourceHolder");
 }

 // method implementation…
 }
}

You can see from this code that there is a second protected overload of Dispose that takes one bool parameter—and this is the method that does all the cleaning up. Dispose(bool) is called by both the destructor and by IDisposable.Dispose. The point of this approach is to ensure that all cleanup code is in one place.

The parameter passed to Dispose(bool) indicates whether Dispose(bool) has been invoked by the destructor or by IDisposable.Dispose—Dispose(bool) should not be invoked from anywhere else in your code. The idea is this:

	If a consumer calls IDisposable.Dispose, that consumer is indicating that all managed and unmanaged resources associated with that object should be cleaned up.

	If a destructor has been invoked, all resources still need to be cleaned up. However, in this case, you know that the destructor must have been called by the garbage collector and you should not attempt to access other managed objects because you can no longer be certain of their state. In this situation, the best you can do is clean up the known unmanaged resources and hope that any referenced managed objects also have destructors that will perform their own cleaning up.

The _isDisposed member variable indicates whether the object has already been disposed of and ensures that you do not try to dispose of member variables more than once. It also enables you to test whether an object has been disposed of before executing any instance methods, as shown in SomeMethod. This simplistic approach is not thread-safe and depends on the caller ensuring that only one thread is calling the method concurrently. Requiring a consumer to enforce synchronization is a reasonable assumption and one that is used repeatedly throughout the .NET class libraries (in the Collection classes, for example). Threading and synchronization are discussed in Chapter 21, “Tasks and Parallel Programming,” and Chapter 22, “Task Synchronization.”

Finally, IDisposable.Dispose contains a call to the method System.GC.SuppressFinalize. GC is the class that represents the garbage collector, and the SuppressFinalize method tells the garbage collector that a class no longer needs to have its destructor called. Because your implementation of Dispose has already done all the cleanup required, there’s nothing left for the destructor to do. Calling SuppressFinalize means that the garbage collector will treat that object as if it doesn’t have a destructor at all.

IDisposable and Finalizer Rules

Learning about finalizers and the IDisposable interface you already learned the Dispose pattern and some rules on using these constructs. Because releasing resources is such an important aspect with managed code, the rules are summarized in this list:

	If your class defines a member that implements IDisposable, the class should also implement IDisposable.

	Implementing IDisposable does not mean that you should also implement a finalizer. Finalizers create additional overhead with both creating an object and releasing the memory of the object as an additional pass from the GC is needed. You should implement a finalizer only if needed—for example, to release native resources. To release native resources, a finalizer is really needed.

	If a finalizer is implemented, you should also implement the interface IDisposable. This way the native resource can be released earlier, not only when the GC is finding out about the occupied resource.

	Within the finalization code implementation, don’t access objects that might have been finalized already. The order of finalizers is not guaranteed.

	If an object you use implements the IDisposable interface, call the Dispose method when the object is no longer needed. In case you’re using this object within a method, the using statement comes handy. In case the object is a member of the class, make the class implement IDisposable as well.

Unsafe Code

As you have just seen, C# is very good at hiding much of the basic memory management from the developer, thanks to the garbage collector and the use of references. However, sometimes you will want direct access to memory. For example, you might want to access a function in an external (non-.NET) DLL that requires a pointer to be passed as a parameter (as many Windows API functions do), or possibly for performance reasons. This section examines the C# facilities that provide direct access to the content of memory.

Accessing Memory Directly with Pointers

Although I am introducing pointers as if they are a new topic, in reality pointers are not new at all. You have been using references freely in your code, and a reference is simply a type-safe pointer. You have already seen how variables that represent objects and arrays actually store the memory address of where the corresponding data (the referent) is stored. A pointer is simply a variable that stores the address of something else in the same way as a reference. The difference is that C# does not allow you direct access to the address contained in a reference variable. With a reference, the variable is treated syntactically as if it stores the actual content of the referent.

C# references are designed to make the language simpler to use and to prevent you from inadvertently doing something that corrupts the contents of memory. With a pointer, however, the actual memory address is available to you. This gives you a lot of power to perform new kinds of operations. For example, you can add 4 bytes to the address in order to examine or even modify whatever data happens to be stored 4 bytes further in memory.

There are two main reasons for using pointers:

	Backward compatibility—Despite all the facilities provided by the .NET runtime, it is still possible to call native Windows API functions, and for some operations this may be the only way to accomplish your task. These API functions are generally written in C++ or C# and often require pointers as parameters. However, in many cases it is possible to write the DllImport declaration in a way that avoids use of pointers—for example, by using the System.IntPtr class.

	Performance—On those occasions when speed is of the utmost importance, pointers can provide a route to optimized performance. If you know what you are doing, you can ensure that data is accessed or manipulated in the most efficient way. However, be aware that more often than not, there are other areas of your code where you can likely make the necessary performance improvements without resorting to using pointers. Try using a code profiler to look for the bottlenecks in your code; Visual Studio includes a code profiler.

Low-level memory access has a price. The syntax for using pointers is more complex than that for reference types, and pointers are unquestionably more difficult to use correctly. You need good programming skills and an excellent ability to think carefully and logically about what your code is doing to use pointers successfully. Otherwise, it is very easy to introduce subtle, difficult-to-find bugs into your program when using pointers. For example, it is easy to overwrite other variables, cause stack overflows, access areas of memory that don’t store any variables, or even overwrite information about your code that is needed by the .NET runtime, thereby crashing your program.

In addition, if you use pointers your code must be granted a high level of trust by the runtime’s code access security mechanism or it will not be allowed to execute. Under the default code access security policy, this is only possible if your code is running on the local machine. If your code must be run from a remote location, such as the Internet, users must grant your code additional permissions for it to work. Unless the users trust you and your code, they are unlikely to grant these permissions. Code access security is discussed in more detail in Chapter 24, “Security.”

Despite these issues, pointers remain a very powerful and flexible tool in the writing of efficient code.

WARNING I strongly advise against using pointers unnecessarily because your code will not only be harder to write and debug, but it will also fail the memory type safety checks imposed by the CLR.

Writing Unsafe Code with the unsafe Keyword

As a result of the risks associated with pointers, C# allows the use of pointers only in blocks of code that you have specifically marked for this purpose. The keyword to do this is unsafe. You can mark an individual method as being unsafe like this:

unsafe int GetSomeNumber()
{
 // code that can use pointers
}

Any method can be marked as unsafe, regardless of what other modifiers have been applied to it (for example, static methods or virtual methods). In the case of methods, the unsafe modifier applies to the method’s parameters, allowing you to use pointers as parameters. You can also mark an entire class or struct as unsafe, which means that all its members are assumed unsafe:

unsafe class MyClass
{
 // any method in this class can now use pointers
}

Similarly, you can mark a member as unsafe:

class MyClass
{
 unsafe int* pX; // declaration of a pointer field in a class
}

Or you can mark a block of code within a method as unsafe:

void MyMethod()
{
 // code that doesn't use pointers
 unsafe
 {
 // unsafe code that uses pointers here
 }
 // more 'safe' code that doesn't use pointers
}

Note, however, that you cannot mark a local variable by itself as unsafe:

int MyMethod()
{
 unsafe int *pX; // WRONG
}

If you want to use an unsafe local variable, you need to declare and use it inside a method or block that is unsafe. There is one more step before you can use pointers. The C# compiler rejects unsafe code unless you tell it that your code includes unsafe blocks. Using DNX, you can set allowUnsafe to true with the compilationOptions in the project.json file (code file PointerPlayground/project.json):

"compilationOptions": {"allowUnsafe": true},

With the traditional csc compiler, you can set the /unsafe option, or set the Build configuration in the Project setting to Allow Unsafe Code with Visual Studio 2015:

csc /unsafe MySource.cs

Pointer Syntax

After you have marked a block of code as unsafe, you can declare a pointer using the following syntax:

int* pWidth, pHeight;
double* pResult;
byte*[] pFlags;

This code declares four variables: pWidth and pHeight are pointers to integers, pResult is a pointer to a double, and pFlags is an array of pointers to bytes. It is common practice to use the prefix p in front of names of pointer variables to indicate that they are pointers. When used in a variable declaration, the symbol * indicates that you are declaring a pointer (that is, something that stores the address of a variable of the specified type).

When you have declared variables of pointer types, you can use them in the same way as normal variables, but first you need to learn two more operators:

	& means take the address of, and converts a value data type to a pointer—for example, int to *int. This operator is known as the address operator.

	* means get the content of this address, and converts a pointer to a value data type—for example, *float to float. This operator is known as the indirection operator (or the de-reference operator).

You can see from these definitions that & and * have opposite effects.

NOTE You might be wondering how it is possible to use the symbols & and * in this manner because these symbols also refer to the operators of bitwise AND (&) and multiplication (*). Actually, it is always possible for both you and the compiler to know what is meant in each case because with the pointer meanings, these symbols always appear as unary operators—they act on only one variable and appear in front of that variable in your code. By contrast, bitwise AND and multiplication are binary operators—they require two operands.

The following code shows examples of how to use these operators:

int x = 10;
int* pX, pY;
pX = &x;
pY = pX;
*pY = 20;

You start by declaring an integer, x, with the value 10 followed by two pointers to integers, pX and pY. You then set pX to point to x (that is, you set the content of pX to the address of x). Then you assign the value of pX to pY, so that pY also points to x. Finally, in the statement *pY = 20, you assign the value 20 as the contents of the location pointed to by pY—in effect changing x to 20 because pY happens to point to x. Note that there is no particular connection between the variables pY and x. It is just that at the present time, pY happens to point to the memory location at which x is held.

To get a better understanding of what is going on, consider that the integer x is stored at memory locations 0x12F8C4 through 0x12F8C7 (1243332 to 1243335 in decimal) on the stack (there are four locations because an int occupies 4 bytes). Because the stack allocates memory downward, this means that the variables pX will be stored at locations 0x12F8C0 to 0x12F8C3, and pY will end up at locations 0x12F8BC to 0x12F8BF. Note that pX and pY also occupy 4 bytes each. That is not because an int occupies 4 bytes, but because on a 32-bit application you need 4 bytes to store an address. With these addresses, after executing the previous code, the stack will look like Figure 5.6.

[image: Diagram shows a column with three rows along with memory addresses. First row stores value of the integer x. Second and third rows show the location of the variables pX and pY.]

Figure 5.6

NOTE Although this process is illustrated with integers, which are stored consecutively on the stack on a 32-bit processor, this does not happen for all data types. The reason is that 32-bit processors work best when retrieving data from memory in 4-byte chunks. Memory on such machines tends to be divided into 4-byte blocks, and each block is sometimes known under Windows as a DWORD because this was the name of a 32-bit unsigned int in pre-.NET days. It is most efficient to grab DWORDs from memory—storing data across DWORD boundaries normally results in a hardware performance hit. For this reason, the .NET runtime normally pads out data types so that the memory they occupy is a multiple of 4. For example, a short occupies 2 bytes, but if a short is placed on the stack, the stack pointer will still be decremented by 4, not 2, so the next variable to go on the stack will still start at a DWORD boundary.

You can declare a pointer to any value type (that is, any of the predefined types uint, int, byte, and so on, or to a struct). However, it is not possible to declare a pointer to a class or an array; this is because doing so could cause problems for the garbage collector. To work properly, the garbage collector needs to know exactly what class instances have been created on the heap, and where they are; but if your code started manipulating classes using pointers, you could very easily corrupt the information on the heap concerning classes that the .NET runtime maintains for the garbage collector. In this context, any data type that the garbage collector can access is known as a managed type. Pointers can only be declared as unmanaged types because the garbage collector cannot deal with them.

Casting Pointers to Integer Types

Because a pointer really stores an integer that represents an address, you won’t be surprised to know that the address in any pointer can be converted to or from any integer type. Pointer-to-integer-type conversions must be explicit. Implicit conversions are not available for such conversions. For example, it is perfectly legitimate to write the following:

int x = 10;
int* pX, pY;
pX = &x;
pY = pX;
*pY = 20;
ulong y = (ulong)pX;
int* pD = (int*)y;

The address held in the pointer pX is cast to a uint and stored in the variable y. You have then cast y back to an int* and stored it in the new variable pD. Hence, now pD also points to the value of x.

The primary reason for casting a pointer value to an integer type is to display it. The interpolation string (and similarly Console.Write) does not have any overloads that can take pointers, but they do accept and display pointer values that have been cast to integer types:

WriteLine($"Address is {pX}"); // wrong -- will give a compilation error
WriteLine($"Address is {(ulong)pX}"); // OK

You can cast a pointer to any of the integer types. However, because an address occupies 4 bytes on 32-bit systems, casting a pointer to anything other than a uint, long, or ulong is almost certain to lead to overflow errors. (An int causes problems because its range is from roughly –2 billion to 2 billion, whereas an address runs from zero to about 4 billion.) If you are creating a 64-bit application, you need to cast the pointer to ulong.

It is also important to be aware that the checked keyword does not apply to conversions involving pointers. For such conversions, exceptions are not raised when overflows occur, even in a checked context. The .NET runtime assumes that if you are using pointers, you know what you are doing and are not worried about possible overflows.

Casting Between Pointer Types

You can also explicitly convert between pointers pointing to different types. For example, the following is perfectly legal code:

byte aByte = 8;
byte* pByte= &aByte;
double* pDouble = (double*)pByte;

However, if you try something like this, be careful. In this example, if you look at the double value pointed to by pDouble, you are actually looking up some memory that contains a byte (aByte), combined with some other memory, and treating it as if this area of memory contained a double, which does not give you a meaningful value. However, you might want to convert between types to implement the equivalent of a C union, or you might want to cast pointers from other types into pointers to sbyte to examine individual bytes of memory.

void Pointers

If you want to maintain a pointer but not specify to what type of data it points, you can declare it as a pointer to a void:

int* pointerToInt;
void* pointerToVoid;
pointerToVoid = (void*)pointerToInt;

The main use of this is if you need to call an API function that requires void* parameters. Within the C# language, there isn’t a great deal that you can do using void pointers. In particular, the compiler flags an error if you attempt to de-reference a void pointer using the * operator.

Pointer Arithmetic

It is possible to add or subtract integers to and from pointers. However, the compiler is quite clever about how it arranges this. For example, suppose that you have a pointer to an int and you try to add 1 to its value. The compiler assumes that you actually mean you want to look at the memory location following the int, and hence it increases the value by 4 bytes—the size of an int. If it is a pointer to a double, adding 1 actually increases the value of the pointer by 8 bytes, the size of a double. Only if the pointer points to a byte or sbyte (1 byte each) does adding 1 to the value of the pointer actually change its value by 1.

You can use the operators +, -, +=, -=, ++, and -- with pointers, with the variable on the right side of these operators being a long or ulong.

NOTE It is not permitted to carry out arithmetic operations on void pointers.

For example, assume the following definitions:

uint u = 3;
byte b = 8;
double d = 10.0;
uint* pUint= &u; // size of a uint is 4
byte* pByte = &b; // size of a byte is 1
double* pDouble = &d; // size of a double is 8

Next, assume the addresses to which these pointers point are as follows:

	pUint: 1243332

	pByte: 1243328

	pDouble: 1243320

Then execute this code:

++pUint; // adds (1*4) = 4 bytes to pUint
pByte -= 3; // subtracts (3*1) = 3 bytes from pByte
double* pDouble2 = pDouble + 4; // pDouble2 = pDouble + 32 bytes (4*8 bytes)

The pointers now contain this:

	pUint: 1243336

	pByte: 1243325

	pDouble2: 1243352

NOTE The general rule is that adding a number X to a pointer to type T with value P gives the result P + X*(sizeof(T)). If successive values of a given type are stored in successive memory locations, pointer addition works very well, allowing you to move pointers between memory locations. If you are dealing with types such as byte or char, though, with sizes not in multiples of 4, successive values will not, by default, be stored in successive memory locations.

You can also subtract one pointer from another pointer, if both pointers point to the same data type. In this case, the result is a long whose value is given by the difference between the pointer values divided by the size of the type that they represent:

double* pD1 = (double*)1243324; // note that it is perfectly valid to
 // initialize a pointer like this.
double* pD2 = (double*)1243300;
long L = pD1-pD2; // gives the result 3 (=24/sizeof(double))

The sizeof Operator

This section has been referring to the size of various data types. If you need to use the size of a type in your code, you can use the sizeof operator, which takes the name of a data type as a parameter and returns the number of bytes occupied by that type, as shown in this example:

int x = sizeof(double);

This sets x to the value 8.

The advantage of using sizeof is that you don’t have to hard-code data type sizes in your code, making your code more portable. For the predefined data types, sizeof returns the following values:

sizeof(sbyte) = 1; sizeof(byte) = 1;
sizeof(short) = 2; sizeof(ushort) = 2;
sizeof(int) = 4; sizeof(uint) = 4;
sizeof(long) = 8; sizeof(ulong) = 8;
sizeof(char) = 2; sizeof(float) = 4;
sizeof(double) = 8; sizeof(bool) = 1;

You can also use sizeof for structs that you define yourself, although, in that case, the result depends on what fields are in the struct. You cannot use sizeof for classes.

Pointers to Structs: The Pointer Member Access Operator

Pointers to structs work in exactly the same way as pointers to the predefined value types. There is, however, one condition: The struct must not contain any reference types. This is due to the restriction mentioned earlier that pointers cannot point to any reference types. To avoid this, the compiler flags an error if you create a pointer to any struct that contains any reference types.

Suppose that you had a struct defined like this:

struct MyStruct
{
 public long X;
 public float F;
}

You could define a pointer to it as follows:

MyStruct* pStruct;

Then you could initialize it like this:

var myStruct = new MyStruct();
pStruct = &myStruct;

It is also possible to access member values of a struct through the pointer:

(*pStruct).X = 4;
(*pStruct).F = 3.4f;

However, this syntax is a bit complex. For this reason, C# defines another operator that enables you to access members of structs through pointers using a simpler syntax. It is known as the pointer member access operator, and the symbol is a dash followed by a greater-than sign, so it looks like an arrow: ->.

NOTE C++ developers will recognize the pointer member access operator because C++ uses the same symbol for the same purpose.

Using the pointer member access operator, the previous code can be rewritten like this:

pStruct->X = 4;
pStruct->F = 3.4f;

You can also directly set up pointers of the appropriate type to point to fields within a struct,

long* pL = &(Struct.X);
float* pF = &(Struct.F);

or,

long* pL = &(pStruct->X);
float* pF = &(pStruct->F);

Pointers to Class Members

As indicated earlier, it is not possible to create pointers to classes. That is because the garbage collector does not maintain any information about pointers—only about references—so creating pointers to classes could cause garbage collection to not work properly.

However, most classes do contain value type members, and you might want to create pointers to them. This is possible, but it requires a special syntax. For example, suppose that you rewrite the struct from the previous example as a class:

class MyClass
{
 public long X;
 public float F;
}

Then you might want to create pointers to its fields, X and F, in the same way as you did earlier. Unfortunately, doing so produces a compilation error:

var myObject = new MyClass();
long* pL = &(myObject.X); // wrong -- compilation error
float* pF = &(myObject.F); // wrong -- compilation error

Although X and F are unmanaged types, they are embedded in an object, which sits on the heap. During garbage collection, the garbage collector might move MyObject to a new location, which would leave pL and pF pointing to the wrong memory addresses. Because of this, the compiler does not let you assign addresses of members of managed types to pointers in this manner.

The solution is to use the fixed keyword, which tells the garbage collector that there may be pointers referencing members of certain objects, so those objects must not be moved. The syntax for using fixed looks like this when you want to declare only one pointer:

var myObject = new MyClass();
fixed (long* pObject = &(myObject.X))
{
 // do something
}

You define and initialize the pointer variable in the brackets following the keyword fixed. This pointer variable (pObject in the example) is scoped to the fixed block identified by the curly braces. As a result, the garbage collector knows not to move the myObject object while the code inside the fixed block is executing.

If you want to declare more than one pointer, you can place multiple fixed statements before the same code block:

var myObject = new MyClass();
fixed (long* pX = &(myObject.X))
fixed (float* pF = &(myObject.F))
{
 // do something
}

You can nest entire fixed blocks if you want to fix several pointers for different periods:

var myObject = new MyClass();
fixed (long* pX = &(myObject.X))
{
 // do something with pX
 fixed (float* pF = &(myObject.F))
 {
 // do something else with pF
 }
}

You can also initialize several variables within the same fixed block, if they are of the same type:

var myObject = new MyClass();
var myObject2 = new MyClass();
fixed (long* pX = &(myObject.X), pX2 = &(myObject2.X))
{
 // etc.
}

In all these cases, it is immaterial whether the various pointers you are declaring point to fields in the same or different objects or to static fields not associated with any class instance.

Pointer Example: PointerPlayground

For understanding pointers, it’s best to write a program using pointers and to use the debugger. The following code snippet is from an example named PointerPlayground. It does some simple pointer manipulation and displays the results, enabling you to see what is happening in memory and where variables are stored (code file PointerPlayground/Program.cs):

using System;
using static System.Console;

namespace PointerPlayground
{
 public class Program
 {
 unsafe public static void Main()
 {
 int x=10;
 short y = -1;
 byte y2 = 4;
 double z = 1.5;
 int* pX = &x;
 short* pY = &y;
 double* pZ = &z;

 WriteLine($"Address of x is 0x{(ulong)&x:X}," +
 $"size is {sizeof(int)}, value is {x}");
 WriteLine($"Address of y is 0x{(ulong)&y2:X}," +
 $"size is {sizeof(short)}, value is {y}");
 WriteLine($"Address of y2 is 0x{(ulong)&y2:X}," +
 $"size is {sizeof(byte)}, value is {y2}");
 WriteLine($"Address of z is 0x{(ulong)&z:X}," +
 $"size is {sizeof(double)}, value is {z}");
 WriteLine($"Address of pX=&x is 0x{(ulong)&pX:X}," +
 $"size is {sizeof(int*)}, value is 0x{(ulong)pX:X}");
 WriteLine($"Address of pY=&y is 0x{(ulong)&pY:X}," +
 $"size is {sizeof(short*)}, value is 0x{(ulong)pY:X}");
 WriteLine($"Address of pZ=&z is 0x{(ulong)&pZ:X}," +
 $"size is {sizeof(double*)}, value is 0x{(ulong)pZ:X}");

 *pX = 20;
 WriteLine($"After setting *pX, x = {x}");
 WriteLine($"*pX = {*pX}");

 pZ = (double*)pX;
 WriteLine($"x treated as a double = {*pZ}");

 ReadLine();
 }
 }
}

This code declares four value variables:

	An int x

	A short y

	A byte y2

	A double z

It also declares pointers to three of these values: pX, pY, and pZ.

Next, you display the value of these variables as well as their size and address. Note that in taking the address of pX, pY, and pZ, you are effectively looking at a pointer to a pointer—an address of an address of a value. Also, in accordance with the usual practice when displaying addresses, you have used the {0:X} format specifier in the WriteLine commands to ensure that memory addresses are displayed in hexadecimal format.

Finally, you use the pointer pX to change the value of x to 20 and do some pointer casting to see what happens if you try to treat the content of x as if it were a double.

Compiling and running this code results in the following output:

Address of x is 0x376943D5A8, size is 4, value is 10
Address of y is 0x376943D5A0, size is 2, value is -1
Address of y2 is 0x376943D598, size is 1, value is 4
Address of z is 0x376943D590, size is 8, value is 1.5
Address of pX=&x is 0x376943D588, size is 8, value is 0x376943D5A8
Address of pY=&y is 0x376943D580, size is 8, value is 0x376943D5A0
Address of pZ=&z is 0x376943D578, size is 8, value is 0x376943D590
After setting *pX, x = 20
*pX = 20
x treated as a double = 9.88131291682493E-323

NOTE When you run the application with the CoreCLR, different addresses are shown every time you run the application.

Checking through these results confirms the description of how the stack operates presented in the “Memory Management Under the Hood” section earlier in this chapter. It allocates successive variables moving downward in memory. Notice how it also confirms that blocks of memory on the stack are always allocated in multiples of 4 bytes. For example, y is a short (of size 2) and has the (hex) address 0xD4E710, indicating that the memory locations reserved for it are locations 0xD4E710 through 0xD4E713. If the .NET runtime had been strictly packing up variables next to each other, Y would have occupied just two locations, 0xD4E712 and 0xD4713.

The next example illustrates pointer arithmetic, as well as pointers to structs and class members. This example is named PointerPlayground2. To start, you define a struct named CurrencyStruct, which represents a currency value as dollars and cents. You also define an equivalent class named CurrencyClass (code file PointerPlayground2/Currency.cs):

internal struct CurrencyStruct
{
 public long Dollars;
 public byte Cents;

 public override string ToString() => $"$ {Dollars}.{Cents}";
}

internal class CurrencyClass
{
 public long Dollars = 0;
 public byte Cents = 0;

 public override string ToString() => $"$ {Dollars}.{Cents}";
}

Now that you have your struct and class defined, you can apply some pointers to them. Following is the code for the new example. Because the code is fairly long, I’m going through it in detail. You start by displaying the size of CurrencyStruct, creating a couple of CurrencyStruct instances and creating some CurrencyStruct pointers. You use the pAmount pointer to initialize the members of the amount1 CurrencyStruct and then display the addresses of your variables (code file PointerPlayground2/Program.cs):

unsafe public static void Main()
{
 WriteLine($"Size of CurrencyStruct struct is {sizeof(CurrencyStruct)}");
 CurrencyStruct amount1, amount2;
 CurrencyStruct* pAmount = &amount1;
 long* pDollars = &(pAmount->Dollars);
 byte* pCents = &(pAmount->Cents);

 WriteLine("Address of amount1 is 0x{(ulong)&amount1:X}");
 WriteLine("Address of amount2 is 0x{(ulong)&amount2:X}");
 WriteLine("Address of pAmount is 0x{(ulong)&pAmount:X}");
 WriteLine("Address of pDollars is 0x{(ulong)&pDollars:X}");
 WriteLine("Address of pCents is 0x{(ulong)&pCents:X}");
 pAmount->Dollars = 20;
 *pCents = 50;
 WriteLine($"amount1 contains {amount1}");

Now you do some pointer manipulation that relies on your knowledge of how the stack works. Due to the order in which the variables were declared, you know that amount2 will be stored at an address immediately below amount1. The sizeof(CurrencyStruct) operator returns 16 (as demonstrated in the screen output coming up), so CurrencyStruct occupies a multiple of 4 bytes. Therefore, after you decrement your currency pointer, it points to amount2:

--pAmount; // this should get it to point to amount2
WriteLine($"amount2 has address 0x{(ulong)pAmount:X}" +
 $"and contains {*pAmount}");

Notice that when you call WriteLine, you display the contents of amount2, but you haven’t yet initialized it. What is displayed is random garbage—whatever happened to be stored at that location in memory before execution of the example. There is an important point here: Normally, the C# compiler would prevent you from using an uninitialized variable, but when you start using pointers, it is very easy to circumvent many of the usual compilation checks. In this case, you have done so because the compiler has no way of knowing that you are actually displaying the contents of amount2. Only you know that, because your knowledge of the stack means that you can tell what the effect of decrementing pAmount will be. After you start doing pointer arithmetic, you will find that you can access all sorts of variables and memory locations that the compiler would usually stop you from accessing, hence the description of pointer arithmetic as unsafe.

Next, you do some pointer arithmetic on your pCents pointer. pCents currently points to amount1.Cents, but the aim here is to get it to point to amount2.Cents, again using pointer operations instead of directly telling the compiler that’s what you want to do. To do this, you need to decrement the address pCents contains by sizeof(Currency):

// do some clever casting to get pCents to point to cents
// inside amount2
CurrencyStruct* pTempCurrency = (CurrencyStruct*)pCents;
pCents = (byte*) (-pTempCurrency);
WriteLine("Address of pCents is now 0x{0:X}", (ulong)&pCents);

Finally, you use the fixed keyword to create some pointers that point to the fields in a class instance and use these pointers to set the value of this instance. Notice that this is also the first time that you have been able to look at the address of an item stored on the heap, rather than the stack:

WriteLine("\nNow with classes");
// now try it out with classes
var amount3 = new CurrencyClass();

fixed(long* pDollars2 = &(amount3.Dollars))
fixed(byte* pCents2 = &(amount3.Cents))
{
 WriteLine($"amount3.Dollars has address 0x{(ulong)pDollars2:X}");
 WriteLine($"amount3.Cents has address 0x{(ulong)pCents2:X}");
 *pDollars2 = -100;
 WriteLine($"amount3 contains {amount3}");
}

Compiling and running this code gives output similar to this:

Size of CurrencyStruct struct is 16
Address of amount1 is 0xD290DCD7C0
Address of amount2 is 0xD290DCD7B0
Address of pAmount is 0xD290DCD7A8
Address of pDollars is 0xD290DCD7A0
Address of pCents is 0xD290DCD798
amount1 contains $ 20.50
amount2 has address 0xD290DCD7B0 and contains $ 0.0
Address of pCents is now 0xD290DCD798

Now with classes
amount3.Dollars has address 0xD292C91A70
amount3.Cents has address 0xD292C91A78
amount3 contains $ -100.0

Notice in this output the uninitialized value of amount2 that is displayed, and notice that the size of the CurrencyStruct struct is 16—somewhat larger than you would expect given the size of its fields (a long and a byte should total 9 bytes).

Using Pointers to Optimize Performance

Until now, all the examples have been designed to demonstrate the various things that you can do with pointers. You have played around with memory in a way that is probably interesting only to people who like to know what’s happening under the hood, but that doesn’t really help you write better code. Now you’re going to apply your understanding of pointers and see an example of how judicious use of pointers has a significant performance benefit.

Creating Stack-based Arrays

This section explores one of the main areas in which pointers can be useful: creating high-performance, low-overhead arrays on the stack. As discussed in Chapter 2, “Core C#,” C# includes rich support for handling arrays. Chapter 7, “Arrays and Tuples,” give more details on arrays. Although C# makes it very easy to use both one-dimensional and rectangular or jagged multidimensional arrays, it suffers from the disadvantage that these arrays are actually objects; they are instances of System.Array. This means that the arrays are stored on the heap, with all the overhead that this involves. There may be occasions when you need to create a short-lived, high-performance array and don’t want the overhead of reference objects. You can do this by using pointers, although this is easy only for one-dimensional arrays.

To create a high-performance array, you need to use a new keyword: stackalloc. The stackalloc command instructs the .NET runtime to allocate an amount of memory on the stack. When you call stackalloc, you need to supply it with two pieces of information:

	The type of data you want to store

	The number of these data items you need to store

For example, to allocate enough memory to store 10 decimal data items, you can write the following:

decimal* pDecimals = stackalloc decimal[10];

This command simply allocates the stack memory; it does not attempt to initialize the memory to any default value. This is fine for the purpose of this example because you are creating a high-performance array, and initializing values unnecessarily would hurt performance.

Similarly, to store 20 double data items, you write this:

double* pDoubles = stackalloc double[20];

Although this line of code specifies the number of variables to store as a constant, this can equally be a quantity evaluated at runtime. Therefore, you can write the previous example like this:

int size;
size = 20; // or some other value calculated at runtime
double* pDoubles = stackalloc double[size];

You can see from these code snippets that the syntax of stackalloc is slightly unusual. It is followed immediately by the name of the data type you want to store (which must be a value type) and then by the number of items you need space for, in square brackets. The number of bytes allocated is this number multiplied by sizeof(data type). The use of square brackets in the preceding code sample suggests an array, which is not too surprising. If you have allocated space for 20 doubles, then what you have is an array of 20 doubles. The simplest type of array that you can have is a block of memory that stores one element after another (see Figure 5.7).

[image: Diagram shows pointer returned by stackalloc and a column for successive memory allocations on the stack with each row representing nth element of array.]

Figure 5.7

This diagram also shows the pointer returned by stackalloc, which is always a pointer to the allocated data type that points to the top of the newly allocated memory block. To use the memory block, you simply de-reference the returned pointer. For example, to allocate space for 20 doubles and then set the first element (element 0 of the array) to the value 3.0, write this:

double* pDoubles = stackalloc double[20];
*pDoubles = 3.0;

To access the next element of the array, you use pointer arithmetic. As described earlier, if you add 1 to a pointer, its value will be increased by the size of whatever data type it points to. In this case, that’s just enough to take you to the next free memory location in the block that you have allocated. Therefore, you can set the second element of the array (element number 1) to the value 8.4:

double* pDoubles = stackalloc double[20];
*pDoubles = 3.0;
*(pDoubles + 1) = 8.4;

By the same reasoning, you can access the element with index X of the array with the expression *(pDoubles + X).

Effectively, you have a means by which you can access elements of your array, but for general-purpose use, this syntax is too complex. Fortunately, C# defines an alternative syntax using square brackets. C# gives a very precise meaning to square brackets when they are applied to pointers; if the variable p is any pointer type and X is an integer, then the expression p[X] is always interpreted by the compiler as meaning *(p+X). This is true for all pointers, not only those initialized using stackalloc. With this shorthand notation, you now have a very convenient syntax for accessing your array. In fact, it means that you have exactly the same syntax for accessing one-dimensional, stack-based arrays as you do for accessing heap-based arrays that are represented by the System.Array class:

double* pDoubles = stackalloc double [20];
pDoubles[0] = 3.0; // pDoubles[0] is the same as *pDoubles
pDoubles[1] = 8.4; // pDoubles[1] is the same as *(pDoubles+1)

NOTE This idea of applying array syntax to pointers is not new. It has been a fundamental part of both the C and the C++ languages ever since those languages were invented. Indeed, C++ developers will recognize the stack-based arrays they can obtain using stackalloc as being essentially identical to classic stack-based C and C++ arrays. This syntax and the way it links pointers and arrays is one reason why the C language became popular in the 1970s, and the main reason why the use of pointers became such a popular programming technique in C and C++.

Although your high-performance array can be accessed in the same way as a normal C# array, a word of caution is in order. The following code in C# raises an exception:

double[] myDoubleArray = new double [20];
myDoubleArray[50] = 3.0;

The exception occurs because you are trying to access an array using an index that is out of bounds; the index is 50, whereas the maximum allowed value is 19. However, if you declare the equivalent array using stackalloc, there is no object wrapped around the array that can perform bounds checking. Hence, the following code does not raise an exception:

double* pDoubles = stackalloc double [20];
pDoubles[50] = 3.0;

In this code, you allocate enough memory to hold 20 doubles. Then you set sizeof(double) memory locations, starting at the location given by the start of this memory + 50*sizeof(double) to hold the double value 3.0. Unfortunately, that memory location is way outside the area of memory that you have allocated for the doubles. There is no knowing what data might be stored at that address. At best, you might have used some currently unused memory, but it is equally possible that you might have just overwritten some locations in the stack that were being used to store other variables or even the return address from the method currently being executed. Again, you see that the high performance to be gained from pointers comes at a cost; you need to be certain you know what you are doing, or you will get some very strange runtime bugs.

QuickArray Example

The discussion of pointers ends with a stackalloc example called QuickArray. In this example, the program simply asks users how many elements they want to be allocated for an array. The code then uses stackalloc to allocate an array of longs that size. The elements of this array are populated with the squares of the integers starting with 0, and the results are displayed on the console (code file QuickArray/Program.cs):

using static System.Console;

namespace QuickArray
{
 public class Program
 {
 unsafe public static void Main()
 {
 Write("How big an array do you want? \n>");
 string userInput = ReadLine();
 uint size = uint.Parse(userInput);

 long* pArray = stackalloc long[(int) size];
 for (int i = 0; i < size; i++)
 {
 pArray[i] = i*i;
 }

 for (int i = 0; i < size; i++)
 {
 WriteLine($"Element {i} = {*(pArray + i)}");
 }

 ReadLine();
 }
 }
}

Here is the output from the QuickArray example:

How big an array do you want?
> 15
Element 0 = 0
Element 1 = 1
Element 2 = 4
Element 3 = 9
Element 4 = 16
Element 5 = 25
Element 6 = 36
Element 7 = 49
Element 8 = 64
Element 9 = 81
Element 10 = 100
Element 11 = 121
Element 12 = 144
Element 13 = 169
Element 14 = 196
_

Platform Invoke

Not all the features of Windows API calls are available from the .NET Framework. This is true not only for old Windows API calls but also for very new features from Windows 10 or Windows Server 2016. Maybe you’ve written some DLLs that export unmanaged methods and you would like to use them from C# as well.

To reuse an unmanaged library that doesn’t contain COM objects—it contains only exported functions—you can use Platform Invoke (P/Invoke). With P/Invoke, the CLR loads the DLL that includes the function that should be called and marshals the parameters.

To use the unmanaged function, first you have to determine the name of the function as it is exported. You can do this by using the dumpbin tool with the /exports option.

For example, the command

dumpbin /exports c:\windows\system32\kernel32.dll | more

lists all exported functions from the DLL kernel32.dll. In the example, you use the CreateHardLink Windows API function to create a hard link to an existing file. With this API call, you can have several filenames that reference the same file as long as the filenames are on one hard disk only. This API call is not available from .NET Framework 4.5.1, so you must use platform invoke.

To call a native function, you have to define a C# external method with the same number of arguments, and the argument types that are defined with the unmanaged method must have mapped types with managed code.

The Windows API call CreateHardLink has this definition in C++:

BOOL CreateHardLink(
 LPCTSTR lpFileName,
 LPCTSTR lpExistingFileName,
 LPSECURITY_ATTRIBUTES lpSecurityAttributes);

This definition must be mapped to .NET data types. The return type is a BOOL with unmanaged code; this simply maps to the bool data type. LPCTSTR defines a long pointer to a const string. The Windows API uses the Hungarian naming convention for the data type. LP is a long pointer, C is a const, and STR is a null-terminated string. The T marks the type as a generic type, and the type is resolved to either LPCSTR (an ANSI string) or LPWSTR (a wide Unicode string), depending on the compiler’s settings to 32 or 64 bit. C strings map to the .NET type String. LPSECURITY_ATTRIBUTES, which is a long pointer to a struct of type SECURITY_ATTRIBUTES. Because you can pass NULL to this argument, mapping this type to IntPtr is okay. The C# declaration of this method must be marked with the extern modifier because there’s no implementation of this method within the C# code. Instead, the method implementation is in the DLL kernel32.dll, which is referenced with the attribute [DllImport]. The return type of the .NET declaration CreateHardLink is of type bool, and the native method CreateHardLink returns a BOOL, so some additional clarification is useful. Because there are different Boolean data types with C++ (for example, the native bool and the Windows-defined BOOL, which have different values), the attribute [MarshalAs] specifies to what native type the .NET type bool should map:

[DllImport("kernel32.dll", SetLastError="true",
 EntryPoint="CreateHardLink", CharSet=CharSet.Unicode)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern bool CreateHardLink(string newFileName,
 string existingFilename,
 IntPtr securityAttributes);

NOTE The website http://www.pinvoke.net is very helpful with the conversion from native to managed code.

The settings that you can specify with the attribute [DllImport] are listed in the following table.

	DllImport Property or Field
	Description

	EntryPoint
	You can give the C# declaration of the function a different name than the one it has with the unmanaged library. The name of the method in the unmanaged library is defined in the field EntryPoint.

	CallingConvention
	Depending on the compiler or compiler settings that were used to compile the unmanaged function, you can use different calling conventions. The calling convention defines how the parameters are handled and where to put them on the stack. You can define the calling convention by setting an enumerable value. The Windows API usually uses the StdCall calling convention on the Windows operating system, and it uses the Cdecl calling convention on Windows CE. Setting the value to CallingConvention.Winapi works for the Windows API in both the Windows and the Windows CE environments.

	CharSet
	String parameters can be either ANSI or Unicode. With the CharSet setting, you can define how strings are managed. Possible values that are defined with the CharSet enumeration are Ansi, Unicode, and Auto. CharSet.Auto uses Unicode on the Windows NT platform, and ANSI on Microsoft’s older operating systems.

	SetLastError
	If the unmanaged function sets an error by using the Windows API SetLastError, you can set the SetLastError field to true. This way, you can read the error number afterward by using Marshal.GetLastWin32Error.

To make the CreateHardLink method easier to use from a .NET environment, you should follow these guidelines:

	Create an internal class named NativeMethods that wraps the platform invoke method calls.

	Create a public class to offer the native method functionality to .NET applications.

	Use security attributes to mark the required security.

In the following example, the public method CreateHardLink in the class FileUtility is the method that can be used by .NET applications. This method has the filename arguments reversed compared to the native Windows API method CreateHardLink. The first argument is the name of the existing file, and the second argument is the new file. This is similar to other classes in the framework, such as File.Copy. Because the third argument used to pass the security attributes for the new filename is not used with this implementation, the public method has just two parameters. The return type is changed as well. Instead of returning an error by returning the value false, an exception is thrown. In case of an error, the unmanaged method CreateHardLink sets the error number with the unmanaged API SetLastError. To read this value from .NET, the [DllImport] field SetLastError is set to true. Within the managed method CreateHardLink, the error number is read by calling Marshal.GetLastWin32Error. To create an error message from this number, the Win32Exception class from the namespace System.ComponentModel is used. This class accepts an error number with the constructor, and returns a localized error message. In case of an error, an exception of type IOException is thrown, which has an inner exception of type Win32Exception. The public method CreateHardLink has the FileIOPermission attribute applied to check whether the caller has the necessary permission. You can read more about .NET security in Chapter 24 (code file PInvokeSample/NativeMethods.cs).

using System;
using System.ComponentModel;
using System.IO;
using System.Runtime.InteropServices;
using System.Security;
using System.Security.Permissions;

namespace Wrox.ProCSharp.Interop
{
 [SecurityCritical]
 internal static class NativeMethods
 {
 [DllImport("kernel32.dll", SetLastError = true,
 EntryPoint ="CreateHardLinkW", CharSet = CharSet.Unicode)]
 [return: MarshalAs(UnmanagedType.Bool)]
 private static extern bool CreateHardLink(
 [In, MarshalAs(UnmanagedType.LPWStr)] string newFileName,
 [In, MarshalAs(UnmanagedType.LPWStr)] string existingFileName,
 IntPtr securityAttributes);

 internal static void CreateHardLink(string oldFileName,
 string newFileName)
 {
 if (!CreateHardLink(newFileName, oldFileName, IntPtr.Zero))
 {
 var ex = new Win32Exception(Marshal.GetLastWin32Error());
 throw new IOException(ex.Message, ex);
 }
 }
 }

 public static class FileUtility
 {
 [FileIOPermission(SecurityAction.LinkDemand, Unrestricted = true)]
 public static void CreateHardLink(string oldFileName,
 string newFileName)
 {
 NativeMethods.CreateHardLink(oldFileName, newFileName);
 }
 }
}

You can now use this class to easily create hard links . If the file passed with the first argument of the program does not exist, you get an exception with the message: The system cannot find the file specified. If the file exists, you get a new filename referencing the original file. You can easily verify this by changing text in one file; it shows up in the other file as well (code file PInvokeSample/Program.cs):

using PInvokeSampleLib;
using System.IO;
using static System.Console;

namespace PInvokeSample
{
 public class Program
 {
 public static void Main(string[] args)
 {
 if (args.Length != 2)
 {
 WriteLine("usage: PInvokeSample" +
 "existingfilename newfilename");
 return;
 }
 try
 {
 FileUtility.CreateHardLink(args[0], args[1]);
 }
 catch (IOException ex)
 {
 WriteLine(ex.Message);
 }
 }
 }
}

With native method calls, often you have to use Windows handles. A Window handle is a 32- or 64-bit value for which, depending on the handle types, some values are not allowed. With .NET 1.0 for handles, usually the IntPtr structure was used because you can set every possible 32-bit value with this structure. However, with some handle types, this led to security problems and possible threading race conditions and leaked handles with the finalization phase. That’s why .NET 2.0 introduced the SafeHandle class. The class SafeHandle is an abstract base class for every Windows handle. Derived classes inside the Microsoft.Win32.SafeHandles namespace are SafeHandleZeroOrMinusOneIsInvalid and SafeHandleMinusOneIsInvalid. As the name indicates, these classes do not accept invalid 0 or –1 values. Further derived handle types are SafeFileHandle, SafeWaitHandle, SafeNCryptHandle, and SafePipeHandle, which can be used by the specific Windows API calls.

For example, to map the Windows API CreateFile, you can use the following declaration to return a SafeFileHandle. Of course, usually you could use the .NET classes File and FileInfo instead.

[DllImport("Kernel32.dll", SetLastError = true,
 CharSet = CharSet.Unicode)]
internal static extern SafeFileHandle CreateFile(
 string fileName,
 [MarshalAs(UnmanagedType.U4)] FileAccess fileAccess,
 [MarshalAs(UnmanagedType.U4)] FileShare fileShare,
 IntPtr securityAttributes,
 [MarshalAs(UnmanagedType.U4)] FileMode creationDisposition,
 int flags,
 SafeFileHandle template);

Summary

Remember that in order to become a truly proficient C# programmer, you must have a solid understanding of how memory allocation and garbage collection work. This chapter described how the CLR manages and allocates memory on the heap and the stack. It also illustrated how to write classes that free unmanaged resources correctly, and how to use pointers in C#. These are both advanced topics that are poorly understood and often implemented incorrectly by novice programmers. At a minimum, this chapter should have helped you understand how to release resources using the IDisposable interface and the using statement.

The next chapter continues with an important C# language construct that also affects the generation of the IL code: generics.

6
Generics

What’s In This Chapter?

	An overview of generics

	Creating generic classes

	Features of generic classes

	Generic interfaces

	Generic structs

	Generic methods

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Linked List Objects

	Linked List Sample

	Document Manager

	Variance

	Generic Methods

	Specialization

Generics Overview

Generics are an important concept of not only C# but also .NET. Generics are more than a part of the C# programming language; they are deeply integrated with the IL (Intermediate Language) code in the assemblies. With generics, you can create classes and methods that are independent of contained types. Instead of writing a number of methods or classes with the same functionality for different types, you can create just one method or class.

Another option to reduce the amount of code is using the Object class. However, passing using types derived from the Object class is not type safe. Generic classes make use of generic types that are replaced with specific types as needed. This allows for type safety: The compiler complains if a specific type is not supported with the generic class.

Generics are not limited to classes; in this chapter, you also see generics with interfaces and methods. You can find generics with delegates in Chapter 9, “Delegates, Lambdas, and Events.”

Generics are not specific only to C#; similar concepts exist with other languages. For example, C++ templates have some similarity to generics. However, there’s a big difference between C++ templates and .NET generics. With C++ templates, the source code of the template is required when a template is instantiated with a specific type. The C++ compiler generates separate binary code for each type that is an instance of a specific template. Unlike C++ templates, generics are not only a construct of the C# language but are defined with the Common Language Runtime (CLR). This makes it possible to instantiate generics with a specific type in Visual Basic even though the generic class was defined with C#.

The following sections explore the advantages and disadvantages of generics, particularly in regard to the following:

	Performance

	Type safety

	Binary code reuse

	Code bloat

	Naming guidelines

Performance

One of the big advantages of generics is performance. In Chapter 11, “Collections,” you see non-generic and generic collection classes from the namespaces System.Collections and System .Collections.Generic. Using value types with non-generic collection classes results in boxing and unboxing when the value type is converted to a reference type, and vice versa.

NOTE Boxing and unboxing are discussed in Chapter 8, “Operators and Casts.” Here is just a short refresher about these terms.

Value types are stored on the stack, whereas reference types are stored on the heap. C# classes are reference types; structs are value types. .NET makes it easy to convert value types to reference types, so you can use a value type everywhere an object (which is a reference type) is needed. For example, an int can be assigned to an object. The conversion from a value type to a reference type is known as boxing. Boxing occurs automatically if a method requires an object as a parameter, and a value type is passed. In the other direction, a boxed value type can be converted to a value type by using unboxing. With unboxing, the cast operator is required.

The following example shows that the ArrayList class from the namespace System.Collections stores objects; the Add method is defined to require an object as a parameter, so an integer type is boxed. When the values from an ArrayList are read, unboxing occurs when the object is converted to an integer type. This may be obvious with the cast operator that is used to assign the first element of the ArrayList collection to the variable i1, but it also happens inside the foreach statement where the variable i2 of type int is accessed:

var list = new ArrayList();
list.Add(44); // boxing — convert a value type to a reference type

int i1 = (int)list[0]; // unboxing — convert a reference type to
 // a value type

foreach (int i2 in list)
{
 WriteLine(i2); // unboxing
}

Boxing and unboxing are easy to use but have a big performance impact, especially when iterating through many items.

Instead of using objects, the List<T> class from the namespace System.Collections.Generic enables you to define the type when it is used. In the example here, the generic type of the List<T> class is defined as int, so the int type is used inside the class that is generated dynamically from the Just-In-Time (JIT) compiler. Boxing and unboxing no longer happen:

var list = new List<int>();
list.Add(44); // no boxing — value types are stored in the List<int>

int i1 = list[0]; // no unboxing, no cast needed

foreach (int i2 in list)
{
 WriteLine(i2);
}

Type Safety

Another feature of generics is type safety. As with the ArrayList class, if objects are used, any type can be added to this collection. The following example shows adding an integer, a string, and an object of type MyClass to the collection of type ArrayList:

var list = new ArrayList();
list.Add(44);
list.Add("mystring");
list.Add(new MyClass());

If this collection is iterated using the following foreach statement, which iterates using integer elements, the compiler accepts this code. However, because not all elements in the collection can be cast to an int, a runtime exception will occur:

foreach (int i in list)
{
 WriteLine(i);
}

Errors should be detected as early as possible. With the generic class List<T>, the generic type T defines what types are allowed. With a definition of List<int>, only integer types can be added to the collection. The compiler doesn’t compile this code because the Add method has invalid arguments:

var list = new List<int>();
list.Add(44);
list.Add("mystring"); // compile time error
list.Add(new MyClass()); // compile time error

Binary Code Reuse

Generics enable better binary code reuse. A generic class can be defined once and can be instantiated with many different types. Unlike C++ templates, it is not necessary to access the source code.

For example, here the List<T> class from the namespace System.Collections.Generic is instantiated with an int, a string, and a MyClass type:

var list = new List<int>();
list.Add(44);

var stringList = new List<string>();
stringList.Add("mystring");

var myClassList = new List<MyClass>();
myClassList.Add(new MyClass());

Generic types can be defined in one language and used from any other .NET language.

Code Bloat

You might be wondering how much code is created with generics when instantiating them with different specific types. Because a generic class definition goes into the assembly, instantiating generic classes with specific types doesn’t duplicate these classes in the IL code. However, when the generic classes are compiled by the JIT compiler to native code, a new class for every specific value type is created. Reference types share all the same implementation of the same native class. This is because with reference types, only a 4-byte memory address (with 32-bit systems) is needed within the generic instantiated class to reference a reference type. Value types are contained within the memory of the generic instantiated class; and because every value type can have different memory requirements, a new class for every value type is instantiated.

Naming Guidelines

If generics are used in the program, it helps when generic types can be distinguished from non-generic types. Here are naming guidelines for generic types:

	Prefix generic type names with the letter T.

	If the generic type can be replaced by any class because there’s no special requirement, and only one generic type is used, the character T is good as a generic type name:

public class List<T> { }

public class LinkedList<T> { }

	If there’s a special requirement for a generic type (for example, it must implement an interface or derive from a base class), or if two or more generic types are used, use descriptive names for the type names:

public delegate void EventHandler<TEventArgs>(object sender,
 TEventArgs e);

public delegate TOutput Converter<TInput, TOutput>(TInput from);

public class SortedList<TKey, TValue> { }

Creating Generic Classes

The example in this section starts with a normal, non-generic simplified linked list class that can contain objects of any kind, and then converts this class to a generic class.

With a linked list, one element references the next one. Therefore, you must create a class that wraps the object inside the linked list and references the next object. The class LinkedListNode contains a property named Value that is initialized with the constructor. In addition to that, the LinkedListNode class contains references to the next and previous elements in the list that can be accessed from properties (code file LinkedListObjects/LinkedListNode.cs):

public class LinkedListNode
{
 public LinkedListNode(object value)
 {
 Value = value;
 }

 public object Value { get; private set; }

 public LinkedListNode Next { get; internal set; }
 public LinkedListNode Prev { get; internal set; }
}

The LinkedList class includes First and Last properties of type LinkedListNode that mark the beginning and end of the list. The method AddLast adds a new element to the end of the list. First, an object of type LinkedListNode is created. If the list is empty, then the First and Last properties are set to the new element; otherwise, the new element is added as the last element to the list. By implementing the GetEnumerator method, it is possible to iterate through the list with the foreach statement. The GetEnumerator method makes use of the yield statement for creating an enumerator type:

public class LinkedList: IEnumerable
{
 public LinkedListNode First { get; private set; }
 public LinkedListNode Last { get; private set; }

 public LinkedListNode AddLast(object node)
 {
 var newNode = new LinkedListNode(node);
 if (First == null)
 {
 First = newNode;
 Last = First;
 }
 else
 {
 LinkedListNode previous = Last;
 Last.Next = newNode;
 Last = newNode;
 Last.Prev = previous;
 }
 return newNode;
 }

 public IEnumerator GetEnumerator()
 {
 LinkedListNode current = First;
 while (current != null)
 {
 yield return current.Value;
 current = current.Next;
 }
 }
}

NOTE The yield statement creates a state machine for an enumerator. This statement is explained in Chapter 7, “Arrays and Tuples.”

Now you can use the LinkedList class with any type. The following code segment instantiates a new LinkedList object and adds two integer types and one string type. As the integer types are converted to an object, boxing occurs as explained earlier in this chapter. With the foreach statement, unboxing happens. In the foreach statement, the elements from the list are cast to an integer, so a runtime exception occurs with the third element in the list because casting to an int fails (code file LinkedListObjects/Program.cs):

var list1 = new LinkedList();
list1.AddLast(2);
list1.AddLast(4);
list1.AddLast("6");

foreach (int i in list1)
{
 WriteLine(i);
}

Now make a generic version of the linked list. A generic class is defined similarly to a normal class with the generic type declaration. You can then use the generic type within the class as a field member or with parameter types of methods. The class LinkedListNode is declared with a generic type T. The property Value is now type T instead of object; the constructor is changed as well to accept an object of type T. A generic type can also be returned and set, so the properties Next and Prev are now of type LinkedListNode<T> (code file LinkedListSample/LinkedListNode.cs):

public class LinkedListNode<T>
{
 public LinkedListNode(T value)
 {
 Value = value;
 }

 public T Value { get; private set; }
 public LinkedListNode<T> Next { get; internal set; }
 public LinkedListNode<T> Prev { get; internal set; }
}

In the following code, the class LinkedList is changed to a generic class as well. LinkedList<T> contains LinkedListNode<T> elements. The type T from the LinkedList defines the type T of the properties First and Last. The method AddLast now accepts a parameter of type T and instantiates an object of LinkedListNode<T>.

Besides the interface IEnumerable, a generic version is also available: IEnumerable<T>. IEnumerable<T> derives from IEnumerable and adds the GetEnumerator method, which returns IEnumerator<T>. LinkedList<T> implements the generic interface IEnumerable<T> (code file LinkedListSample/LinkedList.cs):

NOTE Enumerators and the interfaces IEnumerable and IEnumerator are discussed in Chapter 7.

public class LinkedList<T>: IEnumerable<T>
{
 public LinkedListNode<T> First { get; private set; }
 public LinkedListNode<T> Last { get; private set; }

 public LinkedListNode<T> AddLast(T node)
 {
 var newNode = new LinkedListNode<T>(node);
 if (First == null)
 {
 First = newNode;
 Last = First;
 }
 else
 {
 LinkedListNode<T> previous = Last;
 Last.Next = newNode;
 Last = newNode;
 Last.Prev = previous;
 }
 return newNode;
 }

 public IEnumerator<T> GetEnumerator()
 {
 LinkedListNode<T> current = First;

 while (current != null)
 {
 yield return current.Value;
 current = current.Next;
 }
 }

 IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
}

Using the generic LinkedList<T>, you can instantiate it with an int type, and there’s no boxing. Also, you get a compiler error if you don’t pass an int with the method AddLast. Using the generic IEnumerable<T>, the foreach statement is also type safe, and you get a compiler error if that variable in the foreach statement is not an int (code file LinkedListSample/Program.cs):

var list2 = new LinkedList<int>();
list2.AddLast(1);
list2.AddLast(3);
list2.AddLast(5);

foreach (int i in list2)
{
 WriteLine(i);
}

Similarly, you can use the generic LinkedList<T> with a string type and pass strings to the AddLast method:

var list3 = new LinkedList<string>();
list3.AddLast("2");
list3.AddLast("four");
list3.AddLast("foo");

foreach (string s in list3)
{
 WriteLine(s);
}

NOTE Every class that deals with the object type is a possible candidate for a generic implementation. Also, if classes make use of hierarchies, generics can be very helpful in making casting unnecessary.

Generics Features

When creating generic classes, you might need some additional C# keywords. For example, it is not possible to assign null to a generic type. In this case, the keyword default can be used, as demonstrated in the next section. If the generic type does not require the features of the Object class but you need to invoke some specific methods in the generic class, you can define constraints.

This section discusses the following topics:

	Default values

	Constraints

	Inheritance

	Static members

This example begins with a generic document manager, which is used to read and write documents from and to a queue. Start by creating a new Console project named DocumentManager and add the class DocumentManager<T>. The method AddDocument adds a document to the queue. The read-only property IsDocumentAvailable returns true if the queue is not empty (code file DocumentManager/DocumentManager.cs):

NOTE With .NET Core, this sample needs a reference to the NuGet package System.Collections.

using System;
using System.Collections.Generic;

namespace Wrox.ProCSharp.Generics
{
 public class DocumentManager<T>
 {
 private readonly Queue<T> documentQueue = new Queue<T>();

 public void AddDocument(T doc)
 {
 lock (this)
 {
 documentQueue.Enqueue(doc);
 }
 }

 public bool IsDocumentAvailable => documentQueue.Count > 0;
 }
}

Threading and the lock statement are discussed in Chapter 21, “Tasks and Parallel Programming,” and Chapter 22, “Task Synchronization.”

Default Values

Now you add a GetDocument method to the DocumentManager<T> class. Inside this method the type T should be assigned to null. However, it is not possible to assign null to generic types. That’s because a generic type can also be instantiated as a value type, and null is allowed only with reference types. To circumvent this problem, you can use the default keyword. With the default keyword, null is assigned to reference types and 0 is assigned to value types:

public T GetDocument()
{
 T doc = default(T);
 lock (this)
 {
 doc = documentQueue.Dequeue();
 }
 return doc;
}

NOTE The default keyword has multiple meanings depending on its context. The switch statement uses a default for defining the default case, and with generics default is used to initialize generic types either to null or to 0, depending on whether it is a reference or value type.

Constraints

If the generic class needs to invoke some methods from the generic type, you have to add constraints.

With DocumentManager<T>, all the document titles should be displayed in the DisplayAllDocuments method. The Document class implements the interface IDocument with the properties Title and Content (code file DocumentManager/Document.cs):

public interface IDocument
{
 string Title { get; set; }
 string Content { get; set; }
}

public class Document: IDocument
{
 public Document()
 {
 }

 public Document(string title, string content)
 {
 Title = title;
 Content = content;
 }

 public string Title { get; set; }
 public string Content { get; set; }
}

To display the documents with the DocumentManager<T> class, you can cast the type T to the interface IDocument to display the title (code file DocumentManager/DocumentManager.cs):

public void DisplayAllDocuments()
{
 foreach (T doc in documentQueue)
 {
 WriteLine(((IDocument)doc).Title);
 }
}

The problem here is that doing a cast results in a runtime exception if type T does not implement the interface IDocument. Instead, it would be better to define a constraint with the DocumentManager<TDocument> class specifying that the type TDocument must implement the interface IDocument. To clarify the requirement in the name of the generic type, T is changed to TDocument. The where clause defines the requirement to implement the interface IDocument:

public class DocumentManager<TDocument>
 where TDocument: IDocument
{

NOTE When adding a constraint to a generic type, it’s a good idea to have some information with the generic parameter name. The sample code is now using TDocument instead of T for the generic parameter. For the compiler, the parameter name doesn’t matter, but it is more readable.

This way you can write the foreach statement in such a way that the type TDocument contains the property Title. You get support from Visual Studio IntelliSense and the compiler:

public void DisplayAllDocuments()
{
 foreach (TDocument doc in documentQueue)
 {
 WriteLine(doc.Title);
 }
}

In the Main method, the DocumentManager<TDocument> class is instantiated with the type Document that implements the required interface IDocument. Then new documents are added and displayed, and one of the documents is retrieved (code file DocumentManager/Program.cs):

public static void Main()
{
 var dm = new DocumentManager<Document>();
 dm.AddDocument(new Document("Title A","Sample A"));
 dm.AddDocument(new Document("Title B","Sample B"));

 dm.DisplayAllDocuments();

 if (dm.IsDocumentAvailable)
 {
 Document d = dm.GetDocument();
 WriteLine(d.Content);
 }
}

The DocumentManager now works with any class that implements the interface IDocument.

In the sample application, you’ve seen an interface constraint. Generics support several constraint types, indicated in the following table.

	Constraint
	Description

	where T: struct
	With a struct constraint, type T must be a value type.

	where T: class
	The class constraint indicates that type T must be a reference type.

	where T: IFoo
	Specifies that type T is required to implement interface IFoo.

	where T: Foo
	Specifies that type T is required to derive from base class Foo.

	where T: new()
	A constructor constraint; specifies that type T must have a default constructor.

	where T1: T2
	With constraints it is also possible to specify that type T1 derives from a generic type T2.

NOTE Constructor constraints can be defined only for the default constructor. It is not possible to define a constructor constraint for other constructors.

With a generic type, you can also combine multiple constraints. The constraint where T: IFoo, new() with the MyClass<T> declaration specifies that type T implements the interface IFoo and has a default constructor:

public class MyClass<T>
 where T: IFoo, new()
{
 //...

NOTE One important restriction of the where clause with C# is that it’s not possible to define operators that must be implemented by the generic type. Operators cannot be defined in interfaces. With the where clause, it is only possible to define base classes, interfaces, and the default constructor.

Inheritance

The LinkedList<T> class created earlier implements the interface IEnumerable<T>:

public class LinkedList<T>: IEnumerable<T>
{
 //...

A generic type can implement a generic interface. The same is possible by deriving from a class. A generic class can be derived from a generic base class:

public class Base<T>
{
}

public class Derived<T>: Base<T>
{
}

The requirement is that the generic types of the interface must be repeated, or the type of the base class must be specified, as in this case:

public class Base<T>
{
}

public class Derived<T>: Base<string>
{
}

This way, the derived class can be a generic or non-generic class. For example, you can define an abstract generic base class that is implemented with a concrete type in the derived class. This enables you to write generic specialization for specific types:

public abstract class Calc<T>
{
 public abstract T Add(T x, T y);
 public abstract T Sub(T x, T y);
}

public class IntCalc: Calc<int>
{
 public override int Add(int x, int y) => x + y;

 public override int Sub(int x, int y) => x — y;
}

You can also create a partial specialization, such as deriving the StringQuery class from Query and defining only one of the generic parameters, for example, a string for TResult. For instantiating the StringQuery, you need only to supply the type for TRequest:

public class Query<TRequest, TResult>
{
}

public StringQuery<TRequest> : Query<TRequest, string>
{
}

Static Members

Static members of generic classes are shared with only one instantiation of the class, and they require special attention. Consider the following example, where the class StaticDemo<T> contains the static field x:

public class StaticDemo<T>
{
 public static int x;
}

Because the class StaticDemo<T> is used with both a string type and an int type, two sets of static fields exist:

StaticDemo<string>.x = 4;
StaticDemo<int>.x = 5;
WriteLine(StaticDemo<string>.x); // writes 4

Generic Interfaces

Using generics, you can define interfaces that define methods with generic parameters. In the linked list sample, you’ve already implemented the interface IEnumerable<out T>, which defines a GetEnumerator method to return IEnumerator<out T>. .NET offers a lot of generic interfaces for different scenarios; examples include IComparable<T>, ICollection<T>, and IExtensibleObject<T>. Often older, non-generic versions of the same interface exist; for example, .NET 1.0 had an IComparable interface that was based on objects. IComparable<in T> is based on a generic type:

public interface IComparable<in T>
{
 int CompareTo(T other);
}

NOTE Don’t be confused by the in and out keywords used with the generic parameter. They are explained soon in the “Covariance and contra-variance” section.

The older, non-generic IComparable interface requires an object with the CompareTo method. This requires a cast to specific types, such as to the Person class for using the LastName property:

public class Person: IComparable
{
 public int CompareTo(object obj)
 {
 Person other = obj as Person;
 return this.lastname.CompareTo(other.LastName);
 }
 //

When implementing the generic version, it is no longer necessary to cast the object to a Person:

public class Person: IComparable<Person>
{
 public int CompareTo(Person other) => LastName.CompareTo(other.LastName);
 //...

Covariance and Contra-variance

Prior to .NET 4, generic interfaces were invariant. .NET 4 added important changes for generic interfaces and generic delegates: covariance and contra-variance. Covariance and contra-variance are used for the conversion of types with arguments and return types. For example, can you pass a Rectangle to a method that requests a Shape? Let’s get into examples to see the advantages of these extensions.

With .NET, parameter types are covariant. Assume you have the classes Shape and Rectangle, and Rectangle derives from the Shape base class. The Display method is declared to accept an object of the Shape type as its parameter:

public void Display(Shape o) { }

Now you can pass any object that derives from the Shape base class. Because Rectangle derives from Shape, a Rectangle fulfills all the requirements of a Shape and the compiler accepts this method call:

var r = new Rectangle { Width= 5, Height=2.5 };
Display(r);

Return types of methods are contra-variant. When a method returns a Shape it is not possible to assign it to a Rectangle because a Shape is not necessarily always a Rectangle; but the opposite is possible. If a method returns a Rectangle as the GetRectangle method,

public Rectangle GetRectangle();

the result can be assigned to a Shape:

Shape s = GetRectangle();

Before version 4 of the .NET Framework, this behavior was not possible with generics. Since C# 4, the language is extended to support covariance and contra-variance with generic interfaces and generic delegates. Let’s start by defining a Shape base class and a Rectangle class (code files Variance/Shape.cs and Rectangle.cs):

 public class Shape
 {
 public double Width { get; set; }
 public double Height { get; set; }

 public override string ToString() => $"Width: {Width}, Height: {Height}";
 }

 public class Rectangle: Shape
 {
 }

Covariance with Generic Interfaces

A generic interface is covariant if the generic type is annotated with the out keyword. This also means that type T is allowed only with return types. The interface IIndex is covariant with type T and returns this type from a read-only indexer (code file Variance/IIndex.cs):

 public interface IIndex<out T>
 {
 T this[int index] { get; }
 int Count { get; }
 }

The IIndex<T> interface is implemented with the RectangleCollection class. RectangleCollection defines Rectangle for generic type T:

NOTE If a read-write indexer is used with the IIndex interface, the generic type T is passed to the method and retrieved from the method. This is not possible with covariance; the generic type must be defined as invariant. Defining the type as invariant is done without out and in annotations (code file Variance/RectangleCollection.cs):

public class RectangleCollection: IIndex<Rectangle>
{
 private Rectangle[] data = new Rectangle[3]
 {
 new Rectangle { Height=2, Width=5 },
 new Rectangle { Height=3, Width=7 },
 new Rectangle { Height=4.5, Width=2.9 }
 };

 private static RectangleCollection _coll;
 public static RectangleCollection GetRectangles() =>
 _coll ?? (coll = new RectangleCollection());

 public Rectangle this[int index]
 {
 get
 {
 if (index < 0 || index > data.Length)
 throw new ArgumentOutOfRangeException("index");
 return data[index];
 }
 }

 public int Count => data.Length;
}

NOTE The RectangleCollection.GetRectangles method makes use of the coalescing operator. If the variable coll is null, the right side of the operator is invoked to create a new instance of RectangleCollection and assign it to the variable coll, which is returned from this method afterwards. This operator is explained in detail in Chapter 8.

The RectangleCollection.GetRectangles method returns a RectangleCollection that implements the IIndex<Rectangle> interface, so you can assign the return value to a variable rectangle of the IIndex<Rectangle> type. Because the interface is covariant, it is also possible to assign the returned value to a variable of IIndex<Shape>. Shape does not need anything more than a Rectangle has to offer. Using the shapes variable, the indexer from the interface and the Count property are used within the for loop (code file Variance/Program.cs):

public static void Main()
{
 IIndex<Rectangle> rectangles = RectangleCollection.GetRectangles();
 IIndex<Shape> shapes = rectangles;

 for (int i = 0; i < shapes.Count; i++)
 {
 WriteLine(shapes[i]);
 }
}

Contra-Variance with Generic Interfaces

A generic interface is contra-variant if the generic type is annotated with the in keyword. This way, the interface is only allowed to use generic type T as input to its methods (code file Variance/IDisplay.cs):

public interface IDisplay<in T>
{
 void Show(T item);
}

The ShapeDisplay class implements IDisplay<Shape> and uses a Shape object as an input parameter (code file Variance/ShapeDisplay.cs):

public class ShapeDisplay: IDisplay<Shape>
{
 public void Show(Shape s) =>
 WriteLine($"{s.GetType().Name} Width: {s.Width}, Height: {s.Height}");
}

Creating a new instance of ShapeDisplay returns IDisplay<Shape>, which is assigned to the shapeDisplay variable. Because IDisplay<T> is contra-variant, it is possible to assign the result to IDisplay<Rectangle>, where Rectangle derives from Shape. This time the methods of the interface define only the generic type as input, and Rectangle fulfills all the requirements of a Shape (code file Variance/Program.cs):

public static void Main()
{
 //...
 IDisplay<Shape> shapeDisplay = new ShapeDisplay();
 IDisplay<Rectangle> rectangleDisplay = shapeDisplay;
 rectangleDisplay.Show(rectangles[0]);
}

Generic Structs

Similar to classes, structs can be generic as well. They are very similar to generic classes with the exception of inheritance features. In this section you look at the generic struct Nullable<T>, which is defined by the .NET Framework.

An example of a generic struct in the .NET Framework is Nullable<T>. A number in a database and a number in a programming language have an important difference: A number in the database can be null, whereas a number in C# cannot be null. Int32 is a struct, and because structs are implemented as value types, they cannot be null. This difference often causes headaches and a lot of additional work to map the data. The problem exists not only with databases but also with mapping XML data to .NET types.

One solution is to map numbers from databases and XML files to reference types, because reference types can have a null value. However, this also means additional overhead during runtime.

With the structure Nullable<T>, this can be easily resolved. The following code segment shows a simplified version of how Nullable<T> is defined. The structure Nullable<T> defines a constraint specifying that the generic type T needs to be a struct. With classes as generic types, the advantage of low overhead is eliminated; and because objects of classes can be null anyway, there’s no point in using a class with the Nullable<T> type. The only overhead in addition to the T type defined by Nullable<T> is the hasValue Boolean field that defines whether the value is set or null. Other than that, the generic struct defines the read-only properties HasValue and Value and some operator overloads. The operator overload to cast the Nullable<T> type to T is defined as explicit because it can throw an exception in case hasValue is false. The operator overload to cast to Nullable<T> is defined as implicit because it always succeeds:

public struct Nullable<T>
 where T: struct
{
 public Nullable(T value)
 {
 _hasValue = true;
 _value = value;
 }
 private bool _hasValue;
 public bool HasValue => _hasValue;

 private T _value;
 public T Value
 {
 get
 {
 if (!_hasValue)
 {
 throw new InvalidOperationException("no value");
 }
 return _value;
 }
 }

 public static explicit operator T(Nullable<T> value) => _value.Value;

 public static implicit operator Nullable<T>(T value) => new Nullable<T>(value);

 public override string ToString() => !HasValue ? string.Empty : _value.ToString();
}

In this example, Nullable<T> is instantiated with Nullable<int>. The variable x can now be used as an int, assigning values and using operators to do some calculation. This behavior is made possible by casting operators of the Nullable<T> type. However, x can also be null. The Nullable<T> properties HasValue and Value can check whether there is a value, and the value can be accessed:

Nullable<int> x;
x = 4;
x += 3;
if (x.HasValue)
{
 int y = x.Value;
}
x = null;

Because nullable types are used often, C# has a special syntax for defining variables of this type. Instead of using syntax with the generic structure, the ? operator can be used. In the following example, the variables x1 and x2 are both instances of a nullable int type:

Nullable<int> x1;
int? x2;

A nullable type can be compared with null and numbers, as shown. Here, the value of x is compared with null, and if it is not null it is compared with a value less than 0:

int? x = GetNullableType();
if (x == null)
{
 WriteLine("x is null");
}
else if (x < 0)
{
 WriteLine("x is smaller than 0");
}

Now that you know how Nullable<T> is defined, let’s get into using nullable types. Nullable types can also be used with arithmetic operators. The variable x3 is the sum of the variables x1 and x2. If any of the nullable types have a null value, the result is null:

int? x1 = GetNullableType();
int? x2 = GetNullableType();
int? x3 = x1 + x2;

NOTE The GetNullableType method, which is called here, is just a placeholder for any method that returns a nullable int. For testing you can implement it to simply return null or to return any integer value.

Non-nullable types can be converted to nullable types. With the conversion from a non-nullable type to a nullable type, an implicit conversion is possible where casting is not required. This type of conversion always succeeds:

int y1 = 4;
int? x1 = y1;

In the reverse situation, a conversion from a nullable type to a non-nullable type can fail. If the nullable type has a null value and the null value is assigned to a non-nullable type, then an exception of type InvalidOperationException is thrown. That’s why the cast operator is required to do an explicit conversion:

int? x1 = GetNullableType();
int y1 = (int)x1;

Instead of doing an explicit cast, it is also possible to convert a nullable type to a non-nullable type with the coalescing operator. The coalescing operator uses the syntax ?? to define a default value for the conversion in case the nullable type has a value of null. Here, y1 gets a 0 value if x1 is null:

int? x1 = GetNullableType();
int y1 = x1 ?? 0;

Generic Methods

In addition to defining generic classes, it is also possible to define generic methods. With a generic method, the generic type is defined with the method declaration. Generic methods can be defined within non-generic classes.

The method Swap<T> defines T as a generic type that is used for two arguments and a variable temp:

void Swap<T>(ref T x, ref T y)
{
 T temp;
 temp = x;
 x = y;
 y = temp;
}

A generic method can be invoked by assigning the generic type with the method call:

int i = 4;
int j = 5;
Swap<int>(ref i, ref j);

However, because the C# compiler can get the type of the parameters by calling the Swap method, it is not necessary to assign the generic type with the method call. The generic method can be invoked as simply as non-generic methods:

int i = 4;
int j = 5;
Swap(ref i, ref j);

Generic Methods Example

This example uses a generic method to accumulate all the elements of a collection. To show the features of generic methods, the following Account class, which contains Name and Balance properties, is used (code file GenericMethods/Account.cs):

NOTE With .NET Core, this sample needs a reference to the NuGet package System.Collections.

public class Account
{
 public string Name { get; }
 public decimal Balance { get; private set; }

 public Account(string name, Decimal balance)
 {
 Name = name;
 Balance = balance;
 }
}

All the accounts in which the balance should be accumulated are added to an accounts list of type List<Account> (code file GenericMethods/Program.cs):

var accounts = new List<Account>()
{
 new Account("Christian", 1500),
 new Account("Stephanie", 2200),
 new Account("Angela", 1800),
 new Account("Matthias", 2400)
};

A traditional way to accumulate all Account objects is by looping through them with a foreach statement, as shown here. Because the foreach statement uses the IEnumerable interface to iterate the elements of a collection, the argument of the AccumulateSimple method is of type IEnumerable. The foreach statement works with every object implementing IEnumerable. This way, the AccumulateSimple method can be used with all collection classes that implement the interface IEnumerable<Account>. In the implementation of this method, the property Balance of the Account object is directly accessed (code file GenericMethods/Algorithms.cs):

public static class Algorithms
{
 public static decimal AccumulateSimple(IEnumerable<Account> source)
 {
 decimal sum = 0;
 foreach (Account a in source)
 {
 sum += a.Balance;
 }
 return sum;
 }
}

The AccumulateSimple method is invoked like this:

decimal amount = Algorithms.AccumulateSimple(accounts);

Generic Methods with Constraints

The problem with the first implementation is that it works only with Account objects. This can be avoided by using a generic method.

The second version of the Accumulate method accepts any type that implements the interface IAccount. As you saw earlier with generic classes, you can restrict generic types with the where clause. You can use the same clause with generic methods that you use with generic classes. The parameter of the Accumulate method is changed to IEnumerable<T>, a generic interface that is implemented by generic collection classes (code file GenericMethods/Algorithms.cs):

public static decimal Accumulate<TAccount>(IEnumerable<TAccount> source)
 where TAccount: IAccount
{
 decimal sum = 0;

 foreach (TAccount a in source)
 {
 sum += a.Balance;
 }
 return sum;
}

The Account class is now refactored to implement the interface IAccount (code file GenericMethods/Account.cs):

public class Account: IAccount
{
 //...

The IAccount interface defines the read-only properties Balance and Name (code file GenericMethods/IAccount.cs):

public interface IAccount
{
 decimal Balance { get; }
 string Name { get; }
}

The new Accumulate method can be invoked by defining the Account type as a generic type parameter (code file GenericMethods/Program.cs):

decimal amount = Algorithm.Accumulate<Account>(accounts);

Because the generic type parameter can be automatically inferred by the compiler from the parameter type of the method, it is valid to invoke the Accumulate method this way:

decimal amount = Algorithm.Accumulate(accounts);

Generic Methods with Delegates

The requirement for the generic types to implement the interface IAccount may be too restrictive. The following example hints at how the Accumulate method can be changed by passing a generic delegate. Chapter 9 provides all the details about how to work with generic delegates, and how to use lambda expressions.

This Accumulate method uses two generic parameters: T1 and T2. T1 is used for the collection-implementing IEnumerable<T1> parameter, which is the first one of the methods. The second parameter uses the generic delegate Func<T1, T2, TResult>. Here, the second and third generic parameters are of the same T2 type. A method needs to be passed that has two input parameters (T1 and T2) and a return type of T2 (code file GenericMethods/Algorithms.cs).

public static T2 Accumulate<T1, T2>(IEnumerable<T1> source,
 Func<T1, T2, T2> action)
{
 T2 sum = default(T2);
 foreach (T1 item in source)
 {
 sum = action(item, sum);
 }
 return sum;
}

In calling this method, it is necessary to specify the generic parameter types because the compiler cannot infer this automatically. With the first parameter of the method, the accounts collection that is assigned is of type IEnumerable<Account>. With the second parameter, a lambda expression is used that defines two parameters of type Account and decimal, and returns a decimal. This lambda expression is invoked for every item by the Accumulate method (code file GenericMethods/Program.cs):

decimal amount = Algorithm.Accumulate<Account, decimal>(
 accounts, (item, sum) => sum += item.Balance);

Don’t scratch your head over this syntax yet. The sample should give you a glimpse of the possible ways to extend the Accumulate method. Chapter 9 covers lambda expressions in detail.

Generic Methods Specialization

You can overload generic methods to define specializations for specific types. This is true for methods with generic parameters as well. The Foo method is defined in four versions. The first accepts a generic parameter; the second one is a specialized version for the int parameter. The third Foo method accepts two generic parameters, and the fourth one is a specialized version of the third one with the first parameter of type int. During compile time, the best match is taken. If an int is passed, then the method with the int parameter is selected. With any other parameter type, the compiler chooses the generic version of the method (code file Specialization/Program.cs):

public class MethodOverloads
{
 public void Foo<T>(T obj)
 {
 WriteLine($"Foo<T>(T obj), obj type: {obj.GetType().Name}");
 }

 public void Foo(int x)
 {
 WriteLine("Foo(int x)");
 }

 public void Foo<T1, T2>(T1 obj1, T2 obj2)
 {
 WriteLine($"Foo<T1, T2>(T1 obj1, T2 obj2); {obj1.GetType().Name}" +
 $"{obj2.GetType().Name}");
 }

 public void Foo<T>(int obj1, T obj2)
 {
 WriteLine($"Foo<T>(int obj1, T obj2); {obj2.GetType().Name}");
 }

 public void Bar<T>(T obj)
 {
 Foo(obj);
 }
}

The Foo method can now be invoked with any parameter type. The sample code passes int and string values to invoke all four Foo methods:

static void Main()
{
 var test = new MethodOverloads();
 test.Foo(33);
 test.Foo("abc");
 test.Foo("abc", 42);
 test.Foo(33,"abc");
}

Running the program, you can see by the output that the method with the best match is taken:

Foo(int x)
Foo<T>(T obj), obj type: String
Foo<T1, T2>(T1 obj1, T2 obj2); String Int32
Foo<T>(int obj1, T obj2); String

Be aware that the method invoked is defined during compile time and not runtime. This can be easily demonstrated by adding a generic Bar method that invokes the Foo method, passing the generic parameter value along:

public class MethodOverloads
{
 // ...
 public void Bar<T>(T obj)
 {
 Foo(obj);
 }

The Main method is now changed to invoke the Bar method passing an int value:

static void Main()
{
 var test = new MethodOverloads();
 test.Bar(44);

From the output on the console you can see that the generic Foo method was selected by the Bar method and not the overload with the int parameter. That’s because the compiler selects the method that is invoked by the Bar method during compile time. Because the Bar method defines a generic parameter, and because there’s a Foo method that matches this type, the generic Foo method is called. This is not changed during runtime when an int value is passed to the Bar method:

Foo<T>(T obj), obj type: Int32

Summary

This chapter introduced a very important feature of the CLR: generics. With generic classes you can create type-independent classes, and generic methods allow type-independent methods. Interfaces, structs, and delegates can be created in a generic way as well. Generics make new programming styles possible. You’ve seen how algorithms, particularly actions and predicates, can be implemented to be used with different classes—and all are type safe. Generic delegates make it possible to decouple algorithms from collections.

You will see more features and uses of generics throughout this book. Chapter 9 introduces delegates that are often implemented as generics; Chapter 11 provides information about generic collection classes; and Chapter 13, “Language Integrated Query,” discusses generic extension methods. The next chapter demonstrates the use of some generic methods with arrays.

7
Arrays and Tuples

What’s In This Chapter?

	Simple arrays

	Multidimensional arrays

	Jagged arrays

	The Array class

	Arrays as parameters

	Enumerations

	Tuples

	Structural comparison

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	SimpleArrays

	SortingSample

	ArraySegment

	YieldSample

	TuplesSample

	StructuralComparison

Multiple Objects of the Same and Different Types

If you need to work with multiple objects of the same type, you can use collections (see Chapter 11, “Collections”) and arrays. C# has a special notation to declare, initialize, and use arrays. Behind the scenes, the Array class comes into play, which offers several methods to sort and filter the elements inside the array. Using an enumerator, you can iterate through all the elements of the array.

To use multiple objects of different types, the type Tuple can be used. See the “Tuples” section later in this chapter for details about this type.

Simple Arrays

If you need to use multiple objects of the same type, you can use an array. An array is a data structure that contains a number of elements of the same type.

Array Declaration

An array is declared by defining the type of elements inside the array, followed by empty brackets and a variable name. For example, an array containing integer elements is declared like this:

int[] myArray;

Array Initialization

After declaring an array, memory must be allocated to hold all the elements of the array. An array is a reference type, so memory on the heap must be allocated. You do this by initializing the variable of the array using the new operator, with the type and the number of elements inside the array. Here, you specify the size of the array:

myArray = new int[4];

NOTE Value types and reference types are covered in Chapter 3, “Objects and Types.”

With this declaration and initialization, the variable myArray references four integer values that are allocated on the managed heap (see Figure 7.1).

[image: Diagram shows a pointer returned by stackalloc and column for managed heap with four rows with each row displaying int. a stack pointing to the first row]

Figure 7.1

NOTE An array cannot be resized after its size is specified without copying all the elements. If you don’t know how many elements should be in the array in advance, you can use a collection (see Chapter 11).

Instead of using a separate line to declare and initialize an array, you can use a single line:

int[] myArray = new int[4];

You can also assign values to every array element using an array initializer. You can use array initializers only while declaring an array variable, not after the array is declared:

int[] myArray = new int[4] {4, 7, 11, 2};

If you initialize the array using curly brackets, you can also omit the size of the array because the compiler can count the number of elements:

int[] myArray = new int[] {4, 7, 11, 2};

There’s even a shorter form using the C# compiler. Using curly brackets you can write the array declaration and initialization. The code generated from the compiler is the same as the previous result:

int[] myArray = {4, 7, 11, 2};

Accessing Array Elements

After an array is declared and initialized, you can access the array elements using an indexer. Arrays support only indexers that have integer parameters.

With the indexer, you pass the element number to access the array. The indexer always starts with a value of 0 for the first element. Therefore, the highest number you can pass to the indexer is the number of elements minus one, because the index starts at zero. In the following example, the array myArray is declared and initialized with four integer values. The elements can be accessed with indexer values 0, 1, 2, and 3.

int[] myArray = new int[] {4, 7, 11, 2};
int v1 = myArray[0]; // read first element
int v2 = myArray[1]; // read second element
myArray[3] = 44; // change fourth element

NOTE If you use a wrong indexer value that is bigger than the length of the array, an exception of type IndexOutOfRangeException is thrown.

If you don’t know the number of elements in the array, you can use the Length property, as shown in this for statement:

for (int i = 0; i < myArray.Length; i++)
{
 WriteLine(myArray[i]);
}

Instead of using a for statement to iterate through all the elements of the array, you can also use the foreach statement:

foreach (var val in myArray)
{
 WriteLine(val);
}

NOTE The foreach statement makes use of the IEnumerable and IEnumerator interfaces and traverses through the array from the first index to the last. This is discussed in detail later in this chapter.

Using Reference Types

In addition to being able to declare arrays of predefined types, you can also declare arrays of custom types. Let’s start with the following Person class, the properties FirstName and LastName using auto-implemented properties, and an override of the ToString method from the Object class (code file SimpleArrays/Person.cs):

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public override string ToString() => $"{FirstName} {LastName}";
}

Declaring an array of two Person elements is similar to declaring an array of int:

Person[] myPersons = new Person[2];

However, be aware that if the elements in the array are reference types, memory must be allocated for every array element. If you use an item in the array for which no memory was allocated, a NullReferenceException is thrown.

NOTE For information about errors and exceptions, see Chapter 14, “Errors and Exceptions.”

You can allocate every element of the array by using an indexer starting from 0:

myPersons[0] = new Person { FirstName="Ayrton", LastName="Senna" };
myPersons[1] = new Person { FirstName="Michael", LastName="Schumacher" };

Figure 7.2 shows the objects in the managed heap with the Person array. myPersons is a variable that is stored on the stack. This variable references an array of Person elements that is stored on the managed heap. This array has enough space for two references. Every item in the array references a Person object that is also stored in the managed heap.

[image: Block diagram shows a stack with variable myPersons pointing to the objects in the managed heap. Managed heap shows two references to object Person.]

Figure 7.2

Similar to the int type, you can also use an array initializer with custom types:

Person[] myPersons2 =
{
 new Person { FirstName="Ayrton", LastName="Senna"},
 new Person { FirstName="Michael", LastName="Schumacher"}
};

Multidimensional Arrays

Ordinary arrays (also known as one-dimensional arrays) are indexed by a single integer. A multidimensional array is indexed by two or more integers.

Figure 7.3 shows the mathematical notation for a two-dimensional array that has three rows and three columns. The first row has the values 1, 2, and 3, and the third row has the values 7, 8, and 9.

[image: Diagram shows a matrix with three rows and three columns. Value of each cell of the matrix is 1, 2, 3 et cetera.]

Figure 7.3

To declare this two-dimensional array with C#, you put a comma inside the brackets. The array is initialized by specifying the size of every dimension (also known as rank). Then the array elements can be accessed by using two integers with the indexer:

int[,] twodim = new int[3, 3];
twodim[0, 0] = 1;
twodim[0, 1] = 2;
twodim[0, 2] = 3;
twodim[1, 0] = 4;
twodim[1, 1] = 5;
twodim[1, 2] = 6;
twodim[2, 0] = 7;
twodim[2, 1] = 8;
twodim[2, 2] = 9;

NOTE After declaring an array, you cannot change the rank.

You can also initialize the two-dimensional array by using an array indexer if you know the values for the elements in advance. To initialize the array, one outer curly bracket is used, and every row is initialized by using curly brackets inside the outer curly brackets:

int[,] twodim = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}
 };

NOTE When using an array initializer, you must initialize every element of the array. It is not possible to defer the initialization of some values until later.

By using two commas inside the brackets, you can declare a three-dimensional array:

int[,,] threedim = {
 { { 1, 2 }, { 3, 4 } },
 { { 5, 6 }, { 7, 8 } },
 { { 9, 10 }, { 11, 12 } }
 };

WriteLine(threedim[0, 1, 1]);

Jagged Arrays

A two-dimensional array has a rectangular size (for example, 3 × 3 elements). A jagged array provides more flexibility in sizing the array. With a jagged array every row can have a different size.

Figure 7.4 contrasts a two-dimensional array that has 3 × 3 elements with a jagged array. The jagged array shown contains three rows, with the first row containing two elements, the second row containing six elements, and the third row containing three elements.

[image: Image described by surrounding text.]

Figure 7.4

A jagged array is declared by placing one pair of opening and closing brackets after another. To initialize the jagged array, only the size that defines the number of rows in the first pair of brackets is set. The second brackets that define the number of elements inside the row are kept empty because every row has a different number of elements. Next, the element number of the rows can be set for every row:

int[][] jagged = new int[3][];
jagged[0] = new int[2] { 1, 2 };
jagged[1] = new int[6] { 3, 4, 5, 6, 7, 8 };
jagged[2] = new int[3] { 9, 10, 11 };

You can iterate through all the elements of a jagged array with nested for loops. In the outer for loop every row is iterated, and the inner for loop iterates through every element inside a row:

for (int row = 0; row < jagged.Length; row++)
{
 for (int element = 0; element < jagged[row].Length; element++)
 {
 WriteLine($"row: {row}, element: {element}, value: {jagged[row][element]}");
 }
}

The output of the iteration displays the rows and every element within the rows:

row: 0, element: 0, value: 1
row: 0, element: 1, value: 2
row: 1, element: 0, value: 3
row: 1, element: 1, value: 4
row: 1, element: 2, value: 5
row: 1, element: 3, value: 6
row: 1, element: 4, value: 7
row: 1, element: 5, value: 8
row: 2, element: 0, value: 9
row: 2, element: 1, value: 10
row: 2, element: 2, value: 11

Array Class

Declaring an array with brackets is a C# notation using the Array class. Using the C# syntax behind the scenes creates a new class that derives from the abstract base class Array. This makes it possible to use methods and properties that are defined with the Array class with every C# array. For example, you’ve already used the Length property or iterated through the array by using the foreach statement. By doing this, you are using the GetEnumerator method of the Array class.

Other properties implemented by the Array class are LongLength, for arrays in which the number of items doesn’t fit within an integer, and Rank, to get the number of dimensions.

Let’s have a look at other members of the Array class by getting into various features.

Creating Arrays

The Array class is abstract, so you cannot create an array by using a constructor. However, instead of using the C# syntax to create array instances, it is also possible to create arrays by using the static CreateInstance method. This is extremely useful if you don’t know the type of elements in advance, because the type can be passed to the CreateInstance method as a Type object.

The following example shows how to create an array of type int with a size of 5. The first argument of the CreateInstance method requires the type of the elements, and the second argument defines the size. You can set values with the SetValue method, and read values with the GetValue method (code file SimpleArrays/Program.cs):

Array intArray1 = Array.CreateInstance(typeof(int), 5);
for (int i = 0; i < 5; i++)
{
 intArray1.SetValue(33, i);
}

for (int i = 0; i < 5; i++)
{
 WriteLine(intArray1.GetValue(i));
}

You can also cast the created array to an array declared as int[]:

int[] intArray2 = (int[])intArray1;

The CreateInstance method has many overloads to create multidimensional arrays and to create arrays that are not 0 based. The following example creates a two-dimensional array with 2 × 3 elements. The first dimension is 1 based; the second dimension is 10 based:

int[] lengths = { 2, 3 };
int[] lowerBounds = { 1, 10 };
Array racers = Array.CreateInstance(typeof(Person), lengths, lowerBounds);

Setting the elements of the array, the SetValue method accepts indices for every dimension:

racers.SetValue(new Person
{
 FirstName ="Alain",
 LastName ="Prost"
}, 1, 10);
racers.SetValue(new Person
{
 FirstName ="Emerson",
 LastName ="Fittipaldi"
}, 1, 11);
racers.SetValue(new Person
{
 FirstName ="Ayrton",
 LastName ="Senna"
}, 1, 12);
racers.SetValue(new Person
{
 FirstName ="Michael",
 LastName ="Schumacher"
}, 2, 10);
racers.SetValue(new Person
{
 FirstName ="Fernando",
 LastName ="Alonso"
}, 2, 11);
racers.SetValue(new Person
{
 FirstName ="Jenson",
 LastName ="Button"
}, 2, 12);

Although the array is not 0 based, you can assign it to a variable with the normal C# notation. You just have to take care not to cross the boundaries:

Person[,] racers2 = (Person[,])racers;
Person first = racers2[1, 10];
Person last = racers2[2, 12];

Copying Arrays

Because arrays are reference types, assigning an array variable to another one just gives you two variables referencing the same array. For copying arrays, the array implements the interface ICloneable. The Clone method that is defined with this interface creates a shallow copy of the array.

If the elements of the array are value types, as in the following code segment, all values are copied (see Figure 7.5):

int[] intArray1 = {1, 2};
int[] intArray2 = (int[])intArray1.Clone();

[image: Top diagram shows values stored in the arrays intArray1 as 1 and 2. Bottom diagram shows the value of the array intArray2 as 1 and 2.]

Figure 7.5

If the array contains reference types, only the references are copied, not the elements. Figure 7.6 shows the variables beatles and beatlesClone, where beatlesClone is created by calling the Clone method from beatles. The Person objects that are referenced are the same for beatles and beatlesClone. If you change a property of an element of beatlesClone, you change the same object of beatles (code file SimpleArray/Program.cs):

Person[] beatles = {
 new Person { FirstName="John", LastName="Lennon" },
 new Person { FirstName="Paul", LastName="McCartney" }
 };
Person[] beatlesClone = (Person[])beatles.Clone();

[image: Block diagram shows variable beatles and beatlesClone pointing to the objects in the managed heap. Managed heap shows two references to object Person.]

Figure 7.6

Instead of using the Clone method, you can use the Array.Copy method, which also creates a shallow copy. However, there’s one important difference with Clone and Copy: Clone creates a new array; with Copy you have to pass an existing array with the same rank and enough elements.

NOTE If you need a deep copy of an array containing reference types, you have to iterate the array and create new objects.

Sorting

The Array class uses the Quicksort algorithm to sort the elements in the array. The Sort method requires the interface IComparable to be implemented by the elements in the array. Simple types such as System.String and System.Int32 implement IComparable, so you can sort elements containing these types.

With the sample program, the array name contains elements of type string, and this array can be sorted (code file SortingSample/Program.cs):

string[] names = {
 "Christina Aguilera",
 "Shakira",
 "Beyonce",
 "Lady Gaga"
 };

Array.Sort(names);

foreach (var name in names)
{
 WriteLine(name);
}

The output of the application shows the sorted result of the array:

Beyonce
Christina Aguilera
Lady Gaga
Shakira

If you are using custom classes with the array, you must implement the interface IComparable. This interface defines just one method, CompareTo, which must return 0 if the objects to compare are equal; a value smaller than 0 if the instance should go before the object from the parameter; and a value larger than 0 if the instance should go after the object from the parameter.

Change the Person class to implement the interface IComparable<Person>. The comparison is first done on the value of the LastName by using the Compare method of the String class. If the LastName has the same value, the FirstName is compared (code file SortingSample/Person.cs):

public class Person: IComparable<Person>
{
 public int CompareTo(Person other)
 {
 if (other == null) return 1;

 int result = string.Compare(this.LastName, other.LastName);
 if (result == 0)
 {
 result = string.Compare(this.FirstName, other.FirstName);
 }
 return result;
 }
 //...

Now it is possible to sort an array of Person objects by the last name (code file SortingSample/Program.cs):

Person[] persons = {
 new Person { FirstName="Damon", LastName="Hill" },
 new Person { FirstName="Niki", LastName="Lauda" },
 new Person { FirstName="Ayrton", LastName="Senna" },
 new Person { FirstName="Graham", LastName="Hill" }
 };

 Array.Sort(persons);
 foreach (var p in persons)
 {
 WriteLine(p);
 }

Using the sort of the Person class, the output returns the names sorted by last name:

Damon Hill
Graham Hill
Niki Lauda
Ayrton Senna

If the Person object should be sorted differently, or if you don’t have the option to change the class that is used as an element in the array, you can implement the interface IComparer or IComparer<T>. These interfaces define the method Compare. One of these interfaces must be implemented by the class that should be compared. The IComparer interface is independent of the class to compare. That’s why the Compare method defines two arguments that should be compared. The return value is similar to the CompareTo method of the IComparable interface.

The class PersonComparer implements the IComparer<Person> interface to sort Person objects either by firstName or by lastName. The enumeration PersonCompareType defines the different sorting options that are available with PersonComparer: FirstName and LastName. How the compare should be done is defined with the constructor of the class PersonComparer, where a PersonCompareType value is set. The Compare method is implemented with a switch statement to compare either by LastName or by FirstName (code file SortingSample/PersonComparer.cs):

public enum PersonCompareType
{
 FirstName,
 LastName
}

public class PersonComparer: IComparer<Person>
{
 private PersonCompareType _compareType;

 public PersonComparer(PersonCompareType compareType)
 {
 _compareType = compareType;
 }

 public int Compare(Person x, Person y)
 {
 if (x == null && y == null) return 0;
 if (x == null) return 1;
 if (y == null) return -1;

 switch (_compareType)
 {
 case PersonCompareType.FirstName:
 return string.Compare(x.FirstName, y.FirstName);
 case PersonCompareType.LastName:
 return string.Compare(x.LastName, y.LastName);
 default:
 throw new ArgumentException("unexpected compare type");
 }
 }
}

Now you can pass a PersonComparer object to the second argument of the Array.Sort method. Here, the people are sorted by first name (code file SortingSample/Program.cs):

Array.Sort(persons, new PersonComparer(PersonCompareType.FirstName));
foreach (var p in persons)
{
 WriteLine(p);
}

The persons array is now sorted by first name:

Ayrton Senna
Damon Hill
Graham Hill
Niki Lauda

NOTE The Array class also offers Sort methods that require a delegate as an argument. With this argument you can pass a method to do the comparison of two objects rather than relying on the IComparable or IComparer interfaces. Chapter 9, “Delegates, Lambdas, and Events,” discusses how to use delegates.

Arrays as Parameters

Arrays can be passed as parameters to methods, and returned from methods. Returning an array, you just have to declare the array as the return type, as shown with the following method GetPersons:

static Person[] GetPersons()
{
 return new Person[] {
 new Person { FirstName="Damon", LastName="Hill" },
 new Person { FirstName="Niki", LastName="Lauda" },
 new Person { FirstName="Ayrton", LastName="Senna" },
 new Person { FirstName="Graham", LastName="Hill" }
 };
}

Passing arrays to a method, the array is declared with the parameter, as shown with the method DisplayPersons:

static void DisplayPersons(Person[] persons)
{
 //...

Array Covariance

With arrays, covariance is supported. This means that an array can be declared as a base type and elements of derived types can be assigned to the elements.

For example, you can declare a parameter of type object[] as shown and pass a Person[] to it:

static void DisplayArray(object[] data)
{
 //…
}

NOTE Array covariance is only possible with reference types, not with value types. In addition, array covariance has an issue that can only be resolved with runtime exceptions. If you assign a Person array to an object array, the object array can then be used with anything that derives from the object. The compiler accepts, for example, passing a string to array elements. However, because a Person array is referenced by the object array, a runtime exception, ArrayTypeMismatchException, occurs.

ArraySegment<T>

The struct ArraySegment<T> represents a segment of an array. If you are working with a large array, and different methods work on parts of the array, you could copy the array part to the different methods. Instead of creating multiple arrays, it is more efficient to use one array and pass the complete array to the methods. The methods should only use a part of the array. For this, you can pass the offset into the array and the count of elements that the method should use in addition to the array. This way, at least three parameters are needed. When using an array segment, just a single parameter is needed. The ArraySegment<T> structure contains information about the segment (the offset and count).

The method SumOfSegments takes an array of ArraySegment<int> elements to calculate the sum of all the integers that are defined with the segments and returns the sum (code file ArraySegmentSample/Program.cs):

static int SumOfSegments(ArraySegment<int>[] segments)
{
 int sum = 0;
 foreach (var segment in segments)
 {
 for (int i = segment.Offset; i < segment.Offset + segment.Count; i++)
 {
 sum += segment.Array[i];
 }
 }
 return sum;
}

This method is used by passing an array of segments. The first array element references three elements of ar1 starting with the first element; the second array element references three elements of ar2 starting with the fourth element:

int[] ar1 = { 1, 4, 5, 11, 13, 18 };
int[] ar2 = { 3, 4, 5, 18, 21, 27, 33 };

var segments = new ArraySegment<int>[2]
{
 new ArraySegment<int>(ar1, 0, 3),
 new ArraySegment<int>(ar2, 3, 3)
};
var sum = SumOfSegments(segments);

NOTE Array segments don’t copy the elements of the originating array. Instead, the originating array can be accessed through ArraySegment<T>. If elements of the array segment are changed, the changes can be seen in the original array.

Enumerators

By using the foreach statement you can iterate elements of a collection (see Chapter 11) without needing to know the number of elements inside the collection. The foreach statement uses an enumerator. Figure 7.7 shows the relationship between the client invoking the foreach method and the collection. The array or collection implements the IEnumerable interface with the GetEnumerator method. The GetEnumerator method returns an enumerator implementing the IEnumerator interface. The interface IEnumerator is then used by the foreach statement to iterate through the collection.

[image: Flow diagram shows the relationship between Client, Enumerator and Collection along with the Ienumerator.]

Figure 7.7

NOTE The GetEnumerator method is defined with the interface IEnumerable. The foreach statement doesn’t really need this interface implemented in the collection class. It’s enough to have a method with the name GetEnumerator that returns an object implementing the IEnumerator interface.

IEnumerator Interface

The foreach statement uses the methods and properties of the IEnumerator interface to iterate all elements in a collection. For this, IEnumerator defines the property Current to return the element where the cursor is positioned, and the method MoveNext to move to the next element of the collection. MoveNext returns true if there’s an element, and false if no more elements are available.

The generic version of this interface IEnumerator<T> derives from the interface IDisposable and thus defines a Dispose method to clean up resources allocated by the enumerator.

NOTE The IEnumerator interface also defines the Reset method for COM interoperability. Many .NET enumerators implement this by throwing an exception of type NotSupportedException.

foreach Statement

The C# foreach statement is not resolved to a foreach statement in the IL code. Instead, the C# compiler converts the foreach statement to methods and properties of the IEnumerator interface. Here’s a simple foreach statement to iterate all elements in the persons array and display them person by person:

foreach (var p in persons)
{
 WriteLine(p);
}

The foreach statement is resolved to the following code segment. First, the GetEnumerator method is invoked to get an enumerator for the array. Inside a while loop, as long as MoveNext returns true, the elements of the array are accessed using the Current property:

IEnumerator<Person> enumerator = persons.GetEnumerator();
while (enumerator.MoveNext())
{
 Person p = enumerator.Current;
 WriteLine(p);
}

yield Statement

Since the first release of C#, it has been easy to iterate through collections by using the foreach statement. With C# 1.0, it was still a lot of work to create an enumerator. C# 2.0 added the yield statement for creating enumerators easily. The yield return statement returns one element of a collection and moves the position to the next element, and yield break stops the iteration.

The next example shows the implementation of a simple collection using the yield return statement. The class HelloCollection contains the method GetEnumerator. The implementation of the GetEnumerator method contains two yield return statements where the strings Hello and World are returned (code file YieldSample/Program.cs):

using System;
using System.Collections;

namespace Wrox.ProCSharp.Arrays
{
 public class HelloCollection
 {
 public IEnumerator<string> GetEnumerator()
 {
 yield return"Hello";
 yield return"World";
 }
 }

NOTE A method or property that contains yield statements is also known as an iterator block. An iterator block must be declared to return an IEnumerator or IEnumerable interface, or the generic versions of these interfaces. This block may contain multiple yield return or yield break statements; a return statement is not allowed.

Now it is possible to iterate through the collection using a foreach statement:

public void HelloWorld()
 {
 var helloCollection = new HelloCollection();
 foreach (var s in helloCollection)
 {
 WriteLine(s);
 }
 }
}

With an iterator block, the compiler generates a yield type, including a state machine, as shown in the following code segment. The yield type implements the properties and methods of the interfaces IEnumerator and IDisposable. In the example, you can see the yield type as the inner class Enumerator. The GetEnumerator method of the outer class instantiates and returns a new yield type. Within the yield type, the variable state defines the current position of the iteration and is changed every time the method MoveNext is invoked. MoveNext encapsulates the code of the iterator block and sets the value of the current variable so that the Current property returns an object depending on the position:

public class HelloCollection
{
 public IEnumerator GetEnumerator() => new Enumerator(0);

 public class Enumerator: IEnumerator<string>, IEnumerator, IDisposable
 {
 private int _state;
 private string _current;

 public Enumerator(int state)
 {
 _state = state;
 }

 bool System.Collections.IEnumerator.MoveNext()
 {
 switch (state)
 {
 case 0:
 _current ="Hello";
 _state = 1;
 return true;
 case 1:
 _current ="World";
 _state = 2;
 return true;
 case 2:
 break;
 }

 return false;
 }

 void System.Collections.IEnumerator.Reset()
 {
 throw new NotSupportedException();
 }

 string System.Collections.Generic.IEnumerator<string>.Current => current;

 object System.Collections.IEnumerator.Current => current;

 void IDisposable.Dispose()
 {
 }
 }
}

NOTE Remember that the yield statement produces an enumerator, and not just a list filled with items. This enumerator is invoked by the foreach statement. As each item is accessed from the foreach, the enumerator is accessed. This makes it possible to iterate through huge amounts of data without reading all the data into memory in one turn.

Different Ways to Iterate Through Collections

In a slightly larger and more realistic way than the Hello World example, you can use the yield return statement to iterate through a collection in different ways. The class MusicTitles enables iterating the titles in a default way with the GetEnumerator method, in reverse order with the Reverse method, and through a subset with the Subset method (code file YieldSample/MusicTitles.cs):

public class MusicTitles
{
 string[] names = {"Tubular Bells","Hergest Ridge","Ommadawn","Platinum" };

 public IEnumerator<string> GetEnumerator()
 {
 for (int i = 0; i < 4; i++)
 {
 yield return names[i];
 }
 }

 public IEnumerable<string> Reverse()
 {
 for (int i = 3; i >= 0; i—)
 {
 yield return names[i];
 }
 }

 public IEnumerable<string> Subset(int index, int length)
 {
 for (int i = index; i < index + length; i++)
 {
 yield return names[i];
 }
 }
}

NOTE The default iteration supported by a class is the GetEnumerator method, which is defined to return IEnumerator. Named iterations return IEnumerable.

The client code to iterate through the string array first uses the GetEnumerator method, which you don’t have to write in your code because it is used by default with the implementation of the foreach statement. Then the titles are iterated in reverse, and finally a subset is iterated by passing the index and number of items to iterate to the Subset method (code file YieldSample/Program.cs):

var titles = new MusicTitles();
foreach (var title in titles)
{
 WriteLine(title);
}
WriteLine();

WriteLine("reverse");
foreach (var title in titles.Reverse())
{
 WriteLine(title);
}
WriteLine();

WriteLine("subset");
foreach (var title in titles.Subset(2, 2))
{
 WriteLine(title);
}

Returning Enumerators with Yield Return

With the yield statement you can also do more complex things, such as return an enumerator from yield return. Using the following Tic-Tac-Toe game as an example, players alternate putting a cross or a circle in one of nine fields. These moves are simulated by the GameMoves class. The methods Cross and Circle are the iterator blocks for creating iterator types. The variables cross and circle are set to Cross and Circle inside the constructor of the GameMoves class. By setting these fields, the methods are not invoked, but they are set to the iterator types that are defined with the iterator blocks. Within the Cross iterator block, information about the move is written to the console and the move number is incremented. If the move number is higher than 8, the iteration ends with yield break; otherwise, the enumerator object of the circle yield type is returned with each iteration. The Circle iterator block is very similar to the Cross iterator block; it just returns the cross iterator type with each iteration (code file YieldSample/GameMoves.cs):

public class GameMoves
{
 private IEnumerator _cross;
 private IEnumerator _circle;

 public GameMoves()
 {
 _cross = Cross();
 _circle = Circle();
 }

 private int _move = 0;
 const int MaxMoves = 9;

 public IEnumerator Cross()
 {
 while (true)
 {
 WriteLine($"Cross, move {_move}");
 if (++_move >= MaxMoves)
 {
 yield break;
 }
 yield return _circle;
 }
 }

 public IEnumerator Circle()
 {
 while (true)
 {
 WriteLine($"Circle, move {move}");
 if (++_move >= MaxMoves)
 {
 yield break;
 }
 yield return _cross;
 }
 }
}

From the client program, you can use the class GameMoves as follows. The first move is set by setting enumerator to the enumerator type returned by game.Cross. In a while loop, enumerator.MoveNext is called. The first time this is invoked, the Cross method is called, which returns the other enumerator with a yield statement. The returned value can be accessed with the Current property and is set to the enumerator variable for the next loop:

var game = new GameMoves();
IEnumerator enumerator = game.Cross();
while (enumerator.MoveNext())
{
 enumerator = enumerator.Current as IEnumerator;
}

The output of this program shows alternating moves until the last move:

Cross, move 0
Circle, move 1
Cross, move 2
Circle, move 3
Cross, move 4
Circle, move 5
Cross, move 6
Circle, move 7
Cross, move 8

Tuples

Whereas arrays combine objects of the same type, tuples can combine objects of different types. Tuples have their origin in functional programming languages such as F#, where they are used often. With the .NET Framework, tuples are available for all .NET languages.

The .NET Framework defines eight generic Tuple classes and one static Tuple class that act as a factory of tuples. The different generic Tuple classes support a different number of elements—for example, Tuple<T1> contains one element, Tuple<T1, T2> contains two elements, and so on.

The method Divide demonstrates returning a tuple with two members: Tuple<int, int>. The parameters of the generic class define the types of the members, which are both integers. The tuple is created with the static Create method of the static Tuple class. Again, the generic parameters of the Create method define the type of tuple that is instantiated. The newly created tuple is initialized with the result and remainder variables to return the result of the division (code file TupleSample/Program.cs):

public static Tuple<int, int> Divide(int dividend, int divisor)
{
 int result = dividend / divisor;
 int remainder = dividend % divisor;

 return Tuple.Create(result, remainder);
}

The following example demonstrates invoking the Divide method. The items of the tuple can be accessed with the properties Item1 and Item2:

var result = Divide(5, 2);
WriteLine($"result of division: {result.Item1}, remainder: {result.Item2}");

If you have more than eight items that should be included in a tuple, you can use the Tuple class definition with eight parameters. The last template parameter is named TRest to indicate that you must pass a tuple itself. That way you can create tuples with any number of parameters.

The following example demonstrates this functionality:

public class Tuple<T1, T2, T3, T4, T5, T6, T7, TRest>

Here, the last template parameter is a tuple type itself, so you can create a tuple with any number of items:

var tuple = Tuple.Create<string, string, string, int, int, int, double,
 Tuple<int, int>>("Stephanie","Alina","Nagel", 2009, 6, 2, 1.37,
 Tuple.Create<int, int>(52, 3490));

Structural Comparison

Both arrays and tuples implement the interfaces IStructuralEquatable and IStructuralComparable. These interfaces compare not only references but also the content. This interface is implemented explicitly, so it is necessary to cast the arrays and tuples to this interface on use. IStructuralEquatable is used to compare whether two tuples or arrays have the same content; IStructuralComparable is used to sort tuples or arrays.

With the sample demonstrating IStructuralEquatable, the Person class implementing the interface IEquatable is used. IEquatable defines a strongly typed Equals method where the values of the FirstName and LastName properties are compared (code file StructuralComparison/Person.cs):

public class Person: IEquatable<Person>
{
 public int Id { get; private set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public override string ToString() => $"{Id}, {FirstName} {LastName}";

 public override bool Equals(object obj)
 {
 if (obj == null)
 {
 return base.Equals(obj);
 }
 return Equals(obj as Person);
 }

 public override int GetHashCode() => Id.GetHashCode();

 public bool Equals(Person other)
 {
 if (other == null)
 return base.Equals(other);

 return Id == other.Id && FirstName == other.FirstName &&
 LastName == other.LastName;
 }
}

Now two arrays containing Person items are created. Both arrays contain the same Person object with the variable name janet, and two different Person objects that have the same content. The comparison operator != returns true because there are indeed two different arrays referenced from two variable names, persons1 and persons2. Because the Equals method with one parameter is not overridden by the Array class, the same happens as with the == operator to compare the references, and they are not the same (code file StructuralComparison/Program.cs):

var janet = new Person { FirstName ="Janet", LastName ="Jackson" };
Person[] persons1 = {
 new Person
 {
 FirstName ="Michael",
 LastName ="Jackson"
 },
 janet
};

Person[] persons2 = {
 new Person
 {
 FirstName ="Michael",
 LastName ="Jackson"
 },
 janet
};

if (persons1 != persons2)
{
 WriteLine("not the same reference");
}

Invoking the Equals method defined by the IStructuralEquatable interface—that is, the method with the first parameter of type object and the second parameter of type IEqualityComparer—you can define how the comparison should be done by passing an object that implements IEqualityComparer<T>. A default implementation of the IEqualityComparer is done by the EqualityComparer<T> class. This implementation checks whether the type implements the interface IEquatable, and invokes the IEquatable.Equals method. If the type does not implement IEquatable, the Equals method from the base class Object is invoked to do the comparison.

Person implements IEquatable<Person>, where the content of the objects is compared, and the arrays indeed contain the same content:

if ((persons1 as IStructuralEquatable).Equals(persons2,
 EqualityComparer<Person>.Default))
{
 WriteLine("the same content");
}

Next, you’ll see how the same thing can be done with tuples. Here, two tuple instances are created that have the same content. Of course, because the references t1 and t2 reference two different objects, the comparison operator != returns true:

var t1 = Tuple.Create(1,"Stephanie");
var t2 = Tuple.Create(1,"Stephanie");
if (t1 != t2)
{
 WriteLine("not the same reference to the tuple");
}

The Tuple<> class offers two Equals methods: one that is overridden from the Object base class with an object as parameter, and the second that is defined by the IStructuralEqualityComparer interface with object and IEqualityComparer as parameters. Another tuple can be passed to the first method as shown. This method uses EqualityComparer<object>.Default to get an ObjectEqualityComparer<object> for the comparison. This way, every item of the tuple is compared by invoking the Object.Equals method. If every item returns true, the result of the Equals method is true, which is the case here with the same int and string values:

if (t1.Equals(t2))
{
 WriteLine("the same content");
}

You can also create a custom IEqualityComparer, as shown in the following example, with the class TupleComparer. This class implements the two methods Equals and GetHashCode of the IEqualityComparer interface:

class TupleComparer: IEqualityComparer
{
 public new bool Equals(object x, object y) => x.Equals(y);

 public int GetHashCode(object obj) => obj.GetHashCode();
}

NOTE Implementation of the Equals method of the IEqualityComparer interface requires the new modifier or an implicit interface implementation because the base class Object defines a static Equals method with two parameters as well.

The TupleComparer is used, passing a new instance to the Equals method of the Tuple<T1, T2> class. The Equals method of the Tuple class invokes the Equals method of the TupleComparer for every item to be compared. Therefore, with the Tuple<T1, T2> class, the TupleComparer is invoked two times to check whether all items are equal:

if (t1.Equals(t2, new TupleComparer()))
{
 WriteLine("equals using TupleComparer");
}

Summary

In this chapter, you’ve seen the C# notation to create and use simple, multidimensional, and jagged arrays. The Array class is used behind the scenes of C# arrays, enabling you to invoke properties and methods of this class with array variables.

You’ve seen how to sort elements in the array by using the IComparable and IComparer interfaces; and you’ve learned how to create and use enumerators, the interfaces IEnumerable and IEnumerator, and the yield statement.

Finally, you have seen how to unite objects of the same type to an array, and objects of different types to a tuple.

The next chapter focuses on operators and casts.

8
Operators and Casts

What’s In This Chapter?

	Operators in C#

	Using new C# 6 Operators nameof and null propagation

	Implicit and explicit Conversions

	Converting value types to reference types using boxing

	Comparing value types and reference types

	Overloading the standard operators for custom types

	Implementing the Index Operator

	Converting between reference types by casting

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	OperatorOverloadingSample

	OperatorOverloadingSample2

	OverloadingComparisonSample

	CustomIndexerSample

	CastingSample

Operators and Casts

The preceding chapters have covered most of what you need to start writing useful programs using C#. This chapter completes the discussion of the essential language elements and illustrates some powerful aspects of C# that enable you to extend its capabilities.

Operators

C# operators are very similar to C++ and Java operators; however, there are differences.

C# supports the operators listed in the following table:

	Category
	Operator

	Arithmetic
	+ –* / %

	Logical
	& | ^ ˜ && ║ !

	String concatenation
	+

	Increment and decrement
	++ – –

	Bit shifting
	<< >>

	Comparison
	== != < > <= >=

	Assignment
	= += -= *= /= %= &= |= ^= <<= >>=

	Member access (for objects and structs)
	.

	Indexing (for arrays and indexers)
	[]

	Cast
	()

	Conditional (the ternary operator)
	?:

	Delegate concatenation and removal (discussed in Chapter 9, “Delegates, Lambdas, and Events”)
	+ -

	Object creation
	new

	Type information
	sizeof is typeof as

	Overflow exception control
	checked unchecked

	Indirection and address
	[]

	Namespace alias qualifier (discussed in Chapter 2, “Core C#”)
	::

	Null coalescing operator
	??

	Null propagation operator
	?. ?[]

	Name of an identifier
	nameof()

NOTE Note that four specific operators (sizeof, *, ->, and &) are available only in unsafe code (code that bypasses C#’s type-safety checking), which is discussed in Chapter 5, “Managed and Unmanaged Resources.”

One of the biggest pitfalls to watch out for when using C# operators is that, as with other C-style languages, C# uses different operators for assignment (=) and comparison (==). For instance, the following statement means “let x equal three”:

x = 3;

If you now want to compare x to a value, you need to use the double equals sign ==:

if (x == 3)
{
}

Fortunately, C#’s strict type-safety rules prevent the very common C error whereby assignment is performed instead of comparison in logical statements. This means that in C# the following statement will generate a compiler error:

if (x = 3)
{
}

Visual Basic programmers who are accustomed to using the ampersand (&) character to concatenate strings will have to make an adjustment. In C#, the plus sign (+) is used instead for concatenation, whereas the & symbol denotes a logical AND between two different integer values. The pipe symbol, |, enables you to perform a logical OR between two integers. Visual Basic programmers also might not recognize the modulus (%) arithmetic operator. This returns the remainder after division, so, for example, x % 5 returns 2 if x is equal to 7.

You will use few pointers in C#, and therefore few indirection operators. More specifically, the only place you will use them is within blocks of unsafe code, because that is the only place in C# where pointers are allowed. Pointers and unsafe code are discussed in Chapter 5.

Operator Shortcuts

The following table shows the full list of shortcut assignment operators available in C#:

	Shortcut Operator
	Equivalent To

	x++, ++x
	x = x + 1

	x– –, – –x
	x = x – 1

	x += y
	x = x + y

	x -= y
	x = x—y

	x *= y
	x = x * y

	x /= y
	x = x / y

	x %= y
	x = x % y

	x >>= y
	x = x >> y

	x <<= y
	x = x << y

	x &= y
	x = x & y

	x |= y
	x = x | y

You may be wondering why there are two examples each for the ++ increment and the – – decrement operators. Placing the operator before the expression is known as a prefix; placing the operator after the expression is known as a postfix. Note that there is a difference in the way they behave.

The increment and decrement operators can act both as entire expressions and within expressions. When used by themselves, the effect of both the prefix and postfix versions is identical and corresponds to the statement x = x + 1. When used within larger expressions, the prefix operator increments the value of x before the expression is evaluated; in other words, x is incremented and the new value is used in the expression. Conversely, the postfix operator increments the value of x after the expression is evaluated—the expression is evaluated using the original value of x. The following example uses the increment operator (++) as an example to demonstrate the difference between the prefix and postfix behavior:

int x = 5;

if (++x == 6) // true - x is incremented to 6 before the evaluation
{
 WriteLine("This will execute");
}

if (x++ == 7) // false - x is incremented to 7 after the evaluation
{
 WriteLine("This won’t");
}

The first if condition evaluates to true because x is incremented from 5 to 6 before the expression is evaluated. The condition in the second if statement is false, however, because x is incremented to 7 only after the entire expression has been evaluated (while x == 6).

The prefix and postfix operators – –x and x– – behave in the same way, but decrement rather than increment the operand.

The other shortcut operators, such as += and -=, require two operands, and are used to modify the value of the first operand by performing an arithmetic or logical operation on it. For example, the next two lines are equivalent:

x += 5;
x = x + 5;

The following sections look at some of the primary and cast operators that you will frequently use within your C# code.

The Conditional Operator (?:)

The conditional operator (?:), also known as the ternary operator, is a shorthand form of the if...else construction. It gets its name from the fact that it involves three operands. It allows you to evaluate a condition, returning one value if that condition is true, or another value if it is false. The syntax is as follows:

condition ? true_value: false_value

Here, condition is the Boolean expression to be evaluated, true_value is the value that is returned if condition is true, and false_value is the value that is returned otherwise.

When used sparingly, the conditional operator can add a dash of terseness to your programs. It is especially handy for providing one of a couple of arguments to a function that is being invoked. You can use it to quickly convert a Boolean value to a string value of true or false. It is also handy for displaying the correct singular or plural form of a word:

int x = 1;
string s = x +"";
s += (x == 1 ?"man":"men");
WriteLine(s);

This code displays 1 man if x is equal to one but displays the correct plural form for any other number. Note, however, that if your output needs to be localized to different languages, you have to write more sophisticated routines to take into account the different grammatical rules of different languages.

The checked and unchecked Operators

Consider the following code:

byte b = byte.MaxValue;
b++;
WriteLine(b);

The byte data type can hold values only in the range 0 to 255. Assigning byte.MaxValue to a byte results in 255. With 255, all bits of the 8 available bits in the bytes are set: 11111111. Incrementing this value by one causes an overflow and results in 0.

How the CLR handles this depends on a number of issues, including compiler options; so whenever there’s a risk of an unintentional overflow, you need some way to ensure that you get the result you want.

To do this, C# provides the checked and unchecked operators. If you mark a block of code as checked, the CLR enforces overflow checking, throwing an OverflowException if an overflow occurs. The following changes the preceding code to include the checked operator:

byte b = 255;
checked
{
 b++;
}
WriteLine(b);

When you try to run this code, you get an error message like this:

System.OverflowException: Arithmetic operation resulted in an overflow.

NOTE You can enforce overflow checking for all unmarked code in your program by specifying the /checked compiler option.

If you want to suppress overflow checking, you can mark the code as unchecked:

byte b = 255;
unchecked
{
 b++;
}
WriteLine(b);

In this case, no exception is raised, but you lose data because the byte type cannot hold a value of 256, the overflowing bits are discarded, and your b variable holds a value of zero (0).

Note that unchecked is the default behavior. The only time you are likely to need to explicitly use the unchecked keyword is when you need a few unchecked lines of code inside a larger block that you have explicitly marked as checked.

NOTE The default compilation setting is /unchecked because enforcing checks has a performance impact. When you use /checked, the result of every arithmetic operation needs to be verified whether the value is out of bounds. Arithmetic operations are also done with for loops using i++. For not having this performance impact it’s better to keep the default /unchecked compiler setting and use the checked operator where needed.

The is Operator

The is operator allows you to check whether an object is compatible with a specific type. The phrase “is compatible” means that an object either is of that type or is derived from that type. For example, to check whether a variable is compatible with the object type, you could use the following bit of code:

int i = 10;
if (i is object)
{
 WriteLine("i is an object");
}

int, like all C# data types, inherits from object; therefore, the expression i is object evaluates to true in this case, and the appropriate message will be displayed.

The as Operator

The as operator is used to perform explicit type conversions of reference types. If the type being converted is compatible with the specified type, conversion is performed successfully. However, if the types are incompatible, the as operator returns the value null. As shown in the following code, attempting to convert an object reference to a string returns null if the object reference does not actually refer to a string instance:

object o1 ="Some String";
object o2 = 5;

string s1 = o1 as string; // s1 ="Some String"
string s2 = o2 as string; // s2 = null

The as operator allows you to perform a safe type conversion in a single step without the need to first test the type using the is operator and then perform the conversion.

NOTE The is and as operators are shown with inheritance in Chapter 4, “Inheritance.”

The sizeof Operator

You can determine the size (in bytes) required on the stack by a value type using the sizeof operator:

WriteLine(sizeof(int));

This displays the number 4 because an int is 4 bytes long.

If you are using the sizeof operator with complex types (and not primitive types), you need to block the code within an unsafe block as illustrated here:

unsafe
{
 WriteLine(sizeof(Customer));
}

Chapter 5 looks at unsafe code in more detail.

The typeof Operator

The typeof operator returns a System.Type object representing a specified type. For example, typeof(string) returns a Type object representing the System.String type. This is useful when you want to use reflection to find information about an object dynamically. For more information, see Chapter 16, “Reflection, Metadata, and Dynamic Programming.”

The nameof Operator

The nameof operator is new with C# 6. This operator accepts a symbol, property, or method and returns the name.

How can this be used? One example is when the name of a variable is needed, as in checking a parameter for null:

public void Method(object o)
{
 if (o == null) throw new ArgumentNullException(nameof(o));

Of course, it would be similar to throw the exception by passing a string instead of using the nameof operator. However, passing a string doesn’t give a compiler error if you misspell the name. Also, when you change the name of the parameter, you can easily miss changing the string passed to the ArgumentNullException constructor.

if (o == null) throw new ArgumentNullException("o");

Using the nameof operator for the name of a variable is just one use case. You can also use it to get the name of a property—for example, for firing a change event (using the interface INotifyPropertyChanged) in a property set accessor and passing the name of a property.

public string FirstName
{
 get { return _firstName; }
 set
 {
 _firstName = value;
 OnPropertyChanged(nameof(FirstName));
 }
}

The nameof operator can also be used to get the name of a method. This also works if the method is overloaded because all overloads result in the same value: the name of the method.

public void Method()
{
 Log($"{nameof(Method)} called");

The index Operator

You’ve already used the index operator (brackets) accessing arrays in Chapter 7, “Arrays and Tuples.” Here, the index operator is used to access the third element of the array named arr1 by passing the number 2:

int[] arr1 = {1, 2, 3, 4};
int x = arr1[2]; // x == 3

Similar to accessing elements of an array, the index operator is implemented with collection classes (discussed in Chapter 11, “Collections”).

The index operator doesn’t require an integer within the brackets. Index operators can be defined with any type. The following code snippet creates a generic dictionary where the key is a string, and the value an int. With dictionaries, the key can be used with the indexer. In the following sample, the string first is passed to the index operator to set this element in the dictionary and then the same string is passed to the indexer to retrieve this element:

var dict = new Dictionary<string, int>();
dict["first"] = 1;
int x = dict["first"];

NOTE Later in this chapter in the “Implementing Custom Index Operators” section, you can read how to create index operators in your own classes.

Nullable Types and Operators

An important difference between value types and reference types is that reference types can be null. A value type, such as int, cannot be null. This is a special issue on mapping C# types to database types. A database number can be null. In earlier C# versions, a solution was to use a reference type for mapping a nullable database number. However, this method affects performance because the garbage collector needs to deal with reference types. Now you can use a nullable int instead of a normal int. The overhead for this is just an additional Boolean that is used to check or set the null value. A nullable type still is a value type.

With the following code snippet, the variable i1 is an int that gets 1 assigned to it. i2 is a nullable int that has i1 assigned. The nullability is defined by using the ? with the type. int? can have an integer value assigned similar to the assignment of i1. The variable i3 demonstrates that assigning null is also possible with nullable types.

int i1 = 1;
int? i2 = 2;
int? i3 = null;

Every struct can be defined as a nullable type as shown with long? and DateTime?:

long? l1 = null;
DateTime? d1 = null;

If you use nullable types in your programs, you must always consider the effect a null value can have when used in conjunction with the various operators. Usually, when using a unary or binary operator with nullable types, the result will be null if one or both of the operands is null. For example:

int? a = null;

int? b = a + 4; // b = null
int? c = a * 5; // c = null

When comparing nullable types, if only one of the operands is null, the comparison always equates to false. This means that you cannot assume a condition is true just because its opposite is false, as often happens in programs using non-nullable types. For example, in the following example if a is null, the else clause is always invoked no matter whether b has a value of +5 or -5.

int? a = null;
int? b = -5;

if (a >= b)
{
 WriteLine("a >= b");
}
else
{
 WriteLine("a < b");
}

NOTE The possibility of a null value means that you cannot freely combine nullable and non-nullable types in an expression. This is discussed in the section “Type Conversions” later in this chapter.

NOTE When you use the C# keyword ? with the type declaration—for example, int?—the compiler resolves this to use the generic type Nullable<int>. The C# compiler converts the shorthand notation to the generic type to reduce typing needs.

The Null Coalescing Operator

The null coalescing operator (??) provides a shorthand mechanism to cater to the possibility of null values when working with nullable and reference types. The operator is placed between two operands—the first operand must be a nullable type or reference type, and the second operand must be of the same type as the first or of a type that is implicitly convertible to the type of the first operand. The null coalescing operator evaluates as follows:

	If the first operand is not null, then the overall expression has the value of the first operand.

	If the first operand is null, then the overall expression has the value of the second operand.

For example:

int? a = null;
int b;

b = a ?? 10; // b has the value 10
a = 3;
b = a ?? 10; // b has the value 3

If the second operand cannot be implicitly converted to the type of the first operand, a compile-time error is generated.

The null coalescing operator is not only important with nullable types but also with reference types. In the following code snippet, the property Val returns the value of the _val variable only if it is not null. In case it is null, a new instance of MyClass is created, assigned to the _val variable, and finally returned from the property. This second part of the expression within the get accessor only happens when the variable _val is null.

private MyClass _val;
public MyClass Val
{
 get { return _val ?? (_val = new MyClass());
}

The Null Propagation Operator

A great new feature of C# 6 is the null propagation operator. A great number of code lines in production code verifies null conditions. Before accessing members of a variable that is passed as a method parameter, it needs to be checked to determine whether the variable has a value of null. Otherwise a NullReferenceException would be thrown. A .NET design guideline specifies that code should never throw exceptions of these types and should always check for null conditions. However, such checks could be missed easily. This code snippet verifies whether the passed parameter p is not null. In case it is null, the method just returns without continuing:

public void ShowPerson(Person p)
{
 if (p == null) return;
 string firstName = p.FirstName;
 //...
}

Using the null propagation operator to access the FirstName property (p?.FirstName), when p is null, only null is returned without continuing to the right side of the expression.

public void ShowPerson(Person p)
{
 string firstName = p?.FirstName;
 //...
}

When a property of an int type is accessed using the null propagation operator, the result cannot be directly assigned to an int type because the result can be null. One option to resolve this is to assign the result to a nullable int:

int? age = p?.Age;

Of course, you can also solve this issue by using the null coalescing operator and defining another result (for example, 0) in case the result of the left side is null:

int age = p?.Age ?? 0;

Multiple null propagation operators can also be combined. Here the Address property of a Person object is accessed, and this property in turn defines a City property. Null checks need to be done for the Person object, and if it is not null, also for the result of the Address property:

Person p = GetPerson();
string city = null;
if (p != null && p.Address != null)
{
 city = p.Address.City;
}

When you use the null propagation operator, the code becomes much simpler:

string city = p?.Address?.City;

You can also use the null propagation operator with arrays. With the following code snippet, a NullReferenceException is thrown using the index operator to access an element of an array variable that is null:

int[] arr = null;
int x1 = arr[0];

Of course, traditional null checks could be done to avoid this exceptional condition. A simpler version uses ?[0] to access the first element of the array. In case the result is null, the null coalescing operator returns the value for the x1 variable:

int x1 = arr?[0] ?? 0;

Operator Precedence and Associativity

The following table shows the order of precedence of the C# operators. The operators at the top of the table are those with the highest precedence (that is, the ones evaluated first in an expression containing multiple operators).

	Group
	Operators

	Primary
	. ?. () [] ?[] x++ x–– new typeof sizeof checked unchecked

	Unary
	+ —! ˜ ++x ––x and casts

	Multiplication/division
	* / %

	Addition/subtraction
	+ -

	Shift operators
	<< >>

	Relational
	< ><= >= is as

	Comparison
	== !=

	Logical AND
	&

	Logical XOR
	^

	Logical OR
	|

	Conditional AND
	&&

	Conditional OR
	||

	Null coalescing
	??

	Conditional operator
	?:

	Assignment and Lambda
	= += -= *= /= %= &= |= ^= <<= >>= >>>= =>

Besides operator precedence, with binary operators you need to be aware of operator evaluations from left to right or right to left. With a few exceptions, all binary operators are left associative.

For example,

x + y + z

is evaluated as

(x + y) + z

You need to pay attention to the operator precedence before the associativity. With the following expression, first y and z are multiplied before the result of this multiplication is assigned to x, because multiplication has a higher precedency than addition:

x + y * z

The important exceptions with associativity are the assignment operators; these are right associative. The following expression is evaluated from right to left:

x = y = z

Because of the right associativity, all variables x, y, and z have the value 3 because it is evaluated from right to left. This wouldn’t be the case if this operator would be evaluated from left to right:

int z = 3;
int y = 2;
int x = 1;
x = y = z;

An important right associative operator that might be misleading is the conditional operator. The expression

a ? b: c ? d: e

is evaluated as

a = b: (c ? d: e)

because it is right-associative.

NOTE In complex expressions, avoid relying on operator precedence to produce the correct result. Using parentheses to specify the order in which you want operators applied clarifies your code and prevents potential confusion.

Type Safety

Chapter 1, “.NET Application Architectures,” noted that the Intermediate Language (IL) enforces strong type safety upon its code. Strong typing enables many of the services provided by .NET, including security and language interoperability. As you would expect from a language compiled into IL, C# is also strongly typed. Among other things, this means that data types are not always seamlessly interchangeable. This section looks at conversions between primitive types.

NOTE C# also supports conversions between different reference types and allows you to define how data types that you create behave when converted to and from other types. Both of these topics are discussed later in this chapter.

Generics, however, enable you to avoid some of the most common situations in which you would need to perform type conversions. See Chapter 6, “Generics,” and Chapter 11, “Collections,” for details.

Type Conversions

Often, you need to convert data from one type to another. Consider the following code:

byte value1 = 10;
byte value2 = 23;
byte total;
total = value1 + value2;
WriteLine(total);

When you attempt to compile these lines, you get the following error message:

Cannot implicitly convert type 'int' to 'byte'

The problem here is that when you add 2 bytes together, the result is returned as an int, not another byte. This is because a byte can contain only 8 bits of data, so adding 2 bytes together could very easily result in a value that cannot be stored in a single byte. If you want to store this result in a byte variable, you have to convert it back to a byte. The following sections discuss two conversion mechanisms supported by C#—implicit and explicit.

Implicit Conversions

Conversion between types can normally be achieved automatically (implicitly) only if you can guarantee that the value is not changed in any way. This is why the previous code failed; by attempting a conversion from an int to a byte, you were potentially losing 3 bytes of data. The compiler won’t let you do that unless you explicitly specify that’s what you want to do. If you store the result in a long instead of a byte, however, you will have no problems:

byte value1 = 10;
byte value2 = 23;
long total; // this will compile fine
total = value1 + value2;
WriteLine(total);

Your program has compiled with no errors at this point because a long holds more bytes of data than a byte, so there is no risk of data being lost. In these circumstances, the compiler is happy to make the conversion for you, without your needing to ask for it explicitly.

The following table shows the implicit type conversions supported in C#:

	From
	To

	sbyte
	short, int, long, float, double, decimal, BigInteger

	byte
	short, ushort, int, uint, long, ulong, float, double, decimal, BigInteger

	short
	int, long, float, double, decimal, BigInteger

	ushort
	int, uint, long, ulong, float, double, decimal, BigInteger

	int
	long, float, double, decimal, BigInteger

	uint
	long, ulong, float, double, decimal, BigInteger

	long, ulong
	float, double, decimal, BigInteger

	float
	double, BigInteger

	char
	ushort, int, uint, long, ulong, float, double, decimal, BigInteger

As you would expect, you can perform implicit conversions only from a smaller integer type to a larger one, not from larger to smaller. You can also convert between integers and floating-point values; however, the rules are slightly different here. Though you can convert between types of the same size, such as int/uint to float and long/ulong to double, you can also convert from long/ulong back to float. You might lose 4 bytes of data doing this, but it only means that the value of the float you receive will be less precise than if you had used a double; the compiler regards this as an acceptable possible error because the magnitude of the value is not affected. You can also assign an unsigned variable to a signed variable as long as the value limits of the unsigned type fit between the limits of the signed variable.

Nullable types introduce additional considerations when implicitly converting value types:

	Nullable types implicitly convert to other nullable types following the conversion rules described for non-nullable types in the previous table; that is, int? implicitly converts to long?, float?, double?, and decimal?.

	Non-nullable types implicitly convert to nullable types according to the conversion rules described in the preceding table; that is, int implicitly converts to long?, float?, double?, and decimal?.

	Nullable types do not implicitly convert to non-nullable types; you must perform an explicit conversion as described in the next section. That’s because there is a chance that a nullable type will have the value null, which cannot be represented by a non-nullable type.

Explicit Conversions

Many conversions cannot be implicitly made between types, and the compiler returns an error if any are attempted. The following are some of the conversions that cannot be made implicitly:

	int to short—Data loss is possible.

	int to uint—Data loss is possible.

	uint to int—Data loss is possible.

	float to int—Everything is lost after the decimal point.

	Any numeric type to char—Data loss is possible.

	decimal to any numeric type—The decimal type is internally structured differently from both integers and floating-point numbers.

	int? to int—The nullable type may have the value null.

However, you can explicitly carry out such conversions using casts. When you cast one type to another, you deliberately force the compiler to make the conversion. A cast looks like this:

long val = 30000;
int i = (int)val; // A valid cast. The maximum int is 2147483647

You indicate the type to which you are casting by placing its name in parentheses before the value to be converted. If you are familiar with C, this is the typical syntax for casts. If you are familiar with the C++ special cast keywords such as static_cast, note that these do not exist in C#; you have to use the older C-type syntax.

Casting can be a dangerous operation to undertake. Even a simple cast from a long to an int can cause problems if the value of the original long is greater than the maximum value of an int:

long val = 3000000000;
int i = (int)val; // An invalid cast. The maximum int is 2147483647

In this case, you get neither an error nor the result you expect. If you run this code and output the value stored in i, this is what you get:

-1294967296

It is good practice to assume that an explicit cast does not return the results you expect. As shown earlier, C# provides a checked operator that you can use to test whether an operation causes an arithmetic overflow. You can use the checked operator to confirm that a cast is safe and to force the runtime to throw an overflow exception if it is not:

long val = 3000000000;
int i = checked((int)val);

Bearing in mind that all explicit casts are potentially unsafe, take care to include code in your application to deal with possible failures of the casts. Chapter 14, “Errors and Exceptions,” introduces structured exception handling using the try and catch statements.

Using casts, you can convert most primitive data types from one type to another; for example, in the following code, the value 0.5 is added to price, and the total is cast to an int:

double price = 25.30;
int approximatePrice = (int)(price + 0.5);

This gives the price rounded to the nearest dollar. However, in this conversion, data is lost—namely, everything after the decimal point. Therefore, such a conversion should never be used if you want to continue to do more calculations using this modified price value. However, it is useful if you want to output the approximate value of a completed or partially completed calculation—if you don’t want to bother the user with a lot of figures after the decimal point.

This example shows what happens if you convert an unsigned integer into a char:

ushort c = 43;
char symbol = (char)c;
WriteLine(symbol);

The output is the character that has an ASCII number of 43: the + sign. You can try any kind of conversion you want between the numeric types (including char) and it will work, such as converting a decimal into a char, or vice versa.

Converting between value types is not restricted to isolated variables, as you have seen. You can convert an array element of type double to a struct member variable of type int:

struct ItemDetails
{
 public string Description;
 public int ApproxPrice;
}

//..

double[] Prices = { 25.30, 26.20, 27.40, 30.00 };

ItemDetails id;
id.Description ="Hello there.";
id.ApproxPrice = (int)(Prices[0] + 0.5);

To convert a nullable type to a non-nullable type or another nullable type where data loss may occur, you must use an explicit cast. This is true even when converting between elements with the same basic underlying type—for example, int? to int or float? to float. This is because the nullable type may have the value null, which cannot be represented by the non-nullable type. As long as an explicit cast between two equivalent non-nullable types is possible, so is the explicit cast between nullable types. However, when casting from a nullable type to a non-nullable type and the variable has the value null, an InvalidOperationException is thrown. For example:

int? a = null;
int b = (int)a; // Will throw exception

Using explicit casts and a bit of care and attention, you can convert any instance of a simple value type to almost any other. However, there are limitations on what you can do with explicit type conversions—as far as value types are concerned, you can only convert to and from the numeric and char types and enum types. You cannot directly cast Booleans to any other type or vice versa.

If you need to convert between numeric and string, you can use methods provided in the .NET class library. The Object class implements a ToString method, which has been overridden in all the .NET predefined types and which returns a string representation of the object:

int i = 10;
string s = i.ToString();

Similarly, if you need to parse a string to retrieve a numeric or Boolean value, you can use the Parse method supported by all the predefined value types:

string s ="100";
int i = int.Parse(s);
WriteLine(i + 50); // Add 50 to prove it is really an int

Note that Parse registers an error by throwing an exception if it is unable to convert the string (for example, if you try to convert the string Hello to an integer). Again, exceptions are covered in Chapter 14.

Boxing and Unboxing

In Chapter 2 you learned that all types—both the simple predefined types, such as int and char, and the complex types, such as classes and structs—derive from the object type. This means you can treat even literal values as though they are objects:

string s = 10.ToString();

However, you also saw that C# data types are divided into value types, which are allocated on the stack, and reference types, which are allocated on the managed heap. How does this square with the capability to call methods on an int, if the int is nothing more than a 4-byte value on the stack?

C# achieves this through a bit of magic called boxing. Boxing and its counterpart, unboxing, enable you to convert value types to reference types and then back to value types. We include this in the section on casting because this is essentially what you are doing—you are casting your value to the object type. Boxing is the term used to describe the transformation of a value type to a reference type. Basically, the runtime creates a temporary reference-type box for the object on the heap.

This conversion can occur implicitly, as in the preceding example, but you can also perform it explicitly:

int myIntNumber = 20;
object myObject = myIntNumber;

Unboxing is the term used to describe the reverse process, whereby the value of a previously boxed value type is cast back to a value type. Here we use the term cast because this has to be done explicitly. The syntax is similar to explicit type conversions already described:

int myIntNumber = 20;
object myObject = myIntNumber; // Box the int
int mySecondNumber = (int)myObject; // Unbox it back into an int

A variable can be unboxed only if it has been boxed. If you execute the last line when myObject is not a boxed int, you get a runtime exception thrown at runtime.

One word of warning: When unboxing, you have to be careful that the receiving value variable has enough room to store all the bytes in the value being unboxed. C#’s ints, for example, are only 32 bits long, so unboxing a long value (64 bits) into an int, as shown here, results in an InvalidCastException:

long myLongNumber = 333333423;
object myObject = (object)myLongNumber;
int myIntNumber = (int)myObject;

Comparing Objects for Equality

After discussing operators and briefly touching on the equality operator, it is worth considering for a moment what equality means when dealing with instances of classes and structs. Understanding the mechanics of object equality is essential for programming logical expressions and is important when implementing operator overloads and casts, the topic of the rest of this chapter.

The mechanisms of object equality vary depending on whether you are comparing reference types (instances of classes) or value types (the primitive data types, instances of structs, or enums). The following sections present the equality of reference types and value types independently.

Comparing Reference Types for Equality

You might be surprised to learn that System.Object defines three different methods for comparing objects for equality: ReferenceEquals and two versions of Equals. Add to this the comparison operator (==) and you actually have four ways to compare for equality. Some subtle differences exist between the different methods, which are examined next.

The ReferenceEquals Method

ReferenceEquals is a static method that tests whether two references refer to the same instance of a class, specifically whether the two references contain the same address in memory. As a static method, it cannot be overridden, so the System.Object implementation is what you always have. ReferenceEquals always returns true if supplied with two references that refer to the same object instance, and false otherwise. It does, however, consider null to be equal to null:

SomeClass x, y;
x = new SomeClass();
y = new SomeClass();
bool B1 = ReferenceEquals(null, null); // returns true
bool B2 = ReferenceEquals(null,x); // returns false
bool B3 = ReferenceEquals(x, y); // returns false because x and y
 // point to different objects

The Virtual Equals Method

The System.Object implementation of the virtual version of Equals also works by comparing references. However, because this method is virtual, you can override it in your own classes to compare objects by value. In particular, if you intend instances of your class to be used as keys in a dictionary, you need to override this method to compare values. Otherwise, depending on how you override Object.GetHashCode, the dictionary class that contains your objects either will not work at all or will work very inefficiently. Note that when overriding Equals, your override should never throw exceptions. Again, that’s because doing so can cause problems for dictionary classes and possibly some other .NET base classes that internally call this method.

The Static Equals Method

The static version of Equals actually does the same thing as the virtual instance version. The difference is that the static version takes two parameters and compares them for equality. This method is able to cope when either of the objects is null; therefore, it provides an extra safeguard against throwing exceptions if there is a risk that an object might be null. The static overload first checks whether the references it has been passed are null. If they are both null, it returns true (because null is considered to be equal to null). If just one of them is null, it returns false. If both references actually refer to something, it calls the virtual instance version of Equals. This means that when you override the instance version of Equals, the effect is the same as if you were overriding the static version as well.

Comparison Operator (==)

It is best to think of the comparison operator as an intermediate option between strict value comparison and strict reference comparison. In most cases, writing the following means that you are comparing references:

bool b = (x == y); // x, y object references

However, it is accepted that there are some classes whose meanings are more intuitive if they are treated as values. In those cases, it is better to override the comparison operator to perform a value comparison. Overriding operators is discussed next, but the obvious example of this is the System.String class for which Microsoft has overridden this operator to compare the contents of the strings rather than their references.

Comparing Value Types for Equality

When comparing value types for equality, the same principles hold as for reference types: ReferenceEquals is used to compare references, Equals is intended for value comparisons, and the comparison operator is viewed as an intermediate case. However, the big difference is that value types need to be boxed to be converted to references so that methods can be executed on them. In addition, Microsoft has already overloaded the instance Equals method in the System.ValueType class to test equality appropriate to value types. If you call sA.Equals(sB) where sA and sB are instances of some struct, the return value is true or false, according to whether sA and sB contain the same values in all their fields. On the other hand, no overload of == is available by default for your own structs. Writing (sA == sB) in any expression results in a compilation error unless you have provided an overload of == in your code for the struct in question.

Another point is that ReferenceEquals always returns false when applied to value types because, to call this method, the value types need to be boxed into objects. Even if you write the following, you still get the result of false:

bool b = ReferenceEquals(v,v); // v is a variable of some value type

The reason is that v is boxed separately when converting each parameter, which means you get different references. Therefore, there really is no reason to call ReferenceEquals to compare value types because it doesn’t make much sense.

Although the default override of Equals supplied by System.ValueType will almost certainly be adequate for the vast majority of structs that you define, you might want to override it again for your own structs to improve performance. Also, if a value type contains reference types as fields, you might want to override Equals to provide appropriate semantics for these fields because the default override of Equals will simply compare their addresses.

Operator Overloading

This section looks at another type of member that you can define for a class or a struct: the operator overload. Operator overloading is something that will be familiar to C++ developers. However, because the concept is new to both Java and Visual Basic developers, we explain it here. C++ developers will probably prefer to skip ahead to the main operator overloading example.

The point of operator overloading is that you do not always just want to call methods or properties on objects. Often, you need to do things like add quantities together, multiply them, or perform logical operations such as comparing objects. Suppose you defined a class that represents a mathematical matrix. In the world of math, matrices can be added together and multiplied, just like numbers. Therefore, it is quite plausible that you would want to write code like this:

Matrix a, b, c;
// assume a, b and c have been initialized
Matrix d = c * (a + b);

By overloading the operators, you can tell the compiler what + and * do when used in conjunction with a Matrix object, enabling you to write code like the preceding. If you were coding in a language that did not support operator overloading, you would have to define methods to perform those operations. The result would certainly be less intuitive and would probably look something like this:

Matrix d = c.Multiply(a.Add(b));

With what you have learned so far, operators such as + and * have been strictly for use with the predefined data types, and for good reason: The compiler knows what all the common operators mean for those data types. For example, it knows how to add two longs or how to divide one double by another double, and it can generate the appropriate intermediate language code. When you define your own classes or structs, however, you have to tell the compiler everything: what methods are available to call, what fields to store with each instance, and so on. Similarly, if you want to use operators with your own types, you have to tell the compiler what the relevant operators mean in the context of that class. You do that by defining overloads for the operators.

The other thing to stress is that overloading is not just concerned with arithmetic operators. You also need to consider the comparison operators, ==, <, >, !=, >=, and <=. Take the statement if (a==b). For classes, this statement, by default, compares the references a and b. It tests whether the references point to the same location in memory, rather than checking whether the instances actually contain the same data. For the string class, this behavior is overridden so that comparing strings really does compare the contents of each string. You might want to do the same for your own classes. For structs, the == operator does not do anything at all by default. Trying to compare two structs to determine whether they are equal produces a compilation error unless you explicitly overload == to tell the compiler how to perform the comparison.

In many situations, being able to overload operators enables you to generate more readable and intuitive code, including the following:

	Almost any mathematical object such as coordinates, vectors, matrices, tensors, functions, and so on. If you are writing a program that does some mathematical or physical modeling, you will almost certainly use classes representing these objects.

	Graphics programs that use mathematical or coordinate-related objects when calculating positions on-screen.

	A class that represents an amount of money (for example, in a financial program).

	A word processing or text analysis program that uses classes representing sentences, clauses, and so on. You might want to use operators to combine sentences (a more sophisticated version of concatenation for strings).

However, there are also many types for which operator overloading is not relevant. Using operator overloading inappropriately will make any code that uses your types far more difficult to understand. For example, multiplying two DateTime objects does not make any sense conceptually.

How Operators Work

To understand how to overload operators, it’s quite useful to think about what happens when the compiler encounters an operator. Using the addition operator (+) as an example, suppose that the compiler processes the following lines of code:

int myInteger = 3;
uint myUnsignedInt = 2;
double myDouble = 4.0;
long myLong = myInteger + myUnsignedInt;
double myOtherDouble = myDouble + myInteger;

Now consider what happens when the compiler encounters this line:

long myLong = myInteger + myUnsignedInt;

The compiler identifies that it needs to add two integers and assign the result to a long. However, the expression myInteger + myUnsignedInt is really just an intuitive and convenient syntax for calling a method that adds two numbers. The method takes two parameters, myInteger and myUnsignedInt, and returns their sum. Therefore, the compiler does the same thing it does for any method call: It looks for the best matching overload of the addition operator based on the parameter types—in this case, one that takes two integers. As with normal overloaded methods, the desired return type does not influence the compiler’s choice as to which version of a method it calls. As it happens, the overload called in the example takes two int parameters and returns an int; this return value is subsequently converted to a long.

The next line causes the compiler to use a different overload of the addition operator:

double myOtherDouble = myDouble + myInteger;

In this instance, the parameters are a double and an int, but there is no overload of the addition operator that takes this combination of parameters. Instead, the compiler identifies the best matching overload of the addition operator as being the version that takes two doubles as its parameters, and it implicitly casts the int to a double. Adding two doubles requires a different process from adding two integers. Floating-point numbers are stored as a mantissa and an exponent. Adding them involves bit-shifting the mantissa of one of the doubles so that the two exponents have the same value, adding the mantissas, then shifting the mantissa of the result and adjusting its exponent to maintain the highest possible accuracy in the answer.

Now you are in a position to see what happens if the compiler finds something like this:

Vector vect1, vect2, vect3;
// initialize vect1 and vect2
vect3 = vect1 + vect2;
vect1 = vect1*2;

Here, Vector is the struct, which is defined in the following section. The compiler sees that it needs to add two Vector instances, vect1 and vect2, together. It looks for an overload of the addition operator, which takes two Vector instances as its parameters.

If the compiler finds an appropriate overload, it calls up the implementation of that operator. If it cannot find one, it checks whether there is any other overload for + that it can use as a best match—perhaps something with two parameters of other data types that can be implicitly converted to Vector instances. If the compiler cannot find a suitable overload, it raises a compilation error, just as it would if it could not find an appropriate overload for any other method call.

Operator Overloading Example: The struct Vector

The samples in this chapter make use of the following dependencies and namespaces (unless otherwise noted):

Dependencies

	NETStandard.Library

Namespaces

	System

	static System.Console

This section demonstrates operator overloading through developing a struct named Vector that represents a three-dimensional mathematical vector. Don’t worry if mathematics is not your strong point—the vector example is very simple. As far as you are concerned here, a 3D vector is just a set of three numbers (doubles) that tell you how far something is moving. The variables representing the numbers are called _x, _y, and _z: the _x tells you how far something moves east, _y tells you how far it moves north, and _z tells you how far it moves upward (in height). Combine the three numbers and you get the total movement. For example, if _x=3.0, _y=3.0, and _z=1.0 (which you would normally write as (3.0, 3.0, 1.0), you’re moving 3 units east, 3 units north, and rising upward by 1 unit.

You can add or multiply vectors by other vectors or by numbers. Incidentally, in this context, we use the term scalar, which is math-speak for a simple number—in C# terms that is just a double. The significance of addition should be clear. If you move first by the vector (3.0, 3.0, 1.0) then move by the vector (2.0, -4.0, -4.0), the total amount you have moved can be determined by adding the two vectors. Adding vectors means adding each component individually, so you get (5.0, -1.0, -3.0). In this context, mathematicians write c=a+b, where a and b are the vectors and c is the resulting vector. You want to be able to use the Vector struct the same way.

NOTE The fact that this example is developed as a struct rather than a class is not significant with operator overloading. Operator overloading works in the same way for both structs and classes.

Following is the definition for Vector—containing the read-only properties, constructors, and a ToString override so you can easily view the contents of a Vector, and, finally, that operator overload (code file OperatorOverloadingSample/Vector.cs):

struct Vector
{
 public Vector(double x, double y, double z)
 {
 X = x;
 Y = y;
 Z = z;
 }

 public Vector(Vector v)
 {
 X = v.X;
 Y = v.Y;
 Z = v.Z;
 }

 public double X { get; }
 public double Y { get; }
 public double Z { get; }

 public override string ToString() => $"({X}, {Y}, {Z})";
}

This example has two constructors that require specifying the initial value of the vector, either by passing in the values of each component or by supplying another Vector whose value can be copied. Constructors like the second one, that takes a single Vector argument, are often termed copy constructors because they effectively enable you to initialize a class or struct instance by copying another instance.

Here is the interesting part of the Vector struct—the operator overload that provides support for the addition operator:

public static Vector operator +(Vector left, Vector right) =>
 new Vector(left.X + right.X, left.Y + right.Y, left.Z + right.Z);

The operator overload is declared in much the same way as a static method, except that the operator keyword tells the compiler it is actually an operator overload you are defining. The operator keyword is followed by the actual symbol for the relevant operator, in this case the addition operator (+). The return type is whatever type you get when you use this operator. Adding two vectors results in a vector; therefore, the return type is also a Vector. For this particular override of the addition operator, the return type is the same as the containing class, but that is not necessarily the case, as you see later in this example. The two parameters are the things you are operating on. For binary operators (those that take two parameters), such as the addition and subtraction operators, the first parameter is the value on the left of the operator, and the second parameter is the value on the right.

The implementation of this operator returns a new Vector that is initialized using X, Y, and Z properties from the left and right variables.

C# requires that all operator overloads be declared as public and static, which means they are associated with their class or struct, not with a particular instance. Because of this, the body of the operator overload has no access to non-static class members or the this identifier. This is fine because the parameters provide all the input data the operator needs to know to perform its task.

Now all you need to do is write some simple code to test the Vector struct (code file OperatorOverloadingSample/Program.cs):

static void Main()
{
 Vector vect1, vect2, vect3;

 vect1 = new Vector(3.0, 3.0, 1.0);
 vect2 = new Vector(2.0, -4.0, -4.0);
 vect3 = vect1 + vect2;

 WriteLine($"vect1 = {vect1}");
 WriteLine($"vect2 = {vect2}");
 WriteLine($"vect3 = {vect3}");
}

Compiling and running this code returns the following result:

vect1 = (3, 3, 1)
vect2 = (2, -4, -4)
vect3 = (5, -1, -3)

In addition to adding vectors, you can multiply and subtract them and compare their values. In this section, you develop the Vector example further by adding a few more operator overloads. You won’t develop the complete set that you’d probably need for a fully functional Vector type, but you develop enough to demonstrate some other aspects of operator overloading. First, you overload the multiplication operator to support multiplying vectors by a scalar and multiplying vectors by another vector.

Multiplying a vector by a scalar simply means multiplying each component individually by the scalar: for example, 2 * (1.0, 2.5, 2.0) returns (2.0, 5.0, 4.0). The relevant operator overload looks similar to this (code file OperatorOverloadingSample2/Vector.cs):

public static Vector operator *(double left, Vector right) =>
 new Vector(left * right.X, left * right.Y, left * right.Z);

This by itself, however, is not sufficient. If a and b are declared as type Vector, you can write code like this:

b = 2 * a;

The compiler implicitly converts the integer 2 to a double to match the operator overload signature. However, code like the following does not compile:

b = a * 2;

The point is that the compiler treats operator overloads exactly like method overloads. It examines all the available overloads of a given operator to find the best match. The preceding statement requires the first parameter to be a Vector and the second parameter to be an integer, or something to which an integer can be implicitly converted. You have not provided such an overload. The compiler cannot start swapping the order of parameters, so the fact that you’ve provided an overload that takes a double followed by a Vector is not sufficient. You need to explicitly define an overload that takes a Vector followed by a double as well. There are two possible ways of implementing this. The first way involves breaking down the vector multiplication operation in the same way that you have done for all operators so far:

public static Vector operator *(Vector left, double right) =>
 new Vector(right * left.X, right * left.Y, right * left.Z);

Given that you have already written code to implement essentially the same operation, however, you might prefer to reuse that code by writing the following:

public static Vector operator *(Vector left, double right) =>
 right * left;

This code works by effectively telling the compiler that when it sees a multiplication of a Vector by a double, it can simply reverse the parameters and call the other operator overload. The sample code for this chapter uses the second version because it looks neater and illustrates the idea in action. This version also makes the code more maintainable because it saves duplicating the code to perform the multiplication in two separate overloads.

Next, you need to overload the multiplication operator to support vector multiplication. Mathematics provides a couple of ways to multiply vectors, but the one of interest here is known as the dot product or inner product, which actually returns a scalar as a result. That’s the reason for this example—to demonstrate that arithmetic operators don’t have to return the same type as the class in which they are defined.

In mathematical terms, if you have two vectors (x, y, z) and (X, Y, Z) then the inner product is defined to be the value of x*X + y*Y + z*Z. That might look like a strange way to multiply two things together, but it is actually very useful because it can be used to calculate various other quantities. If you ever write code that displays complex 3D graphics, such as using Direct3D or DirectDraw, you will almost certainly find that your code needs to work out inner products of vectors quite often as an intermediate step in calculating where to place objects on the screen. What’s relevant here is that you want users of your Vector to be able to write double X = a*b to calculate the inner product of two Vector objects (a and b). The relevant overload looks like this:

public static double operator *(Vector left, Vector right) =>
 left.X * right.X + left.Y * right.Y + left.Z * right.Z;

Now that you understand the arithmetic operators, you can confirm that they work using a simple test method (code file OperatorOverloadingSample2/Program.cs):

static void Main()
{
 // stuff to demonstrate arithmetic operations
 Vector vect1, vect2, vect3;

 vect1 = new Vector(1.0, 1.5, 2.0);
 vect2 = new Vector(0.0, 0.0, -10.0);
 vect3 = vect1 + vect2;

 WriteLine($"vect1 = {vect1}");
 WriteLine($"vect2 = {vect2}");
 WriteLine($"vect3 = vect1 + vect2 = {vect3}");
 WriteLine($"2 * vect3 = {2 * vect3}");
 WriteLine($"vect3 += vect2 gives {vect3 += vect2}");
 WriteLine($"vect3 = vect1 * 2 gives {vect3 = vect1 * 2}");
 WriteLine($"vect1 * vect3 = {vect1 * vect3}");
}

Running this code produces the following result:

vect1 = (1, 1.5, 2)
vect2 = (0, 0, -10)
vect3 = vect1 + vect2 = (1, 1.5, -8)
2 * vect3 = (2, 3, -16)
vect3 += vect2 gives (1, 1.5, -18)
vect3 = vect1 * 2 gives (2, 3, 4)
vect1 * vect3 = 14.5

This shows that the operator overloads have given the correct results; but if you look at the test code closely, you might be surprised to notice that it actually used an operator that wasn’t overloaded—the addition assignment operator, +=:

WriteLine($"vect3 += vect2 gives {vect3 += vect2}");

Although += normally counts as a single operator, it can be broken down into two steps: the addition and the assignment. Unlike the C++ language, C# does not allow you to overload the = operator; but if you overload +, the compiler automatically uses your overload of + to work out how to perform a += operation. The same principle works for all the assignment operators, such as -=, *=, /=, &=, and so on.

Overloading the Comparison Operators

As shown earlier in the section “Operators,” C# has six comparison operators, and they are paired as follows:

	== and !=

	> and <

	>= and <=

NOTE A .NET guideline defines that if the == operator returns true when comparing two objects, it should always return true. That’s why you should only overload the == operator on immutable types.

The C# language requires that you overload these operators in pairs. That is, if you overload ==, you must overload != too; otherwise, you get a compiler error. In addition, the comparison operators must return a bool. This is the fundamental difference between these operators and the arithmetic operators. The result of adding or subtracting two quantities, for example, can theoretically be any type depending on the quantities. You have already seen that multiplying two Vector objects can be implemented to give a scalar. Another example involves the .NET base class System.DateTime. It’s possible to subtract two DateTime instances, but the result is not a DateTime; instead it is a System.TimeSpan instance. By contrast, it doesn’t really make much sense for a comparison to return anything other than a bool.

Apart from these differences, overloading the comparison operators follows the same principles as overloading the arithmetic operators. However, comparing quantities isn’t always as simple as you might think. For example, if you simply compare two object references, you compare the memory address where the objects are stored. This is rarely the desired behavior of a comparison operator, so you must code the operator to compare the value of the objects and return the appropriate Boolean response. The following example overrides the == and != operators for the Vector struct. Here is the implementation of == (code file OverloadingComparisonSample/Vector.cs):

public static bool operator ==(Vector left, Vector right)
{
 if (object.ReferenceEquals(left, right)) return true;

 return left.X == right.X && left.Y == right.Y && left.Z == right.Z;
}

This approach simply compares two Vector objects for equality based on the values of their components. For most structs, that is probably what you will want to do, though in some cases you may need to think carefully about what you mean by equality. For example, if there are embedded classes, should you simply compare whether the references point to the same object (shallow comparison) or whether the values of the objects are the same (deep comparison)?

With a shallow comparison, the objects point to the same point in memory, whereas deep comparisons work with values and properties of the object to deem equality. You want to perform equality checks depending on the depth to help you decide what you want to verify.

NOTE Don’t be tempted to overload the comparison operator by calling the instance version of the Equals method inherited from System.Object. If you do and then an attempt is made to evaluate (objA == objB), when objA happens to be null, you get an exception, as the .NET runtime tries to evaluate null.Equals(objB). Working the other way around (overriding Equals to call the comparison operator) should be safe.

You also need to override the != operator. Here is the simple way to do this:

public static bool operator !=(Vector left, Vector right) => !(left == right);

Now override the Equals and GetHashCode methods. These methods should always be overridden when the == operator is overridden. Otherwise the compiler complains with a warning.

public override bool Equals(object obj)
{
 if (obj == null) return false;
 return this == (Vector)obj;
}

public override int GetHashCode() =>
 X.GetHashCode() + (Y.GetHashCode() << 4) + (Z.GetHashCode() << 8);

The Equals method can invoke in turn the == operator. The implementation of the hash code should be fast and always return the same value for the same object. This method is important when using dictionaries. Within dictionaries, it is used to build up the tree for objects, so it’s best to distribute the returned values in the integer range. The GetHashCode method of the double type returns the integer representation of the double. For the Vector type, the hash values of the underlying types are just added. For having different values for the hash code—for example, with values (5.0, 2.0, 0.0), and (2.0, 5.0, 0.0)—the Y and Z values of the returned hash values are bit-shifted by 4 and 8 bits before the numbers are added.

For value types, you should also implement the interface IEquatable<T>. This interface is a strongly typed version of the Equals method that is defined by the base class Object. Having all the other code already in place, you can easily do the implementation:

public bool Equals(Vector other) => this == other;

As usual, you should quickly confirm that your override works with some test code. This time you’ll define three Vector objects and compare them (code file OverloadingComparisonSample/Program.cs):

static void Main()
{
 var vect1 = new Vector(3.0, 3.0, -10.0);
 var vect2 = new Vector(3.0, 3.0, -10.0);
 var vect3 = new Vector(2.0, 3.0, 6.0);

 WriteLine($"vect1 == vect2 returns {(vect1 == vect2)}");
 WriteLine($"vect1 == vect3 returns {(vect1 == vect3)}");
 WriteLine($"vect2 == vect3 returns {(vect2 == vect3)}");

 WriteLine();

 WriteLine($"vect1 != vect2 returns {(vect1 != vect2)}");
 WriteLine($"vect1 != vect3 returns {(vect1 != vect3)}");
 WriteLine($"vect2 != vect3 returns {(vect2 != vect3)}");
}

Running the example produces these results at the command line:

vect1 == vect2 returns True
vect1 == vect3 returns False
vect2 == vect3 returns False

vect1 != vect2 returns False
vect1 != vect3 returns True
vect2 != vect3 returns True

Which Operators Can You Overload?

It is not possible to overload all the available operators. The operators that you can overload are listed in the following table:

	Category
	Operators
	Restrictions

	Arithmetic binary
	+, *, /, -, %
	None

	Arithmetic unary
	+, -, ++, – –
	None

	Bitwise binary
	&, |, ^, <<, >>
	None

	Bitwise unary
	!, ~,true, false
	The true and false operators must be overloaded as a pair.

	Comparison
	==, !=,>=, <=>, <,
	Comparison operators must be overloaded in pairs.

	Assignment
	+=, -=, *=, /=, >>=, <<=, %=, &=, |=, ^=
	You cannot explicitly overload these operators; they are overridden implicitly when you override the individual operators such as +, -, %, and so on.

	Index
	[]
	You cannot overload the index operator directly. The indexer member type, discussed in Chapter 2, allows you to support the index operator on your classes and structs.

	Cast
	()
	You cannot overload the cast operator directly. User-defined casts (discussed in the last section of this chapter) allow you to define custom cast behavior.

NOTE You might wonder what is the reason for overloading the true and false operators. There’s a good reason: what integer value is true or false is different based on the technology or framework you use. With many technologies, 0 is false and 1 is true; others define that any other value than 0 is true. You can also find technologies where −1 is false.

Implementing Custom Index Operators

Custom indexers cannot be implemented using the operator overloading syntax, but they can be implemented with a syntax that looks very similar to properties.

Start by looking at accessing array elements. Here, an array of int elements is created. The second code line uses the indexer to access the second element and pass 42 to it. The third line uses the indexer to access the third element and pass the element to the variable x.

int[] arr1 = {1, 2, 3};
arr1[1] = 42;
int x = arr1[2];

NOTE Arrays are explained in Chapter 7.

The CustomIndexerSample makes use of these dependencies and namespaces:

Dependencies

	NETStandard.Library

	

Namespaces

	System

	System.Collections.Generic

	System.Linq

	static System.Console

To create a custom indexer, first create a Person class with read-only properties FirstName, LastName, and Birthday (code file CustomIndexerSample/Person.cs):

public class Person
{
 public DateTime Birthday { get; }
 public string FirstName { get; }
 public string LastName { get; }

 public Person(string firstName, string lastName, DateTime birthDay)
 {
 FirstName = firstName;
 LastName = lastName;
 Birthday = birthDay;
 }

 public override string ToString() => $"{FirstName} {LastName}";
}

The class PersonCollection defines a private array field that contains Person elements and a constructor where a number of Person objects can be passed (code file CustomIndexerSample/PersonCollection.cs):

public class PersonCollection
{
 private Person[] _people;

 public PersonCollection(params Person[] people)
 {
 _people = people.ToArray();
 }
}

For allowing indexer-syntax to be used to access the PersonCollection and return Person objects, you can create an indexer. The indexer looks very similar to a property as it also contains get and set accessors. What’s different is the name. Specifying an indexer makes use of the this keyword. The brackets that follow the this keyword specify the type that is used with the index. An array offers indexers with the int type, so int types are here used as well to pass the information directly to the contained array _people. The use of the set and get accessors is very similar to properties. The get accessor is invoked when a value is retrieved, the set accessor when a (Person object) is passed on the right side.

public Person this[int index]
{
 get { return _people[index]; }
 set { _people[index] = value; }
}

With indexers, you cannot only define int types as the indexing type. Any type works, as is shown here with the DateTime struct as indexing type. This indexer is used to return every person with a specified birthday. Because multiple persons can have the same birthday, not a single Person object is returned but a list of persons with the interface IEnumerable<Person>. The Where method used makes the filtering based on a lambda expression. The Where method is defined in the namespace System.Linq:

public IEnumerable<Person> this[DateTime birthDay]
{
 get { return _people.Where(p => p.Birthday == birthDay); }
}

The indexer using the DateTime type offers retrieving person objects, but doesn’t allow you to set person objects as there’s only a get accessor but no set accessor. With C# 6, a shorthand notation exists to create the same code with an expression-bodied member (the same syntax available with properties):

public IEnumerable<Person> this[DateTime birthDay] =>
 _people.Where(p => p.Birthday == birthDay);

The Main method of the sample application creates a PersonCollection object and passes four Person objects to the constructor. With the first WriteLine method, the third element is accessed using the get accessor of the indexer with the int parameter. Within the foreach loop, the indexer with the DateTime parameter is used to pass a specified date (code file CustomIndexerSample/Program.cs):

static void Main()
{
 var p1 = new Person("Ayrton","Senna", new DateTime(1960, 3, 21));
 var p2 = new Person("Ronnie","Peterson", new DateTime(1944, 2, 14));
 var p3 = new Person("Jochen","Rindt", new DateTime(1942, 4, 18));
 var p4 = new Person("Francois","Cevert", new DateTime(1944, 2, 25));
 var coll = new PersonCollection(p1, p2, p3, p4);

 WriteLine(coll[2]);

 foreach (var r in coll[new DateTime(1960, 3, 21)])
 {
 WriteLine(r);
 }
 ReadLine();
}

Running the program, the first WriteLine method writes Jochen Rindt to the console; the result of the foreach loop is Ayrton Senna as that person has the same birthday as is assigned within the second indexer.

User-Defined Casts

Earlier in this chapter (see the “Explicit Conversions” section), you learned that you can convert values between predefined data types through a process of casting. You also saw that C# allows two different types of casts: implicit and explicit. This section looks at these types of casts.

For an explicit cast, you explicitly mark the cast in your code by including the destination data type inside parentheses:

int i = 3;
long l = i; // implicit
short s = (short)i; // explicit

For the predefined data types, explicit casts are required where there is a risk that the cast might fail or some data might be lost. The following are some examples:

	When converting from an int to a short, the short might not be large enough to hold the value of the int.

	When converting from signed to unsigned data types, incorrect results are returned if the signed variable holds a negative value.

	When converting from floating-point to integer data types, the fractional part of the number will be lost.

	When converting from a nullable type to a non-nullable type, a value of null causes an exception.

By making the cast explicit in your code, C# forces you to affirm that you understand there is a risk of data loss, and therefore presumably you have written your code to take this into account.

Because C# allows you to define your own data types (structs and classes), it follows that you need the facility to support casts to and from those data types. The mechanism is to define a cast as a member operator of one of the relevant classes. Your cast operator must be marked as either implicit or explicit to indicate how you are intending it to be used. The expectation is that you follow the same guidelines as for the predefined casts: if you know that the cast is always safe regardless of the value held by the source variable, then you define it as implicit. Conversely, if you know there is a risk of something going wrong for certain values—perhaps some loss of data or an exception being thrown—then you should define the cast as explicit.

NOTE You should define any custom casts you write as explicit if there are any source data values for which the cast will fail or if there is any risk of an exception being thrown.

The syntax for defining a cast is similar to that for overloading operators discussed earlier in this chapter. This is not a coincidence—a cast is regarded as an operator whose effect is to convert from the source type to the destination type. To illustrate the syntax, the following is taken from an example struct named Currency, which is introduced later in this section:

public static implicit operator float (Currency value)
{
 // processing
}

The return type of the operator defines the target type of the cast operation, and the single parameter is the source object for the conversion. The cast defined here allows you to implicitly convert the value of a Currency into a float. Note that if a conversion has been declared as implicit, the compiler permits its use either implicitly or explicitly. If it has been declared as explicit, the compiler only permits it to be used explicitly. In common with other operator overloads, casts must be declared as both public and static.

NOTE C++ developers will notice that this is different from C++, in which casts are instance members of classes.

Implementing User-Defined Casts

This section illustrates the use of implicit and explicit user-defined casts in an example called CastingSample. In this example, you define a struct, Currency, which holds a positive USD ($) monetary value. C# provides the decimal type for this purpose, but it is possible you will still want to write your own struct or class to represent monetary values if you need to perform sophisticated financial processing and therefore want to implement specific methods on such a class.

NOTE The syntax for casting is the same for structs and classes. This example happens to be for a struct, but it would work just as well if you declared Currency as a class.

Initially, the definition of the Currency struct is as follows (code file CastingSample/Currency.cs):

public struct Currency
{
 public uint Dollars { get; }
 public ushort Cents { get; }

 public Currency(uint dollars, ushort cents)
 {
 Dollars = dollars;
 Cents = cents;
 }

 public override string ToString() => $"${Dollars}.{Cents,-2:00}";
}

The use of unsigned data types for the Dollar and Cents properties ensures that a Currency instance can hold only positive values. It is restricted this way to illustrate some points about explicit casts later. You might want to use a class like this to hold, for example, salary information for company employees (people’s salaries tend not to be negative!).

Start by assuming that you want to be able to convert Currency instances to float values, where the integer part of the float represents the dollars. In other words, you want to be able to write code like this:

var balance = new Currency(10, 50);
float f = balance; // We want f to be set to 10.5

To be able to do this, you need to define a cast. Hence, you add the following to your Currency definition:

public static implicit operator float (Currency value) =>
 value.Dollars + (value.Cents/100.0f);

The preceding cast is implicit. It is a sensible choice in this case because, as it should be clear from the definition of Currency, any value that can be stored in the currency can also be stored in a float. There is no way that anything should ever go wrong in this cast.

NOTE There is a slight cheat here: In fact, when converting a uint to a float, there can be a loss in precision, but Microsoft has deemed this error sufficiently marginal to count the uint-to-float cast as implicit.

However, if you have a float that you would like to be converted to a Currency, the conversion is not guaranteed to work. A float can store negative values, whereas Currency instances can’t, and a float can store numbers of a far higher magnitude than can be stored in the (uint) Dollar field of Currency. Therefore, if a float contains an inappropriate value, converting it to a Currency could give unpredictable results. Because of this risk, the conversion from float to Currency should be defined as explicit. Here is the first attempt, which does not return quite the correct results, but it is instructive to examine why:

public static explicit operator Currency (float value)
{
 uint dollars = (uint)value;
 ushort cents = (ushort)((value-dollars)*100);
 return new Currency(dollars, cents);
}

The following code now successfully compiles:

float amount = 45.63f;
Currency amount2 = (Currency)amount;

However, the following code, if you tried it, would generate a compilation error because it attempts to use an explicit cast implicitly:

float amount = 45.63f;
Currency amount2 = amount; // wrong

By making the cast explicit, you warn the developer to be careful because data loss might occur. However, as you soon see, this is not how you want your Currency struct to behave. Try writing a test harness and running the sample. Here is the Main method, which instantiates a Currency struct and attempts a few conversions. At the start of this code, you write out the value of balance in two different ways—this is needed to illustrate something later in the example (code file CastingSample/Program.cs):

static void Main()
{
 try
 {
 var balance = new Currency(50,35);

 WriteLine(balance);
 WriteLine($"balance is {balance}"); // implicitly invokes ToString

 float balance2= balance;
 WriteLine($"After converting to float, = {balance2}");

 balance = (Currency) balance2;

 WriteLine($"After converting back to Currency, = {balance}");
 WriteLine("Now attempt to convert out of range value of" +
 "-$50.50 to a Currency:");

 checked
 {
 balance = (Currency) (-50.50);
 WriteLine($"Result is {balance}");
 }
 }
 catch(Exception e)
 {
 WriteLine($"Exception occurred: {e.Message}");
 }
}

Notice that the entire code is placed in a try block to catch any exceptions that occur during your casts. In addition, the lines that test converting an out-of-range value to Currency are placed in a checked block in an attempt to trap negative values. Running this code produces the following output:

50.35
Balance is $50.35
After converting to float, = 50.35
After converting back to Currency, = $50.34
Now attempt to convert out of range value of -$50.50 to a Currency:
Result is $4294967246.00

This output shows that the code did not quite work as expected. First, converting back from float to Currency gave a wrong result of $50.34 instead of $50.35. Second, no exception was generated when you tried to convert an obviously out-of-range value.

The first problem is caused by rounding errors. If a cast is used to convert from a float to a uint, the computer truncates the number rather than rounds it. The computer stores numbers in binary rather than decimal, and the fraction 0.35 cannot be exactly represented as a binary fraction (just as 1∕3 cannot be represented exactly as a decimal fraction; it comes out as 0.3333 recurring). The computer ends up storing a value very slightly lower than 0.35 that can be represented exactly in binary format. Multiply by 100 and you get a number fractionally less than 35, which is truncated to 34 cents. Clearly, in this situation, such errors caused by truncation are serious, and the way to avoid them is to ensure that some intelligent rounding is performed in numerical conversions instead.

Luckily, Microsoft has written a class that does this: System.Convert. The System.Convert object contains a large number of static methods to perform various numerical conversions, and the one that we want is Convert.ToUInt16. Note that the extra care taken by the System.Convert methods comes at a performance cost. You should use them only when necessary.

Let’s examine the second problem—why the expected overflow exception wasn’t thrown. The issue here is this: The place where the overflow really occurs isn’t actually in the Main routine at all—it is inside the code for the cast operator, which is called from the Main method. The code in this method was not marked as checked.

The solution is to ensure that the cast itself is computed in a checked context, too. With both this change and the fix for the first problem, the revised code for the conversion looks like the following:

public static explicit operator Currency (float value)
{
 checked
 {
 uint dollars = (uint)value;
 ushort cents = Convert.ToUInt16((value-dollars)*100);
 return new Currency(dollars, cents);
 }
}

Note that you use Convert.ToUInt16 to calculate the cents, as described earlier, but you do not use it for calculating the dollar part of the amount. System.Convert is not needed when calculating the dollar amount because truncating the float value is what you want there.

NOTE The System.Convert methods also carry out their own overflow checking. Hence, for the particular case we are considering, there is no need to place the call to Convert.ToUInt16 inside the checked context. The checked context is still required, however, for the explicit casting of value to dollars.

You won’t see a new set of results with this new checked cast just yet because you have some more modifications to make to the CastingSample example later in this section.

NOTE If you are defining a cast that will be used very often, and for which performance is at an absolute premium, you may prefer not to do any error checking. That is also a legitimate solution, provided that the behavior of your cast and the lack of error checking are very clearly documented.

Casts Between Classes

The Currency example involves only classes that convert to or from float—one of the predefined data types. However, it is not necessary to involve any of the simple data types. It is perfectly legitimate to define casts to convert between instances of different structs or classes that you have defined. You need to be aware of a couple of restrictions, however:

	You cannot define a cast if one of the classes is derived from the other (these types of casts already exist, as you see later).

	The cast must be defined inside the definition of either the source or the destination data type.

To illustrate these requirements, suppose that you have the class hierarchy shown in Figure 8.1.

[image: Hierarchy diagram shows class C and D derived from class B which is derived from class A. Class A is derived from the system object.]

Figure 8.1

In other words, classes C and D are indirectly derived from A. In this case, the only legitimate user-defined cast between A, B, C, or D would be to convert between classes C and D, because these classes are not derived from each other. The code to do so might look like the following (assuming you want the casts to be explicit, which is usually the case when defining casts between user-defined classes):

public static explicit operator D(C value)
{
 //...
}

public static explicit operator C(D value)
{
 //...
}

For each of these casts, you can choose where you place the definitions—inside the class definition of C or inside the class definition of D, but not anywhere else. C# requires you to put the definition of a cast inside either the source class (or struct) or the destination class (or struct). A side effect of this is that you cannot define a cast between two classes unless you have access to edit the source code for at least one of them. This is sensible because it prevents third parties from introducing casts into your classes.

After you have defined a cast inside one of the classes, you cannot also define the same cast inside the other class. Obviously, there should be only one cast for each conversion; otherwise, the compiler would not know which one to use.

Casts Between Base and Derived Classes

To see how these casts work, start by considering the case in which both the source and the destination are reference types, and consider two classes, MyBase and MyDerived, where MyDerived is derived directly or indirectly from MyBase.

First, from MyDerived to MyBase, it is always possible (assuming the constructors are available) to write this:

MyDerived derivedObject = new MyDerived();
MyBase baseCopy = derivedObject;

Here, you are casting implicitly from MyDerived to MyBase. This works because of the rule that any reference to a type MyBase is allowed to refer to objects of class MyBase or anything derived from MyBase. In OO programming, instances of a derived class are, in a real sense, instances of the base class, plus something extra. All the functions and fields defined on the base class are defined in the derived class, too.

Alternatively, you can write this:

MyBase derivedObject = new MyDerived();
MyBase baseObject = new MyBase();
MyDerived derivedCopy1 = (MyDerived) derivedObject; // OK
MyDerived derivedCopy2 = (MyDerived) baseObject; // Throws exception

This code is perfectly legal C# (in a syntactic sense, that is) and illustrates casting from a base class to a derived class. However, the final statement throws an exception when executed. When you perform the cast, the object being referred to is examined. Because a base class reference can, in principle, refer to a derived class instance, it is possible that this object is actually an instance of the derived class that you are attempting to cast to. If that is the case, the cast succeeds, and the derived reference is set to refer to the object. If, however, the object in question is not an instance of the derived class (or of any class derived from it), the cast fails and an exception is thrown.

Notice that the casts that the compiler has supplied, which convert between base and derived class, do not actually do any data conversion on the object in question. All they do is set the new reference to refer to the object if it is legal for that conversion to occur. To that extent, these casts are very different in nature from the ones that you normally define yourself. For example, in the CastingSample example earlier, you defined casts that convert between a Currency struct and a float. In the float-to-Currency cast, you actually instantiated a new Currency struct and initialized it with the required values. The predefined casts between base and derived classes do not do this. If you want to convert a MyBase instance into a real MyDerived object with values based on the contents of the MyBase instance, you cannot use the cast syntax to do this. The most sensible option is usually to define a derived class constructor that takes a base class instance as a parameter, and have this constructor perform the relevant initializations:

class DerivedClass: BaseClass
{
 public DerivedClass(BaseClass base)
 {
 // initialize object from the Base instance
 }
 // etc.

Boxing and Unboxing Casts

The previous discussion focused on casting between base and derived classes where both participants were reference types. Similar principles apply when casting value types, although in this case it is not possible to simply copy references—some copying of data must occur.

It is not, of course, possible to derive from structs or primitive value types. Casting between base and derived structs invariably means casting between a primitive type or a struct and System.Object. (Theoretically, it is possible to cast between a struct and System.ValueType, though it is hard to see why you would want to do this.)

The cast from any struct (or primitive type) to object is always available as an implicit cast—because it is a cast from a derived type to a base type—and is just the familiar process of boxing. For example, using the Currency struct:

var balance = new Currency(40,0);
object baseCopy = balance;

When this implicit cast is executed, the contents of balance are copied onto the heap into a boxed object, and the baseCopy object reference is set to this object. What actually happens behind the scenes is this: When you originally defined the Currency struct, the .NET Framework implicitly supplied another (hidden) class, a boxed Currency class, which contains all the same fields as the Currency struct but is a reference type, stored on the heap. This happens whenever you define a value type, whether it is a struct or an enum, and similar boxed reference types exist corresponding to all the primitive value types of int, double, uint, and so on. It is not possible, or necessary, to gain direct programmatic access to any of these boxed classes in source code, but they are the objects that are working behind the scenes whenever a value type is cast to object. When you implicitly cast Currency to object, a boxed Currency instance is instantiated and initialized with all the data from the Currency struct. In the preceding code, it is this boxed Currency instance to which baseCopy refers. By these means, it is possible for casting from derived to base type to work syntactically in the same way for value types as for reference types.

Casting the other way is known as unboxing. Like casting between a base reference type and a derived reference type, it is an explicit cast because an exception is thrown if the object being cast is not of the correct type:

object derivedObject = new Currency(40,0);
object baseObject = new object();
Currency derivedCopy1 = (Currency)derivedObject; // OK
Currency derivedCopy2 = (Currency)baseObject; // Exception thrown

This code works in a way similar to the code presented earlier for reference types. Casting derivedObject to Currency works fine because derivedObject actually refers to a boxed Currency instance—the cast is performed by copying the fields out of the boxed Currency object into a new Currency struct. The second cast fails because baseObject does not refer to a boxed Currency object.

When using boxing and unboxing, it is important to understand that both processes actually copy the data into the new boxed or unboxed object. Hence, manipulations on the boxed object, for example, do not affect the contents of the original value type.

Multiple Casting

One thing you have to watch for when you are defining casts is that if the C# compiler is presented with a situation in which no direct cast is available to perform a requested conversion, it attempts to find a way of combining casts to do the conversion. For example, with the Currency struct, suppose the compiler encounters a few lines of code like this:

var balance = new Currency(10,50);
long amount = (long)balance;
double amountD = balance;

You first initialize a Currency instance, and then you attempt to convert it to a long. The trouble is that you haven’t defined the cast to do that. However, this code still compiles successfully. Here’s what happens: The compiler realizes that you have defined an implicit cast to get from Currency to float, and the compiler already knows how to explicitly cast a float to a long. Hence, it compiles that line of code into IL code that converts balance first to a float, and then converts that result to a long. The same thing happens in the final line of the code, when you convert balance to a double. However, because the cast from Currency to float and the predefined cast from float to double are both implicit, you can write this conversion in your code as an implicit cast. If you prefer, you could also specify the casting route explicitly:

var balance = new Currency(10,50);
long amount = (long)(float)balance;
double amountD = (double)(float)balance;

However, in most cases, this would be seen as needlessly complicating your code. The following code, by contrast, produces a compilation error:

var balance = new Currency(10,50);
long amount = balance;

The reason is that the best match for the conversion that the compiler can find is still to convert first to float and then to long. The conversion from float to long needs to be specified explicitly, though.

Not all of this by itself should give you too much trouble. The rules are, after all, fairly intuitive and designed to prevent any data loss from occurring without the developer knowing about it. However, the problem is that if you are not careful when you define your casts, it is possible for the compiler to select a path that leads to unexpected results. For example, suppose that it occurs to someone else in the group writing the Currency struct that it would be useful to be able to convert a uint containing the total number of cents in an amount into a Currency (cents, not dollars, because the idea is not to lose the fractions of a dollar). Therefore, this cast might be written to try to achieve this:

// Do not do this!
public static implicit operator Currency (uint value) =>
 new Currency(value/100u, (ushort)(value%100));

Note the u after the first 100 in this code to ensure that value/100u is interpreted as a uint. If you had written value/100, the compiler would have interpreted this as an int, not a uint.

The comment Do not do this! is clearly noted in this code, and here is why: The following code snippet merely converts a uint containing 350 into a Currency and back again; but what do you think bal2 will contain after executing this?

uint bal = 350;
Currency balance = bal;
uint bal2 = (uint)balance;

The answer is not 350 but 3! Moreover, it all follows logically. You convert 350 implicitly to a Currency, giving the result balance.Dollars = 3, balance.Cents = 50. Then the compiler does its usual figuring out of the best path for the conversion back. Balance ends up being implicitly converted to a float (value 3.5), and this is converted explicitly to a uint with value 3.

Of course, other instances exist in which converting to another data type and back again causes data loss. For example, converting a float containing 5.8 to an int and back to a float again loses the fractional part, giving you a result of 5, but there is a slight difference in principle between losing the fractional part of a number and dividing an integer by more than 100. Currency has suddenly become a rather dangerous class that does strange things to integers!

The problem is that there is a conflict between how your casts interpret integers. The casts between Currency and float interpret an integer value of 1 as corresponding to one dollar, but the latest uint-to-Currency cast interprets this value as one cent. This is an example of very poor design. If you want your classes to be easy to use, you should ensure that all your casts behave in a way that is mutually compatible, in the sense that they intuitively give the same results. In this case, the solution is obviously to rewrite the uint-to-Currency cast so that it interprets an integer value of 1 as one dollar:

public static implicit operator Currency (uint value) =>
 new Currency(value, 0);

Incidentally, you might wonder whether this new cast is necessary at all. The answer is that it could be useful. Without this cast, the only way for the compiler to carry out a uint-to-Currency conversion would be via a float. Converting directly is a lot more efficient in this case, so having this extra cast provides performance benefits, though you need to ensure that it provides the same result as via a float, which you have now done. In other situations, you may also find that separately defining casts for different predefined data types enables more conversions to be implicit rather than explicit, though that is not the case here.

A good test of whether your casts are compatible is to ask whether a conversion will give the same results (other than perhaps a loss of accuracy as in float-to-int conversions) regardless of which path it takes. The Currency class provides a good example of this. Consider this code:

var balance = new Currency(50, 35);
ulong bal = (ulong) balance;

At present, there is only one way that the compiler can achieve this conversion: by converting the Currency to a float implicitly, then to a ulong explicitly. The float-to-ulong conversion requires an explicit conversion, but that is fine because you have specified one here.

Suppose, however, that you then added another cast, to convert implicitly from a Currency to a uint. You actually do this by modifying the Currency struct by adding the casts both to and from uint. (code file CastingSample/Currency.cs):

public static implicit operator Currency (uint value) =>
 new Currency(value, 0);

public static implicit operator uint (Currency value) =>
 value.Dollars;

Now the compiler has another possible route to convert from Currency to ulong: to convert from Currency to uint implicitly, then to ulong implicitly. Which of these two routes will it take? C# has some precise rules about the best route for the compiler when there are several possibilities. (The rules are not covered in this book, but if you are interested in the details, see the MSDN documentation.) The best answer is that you should design your casts so that all routes give the same answer (other than possible loss of precision), in which case it doesn’t really matter which one the compiler picks. (As it happens in this case, the compiler picks the Currency-to-uint-to-ulong route in preference to Currency-to-float-to-ulong.)

To test casting the Currency to uint, add this test code to the Main method (code file CastingSample/Program.cs):

static void Main()
{
 try
 {
 var balance = new Currency(50,35);

 WriteLine(balance);
 WriteLine($"balance is {balance}");

 uint balance3 = (uint) balance;

 WriteLine($"Converting to uint gives {balance3}");
 }
 catch (Exception ex)
 {
 WriteLine($"Exception occurred: {e.Message}");
 }
}

Running the sample now gives you these results:

50
balance is $50.35
Converting to uint gives 50

The output shows that the conversion to uint has been successful, though, as expected, you have lost the cents part of the Currency in making this conversion. Casting a negative float to Currency has also produced the expected overflow exception now that the float-to-Currency cast itself defines a checked context.

However, the output also demonstrates one last potential problem that you need to be aware of when working with casts. The very first line of output does not display the balance correctly, displaying 50 instead of 50.35.

So what is going on? The problem here is that when you combine casts with method overloads, you get another source of unpredictability.

The WriteLine statement using the format string implicitly calls the Currency.ToString method, ensuring that the Currency is displayed as a string.

The very first WriteLine method, however, simply passes a raw Currency struct to WriteLine. Now, WriteLine has many overloads, but none of them takes a Currency struct. Therefore, the compiler starts fishing around to see what it can cast the Currency to in order to make it match up with one of the overloads of WriteLine. As it happens, one of the WriteLine overloads is designed to display uints quickly and efficiently, and it takes a uint as a parameter—you have now supplied a cast that converts Currency implicitly to uint.

In fact, WriteLine has another overload that takes a double as a parameter and displays the value of that double. If you look closely at the output running the example previously where the cast to uint did not exist, you see that the first line of output displayed Currency as a double, using this overload. In that example, there wasn’t a direct cast from Currency to uint, so the compiler picked Currency-to-float-to-double as its preferred way of matching up the available casts to the available WriteLine overloads. However, now that there is a direct cast to uint available in SimpleCurrency2, the compiler has opted for that route.

The upshot of this is that if you have a method call that takes several overloads and you attempt to pass it a parameter whose data type doesn’t match any of the overloads exactly, then you are forcing the compiler to decide not only what casts to use to perform the data conversion, but also which overload, and hence which data conversion, to pick. The compiler always works logically and according to strict rules, but the results may not be what you expected. If there is any doubt, you are better off specifying which cast to use explicitly.

Summary

This chapter looked at the standard operators provided by C#, described the mechanics of object equality, and examined how the compiler converts the standard data types from one to another. It also demonstrated how you can implement custom operator support on your data types using operator overloads. Finally, you looked at a special type of operator overload, the cast operator, which enables you to specify how instances of your types are converted to other data types.

The next chapter explains delegates, lambda expressions, and events.

9
Delegates, Lambdas, and Events

What’s In This Chapter?

	Delegates

	Lambda expressions

	Closures

	Events

	Weak Events

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Simple Delegates

	Bubble Sorter

	Lambda Expressions

	Events Sample

	Weak Events

Referencing Methods

Delegates are the .NET variant of addresses to methods. Compare this to C++, where a function pointer is nothing more than a pointer to a memory location that is not type-safe. You have no idea what a pointer is really pointing to, and items such as parameters and return types are not known. This is completely different with .NET; delegates are type-safe classes that define the return types and types of parameters. The delegate class not only contains a reference to a method, but can hold references to multiple methods.

Lambda expressions are directly related to delegates. When the parameter is a delegate type, you can use a lambda expression to implement a method that’s referenced from the delegate.

This chapter explains the basics of delegates and lambda expressions, and shows you how to implement methods called by delegates with lambda expressions. It also demonstrates how .NET uses delegates as the means of implementing events.

Delegates

Delegates exist for situations in which you want to pass methods around to other methods. To see what that means, consider this line of code:

int i = int.Parse("99");

You are so used to passing data to methods as parameters, as in this example, that you don’t consciously think about it, so the idea of passing methods around instead of data might sound a little strange. However, sometimes you have a method that does something, and rather than operate on data, the method might need to do something that involves invoking another method. To complicate things further, you do not know at compile time what this second method is. That information is available only at runtime and hence needs to be passed in as a parameter to the first method. That might sound confusing, but it should become clearer with a couple of examples:

	Threads and tasks—It is possible in C# to tell the computer to start a new sequence of execution in parallel with what it is currently doing. Such a sequence is known as a thread, and you start one using the Start method on an instance of one of the base classes, System.Threading.Thread. If you tell the computer to start a new sequence of execution, you have to tell it where to start that sequence; that is, you have to supply the details of a method in which execution can start. In other words, the constructor of the Thread class takes a parameter that defines the method to be invoked by the thread.

	Generic library classes—Many libraries contain code to perform various standard tasks. It is usually possible for these libraries to be self-contained, in the sense that you know when you write to the library exactly how the task must be performed. However, sometimes the task contains a subtask, which only the individual client code that uses the library knows how to perform. For example, say that you want to write a class that takes an array of objects and sorts them in ascending order. Part of the sorting process involves repeatedly taking two of the objects in the array and comparing them to see which one should come first. If you want to make the class capable of sorting arrays of any object, there is no way that it can tell in advance how to do this comparison. The client code that hands your class the array of objects must also tell your class how to do this comparison for the particular objects it wants sorted. The client code has to pass your class details of an appropriate method that can be called to do the comparison.

	Events—The general idea here is that often you have code that needs to be informed when some event takes place. GUI programming is full of situations similar to this. When the event is raised, the runtime needs to know what method should be executed. This is done by passing the method that handles the event as a parameter to a delegate. This is discussed later in this chapter.

In C and C++, you can just take the address of a function and pass it as a parameter. There’s no type safety with C. You can pass any function to a method where a function pointer is required. Unfortunately, this direct approach not only causes some problems with type safety but also neglects the fact that when you are doing object-oriented programming, methods rarely exist in isolation; they usually need to be associated with a class instance before they can be called. Because of these problems, the .NET Framework does not syntactically permit this direct approach. Instead, if you want to pass methods around, you have to wrap the details of the method in a new kind of object, a delegate. Delegates, quite simply, are a special type of object—special in the sense that, whereas all the objects defined up to now contain data, a delegate contains the address of a method, or the address of multiple methods.

Declaring Delegates

When you want to use a class in C#, you do so in two stages. First, you need to define the class—that is, you need to tell the compiler what fields and methods make up the class. Then (unless you are using only static methods), you instantiate an object of that class. With delegates it is the same process. You start by declaring the delegates you want to use. Declaring delegates means telling the compiler what kind of method a delegate of that type will represent. Then, you have to create one or more instances of that delegate. Behind the scenes, the compiler creates a class that represents the delegate.

The syntax for declaring delegates looks like this:

delegate void IntMethodInvoker(int x);

This declares a delegate called IntMethodInvoker, and indicates that each instance of this delegate can hold a reference to a method that takes one int parameter and returns void. The crucial point to understand about delegates is that they are type-safe. When you define the delegate, you have to provide full details about the signature and the return type of the method that it represents.

NOTE One good way to understand delegates is to think of a delegate as something that gives a name to a method signature and the return type.

Suppose that you want to define a delegate called TwoLongsOp that represents a method that takes two longs as its parameters and returns a double. You could do so like this:

delegate double TwoLongsOp(long first, long second);

Or, to define a delegate that represents a method that takes no parameters and returns a string, you might write this:

delegate string GetAString();

The syntax is similar to that for a method definition, except there is no method body and the definition is prefixed with the keyword delegate. Because what you are doing here is basically defining a new class, you can define a delegate in any of the same places that you would define a class—that is to say, either inside another class, outside of any class, or in a namespace as a top-level object. Depending on how visible you want your definition to be, and the scope of the delegate, you can apply any of the normal access modifiers to delegate definitions—public, private, protected, and so on:

public delegate string GetAString();

NOTE We really mean what we say when we describe defining a delegate as defining a new class. Delegates are implemented as classes derived from the class System.MulticastDelegate, which is derived from the base class System.Delegate. The C# compiler is aware of this class and uses its delegate syntax to hide the details of the operation of this class. This is another good example of how C# works in conjunction with the base classes to make programming as easy as possible.

After you have defined a delegate, you can create an instance of it so that you can use it to store details about a particular method.

NOTE There is an unfortunate problem with terminology here. When you are talking about classes, there are two distinct terms: class, which indicates the broader definition, and object, which means an instance of the class. Unfortunately, with delegates there is only the one term; delegate can refer to both the class and the object. When you create an instance of a delegate, what you have created is also referred to as a delegate. You need to be aware of the context to know which meaning is being used when we talk about delegates.

Using Delegates

The following code snippet demonstrates the use of a delegate. It is a rather long-winded way of calling the ToString method on an int (code file GetAStringDemo/Program.cs):

private delegate string GetAString();

public static void Main()
{
 int x = 40;
 GetAString firstStringMethod = new GetAString(x.ToString);
 WriteLine($"String is {firstStringMethod()}");
 // With firstStringMethod initialized to x.ToString(),
 // the above statement is equivalent to saying
 // Console.WriteLine($"String is {x.ToString()}");
}

This code instantiates a delegate of type GetAString and initializes it so it refers to the ToString method of the integer variable x. Delegates in C# always syntactically take a one-parameter constructor, the parameter being the method to which the delegate refers. This method must match the signature with which you originally defined the delegate. In this case, you would get a compilation error if you tried to initialize the variable firstStringMethod with any method that did not take any parameters and return a string. Notice that because int.ToString is an instance method (as opposed to a static one), you need to specify the instance (x) as well as the name of the method to initialize the delegate properly.

The next line actually uses the delegate to display the string. In any code, supplying the name of a delegate instance, followed by parentheses containing any parameters, has exactly the same effect as calling the method wrapped by the delegate. Hence, in the preceding code snippet, the Console.WriteLine statement is completely equivalent to the commented-out line.

In fact, supplying parentheses to the delegate instance is the same as invoking the Invoke method of the delegate class. Because firstStringMethod is a variable of a delegate type, the C# compiler replaces firstStringMethod with firstStringMethod.Invoke:

firstStringMethod();
firstStringMethod.Invoke();

For less typing, at every place where a delegate instance is needed, you can just pass the name of the address. This is known by the term delegate inference. This C# feature works as long as the compiler can resolve the delegate instance to a specific type. The example initialized the variable firstStringMethod of type GetAString with a new instance of the delegate GetAString:

GetAString firstStringMethod = new GetAString(x.ToString);

You can write the same just by passing the method name with the variable x to the variable firstStringMethod:

GetAString firstStringMethod = x.ToString;

The code that is created by the C# compiler is the same. The compiler detects that a delegate type is required with firstStringMethod, so it creates an instance of the delegate type GetAString and passes the address of the method with the object x to the constructor.

NOTE Be aware that you can’t type the brackets to the method name as x.ToString() and pass it to the delegate variable. This would be an invocation of the method. The invocation of the ToString method returns a string object that can’t be assigned to the delegate variable. You can only assign the address of a method to the delegate variable.

Delegate inference can be used anywhere a delegate instance is required. Delegate inference can also be used with events because events are based on delegates (as you see later in this chapter).

One feature of delegates is that they are type-safe to the extent that they ensure that the signature of the method being called is correct. However, interestingly, they don’t care what type of object the method is being called against or even whether the method is a static method or an instance method.

NOTE An instance of a given delegate can refer to any instance or static method on any object of any type, provided that the signature of the method matches the signature of the delegate.

To demonstrate this, the following example expands the previous code snippet so that it uses the firstStringMethod delegate to call a couple of other methods on another object—an instance method and a static method. For this, you use the Currency struct. The Currency struct has its own overload of ToString and a static method with the same signature to GetCurrencyUnit. This way, the same delegate variable can be used to invoke these methods (code file GetAStringDemo/Currency.cs):

struct Currency
{
 public uint Dollars;
 public ushort Cents;

 public Currency(uint dollars, ushort cents)
 {
 this.Dollars = dollars;
 this.Cents = cents;
 }

 public override string ToString() => $"${Dollars}.{Cents,2:00}";

 public static string GetCurrencyUnit() =>"Dollar";

 public static explicit operator Currency (float value)
 {
 checked
 {
 uint dollars = (uint)value;
 ushort cents = (ushort)((value—dollars) * 100);
 return new Currency(dollars, cents);
 }
 }

 public static implicit operator float (Currency value) =>
 value.Dollars + (value.Cents / 100.0f);

 public static implicit operator Currency (uint value) =>
 new Currency(value, 0);

 public static implicit operator uint (Currency value) =>
 value.Dollars;
}

Now you can use the GetAString instance as follows (code file GetAStringDemo/Program.cs):

private delegate string GetAString();

public static void Main()
{
 int x = 40;
 GetAString firstStringMethod = x.ToString;
 WriteLine($"String is {firstStringMethod()}");

 var balance = new Currency(34, 50);

 // firstStringMethod references an instance method
 firstStringMethod = balance.ToString;
 WriteLine($"String is {firstStringMethod()}");

 // firstStringMethod references a static method
 firstStringMethod = new GetAString(Currency.GetCurrencyUnit);
 WriteLine($"String is {firstStringMethod()}");
}

This code shows how you can call a method via a delegate and subsequently reassign the delegate to refer to different methods on different instances of classes, even static methods or methods against instances of different types of class, provided that the signature of each method matches the delegate definition.

When you run the application, you get the output from the different methods that are referenced by the delegate:

String is 40
String is $34.50
String is Dollar

However, you still haven’t seen the process of actually passing a delegate to another method. Nor has this actually achieved anything particularly useful yet. It is possible to call the ToString method of int and Currency objects in a much more straightforward way than using delegates. Unfortunately, the nature of delegates requires a fairly complex example before you can really appreciate their usefulness. The next section presents two delegate examples. The first one simply uses delegates to call a couple of different operations. It illustrates how to pass delegates to methods and how you can use arrays of delegates—although arguably it still doesn’t do much that you couldn’t do a lot more simply without delegates. The second, much more complex, example presents a BubbleSorter class, which implements a method to sort arrays of objects into ascending order. This class would be difficult to write without using delegates.

Simple Delegate Example

This example defines a MathOperations class that uses a couple of static methods to perform two operations on doubles. Then you use delegates to invoke these methods. The MathOperations class looks like this:

class MathOperations
{
 public static double MultiplyByTwo(double value) => value * 2;

 public static double Square(double value) => value * value;
}

You invoke these methods as follows (code file SimpleDelegate/Program.cs):

using static System.Console;

namespace Wrox.ProCSharp.Delegates
{
 delegate double DoubleOp(double x);

 class Program
 {
 static void Main()
 {
 DoubleOp[] operations =
 {
 MathOperations.MultiplyByTwo,
 MathOperations.Square
 };

 for (int i=0; i < operations.Length; i++)
 {
 WriteLine($"Using operations[{i}]:);
 ProcessAndDisplayNumber(operations[i], 2.0);
 ProcessAndDisplayNumber(operations[i], 7.94);
 ProcessAndDisplayNumber(operations[i], 1.414);
 WriteLine();
 }
 }

 static void ProcessAndDisplayNumber(DoubleOp action, double value)
 {
 double result = action(value);
 WriteLine($"Value is {value}, result of operation is {result}");
 }
 }
}

In this code, you instantiate an array of DoubleOp delegates (remember that after you have defined a delegate class, you can basically instantiate instances just as you can with normal classes, so putting some into an array is no problem). Each element of the array is initialized to refer to a different operation implemented by the MathOperations class. Then, you loop through the array, applying each operation to three different values. This illustrates one way of using delegates—to group methods together into an array so that you can call several methods in a loop.

The key lines in this code are the ones in which you actually pass each delegate to the ProcessAndDisplayNumber method, such as here:

ProcessAndDisplayNumber(operations[i], 2.0);

The preceding passes in the name of a delegate but without any parameters. Given that operations[i] is a delegate, syntactically:

	operations[i] means the delegate (that is, the method represented by the delegate)

	operations[i](2.0) means actually call this method, passing in the value in parentheses

The ProcessAndDisplayNumber method is defined to take a delegate as its first parameter:

static void ProcessAndDisplayNumber(DoubleOp action, double value)

Then, when in this method, you call:

double result = action(value);

This actually causes the method that is wrapped up by the action delegate instance to be called, and its return result stored in Result. Running this example gives you the following:

SimpleDelegate
Using operations[0]:
Value is 2, result of operation is 4
Value is 7.94, result of operation is 15.88
Value is 1.414, result of operation is 2.828

Using operations[1]:
Value is 2, result of operation is 4
Value is 7.94, result of operation is 63.0436
Value is 1.414, result of operation is 1.999396

Action<T> and Func<T> Delegates

Instead of defining a new delegate type with every parameter and return type, you can use the Action<T> and Func<T> delegates. The generic Action<T> delegate is meant to reference a method with void return. This delegate class exists in different variants so that you can pass up to 16 different parameter types. The Action class without the generic parameter is for calling methods without parameters. Action<in T> is for calling a method with one parameter; Action<in T1, in T2> for a method with two parameters; and Action<in T1, in T2, in T3, in T4, in T5, in T6, in T7, in T8> for a method with eight parameters.

The Func<T> delegates can be used in a similar manner. Func<T> allows you to invoke methods with a return type. Similar to Action<T>, Func<T> is defined in different variants to pass up to 16 parameter types and a return type. Func<out TResult> is the delegate type to invoke a method with a return type and without parameters. Func<in T, out TResult> is for a method with one parameter, and Func<in T1, in T2, in T3, in T4, out TResult> is for a method with four parameters.

The example in the preceding section declared a delegate with a double parameter and a double return type:

delegate double DoubleOp(double x);

Instead of declaring the custom delegate DoubleOp you can use the Func<in T, out TResult> delegate. You can declare a variable of the delegate type or, as shown here, an array of the delegate type:

<double, double>[] operations =
{
 MathOperations.MultiplyByTwo,
 MathOperations.Square
};

and use it with the ProcessAndDisplayNumber method as a parameter:

static void ProcessAndDisplayNumber(Func<double, double> action,
 double value)
{
 double result = action(value);
 WriteLine($"Value is {value}, result of operation is {result}");
}

BubbleSorter Example

You are now ready for an example that shows the real usefulness of delegates. You are going to write a class called BubbleSorter. This class implements a static method, Sort, which takes as its first parameter an array of objects, and rearranges this array into ascending order. For example, if you were to pass in this array of ints, {0, 5, 6, 2, 1}, it would rearrange this array into {0, 1, 2, 5, 6}.

The bubble-sorting algorithm is a well-known and very simple way to sort numbers. It is best suited to small sets of numbers, because for larger sets of numbers (more than about 10), far more efficient algorithms are available. It works by repeatedly looping through the array, comparing each pair of numbers and, if necessary, swapping them, so that the largest numbers progressively move to the end of the array. For sorting ints, a method to do a bubble sort might look similar to this:

bool swapped = true;
do
{
 swapped = false;
 for (int i = 0; i < sortArray.Length—1; i++)
 {
 if (sortArray[i] > sortArray[i+1])) // problem with this test
 {
 int temp = sortArray[i];
 sortArray[i] = sortArray[i + 1];
 sortArray[i + 1] = temp;
 swapped = true;
 }
 }
} while (swapped);

This is all very well for ints, but you want your Sort method to be able to sort any object. In other words, if some client code hands you an array of Currency structs or any other class or struct that it may have defined, you need to be able to sort the array. This presents a problem with the line if(sortArray[i] < sortArray[i+1]) in the preceding code, because that requires you to compare two objects on the array to determine which one is greater. You can do that for ints, but how do you do it for a new class that doesn’t implement the < operator? The answer is that the client code that knows about the class has to pass in a delegate wrapping a method that does the comparison. Also, instead of using an int type for the temp variable, a generic Sort method can be implemented using a generic type.

With a generic Sort<T> method accepting type T, a comparison method is needed that has two parameters of type T and a return type of bool for the if comparison. This method can be referenced from a Func<T1, T2, TResult> delegate, where T1 and T2 are the same type: Func<T, T, bool>.

This way, you give your Sort<T> method the following signature:

static public void Sort<T>(IList<T> sortArray, Func<T, T, bool> comparison)

The documentation for this method states that comparison must refer to a method that takes two arguments, and returns true if the value of the first argument is smaller than the second one.

Now you are all set. Here’s the definition for the BubbleSorter class (code file BubbleSorter/BubbleSorter.cs):

class BubbleSorter
{
 static public void Sort<T>(IList<T> sortArray, Func<T, T, bool> comparison)
 {
 bool swapped = true;
 do
 {
 swapped = false;
 for (int i = 0; i < sortArray.Count—1; i++)
 {
 if (comparison(sortArray[i+1], sortArray[i]))
 {
 T temp = sortArray[i];
 sortArray[i] = sortArray[i + 1];
 sortArray[i + 1] = temp;
 swapped = true;
 }
 }
 } while (swapped);
 }
}

To use this class, you need to define another class, which you can use to set up an array that needs sorting. For this example, assume that the Mortimer Phones mobile phone company has a list of employees and wants them sorted according to salary. Each employee is represented by an instance of a class, Employee, which looks similar to this (code file BubbleSorter/Employee.cs):

class Employee
{
 public Employee(string name, decimal salary)
 {
 Name = name;
 Salary = salary;
 }

 public string Name { get; }
 public decimal Salary { get; private set; }

 public override string ToString() => $"{Name}, {Salary:C}";

 public static bool CompareSalary(Employee e1, Employee e2) =>
 e1.Salary < e2.Salary;
}

Note that to match the signature of the Func<T, T, bool> delegate, you have to define CompareSalary in this class as taking two Employee references and returning a Boolean. In the implementation, the comparison based on salary is performed.

Now you are ready to write some client code to request a sort (code file BubbleSorter/Program.cs):

using static System.Console;

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 static void Main()
 {
 Employee[] employees =
 {
 new Employee("Bugs Bunny", 20000),
 new Employee("Elmer Fudd", 10000),
 new Employee("Daffy Duck", 25000),
 new Employee("Wile Coyote", 1000000.38m),
 new Employee("Foghorn Leghorn", 23000),
 new Employee("RoadRunner", 50000)
 };

 BubbleSorter.Sort(employees, Employee.CompareSalary);

 foreach (var employee in employees)
 {
 WriteLine(employee);
 }
 }
 }
}

Running this code shows that the Employees are correctly sorted according to salary:

BubbleSorter
Elmer Fudd, $10,000.00
Bugs Bunny, $20,000.00
Foghorn Leghorn, $23,000.00
Daffy Duck, $25,000.00
RoadRunner, $50,000.00
Wile Coyote, $1,000,000.38

Multicast Delegates

So far, each of the delegates you have used wraps just one method call. Calling the delegate amounts to calling that method. If you want to call more than one method, you need to make an explicit call through a delegate more than once. However, it is possible for a delegate to wrap more than one method. Such a delegate is known as a multicast delegate. When a multicast delegate is called, it successively calls each method in order. For this to work, the delegate signature should return a void; otherwise, you would only get the result of the last method invoked by the delegate.

With a void return type, you can use the Action<double> delegate (code file MulticastDelegates/Program.cs):

class Program
{
 static void Main()
 {
 Action<double> operations = MathOperations.MultiplyByTwo;
 operations += MathOperations.Square;

In the earlier example, you wanted to store references to two methods, so you instantiated an array of delegates. Here, you simply add both operations into the same multicast delegate. Multicast delegates recognize the operators + and +=. Alternatively, you can expand the last two lines of the preceding code, as in this snippet:

Action<double> operation1 = MathOperations.MultiplyByTwo;
Action<double> operation2 = MathOperations.Square;
Action<double> operations = operation1 + operation2;

Multicast delegates also recognize the operators – and -= to remove method calls from the delegate.

NOTE In terms of what’s going on under the hood, a multicast delegate is a class derived from System.MulticastDelegate, which in turn is derived from System.Delegate. System.MulticastDelegate has additional members to allow the chaining of method calls into a list.

To illustrate the use of multicast delegates, the following code recasts the SimpleDelegate example into a new example: MulticastDelegate. Because you now need the delegate to refer to methods that return void, you have to rewrite the methods in the MathOperations class so they display their results instead of returning them (code file MulticastDelegates/MathOperations.cs):

class MathOperations
{
 public static void MultiplyByTwo(double value)
 {
 double result = value * 2;
 WriteLine($"Multiplying by 2: {value} gives {result}");
 }

 public static void Square(double value)
 {
 double result = value * value;
 WriteLine($"Squaring: {value} gives {result}");
 }
}

To accommodate this change, you also have to rewrite ProcessAndDisplayNumber (code file MulticastDelegates/Program.cs):

static void ProcessAndDisplayNumber(Action<double> action, double value)
{
 WriteLine();
 WriteLine($"ProcessAndDisplayNumber called with value = {value}");
 action(value);
}

Now you can try out your multicast delegate:

static void Main()
{
 Action<double> operations = MathOperations.MultiplyByTwo;
 operations += MathOperations.Square;

 ProcessAndDisplayNumber(operations, 2.0);
 ProcessAndDisplayNumber(operations, 7.94);
 ProcessAndDisplayNumber(operations, 1.414);
 WriteLine();
}

Each time ProcessAndDisplayNumber is called, it displays a message saying that it has been called. Then the following statement causes each of the method calls in the action delegate instance to be called in succession:

action(value);

Running the preceding code produces this result:

MulticastDelegate

ProcessAndDisplayNumber called with value = 2
Multiplying by 2: 2 gives 4
Squaring: 2 gives 4

ProcessAndDisplayNumber called with value = 7.94
Multiplying by 2: 7.94 gives 15.88
Squaring: 7.94 gives 63.0436

ProcessAndDisplayNumber called with value = 1.414
Multiplying by 2: 1.414 gives 2.828
Squaring: 1.414 gives 1.999396

If you are using multicast delegates, be aware that the order in which methods chained to the same delegate will be called is formally undefined. Therefore, avoid writing code that relies on such methods being called in any particular order.

Invoking multiple methods by one delegate might cause an even bigger problem. The multicast delegate contains a collection of delegates to invoke one after the other. If one of the methods invoked by a delegate throws an exception, the complete iteration stops. Consider the following MulticastIteration example. Here, the simple delegate Action that returns void without arguments is used. This delegate is meant to invoke the methods One and Two, which fulfill the parameter and return type requirements of the delegate. Be aware that method One throws an exception (code file MulticastDelegateWithIteration/Program.cs):

using System;
using static System.Console;

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 static void One()
 {
 WriteLine("One");
 throw new Exception("Error in one");
 }

 static void Two()
 {
 WriteLine("Two");
 }

In the Main method, delegate d1 is created to reference method One; next, the address of method Two is added to the same delegate. d1 is invoked to call both methods. The exception is caught in a try/catch block:

 static void Main()
 {
 Action d1 = One;
 d1 += Two;

 try
 {
 d1();
 }
 catch (Exception)
 {
 WriteLine("Exception caught");
 }
 }
 }
}

Only the first method is invoked by the delegate. Because the first method throws an exception, iterating the delegates stops here and method Two is never invoked. The result might differ because the order of calling the methods is not defined:

One
Exception Caught

NOTE Errors and exceptions are explained in detail in Chapter 14, “Errors and Exceptions.”

In such a scenario, you can avoid the problem by iterating the list on your own. The Delegate class defines the method GetInvocationList that returns an array of Delegate objects. You can now use this delegate to invoke the methods associated with them directly, catch exceptions, and continue with the next iteration:

static void Main()
{
 Action d1 = One;
 d1 += Two;

 Delegate[] delegates = d1.GetInvocationList();
 foreach (Action d in delegates)
 {
 try
 {
 d();
 }
 catch (Exception)
 {
 WriteLine("Exception caught");
 }
 }
}

When you run the application with the code changes, you can see that the iteration continues with the next method after the exception is caught:

One
Exception caught
Two

Anonymous Methods

Up to this point, a method must already exist for the delegate to work (that is, the delegate is defined with the same signature as the method(s) it will be used with). However, there is another way to use delegates—with anonymous methods. An anonymous method is a block of code that is used as the parameter for the delegate.

The syntax for defining a delegate with an anonymous method doesn’t change. It’s when the delegate is instantiated that things change. The following simple console application shows how using an anonymous method can work (code file AnonymousMethods/Program.cs):

using static System.Console;
using System;

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 static void Main()
 {
 string mid =", middle part,";

 Func<string, string> anonDel = delegate(string param)
 {
 param += mid;
 param +=" and this was added to the string.";
 return param;
 };
 WriteLine(anonDel("Start of string"));

 }
 }
}

The delegate Func<string, string> takes a single string parameter and returns a string. anonDel is a variable of this delegate type. Instead of assigning the name of a method to this variable, a simple block of code is used, prefixed by the delegate keyword, followed by a string parameter.

As you can see, the block of code uses a method-level string variable, mid, which is defined outside of the anonymous method and adds it to the parameter that was passed in. The code then returns the string value. When the delegate is called, a string is passed in as the parameter and the returned string is output to the console.

The benefit of using anonymous methods is that it reduces the amount of code you have to write. You don’t need to define a method just to use it with a delegate. This becomes evident when you define the delegate for an event (events are discussed later in this chapter), and it helps reduce the complexity of code, especially where several events are defined. With anonymous methods, the code does not perform faster. The compiler still defines a method; the method just has an automatically assigned name that you don’t need to know.

You must follow a couple of rules when using anonymous methods. You can’t have a jump statement (break, goto, or continue) in an anonymous method that has a target outside of the anonymous method. The reverse is also true: A jump statement outside the anonymous method cannot have a target inside the anonymous method.

Unsafe code cannot be accessed inside an anonymous method, and the ref and out parameters that are used outside of the anonymous method cannot be accessed. Other variables defined outside of the anonymous method can be used.

If you have to write the same functionality more than once, don’t use anonymous methods. In this case, instead of duplicating the code, write a named method. You have to write it only once and reference it by its name.

NOTE The syntax for anonymous methods was introduced with C# 2. With new programs you really don’t need this syntax anymore because lambda expressions (explained in the next section) offer the same—and more—functionality. However, you’ll find the syntax for anonymous methods in many places in existing source code, which is why it’s good to know it.

Lambda expressions have been available since C# 3.

Lambda Expressions

One way where lambda expressions are used is to assign a lambda expression to a delegate type: implement code inline. Lambda expressions can be used whenever you have a delegate parameter type. The previous example using anonymous methods is modified here to use a lambda expression.

using System;
using static System.Console;

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 static void Main()
 {
 string mid =", middle part,";

 Func<string, string> lambda = param =>
 {
 param += mid;
 param +=" and this was added to the string.";
 return param;
 };

 WriteLine(lambda("Start of string"));
 }
 }
}

The left side of the lambda operator, =>, lists the parameters needed. The right side following the lambda operator defines the implementation of the method assigned to the variable lambda.

Parameters

With lambda expressions there are several ways to define parameters. If there’s only one parameter, just the name of the parameter is enough. The following lambda expression uses the parameter named s. Because the delegate type defines a string parameter, s is of type string. The implementation invokes the String.Format method to return a string that is finally written to the console when the delegate is invoked: change uppercase TEST (code file LambdaExpressions/Program.cs):

Func<string, string> oneParam = s =>
 $"change uppercase {s.ToUpper()}";
WriteLine(oneParam("test"));

If a delegate uses more than one parameter, you can combine the parameter names inside brackets. Here, the parameters x and y are of type double as defined by the Func<double, double, double> delegate:

Func<double, double, double> twoParams = (x, y) => x * y;
WriteLine(twoParams(3, 2));

For convenience, you can add the parameter types to the variable names inside the brackets. If the compiler can’t match an overloaded version, using parameter types can help resolve the matching delegate:

Func<double, double, double> twoParamsWithTypes = (double x, double y) => x * y;
WriteLine(twoParamsWithTypes(4, 2));

Multiple Code Lines

If the lambda expression consists of a single statement, a method block with curly brackets and a return statement are not needed. There’s an implicit return added by the compiler:

Func<double, double> square = x => x * x;

It’s completely legal to add curly brackets, a return statement, and semicolons. Usually it’s just easier to read without them:

Func<double, double> square = x =>
 {
 return x * x;
 }

However, if you need multiple statements in the implementation of the lambda expression, curly brackets and the return statement are required:

Func<string, string> lambda = param =>
 {
 param += mid;
 param +=" and this was added to the string.";
 return param;
 };

Closures

With lambda expressions you can access variables outside the block of the lambda expression. This is known by the term closure. Closures are a great feature, but they can also be very dangerous if not used correctly.

In the following example, a lambda expression of type Func<int, int> requires one int parameter and returns an int. The parameter for the lambda expression is defined with the variable x. The implementation also accesses the variable someVal, which is outside the lambda expression. As long as you do not assume that the lambda expression creates a new method that is used later when f is invoked, this might not look confusing at all. Looking at this code block, the returned value calling f should be the value from x plus 5, but this might not be the case:

int someVal = 5;
Func<int, int> f = x => x + someVal;

Assuming the variable someVal is later changed, and then the lambda expression is invoked, the new value of someVal is used. The result here of invoking f(3) is 10:

someVal = 7;
WriteLine(f(3));

Similarly, when you’re changing the value of a closure variable within the lambda expression, you can access the changed value outside of the lambda expression.

Now, you might wonder how it is possible at all to access variables outside of the lambda expression from within the lambda expression. To understand this, consider what the compiler does when you define a lambda expression. With the lambda expression x => x + someVal, the compiler creates an anonymous class that has a constructor to pass the outer variable. The constructor depends on how many variables you access from the outside. With this simple example, the constructor accepts an int. The anonymous class contains an anonymous method that has the implementation as defined by the lambda expression, with the parameters and return type:

public class AnonymousClass
{
 private int someVal;
 public AnonymousClass(int someVal)
 {
 this.someVal = someVal;
 }
 public int AnonymousMethod(int x) => x + someVal;
}

Using the lambda expression and invoking the method creates an instance of the anonymous class and passes the value of the variable from the time when the call is made.

NOTE In case you are using closures with multiple threads, you can get into concurrency conflicts. It’s best to only use immutable types for closures. This way it’s guaranteed the value can’t change, and synchronization is not needed.

NOTE You can use lambda expressions anywhere the type is a delegate. Another use of lambda expressions is when the type is Expression or Expression<T>., in which case the compiler creates an expression tree. This feature is discussed in Chapter 13, “Language Integrated Query.”

Events

Events are based on delegates and offer a publish/subscribe mechanism to delegates. You can find events everywhere across the framework. In Windows applications, the Button class offers the Click event. This type of event is a delegate. A handler method that is invoked when the Click event is fired needs to be defined, with the parameters as defined by the delegate type.

In the code example shown in this section, events are used to connect the CarDealer and Consumer classes. The CarDealer class offers an event when a new car arrives. The Consumer class subscribes to the event to be informed when a new car arrives.

Event Publisher

You start with a CarDealer class that offers a subscription based on events. CarDealer defines the event named NewCarInfo of type EventHandler<CarInfoEventArgs> with the event keyword. Inside the method NewCar, the event NewCarInfo is fired by invoking the method RaiseNewCarInfo. The implementation of this method verifies whether the delegate is not null and raises the event (code file EventsSample/CarDealer.cs):

using static System.Console;
using System;

namespace Wrox.ProCSharp.Delegates
{
 public class CarInfoEventArgs: EventArgs
 {
 public CarInfoEventArgs(string car)
 {
 Car = car;
 }

 public string Car { get; }
 }

 public class CarDealer
 {
 public event EventHandler<CarInfoEventArgs> NewCarInfo;

 public void NewCar(string car)
 {
 WriteLine($"CarDealer, new car {car}");

 NewCarInfo?.Invoke(this, new CarInfoEventArgs(car));
 }
 }
}

NOTE The null propagation operator .? used in the previous example is new with C# 6. This operator is discussed in Chapter 8, “Operators and Casts.”

The class CarDealer offers the event NewCarInfo of type EventHandler<CarInfoEventArgs>. As a convention, events typically use methods with two parameters; the first parameter is an object and contains the sender of the event, and the second parameter provides information about the event. The second parameter is different for various event types. .NET 1.0 defined several hundred delegates for events for all different data types. That’s no longer necessary with the generic delegate EventHandler<T>. EventHandler<TEventArgs> defines a handler that returns void and accepts two parameters. With EventHandler<TEventArgs>, the first parameter needs to be of type object, and the second parameter is of type T. EventHandler<TEventArgs> also defines a constraint on T; it must derive from the base class EventArgs, which is the case with CarInfoEventArgs:

public event EventHandler<CarInfoEventArgs> NewCarInfo;

The delegate EventHandler<TEventArgs> is defined as follows:

public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e)
 where TEventArgs: EventArgs

Defining the event in one line is a C# shorthand notation. The compiler creates a variable of the delegate type EventHandler<CarInfoEventArgs> and adds methods to subscribe and unsubscribe from the delegate. The long form of the shorthand notation is shown next. This is very similar to auto-properties and full properties. With events, the add and remove keywords are used to add and remove a handler to the delegate:

private EventHandler<CarInfoEventArgs> newCarInfo;
public event EventHandler<CarInfoEventArgs> NewCarInfo
{
 add
 {
 newCarInfo += value;
 }
 remove
 {
 newCarInfo -= value;
 }
}

NOTE The long notation to define events is useful if more needs to be done than just adding and removing the event handler, such as adding synchronization for multiple thread access. The WPF controls make use of the long notation to add bubbling and tunneling functionality with the events. You can read more about event bubbling and tunneling events in Chapter 29, “Core XAML.”

The class CarDealer fires the event by calling the Invoke method of the delegate. This invokes all the handlers that are subscribed to the event. Remember, as previously shown with multicast delegates, the order of the methods invoked is not guaranteed. To have more control over calling the handler methods you can use the Delegate class method GetInvocationList to access every item in the delegate list and invoke each on its own, as shown earlier.

NewCarInfo?.Invoke(this, new CarInfoEventArgs(car));

Firing the event is just a one-liner. However, this is only with C# 6. Previous to C# 6, firing the event was more complex. Here is the same functionality implemented before C# 6. Before firing the event, you need to check whether the event is null. Because between a null check and firing the event the event could be set to null by another thread, a local variable is used, as shown in the following example:

EventHandler<CarInfoEventArgs> newCarInfo = NewCarInfo;
if (newCarInfo != null)
{
 newCarInfo(this, new CarInfoEventArgs(car));
}

With C# 6, all this could be replaced by using null propagation, with a single code line as you’ve seen earlier.

Before firing the event, it is necessary to check whether the delegate NewCarInfo is not null. If no one subscribed, the delegate is null:

protected virtual void RaiseNewCarInfo(string car)
{
 NewCarInfo?.Invoke(this, new CarInfoEventArgs(car));
}

Event Listener

The class Consumer is used as the event listener. This class subscribes to the event of the CarDealer and defines the method NewCarIsHere that in turn fulfills the requirements of the EventHandler<CarInfoEventArgs> delegate with parameters of type object and CarInfoEventArgs (code file EventsSample/Consumer.cs):

using static System.Console;

namespace Wrox.ProCSharp.Delegates
{
 public class Consumer
 {
 private string _name;

 public Consumer(string name)
 {
 _name = name;
 }

 public void NewCarIsHere(object sender, CarInfoEventArgs e)
 {
 WriteLine($"{_name}: car {e.Car} is new");
 }
 }
}

Now the event publisher and subscriber need to connect. This is done by using the NewCarInfo event of the CarDealer to create a subscription with +=. The consumer Michael subscribes to the event, then the consumer Sebastian, and next Michael unsubscribes with -= (code file EventsSample/Program.cs):

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 static void Main()
 {
 var dealer = new CarDealer();

 var daniel = new Consumer("Daniel");
 dealer.NewCarInfo += michael.NewCarIsHere;

 dealer.NewCar("Mercedes");

 var sebastian = new Consumer("Sebastian");
 dealer.NewCarInfo += sebastian.NewCarIsHere;

 dealer.NewCar("Ferrari");

 dealer.NewCarInfo -= sebastian.NewCarIsHere;

 dealer.NewCar("Red Bull Racing");
 }
 }
}

Running the application, a Mercedes arrived and Daniel was informed. After that, Sebastian registers for the subscription as well, both Daniel and Sebastian are informed about the new Ferrari. Then Sebastian unsubscribes and only Daniel is informed about the Red Bull:

CarDealer, new car Mercedes
Daniel: car Mercedes is new
CarDealer, new car Ferrari
Daniel: car Ferrari is new
Sebastian: car Ferrari is new
CarDealer, new car Red Bull Racing
Daniel: car Red Bull is new

Weak Events

With events, the publisher and listener are directly connected. This can be a problem with garbage collection. For example, if a listener is not directly referenced any more, there’s still a reference from the publisher. The garbage collector cannot clean up memory from the listener, as the publisher still holds a reference and fires events to the listener.

This strong connection can be resolved by using the weak event pattern and using the WeakEventManager<T> as an intermediary between the publisher and listeners.

The preceding example with the CarDealer as publisher and the Consumer as listener is modified in this section to use the weak event pattern.

The WeakEventManager<T> is defined within the System.Windows assembly that is not part of .NET Core. This sample is done with a .NET Framework 4.6 console application and does not run on other platforms.

NOTE With subscribers that are created dynamically, in order to not be in danger of having resource leaks, you need to pay special attention to events. That is, you need to either ensure that you unsubscribe events before the subscribers go out of scope (are not needed any longer), or use weak events. Events often are a reason for memory leaks in applications because subscribers have a long-lived scope, and thus the source cannot be garbage collected as well.

Using weak events, the event publisher (in the sample code the CarDealer class) doesn’t need to be changed. No matter—if the tightly coupled events or weak events are used, the implementation is the same. What’s different is the implementation of the consumer. The consumer needs to implement the interface IWeakEventListener. This interface defines the method ReceiveWeakEvent that is called from the weak event manager when the event arrives. The method implementation acts as a proxy and in turn invokes the method NewCarIsHere (code file WeakEvents/Consumer.cs):

using System;
using static System.Console;
using System.Windows;

namespace Wrox.ProCSharp.Delegates
{
 public class Consumer: IWeakEventListener
 {
 private string _name;

 public Consumer(string name)
 {
 this._name = name;
 }

 public void NewCarIsHere(object sender, CarInfoEventArgs e)
 {
 WriteLine("\{_name}: car \{e.Car} is new");
 }

 bool IWeakEventListener.ReceiveWeakEvent(Type managerType,
 object sender, EventArgs e)
 {
 NewCarIsHere(sender, e as CarInfoEventArgs);
 return true;
 }
 }
}

Inside the Mainmethod where the publisher and listeners are connected, the connection is now made by using the static AddHandler and RemoveHandler methods from the WeakEventManager<TEventSource, TEventArgs> class (code file WeakEventsSample/Program.cs):

var dealer = new CarDealer();
var daniel = new Consumer("Daniel");
WeakEventManager<CarDealer, CarInfoEventArgs>.AddHandler(dealer,
 "NewCarInfo", daniel.NewCarIsHere);
dealer.NewCar("Mercedes");
var sebastian = new Consumer("Sebastian");
WeakEventManager<CarDealer, CarInfoEventArgs>.AddHandler(dealer,
 "NewCarInfo", sebastian.NewCarIsHere);
dealer.NewCar("Ferrari");
WeakEventManager<CarDealer, CarInfoEventArgs>.RemoveHandler(dealer,
 "NewCarInfo", sebastian.NewCarIsHere);
dealer.NewCar("Red Bull Racing");

Summary

This chapter provided the basics of delegates, lambda expressions, and events. You learned how to declare a delegate and add methods to the delegate list; you learned how to implement methods called by delegates with lambda expressions; and you learned the process of declaring event handlers to respond to an event, as well as how to create a custom event and use the patterns for raising the event.

Using delegates and events in the design of a large application can reduce dependencies and the coupling of layers. This enables you to develop components that have a higher reusability factor.

Lambda expressions are C# language features based on delegates. With these, you can reduce the amount of code you need to write. Lambda expressions are not only used with delegates, as you see in Chapter 13.

The next chapter covers the use of strings and regular expressions.

10
Strings and Regular Expressions

What’s In This Chapter?

	Building strings

	Formatting expressions

	Using regular expressions

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	StringSample

	StringFormats

	RegularExpressionPlayground

Strings have been used consistently since the beginning of this book, as every program needs strings. However, you might not have realized that the stated mapping that the string keyword in C# actually refers to is the System.String .NET base class. String is a very powerful and versatile class, but it is by no means the only string-related class in the .NET armory. This chapter begins by reviewing the features ofString and then looks at some nifty things you can do with strings using some of the other .NET classes—in particular those in the System.Text and System.Text.RegularExpressions namespaces. This chapter covers the following areas:

	Building strings—If you’re performing repeated modifications on a string—for example, to build a lengthy string prior to displaying it or passing it to some other method or application—the String class can be very inefficient. When you find yourself in this kind of situation, another class, System.Text.StringBuilder, is more suitable because it has been designed exactly for this scenario.

	Formatting expressions—This chapter takes a closer look at the formatting expressions that have been used in the Console.WriteLine method throughout the past few chapters. These formatting expressions are processed using two useful interfaces: IFormatProvider and IFormattable. By implementing these interfaces on your own classes, you can define your own formatting sequences so that Console.WriteLine and similar classes display the values of your classes in whatever way you specify.

	Regular expressions—.NET also offers some very sophisticated classes that deal with cases in which you need to identify or extract substrings that satisfy certain fairly sophisticated criteria; for example, finding all occurrences within a string where a character or set of characters is repeated: finding all words that begin with “s” and contain at least one “n:” or strings that adhere to an employee ID or a Social Security number construction. Although you can write methods to perform this kind of processing using the String class, writing such methods is cumbersome. Instead, some classes, specifically those from System.Text.RegularExpressions, are designed to perform this kind of processing.

Examining System.String

Before digging into the other string classes, this section briefly reviews some of the available methods in the String class itself.

System.String is a class specifically designed to store a string and allow a large number of operations on the string. In addition, due to the importance of this data type, C# has its own keyword and associated syntax to make it particularly easy to manipulate strings using this class.

You can concatenate strings using operator overloads:

string message1 ="Hello"; // returns"Hello"
message1 +=", There"; // returns"Hello, There"
string message2 = message1 +"!"; // returns"Hello, There!"

C# also allows extraction of a particular character using an indexer-like syntax:

string message ="Hello";
char char4 = message[4]; // returns 'o'. Note the string is zero-indexed

This enables you to perform such common tasks as replacing characters, removing whitespace, and changing case. The following table introduces the key methods.

	Method
	Description

	Compare
	Compares the contents of strings, taking into account the culture (locale) in assessing equivalence between certain characters.

	CompareOrdinal
	Same as Compare but doesn’t take culture into account.

	Concat
	Combines separate string instances into a single instance.

	CopyTo
	Copies a specific number of characters from the selected index to an entirely new instance of an array.

	Format
	Formats a string containing various values and specifies how each value should be formatted.

	IndexOf
	Locates the first occurrence of a given substring or character in the string.

	IndexOfAny
	Locates the first occurrence of any one of a set of characters in a string.

	Insert
	Inserts a string instance into another string instance at a specified index.

	Join
	Builds a new string by combining an array of strings.

	LastIndexOf
	Same as IndexOf but finds the last occurrence.

	LastIndexOfAny
	Same as IndexOfAny but finds the last occurrence.

	PadLeft
	Pads out the string by adding a specified repeated character to the left side of the string.

	PadRight
	Pads out the string by adding a specified repeated character to the right side of the string.

	Replace
	Replaces occurrences of a given character or substring in the string with another character or substring.

	Split
	Splits the string into an array of substrings; the breaks occur wherever a given character occurs.

	Substring
	Retrieves the substring starting at a specified position in a string.

	ToLower
	Converts the string to lowercase.

	ToUpper
	Converts the string to uppercase.

	Trim
	Removes leading and trailing whitespace.

NOTE Please note that this table is not comprehensive; it is intended to give you an idea of the features offered by strings.

Building Strings

As you have seen, String is an extremely powerful class that implements a large number of very useful methods. However, the String class has a shortcoming that makes it very inefficient for making repeated modifications to a given string—it is actually an immutable data type, which means that after you initialize a string object, that string object can never change. The methods and operators that appear to modify the contents of a string actually create new strings, copying across the contents of the old string if necessary. For example, consider the following code (code file StringSample/ Program.cs):

string greetingText ="Hello from all the guys at Wrox Press.";
greetingText +="We do hope you enjoy this book as much as we enjoyed writing it.";

The samples in this chapter make use of the following dependencies and namespaces (unless otherwise noted):

Dependencies

	NETStandard.Library

Namespaces

	System

	System.Text

	static System.Console

When this code executes, first an object of type System.String is created and initialized to hold the text Hello from all the guys at Wrox Press. (Note that there’s a space after the period.) When this happens, the .NET runtime allocates just enough memory in the string to hold this text (39 chars), and the variable greetingText is set to refer to this string instance.

In the next line, syntactically it looks like more text is being added onto the string, but it is not. Instead, a new string instance is created with just enough memory allocated to store the combined text—that’s 103 characters in total. The original text, Hello from all the people at Wrox Press., is copied into this new string instance along with the extra text: We do hope you enjoy this book as much as we enjoyed writing it. Then, the address stored in the variable greetingText is updated, so the variable correctly points to the new String object. The old String object is now unreferenced—there are no variables that refer to it—so it will be removed the next time the garbage collector comes along to clean out any unused objects in your application.

By itself, that doesn’t look too bad, but suppose you wanted to create a very simple encryption scheme by adding 1 to the ASCII value of each character in the string. This would change the string to Ifmmp gspn bmm uif hvst bu Xspy Qsftt. Xf ep ipqf zpv fokpz uijt cppl bt nvdi bt xf fokpzfe xsjujoh ju. Several ways of doing this exist, but the simplest and (if you are restricting yourself to using the String class) almost certainly the most efficient way is to use the String.Replace method, which replaces all occurrences of a given substring in a string with another substring. Using Replace, the code to encode the text looks like this (code file StringSample/Program.cs):

string greetingText ="Hello from all the guys at Wrox Press.";
greetingText +="We do hope you enjoy this book as much as we" +
 "enjoyed writing it.";

WriteLine($"Not encoded:\n {greetingText}");

for(int i = 'z'; i>= 'a'; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingText = greetingText.Replace(old1, new1);
}

for(int i = 'Z'; i>='A'; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingText = greetingText.Replace(old1, new1);
}

WriteLine($"Encoded:\n {greetingText}");

NOTE Simply, this code does not change Z to A or z to a. These letters are encoded to [and {, respectively.

In this example, the Replace method works in a fairly intelligent way, to the extent that it won’t actually create a new string unless it actually makes changes to the old string. The original string contained 23 different lowercase characters and three different uppercase ones. The Replace method will therefore have allocated a new string 26 times in total, with each new string storing 103 characters. That means because of the encryption process, there will be string objects capable of storing a combined total of 2,678 characters now sitting on the heap waiting to be garbage collected! Clearly, if you use strings to do text processing extensively, your applications will run into severe performance problems.

To address this kind of issue, Microsoft supplies the System.Text.StringBuilder class. StringBuilder is not as powerful as String in terms of the number of methods it supports. The processing you can do on a StringBuilder is limited to substitutions and appending or removing text from strings. However, it works in a much more efficient way.

When you construct a string using the String class, just enough memory is allocated to hold the string object. The StringBuilder, however, normally allocates more memory than is actually needed. You, as a developer, have the option to indicate how much memory the StringBuilder should allocate; but if you do not, the amount defaults to a value that varies according to the size of the string with which the StringBuilder instance is initialized. The StringBuilder class has two main properties:

	Length—Indicates the length of the string that it actually contains

	Capacity—Indicates the maximum length of the string in the memory allocation

Any modifications to the string take place within the block of memory assigned to the StringBuilder instance, which makes appending substrings and replacing individual characters within strings very efficient. Removing or inserting substrings is inevitably still inefficient because it means that the following part of the string has to be moved. Only if you perform an operation that exceeds the capacity of the string is it necessary to allocate new memory and possibly move the entire contained string. In adding extra capacity, based on our experiments the StringBuilder appears to double its capacity if it detects that the capacity has been exceeded and no new value for capacity has been set.

For example, if you use a StringBuilder object to construct the original greeting string, you might write this code:

var greetingBuilder =
 new StringBuilder("Hello from all the guys at Wrox Press.", 150);
greetingBuilder.AppendFormat("We do hope you enjoy this book as much" +
 "as we enjoyed writing it");

NOTE To use the StringBuilder class, you need a System.Text reference in your code.

This code sets an initial capacity of 150 for the StringBuilder. It is always a good idea to set a capacity that covers the likely maximum length of a string, to ensure that the StringBuilder does not need to relocate because its capacity was exceeded. By default, the capacity is set to 16. Theoretically, you can set a number as large as the number you pass in an int, although the system will probably complain that it does not have enough memory if you actually try to allocate the maximum of two billion characters (the theoretical maximum that a StringBuilder instance is allowed to contain).

Then, on calling the AppendFormat method, the remaining text is placed in the empty space, without the need to allocate more memory. However, the real efficiency gain from using a StringBuilder is realized when you make repeated text substitutions. For example, if you try to encrypt the text in the same way as before, you can perform the entire encryption without allocating any more memory whatsoever:

var greetingBuilder =
 new StringBuilder("Hello from all the guys at Wrox Press.", 150);
greetingBuilder.AppendFormat("We do hope you enjoy this book as much" +
 "as we enjoyed writing it");

WriteLine("Not Encoded:\n" + greetingBuilder);

for(int i = 'z'; i>='a'; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingBuilder = greetingBuilder.Replace(old1, new1);
}

for(int i = 'Z'; i>='A'; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingBuilder = greetingBuilder.Replace(old1, new1);
}

WriteLine("Encoded:\n" + greetingBuilder);

This code uses the StringBuilder.Replace method, which does the same thing as String.Replace but without copying the string in the process. The total memory allocated to hold strings in the preceding code is 150 characters for the StringBuilder instance, as well as the memory allocated during the string operations performed internally in the final WriteLine statement.

Normally, you want to use StringBuilder to perform any manipulation of strings, and String to store or display the final result.

StringBuilder Members

You have seen a demonstration of one constructor of StringBuilder, which takes an initial string and capacity as its parameters. There are others. For example, you can supply only a string:

var sb = new StringBuilder("Hello");

Or you can create an empty StringBuilder with a given capacity:

var sb = new StringBuilder(20);

Apart from the Length and Capacity properties, there is a read-only MaxCapacity property that indicates the limit to which a given StringBuilder instance is allowed to grow. By default, this is specified by int.MaxValue (roughly two billion, as noted earlier), but you can set this value to something lower when you construct the StringBuilder object:

// This will set the initial capacity to 100, but the max will be 500.
// Hence, this StringBuilder can never grow to more than 500 characters,
// otherwise it will raise an exception if you try to do that.
var sb = new StringBuilder(100, 500);

You can also explicitly set the capacity at any time, though an exception is raised if you set the capacity to a value less than the current length of the string or a value that exceeds the maximum capacity:

var sb = new StringBuilder("Hello");
sb.Capacity = 100;

The following table lists the main StringBuilder methods.

	Method
	Description

	Append
	Appends a string to the current string.

	AppendFormat
	Appends a string that has been formatted from a format specifier.

	Insert
	Inserts a substring into the current string.

	Remove
	Removes characters from the current string.

	Replace
	Replaces all occurrences of a character with another character or a substring with another substring in the current string.

	ToString
	Returns the current string cast to a System.String object (overridden from System.Object).

Several overloads of many of these methods exist.

NOTE AppendFormat is actually the method that is ultimately called when you call Console.WriteLine, which is responsible for determining what all the format expressions like {0:D} should be replaced with. This method is examined in the next section.

There is no cast (either implicit or explicit) from StringBuilder to String. If you want to output the contents of a StringBuilder as a String, you must use the ToString method.

Now that you have been introduced to the StringBuilder class and have learned some of the ways in which you can use it to increase performance, be aware that this class does not always deliver the increased performance you are seeking. Basically, you should use the StringBuilder class when you are manipulating multiple strings. However, if you are just doing something as simple as concatenating two strings, you will find that System.String performs better.

String Formats

In previous chapters you’ve seen passing variables to strings with the $ prefix. This chapter examines what’s behind this new feature of C# 6 and covers all the other functionality offered by format strings.

String Interpolation

C# 6 introduces string interpolation by using the $ prefix for strings. The following example creates the string s2 using the $ prefix. This prefix allows having placeholders in curly brackets to reference results from code. {s1} is a placeholder in the string, where the compiler puts into the value of variable s1 into the string s2 (code file StringFormats/Program.cs):

string s1 ="World";
string s2 = $"Hello, {s1}";

In reality, this is just syntax sugar. From strings with the $ prefix, the compiler creates invocations to the String.Format method. So the previous code snippet gets translated to this:

string s1 ="World";
string s2 = String.Format("Hello, {0}", s1);

The first parameter of the String.Format method that is used accepts a format string with placeholders that are numbered starting from 0, followed by the parameters that are put into the string holes.

The new string format is just a lot handier and doesn’t require that much code to write.

It’s not just variables you can use to fill in the holes of the string. Any method that returns a value can be used:

string s2 = $"Hello, {s1.ToUpper()}";

This translates to a similar statement:

string s2 = String.Format("Hello, {0}", s1.ToUpper());

It’s also possible to have multiple holes in the string, like so:

int x = 3, y = 4;
string s3 = $"The result of {x} + {y} is {x + y}";

which translates to

string s3 = String.Format("The result of {0} and {1} is {2}", x, y, x + y);

FormattableString

What the interpolated string gets translated to can easily be seen by assigning the string to a FormattableString. The interpolated string can be directly assigned because the FormattableString is a better match than the normal string. This type defines a Format property that returns the resulting format string, an ArgumentCount property, and the method GetArgument to return the values:

int x = 3, y = 4;
FormattableString s = $"The result of {x} + {y} is {x + y}";
WriteLine($"format: {s.Format}");
for (int i = 0; i < s.ArgumentCount; i++)
{
 WriteLine($"argument {i}: {s.GetArgument(i)}");
}

Running this code snippet results in this output:

format: The result of {0} + {1} is {2}
argument 0: 3
argument 1: 4
argument 2: 7

NOTE The class FormattableString is defined in the System namespace but requires .NET 4.6. In case you would like to use the FormattableString with older .NET versions, you can create this type on your own, or use the StringInterpolationBridge NuGet package.

Using Other Cultures with String Interpolation

Interpolated strings by default make use of the current culture. This can be changed easily. The helper method Invariant changes the interpolated string to use the invariant culture instead of the current one. As interpolated strings can be assigned to a FormattableString type, they can be passed to this method. FormattableString defines a ToString method that allows passing an IFormatProvider. The interface IFormatProvider is implemented by the CultureInfo class. Passing CultureInfo.InvariantCulture to the IFormatProvider parameter changes the string to use the invariant culture:

private string Invariant(FormattableString s) =>
 s.ToString(CultureInfo.InvariantCulture);

NOTE Chapter 28, “Localization,” discusses language-specific issues for format strings as well as cultures and invariant cultures.

In the following code snippet, the Invariant method is used to pass a string to the second WriteLine method. The first invocation of WriteLine uses the current culture while the second one uses the invariant culture:

var day = new DateTime(2025, 2, 14);
WriteLine($"{day:d}");
WriteLine(Invariant($"{day:d}"));

If you have the English-US culture setting, the result is shown here. If you have a different culture configured with your system, the first result differs. In any case, you see a difference with the invariant culture:

2/14/2025
02/14/2015

For using the invariant culture, you don’t need to implement your own method; instead you can use the static Invariant method of the FormattableString class directly:

WriteLine(FormattableString.Invariant($"{day:d}"));

Escaping Curly Brackets

In case you want the curly brackets in an interpolated string, you can escape those using double curly brackets:

string s ="Hello";
WriteLine($"{{s}} displays the value of s: {s}");

The WriteLine method is translated to this implementation:

WriteLine(String.Format("{s} displays the value of s: {0}", s));

Thus the output is:

{s} displays the value of s : Hello

You can also escape curly brackets to build a new format string from a format string. Let’s have a look at this code snippet:

string formatString = $"{s}, {{0}}";
string s2 ="World";
WriteLine(formatString, s2);

With the string variable formatString, the compiler creates a call to String.Format just by putting a placeholder 0 to insert the variable s:

string formatString = String.Format("{0}, {{0}}", s);

This in turn results in this format string where the variable s is replaced with the value Hello, and the outermost curly brackets of the second format are removed:

string formatString ="Hello, {0}";

With the WriteLine method in the last line, now the string World gets inserted into the new placeholder 0 using the value of the variable s2:

WriteLine("Hello, World");

DateTime and Number Formats

Other than just using string formats for placeholders, specific formats depending on a data type are available. Let’s start with a date. A format string follows the expressions within the placeholder separated by a colon. Examples shown here are the D and d format for the DateTime type:

var day = new DateTime(2025, 2, 14);
WriteLine($"{day:D}");
WriteLine($"{day:d}");

The result shows a long date format string with the uppercase D and a short date string with the lowercase d:

Friday, February 14, 2025
2/14/2025

The DateTime type results in different outputs depending on uppercase or lowercase strings used. Depending on the language setting of your system, the output might look different. The date and time is language specific.

The DateTime type supports a lot of different standard format strings to have all date and time representations—for example, t for a short time format and T for a long time format, g and G to display date and time. All the other options are not discussed here, as you can find them in the MSDN documentation for the ToString method of the DateTime type.

NOTE One thing that should be mentioned is building a custom format string for DateTime. A custom date and time format string can combine format specifiers, such as dd-MMM-yyyy:

WriteLine($"{day:dd-MMM-yyyy}");

The result is shown here:

14-Feb-2025

This custom format string makes use of dd to display two digits for the day (this is important if the day is before the 10th, here you can see a difference between d and dd), MMM for an abbreviated name of the month (pay attention to uppercase, mm specifies minutes) and yyyy for the year with a four-digit number. Again, you can find all the other format specifiers for custom date and time format strings in the MSDN documentation.

Format strings for numbers don’t differentiate between uppercase and lowercase. Let’s have a look at the n, e, x, and c standard numeric format strings:

int i = 2477;
WriteLine($"{i:n} {i:e} {i:x} {i:c}");

The n format string defines a number format to show integral and decimal digits with group separators, e using exponential notation, x for a conversion to hexadecimal, and c to display a currency:

2,477.00 2.477000e+003 9ad $2,477.00

For numeric representations you can also use custom format strings. The # format specifier is a digit placeholder and displays a digit if available, otherwise no digit appears. The 0 format specifier is a zero placeholder and displays the corresponding digit or zero if a digit is not present.

double d = 3.1415;
WriteLine($"{d:###.###}");
WriteLine($"{d:000.000}");

With the double value from the sample code, the first result rounds the value after the comma to three digits; with the second result three digits before the comma are shown as well:

3.142
003.142

The MSDN documentation gives information on all the standard numeric format strings for percent, round-trip and fixed-point displays, and custom format strings for different looks for exponential value displays, decimal points, group separators, and more.

Custom String Formats

Format strings are not restricted to built-in types; you can create your own format strings for your own types. You just need to implement the interface IFormattable.

Start with a simple Person class that contains FirstName and LastName properties (code file StringFormats/Person.cs):

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

For a simple string presentation of this class, the ToString method of the base class is overridden. This method returns a string consisting of FirstName and LastName:

public override string ToString() => FirstName +"" + LastName;

Other than a simple string representation, the Person class should also support the format strings F to just return the first name, L for the last name, and A, which stands for “all” and should give the same string representation as the ToString method. To implement custom strings, the interface IFormattable defines the method ToString with two parameters: a string parameter for the format and an IFormatProvider parameter. The IFormatProvider parameter is not used in the sample code. You can use this parameter for different representations based on the culture, as the CultureInfo class implements this interface.

Other classes that implement this interface are NumberFormatInfo and DateTimeFormatInfo. You can use these classes to configure string representations for numbers and DateTime passing instances to the second parameter of the ToString method. The implementation of the ToString method just uses the switch statement to return different strings based on the format string. To allow calling the ToString method directly just with the format string without a format provider, the ToString method is overloaded. This method in turn invokes the ToString method with two parameters:

public class Person : IFormattable
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public override string ToString() => FirstName +"" + LastName;

 public virtual string ToString(string format) => ToString(format, null);

 public string ToString(string format, IFormatProvider formatProvider)
 {
 switch (format)
 {
 case null:
 case"A":
 return ToString();
 case"F":
 return FirstName;
 case"L":
 return LastName;
 default:
 throw new FormatException($"invalid format string {format}");
 }
 }
}

With this in place, you can invoke the ToString method explicitly by passing a format string or implicitly by using string interpolation. The implicit call makes use of the two-parameter ToString passing null with the IFormatProvider parameter (code file StringFormats/Program.cs):

var p1 = new Person { FirstName ="Stephanie", LastName ="Nagel" };
WriteLine(p1.ToString("F"));
WriteLine($"{p1:F}");

Regular Expressions

Regular expressions are one of those small technology aids that are incredibly useful in a wide range of programs. You can think of regular expressions as a mini-programming language with one specific purpose: to locate substrings within a large string expression. It is not a new technology; it originated in the UNIX environment and is commonly used with the Perl programming language, as well as with JavaScript. Regular expressions are supported by a number of .NET classes in the namespace System.Text.RegularExpressions. You can also find the use of regular expressions in various parts of the .NET Framework. For instance, they are used within the ASP.NET validation server controls.

If you are not familiar with the regular expressions language, this section introduces both regular expressions and their related .NET classes. If you are familiar with regular expressions, you may want to just skim through this section to pick out the references to the .NET base classes. You might like to know that the .NET regular expression engine is designed to be mostly compatible with Perl 5 regular expressions, although it has a few extra features.

Introduction to Regular Expressions

The regular expressions language is designed specifically for string processing. It contains two features:

	A set of escape codes for identifying specific types of characters. You are probably familiar with the use of the * character to represent any substring in command-line expressions. (For example, the command Dir Re* lists the files with names beginning with Re.) Regular expressions use many sequences like this to represent items such as any one character, a word break, one optional character, and so on.

	A system for grouping parts of substrings and intermediate results during a search operation

With regular expressions, you can perform very sophisticated and high-level operations on strings. For example, you can do all of the following:

	Identify (and perhaps either flag or remove) all repeated words in a string (for example., “The computer books books” to “The computer books”)

	Convert all words to title case (for example, “this is a Title” to “This Is A Title”)

	Convert all words longer than three characters to title case (for example, “this is a Title” to “This is a Title”)

	Ensure that sentences are properly capitalized

	Separate the various elements of a URI (for example, given http://www.wrox.com, extract the protocol, computer name, filename, and so on)

Of course, all these tasks can be performed in C# using the various methods on System.String and System.Text.StringBuilder. However, in some cases, this would require writing a fair amount of C# code. Using regular expressions, this code can normally be compressed to just a couple of lines. Essentially, you instantiate a System.Text.RegularExpressions.RegEx object (or, even simpler, invoke a static RegEx method), pass it the string to be processed, and pass in a regular expression (a string containing the instructions in the regular expressions language), and you’re done.

A regular expression string looks at first sight rather like a regular string, but interspersed with escape sequences and other characters that have a special meaning. For example, the sequence \b indicates the beginning or end of a word (a word boundary), so if you wanted to indicate you were looking for the characters th at the beginning of a word, you would search for the regular expression, \bth (that is, the sequence word boundary-t-h). If you wanted to search for all occurrences of th at the end of a word, you would write th\b (the sequence t-h-word boundary). However, regular expressions are much more sophisticated than that and include, for example, facilities to store portions of text that are found in a search operation. This section only scratches the surface of the power of regular expressions.

NOTE For more on regular expressions, please see Andrew Watt’s Beginning Regular Expressions (John Wiley & Sons, 2005).

Suppose your application needed to convert U.S. phone numbers to an international format. In the United States, the phone numbers have the format 314-123-1234, which is often written as (314) 123-1234. When converting this national format to an international format, you have to include +1 (the country code of the United States) and add parentheses around the area code: +1 (314) 123-1234. As find-and-replace operations go, that is not too complicated. It would still require some coding effort if you were going to use the String class for this purpose (meaning you would have to write your code using the methods available from System.String). The regular expressions language enables you to construct a short string that achieves the same result.

This section is intended only as a very simple example, so it concentrates on searching strings to identify certain substrings, not on modifying them.

The RegularExpressionsPlayground Example

The regular expression samples in this chapter make use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

Namespaces

	System

	System.Text.RegularExpressions

	static System.Console

The rest of this section develops a short example called RegularExpressionsPlayground that illustrates some of the features of regular expressions, and how to use the .NET regular expressions engine in C# by performing and displaying the results of some searches. The text you are going to use as your sample document is part of the introduction to the previous edition of this book (code file RegularExpressionsPlayground/Program.cs):

const string input =
 @"This book is perfect for both experienced C# programmers looking to" +
 "sharpen their skills and professional developers who are using C# for" +
 "the first time. The authors deliver unparalleled coverage of" +
 "Visual Studio 2013 and .NET Framework 4.5.1 additions, as well as" +
 "new test-driven development and concurrent programming features." +
 "Source code for all the examples are available for download, so you" +
 "can start writing Windows desktop, Windows Store apps, and ASP.NET" +
 "web applications immediately.";

NOTE This code nicely illustrates the utility of verbatim strings that are prefixed by the @ symbol. This prefix is extremely helpful with regular expressions.

This text is referred to as the input string. To get your bearings and get used to the regular expressions of .NET classes, you start with a basic plain-text search that does not feature any escape sequences or regular expression commands. Suppose that you want to find all occurrences of the string ion. This search string is referred to as the pattern. Using regular expressions and the input variable declared previously, you could write the following:

public static void Find1(text)
{
 const string pattern ="ion";
 MatchCollection matches = Regex.Matches(text, pattern,
 RegexOptions.IgnoreCase |
 RegexOptions.ExplicitCapture);

 foreach (Match nextMatch in matches)
 {
 WriteLine(nextMatch.Index);
 }
}

This code uses the static method Matches of the Regex class in the System.Text.RegularExpressions namespace. This method takes as parameters some input text, a pattern, and a set of optional flags taken from the RegexOptions enumeration. In this case, you have specified that all searching should be case-insensitive. The other flag, ExplicitCapture, modifies how the match is collected in a way that, for your purposes, makes the search a bit more efficient—you see why this is later in this chapter (although it does have other uses that we don’t explore here). Matches returns a reference to a MatchCollection object. A match is the technical term for the results of finding an instance of the pattern in the expression. It is represented by the class System.Text.RegularExpressions.Match. Therefore, you return a MatchCollection that contains all the matches, each represented by a Match object. In the preceding code, you simply iterate over the collection and use the Index property of the Match class, which returns the index in the input text where the match was found. Running this code results in three matches. The following table details some of the RegexOptions enumerations.

	Member Name
	Description

	CultureInvariant
	Specifies that the culture of the string is ignored.

	ExplicitCapture
	Modifies the way the match is collected by making sure that valid captures are the ones that are explicitly named.

	IgnoreCase
	Ignores the case of the string that is input.

	IgnorePatternWhitespace
	Removes unescaped whitespace from the string and enables comments that are specified with the pound or hash sign.

	Multiline
	Changes the characters ^ and $ so that they are applied to the beginning and end of each line and not just to the beginning and end of the entire string.

	RightToLeft
	Causes the inputted string to be read from right to left instead of the default left to right (ideal for some Asian and other languages that are read in this direction).

	Singleline
	Specifies a single-line mode where the meaning of the dot (.) is changed to match every character.

So far, nothing is new from the preceding example apart from some .NET base classes. However, the power of regular expressions comes from that pattern string. The reason is that the pattern string is not limited to only plain text. As hinted earlier, it can also contain what are known as meta-characters, which are special characters that provide commands, as well as escape sequences, which work in much the same way as C# escape sequences. They are characters preceded by a backslash (\) and have special meanings.

For example, suppose you wanted to find words beginning with n. You could use the escape sequence \b, which indicates a word boundary (a word boundary is just a point where an alphanumeric character precedes or follows a whitespace character or punctuation symbol):

const string pattern = @"\bn";
MatchCollection myMatches = Regex.Matches(input, pattern,
 RegexOptions.IgnoreCase |
 RegexOptions.ExplicitCapture);

Notice the @ character in front of the string. You want the \b to be passed to the .NET regular expressions engine at runtime—you don’t want the backslash intercepted by a well-meaning C# compiler that thinks it’s an escape sequence in your source code. If you want to find words ending with the sequence ions, you write this:

const string pattern = @"ions\b";

If you want to find all words beginning with the letter a and ending with the sequence ions (which has as its only match the words additions and applications in the example), you have to put a bit more thought into your code. You clearly need a pattern that begins with \ba and ends with ions\b, but what goes in the middle? You need to somehow tell the applications that between the a and the ions there can be any number of characters as long as none of them are whitespace. In fact, the correct pattern looks like this:

const string pattern = @"\ba\S*ions\b";

Eventually you will get used to seeing weird sequences of characters like this when working with regular expressions. It actually works quite logically. The escape sequence \S indicates any character that is not a whitespace character. The * is called a quantifier. It means that the preceding character can be repeated any number of times, including zero times. The sequence \S* means any number of characters as long as they are not whitespace characters. The preceding pattern, therefore, matches any single word that begins with a and ends with ions.

The following table lists some of the main special characters or escape sequences that you can use. It is not comprehensive; a fuller list is available in the MSDN documentation.

	Symbol
	Description
	Example
	Matches

	^
	Beginning of input text
	^B
	B, but only if first character in text

	$
	End of input text
	X$
	X, but only if last character in text

	.
	Any single character except the newline character (\)
	i.ation
	isation, ization

	*
	Preceding character may be repeated zero or more times
	ra*t
	rt, rat, raat, raaat, and so on

	+
	Preceding character may be repeated one or more times
	ra+t
	rat, raat, raaat and so on, but not rt

	?
	Preceding character may be repeated zero or one time
	ra?t
	rt and rat only

	\s
	Any whitespace character
	\sa
	[space]a, \ta, \na (\t and \n have the same meanings as in C#)

	\S
	Any character that isn’t whitespace
	\SF
	aF, rF, cF, but not \tf

	\b
	Word boundary
	ion\b
	Any word ending in ion

	\B
	Any position that isn’t a word boundary
	\BX\B
	Any X in the middle of a word

If you want to search for one of the meta-characters, you can do so by escaping the corresponding character with a backslash. For example, . (a single period) means any single character other than the newline character, whereas \. means a dot.

You can request a match that contains alternative characters by enclosing them in square brackets. For example, [1c] means one character that can be either 1 or c. If you wanted to search for any occurrence of the words map or man, you would use the sequence ma[np]. Within the square brackets, you can also indicate a range, for example [a-z], to indicate any single lowercase letter, [A-E] to indicate any uppercase letter between A and E (including the letters A and E themselves), or [0–9] to represent a single digit. A shorthand notation for [0-9] is \d. If you wanted to search for an integer (that is, a sequence that contains only the characters 0 through 9), you could write [0–9]+ or [\d]+.

The ^ has a different meaning used within square brackets. Used outside square brackets, it marks the beginning of input text. Within square brackets, it means any character except the following.

NOTE The use of the + character specifies there must be at least one such digit, but there may be more than one—so this would match 9, 83, 854, and so on.

Displaying Results

In this section, you code the RegularExpressionsPlayground example to get a feel for how regular expressions work.

The core of the example is a method called WriteMatches, which writes out all the matches from a MatchCollection in a more detailed format. For each match, it displays the index of where the match was found in the input string, the string of the match, and a slightly longer string, which consists of the match plus up to 10 surrounding characters from the input text—up to five characters before the match and up to five afterward. (It is fewer than five characters if the match occurred within five characters of the beginning or end of the input text.) In other words, a match on the word applications that occurs near the end of the input text quoted earlier when starting with the RegularExpressionPlayground example would display web applications imme (five characters before and after the match), but a match on the final word immediately would display ions immediately. (only one character after the match), because after that you get to the end of the string. This longer string enables you to see more clearly where the regular expression locates the match:

public static void WriteMatches(string text, MatchCollection matches)
{
 WriteLine($"Original text was: \n\n{text}\n");
 WriteLine($"No. of matches: {matches.Count}");

 foreach (Match nextMatch in matches)
 {
 int index = nextMatch.Index;
 string result = nextMatch.ToString();
 int charsBefore = (index < 5) ? index : 5;
 int fromEnd = text.Length - index - result.Length;
 int charsAfter = (fromEnd < 5) ? fromEnd : 5;
 int charsToDisplay = charsBefore + charsAfter + result.Length;
 WriteLine($"Index: {index}, \tString: {result}, \t" +
 "{text.Substring(index - charsBefore, charsToDisplay)}");
 }
}

The bulk of the processing in this method is devoted to the logic of figuring out how many characters in the longer substring it can display without overrunning the beginning or end of the input text. Note that you use another property on the Match object, Value, which contains the string identified for the match. Other than that, RegularExpressionsPlayground simply contains a number of methods with names such as Find1, Find2, and so on, which perform some of the searches based on the examples in this section. For example, Find2 looks for any string that contains a at the beginning of a word and ions at the end:

public static void Find2(string text)
{
 string pattern = @"\ba\S*ions\b";
 MatchCollection matches = Regex.Matches(text, pattern,
 RegexOptions.IgnoreCase);
 WriteMatches(text, matches);
}

Along with this is a simple Main method that you can edit to select one of the Find<n> methods:

public static void Main()
{
 Find2();
 ReadLine();
}

The code also needs to make use of the RegularExpressions namespace:

using System;
using System.Text.RegularExpressions;

Running the example with the Find2 method shown previously gives these results:

No. of matches: 2
Index: 243, String: additions, .5.1 additions, as
Index: 469, String: applications, web applications imme

Matches, Groups, and Captures

One nice feature of regular expressions is that you can group characters. It works the same way as compound statements in C#. In C#, you can group any number of statements by putting them in braces, and the result is treated as one compound statement. In regular expression patterns, you can group any characters (including meta-characters and escape sequences), and the result is treated as a single character. The only difference is that you use parentheses instead of braces. The resultant sequence is known as a group.

For example, the pattern (an)+ locates any occurrences of the sequence an. The + quantifier applies only to the previous character, but because you have grouped the characters together, it now applies to repeats of an treated as a unit. This means that if you apply (an)+ to the input text, bananas came to Europe late in the annals of history, the anan from bananas is identified; however, if you write an+, the program selects the ann from annals, as well as two separate sequences of an from bananas. The expression (an)+ identifies occurrences of an, anan, ananan, and so on, whereas the expression an+ identifies occurrences of an, ann, annn, and so on.

NOTE You might be wondering why with the preceding example (an)+ selects annn from the word “banana” but doesn’t identify either of the two occurrences of an from the same word. The rule is that matches must not overlap. If a couple of possibilities would overlap, then by default the longest possible sequence is matched.

Groups are even more powerful than that. By default, when you form part of the pattern into a group, you are also asking the regular expression engine to remember any matches against just that group, as well as any matches against the entire pattern. In other words, you are treating that group as a pattern to be matched and returned in its own right. This can be extremely useful if you want to break up strings into component parts.

For example, URIs have the format <protocol>://<address>:<port>, where the port is optional. An example of this is http://www.wrox.com:80. Suppose you want to extract the protocol, the address, and the port from a URI in which there may or may not be whitespace (but no punctuation) immediately following the URI. You could do so using this expression:

\b(https?)(://)([.\w]+)([\s:]([\d]{2,5})?)\b

Here is how this expression works: First, the leading and trailing \b sequences ensure that you consider only portions of text that are entire words. Within that, the first group, (https?) identifies either the http or https protocol. ? after the s character specifies that this character might come 0 or 1 times, thus http and https are allowed. The parentheses cause the protocol to be stored as a group.

The second group is a simple one with (://). This just specifies the characters :// in that order.

The third group ([.\w]+) is more interesting. This group contains a parenthetical expression of either the . character (dot), or any alphanumeric character specified by \w. These characters can be repeated any time, and thus matches www.wrox.com.

The fourth group ([\s:]([\d]{2,5})?) is a longer expression that contains an inner group. The first parenthetical expression within this group allows either whitespace characters specified by \s or the colon. The inner group specifies a digit with [\d]. The expression {2,5} specifies that the preceding character (the digit) is allowed at least two times and not more than five times. The complete expression with the digits is allowed 0 or 1 time specified by ? that follows the inner group. Having this group optional is very important because the port number is not always specified in a URI; in fact, it is usually absent.

Let’s define a string to run this expression on (code file RegularExpressionsPlayground/Program.cs):

string line ="Hey, I've just found this amazing URI at" +
 "http:// what was it -oh yes https://www.wrox.com or" +
 "http://www.wrox.com:80";

The code to match with this expression uses the Matches method similar to what was used before. The difference is that you iterate all Group objects within the Match.Groups property and write the resulting index and value of every group to the console:

string pattern = @"\b(https?)(://)([.\w]+)([\s:]([\d]{2,4})?)\b";
var r = new Regex(pattern);
MatchCollection mc = r.Matches(line);

foreach (Match m in mc)
{
 WriteLine($"Match: {m}");
 foreach (Group g in m.Groups)
 {
 if (g.Success)
 {
 WriteLine($"group index: {g.Index}, value: {g.Value}");
 }
 }
 WriteLine();
}

Running the program, these groups and values are found:

Match https://www.wrox.com
group index 70, value: https://www.wrox.com
group index 70, value: https
group index 75, value: ://
group index 78, value: www.wrox.com
group index 90, value:

Match http://www.wrox.com:80
group index 94, value http://www.wrox.com:80
group index 94, value: http
group index 98, value: ://
group index 101, value: www.wrox.com
group index 113, value: :80
group index 114, value: 80

With this, the URI from the text is matched, and the different parts of the URI are nicely grouped. However, grouping offers more features. Some groups, such as the separation between the protocol and the address, can be ignored, and groups can also be named.

Change the regular expression to name every group and to ignore some. Specifying ?<name> at the beginning of a group names a group. For example, the regular expression groups for protocol, address, and port are named accordingly. You ignore groups using ?: at the group’s beginning. Don’t be confused by ?::// within the group. You are searching for ://, and the group is ignored by placing ?: in front of this:

string pattern = @"\b(?<protocol>https?)(?:://)" +
 @"(?<address>[.\w]+)([\s:](?<port>[\d]{2,4})?)\b";

To get the groups from a regular expression, the Regex class defines the method GetGroupNames. In the code snippet, all the group names are used with every match to write group name and values using the Groups property and indexer:

Regex r = new Regex(pattern, RegexOptions.ExplicitCapture);

MatchCollection mc = r.Matches(line);
foreach (Match m in mc)
{
 WriteLine($"match: {m} at {m.Index}");

 foreach (var groupName in r.GetGroupNames())
 {
 WriteLine($"match for {groupName}: {m.Groups[groupName].Value}");
 }
}

Running the program you can see the name of the groups with their values:

match: https://www.wrox.com at 70
match for 0: https://www.wrox.com
match for protocol: https
match for address: www.wrox.com
match for port:

match: http://www.wrox.com:80 at 94
match for 0: http://www.wrox.com:80
match for protocol: http
match for address: www.wrox.com
match for port: 80

Summary

You have quite a number of available data types at your disposal when working with the .NET Framework. One of the most frequently used types in your applications (especially applications that focus on submitting and retrieving data) is the string data type. The importance of string is the reason why this book has an entire chapter that focuses on how to use the string data type and manipulate it in your applications.

When working with strings in the past, it was quite common to just slice and dice the strings as needed using concatenation. With the .NET Framework, you can use the StringBuilder class to accomplish a lot of this task with better performance than before.

Another feature of strings is the new C# 6 string interpolation. In most applications this feature can make string handling a lot easier.

Last, but hardly least, advanced string manipulation using regular expressions is an excellent tool to search through and validate your strings.

The next chapter is the first of two parts covering different collection classes.

11
Collections

What’s In This Chapter?

	Understanding collection interfaces and types

	Working with lists, queues, and stacks

	Working with linked and sorted lists

	Using dictionaries and sets

	Evaluating performance

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	List Samples

	Queue Sample

	Linked List Sample

	Sorted List Sample

	Dictionary Sample

	Set Sample

Overview

Chapter 7, “Arrays and Tuples,” covers arrays and the interfaces implemented by the Array class. The size of arrays is fixed. If the number of elements is dynamic, you should use a collection class instead of an array.

List<T> is a collection class that can be compared to arrays; but there are also other kinds of collections: queues, stacks, linked lists, dictionaries, and sets. The other collection classes have partly different APIs to access the elements in the collection and often a different internal structure for how the items are stored in memory. This chapter covers all of these collection classes and their differences, including performance differences.

This chapter also discusses bit arrays and concurrent collections that can be used from multiple threads.

Collection Interfaces and Types

Most collection classes are in the System.Collections and System.Collections.Generic namespaces. Generic collection classes are located in the System.Collections.Generic namespace. Collection classes that are specialized for a specific type are located in the System.Collections.Specialized namespace. Thread-safe collection classes are in the System.Collections.Concurrent namespace. Immutable collection classes are in the System.Collections.Immutable namespace.

Of course, there are also other ways to group collection classes. Collections can be grouped into lists, collections, and dictionaries based on the interfaces that are implemented by the collection class.

NOTE You can read detailed information about the interfaces IEnumerable and IEnumerator in Chapter 7.

The following table describes the most important interfaces implemented by collections and lists.

	Interface
	Description

	IEnumerable<T>
	The interface IEnumerable is required by the foreach statement. This interface defines the method GetEnumerator, which returns an enumerator that implements the IEnumerator interface.

	ICollection<T>
	ICollection<T> is implemented by generic collection classes. With this you can get the number of items in the collection (Count property), and copy the collection to an array (CopyTo method). You can also add and remove items from the collection (Add, Remove, Clear).

	IList<T>
	The IList<T> interface is for lists where elements can be accessed from their position. This interface defines an indexer, as well as ways to insert or remove items from specific positions (Insert, RemoveAt methods). IList<T> derives from ICollection<T>.

	ISet<T>
	This interface is implemented by sets. Sets allow combining different sets into a union, getting the intersection of two sets, and checking whether two sets overlap. ISet<T> derives from ICollection<T>.

	IDictionary<TKey, TValue>
	The interface IDictionary<TKey, TValue> is implemented by generic collection classes that have a key and a value. With this interface all the keys and values can be accessed, items can be accessed with an indexer of type key, and items can be added or removed.

	ILookup<TKey, TValue>
	Similar to the IDictionary<TKey, TValue> interface, lookups have keys and values. However, with lookups the collection can contain multiple values with one key.

	IComparer<T>
	The interface IComparer<T> is implemented by a comparer and used to sort elements inside a collection with the Compare method.

	IEqualityComparer<T>
	IEqualityComparer<T> is implemented by a comparer that can be used for keys in a dictionary. With this interface the objects can be compared for equality.

Lists

For resizable lists, the .NET Framework offers the generic class List<T>. This class implements the IList, ICollection, IEnumerable, IList<T>, ICollection<T>, and IEnumerable<T> interfaces.

The following examples use the members of the class Racer as elements to be added to the collection to represent a Formula-1 racer. This class has five properties: Id, FirstName, LastName, Country, and the number of Wins. With the constructors of the class, the name of the racer and the number of wins can be passed to set the members. The method ToString is overridden to return the name of the racer. The class Racer also implements the generic interface IComparable<T> for sorting racer elements and IFormattable (code file ListSamples/Racer.cs):

 public class Racer: IComparable<Racer>, IFormattable
 {
 public int Id { get; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Country { get; set; }
 public int Wins { get; set; }

 public Racer(int id, string firstName, string lastName, string country)
 :this(id, firstName, lastName, country, wins: 0)
 { }

 public Racer(int id, string firstName, string lastName, string country,
 int wins)
 {
 Id = id;
 FirstName = firstName;
 LastName = lastName;
 Country = country;
 Wins = wins;
 }
 public override string ToString() => $"{FirstName} {LastName}";
 public string ToString(string format, IFormatProvider formatProvider)
 {
 if (format == null) format ="N";
 switch (format.ToUpper())
 {
 case"N": // name
 return ToString();
 case"F": // first name
 return FirstName;
 case"L": // last name
 return LastName;
 case"W": // Wins
 return $"{ToString()}, Wins: {Wins}";
 case"C": // Country
 return $"{ToString()}, Country: {Country}";
 case"A": // All
 return $"{ToString()}, Country: {Country} Wins: {Wins}";
 default:
 throw new FormatException(String.Format(formatProvider,
 $"Format {format} is not supported"));
 }
 }
 public string ToString(string format) => ToString(format, null);
 public int CompareTo(Racer other)
 {
 int compare = LastName?.CompareTo(other?.LastName) ?? -1;
 if (compare == 0)
 {
 return FirstName?.CompareTo(other?.FirstName) ?? -1;
 }
 return compare;
 }
 }

Creating Lists

You can create list objects by invoking the default constructor. With the generic class List<T>, you must specify the type for the values of the list with the declaration. The following code shows how to declare a List<T> with int and a list with Racer elements. ArrayList is a non-generic list that accepts any Object type for its elements.

Using the default constructor creates an empty list. As soon as elements are added to the list, the capacity of the list is extended to allow 4 elements. If the fifth element is added, the list is resized to allow 8 elements. If 8 elements are not enough, the list is resized again to contain 16 elements. With every resize the capacity of the list is doubled.

var intList = new List<int>();
var racers = new List<Racer>();

When the capacity of the list changes, the complete collection is reallocated to a new memory block. With the implementation of List<T>, an array of type T is used. With reallocation, a new array is created, and Array.Copy copies the elements from the old array to the new array. To save time, if you know the number of elements in advance, that should be in the list; you can define the capacity with the constructor. The following example creates a collection with a capacity of 10 elements. If the capacity is not large enough for the elements added, the capacity is resized to 20 and then to 40 elements—doubled again:

List<int> intList = new List<int>(10);

You can get and set the capacity of a collection by using the Capacity property:

intList.Capacity = 20;

The capacity is not the same as the number of elements in the collection. The number of elements in the collection can be read with the Count property. Of course, the capacity is always larger or equal to the number of items. As long as no element was added to the list, the count is 0:

WriteLine(intList.Count);

If you are finished adding elements to the list and don’t want to add any more, you can get rid of the unneeded capacity by invoking the TrimExcess method; however, because the relocation takes time, TrimExcess has no effect if the item count is more than 90 percent of capacity:

intList.TrimExcess();

Collection Initializers

You can also assign values to collections using collection initializers. The syntax of collection initializers is similar to array initializers, which are explained in Chapter 7. With a collection initializer, values are assigned to the collection within curly brackets at the time the collection is initialized:

var intList = new List<int>() {1, 2};
var stringList = new List<string>() {"one","two"};

NOTE Collection initializers are not reflected within the IL code of the compiled assembly. The compiler converts the collection initializer to invoke the Add method for every item from the initializer list.

Adding Elements

You can add elements to the list with the Add method, shown in the following example. The generic instantiated type defines the parameter type of the Add method:

var intList = new List<int>();
intList.Add(1);
intList.Add(2);

var stringList = new List<string>();
stringList.Add("one");
stringList.Add("two");

The variable racers is defined as type List<Racer>. With the new operator, a new object of the same type is created. Because the class List<T> was instantiated with the concrete class Racer, now only Racer objects can be added with the Add method. In the following sample code, five Formula-1 racers are created and added to the collection. The first three are added using the collection initializer, and the last two are added by explicitly invoking the Add method (code file ListSamples/Program.cs):

var graham = new Racer(7,"Graham","Hill","UK", 14);
var emerson = new Racer(13,"Emerson","Fittipaldi","Brazil", 14);
var mario = new Racer(16,"Mario","Andretti","USA", 12);

var racers = new List<Racer>(20) {graham, emerson, mario};

racers.Add(new Racer(24,"Michael","Schumacher","Germany", 91));
racers.Add(new Racer(27,"Mika","Hakkinen","Finland", 20));

With the AddRange method of the List<T> class, you can add multiple elements to the collection at once. The method AddRange accepts an object of type IEnumerable<T>, so you can also pass an array as shown here:

racers.AddRange(new Racer[] {
 new Racer(14,"Niki","Lauda","Austria", 25),
 new Racer(21,"Alain","Prost","France", 51)});

NOTE The collection initializer can be used only during declaration of the collection. The AddRange method can be invoked after the collection is initialized. In case you get the data dynamically after creating the collection, you need to invoke AddRange.

If you know some elements of the collection when instantiating the list, you can also pass any object that implements IEnumerable<T> to the constructor of the class. This is very similar to the AddRange method:

var racers = new List<Racer>(
 new Racer[] {
 new Racer(12,"Jochen","Rindt","Austria", 6),
 new Racer(22,"Ayrton","Senna","Brazil", 41) });

Inserting Elements

You can insert elements at a specified position with the Insert method:

racers.Insert(3, new Racer(6,"Phil","Hill","USA", 3));

The method InsertRange offers the capability to insert a number of elements, similar to the AddRange method shown earlier.

If the index set is larger than the number of elements in the collection, an exception of type ArgumentOutOfRangeException is thrown.

Accessing Elements

All classes that implement the IList and IList<T> interface offer an indexer, so you can access the elements by using an indexer and passing the item number. The first item can be accessed with an index value 0. By specifying racers[3], for example, you access the fourth element of the list:

Racer r1 = racers[3];

When you use the Count property to get the number of elements, you can do a for loop to iterate through every item in the collection, and you can use the indexer to access every item:

for (int i = 0; i < racers.Count; i++)
{
 WriteLine(racers[i]);
}

NOTE Indexed access to collection classes is available with ArrayList, StringCollection, and List<T>.

Because List<T> implements the interface IEnumerable, you can iterate through the items in the collection using the foreach statement as well:

foreach (var r in racers)
{
 WriteLine(r);
}

NOTE Chapter 7 explains how the foreach statement is resolved by the compiler to make use of the IEnumerable and IEnumerator interfaces.

Removing Elements

You can remove elements by index or pass the item that should be removed. Here, the fourth element is removed from the collection:

racers.RemoveAt(3);

You can also directly pass a Racer object to the Remove method to remove this element. Removing by index is faster, because here the collection must be searched for the item to remove. The Remove method first searches in the collection to get the index of the item with the IndexOf method and then uses the index to remove the item. IndexOf first checks whether the item type implements the interface IEquatable<T>. If it does, the Equals method of this interface is invoked to find the item in the collection that is the same as the one passed to the method. If this interface is not implemented, the Equals method of the Object class is used to compare the items. The default implementation of the Equals method in the Object class does a bitwise compare with value types, but compares only references with reference types.

NOTE Chapter 8, “Operators and Casts,” explains how you can override the Equals method.

In the following example, the racer referenced by the variable graham is removed from the collection. The variable graham was created earlier when the collection was filled. Because the interface IEquatable<T> and the Object.Equals method are not overridden with the Racer class, you cannot create a new object with the same content as the item that should be removed and pass it to the Remove method:

if (!racers.Remove(graham))
{
 WriteLine("object not found in collection");
}

The method RemoveRange removes a number of items from the collection. The first parameter specifies the index where the removal of items should begin; the second parameter specifies the number of items to be removed:

int index = 3;
int count = 5;
racers.RemoveRange(index, count);

To remove all items with some specific characteristics from the collection, you can use the RemoveAll method. This method uses the Predicate<T> parameter when searching for elements, which is discussed next. To remove all elements from the collection, use the Clear method defined with the ICollection<T> interface.

Searching

There are different ways to search for elements in the collection. You can get the index to the found item, or the item itself. You can use methods such as IndexOf, LastIndexOf, FindIndex, FindLastIndex, Find, and FindLast. To just check whether an item exists, the List<T> class offers the Exists method.

The method IndexOf requires an object as parameter and returns the index of the item if it is found inside the collection. If the item is not found, –1 is returned. Remember that IndexOf is using the IEquatable<T> interface to compare the elements (code file ListSamples/Program.cs):

int index1 = racers.IndexOf(mario);

With the IndexOf method, you can also specify that the complete collection should not be searched, instead specifying an index where the search should start and the number of elements that should be iterated for the comparison.

Instead of searching a specific item with the IndexOf method, you can search for an item that has some specific characteristics that you can define with the FindIndex method. FindIndex requires a parameter of type Predicate:

public int FindIndex(Predicate<T> match);

The Predicate<T> type is a delegate that returns a Boolean value and requires type T as parameter. If the predicate returns true, there’s a match, and the element is found. If it returns false, the element is not found, and the search continues.

public delegate bool Predicate<T>(T obj);

With the List<T> class that is using Racer objects for type T, you can pass the address of a method that returns a bool and defines a parameter of type Racer to the FindIndex method. Finding the first racer of a specific country, you can create the FindCountry class as shown next. The FindCountryPredicate method has the signature and return type defined by the Predicate<T> delegate. The Find method uses the variable country to search for a country that you can pass with the constructor of the class (code file ListSamples/FindCountry.cs):

public class FindCountry
{
 public FindCountry(string country)
 {
 _country = country;
 }
 private string _country;

 public bool FindCountryPredicate(Racer racer) =>
 racer?.Country == _country;
}

With the FindIndex method, you can create a new instance of the FindCountry class, pass a country string to the constructor, and pass the address of the Find method. In the following example, after FindIndex completes successfully, index2 contains the index of the first item where the Country property of the racer is set to Finland (code file ListSamples/Program.cs):

int index2 = racers.FindIndex(new FindCountry("Finland").
 FindCountryPredicate);

Instead of creating a class with a handler method, you can use a lambda expression here as well. The result is exactly the same as before. Now the lambda expression defines the implementation to search for an item where the Country property is set to Finland:

int index3 = racers.FindIndex(r => r.Country =="Finland");

Similar to the IndexOf method, with the FindIndex method you can also specify the index where the search should start and the count of items that should be iterated through. To do a search for an index beginning from the last element in the collection, you can use the FindLastIndex method.

The method FindIndex returns the index of the found item. Instead of getting the index, you can also go directly to the item in the collection. The Find method requires a parameter of type Predicate<T>, much as the FindIndex method. The Find method in the following example searches for the first racer in the list that has the FirstName property set to Niki. Of course, you can also do a FindLast search to find the last item that fulfills the predicate.

Racer racer = racers.Find(r => r.FirstName =="Niki");

To get not only one but all the items that fulfill the requirements of a predicate, you can use the FindAll method. The FindAll method uses the same Predicate<T> delegate as the Find and FindIndex methods. The FindAll method does not stop when the first item is found; instead the FindAll method iterates through every item in the collection and returns all items for which the predicate returns true.

With the FindAll method invoked in the next example, all racer items are returned where the property Wins is set to more than 20. All racers who won more than 20 races are referenced from the bigWinners list:

List<Racer> bigWinners = racers.FindAll(r => r.Wins > 20);

Iterating through the variable bigWinners with a foreach statement gives the following result:

foreach (Racer r in bigWinners)
{
 WriteLine($"{r:A}");
}

Michael Schumacher, Germany Wins: 91
Niki Lauda, Austria Wins: 25
Alain Prost, France Wins: 51

The result is not sorted, but you’ll see that done next.

NOTE Format specifiers and the IFormattable interface is discussed in detail in Chapter 10, “Strings and Regular Expressions.”

Sorting

The List<T> class enables sorting its elements by using the Sort method. Sort uses the quick sort algorithm whereby all elements are compared until the complete list is sorted.

You can use several overloads of the Sort method. The arguments that can be passed are a generic delegate Comparison<T>, the generic interface IComparer<T>, and a range together with the generic interface IComparer<T>:

public void List<T>.Sort();
public void List<T>.Sort(Comparison<T>);
public void List<T>.Sort(IComparer<T>);
public void List<T>.Sort(Int32, Int32, IComparer<T>);

Using the Sort method without arguments is possible only if the elements in the collection implement the interface IComparable.

Here, the class Racer implements the interface IComparable<T> to sort racers by the last name:

racers.Sort();

If you need to do a sort other than the default supported by the item types, you need to use other techniques, such as passing an object that implements the IComparer<T> interface.

The class RacerComparer implements the interface IComparer<T> for Racer types. This class enables you to sort by the first name, last name, country, or number of wins. The kind of sort that should be done is defined with the inner enumeration type CompareType. The CompareType is set with the constructor of the class RacerComparer. The interface IComparer<Racer> defines the method Compare, which is required for sorting. In the implementation of this method, the Compare and CompareTo methods of the string and int types are used (code file ListSamples/RacerComparer.cs):

public class RacerComparer : IComparer<Racer>
{
 public enum CompareType
 {
 FirstName,
 LastName,
 Country,
 Wins
 }

 private CompareType _compareType;
 public RacerComparer(CompareType compareType)
 {
 _compareType = compareType;
 }

 public int Compare(Racer x, Racer y)
 {
 if (x == null && y == null) return 0;
 if (x == null) return -1;
 if (y == null) return 1;
 int result;
 switch (_compareType)
 {
 case CompareType.FirstName:
 return string.Compare(x.FirstName, y.FirstName);
 case CompareType.LastName:
 return string.Compare(x.LastName, y.LastName);
 case CompareType.Country:
 result = string.Compare(x.Country, y.Country);
 if (result == 0)
 return string.Compare(x.LastName, y.LastName);
 else
 return result;
 case CompareType.Wins:
 return x.Wins.CompareTo(y.Wins);
 default:
 throw new ArgumentException("Invalid Compare Type");
 }
 }
}

NOTE The Compare method returns 0 if the two elements passed to it are equal with the order. If a value less than 0 is returned, the first argument is less than the second. With a value larger than 0, the first argument is greater than the second. Passing null with an argument, the method shouldn’t throw a NullReferenceException. Instead, null should take its place before any other element; thus –1 is returned if the first argument is null, and +1 if the second argument is null.

You can now use an instance of the RacerComparer class with the Sort method. Passing the enumeration RacerComparer.CompareType.Country sorts the collection by the property Country:

racers.Sort(new RacerComparer(RacerComparer.CompareType.Country));

Another way to do the sort is by using the overloaded Sort method, which requires a Comparison<T> delegate:

public void List<T>.Sort(Comparison<T>);

Comparison<T> is a delegate to a method that has two parameters of type T and a return type int. If the parameter values are equal, the method must return 0. If the first parameter is less than the second, a value less than zero must be returned; otherwise, a value greater than zero is returned:

public delegate int Comparison<T>(T x, T y);

Now you can pass a lambda expression to the Sort method to do a sort by the number of wins. The two parameters are of type Racer, and in the implementation the Wins properties are compared by using the int method CompareTo. Also in the implementation, r2 and r1 are used in reverse order, so the number of wins is sorted in descending order. After the method has been invoked, the complete racer list is sorted based on the racer’s number of wins:

racers.Sort((r1, r2) => r2.Wins.CompareTo(r1.Wins));

You can also reverse the order of a complete collection by invoking the Reverse method.

Read-Only Collections

After collections are created they are read/write, of course; otherwise, you couldn’t fill them with any values. However, after the collection is filled, you can create a read-only collection. The List<T> collection has the method AsReadOnly that returns an object of type ReadOnlyCollection<T>. The class ReadOnlyCollection<T> implements the same interfaces as List<T>, but all methods and properties that change the collection throw a NotSupportedException. Beside the interfaces of List<T>, ReadOnlyCollection<T> also implements the interfaces IReadOnlyCollection<T> and IReadOnlyList<T>. With the members of these interfaces, the collection cannot be changed.

Queues

A queue is a collection whose elements are processed first in, first out (FIFO), meaning the item that is put first in the queue is read first. Examples of queues are standing in line at the airport, a human resources queue to process employee applicants, print jobs waiting to be processed in a print queue, and a thread waiting for the CPU in a round-robin fashion. Sometimes the elements of a queue differ in their priority. For example, in the queue at the airport, business passengers are processed before economy passengers. In this case, multiple queues can be used, one queue for each priority. At the airport this is easily handled with separate check-in queues for business and economy passengers. The same is true for print queues and threads. You can have an array or a list of queues whereby one item in the array stands for a priority. Within every array item there’s a queue, where processing happens using the FIFO principle.

NOTE Later in this chapter, a different implementation with a linked list is used to define a list of priorities.

A queue is implemented with the Queue<T> class in the namespace System.Collections.Generic. Internally, the Queue<T> class uses an array of type T, similar to the List<T> type. It implements the interfaces IEnumerable<T> and ICollection, but it doesn’t implement ICollection<T> because this interface defines Add and Remove methods that shouldn’t be available for queues.

The Queue<T> class does not implement the interface IList<T>, so you cannot access the queue using an indexer. The queue just allows you to add an item to it, which is put at the end of the queue (with the Enqueue method), and to get items from the head of the queue (with the Dequeue method).

Figure 11.1 shows the items of a queue. The Enqueue method adds items to one end of the queue; the items are read and removed at the other end of the queue with the Dequeue method. Invoking the Dequeue method once more removes the next item from the queue.

[image: Diagram shows an array with seven cells to represent a queue. Arrow at the left end of the array represents Enqueue method and arrow at the right end of the array represents Dequeue method.]

Figure 11.1

Methods of the Queue<T> class are described in the following table.

	Selected Queue <T> Members
	Description

	Count
	Returns the number of items in the queue.

	Enqueue
	Adds an item to the end of the queue.

	Dequeue
	Reads and removes an item from the head of the queue. If there are no more items in the queue when the Dequeue method is invoked, an exception of type InvalidOperationException is thrown.

	Peek
	Reads an item from the head of the queue but does not remove the item.

	TrimExcess
	Resizes the capacity of the queue. The Dequeue method removes items from the queue, but it doesn’t resize the capacity of the queue. To get rid of the empty items at the beginning of the queue, use the TrimExcess method.

When creating queues, you can use constructors similar to those used with the List<T> type. The default constructor creates an empty queue, but you can also use a constructor to specify the capacity. As items are added to the queue, the capacity is increased to hold 4, 8, 16, and 32 items if the capacity is not defined. Similar to the List<T> class, the capacity is always doubled as required. The default constructor of the non-generic Queue class is different because it creates an initial array of 32 empty items. With an overload of the constructor, you can also pass any other collection that implements the IEnumerable<T> interface that is copied to the queue.

The following example demonstrating the use of the Queue<T> class is a document management application. One thread is used to add documents to the queue, and another thread reads documents from the queue and processes them.

The items stored in the queue are of type Document. The Document class defines a title and content (code file QueueSample/Document.cs):

public class Document
{
 public string Title { get; private set; }
 public string Content { get; private set; }

 public Document(string title, string content)
 {
 Title = title;
 Content = content;
 }
}

The DocumentManager class is a thin layer around the Queue<T> class. It defines how to handle documents: adding documents to the queue with the AddDocument method and getting documents from the queue with the GetDocument method.

Inside the AddDocument method, the document is added to the end of the queue using the Enqueue method. The first document from the queue is read with the Dequeue method inside GetDocument. Because multiple threads can access the DocumentManager concurrently, access to the queue is locked with the lock statement.

NOTE Threading and the lock statement are discussed in Chapter 21, “Tasks and Parallel Programming,” and Chapter 22, “Task Synchronization.”

IsDocumentAvailable is a read-only Boolean property that returns true if there are documents in the queue and false if not (code file QueueSample/DocumentManager.cs):

public class DocumentManager
{
 private readonly Queue<Document> _documentQueue = new Queue<Document>();

 public void AddDocument(Document doc)
 {
 lock (this)
 {
 _documentQueue.Enqueue(doc);
 }
 }

 public Document GetDocument()
 {
 Document doc = null;
 lock (this)
 {
 doc = _documentQueue.Dequeue();
 }
 return doc;
 }

 public bool IsDocumentAvailable => _documentQueue.Count > 0;
}

The class ProcessDocuments processes documents from the queue in a separate task. The only method that can be accessed from the outside is Start. In the Start method, a new task is instantiated. A ProcessDocuments object is created to start the task, and the Run method is defined as the start method of the task. The StartNew method of the TaskFactory (which is accessed from the static Factory property of the Task class) requires a delegate Action parameter where the address of the Run method can be passed to. The StartNew method of the TaskFactory immediately starts the task.

With the Run method of the ProcessDocuments class, an endless loop is defined. Within this loop, the property IsDocumentAvailable is used to determine whether there is a document in the queue. If so, the document is taken from the DocumentManager and processed. Processing in this example is writing information only to the console. In a real application, the document could be written to a file, written to the database, or sent across the network (code file QueueSample/ProcessDocuments.cs):

public class ProcessDocuments
{
 public static void Start(DocumentManager dm)
 {
 Task.Run(new ProcessDocuments(dm).Run);
 }

 protected ProcessDocuments(DocumentManager dm)
 {
 if (dm == null)
 throw new ArgumentNullException(nameof(dm));
 _documentManager = dm;
 }

 private DocumentManager _documentManager;

 protected async Task Run()
 {
 while (true)
 {
 if (_documentManager.IsDocumentAvailable)
 {
 Document doc = _documentManager.GetDocument();
 WriteLine("Processing document {0}", doc.Title);
 }
 await Task.Delay(new Random().Next(20));
 }
 }
}

In the Main method of the application, a DocumentManager object is instantiated, and the document processing task is started. Then 1,000 documents are created and added to the DocumentManager (code file QueueSample/Program.cs):

public class Program
{
 public static void Main()
 {
 var dm = new DocumentManager();

 ProcessDocuments.Start(dm);

 // Create documents and add them to the DocumentManager
 for (int i = 0; i < 1000; i++)
 {
 var doc = new Document($"Doc {i.ToString()}","content");
 dm.AddDocument(doc);
 WriteLine($"Added document {doc.Title}");
 Thread.Sleep(new Random().Next(20));
 }
 }
}

When you start the application, the documents are added to and removed from the queue, and you get output similar to the following:

Added document Doc 279
Processing document Doc 236
Added document Doc 280
Processing document Doc 237
Added document Doc 281
Processing document Doc 238
Processing document Doc 239
Processing document Doc 240
Processing document Doc 241
Added document Doc 282
Processing document Doc 242
Added document Doc 283
Processing document Doc 243

A real-life scenario using the task described with the sample application might be an application that processes documents received with a Web service.

Stacks

A stack is another container that is very similar to the queue. You just use different methods to access the stack. The item that is added last to the stack is read first, so the stack is a last in, first out (LIFO) container.

Figure 11.2 shows the representation of a stack where the Push method adds an item to the stack, and the Pop method gets the item that was added last.

[image: Diagram shows a column with four rows to represent a stack. In and out arrows at the top of the stack represent push and pop methods respectively.]

Figure 11.2

Similar to the Queue<T> class, the Stack<T> class implements the interfaces IEnumerable<T> and ICollection.

Members of the Stack<T> class are listed in the following table.

	Selected Stack<T> Members
	Description

	Count
	Returns the number of items in the stack.

	Push
	Adds an item on top of the stack.

	Pop
	Removes and returns an item from the top of the stack. If the stack is empty, an exception of type InvalidOperationException is thrown.

	Peek
	Returns an item from the top of the stack but does not remove the item.

	Contains
	Checks whether an item is in the stack and returns true if it is.

In this example, three items are added to the stack with the Push method. With the foreach method, all items are iterated using the IEnumerable interface. The enumerator of the stack does not remove the items; it just returns them item by item (code file StackSample/Program.cs):

var alphabet = new Stack<char>();
alphabet.Push('A');
alphabet.Push('B');
alphabet.Push('C');

foreach (char item in alphabet)
{
 Write(item);
}
WriteLine();

Because the items are read in order from the last item added to the first, the following result is produced:

CBA

Reading the items with the enumerator does not change the state of the items. With the Pop method, every item that is read is also removed from the stack. This way, you can iterate the collection using a while loop and verify the Count property if items still exist:

var alphabet = new Stack<char>();
alphabet.Push('A');
alphabet.Push('B');
alphabet.Push('C');

Write("First iteration:");
foreach (char item in alphabet)
{
 Write(item);
}
WriteLine();

Console.Write("Second iteration:");
while (alphabet.Count > 0)
{
 Write(alphabet.Pop());
}
WriteLine();

The result gives CBA twice—once for each iteration. After the second iteration, the stack is empty because the second iteration used the Pop method:

First iteration: CBA
Second iteration: CBA

Linked Lists

LinkedList<T> is a doubly linked list, whereby one element references the next and the previous one, as shown in Figure 11.3. This way you can easily walk forward through the complete list by moving to the next element, or backward by moving to the previous element.

[image: Diagram shows link between four linked lists with arrows pointing from the element which references Next and Previous of each list.]

Figure 11.3

The advantage of a linked list is that if items are inserted anywhere in the list, the linked list is very fast. When an item is inserted, only the Next reference of the previous item and the Previous reference of the next item must be changed to reference the inserted item. With the List<T> class, when an element is inserted all subsequent elements must be moved.

Of course, there’s also a disadvantage with linked lists. Items of linked lists can be accessed only one after the other. It takes a long time to find an item that’s somewhere in the middle or at the end of the list.

A linked list cannot just store the items inside the list; together with every item, the linked list must have information about the next and previous items. That’s why the LinkedList<T> contains items of type LinkedListNode<T>. With the class LinkedListNode<T>, you can get to the next and previous items in the list. The LinkedListNode<T> class defines the properties List, Next, Previous, and Value. The List property returns the LinkedList<T> object that is associated with the node. Next and Previous are for iterating through the list and accessing the next or previous item. Value returns the item that is associated with the node. Value is of type T.

The LinkedList<T> class itself defines members to access the first (First) and last (Last) item of the list, to insert items at specific positions (AddAfter, AddBefore, AddFirst, AddLast), to remove items from specific positions (Remove, RemoveFirst, RemoveLast), and to find elements where the search starts from either the beginning (Find) or the end (FindLast) of the list.

The sample application to demonstrate linked lists uses a linked list together with a list. The linked list contains documents as in the queue example, but the documents have an additional priority associated with them. The documents will be sorted inside the linked list depending on the priority. If multiple documents have the same priority, the elements are sorted according to the time when the document was inserted.

Figure 11.4 describes the collections of the sample application. LinkedList<Document> is the linked list containing all the Document objects. The figure shows the title and priority of the documents. The title indicates when the document was added to the list: The first document added has the title "One", the second document has the title "Two", and so on. You can see that the documents One and Four have the same priority, 8, but because One was added before Four, it is earlier in the list.

[image: Diagram shows the connection between the elements in linked list List<LinkedListNode<Document>> to each of the array in the LinkedList<Document>.]

Figure 11.4

When new documents are added to the linked list, they should be added after the last document that has the same priority. The LinkedList<Document> collection contains elements of type LinkedListNode<Document>. The class LinkedListNode<T> adds Next and Previous properties to walk from one node to the next. For referencing such elements, the List<T> is defined as List<LinkedListNode<Document>>. For fast access to the last document of every priority, the collection List<LinkedListNode> contains up to 10 elements, each referencing the last document of every priority. In the upcoming discussion, the reference to the last document of every priority is called the priority node.

Using the previous example, the Document class is extended to contain the priority, which is set with the constructor of the class (code file LinkedListSample/Document.cs):

public class Document
{
 public string Title { get; private set; }
 public string Content { get; private set; }
 public byte Priority { get; private set; }

 public Document(string title, string content, byte priority)
 {
 Title = title;
 Content = content;
 Priority = priority;
 }
}

The heart of the solution is the PriorityDocumentManager class. This class is very easy to use. With the public interface of this class, new Document elements can be added to the linked list, the first document can be retrieved, and for testing purposes it also has a method to display all elements of the collection as they are linked in the list.

The class PriorityDocumentManager contains two collections. The collection of type LinkedList<Document> contains all documents. The collection of type List<LinkedListNode<Document>> contains references of up to 10 elements that are entry points for adding new documents with a specific priority. Both collection variables are initialized with the constructor of the class PriorityDocumentManager. The list collection is also initialized with null (code file LinkedListSample/PriorityDocumentManager.cs):

public class PriorityDocumentManager
{
 private readonly LinkedList<Document> _documentList;

 // priorities 0.9
 private readonly List<LinkedListNode<Document>> _priorityNodes;

 public PriorityDocumentManager()
 {
 _documentList = new LinkedList<Document>();

 _priorityNodes = new List<LinkedListNode<Document>>(10);
 for (int i = 0; i < 10; i++)
 {
 _priorityNodes.Add(new LinkedListNode<Document>(null));
 }
 }

Part of the public interface of the class is the method AddDocument. AddDocument does nothing more than call the private method AddDocumentToPriorityNode. The reason for having the implementation inside a different method is that AddDocumentToPriorityNode may be called recursively, as you will see soon:

 public void AddDocument(Document d)
 {
 if (d == null) throw new ArgumentNullException("d");

 AddDocumentToPriorityNode(d, d.Priority);
 }

The first action that is done in the implementation of AddDocumentToPriorityNode is a check to see if the priority fits in the allowed priority range. Here, the allowed range is between 0 and 9. If a wrong value is passed, an exception of type ArgumentException is thrown.

Next, you check whether there’s already a priority node with the same priority as the priority that was passed. If there’s no such priority node in the list collection, AddDocumentToPriorityNode is invoked recursively with the priority value decremented to check for a priority node with the next lower priority.

If there’s no priority node with the same priority or any priority with a lower value, the document can be safely added to the end of the linked list by calling the method AddLast. In addition, the linked list node is referenced by the priority node that’s responsible for the priority of the document.

If there’s an existing priority node, you can get the position inside the linked list where the document should be inserted. In the following example, you must determine whether a priority node already exists with the correct priority, or if there’s just a priority node that references a document with a lower priority. In the first case, you can insert the new document after the position referenced by the priority node. Because the priority node always must reference the last document with a specific priority, the reference of the priority node must be set. It gets more complex if only a priority node referencing a document with a lower priority exists. Here, the document must be inserted before all documents with the same priority as the priority node. To get the first document of the same priority, a while loop iterates through all linked list nodes, using the Previous property, until a linked list node is reached that has a different priority. This way, you know the position where the document must be inserted, and the priority node can be set:

 private void AddDocumentToPriorityNode(Document doc, int priority)
 {
 if (priority > 9 || priority < 0)
 throw new ArgumentException("Priority must be between 0 and 9");
 if (_priorityNodes[priority].Value == null)
 {
 --priority;
 if (priority <= 0)
 {
 // check for the next lower priority
 AddDocumentToPriorityNode(doc, priority);
 }
 else // now no priority node exists with the same priority or lower
 // add the new document to the end
 {
 _documentList.AddLast(doc);
 _priorityNodes[doc.Priority] = _documentList.Last;
 }
 return;
 }
 else // a priority node exists
 {
 LinkedListNode<Document> prioNode = _priorityNodes[priority];
 if (priority == doc.Priority)
 // priority node with the same priority exists
 {
 _documentList.AddAfter(prioNode, doc);
 // set the priority node to the last document with the same priority
 _priorityNodes[doc.Priority] = prioNode.Next;
 }
 else // only priority node with a lower priority exists
 {
 // get the first node of the lower priority
 LinkedListNode<Document> firstPrioNode = prioNode;
 while (firstPrioNode.Previous != null &&
 firstPrioNode.Previous.Value.Priority == prioNode.Value.Priority)
 {
 firstPrioNode = prioNode.Previous;
 prioNode = firstPrioNode;
 }
 _documentList.AddBefore(firstPrioNode, doc);
 // set the priority node to the new value
 _priorityNodes[doc.Priority] = firstPrioNode.Previous;
 }
 }
 }

Now only simple methods are left for discussion. DisplayAllNodes does a foreach loop to display the priority and the title of every document to the console.

The method GetDocument returns the first document (the document with the highest priority) from the linked list and removes it from the list:

public void DisplayAllNodes()
{
 foreach (Document doc in documentList)
 {
 WriteLine($"priority: {doc.Priority}, title {doc.Title}");
 }
}

// returns the document with the highest priority
// (that's first in the linked list)
public Document GetDocument()
{
 Document doc = _documentList.First.Value;
 _documentList.RemoveFirst();
 return doc;
}

In the Main method, the PriorityDocumentManager is used to demonstrate its functionality. Eight new documents with different priorities are added to the linked list, and then the complete list is displayed (code file LinkedListSample/Program.cs):

public static void Main()
{
 var pdm = new PriorityDocumentManager();
 pdm.AddDocument(new Document("one","Sample", 8));
 pdm.AddDocument(new Document("two","Sample", 3));
 pdm.AddDocument(new Document("three","Sample", 4));
 pdm.AddDocument(new Document("four","Sample", 8));
 pdm.AddDocument(new Document("five","Sample", 1));
 pdm.AddDocument(new Document("six","Sample", 9));
 pdm.AddDocument(new Document("seven","Sample", 1));
 pdm.AddDocument(new Document("eight","Sample", 1));

 pdm.DisplayAllNodes();
}

With the processed result, you can see that the documents are sorted first by priority and second by when the document was added:

priority: 9, title six
priority: 8, title one
priority: 8, title four
priority: 4, title three
priority: 3, title two
priority: 1, title five
priority: 1, title seven
priority: 1, title eight

Sorted List

If the collection you need should be sorted based on a key, you can use SortedList<TKey, TValue>. This class sorts the elements based on a key. You can use any type for the value, and also for the key.

The following example creates a sorted list for which both the key and the value are of type string. The default constructor creates an empty list, and then two books are added with the Add method. With overloaded constructors, you can define the capacity of the list and pass an object that implements the interface IComparer<TKey>, which is used to sort the elements in the list.

The first parameter of the Add method is the key (the book title); the second parameter is the value (the ISBN). Instead of using the Add method, you can use the indexer to add elements to the list. The indexer requires the key as index parameter. If a key already exists, the Add method throws an exception of type ArgumentException. If the same key is used with the indexer, the new value replaces the old value (code file SortedListSample/Program.cs):

var books = new SortedList<string, string>();
books.Add("Professional WPF Programming","978-0-470-04180-2");
books.Add("Professional ASP.NET MVC 5","978-1-118-79475-3");
books["Beginning Visual C# 2012"] ="978-1-118-31441-8";
books["Professional C# 5 and .NET 4.5.1"] ="978-1-118-83303-2";

NOTE SortedList<TKey, TValue> allows only one value per key. If you need multiple values per key you can use Lookup<TKey, TElement>.

You can iterate through the list using a foreach statement. Elements returned by the enumerator are of type KeyValuePair<TKey, TValue>, which contains both the key and the value. The key can be accessed with the Key property, and the value can be accessed with the Value property:

foreach (KeyValuePair<string, string> book in books)
{
 WriteLine($"{book.Key}, {book.Value}");
}

The iteration displays book titles and ISBN numbers ordered by the key:

Beginning Visual C# 2012, 978-1-118-31441-8
Professional ASP.NET MVC 5, 978-1-118-79475-3
Professional C# 5 and .NET 4.5.1, 978-1-118-83303-2
Professional WPF Programming, 978-0-470-04180-2

You can also access the values and keys by using the Values and Keys properties. The Values property returns IList<TValue> and the Keys property returns IList<TKey>, so you can use these properties with a foreach:

foreach (string isbn in books.Values)
{
 WriteLine(isbn);
}

foreach (string title in books.Keys)
{
 WriteLine(title);
}

The first loop displays the values, and next the keys:

978-1-118-31441-8
978-1-118-79475-3
978-1-118-83303-2
978-0-470-04180-2
Beginning Visual C# 2012
Professional ASP.NET MVC 5
Professional C# 5 and .NET 4.5.1
Professional WPF Programming

If you try to access an element with an indexer and passing a key that does not exist, an exception of type KeyNotFoundException is thrown. To avoid that exception you can use the method ContainsKey, which returns true if the key passed exists in the collection, or you can invoke the method TryGetValue, which tries to get the value but doesn’t throw an exception if it isn’t found:

string isbn;
string title ="Professional C# 7.0";
if (!books.TryGetValue(title, out isbn))
{
 WriteLine($"{title} not found");
}

Dictionaries

A dictionary represents a sophisticated data structure that enables you to access an element based on a key. Dictionaries are also known as hash tables or maps. The main feature of dictionaries is fast lookup based on keys. You can also add and remove items freely, a bit like a List<T>, but without the performance overhead of having to shift subsequent items in memory.

Figure 11.5 shows a simplified representation of a dictionary. Here employee-ids such as B4711 are the keys added to the dictionary. The key is transformed into a hash. With the hash a number is created to associate an index with the values. The index then contains a link to the value. The figure is simplified because it is possible for a single index entry to be associated with multiple values, and the index can be stored as a tree.

[image: Diagram shows a dictionary with three columns representing the key, Index and values. Arrows are drawn to show the link between the three columns.]

Figure 11.5

The .NET Framework offers several dictionary classes. The main class you use is Dictionary<TKey, TValue>.

Dictionary Initializers

C# 6 defines a new syntax to initialize dictionaries at declaration. A dictionary with a key of int and a value of string can be initialized as follows:

var dict = new Dictionary<int, string>()
{
 [3] ="three",
 [7] ="seven"
};

Here, two elements are added to the dictionary. The first element has a key of 3 and a string value three; the second element has a key of 7 and a string value seven. This initializer syntax is easily readable and uses the same syntax as accessing the elements in the dictionary.

Key Type

A type that is used as a key in the dictionary must override the method GetHashCode of the Object class. Whenever a dictionary class needs to determine where an item should be located, it calls the GetHashCode method. The int that is returned by GetHashCode is used by the dictionary to calculate an index of where to place the element. We won’t go into this part of the algorithm; what you should know is that it involves prime numbers, so the capacity of a dictionary is a prime number.

The implementation of GetHashCode must satisfy the following requirements:

	The same object should always return the same value.

	Different objects can return the same value.

	It must not throw exceptions.

	It should use at least one instance field.

	The hash code should not change during the lifetime of the object.

Besides requirements that must be satisfied by the GetHashCode implementation, it’s also good practice to satisfy these requirements:

	It should execute as quickly as possible; it must be inexpensive to compute.

	The hash code value should be evenly distributed across the entire range of numbers that an int can store.

NOTE Good performance of the dictionary is based on a good implementation of the method GetHashCode.

What’s the reason for having hash code values evenly distributed across the range of integers? If two keys return hashes that have the same index, the dictionary class needs to start looking for the nearest available free location to store the second item—and it will have to do some searching to retrieve this item later. This is obviously going to hurt performance. In addition, if a lot of your keys are tending to provide the same storage indexes for where they should be stored, this kind of clash becomes more likely. However, because of the way that Microsoft’s part of the algorithm works, this risk is minimized when the calculated hash values are evenly distributed between int.MinValue and int.MaxValue.

Besides having an implementation of GetHashCode, the key type also must implement the IEquatable<T>.Equals method or override the Equals method from the Object class. Because different key objects may return the same hash code, the method Equals is used by the dictionary comparing keys. The dictionary examines whether two keys, such as A and B, are equal; it invokes A.Equals(B). This means that you must ensure that the following is always true:

	If A.Equals(B) is true, then A.GetHashCode and B.GetHashCode must always return the same hash code.

This may seem a fairly subtle point, but it is crucial. If you contrived some way of overriding these methods so that the preceding statement were not always true, a dictionary that uses instances of this class as its keys would not work properly. Instead, you’d find funny things happening. For example, you might place an object in the dictionary and then discover that you could never retrieve it, or you might try to retrieve an entry and have the wrong entry returned.

NOTE For this reason, the C# compiler displays a compilation warning if you supply an override for Equals but don’t supply an override for GetHashCode.

For System.Object this condition is true because Equals simply compares references, and GetHashCode actually returns a hash that is based solely on the address of the object. This means that hash tables based on a key that doesn’t override these methods will work correctly. However, the problem with this approach is that keys are regarded as equal only if they are the same object. That means when you place an object in the dictionary, you have to hang on to the reference to the key; you can’t simply instantiate another key object later with the same value. If you don’t override Equals and GetHashCode, the type is not very convenient to use in a dictionary.

Incidentally, System.String implements the interface IEquatable and overloads GetHashCode appropriately. Equals provides value comparison, and GetHashCode returns a hash based on the value of the string. Strings can be used conveniently as keys in dictionaries.

Number types such as Int32 also implement the interface IEquatable and overload GetHashCode. However, the hash code returned by these types simply maps to the value. If the number you would like to use as a key is not itself distributed around the possible values of an integer, using integers as keys doesn’t fulfill the rule of evenly distributing key values to get the best performance. Int32 is not meant to be used in a dictionary.

If you need to use a key type that does not implement IEquatable and does not override GetHashCode according to the key values you store in the dictionary, you can create a comparer implementing the interface IEqualityComparer<T>. IEqualityComparer<T> defines the methods GetHashCode and Equals with an argument of the object passed, so you can offer an implementation different from the object type itself. An overload of the Dictionary<TKey, TValue> constructor allows passing an object implementing IEqualityComparer<T>. If such an object is assigned to the dictionary, this class is used to generate the hash codes and compare the keys.

Dictionary Example

The dictionary example in this section is a program that sets up a dictionary of employees. The dictionary is indexed by EmployeeId objects, and each item stored in the dictionary is an Employee object that stores details of an employee.

The struct EmployeeId is implemented to define a key to be used in a dictionary. The members of the class are a prefix character and a number for the employee. Both of these variables are read-only and can be initialized only in the constructor to ensure that keys within the dictionary shouldn’t change. When you have read-only variables it is guaranteed that they can’t be changed. The fields are filled within the constructor. The ToString method is overloaded to get a string representation of the employee ID. As required for a key type, EmployeeId implements the interface IEquatable and overloads the method GetHashCode (code file DictionarySample/EmployeeId.cs):

public class EmployeeIdException : Exception
{
 public EmployeeIdException(string message) : base(message) { }
}

public struct EmployeeId : IEquatable<EmployeeId>
{
 private readonly char _prefix;
 private readonly int _number;

 public EmployeeId(string id)
 {
 Contract.Requires<ArgumentNullException>(id != null);

 _prefix = (id.ToUpper())[0];
 int numLength = id.Length - 1;
 try
 {
 _number = int.Parse(id.Substring(1, numLength > 6 ? 6 : numLength));
 }
 catch (FormatException)
 {
 throw new EmployeeIdException("Invalid EmployeeId format");
 }
 }

 public override string ToString() => _prefix.ToString() + $"{number,6:000000}";

 public override int GetHashCode() => (number ^ number << 16) * 0x15051505;

 public bool Equals(EmployeeId other) =>
 (prefix == other?.prefix && number == other?.number);

 public override bool Equals(object obj) => Equals((EmployeeId)obj);

 public static bool operator ==(EmployeeId left, EmployeeId right) =>
 left.Equals(right);

 public static bool operator !=(EmployeeId left, EmployeeId right) =>
 !(left == right);
}

The Equals method that is defined by the IEquatable<T> interface compares the values of two EmployeeId objects and returns true if both values are the same. Instead of implementing the Equals method from the IEquatable<T> interface, you can also override the Equals method from the Object class:

public bool Equals(EmployeeId other) =>
 (prefix == other.prefix && number == other.number);

With the number variable, a value from 1 to around 190,000 is expected for the employees. This doesn’t fill the range of an integer. The algorithm used by GetHashCode shifts the number 16 bits to the left, then does an XOR (exclusive OR) with the original number, and finally multiplies the result by the hex value 15051505. The hash code is fairly evenly distributed across the range of an integer:

public override int GetHashCode() => (number ^ number << 16) * 0x15051505;

NOTE On the Internet, you can find a lot more complex algorithms that have a better distribution across the integer range. You can also use the GetHashCode method of a string to return a hash.

The Employee class is a simple entity class containing the name, salary, and ID of the employee. The constructor initializes all values, and the method ToString returns a string representation of an instance. The implementation of ToString uses a format string to create the string representation for performance reasons (code file DictionarySample/Employee.cs):

public class Employee
{
 private string _name;
 private decimal _salary;
 private readonly EmployeeId _id;

 public Employee(EmployeeId id, string name, decimal salary)
 {
 _id = id;
 _name = name;
 _salary = salary;
 }

 public override string ToString() => $"{id.ToString()}: {name, -20} {salary:C}";
}

In the Main method of the sample application, a new Dictionary<TKey, TValue> instance is created, where the key is of type EmployeeId and the value is of type Employee. The constructor allocates a capacity of 31 elements. Remember that capacity is based on prime numbers. However, when you assign a value that is not a prime number, you don’t need to worry. The Dictionary<TKey, TValue> class itself takes the next prime number that follows the integer passed to the constructor to allocate the capacity. After creating the employee objects and IDs, they are added to the newly created dictionary using the new dictionary initializer syntax. Of course, you can also invoke the Add method of the dictionary to add objects instead (code file DictionarySample/Program.cs):

public static void Main()
{
 var employees = new Dictionary<EmployeeId, Employee>(31);
 var idTony = new EmployeeId("C3755");
 var tony = new Employee(idTony,"Tony Stewart", 379025.00m);

 var idCarl = new EmployeeId("F3547");
 var carl = new Employee(idCarl,"Carl Edwards", 403466.00m);

 var idKevin = new EmployeeId("C3386");
 var kevin = new Employee(idKevin,"Kevin Harwick", 415261.00m);

 var idMatt = new EmployeeId("F3323");
 var matt = new Employee(idMatt,"Matt Kenseth", 1589390.00m);

 var idBrad = new EmployeeId("D3234");
 var brad = new Employee(idBrad,"Brad Keselowski", 322295.00m);

 var employees = new Dictionary<EmployeeId, Employee>(31)
 {
 [idTony] = tony,
 [idCarl] = carl,
 [idKevin] = kevin,
 [idMatt] = matt,
 [idBrad] = brad
 };

 foreach (var employee in employees.Values)
 {
 WriteLine(employee);
 }

After the entries are added to the dictionary, inside a while loop employees are read from the dictionary. The user is asked to enter an employee number to store in the variable userInput, and the user can exit the application by entering X. If the key is in the dictionary, it is examined with the TryGetValue method of the Dictionary<TKey, TValue> class. TryGetValue returns true if the key is found and false otherwise. If the value is found, the value associated with the key is stored in the employee variable. This value is written to the console.

NOTE You can also use an indexer of the Dictionary<TKey, TValue> class instead of TryGetValue to access a value stored in the dictionary. However, if the key is not found, the indexer throws an exception of type KeyNotFoundException.

while (true)
{
 Write("Enter employee id (X to exit)>");
 var userInput =ReadLine();
 userInput = userInput.ToUpper();
 if (userInput =="X") break;

 EmployeeId id;
 try
 {
 id = new EmployeeId(userInput);

 Employee employee;
 if (!employees.TryGetValue(id, out employee))
 {
 WriteLine($"Employee with id {id} does not exist");
 }
 else
 {
 WriteLine(employee);
 }
 }
 catch (EmployeeIdException ex)
 {
 WriteLine(ex.Message);
 }
}

Running the application produces the following output:

Enter employee id (X to exit)> C3386
C003386: Kevin Harwick $415,261.00
Enter employee id (X to exit)> F3547
F003547: Carl Edwards $403,466.00
Enter employee id (X to exit)> X
Press any key to continue . . .

Lookups

Dictionary<TKey, TValue> supports only one value per key. The class Lookup<TKey, TElement> resembles a Dictionary<TKey, TValue> but maps keys to a collection of values. This class is implemented in the assembly System.Core and defined with the namespace System.Linq.

Lookup<TKey, TElement> cannot be created as a normal dictionary. Instead, you have to invoke the method ToLookup, which returns a Lookup<TKey, TElement> object. The method ToLookup is an extension method that is available with every class implementing IEnumerable<T>. In the following example, a list of Racer objects is filled. Because List<T> implements IEnumerable<T>, the ToLookup method can be invoked on the racers list. This method requires a delegate of type Func<TSource, TKey> that defines the selector of the key. Here, the racers are selected based on their country by using the lambda expression r => r.Country. The foreach loop accesses only the racers from Australia by using the indexer (code file LookupSample/Program.cs):

var racers = new List<Racer>();
racers.Add(new Racer("Jacques","Villeneuve","Canada", 11));
racers.Add(new Racer("Alan","Jones","Australia", 12));
racers.Add(new Racer("Jackie","Stewart","United Kingdom", 27));
racers.Add(new Racer("James","Hunt","United Kingdom", 10));
racers.Add(new Racer("Jack","Brabham","Australia", 14));

var lookupRacers = racers.ToLookup(r => r.Country);

foreach (Racer r in lookupRacers["Australia"])
{
 WriteLine(r);
}

NOTE You can read more about extension methods in Chapter 13, “Language Integrated Query.” Lambda expressions are explained in Chapter 9, “Delegates, Lambdas, and Events.”

The output shows the racers from Australia:

Alan Jones
Jack Brabham

Sorted Dictionaries

SortedDictionary<TKey, TValue> is a binary search tree in which the items are sorted based on the key. The key type must implement the interface IComparable<TKey>. If the key type is not sortable, you can also create a comparer implementing IComparer<TKey> and assign the comparer as a constructor argument of the sorted dictionary.

Earlier in this chapter you read about SortedList<TKey, TValue>. SortedDictionary<TKey, TValue> and SortedList<TKey, TValue> have similar functionality, but because SortedList<TKey, TValue> is implemented as a list that is based on an array, and SortedDictionary<TKey, TValue> is implemented as a dictionary, the classes have different characteristics:

	SortedList<TKey, TValue> uses less memory than SortedDictionary<TKey, TValue>.

	SortedDictionary<TKey, TValue> has faster insertion and removal of elements.

	When populating the collection with already sorted data, SortedList<TKey, TValue> is faster if capacity changes are not needed.

NOTE SortedList consumes less memory than SortedDictionary. SortedDictionary is faster with inserts and the removal of unsorted data.

Sets

A collection that contains only distinct items is known by the term set. The .NET Framework includes two sets, HashSet<T> and SortedSet<T>, that both implement the interface ISet<T>. HashSet<T> contains an unordered list of distinct items; with SortedSet<T> the list is ordered.

The ISet<T> interface offers methods to create a union of multiple sets, to create an intersection of sets, or to provide information if one set is a superset or subset of another.

In the following sample code, three new sets of type string are created and filled with Formula-1 cars. The HashSet<T> class implements the ICollection<T> interface. However, the Add method is implemented explicitly and a different Add method is offered by the class, as you can see here. The Add method differs by the return type; a Boolean value is returned to provide the information if the element was added. If the element was already in the set, it is not added, and false is returned (code file SetSample/Program.cs):

var companyTeams = new HashSet<string>()
{"Ferrari","McLaren","Mercedes" };
var traditionalTeams = new HashSet<string>() {"Ferrari","McLaren" };
var privateTeams = new HashSet<string>()
{"Red Bull","Toro Rosso","Force India","Sauber" };

if (privateTeams.Add("Williams"))
{
 WriteLine("Williams added");
}
if (!companyTeams.Add("McLaren"))
{
 WriteLine("McLaren was already in this set");
}

The result of these two Add methods is written to the console:

Williams added
McLaren was already in this set

The methods IsSubsetOf and IsSupersetOf compare a set with a collection that implements the IEnumerable<T> interface and returns a Boolean result. Here, IsSubsetOf verifies whether every element in traditionalTeams is contained in companyTeams, which is the case; IsSupersetOf verifies whether traditionalTeams has any additional elements compared to companyTeams:

if (traditionalTeams.IsSubsetOf(companyTeams))
{
 WriteLine("traditionalTeams is subset of companyTeams");
}

if (companyTeams.IsSupersetOf(traditionalTeams))
{
 WriteLine("companyTeams is a superset of traditionalTeams");
}

The output of this verification is shown here:

traditionalTeams is a subset of companyTeams
companyTeams is a superset of traditionalTeams

Williams is a traditional team as well, which is why this team is added to the traditionalTeams collection:

traditionalTeams.Add("Williams");
if (privateTeams.Overlaps(traditionalTeams))
{
 WriteLine("At least one team is the same with traditional and private teams");
}

Because there’s an overlap, this is the result:

At least one team is the same with traditional and private teams.

The variable allTeams that references a new SortedSet<string> is filled with a union of companyTeams, privateTeams, and traditionalTeams by calling the UnionWith method:

var allTeams = new SortedSet<string>(companyTeams);
allTeams.UnionWith(privateTeams);
allTeams.UnionWith(traditionalTeams);

WriteLine();
WriteLine("all teams");
foreach (var team in allTeams)
{
 WriteLine(team);
}

Here, all teams are returned but every team is listed just once because the set contains only unique values; and because the container is a SortedSet<string>, the result is ordered:

Ferrari
Force India
Lotus
McLaren
Mercedes
Red Bull
Sauber
Toro Rosso
Williams

The method ExceptWith removes all private teams from the allTeams set:

allTeams.ExceptWith(privateTeams);
WriteLine();
WriteLine("no private team left");
foreach (var team in allTeams)
{
 WriteLine(team);
}

The remaining elements in the collection do not contain any private teams:

Ferrari
McLaren
Mercedes

Performance

Many collection classes offer the same functionality as others; for example, SortedList offers nearly the same features as SortedDictionary. However, often there’s a big difference in performance. Whereas one collection consumes less memory, the other collection class is faster with retrieval of elements. The MSDN documentation often provides performance hints about methods of the collection, giving you information about the time the operation requires in big-O notation:

	O(1)

	O(log n)

	O(n)

O(1) means that the time this operation needs is constant no matter how many items are in the collection. For example, the ArrayList has an Add method with O(1) behavior. No matter how many elements are in the list, it always takes the same amount of time when adding a new element to the end of the list. The Count property provides the number of items, so it is easy to find the end of the list.

O(n) means it takes the worst-case time of N to perform an operation on the collection. The Add method of ArrayList can be an O(n) operation if a reallocation of the collection is required. Changing the capacity causes the list to be copied, and the time for the copy increases linearly with every element.

O(log n) means that the time needed for the operation increases with every element in the collection, but the increase of time for each element is not linear but logarithmic. SortedDictionary<TKey, TValue> has O(log n) behavior for inserting operations inside the collection; SortedList<TKey, TValue> has O(n) behavior for the same functionality. Here, SortedDictionary<TKey, TValue> is a lot faster because it is more efficient to insert elements into a tree structure than into a list.

The following table lists collection classes and their performance for different actions such as adding, inserting, and removing items. Using this table you can select the best collection class for the purpose of your use. The left column lists the collection class. The Add column gives timing information about adding items to the collection. The List<T> and the HashSet<T> classes define Add methods to add items to the collection. With other collection classes, use a different method to add elements to the collection; for example, the Stack<T> class defines a Push method, and the Queue<T> class defines an Enqueue method. You can find this information in the table as well.

If there are multiple big-O values in a cell, the reason is that if a collection needs to be resized, resizing takes a while. For example, with the List<T> class, adding items needs O(1). If the capacity of the collection is not large enough and the collection needs to be resized, the resize requires O(n) time. The larger the collection, the longer the resize operation takes. It’s best to avoid resizes by setting the capacity of the collection to a value that can hold all the elements.

If the table cell contents is n/a, the operation is not applicable with this collection type.

	Collection
	Add
	Insert
	Remove
	Item
	Sort
	Find

	List<T>
	O(1) or O(n) if the collection must be resized
	O(n)
	O(n)
	O(1)
	O (n log n), worst case O(n ^ 2)
	O(n)

	Stack<T>
	Push, O(1), or O(n) if the stack must be resized
	n/a
	Pop, O(1)
	n/a
	n/a
	n/a

	Queue<T>
	Enqueue, O(1), or O(n) if the queue must be resized
	n/a
	Dequeue, O(1)
	n/a
	n/a
	n/a

	HashSet<T>
	O(1) or O(n) if the set must be resized
	Add O(1) or O(n)
	O(1)
	n/a
	n/a
	n/a

	SortedSet<T>
	O(1) or O(n) if the set must be resized
	Add O(1) or O(n)
	O(1)
	n/a
	n/a
	n/a

	LinkedList<T>
	AddLast O(1)
	Add After O(1)
	O(1)
	n/a
	n/a
	O(n)

	Dictionary <TKey, TValue>
	O(1) or O(n)
	n/a
	O(1)
	O(1)
	n/a
	n/a

	SortedDictionary
	O(log n)
	n/a
	O(log n)
	O(log n)
	n/a
	n/a

	<TKey, TValue>
	
	
	
	
	
	

	SortedList <TKey, TValue>
	O(n) for unsorted data, O(log n) for end of list, O(n) if resize is needed
	n/a
	O(n)
	O(log n) to read/ write, O(log n) if the key is in the list, O(n) if the key is not in the list
	n/a
	n/a

Summary

This chapter took a look at working with different kinds of generic collections. Arrays are fixed in size, but you can use lists for dynamically growing collections. For accessing elements on a first-in, first-out basis, there’s a queue; and you can use a stack for last-in, first-out operations. Linked lists allow for fast insertion and removal of elements but are slow for searching. With keys and values, you can use dictionaries, which are fast for searching and inserting elements. Sets are useful for unique items and can be ordered (SortedSet<T>) or not ordered (HashSet<T>).

Chapter 12, “Special Collections,” gives you details about some special collection classes.

12
Special Collections

What’s In This Chapter?

	Using bit arrays and bit vectors

	Using Observable Collections

	Using immutable collections

	Using concurrent collections

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	BitArray Sample

	BitVector Sample

	Observable Collection Sample

	Immutable Collections Sample

	Pipeline Sample

Overview

Chapter 11, “Collections,” covers lists, queues, stacks, dictionaries, and linked lists. This chapter continues with special collections, such as collections for dealing with bits, collections that can be observed when changed, collections that cannot be changed, and collections that can be accessed from multiple threads simultaneously.

Working with Bits

If you need to deal with a number of bits, you can use the class BitArray and the struct BitVector32 . BitArray is located in the namespace System.Collections, and BitVector32 is in the namespace System.Collections.Specialized. The most important difference between these two types is that BitArray is resizable—which is useful if you don’t have advance knowledge of the number of bits needed—and it can contain a large number of bits. BitVector32 is stack-based and therefore faster. BitVector32 contains only 32 bits, which are stored in an integer.

BitArray

The class BitArray is a reference type that contains an array of ints, where for every 32 bits a new integer is used. Members of this class are described in the following table.

	BitArray Members
	Description

	Count Length
	The get accessor of both Count and Length return the number of bits in the array. With the Length property, you can also define a new size and resize the collection.

	Item

Get

Set

	You can use an indexer to read and write bits in the array. The indexer is of type bool. Instead of using the indexer, you can also use the Get and Set methods to access the bits in the array.

	SetAll
	The method SetAll sets the values of all bits according to the parameter passed to the method.

	Not
	The method Not generates the inverse of all bits of the array.

	And

Or

Xor

	With the methods And, Or, and Xor, you can combine two BitArray objects. The And method does a binary AND, where the result bits are set only if the bits from both input arrays are set. The Or method does a binary OR, where the result bits are set if one or both of the input arrays are set. The Xor method is an exclusive OR, where the result is set if only one of the input bits is set.

The helper method DisplayBits iterates through a BitArray and displays 1 or 0 to the console, depending on whether the bit is set (code file BitArraySample/Program.cs):

public static void DisplayBits(BitArray bits)
{
 foreach (bool bit in bits)
 {
 Write(bit ? 1: 0);
 }
}

The BitArraySample makes use of the following dependencies and namespaces:

Dependencies

	 NETStandard.Library

	

Namespaces

	System

	System.Collections

	static System.Console

The example to demonstrate the BitArray class creates a bit array with 8 bits, indexed from 0 to 7. The SetAll method sets all 8 bits to true. Then the Set method changes bit 1 to false. Instead of the Set method, you can also use an indexer, as shown with index 5 and 7:

var bits1 = new BitArray(8);
bits1.SetAll(true);
bits1.Set(1, false);
bits1[5] = false;
bits1[7] = false;
Write("initialized:");
DisplayBits(bits1);
WriteLine();

This is the displayed result of the initialized bits:

initialized: 10111010

The Not method generates the inverse of the bits of the BitArray:

Write(" not");
DisplayBits(bits1);
bits1.Not();
Write(" =");
DisplayBits(bits1);
WriteLine();

The result of Not is all bits inversed. If the bit were true, it is false; and if it were false, it is true:

not 10111010 = 01000101

In the following example, a new BitArray is created. With the constructor, the variable bits1 is used to initialize the array, so the new array has the same values. Then the values for bits 0, 1, and 4 are set to different values. Before the Or method is used, the bit arrays bits1 and bits2 are displayed. The Or method changes the values of bits1:

var bits2 = new BitArray(bits1);
bits2[0] = true;
bits2[1] = false;
bits2[4] = true;
DisplayBits(bits1);
Write(" or");
DisplayBits(bits2);
Write(" =");
bits1.Or(bits2);
DisplayBits(bits1);
WriteLine();

With the Or method, the set bits are taken from both input arrays. In the result, the bit is set if it was set with either the first or the second array:

01000101 or 10001101 = 11001101

Next, the And method is used to operate on bits2 and bits1:

DisplayBits(bits2);
Write(" and");
DisplayBits(bits1);
Write(" =");
bits2.And(bits1);
DisplayBits(bits2);
WriteLine();

The result of the And method only sets the bits where the bit was set in both input arrays:

10001101 and 11001101 = 10001101

Finally, the Xor method is used for an exclusive OR:

DisplayBits(bits1);
Write(" xor");
DisplayBits(bits2);
bits1.Xor(bits2);
Write(" =");
DisplayBits(bits1);
WriteLine();

With the Xor method, the resultant bits are set only if the bit was set either in the first or the second input, but not both:

11001101 xor 10001101 = 01000000

BitVector32

If you know in advance how many bits you need, you can use the BitVector32 structure instead of BitArray. BitVector32 is more efficient because it is a value type and stores the bits on the stack inside an integer. With a single integer you have a place for 32 bits. If you need more bits, you can use multiple BitVector32 values or the BitArray. The BitArray can grow as needed; this is not an option with BitVector32.

The following table shows the members of BitVector that are very different from BitArray:

	BitVector Members
	Description

	Data
	The property Data returns the data behind the BitVector32 as an integer.

	Item
	The values for the BitVector32 can be set using an indexer. The indexer is overloaded; you can get and set the values using a mask or a section of type BitVector32.Section.

	CreateMask
	CreateMask is a static method that you can use to create a mask for accessing specific bits in the BitVector32.

	CreateSection
	CreateSection is a static method that you can use to create several sections within the 32 bits.

The BitVectorSample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Collections.Specialized

Namespaces

	System.Collections.Specialized

	System.Text

	static System.Console

The following example creates a BitVector32 with the default constructor, whereby all 32 bits are initialized to false. Then masks are created to access the bits inside the bit vector. The first call to CreateMask creates a mask to access the first bit. After CreateMask is invoked, bit1 has a value of 1. Invoking CreateMask once more and passing the first mask as a parameter to CreateMask returns a mask to access the second bit, which is 2. bit3 then has a value of 4 to access bit number 3, and bit4 has a value of 8 to access bit number 4.

Then the masks are used with the indexer to access the bits inside the bit vector and to set the fields accordingly (code file BitVectorSample/Program.cs):

var bits1 = new BitVector32();
int bit1 = BitVector32.CreateMask();
int bit2 = BitVector32.CreateMask(bit1);
int bit3 = BitVector32.CreateMask(bit2);
int bit4 = BitVector32.CreateMask(bit3);
int bit5 = BitVector32.CreateMask(bit4);

bits1[bit1] = true;
bits1[bit2] = false;
bits1[bit3] = true;
bits1[bit4] = true;
bits1[bit5] = true;
WriteLine(bits1);

The BitVector32 has an overridden ToString method that not only displays the name of the class but also 1 or 0 if the bits are set or not, respectively:

BitVector32{00000000000000000000000000011101}

Instead of creating a mask with the CreateMask method, you can define the mask yourself; you can also set multiple bits at once. The hexadecimal value abcdef is the same as the binary value 1010 1011 1100 1101 1110 1111. All the bits defined with this value are set:

bits1[0xabcdef] = true;
WriteLine(bits1);

With the output shown you can verify the bits that are set:

BitVector32{00000000101010111100110111101111}

Separating the 32 bits to different sections can be extremely useful. For example, an IPv4 address is defined as a four-byte number that is stored inside an integer. You can split the integer by defining four sections. With a multicast IP message, several 32-bit values are used. One of these 32-bit values is separated in these sections: 16 bits for the number of sources, 8 bits for a querier’s query interval code, 3 bits for a querier’s robustness variable, a 1-bit suppress flag, and 4 bits that are reserved. You can also define your own bit meanings to save memory.

The following example simulates receiving the value 0x79abcdef and passes this value to the constructor of BitVector32, so that the bits are set accordingly:

int received = 0x79abcdef;
BitVector32 bits2 = new BitVector32(received);
WriteLine(bits2);

The bits are shown on the console as initialized:

BitVector32{01111001101010111100110111101111}

Then six sections are created. The first section requires 12 bits, as defined by the hexadecimal value 0xfff (12 bits are set); section B requires 8 bits; section C, 4 bits; sections D and E, 3 bits; and section F, 2 bits. The first call to CreateSection just receives 0xfff to allocate the first 12 bits. With the second call to CreateSection, the first section is passed as an argument, so the next section continues where the first section ended. CreateSection returns a value of type BitVector32.Section that contains the offset and the mask for the section:

// sections: FF EEE DDD CCCC BBBBBBBB
// AAAAAAAAAAAA
BitVector32.Section sectionA = BitVector32.CreateSection(0xfff);
BitVector32.Section sectionB = BitVector32.CreateSection(0xff, sectionA);
BitVector32.Section sectionC = BitVector32.CreateSection(0xf, sectionB);
BitVector32.Section sectionD = BitVector32.CreateSection(0x7, sectionC);
BitVector32.Section sectionE = BitVector32.CreateSection(0x7, sectionD);
BitVector32.Section sectionF = BitVector32.CreateSection(0x3, sectionE);

Passing a BitVector32.Section to the indexer of the BitVector32 returns an int just mapped to the section of the bit vector. As shown next, a helper method, IntToBinaryString, retrieves a string representation of the int number:

WriteLine($"Section A: {IntToBinaryString(bits2[sectionA], true)}");
WriteLine($"Section B: {IntToBinaryString(bits2[sectionB], true)}");
WriteLine($"Section C: {IntToBinaryString(bits2[sectionC], true)}");
WriteLine($"Section D: {IntToBinaryString(bits2[sectionD], true)}");
WriteLine($"Section E: {IntToBinaryString(bits2[sectionE], true)}");
WriteLine($"Section F: {IntToBinaryString(bits2[sectionF], true)}");

The method IntToBinaryString receives the bits in an integer and returns a string representation containing 0 and 1. With the implementation, 32 bits of the integer are iterated through. In the iteration, if the bit is set, 1 is appended to the StringBuilder; otherwise, 0 is appended. Within the loop, a bit shift occurs to check whether the next bit is set:

public static string IntToBinaryString(int bits, bool removeTrailingZero)
{
 var sb = new StringBuilder(32);

 for (int i = 0; i < 32; i++)
 {
 if ((bits & 0x80000000) != 0)
 {
 sb.Append("1");
 }
 else
 {
 sb.Append("0");
 }
 bits = bits << 1;
 }
 string s = sb.ToString();
 if (removeTrailingZero)
 {
 return s.TrimStart('0');
 }
 else
 {
 return s;
 }
}

The result displays the bit representation of sections A to F, which you can now verify with the value that was passed into the bit vector:

Section A: 110111101111
Section B: 10111100
Section C: 1010
Section D: 1
Section E: 111
Section F: 1

Observable Collections

In case you need information when items in the collection are removed or added, you can use the ObservableCollection<T> class. This class originally was defined for WPF so that the UI is informed about collection changes. It’s now used with Windows Apps the same way. With .NET Core, you need to reference the NuGet package System.ObjectModel. The namespace of this class is System.Collections .ObjectModel.

ObservableCollection<T> derives from the base class Collection<T> that can be used to create custom collections and it uses List<T> internal. From the base class, the virtual methods SetItem and RemoveItem are overridden to fire the CollectionChanged event. Clients of this class can register to this event by using the interface INotifyCollectionChanged.

The next example demonstrates using an ObservableCollection<string> where the method Data_CollectionChanged is registered to the CollectionChanged event. Two items are added to the end—one item is inserted, and one item is removed (code file ObservableCollectionSample/Program.cs):

var data = new ObservableCollection<string>();
data.CollectionChanged += Data_CollectionChanged;
data.Add("One");
data.Add("Two");
data.Insert(1,"Three");
data.Remove("One");

The ObservableCollectionSample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.ObjectModel

Namespaces

	System.Collections.ObjectModel

	System.Collections.Specialized

	static System.Console

The method Data_CollectionChanged receives NotifyCollectionChangedEventArgs containing information about changes to the collection. The Action property provides information if an item was added or removed. With removed items, the OldItems property is set and lists the removed items. With added items, the NewItems property is set and lists the new items:

public static void Data_CollectionChanged(object sender,
 NotifyCollectionChangedEventArgs e)
{
 WriteLine($"action: {e.Action.ToString()}");

 if (e.OldItems != null)
 {
 WriteLine($"starting index for old item(s): {e.OldStartingIndex}");
 WriteLine("old item(s):");
 foreach (var item in e.OldItems)
 {
 WriteLine(item);
 }
 }
 if (e.NewItems != null)
 {
 WriteLine($"starting index for new item(s): {e.NewStartingIndex}");
 WriteLine("new item(s):");
 foreach (var item in e.NewItems)
 {
 WriteLine(item);
 }
 }
 WriteLine();
}

Running the application results in the following output. First the items One and Two are added to the collection, and thus the Add action is shown with the index 0 and 1. The third item, Three, is inserted on position 1 so it shows the action Add with index 1. Finally, the item One is removed as shown with the action Remove and index 0:

action: Add
starting index for new item(s): 0
new item(s):
One

action: Add
starting index for new item(s): 1
new item(s):
Two

action: Add
starting index for new item(s): 1
new item(s):
Three

action: Remove
starting index for old item(s): 0
old item(s):
One

Immutable Collections

If an object can change its state, it is hard to use it from multiple simultaneously running tasks. Synchronization is necessary with these collections. If an object cannot change state, it’s a lot easier to use it from multiple threads. An object that can’t change is an immutable object. Collections that cannot be changed are immutable collections.

NOTE The topics of using multiple tasks and threads and programming with asynchronous methods are explained in detail in Chapter 15, “Asynchronous Programming,” and Chapter 21, “Tasks and Parallel Programming.”

For using immutable collections, you can add the NuGet package System.Collections.Immutable. This library contains collection classes in the namespace System.Collections.Immutable.

Comparing read-only collections that have been discussed in the previous chapter with immutable collections, there’s a big difference: read-only collections make use of an interface to mutable collections. Using this interface, the collection cannot be changed. However, if someone still has a reference to the mutable collection, it still can be changed. With immutable collections, nobody can change this collection.

The ImmutableCollectionSample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Collections.Immutable

.NET Core Packages

	System.Console

	System.Collections

	System.Collections.Immutable

Namespaces

	System.Collections.Generic

	System.Collections.Immutable

	static System.Console

Let’s start with a simple immutable string array. You can create the array with the static Create method as shown. The Create method is overloaded where other variants of this method allow passing any number of elements. Pay attention that two different types are used here: the non-generic ImmutableArray class with the static Create method and the generic ImmutableArray struct that is returned from the Create method. In the following code snippet an empty array is created (code file ImmutableCollectionSample/Program.cs):

ImmutableArray<string> a1 = ImmutableArray.Create<string>();

An empty array is not very useful. The ImmutableArray<T> type offers an Add method to add elements. However, contrary to other collection classes, the Add method does not change the immutable collection itself. Instead, a new immutable collection is returned. So after the call of the Add method, a1 is still an empty collection, and a2 is an immutable collection with one element. The Add method returns the new immutable collection:

ImmutableArray<string> a2 = a1.Add("Williams");

With this, it is possible to use this API in a fluent way and invoke one Add method after the other. The variable a3 now references an immutable collection containing four elements:

ImmutableArray<string> a3 =
 a2.Add("Ferrari").Add("Mercedes").Add("Red Bull Racing");

With each of these stages using the immutable array, the complete collections are not copied with every step. Instead, the immutable types make use of shared state and only copy the collection when it’s necessary.

However, it’s even more efficient to first fill the collection and then make it an immutable array. When some manipulation needs to take place, you can again use a mutable collection. A builder class offered by the immutable types helps with that.

To see this in action, first an Account class is created that is put into the collection. This type itself is immutable and cannot be changed by using read-only auto properties (code file ImmutableCollectionSample/Account.cs):

public class Account
{
 public Account(string name, decimal amount)
 {
 Name = name;
 Amount = amount;
 }
 public string Name { get; }
 public decimal Amount { get; }
}

Next a List<Account> collection is created and filled with sample accounts (code file ImmutableCollectionSample/Program.cs):

var accounts = new List<Account>()
{
 new Account("Scrooge McDuck", 667377678765m),
 new Account("Donald Duck", -200m),
 new Account("Ludwig von Drake", 20000m)
};

From the accounts collection, an immutable collection can be created with the extension method ToImmutableList. This extension method is available as soon as the namespace System.Collections.Immutable is opened.

ImmutableList<Account> immutableAccounts = accounts.ToImmutableList();

The variable immutableAccounts can be enumerated like other collections. It just cannot be changed:

foreach (var account in immutableAccounts)
{
 WriteLine($"{account.Name} {account.Amount}");
}

Instead of using the foreach statement to iterate immutable lists, you can use the ForEach method that is defined with ImmutableList<T>. This method requires an Action<T> delegate as parameter and thus a lambda expression can be assigned:

immutableAccounts.ForEach(a =< WriteLine($"{a.Name} {a.Amount}"));

Working with these collections, methods like Contains, FindAll, FindLast, IndexOf, and others are available. Because these methods are similar to the methods from other collection classes discussed in Chapter 11, they are not explicitly shown here.

In case you need to change the content for immutable collections, the collections offer methods like Add, AddRange, Remove, RemoveAt, RemoveRange, Replace, and Sort. These methods are very different from normal collection classes as the immutable collection that is used to invoke the methods is never changed, but these methods return a new immutable collection.

Using Builders with Immutable Collections

Creating new immutable collections from existing ones can be done easily with the mentioned Add, Remove, and Replace methods. However, this is not very efficient if you need to do multiple changes such as adding and removing elements for the new collection. For creating new immutable collections by doing more changes, you can create a builder.

Let’s continue with the sample code and make multiple changes to the account objects in the collection. For doing this, you can create a builder by invoking the ToBuilder method. This method returns a collection that you can change. In the sample code, all accounts with an amount larger than 0 are removed. The original immutable collection is not changed. After the change with the builder is completed, a new immutable collection is created by invoking the ToImmutable method of the Builder. This collection is used next to output all overdrawn accounts:

ImmutableList<Account>.Builder builder = immutableAccounts.ToBuilder();
for (int i = 0; i > builder.Count; i++)
{
 Account a = builder[i];
 if (a.Amount < 0)
 {
 builder.Remove(a);
 }
}

ImmutableList<Account> overdrawnAccounts = builder.ToImmutable();

overdrawnAccounts.ForEach(a =< WriteLine($"{a.Name} {a.Amount}"));

Other than removing elements with the Remove method, the Builder type offers the methods Add, AddRange, Insert, RemoveAt, RemoveAll, Reverse, and Sort to change the mutable collection. After finishing the mutable operations, invoke ToImmutable to get the immutable collection again.

Immutable Collection Types and Interfaces

Other than ImmutableArray and ImmutableList, the NuGet package System.Collections.Immutable offers some more immutable collection types as shown in the following table:

	Immutable Type
	Description

	ImmutableArray<T>
	ImmutableArray<T> is a struct that uses an array type internally but doesn’t allow changes to the underlying type. This struct implements the interface IImmutableList<T>.

	ImmutableList<T>
	ImmutableList<T> uses a binary tree internally to map the objects and implements the interface IImmutableList<T>.

	ImmutableQueue<T>
	IImmutableQueue<T> implements the interface IImmutableQueue<T> that allows access to elements first-in-first-out with Enqueue, Dequeue, and Peek.

	ImmutableStack<T>
	ImmutableStack<T> implements the interfaced IImmutableStack<T> that allows access to elements first-in-last-out with Push, Pop, and Peek.

	ImmutableDictionary<TKey, TValue>
	ImmutableDictionary<TKey, TValue> is an immutable collection with unordered key/value pair elements implementing the interface IImmutableDictionary<TKey, TValue>.

	ImmutableSortedDictionary<TKey, TValue>
	ImmutableSortedDictionary<TKey, TValue> is an immutable collection with ordered key/value pair elements implementing the interface IImmutableDictionary<TKey, TValue>.

	ImmutableHashSet<T>
	ImmutableHashSet<T> is an immutable unordered hash set implementing the interface IImmutableSet<T>. This interface offers set functionality explained in Chapter 11.

	ImmutableSortedSet<T>
	ImmutableSortedSet<T> is an immutable ordered set implementing the interface IImmutableSet<T>.

Like the normal collection classes, immutable collections implement interfaces as well—such as IImmutableList<T>, IImmutableQueue<T>, and IImmutableStack<T>. The big difference with these immutable interfaces is that all the methods that make a change in the collection return a new collection.

Using LINQ with Immutable Arrays

For using LINQ with immutable arrays, the class ImmutableArrayExtensions defines optimized versions for LINQ methods such as Where, Aggregate, All, First, Last, Select, and SelectMany. All that you need to use the optimized versions is to directly use the ImmutableArray type and open the System.Linq namespace.

The Where method defined with the ImmutableArrayExtensions type looks like this to extend the ImmutableArray<T> type:

public static IEnumerable<T> Where<T>(
 this ImmutableArray<T> immutableArray, Func<T, bool> predicate);

The normal LINQ extension method extends IEnumerable<T>. Because ImmutableArray<T> is a better match, the optimized version is used calling LINQ methods.

NOTE LINQ is explained in detail in Chapter 13, “Language Integrated Query.”

Concurrent Collections

Immutable collections can easily be used from multiple threads because they cannot be changed. In case you want to use collections that should be changed from multiple threads, .NET offers thread-safe collection classes within the namespace System.Collections.Concurrent. Thread-safe collections are guarded against multiple threads accessing them in conflicting ways.

For thread-safe access of collections, the interface IProducerConsumerCollection<T> is defined. The most important methods of this interface are TryAdd and TryTake. TryAdd tries to add an item to the collection, but this might fail if the collection is locked from adding items. To provide this information, the method returns a Boolean value indicating success or failure. TryTake works the same way to inform the caller about success or failure, and returns on success an item from the collection. The following list describes the collection classes from the System.Collections.Concurrent namespace and its functionality:

	

ConcurrentQueue<T>—This class is implemented with a lock-free algorithm and uses 32 item arrays that are combined in a linked list internally. Methods to access the elements of the queue are Enqueue, TryDequeue, and TryPeek. The naming of these methods is very similar to the methods of Queue<T> that you know already, with the difference of the Try prefix to indicate that the method call might fail.

Because this class implements the interface IProducerConsumerCollection<T>, the methods TryAdd and TryTake just invoke Enqueue and TryDequeue.

	ConcurrentStack<T>—Very similar to ConcurrentQueue<T> but with other item access methods, this class defines the methods Push, PushRange, TryPeek, TryPop, and TryPopRange. Internally this class uses a linked list of its items.

	ConcurrentBag<T>—This class doesn’t define any order in which to add or take items. It uses a concept that maps threads to arrays used internally and thus tries to reduce locks. The methods to access elements are Add, TryPeek, and TryTake.

	ConcurrentDictionary<TKey, TValue>—This is a thread-safe collection of keys and values. TryAdd, TryGetValue, TryRemove, and TryUpdate are methods to access the members in a nonblocking fashion. Because the items are based on keys and values, ConcurrentDictionary<TKey, TValue> does not implement IProducerConsumerCollection<T>.

	BlockingCollection<T>—A collection that blocks and waits until it is possible to do the task by adding or taking the item, BlockingCollection<T> offers an interface to add and remove items with the Add and Take methods. These methods block the thread and wait until the task becomes possible. The Add method has an overload whereby you also can pass a CancellationToken. This token enables canceling a blocking call. If you don’t want the thread to wait for an endless time, and you don’t want to cancel the call from the outside, the methods TryAdd and TryTake are offered as well, whereby you can also specify a timeout value for the maximum amount of time you would like to block the thread and wait before the call should fail.

The ConcurrentXXX collection classes are thread-safe, returning false if an action is not possible with the current state of threads. You always have to check whether adding or taking the item was successful before moving on. You can’t trust the collection to always fulfill the task.

BlockingCollection<T> is a decorator to any class implementing the IProducerConsumerCollec-tion<T> interface and by default uses ConcurrentQueue<T>. With the constructor you can also pass any other class that implements IProducerConsumerCollection<T>—such as ConcurrentBag<T> and ConcurrentStack<T>.

Creating Pipelines

A great use for these concurrent collection classes is with pipelines. One task writes some content to a collection class while another task can read from the collection at the same time.

The following sample application demonstrates the use of the BlockingCollection<T> class with multiple tasks that form a pipeline. The first pipeline is shown in Figure 12.1. The task for the first stage reads filenames and adds them to a queue. While this task is running, the task for stage 2 can already start to read the filenames from the queue and load their content. The result is written to another queue. Stage 3 can be started at the same time to read the content from the second queue and process it. Here, the results written to a dictionary.

[image: Diagram shows pipelines connected with arrows to three stages of task such as Stage 1: Read Filenames, Stage 2: Load Content and Stage 3: Process Content.]

Figure 12.1

In this scenario, the next stage can only start when stage 3 is completed and the content is finally processed with a full result in the dictionary. The next steps are shown in Figure 12.2. Stage 4 reads from the dictionary, converts the data, and writes it to a queue. Stage 5 adds color information to the items and puts them in another queue. The last stage displays the information. Stages 4 to 6 can run concurrently as well.

[image: Diagram shows pipelines connected with arrows to three stages of task such as Stage 4: Transfer Content, Stage 5: Add Color and Stage 6: Display Content.]

Figure 12.2

The Info class represents items that are maintained by the pipeline (code file PipelineSample/Info.cs):

public class Info
{
 public string Word { get; set; }
 public int Count { get; set; }
 public string Color { get; set; }
 public override string ToString() => $"{Count} times: {Word}";
}

The PipelineSample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

Namespaces

	System.Collections.Generic

	System.Collections.Concurrent

	System.IO

	System.Linq

	System.Threading.Tasks

	static System.Console

Looking at the code of this sample application, the complete pipeline is managed within the method StartPipeline. Here, the collections are instantiated and passed to the various stages of the pipeline. The first stage is processed with ReadFilenamesAsync, and the second and third stages, LoadContentAsync and ProcessContentAsync, are running simultaneously. The fourth stage, however, can only start when the first three stages are completed (code file PipelineSample/Program.cs):

public static async Task StartPipelineAsync()
{
 var fileNames = new BlockingCollection<string>();
 var lines = new BlockingCollection<string>();
 var words = new ConcurrentDictionary<string, int>();
 var items = new BlockingCollection<Info>();
 var coloredItems = new BlockingCollection<Info>();
 Task t1 = PipelineStages.ReadFilenamesAsync(@"../../..", fileNames);
 ColoredConsole.WriteLine("started stage 1");
 Task t2 = PipelineStages.LoadContentAsync(fileNames, lines);
 ConsoleHelper.WriteLine("started stage 2");
 Task t3 = PipelineStages.ProcessContentAsync(lines, words);
 await Task.WhenAll(t1, t2, t3);
 ConsoleHelper.WriteLine("stages 1, 2, 3 completed");
 Task t4 = PipelineStages.TransferContentAsync(words, items);
 Task t5 = PipelineStages.AddColorAsync(items, coloredItems);
 Task t6 = PipelineStages.ShowContentAsync(coloredItems);
 ColoredConsole.WriteLine("stages 4, 5, 6 started");

 await Task.WhenAll(t4, t5, t6);
 ColoredConsole.WriteLine("all stages finished");
}

NOTE This example application makes use of tasks and the async and await keywords, which are explained in detail in Chapter 15. You can read more about threads, tasks, and synchronization in Chapter 21. File I/O is discussed in Chapter 23, “Files and Streams.”

The example writes information to the console using the ColoredConsole class. This class provides an easy way to change the color for console output and uses synchronization to avoid returning output with the wrong colors (code file PipelineSample/ColoredConsole.cs):

public static class ColoredConsole
{
 private static object syncOutput = new object();
 public static void WriteLine(string message)
 {
 lock (syncOutput)
 {
 Console.WriteLine(message);
 }
 }

 public static void WriteLine(string message, string color)
 {
 lock (syncOutput)
 {
 Console.ForegroundColor = (ConsoleColor)Enum.Parse(
 typeof(ConsoleColor), color);
 Console.WriteLine(message);
 Console.ResetColor();
 }
 }
}

Using a BlockingCollection

Let’s get into the first stage of the pipeline. ReadFilenamesAsync receives a BlockingCollection<T> where it can write its output. The implementation of this method uses an enumerator to iterate C# files within the specified directory and its subdirectories. The filenames are added to the BlockingCollection<T> with the Add method. After adding filenames is completed, the CompleteAdding method is invoked to inform all readers that they should not wait for any additional items in the collection (code file PipelineSample/PipelineStages.cs):

public static class PipelineStages
{
 public static Task ReadFilenamesAsync(string path,
 BlockingCollection<string> output)
 {
 return Task.Factory.StartNew(() =>
 {
 foreach (string filename in Directory.EnumerateFiles(path,"*.cs",
 SearchOption.AllDirectories))
 {
 output.Add(filename);
 ColoredConsole.WriteLine($"stage 1: added {filename}");
 }
 output.CompleteAdding();
 }, TaskCreationOptions.LongRunning);
 }
 //. . .

NOTE If you have a reader that reads from a BlockingCollection<T> at the same time a writer adds items, it is important to invoke the CompleteAdding method. Otherwise, the reader would wait for more items to arrive within the foreach loop.

The next stage is to read the file and add its content to another collection, which is done from the LoadContentAsync method. This method uses the filenames passed with the input collection, opens the file, and adds all lines of the file to the output collection. With the foreach loop, the method GetConsumingEnumerable is invoked with the input blocking collection to iterate the items. It’s possible to use the input variable directly without invoking GetConsumingEnumerable, but this would only iterate the current state of the collection, and not the items that are added afterward.

public static async Task LoadContentAsync(BlockingCollection<string> input,
 BlockingCollection<string> output)
{
 foreach (var filename in input.GetConsumingEnumerable())
 {
 using (FileStream stream = File.OpenRead(filename))
 {
 var reader = new StreamReader(stream);
 string line = null;
 while ((line = await reader.ReadLineAsync()) != null)
 {
 output.Add(line);
 ColoredConsole.WriteLine($"stage 2: added {line}");
 }
 }
 }
 output.CompleteAdding();
}

NOTE If a reader is reading a collection at the same time while it is filled, you need to get the enumerator of the blocking collection with the method GetConsumingEnumerable instead of iterating the collection directly.

Using a ConcurrentDictionary

Stage 3 is implemented in the ProcessContentAsync method. This method gets the lines from the input collection, and then splits and filters words to an output dictionary. The method AddOrUpdate is a method from the ConcurrentDictionary type. If the key is not yet added to the dictionary, the second parameter defines the value that should be set. If the key is already available in the dictionary, the updateValueFactory parameter defines how the value should be changed. In this case, the existing value is just incremented by one:

public static Task ProcessContentAsync(BlockingCollection<string> input,
 ConcurrentDictionary<string, int> output)
{
 return Task.Factory.StartNew(() =>
 {
 foreach (var line in input.GetConsumingEnumerable())
 {
 string[] words = line.Split(' ', ';', '\t', '{', '}', '(', ')', ':',
 ',', '"');
 foreach (var word in words.Where(w => !string.IsNullOrEmpty(w)))
 {
 output.AddOrUpdate(key: word, addValue: 1,
 updateValueFactory: (s, i) => ++i);
 ColoredConsole.WriteLine($"stage 3: added {word}");
 }
 }
 }, TaskCreationOptions.LongRunning);
}

Running the application with the first three stages, you’ll see output like the following, where the stages operate interleaved:

stage 3: added DisplayBits
stage 3: added bits2
stage 3: added Write
stage 3: added =
stage 3: added bits1.Or
stage 2: added DisplayBits(bits2);
stage 2: added Write(" and");
stage 2: added DisplayBits(bits1);
stage 2: added WriteLine();
stage 2: added DisplayBits(bits2);

Completing the Pipeline

After the first three stages are completed, the next three stages can run in parallel again. TransferContentAsync gets the data from the dictionary, converts it to the type Info, and puts it into the output BlockingCollection<T> (code file PipelineSample/PipelineStages.cs):

public static Task TransferContentAsync(
 ConcurrentDictionary<string, int> input,
 BlockingCollection<Info> output)
{
 return Task.Factory.StartNew(() =>
 {
 foreach (var word in input.Keys)
 {
 int value;
 if (input.TryGetValue(word, out value))
 {
 var info = new Info { Word = word, Count = value };
 output.Add(info);
 ColoredConsole.WriteLine($"stage 4: added {info}");
 }
 }
 output.CompleteAdding();
 }, TaskCreationOptions.LongRunning);
}

The pipeline stage AddColorAsync sets the Color property of the Info type depending on the value of the Count property:

public static Task AddColorAsync(BlockingCollection<Info> input,
 BlockingCollection<Info> output)
{
 return Task.Factory.StartNew(() =>
 {
 foreach (var item in input.GetConsumingEnumerable())
 {
 if (item.Count > 40)
 {
 item.Color ="Red";
 }
 else if (item.Count > 20)
 {
 item.Color ="Yellow";
 }
 else
 {
 item.Color ="Green";
 }
 output.Add(item);
 ColoredConsole.WriteLine($"stage 5: added color {item.Color} to {item}");
 }
 output.CompleteAdding();
 }, TaskCreationOptions.LongRunning);
}

The last stage writes the resulting items to the console in the specified color:

public static Task ShowContentAsync(BlockingCollection<Info> input)
{
 return Task.Factory.StartNew(() =>
 {
 foreach (var item in input.GetConsumingEnumerable())
 {
 ColoredConsole.WriteLine($"stage 6: {item}", item.Color);
 }
 }, TaskCreationOptions.LongRunning);
}

Running the application results in the following output, and you’ll see that it is colored:

stage 6: 20 times: static
stage 6: 3 times: Count
stage 6: 2 times: t2
stage 6: 1 times: bits2[sectionD]
stage 6: 3 times: set
stage 6: 2 times: Console.ReadLine
stage 6: 3 times: started
stage 6: 1 times: builder.Remove
stage 6: 1 times: reader
stage 6: 2 times: bit4
stage 6: 1 times: ForegroundColor
stage 6: 1 times: all
all stages finished

Summary

This chapter took a look at working with special collections. The chapter introduced you to BitArray and BitVector32, which are optimized for working with a collection of bits.

Not only bits are stored in the ObservableCollection<T> class. This class raises events when items change in the list. Chapters 31 through 33 use this class with Windows apps and Windows desktop applications.

This chapter also explained that immutable collections are a guarantee that the collection never changes, and thus can be easily used in multithreaded applications.

The last part of this chapter looked at concurrent collections where one thread can be used to fill the collection while another thread simultaneously retrieves items from the same collection.

Chapter 13 gives you details about Language Integrated Query (LINQ).

13
Language Integrated Query

What’s In This Chapter?

	Traditional queries across objects using List

	Extension methods

	LINQ query operators

	Parallel LINQ

	Expression trees

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	LINQ Intro

	Enumerable Sample

	Parallel LINQ

	Expression Trees

LINQ Overview

LINQ (Language Integrated Query) integrates query syntax inside the C# programming language, making it possible to access different data sources with the same syntax. LINQ accomplishes this by offering an abstraction layer.

This chapter describes the core principles of LINQ and the language extensions for C# that make the C# LINQ Query possible.

NOTE For details about using LINQ across the database, you should read Chapter 38, “Entity Framework Core.” For information about querying XML data, read Chapter 27, “XML and JSON,” after reading this chapter.

This chapter starts with a simple LINQ query before diving into the full potential of LINQ. The C# language offers integrated query language that is converted to method calls. This section shows you what the conversion looks like so you can use all the possibilities of LINQ.

Lists and Entities

The LINQ queries in this chapter are performed on a collection containing Formula-1 champions from 1950 to 2015. This data needs to be prepared with entity classes and lists.

For the entities, the type Racer is defined. Racer defines several properties and an overloaded ToString method to display a racer in a string format. This class implements the interface IFormattable to support different variants of format strings, and the interface IComparable<Racer>, which can be used to sort a list of racers based on the LastName. For more advanced queries, the class Racer contains not only single-value properties such as FirstName, LastName, Wins Country, and Starts, but also properties that contain a collection, such as Cars and Years. The Years property lists all the years of the championship title. Some racers have won more than one title. The Cars property is used to list all the cars used by the driver during the title years (code file DataLib/Racer.cs):

using System;
using System.Collections.Generic;

namespace Wrox.ProCSharp.LINQ
{
 public class Racer: IComparable<Racer>, IFormattable
 {
 public Racer(string firstName, string lastName, string country,
 int starts, int wins)
 : this(firstName, lastName, country, starts, wins, null, null)
 {
 }

 public Racer(string firstName, string lastName, string country,
 int starts, int wins, IEnumerable<int> years, IEnumerable<string> cars)
 {
 FirstName = firstName;
 LastName = lastName;
 Country = country;
 Starts = starts;
 Wins = wins;
 Years = years != null ? new List<int>(years) : new List<int>();
 Cars = cars != null ? new List<string>(cars) : new List<string>();
 }

 public string FirstName {get; set;}
 public string LastName {get; set;}
 public int Wins {get; set;}
 public string Country {get; set;}
 public int Starts {get; set;}
 public IEnumerable<string> Cars { get; }
 public IEnumerable<int> Years { get; }

 public override string ToString() => $"{FirstName} {LastName}";

 public int CompareTo(Racer other) => LastName.Compare(other?.LastName);

 public string ToString(string format) => ToString(format, null);

 public string ToString(string format, IFormatProvider formatProvider)
 {
 switch (format)
 {
 case null:
 case"N":
 return ToString();
 case"F":
 return FirstName;
 case"L":
 return LastName;
 case"C":
 return Country;
 case"S":
 return Starts.ToString();
 case"W":
 return Wins.ToString();
 case"A":
 return $"{FirstName} {LastName}, {Country}; starts: {Starts}, wins: {Wins}";
 default:
 throw new FormatException($"Format {format} not supported");
 }
 }
 }
}

A second entity class is Team. This class just contains the name and an array of years for constructor championships. Similar to a driver championship, there’s a constructor championship for the best team of a year (code file DataLib/Team.cs):

public class Team
{
 public Team(string name, params int[] years)
 {
 Name = name;
 Years = years != null ? new List<int>(years) : new List<int>();
 }
 public string Name { get; }
 public IEnumerable<int> Years { get; }
}

The class Formula1 returns a list of racers in the method GetChampions. The list is filled with all Formula-1 champions from the years 1950 to 2015 (code file DataLib/Formula1.cs):

using System.Collections.Generic;

namespace Wrox.ProCSharp.LINQ
{
 public static class Formula1
 {
 private static List<Racer> _racers;

 public static IList<Racer> GetChampions()
 {
 if (_racers == null)
 {
 _racers = new List<Racer>(40);
 _racers.Add(new Racer("Nino","Farina","Italy", 33, 5,
 new int[] { 1950 }, new string[] {"Alfa Romeo" }));
 _racers.Add(new Racer("Alberto","Ascari","Italy", 32, 10,
 new int[] { 1952, 1953 }, new string[] {"Ferrari" }));
 _racers.Add(new Racer("Juan Manuel","Fangio","Argentina", 51, 24,
 new int[] { 1951, 1954, 1955, 1956, 1957 },
 new string[] {"Alfa Romeo","Maserati","Mercedes","Ferrari" }));
 _racers.Add(new Racer("Mike","Hawthorn","UK", 45, 3,
 new int[] { 1958 }, new string[] {"Ferrari" }));
 _racers.Add(new Racer("Phil","Hill","USA", 48, 3, new int[] { 1961 },
 new string[] {"Ferrari" }));
 _racers.Add(new Racer("John","Surtees","UK", 111, 6,
 new int[] { 1964 }, new string[] {"Ferrari" }));
 _racers.Add(new Racer("Jim","Clark","UK", 72, 25,
 new int[] { 1963, 1965 }, new string[] {"Lotus" }));
 _racers.Add(new Racer("Jack","Brabham","Australia", 125, 14,
 new int[] { 1959, 1960, 1966 },
 new string[] {"Cooper","Brabham" }));
 _racers.Add(new Racer("Denny","Hulme","New Zealand", 112, 8,
 new int[] { 1967 }, new string[] {"Brabham" }));
 _racers.Add(new Racer("Graham","Hill","UK", 176, 14,
 new int[] { 1962, 1968 }, new string[] {"BRM","Lotus" }));
 _racers.Add(new Racer("Jochen","Rindt","Austria", 60, 6,
 new int[] { 1970 }, new string[] {"Lotus" }));
 _racers.Add(new Racer("Jackie","Stewart","UK", 99, 27,
 new int[] { 1969, 1971, 1973 },
 new string[] {"Matra","Tyrrell" }));
 //...

 return _racers;
 }
 }
 }
}

Where queries are done across multiple lists, the GetConstructorChampions method that follows returns the list of all constructor championships (these championships have been around since 1958):

 private static List<Team> _teams;
 public static IList<Team> GetContructorChampions()
 {
 if (_teams == null)
 {
 _teams = new List<Team>()
 {
 new Team("Vanwall", 1958),
 new Team("Cooper", 1959, 1960),
 new Team("Ferrari", 1961, 1964, 1975, 1976, 1977, 1979, 1982,
 1983, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008),
 new Team("BRM", 1962),
 new Team("Lotus", 1963, 1965, 1968, 1970, 1972, 1973, 1978),
 new Team("Brabham", 1966, 1967),
 new Team("Matra", 1969),
 new Team("Tyrrell", 1971),
 new Team("McLaren", 1974, 1984, 1985, 1988, 1989, 1990, 1991, 1998),
 new Team("Williams", 1980, 1981, 1986, 1987, 1992, 1993, 1994, 1996,
 1997),
 new Team("Benetton", 1995),
 new Team("Renault", 2005, 2006),
 new Team("Brawn GP", 2009),
 new Team("Red Bull Racing", 2010, 2011, 2012, 1013),
 new Team("Mercedes", 2014, 2015)
 };
 }
 return _teams;
 }

LINQ Query

Using these prepared lists and entities, you can do a LINQ query—for example, a query to get all world champions from Brazil sorted by the highest number of wins. To accomplish this you could use methods of the List<T> class—for example, the FindAll and Sort methods. However, using LINQ there’s a simpler syntax as soon as you get used to it (code file LINQIntro/Program.cs):

private static void LinqQuery()
{
 var query = from r in Formula1.GetChampions()
 where r.Country =="Brazil"
 orderby r.Wins descending
 select r;

 foreach (Racer r in query)
 {
 WriteLine($"{r:A}");
 }
}

The result of this query shows world champions from Brazil ordered by number of wins:

Ayrton Senna, Brazil; starts: 161, wins: 41
Nelson Piquet, Brazil; starts: 204, wins: 23
Emerson Fittipaldi, Brazil; starts: 143, wins: 14

The expression

from r in Formula1.GetChampions()
where r.Country =="Brazil"
orderby r.Wins descending
select r;

is a LINQ query. The clauses from, where, orderby, descending, and select are predefined keywords in this query.

The query expression must begin with a from clause and end with a select or group clause. In between you can optionally use where, orderby, join, let, and additional from clauses.

NOTE The variable query just has the LINQ query assigned to it. The query is not performed by this assignment, but rather as soon as the query is accessed using the foreach loop. This is discussed in more detail later in the section “Deferred Query Execution.”

Extension Methods

The compiler converts the LINQ query to invoke method calls instead of the LINQ query. LINQ offers various extension methods for the IEnumerable<T> interface, so you can use the LINQ query across any collection that implements this interface. An extension method is defined as a static method whose first parameter defines the type it extends, and it is declared in a static class.

Extension methods make it possible to write a method to a class that doesn’t already offer the method at first. You can also add a method to any class that implements a specific interface, so multiple classes can make use of the same implementation.

For example, wouldn’t you like to have a Foo method with the String class? The String class is sealed, so it is not possible to inherit from this class; but you can create an extension method, as shown in the following code:

public static class StringExtension
{
 public static void Foo(this string s)
 {
 WriteLine($"Foo invoked for {s}");
 }
}

The Foo method extends the string class, as is defined with the first parameter. For differentiating extension methods from normal static methods, the extension method also requires the this keyword with the first parameter.

Indeed, it is now possible to use the Foo method with the string type:

string s ="Hello";
s.Foo();

The result shows Foo invoked for Hello in the console, because Hello is the string passed to the Foo method.

This might appear to be breaking object-oriented rules because a new method is defined for a type without changing the type or deriving from it. However, this is not the case. The extension method cannot access private members of the type it extends. Calling an extension method is just a new syntax for invoking a static method. With the string you can get the same result by calling the method Foo this way:

string s ="Hello";
StringExtension.Foo(s);

To invoke the static method, write the class name followed by the method name. Extension methods are a different way to invoke static methods. You don’t have to supply the name of the class where the static method is defined. Instead, because of the parameter type the static method is selected by the compiler. You just have to import the namespace that contains the class to get the Foo extension method in the scope of the String class.

One of the classes that define LINQ extension methods is Enumerable in the namespace System.Linq. You just have to import the namespace to open the scope of the extension methods of this class. A sample implementation of the Where extension method is shown in the following code. The first parameter of the Where method that includes the this keyword is of type IEnumerable<T>. This enables the Where method to be used with every type that implements IEnumerable<T>. A few examples of types that implement this interface are arrays and List<T>. The second parameter is a Func<T, bool> delegate that references a method that returns a Boolean value and requires a parameter of type T. This predicate is invoked within the implementation to examine whether the item from the IEnumerable<T> source should be added into the destination collection. If the method is referenced by the delegate, the yield return statement returns the item from the source to the destination:

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, bool> predicate)
{
 foreach (TSource item in source)
 if (predicate(item))
 yield return item;
}

NOTE A predicate is a method that returns a Boolean value.

Because Where is implemented as a generic method, it works with any type that is contained in a collection. Any collection implementing IEnumerable<T> is supported.

NOTE The extension methods here are defined in the namespace System.Linq in the assembly System.Core.

Now it’s possible to use the extension methods Where, OrderByDescending, and Select from the class Enumerable. Because each of these methods returns IEnumerable<TSource>, it is possible to invoke one method after the other by using the previous result. With the arguments of the extension methods, anonymous methods that define the implementation for the delegate parameters are used (code file LINQIntro/Program.cs):

 static void ExtensionMethods()
 {
 var champions = new List<Racer>(Formula1.GetChampions());
 IEnumerable<Racer> brazilChampions =
 champions.Where(r =< r.Country =="Brazil").
 OrderByDescending(r =< r.Wins).
 Select(r =< r);

 foreach (Racer r in brazilChampions)
 {
 WriteLine($"{r:A}");
 }
 }

Deferred Query Execution

During runtime, the query expression does not run immediately as it is defined. The query runs only when the items are iterated.

Let’s have a look once more at the extension method Where. This extension method makes use of the yield return statement to return the elements where the predicate is true. Because the yield return statement is used, the compiler creates an enumerator and returns the items as soon as they are accessed from the enumeration:

public static IEnumerable<T> Where<T>(this IEnumerable<T> source,
 Func<T, bool> predicate)
{
 foreach (T item in source)
 {
 if (predicate(item))
 {
 yield return item;
 }
 }
}

This has a very interesting and important effect. In the following example a collection of string elements is created and filled with first names. Next, a query is defined to get all names from the collection whose first letter is J. The collection should also be sorted. The iteration does not happen when the query is defined. Instead, the iteration happens with the foreach statement, where all items are iterated. Only one element of the collection fulfills the requirements of the where expression by starting with the letter J: Juan. After the iteration is done and Juan is written to the console, four new names are added to the collection. Then the iteration is done again:

var names = new List<string> {"Nino","Alberto","Juan","Mike","Phil" };

var namesWithJ = from n in names
 where n.StartsWith("J")
 orderby n
 select n;

WriteLine("First iteration");
foreach (string name in namesWithJ)
{
 WriteLine(name);
}
WriteLine();

names.Add("John");
names.Add("Jim");
names.Add("Jack");
names.Add("Denny");

WriteLine("Second iteration");
foreach (string name in namesWithJ)
{
 WriteLine(name);
}

Because the iteration does not happen when the query is defined, but does happen with every foreach, changes can be seen, as the output from the application demonstrates:

First iteration
Juan

Second iteration
Jack
Jim
John
Juan

Of course, you also must be aware that the extension methods are invoked every time the query is used within an iteration. Most of the time this is very practical, because you can detect changes in the source data. However, sometimes this is impractical. You can change this behavior by invoking the extension methods ToArray, ToList, and the like. In the following example, you can see that ToList iterates through the collection immediately and returns a collection implementing IList<string>. The returned list is then iterated through twice; in between iterations, the data source gets new names:

var names = new List<string> {"Nino","Alberto","Juan","Mike","Phil" };
var namesWithJ = (from n in names
 where n.StartsWith("J")
 orderby n
 select n).".ToList();"

WriteLine("First iteration");
foreach (string name in namesWithJ)
{
 WriteLine(name);
}
WriteLine();

names.Add("John");
names.Add("Jim");
names.Add("Jack");
names.Add("Denny");

WriteLine("Second iteration");
foreach (string name in namesWithJ)
{
 WriteLine(name);
}

The result indicates that in between the iterations the output stays the same although the collection values have changed:

First iteration
Juan

Second iteration
Juan

Standard Query Operators

Where, OrderByDescending, and Select are only a few of the query operators defined by LINQ. The LINQ query defines a declarative syntax for the most common operators. There are many more query operators available with the Enumerable class.

The following table lists the standard query operators defined by the Enumerable class.

	Standard Query Operators
	Description

	Where

OfType<TResult>

	Filtering operators define a restriction to the elements returned. With the Where query operator you can use a predicate; for example, a Lambda expression that returns a bool. OfType<TResult> filters the elements based on the type and returns only the elements of the type TResult.

	Select

SelectMany

	Projection operators are used to transform an object into a new object of a different type. Select and SelectMany define a projection to select values of the result based on a selector function.

	OrderBy

ThenBy

OrderByDescending ThenByDescending

Reverse

	Sorting operators change the order of elements returned. OrderBy sorts values in ascending order; OrderByDescending sorts values in descending order. ThenBy and ThenByDescending operators are used for a secondary sort if the first sort gives similar results. Reverse reverses the elements in the collection.

	Join

GroupJoin

	Join operators are used to combine collections that might not be directly related to each other. With the Join operator a join of two collections based on key selector functions can be done. This is similar to the JOIN you know from SQL. The GroupJoin operator joins two collections and groups the results.

	GroupBy

ToLookup

	Grouping operators put the data into groups. The GroupBy operator groups elements with a common key. ToLookup groups the elements by creating a one-to-many dictionary.

	Any

All

Contains

	Quantifier operators return a Boolean value if elements of the sequence satisfy a specific condition. Any, All, and Contains are quantifier operators. Any determines whether any element in the collection satisfies a predicate function; All determines whether all elements in the collection satisfy a predicate. Contains checks whether a specific element is in the collection.

	Take

Skip

TakeWhile

SkipWhile

	Partitioning operators return a subset of the collection. Take, Skip, TakeWhile, and SkipWhile are partitioning operators. With these, you get a partial result. With Take, you have to specify the number of elements to take from the collection; Skip ignores the specified number of elements and takes the rest. TakeWhile takes the elements as long as a condition is true. SkipWhile skips the elements as long as the condition is true.

	Distinct

Union

Intersect

Except

Zip

	Set operators return a collection set. Distinct removes duplicates from a collection. With the exception of Distinct, the other set operators require two collections. Union returns unique elements that appear in either of the two collections. Intersect returns elements that appear in both collections. Except returns elements that appear in just one collection. Zip combines two collections into one.

	First

FirstOrDefault

Last

LastOrDefault

ElementAt

ElementAtOrDefault

Single

SingleOrDefault

	Element operators return just one element. First returns the first element that satisfies a condition. FirstOrDefault is similar to First, but it returns a default value of the type if the element is not found. Last returns the last element that satisfies a condition. With ElementAt, you specify the position of the element to return. Single returns only the one element that satisfies a condition. If more than one element satisfies the condition, an exception is thrown. All the XXOrDefault methods are similar to the methods that start with the same prefix, but they return the default value of the type if the element is not found.

	Count

Sum

Min

Max

Average

Aggregate

	Aggregate operators compute a single value from a collection. With aggregate operators, you can get the sum of all values, the number of all elements, the element with the lowest or highest value, an average number, and so on.

	ToArray

AsEnumerable

ToList

ToDictionary

Cast<TResult>

	Conversion operators convert the collection to an array: IEnumerable, IList, IDictionary, and so on. The Cast method casts every item of the collection to the generic argument type.

	Empty

Range

Repeat

	Generation operators return a new sequence. The collection is empty using the Empty operator; Range returns a sequence of numbers, and Repeat returns a collection with one repeated value.

The following sections provide examples demonstrating how to use these operators.

Filtering

This section looks at some examples for a query.

With the where clause, you can combine multiple expressions—for example, get only the racers from Brazil and Austria who won more than 15 races. The result type of the expression passed to the where clause just needs to be of type bool:

var racers = from r in Formula1.GetChampions()
 where r.Wins > 15 &&
 (r.Country =="Brazil" || r.Country =="Austria")
 select r;

foreach (var r in racers)
{
 WriteLine($"{r:A}");
}

Starting the program with this LINQ query returns Niki Lauda, Nelson Piquet, and Ayrton Senna, as shown here:

Niki Lauda, Austria, Starts: 173, Wins: 25
Nelson Piquet, Brazil, Starts: 204, Wins: 23
Ayrton Senna, Brazil, Starts: 161, Wins: 41

Not all queries can be done with the LINQ query syntax, and not all extension methods are mapped to LINQ query clauses. Advanced queries require using extension methods. To better understand complex queries with extension methods, it’s good to see how simple queries are mapped. Using the extension methods Where and Select produces a query very similar to the LINQ query done before:

var racers = Formula1.GetChampions().
 Where(r => r.Wins > 15 &&
 (r.Country =="Brazil" || r.Country =="Austria")).
 Select(r => r);

Filtering with Index

One scenario in which you can’t use the LINQ query is an overload of the Where method. With an overload of the Where method, you can pass a second parameter that is the index. The index is a counter for every result returned from the filter. You can use the index within the expression to do some calculation based on the index. In the following example, the index is used within the code that is called by the Where extension method to return only racers whose last name starts with A if the index is even (code file EnumerableSample/Program.cs):

var racers = Formula1.GetChampions().
 Where((r, index) => r.LastName.StartsWith("A") && index % 2 != 0);
foreach (var r in racers)
{
 WriteLine($"{r:A}");
}

The racers with last names beginning with the letter A are Alberto Ascari, Mario Andretti, and Fernando Alonso. Because Mario Andretti is positioned within an index that is odd, he is not in the result:

Alberto Ascari, Italy; starts: 32, wins: 10
Fernando Alonso, Spain; starts: 252, wins: 32

Type Filtering

For filtering based on a type you can use the OfType extension method. Here the array data contains both string and int objects. Using the extension method OfType, passing the string class to the generic parameter returns only the strings from the collection (code file EnumerableSample/Program.cs):

object[] data = {"one", 2, 3,"four","five", 6 };
var query = data.OfType<string>();
foreach (var s in query)
{
 WriteLine(s);
}

Running this code, the strings one, four, and five are displayed:

one
four
five

Compound from

If you need to do a filter based on a member of the object that itself is a sequence, you can use a compound from. The Racer class defines a property Cars, where Cars is a string array. For a filter of all racers who were champions with a Ferrari, you can use the LINQ query shown next. The first from clause accesses the Racer objects returned from Formula1.GetChampions. The second from clause accesses the Cars property of the Racer class to return all cars of type string. Next the cars are used with the where clause to filter only the racers who were champions with a Ferrari (code file EnumerableSample/Program.cs):

var ferrariDrivers = from r in Formula1.GetChampions()
 from c in r.Cars
 where c =="Ferrari"
 orderby r.LastName
 select r.FirstName +"" + r.LastName;

If you are curious about the result of this query, following are all Formula-1 champions driving a Ferrari:

Alberto Ascari
Juan Manuel Fangio
Mike Hawthorn
Phil Hill
Niki Lauda
Kimi Räikkönen
Jody Scheckter
Michael Schumacher
John Surtees

The C# compiler converts a compound from clause with a LINQ query to the SelectMany extension method. SelectMany can be used to iterate a sequence of a sequence. The overload of the SelectMany method that is used with the example is shown here:

public static IEnumerable<TResult> SelectMany<TSource, TCollection, TResult> (
 this IEnumerable<TSource> source,
 Func<TSource,
 IEnumerable<TCollection>> collectionSelector,
 Func<TSource, TCollection, TResult> resultSelector);

The first parameter is the implicit parameter that receives the sequence of Racer objects from the GetChampions method. The second parameter is the collectionSelector delegate where the inner sequence is defined. With the lambda expression r => r.Cars, the collection of cars should be returned. The third parameter is a delegate that is now invoked for every car and receives the Racer and Car objects. The lambda expression creates an anonymous type with a Racer and a Car property. As a result of this SelectMany method, the hierarchy of racers and cars is flattened and a collection of new objects of an anonymous type for every car is returned.

This new collection is passed to the Where method so that only the racers driving a Ferrari are filtered. Finally, the OrderBy and Select methods are invoked:

var ferrariDrivers = Formula1.GetChampions()
 .SelectMany(r => r.Cars, (r, c) => new { Racer = r, Car = c })
 .Where(r => r.Car =="Ferrari")
 .OrderBy(r => r.Racer.LastName)
 .Select(r => r.Racer.FirstName +"" + r.Racer.LastName);

Resolving the generic SelectMany method to the types that are used here, the types are resolved as follows. In this case the source is of type Racer, the filtered collection is a string array, and of course the name of the anonymous type that is returned is not known and is shown here as TResult:

public static IEnumerable<TResult> SelectMany<Racer, string, TResult> (
 this IEnumerable<Racer> source,
 Func<Racer, IEnumerable<string>> collectionSelector,
 Func<Racer, string, TResult> resultSelector);

Because the query was just converted from a LINQ query to extension methods, the result is the same as before.

Sorting

To sort a sequence, the orderby clause was used already. This section reviews the earlier example, now with the orderby descending clause. Here the racers are sorted based on the number of wins as specified by the key selector in descending order (code file EnumerableSample/Program.cs):

var racers = from r in Formula1.GetChampions()
 where r.Country =="Brazil"
 orderby r.Wins descending
 select r;

The orderby clause is resolved to the OrderBy method, and the orderby descending clause is resolved to the OrderByDescending method:

var racers = Formula1.GetChampions()
 .Where(r => r.Country =="Brazil")
 .OrderByDescending(r => r.Wins)
 .Select(r => r);

The OrderBy and OrderByDescending methods return IOrderedEnumerable<TSource>. This interface derives from the interface IEnumerable<TSource> but contains an additional method, CreateOrderedEnumerable<TSource>. This method is used for further ordering of the sequence. If two items are the same based on the key selector, ordering can continue with the ThenBy and ThenByDescending methods. These methods require an IOrderedEnumerable<TSource> to work on but return this interface as well. Therefore, you can add any number of ThenBy and ThenByDescending methods to sort the collection.

Using the LINQ query, you just add all the different keys (with commas) for sorting to the orderby clause. In the next example, the sort of all racers is done first based on country, next on last name, and finally on first name. The Take extension method that is added to the result of the LINQ query is used to return the first 10 results:

var racers = (from r in Formula1.GetChampions()
 orderby r.Country, r.LastName, r.FirstName
 select r).Take(10);

The sorted result is shown here:

Argentina: Fangio, Juan Manuel
Australia: Brabham, Jack
Australia: Jones, Alan
Austria: Lauda, Niki
Austria: Rindt, Jochen
Brazil: Fittipaldi, Emerson
Brazil: Piquet, Nelson
Brazil: Senna, Ayrton
Canada: Villeneuve, Jacques
Finland: Hakkinen, Mika

Doing the same with extension methods makes use of the OrderBy and ThenBy methods:

var racers = Formula1.GetChampions()
 .OrderBy(r => r.Country)
 .ThenBy(r => r.LastName)
 .ThenBy(r => r.FirstName)
 .Take(10);

Grouping

To group query results based on a key value, the group clause can be used. Now the Formula-1 champions should be grouped by country, and the number of champions within a country should be listed. The clause group r by r.Country into g groups all the racers based on the Country property and defines a new identifier g that can be used later to access the group result information. The result from the group clause is ordered based on the extension method Count that is applied on the group result; and if the count is the same, the ordering is done based on the key. This is the country because this was the key used for grouping. The where clause filters the results based on groups that have at least two items, and the select clause creates an anonymous type with the Country and Count properties (code file EnumerableSample/Program.cs):

 var countries = from r in Formula1.GetChampions()
 group r by r.Country into g
 orderby g.Count() descending, g.Key
 where g.Count() >= 2
 select new {
 Country = g.Key,
 Count = g.Count()
 };

 foreach (var item in countries)
 {
 WriteLine($"{item.Country, -10} {item.Count}");
 }

The result displays the collection of objects with the Country and Count properties:

UK 10
Brazil 3
Finland 3
Australia 2
Austria 2
Germany 2
Italy 2
USA 2

Doing the same with extension methods, the groupby clause is resolved to the GroupBy method. What’s interesting with the declaration of the GroupBy method is that it returns an enumeration of objects implementing the IGrouping interface. The IGrouping interface defines the Key property, so you can access the key of the group after defining the call to this method:

public static IEnumerable<IGrouping<TKey, TSource>> GroupBy<TSource, TKey>(
 this IEnumerable<TSource> source, Func<TSource, TKey> keySelector);

The group r by r.Country into g clause is resolved to GroupBy(r => r.Country) and returns the group sequence. The group sequence is first ordered by the OrderByDescending method, then by the ThenBy method. Next, the Where and Select methods that you already know are invoked:

var countries = Formula1.GetChampions()
 .GroupBy(r => r.Country)
 .OrderByDescending(g => g.Count())
 .ThenBy(g => g.Key)
 .Where(g => g.Count() >= 2)
 .Select(g => new { Country = g.Key,
 Count = g.Count() });

Variables Within the LINQ Query

With the LINQ query as it is written for grouping, the Count method is called multiple times. You can change this by using the let clause. let allows defining variables within the LINQ query:

var countries = from r in Formula1.GetChampions()
 group r by r.Country into g
 let count = g.Count()
 orderby count descending, g.Key
 where count >= 2
 select new
 {
 Country = g.Key,
 Count = count
 };

Using the method syntax, the Count method was invoked multiple times as well. To define extra data to pass to the next method (what is really done by the let clause), you can use the Select method to create anonymous types. Here an anonymous type with Group and Count properties is created. A collection of items with these properties is passed to the OrderByDescending method where the sort is based on the Count property of this anonymous type:

var countries = Formula1.GetChampions()
 .GroupBy(r => r.Country)
 .Select(g => new { Group = g, Count = g.Count() })
 .OrderByDescending(g => g.Count)
 .ThenBy(g => g.Group.Key)
 .Where(g => g.Count >= 2)
 .Select(g => new
 {
 Country = g.Group.Key,
 Count = g.Count
 });

Take care with the number of interim objects created based on the let clause or Select method. When you query through large lists, the number of objects created that need to be garbage collected later on can have a huge impact on performance.

Grouping with Nested Objects

If the grouped objects should contain nested sequences, you can do that by changing the anonymous type created by the select clause. With this example, the returned countries should contain not only the properties for the name of the country and the number of racers, but also a sequence of the names of the racers. This sequence is assigned by using an inner from/in clause assigned to the Racers property. The inner from clause is using the g group to get all racers from the group, order them by last name, and create a new string based on the first and last name (code file EnumerableSample/Program.cs):

var countries = from r in Formula1.GetChampions()
 group r by r.Country into g
 let count = g.Count()
 orderby count descending, g.Key
 where count >= 2
 select new
 {
 Country = g.Key,
 Count = count,
 Racers = from r1 in g
 orderby r1.LastName
 select r1.FirstName +"" + r1.LastName
 };

foreach (var item in countries)
{
 WriteLine($"{item.Country, -10} {item.Count}");
 foreach (var name in item.Racers)
 {
 Write($"{name};");
 }
 WriteLine();
}

The output now lists all champions from the specified countries:

UK 10
Jenson Button; Jim Clark; Lewis Hamilton; Mike Hawthorn; Graham Hill;
Damon Hill; James Hunt; Nigel Mansell; Jackie Stewart; John Surtees;
Brazil 3
Emerson Fittipaldi; Nelson Piquet; Ayrton Senna;
Finland 3
Mika Hakkinen; Kimi Raikkonen; Keke Rosberg;
Australia 2
Jack Brabham; Alan Jones;
Austria 2
Niki Lauda; Jochen Rindt;
Germany 2
Michael Schumacher; Sebastian Vettel;
Italy 2
Alberto Ascari; Nino Farina;
USA 2
Mario Andretti; Phil Hill;

Inner Join

You can use the join clause to combine two sources based on specific criteria. First, however, let’s get two lists that should be joined. With Formula-1, there are drivers and a constructor champions. The drivers are returned from the method GetChampions, and the constructors are returned from the method GetConstructorChampions. It would be interesting to get a list by year in which every year lists the driver and the constructor champions.

To do this, the first two queries for the racers and the teams are defined (code file EnumerableSample/Program.cs):

var racers = from r in Formula1.GetChampions()
 from y in r.Years
 select new
 {
 Year = y,
 Name = r.FirstName +"" + r.LastName
 };

var teams = from t in Formula1.GetContructorChampions()
 from y in t.Years
 select new
 {
 Year = y,
 Name = t.Name
 };

Using these two queries, a join is done based on the year of the driver champion and the year of the team champion with the join clause. The select clause defines a new anonymous type containing Year, Racer, and Team properties:

var racersAndTeams = (from r in racers
 join t in teams on r.Year equals t.Year
 select new
 {
 r.Year,
 Champion = r.Name,
 Constructor = t.Name
 }).Take(10);

WriteLine("Year World Champion\t Constructor Title");
foreach (var item in racersAndTeams)
{
 WriteLine($"{item.Year}: {item.Champion,-20} {item.Constructor}");
}

Of course you can also combine this to just one LINQ query, but that’s a matter of taste:

var racersAndTeams =
 (from r in
 from r1 in Formula1.GetChampions()
 from yr in r1.Years
 select new
 {
 Year = yr,
 Name = r1.FirstName +"" + r1.LastName
 }
 join t in
 from t1 in Formula1.GetContructorChampions()
 from yt in t1.Years
 select new
 {
 Year = yt,
 Name = t1.Name
 }
 on r.Year equals t.Year
 orderby t.Year
 select new
 {
 Year = r.Year,
 Racer = r.Name,
 Team = t.Name
 }).Take(10);

The output displays data from the anonymous type for the first 10 years in which both a drivers’ and constructor championship took place:

Year World Champion Constructor Title
1958: Mike Hawthorn Vanwall
1959: Jack Brabham Cooper
1960: Jack Brabham Cooper
1961: Phil Hill Ferrari
1962: Graham Hill BRM
1963: Jim Clark Lotus
1964: John Surtees Ferrari
1965: Jim Clark Lotus
1966: Jack Brabham Brabham
1967: Denny Hulme Brabham

Left Outer Join

The output from the previous join sample started with the year 1958—the first year when both the drivers’ and constructor championship started. The drivers’ championship started earlier, in the year 1950. With an inner join, results are returned only when matching records are found. To get a result with all the years included, you can use a left outer join. A left outer join returns all the elements in the left sequence even when no match is found in the right sequence.

The earlier LINQ query is changed to a left outer join. A left outer join is defined with the join clause together with the DefaultIfEmpty method. If the left side of the query (the racers) does not have a matching constructor champion, the default value for the right side is defined by the DefaultIfEmpty method (code file EnumerableSample/Program.cs):

var racersAndTeams =
 (from r in racers
 join t in teams on r.Year equals t.Year into rt
 from t in rt.DefaultIfEmpty()
 orderby r.Year
 select new
 {
 Year = r.Year,
 Champion = r.Name,
 Constructor = t == null ?"no constructor championship" : t.Name
 }).Take(10);

Running the application with this query, the output starts with the year 1950 as shown here:

Year Champion Constructor Title
1950: Nino Farina no constructor championship
1951: Juan Manuel Fangio no constructor championship
1952: Alberto Ascari no constructor championship
1953: Alberto Ascari no constructor championship
1954: Juan Manuel Fangio no constructor championship
1955: Juan Manuel Fangio no constructor championship
1956: Juan Manuel Fangio no constructor championship
1957: Juan Manuel Fangio no constructor championship
1958: Mike Hawthorn Vanwall
1959: Jack Brabham Cooper

Group Join

A left outer join makes use of a group join together with the into clause. It uses partly the same syntax as the group join. The group join just doesn’t need the DefaultIfEmpty method.

With a group join, two independent sequences can be joined, whereby one sequence contains a list of items for one element of the other sequence.

The following example uses two independent sequences. One is the list of champions that you already know from previous examples. The second sequence is a collection of Championship types. The Championship type is shown in the next code snippet. This class contains the year of the championship and the racers with the first, second, and third positions of the year with the properties Year, First, Second, and Third (code file DataLib/Championship.cs):

public class Championship
{
 public int Year { get; set; }
 public string First { get; set; }
 public string Second { get; set; }
 public string Third { get; set; }
}

The collection of championships is returned from the method GetChampionships as shown in the following code snippet (code file DataLib/Formula1.cs):

private static List<Championship> championships;
public static IEnumerable<Championship> GetChampionships()
{
 if (championships == null)
 {
 championships = new List<Championship>();
 championships.Add(new Championship
 {
 Year = 1950,
 First ="Nino Farina",
 Second ="Juan Manuel Fangio",
 Third ="Luigi Fagioli"
 });
 championships.Add(new Championship
 {
 Year = 1951,
 First ="Juan Manuel Fangio",
 Second ="Alberto Ascari",
 Third ="Froilan Gonzalez"
 });
 //…

The list of champions should be combined with the list of racers that are found within the first three positions in every year of championships, and the results for every year should be displayed.

The information that should be shown is defined with the RacerInfo class, as shown here (code file EnumerableSample/RacerInfo.cs):

public class RacerInfo
{
 public int Year { get; set; }
 public int Position { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

With a join statement the racers from both lists can be combined.

Because in the list of championships every item contains three racers, this list needs to be flattened first. One way to do this is by using the SelectMany method. SelectMany makes use of a lambda expression that returns a list of three items for every item in the list. Within the implementation of the lambda expression, because RacerInfo contains the FirstName and LastName properties, and the collection received contains only a name with the First, Second, and Third properties, the string needs to be divided. You do this with the help of the extension methods FirstName and LastName (code file EnumerableSample/Program.cs):

var racers = Formula1.GetChampionships()
 .SelectMany(cs => new List<RacerInfo>()
 {
 new RacerInfo {
 Year = cs.Year,
 Position = 1,
 FirstName = cs.First.FirstName(),
 LastName = cs.First.LastName()
 },
 new RacerInfo {
 Year = cs.Year,
 Position = 2,
 FirstName = cs.Second.FirstName(),
 LastName = cs.Second.LastName()
 },
 new RacerInfo {
 Year = cs.Year,
 Position = 3,
 FirstName = cs.Third.FirstName(),
 LastName = cs.Third.LastName()
 }
 });

The extension methods FirstName and LastName just use the last blank character to split up the string:

public static class StringExtension
{
 public static string FirstName(this string name)
 {
 int ix = name.LastIndexOf(' ');
 return name.Substring(0, ix);
 }
 public static string LastName(this string name)
 {
 int ix = name.LastIndexOf(' ');
 return name.Substring(ix + 1);
 }
}

Now the two sequences can be joined. Formula1.GetChampions returns a list of Racers, and the racers variable returns the list of RacerInfo that contains the year, the result, and the names of racers. It’s not enough to compare the items from these two collections by using the last name. Sometimes a racer and his father can be found in the list (for example, Damon Hill and Graham Hill), so it’s necessary to compare the items by both FirstName and LastName. You do this by creating a new anonymous type for both lists. Using the into clause, the result from the second collection is put into the variable yearResults. yearResults is created for every racer in the first collection and contains the results of the matching first name and last name from the second collection. Finally, with the LINQ query a new anonymous type is created that contains the needed information:

var q = (from r in Formula1.GetChampions()
 join r2 in racers on
 new
 {
 FirstName = r.FirstName,
 LastName = r.LastName
 }
 equals
 new
 {
 FirstName = r2.FirstName,
 LastName = r2.LastName
 }
 into yearResults
 select new
 {
 FirstName = r.FirstName,
 LastName = r.LastName,
 Wins = r.Wins,
 Starts = r.Starts,
 Results = yearResults
 });

foreach (var r in q)
{
 WriteLine($"{r.FirstName} {r.LastName}");
 foreach (var results in r.Results)
 {
 WriteLine($"{results.Year} {results.Position}.");
 }
}

The last results from the foreach loop are shown next. Lewis Hamilton has been among the top three for three races—2007 as second and 2008 and 2014 as first. Jenson Button is found three times—2004, 2009, and 2011; and Sebastian Vettel was world champion four times and had the second position in 2009:

Lewis Hamilton
2007 2.
2008 1.
2014 1.
Jenson Button
2004 3.
2009 1.
2011 2.
Sebastian Vettel
2009 2.
2010 1.
2011 1.
2012 1.
2013 1.

Set Operations

The extension methods Distinct, Union, Intersect, and Except are set operations. The following example creates a sequence of Formula-1 champions driving a Ferrari and another sequence of Formula-1 champions driving a McLaren, and then determines whether any driver has been a champion driving both of these cars. Of course, that’s where the Intersect extension method can help.

First, you need to get all champions driving a Ferrari. This uses a simple LINQ query with a compound from to access the property Cars that’s returning a sequence of string objects (code file EnumerableSample/Program.cs):

var ferrariDrivers = from r in
 Formula1.GetChampions()
 from c in r.Cars
 where c =="Ferrari"
 orderby r.LastName
 select r;

Now the same query with a different parameter of the where clause is needed to get all McLaren racers. It’s not a good idea to write the same query again. One option is to create a method in which you can pass the parameter car:

private static IEnumerable<Racer> GetRacersByCar(string car)
{
 return from r in Formula1.GetChampions()
 from c in r.Cars
 where c == car
 orderby r.LastName
 select r;
}

However, because the method wouldn’t be needed in other places, defining a variable of a delegate type to hold the LINQ query is a good approach. The variable racersByCar needs to be of a delegate type that requires a string parameter and returns IEnumerable<Racer>, similar to the method implemented earlier. To do this, several generic Func<> delegates are defined, so you do not need to declare your own delegate. A lambda expression is assigned to the variable racersByCar. The left side of the lambda expression defines a car variable of the type that is the first generic parameter of the Func delegate (a string). The right side defines the LINQ query that uses the parameter with the where clause:

Func<string, IEnumerable<Racer>> racersByCar =
 car => from r in Formula1.GetChampions()
 from c in r.Cars
 where c == car
 orderby r.LastName
 select r;

Now you can use the Intersect extension method to get all racers who won the championship with a Ferrari and a McLaren:

WriteLine("World champion with Ferrari and McLaren");
foreach (var racer in racersByCar("Ferrari").Intersect(racersByCar("McLaren")))
{
 WriteLine(racer);
}

The result is just one racer, Niki Lauda:

World champion with Ferrari and McLaren
Niki Lauda

NOTE The set operations compares the objects by invoking the GetHashCode and Equals methods of the entity class. For custom comparisons, you can also pass an object that implements the interface IEqualityComparer<T>. In the preceding example, the GetChampions method always returns the same objects, so the default comparison works. If that’s not the case, the set methods offer overloads in which a comparison can be defined.

Zip

The Zip method enables you to merge two related sequences into one with a predicate function.

First, two related sequences are created, both with the same filtering (country Italy) and ordering. For merging this is important, as item 1 from the first collection is merged with item 1 from the second collection, item 2 with item 2, and so on. In case the count of the two sequences is different, Zip stops when the end of the smaller collection is reached.

The items in the first collection have a Name property, and the items in the second collection have LastName and Starts properties.

Using the Zip method on the collection racerNames requires the second collection racerNamesAndStarts as the first parameter. The second parameter is of type Func<TFirst, TSecond, TResult>. This parameter is implemented as a lambda expression and receives the elements of the first collection with the parameter first, and the elements of the second collection with the parameter second. The implementation creates and returns a string containing the Name property of the first element and the Starts property of the second element (code file EnumerableSample/Program.cs):

var racerNames = from r in Formula1.GetChampions()
 where r.Country =="Italy"
 orderby r.Wins descending
 select new
 {
 Name = r.FirstName +"" + r.LastName
 };

var racerNamesAndStarts = from r in Formula1.GetChampions()
 where r.Country =="Italy"
 orderby r.Wins descending
 select new
 {
 LastName = r.LastName,
 Starts = r.Starts
 };

var racers = racerNames.Zip(racerNamesAndStarts,
 (first, second) => first.Name +", starts:" + second.Starts);

foreach (var r in racers)
{
 WriteLine(r);
}

The result of this merge is shown here:

Alberto Ascari, starts: 32
Nino Farina, starts: 33

Partitioning

Partitioning operations such as the extension methods Take and Skip can be used for easy paging—for example, to display just five racers on the first page, and continue with the next five on the following pages.

With the LINQ query shown here, the extension methods Skip and Take are added to the end of the query. The Skip method first ignores a number of items calculated based on the page size and the actual page number; the Take method then takes a number of items based on the page size (code file EnumerableSample/Program.cs):

int pageSize = 5;
int numberPages = (int)Math.Ceiling(Formula1.GetChampions().Count() /
 (double)pageSize);

for (int page = 0; page < numberPages; page++)
{
 WriteLine($"Page {page}");

 var racers = (from r in Formula1.GetChampions()
 orderby r.LastName, r.FirstName
 select r.FirstName +"" + r.LastName).
 Skip(page * pageSize).Take(pageSize);

 foreach (var name in racers)
 {
 WriteLine(name);
 }
 WriteLine();
}

Here is the output of the first three pages:

Page 0
Fernando Alonso
Mario Andretti
Alberto Ascari
Jack Brabham
Jenson Button

Page 1
Jim Clark
Juan Manuel Fangio
Nino Farina
Emerson Fittipaldi
Mika Hakkinen

Page 2
Lewis Hamilton
Mike Hawthorn
Damon Hill
Graham Hill
Phil Hill

Paging can be extremely useful with Windows or web applications, showing the user only a part of the data.

NOTE an important behavior of this paging mechanism: Because the query is done with every page, changing the underlying data affects the results. New objects are shown as paging continues. Depending on your scenario, this can be advantageous to your application. If this behavior is not what you need, you can do the paging not over the original data source but by using a cache that maps to the original data.

With the TakeWhile and SkipWhile extension methods you can also pass a predicate to retrieve or skip items based on the result of the predicate.

Aggregate Operators

The aggregate operators such as Count, Sum, Min, Max, Average, and Aggregate do not return a sequence; instead they return a single value.

The Count extension method returns the number of items in the collection. In the following example, the Count method is applied to the Years property of a Racer to filter the racers and return only those who won more than three championships. Because the same count is needed more than once in the same query, a variable numberYears is defined by using the let clause (code file EnumerableSample/Program.cs):

var query = from r in Formula1.GetChampions()
 let numberYears = r.Years.Count()
 where numberYears >= 3
 orderby numberYears descending, r.LastName
 select new
 {
 Name = r.FirstName +"" + r.LastName,
 TimesChampion = numberYears
 };

foreach (var r in query)
{
 WriteLine($"{r.Name} {r.TimesChampion}");
}

The result is shown here:

Michael Schumacher 7
Juan Manuel Fangio 5
Alain Prost 4
Sebastian Vettel 4
Jack Brabham 3
Niki Lauda 3
Nelson Piquet 3
Ayrton Senna 3
Jackie Stewart 3

The Sum method summarizes all numbers of a sequence and returns the result. In the next example, Sum is used to calculate the sum of all race wins for a country. First the racers are grouped based on country; then, with the new anonymous type created, the Wins property is assigned to the sum of all wins from a single country:

var countries = (from c in
 from r in Formula1.GetChampions()
 group r by r.Country into c
 select new
 {
 Country = c.Key,
 Wins = (from r1 in c
 select r1.Wins).Sum()
 }
 orderby c.Wins descending, c.Country
 select c).Take(5);

foreach (var country in countries)
{
 WriteLine("{country.Country} {country.Wins}");
}

The most successful countries based on the Formula-1 race champions are as follows:

UK 186
Germany 130
Brazil 78
France 51
Finland 45

The methods Min, Max, Average, and Aggregate are used in the same way as Count and Sum. Min returns the minimum number of the values in the collection, and Max returns the maximum number. Average calculates the average number. With the Aggregate method you can pass a lambda expression that performs an aggregation of all the values.

Conversion Operators

In this chapter you’ve already seen that query execution is deferred until the items are accessed. Using the query within an iteration, the query is executed. With a conversion operator, the query is executed immediately and the result is returned in an array, a list, or a dictionary.

In the next example, the ToList extension method is invoked to immediately execute the query and put the result into a List<T> (code file EnumerableSample/Program.cs):

List<Racer> racers = (from r in Formula1.GetChampions()
 where r.Starts > 150
 orderby r.Starts descending
 select r).ToList();

foreach (var racer in racers)
{
 WriteLine($"{racer} {racer:S}");
}

It’s not that simple to get the returned objects into the list. For example, for fast access from a car to a racer within a collection class, you can use the new class Lookup<TKey, TElement>.

NOTE The Dictionary<TKey, TValue> class supports only a single value for a key. With the class Lookup<TKey, TElement> from the namespace System.Linq, you can have multiple values for a single key. These classes are covered in detail in Chapter 11, “Collections.”

Using the compound from query, the sequence of racers and cars is flattened, and an anonymous type with the properties Car and Racer is created. With the lookup that is returned, the key should be of type string referencing the car, and the value should be of type Racer. To make this selection, you can pass a key and an element selector to one overload of the ToLookup method. The key selector references the Car property, and the element selector references the Racer property:

var racers = (from r in Formula1.GetChampions()
 from c in r.Cars
 select new
 {
 Car = c,
 Racer = r
 }).ToLookup(cr => cr.Car, cr => cr.Racer);

if (racers.Contains("Williams"))
{
 foreach (var williamsRacer in racers["Williams"])
 {
 WriteLine(williamsRacer);
 }
}

The result of all “Williams” champions accessed using the indexer of the Lookup class is shown here:

Alan Jones
Keke Rosberg
Nigel Mansell
Alain Prost
Damon Hill
Jacques Villeneuve

In case you need to use a LINQ query over an untyped collection, such as the ArrayList, you can use the Cast method. In the following example, an ArrayList collection that is based on the Object type is filled with Racer objects. To make it possible to define a strongly typed query, you can use the Cast method:

var list = new System.Collections.ArrayList(Formula1.GetChampions()
 as System.Collections.ICollection);

var query = from r in list.Cast<Racer>()
 where r.Country =="USA"
 orderby r.Wins descending
 select r;
foreach (var racer in query)
{
 WriteLine("{racer:A}", racer);
}

The results include the only Formula 1 champions from the U.S.:

Mario Andretti, country: USA, starts: 128, wins: 12
Phil Hill, country: USA, starts: 48, wins: 3

Generation Operators

The generation operators Range, Empty, and Repeat are not extension methods, but normal static methods that return sequences. With LINQ to Objects, these methods are available with the Enumerable class.

Have you ever needed a range of numbers filled? Nothing is easier than using the Range method. This method receives the start value with the first parameter and the number of items with the second parameter:

var values = Enumerable.Range(1, 20);
foreach (var item in values)
{
 Write($"{item}", item);
}
WriteLine();

NOTE The Range method does not return a collection filled with the values as defined. This method does a deferred query execution similar to the other methods. It returns a RangeEnumerator that simply does a yield return with the values incremented.

Of course, the result now looks like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

You can combine the result with other extension methods to get a different result—for example, using the Select extension method:

var values = Enumerable.Range(1, 20).Select(n => n * 3);

The Empty method returns an iterator that does not return values. This can be used for parameters that require a collection for which you can pass an empty collection.

The Repeat method returns an iterator that returns the same value a specific number of times.

Parallel LINQ

The class ParallelEnumerable in the System.Linq namespace splits the work of queries across multiple threads that run simultaneously. Although the Enumerable class defines extension methods to the IEnumerable<T> interface, most extension methods of the ParallelEnumerable class are extensions for the class ParallelQuery<TSource>. One important exception is the AsParallel method, which extends IEnumerable<TSource> and returns ParallelQuery<TSource>, so a normal collection class can be queried in a parallel manner.

Parallel Queries

To demonstrate Parallel LINQ (PLINQ), a large collection is needed. With small collections you don’t see any effect when the collection fits inside the CPU’s cache. In the following code, a large int collection is filled with random values (code file ParallelLinqSample/Program.cs):

static IEnumerable<int> SampleData()
{
 const int arraySize = 50000000;
 var r = new Random();
 return Enumerable.Range(0, arraySize).Select(x => r.Next(140)).ToList();
}

Now you can use a LINQ query to filter the data, do some calculations, and get an average of the filtered data. The query defines a filter with the where clause to summarize only the items with values < 20, and then the aggregation function sum is invoked. The only difference to the LINQ queries you’ve seen so far is the call to the AsParallel method:

var res = (from x in data.AsParallel()
 where Math.Log(x) < 4
 select x).Average();

Like the LINQ queries shown already, the compiler changes the syntax to invoke the methods AsParallel, Where, Select, and Average. AsParallel is defined with the ParallelEnumerable class to extend the IEnumerable<T> interface, so it can be called with a simple array. AsParallel returns ParallelQuery<TSource>. Because of the returned type, the Where method chosen by the compiler is ParallelEnumerable.Where instead of Enumerable.Where. In the following code, the Select and Average methods are from ParallelEnumerable as well. In contrast to the implementation of the Enumerable class, with the ParallelEnumerable class the query is partitioned so that multiple threads can work on the query. The collection can be split into multiple parts whereby different threads work on each part to filter the remaining items. After the partitioned work is completed, merging must occur to get the summary result of all parts:

var res = data.AsParallel().Where(x => Math.Log(x) < 4).
 Select(x => x).Average();

When you run this code, you can also start the task manager so you can confirm that all CPUs of your system are busy. If you remove the AsParallel method, multiple CPUs might not be used. Of course, if you don’t have multiple CPUs on your system, then don’t expect to see an improvement with the parallel version.

Partitioners

The AsParallel method is an extension not only to the IEnumerable<T> interface, but also to the Partitioner class. With this you can influence the partitions to be created.

The Partitioner class is defined within the namespace System.Collections.Concurrent and has different variants. The Create method accepts arrays or objects implementing IList<T>. Depending on that, as well as on the parameter loadBalance, which is of type Boolean and available with some overloads of the method, a different partitioner type is returned. For arrays, the classes DynamicPartitionerForArray<TSource> and StaticPartitionerForArray<TSource>, are used. Both of which derive from the abstract base class OrderablePartitioner<TSource>.

In the following example, the code from the “Parallel Queries” section is changed to manually create a partitioner instead of relying on the default one:

var result = (from x in Partitioner.Create(data, true).AsParallel()
 where Math.Log(x) < 4
 select x).Average();

You can also influence the parallelism by invoking the methods WithExecutionMode and WithDegreeOfParallelism. With WithExecutionMode you can pass a value of ParallelExecutionMode, which can be Default or ForceParallelism. By default, Parallel LINQ avoids parallelism with high overhead. With the method WithDegreeOfParallelism you can pass an integer value to specify the maximum number of tasks that should run in parallel. This is useful if not all CPU cores should be used by the query.

NOTE You can read more about tasks and threads in Chapter 21, “Tasks and Parallel Programming”, and Chapter 22, “Task Synchronization.”

Cancellation

.NET offers a standard way to cancel long-running tasks, and this is also true for Parallel LINQ.

To cancel a long-running query, you can add the method WithCancellation to the query and pass a CancellationToken to the parameter. The CancellationToken is created from the CancellationTokenSource. The query is run in a separate thread where the exception of type OperationCanceledException is caught. This exception is fired if the query is cancelled. From the main thread the task can be cancelled by invoking the Cancel method of the CancellationTokenSource:

var cts = new CancellationTokenSource();

Task.Run(() =>
{
 try
 {
 var res = (from x in data.AsParallel().WithCancellation(cts.Token)
 where Math.Log(x) < 4
 select x).Average();
 WriteLine($"query finished, sum: {res}");
 }
 catch (OperationCanceledException ex)
 {
 WriteLine(ex.Message);
 }
});

WriteLine("query started");
Write("cancel?");
string input = ReadLine();
if (input.ToLower().Equals("y"))
{
 // cancel!
 cts.Cancel();
}

NOTE You can read more about cancellation and the CancellationToken in Chapter 21.

Expression Trees

With LINQ to Objects, the extension methods require a delegate type as parameter; this way, a lambda expression can be assigned to the parameter. Lambda expressions can also be assigned to parameters of type Expression<T>. The C# compiler defines different behavior for lambda expressions depending on the type. If the type is Expression<T>, the compiler creates an expression tree from the lambda expression and stores it in the assembly. The expression tree can be analyzed during runtime and optimized for querying against the data source.

Let’s turn to a query expression that was used previously (code file ExpressionTreeSample/Program.cs):

var brazilRacers = from r in racers
 where r.Country =="Brazil"
 orderby r.Wins
 select r;

The preceding query expression uses the extension methods Where, OrderBy, and Select. The Enumerable class defines the Where extension method with the delegate type Func<T, bool> as parameter predicate:

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source, Func<TSource, bool> predicate);

This way, the lambda expression is assigned to the predicate. Here, the lambda expression is similar to an anonymous method, as explained earlier:

Func<Racer, bool> predicate = r => r.Country =="Brazil";

The Enumerable class is not the only class for defining the Where extension method. The Where extension method is also defined by the class Queryable<T>. This class has a different definition of the Where extension method:

public static IQueryable<TSource> Where<TSource>(
 this IQueryable<TSource> source,
 Expression<Func<TSource, bool>> predicate);

Here, the lambda expression is assigned to the type Expression<T>, which behaves differently:

Expression<Func<Racer, bool>> predicate = r => r.Country =="Brazil";

Instead of using delegates, the compiler emits an expression tree to the assembly. The expression tree can be read during runtime. Expression trees are built from classes derived from the abstract base class Expression. The Expression class is not the same as Expression<T>. Some of the expression classes that inherit from Expression include BinaryExpression, ConstantExpression, InvocationExpression, LambdaExpression, NewExpression, NewArrayExpression, TernaryExpression, UnaryExpression, and more. The compiler creates an expression tree resulting from the lambda expression.

For example, the lambda expression r.Country =="Brazil" makes use of ParameterExpression, MemberExpression, ConstantExpression, and MethodCallExpression to create a tree and store the tree in the assembly. This tree is then used during runtime to create an optimized query to the underlying data source.

The method DisplayTree is implemented to display an expression tree graphically on the console. In the following example, an Expression object can be passed, and depending on the expression type some information about the expression is written to the console. Depending on the type of the expression, DisplayTree is called recursively:

NOTE This method does not deal with all expression types, only the types that are used with the following example expression.

private static void DisplayTree(int indent, string message,
 Expression expression)
{
 string output = $"{string.Empty.PadLeft(indent, '>')} {message}" +
 $"! NodeType: {expression.NodeType}; Expr: {expression}";

 indent++;
 switch (expression.NodeType)
 {
 case ExpressionType.Lambda:
 Console.WriteLine(output);
 LambdaExpression lambdaExpr = (LambdaExpression)expression;
 foreach (var parameter in lambdaExpr.Parameters)
 {
 DisplayTree(indent,"Parameter", parameter);
 }
 DisplayTree(indent,"Body", lambdaExpr.Body);
 break;
 case ExpressionType.Constant:
 ConstantExpression constExpr = (ConstantExpression)expression;
 WriteLine($"{output} Const Value: {constExpr.Value}");
 break;
 case ExpressionType.Parameter:
 ParameterExpression paramExpr = (ParameterExpression)expression;
 WriteLine($"{output} Param Type: {paramExpr.Type.Name}");
 break;
 case ExpressionType.Equal:
 case ExpressionType.AndAlso:
 case ExpressionType.GreaterThan:
 BinaryExpression binExpr = (BinaryExpression)expression;
 if (binExpr.Method != null)
 {
 WriteLine($"{output} Method: {binExpr.Method.Name}");
 }
 else
 {
 WriteLine(output);
 }
 DisplayTree(indent,"Left", binExpr.Left);
 DisplayTree(indent,"Right", binExpr.Right);
 break;
 case ExpressionType.MemberAccess:
 MemberExpression memberExpr = (MemberExpression)expression;
 WriteLine($"{output} Member Name: {memberExpr.Member.Name}," +
 " Type: {memberExpr.Expression}");
 DisplayTree(indent,"Member Expr", memberExpr.Expression);
 break;
 default:
 WriteLine();
 WriteLine($"{expression.NodeType} {expression.Type.Name}");
 break;
 }
}

The expression that is used for showing the tree is already well known. It’s a lambda expression with a Racer parameter, and the body of the expression takes racers from Brazil only if they have won more than six races:

Expression<Func<Racer, bool>> expression =
 r => r.Country =="Brazil" && r.Wins > 6;

DisplayTree(0,"Lambda", expression);

Looking at the tree result, you can see from the output that the lambda expression consists of a Parameter and an AndAlso node type. The AndAlso node type has an Equal node type to the left and a GreaterThan node type to the right. The Equal node type to the left of the AndAlso node type has a MemberAccess node type to the left and a Constant node type to the right, and so on:

Lambda! NodeType: Lambda; Expr: r => ((r.Country =="Brazil") AndAlso (r.Wins > 6))
> Parameter! NodeType: Parameter; Expr: r Param Type: Racer
> Body! NodeType: AndAlso; Expr: ((r.Country =="Brazil") AndAlso (r.Wins > 6))
>> Left! NodeType: Equal; Expr: (r.Country =="Brazil") Method: op_Equality
>>> Left! NodeType: MemberAccess; Expr: r.Country Member Name: Country, Type: String
>>>> Member Expr! NodeType: Parameter; Expr: r Param Type: Racer
>>> Right! NodeType: Constant; Expr:"Brazil" Const Value: Brazil
>> Right! NodeType: GreaterThan; Expr: (r.Wins > 6)
>>> Left! NodeType: MemberAccess; Expr: r.Wins Member Name: Wins, Type: Int32
>>>> Member Expr! NodeType: Parameter; Expr: r Param Type: Racer
>>> Right! NodeType: Constant; Expr: 6 Const Value: 6

Examples where the Expression<T> type is used are with the ADO.NET Entity Framework and the client provider for WCF Data Services. These technologies define methods with Expression<T> parameters. This way the LINQ provider accessing the database can create a runtime–optimized query by reading the expressions to get the data from the database.

LINQ Providers

.NET includes several LINQ providers. A LINQ provider implements the standard query operators for a specific data source. LINQ providers might implement more extension methods than are defined by LINQ, but the standard operators must at least be implemented. LINQ to XML implements additional methods that are particularly useful with XML, such as the methods Elements, Descendants, and Ancestors defined by the class Extensions in the System.Xml.Linq namespace.

Implementation of the LINQ provider is selected based on the namespace and the type of the first parameter. The namespace of the class that implements the extension methods must be opened; otherwise, the extension class is not in scope. The parameter of the Where method defined by LINQ to Objects and the Where method defined by LINQ to Entities is different.

The Where method of LINQ to Objects is defined with the Enumerable class:

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source, Func<TSource, bool> predicate);

Inside the System.Linq namespace is another class that implements the operator Where. This implementation is used by LINQ to Entities. You can find the implementation in the class Queryable:

public static IQueryable<TSource> Where<TSource>(
 this IQueryable<TSource> source,
 Expression<Func<TSource, bool>> predicate);

Both of these classes are implemented in the System.Core assembly in the System.Linq namespace. How does the compiler select what method to use, and what’s the magic with the Expression type? The lambda expression is the same regardless of whether it is passed with a Func<TSource, bool> parameter or an Expression<Func<TSource, bool>gt; parameter—only the compiler behaves differently. The selection is done based on the source parameter. The method that matches best based on its parameters is chosen by the compiler. The CreateQuery<T> method of the ObjectContext class that is defined by ADO.NET Entity Framework returns an ObjectQuery<T> object that implements IQueryable<TSource>, and thus the Entity Framework uses the Where method of the Queryable class.

Summary

This chapter described and demonstrated the LINQ query and the language constructs on which the query is based, such as extension methods and lambda expressions. You’ve looked at the various LINQ query operators—not only for filtering and ordering of data sources, but also for partitioning, grouping, doing conversions, joins, and so on.

With Parallel LINQ, you’ve seen how longer queries can easily be parallelized.

Another important concept of this chapter is the expression tree. Expression trees enable building the query to the data source at runtime because the tree is stored in the assembly. You can read about its great advantages in Chapter 38. LINQ is a very in-depth topic, and you can see Chapter 27 for more information. Other third-party providers are also available for download, such as LINQ to MySQL, LINQ to Amazon, LINQ to Flickr, LINQ to LDAP, and LINQ to SharePoint. No matter what data source you have, with LINQ you can use the same query syntax.

The next chapter covers errors and exceptions, and explains how you can catch exceptions.

14
Errors and Exceptions

What’s In This Chapter?

	Looking at the exception classes

	Using try…catch…finally to capture exceptions

	Filtering exceptions

	Creating user-defined exceptions

	Retrieving caller information

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Simple Exceptions

	ExceptionFilters

	RethrowExceptions

	Solicit Cold Call

	Caller Information

Introduction

Errors happen, and they are not always caused by the person who coded the application. Sometimes your application generates an error because of an action that was initiated by the end user of the application, or it might be simply due to the environmental context in which your code is running. In any case, you should anticipate errors occurring in your applications and code accordingly.

The .NET Framework has enhanced the ways in which you deal with errors. C#’s mechanism for handling error conditions enables you to provide custom handling for each type of error condition, as well as to separate the code that identifies errors from the code that handles them.

No matter how good your coding is, your programs should be capable of handling any possible errors that might occur. For example, in the middle of some complex processing of your code, you might discover that it doesn’t have permission to read a file; or, while it is sending network requests, the network might go down. In such exceptional situations, it is not enough for a method to simply return an appropriate error code—there might be 15 or 20 nested method calls, so what you really want the program to do is jump back up through all those calls to exit the task completely and take the appropriate counteractions. The C# language has very good facilities for handling this kind of situation, through the mechanism known as exception handling.

This chapter covers catching and throwing exceptions in many different scenarios. You see exception types from different namespaces and their hierarchy, and you find out how to create custom exception types. You discover different ways to catch exceptions—for example, how to catch exceptions with the exact exception type or a base class. You also see how to deal with nested try blocks, and how you could catch exceptions that way. For code that should be invoked no matter whether an exception occurs or the code continues with any error, you are introduced to creating try/finally code blocks. This chapter also covers a new feature of C# 6: exception filters.

By the end of this chapter, you will have a good grasp of advanced exception handling in your C# applications.

Exception Classes

In C#, an exception is an object created (or thrown) when a particular exceptional error condition occurs. This object contains information that should help identify the problem. Although you can create your own exception classes (and you do so later), .NET includes many predefined exception classes—too many to provide a comprehensive list here. The class hierarchy diagram in Figure 14.1 shows a few of these classes to give you a sense of the general pattern. This section provides a quick survey of some of the exceptions available in the .NET base class library.

[image: Class hierarchy diagram shows predefined exception classes in .net class library; system exception, application exception, argument exception, IO exception et cetera.]

Figure 14.1

All the classes in Figure 14.1 are part of the System namespace, except for IOException and CompositionException and the classes derived from these two classes. IOException and its derived classes are part of the namespace System.IO. The System.IO namespace deals with reading from and writing to files. CompositionException and its derived classes are part of the namespace System.ComponentModel.Composition. This namespace deals with dynamically loading parts and components. In general, there is no specific namespace for exceptions. Exception classes should be placed in whatever namespace is appropriate to the classes that can generate them—hence, I/O-related exceptions are in the System.IO namespace. You find exception classes in quite a few of the base class namespaces.

The generic exception class, System.Exception, is derived from System.Object, as you would expect for a .NET class. In general, you should not throw generic System.Exception objects in your code, because they provide no specifics about the error condition.

Two important classes in the hierarchy are derived from System.Exception:

	SystemException—This class is for exceptions that are usually thrown by the .NET runtime or that are considered to be of a generic nature and might be thrown by almost any application. For example, StackOverflowException is thrown by the .NET runtime if it detects that the stack is full. However, you might choose to throw ArgumentException or its subclasses in your own code if you detect that a method has been called with inappropriate arguments. Subclasses of SystemException include classes that represent both fatal and nonfatal errors.

	ApplicationException—With the initial design of the .NET Framework, this class was meant to be the base class for custom application exception classes. However, some exception classes that are thrown by the CLR derive from this base class (for example, TargetInvocationException), and exceptions thrown from applications derive from SystemException (for example, ArgumentException). Therefore, it’s no longer a good practice to derive custom exception types from ApplicationException, as this doesn’t offer any benefits. Instead, custom exception classes can derive directly from the Exception base class. Many exception classes in the .NET Framework directly derive from Exception.

Other exception classes that might come in handy include the following:

	StackOverflowException—This exception is thrown when the area of memory allocated to the stack is full. A stack overflow can occur if a method continuously calls itself recursively. This is generally a fatal error, because it prevents your application from doing anything apart from terminating (in which case it is unlikely that even the finally block will execute). Trying to handle errors like this yourself is usually pointless; instead, you should have the application gracefully exit.

	EndOfStreamException—The usual cause of an EndOfStreamException is an attempt to read past the end of a file. A stream represents a flow of data between data sources. Streams are covered in detail in Chapter 25, “Networking.”

	OverflowException—An example when this occurs is if you attempt to cast an int containing a value of -40 to a uint in a checked context.

The other exception classes shown in Figure 14.1 are not discussed here. They are just shown to illustrate the hierarchy of exception classes.

The class hierarchy for exceptions is somewhat unusual in that most of these classes do not add any functionality to their respective base classes. However, in the case of exception handling, the common reason for adding inherited classes is to indicate more specific error conditions. Often, it isn’t necessary to override methods or add any new ones (although it is not uncommon to add extra properties that carry extra information about the error condition). For example, you might have a base ArgumentException class intended for method calls whereby inappropriate values are passed in, and an ArgumentNullException class derived from it, which is intended to handle a null argument if passed.

Catching Exceptions

Given that the .NET Framework includes a selection of predefined base class exception objects, this section describes how you use them in your code to trap error conditions. In dealing with possible error conditions in C# code, you typically divide the relevant part of your program into blocks of three different types:

	try blocks encapsulate the code that forms part of the normal operation of your program and that might encounter some serious error conditions.

	catch blocks encapsulate the code dealing with the various error conditions that your code might have encountered by working through any of the code in the accompanying try block. This block could also be used for logging errors.

	finally blocks encapsulate the code that cleans up any resources or takes any other action that you normally want handled at the end of a try or catch block. It is important to understand that the finally block is executed whether an exception is thrown. Because the purpose of the finally block is to contain cleanup code that should always be executed, the compiler flags an error if you place a return statement inside a finally block. An example of using the finally block is closing any connections that were opened in the try block. Understand that the finally block is completely optional. If your application does not require any cleanup code (such as disposing of or closing any open objects), then there is no need for this block.

The following steps outline how these blocks work together to trap error conditions:

	The execution flow first enters the try block.

	If no errors occur in the try block, execution proceeds normally through the block, and when the end of the try block is reached, the flow of execution jumps to the finally block if one is present (Step 5). However, if an error does occur within the try block, execution jumps to a catch block (Step 3).

	The error condition is handled in the catch block.

	At the end of the catch block, execution automatically transfers to the finally block if one is present.

	The finally block is executed (if present).

The C# syntax used to bring all this about looks roughly like this:

try
{
 // code for normal execution
}
catch
{
 // error handling
}
finally
{
 // clean up
}

Actually, a few variations on this theme exist:

	You can omit the finally block because it is optional.

	You can also supply as many catch blocks as you want to handle specific types of errors. However, you don’t want to get too carried away and have a huge number of catch blocks.

	You can define filters with catch blocks to catch the exception with the specific block only if the filter matches.

	You can omit the catch blocks altogether, in which case the syntax serves not to identify exceptions, but as a way to guarantee that code in the finally block will be executed when execution leaves the try block. This is useful if the try block contains several exit points.

So far so good, but the question that has yet to be answered is this: If the code is running in the try block, how does it know when to switch to the catch block if an error occurs? If an error is detected, the code does something known as throwing an exception. In other words, it instantiates an exception object class and throws it:

throw new OverflowException();

Here, you have instantiated an exception object of the OverflowException class. As soon as the application encounters a throw statement inside a try block, it immediately looks for the catch block associated with that try block. If more than one catch block is associated with the try block, it identifies the correct catch block by checking which exception class the catch block is associated with. For example, when the OverflowException object is thrown, execution jumps to the following catch block:

catch (OverflowException ex)
{
 // exception handling here
}

In other words, the application looks for the catch block that indicates a matching exception class instance of the same class (or of a base class).

With this extra information, you can expand the try block just demonstrated. Assume, for the sake of argument, that two possible serious errors can occur in the try block: an overflow and an array out of bounds. Assume also that your code contains two Boolean variables, Overflow and OutOfBounds, which indicate whether these conditions exist. You have already seen that a predefined exception class exists to indicate overflow (OverflowException); similarly, an IndexOutOfRangeException class exists to handle an array that is out of bounds.

Now your try block looks like this:

try
{
 // code for normal execution

 if (Overflow == true)
 {
 throw new OverflowException();
 }

 // more processing

 if (OutOfBounds == true)
 {
 throw new IndexOutOfRangeException();
 }

 // otherwise continue normal execution
}
catch (OverflowException ex)
{
 // error handling for the overflow error condition
}
catch (IndexOutOfRangeException ex)
{
 // error handling for the index out of range error condition
}
finally
{
 // clean up
}

This is because you can have throw statements that are nested in several method calls inside the try block, but the same try block continues to apply even as execution flow enters these other methods. If the application encounters a throw statement, it immediately goes back up through all the method calls on the stack, looking for the end of the containing try block and the start of the appropriate catch block. During this process, all the local variables in the intermediate method calls will correctly go out of scope. This makes the try...catch architecture well suited to the situation described at the beginning of this section, whereby the error occurs inside a method call that is nested inside 15 or 20 method calls, and processing has to stop immediately.

As you can probably gather from this discussion, try blocks can play a very significant role in controlling the flow of your code’s execution. However, it is important to understand that exceptions are intended for exceptional conditions, hence their name. You wouldn’t want to use them as a way of controlling when to exit a do...while loop.

Implementing Multiple Catch Blocks

The easiest way to see how try...catch...finally blocks work in practice is with a couple of examples. The first example is called SimpleExceptions. It repeatedly asks the user to type in a number and then displays it. However, for the sake of this example, imagine that the number has to be between 0 and 5; otherwise, the program isn’t able to process the number properly. Therefore, you throw an exception if the user types anything outside this range. The program then continues to ask for more numbers for processing until the user simply presses the Enter key without entering anything.

NOTE You should note that this code does not provide a good example of when to use exception handling, but it shows good practice on how to use exception handling. As their name suggests, exceptions are provided for other than normal circumstances. Users often type silly things, so this situation doesn’t really count. Normally, your program will handle incorrect user input by performing an instant check and asking the user to retype the input if it isn’t valid. However, generating exceptional situations is difficult in a small example that you can read through in a few minutes, so I will tolerate this less than ideal one to demonstrate how exceptions work. The examples that follow present more realistic situations.

The sample code for SimpleExceptions makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

Namespaces

	System

	static System.Console

The code for SimpleExceptions looks like this (code file SimpleExceptions/Program.cs):

using System;
using static System.Console;

namespace Wrox.ProCSharp.ErrorsAndExceptions
{
 public class Program
 {
 public static void Main()
 {
 while (true)
 {
 try
 {
 string userInput;

 Write("Input a number between 0 and 5" +
 "(or just hit return to exit)>");
 userInput = ReadLine();

 if (string.IsNullOrEmpty(userInput))
 {
 break;
 }

 int index = Convert.ToInt32(userInput);

 if (index < 0 ││ index > 5)
 {
 throw new IndexOutOfRangeException($"You typed in {userInput}");
 }

 WriteLine($"Your number was {index}");
 }
 catch (IndexOutOfRangeException ex)
 {
 WriteLine("Exception:" +
 $"Number should be between 0 and 5. {ex.Message}");
 }
 catch (Exception ex)
 {
 WriteLine($"An exception was thrown. Message was: {ex.Message}");
 }
 finally
 {
 WriteLine("Thank you\n");
 }
 }
 }
 }
}

The core of this code is a while loop, which continually uses ReadLine to ask for user input. ReadLine returns a string, so your first task is to convert it to an int using the System.Convert.ToInt32 method. The System.Convert class contains various useful methods to perform data conversions, and it provides an alternative to the int.Parse method. In general, System.Convert contains methods to perform various type conversions. Recall that the C# compiler resolves int to instances of the System.Int32 base class.

NOTE It is also worth pointing out that the parameter passed to the catch block is scoped to that catch block—which is why you are able to use the same parameter name, ex, in successive catch blocks in the preceding code.

In the preceding example, you also check for an empty string because it is your condition for exiting the while loop. Notice how the break statement actually breaks right out of the enclosing try block as well as the while loop because this is valid behavior. Of course, when execution breaks out of the try block, the WriteLine statement in the finally block is executed. Although you just display a greeting here, more commonly you will be doing tasks like closing file handles and calling the Dispose method of various objects to perform any cleanup. After the application leaves the finally block, it simply carries on executing into the next statement that it would have executed had the finally block not been present. In the case of this example, though, you iterate back to the start of the while loop and enter the try block again (unless the finally block was entered as a result of executing the break statement in the while loop, in which case you simply exit the while loop).

Next, you check for your exception condition:

if (index < 0 || index > 5)
{
 throw new IndexOutOfRangeException($"You typed in {userInput}");
}

When throwing an exception, you need to specify what type of exception to throw. Although the class System.Exception is available, it is intended only as a base class. It is considered bad programming practice to throw an instance of this class as an exception, because it conveys no information about the nature of the error condition. Instead, the .NET Framework contains many other exception classes that are derived from Exception. Each of these matches a particular type of exception condition, and you are free to define your own as well. The goal is to provide as much information as possible about the particular exception condition by throwing an instance of a class that matches the particular error condition. In the preceding example, System.IndexOutOfRangeException is the best choice for the circumstances. IndexOutOfRangeException has several constructor overloads. The one chosen in the example takes a string describing the error. Alternatively, you might choose to derive your own custom Exception object that describes the error condition in the context of your application.

Suppose that the user next types a number that is not between 0 and 5. The number is picked up by the if statement and an IndexOutOfRangeException object is instantiated and thrown. At this point, the application immediately exits the try block and hunts for a catch block that handles IndexOutOfRangeException. The first catch block it encounters is this:

catch (IndexOutOfRangeException ex)
{
 WriteLine($"Exception: Number should be between 0 and 5. {ex.Message}");
}

Because this catch block takes a parameter of the appropriate class, the catch block receives the exception instance and is executed. In this case, you display an error message and the Exception.Message property (which corresponds to the string passed to the IndexOutOfRangeException’s constructor). After executing this catch block, control then switches to the finally block, just as if no exception had occurred.

Notice that in the example you have also provided another catch block:

catch (Exception ex)
{
 WriteLine($"An exception was thrown. Message was: {ex.Message}");
}

This catch block would also be capable of handling an IndexOutOfRangeException if it weren’t for the fact that such exceptions will already have been caught by the previous catch block. A reference to a base class can also refer to any instances of classes derived from it, and all exceptions are derived from Exception. This catch block isn’t executed because the application executes only the first suitable catch block it finds from the list of available catch blocks. This catch block isn’t executed when an exception of type IndexOutOfRangeException is thrown. The application only executes the first suitable catch block it finds from the list of available catch blocks. This second catch block catches other exceptions derived from the Exception base class. Be aware that the three separate calls to methods within the try block (Console.ReadLine, Console.Write, and Convert.ToInt32) might throw other exceptions.

If the user types something that is not a number—say a or hello—the Convert.ToInt32 method throws an exception of the class System.FormatException to indicate that the string passed into ToInt32 is not in a format that can be converted to an int. When this happens, the application traces back through the method calls, looking for a handler that can handle this exception. Your first catch block (the one that takes an IndexOutOfRangeException) will not do. The application then looks at the second catch block. This one will do because FormatException is derived from Exception, so a FormatException instance can be passed in as a parameter here.

The structure of the example is actually fairly typical of a situation with multiple catch blocks. You start with catch blocks that are designed to trap specific error conditions. Then, you finish with more general blocks that cover any errors for which you have not written specific error handlers. Indeed, the order of the catch blocks is important. Had you written the previous two blocks in the opposite order, the code would not have compiled, because the second catch block is unreachable (the Exception catch block would catch all exceptions). Therefore, the uppermost catch blocks should be the most granular options available, ending with the most general options.

Now that you have analyzed the code for the example, you can run it. The following output illustrates what happens with different inputs and demonstrates both the IndexOutOfRangeException and the FormatException being thrown:

SimpleExceptions
Input a number between 0 and 5 (or just hit return to exit)> 4
Your number was 4
Thank you

Input a number between 0 and 5 (or just hit return to exit)> 0
Your number was 0
Thank you

Input a number between 0 and 5 (or just hit return to exit)> 10
Exception: Number should be between 0 and 5. You typed in 10
Thank you

Input a number between 0 and 5 (or just hit return to exit)> hello
An exception was thrown. Message was: Input string was not in a correct format.
Thank you

Input a number between 0 and 5 (or just hit return to exit)>
Thank you

Catching Exceptions from Other Code

The previous example demonstrates the handling of two exceptions. One of them, IndexOutOfRangeException, was thrown by your own code. The other, FormatException, was thrown from inside one of the base classes. It is very common for code in a library to throw an exception if it detects that a problem has occurred, or if one of the methods has been called inappropriately by being passed the wrong parameters. However, library code rarely attempts to catch exceptions; this is regarded as the responsibility of the client code.

Often, exceptions are thrown from the base class libraries while you are debugging. The process of debugging to some extent involves determining why exceptions have been thrown and removing the causes. Your aim should be to ensure that by the time the code is actually shipped, exceptions occur only in very exceptional circumstances and, if possible, are handled appropriately in your code.

System.Exception Properties

The example illustrated the use of only the Message property of the exception object. However, a number of other properties are available in System.Exception, as shown in the following table.

	Property
	Description

	Data
	Enables you to add key/value statements to the exception that can be used to supply extra information about it.

	HelpLink
	A link to a help file that provides more information about the exception.

	InnerException
	If this exception was thrown inside a catch block, then InnerException contains the exception object that sent the code into that catch block.

	Message
	Text that describes the error condition.

	Source
	The name of the application or object that caused the exception.

	StackTrace
	Provides details about the method calls on the stack (to help track down the method that threw the exception).

The property value for StackTrace is supplied automatically by the .NET runtime if a stack trace is available. Source will always be filled in by the .NET runtime as the name of the assembly in which the exception was raised (though you might want to modify the property in your code to give more specific information), whereas Data, Message, HelpLink, and InnerException must be filled in by the code that threw the exception, by setting these properties immediately before throwing the exception. For example, the code to throw an exception might look something like this:

if (ErrorCondition == true)
{
 var myException = new ClassMyException("Help!!!!");
 myException.Source ="My Application Name";
 myException.HelpLink ="MyHelpFile.txt";
 myException.Data["ErrorDate"] = DateTime.Now;
 myException.Data.Add("AdditionalInfo","Contact Bill from the Blue Team");
 throw myException;
}

Here, ClassMyException is the name of the particular exception class you are throwing. Note that it is common practice for the names of all exception classes to end with Exception. In addition, note that the Data property is assigned in two possible ways.

Exception Filters

A new feature of C# 6 is exception filters. You can have different catch blocks that act differently when catching different exception types. In some scenarios, it’s useful to have the catch blocks act differently based on the content of an exception. For example, when using the Windows runtime you often get COM exceptions for all different kinds of exceptions, or when doing network calls you get a network exception for many different scenarios—for example, if the server is not available, or the data supplied do not match the expectations. It’s good to react to these errors differently. Some exceptions can be recovered in different ways, while with others the user might need some information.

The following code sample throws the exception of type MyCustomException and sets the ErrorCode property of this exception (code file ExceptionFilters/Program.cs):

public static void ThrowWithErrorCode(int code)
{
 throw new MyCustomException("Error in Foo") { ErrorCode = code };
}

In the Main method, the try block safeguards the method invocation with two catch blocks. The first catch block uses the when keyword to filter only exceptions if the ErrorCode property equals 405. The expression for the when clause needs to return a Boolean value. If the result is true, this catch block handles the exception. If it is false, other catches are looked for. Passing 405 to the method ThrowWithErrorCode, the filter returns true, and the first catch handles the exception. Passing another value, the filter returns false and the second catch handles the exception. With filters, you can have multiple handlers to handle the same exception type.

Of course you can also remove the second catch block and not handle the exception in that circumstance.

try
{
 ThrowWithErrorCode(405);
}
catch (MyCustomException ex) when (ex.ErrorCode == 405)
{
 WriteLine($"Exception caught with filter {ex.Message} and {ex.ErrorCode}");
}
catch (MyCustomException ex)
{
 WriteLine($"Exception caught {ex.Message} and {ex.ErrorCode}");
}

Re-throwing Exceptions

When you catch exceptions it’s also very common to re-throw exceptions. You can change the exception type while throwing the exception again. With this you can give the caller more information about what happened. The original exception might not have enough information about the context of what was going on. You can also log exception information and give the caller different information. For example, for a user running the application, exception information does not really help. A system administrator reading log files can react accordingly.

An issue with re-throwing exceptions is that the caller often needs to find out the reason what happened with the earlier exception, and where did this happen. Depending on how exceptions are thrown, stack trace information might be lost. For you to see the different options on re-throwing exceptions, the sample program RethrowExceptions shows the different options.

The code sample for re-throwing exceptions makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

Namespaces

	System

	static System.Console

For this sample, two custom exception types are created. The first one, MyCustomException defines the property ErrorCode in addition to the members of the base class Exception the second one, AnotherCustomException, supports passing an inner exception (code file RethrowExceptions/MyCustomException.cs):

public class MyCustomException : Exception
{
 public MyCustomException(string message)
 : base(message)
 {
 }
 public int ErrorCode { get; set; }
}
public class AnotherCustomException : Exception
{
 public AnotherCustomException(string message, Exception innerException)
 : base(message, innerException)
 {
 }
}

The method HandleAll invokes the methods HandleAndThrowAgain, HandleAndThrowWithInnerException, HandleAndRethrow, and HandleWithFilter. The exception that is thrown is caught to write the exception message as well as the stack trace to the console. To better find what line numbers are referenced from the stack trace, the #line preprocessor directive is used that restarts the line numbering. With this, the invocation of the methods using the delegate m is in line 114 (code file RethrowExceptions/Program.cs):

#line 100
public static void HandleAll()
{
 var methods = new Action[]
 {
 HandleAndThrowAgain,
 HandleAndThrowWithInnerException,
 HandleAndRethrow,
 HandleWithFilter
 };

 foreach (var m in methods)
 {
 try
 {
 m(); // line 114
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 WriteLine(ex.StackTrace);
 if (ex.InnerException != null)
 {
 WriteLine($"\tInner Exception{ex.Message}");
 WriteLine(ex.InnerException.StackTrace);
 }
 WriteLine();
 }
 }
}

The method ThrowAnException is the one to throw the first exception. This exception is thrown in line 8002. During development, it helps to know where this exception is thrown:

#line 8000
public static void ThrowAnException(string message)
{
 throw new MyCustomException(message); // line 8002
}

Naïve Use to Rethrow the Exception

The method HandleAndThrowAgain does nothing more than log the exception to the console and throw it again using throw ex:

#line 4000
public static void HandleAndThrowAgain()
{
 try
 {
 ThrowAnException("test 1");
 }
 catch (Exception ex)
 {
 WriteLine($"Log exception {ex.Message} and throw again");
 throw ex; // you shouldn't do that - line 4009
 }
}

Running the application, a simplified output showing the stack-trace (without the namespace and the full path to the code files) is shown here:

Log exception test 1 and throw again
test 1
 at Program.HandleAndThrowAgain() in Program.cs:line 4009
 at Program.HandleAll() in Program.cs:line 114

The stack trace shows the call to the m method within the HandleAll method, which in turn invokes the HandleAndThrowAgain method. The information where the exception is thrown at first is completely lost in the call stack of the final catch. This makes it hard to find the original reason of an error. Usually it’s not a good idea to just throw the same exception with throw passing the exception object.

Changing the Exception

One useful scenario is to change the type of the exception and add information to the error. This is done in the method HandleAndThrowWithInnerException. After logging the error, a new exception of type AnotherException is thrown passing ex as the inner exception:

#line 3000
public static void HandleAndThrowWithInnerException()
{
 try
 {
 ThrowAnException("test 2"); // line 3004
 }
 catch (Exception ex)
 {
 WriteLine($"Log exception {ex.Message} and throw again");
 throw new AnotherCustomException("throw with inner exception", ex); // 3009
 }
}

Checking the stack trace of the outer exception, you see line numbers 3009 and 114 similar to before. However, the inner exception gives the original reason of the error. It gives the line of the method that invoked the erroneous method (3004) and the line where the original (the inner) exception was thrown (8002):

Log exception test 2 and throw again
throw with inner exception
 at Program.HandleAndThrowWithInnerException() in Program.cs:line 3009
 at Program.HandleAll() in Program.cs:line 114
 Inner Exception throw with inner exception
 at Program.ThrowAnException(String message) in Program.cs:line 8002
 at Program.HandleAndThrowWithInnerException() in Program.cs:line 3004

No information is lost this way.

NOTE When trying to find reasons for an error, have a look at whether an inner exception exists. This often gives helpful information.

NOTE When catching exceptions, it’s good practice to change the exception when rethrowing. For example, catching an SqlException can result in throwing a business-related exception such as InvalidIsbnException.

Rethrowing the Exception

In case the exception type should not be changed, the same exception can be rethrown just with the throw statement. Using throw without passing an exception object throws the current exception of the catch block and keeps the exception information:

#line 2000
public static void HandleAndRethrow()
{
 try
 {
 ThrowAnException("test 3");
 }
 catch (Exception ex)
 {
 WriteLine($"Log exception {ex.Message} and rethrow");
 throw; // line 2009
 }
}

With this in place, the stack information is not lost. The exception was originally thrown in line 8002, and rethrown in line 2009. Line 114 contains the delegate m that invoked HandleAndRethrow:

Log exception test 3 and rethrow
test 3
 at Program.ThrowAnException(String message) in Program.cs:line 8002
 at Program.HandleAndRethrow() in Program.cs:line 2009
 at Program.HandleAll() in Program.cs:line 114

Using Filters to Add Functionality

When rethrowing exceptions using the throw statement, the call stack contains the address of the throw. When you use exception filters, it is possible to not change the call stack at all. Now add a when keyword that passes a filter method. This filter method named Filter logs the message and always returns false. That’s why the catch block is never invoked:

#line 1000
public void HandleWithFilter()
{
 try
 {
 ThrowAnException("test 4"); // line 1004
 }
 catch (Exception ex) when(Filter(ex))
 {
 WriteLine("block never invoked");
 }
}

#line 1500
public bool Filter(Exception ex)
{
 WriteLine($"just log {ex.Message}");
 return false;
}

Now when you look at the stack trace, the exception originates in the HandleAll method in line 114 that in turn invokes HandleWithFilter, line 1004 contains the invocation to ThrowAnException, and line 8002 contains the line where the exception was thrown:

just log test 4
test 4
 at Program.ThrowAnException(String message) in Program.cs:line 8002
 at Program.HandleWithFilter() in Program.cs:line 1004
 at RethrowExceptions.Program.HandleAll() in Program.cs:line 114

NOTE The primary use of exception filters is to filter exceptions based on a value of the exception. Exception filters can also be used for other effects, such as writing log information without changing the call stack. However, exception filters should be fast running so you should only do simple checks.

What Happens If an Exception Isn’t Handled?

Sometimes an exception might be thrown but there is no catch block in your code that is able to handle that kind of exception. The SimpleExceptions example can serve to illustrate this. Suppose, for example, that you omitted the FormatException and catch-all catch blocks, and supplied only the block that traps an IndexOutOfRangeException. In that circumstance, what would happen if a FormatException were thrown?

The answer is that the .NET runtime would catch it. Later in this section, you learn how you can nest try blocks; and, in fact, there is already a nested try block behind the scenes in the example. The .NET runtime has effectively placed the entire program inside another huge try block—it does this for every .NET program. This try block has a catch handler that can catch any type of exception. If an exception occurs that your code does not handle, the execution flow simply passes right out of your program and is trapped by this catch block in the .NET runtime. However, the results of this probably will not be what you want, as the execution of your code is terminated promptly. The user sees a dialog that complains that your code has not handled the exception and provides any details about the exception the .NET runtime was able to retrieve. At least the exception has been caught!

In general, if you are writing an executable, try to catch as many exceptions as you reasonably can and handle them in a sensible way. If you are writing a library, it is normally best to catch exceptions that you can handle in a useful way, or where you can add additional information to the context and throw other exception types as shown in the previous section. Assume that the calling code handles any errors it encounters.

User-Defined Exception Classes

In the previous section, you already created a user-defined exception. You are now ready to look at a larger example that illustrates exceptions. This example, called SolicitColdCall, contains two nested try blocks and illustrates the practice of defining your own custom exception classes and throwing another exception from inside a try block.

This example assumes that a sales company wants to increase its customer base. The company’s sales team is going to phone a list of people to invite them to become customers, a practice known in sales jargon as cold-calling. To this end, you have a text file available that contains the names of the people to be cold-called. The file should be in a well-defined format in which the first line contains the number of people in the file and each subsequent line contains the name of the next person. In other words, a correctly formatted file of names might look like this:

4
George Washington
Benedict Arnold
John Adams
Thomas Jefferson

This version of cold-calling is designed to display the name of the person on the screen (perhaps for the salesperson to read). That is why only the names, and not the phone numbers, of the individuals are contained in the file.

For this example, your program asks the user for the name of the file and then simply reads it in and displays the names of people. That sounds like a simple task, but even so a couple of things can go wrong and require you to abandon the entire procedure:

	The user might type the name of a file that does not exist. This is caught as a FileNotFound exception.

	The file might not be in the correct format. There are two possible problems here. One, the first line of the file might not be an integer. Two, there might not be as many names in the file as the first line of the file indicates. In both cases, you want to trap this oddity as a custom exception that has been written especially for this purpose, ColdCallFileFormatException.

There is something else that can go wrong that doesn’t cause you to abandon the entire process but does mean you need to abandon a person’s name and move on to the next name in the file (and therefore trap it by an inner try block). Some people are spies working for rival sales companies, so you obviously do not want to let these people know what you are up to by accidentally phoning one of them. For simplicity, assume that you can identify who the spies are because their names begin with B. Such people should have been screened out when the data file was first prepared, but in case any have slipped through, you need to check each name in the file and throw a SalesSpyFoundException if you detect a sales spy. This, of course, is another custom exception object.

Finally, you implement this example by coding a class, ColdCallFileReader, which maintains the connection to the cold-call file and retrieves data from it. You code this class in a safe way, which means that its methods all throw exceptions if they are called inappropriately—for example, if a method that reads a file is called before the file has even been opened. For this purpose, you write another exception class: UnexpectedException.

Catching the User-Defined Exceptions

The code sample for user-defined exceptions make use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Collections.Specialized

Namespaces

	System

	System.IO

	static System.Console

Start with the Main method of the SolicitColdCall sample, which catches your user-defined exceptions. Note that you need to call up file-handling classes in the System.IO namespace as well as the System namespace (code file SolicitColdCall/Program.cs):

using System;
using System.IO;
using static System.Console;

namespace Wrox.ProCSharp.ErrorsAndExceptions
{
 public class Program
 {
 public static void Main()
 {
 Write("Please type in the name of the file" +
 "containing the names of the people to be cold called >");
 string fileName = ReadLine();
 ColdCallFileReaderLoop1(fileName);
 WriteLine();

 ReadLine();
 }

 public static ColdCallfFileReaderLoop1(string filename)
 {
 var peopleToRing = new ColdCallFileReader();

 try
 {
 peopleToRing.Open(fileName);
 for (int i = 0; i < peopleToRing.NPeopleToRing; i++)
 {
 peopleToRing.ProcessNextPerson();
 }
 WriteLine("All callers processed correctly");
 }
 catch(FileNotFoundException)
 {
 WriteLine($"The file {fileName} does not exist");
 }
 catch(ColdCallFileFormatException ex)
 {
 WriteLine($"The file {fileName} appears to have been corrupted");
 WriteLine($"Details of problem are: {ex.Message}");
 if (ex.InnerException != null)
 {
 WriteLine($"Inner exception was: {ex.InnerException.Message}");
 }
 }
 catch(Exception ex)
 {
 WriteLine($"Exception occurred:\n{ex.Message}");
 }
 finally
 {
 peopleToRing.Dispose();
 }
 }
 }

This code is a little more than just a loop to process people from the file. You start by asking the user for the name of the file. Then you instantiate an object of a class called ColdCallFileReader, which is defined shortly. The ColdCallFileReader class is the class that handles the file reading. Notice that you do this outside the initial try block—that’s because the variables that you instantiate here need to be available in the subsequent catch and finally blocks, and if you declare them inside the try block they would go out of scope at the closing curly brace of the try block, where the compiler would complain about it.

In the try block, you open the file (using the ColdCallFileReader.Open method) and loop over all the people in it. The ColdCallFileReader.ProcessNextPerson method reads in and displays the name of the next person in the file, and the ColdCallFileReader.NPeopleToRing property indicates how many people should be in the file (obtained by reading the file’s first line). There are three catch blocks: one for FileNotFoundException, one for ColdCallFileFormatException, and one to trap any other .NET exceptions.

In the case of a FileNotFoundException, you display a message to that effect. Notice that in this catch block, the exception instance is not actually used at all. This catch block is used to illustrate the user-friendliness of the application. Exception objects generally contain technical information that is useful for developers, but not the sort of stuff you want to show to end users. Therefore, in this case you create a simpler message of your own.

For the ColdCallFileFormatException handler, you have done the opposite, specifying how to obtain fuller technical information, including details about the inner exception, if one is present.

Finally, if you catch any other generic exceptions, you display a user-friendly message, instead of letting any such exceptions fall through to the .NET runtime. Note that here you are not handling any other exceptions that aren’t derived from System.Exception because you are not calling directly into non-.NET code.

The finally block is there to clean up resources. In this case, that means closing any open file—performed by the ColdCallFileReader.Dispose method.

NOTE C# offers the using statement where the compiler itself creates a try/finally block calling the Dispose method in the finally block. The using statement is available on objects implementing a Dispose method. You can read the details of the using statement in Chapter 5, “Managed and Unmanaged Resources.”

Throwing the User-Defined Exceptions

Now take a look at the definition of the class that handles the file reading and (potentially) throws your user-defined exceptions: ColdCallFileReader. Because this class maintains an external file connection, you need to ensure that it is disposed of correctly in accordance with the principles outlined for the disposing of objects in Chapter 4, “Inheritance.” Therefore, you derive this class from IDisposable.

First, you declare some private fields (code file SolicitColdCall/ColdCallFileReader.cs):

 public class ColdCallFileReader: IDisposable
 {
 private FileStream _fs;
 private StreamReader _sr;
 private uint _nPeopleToRing;
 private bool _isDisposed = false;
 private bool _isOpen = false;

FileStream and StreamReader, both in the System.IO namespace, are the base classes that you use to read the file. FileStream enables you to connect to the file in the first place, whereas StreamReader is designed to read text files and implements a method, ReadLine, which reads a line of text from a file. You look at StreamReader more closely in Chapter 23, “Files and Streams,” which discusses file handling in depth.

The isDisposed field indicates whether the Dispose method has been called. ColdCallFileReader is implemented so that after Dispose has been called, it is not permitted to reopen connections and reuse the object. isOpen is also used for error checking—in this case, checking whether the StreamReader actually connects to an open file.

The process of opening the file and reading in that first line—the one that tells you how many people are in the file—is handled by the Open method:

public void Open(string fileName)
{
 if (_isDisposed)
 {
 throw new ObjectDisposedException("peopleToRing");
 }

 _fs = new FileStream(fileName, FileMode.Open);
 _sr = new StreamReader(_fs);

 try
 {
 string firstLine = _sr.ReadLine();
 _nPeopleToRing = uint.Parse(firstLine);
 _isOpen = true;
 }
 catch (FormatException ex)
 {
 throw new ColdCallFileFormatException(
 $"First line isn\'t an integer {ex}");
 }
}

The first thing you do in this method (as with all other ColdCallFileReader methods) is check whether the client code has inappropriately called it after the object has been disposed of, and if so, throw a predefined ObjectDisposedException object. The Open method checks the isDisposed field to determine whether Dispose has already been called. Because calling Dispose implies that the caller has now finished with this object, you regard it as an error to attempt to open a new file connection if Dispose has been called.

Next, the method contains the first of two inner try blocks. The purpose of this one is to catch any errors resulting from the first line of the file not containing an integer. If that problem arises, the .NET runtime throws a FormatException, which you trap and convert to a more meaningful exception that indicates a problem with the format of the cold-call file. Note that System.FormatException is there to indicate format problems with basic data types, not with files, so it’s not a particularly useful exception to pass back to the calling routine in this case. The new exception thrown will be trapped by the outermost try block. Because no cleanup is needed here, there is no need for a finally block.

If everything is fine, you set the isOpen field to true to indicate that there is now a valid file connection from which data can be read.

The ProcessNextPerson method also contains an inner try block:

public void ProcessNextPerson()
{
 if (_isDisposed)
 {
 throw new ObjectDisposedException("peopleToRing");
 }

 if (!_isOpen)
 {
 throw new UnexpectedException(
 "Attempted to access coldcall file that is not open");
 }

 try
 {
 string name = _sr.ReadLine();
 if (name == null)
 {
 throw new ColdCallFileFormatException("Not enough names");
 }
 if (name[0] == 'B')
 {
 throw new SalesSpyFoundException(name);
 }
 WriteLine(name);
 }
 catch(SalesSpyFoundException ex)
 {
 WriteLine(ex.Message);
 }
 finally
 {
 }
}

Two possible problems exist with the file here (assuming there actually is an open file connection; the ProcessNextPerson method checks this first). One, you might read in the next name and discover that it is a sales spy. If that condition occurs, then the exception is trapped by the first catch block in this method. Because that exception has been caught here, inside the loop, it means that execution can subsequently continue in the Main method of the program, and the subsequent names in the file continue to be processed.

A problem might also occur if you try to read the next name and discover that you have already reached the end of the file. The StreamReader object’s ReadLine method works like this: If it has gone past the end of the file, it doesn’t throw an exception but simply returns null. Therefore, if you find a null string, you know that the format of the file was incorrect because the number in the first line of the file indicated a larger number of names than were actually present in the file. If that happens, you throw a ColdCallFileFormatException, which will be caught by the outer exception handler (which causes the execution to terminate).

Again, you don’t need a finally block here because there is no cleanup to do; however, this time an empty finally block is included just to show that you can do so, if you want.

The example is nearly finished. You have just two more members of ColdCallFileReader to look at: the NPeopleToRing property, which returns the number of people that are supposed to be in the file, and the Dispose method, which closes an open file. Notice that the Dispose method returns immediately if it has already been called — this is the recommended way of implementing it. It also confirms that there actually is a file stream to close before closing it. This example is shown here to illustrate defensive coding techniques:

public uint NPeopleToRing
{
 get
 {
 if (_isDisposed)
 {
 throw new ObjectDisposedException("peopleToRing");
 }
 if (!_isOpen)
 {
 throw new UnexpectedException(
 "Attempted to access cold-call file that is not open");
 }

 return _nPeopleToRing;
 }
}

public void Dispose()
{
 if (_isDisposed)
 {
 return;
 }

 _isDisposed = true;
 _isOpen = false;

 _fs?.Dispose();
 _fs = null;
}

Defining the User-Defined Exception Classes

Finally, you need to define three of your own exception classes. Defining your own exception is quite easy because there are rarely any extra methods to add. It is just a case of implementing a constructor to ensure that the base class constructor is called correctly. Here is the full implementation of SalesSpyFoundException (code file SolicitColdCall/SalesSpyFoundException.cs):

public class SalesSpyFoundException: Exception
{
 public SalesSpyFoundException(string spyName)
 : base($"Sales spy found, with name {spyName}")
 {
 }

 public SalesSpyFoundException(string spyName, Exception innerException)
 : base($"Sales spy found with name {spyName}", innerException)
 {
 }
}

Notice that it is derived from Exception, as you would expect for a custom exception. In fact, in practice, you would probably have added an intermediate class, something like ColdCallFileException, derived from Exception, and then derived both of your exception classes from this class. This ensures that the handling code has that extra-fine degree of control over which exception handler handles each exception. However, to keep the example simple, you will not do that.

You have done one bit of processing in SalesSpyFoundException. You have assumed that the message passed into its constructor is just the name of the spy found, so you turn this string into a more meaningful error message. You have also provided two constructors: one that simply takes a message, and one that also takes an inner exception as a parameter. When defining your own exception classes, it is best to include, at a minimum, at least these two constructors (although you will not actually be using the second SalesSpyFoundException constructor in this example).

Now for the ColdCallFileFormatException. This follows the same principles as the previous exception, but you don’t do any processing on the message (code file SolicitColdCall/ColdCallFileFormatException.cs):

public class ColdCallFileFormatException: Exception
{
 public ColdCallFileFormatException(string message)
 : base(message)
 {
 }

 public ColdCallFileFormatException(string message, Exception innerException)
 : base(message, innerException)
 {
 }
}

Finally, you have UnexpectedException, which looks much the same as ColdCallFileFormatException (code file SolicitColdCall/UnexpectedException.cs):

public class UnexpectedException: Exception
{
 public UnexpectedException(string message)
 : base(message)
 {
 }

 public UnexpectedException(string message, Exception innerException)
 : base(message, innerException)
 {
 }
}

Now you are ready to test the program. First, try the people.txt file. The contents are defined here:

4
George Washington
Benedict Arnold
John Adams
Thomas Jefferson

This has four names (which match the number given in the first line of the file), including one spy. Then try the following people2.txt file, which has an obvious formatting error:

49
George Washington
Benedict Arnold
John Adams
Thomas Jefferson

Finally, try the example but specify the name of a file that does not exist, such as people3.txt. Running the program three times for the three filenames returns these results:

SolicitColdCall
Please type in the name of the file containing the names of the people to be cold
 called > people.txt
George Washington
Sales spy found, with name Benedict Arnold
John Adams
Thomas Jefferson
All callers processed correctly

SolicitColdCall
Please type in the name of the file containing the names of the people to be cold
 called > people2.txt
George Washington
Sales spy found, with name Benedict Arnold
John Adams
Thomas Jefferson
The file people2.txt appears to have been corrupted.
Details of the problem are: Not enough names

SolicitColdCall
Please type in the name of the file containing the names of the people to be cold
 called > people3.txt
The file people3.txt does not exist.

This application has demonstrated a number of different ways in which you can handle the errors and exceptions that you might find in your own applications.

Caller Information

When dealing with errors, it is often helpful to get information about the error where it occurred. Earlier in this chapter, the #line preprocessor directive is used to change the line numbering of the code to get better information with the call stack. Getting the line numbers, filenames, and member names from within code, you can use attributes and optional parameters that are directly supported by the C# compiler. The attributes CallerLineNumber, CallerFilePath, and CallerMemberName, defined within the namespace System.Runtime.CompilerServices, can be applied to parameters. Normally with optional parameters, the compiler assigns the default values on method invocation in case these parameters are not supplied with the call information. With caller information attributes, the compiler doesn’t fill in the default values; it instead fills in the line number, file path, and member name.

The code sample CallerInformation makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

Namespaces

	System

	System.Runtime.CompilerServices

	static System.Console

The Log method from the following code snippet demonstrates how to use these attributes. With the implementation, the information is written to the console (code file CallerInformation/Program.cs):

public void Log([CallerLineNumber] int line = -1,
 [CallerFilePath] string path = null,
 [CallerMemberName] string name = null)
{
 WriteLine((line < 0) ?"No line" :"Line" + line);
 WriteLine((path == null) ?"No file path" : path);
 WriteLine((name == null) ?"No member name" : name);
 WriteLine();
}

Let’s invoke this method with some different scenarios. In the following Main method, the Log method is called by using an instance of the Program class, within the set accessor of the property, and within a lambda expression. Argument values are not assigned to the method, enabling the compiler to fill it in:

public static void Main()
{
 var p = new Program();
 p.Log();
 p.SomeProperty = 33;
 Action a1 = () => p.Log();
 a1();
}
private int _someProperty;
public int SomeProperty
{
 get { return _someProperty; }
 set
 {
 Log();
 _someProperty = value;
 }
}

The result of the running program is shown next. Where the Log method was invoked, you can see the line numbers, the filename, and the caller member name. With the Log inside the Main method, the member name is Main. The invocation of the Log method inside the set accessor of the property SomeProperty shows SomeProperty. The Log method inside the lambda expression doesn’t show the name of the generated method, but instead the name of the method where the lambda expression was invoked (Main), which is more useful, of course.

Line 12
c:\ProCSharp\ErrorsAndExceptions\CallerInformation\Program.cs
Main

Line 26
c:\ProCSharp\ErrorsAndExceptions\CallerInformation\Program.cs
SomeProperty

Line 14
c:\ProCSharp\ErrorsAndExceptions\CallerInformation\Program.cs
Main

Using the Log method within a constructor, the caller member name shows ctor. With a destructor, the caller member name is Finalize, as this is the method name generated.

NOTE A great use of the CallerMemberName attribute is with the implementation of the interface INotifyPropertyChanged. This interface requires the name of the property to be passed with the method implementation. You can see the implementation of this interface in several chapters in this book—for example, Chapter 31, “Patterns with XAML Apps.”

Summary

This chapter examined the rich mechanism C# provides for dealing with error conditions through exceptions. You are not limited to the generic error codes that could be output from your code; instead, you have the capability to go in and uniquely handle the most granular of error conditions. Sometimes these error conditions are provided to you through the .NET Framework itself; at other times, though, you might want to code your own error conditions as illustrated in this chapter. In either case, you have many ways to protect the workflow of your applications from unnecessary and dangerous faults.

The next chapter goes into important keywords for asynchronous programming: async and await.

15
Asynchronous Programming

What’s In This Chapter?

	Why asynchronous programming is important

	Asynchronous patterns

	Foundations of the async and await keywords

	Creating and using asynchronous methods

	Error handling with asynchronous methods

	Cancelling long-running tasks

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Async Patterns

	Foundations

	Error Handling

Why Asynchronous Programming Is Important

C# 6 adds a lot of new keywords, whereas with C# 5 there were only two new keywords: async and await. These two keywords are the main focus of this chapter.

With asynchronous programming a method is called that runs in the background (typically with the help of a thread or task), and the calling thread is not blocked.

In this chapter, you can read about different patterns on asynchronous programming such as the asynchronous pattern, the event-based asynchronous pattern, and the task-based asynchronous pattern (TAP). TAP makes use of the async and await keywords. Comparing these patterns you can see the real advantage of the new style of asynchronous programming.

After discussing the different patterns, you see the foundation of asynchronous programming by creating tasks and invoking asynchronous methods. You find out what’s behind the scenes with continuation tasks and the synchronization context.

Error handling needs some special emphasis; as with asynchronous tasks, some scenarios require some different handling with errors.

The last part of this chapter discusses how you can do cancellation. Background tasks can take a while, and there might be a need to cancel the task while it is still running. This chapter explains how you can do this.

Chapter 21, “Tasks and Parallel Programming” and Chapter 22, “Task Synchronization,” covers other information about parallel programming.

Users find it annoying when an application does not immediately react to requests. With the mouse, we have become accustomed to experiencing a delay, as we’ve learned that behavior over several decades. With a touch UI, an application needs to immediately react to requests. Otherwise, the user tries to redo the action.

Because asynchronous programming was hard to achieve with older versions of the .NET Framework, it was not always done when it should have been. One of the applications that blocked the UI thread fairly often is an older version of Visual Studio. With that version, opening a solution containing hundreds of projects meant you could take a long coffee break. As of Visual Studio 2012, that’s no longer the case because projects are loaded asynchronously in the background, with the selected project loaded first. A recent advancement of Visual Studio 2015 is the NuGet package manager that is no longer implemented as a model dialog. The new NuGet package manager can load information about packages asynchronously while you do other things at the same time. These are just a few examples of important changes built into Visual Studio 2015 related to asynchronous programming.

Many APIs with the .NET Framework offer both a synchronous and an asynchronous version. Because the synchronous version of the API was a lot easier to use, it was often used where it wasn’t appropriate. With the new Windows Runtime (WinRT), if an API call is expected to take longer than 40 milliseconds, only an asynchronous version is available. Since C# 5, programming asynchronously is as easy as programming in a synchronous manner, so there shouldn’t be any barrier to using the asynchronous APIs.

Asynchronous Patterns

Before stepping into the new async and await keywords it is best to understand asynchronous patterns from the .NET Framework. Asynchronous features have been available since .NET 1.0, and many classes in the .NET Framework implement one or more such patterns. The asynchronous pattern is also available with the delegate type.

Because doing updates on the UI—both with Windows Forms and WPF—with the asynchronous pattern is quite complex, .NET 2.0 introduced the event-based asynchronous pattern. With this pattern, an event handler is invoked from the thread that owns the synchronization context, so updating UI code is easily handled with this pattern. Previously, this pattern was also known with the name asynchronous component pattern.

With .NET 4.5, another way to achieve asynchronous programming was introduced: the task-based asynchronous pattern (TAP). This pattern is based on the Task type and makes use of a compiler feature with the keywords async and await.

To understand the advantage of the async and await keywords, the first sample application makes use of Windows Presentation Foundation (WPF) and network programming to provide an overview of asynchronous programming. If you have no experience with WPF and network programming, don’t despair. You can still follow the essentials here and gain an understanding of how asynchronous programming can be done. The following examples demonstrate the differences between the asynchronous patterns. After you’ve had a look at these, you’re introduced to the basics of asynchronous programming with some simple console applications.

NOTE WPF is covered in detail in Chapters 29 through 31 and 34 through 36. Network programming is discussed in Chapter 25, “Networking.”

The sample application to show the differences between the asynchronous patterns is a WPF application that makes use of types in a class library. The application is used to find images on the web using services from Bing and Flickr. The user can enter a search term to find images, and the search term is sent to Bing and Flickr services with a simple HTTP request.

The UI design from the Visual Studio designer is shown in Figure 15.1. On top of the screen is a text input field followed by several buttons that start the search or clear the result list. The left side below the control area contains a ListBox for displaying all the images found. On the right side is an Image control to display the image that is selected within the ListBox control in a version with a higher resolution.

[image: Screenshot shows a UI screen with a text box for search and buttons for clear, sync, async, async event, task based async and cancel along with a list box on the left side.]

Figure 15.1

To understand the sample application, we start with the class library AsyncLib, which contains several helper classes. These classes are used by the WPF application.

The class SearchItemResult represents a single item from a result collection that is used to display the image with a title and the source of the image. This class just defines simple properties: Title, Url, ThumbnailUrl, and Source. The property ThumbnailIUrl is used to reference a thumbnail image, the Url property contains a link to a larger-size image. Title contains some text to describe the image. The base class of SearchItemResult is BindableBase. This base class implements a notification mechanism by implementing the interface INotifyPropertyChanged that is used by WPF to make updates with data binding (code file AsyncLib/SearchItemResult.cs):

namespace Wrox.ProCSharp.Async
{
 public class SearchItemResult : BindableBase
 {
 private string _title;
 public string Title
 {
 get { return _title; }
 set { SetProperty(ref _title, value); }
 }

 private string _url;
 public string Url
 {
 get { return _url; }
 set { SetProperty(ref _url, value); }
 }

 private string _thumbnailUrl;
 public string ThumbnailUrl
 {
 get { return _thumbnailUrl; }
 set { SetProperty(ref _thumbnailUrl, value); }
 }

 private string _source;
 public string Source
 {
 get { return _source; }
 set { SetProperty(ref _source, value); }
 }
 }
}

The class SearchInfo is another class used with data binding. The property SearchTerm contains the user input to search for images with that type. The List property returns a list of all found images represented with the SearchItemResult type (code file AsyncLib/SearchInfo.cs):

using System.Collections.ObjectModel;

namespace Wrox.ProCSharp.Async
{
 public class SearchInfo : BindableBase
 {
 public SearchInfo()
 {
 _list = new ObservableCollection<SearchItemResult>();
 _list.CollectionChanged += delegate { OnPropertyChanged("List"); };
 }

 private string _searchTerm;
 public string SearchTerm
 {
 get { return _searchTerm; }
 set { SetProperty(ref _searchTerm, value); }
 }

 private ObservableCollection<SearchItemResult> _list;
 public ObservableCollection<SearchItemResult> List => _list;
 }
}

In the XAML code, a TextBox is used to enter the search term. This control is bound to the SearchTerm property of the SearchInfo type. Several Button controls are used to activate an event handler; for example, the Sync button invokes the OnSearchSync method (code file AsyncPatternsWPF/MainWindow.xaml):

<StackPanel Orientation="Horizontal" Grid.Row="0">
 <StackPanel.LayoutTransform>
 <ScaleTransform ScaleX="2" ScaleY="2" />
 </StackPanel.LayoutTransform>
 <TextBox Text="{Binding SearchTerm}" Width="200" Margin="4" />
 <Button Click="OnClear">Clear</Button>
 <Button Click="OnSearchSync">Sync</Button>
 <Button Click="OnSeachAsyncPattern">Async</Button>
 <Button Click="OnAsyncEventPattern">Async Event</Button>
 <Button Click="OnTaskBasedAsyncPattern">Task Based Async</Button>
</StackPanel>

The second part of the XAML code contains a ListBox. To have a special representation for the items in the ListBox, you use an ItemTemplate. Every item is represented with two TextBlock controls and one Image control. The ListBox is bound to the List property of the SearchInfo class, and properties of the item controls are bound to properties of the SearchItemResult type:

<Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="3*" />
 </Grid.ColumnDefinitions>
 <ListBox Grid.IsSharedSizeScope="True" ItemsSource="{Binding List}"
 Grid.Column="0" IsSynchronizedWithCurrentItem="True" Background="Black">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition SharedSizeGroup="ItemTemplateGroup" />
 </Grid.ColumnDefinitions>
 <StackPanel HorizontalAlignment="Stretch" Orientation="Vertical"
 Background="{StaticResource linearBackgroundBrush}">
 <TextBlock Text="{Binding Source}" Foreground="White" />
 <TextBlock Text="{Binding Title}" Foreground="White" />
 <Image HorizontalAlignment="Center"
 Source="{Binding ThumbnailUrl}" Width="100" />
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 <GridSplitter Grid.Column="1" Width="3" HorizontalAlignment="Left" />
 <Image Grid.Column="1" Source="{Binding List/Url}" />
</Grid>

Now let’s get into the BingRequest class. This class contains some information about how to make a request to the Bing service. The Url property of this class returns a URL string that can be used to make a request for images. The request is comprised of the search term, a number of images that should be requested (Count), and a number of images to skip (Offset). With Bing, authentication is needed. The user Id is defined with the AppId, and used with the Credentials property that returns a NetworkCredential object. To run the application, you need to register with Windows Azure Marketplace and sign up for the Bing Search API. At the time of this writing, up to 5000 transactions per month are free—this should be enough for running the sample application. Every search is one transaction. The link for the registration to the Bing Search API is https://datamarket.azure.com/dataset/bing/search. After registration you need to copy the account key. After obtaining the application account key, copy it to the AppID of the BingRequest class.

After sending a request to Bing by using the created URL, Bing returns XML. The Parse method of the BingRequest class parses the XML and returns a collection of SearchItemResult objects (code file AsyncLib/BingRequest.cs):

NOTE The Parse methods in the classes BingRequest and FlickrRequest make use of LINQ to XML. How to use LINQ to XML is covered in Chapter 27, “XML and JSON.”

using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Xml.Linq;

namespace Wrox.ProCSharp.Async
{
 public class BingRequest : IImageRequest
 {
 private const string AppId ="enter your Bing AppId here";

 public BingRequest()
 {
 Count = 50;
 Offset = 0;
 }

 private string _searchTerm;
 public string SearchTerm
 {
 get { return _searchTerm; }
 set { _searchTerm = value; }
 }

 public ICredentials Credentials => new NetworkCredentials(AppId, AppId);

 public string Url =>
 $"https://api.datamarket.azure.com/" +
 "Data.ashx/Bing/Search/v1/Image?Query=%27{SearchTerm}%27&" +
 "$top={Count}&$skip={Offset}&$format=Atom";

 public int Count { get; set; }

 public int Offset { get; set; }

 public IEnumerable<SearchItemResult> Parse(string xml)
 {
 XElement respXml = XElement.Parse(xml);
 XNamespace d = XNamespace.Get(
 "http://schemas.microsoft.com/ado/2007/08/dataservices");
 XNamespace m = XNamespace.Get(
 "http://schemas.microsoft.com/ado/2007/08/dataservices/metadata");
 return (from item in respXml.Descendants(m +"properties")
 select new SearchItemResult
 {
 Title = new string(item.Element(d +"Title").
 Value.Take(50).ToArray()),
 Url = item.Element(d +"MediaUrl").Value,
 ThumbnailUrl = item.Element(d +"Thumbnail").
 Element(d +"MediaUrl").Value,
 Source ="Bing"
 }).ToList();
 }
 }
}

Both the BingRequest class and the FlickrRequest class implement the interface IImageRequest. This interface defines the properties SearchTerm and Url, and the method Parse, which enables easy iteration through both image service providers (code file AsyncLib/IImageRequest.cs):

using System;
using System.Collections.Generic;
using System.Net;

namespace Wrox.ProCSharp.Async
{
 public interface IImageRequest
 {
 string SearchTerm { get; set; }

 string Url { get; }

 IEnumerable<SearchItemResult> Parse(string xml);

 ICredentials Credentials { get; }
 }
}

The FlickrRequest class is very similar to BingRequest. It just creates a different URL to request an image with a search term, and has a different implementation of the Parse method, just as the returned XML from Flickr differs from the returned XML from Bing. As with Bing, to create an application ID for Flickr, you need to register with Flickr and request it: http://www.flickr.com/services/apps/create/apply/.

using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;

namespace Wrox.ProCSharp.Async
{
 public class FlickrRequest : IImageRequest
 {
 private const string AppId ="Enter your Flickr AppId here";

 public FlickrRequest()
 {
 Count = 30;
 Page = 1;
 }

 private string _searchTerm;
 public string SearchTerm
 {
 get { return _searchTerm; }
 set { _searchTerm = value; }
 }

 public string Url =>
 $"http://api.flickr.com/services/rest?" +
 "api_key={AppId}&method=flickr.photos.search&content_type=1&" +
 "text={SearchTerm}&per_page={Count}&page={Page}";

 public ICredentials Credentials => null;

 public int Count { get; set; }

 public int Page { get; set; }

 public IEnumerable<SearchItemResult> Parse(string xml)
 {
 XElement respXml = XElement.Parse(xml);
 return (from item in respXml.Descendants("photo")
 select new SearchItemResult
 {
 Title = new string(item.Attribute("title").Value.
 Take(50).ToArray()),
 Url = string.Format("http://farm{0}.staticflickr.com/" +
 "{1}/{2}_{3}_z.jpg",
 item.Attribute("farm").Value, item.Attribute("server").Value,
 item.Attribute("id").Value, item.Attribute("secret").Value),
 ThumbnailUrl = string.Format("http://farm{0}." +
 "staticflickr.com/{1}/{2}_{3}_t.jpg",
 item.Attribute("farm").Value,
 item.Attribute("server").Value,
 item.Attribute("id").Value,
 item.Attribute("secret").Value),
 Source ="Flickr"
 }).ToList();
 }
 }
}

Now you need to connect the types from the library and the WPF application. In the constructor of the MainWindow class, you create an instance of SearchInfo, and you set the DataContext of the window to this instance. Now data binding can take place, shown earlier with the XAML code (code file AsyncPatternsWPF/MainWindow.xaml.cs):

public partial class MainWindow : Window
{
 private SearchInfo _searchInfo = new SearchInfo();

 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = _searchInfo;
 }
 //. . .

The MainWindow class also contains the helper method GetSearchRequests, which returns a collection of IImageRequest objects in the form of BingRequest and FlickrRequest types. In case you registered with only one of these services, you can change this code to return only the one with which you registered. Of course, you can also create IImageRequest types of other services—for example, using Google or Yahoo!. Then add these request types to the collection returned:

private IEnumerable<IImageRequest> GetSearchRequests()
{
 return new List<IImageRequest>
 {
 new BingRequest { SearchTerm = _searchInfo.SearchTerm },
 new FlickrRequest { SearchTerm = _searchInfo.SearchTerm}
 };
}

Synchronous Call

Now that everything is set up, start with a synchronous call to these services. The click handler of the Sync button, OnSearchSync, iterates through all search requests returned from GetSearchRequests and uses the Url property to make an HTTP request with the WebClient class. The method DownloadString blocks until the result is received. The resulting XML is assigned to the resp variable. The XML content is parsed with the help of the Parse method, which returns a collection of SearchItemResult objects. The items of these collections are then added to the list contained within _searchInfo (code file AsyncPatternsWPF/MainWindow.xaml.cs):

private void OnSearchSync(object sender, RoutedEventArgs e)
{
 foreach (var req in GetSearchRequests())
 {
 var client = new WebClient();
 client.Credentials = req.Credentials;
 string resp = client.DownloadString(req.Url);
 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 _searchInfo.List.Add(image);
 }
 }
}

When you run the application (see Figure 15.2), the user interface is blocked until the method OnSearchSync is finished making network calls to Bing and Flickr and has finished parsing the results. The amount of time needed to complete these calls varies according to the speed of your network and the current workload of Bing and Flickr. Whatever it is, however, the wait is unpleasant to the user.

[image: Screenshot shows a ui screen displaying a photo. The search field shows a keyword Christian Nagel along with a list of images in the list box.]

Figure 15.2

Therefore, make the call asynchronously instead.

Asynchronous Pattern

One way to make the call asynchronously is by using the asynchronous pattern. The asynchronous pattern defines a BeginXXX method and an EndXXX method. For example, if a synchronous method DownloadString is offered, the asynchronous variants would be BeginDownloadString and EndDownloadString. The BeginXXX method takes all input arguments of the synchronous method, and EndXXX takes the output arguments and return type to return the result. With the asynchronous pattern, the BeginXXX method also defines a parameter of AsyncCallback, which accepts a delegate that is invoked as soon as the asynchronous method is completed. The BeginXXX method returns IAsyncResult, which can be used for polling to verify whether the call is completed, and to wait for the end of the method.

The WebClient class doesn’t offer an implementation of the asynchronous pattern. Instead, the HttpWebRequest class could be used, which offers this pattern with the methods BeginGetResponse and EndGetResponse. The following sample does not do this. Instead, the sample uses a delegate. The delegate type defines an Invoke method to make a synchronous method call, and BeginInvoke and EndInvoke methods to use it with the asynchronous pattern. Here, the delegate downloadString of type Func<string, string> is declared to reference a method that has a string parameter and returns a string. The method that is referenced by the downloadString variable is implemented as a lambda expression and invokes the synchronous method DownloadString of the WebClient type. The delegate is invoked asynchronously by calling the BeginInvoke method. This method uses a thread from the thread pool to make an asynchronous call.

The first parameter of the BeginInvoke method is the first generic string parameter of the Func delegate where the URL can be passed. The second parameter is of type AsyncCallback. AsyncCallback is a delegate that requires IAsyncResult as a parameter. The method referenced by this delegate is invoked as soon as the asynchronous method is completed. When that happens, downloadString.EndInvoke is invoked to retrieve the result, which is dealt with in the same manner as before to parse the XML content and get the collection of items. However, here it is not possible to directly go back to the UI, as the UI is bound to a single thread, and the callback method is running within a background thread. Therefore, it’s necessary to switch back to the UI thread by using the Dispatcher property from the window. The Invoke method of the Dispatcher requires a delegate as a parameter; that’s why the Action<SearchItemResult> delegate is specified, which adds an item to the collection bound to the UI (code file AsyncPatternsWPF/MainWindow .xaml.cs):

private void OnSearchAsyncPattern(object sender, RoutedEventArgs e)
{
 Func<string, ICredentials, string> downloadString = (address, cred) =>
 {
 var client = new WebClient();
 client.Credentials = cred;
 return client.DownloadString(address);
 };

 Action<SearchItemResult> addItem = item => _searchInfo.List.Add(item);

 foreach (var req in GetSearchRequests())
 {
 downloadString.BeginInvoke(req.Url, req.Credentials, ar =>
 {
 string resp = downloadString.EndInvoke(ar);
 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 this.Dispatcher.Invoke(addItem, image);
 }
 }, null);
 }
}

An advantage of the asynchronous pattern is that it can be implemented easily just by using the functionality of delegates. The program now behaves as it should; the UI is no longer blocked. However, using the asynchronous pattern is difficult. Fortunately, .NET 2.0 introduced the event-based asynchronous pattern, which makes it easier to deal with UI updates. This pattern is discussed next.

NOTE Delegate types and lambda expressions are explained in Chapter 8, “Delegates, Lambdas, and Events.” Tasks and parallel programming are covered in Chapter 21.

Event-Based Asynchronous Pattern

The method OnAsyncEventPattern makes use of the event-based asynchronous pattern. This pattern is implemented by the WebClient class and thus it can be directly used.

This pattern defines a method with the suffix Async. Therefore, for example, for the synchronous method DownloadString, the WebClient class offers the asynchronous variant DownloadStringAsync. Instead of defining a delegate that is invoked when the asynchronous method is completed, an event is defined. The DownloadStringCompleted event is invoked as soon as the asynchronous method DownloadStringAsync is completed. The method assigned to the event handler is implemented within a lambda expression. The implementation is very similar to before, but now it is possible to directly access UI elements because the event handler is invoked from the thread that has the synchronization context, and this is the UI thread in the case of Windows Forms and WPF applications (code file AsyncPatternsWPF/MainWindow.xaml.cs):

private void OnAsyncEventPattern(object sender, RoutedEventArgs e)
{
 foreach (var req in GetSearchRequests())
 {
 var client = new WebClient();
 client.Credentials = req.Credentials;
 client.DownloadStringCompleted += (sender1, e1) =>
 {
 string resp = e1.Result;
 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 _searchInfo.List.Add(image);
 }
 };
 client.DownloadStringAsync(new Uri(req.Url));
 }
}

An advantage of the event-based asynchronous pattern is that it is easy to use. Note, however, that it is not that easy to implement this pattern in a custom class. One way to use an existing implementation of this pattern to make synchronous methods asynchronous is with the BackgroundWorker class. BackgroundWorker implements the event-based asynchronous pattern.

This makes the code a lot simpler. However, the order is reversed compared to synchronous method calls. Before invoking the asynchronous method, you need to define what happens when the method call is completed. The following section plunges into the new world of asynchronous programming with the async and await keywords.

Task-Based Asynchronous Pattern

The WebClient class was updated with .NET 4.5 to offer the task-based asynchronous pattern (TAP) as well. This pattern defines a suffix Async method that returns a Task type. Because the WebClient class already offers a method with the Async suffix to implement the task-based asynchronous pattern, the new method has the name DownloadStringTaskAsync.

The method DownloadStringTaskAsync is declared to return Task<string>. You do not need to declare a variable of Task<string> to assign the result from DownloadStringTaskAsync; instead, you can declare a variable of type string, and you can use the await keyword. The await keyword unblocks the thread (in this case the UI thread) to do other tasks. As soon as the method DownloadStringTaskAsync completes its background processing, the UI thread can continue and get the result from the background task to the string variable resp. Also, the code following this line continues (code file AsyncPatternsWPF/MainWindow.xaml.cs):

private async void OnTaskBasedAsyncPattern(object sender,
 RoutedEventArgs e)
{
 foreach (var req in GetSearchRequests())
 {
 var client = new WebClient();
 client.Credentials = req.Credentials;
 string resp = await client.DownloadStringTaskAsync(req.Url);
 IEnumerable<SearchItemResult> images = req.Parse(resp);

 foreach (var image in images)
 {
 _searchInfo.List.Add(image);
 }
 }
}

NOTE The async keyword creates a state machine similar to the yield return statement, which is discussed in Chapter 7, “Arrays and Tuples.”

The code is much simpler now. There is no blocking, and no manually switching back to the UI thread, as this is done automatically. Also, the code follows the same order as you’re used to with synchronous programming.

Next, the code is changed to use a different class from WebClient—one in which the task-based event pattern is more directly implemented and synchronous methods are not offered. This class, which was added in .NET 4.5, is HttpClient. You do an asynchronous GET request with the GetAsync method. Then, to read the content you need another asynchronous method. ReadAsStringAsync returns the content formatted in a string:

private async void OnTaskBasedAsyncPattern(object sender, RoutedEventArgs e)
{
 foreach (var req in GetSearchRequests())
 {
 var clientHandler = new HttpClientHandler
 {
 Credentials = req.Credentials
 };
 var client = new HttpClient(clientHandler);
 var response = await client.GetAsync(req.Url);
 string resp = await response.Content.ReadAsStringAsync();
 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 _searchInfo.List.Add(image);
 }
 }
}

Parsing of the XML string could take a while. Because the parsing code is running in the UI thread, the UI thread cannot react to user requests at that time. To create a background task from synchronous functionality, you can use Task.Run. In the following example, Task.Run wraps the parsing of the XML string to return the SearchItemResult collection:

private async void OnTaskBasedAsyncPattern(object sender, RoutedEventArgs e)
{
 foreach (var req in GetSearchRequests())
 {
 var clientHandler = new HttpClientHandler
 {
 Credentials = req.Credentials
 };
 var client = new HttpClient(clientHandler);
 var response = await client.GetAsync(req.Url, cts.Token);
 string resp = await response.Content.ReadAsStringAsync();
 await Task.Run(() =>
 {
 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 _searchInfo.List.Add(image);
 }
 }
 }
}

Because the method passed to the Task.Run method is running in a background thread, here we have the same problem as before referencing some UI code. One solution would be to just do req.Parse within the Task.Run method, and do the foreach loop outside the task to add the result to the list in the UI thread. WPF offers a better solution, however, that enables filling collections that are bound to the UI from a background thread. This extension only requires enabling the collection for synchronization using BindingOperations.EnableCollectionSynchronization, as shown in the following code snippet:

public partial class MainWindow : Window
{
 private SearchInfo _searchInfo = new SearchInfo();
 private object _lockList = new object();

 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = _searchInfo;
 BindingOperations.EnableCollectionSynchronization(
 _searchInfo.List, _lockList);
 }

Now that you’ve seen the advantages of the async and await keywords, the next section examines the programming foundation behind these keywords.

Foundation of Asynchronous Programming

The async and await keywords are just a compiler feature. The compiler creates code by using the Task class. Instead of using the new keywords, you could get the same functionality with C# 4 and methods of the Task class; it’s just not as convenient.

This section gives information about what the compiler does with the async and await keywords. It shows you an easy way to create an asynchronous method and demonstrates how to invoke multiple asynchronous methods in parallel. You also see how you can change a class to offer the asynchronous pattern with the new keywords.

The sample code for all the Foundations sample makes use of these dependencies and namespaces:

Dependencies

	NETStandard.Library

	

Namespaces

	System

	System.Threading

	System.Threading.Tasks

	static System.Console

Creating Tasks

Let’s start with the synchronous method Greeting, which takes a while before returning a string (code file Foundations/Program.cs):

static string Greeting(string name)
{
 Task.Delay(3000).Wait();
 return $"Hello, {name}";
}

To make such a method asynchronously, you define the method GreetingAsync. The task-based asynchronous pattern specifies that an asynchronous method is named with the Async suffix and returns a task. GreetingAsync is defined to have the same input parameters as the Greeting method but returns Task<string>. Task<string>, which defines a task that returns a string in the future. A simple way to return a task is by using the Task.Run method. The generic version Task.Run<string>() creates a task that returns a string:

static Task<string> GreetingAsync(string name)
{
 return Task.Run<string>(() =>
 {
 return Greeting(name);
 });
}

Calling an Asynchronous Method

You can call this asynchronous method GreetingAsync by using the await keyword on the task that is returned. The await keyword requires the method to be declared with the async modifier. The code within this method does not continue before the GreetingAsync method is completed. However, you can reuse the thread that started the CallerWithAsync method. This thread is not blocked:

private async static void CallerWithAsync()
{
 string result = await GreetingAsync("Stephanie");
 WriteLine(result);
}

Instead of passing the result from the asynchronous method to a variable, you can also use the await keyword directly within parameters. Here, the result from the GreetingAsync method is awaited as it was in the previous code snippet, but this time the result is directly passed to the WriteLine method:

private async static void CallerWithAsync2()
{
 WriteLine(await GreetingAsync("Stephanie"));
}

NOTE You can use the async modifier only with methods returning a Task or void with .NET types, and IAsyncOperation with the Windows Runtime. It cannot be used with the entry point of a program: the Main method. await can only be used with methods returning a Task.

The next section explains what’s driving the await keyword. Behind the scenes, continuation tasks are used.

Continuation with Tasks

GreetingAsync returns a Task<string> object. The Task object contains information about the task created, and allows waiting for its completion. The ContinueWith method of the Task class defines the code that should be invoked as soon as the task is finished. The delegate assigned to the ContinueWith method receives the completed task with its argument, which allows accessing the result from the task using the Result property:

private static void CallerWithContinuationTask()
{
 Task<string> t1 = GreetingAsync("Stephanie");
 t1.ContinueWith(t =>
 {
 string result = t.Result;
 WriteLine(result);
 });
}

The compiler converts the await keyword by putting all the code that follows within the block of a ContinueWith method.

Synchronization Context

If you verify the thread that is used within the methods you will find that in both methods—CallerWithAsync and CallerWithContinuationTask—different threads are used during the lifetime of the methods. One thread is used to invoke the method GreetingAsync, and another thread takes action after the await keyword or within the code block in the ContinueWith method.

With a console application usually this is not an issue. However, you have to ensure that at least one foreground thread is still running before all background tasks that should be completed are finished. The sample application invokes Console.ReadLine to keep the main thread running until the return key is pressed.

With applications that are bound to a specific thread for some actions (for example, with WPF applications or Windows apps, UI elements can only be accessed from the UI thread), this is an issue.

Using the async and await keywords you don’t have to do any special actions to access the UI thread after an await completion. By default, the generated code switches the thread to the thread that has the synchronization context. A WPF application sets a DispatcherSynchronizationContext, and a Windows Forms application sets a WindowsFormsSynchronizationContext. If the calling thread of the asynchronous method is assigned to the synchronization context, then with the continuous execution after the await, by default the same synchronization context is used. If the same synchronization context shouldn’t be used, you must invoke the Task method ConfigureAwait(continueOnCapturedContext: false). An example that illustrates this usefulness is a WPF application in which the code that follows the await is not using any UI elements. In this case, it is faster to avoid the switch to the synchronization context.

Using Multiple Asynchronous Methods

Within an asynchronous method you can call multiple asynchronous methods. How you code this depends on whether the results from one asynchronous method are needed by another.

Calling Asynchronous Methods Sequentially

You can use the await keyword to call every asynchronous method. In cases where one method is dependent on the result of another method, this is very useful. Here, the second call to GreetingAsync is completely independent of the result of the first call to GreetingAsync. Thus, the complete method MultipleAsyncMethods could return the result faster if await is not used with every single method, as shown in the following example:

private async static void MultipleAsyncMethods()
{
 string s1 = await GreetingAsync("Stephanie");
 string s2 = await GreetingAsync("Matthias");
 WriteLine("Finished both methods.\nResult 1: {s1}\n Result 2: {s2}");
}

Using Combinators

If the asynchronous methods are not dependent on each other, it is a lot faster not to await on each separately; instead assign the return of the asynchronous method to a Task variable. The GreetingAsync method returns Task<string>. Both these methods can now run in parallel. Combinators can help with this. A combinator accepts multiple parameters of the same type and returns a value of the same type. The passed parameters are “combined” to one. Task combinators accept multiple Task objects as parameter and return a Task.

The sample code invokes the Task.WhenAll combinator method that you can await to have both tasks finished:

private async static void MultipleAsyncMethodsWithCombinators1()
{
 Task<string> t1 = GreetingAsync("Stephanie");
 Task<string> t2 = GreetingAsync("Matthias");
 await Task.WhenAll(t1, t2);
 WriteLine("Finished both methods.\n" +
 $"Result 1: {t1.Result}\n Result 2: {t2.Result}");
}

The Task class defines the WhenAll and WhenAny combinators. The Task returned from the WhenAll method is completed as soon as all tasks passed to the method are completed; the Task returned from the WhenAny method is completed as soon as one of the tasks passed to the method is completed.

The WhenAll method of the Task type defines several overloads. If all the tasks return the same type, you can use an array of this type for the result of the await. The GreetingAsync method returns a Task<string>, and awaiting for this method results in a string. Therefore, you can use Task.WhenAll to return a string array:

private async static void MultipleAsyncMethodsWithCombinators2()
{
 Task<string> t1 = GreetingAsync("Stephanie");
 Task<string> t2 = GreetingAsync("Matthias");
 string[] result = await Task.WhenAll(t1, t2);
 WriteLine("Finished both methods.\n" +
 $"Result 1: {result[0]}\n Result 2: {result[1]}");
}

Converting the Asynchronous Pattern

Not all classes from the .NET Framework introduced the new asynchronous method style. There are still many classes that offer the asynchronous pattern with the BeginXXX and EndXXX methods and not with task-based asynchronous methods; you will see this when you work with different classes from the framework. However, you can convert the asynchronous pattern to the new task-based asynchronous pattern.

First, create an asynchronous method from the previously defined synchronous method Greeting with the help of a delegate. The Greeting method receives a string as parameter and returns a string; thus a variable of Func<string, string> delegate is used to reference this method. According to the asynchronous pattern, the BeginGreeting method receives a string parameter in addition to AsyncCallback and object parameters and returns IAsyncResult. The EndGreeting method returns the result from the Greeting method—a string—and receives an IAsyncResult parameter. This way the synchronous method Greeting was made asynchronous just by using a delegate.

private Func<string, string> greetingInvoker = Greeting;

private IAsyncResult BeginGreeting(string name, AsyncCallback callback,
 object state)
{
 return greetingInvoker.BeginInvoke(name, callback, state);
}

private string EndGreeting(IAsyncResult ar)
{
 return greetingInvoker.EndInvoke(ar);
}

Now the BeginGreeting and EndGreeting methods are available, and these should be converted to use the async and await keywords to get the results. The TaskFactory class defines the FromAsync method that allows converting methods using the asynchronous pattern to the TAP.

With the sample code, the first generic parameter of the Task type, Task<string>, defines the return value from the method that is invoked. The generic parameter of the FromAsync method defines the input type of the method. In this case the input type is again of type string. With the parameters of the FromAsync method, the first two parameters are delegate types to pass the addresses of the BeginGreeting and EndGreeting methods. After these two parameters, the input parameters and the object state parameter follow. The object state is not used, so null is assigned to it. Because the FromAsync method returns a Task type, in the sample code Task<string>, you can use an await as shown:

private static async void ConvertingAsyncPattern()
{
 string s = await Task<string>.Factory.FromAsync<string>(
 BeginGreeting, EndGreeting,"Angela", null);
 WriteLine(s);
}

Error Handling

Chapter 14, “Errors and Exceptions,” provides detailed coverage of errors and exception handling. However, in the context of asynchronous methods, you should be aware of some special handling of errors.

The sample code for all the ErrorHandling sample makes use of these dependencies and namespaces:

Dependencies

	NETStandard.Library

Namespaces

	System

	System.Threading.Tasks

	static System.Console

Let’s start with a simple method that throws an exception after a delay (code file ErrorHandling/Program.cs):

static async Task ThrowAfter(int ms, string message)
{
 await Task.Delay(ms);
 throw new Exception(message);
}

If you call the asynchronous method without awaiting it, you can put the asynchronous method within a try/catch block—and the exception will not be caught. That’s because the method DontHandle has already completed before the exception from ThrowAfter is thrown. You need to await the ThrowAfter method, as shown in the example that follows in the next section. Pay attention that the exception is not caught in this code snippet:

private static void DontHandle()
{
 try
 {
 ThrowAfter(200,"first");
 // exception is not caught because this method is finished
 // before the exception is thrown
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
}

WARNING Asynchronous methods that return void cannot be awaited. The issue with this is that exceptions that are thrown from async void methods cannot be caught. That’s why it is best to return a Task type from an asynchronous method. Handler methods or overridden base methods are exempted from this rule.

Handling Exceptions with Asynchronous Methods

A good way to deal with exceptions from asynchronous methods is to use await and put a try/catch statement around it, as shown in the following code snippet. The HandleOneError method releases the thread after calling the ThrowAfter method asynchronously, but it keeps the Task referenced to continue as soon as the task is completed. When that happens (which, in this case, is when the exception is thrown after two seconds), the catch matches and the code within the catch block is invoked:

private static async void HandleOneError()
{
 try
 {
 await ThrowAfter(2000,"first");
 }
 catch (Exception ex)
 {
 WriteLine($"handled {ex.Message}");
 }
}

Handling Exceptions with Multiple Asynchronous Methods

What if two asynchronous methods are invoked and both throw exceptions? In the following example, first the ThrowAfter method is invoked, which throws an exception with the message first after two seconds. After this method is completed, the ThrowAfter method is invoked, throwing an exception after one second. Because the first call to ThrowAfter already throws an exception, the code within the try block does not continue to invoke the second method, instead landing within the catch block to deal with the first exception:

private static async void StartTwoTasks()
{
 try
 {
 await ThrowAfter(2000,"first");
 await ThrowAfter(1000,"second"); // the second call is not invoked
 // because the first method throws
 // an exception
 }
 catch (Exception ex)
 {
 WriteLine($"handled {ex.Message}");
 }
}

Now start the two calls to ThrowAfter in parallel. The first method throws an exception after two seconds and the second one after one second. With Task.WhenAll you wait until both tasks are completed, whether an exception is thrown or not. Therefore, after a wait of about two seconds, Task.WhenAll is completed, and the exception is caught with the catch statement. However, you only see the exception information from the first task that is passed to the WhenAll method. It’s not the task that threw the exception first (which is the second task), but the first task in the list:

private async static void StartTwoTasksParallel()
{
 try
 {
 Task t1 = ThrowAfter(2000,"first");
 Task t2 = ThrowAfter(1000,"second");
 await Task.WhenAll(t1, t2);
 }
 catch (Exception ex)
 {
 // just display the exception information of the first task
 // that is awaited within WhenAll
 WriteLine($"handled {ex.Message}");
 }
}

One way to get the exception information from all tasks is to declare the task variables t1 and t2 outside of the try block, so they can be accessed from within the catch block. Here you can check the status of the task to determine whether they are in a faulted state with the IsFaulted property. In case of an exception, the IsFaulted property returns true. The exception information itself can be accessed by using Exception.InnerException of the Task class. Another, and usually better, way to retrieve exception information from all tasks is demonstrated next.

Using AggregateException Information

To get the exception information from all failing tasks, you can write the result from Task.WhenAll to a Task variable. This task is then awaited until all tasks are completed. Otherwise the exception would still be missed. As described in the last section, with the catch statement only the exception of the first task can be retrieved. However, now you have access to the Exception property of the outer task. The Exception property is of type AggregateException. This exception type defines the property InnerExceptions (not only InnerException), which contains a list of all the exceptions that have been awaited for. Now you can easily iterate through all the exceptions:

private static async void ShowAggregatedException()
{
 Task taskResult = null;
 try
 {
 Task t1 = ThrowAfter(2000,"first");
 Task t2 = ThrowAfter(1000,"second");
 await (taskResult = Task.WhenAll(t1, t2));
 }
 catch (Exception ex)
 {
 WriteLine($"handled {ex.Message}");
 foreach (var ex1 in taskResult.Exception.InnerExceptions)
 {
 WriteLine($"inner exception {ex1.Message}");
 }
 }
}

Cancellation

With background tasks that can run longer in some scenarios, it is useful to cancel the tasks. For cancellation, .NET offers a standard mechanism. This mechanism can be used with the task-based asynchronous pattern.

The cancellation framework is based on cooperative behavior; it is not forceful. A long-running task needs to check itself if it is canceled, in which case it is the responsibility of the task to clean up any open resources and finish its work.

Cancellation is based on the CancellationTokenSource class, which you can use to send cancel requests. Requests are sent to tasks that reference the CancellationToken that is associated with the CancellationTokenSource. The following section looks at an example by modifying the AsyncPatterns sample created earlier in this chapter to add support for cancellation.

Starting a Cancellation

First, you define a variable cts of type CancellationTokenSource with the private field members of the class MainWindow. This member will be used to cancel tasks and pass tokens to the methods that should be cancelled (code file AsyncPatterns/MainWindow.xaml.cs):

public partial class MainWindow : Window
{
 private SearchInfo _searchInfo = new SearchInfo();
 private object _lockList = new object();
 private CancellationTokenSource _cts;
 //. . .

For a new button that the user can activate to cancel the running task, you add the event handler method OnCancel. Within this method, you use the variable cts to cancel the tasks with the Cancel method:

private void OnCancel(object sender, RoutedEventArgs e)
{
 _cts?.Cancel();
}

The CancellationTokenSource also supports cancellation after a specified amount of time. The method CancelAfter enables passing a value, in milliseconds, after which a task should be cancelled.

Cancellation with Framework Features

Now pass the CancellationToken to an asynchronous method. Several of the asynchronous methods in the framework support cancellation by offering an overload whereby a CancellationToken can be passed. One example is the GetAsync method of the HttpClient class. The overloaded GetAsync method accepts a CancellationToken in addition to the URI string. You can retrieve the token from the CancellationTokenSource by using the Token property.

The implementation of the GetAsync method periodically checks whether the operation should be cancelled. When cancellation is appropriate, the method does a cleanup of resources before throwing the exception OperationCanceledException. This exception is caught with the catch handler in the following code snippet:

private async void OnTaskBasedAsyncPattern(object sender, RoutedEventArgs e)
{
 _cts = new CancellationTokenSource();
 try
 {
 foreach (var req in GetSearchRequests())
 {
 var clientHandler = new HttpClientHandler
 {
 Credentials = req.Credentials;
 };
 var client = new HttpClient(clientHandler);
 var response = await client.GetAsync(req.Url, _cts.Token);
 string resp = await response.Content.ReadAsStringAsync();

 //. . .

 }
 }
 catch (OperationCanceledException ex)
 {
 MessageBox.Show(ex.Message);
 }
}

Cancellation with Custom Tasks

What about custom tasks that should be cancelled? The Run method of the Task class offers an overload to pass a CancellationToken as well. However, with custom tasks it is necessary to check whether cancellation is requested. In the following example, this is implemented within the foreach loop. The token can be checked by using the IsCancellationRequsted property. If you need to do some cleanup before throwing the exception, it is best to verify that cancellation is requested. If cleanup is not needed, an exception can be fired immediately after the check, which is done with the ThrowIfCancellationRequested method:

await Task.Run(() =>
{
 var images = req.Parse(resp);
 foreach (var image in images)
 {
 _cts.Token.ThrowIfCancellationRequested();
 _searchInfo.List.Add(image);
 }
}, _cts.Token);

Now the user can cancel long-running tasks.

Summary

This chapter introduced the async and await keywords. Having looked at several examples, you’ve seen the advantages of the task-based asynchronous pattern compared to the asynchronous pattern and the event-based asynchronous pattern available with earlier editions of .NET.

You’ve also seen how easy it is to create asynchronous methods with the help of the Task class, and learned how to use the async and await keywords to wait for these methods without blocking threads. Finally, you looked at the error-handling aspect of asynchronous methods.

For more information on parallel programming, and details about threads and tasks, see Chapter 21.

The next chapter continues with core features of C# and .NET and gives detailed information on reflection, metadata, and dynamic programming.

16
Reflection, Metadata, and Dynamic Programming

What’s In This Chapter?

	Using custom attributes

	Inspecting the metadata at runtime using reflection

	Building access points from classes that enable reflection

	Understanding the Dynamic Language Runtime

	Working with the dynamic type

	Hosting the DLR ScriptRuntime

	Creating dynamic objects with DynamicObject and ExpandoObject

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	LookupWhatsNew

	TypeView

	VectorClass

	WhatsNewAttributes

	DLRHost

	Dynamic

	DynamicFileReader

	ErrorExample

Inspecting Code at RunTime and Dynamic Programming

This chapter focuses on custom attributes, reflection, and dynamic programming. Custom attributes are mechanisms that enable you to associate custom metadata with program elements. This metadata is created at compile time and embedded in an assembly. Reflection is a generic term that describes the capability to inspect and manipulate program elements at runtime. For example, reflection allows you to do the following:

	Enumerate the members of a type

	Instantiate a new object

	Execute the members of an object

	Find out information about a type

	Find out information about an assembly

	Inspect the custom attributes applied to a type

	Create and compile a new assembly

This list represents a great deal of functionality and encompasses some of the most powerful and complex capabilities provided by the .NET Framework class library. Because one chapter does not have the space to cover all the capabilities of reflection, I focus on those elements that you are likely to use most frequently.

To demonstrate custom attributes and reflection, in this chapter you first develop an example based on a company that regularly ships upgrades of its software and wants to have details about these upgrades documented automatically. In the example, you define custom attributes that indicate the date when program elements were last modified, and what changes were made. You then use reflection to develop an application that looks for these attributes in an assembly and can automatically display all the details about what upgrades have been made to the software since a given date.

Another example in this chapter considers an application that reads from or writes to a database and uses custom attributes as a way to mark which classes and properties correspond to which database tables and columns. By reading these attributes from the assembly at runtime, the program can automatically retrieve or write data to the appropriate location in the database, without requiring specific logic for each table or column.

The second big aspect of this chapter is dynamic programming, which has been a part of the C# language since version 4 when the dynamic type was added. The growth of languages such as Ruby and Python, and the increased use of JavaScript, have intensified interest in dynamic programming. Although C# is still a statically typed language, the additions for dynamic programming give the C# language capabilities that some developers are looking for. Using dynamic language features allows for calling script functions from within C# and also makes COM interop easier.

In this chapter, you look at the dynamic type and the rules for using it. You also see what an implementation of DynamicObject looks like and how you can use it. ExpandoObject, which is the frameworks implementation of DynamicObject, is also covered.

Custom Attributes

You have already seen in this book how you can define attributes on various items within your program. These attributes have been defined by Microsoft as part of the .NET Framework class library, and many of them receive special support from the C# compiler. This means that for those particular attributes, the compiler can customize the compilation process in specific ways—for example, laying out a struct in memory according to the details in the StructLayout attributes.

The .NET Framework also enables you to define your own attributes. Obviously, these attributes don’t have any effect on the compilation process because the compiler has no intrinsic awareness of them. However, these attributes are emitted as metadata in the compiled assembly when they are applied to program elements.

By itself, this metadata might be useful for documentation purposes, but what makes attributes really powerful is that by using reflection, your code can read this metadata and use it to make decisions at runtime. This means that the custom attributes that you define can directly affect how your code runs. For example, custom attributes can be used to enable declarative code access security checks for custom permission classes, to associate information with program elements that can then be used by testing tools, or when developing extensible frameworks that allow the loading of plug-ins or modules.

Writing Custom Attributes

To understand how to write your own custom attributes, it is useful to know what the compiler does when it encounters an element in your code that has a custom attribute applied to it. To take the database example, suppose that you have a C# property declaration that looks like this:

[FieldName("SocialSecurityNumber")]
public string SocialSecurityNumber
{
 get {
 // etc.

When the C# compiler recognizes that this property has an attribute applied to it (FieldName), it first appends the string Attribute to this name, forming the combined name FieldNameAttribute. The compiler then searches all the namespaces in its search path (those namespaces that have been mentioned in a using statement) for a class with the specified name. Note that if you mark an item with an attribute whose name already ends in the string Attribute, the compiler does not add the string to the name a second time; it leaves the attribute name unchanged. Therefore, the preceding code is equivalent to this:

[FieldNameAttribute("SocialSecurityNumber")]
public string SocialSecurityNumber
{
 get {
 // etc.

The compiler expects to find a class with this name, and it expects this class to be derived directly or indirectly from System.Attribute. The compiler also expects that this class contains information governing the use of the attribute. In particular, the attribute class needs to specify the following:

	The types of program elements to which the attribute can be applied (classes, structs, properties, methods, and so on)

	Whether it is legal for the attribute to be applied more than once to the same program element

	Whether the attribute, when applied to a class or interface, is inherited by derived classes and interfaces

	The mandatory and optional parameters the attribute takes

If the compiler cannot find a corresponding attribute class, or if it finds one but the way that you have used that attribute does not match the information in the attribute class, the compiler raises a compilation error. For example, if the attribute class indicates that the attribute can be applied only to classes but you have applied it to a struct definition, a compilation error occurs.

Continuing with the example, assume that you have defined the FieldName attribute like this:

[AttributeUsage(AttributeTargets.Property,
 AllowMultiple=false,
 Inherited=false)]
public class FieldNameAttribute: Attribute
{
 private string _name;
 public FieldNameAttribute(string name)
 {
 _name = name;
 }
}

The following sections discuss each element of this definition.

Specifying the AttributeUsage Attribute

The first thing to note is that the attribute class itself is marked with an attribute—the System.AttributeUsage attribute. This is an attribute defined by Microsoft for which the C# compiler provides special support. (You could argue that AttributeUsage isn’t an attribute at all; it is more like a meta-attribute, because it applies only to other attributes, not simply to any class.) The primary purpose of AttributeUsage is to identify the types of program elements to which your custom attribute can be applied. This information is provided by the first parameter of the AttributeUsage attribute. This parameter is mandatory, and it is of an enumerated type, AttributeTargets. In the previous example, you have indicated that the FieldName attribute can be applied only to properties, which is fine, because that is exactly what you have applied it to in the earlier code fragment. The members of the AttributeTargets enumeration are as follows:

	All

	Assembly

	Class

	Constructor

	Delegate

	Enum

	Event

	Field

	GenericParameter

	Interface

	Method

	Module

	Parameter

	Property

	ReturnValue

	Struct

This list identifies all the program elements to which you can apply attributes. Note that when applying the attribute to a program element, you place the attribute in square brackets immediately before the element. However, two values in the preceding list do not correspond to any program element: Assembly and Module. An attribute can be applied to an assembly or a module as a whole, rather than to an element in your code; in this case the attribute can be placed anywhere in your source code, but it must be prefixed with the Assembly or Module keyword:

[assembly:SomeAssemblyAttribute(Parameters)]
[module:SomeAssemblyAttribute(Parameters)]

When indicating the valid target elements of a custom attribute, you can combine these values using the bitwise OR operator. For example, if you want to indicate that your FieldName attribute can be applied to both properties and fields, you use the following:

[AttributeUsage(AttributeTargets.Property | AttributeTargets.Field,
 AllowMultiple=false, Inherited=false)]
public class FieldNameAttribute: Attribute

You can also use AttributeTargets.All to indicate that your attribute can be applied to all types of program elements. The AttributeUsage attribute also contains two other parameters: AllowMultiple and Inherited. These are specified using the syntax of <ParameterName>=<ParameterValue>, instead of simply specifying the values for these parameters. These parameters are optional—you can omit them.

The AllowMultiple parameter indicates whether an attribute can be applied more than once to the same item. The fact that it is set to false indicates that the compiler should raise an error if it sees something like this:

[FieldName("SocialSecurityNumber")]
[FieldName("NationalInsuranceNumber")]
public string SocialSecurityNumber
{
 // etc.

If the Inherited parameter is set to true, an attribute applied to a class or interface is also automatically applied to all derived classes or interfaces. If the attribute is applied to a method or property, it automatically applies to any overrides of that method or property, and so on.

Specifying Attribute Parameters

This section demonstrates how you can specify the parameters that your custom attribute takes. When the compiler encounters a statement such as the following, it examines the parameters passed into the attribute—which is a string—and looks for a constructor for the attribute that takes exactly those parameters:

[FieldName("SocialSecurityNumber")]
public string SocialSecurityNumber
{
 // etc.

If the compiler finds an appropriate constructor, it emits the specified metadata to the assembly. If the compiler does not find an appropriate constructor, a compilation error occurs. As discussed later in this chapter, reflection involves reading metadata (attributes) from assemblies and instantiating the attribute classes they represent. Because of this, the compiler must ensure that an appropriate constructor exists that allows the runtime instantiation of the specified attribute.

In the example, you have supplied just one constructor for FieldNameAttribute, and this constructor takes one string parameter. Therefore, when applying the FieldName attribute to a property, you must supply one string as a parameter, as shown in the preceding code.

To allow a choice of what types of parameters should be supplied with an attribute, you can provide different constructor overloads, although normal practice is to supply just one constructor and use properties to define any other optional parameters, as explained next.

Specifying Optional Attribute Parameters

As demonstrated with the AttributeUsage attribute, an alternative syntax enables optional parameters to be added to an attribute. This syntax involves specifying the names and values of the optional parameters. It works through public properties or fields in the attribute class. For example, suppose that you modify the definition of the SocialSecurityNumber property as follows:

[FieldName("SocialSecurityNumber", Comment="This is the primary key field")]
public string SocialSecurityNumber { get; set; }
{
 // etc.

In this case, the compiler recognizes the <ParameterName>=<ParameterValue> syntax of the second parameter and does not attempt to match this parameter to a FieldNameAttribute constructor. Instead, it looks for a public property or field (although public fields are not considered good programming practice, so normally you will work with properties) of that name that it can use to set the value of this parameter. If you want the previous code to work, you have to add some code to FieldNameAttribute:

[AttributeUsage(AttributeTargets.Property,
 AllowMultiple=false, Inherited=false)]
public class FieldNameAttribute : Attribute
{
 public string Comment { get; set; }

 private string _fieldName;
 public FieldNameAttribute(string fieldName)
 {
 _fieldName = fieldname;
 }

 // etc
}

Custom Attribute Example: WhatsNewAttributes

In this section you start developing the example mentioned at the beginning of the chapter. WhatsNewAttributes provides for an attribute that indicates when a program element was last modified. This is a more ambitious code example than many of the others in that it consists of three separate assemblies:

	WhatsNewAttributes—Contains the definitions of the attributes

	VectorClass—Contains the code to which the attributes have been applied

	LookUpWhatsNew—Contains the project that displays details about items that have changed

Of these, only the LookUpWhatsNew assembly is a console application of the type that you have used up until now. The remaining two assemblies are libraries—they each contain class definitions but no program entry point. For the VectorClass assembly, this means that the entry point and test harness class have been removed from the VectorAsCollection sample, leaving only the Vector class. These classes are represented later in this chapter.

The WhatsNewAttributes Library Assembly

This section starts with the core WhatsNewAttributes assembly. The source code is contained in the file WhatsNewAttributes.cs, which is located in the WhatsNewAttributes project of the WhatsNewAttributes solution in the example code for this chapter.

The sample code for WhatsNewAttributes makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

Namespaces

	System

The WhatsNewAttributes.cs file defines two attribute classes, LastModifiedAttribute and SupportsWhatsNewAttribute. You use the attribute LastModifiedAttribute to mark when an item was last modified. It takes two mandatory parameters (parameters that are passed to the constructor): the date of the modification and a string containing a description of the changes. One optional parameter named issues (for which a public property exists) can be used to describe any outstanding issues for the item.

In practice, you would probably want this attribute to apply to anything. To keep the code simple, its usage is limited here to classes and methods. You allow it to be applied more than once to the same item (AllowMultiple=true) because an item might be modified more than once, and each modification has to be marked with a separate attribute instance.

SupportsWhatsNew is a smaller class representing an attribute that doesn’t take any parameters. The purpose of this assembly attribute is to mark an assembly for which you are maintaining documentation via the LastModifiedAttribute. This way, the program that examines this assembly later knows that the assembly it is reading is one on which you are actually using your automated documentation process. Here is the complete source code for this part of the example (code file WhatsNewAttributes/WhatsNewAttributes.cs):

using System;

namespace WhatsNewAttributes
{
 [AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
 AllowMultiple=true, Inherited=false)]
 public class LastModifiedAttribute: Attribute
 {
 private readonly DateTime _dateModified;
 private readonly string _changes;

 public LastModifiedAttribute(string dateModified, string changes)
 {
 _dateModified = DateTime.Parse(dateModified);
 _changes = changes;
 }

 public DateTime DateModified => _dateModified;

 public string Changes => _changes;

 public string Issues { get; set; }
 }

 [AttributeUsage(AttributeTargets.Assembly)]
 public class SupportsWhatsNewAttribute: Attribute
 {
 }
}

Based on what has been discussed, this code should be fairly clear. Notice, however, that the properties DateModified and Changes are read-only. Using the expression syntax, the compiler creates get accessors. There is no need for set accessors because you are requiring these parameters to be set in the constructor as mandatory parameters. You need the get accessors so that you can read the values of these attributes.

The VectorClass Assembly

To use these attributes, you use a modified version of the earlier VectorAsCollection example. Note that you need to reference the WhatsNewAttributes library that you just created. You also need to indicate the corresponding namespace with a using statement so the compiler can recognize the attributes (code file VectorClass/Vector.cs):

using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
using WhatsNewAttributes;

[assembly: SupportsWhatsNew]

This code also adds the line that marks the assembly itself with the SupportsWhatsNew attribute.

The sample code for VectorClass makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	WhatsNewAttributes

Namespaces

	System

	System.Collections

	System.Collections.Generic

	System.Text

	WhatsNewAttributes

Now for the code for the Vector class. You are not making any major changes to this class; you only add a couple of LastModified attributes to mark the work that you have done on this class in this chapter:

namespace VectorClass
{
 [LastModified("6 Jun 2015","updated for C# 6 and .NET Core")]
 [LastModified("14 Deb 2010","IEnumerable interface implemented:" +
 "Vector can be treated as a collection")]
 [LastModified("10 Feb 2010","IFormattable interface implemented" +
 "Vector accepts N and VE format specifiers")]
 public class Vector : IFormattable, IEnumerable<double>
 {
 public Vector(double x, double y, double z)
 {
 X = x;
 Y = y;
 Z = z;
 }

 public Vector(Vector vector)
 : this (vector.X, vector.Y, vector.Z)
 {
 }

 public double X { get; }
 public double Y { get; }
 public double Z { get; }

 public string ToString(string format, IFormatProvider formatProvider)
 {
 //...

You also mark the contained VectorEnumerator class as new:

[LastModified("6 Jun 2015",
 "Changed to implement the generic interface IEnumerator<T>")]
[LastModified("14 Feb 2010",
 "Class created as part of collection support for Vector")]
private class VectorEnumerator : IEnumerator<double>
{

That’s as far as you can get with this example for now. You are unable to run anything yet because all you have are two libraries. After taking a look at reflection in the next section, you will develop the final part of the example, in which you look up and display these attributes.

Using Reflection

In this section, you take a closer look at the System.Type class, which enables you to access information concerning the definition of any data type. You also look at the System.Reflection.Assembly class, which you can use to access information about an assembly or to load that assembly into your program. Finally, you combine the code in this section with the code in the previous section to complete the WhatsNewAttributes example.

The System.Type Class

So far you have used the Type class only to hold the reference to a type as follows:

Type t = typeof(double);

Although previously referred to as a class, Type is an abstract base class. Whenever you instantiate a Type object, you are actually instantiating a class derived from Type. Type has one derived class corresponding to each actual data type, though in general the derived classes simply provide different overloads of the various Type methods and properties that return the correct data for the corresponding data type. They do not typically add new methods or properties. In general, there are three common ways to obtain a Type reference that refers to any given type.

	You can use the C# typeof operator as shown in the preceding code. This operator takes the name of the type (not in quotation marks, however) as a parameter.

	

You can use the GetType method, which all classes inherit from System.Object:

double d = 10;
Type t = d.GetType();

GetType is called against a variable, rather than taking the name of a type. Note, however, that the Type object returned is still associated with only that data type. It does not contain any information that relates to that instance of the type. The GetType method can be useful if you have a reference to an object but you are not sure what class that object is actually an instance of.

	You can call the static method of the Type class, GetType:

Type t = Type.GetType("System.Double");

Type is really the gateway to much of the reflection functionality. It implements a huge number of methods and properties—far too many to provide a comprehensive list here. However, the following subsections should give you a good idea of the kinds of things you can do with the Type class. Note that the available properties are all read-only; you use Type to find out about the data type—you cannot use it to make any modifications to the type!

Type Properties

You can divide the properties implemented by Type into three categories. First, a number of properties retrieve the strings containing various names associated with the class, as shown in the following table:

	Property
	Returns

	Name
	The name of the data type

	FullName
	The fully qualified name of the data type (including the namespace name)

	Namespace
	The name of the namespace in which the data type is defined

Second, it is possible to retrieve references to further type objects that represent related classes, as shown in the following table.

	Property
	Returns Type Reference Corresponding To

	BaseType
	The immediate base type of this type

	UnderlyingSystemType
	The type to which this type maps in the .NET runtime (recall that certain .NET base types actually map to specific predefined types recognized by IL). This member is only available in the full Framework.

A number of Boolean properties indicate whether this type is, for example, a class, an enum, and so on. These properties include IsAbstract, IsArray, IsClass, IsEnum, IsInterface, IsPointer, IsPrimitive (one of the predefined primitive data types), IsPublic, IsSealed, and IsValueType. The following example uses a primitive data type:

Type intType = typeof(int);
WriteLine(intType.IsAbstract); // writes false
WriteLine(intType.IsClass); // writes false
WriteLine(intType.IsEnum); // writes false
WriteLine(intType.IsPrimitive); // writes true
WriteLine(intType.IsValueType); // writes true

This example uses the Vector class:

Type vecType = typeof(Vector);
WriteLine(vecType.IsAbstract); // writes false
WriteLine(vecType.IsClass); // writes true
WriteLine(vecType.IsEnum); // writes false
WriteLine(vecType.IsPrimitive); // writes false
WriteLine(vecType.IsValueType); // writes false

Finally, you can also retrieve a reference to the assembly in which the type is defined. This is returned as a reference to an instance of the System.Reflection.Assembly class, which is examined shortly:

Type t = typeof (Vector);
Assembly containingAssembly = new Assembly(t);

Methods

Most of the methods of System.Type are used to obtain details about the members of the corresponding data type—the constructors, properties, methods, events, and so on. Quite a large number of methods exist, but they all follow the same pattern. For example, two methods retrieve details about the methods of the data type: GetMethod and GetMethods. GetMethod returns a reference to a System.Reflection.MethodInfo object, which contains details about a method. GetMethods returns an array of such references. As the names suggest, the difference is that GetMethods returns details about all the methods, whereas GetMethod returns details about just one method with a specified parameter list. Both methods have overloads that take an extra parameter, a BindingFlags enumerated value that indicates which members should be returned—for example, whether to return public members, instance members, static members, and so on.

For example, the simplest overload of GetMethods takes no parameters and returns details about all the public methods of the data type:

Type t = typeof(double);
foreach (MethodInfo nextMethod in t.GetMethods())
{
 // etc.
}

The member methods of Type that follow the same pattern are shown in the following table. Note that plural names return an array.

	type of object returned
	method(s)

	ConstructorInfo
	GetConstructor, GetConstructors

	EventInfo
	GetEvent, GetEvents

	FieldInfo
	GetField, GetFields

	MemberInfo
	GetMember, GetMembers, GetDefaultMembers

	MethodInfo
	GetMethod, GetMethods

	PropertyInfo
	GetProperty, GetProperties

The GetMember and GetMembers methods return details about any or all members of the data type, regardless of whether these members are constructors, properties, methods, and so on.

The TypeView Example

This section demonstrates some of the features of the Type class with a short example, TypeView, which you can use to list the members of a data type. The example demonstrates how to use TypeView for a double; however, you can swap this type with any other data type just by changing one line of the code in the example.

The result of running the application is this output to the console:

Analysis of type Double

 Type Name: Double
 Full Name: System.Double
 Namespace: System
 Base Type: ValueType

public members:
 System.Double Method IsInfinity
 System.Double Method IsPositiveInfinity
 System.Double Method IsNegativeInfinity
 System.Double Method IsNaN
 System.Double Method CompareTo
 System.Double Method CompareTo
 System.Double Method Equals
 System.Double Method op_Equality
 System.Double Method op_Inequality
 System.Double Method op_LessThan
 System.Double Method op_GreaterThan
 System.Double Method op_LessThanOrEqual
 System.Double Method op_GreaterThanOrEqual
 System.Double Method Equals
 System.Double Method GetHashCode
 System.Double Method ToString
 System.Double Method ToString
 System.Double Method ToString
 System.Double Method ToString
 System.Double Method Parse
 System.Double Method Parse
 System.Double Method Parse
 System.Double Method Parse
 System.Double Method TryParse
 System.Double Method TryParse
 System.Double Method GetTypeCode
 System.Object Method GetType
 System.Double Field MinValue
 System.Double Field MaxValue
 System.Double Field Epsilon
 System.Double Field NegativeInfinity
 System.Double Field PositiveInfinity
 System.Double Field NaN

The console displays the name, full name, and namespace of the data type as well as the name of the base type. Next, it simply iterates through all the public instance members of the data type, displaying for each member the declaring type, the type of member (method, field, and so on), and the name of the member. The declaring type is the name of the class that actually declares the type member (for example, System.Double if it is defined or overridden in System.Double, or the name of the relevant base type if the member is simply inherited from a base class).

TypeView does not display signatures of methods because you are retrieving details about all public instance members through MemberInfo objects, and information about parameters is not available through a MemberInfo object. To retrieve that information, you would need references to MethodInfo and other more specific objects, which means that you would need to obtain details about each type of member separately.

The sample code for TypeView makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

Namespaces

	System

	System.Reflection

	System.Text

	static System.Console

TypeView does display details about all public instance members; but for doubles, the only details defined are fields and methods. The code for TypeView is as follows. To begin, you need to add a few using statements:

using System;
using System.Reflection;
using System.Text;
using static System.Console;

You need System.Text because you use a StringBuilder object to build up the text. The entire code is in one class, Program, which has a couple of static methods and one static field, a StringBuilder instance called OutputText, which is used to build the text to be displayed in the message box. The main method and class declaration look like this:

class Program
{
 private static StringBuilder OutputText = new StringBuilder();

 static void Main()
 {
 // modify this line to retrieve details of any other data type
 Type t = typeof(double);

 AnalyzeType(t);
 WriteLine($"Analysis of type {t.Name}");
 WriteLine(OutputText.ToString());

 ReadLine();
 }

The Main method implementation starts by declaring a Type object to represent your chosen data type. You then call a method, AnalyzeType, which extracts the information from the Type object and uses it to build the output text. Finally, you write the output to the console. AnalyzeType is where the bulk of the work is done:

static void AnalyzeType(Type t)
{
 TypeInfo typeInfo = t.GetTypeInfo();
 AddToOutput($"Type Name: {t.Name}");
 AddToOutput($"Full Name: {t.FullName}");
 AddToOutput($"Namespace: {t.Namespace}");

 Type tBase = t.BaseType;

 if (tBase != null)
 {
 AddToOutput($"Base Type: {tBase.Name}");
 }

 AddToOutput("\npublic members:");

 foreach (MemberInfo NextMember in t.GetMembers())
 {
#if DNXCORE
 AddToOutput($"{member.DeclaringType} {member.Name}");
#else
 AddToOutput($"{member.DeclaringType} {member.MemberType} {member.Name}");
#endif
 }
}

You implement the AnalyzeType method by calling various properties of the Type object to get the information you need concerning the type names and then calling the GetMembers method to get an array of MemberInfo objects that you can use to display the details for each member. Note that you use a helper method, AddToOutput, to build the text to be displayed:

static void AddToOutput(string Text)
{
 OutputText.Append("\n" + Text);
}

The Assembly Class

The Assembly class is defined in the System.Reflection namespace and provides access to the metadata for a given assembly. It also contains methods that enable you to load and even execute an assembly—assuming that the assembly is an executable. As with the Type class, Assembly contains too many methods and properties to cover here, so this section is confined to covering those methods and properties that you need to get started and that you use to complete the WhatsNewAttributes example.

Before you can do anything with an Assembly instance, you need to load the corresponding assembly into the running process. You can do this with either the static members Assembly.Load or Assembly.LoadFrom. The difference between these methods is that Load takes the name of the assembly, and the runtime searches in a variety of locations in an attempt to locate the assembly. These locations include the local directory and the global assembly cache. LoadFrom takes the full path name of an assembly and does not attempt to find the assembly in any other location:

Assembly assembly1 = Assembly.Load("SomeAssembly");
Assembly assembly2 = Assembly.LoadFrom
 (@"C:\My Projects\Software\SomeOtherAssembly");

A number of other overloads of both methods exist, which supply additional security information. After you have loaded an assembly, you can use various properties on it to find out, for example, its full name:

string name = assembly1.FullName;

Getting Details About Types Defined in an Assembly

One nice feature of the Assembly class is that it enables you to obtain details about all the types that are defined in the corresponding assembly. You simply call the Assembly.GetTypes method, which returns an array of System.Type references containing details about all the types. You can then manipulate these Type references as explained in the previous section:

Type[] types = theAssembly.GetTypes();

foreach(Type definedType in types)
{
 DoSomethingWith(definedType);
}

Getting Details About Custom Attributes

The methods you use to find out which custom attributes are defined on an assembly or type depend on the type of object to which the attribute is attached. If you want to find out what custom attributes are attached to an assembly as a whole, you need to call a static method of the Attribute class, GetCustomAttributes, passing in a reference to the assembly:

NOTE This is actually quite significant. You might have wondered why, when you defined custom attributes, you had to go to all the trouble of actually writing classes for them, and why Microsoft didn’t come up with some simpler syntax. Well, the answer is here. The custom attributes genuinely exist as objects, and when an assembly is loaded you can read in these attribute objects, examine their properties, and call their methods.

Attribute[] definedAttributes =
 Attribute.GetCustomAttributes(assembly1);
 // assembly1 is an Assembly object

GetCustomAttributes, which is used to get assembly attributes, has a few overloads. If you call it without specifying any parameters other than an assembly reference, it simply returns all the custom attributes defined for that assembly. You can also call GetCustomAttributes by specifying a second parameter, which is a Type object that indicates the attribute class in which you are interested. In this case, GetCustomAttributes returns an array consisting of all the attributes present that are of the specified type.

Note that all attributes are retrieved as plain Attribute references. If you want to call any of the methods or properties you defined for your custom attributes, you need to cast these references explicitly to the relevant custom attribute classes. You can obtain details about custom attributes that are attached to a given data type by calling another overload of Assembly.GetCustomAttributes, this time passing a Type reference that describes the type for which you want to retrieve any attached attributes. To obtain attributes that are attached to methods, constructors, fields, and so on, however, you need to call a GetCustomAttributes method that is a member of one of the classes MethodInfo, ConstructorInfo, FieldInfo, and so on.

If you expect only a single attribute of a given type, you can call the GetCustomAttribute method instead, which returns a single Attribute object. You will use GetCustomAttribute in the WhatsNewAttributes example to find out whether the SupportsWhatsNew attribute is present in the assembly. To do this, you call GetCustomAttribute, passing in a reference to the WhatsNewAttributes assembly, and the type of the SupportsWhatsNewAttribute attribute. If this attribute is present, you get an Attribute instance. If no instances of it are defined in the assembly, you get null. If two or more instances are found, GetCustomAttribute throws a System.Reflection.AmbiguousMatchException. This is what that call would look like:

Attribute supportsAttribute =
 Attribute.GetCustomAttributes(assembly1, typeof(SupportsWhatsNewAttribute));

Completing the WhatsNewAttributes Example

You now have enough information to complete the WhatsNewAttributes example by writing the source code for the final assembly in the sample, the LookUpWhatsNew assembly. This part of the application is a console application. However, it needs to reference the other assemblies of WhatsNewAttributes and VectorClass.

The sample code for the LookupWhatsNew project makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	VectorClass

	WhatsNewAttributes

Namespaces

	System

	System.Collections.Generic

	System.Linq

	System.Reflection

	System.Text

	WhatsNewAttributes

	static System.Console

In the source code of this file, you first indicate the namespaces you want to infer. System.Text is there because you need to use a StringBuilder object again. System.Linq is used to filter some attributes (code file LookupWhatsNew/Program.cs):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
using System.Text;
using WhatsNewAttributes;
using static System.Console;

namespace LookUpWhatsNew
{

The class that contains the main program entry point as well as the other methods is Program. All the methods you define are in this class, which also has two static fields—outputText, which contains the text as you build it in preparation for writing it to the message box, and backDateTo, which stores the date you have selected. All modifications made since this date will be displayed. Normally, you would display a dialog inviting the user to pick this date, but we don’t want to get sidetracked into that kind of code. For this reason, backDateTo is hard-coded to a value of 1 Feb 2015. You can easily change this date when you download the code:

class Program
{
 private static readonly StringBuilder outputText = new StringBuilder(1000);
 private static DateTime backDateTo = new DateTime(2015, 2, 1);

 static void Main()
 {
 Assembly theAssembly = Assembly.Load(new AssemblyName("VectorClass"));
 Attribute supportsAttribute = theAssembly.GetCustomAttribute(
 typeof(SupportsWhatsNewAttribute));
 string name = theAssembly.FullName;

 AddToMessage($"Assembly: {name}");

 if (supportsAttribute == null)
 {
 AddToMessage("This assembly does not support WhatsNew attributes");
 return;
 }
 else
 {
 AddToMessage("Defined Types:");
 }

 IEnumerable<Type> types = theAssembly.ExportedTypes;

 foreach(Type definedType in types)
 {
 DisplayTypeInfo(definedType);
 }

 WriteLine($"What\`s New since {backDateTo:D}");
 WriteLine(outputText.ToString());

 ReadLine();
 }

 //...
}

The Main method first loads the VectorClass assembly, and then verifies that it is marked with the SupportsWhatsNew attribute. You know VectorClass has the SupportsWhatsNew attribute applied to it because you have only recently compiled it, but this is a check that would be worth making if users were given a choice of which assembly they want to check.

Assuming that all is well, you use the Assembly.ExportedTypes property to get a collection of all the types defined in this assembly, and then loop through them. For each one, you call a method, DisplayTypeInfo, which adds the relevant text, including details regarding any instances of LastModifiedAttribute, to the outputText field. Finally, you show the complete text to the console. The DisplayTypeInfo method looks like this:

private static void DisplayTypeInfo(Type type)
{
 // make sure we only pick out classes
 if (!type.GetTypeInfo().IsClass))
 {
 return;
 }

 AddToMessage($"\nclass {type.Name}");

 IEnumerable<LastModifiedAttribute> attributes = type.GetTypeInfo()
 .GetCustomAttributes().OfType<LastModifiedAttribute>();

 if (attributes.Count() == 0)
 {
 AddToMessage("No changes to this class\n");
 }
 else
 {
 foreach (LastFieldModifiedAttribute attribute in attributes)
 {
 WriteAttributeInfo(attribute);
 }
 }

 AddToMessage("changes to methods of this class:");

 foreach (MethodInfo method in
 type.GetTypeInfo().DeclaredMembers.OfType<MethodInfo>())
 {
 IEnumerable<LastModifiedAttribute> attributesToMethods =
 method.GetCustomAttributes().OfType<LastModifiedAttribute>();

 if (attributesToMethods.Count() > 0)
 {
 AddToOutput($"{method.ReturnType} {method.Name}()");
 foreach (Attribute attribute in attributesToMethods)
 {
 WriteAttributeInfo(attribute);
 }
 }
 }
}

Notice that the first thing you do in this method is check whether the Type reference you have been passed actually represents a class. Because, to keep things simple, you have specified that the LastModified attribute can be applied only to classes or member methods, you would be wasting time by doing any processing if the item is not a class (it could be a class, delegate, or enum).

Next, you use the type.GetTypeInfo().GetCustomAttributes() method to determine whether this class has any LastModifiedAttribute instances attached to it. If so, you add their details to the output text, using a helper method, WriteAttributeInfo.

Finally, you use the DeclaredMembers property of the TypeInfo type to iterate through all the member methods of this data type, and then do the same with each method as you did for the class—check whether it has any LastModifiedAttribute instances attached to it; if so, you display them using WriteAttributeInfo.

The next bit of code shows the WriteAttributeInfo method, which is responsible for determining what text to display for a given LastModifiedAttribute instance. Note that this method is passed an Attribute reference, so it needs to cast this to a LastModifiedAttribute reference first. After it has done that, it uses the properties that you originally defined for this attribute to retrieve its parameters. It confirms that the date of the attribute is sufficiently recent before actually adding it to the text for display:

private static void WriteAttributeInfo(Attribute attribute)
{
 LastModifiedAttribute lastModifiedAttrib =
 attribute as LastModifiedAttribute;

 if (lastModifiedAttrib == null)
 {
 return;
 }

 // check that date is in range
 DateTime modifiedDate = lastModifiedAttrib.DateModified;

 if (modifiedDate < backDateTo)
 {
 return;
 }

 AddToOutput($" modified: {modifiedDate:D}: {lastModifiedAttribute.Changes}");

 if (lastModifiedAttribute.Issues != null)
 {
 AddToOutput($" Outstanding issues: {lastModifiedAttribute.Issues}");
 }
}

Finally, here is the helper AddToOutput method:

static void AddToOutput(string message)
{
 outputText.Append("\n" + message);
}

Running this code produces the results shown here:

What`s New since Sunday, February 1, 2015

Assembly: VectorClass, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
Defined Types:

class Vector
 modified: Saturday, June 6, 2015: updated for C# 6 and .NET Core
changes to methods of this class:
System.String ToString()
System.Collections.Generic.IEnumerator`1[System.Double] GetEnumerator()
 modified: Saturday, June 6, 2015: added to implement IEnumerable<T>

Note that when you list the types defined in the VectorClass assembly, you actually pick up two classes: Vector and the embedded VectorEnumerator class. In addition, note that because the backDateTo date of 1 Feb is hard-coded in this example, you actually pick up the attributes that are dated June 6 (when the code was changed to support the Core CLR) but not those dated earlier.

Using Dynamic Language Extensions for Reflection

Until now you’ve used reflection for reading metadata. You can also use reflection to create instances dynamically from types that aren’t known at compile time. The next sample shows creating an instance of the Calculator class without the compiler knowing of this type at compile time. The assembly CalculatorLib is loaded dynamically without adding a reference. During runtime, the Calculator object is instantiated, and a method is called. After you know how to use the Reflection API, you’ll do the same using the C# dynamic keyword. This keyword has been part of the C# language since version 4.

Creating the Calculator Library

The library that is loaded is a simple Class Library (Package) containing the type Calculator with implementations of the Add and Subtract methods. As the methods are really simple, they are implemented using the expression syntax (code file CalculatorLib/Calculator.cs):

namespace CalculatorLib
{
 public class Calculator
 {
 public double Add(double x, double y) => x + y;
 public double Subtract(double x, double y) => x - y;
 }
}

After you compile the library, copy the DLL to the folder c:/addins. To create an output from the Class Library (Package) project, on the Build tab of Project Properties, select the Produce Outputs on Build option (see Figure 16.1).

[image: Image described by surrounding text.]

Figure 16.1

Depending on whether you use the .NET Core or the .NET Framework version of the client application, you need to copy the corresponding library to the c:/addins folder. To select the platform to run the application from within Visual Studio, select the Debug settings with the Project Properties and choose the Platform setting as shown in Figure 16.2.

[image: Screenshot shows a project configuration window for ClientApp with highlighted Debug tab on left, fields for profile, launch, command et cetera along with Add, Browse, New, Remove buttons.]

Figure 16.2

Instantiating a Type Dynamically

For using reflection to create the Calculator instance dynamically, you create a Console Application (Package) with the name ClientApp.

The constants CalculatorLibPath, CalculatorLibName, and CalculatorTypeName define the path to the library, the name of the assembly, and the name of the Calculator type, including the namespace. The Main method invokes the methods ReflectionOld and ReflectionNew, two variants doing reflection (code file DynamicSamples/ClientApp/Program.cs):

class Program
{
 private const string CalculatorLibPath = @"c:/addins/CalculatorLib.dll";
 private const string CalculatorLibName ="CalculatorLib";
 private const string CalculatorTypeName ="CalculatorLib.Calculator";

 static void Main()
 {
 ReflectionOld();
 ReflectionNew();
 }
 //etc.
}

Before using reflection to invoke a method, you need to instantiate the Calculator type. There are different ways to do this. Using the .NET Framework, the method GetCalculator loads the assembly dynamically using the method AssemblyLoadFile and creates an instance of the Calculator type with the CreateInstance method. Using the preprocessor directive #if NET46, this part of the code compiles only for .NET 4.6 (code file DynamicSamples/ClientApp/Program.cs):

#if NET46
 private static object GetCalculator()
 {
 Assembly assembly = Assembly.LoadFile(CalculatorLibPath);
 return assembly.CreateInstance(CalculatorTypeName);
 }
#endif

The code snippet makes use of the NET46 symbol when compiling .NET 4.6 code. This is possible because for the frameworks that are listed in the project.json file, symbols are created automatically with the same name; the framework name is just converted to uppercase. You can also define your own symbols within in the compilationOptions declaration. Specifying a define section within the compilationOptions of a framework declaration, the symbol is only defined for the specific framework. The following code snippet specifies the symbol DOTNETCORE just when the application is compiled for .NET Core (code file DynamicSamples/ClientApp/project.json):

 "frameworks": {
 "net46": {},
 "netstandard1.0": {
 "dependencies": {},
 "compilationOptions": {
 "define": ["DOTNETCORE"]
 }
 }
 }

The implementation of .NET Core needs to be platform independent; that’s why it’s not possible to compile the previous code for .NET Core. Here, some more code is needed to load the assembly. First, the IAssemblyLoadContext is retrieved to load the assembly from the file system. After the load context is retrieved, the DirectoryLoader is added (which will be implemented in the next step) to load the assembly from the file system. After setting up the context it’s possible to load the Assembly using the Load method and dynamically instantiate the type with the CreateInstance method of the Activator class (code file DynamicSamples/ClientApp/Program.cs):

#if DOTNETCORE
 private static object GetCalculator()
 {
 IAssemblyLoadContext loadContext = PlatformServices.Default.
 AssemblyLoadContextAccessor.Default;
 using (PlatformServices.Default.AssemblyLoaderContainer.AddLoader(
 new DirectoryLoader(CalculatorLibPath, loadContext)))
 {
 Assembly assembly = Assembly.Load(new AssemblyName(CalculatorLibName));
 Type type = assembly.GetType(CalculatorTypeName);
 return Activator.CreateInstance(type);
 }
 }
#endif

The class DirectoryLoader that’s used with the loading context implements the interface IAssemblyLoader. This interface defines the methods Load and LoadUnmanagedLibrary. Because only managed assemblies are loaded with the sample app, only the Load method needs an implementation. This implementation makes use of the context to load the assembly file (code file DynamicSamples/ClientApp/Program.cs):

public class DirectoryLoader : IAssemblyLoader
{
 private readonly IAssemblyLoadContext _context;
 private readonly string _path;

 public DirectoryLoader(string path, IAssemblyLoadContext context)
 {
 _path = path;
 _context = context;
 }

 public Assembly Load(AssemblyName assemblyName) =>
 _context.LoadFile(_path);
 public IntPtr LoadUnmanagedLibrary(string name)
 {
 throw new NotImplementedException();
 }
}

The sample code for the ClientApp makes use of the following dependencies and .NET namespaces:

Dependencies

	NETStandard.Library

	Microsoft.CSharp

	Microsoft.Extensions.PlatformAbstractions

.NET Namespaces

	Microsoft.CSharp.RuntimeBinder

	Microsoft.Extensions.PlatformExtensions

	System

	System.Reflection

	static System.Console

Invoking a Member with the Reflection API

Next, the Reflection API is used to invoke the method Add of the Calculator instance. First, the calculator instance is retrieved with the helper method GetCalculator. If you would like to add a reference to the CalculatorLib, you could use new Calculator to create an instance. But here it’s not that easy.

Invoking the method using reflection has the advantage that the type does not need to be available at compile time. You could add it at a later time just by copying the library in the specified directory. To invoke the member using reflection, the Type object of the instance is retrieved using GetType—a method of the base class Object. With the help of the extension method GetMethod (this method is defined in the NuGet package System.Reflection.TypeExtensions), a MethodInfo object for the method Add is accessed. The MethodInfo defines the Invoke method to call the method using any number of parameters. The first parameter of the Invoke method needs the instance of the type where the member is invoked. The second parameter is of type object[] to pass all the parameters needed by the invocation. You’re passing the values of the x and y variables here. In case you’re using older versions of the .NET Framework without the type extensions, the code to invoke the method is shown within comments. You cannot use this code with .NET Core (code file DynamicSamples/ClientApp/Program.cs):

private static void ReflectionOld()
{
 double x = 3;
 double y = 4;
 object calc = GetCalculator();
 // object result = calc.GetType().InvokeMember("Add",
 // BindingFlags.InvokeMethod, null, calc, new object[] { x, y });
 object result = calc.GetType().GetMethod("Add")
 .Invoke(calc, new object[] { x, y });
 WriteLine($"the result of {x} and {y} is {result}");
}

When you run the program, the calculator is invoked, and this result is written to the console:

The result of 3 and 4 is 7

This is quite some work to do for calling a member dynamically. The next section looks at how easy it is to use the dynamic keyword.

Invoking a Member with the Dynamic Type

Using reflection with the dynamic keyword, the object that is returned from the GetCalculator method is assigned to a variable of a dynamic type. The method itself is not changed; it still returns an object. The result is returned to a variable that is of type dynamic. With this, the Add method is invoked, and two double values are passed to it (code file DynamicSamples/ClientApp/Program.cs):

private static void ReflectionNew()
{
 double x = 3;
 double y = 4;
 dynamic calc = GetCalculator();
 double result = calc.Add(x, y);
 WriteLine($"the result of {x} and {y} is {result}");
}

The syntax is really simple; it looks like calling a method with strongly typed access. However, there’s no IntelliSense within Visual Studio because you can immediately see coding this from the Visual Studio editor, so it’s easy to make typos.

There’s also no compile-time check. The compiler runs fine when you invoke the Multiply method. Just remember you only defined Add and Subtract methods with the calculator.

try
{
 result = calc.Multiply(x, y);
}
catch (RuntimeBinderException ex)
{
 WriteLine(ex);
}

When you run the application and invoke the Multiply method, you get a RuntimeBinderException:

Microsoft.CSharp.RuntimeBinder.RuntimeBinderException:
 'CalculatorLib.Calculator' does not contain a definition for 'Multiply'
 at CallSite.Target(Closure , CallSite , Object , Double , Double)
 at CallSite.Target(Closure , CallSite , Object , Double , Double)
 at ClientApp.Program.ReflectionNew() in...

Using the dynamic type also has more overhead compared to accessing objects in a strongly typed manner. Therefore, the keyword is useful only in some specific scenarios such as reflection. You don’t have a compiler check invoking the InvokeMember method of the Type; instead, a string is passed for the name of the member. Using the dynamic type, which has a simpler syntax, has a big advantage compared to using the Reflection API in such scenarios.

The dynamic type can also be used with COM integration and scripting environments as shown after discussing the dynamic keyword more in detail.

The Dynamic Type

The dynamic type enables you to write code that bypasses compile-time type checking. The compiler assumes that the operation defined for an object of type dynamic is valid. If that operation isn’t valid, the error isn’t detected until runtime. This is shown in the following example:

class Program
{
 static void Main()
 {
 var staticPerson = new Person();
 dynamic dynamicPerson = new Person();
 staticPerson.GetFullName("John","Smith");
 dynamicPerson.GetFullName("John","Smith");
 }
}

class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public string GetFullName() => $"{FirstName} {LastName}";
}

This example does not compile because of the call to staticPerson.GetFullName(). There isn’t a method on the Person object that takes two parameters, so the compiler raises the error. If that line of code were commented out, the example would compile. If executed, a runtime error would occur. The exception that is raised is RuntimeBinderException. The RuntimeBinder is the object in the runtime that evaluates the call to determine whether Person really does support the method that was called. Binding is discussed later in the chapter.

Unlike the var keyword, an object that is defined as dynamic can change type during runtime. Remember that when the var keyword is used, the determination of the object’s type is delayed. After the type is defined, it can’t be changed. Not only can you change the type of a dynamic object, you can change it many times. This differs from casting an object from one type to another. When you cast an object, you are creating a new object with a different but compatible type. For example, you cannot cast an int to a Person object. In the following example, you can see that if the object is a dynamic object, you can change it from int to Person:

dynamic dyn;

dyn = 100;
WriteLine(dyn.GetType());
WriteLine(dyn);

dyn ="This is a string";
WriteLine(dyn.GetType());
WriteLine(dyn);

dyn = new Person() { FirstName ="Bugs", LastName ="Bunny" };
WriteLine(dyn.GetType());
WriteLine($"{dyn.FirstName} {dyn.LastName}");

The result of executing this code would be that the dyn object actually changes type from System.Int32 to System.String to Person. If dyn had been declared as an int or string, the code would not have compiled.

NOTE There are a couple of limitations to the dynamic type. A dynamic object does not support extension methods. Nor can anonymous functions (lambda expressions) be used as parameters to a dynamic method call, so LINQ does not work well with dynamic objects. Most LINQ calls are extension methods, and lambda expressions are used as arguments to those extension methods.

Dynamic Behind the Scenes

So what’s going on behind the scenes to make the dynamic functionality available with C#? C# is a statically typed language. That hasn’t changed. Take a look at the IL (Intermediate Language) that’s generated when the dynamic type is used.

First, this is the example C# code that you’re looking at:

using static System.Console;

namespace DeCompileSample
{
 class Program
 {
 static void Main()
 {
 StaticClass staticObject = new StaticClass();
 DynamicClass dynamicObject = new DynamicClass();
 WriteLine(staticObject.IntValue);
 WriteLine(dynamicObject.DynValue);
 ReadLine();
 }
 }

 class StaticClass
 {
 public int IntValue = 100;
 }

 class DynamicClass
 {
 public dynamic DynValue = 100;
 }
}

You have two classes: StaticClass and DynamicClass. StaticClass has a single field that returns an int. DynamicClass has a single field that returns a dynamic object. The Main method creates these objects and prints out the value that the methods return. Simple enough.

Now comment out the references to the DynamicClass in Main like this:

static void Main()
{
 StaticClass staticObject = new StaticClass();
 //DynamicClass dynamicObject = new DynamicClass();
 WriteLine(staticObject.IntValue);
 //WriteLine(dynamicObject.DynValue);
 ReadLine();
}

Using the ildasm tool, you can look at the IL that is generated for the Main method:

.method private hidebysig static void Main() cil managed
{
 .entrypoint
 // Code size 26 (0x1a)
 .maxstack 1
 .locals init ([0] class DecompileSample.StaticClass staticObject)
 IL_0000: nop
 IL_0001: newobj instance void DecompileSample.StaticClass::.ctor()
 IL_0006: stloc.0
 IL_0007: ldloc.0
 IL_0008: ldfld int32 DecompileSample.StaticClass::IntValue
 IL_000d: call void [mscorlib]System.Console::WriteLine(int32)
 IL_0012: nop
 IL_0013: call string [mscorlib]System.Console::ReadLine()
 IL_0018: pop
 IL_0019: ret
} // end of method Program::Main

Without getting into the details of IL, you can still pretty much tell what’s going on just by looking at this section of code. Line 0001, the StaticClass constructor, is called. Line 0008 calls the IntValue field of StaticClass. The next line writes out the value.

Now comment out the StaticClass references and uncomment the DynamicClass references:

public static void Main()
{
 //StaticClass staticObject = new StaticClass();
 DynamicClass dynamicObject = new DynamicClass();
 WriteLine(staticObject.IntValue);
 //WriteLine(dynamicObject.DynValue);
 ReadLine();
}

Compile the application again, and the following is generated:

.method private hidebysig static void Main() cil managed
{
 .entrypoint
 // Code size 123 (0x7b)
 .maxstack 9
 .locals init ([0] class DecompileSample.DynamicClass dynamicObject)
 IL_0000: nop
 IL_0001: newobj instance void DecompileSample.DynamicClass::.ctor()
 IL_0006: stloc.0
 IL_0007: ldsfld class
 [System.Core]System.Runtime.CompilerServices.CallSite`1
 <class[mscorlib]System.Action`3
 <class[System.Core] System.Runtime.CompilerServices.CallSite,
 class [mscorlib]System.Type,object>>
 DecompileSample.Program/'<>o__0'::'<>p__0'
 IL_000c: brfalse.s IL_0010
 IL_000e: br.s IL_004f
 IL_0010: ldc.i4 0x100
 IL_0015: ldstr "WriteLine"
 IL_001a: ldnull
 IL_001b: ldtoken DecompileSample.Program
 IL_0020: call class [mscorlib]System.Type
 [mscorlib]System.Type::GetTypeFromHandle(valuetype
 [mscorlib]System.RuntimeTypeHandle)
 IL_0025: ldc.i4.2
 IL_0026: newarr [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder
 .CSharpArgumentInfo
 IL_002b: dup
 IL_002c: ldc.i4.0
 IL_002d: ldc.i4.s 33
 IL_002f: ldnull
 IL_0030: call class [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder
 .CSharpArgumentInfo[Microsoft.CSharp]
 Microsoft.CSharp.RuntimeBinder.CSharpArgumentInfo::Create(
 valuetype Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder
 .CSharpArgumentInfoFlags, string)
 IL_0035: stelem.ref
 IL_0036: dup
 IL_0037: ldc.i4.1
 IL_0038: ldc.i4.0
 IL_0039: ldnull
 IL_003a: call class [Microsoft.CSharp]
 Microsoft.CSharp.RuntimeBinder.CSharpArgumentInfo
 [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder.CSharpArgumentInfo
 ::Create(valuetype [Microsoft.CSharp]
 Microsoft.CSharp.RuntimeBinder.CSharpArgumentInfoFlags, string)
 IL_003f: stelem.ref
 IL_0040: call class [System.Core]
 System.Runtime.CompilerServices.CallSiteBinder
 [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder.Binder::
 InvokeMember(valuetype[Microsoft.CSharp]
 Microsoft.CSharp.RuntimeBinder.CSharpBinderFlags, string,
 class [mscorlib]System.Collections.Generic.IEnumerable`1
 <class [mscorlib]System.Type>, class [mscorlib]System.Type,
 class [mscorlib]System.Collections.Generic.IEnumerable`1
 <class [Microsoft.CSharp]
 Microsoft.CSharp.RuntimeBinder.CSharpArgumentInfo>)
 IL_0045: call class [System.Core]
 System.Runtime.CompilerServices.CallSite`1<!0>
 class [System.Core]System.Runtime.CompilerServices.CallSite`1
 <class [mscorlib]System.Action`3
 <class [System.Core]System.Runtime.CompilerServices.CallSite,
 class [mscorlib]System.Type,object>>::
 Create(class [System.Core]
 System.Runtime.CompilerServices.CallSiteBinder)
 IL_004a: stsfld class [System.Core]
 System.Runtime.CompilerServices.CallSite`1
 <class [mscorlib]System.Action`3
 <class [System.Core]System.Runtime.CompilerServices.CallSite,
 class [mscorlib]System.Type,object>>
 DecompileSample.Program/`<>o__0`::`<>p__0`
 IL_004f: ldsfld class
 [System.Core]System.Runtime.CompilerServices.CallSite`1<class [mscorlib]
 System.Action`3<class [System.Core]
 System.Runtime.CompilerServices.CallSite,
 class [mscorlib]System.Type,object>>
 DecompileSample.Program/'<>o__0'::'<>p__0'
 IL_0054: ldfld !0 class [System.Core]
 System.Runtime.CompilerServices.CallSite`1<class [mscorlib]
 System.Action`3<class [System.Core]
 System.Runtime.CompilerServices.CallSite,
 class [mscorlib]System.Type,object>>::Target
 IL_0059: ldsfld class [System.Core]
 System.Runtime.CompilerServices.CallSite`1<class [mscorlib]
 System.Action`3<class [System.Core]
 System.Runtime.CompilerServices.CallSite,
 class [mscorlib]System.Type,object>>
 DecompileSample.Program/'<>o__0'::'<>p__0'
 IL_005e: ldtoken [mscorlib]System.Console
 IL_0063: call class [mscorlib]System.Type [mscorlib]
 System.Type::GetTypeFromHandle(valuetype [mscorlib]
 System.RuntimeTypeHandle)
 IL_0068: ldloc.0
 IL_0069: ldfld object DecompileSample.DynamicClass::DynValue
 IL_006e: callvirt instance void class [mscorlib]System.Action`3
 <class [System.Core]System.Runtime.CompilerServices.CallSite,
 class [mscorlib]System.Type,object>::Invoke(!0, !1, !2)
 IL_0073: nop
 IL_0074: call string [mscorlib]System.Console::ReadLine()
 IL_0079: pop
 IL_007a: ret
} // end of method Program::Main

It’s safe to say that the C# compiler is doing a little extra work to support the dynamic type. Looking at the generated code, you can see references to System.Runtime.CompilerServices.CallSite and System.Runtime.CompilerServices.CallSiteBinder.

The CallSite is a type that handles the lookup at runtime. When a call is made on a dynamic object at runtime, something has to check that object to determine whether the member really exists. The call site caches this information so the lookup doesn’t have to be performed repeatedly. Without this process, performance in looping structures would be questionable.

After the CallSite does the member lookup, the CallSiteBinder is invoked. It takes the information from the call site and generates an expression tree representing the operation to which the binder is bound.

There is obviously a lot going on here. Great care has been taken to optimize what would appear to be a very complex operation. Clearly, using the dynamic type can be useful, but it does come with a price.

Dynamic Language Runtime

An important scenario for using the dynamic keyword is when using the Dynamic Language Runtime (DLR). The DLR is a set of services that is added to the common language runtime (CLR) to enable the addition of dynamic languages such as Python and Ruby. It also enables C# to take on some of the same dynamic capabilities that these dynamic languages have.

The core features of the original DLR are now part of the full .NET 4.5 Framework in the System.Dynamic and System.Runtime.CompilerServices namespaces. For integrating with scripting languages such as IronPython and IronRuby, additional types are needed for the integration that is part of the DLR that needs to be installed. This DLR is part of the IronPython and IronRuby environments. You can download it from http://ironpython.codeplex.com.

IronRuby and IronPython are open-source versions of the Ruby and Python languages, which use the DLR. Silverlight also uses the DLR. It’s possible to add scripting capabilities to your applications by hosting the DLR. The scripting runtime enables you to pass variables to and from the script.

Hosting the DLR ScriptRuntime

Imagine being able to add scripting capabilities to an application, or passing values in and out of the script so the application can take advantage of the work that the script does. These are the kind of capabilities that hosting the DLR’s ScriptRuntime in your app gives you. IronPython and IronRuby are supported as hosted scripting languages.

The ScriptRuntime enables you to execute snippets of code or a complete script stored in a file. You can select the proper language engine or allow the DLR to figure out which engine to use. The script can be created in its own app domain or in the current one. Not only can you pass values in and out of the script, you can call methods on dynamic objects created in the script.

This degree of flexibility provides countless uses for hosting the ScriptRuntime. The following example demonstrates one way that you can use the ScriptRuntime. Imagine a shopping cart application. One of the requirements is to calculate a discount based on certain criteria. These discounts change often as new sales campaigns are started and completed. There are many ways to handle such a requirement; this example shows how it could be done using the ScriptRuntime and a little Python scripting.

For simplicity, the example is a WPF Windows desktop application. An application using the DLR could also be part of a web application or any other application. Figure 16.3 shows a screen for the sample application. For using the runtime, the sample app adds the IronPython NuGet package.

[image: Screenshot shows a desktop application for calculating discount and tax. Fields for total number of items and total amount along with Calculate discount and calculate tax buttons are provided.]

Figure 16.3

Using the values provided for the number of items and the total cost of the items, the application applies a discount based on which radio button is selected. In a real application, the system would use a slightly more sophisticated technique to determine the discount to apply, but for this example the radio buttons suffice.

Here is the code that performs the discount (code file DLRHostSample/MainWindow.xaml.cs):

private void OnCalculateDiscount(object sender, RoutedEventArgs e)
{
 string scriptToUse;
 if (CostRadioButton.IsChecked.Value)
 {
 scriptToUse ="Scripts/AmountDisc.py";
 }
 else
 {
 scriptToUse ="Scripts/CountDisc.py";
 }
 ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration();
 ScriptEngine pythEng = scriptRuntime.GetEngine("Python");
 ScriptSource source = pythEng.CreateScriptSourceFromFile(scriptToUse);
 ScriptScope scope = pythEng.CreateScope();
 scope.SetVariable("prodCount", Convert.ToInt32(totalItems.Text));
 scope.SetVariable("amt", Convert.ToDecimal(totalAmt.Text));
 source.Execute(scope);
 textDiscAmount.Text = scope.GetVariable("retAmt").ToString();
}

The first part determines which script to apply: AmountDisc.py or CountDisc.py. AmountDisc.py does the discount based on the amount of the purchase (code file DLRHostSample/Scripts/AmountDisc.py):

discAmt = .25
retAmt = amt
if amt > 25.00:
 retAmt = amt-(amt*discAmt)

The minimum amount needed for a discount to be applied is $25. If the amount is less than that, then no discount is applied; otherwise, a discount of 25 percent is applied.

ContDisc.py applies the discount based on the number of items purchased (code file DLRHostSample/Scripts/ContDisc.py):

discCount = 5
discAmt = .1
retAmt = amt
if prodCount > discCount:
 retAmt = amt-(amt*discAmt)

In this Python script, the number of items purchased must be more than 5 for a 10 percent discount to be applied to the total cost.

The next step is getting the ScriptRuntime environment set up. For this, four specific tasks are performed: creating the ScriptRuntime object, setting the proper ScriptEngine, creating the ScriptSource, and creating the ScriptScope.

The ScriptRuntime object is the starting point, or base, for hosting. It contains the global state of the hosting environment. The ScriptRuntime is created using the CreateFromConfiguration static method. This is what the configuration file looks like (code file DLRHostSample/app.config):

<configuration>
 <configSections>
 <section name="microsoft.scripting"
 type="Microsoft.Scripting.Hosting.Configuration.Section, Microsoft.Scripting />
 </configSections>

 <microsoft.scripting>
 <languages>
 <language names="IronPython;Python;py" extensions=".py"
 displayName="IronPython 2.7.5"
 type="IronPython.Runtime.PythonContext, IronPython />
 </languages>
 </microsoft.scripting>
</configuration>

The code defines a section for microsoft.scripting and sets a couple of properties for the IronPython language engine.

Next, you get a reference to the ScriptEngine from the ScriptRuntime. In the example, you specify that you want the Python engine, but the ScriptRuntime would have been able to determine this on its own because of the py extension on the script.

The ScriptEngine does the work of executing the script code. There are several methods for executing scripts from files or from snippets of code. The ScriptEngine also gives you the ScriptSource and ScriptScope.

The ScriptSource object is what gives you access to the script. It represents the source code of the script. With it you can manipulate the source of the script, load it from a disk, parse it line by line, and even compile the script into a CompiledCode object. This is handy if the same script is executed multiple times.

The ScriptScope object is essentially a namespace. To pass a value into or out of a script, you bind a variable to the ScriptScope. In the following example, you call the SetVariable method to pass the prodCount and the amt variables into the Python script. These variables are the values from the totalItems and the totalAmt text boxes, respectively. The calculated discount is retrieved from the script by using the GetVariable method. In this example, the retAmt variable has the value you’re looking for.

The CalcTax button illustrates how to call a method on a Python object. The script CalcTax.py is a very simple method that takes an input value, adds 20 percent tax, and returns the new value. Here’s what the code looks like (code file DLRHostSample/Scripts/CalcTax.py):

def CalcTax(amount):
 return amount*1.2

Here is the C# code to call the CalcTax method (code file DLRHostSample/MainWindow.xaml.cs):

private void OnCalculateTax(object sender, RoutedEventArgs e)
{
 ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration();
 dynamic calcRate = scriptRuntime.UseFile("Scripts/CalcTax.py");
 decimal discountedAmount;
 if (!decimal.TryParse(textDiscAmount.Text, out discountedAmount))
 {
 discountedAmount = Convert.ToDecimal(totalAmt.Text);
 }
 totalTaxAmount.Text = calcRate.CalcTax(discountedAmount).ToString();
}

It’s a very simple process: You create the ScriptRuntime object using the same configuration settings as before. calcRate is a ScriptScope object. You defined it as dynamic so you can easily call the CalcTax method. This is an example of the how the dynamic type can make life a little easier.

DynamicObject and ExpandoObject

What if you want to create your own dynamic object? You have a couple of options for doing that: by deriving from DynamicObject or by using ExpandoObject. Using DynamicObject is a little more work than using ExpandoObject because with DynamicObject you have to override a couple of methods. ExpandoObject is a sealed class that is ready to use.

DynamicObject

Consider an object that represents a person. Normally, you would define properties for the first name, middle name, and last name. Now imagine the capability to build that object during runtime, with the system having no prior knowledge of what properties the object might have or what methods the object might support. That’s what having a DynamicObject-based object can provide. There might be very few times when you need this sort of functionality, but until now the C# language had no way of accommodating such a requirement.

First take a look at what the DynamicObject looks like (code file DynamicSamples/DynamicSample/WroxDyamicObject.cs):

public class WroxDynamicObject : DynamicObject
{
 private Dictionary<string, object> _dynamicData = new Dictionary<string, object>();

 public override bool TryGetMember(GetMemberBinder binder, out object result)
 {
 bool success = false;
 result = null;
 if (_dynamicData.ContainsKey(binder.Name))
 {
 result = _dynamicData[binder.Name];
 success = true;
 }
 else
 {
 result ="Property Not Found!";
 success = false;
 }
 return success;
 }

 public override bool TrySetMember(SetMemberBinder binder, object value)
 {
 _dynamicData[binder.Name] = value;
 return true;
 }

 public override bool TryInvokeMember(InvokeMemberBinder binder,
 object[] args, out object result)
 {
 dynamic method = _dynamicData[binder.Name];
 result = method((DateTime)args[0]);
 return result != null;
 }
}

In this example, you’re overriding three methods: TrySetMember, TryGetMember, and TryInvokeMember.

TrySetMember adds the new method, property, or field to the object. In this case, you store the member information in a Dictionary object. The SetMemberBinder object that is passed into the TrySetMember method contains the Name property, which is used to identify the element in the Dictionary.

The TryGetMember retrieves the object stored in the Dictionary based on the GetMemberBinder Name property.

Here is the code that makes use of the new dynamic object just created (code file DynamicSamples/DynamicSample/Program.cs):

dynamic wroxDyn = new WroxDynamicObject();
wroxDyn.FirstName ="Bugs";
wroxDyn.LastName ="Bunny";
WriteLine(wroxDyn.GetType());
WriteLine($"{wroxDyn.FirstName} {wroxDyn.LastName}");

It looks simple enough, but where is the call to the methods you overrode? That’s where the .NET Framework helps. DynamicObject handles the binding for you; all you have to do is reference the properties FirstName and LastName as if they were there all the time.

You can also easily add a method. You can use the same WroxDynamicObject and add a GetTomorrowDate method to it. It takes a DateTime object and returns a date string representing the next day. Here’s the code:

dynamic wroxDyn = new WroxDynamicObject();
Func<DateTime, string> GetTomorrow = today => today.AddDays(1).ToShortDateString();
wroxDyn.GetTomorrowDate = GetTomorrow;
WriteLine($"Tomorrow is {wroxDyn.GetTomorrowDate(DateTime.Now)}");

You create the delegate GetTomorrow using Func<T, TResult>. The method the delegate represents is the call to AddDays. One day is added to the Date that is passed in, and a string of that date is returned. The delegate is then set to GetTomorrowDate on the wroxDyn object. The last line calls the new method, passing in the current day’s date. Hence the dynamic magic and you have an object with a valid method.

ExpandoObject

ExpandoObject works similarly to the WroxDynamicObject created in the previous section. The difference is that you don’t have to override any methods, as shown in the following code example (code file DynamicSamples/DynamicSample/WroxDynamicObject.cs):

static void DoExpando()
{
 dynamic expObj = new ExpandoObject();
 expObj.FirstName ="Daffy";
 expObj.LastName ="Duck";
 WriteLine($"{expObj.FirstName} {expObj.LastName}");

 Func<DateTime, string> GetTomorrow = today => today.AddDays(1).ToShortDateString();
 expObj.GetTomorrowDate = GetTomorrow;
 WriteLine($"Tomorrow is {expObj.GetTomorrowDate(DateTime.Now)}");

 expObj.Friends = new List<Person>();
 expObj.Friends.Add(new Person() { FirstName ="Bob", LastName ="Jones" });
 expObj.Friends.Add(new Person() { FirstName ="Robert", LastName ="Jones" });
 expObj.Friends.Add(new Person() { FirstName ="Bobby", LastName ="Jones" });

 foreach (Person friend in expObj.Friends)
 {
 WriteLine($"{friend.FirstName} {friend.LastName}");
 }
}

Notice that this code is almost identical to what you did earlier. You add a FirstName and LastName property, add a GetTomorrow function, and then do one additional thing: add a collection of Person objects as a property of the object.

At first glance it might seem that this is no different from using the dynamic type, but there are a couple of subtle differences that are important. First, you can’t just create an empty dynamic typed object. The dynamic type has to have something assigned to it. For example, the following code won’t work:

dynamic dynObj;
dynObj.FirstName ="Joe";

As shown in the previous example, this is possible with ExpandoObject.

Second, because the dynamic type has to have something assigned to it, it reports back the type assigned to it if you do a GetType call. For example, if you assign an int, it reports back that it is an int. This doesn’t happen with ExpandoObject or an object derived from DynamicObject.

If you have to control the addition and access of properties in your dynamic object, then deriving from DynamicObject is your best option. With DynamicObject, you can use several methods to override and control exactly how the object interacts with the runtime. For other cases, using the dynamic type or the ExpandoObject might be appropriate.

Following is another example of using dynamic and ExpandoObject. Assume that the requirement is to develop a general-purpose comma-separated values (CSV) file parsing tool. You won’t know from one execution to another what data will be in the file, only that the values will be comma-separated and that the first line will contain the field names.

First, open the file and read in the stream. You can use a simple helper method to do this (code file DynamicSamples/DynamicFileReader/DynamicFileHelper.cs):

private StreamReader OpenFile(string fileName)
{
 if(File.Exists(fileName))
 {
 return new StreamReader(fileName);
 }
 return null;
}

This just opens the file and creates a new StreamReader to read the file contents.

Now you want to get the field names, which you can do easily by reading in the first line from the file and using the Split function to create a string array of field names:

 string[] headerLine = fileStream.ReadLine().Split(',').Trim().ToArray();

Next is the interesting part. You read in the next line from the file, create a string array just like you did with the field names, and start creating your dynamic objects. Here’s what the code looks like (code file DynamicSamples/DynamicFileReader/DynamicFileHelper.cs):

public IEnumerable<dynamic> ParseFile(string fileName)
{
 var retList = new List<dynamic>();
 while (fileStream.Peek() > 0)
 {
 string[] dataLine = fileStream.ReadLine().Split(',').Trim().ToArray();
 dynamic dynamicEntity = new ExpandoObject();
 for(int i=0;i<headerLine.Length;i++)
 {
 ((IDictionary<string,object>)dynamicEntity).Add(headerLine[i], dataLine[i]);
 }
 retList.Add(dynamicEntity);
 }
 return retList;
}

After you have the string array of field names and data elements, you create a new ExpandoObject and add the data to it. Notice that you cast the ExpandoObject to a Dictionary object. You use the field name as the key and the data as the value. Then you can add the new object to the retList object you created and return it to the code that called the method.

What makes this nice is you have a section of code that can handle any data you give it. The only requirements in this case are ensuring that the field names are the first line and that everything is comma-separated. This concept could be expanded to other file types or even to a DataReader.

Using this CSV file content that is available with the sample code download

FirstName, LastName, City, State
Niki, Lauda, Vienna, Austria
Carlos, Reutemann, Santa Fe, Argentine
Sebastian, Vettel, Thurgovia, Switzerland

and this Main method to read the sample file EmployeeList.txt (code file DynamicSamples/DynamicFileReader/Program.cs):

static void Main()
{
 var helper = new DynamicFileHelper();
 var employeeList = helper.ParseFile("EmployeeList.txt");
 foreach (var employee in employeeList)
 {
 WriteLine($"{employee.FirstName} {employee.LastName} lives in" +
 $"{employee.City}, {employee.State}.");
 }
 ReadLine();
}

results in this output to the console:

Niki Lauda lives in Vienna, Austria.
Carlos Reutemann lives in Santa Fe, Argentine.
Sebastian Vettel lives in Thurgovia, Switzerland.

Summary

This chapter illustrated using the Type and Assembly classes, which are the primary entry points through which you can access the extensive capabilities provided by reflection.

In addition, this chapter demonstrated a specific aspect of reflection that you are likely to use more often than any other—the inspection of custom attributes. You learned how to define and apply your own custom attributes, and how to retrieve information about custom attributes at runtime.

The second focus of this chapter was working with the dynamic type. Using ExpandoObject in place of multiple objects can reduce the number of lines of code significantly. Also using the DLR and adding scripting languages like Python or Ruby can help you build a more polymorphic application that can be changed easily without recompiling.

The next chapter gives details on a lot of features available with Visual Studio 2015.

PART II
.NET Core and Windows Runtime

	Chapter 17: Visual Studio 2015

	Chapter 18: .NET Compiler Platform

	Chapter 19: Testing

	Chapter 20: Diagnostics and Application Insights

	Chapter 21: Tasks and Parallel Programming

	Chapter 22: Task Synchronization

	Chapter 23: Files and Streams

	Chapter 24: Security

	Chapter 25: Networking

	Chapter 26: Composition

	Chapter 27: XML and JSON

	Chapter 28: Localization

17
Visual Studio 2015

What’s In This Chapter?

	Using Visual Studio 2015

	Creating and working with projects

	Debugging

	Refactoring with Visual Studio

	Working with various technologies: WPF, WCF, and more

	Architecture tools

	Analyzing applications

Wrox.com Code Downloads for This Chapter

There are no code downloads for this chapter.

Working with Visual Studio 2015

At this point, you should be familiar with the C# language and almost ready to move on to the applied sections of the book, which cover how to use C# to program a variety of applications. Before doing that, however, it’s important to understand how you can use Visual Studio and some of the features provided by the .NET environment to get the best from your programs.

This chapter explains what programming in the .NET environment means in practice. It covers Visual Studio, the main development environment in which you will write, compile, debug, and optimize your C# programs, and provides guidelines for writing good applications. Visual Studio is the main IDE used for numerous purposes, including writing ASP.NET applications, Windows Presentation Foundation (WPF) applications, and apps for the Universal Windows Platform (UWP), and for accessing services created by the ASP.NET Web API, or web applications with ASP.NET MVC.

This chapter also explores what it takes to build applications that are targeted at .NET Core 1.0 and the .NET Framework 4.6.

Visual Studio 2015 is a fully integrated development environment. It is designed to make the process of writing your code, debugging it, and compiling it to an assembly to be shipped as easy as possible. This means that Visual Studio gives you a very sophisticated multiple-document–interface application in which you can do just about everything related to developing your code. It offers the following features:

	Text editor—Using this editor, you can write your C# (as well as Visual Basic, C++, F#, JavaScript, XAML, JSON, and SQL) code. This text editor is quite sophisticated. For example, as you type, it automatically lays out your code by indenting lines, matching start and end brackets of code blocks, and color-coding keywords. It also performs some syntax checks as you type, and underlines code that causes compilation errors, also known as design-time debugging. In addition, it features IntelliSense, which automatically displays the names of classes, fields, or methods as you begin to type them. As you start typing parameters to methods, it also shows you the parameter lists for the available overloads. Figure 17.1 shows the IntelliSense feature in action with a UWP app.

[image: Screenshot shows visual studio editor for UWApp displaying the code along with the IntelliSense feature which shows the names of classes, fields or methods.]

Figure 17.1

NOTE By pressing Ctrl+Space, you can bring back the IntelliSense list box if you need it or if for any reason it is not visible. In case you want to see some code below the IntelliSense box, just keep pressing the Ctrl button.

	Design view editor—This editor enables you to place user-interface and data-access controls in your project; Visual Studio automatically adds the necessary C# code to your source files to instantiate these controls in your project. (This is possible because all .NET controls are instances of particular base classes.)

	Supporting windows—These windows enable you to view and modify aspects of your project, such as the classes in your source code, as well as the available properties (and their startup values) for Windows Forms and Web Forms classes. You can also use these windows to specify compilation options, such as which assemblies your code needs to reference.

	Integrated debugger—It is in the nature of programming that your code will not run correctly the first time you try it. Or the second time. Or the third time. Visual Studio seamlessly links to a debugger for you, enabling you to set breakpoints and watches on variables from within the environment.

	Integrated MSDN help—Visual Studio enables you to access the MSDN documentation from within the IDE. For example, if you are not sure of the meaning of a keyword while using the text editor, simply select the keyword and press the F1 key, and Visual Studio accesses MSDN to show you related topics. Similarly, if you are not sure what a certain compilation error means, you can bring up the documentation for that error by selecting the error message and pressing F1.

	Access to other programs—Visual Studio can also access a number of other utilities that enable you to examine and modify aspects of your computer or network, without your having to leave the developer environment. With the tools available, you can check running services and database connections, look directly into your SQL Server tables, browse your Microsoft Azure Cloud services, and even browse the Web using an Internet Explorer window.

	Visual Studio extensions—Some extensions of Visual Studio are already installed with a normal installation of Visual Studio, and many more extensions from both Microsoft and third parties are available. These extensions enable you to analyze code, offer project or item templates, access other services, and more. With the .NET Compiler Platform, integration of tools with Visual Studio has become easier.

The recent releases of Visual Studio had some interesting progress. One big part was with the user interface, the other big part with the background functionality and the .NET Compiler Platform.

With the user interface, Visual Studio 2010 redesigned the shell to be based on WPF instead of native Windows controls. Visual Studio 2012 had some user interface (UI) changes based on this. In particular, the UI was enhanced to have more focus on the main work area—the editor—and to allow doing more tasks directly from the code editor instead of needing to use many other tools. Of course, you need some tools outside the code editor, but more functionality has been built into a few of these tools, so the number of tools typically needed can be reduced. With Visual Studio 2015 some more UI features have been enhanced. For example, the NuGet Package manager is no longer a modal dialog. With the new version of the Package manager you can continue doing other tasks while the Package manager loads information from a server.

With the .NET Compiler Platform (code name Roslyn), the .NET compiler has been completely rewritten; it now integrates functionality throughout the compiler pipeline, such as syntax analysis, semantics analysis, binding, and code emitting. Based on this, Microsoft had to rewrite many Visual Studio integration tools. The code editor, IntelliSense, and refactoring are all based on the .NET Compiler Platform.

NOTE Chapter 18, “.NET Compiler Platform,” demonstrates the API that can be used with the .NET Compiler Platform.

For XAML code editing, Visual Studio 2010 and Expression Blend 4 (now with the name Blend for Visual Studio 2015) had different editor engines. As of Visual Studio 2013 the teams have merged, and although the features offered in the UI are a little bit different, the code engines are the same. Not only the code engines are the same: while Visual Studio 2013 got the XAML engine from Blend, now with Blend for Visual Studio 2015, Blend got the shell from Visual Studio. As you start Blend for Visual Studio you see that it looks like Visual Studio, and you can immediately start working with it.

Another special feature of Visual Studio is search. Visual Studio has so many commands and features that it is often hard to find the menu or toolbar button you are looking for. Just enter a part of the command you’re looking for into the Quick Launch, and you’ll see available options. Quick Launch is located at the top-right corner of the window (see Figure 17.2). Search functionality is also available from the toolbox, Solution Explorer, the code editor (which you can invoke by pressing Ctrl+F), the assemblies on the Reference Manager, and more.

[image: Screenshot shows a visual studio editor displaying code for UWApp. The search field at the top right corner shows a keyword refa along with a list of suggestions for Refactor.]

Figure 17.2

Visual Studio Editions

Visual Studio 2015 is available in a few editions. The least expensive is Visual Studio 2015 Community Edition, which is free in some cases. It’s free for individual developers, open-source projects, academic research, education, and small professional teams.

You can purchase the Professional and Enterprise editions. Only the Enterprise edition includes all the features. Exclusive to the Enterprise edition is IntelliTrace, load testing, and some architecture tools. The Microsoft Fakes framework (unit test isolation) is only available with Visual Studio Enterprise. This chapter’s tour of Visual Studio 2015 includes a few features that are available only with specific editions. For detailed information about the features of each edition of Visual Studio 2015, see http://www.microsoft .com/visualstudio/en-us/products/compare.

Visual Studio Settings

When you start Visual Studio the first time, you are asked to select a settings collection that matches your environment, for example, General Development, Visual Basic, Visual C#, Visual C++, or Web Development. These different settings reflect the different tools historically used for these languages. When writing applications on the Microsoft platform, different tools were used to create Visual Basic, C++, and web applications. Similarly, Visual Basic, Visual C++, and Visual InterDev had completely different programming environments, with completely different settings and tool options. Now, you can create apps for all these technologies with Visual Studio, but Visual Studio still offers the keyboard shortcuts that you can choose based on Visual Basic, Visual C++, and Visual InterDev. Of course, you also can select specific C# settings as well.

After choosing the main category of settings to define keyboard shortcuts, menus, and the position of tool windows, you can change every setting with Tools ➪ Customize (toolbars and commands) and Tools ➪ Options (here you find the settings for all the tools). You can also reset the settings collection with Tools ➪ Import and Export Settings, which invokes a wizard that enables you to select a new default collection of settings (see Figure 17.3).

[image: Screenshot shows an import and export settings wizard window with different settings options. A description for the corresponding selected settings is displayed at the side along with a Finish, Cancel, Previous and Next buttons.]

Figure 17.3

The following sections walk through the process of creating, coding, and debugging a project, demonstrating what Visual Studio can do to help you at each stage.

Creating a Project

After installing Visual Studio 2015, you will want to start your first project. With Visual Studio, you rarely start with a blank file and then add C# code, in the way that you have been doing in the previous chapters in this book. (Of course, the option of asking for an empty application project is there if you really do want to start writing your code from scratch or if you are going to create a solution that will contain a number of projects.)

Instead, the idea is that you tell Visual Studio roughly what type of project you want to create, and it generates the files and C# code that provide a framework for that type of project. You then proceed to add your code to this outline. For example, if you want to build a Windows desktop application (a WPF application), Visual Studio starts you off with an XAML file and a file containing C# source code that creates a basic form. This form is capable of communicating with Windows and receiving events. It can be maximized, minimized, or resized; all you need to do is add the controls and functionality you want. If your application is intended to be a command-line utility (a console application), Visual Studio gives you a basic namespace, a class, and a Main method to get you started.

Last, but hardly least, when you create your project, Visual Studio also sets up the compilation options that you are likely to supply to the C# compiler—whether it is to compile to a command-line application, a library, or a WPF application. It also tells the compiler which base class libraries and NuGet packages you need to reference (a WPF GUI application needs to reference many of the WPF-related libraries; a console application probably does not). Of course, you can modify all these settings as you are editing if necessary.

The first time you start Visual Studio, you are presented with an IDE containing menus, a toolbar, and a page with getting-started information, how-to videos, and latest news (see Figure 17.4). The Start Page contains various links to useful websites and links to some actual articles, and it enables you to open existing projects or start a new project altogether.

[image: Image described by surrounding text.]

Figure 17.4

In the case of Figure 17.4, the Start Page reflects what is shown after you have already used Visual Studio 2015, as it includes a list of the most recently edited projects. You can just click one of these projects to open it again.

Multi-Targeting the .NET Framework

Visual Studio enables you to target the version of the .NET Framework that you want to work with. When you open the New Project dialog, shown in Figure 17.5, a drop-down list in the top area of the dialog displays the available options.

[image: Image described by surrounding text.]

Figure 17.5

In this case, you can see that the drop-down list enables you to target the .NET Frameworks 2.0, 3.0, 3.5, 4, 4.5, 4.5.1, 4.5.2, 4.6, and 4.6.1. You can also install other versions of the .NET Framework by clicking the More Frameworks link. This link opens a website from which you can download other versions of the .NET Framework—for example, 2.0 + 3.5 SP1—but also frameworks for services (Microsoft Azure, OneDrive) and devices (Xamarin).

If you want to change the version of the framework the solution uses, right-click the project and select the properties of the solution. If you are working with a WPF project, you see the dialog shown in Figure 17.6.

[image: Screenshot shows a configuration window for WpfApplication1 with highlighted tab for Application, fields for assembly name, default namespace, output type, icon and a dropdown menu for target framework.]

Figure 17.6

From this dialog, the Application tab enables you to change the version of the framework that the application is using.

Selecting a Project Type

To create a new project, select File ➪ New Project from the Visual Studio menu. The New Project dialog displays (see Figure 17.7), giving you your first inkling of the variety of projects you can create.

[image: Screenshot shows new project creation window displaying templates, tree for recent, installed, online on the left side, search field and text boxes for name, location, solution name and OK button.]

Figure 17.7

Using this dialog, you effectively select the initial framework files and code you want Visual Studio to generate for you, the programming language you want to create your project with, and different categories of application types.

The following tables describe the most important options that are available to you under the Visual C# projects.

Using Windows Classic Desktop Project Templates

The first table lists projects available with the Windows category:

	If you choose. . .
	You get the C# code and compilation options to generate. . .

	Windows Forms Application
	A basic empty form that responds to events. Windows Forms wraps native Windows controls and uses pixel-based graphics with GDI+.

	WPF Application
	A basic empty form that responds to events. Although the project type is similar to the Windows Forms Application project type (Windows Forms), this Windows Application project type enables you to build an XAML-based smart client solution with vector-based graphics and styles.

	Console Application
	An application that runs at the command-line prompt or in a console window. This console application is using the MSBuild environment for compiling the application. You can find console applications for .NET Core 1.0 in the Web category.

	Shared Project
	This project doesn’t create its own binary, but you can use the source code with other projects. Contrary to libraries, the source code is compiled within each project where it is used. You can use preprocessor statements for differences in the source code depending on the project where the shared project is used.

	Class Library
	A .NET class library that can be called up by other code.

	Class Library (Portable)
	A class library that can be used by different technologies, for example, WPF, Universal Windows Platform apps, Xamarin apps, and others.

	WPF Browser Application
	Quite similar to the Windows Application for WPF, this variant enables you to build an XAML-based application that is targeted at the browser. However, it only runs within Internet Explorer, and not Microsoft Edge. Nowadays, you should think about using a different technology for this, such as a WPF application with ClickOnce or HTML 5.

	Empty Project
	An empty project that just contains an application configuration file and settings for a console application.

	Windows Service
	A Windows Service that can automatically start up with Windows and act on behalf of a privileged local system account.

	WPF Custom Control Library
	A custom control that can be used in a Windows Presentation Foundation application.

	WPF User Control Library
	A user control library built using Windows Presentation Foundation.

	Windows Forms Control Library
	A project for creating controls for use in Windows Forms applications.

NOTE Shared projects and portable class libraries are covered in Chapter 31, “Patterns with XAML Apps.” The WPF Application project template is covered in Chapter 34, “Windows Desktop Applications with WPF.” The Windows Service project template is covered in Chapter 39, “Windows Services.”

Using Universal Project Templates

The next table covers templates for the Universal Windows Platform. These templates are available on both Windows 10 and Windows 8.1, but you need a Windows 10 system to test the application. The templates are used to create applications running on Windows 10 using any device family—the PC, the phone, X-Box, IoT devices, and more.

	If you choose. . .
	You get the C# code and compilation options to generate. . .

	Blank App (Universal Windows)
	A basic empty Universal Windows app with XAML, without styles and other base classes.

	Class Library (Universal Windows)
	A .NET class library that can be called up by other Windows Store apps programmed with .NET. You can use the API of the Windows Runtime within this library.

	Windows Runtime Component (Universal Windows)
	A Windows Runtime class library that can be called up by other Windows Store apps developed with different programming languages (C#, C++, JavaScript).

	Unit Test App (Universal Windows)
	A library that contains unit tests for Universal Windows Platform apps.

	Coded UI Test Project (Windows Phone)
	A project to define coded UI tests for the Windows Phone.

	Coded UI Test Project (Windows)
	A project to define coded UI tests for Windows apps.

NOTE For Windows 10, the number of default templates for Universal apps have been reduced. Creating Windows Store apps for Windows 8, Visual Studio offers more project templates to predefine Grid-based, Split-based, or Hub-based apps. For Windows 10 only an empty template is available. You can either start with the empty template or consider using Template10 as a starter. The Template10 project template is available as soon as you install the Template10 Visual Studio extension from Microsoft, which is available via Tools ➪ Extensions and Updates.

NOTE If you install the Windows 8 project templates with Visual Studio, several Windows, Windows Phone, and Universal project templates are available as well. These are the predecessor of the Universal template for apps running on Windows 8 and 8.1, and they are not covered in this book.

Using Web Project Templates

Interesting enhancements with Visual Studio 2015 are available with the Web Project templates. Initially, there are three selections as described in the following table.

	If you choose. . .
	You get the C# code and compilation options to generate. . .

	ASP.NET Web Application
	This is the template to choose when creating any web application, no matter whether it’s a website returning HTML code to the client or a service returning JSON or XML. The selections that are available after you have selected this project template are described in the next table.

	Class Library (Package)
	This template creates a class library using project.json based projects. You can use this library in all new project types. This is a library built with .NET Core.

	Console Application (Package)
	Contrary to the Console Application that was discussed earlier with the Windows Classic Desktop project templates, this console application is using project.json and thus allows using .NET Core 1.0.

After selecting the ASP.NET Web Application Template, you get the choice of selecting some preconfigured templates as shown in Figure 17.8. On top you see a main group of ASP.NET 4.6 templates followed by a lower group with ASP.NET Core 1.0. These two groups of templates are described in the following two tables.

[image: Image described by surrounding text.]

Figure 17.8

These templates that are offered for web applications with ASP.NET 4.6 are shown in the following table. When you select these templates, you can see a default selection for Web Forms, MVC, and Web API that defines the folders and core references that are created. You can select the Web Forms, MVC, and Web API check boxes to use multiple technologies in one project, for example to use the old Web Forms technology with the newer ASP.NET MVC.

	If you choose. . .
	You get the C# code and compilation options to generate. . .

	Empty
	This template doesn’t have any content. It’s perfect for creating a site with HTML and CSS pages.

	Web Forms
	This template by default adds folders for Web Forms. You can add MVC and Web API configurations to mix it up.

	MVC
	This template makes use of the Model-View-Controller pattern with web applications (ASP.NET MVC 5). You can use this to create a web application.

	Web API
	The Web API template makes it possible to easily create RESTful services. The MVC folders and core references are added with this template as well because documentation for the service is created with ASP.NET MVC 5.

	Single Page Application
	The Single Page Application template creates the structure using MVC where mostly only a single page is used; it makes use of JavaScript code to retrieve data from the server.

	Azure API App
	This template creates an ASP.NET Web API structure to create services hosted by Microsoft Azure. To make it easier to detect services offered, Swagger is added to this template.

	Azure Mobile App
	This is a powerful template for Azure Mobile Apps and can be used for more than mobile clients. This template automatically creates a SQL Server backend based on tables defined by the ASP.NET Web API service. It’s also easy to integrate user authentication based on OAuth to integrate Facebook, Google, and Microsoft accounts.

Although the templates from the previous list are using ASP.NET 4.6 or earlier versions of the framework, the following templates make use of ASP.NET Core 1.0. Because the switch to ASP.NET Core 1.0 is not automatic and requires some code changes, and not all the features offered by ASP.NET 4.6 are available with ASP.NET Core 1.0, it’s good to have these groups clearly separated. An example of what’s not offered by ASP.NET Core 1.0 is ASP.NET Web Forms. Web Forms is a technology that had existed since .NET 1.0, but it doesn’t give an easy way to use new HTML and JavaScript features. There are still new features with ASP.NET 4.6 available for Web Forms, and you can use this technology for many years to come, but it will not be available with the new framework ASP.NET Core 1.0.

The templates that are offered for web applications with ASP.NET Core 1.0 are described in the following table. With these selections, you can’t choose folders and core references for Web Forms, MVC, and the Web API, because Web Forms is not available, and ASP.NET MVC and Web API moved into one technology using the same classes.

	If you choose. . .
	You get the C# code and compilation options to generate. . .

	Empty
	This template has initial content for hosting with ASP.NET Core 1.0. This template is the main template used in Chapter 40, “ASP.NET Core.”

	Web API
	This template adds an ASP.NET Web API controller using ASP.NET Core 1.0. This template is the main template used in Chapter 42, “ASP.NET Web API.”

	Web Application
	This template creates controllers and views for an ASP.NET MVC 6 application. This template is the main template used in Chapter 41, “ASP.NET MVC.”

Using WCF Project Templates

To create a Windows Communication Foundation (WCF) application that enables communication between the client and server, you can select from the following WCF project templates.

	If you choose. . .
	You get the C# code and compilation options to generate. . .

	WCF Service Library
	A library that contains a sample service contract and implementation, as well as the configuration. The project is configured to start a WCF service host that hosts the service and a test client application.

	WCF Service Application
	A web project using the .NET Framework that contains a WCF contract and service implementation.

	WCF Workflow Service Application
	A web project that hosts a WCF service with the Workflow runtime.

	Syndication Service Library
	A WCF service library with a WCF contract and implementation that hosts RSS or ATOM feeds.

This is not a full list of the Visual Studio 2015 project templates, but it reflects some of the most commonly used templates. The main additions to this version of Visual Studio are the Universal Windows project templates and the ASP.NET Core 1.0 project templates. These new capabilities are covered in other chapters later in this book. Be sure to look at Chapters 29 to 34, which cover the Universal Windows Platform, and Chapters 40 to 42 for ASP.NET Core 1.0.

Exploring and Coding a Project

This section looks at the features that Visual Studio provides to help you add and explore code with your project. You find out about using the Solution Explorer to explore files and code, use features from the editor—such as IntelliSense and code snippets—and explore other windows, such as the Properties window and the Document Outline.

Build Environments: CLI and MSBuild

A lot of the complexity and issues of Visual Studio 2015 result from a major change with build environments. Two build environments are available: MSBuild where the configuration is mainly based on XML files, and the .NET Command Line Interface (CLI) where the configuration is mainly based on JSON files. With MSBuild, all the files that are used to compile a project are defined in an XML file. With CLI, all the files from a folder are used for building the project; all files do not need to be configured.

With these two build environments, you have three variants to work with. One variant is to use the MSBuild system. This build system is used with long-existing project types, such as a WPF application, or an ASP.NET Web Application using the ASP.NET 4.5.2 templates. The project file is an XML file that lists all the files belonging to the project, references all tools to compile the files, and lists the build steps.

You use the CLI build system with ASP.NET Core 1.0 project templates. You do initial configuration with an XML-based project file with the file extension xproj. This file—ConsoleApp1.xproj—contains information about Visual Studio tools’ build path as well as global definitions. The DNX build system uses the JSON file project.json that defines the commands available, references the NuGet packages and assemblies, and includes a description about the project. A list of files belonging to the project is not needed, as all files from the folder and subfolders are used to compile the project.

NOTE The command-line tools for DNX that have the name .NET Core command line (CLI) are explained in Chapter 1, “.NET Application Architectures.”

A third option of CLI and MSBuild is used with Universal Windows apps. Here, both an XML project file and project.json are used. The project.json file no longer lists project description and commands, just the dependencies on NuGet packages, and runtimes used (with Universal Windows Platform apps, ARM, x86, and x64). The project description and build commands are within the project XML file that is using MSBuild.

NOTE Having two options to choose from results in having three variants to work with. Of course, over time this will be made easier again; it’s just not clear how it will be made easier because at the time of this writing, an MSBuild version supporting cross-platform development is just getting built. Maybe there will be some more options with future updates.

Solution Explorer

After creating a project (for example, a Console Application (Package) that was used mostly in earlier chapters), the most important tool you will use, other than the code editor, is the Solution Explorer. With this tool you can navigate through all files and items of your project, and see all the classes and members of classes.

NOTE When running a console application from within Visual Studio, there’s a common misconception that it’s necessary to have a Console.ReadLine method at the last line of the Main method to keep the console window open. That’s not the case. You can start the application with Debug ➪ Start without Debugging (or press Ctrl+F5) instead of Debug ➪ Start Debugging (or F5). This keeps the window open until you press a key. Using F5 to start the application makes sense if breakpoints are set, and then Visual Studio halts at the breakpoints anyway.

Working with Projects and Solutions

The Solution Explorer displays your projects and solutions. It’s important to understand the distinction between these:

	A project is a set of all the source-code files and resources that will compile into a single assembly (or in some cases, a single module). For example, a project might be a class library or a Windows GUI application.

	A solution is the set of all the projects that make up a particular software package (application).

To understand this distinction, consider what happens when you ship a project, which consists of more than one assembly. For example, you might have a user interface, custom controls, and other components that ship as libraries of parts of the application. You might even have a different user interface for administrators, and a service that is called across the network. Each of these parts of the application might be contained in a separate assembly, and hence they are regarded by Visual Studio as separate projects. However, it is quite likely that you will be coding these projects in parallel and in conjunction with one another. Thus, it is quite useful to be able to edit them all as one single unit in Visual Studio. Visual Studio enables this by regarding all the projects as forming one solution, and treating the solution as the unit that it reads in and allows you to work on.

Up until now, this chapter has been loosely talking about creating a console project. In fact, in the example you are working on, Visual Studio has actually created a solution for you—although this particular solution contains just one project. You can see this scenario reflected in the Solution Explorer (see Figure 17.9), which contains a tree structure that defines your solution.

[image: Screenshot shows a Solution Explorer window listing a solution file Solution ConsoleApp1 with one project, a search field, buttons for home, settings in the menu.]

Figure 17.9

In this case, the project contains your source file, Program.cs, as well as a project configuration file, project.json, which enables you to define project descriptions, versions, and dependencies. The Solution Explorer also indicates the NuGet packages and assemblies that your project references. You can see this by expanding the References folder in the Solution Explorer.

If you have not changed any of the default settings in Visual Studio, you will probably find the Solution Explorer in the top-right corner of your screen. If you cannot see it, just go to the View menu and select Solution Explorer.

The solution is described by a file with the extension .sln; in this example, it is ConsoleApp1.sln. The solution file is a text file that contains information about all the projects contained within the solution, as well as global items that can be used with all contained projects.

Depending on the build environment, the C# project is described by a file with the extension .csproj, or the .xproj file in conjunction with project.json. You can open the project.json file directly from within Solution Explorer. To edit a .csproj file from Visual Studio, you need to unload the project first, which you can do by clicking the project name and selecting Unload Project in the context menu. After the project is unloaded, the context menu contains the entry Edit ConsoleApp1.csproj, from which you can directly access the XML code.

REVEALING HIDDEN FILES

By default, Solution Explorer hides some files. By clicking the button Show All Files on the Solution Explorer toolbar, you can display all hidden files. For example, the bin and obj directories store compiled and intermediate files. Subfolders of obj hold various temporary or intermediate files; subfolders of bin hold the compiled assemblies.

Adding Projects to a Solution

As you work through the following sections, you see how Visual Studio works with Windows desktop applications and console applications. To that end, you create a Windows project called BasicForm that you add to your current solution, ConsoleApp1.

NOTE Creating the BasicForm project means that you end up with a solution containing a WPF application and a console application. That is not a very common scenario—you are more likely to have one application and a number of libraries—but it enables you to see more code! You might, however, create a solution like this if, for example, you are writing a utility that you want to run either as a WPF application or as a command-line utility.

You can create the new project in several ways. One way is to select New ➪ Project from the File menu (as you have done already), or you can select Add ➪ New Project from the File menu. Selecting Add ➪ New Project from the File menu brings up the familiar Add New Project dialog; as shown in Figure 17.10, however, Visual Studio wants to create the new project in the preexisting ConsoleApp1 location of the solution.

[image: Screenshot shows new project creation window displaying templates, tree for recent, installed, online on the left side, search field and text boxes for name and location along with Browse and OK button.]

Figure 17.10

If you select this option, a new project is added, so the ConsoleApp1 solution now contains a console application and a WPF application.

NOTE In accordance with Visual Studio’s language independence, the new project does not need to be a C# project. It is perfectly acceptable to put a C# project, a Visual Basic project, and a C++ project in the same solution. We will stick with C# here because this is a C# book!

Of course, this means that ConsoleApp1 is not really an appropriate name for the solution anymore. To change the name, you can right-click the name of the solution and select Rename from the context menu. Call the new solution DemoSolution. The Solution Explorer window should now look like Figure 17.11.

[image: Screenshot shows a Solution Explorer window listing a solution file Solution DemoSolution with two projects, a search field, buttons for home, settings et cetera in the menu.]

Figure 17.11

As you can see, Visual Studio has made your newly added WPF project automatically reference some of the extra base classes that are important for WPF functionality.

Note that if you look in Windows Explorer, the name of the solution file has changed to DemoSolution.sln. In general, if you want to rename any files, the Solution Explorer window is the best place to do so, because Visual Studio then automatically updates any references to that file in the other project files. If you rename files using only Windows Explorer, you might break the solution because Visual Studio is not able to locate all the files it needs to read into the IDE. As a result, you need to manually edit the project and solution files to update the file references.

Setting the Startup Project

Bear in mind that if you have multiple projects in a solution, you need to configure which one should run as the startup project. You can also configure multiple projects to start simultaneously. There are a lot of ways to do this. After selecting a project in the Solution Explorer, the context menu offers a Set as Startup Project option, which enables one startup project at a time. You can also use the context menu Debug ➪ Start new instance to start one project after the other. To simultaneously start more than one project, click the solution in the Solution Explorer and select the context menu Set Startup Projects. This opens the dialog shown in Figure 17.12. After you check Multiple Startup Projects, you can define what projects should be started.

[image: Screenshot shows a property page displaying common properties and configuration properties along with radio buttons for current selection, single startup project, and multiple startup projects.]

Figure 17.12

Discovering Types and Members

A WPF application contains a lot more initial code than a console application when Visual Studio first creates it. That is because creating a window is an intrinsically more complex process. Chapter 34 discusses the code for a WPF application in detail. For now, have a look at the XAML code in MainWindow.xaml and in the C# source code MainWindow.xaml.cs. There’s also some hidden generated C# code. Iterating through the tree in the Solution Explorer, below MainWindow.xaml.cs you find the class MainWindow. With all the code files, the Solution Explorer shows the types within that file. Within the type MainWindow you can see the members of the class. _contentLoaded is a field of type bool. Clicking this field opens the file MainWindow.g.i.cs. This file—a part of the MainWindow class—is generated by the designer and contains initialization code.

Previewing Items

A feature offered by the Solution Explorer is the button to Preview Selected Items. When this button is enabled and you click an item in the Solution Explorer, the editor for this item opens, as usual. However, if the item was not opened previously, the tab flow of the editor shows the new opened item in the rightmost position. Now, when you click another item, the previously opened one is closed. This helps significantly with reducing the number of open items.

In the editor tab of the previewed item is the Keep Open button, which promotes the item to stay open even when another item is clicked; the tab for the item that you’re keeping open moves to the left.

Using Scopes

Setting scopes allows you to focus on a specific part of the solution. The list of items shown by the Solution Explorer can grow really huge. For example, opening the context menu of a type enables you to select the base type from the menu Base Types. Here you can see the complete inheritance hierarchy of the type, as shown in Figure 17.13.

[image: Screenshot shows a Solution Explorer window with search field, buttons for Home, Setting, Refresh buttons along with hierarchy for displaying the list of items.]

Figure 17.13

Because Solution Explorer contains more information than you can easily view with one screen, you can open multiple Solution Explorer windows at once with the menu option New Solution Explorer View, and you can set the scope to a specific element—for example, to a project or a class—by selecting Scope to This from the context menu. To return to the previous scope, click the Back button.

Adding Items to a Project

Directly from within Solution Explorer you can add different items to the project. Selecting the project and selecting the context menu Add ➪ New Item opens the dialog shown in Figure 17.14. Another way to get to the same dialog is by using the main menu Project ➪ Add New Item. Here you find many different categories, such as code items to add classes or interfaces, data items for using the Entity Framework or other data access technologies, and a lot more.

[image: Screenshot shows new project creation window displaying list of templates, tree for Installed, Visual C#, Online on the left side, search field and text box for name along with Add and Cancel button.]

Figure 17.14

Managing References

Adding references with Visual Studio needs some special considerations because of differences with project types. In case you’re using the full framework—that is, .NET 4.6—adding references to assemblies from the .NET Framework is still an important task to do. It doesn’t matter if you are using one of the older templates such as WPF or a newer template such as Console Application (Package). Remember: With newer templates you can still target .NET 4.5.2 (or .NET 4.6) in addition to .NET Core 1.0.

The Reference Manager, shown in Figure 17.15, enables you to add references to assemblies that are part of the .NET Framework, and also add references to assemblies that you created with library projects.

[image: Screenshot shows a Reference Manager window for ConsoleApp1 displaying different references with version number along with Browse, OK and Cancel buttons.]

Figure 17.15

Depending on the project types you’re adding references to, the Reference Manager gives different options. Figure 17.16 shows the Reference Manager opened from a WPF application. Here you can reference shared projects and COM objects, and you can also browse for assemblies.

[image: Screenshot shows a Reference Manager window for WPF application displaying different references with version number. Options to refer projects, COM objects and assemblies is also provided.]

Figure 17.16

When you’re creating Universal Windows Platform apps, you see a new feature with the Reference Manager, as shown in Figure 17.17. Here you can reference Universal Windows Extensions, for example API extensions available with Windows IoT or Windows Mobile.

[image: Screenshot shows a Reference Manager window for UWPApp displaying different references with version number. Options to refer projects, COM objects, assemblies and universal window extensions are also provided.]

Figure 17.17

Using NuGet Packages

All the new functionality of .NET Core is available with NuGet packages. Many enhancements for .NET 4.6 are available with NuGet packages as well. NuGet allows for faster innovations than are offered by the .NET Framework, and nowadays this is necessary.

The NuGet Package Manager, shown in Figure 17.18, has been completely rewritten for Visual Studio 2015. It is no longer a modal dialog; instead you can continue working on your project while the NuGet Package Manager downloads some packages from the Internet. Now you can easily select a specific version of the NuGet package that needs to be installed. With Visual Studio 2013 you had to use the command line to do this.

[image: Screenshot shows NuGet Package Manager window with search box including prerelease option, list of packages along with version number. Detailed description of the selected package is shown on the right side.]

Figure 17.18

You can configure the sources of NuGet packages by opening the Options dialog by selecting Tools ➪ Options. In the Options dialog select the NuGet Package Manager ➪ Package Sources in the tree view (see Figure 17.19). By default, Microsoft’s NuGet server is configured, but you can also configure other NuGet servers or your own. With .NET Core and ASP.NET Core 1.0, Microsoft offers feeds with NuGet packages that are updated on a daily bases.

[image: Image described by surrounding text.]

Figure 17.19

Using the NuGet Package Manager, you can not only select the package source but you can also select a filter to see all packages that are installed, or where an upgrade is available, and search for packages on the server.

NOTE With ASP.NET Core 1.0, JavaScript libraries are no longer used from NuGet server. Instead, JavaScript package managers, such as NPM and Bower, are directly supported from within Visual Studio 2015. This is discussed in Chapter 40.

Working with the Code Editor

The Visual Studio code editor is where most of your development work takes place. This editor increased in size in Visual Studio after the removal of some toolbars from the default configuration, and the removal of borders from the menus, toolbars, and tab headers. The following sections take a look at some of the most useful features of this editor.

The Folding Editor

One notable feature of Visual Studio is its use of a folding editor as its default code editor. Figure 17.20 shows the code for the console application that you generated earlier. Notice the little minus signs on the left-hand side of the window. These signs mark the points where the editor assumes that a new block of code (or documentation comment) begins. You can click these icons to close up the view of the corresponding block of code just as you would close a node in a tree control (see Figure 17.21).

[image: Screenshot shows a code editor window displaying the code for console application ConsoleApp1.DNX 4.6. The other two tabs displayed for ConsoleApp1.Program and Main(string[] args).]

Figure 17.20

[image: Image described by surrounding text.]

Figure 17.21

This means that while you are editing you can focus on just the areas of code you want to look at, hiding the bits of code you are not interested in working with at that moment. If you do not like the way the editor has chosen to block off your code, you can indicate your own blocks of collapsible code with the C# preprocessor directives, #region and #endregion. For example, to collapse the code inside the Main method, you would add the code shown in Figure 17.22.

[image: Screenshot shows a code editor window displaying the code for console application ConsoleApp1. Dot NET Framework 4.6. The other two tabs displayed for ConsoleApp1.Program and Main(string[] args).]

Figure 17.22

The code editor automatically detects the #region block and places a new minus sign by the #region directive, enabling you to close the region. Enclosing this code in a region enables the editor to close it (see Figure 17.23), marking the area with the comment you specified in the #region directive. The compiler, however, ignores the directives and compiles the Main method as normal.

[image: Screenshot shows a code editor window displaying the code for console application ConsoleApp1..NET Framework 4.6. The other two tabs displayed for ConsoleApp1.Program and Main(string[] args).]

Figure 17.23

Navigating Within the Editor

On the top line of the editor are three combo boxes. The right combo box enables you to navigate between members of the type you’re in. The middle combo box enables you to navigate between types. The left combo box is new with Visual Studio 2015; it enables you to navigate between different applications or frameworks. For example, if you are working on the source code of a shared project, in the left combo box of the editor you can select one of the projects where the shared project is used to see the code that is active for the selected project. The code that is not compiled for the selected project is dimmed. You can create code segments for different platforms using C# preprocessor commands.

IntelliSense

In addition to the folding editor feature, Visual Studio’s code editor also incorporates Microsoft’s popular IntelliSense capability, which not only saves you typing but also ensures that you use the correct parameters. IntelliSense remembers your preferred choices and starts with these initially instead of at the beginning of the sometimes rather lengthy lists that IntelliSense can now provide.

The code editor also performs some syntax checking on your code, underlining these errors with a short wavy line, even before you compile the code. Hovering the mouse pointer over the underlined text brings up a small box that contains a description of the error.

CodeLens

One great new feature in Visual Studio 2013 was the CodeLens. With Visual Studio 2015, this feature is now available in the Professional edition.

Did you ever change a method and wonder, “Did I miss a method calling this?” Now it’s really easy to find callers. The number of references is directly shown in the editor (see Figure 17.24). When you click the references link, the CodeLens opens so you can see the code of the callers and navigate to them. You can also see the reference with another new feature, the Code Map. The Code Map is discussed later in the “Architecture Tools” section.

[image: Screenshot shows a code editor window displaying the code for a console application. A small window displaying the code opened next to the reference link.]

Figure 17.24

If the source code is checked into a source control system like Visual Studio Online using Git or TFS, you can also see the authors and changes made.

Using Code Snippets

Great productivity features from the code editor are code snippets. Just by writing cw<tab><tab> in the editor, the editor creates a Console.WriteLine();. Visual Studio comes with many code snippets, including the following:—

	do, for, forr, foreach, and while for creating loops

	equals for an implementation of the Equals method

	attribute and exception for creating Attribute- and Exception- derived types

You can see all the code snippets available with the Code Snippets Manager (see Figure 17.25) by selecting Tools ➪ Code Snippets Manager. You can also create custom snippets.

[image: Screenshot shows Code Snippets Manager window displaying a dropdown for language selection, location field with a list of locations along with Add, Remove, Import, OK and Cancel buttons.]

Figure 17.25

You can also use snippets for XAML code that are available at http://xamlsnippets.codeplex.com.

Learning and Understanding Other Windows

In addition to the code editor and Solution Explorer, Visual Studio provides a number of other windows that enable you to view and/or manage your projects from different points of view.

NOTE The rest of this section describes several other windows. If any of these windows are not visible on your monitor, you can select them from the View menu. To show the design view and code editor, right-click the filename in Solution Explorer and select View Designer or View Code from the context menu, or select the item from the toolbar at the top of Solution Explorer. The design view and code editor share the same tabbed window.

Using the Design View Window

If you are designing a user interface application, such as a WPF application, or a Windows control library, you can use the Design View window. This window presents a visual overview of what your form will look like. You normally use the Design View window in conjunction with a window known as the toolbox. The toolbox contains a large number of .NET components that you can drag onto your program. Toolbox components vary according to project type. Figure 17.26 shows the items displayed within a WPF application.

[image: Screenshot shows a toolbox window with a search field and a list of items for BooksDesktopApp Controls and Common WPF controls.]

Figure 17.26

To add your own custom categories to the toolbox, execute the following steps:

	Right-click any category.

	Select Add Tab from the context menu.

You can also place other tools in the toolbox by selecting Choose Items from the same context menu; this is particularly useful for adding your own custom components or components from the .NET Framework that are not present in the toolbox by default.

Using the Properties Window

As mentioned in the first part of the book, .NET classes can implement properties. The Properties window is available with projects and files and when you’re selecting items using the Design view. Figure 17.27 shows the Properties view with a Windows Service.

[image: Screenshot shows a property window for an item Quote service displaying the AutoLog, ExitCode, ServiceName, Language et cetera. A brief description is provided at the bottom for the selected property.]

Figure 17.27

With this window you can see all the properties of an item and configure it accordingly. You can change some properties by entering text in a text box; others have predefined selections, and some have a custom editor. You can also add event handlers to events with the Properties window.

With UWP and WPF applications, the Properties window looks very different, as you can see in Figure 17.28. This window provides much more graphical feedback and allows for graphical configuration of the properties. This properties window is coming originally from the Blend tool. As mentioned earlier, Visual Studio and Blend for Visual Studio have many similarities.

[image: Screenshot shows a property configuration window with Name field and a search field. Screen displays properties such as Brush, Appearance, Common, and Layout.]

Figure 17.28

Using the Class View Window

Although the Solution Explorer can show classes and members of classes, that’s normally the job of the Class View (see Figure 17.29). To invoke the class view, select View ➪ Class View. The Class View shows the hierarchy of the namespaces and classes in your code. It provides a tree view that you can expand to see which namespaces contain what classes, and what classes contain what members.

[image: Screenshot shows a Class View window displaying a tree structure representing hierarchy of namespaces and classes. A search field along with Folder and Settings button is also provided.]

Figure 17.29

A nice feature of the Class View is that if you right-click the name of any item for which you have access to the source code, then the context menu displays the Go To Definition option, which takes you to the definition of the item in the code editor. Alternatively, you can do this by double-clicking the item in Class View (or, indeed, by right-clicking the item you want in the source code editor and choosing the same option from the resulting context menu). The context menu also enables you to add a field, method, property, or indexer to a class. In other words, you specify the details for the relevant member in a dialog, and the code is added for you. This feature can be particularly useful for adding properties and indexers, as it can save you quite a bit of typing.

Using the Object Browser Window

An important aspect of programming in the .NET environment is being able to find out what methods and other code items are available in the base classes and any other libraries that you are referencing from your assembly. This feature is available through a window called the Object Browser (see Figure 17.30). You can access this window by selecting Object Browser from the View menu in Visual Studio 2015. With this tool you can browse for and select existing component sets—such as .NET Framework versions from 2.0 to 4.6, .NET Portable Subsets, what’s available with the Windows Runtime, and .NET for UWP—and view the classes and members of the classes that are available with this subset. You can also select the Windows Runtime by selecting Windows in the Browse drop-down to find all namespaces, types, and methods of this native new API for UWP apps.

[image: Screenshot shows an Object Browser window displaying a field with .NET for Windows Universal selected, namespaces, types and methods, search field and brief summary at the bottom.]

Figure 17.30

Using the Server Explorer Window

You can use the Server Explorer window, shown in Figure 17.31, to find out about aspects of the computers in your network while coding. With the Servers section, you can find information about services running (which is extremely useful in developing Windows Services), create new performance counts, and access the event logs. The Data Connections section enables not only connecting to existing databases and querying data, but also creating a new database. Visual Studio 2015 also has a lot of Windows Azure information built in to Server Explorer, including options for Windows Azure Compute, Mobile Services, Storage, Service Bus, and Virtual Machines.

[image: Screenshot shows a Server Explorer window displaying a tree structure representing hierarchy for Cloud, Mobile services, Data factory, Storage, Service bus, Servers, et cetera.]

Figure 17.31

Using the Cloud Explorer

The Cloud Explorer (see Figure 17.32) is a new explorer that is available with Visual Studio 2015 if you install the Azure SDK and the Cloud Explorer extension. With the Cloud Explorer you can get access to your Microsoft Azure subscription and have access to your resources, view log files, attach debuggers, and go directly to the Azure portal.

[image: Screenshot shows a Cloud Explorer window displaying resources, log files for Microsoft Azure along with actions such as Open in Portal, Open In Browser, Attach Debugger and View Streaming Logs.]

Figure 17.32

Using the Document Outline

A window available with WPF and UWP apps is the Document Outline. Figure 17.33 shows this window opened with an application from Chapter 34. Here, you can view the logical structure and hierarchy of the XAML elements, lock elements to prevent changing them unintentionally, easily move elements within the hierarchy, group elements within a new container element, and change layout types.

[image: Diagram shows a window for Document Outline displaying a tree for RibbonWindow with nodes for [DockPanel], [Ribbon], [ListBox], et cetera.]

Figure 17.33

With this tool you can also create XAML templates and graphically edit data binding.

Arranging Windows

While exploring Visual Studio, you might have noticed that many of the windows have some interesting functionality that’s more reminiscent of toolbars. In particular, they can all either float (also on a second display), or they can be docked. When they are docked, they display an extra icon that looks like a pin next to the minimize button in the top-right corner of each window. This icon really does act like a pin—you can use it to pin the window open. A pinned window (the pin is displayed vertically) behaves just like the regular windows you are used to. When windows are unpinned (the pin is displayed horizontally), however, they remain open only as long as they have the focus. As soon as they lose the focus (because you clicked or moved your mouse somewhere else), they smoothly retreat into the main border around the entire Visual Studio application. Pinning and unpinning windows provides another way to make the best use of the limited space on your screen.

A new feature with Visual Studio 2015 is that you can store different layouts. It’s likely that you’re running in different environments. For example, in your office you might have connected your laptop to two big screens, but this is not the case when you’re programming in a plane, where you only have a single screen. In the past, you probably always arranged the windows according to your needs and had to change this several times a day. Another scenario in which you might need different layouts is when you’re doing web development and creating UWP and Xamarin apps. Now you can save your layout and easily switch from one to the other. From the Window menu, select Save Window Layout to save your current arrangement of the tools. Use Window ➪ Apply Window Layout to select one of your saved layouts to arrange the windows as you have saved them.

Building a Project

Visual Studio is not only about coding your projects. It is actually an IDE that manages the full life cycle of your project, including the building or compiling of your solutions. This section examines the options that Visual Studio provides for building your project.

Building, Compiling, and Making Code

Before examining the various build options, it is important to clarify some terminology. You will often see three different terms used in connection with the process of getting from your source code to some sort of executable code: compiling, building, and making. The origin of these three terms reflects the fact that until recently, the process of getting from source code to executable code involved more than one step (this is still the case in C++). This was due in large part to the number of source files in a program.

In C++, for example, each source file needs to be compiled individually. This results in what are known as object files, each containing something like executable code, but where each object file relates to only one source file. To generate an executable, these object files need to be linked together, a process that is officially known as linking. The combined process was usually referred to—at least on the Windows platform—as building your code. However, in C# terms the compiler is more sophisticated, able to read in and treat all your source files as one block. Hence, there is not really a separate linking stage, so in the context of C#, the terms compile and build are used interchangeably.

The term make basically means the same thing as build, although it is not really used in the context of C#. The term make originated on old mainframe systems on which, when a project was composed of many source files, a separate file would be written containing instructions to the compiler on how to build a project—which files to include and what libraries to link to, and so on. This file was generally known as a makefile and it is still quite standard on UNIX systems. The MSBuild project file is in reality something like the old makefile, it’s just a new advanced XML variant. With MSBuild projects, you can use the MSBuild command with the project file as input, and all the sources will be compiled. Using build files is very helpful on a separate build server on which all developers check their code in, and overnight the build process is done. Chapter 1 mentions the .NET Core command line (CLI) tools, the command line to build with the .NET Core environment.

Debugging and Release Builds

The idea of having separate builds is very familiar to C++ developers, and to a lesser degree to those with a Visual Basic background. The point here is that when you are debugging, you typically want your executable to behave differently from when you are ready to ship the software. When you are ready to ship your software, you want the executable to be as small and fast as possible. Unfortunately, these two requirements are not compatible with your needs when you are debugging code, as explained in the following sections.

Optimization

High performance is achieved partly by the compiler’s many optimizations of the code. This means that the compiler actively looks at your source code as it is compiling to identify places where it can modify the precise details of what you are doing in a way that does not change the overall effect but makes things more efficient. For example, suppose the compiler encountered the following source code:

double InchesToCm(double ins) => ins * 2.54;

// later on in the code
Y = InchesToCm(X);

It might replace it with this:

Y = X * 2.54;

Similarly, it might replace

{
 string message ="Hi";
 Console.WriteLine(message);
}

with this:

Console.WriteLine("Hi");

By doing so, the compiler bypasses having to declare any unnecessary object reference in the process.

It is not possible to exactly pin down what optimizations the C# compiler does—nor whether the two previous examples would actually occur with any particular situation—because those kinds of details are not documented. (Chances are good that for managed languages such as C#, the previous optimizations would occur at JIT compilation time, not when the C# compiler compiles source code to assembly.) Obviously, for proprietary reasons, companies that write compilers are usually quite reluctant to provide many details about the tricks that their compilers use. Note that optimizations do not affect your source code—they affect only the contents of the executable code. However, the previous examples should give you a good idea of what to expect from optimizations.

The problem is that although optimizations like the examples just shown help a great deal in making your code run faster, they are detrimental for debugging. In the first example, suppose that you want to set a breakpoint inside the InchesToCm method to see what is going on in there. How can you possibly do that if the executable code does not actually have an InchesToCm method because the compiler has removed it? Moreover, how can you set a watch on the Message variable when that does not exist in the compiled code either?

Debugger Symbols

During debugging, you often have to look at the values of variables, and you specify them by their source code names. The trouble is that executable code generally does not contain those names—the compiler replaces the names with memory addresses. .NET has modified this situation somewhat to the extent that certain items in assemblies are stored with their names, but this is true of only a small minority of items—such as public classes and methods—and those names will still be removed when the assembly is JIT-compiled. Asking the debugger to tell you the value in the variable called HeightInInches is not going to get you very far if, when the debugger examines the executable code, it sees only addresses and no reference to the name HeightInInches anywhere.

Therefore, to debug properly, you need to make extra debugging information available in the executable. This information includes, among other things, names of variables and line information that enables the debugger to match up which executable machine assembly language instructions correspond to your original source code instructions. You will not, however, want that information in a release build, both for proprietary reasons (debugging information makes it a lot easier for other people to disassemble your code) and because it increases the size of the executable.

Extra Source Code Debugging Commands

A related issue is that quite often while you are debugging there will be extra lines in your code to display crucial debugging-related information. Obviously, you want the relevant commands removed entirely from the executable before you ship the software. You could do this manually, but wouldn’t it be so much easier if you could simply mark those statements in some way so that the compiler ignores them when it is compiling your code to be shipped? You’ve already seen in the first part of the book how this can be done in C# by defining a suitable processor symbol, and possibly using this in conjunction with the Conditional attribute, giving you what is known as conditional compilation.

What all these factors add up to is that you need to compile almost all commercial software in a slightly different way when debugging than in the final product that is shipped. Visual Studio can handle this because, as you have already seen, it stores details about all the options it is supposed to pass to the compiler when it has your code compiled. All that Visual Studio has to do to support different types of builds is store more than one set of such details. These different sets of build information are referred to as configurations. When you create a project, Visual Studio automatically gives you two configurations—Debug and Release:

	Debug—This configuration commonly specifies that no optimizations are to take place, extra debugging information is to be present in the executable, and the compiler is to assume that the debug preprocessor symbol Debug is present unless it is explicitly #undefined in the source code.

	Release—This configuration specifies that the compiler should optimize the compilation, that there should be no extra debugging information in the executable, and that the compiler should not assume that any particular preprocessor symbol is present.

You can define your own configurations as well. You might want to do this, for example, to set up professional-level builds and enterprise-level builds so that you can ship two versions of the software. In the past, because of issues related to Unicode character encodings being supported on Windows NT but not on Windows 95, it was common for C++ projects to feature a Unicode configuration and an MBCS (multi-byte character set) configuration.

Selecting a Configuration

At this point you might be wondering how Visual Studio, given that it stores details about more than one configuration, determines which one to use when arranging for a project to be built. The answer is that there is always an active configuration, which is the configuration that is used when you ask Visual Studio to build a project. (Note that configurations are set for each project, rather than each solution.)

By default, when you create a project, the Debug configuration is the active configuration. You can change which configuration is the active one by clicking the Build menu option and selecting the Configuration Manager item. It is also available through a drop-down menu in the main Visual Studio toolbar.

Editing Configurations

In addition to choosing the active configuration, you can also examine and edit the configurations. To do this, select the relevant project in Solution Explorer and then select Properties from the Project menu. This brings up a sophisticated dialog. (Alternatively, you can access the same dialog by right-clicking the name of the project in Solution Explorer and then selecting Properties from the context menu.)

This dialog contains a tabbed view that enables you to select many different general areas to examine or edit. Space does not permit showing all of these areas, but this section outlines a couple of the most important ones.

Depending on whether the application is MSBuild or CLI, the options available are very different. First, look at the properties of the WPF application in Figure 17.34, which shows a tabbed view of the available properties. This screenshot shows the general Application settings.

[image: Screenshot shows a configuration window for DemoSolution with highlighted Application tab, fields for Assembly Name, Default namespace, Icon, Target framework, Output type et cetera.]

Figure 17.34

Among the points to note are that you can select the name of the assembly as well as the type of assembly to be generated. The options here are Console Application, Windows Application, and Class Library. Of course, you can change the assembly type if you want. (Though arguably, you might wonder why you did not pick the correct project type when you asked Visual Studio to generate the project for you in the first place!)

Figure 17.35 shows the same configuration for a CLI-based application. You also can see Application settings, but the options are limited to the default namespace name and the section of the runtime. With this screenshot, a specific version of RC 2 is selected.

[image: Screenshot shows a configuration window for DemoSolution with highlighted Application tab and fields for Default namespace, Solution DNX SDK version and Web root.]

Figure 17.35

Figure 17.36 shows the build configuration properties of the WPF application. Note that a list box near the top of the dialog enables you to specify which configuration you want to look at. You can see—in the case of the Debug configuration—that the compiler assumes that the DEBUG and TRACE preprocessor symbols have been defined. In addition, the code is not optimized and extra debugging information is generated.

[image: Screenshot shows a configuration window for DemoSolution with highlighted Build tab, text fields to be filled, selected and unselected checkboxes, radio buttons and Browse button.]

Figure 17.36

Figure 17.37 shows the build configuration properties of a CLI project. Here, you can select to produce outputs on build. The TypeScript setting is only relevant with applications containing TypeScript code. TypeScript is compiled to JavaScript.

[image: Screenshot shows a configuration window for DemoSolution with highlighted Build tab, selected checkbox for Produce outputs on build and unselected checkbox for Compile TypeScript on build.]

Figure 17.37

Debugging Your Code

At this point, you are ready to run and debug the application. In C#, as in pre-.NET languages, the main technique involved in debugging is simply setting breakpoints and using them to examine what is going on in your code at a certain point in its execution.

Setting Breakpoints

You can set breakpoints from Visual Studio on any line of your code that is actually executed. The simplest way is to click the line in the code editor, within the shaded area near the far left of the document window (or press the F9 key when the appropriate line is selected). This sets up a breakpoint on that particular line, which pauses execution and transfers control to the debugger as soon as that line is reached in the execution process. As in previous versions of Visual Studio, a breakpoint is indicated by a red circle to the left of the line in the code editor. Visual Studio also highlights the line by displaying the text and background in a different color. Clicking the circle again removes the breakpoint.

If breaking every time at a particular line is not adequate for your particular problem, you can also set conditional breakpoints. To do this, select Debug ➪ Windows ➪ Breakpoints. This brings up a dialog that requests details about the breakpoint you want to set. Among the options available, you can do the following:

	Specify that execution should break only after the breakpoint has been passed a certain number of times.

	Specify that the breakpoint should be activated only after the line has been reached a defined number of times—for example, every twentieth time a line is executed. (This is useful when debugging large loops.)

	Set the breakpoints relative to a variable, rather than an instruction. In this case, the value of the variable is monitored and the breakpoints are triggered whenever the value of this variable changes. You might find, however, that using this option slows down your code considerably. Checking whether the value of a variable has changed after every instruction adds a lot of processor time.

With this dialog you also have the option to export and import breakpoint settings, which is useful for working with different breakpoint arrangements depending on what scenario you want to debug into, and to store the debug settings.

Using Data Tips and Debugger Visualizers

After a breakpoint has been hit, you will usually want to investigate the values of variables. The simplest way to do this is to hover the mouse cursor over the name of the variable in the code editor. This causes a little data tip box (shown in Figure 17.38) that shows the value of that variable to pop up, which can also be expanded for greater detail.

[image: Diagram shows an editor window with code along with a data tip box at the side displaying the value of the selected variable in the code.]

Figure 17.38

Some of the values shown in the data tip offer a magnifying glass. Clicking this magnifying class provides one or more options to use a debugger visualizer—depending on the type. With WPF controls, the WPF Visualizer enables you to take a closer look at the control (see Figure 17.39). With this visualizer you can view the visual tree that is used during runtime, including all the actual property settings. This visual tree also gives you a preview of the element that you select within the tree.

[image: Diagram shows a window for WPF Visualizer with a search field and a tree listing the elements of an application. Preview of the selected element textBox1: TextBox is show below along with buttons for Prev, Next, Clear and Close.]

Figure 17.39

Figure 17.40 shows the JSON Visualizer, which displays JSON content. Many other visualizers are available as well, such as HTML, XML, and Text visualizers.

[image: Diagram shows a JSON Visualizer window displaying the JSON content such as Inventory Items, Supplier ID, Category ID, Unit Price, Discount, Product ID, Recorder level et cetera.]

Figure 17.40

Live Visual Tree

A new feature of Visual Studio 2015 offered for XAML-based applications is the Live Visual Tree. While debugging a UWP and WPF application, you can open the Live Visual Tree (see Figure 17.41) via Debug ➪ Windows ➪ Live Visual Tree to see the live tree of the XAML elements including its properties in the Live Property Explorer. Using this window, you can click the Selection button to select an element in the UI to see its element in the live tree. In the Live Property Explorer you can directly change properties, and see the results on the running application.

[image: Screenshot shows a Live Visual Tree window displaying the tree for XAML elements such as Main Window, Border, Grid, Button, Adorner Decorator, TextBox, Label et cetera.]

Figure 17.41

Monitoring and Changing Variables

Sometimes you might prefer to have a more continuous look at values. For that you can use the Autos, Locals, and Watch windows to examine the contents of variables. Each of these windows is designed to monitor different variables:

	Autos—Monitors the last few variables that have been accessed as the program was executing.

	Locals—Monitors variables that are accessible in the method currently being executed.

	Watch—Monitors any variables that you have explicitly specified by typing their names into the Watch window. You can drag and drop variables to the Watch window.

These windows are only visible when the program is running under the debugger. If you do not see them, select Debug ➪ Windows, and then select the desired menu. The Watch window offers four different windows in case there’s so much to watch and you want to group that. With all these windows you can both watch and change the values, enabling you to try different paths in the program without leaving the debugger. The Locals window is shown in Figure 17.42.

[image: Screenshot shows a window for Locals displaying the list of variables with name, Value and Type. A row is selected displaying the name e with value {System.Window,RoutedEventArgs}.]

Figure 17.42

Another window that doesn’t directly relate to the other windows discussed but is still an important one for monitoring and changing variables is the Immediate window. This window also makes it possible for you to look at variable values. You can use this window to enter code and run it. This is very helpful when you’re doing some tests during a debug session; it enables you to home in on details, try a method out, and change a debug run dynamically.

Exceptions

Exceptions are great when you are ready to ship your application, ensuring that error conditions are handled appropriately. Used well, they can ensure that users are never presented with technical or annoying dialogs. Unfortunately, exceptions are not so great when you are trying to debug your application. The problem is twofold:

	If an exception occurs when you are debugging, you often do not want it to be handled automatically—especially if automatically handling it means retiring gracefully and terminating execution! Rather, you want the debugger to help you determine why the exception has occurred. Of course, if you have written good, robust, defensive code, your program automatically handles almost anything—including the bugs that you want to detect!

	If an exception for which you have not written a handler occurs, the .NET runtime still searches for one. Unfortunately, by the time it discovers there isn’t one, it will have terminated your program. There will not be a call stack left, and you will not be able to look at the values of any of your variables because they will all have gone out of scope.

Of course, you can set breakpoints in your catch blocks, but that often does not help very much because when the catch block is reached, flow of execution will, by definition, have exited the corresponding try block. That means the variables you probably wanted to examine the values of, to figure out what has gone wrong, will have gone out of scope. You will not even be able to look at the stack trace to find what method was being executed when the throw statement occurred because control will have left that method. Setting the breakpoints at the throw statement obviously solves this; but if you are coding defensively, there will be many throw statements in your code. How can you tell which one threw the exception?

Visual Studio provides a very neat answer to all of this. You can configure the exception types where the debugger should break. This is configured in the menu Debug ➪ Windows ➪ Exception Settings. With this window (see Figure 17.43) you can specify what happens when an exception is thrown. You can choose to continue execution or to stop and start debugging—in which case execution stops and the debugger steps in at the throw statement.

[image: Screenshot shows a window for Exception Settings displaying a tree with main nodes C plus plus Exceptions and Common Language Runtime Exceptions along with sub nodes. A search field is also provided at the top of the window.]

Figure 17.43

What makes this a really powerful tool is that you can customize the behavior according to which class of exception is thrown. You can configure to break into the debugger whenever it encounters any exception thrown by a .NET base class, but not to break into the debugger for specific exception types.

Visual Studio is aware of all the exception classes available in the .NET base classes, and of quite a few exceptions that can be thrown outside the .NET environment. Visual Studio is not automatically aware of any custom exception classes that you write, but you can manually add your exception classes to the list, and specify which of your exceptions should cause execution to stop immediately. To do this, just click the Add button (which is enabled when you have selected a top-level node from the tree) and type in the name of your exception class.

Multithreading

Visual Studio also offers great support for debugging multithreaded programs. When debugging multithreaded programs, you must understand that the program behaves differently depending on whether it is running in the debugger or not. If you reach a breakpoint, Visual Studio stops all threads of the program, so you have the chance to access the current state of all the threads. To switch between different threads you can enable the Debug Location toolbar. This toolbar contains a combo box for all processes and another combo box for all threads of the running application. When you select a different thread, you find the code line where the thread currently halts and the variables currently accessible from different threads. The Parallel Tasks window (shown in Figure 17.44) shows all running tasks, including their statuses, locations, task names, the current threads that are used by the tasks, the application domains, and the process identifiers. This window also indicates when different threads block each other, causing a deadlock.

[image: Screenshot shows a window screen for Tasks displaying a table with two rows and six columns for ID, Status, Start Time, Duration, Location and Task respectively.]

Figure 17.44

Figure 17.45 shows the Parallel Stacks window, where you can see different threads or tasks (depending on the selection) in a hierarchical view. You can jump to the source code directly by clicking the task or thread.

[image: Screenshot shows a window screen for Parallel Stacks displaying a main block representing five Threads connected with arrows to three blocks each representing 1 Thread.]

Figure 17.45

Refactoring Tools

Many developers develop their applications first for functionality. After the functionality is in place, they rework their applications to make them more manageable and more readable. This process is called refactoring. Refactoring involves reworking code for readability and performance, providing type safety, and ensuring that applications adhere to standard OO (object-oriented) programming practices. Reworking also happens when updates are made to applications.

The C# environment of Visual Studio 2015 includes a set of refactoring tools, which you can find under the Refactoring option in the Visual Studio menu. To see this in action, create a new class called Car in Visual Studio:

public class Car
{
 public string color;
 public string doors;

 public int Go()
 {
 int speedMph = 100;
 return speedMph;
 }
}

Now suppose that for the purpose of refactoring, you want to change the code a bit so that the color and door variables are encapsulated in public .NET properties. The refactoring capabilities of Visual Studio 2015 enable you to simply right-click either of these properties in the document window and select Quick Actions. You see different options for refactoring, such as generating a constructor to fill the fields or to encapsulate the fields as shown in Figure 17.46.

[image: Screenshot shows an editor window displaying the code and three tabs for ConsoleApp1.DNX 4.6, ConsoleApp1.Car and color]

Figure 17.46

From this dialog you can provide the name of the property and click the Preview link, or you can directly accept the changes. When you select the button to encapsulate the fields, the code is reworked into the following:

public class Car
{
 private string color;
 public string Color
 {
 get { return color; }
 set { color = value; }
 }
 private string doors;
 public string Doors
 {
 get { return doors; }
 set { doors = value; }
 }

 public int Go()
 {
 int speedMph = 100;
 return speedMph;
 }
}

As you can see, these code fixes make it quite simple to refactor your code—not only on one page but throughout an entire application. Also included are capabilities to do the following:

	Rename method names, local variables, fields, and more

	Extract methods from a selection of code

	Extract interfaces based on a set of existing type members

	Promote local variables to parameters

	Rename or reorder parameters

You will find that the refactoring capabilities provided by Visual Studio 2015 offer a great way to get cleaner, more readable, and better-structured code.

Architecture Tools

Before starting with coding programs, you should have an architectural viewpoint to your solution, analyze requirements, and define a solution architecture. Architecture tools are available with Visual Studio 2015 Enterprise.

Figure 17.47 shows the Add New Item dialog that appears after you create a modeling project. It provides options to create a UML use-case diagram, a component diagram, a class diagram, a sequence diagram, and an activity diagram. The standard UML diagrams are not discussed in this chapter, as you can find several books covering this group. Instead, this section looks at two Microsoft-specific diagrams: Directed Graph Document (or Dependency Graph) and Layer Diagram.

[image: Image described by surrounding text.]

Figure 17.47

NOTE How to create and use UML diagrams is not covered in this book. They are not new, and probably you already know a lot about them. If not, several books are available covering the features of UML diagrams. They are not different with Visual Studio.

The focus on this section now continues with Microsoft-specific features in regard to architecture tools and analysing applications. Particularly you will get information on creating code maps, layer diagrams, use diagnostic tools to profile applications, code analyzers, and code metrics.

Code Map

With the code map, you can see dependencies between assemblies, classes, and even members of classes. Figure 17.48 shows the code map of a Calculator example from Chapter 26, “Composition,” that includes a calculator hosting application and several libraries, such as a contract assembly and the add-in assemblies SimpleCalculator, FuelEconomy, and TemperatureConversion. The code map is created by selecting Architecture ➪ Create Code Map for Solution. This activity analyzes all projects of the solution, displaying all the assemblies in a single diagram and drawing lines between the assemblies to show dependencies. The varying thickness of the lines between the assemblies reflects the degree of dependency. An assembly contains several types and members of types, and a number of types and its members are used from other assemblies.

[image: Screenshot shows a window for WPFCalculator displaying a code map connecting the assemblies, classes and members of classes.]

Figure 17.48

You can dig deeper into the dependencies, too. Figure 17.49 shows a more detailed diagram, including the classes of the Calculator assembly and their dependencies. The dependency on the CalculatorContract assembly is shown here as well. In a large graph you can also zoom in and out of several parts of the graph.

[image: Screenshot shows a window for WPFCalculator displaying a map connecting the assemblies, classes and members of classes.]

Figure 17.49

You can even go deeper, displaying fields, properties, methods, and events, and how they depend on each other.

Layer Diagram

The layer diagram is very much related to the code map. You can create the layer diagram out of the dependency graph (or from Solution Explorer by selecting assemblies or classes), or create the layer diagram from scratch before doing any development.

Different layers can define client and server parts in a distributed solution—for example, a layer for a Windows application, one for the service, and one for the data access library, or layers based on assemblies. A layer can also contain other layers.

Figure 17.50 shows a layer diagram with the main layers Calculator UI, CalculatorUtils, Contracts, and AddIns. The AddIns layer contains inner layers FuelEconomy, TemperatureConversion, and Calculator. The number that’s displayed with the layer reflects the number of items that are linked to that layer.

[image: Screenshot shows WPF Calculator displaying a flow diagram with Calculator UI, CalculatorUtils, AddINs and Contracts.]

Figure 17.50

To create a layer diagram, select Architecture ➪ New UML or Layer Diagram ➪ Layer Diagram. This creates an empty diagram to which you can add layers from the toolbox or the Architecture Explorer. The Architecture Explorer contains a Solution View and a Class View from which you can select all items of the solution to add them to the layer diagram. Selecting items and dragging them to the layer is all you need to build the layer diagram. Selecting a layer and clicking the context menu View Links opens the Layer Explorer, shown in Figure 17.51, which displays all the items contained in the selected layer(s).

[image: Screenshot shows a Layer Explorer window displaying a table with two rows and each columns representing Name, Categories, Layer, Supports Validation and Identifier.]

Figure 17.51

During application development, the layer diagram can be validated to analyze whether all the dependencies are on track. If a layer has a dependency in a wrong direction, or has a dependency on a layer that it shouldn’t, this architecture validation returns with errors.

Analyzing Applications

The previously discussed architectural diagrams—the dependency graph and the layer diagram—are not only of interest before the coding starts; they also help in analyzing the application and keeping it on the right track to ensure that it doesn’t generate inaccurate dependencies. There are many more useful tools available with Visual Studio 2015 that can help you analyze and proactively troubleshoot your application. This section looks at some of these Visual Studio analysis tools.

Similar to the architecture tools, the analyzer tools are available with Visual Studio 2015 Enterprise.

Diagnostics Tools

To analyze a complete run of the application, you can use the diagnostics tools. These tools enable you to find what methods are called, how often methods are called, how much time is spent in what methods, how much memory is used, and much more. With Visual Studio 2015, the diagnostics tools are started automatically when you start the debugger. With the diagnostics tools, you can also see IntelliTrace (historical debugging) events (see Figure 17.52). When you hit a breakpoint, you can have a look at previous information in time such as previous breakpoints, exceptions that were thrown, database access, ASP.NET events, tracing, or user input gestures, such as a user clicking a button. By clicking the information of previous events, you can have a look at local variables, the call stack, and method calls that were done. This makes it easy to find problems without restarting a debug session and setting breakpoints to methods that have been invoked before you see the issue.

[image: Screenshot shows Diagnostic Tools window displaying Event, Process Memory, CPU utilization along with tools for Zoom In, Zoom Out and Reset view.]

Figure 17.52

Another way to start diagnostics tools is to start them via the profiler: Debug ➪ Profiler ➪ Start Diagnostic Tools Without Debugging. Here you have more controls about the features to start (see Figure 17.53). Depending on the project type used, more or fewer features are available. With UWP projects you can also analyze energy consumption, which is an important fact with mobile devices.

[image: Screenshot shows a WPFCalculator window for Report20151007-2153.diagsession. Checkboxes are provided for Application Timeline, CPU usage, GPU usage, Memory Usage and Performance Wizard.]

Figure 17.53

The first option, Application Timeline (see Figure 17.54), gives information about the UI thread and the time it is spending in parsing, layout, rendering, I/O, and application code. Depending on where the most time is spent, you know where optimization can be useful.

[image: Screenshot shows a window for WPF Calculator displaying the Diagnostics session, UI thread utilization, Visual throughput, Timeline details and pie chart representing UI thread summary.]

Figure 17.54

If you select the CPU Usage option, the overhead of monitoring is low. With this option, performance information is sampled after specific time intervals. You don’t see all method calls invoked, in particular if they are running just for a short time. Again, the advantage of this option is low overhead. When running a profiling session, you must always be aware that you’re monitoring not only the performance of the application, but the performance of getting the data as well. You shouldn’t profile all data at once, as sampling all of the data influences the outcome. Collecting information about .NET memory allocation helps you identify memory leaks and provides information about what type of objects need how much memory. Resource contention data helps with the analysis of threads, enabling you to easily identify whether different threads block each other.

After configuring the options in the Performance Explorer, you can immediately start the application and run profiling after exiting the wizard. You can also change some options afterward by modifying the properties of a profiling setting. Using these settings, you can decide to add memory profiling with an instrumentation session, and add CPU counters and Windows counters to the profiling session to see this information in conjunction with the other profiled data.

Starting the Performance Wizard (see Figure 17.55), which is the last option in the list, enables you to configure whether you want to monitor the CPU using sampling or using instrumentation, where every method call is instrumented so you can see even small method calls, memory allocation, and concurrency.

[image: Screenshot shows a window for Performance Wizard displaying radio buttons to choose from different methods of profiling such as CPU sampling, Instrumentation, .Net memory allocation and Resource Contention data.]

Figure 17.55

Figure 17.56 shows the summary screen of a profiling session. Here you can see CPU usage by the application, a hot path indicating which functions are taking the most time, and a sorted list of the functions that have used the most CPU time.

[image: Image described by surrounding text.]

Figure 17.56

The profiler has many more screens—too many to show here. One view is a function view that you can sort based on the number of calls made to the function, or the elapsed inclusive and exclusive times used by the function. This information can help you identify methods deserving of another look in terms of performance, whereas others might not be worthwhile because they are not called very often or they do not take an inordinate amount of time.

Clicking within a function, you can invoke details about it, as shown in Figure 17.57. This enables you to see which functions are called and immediately step into the source code. The Caller/Callee view also provides information about what functions have been called by what function.

[image: Screenshot shows a WPF Calculator window displaying connections between Calling functions, Current function and Called functions along with Function Code.]

Figure 17.57

Profiling is available with Visual Studio Professional. Using the Enterprise Edition, you can configure tier interaction profiling that enables you to view the SQL statements generated and the time spent on ADO.NET queries, as well as information on ASP.NET pages.

Concurrency Visualizer

The Concurrency Visualizer helps you to analyze threading issues with applications. Running this analyzer tool provides a summary screen like the one shown in Figure 17.58. Here, you can compare the amount of CPU needed by the application with overall system performance. You can also switch to a Threads view that displays information about all the running application threads and what state they were in over time. Switching to the Cores view displays information about how many cores have been used. If your application makes use of only one CPU core and it is busy all the time, adding some parallelism features might improve performance by making use of more cores. You might see that different threads are active over time, but only one thread is active at any given point in time. In that case, you should probably change your locking behavior. You can also see if threads are working on I/O. If the I/O rate is high with multiple threads, the disk might be the bottleneck and threads just wait on each other to complete I/O. This behavior might warrant reducing the number of threads doing I/O, or using an SSD drive. Clearly, these analysis tools provide a great deal of useful information.

[image: Screenshot shows a WPF Calculator window displaying Utilization, Threads, Cores, Visible Timeline Profile, Bar graph representing Profile report et cetera.]

Figure 17.58

NOTE With Visual Studio 2015, you need to download and install the Concurrency Visualizer via Tools ➪ Extensions and Updates.

Code Analyzers

A new feature with Visual Studio 2015—with the help of the .NET Compiler Platform—is code analyzers. When you use the API of the compiler, it is easy to create code analyzers and to give guidelines for what should be changed.

NOTE The .NET Compiler Platform is covered in Chapter 18.

Of course often it’s not necessary to create custom analyzers as there are already many available with NuGet packages. From Microsoft, the Microsoft.Analyzer.PowerPack NuGet package offers good code analysis for many scenarios. After you install such an analyzer, you can see it in Solution Explorer in the Analyzers section, which is below the References node.

Code Metrics

Checking code metrics provides information about how maintainable the code is. The code metrics shown in Figure 17.59 display a maintainability index for the complete Calculator project of 82, and includes details about every class and method. These ratings are color-coded: A red rating, in the range of 0 to 9, means low maintainability; a yellow rating, in the range of 10 to 19, means moderate maintainability; and a green rating, in the range of 20 to 100, means high maintainability. The cyclomatic complexity provides feedback about the different code paths. More code paths means more unit tests are required to go through every option. The depth of inheritance reflects the hierarchy of the types. The greater the number of base classes, the harder it is to find the one to which a field belongs. The value for class coupling indicates how tightly types are coupled—that is, used with parameters or locals. More coupling means more complexity in terms of maintaining the code.

[image: Screenshot shows a window for Code Metrics Results displaying information such as maintainability, Cyclomatic complexity, depth of inheritance, class coupling, lines of code for all classes and methods used in Calculator project.]

Figure 17.59

Summary

This chapter explored one of the most important programming tools in the .NET environment: Visual Studio 2015. The bulk of the chapter examined how this tool facilitates writing code in C#.

Visual Studio 2015 is one of the easiest development environments to work with in the programming world. Not only does Visual Studio make rapid application development (RAD) easy to achieve, it enables you to dig deeply into the mechanics of how your applications are created. This chapter focused on using Visual Studio for refactoring, multi-targeting, and analyzing existing code.

This chapter also looked at some of the latest project templates available to you through the .NET Framework 4.6, including Windows Presentation Foundation, Windows Communication Foundation, and of course the Universal Windows Platform.

Chapter 18 is about a new feature of C# 6: the new .NET Compiler Platform, codename Roslyn.

18
.NET Compiler Platform

What’s In This Chapter?

	Compiler Pipeline Overview

	Syntax Analysis

	Semantics Analysis

	Code Transformation

	Code Refactoring

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/ professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	WPFSyntaxTree

	SyntaxQuery

	SyntaxWalker

	SemanticsCompilation

	TransformMethods

	SyntaxRewriter

	PropertyCodeRefactoring

Introduction

The most important change of C# 6 is that C# has a new compiler delivered by the .NET compiler platform (code named Roslyn). Originally, the C# compiler was written with C++. Now main parts of it are created with C# and .NET. The compiler platform is available open source at http://github.com/dotnet/Roslyn.

One advantage of this update is that Microsoft cleaned up a lot of legacy code that has been written within the last 20 years. With the new codebase it is a lot easier to implement new features with C#; the new code is more maintainable. That’s the reason you see so many small C# language improvements with version 6. That’s a scenario not only Microsoft is seeing; with projects maintained for many years, it becomes difficult to do updates with the source code. At some point it becomes better to start the project from scratch.

An even bigger advantage of the rewrite of the C# compiler is that now it’s possible to take advantage of the compiler pipeline, add functionality to every step of the compiler pipeline, and also analyze and transform source code.

Most developers will take advantage only by using tools within Visual Studio that make use of the .NET Compiler Platform itself, but for many it will be useful to create custom code analyzers (that might be used within the team), and also code transformations—for example, to migrate legacy code and convert it to new technologies.

Where can you see the .NET Compiler Platform used within Visual Studio? One example is the code editor, where the API is used all the time while you’re typing. When you implement an interface using the smart tag, there’s an interesting difference with Visual Studio 2015 compared to previous versions: when you implement the interface IDisposable and click the smart tag, you not only see the Implement Interface and Implement Interface Explicitly options but also the Implement Interface with Dispose Pattern and Implement Interface Explicitly with Dispose Pattern options (see Figure 18.1). With previous editions of Visual Studio, the only automatic way to implement an interface was to automatically generate method stubs and property stubs of the methods and properties that were defined in the interface, where the implementation of the interface throws a NotImplementedException. Now you can have different implementations based on the interface type. With the interface IDisposable, more than the Dispose method gets implemented: The complete pattern required for this interface, such as a Dispose method with Boolean argument; a check to see whether the object is already disposed but still invoked; and an optional finalizer are also implemented.

[image: Image described by surrounding text.]

Figure 18.1

This chapter describes the features of the .NET Compiler Platform and how you can analyze and transform source code. Using the debugger to learn about the types and members is helpful with all chapters of the book. With this chapter, using the debugger is extremely helpful. The .NET Compiler Platform SDK includes thousands of types and an enormous number of members, so debugging the code really helps you find out what information you can get out of this.

This chapter requires the Visual Studio 2015 SDK and the .NET Compiler Platform SDK Templates for Visual Studio 2015 (available within Extensions and Updates) to be installed with Visual Studio 2015.

The sample projects require the Microsoft.CodeAnalysis NuGet package added.

Compiler Pipeline

The compiler pipeline consists of the following phases that result in different APIs and features:

	Parser—Source code is read and tokenized and then it is parsed into a syntax tree. The Syntax Tree API is used for formatting, colorizing, and outlining in the source code editor.

	Declaration—Declarations from the source code and imported metadata are analyzed to create symbols. The Symbol API is offered for this phase. The Navigation To feature within the editor and the Object Browser make use of this API.

	Bind—Identifiers are matched to symbols. Binding and Flow Analysis APIs are offered for this phase. Features such as Find All References, Rename, Quick Info, and Extract Method make use of this API.

	Emit—IL code is created and an assembly is emitted. The Emit API can be used to create assemblies. The Edit and Continue feature within the editor needs a new compilation that makes use of the Emit phase.

Based on the compiler pipeline, compiler APIs—such as the Syntax API, the Symbol API, the Binding and Flow Analysis API, and the Emit API—are offered. The .NET Compiler Platform also offers an API layer that makes use of another API: the Workspace API. The Workspace API enables you to work with workspaces, solutions, projects, and documents. From Visual Studio you already know a solution can contain multiple projects. A project contains multiple documents. What’s new with this list is the workspace. A workspace can contain multiple solutions.

You might wonder that a solution might be enough to work with. However, all trees with the .NET Compiler Platform are immutable and cannot be changed. With every change you’re creating a new tree—in other words, a change within the solution creates a new solution. That’s why the concept of workspaces—where a workspace can contain multiple solutions—is needed.

Syntax Analysis

Let’s start with an easy task: syntax analysis with the Syntax API. With the Syntax API you can build a tree of syntax nodes from C# source code. The sample application is a WPF application where you can load any C# source file and have the hierarchy of the source file shown within a tree view.

NOTE XAML and WPF is explained in detail starting in Chapter 29, “Core XAML,” and the chapters that follow it. You can read more information about the tree view control in Chapter 34, “Windows Desktop Applications with WPF.”

The sample application defines a user interface with a button control to load the C# source file, a TreeView control, and a few TextBlock and ListBox controls to show the detail of a node as shown in the document outline (see Figure 18.2) and the XAML designer (see Figure 18.3). Data binding is used to bind information content to the UI elements.

[image: Screenshot shows a Document Outline Window displaying a hierarchy with main nodes such as Stack Panel, Grid and sub nodes such as ListBox, StackPanel, TextBlock et cetera.]

Figure 18.2

[image: Screenshot shows a Compiler platform window displaying Syntax Tree Sample with blank text box for Tokens and Trivia along with blank Type Name, Span and Text and Load button.]

Figure 18.3

As you run the application, after clicking the Load button, you are asked for a C# file with the help of the OpenFileDialog class. After you click OK in this dialog, the file is loaded into the syntax tree (code file WPFSyntaxTree/MainWindow.xaml.cs):

private async void OnLoad(object sender, RoutedEventArgs e)
{
 var dlg = new OpenFileDialog();
 dlg.Filter ="C# Code (.cs)|*.cs";

 if (dlg.ShowDialog() == true)
 {
 string code = File.ReadAllText(dlg.FileName);
 // load the syntax tree

 }
}

NOTE File input/output (I/O) is discussed in Chapter 23, “Files and Streams.”

The heart of the Syntax API is the SyntaxTree class. A SyntaxTree object is created by parsing the C# file content using CSharpSyntaxTree.ParseText. To get the nodes from the tree, the GetRootAsync (or GetRoot) method returns the root node. All the nodes are of a class derived from the base class SyntaxNode. For showing the root node within the user interface, the SyntaxNode is wrapped with the SyntaxNodeViewModel class before it is added to the Nodes property:

private async void OnLoad(object sender, RoutedEventArgs e)
{
 // etc.

 SyntaxTree tree = CSharpSyntaxTree.ParseText(code);
 SyntaxNode node = await tree.GetRootAsync();

 Nodes.Add(new SyntaxNodeViewModel(node));
 }
}

The Nodes property is of type ObservableCollection<SyntaxViewModel>. It updates the user interface when the collection changes.

public ObservableCollection<SyntaxNodeViewModel> Nodes { get; } =
 new ObservableCollection<SyntaxNodeViewModel>();

The class SyntaxNodeViewModel wraps a SyntaxNode for display in the user interface. It defines the property Children to recursively display all children nodes. The Children property accesses all child nodes from the syntax tree by invoking the ChildNodes method and converting the collection of SyntaxNode objects to SyntaxNodeViewModel. This class also defines the Tokens and Trivia properties that are discussed later in this section. The TypeName property returns the name of the real type that is wrapped by the SyntaxNodeViewModel class. This should be a type that derives from the base class SyntaxNode (code file WPFSyntaxTree/ViewModels/SyntaxNodeViewModel.cs):

public class SyntaxNodeViewModel
{
 public SyntaxNodeViewModel(SyntaxNode syntaxNode)
 {
 SyntaxNode = syntaxNode;
 }

 public SyntaxNode SyntaxNode { get; }

 public IEnumerable<SyntaxNodeViewModel> Children =>
 SyntaxNode.ChildNodes().Select(n => new SyntaxNodeViewModel(n));

 public IEnumerable<SyntaxTokenViewModel> Tokens =>
 SyntaxNode.ChildTokens().Select(t => new SyntaxTokenViewModel(t));

 public string TypeName => SyntaxNode.GetType().Name;

 public IEnumerable<SyntaxTriviaViewModel> Trivia
 {
 get
 {
 var leadingTrivia = SyntaxNode.GetLeadingTrivia().Select(
 t => new SyntaxTriviaViewModel(TriviaKind.Leading, t));
 var trailingTrivia = SyntaxNode.GetTrailingTrivia().Select(
 t => new SyntaxTriviaViewModel(TriviaKind.Trailing, t));
 return leadingTrivia.Union(trailingTrivia);
 }
 }
}

In the user interface, the TreeView control binds to the Nodes property. The HierarchicalDataTemplate defines the look of the items in the tree view. With this data template, the value of the TypeName property is shown in a TextBlock. For showing all the child nodes, the ItemsSource property of the HierarchicalDataTemplate is bound to the Children property (code file WPFSyntaxTree/MainWindow.xaml):

<TreeView x:Name="treeView" ItemsSource="{Binding Nodes, Mode=OneTime}"
 SelectedItemChanged="OnSelectSyntaxNode" Grid.Row="1" Grid.Column="0">
 <TreeView.ItemTemplate>
 <HierarchicalDataTemplate ItemsSource="{Binding Children}">
 <StackPanel>
 <TextBlock Text="{Binding TypeName}" />
 </StackPanel>
 </HierarchicalDataTemplate>
 </TreeView.ItemTemplate>
</TreeView>

The code file that is opened with the sample application is a simple Hello, World! code file that also includes some comments:

using static System.Console;

namespace SyntaxTreeSample
{
 // Hello World! Sample Program
 public class Program
 {
 // Hello World! Sample Method
 public void Hello()
 {
 WriteLine("Hello, World!");
 }
 }
}

When you run the application, you can see a tree of the syntax node types shown in the following table. A SyntaxNode enables you to walk through the hierarchy and also access the parent node, ancestors, and descendants. When you use the Span property, which returns a TextSpan struct, the position information within the source code is returned. The following table shows the hierarchy level in the first column (2 is a child node of 1; 3 is a child node of 2); the second column gives the type of the node class; the third column lists the content of the node (if the content is longer, an ellipsis is shown); and the fourth column gives the Start and End positions of the Span property. With this tree, you can see the CompilationUnitSyntax that spans the complete source code. Child nodes of this node are the UsingDirectiveSyntax and the NamespaceDeclarationSyntax. The UsingDirectiveSyntax consists of the using declaration to import the static System.Console class. The child node of the UsingDirectiveSyntax is the QualifiedNameSyntax that itself contains two IdentifierNameSyntax nodes:

	Hierarchy Level
	Syntax Node Type
	Content
	Span—Start, End

	1
	CompilationUnitSyntax
	using static System.Console; . . .
	0.273

	2
	UsingDirectiveSyntax
	using static System.Console;
	0.28

	3
	QualifiedNameSyntax
	System.Console
	13.27

	4
	IdentifierNameSyntax
	System
	13.19

	4
	IdentifierNameSyntax
	Console
	20.27

	2
	NamespaceDeclarationSyntax
	namespace SyntaxTreeSample. . .
	32.271

	3
	IdentifierNameSyntax
	SyntaxTreeSample
	42.58

	3
	ClassDeclarationSyntax
	public class Program . . .
	103.268

	4
	MethodDeclarationSyntax
	public void Hello. . .
	179.261

	5
	PredefinedTypeSyntax
	void
	186.190

	5
	ParameterListSyntax
	()
	196.198

	5
	BlockSyntax
	{ WriteLine(. . .
	208.261

	6
	ExpressionStatementSyntax
	WriteLine("Hello,. . .
	223.250

	7
	InvocationExpressionSyntax
	WriteLine("Hello. . .
	223.249

	8
	IdentifierNameSyntax
	WriteLine
	223.232

	8
	ArgumentListSyntax
	("Hello, World!")
	232.249

	9
	ArgumentSyntax
	"Hello, World!"
	233.248

	10
	LiteralExpressionSyntax
	"Hello, World!"
	233.248

The syntax nodes are not all that’s needed for a program. A program also needs tokens. For example, the NamespaceDeclarationSyntax of the sample program contains three tokens: namespace, {, and }. The child node of the NamspaceDeclarationSyntax, the IdentifierNameSyntax, has a token with the value SyntaxTreeSample, the name of the namespace. Access modifiers are also defined with tokens. The ClassDeclarationSyntax defines five tokens: public, class, Program, {, and }.

To show the tokens in the WPF application, the SyntaxTokenViewModel class is defined that wraps a SyntaxToken (code file WPFSyntaxTree/ViewModels/SyntaxTokenViewModel.cs):

public class SyntaxTokenViewModel
{
 public SyntaxTokenViewModel(SyntaxToken syntaxToken)
 {
 SyntaxToken = syntaxToken;
 }

 public SyntaxToken SyntaxToken { get; }

 public string TypeName => SyntaxToken.GetType().Name;

 public override string ToString() => SyntaxToken.ToString();
}

For compiling the program, you need nodes and tokens. To rebuild the source file, you need something more: trivia. Trivia defines whitespace and also comments. To show the trivia, the SyntaxTriviaViewModel is defined (code file WPFSyntaxTree/ViewModels/SyntaxTriviaViewModel.cs):

public enum TriviaKind
{
 Leading,
 Trailing,
 Structured,
 Annotated
}

public class SyntaxTriviaViewModel
{
 public SyntaxTriviaViewModel(TriviaKind kind, SyntaxTrivia syntaxTrivia)
 {
 TriviaKind = kind;
 SyntaxTrivia = syntaxTrivia;
 }

 public SyntaxTrivia SyntaxTrivia { get; }
 public TriviaKind TriviaKind { get; }

 public override string ToString() =>
 $"{TriviaKind}, Start: {SyntaxTrivia.Span.Start}," +
 $"Length: {SyntaxTrivia.Span.Length}: {SyntaxTrivia}";
}

When you run the application and open the file HelloWorld.cs, you can see the node tree with tokens and trivia as shown in Figure 18.4. With trivia you often see white space, but you also see comments.

[image: Screenshot shows a Compiler platform window displaying Syntax Tree Sample with text fieldbox for Tokens and Trivia along with Type Name, Span and Text and Load button.]

Figure 18.4

Using Query Nodes

Besides walking through the nodes by accessing children nodes, you can also create queries to find specific nodes. Queries make use of Language Integrated Query (LINQ).

NOTE LINQ is explained in Chapter 13, “Language Integrated Query.”

The sample application is a console application. To create a console application that has the NuGet packages for Microsoft.CodeAnalysis included, you can create a project from the Extensibility category: Stand-Alone Code Analysis Tool. The sample project for showing queries is named SyntaxQuery.

A guideline of .NET defines that public or protected members should start with an uppercase letter. The sample application queries all methods and properties of a source file and writes them to the console if they do not start with an uppercase letter. To see a result that shows that type of output, the following nonconforming members are added to the Program class. From the following code snippet, the method foobar should be ignored as this method doesn’t have a public access modifier, but the foo method and the bar property should match (code file SyntaxQuery/Program.cs):

public void foo()
{
}

private void foobar()
{
}

public int bar { get; set; }

Similar to the way the Syntax API was used before, the root node is retrieved using the classes CSharpSyntaxTree and SyntaxTree:

static async Task CheckLowercaseMembers()
{
 string code = File.ReadAllText("../../Program.cs");
 SyntaxTree tree = CSharpSyntaxTree.ParseText(code);
 SyntaxNode root = await tree.GetRootAsync();
 // etc.

To get all the nodes in the tree that follow the root node, the SyntaxNode class defines the method DescendantNodes. This returns all the children of the node and the children’s children. The method ChildNodes that has been used in the earlier example returns only the direct children. The resulting nodes are filtered with the OfType method to return only the nodes of type MethodDeclarationSyntax. MethodDeclarationSyntax is a class that derives from SyntaxNode and represents a node that is a method in the tree. You can use the previous sample WPFSyntaxTree to see all the node types for existing source code. The first Where method defines the next filter. Here, the identifier of the method (that’s the method name) is taken, and just the first character is retrieved. The method char.IsLower is used to determine whether the first character is lowercase. The filter returns the method node only if this expression is true. This check for lowercase characters doesn’t fulfill all the requirements we have. Also, only public members should be returned. This filter is defined by the next Where method. To check the public access modifier, the MethodDeclarationSyntax defines a Modifiers property. This property returns all the modifiers of the method. The Where method checks whether the public modifier belongs to the list of modifiers. The methods where all the conditions apply are written to the console.

// etc.
 var methods = root.DescendantNodes()
 .OfType<MethodDeclarationSyntax>()
 .Where(m => char.IsLower(m.Identifier.ValueText.First()))
 .Where(m => m.Modifiers.Select(t => t.Value).Contains("public"));

 WriteLine("Public methods with lowercase first character:");

 foreach (var m in methods)
 {
 WriteLine(m.Identifier.ValueText);
 }
 // etc.

Other methods to retrieve children and parent elements are the following:

	DescendantNodesAndSelf returns the node invoking the method in addition to all descendants.

	DescendantTokens returns all the descendant tokens

	DescendantTrivia returns trivia information

	Ancestors retrieves the parent and parent’s parent nodes

Several methods are a combination of the previously listed methods, such as DescendantNodesAndTokensAndSelf. You can use these methods with every SyntaxNode in the tree.

To retrieve the properties with the same conditions, the syntax is similar. You just need to get the syntax nodes of type PropertyDescriptionSyntax:

// etc.
 var properties = root.DescendantNodes()
 .OfType<PropertyDeclarationSyntax>()
 .Where(p => char.IsLower(p.Identifier.ValueText.First()))
 .Where(p => p.Modifiers.Select(t => t.Value).Contains("public"));

 WriteLine("Public properties with lowercase first character:");
 foreach (var p in properties)
 {
 WriteLine(p.Identifier.ValueText);
 }
}

When you run the application, you see the following result and change the source files accordingly to fulfill the guidelines:

Public methods with lowercase first character:
foo
Public properties with lowercase first character:
bar

Walking Through Nodes

Besides doing queries, there’s another way to efficiently filter source code trees based on specific node types: syntax walkers. A syntax walker visits all nodes within a syntax tree. This means while parsing the syntax tree, different VisitXXX methods of the syntax walker are invoked.

The next sample defines a syntax walker that retrieves all using directives to show a list of all needed imports for all C# files from a specified directory.

You create a syntax walker by creating a class that derives from CSharpSyntaxWalker. The class UsingCollector overrides the method VisitUsingDirective to collect all using directives from a syntax tree. The UsingDirectiveSyntaxNode that is passed to this method is added to a collection (code file SyntaxWalker/UsingCollector.cs):

class UsingCollector: CSharpSyntaxWalker
{
 private readonly List<UsingDirectiveSyntax> _usingDirectives =
 new List<UsingDirectiveSyntax>();
 public IEnumerable<UsingDirectiveSyntax> UsingDirectives =>
 _usingDirectives;

 public override void VisitUsingDirective(UsingDirectiveSyntax node)
 {
 _usingDirectives.Add(node);
 }
}

The class CSharpSyntaxWalker defines virtual methods for many different kind of nodes that can be overwritten. You can use VisitToken and VisitTrivia to retrieve token and trivia information. You can also collect information about specific source code statements, such as VisitWhileStatement, VisitWhereClause, VisitTryStatement, VisitThrowStatement, VisitThisExpression, VisitSwitchStatement, and many more.

The Main method checks for a program argument that contains the directory for the C# source files that should be checked for the using declarations (code file SyntaxWalker/Program.cs):

static void Main(string[] args)
{
 if (args.Length != 1)
 {
 ShowUsage();
 return;
 }

 string path = args[0];
 if (!Directory.Exists(path))
 {
 ShowUsage();
 return;
 }
}

static void ShowUsage()
{
 WriteLine("Usage: SyntaxWalker directory");
}

The method ProcessUsingsAsync does all the processing. First, a UsingCollector instance is created. To iterate through all the files from the passed directory, the Directory.EnumerateFiles method is used with the search pattern *.cs to retrieve all C# files. However, automatically generated C# files should be excluded—that’s why files with the file extensions .g.i.cs and .g.cs are filtered out using the Where method. Within the following foreach statement, the syntax tree is built and passed to the Visit method of the UsingCollector instance:

static async Task ProcessUsingsAsync(string path)
{
 const string searchPattern ="*.cs";
 var collector = new UsingCollector();

 IEnumerable<string> fileNames =
 Directory.EnumerateFiles(path, searchPattern, SearchOption.AllDirectories)
 .Where(fileName => !fileName.EndsWith(".g.i.cs") &&
 !fileName.EndsWith(".g.cs"));
 foreach (var fileName in fileNames)
 {
 string code = File.ReadAllText(fileName);
 SyntaxTree tree = CSharpSyntaxTree.ParseText(code);
 SyntaxNode root = await tree.GetRootAsync();
 collector.Visit(root);
 }
 // etc.

After the Visit method is called, the using directives are collected within the UsingDirectives property of the UsingCollector. Before the using directives are written to the console, they need to be sorted, and duplicates that can be found in multiple source files need to be removed. Sorting the using directives has some special issues that are solved with the following LINQ query: using static declarations should be put last, and the semicolon that follows the using declaration should not be used to define the sort order:

// etc.
 var usings = collector.UsingDirectives;
 var usingStatics =
 usings.Select(n => n.ToString())
 .Distinct()
 .Where(u => u.StartsWith("using static"))
 .OrderBy(u => u);
 var orderedUsings =
 usings.Select(n => n.ToString())
 .Distinct().Except(usingStatics)
 .OrderBy(u => u.Substring(0, u.Length—1));
 foreach (var item in orderedUsings.Union(usingStatics))
 {
 WriteLine(item);
 }
}

When you run the application that passes the directory of the previously created WPF Syntax Tree application, the following using declarations are shown:

using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.Win32;
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.IO;
using System.Linq;
using System.Reflection;
using System.Resources;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Windows;
using WPFSyntaxTree.ViewModels;
using static System.Console;

Semantics Analysis

The Syntax API is very powerful for getting information about the structure of a source file. However, it doesn’t give information about whether the source file compiles, the type of a variable, and so on. To get this information, you need to compile the program, which requires information about assembly references, compiler options, and a set of source files. Using this information is known as semantics analysis. Here, you can use the Symbol and Binding APIs. These APIs give information about names and expressions that refer to symbols (types, namespaces, members, variables).

The sample console application gives semantics about the following Hello, World! program that not only defines the method Hello, but also a variable named hello (code file SemanticsCompilation/HelloWorld.cs):

using static System.Console;

namespace SemanticsCompilation
{
 // Hello World! Sample Program
 class Program
 {
 // Hello World! Sample Method with a variable
 public void Hello()
 {
 string hello ="Hello, World!";
 WriteLine(hello);
 }

 static void Main()
 {
 var p = new Program();
 p.Hello();
 }
 }
}

First, the nodes for the Hello method and the hello variable are retrieved from the tree using the Syntax API. Using LINQ queries, the MethodDeclarationSyntax for the Hello method and the VariableDeclarationSyntax for the hello variable are retrieved from the tree (code file SemanticsCompilation/Program.cs):

string source = File.ReadAllText("HelloWorld.cs");
SyntaxTree tree = CSharpSyntaxTree.ParseText(source);
var root = (await tree.GetRootAsync()) as CompilationUnitSyntax;

// get Hello method
MethodDeclarationSyntax helloMethod = root.DescendantNodes()
 .OfType<MethodDeclarationSyntax>()
 .Where(m => m.Identifier.ValueText =="Hello")
 .FirstOrDefault();

// get hello variable
VariableDeclaratorSyntax helloVariable = root.DescendantNodes()
 .OfType<VariableDeclaratorSyntax>()
 .Where(v => v.Identifier.ValueText =="hello")
 .FirstOrDefault();

Compilation

To get semantic information, you need to compile the code. You can create a compilation that invokes the static Create method of the CSharpCompilation class. This method returns a CSharpCompilation instance that represents compiled code. A parameter that is required is the name of the assembly that is generated. Optional parameters are syntax trees, assembly references, and compiler options. You can also add this information by invoking methods. The sample code adds an assembly reference by invoking the AddReferences method and the syntax tree by invoking the method AddSyntaxTrees. You could configure compiler options by invoking the method WithOptions by passing an object of type CompilationOptions, but here only the default options are used (code file SemanticsCompilation/Program.cs):

var compilation = CSharpCompilation.Create("HelloWorld")
 .AddReferences(
 MetadataReference.CreateFromFile(
 typeof(object).Assembly.Location))
 .AddSyntaxTrees(tree);

There’s a difference between the actual compiler and the compiler building that was taught in universities not many years ago: It’s that a program isn’t compiled only once before it is executed; the compilation needs to take place multiple times. By adding some characters in the code editor, compilation needs to show squiggles under the incorrect code if compilation goes wrong. This behavior occurs because of the new compilation process. Using the CSharpCompilation object, small changes could be done where the cache information from the previous compilation can be used. The compiler is built for this process in mind to be high performing with this functionality.

You can add syntax trees and references using AddReferences and AddSyntaxTrees; you remove them using RemoveReferences and RemoveSyntaxTrees. To produce a compilation binary, you can invoke the Emit method:

EmitResult result = compilation.Emit("HelloWorld.exe");

Using the compilation, diagnostic information of the compilation process can be retrieved. The compilation object also gives some information about symbols. For example, the symbol for the method Hello can be retrieved:

ISymbol helloVariableSymbol1 =
 compilation.GetSymbolsWithName(name => name =="Hello").FirstOrDefault();

Semantic Model

For making an analysis of the program and accessing symbols with binding to nodes from the tree, you can create a SemanticModel object to invoke the GetSemanticModel method from the CSharpCompilation object (code file SemanticsCompilation/Program.cs):

SemanticModel model = compilation.GetSemanticModel(tree);

Using the semantic model, you can now analyze control and data flow by passing SyntaxNode nodes to the methods AnalyzeControlFlow and AnalyzeDataFlow of the SemanticModel class. The SemanticModel class also enables you to get information about expressions. Associating nodes from the tree with symbols is the next task in the sample program. This is called binding. The methods GetSymbol and GetDeclaredSymbol return symbols of nodes. With the following code snippet, symbols are retrieved from the nodes helloVariable and helloMethod:

ISymbol helloVariableSymbol = model.GetDeclaredSymbol(helloVariable);
IMethodSymbol helloMethodSymbol = model.GetDeclaredSymbol(helloMethod);

ShowSymbol(helloVariableSymbol);
ShowSymbol(helloMethodSymbol);

To see what information can be accessed from symbols, the method ShowSymbol is defined to access the Name, Kind, ContainingSymbol, and ContainingType properties. With an IMethodSymbol, also the MethodKind property is shown:

private static void ShowSymbol(ISymbol symbol)
{
 WriteLine(symbol.Name);
 WriteLine(symbol.Kind);
 WriteLine(symbol.ContainingSymbol);
 WriteLine(symbol.ContainingType);
 WriteLine((symbol as IMethodSymbol)?.MethodKind);
 WriteLine();
}

When you run the program, you can see that the hello variable is a Local variable, and the Hello method is a Method. Some of the other symbol kinds are Field, Event, Namespace, and Parameter. The containing symbol of the hello variable is the Hello method; with the Hello method, it’s the Program class. The containing type for both checked symbols is Program. The symbol for the Hello method also indicates that it’s an Ordinary method. Other values of the MethodKind enumeration are Constructor, Conversion, EventAdd, EventRemove, PropertyGet, and PropertySet:

hello
Local
SemanticsCompilation.Program.Hello()
SemanticsCompilation.Program

Hello
Method
SemanticsCompilation.Program
SemanticsCompilation.Program
Ordinary

ode Transformation

After walking through the code tree and getting a glimpse of semantic analysis, it’s time to make some code changes. An important aspect with code trees is that they are immutable, thus they cannot be changed. Instead, you use methods to change nodes in the tree, which always returns new nodes and leaves the original ones unchanged.

NOTE The code trees are stored within immutable collection classes. These collections are discussed in Chapter 12, “Special Collections.”

Creating New Trees

The following code snippet defines a Sample class with methods that have a lowercase name. The public methods of this class should be changed to start with an uppercase character (code file TransformMethods/Sample.cs):

namespace TransformMethods
{
 class Sample
 {
 public void foo()
 {
 }

 public void bar()
 {
 }

 private void fooBar()
 {
 }
 }
}

The Main method of the console application reads this file and invokes the TransformMethodToUppercaseAsync (code file TransformMethods/Program.cs):

static void Main()
{
 string code = File.ReadAllText("Sample.cs");
 TransformMethodToUppercaseAsync(code).Wait();
}

The TransformMethodToUppercaseAsync first gets all public nodes in the tree of type MethodDeclarationSyntax and have the first character lowercase. All the nodes are added to a collection named methods. (This query was previously discussed in the section “Query Nodes.”)

static async Task TransformMethodToUppercaseAsync(string code)
{
 SyntaxTree tree = CSharpSyntaxTree.ParseText(code);
 SyntaxNode root = await tree.GetRootAsync();

 var methods = root.DescendantNodes()
 .OfType<MethodDeclarationSyntax>()
 .Where(m => char.IsLower(m.Identifier.ValueText.First()))
 .Where(m => m.Modifiers.Select(t => t.Value).Contains("public")).ToList();
 // etc.
}

The interesting part follows now. ReplaceNodes, a method of SyntaxNode, is invoked to replace all the MethodDeclarationSyntax nodes that are stored in the collection methods. To replace a single node, the SyntaxNode class defines the method ReplaceNode. For multiple nodes (as in this case), you can use the method ReplaceNodes. The first parameter receives all the original nodes that should be replaced. In the sample code, this is the list of MethodDeclarationSyntax nodes. The second parameter defines a delegate Func<TNode, TNode, SyntaxNode>. With the sample code, TNode is of type MethodDeclarationSyntax because the collection passed with the first parameter is of this type. The implementation of the delegate is done as a lambda expression receiving the original node as the first parameter and the new node as the second parameter. With the implementation of the lambda expression, the original method name is accessed via oldMethod.Identifier.ValueText. With this name, the first character is changed to uppercase and written to the variable newName.

For creating new nodes and tokens, you can use the class SyntaxFactory. SyntaxFactory is a static class that defines members to create different kinds of nodes, tokens, and trivia. Here, a new method name—an identifier—is needed. To create an identifier, you use the static method Identifier. When you pass the new method name a SyntaxToken is returned. Now it’s possible to use the identifier with the WithIdentifier method. WithIdentifier is a method of the MethodDeclarationSyntax for returning a new MethodDeclarationSyntax passing the change. Finally, this new MethodDeclarationSyntax node is returned from the lambda expression. In turn, the ReplaceNodes method that is called with the root object returns a new immutable collection with all the changes:

static async Task TransformMethodToUppercaseAsync(string code)
{
 // etc.
 root = root.ReplaceNodes(methods, (oldMethod, newMethod) =>
 {
 string newName = char.ToUpperInvariant(oldMethod.Identifier.ValueText[0]) +
 oldMethod.Identifier.ValueText.Substring(1);
 return newMethod.WithIdentifier(SyntaxFactory.Identifier(newName));
 });

 WriteLine();
 WriteLine(root.ToString());
}

When you run the application, you can see that the public methods changed but the private method stays unchanged:

namespace TransformMethods
{
 class Sample
 {
 public void Foo()
 {
 }

 public void Bar()
 {
 }

 private void fooBar()
 {
 }
 }
}

For transforming source code, the most important parts are the SyntaxFactory, WithXX, and ReplaceXX methods.

Because the nodes are immutable, and thus properties of the nodes cannot be changed, you need the class SyntaxFactory. This class enables you to create nodes, tokens, and trivia. For example:

	The method MethodDeclaration creates a new MethodDeclarationSyntax.

	The method Argument creates a new ArgumentSyntax.

	The method ForEachStatement creates a ForEachStatementSyntax.

You can use the objects created from the SyntaxFactory with methods to transform syntax nodes. For example, WithIdentifier creates a new node based on the existing node where the identifier is changed. With the sample application, WithIdentifier is invoked with a MethodDeclarationSyntax object. A few examples of other WithXX methods include the following:

	WithModifiers for changing access modifiers

	WithParameterList for changing the parameters of a method

	WithReturnType changing the return type

	WithBody for changing the implementation of a method

All the WithXX methods can only change the direct children of a node. ReplaceXX methods can change all descendant nodes. ReplaceNode replaces a single node; ReplaceNodes (as used with the sample app) replaces a list of nodes. Other ReplaceXX methods are ReplaceSyntax, ReplaceToken, and ReplaceTrivia.

Working with Syntax Rewriter

As you’ve walked through syntax nodes, you’ve seen the CSharpSyntaxWalker as an efficient way to read specific nodes. When you’re changing nodes, there’s a similar option: a class that derives from CSharpSyntaxRewriter. Doing rewrites this way is an efficient way to build up new syntax trees based on existing ones by changing nodes.

The following code snippet is taken for the conversion. The class Sample defines full properties Text and X that should be converted to auto-implemented properties. The other members of the class shouldn’t be changed (code file SyntaxRewriter/Sample.cs):

namespace SyntaxRewriter
{
 class Sample
 {
 // these properties can be converted to auto-implmenented properties
 private int _x;
 public int X
 {
 get { return _x; }
 set { _x = value; }
 }

 private string _text;
 public string Text
 {
 get { return _text; }
 set { _text = value; }
 }

 // this is already a auto-implemented property
 public int Y { get; set; }

 // this shouldn't be converted
 private int _z = 3;
 public int Z
 {
 get { return _z; }
 }
 }
}

To change syntax nodes, the class AutoPropertyRewriter derives from the base class CSharpSyntaxRewriter. For accessing symbol and binding information within the rewriter, the SemanticModel needs to be passed to the constructor of the rewriter (code file SyntaxRewriter/AutoPropertyRewriter.cs):

class AutoPropertyRewriter: CSharpSyntaxRewriter
{
 private readonly SemanticModel _semanticModel;

 public AutoPropertyRewriter(SemanticModel semanticModel)
 {
 _semanticModel = semanticModel;
 }
 // etc.

The base class CSharpSyntaxRewriter defines multiple virtual VisitXX methods for different syntax node types. Here, the method VisitPropertyDeclaration is overridden. This method is invoked when the rewriter finds a property in the tree. Within such a method you can change this node (including its children) to influence the outcome of the rewrite. The implementation of this method first checks whether the property is one that should be changed by invoking the HasBothAccessors helper method. If this method returns true, the property is converted by calling ConvertToAutoProperty, and returning the converted property with the method. In case the property does not match, it is returned as it is to leave it in the tree:

public override SyntaxNode VisitPropertyDeclaration(
 PropertyDeclarationSyntax node)
 {
 if (HasBothAccessors(node))
 {
 // etc.
 PropertyDeclarationSyntax property = ConvertToAutoProperty(node)
 .WithAdditionalAnnotations(Formatter.Annotation);
 return property;
 }
 return node;
 }

Another class, CSharpSyntaxRewriter, offers close to 200 methods that can be overridden. Examples are VisitClassDeclaration for changing class declarations, and VisitTryStatement, VisitCatchClause, and VisitCatchDeclaration, VisitCatchFilterClause for dealing with exception handling. With the sample code, you are—for now—only interested in changing properties; thus the method VisitPropertyDeclaration is overridden.

The method HasBothAccessors verifies whether the property declaration contains both a get and a set accessor. This method also checks the body of these accessors and that the body defines only a single statement. In case more than one statement is used, the property cannot be converted to an auto-implemented property:

private static bool HasBothAccessors(BasePropertyDeclarationSyntax property)
{
 var accessors = property.AccessorList.Accessors;
 var getter = accessors.FirstOrDefault(
 ad => ad.Kind() == SyntaxKind.GetAccessorDeclaration);
 var setter = accessors.FirstOrDefault(
 ad => ad.Kind() == SyntaxKind.SetAccessorDeclaration);

 return getter?.Body?.Statements.Count == 1 &&
 setter?.Body?.Statements.Count == 1;
}

The method ConvertToAutoProperty uses the WithAccessorList method to change the children of the propertyDeclaration. The accessor list itself, as well as the children of the accessor list, are created with the help of the SyntaxFactory class. SyntaxFactory.AccessorDeclaration creates get and set accessors passing the SyntaxKind.GetAccessorDeclaration and SyntaxKind.SetAccessorDeclaration enumeration values:

private PropertyDeclarationSyntax ConvertToAutoProperty(
 PropertyDeclarationSyntax propertyDeclaration)
{
 var newProperty = propertyDeclaration
 .WithAccessorList(
 SyntaxFactory.AccessorList(
 SyntaxFactory.List(new[]
 {
 SyntaxFactory.AccessorDeclaration(SyntaxKind.GetAccessorDeclaration)
 .WithSemicolonToken(
 SyntaxFactory.Token(SyntaxKind.SemicolonToken)),
 SyntaxFactory.AccessorDeclaration(SyntaxKind.SetAccessorDeclaration)
 .WithSemicolonToken(
 SyntaxFactory.Token(SyntaxKind.SemicolonToken))
 })));
 return newProperty;
}

In the Program class, the AutoPropertyRewriter is instantiated after retrieving the semantic model. You start the rewrite using the tree by invoking the Visit method (code file SyntaxRewriter/Program.cs):

static async Task ProcessAsync(string code)
{
 SyntaxTree tree = CSharpSyntaxTree.ParseText(code);
 var compilation = CSharpCompilation.Create("Sample")
 .AddReferences(MetadataReference.CreateFromFile(
 typeof(object).Assembly.Location))
 .AddSyntaxTrees(tree);

 SemanticModel semanticModel = compilation.GetSemanticModel(tree);

 var propertyRewriter = new AutoPropertyRewriter(semanticModel);

 SyntaxNode root = await tree.GetRootAsync().ConfigureAwait(false);
 SyntaxNode rootWithAutoProperties = propertyRewriter.Visit(root);
 // etc.
}

When you run the program and check the new code, the full properties are converted to auto-implemented properties. However, the fields from the full properties are still in the code tree. You need to remove them. However, with the method VisitPropertyDeclaration only the property can be changed; the field cannot. With an overridden method of the CSharpSyntaxRewriter class, only the node received and child elements of the node can be changed; it’s not possible to change other nodes in the hierarchy.

You can change properties with the method VisitPropertyDeclaration, and you can change fields with the method VisitFieldDeclaration. The methods of the CSharpSyntaxRewriter are invoked in a top-down manner. VisitNamespaceDeclaration is invoked before VisitClassDeclaration, and then the VisitXX methods of the members of the class follow. This way it is possible to change nodes and descendants, but you can’t change ancestors or siblings within the VisitXX method. When fields and properties are in the same hierarchy level of the syntax tree, they are siblings.

Whether the method VisitFieldDeclaration or VisitPropertyDeclaration is called first depends on the order within the code. The field of a property can be declared before or after the property, so there’s no guarantee of the order that these methods will be called.

What you can do, though, is access the backing field from the property and add it to a list that is accessible from the AutoPropertyRewriter. The backing field is retrieved using the helper method GetBackingFieldFromGetter, which makes use of the semantic model to access the symbol. With this symbol, a syntax reference to a FieldDeclarationSyntax is retrieved, and information about this field is added to the _fieldsToRemove collection (code file SyntaxRewriter/AutoPropertyRewriter.cs):

private readonly List<string> _fieldsToRemove = new List<string>();
 public IEnumerable<string> FieldsToRemove => _fieldsToRemove;

 public override SyntaxNode VisitPropertyDeclaration(
 PropertyDeclarationSyntax node)
 {
 if (HasBothAccessors(node))
 {
 IFieldSymbol backingField = GetBackingFieldFromGetter(
 node.AccessorList.Accessors.Single(
 ad => ad.Kind() == SyntaxKind.GetAccessorDeclaration));
 SyntaxNode fieldDeclaration = backingField.DeclaringSyntaxReferences
 .First()
 .GetSyntax()
 .Ancestors()
 .Where(a => a is FieldDeclarationSyntax)
 .FirstOrDefault();
 _fieldsToRemove.Add((fieldDeclaration as FieldDeclarationSyntax)
 ?.GetText().ToString());
 PropertyDeclarationSyntax property = ConvertToAutoProperty(node)
 .WithAdditionalAnnotations(Formatter.Annotation);
 return property;
 }
 return node;
 }

The helper method GetBackingFieldFromGetter uses the return statement of the get accessor and the semantic model to get the symbol for the field:

private IFieldSymbol GetBackingFieldFromGetter(
 AccessorDeclarationSyntax getter)
{
 if (getter.Body?.Statements.Count != 1) return null;

 var statement = getter.Body.Statements.Single() as ReturnStatementSyntax;
 if (statement?.Expression == null) return null;
 return _semanticModel.GetSymbolInfo(statement.Expression).Symbol
 as IFieldSymbol;
}

Now, you can create another syntax rewriter that removes the backing field. The RemoveBackingFieldRewriter is a syntax rewriter that removes all fields that are passed to the constructor. The VisitFieldDeclaration override checks the received node if it is contained in the field collection that is passed to the constructor, and returns null for the fields that match (code file SyntaxRewriter/RemoveBackingFieldRewriter.cs):

class RemoveBackingFieldRewriter: CSharpSyntaxRewriter
{
 private IEnumerable<string> _fieldsToRemove;
 private readonly SemanticModel _semanticModel;
 public RemoveBackingFieldRewriter(SemanticModel semanticModel,
 params string[] fieldsToRemove)
 {
 _semanticModel = semanticModel;
 _fieldsToRemove = fieldsToRemove;
 }

 public override SyntaxNode VisitFieldDeclaration(FieldDeclarationSyntax node)
 {
 if (_fieldsToRemove.Contains(node.GetText().ToString()))
 {
 return null;
 }
 return base.VisitFieldDeclaration(node);
 }
}

Now you can start another phase to rewrite the syntax tree in the ProcessAsync method. After the visit of the property rewriter is done, a new compilation is started, passing the updated syntax tree to invoke the field rewriter (code file SyntaxRewriter/Program.cs):

SyntaxTree tree = CSharpSyntaxTree.ParseText(code);
var compilation = CSharpCompilation.Create("Sample")
 .AddReferences(MetadataReference.CreateFromFile(
 typeof(object).Assembly.Location))
 .AddSyntaxTrees(tree);

SemanticModel semanticModel = compilation.GetSemanticModel(tree);

var propertyRewriter = new AutoPropertyRewriter(semanticModel);

SyntaxNode root = await tree.GetRootAsync().ConfigureAwait(false);
SyntaxNode rootWithAutoProperties = propertyRewriter.Visit(root);

compilation = compilation.RemoveAllSyntaxTrees()
 .AddSyntaxTrees(rootWithAutoProperties.SyntaxTree);
semanticModel = compilation.GetSemanticModel(
 rootWithAutoProperties.SyntaxTree);
var fieldRewriter = new RemoveBackingFieldRewriter(semanticModel,
 propertyRewriter.FieldsToRemove.ToArray());
SyntaxNode rootWithFieldsRemoved = fieldRewriter.Visit(rootWithAutoProperties);
WriteLine(rootWithFieldsRemoved);

When you run the program now, the simple full properties are changed to auto-implemented properties, and the backing fields for the properties are removed.

NOTE Be aware that this program is just a sample program to show you how to use the .NET compiler platform. This conversion matches full properties that you probably don’t like to convert to an auto-implemented property. Before using this program with your code, check the result of the conversion and probably add some more checks to match the properties you want to convert.

Visual Studio Code Refactoring

Let’s get into Visual Studio extensions with code transformations and syntax analysis. You will work with the editor and select Quick Actions within the context menu to add your own features to change code. This integration requires the Workspace API defined with the assembly Microsoft.CodeAnalysis.Workspaces in addition to the other APIs you’ve already used in this chapter.

Previously, you’ve seen how to change a full property to an auto-implemented property using the CSharpSyntaxRewriter. Sometimes the reverse is needed: You need to convert an auto-implemented property to a full property. A property to support notifications via the interface INotifyPropertyChanged would be a useful implementation of such a scenario. The sample code in this section allows selecting one or more multiple auto-implemented properties within the Visual Studio editor and converting them to full properties.

The project type that you start with is a Code Refactoring (VSIX) project template, and the name for this project is PropertyCodeRefactoring. The project template creates two projects: the project PropertyCodeRefactoring.Vsix to create a VSIX package, and a portable library named ProjectCodeRefactoring.

VSIX Packages

For integration with Visual Studio, you need to create a VSIX package. Since Visual Studio 2010, Visual Studio has offered integration via add-ins in the form of VSIX packages. AVSIX is a zip file containing the binaries of the add-in, a manifest file with description about the add-in, and images. After you have installed the add-ins, you can find them in the directory %LocalAppData%\Microsoft\VisualStudio\14.0\Extensions\<Extension>.

NOTE Visual Studio add-ins are based on the Managed Extensibility Framework. This framework is explained in Chapter 26, “Composition.”

Selecting the Project Properties of the VSIX project, the Debug setting (see Figure 18.5) is configured to start Visual Studio on debugging with the option /rootsuffix Roslyn. If you start another instance of Visual Studio debugging, the VSIX project enables you to step into the code refactoring source code while using the source code editor in the second Visual Studio instance.

[image: Screenshot shows a Compiler platform window with highlighted Debug tab displaying Start Action, Start Options and Enable Debuggers. Radio buttons, text fields and checkboxes are provided.]

Figure 18.5

Another setting that’s important for VSIX files is the VSIX option with the Project Properties (see Figure 18.6). To debug VSIX files, you need to create a zip file that’s loaded from the second instance of Visual Studio. If you select the options Create VSIX Container During Build and Deploy VSIX Content to Experimental Instance for Debugging, you’re not required to create and deploy a VSIX package manually every time a new build is done. Instead, a new build is created automatically for debugging purposes.

[image: Screenshot shows a Compiler platform window with highlighted VSIX tab displaying dropdowns for Configuration and Platform along with checkboxes.]

Figure 18.6

Now there are more things that need to be done with VSIX projects. The project contains the file source .extension.vsixmanifest. This file is the description of the add-in and needs to be configured. When you open this file from Visual Studio, a special designer for configuring Metadata, Install Targets, Assets, and Dependencies also opens. Metadata configuration is shown in Figure 18.7. With these settings you define the description, license, release notes, and images that should show up. When you configure Install Targets, you define your Visual Studio edition and what add-in should be available. With Visual Studio 2015, you can define the add-in to be available only with the Enterprise edition or also with the Professional and Community editions. You can also define that the add-in should be available with the Visual Studio shell. The shell of Visual Studio is used with several projects from Microsoft or third parties.

[image: Screenshot shows a Compiler platform window with highlighted Metadata tab along with fields for Product Name, Product Id, Author, Version, description, Language et cetera along with Browse button.]

Figure 18.7

The Assets settings define what files should be included with the VSIX project. In case you’re adding images and readme files with the description of the add-in, you need to add these files to the Assets. One file that needs to be added to the Assets in any case is the binary created from the other project (see Figure 18.8). With the code refactoring provider building, you need to set the type to a Microsoft.VisualStudio.MefComponent. The last settings of the designer define Dependencies that are required to be installed on the target system before the add-in can be installed—for example, .NET Framework 4.6.

[image: Screenshot shows a Compiler platform window with highlighted Assets tab along with fields for Product Name, Product Id, Author and Version along with New, Edit and Delete button.]

Figure 18.8

Code Refactoring Provider

Now that you’ve configured the VSIX package, let’s get into the source code. The generated class PropertyCodeRefactoringProvider makes use of the attribute ExportCodeRefactoringProvider. This is an attribute to define a MEF part that can be included with Visual Studio. The base class CodeRefactoringProvider is a class defined by the Workspace API in the assembly Microsoft.CodeAnalysis.Workspaces (code file PropertyCodeRefactoring/CodeRefactoringProvider.cs):

[ExportCodeRefactoringProvider(LanguageNames.CSharp,
 Name = nameof(PropertyCodeRefactoringProvider)), Shared]
 internal class PropertyCodeRefactoringProvider: CodeRefactoringProvider
 {
 // etc.
 }

The base class CodeRefactoringProvider defines the method ComputeRefactoringsAsync that is invoked when the user of the code editor starts Quick Actions in the context menu. Based on the selection of the user, with the implementation of this method, it needs to be decided whether the add-in should offer one of the options to allow code changes. The parameter CodeRefactoringContext makes it possible to access the user selection via the Span property and access the complete document via the Document property. With the implementation, the root node of the document and the selected node are retrieved:

public sealed override async Task ComputeRefactoringsAsync(
 CodeRefactoringContext context)
{
 SyntaxNode root = await context.Document.GetSyntaxRootAsync(
 context.CancellationToken).ConfigureAwait(false);

 SyntaxNode selectedNode = root.FindNode(context.Span);
 // etc.
}

The Document class that is returned from the Document property allows accessing the syntax root and tree nodes (GetSyntaxRootAsync, GetSyntaxTreeAsync), as well as the semantic model (GetSemanticModelAsync). You also have access to all the text changes (GetTextChangesAsync).

Only when an auto-implemented property is selected will the code refactoring provider continue its work. That’s why next the selectedNode is checked to see whether it is of type PropertyDeclarationSyntax. The check for PropertyDeclarationSyntax is not enough in that the code refactoring should only apply for auto-implemented properties. That’s the reason for the check by invoking the helper method IsAutoImplementedProperty:

public sealed override async Task ComputeRefactoringsAsync(
 CodeRefactoringContext context)
{
 // etc.
 var propertyDecl = selectedNode as PropertyDeclarationSyntax;
 if (propertyDecl == null || !IsAutoImplementedProperty(propertyDecl))
 {
 return;
 }
 // etc.
}

The implementation of the helper method IsAutoImplementedProperty verifies that both get and set accessors exist, and the body of these accessors is empty:

private bool IsAutoImplementedProperty(PropertyDeclarationSyntax propertyDecl)
{
 SyntaxList<AccessorDeclarationSyntax> accessors =
 propertyDecl.AccessorList.Accessors;

 AccessorDeclarationSyntax getter = accessors.FirstOrDefault(
 ad => ad.Kind() == SyntaxKind.GetAccessorDeclaration);
 AccessorDeclarationSyntax setter = accessors.FirstOrDefault(
 ad => ad.Kind() == SyntaxKind.SetAccessorDeclaration);
 if (getter == null || setter == null) return false;
 return getter.Body == null && setter.Body == null;
}

If the selected code consists of an auto-implemented property, a CodeAction is created, and this action is registered for code refactoring. A CodeAction is created by invoking the static Create method. The first parameter defines the title that is shown to the user. With this name, the user can apply the code action. The second parameter is a delegate that receives a CancellationToken and returns Task<Document>. When the user cancels the action, the CancellationToken gives information that cancellation is requested, and the task can stop. The Document that needs to be returned contains the changes from the code refactoring action. The delegate is implemented as a lambda expression to invoke the method ChangeToFullPropertyAsync.

public sealed override async Task ComputeRefactoringsAsync(
 CodeRefactoringContext context)
{
 // etc.
 var action = CodeAction.Create("Apply full property",
 cancellationToken =>
 ChangeToFullPropertyAsync(context.Document, propertyDecl,
 cancellationToken));

 context.RegisterRefactoring(action);
}

NOTE Cancellation tokens are explained in Chapter 15, “Asynchronous Programming.”

The method ChangeToFullPropertyAsync retrieves the semantic model and root node from the document, and it invokes the static method ImplementFullProperty with the class CodeGeneration:

private async Task<Document> ChangeToFullPropertyAsync(
 Document document, PropertyDeclarationSyntax propertyDecl,
 CancellationToken cancellationToken)
{
 SemanticModel model =
 await document.GetSemanticModelAsync(cancellationToken);
 var root = await document.GetSyntaxRootAsync(
 cancellationToken) as CompilationUnitSyntax;

 document = document.WithSyntaxRoot(
 CodeGeneration.ImplementFullProperty(root, model, propertyDecl,
 document.Project.Solution.Workspace));
 return document;
}

The code generation class needs to change the auto-implemented property to a full property and add a field as member of the class that needs to be used within the property implementation. To do this, the method ImplementFullProperty first retrieves all information needed to create the field and property: The type declaration is retrieved by accessing the ancestor element of the property that is going to change, and the type symbol of the property is retrieved with the help of the semantic model. The name of the backing field is created by changing the first letter of the property name to lowercase, and by prefixing it with an underscore. After that, the nodes propertyDecl and typeDecl are replaced by new versions by invoking the method ReplaceNodes. You’ve already seen the ReplaceNodes method in the “Code Transformation” section.

Here’s an interesting use of the ReplaceNodes method to replace nodes of different types. Here, a PropertyDeclarationSyntax and a TypeDeclarationSyntax node need to be replaced. The PropertyDeclarationSyntax node is the node that represents the property that is updated for the full property syntax. The TypeDeclarationSyntax node needs to be updated to add the variable field. It’s of great help that the method that is invoked by ReplaceNodes (as defined by the delegate parameter) receives both the original and the updated node. Remember, the trees used with the .NET Compiler Platform are immutable. When the first method that is invoked changes a node, the second method call needs to take the updates of the first method to create its own result. The method ExpandProperty and ExpandType are invoked to make the necessary changes for the property and type nodes (code file PropertyCodeRefactoring/CodeGeneration.cs):

internal static class CodeGeneration
{
 internal static CompilationUnitSyntax ImplementFullProperty
 CompilationUnitSyntax root,
 SemanticModel model,
 PropertyDeclarationSyntax propertyDecl,
 Workspace workspace)
 {
 TypeDeclarationSyntax typeDecl =
 propertyDecl.FirstAncestorOrSelf<TypeDeclarationSyntax>();
 string propertyName = propertyDecl.Identifier.ValueText;
 string backingFieldName =
 $"_{char.ToLower(propertyName[0])}{propertyName.Substring(1)}";
 ITypeSymbol propertyTypeSymbol =
 model.GetDeclaredSymbol(propertyDecl).Type;

 root = root.ReplaceNodes(
 new SyntaxNode[] { propertyDecl, typeDecl },
 (original, updated) =>
 original.IsKind(SyntaxKind.PropertyDeclaration)
 ? ExpandProperty((PropertyDeclarationSyntax)original,
 (PropertyDeclarationSyntax)updated, backingFieldName) as SyntaxNode
 : ExpandType((TypeDeclarationSyntax)original,
 (TypeDeclarationSyntax)updated, propertyTypeSymbol, backingFieldName,
 model, workspace) as SyntaxNode
);

 return root;
 }
 // etc.
}

The method ExpandProperty changes the get and set accessor using the WithAccessorList method by passing newly created accessor methods using curly braces (SyntaxFactory.Block) and adding statements to set and get the value within the block. The returned property declaration is annotated with a note that the property is updated. This annotation can be used on adding the field to the type to position the field just before the property:

private static SyntaxAnnotation UpdatedPropertyAnnotation =
 new SyntaxAnnotation("UpdatedProperty");

private static PropertyDeclarationSyntax ExpandProperty(
 PropertyDeclarationSyntax original,
 PropertyDeclarationSyntax updated,
 string backingFieldName)
{
 AccessorDeclarationSyntax getter =
 original.AccessorList.Accessors.FirstOrDefault(
 ad => ad.Kind() == SyntaxKind.GetAccessorDeclaration);
 var returnFieldStatement =
 SyntaxFactory.ParseStatement($"return {backingFieldName};");
 getter = getter
 .WithBody(SyntaxFactory.Block(
 SyntaxFactory.SingletonList(returnFieldStatement)))
 .WithSemicolonToken(default(SyntaxToken));

 AccessorDeclarationSyntax setter =
 original.AccessorList.Accessors.FirstOrDefault(
 ad => ad.Kind() == SyntaxKind.SetAccessorDeclaration);

 var setPropertyStatement = SyntaxFactory.ParseStatement(
 $"{backingFieldName} = value;");
 setter = setter.WithBody(SyntaxFactory.Block(SyntaxFactory.SingletonList(
 setPropertyStatement)))
 .WithSemicolonToken(default(SyntaxToken));

 updated = updated
 .WithAccessorList(SyntaxFactory.AccessorList(
 SyntaxFactory.List(new[] { getter, setter })))
 .WithAdditionalAnnotations(Formatter.Annotation)
 .WithAdditionalAnnotations(UpdatedPropertyAnnotation);
 return updated;
}

After adding the full property syntax, let’s add the field. The previously shown method ImplementFullProperty invokes the methods ExpandProperty and ExpandType. ExpandType calls the method WithBackingField on the TypeDeclarationSyntax object:

private static TypeDeclarationSyntax ExpandType(
 TypeDeclarationSyntax original,
 TypeDeclarationSyntax updated,
 ITypeSymbol typeSymbol,
 string backingFieldName,
 SemanticModel model,
 Workspace workspace)
{
 return updated.WithBackingField(typeSymbol, backingFieldName, model,
 workspace);
}

The method WithBackingField is an extension method that first looks for the annotation on the property to position the newly created field just before the property using the method InsertNodesBefore. The field itself is created by calling the helper method GenerateBackingField:

private static TypeDeclarationSyntax WithBackingField(
 this TypeDeclarationSyntax node,
 ITypeSymbol typeSymbol,
 string backingFieldName,
 SemanticModel model,
 Workspace workspace)
{
 PropertyDeclarationSyntax property =
 node.ChildNodes().Where(n =>
 n.HasAnnotation(UpdatedPropertyAnnotation))
 .FirstOrDefault() as PropertyDeclarationSyntax;
 if (property == null)
 {
 return null;
 }

 MemberDeclarationSyntax fieldDecl =
 GenerateBackingField(typeSymbol, backingFieldName, workspace);
 node = node.InsertNodesBefore(property, new[] { fieldDecl });
 return node;
}

The implementation of the GenerateBackingField method creates a FieldDeclarationSyntax node using the ParseMember helper method using the term _field_Type_ as a placeholder for the type. Within this field declaration, the type is replaced by the SyntaxNode type returned form the syntax generator:

private static MemberDeclarationSyntax GenerateBackingField(
 ITypeSymbol typeSymbol,
 string backingFieldName,
 Workspace workspace)
{
 var generator = SyntaxGenerator.GetGenerator(
 workspace, LanguageNames.CSharp);
 SyntaxNode type = generator.TypeExpression(typeSymbol);
 FieldDeclarationSyntax fieldDecl =
 ParseMember($"private _field_Type_ {backingFieldName};") as
 FieldDeclarationSyntax;
 return fieldDecl.ReplaceNode(fieldDecl.Declaration.Type,
 type.WithAdditionalAnnotations(Simplifier.SpecialTypeAnnotation));
}

The helper method ParseMember makes a small compilation unit with the SyntaxFactory and returns the syntax node of the member that is passed to the method:

private static MemberDeclarationSyntax ParseMember(string member)
{
 MemberDeclarationSyntax decl =
 (SyntaxFactory.ParseCompilationUnit($"class x {{\r\n{member}\r\n}}")
 .Members[0] as ClassDeclarationSyntax).Members[0];
 return decl.WithAdditionalAnnotations(Formatter.Annotation);
}

With all this in place, you can debug the VSIX project, which in turn starts another instance of Visual Studio. In the new Visual Studio instance, you can open a project or create a new one, define an auto-implemented property, select it, and choose the Quick Action context menu. This in turn invokes the code refactoring provider that shows the generated result that you can use. When you use the second instance of Visual Studio for editing, you can use the first one to debug through the code refactoring provider.

Summary

In this chapter, you’ve seen the big world of the .NET Compiler Platform. It’s not easy to cover this technology just within one chapter. Multiple books can be written about it. However, with this one chapter you’ve seen all the important parts of this technology covering different aspects such as querying nodes from source code using LINQ queries, as well as a syntax walker. You’ve seen semantic analysis for retrieving symbol information. With code transformation, you’ve seen how you can use the WithXX and ReplaceXX methods to create new syntax trees based on existing ones. The final part of this chapter showed you how to use all the previous aspects together with the Workspace API to create a code refactoring provider to be used within Visual Studio.

The next chapter shows another important aspect of Visual Studio to create different tests to check source code for functionality.

19
Testing

What’s In This Chapter?

	Unit Tests with MSTest and xUnit

	Using the Fakes Framework

	Creating Tests with IntelliTest

	Using xUnit with .NET Core

	Coded UI Testing

	Web Testing

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Unit Testing Sample

	MVVM Sample

	Web Application Sample

NOTE UI Testing and Web Testing from this chapter requires Visual Studio Enterprise edition. Unit testing can also be done with Visual Studio Professional.

Overview

Application development is becoming agile. When using waterfall process models to analyze the requirements, it’s unusual that you design the application architecture, do the implementation, and then find out two or three years later that you built an application that is not needed by the user. Instead, software development becomes agile with faster release cycles, and early participation of the end users. Just have a look at Windows 10: With millions of Windows insiders who give feedback to early builds, updates happen every few months or even weeks. There was one special week during the Beta program of Windows 10 when Windows insiders received three builds of Windows 10 within one week. Windows 10 is a huge program, but Microsoft managed to change development in a big way. Also, if you participate in the open-source project of .NET Core, you can get nightly builds of NuGet packages. If you’re adventurous, you might even write a book about an upcoming technology.

With such fast and continuous changes—and nightly builds that you are creating—you can’t wait for insiders or end users to find all the issues. Windows 10 insiders wouldn’t have been happy with Windows 10 crashing every few minutes. How often have you done a change in the implementation of a method to find out something that doesn’t seem related is not working anymore? You might have tried to avoid such issues by not changing the method and creating a new one by copying the code and doing the necessary changes there, which in turn creates a maintenance nightmare. It happens too easily to fix a method in one place, but miss the other ones with code duplicates. Visual Studio 2015 can find out about code duplicates.

You can avoid issues like these. Create tests for your methods, and let the tests run automatically on checking in the source code or during nightly builds. Creating tests from the start increases the cost for the project from the beginning, but as the project processes and during maintenance, creating tests has advantages and reduces the overall project cost.

This chapter explains different kinds of tests, starting with unit tests, which are tests for small functionality. These tests should verify the functionality of the smallest testable parts of an application—for example, methods. When you pass different input values, a unit test should check all possible paths through a method. Visual Studio 2015 has a great enhancement for creating unit tests, IntelliTest, which is covered in this chapter. The Fakes Framework enables you to isolate dependencies of outside parts of the method. Of course, instead of using shims it would be better to use dependency injection, but this cannot be used everywhere.

MSTest is a part of Visual Studio used for creating unit tests. When .NET Core was built, MSTest did not support creating tests for .NET Core libraries and applications (nowadays MSTest supports .NET Core). That’s why Microsoft itself is using xUnit to create unit tests for .NET Core. This chapter covers both Microsoft’s test framework MSTest and xUnit.

With web testing you can test web applications, send HTTP requests, and simulate a load of users. Creating these kinds of tests enables you to simulate different user loads and allow stress testing. You can use test controllers to create higher loads to simulate thousands of users and thus also know what infrastructure you need and whether your application is scalable.

The final testing feature covered in this chapter is UI testing. You can create automated tests of your XAML-based applications. Of course, it is a lot easier to create unit tests for your view models and the view components with ASP.NET, but it’s not possible to cover every aspect of testing in this chapter. You can automate UI testing. Just imagine the hundreds of different Android mobile devices that are available. Would you buy one of every model to test your app manually on every device? It’s better to use a cloud service and send the app to be tested where the app is indeed installed on hundreds of devices. Don’t assume humans will start the app in the cloud on hundreds of devices and click through the possible interactions of the app. This needs to be automated using UI tests.

First, let’s start creating unit tests.

Unit Testing with MSTest

Writing unit tests helps with code maintenance. For example, when you’re performing a code update, you want to be confident that the update isn’t going to break something else. Having automatic unit tests in place helps to ensure that all functionality is retained after code changes are made. Visual Studio 2015 offers a unit testing framework, and you can also use other testing frameworks from within Visual Studio.

Creating Unit Tests with MSTest

The following example tests a very simple method in a class library named UnitTestingSamples. This is a .NET 4.6 class library because, as mentioned, at present .NET Core doesn’t work with the MSTest environment. Of course, you can create any other MSBuild-based project. The class DeepThought contains the TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything method, which returns 42 as a result (code file UnitTestingSamples/DeepThought.cs):

public class DeepThought
{
 public int TheAnswerOfTheUltimateQuestionOfLifeTheUniverseAndEverything() => 42;

}

To ensure that nobody changes the method to return a wrong result (maybe someone who didn’t read The Hitchhiker’s Guide to the Galaxy), a unit test is created. To create a unit test, you use the Unit Test Project template that’s available within the group of Visual C# projects. An easy way to start creating a unit test project is by selecting a method (for example, the method TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything), right-click to open the context menu or use the two-finger single-touch on the touchpad, or click the context menu key on the keyboard, or (in case your keyboard does not have a context menu key, press Shift + F10, or FN + Shift + F10 if the function keys are configured as secondary keys), and select the Create Unit Tests. The dialog shown in Figure 19.1 pops up where you can select one of the installed Test Frameworks, and you can decide to create a new testing project or select an existing one. Also, you can specify different names, such as the name of the test project, namespace names, filenames, class names, and method names. By default, Tests or Test is added as postfix, but you can decide to change this. From this dialog, you can also install additional test frameworks.

[image: Image described by surrounding text.]

Figure 19.1

A unit test class is marked with the TestClass attribute, and a test method is marked with the TestMethod attribute. The implementation creates an instance of DeepThought and invokes the method that is to be tested: TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything. The return value is compared with the value 42 using Assert.AreEqual. In case Assert.AreEqual fails, the test fails (code file UnitTestingSamplesTest/DeepThoughtTests.cs):

[TestClass]
public class TestProgram
{
 [TestMethod]
 public void
 TestTheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything()
 {
 // arrange
 int expected = 42;
 var dt = new DeepThought();

 // act
 int actual =
 dt.TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything();

 // assert
 Assert.AreEqual(expected, actual);
 }
}

Unit tests are defined by three As: Arrange, Act, and Assert. First, everything is arranged for the unit test to start. In the first test, with the arrange phase, a variable expected is assigned the value that is expected from calling the method to test, and an instance of the DeepThought class is invoked. Now everything is ready to test the functionality. This happens with the act phase—the method is invoked. After completing the act phase, you need to verify whether the result is as expected. This is done in the assert phase using a method of the Assert class.

The Assert class is part of the MSTest framework in the Microsoft.VisualStudio.TestTools.UnitTesting namespace. This class offers several static methods that you can use with unit tests. By default, the Assert.Fail method is added to an automatically created unit test to give the information that the test is not yet implemented. Some of the other methods are AreNotEqual, which verifies whether two objects are not the same; IsFalse and IsTrue, which verify Boolean results; IsNull and IsNotNull, which verify null results; and IsInstanceOfType and IsNotInstanceOfType, which verify the passed type.

Running Unit Tests

Using the Test Explorer (which you open via Test ➪ Windows ➪ Test Explorer), you can run the tests from the solution (see Figure 19.2).

[image: Screenshot shows a Test Explorer window displaying number of passed tests and results of passed tests along with elapsed time.]

Figure 19.2

Figure 19.3 shows a failed test, which includes all details about the failure.

[image: Screenshot shows a Test Explorer window displaying number of failed tests and details of the failed tests along with source and elapsed time.]

Figure 19.3

Of course, this was a very simple scenario; the tests are not usually that simple. For example, methods can throw exceptions; they can have different routes for returning other values; and they can make use of other code (for example, database access code, or services that are invoked) that shouldn’t be tested with the single unit. Now let’s look at a more involved scenario for unit testing.

The following class, StringSample, defines a constructor with a string parameter, the method GetStringDemo, and a field. The method GetStringDemo uses different paths depending on the first and second parameters and returns a string that results from these parameters (code file UnitTestingSamples/StringSample.cs):

public class StringSample
{
 public StringSample(string init)
 {
 if (init == null)
 throw new ArgumentNullException(nameof(init));
 _init = init;
 }

 private string _init;
 public string GetStringDemo(string first, string second)
 {
 if (first == null)
 {
 throw new ArgumentNullException(nameof(first));
 }
 if (string.IsNullOrEmpty(first))
 {
 throw new ArgumentException("empty string is not allowed", first);
 }
 if (second == null)
 {
 throw new ArgumentNullException(nameof(second));
 }
 if (second.Length > first.Length)
 {
 throw new ArgumentOutOfRangeException(nameof(second),
 "must be shorter than first");
 }

 int startIndex = first.IndexOf(second);
 if (startIndex < 0)
 {
 return $"{second} not found in {first}";
 }
 else if (startIndex < 5)
 {
 string result = first.Remove(startIndex, second.Length);
 return $"removed {second} from {first}: {result}";
 }
 else
 {
 return _init.ToUpperInvariant();
 }
 }
}

NOTE When you’re writing unit tests for complex methods, the unit test also sometimes gets complex. Here it is helpful to debug into the unit test to find out what’s going on. Debugging unit tests is straightforward: Just add breakpoints to the unit test code, and from the context menu of the Test Explorer select Debug Selected Tests (see Figure 19.4).

[image: Image described by surrounding text.]

Figure 19.4

Every possible execution route and check for exceptions should be covered by unit tests, as discussed next.

Expecting Exceptions with MSTest

When invoking the constructor of the StringSample class and calling the method GetStringDemo with null, an ArgumentNullException is expected. You can easily check exceptions with testing code: apply the ExpectedException attribute to the test method as shown in the following example. This way, the test method succeeds with the exception (code file UnitTestingSamplesTests/StringSampleTests.cs):

[TestMethod]
[ExpectedException(typeof(ArgumentNullException))]
public void TestStringSampleNull()
{
 var sample = new StringSample(null);
}

You can deal with the exception thrown by the GetStringDemo method in a similar way.

Testing All Code Paths

To test all code paths, you can create multiple tests, with each one taking a different route. The following test sample passes the strings a and b to the GetStringDemo method. Because the second string is not contained within the first string, the first path of the if statement applies. The result is checked accordingly (code file UnitTestingSamplesTests/StringSampleTests.cs):

[TestMethod]
public void GetStringDemoAB()
{
 string expected ="b not found in a";
 var sample = new StringSample(String.Empty);
 string actual = sample.GetStringDemo("a","b");
 Assert.AreEqual(expected, actual);
}

The next test method verifies another path of the GetStringDemo method. Here, the second string is found in the first one, and the index is lower than 5; therefore, it results in the second code block of the if statement:

[TestMethod]
public void GetStringDemoABCDBC()
{
 string expected ="removed bc from abcd: ad";
 var sample = new StringSample(String.Empty);
 string actual = sample.GetStringDemo("abcd","bc");
 Assert.AreEqual(expected, actual);
}

All other code paths can be tested similarly. To see what code is covered by unit tests, and what code is still missing, you can open the Code Coverage Results window, shown in Figure 19.5. Open the Code Coverage Results window from the menu Test ➪ Analyze Code Coverage.

[image: Screenshot shows a Code Coverage Result displaying a table with each column of the table representing hierarchy, Not Covered(Blocks), Not Covered (% Blocks), Covered (Blocks) and Covered (% Blocks).]

Figure 19.5

External Dependencies

Many methods are dependent on some functionality outside the application’s control, for example, calling a web service or accessing a database. Maybe the service or database is not available during some test runs, which tests the availability of these external resources. Or worse, maybe the database or service returns different data over time, and it’s hard to compare this with expected data. Such functionality outside the scope of what should be tested must be excluded from the unit test.

The following example is dependent on some outside functionality. The method ChampionsByCountry accesses an XML file from a web server that contains a list of Formula-1 world champions with Firstname, Lastname, Wins, and Country elements. This list is filtered by country, and it’s numerically ordered using the value from the Wins element. The returned data is an XElement that contains converted XML code (code file UnitTestingSamples/Formula1.cs):

public XElement ChampionsByCountry(string country)
{
 XElement champions = XElement.Load(F1Addresses.RacersUrl);
 var q = from r in champions.Elements("Racer")
 where r.Element("Country").Value == country
 orderby int.Parse(r.Element("Wins").Value) descending
 select new XElement("Racer",
 new XAttribute("Name", r.Element("Firstname").Value +"" +
 r.Element("Lastname").Value),
 new XAttribute("Country", r.Element("Country").Value),
 new XAttribute("Wins", r.Element("Wins").Value));
 return new XElement("Racers", q.ToArray());
}

NOTE For more information on LINQ to XML, read Chapter 27, “XML and JSON.”

The link to the XML file is defined by the F1Addresses class (code file UnitTestingSamples/F1Addresses.cs):

public class F1Addresses
{
 public const string RacersUrl =
 "http://www.cninnovation.com/downloads/Racers.xml";
}

For the method ChampionsByCountry, you should do a unit test. The test should not be dependent on the source from the server. Server unavailability is one issue, but it can also be expected that the data on the server changes over time to return new champions, and other values. The current test should ensure that filtering is done as expected, returning a correctly filtered list, and in the correct order.

One way to create a unit test that is independent of the data source is to refactor the implementation of the ChampionsByCountry method by using the dependency injection pattern. Here, a factory that returns an XElement is created to replace the XElement.Load method. The interface IChampionsLoader is the only outside requirement used from the ChampionsByCountry method. The interface IChampionsLoader defines the method LoadChampions that can replace the aforementioned method (code file UnitTestingSamples/IChampionsLoader.cs):

public interface IChampionsLoader
{
 XElement LoadChampions();
}

The class ChampionsLoader implements the interface IChampionsLoader by using the XElement.Load method—the method that was used beforehand by the ChampionsByCountry method (code file UnitTestingSamples/ChampionsLoader.cs):

public class ChampionsLoader: IChampionsLoader
{
 public XElement LoadChampions() => XElement.Load(F1Addresses.RacersUrl);
}

NOTE The dependency injection pattern is explained with more detail in Chapter 31, “Patterns with XAML Apps.”

Now it’s possible to change the implementation of the ChampionsByCountry method (the new method is named ChampionsByCountry2 to make both variants available for unit testing) by using an interface to load the champions instead of directly using XElement.Load. The IChampionsLoader is passed with the constructor of the class Formula1, and this loader is then used by ChampionsByCountry2: (code file UnitTestingSamples/Formula1.cs):

public class Formula1
{
 private IChampionsLoader _loader;
 public Formula1(IChampionsLoader loader)
 {
 _loader = loader;
 }

 public XElement ChampionsByCountry2(string country)
 {
 var q = from r in _loader.LoadChampions().Elements("Racer")
 where r.Element("Country").Value == country
 orderby int.Parse(r.Element("Wins").Value) descending
 select new XElement("Racer",
 new XAttribute("Name", r.Element("Firstname").Value +"" +
 r.Element("Lastname").Value),
 new XAttribute("Country", r.Element("Country").Value),
 new XAttribute("Wins", r.Element("Wins").Value));
 return new XElement("Racers", q.ToArray());
 }
}

With a typical implementation, a ChampionsLoader instance would be passed to the Formula1 constructor to retrieve the racers from the server.

When you’re creating the unit test, you can implement a custom method that returns sample Formula-1 champions, as shown in the method Formula1SampleData (code file UnitTestingSamplesTests/Formula1Tests.cs):

internal static string Formula1SampleData()
{
 return @"
<Racers>
 <Racer>
 <Firstname>Nelson</Firstname>
 <Lastname>Piquet</Lastname>
 <Country>Brazil</Country>
 <Starts>204</Starts>
 <Wins>23</Wins>
 </Racer>
 <Racer>
 <Firstname>Ayrton</Firstname>
 <Lastname>Senna</Lastname>
 <Country>Brazil</Country>
 <Starts>161</Starts>
 <Wins>41</Wins>
 </Racer>
 <Racer>
 <Firstname>Nigel</Firstname>
 <Lastname>Mansell</Lastname>
 <Country>England</Country>
 <Starts>187</Starts>
 <Wins>31</Wins>
 </Racer>
 //... more sample data

The method Formula1VerificationData returns sample test data that matches the expected result:

internal static XElement Formula1VerificationData()
{
 return XElement.Parse(@"
<Racers>
 <Racer Name=""Mika Hakkinen"" Country=""Finland"" Wins=""20"" />
 <Racer Name=""Kimi Raikkonen"" Country=""Finland"" Wins=""18"" />
</Racers>");
}

The loader of the test data implements the same interface—IChampionsLoader—as the ChampionsLoader class. This loader makes use of the sample data; it doesn’t access the web server:

public class F1TestLoader: IChampionsLoader
{
 public XElement LoadChampions() => XElement.Parse(Formula1SampleData());
}

Now it’s easy to create a unit test that makes use of the sample data:

[TestMethod]
public void TestChampionsByCountry2()
{
 Formula1 f1 = new Formula1(new F1TestLoader());
 XElement actual = f1.ChampionsByCountry2("Finland");
 Assert.AreEqual(Formula1VerificationData().ToString(), actual.ToString());
}

Of course, a real test should do more than cover a case that passes Finland as a string and two champions are returned with the test data. You should write other tests to pass a string with no matching result, to return more than two champions, and to result in a number sort order that is different from the alphanumeric sort order.

Fakes Framework

It’s not always possible to refactor the method that should be tested to be independent of a data source—for example, using legacy code that can’t be changed. This is when the Fakes Framework becomes very useful. This framework is part of Visual Studio Enterprise Edition.

With this framework, you can test the ChampionsByCountry method without any changes, and you can still keep the server outside the unit test. Remember that the implementation of this method uses XElement .Load, which directly accesses a file on the web server. The Fakes Framework enables you to change the implementation of the ChampionsByCountry method just for the testing case by replacing the XElement .Load method with something else (code file UnitTestingSamples/Formula1.cs):

public XElement ChampionsByCountry(string country)
{
 XElement champions = XElement.Load(F1Addresses.RacersUrl);
 var q = from r in champions.Elements("Racer")
 where r.Element("Country").Value == country
 orderby int.Parse(r.Element("Wins").Value) descending
 select new XElement("Racer",
 new XAttribute("Name", r.Element("Firstname").Value +"" +
 r.Element("Lastname").Value),
 new XAttribute("Country", r.Element("Country").Value),
 new XAttribute("Wins", r.Element("Wins").Value));
 return new XElement("Racers", q.ToArray());
}

To use the Fakes Framework with the references of the unit testing project, select the assembly that contains the XElement class. XElement is within the System.Xml.Linq assembly. When you open the context menu while the System.Xml.Linq assembly is selected, the menu option Add Fakes Assembly is available. Select this to create the System.Xml.Linq.4.0.0.0.Fakes assembly.

The newly created assembly contains shim classes in the namespace System.Xml.Linq.Fakes. You will find all the types of the System.Xml.Linq assembly with a shimmed version—for example, ShimXAttribute for XAttribute and ShimXDocument for XDocument.

For the example, you need only ShimXElement. ShimXElement contains a member for every public overloaded member of the XElement class. The Load method of XElement is overloaded to receive a string, a Stream, a TextReader, and an XmlReader, and overloads exist with a second LoadOptions parameter. ShimXElement defines members named LoadString, LoadStream, LoadTextReader, LoadXmlReader, and others with LoadOptions as well, such as LoadStringLoadOptions and LoadStreamLoadOptions.

All these shim members are of a delegate type. This delegate allows specifying a custom method. This custom method is invoked in place of the method call that’s inside the method that is under test. The unit test method TestChampionsByCountry replaces the XElement.Load method with one parameter in the Formula1.ChampionsByCountry method with the call to XElement.Parse, accessing the sample data. ShimXElement.LoadString specifies the new implementation.

Using shims, it’s necessary to create a context, which you can do using ShimsContext.Create. The context is active until the Dispose method is invoked by the end of the using block (code file UnitTestingSamplesTests/Formula1Tests.cs):

[TestMethod]
public void TestChampionsByCountry()
{
 using (ShimsContext.Create())
 {
 ShimXElement.LoadString = s => XElement.Parse(Formula1SampleData());
 Formula1 f1 = new Formula1();
 XElement actual = f1.ChampionsByCountry("Finland");
 Assert.AreEqual(Formula1VerificationData().ToString(), actual.ToString());
 }
}

Although it is best to have a flexible implementation of the code that should be tested, the Fakes Framework offers a useful way to change an implementation such that it is not dependent on outside resources for testing purposes.

IntelliTest

A new testing feature available with Visual Studio 2015 Enterprise is IntelliTest, which automatically creates unit tests by making a white-box analysis of the code. IntelliTest analyzes the code to find all iterations by passing as few parameters as possible. When you select a method in the code editor, from the context menu you can select Run IntelliTest to create tests, as shown in Figure 19.6. For the GetStringDemo method, IntelliTest creates 10 test methods that pass different strings for the input parameters. You can check these methods to see whether they fit the purpose, and you can also check for errors if you missed validating input parameters in the method.

[image: Screenshot shows IntelliTest Exploration results- stopped window which lists number of warnings, targets, result, summary or exception and error message. Details including test method are shown on right.]

Figure 19.6

If the tests are good, you can save and adapt them to a unit testing project. This is one of the tests generated by IntelliTest. In addition to the TestMethod attribute and use of the Assert class, you can also see the attribute PexGeneratedBy. This attribute marks the test as being created by IntelliTest:

[TestMethod]
[PexGeneratedBy(typeof(StringSampleTest))]
public void GetStringDemo727()
{
 StringSample stringSample;
 string s;
 stringSample = new StringSample("\0");
 s = this.GetStringDemo(stringSample,"\0","");
 Assert.AreEqual<string>(" not found in \0", s);
 Assert.IsNotNull((object)stringSample);
}

NOTE Pex was the original Microsoft Research project to automatically generate unit tests. IntelliTest is derived from Pex. From Pex you can still look for http://www .pexforfun.com to solve code puzzles with the help of Pex.

Unit Testing with xUnit

As previously mentioned, the unit test framework MSTest that’s included with the installation of Visual Studio doesn’t support .NET Core. MSTest supports only the MSBuild-based project templates. However, the Visual Studio Test environment does support other testing frameworks. Test adapters such as NUnit, xUnit, Boost (for C++), Chutzpah (for JavaScript), and Jasmine (for JavaScript) are available via Extensions and Updates; these test adapters integrate with the Visual Studio Test Explorer. xUnit is a great testing framework, and it’s also used by Microsoft with the open-source code of .NET Core and ASP.NET Core, so xUnit is the focus of this section.

Using xUnit with .NET Core

With .NET Framework application templates, you can create xUnit tests in a similar manner to MSTest tests. You use the Create Unit Test command from the context menu in the editor. This is different with .NET Core applications because this menu entry is not available. Also, it would be a good idea to make use of the DNX environment for the unit tests instead of using test libraries that use the full framework. When you use the DNX environment, you can run these tests on the Linux platform as well. Let’s see how you can do this.

You create the same sample library as before, but use the name UnitTestingSamplesCore and the Visual Studio project template Class Library (Package). This library includes the same types for testing shown earlier: DeepThought and StringSample.

For the unit test, you create another .NET Core library named UnitTestingSamplesCoreTests. This project needs to reference the NuGet packages System.Xml.XDocument (for the sample code), xunit (for the unit tests), xunit.runner.dnx (to run the unit test in the DNX environment, and UnitTestingSamplesCore (the code that should be tested).

Creating Facts

The way you create the test is very similar to what you did before. The differences on testing the method TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything are just the annotated test method with the Fact attribute and the different Assert.Equal method (code file UnitTestingSamplesCoreTests/DeepThoughtTests.cs):

public class DeepThoughtTests
{
 [Fact]
 public void
 TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverythingTest()
 {
 int expected = 42;
 var dt = new DeepThought();
 int actual =
 dt.TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything();
 Assert.Equal(expected, actual);
 }
}

The Assert class used now is defined in the XUnit namespace. This class defines a lot more methods for validation compared to the Assert method from MSTest. For example, instead of adding an attribute to specify an expected exception, use the Assert.Throws method, which allows multiple checks for exceptions within a single test method:

[Fact]
public void TestGetStringDemoExceptions()
{
 var sample = new StringSample(string.Empty);
 Assert.Throws<ArgumentNullException>(() => sample.GetStringDemo(null,"a"));
 Assert.Throws<ArgumentNullException>(() => sample.GetStringDemo("a", null));
 Assert.Throws<ArgumentException>(() =>
 sample.GetStringDemo(string.Empty,"a"));
}

Creating Theories

xUnit defines the Fact attribute for test methods that don’t require parameters. With xUnit you can also invoke unit test methods that require parameters; you use the Theory attribute and supply data to add an attribute that derives from Data. This makes it possible to define multiple unit tests by a single method.

In the following code snippet, the Theory attribute is applied to the TestGetStringDemo unit test method. The method StringSample.GetStringDemo defines different paths that depend on the input data. The first path is reached if the string passed with the second parameter is not contained within the first parameter. The second path is reached if the second string is contained within the first five characters of the first string. The third path is reached with the else clause. To reach all the different paths, three InlineData attributes are applied to the testing method. Every one of these attributes defines four parameters that are directly sent to the invocation of the unit testing method, in the same order. The attributes also define the values that should be returned by the method under test (code file UnitTestingSamplesCoreTests/StringSampleTests.cs):

[InlineData("","longer string","nger",
 "removed nger from longer string: lo string")]
[InlineData("init","longer string","string","INIT")]
public void TestGetStringDemo(string init, string a, string b, string expected)
{
 var sample = new StringSample(init);
 string actual = sample.GetStringDemo(a, b);
 Assert.Equal(expected, actual);
}

The attribute InlineData derives from the attribute Data. Instead of directly supplying the values for the test method with the attribute, the values can also come from a property, method, or a class. The following example defines a static method that returns the same values with an IEnumerable<object> object (code file UnitTestingSamplesCoreTests/StringSampleTests.cs):

public static IEnumerable<object[]> GetStringSampleData() =>
 new[]
 {
 new object[] {"","a","b","b not found in a" },
 new object[] {"","longer string","nger",
 "removed nger from longer string: lo string" },
 new object[] {"init","longer string","string","INIT" }
 };

The unit test method is now changed with the MemberData attribute. This attribute allows using static properties or methods that return IEnumerable<object> to fill in the parameters of the unit test method:

[Theory]
[MemberData("GetStringSampleData")]
public void TestGetStringDemoUsingMember(string init, string a, string b,
 string expected)
{
 var sample = new StringSample(init);
 string actual = sample.GetStringDemo(a, b);
 Assert.Equal(expected, actual);
}

Running Unit Tests with the dotnet Tools

You can run the xUnit unit tests directly from Visual Studio, similar to the way you run the MSTest unit tests. Because xUnit supports CLI, you can also run xUnit tests from the command line. For this method, the test command is defined within the projects.json file (code file UnitTestingSamplesCoreTests/project.json):

{
 "version":"1.0.0-*",
 "description":"UnitTestingSamplesCoreTests Class Library",
 "authors": ["Christian"],
 "tags": [""],
 "projectUrl":"",
 "licenseUrl":"",
 "dependencies": {
 "NETStandard.Library":"1.0.0-*",
 "System.Threading.Tasks":"4.0.11-*",
 "System.Xml.XDocument":"4.0.11-*",
 "UnitTestingSamplesCore": {"target":"project" },
 "xunit":"2.2.0-*",
 "dotnet-test-xunit:"1.0.0-*"
 },
 "testRunner":"xunit",
 "frameworks": {
 "netstandard1.0": {
 "dependencies": { }
 }

 }

Now when you run dotnet test from the command prompt, all the tests that are defined by the project are run:

">dotnet test"
xUnit.net DNX Runner (64-bit win7-x64)
 Discovering: UnitTestingSamplesCoreTests
 Discovered: UnitTestingSamplesCoreTests
 Starting: UnitTestingSamplesCoreTests
 Finished: UnitTestingSamplesCoreTests
=== TEST EXECUTION SUMMARY ===
 UnitTestingSamplesCoreTests Total: 11, Errors: 0, Failed: 0, Skipped: 0,
 Time: 0.107s
C:\Users\chris\Source\Repos\ProfessionalCSharp6\Testing\UnitTestingSamples\
UnitTestingSamplesCoreTests>

Using a Mocking Library

Let’s get into a more complex example: creating a unit test for a client-side service from the MVVM application from Chapter 31. This service uses dependency injection to inject the repository defined by the interface IBooksRepository. The unit tests for testing the method AddOrUpdateBookAsync shouldn’t test the repository; they test only the functionality within the method. For the repository, another unit test should be done (code file MVVM/Services/BooksService.cs):

public class BooksService: IBooksService
{
 private ObservableCollection<Book> _books = new ObservableCollection<Book>();
 private IBooksRepository _booksRepository;
 public BooksService(IBooksRepository repository)
 {
 _booksRepository = repository;
 }

 public async Task LoadBooksAsync()
 {
 if (_books.Count > 0) return;
 IEnumerable<Book> books = await _booksRepository.GetItemsAsync();
 _books.Clear();
 foreach (var b in books)
 {
 _books.Add(b);
 }
 }

 public Book GetBook(int bookId) =>
 _books.Where(b => b.BookId == bookId).SingleOrDefault();

 public async Task<Book> AddOrUpdateBookAsync(Book book)
 {
 if (book == null) throw new ArgumentNullException(nameof(book));
 Book updated = null;
 if (book.BookId == 0)
 {
 updated = await _booksRepository.AddAsync(book);
 _books.Add(updated);
 }
 else
 {
 updated = await _booksRepository.UpdateAsync(book);
 Book old = _books.Where(b => b.BookId == updated.BookId).Single();
 int ix = _books.IndexOf(old);
 _books.RemoveAt(ix);
 _books.Insert(ix, updated);
 }
 return updated;
 }

 IEnumerable<Book> IBooksService.Books => _books;
}

Because the unit test for AddOrUpdateBookAsync shouldn’t test the repository used for IBooksRepository, you need to implement a repository used for testing. To make this easy, you can use a mocking library that automatically fills in the blanks. A commonly used mocking library is Moq. With the unit testing project, the NuGet package Moq is added; you also add the NuGet packages xunit and xunit.runner .visualstudio.

Within the unit test AddBooksAsyncTest, a mock object is instantiated to pass the generic parameter IBooksRepository. The Mock constructor creates implementations for the interface. Because you need some results from the repository other than null to create useful tests, the Setup method defines which parameters can be passed, and the ReturnsAsync method defines the result that’s returned from the method stub. You access the mock object by using the Object property of the Mock class, and it is passed on to create the BooksService class. With these settings in place, you can invoke the AddOrUpdateBookAsync method to pass a book object that should be added (code file MVVM/Services.Tests/BooksServiceTest.cs):

[Fact]
public async Task AddBookAsyncTest()
{
 // arrange
 var mock = new Mock<IBooksRepository>();
 var book =
 new Book
 {
 BookId = 0,
 Title ="Test Title",
 Publisher ="A Publisher"
 };
 var expectedBook =
 new Book
 {
 BookId = 1,
 Title ="Test Title",
 Publisher ="A Publisher"
 };
 mock.Setup(r => r.AddAsync(book)).ReturnsAsync(expectedBook);

 var service = new BooksService(mock.Object);

 // act
 Book actualAdded = await service.AddOrUpdateBookAsync(book);
 Book actualRetrieved = service.GetBook(actualAdded.BookId);
 Book notExisting = service.GetBook(2);

 // assert
 Assert.Equal(expectedBook, actualAdded);
 Assert.Equal(expectedBook, actualRetrieved);
 Assert.Equal(null, notExisting);
}

When you add a book, the if clause of the AddOrUpdateBookAsync method gets called. When you update a book, the else clause gets active. This part of the method is tested with the UpdateBookAsyncTest method. As before, you create a mock object for the interface IBooksRepository. When you update a book, you test different scenarios, such as updating a book that exists and a book that does not exist (code file MVVM/Services.Tests/BooksServiceTest.cs):

[Fact]
public async Task UpdateBookAsyncTest()
{
 // arrange
 var mock = new Mock<IBooksRepository>();
 var origBook =
 new Book
 {
 BookId = 0,
 Title ="Title",
 Publisher ="A Publisher"
 };
 var addedBook =
 new Book
 {
 BookId = 1,
 Title ="Title",
 Publisher ="A Publisher"
 };
 var updateBook =
 new Book
 {
 BookId = 1,
 Title ="New Title",
 Publisher ="A Publisher"
 };
 var notExisting =
 new Book
 {
 BookId = 99,
 Title ="Not",
 Publisher ="Not"
 };
 mock.Setup(r => r.UpdateAsync(updateBook)).ReturnsAsync(updateBook);
 mock.Setup(r => r.UpdateAsync(notExisting)).ReturnsAsync(notExisting);
 mock.Setup(r => r.AddAsync(origBook)).ReturnsAsync(addedBook);

 var service = new BooksService(mock.Object);

 // fill in first book to test update
 await service.AddOrUpdateBookAsync(origBook);

 // act
 Book actualUpdated = await service.AddOrUpdateBookAsync(updateBook);
 Book actualRetrieved = service.GetBook(1);

 // assert
 Assert.Equal(updateBook, actualUpdated);
 Assert.Equal(updateBook, actualRetrieved);
 await Assert.ThrowsAsync<InvalidOperationException>(async () =>
 await service.AddOrUpdateBookAsync(notExisting));
 await Assert.ThrowsAsync<ArgumentNullException>(async () =>
 await service.AddOrUpdateBookAsync(null));
}

When you use the MVVM pattern with XAML-based applications and the MVC pattern with web-based applications, you reduce the complexity of the user interface and reduce the need for complex UI testing. However, there are still some scenarios that should be tested with the UI—for example, navigating through pages, drag and drop of elements, and more. This is where Visual Studio’s functionality of UI testing comes into place.

UI Testing

For testing the user interface, Visual Studio offers Coded UI Test Project templates for Universal Windows apps, Windows Phone apps, WPF applications, and Windows Forms. When you create a new project, you can find the project template for WPF and Windows Forms in the Test group. However, this template doesn’t work for Windows apps. The project template for Universal Windows apps is in the Universal group. Be aware that automatic recording is not supported for Windows apps.

In this chapter you create a UI test for an MVVM WPF application. This application is part of the downloadable files for this chapter, so you can use it for testing. For the details about this application, read Chapter 31.

When you create a new Coded UI Test Project, you see the dialog shown in Figure 19.7. Here you can specify to create a new recording.

[image: Screenshot shows Generate Code for Coded UI Test dialog box with two options to create the coded UI test; record actions-edit UI map or add assertions and use an existing action recording.]

Figure 19.7

When you create a new recording, you see the Coded UI Test Builder (see Figure 19.8). With WPF applications, you can click the Recording button to record actions.

[image: Screenshot shows UIMap-Coded UI Test Builder dialog box with recording button on left side to record actions.]

Figure 19.8

When running the sample application, you can click the Load button to load a list of books, click the Add button to add a new book, type some text in the text box elements, and click the Save button. When you click the Show Recorded Steps button in the Coded UI Test Builder, you see the recordings as shown in Figure 19.9.

[image: Screenshot shows Recorded Actions- Coded UI Test Builder window which contain instructions to click Load and Add buttons, type new book in text boxes and click Save button.]

Figure 19.9

When you click the Generate Code button, you are asked for a method name to generate the code with the recordings (see Figure 19.10).

[image: Screenshot shows Generate Code- Coded UI Test Builder which contains drop-down box to select method name, textfield to enter method description, and Add and Generate button on bottom.]

Figure 19.10

With the generated method AddANewBook you can see that local variables are used to reference the WPF controls in use:

public void AddNewBook()
{
 WpfButton uILoadButton =
 this.UIBooksDesktopAppWindow.UIBooksViewCustom.UILoadButton;
 WpfButton uIAddButton =
 this.UIBooksDesktopAppWindow.UIBooksViewCustom.UIAddButton;
 WpfEdit uIItemEdit =
 this.UIBooksDesktopAppWindow.UIBookViewCustom.UISaveButton.UIItemEdit;
 WpfEdit uIItemEdit1 =
 this.UIBooksDesktopAppWindow.UIBookViewCustom.UISaveButton.UIItemEdit1;
 WpfButton uISaveButton =
 this.UIBooksDesktopAppWindow.UIBookViewCustom.UISaveButton;
 // etc.
}

The buttons are referenced from properties—for example, the UILoadButton shown in the following code snippet. On first access, a WpfButton is searched by using the Name property (code file BooksDesktopAppUITest/AddNewBookUIMap.Designer.cs):

public WpfButton UILoadButton
{
 get
 {
 if ((this.mUILoadButton == null))
 {
 this.mUILoadButton = new WpfButton(this);
 this.mUILoadButton.SearchProperties[WpfButton.PropertyNames.Name] =
 "Load";
 this.mUILoadButton.WindowTitles.Add("Books Desktop App");
 }
 return this.mUILoadButton;
 }
}

AddNewBook continues with methods created from the recording. First, the mouse is clicked using the static method Mouse.Click. The Mouse.Click method defines several overloads: to click within the screen coordinates—using mouse modifiers—and to click controls. The first click method clicks the Load button. The coordinates defined by the second argument are relative within the control. So if you reposition this control in a newer version, it’s important that you run the test again without big changes; that’s why the control is accessed via its name. Other than the Mouse class, you can use the Keyboard class to send key inputs:

public void AddNewBook()
{
 // etc.

 // Click 'Load' button
 Mouse.Click(uILoadButton, new Point(20, 11));

 // Click 'Add' button
 Mouse.Click(uIAddButton, new Point(14, 9));

 // Type 'new book' in first text box next to 'Save' button
 uIItemEdit.Text = this.AddANewBookParams.UIItemEditText;

 // Type '{Tab}' in first text box next to 'Save' button
 Keyboard.SendKeys(uIItemEdit, this.AddANewBookParams.UIItemEditSendKeys,
 ModifierKeys.None);

 // Type 'new' in text box numbered 2 next to 'Save' button
 uIItemEdit1.Text = this.AddANewBookParams.UIItemEdit1Text;

 // Click 'Save' button
 Mouse.Click(uISaveButton, new Point(29, 19));
}

Input for text controls is saved in a helper class AddNewBookParams, so you can easily change the input in one place:

public class AddNewBookParams
{
 public string UIItemEditText ="new book";

 public string UIItemEditSendKeys ="{Tab}";

 public string UIItemEdit1Text ="new";
}

After you create the recording, you need to define assertions to check whether the outcome is correct. You can create asserts with the Coded UI Test Builder. Click the Add Assertions button to open the dialog shown in Figure 19.11. With this dialog, you can see the controls of the open window, see its current property values, and add assertions. After defining the assertion, you need to generate the code again.

[image: Screenshot shows Add Assertions: UIItemList- Coded UI Test Builder dialog box which contain UIItemList chosen from the side menu and property and value of the selected assertion on right side.]

Figure 19.11

The generated Assert method verifies whether the correct value is in the selected control; if the incorrect value is in the control, it writes an error message:

public void AssertNewBook()
{
 WpfList uIItemList =
 this.UIBooksDesktopAppWindow1.UIBooksViewCustom.UIAddButton.UIItemList;

 Assert.AreEqual(
 this.AssertNewBookExpectedValues.UIItemListSelectedItemsAsString,
 uIItemList.SelectedItemsAsString,"problem adding book in list");
}

For changes to the code, you shouldn’t change the designer-generated code files. Instead, you open the .uitest files to open the dialog shown in Figure 19.12. Here you can split actions into new methods, add delays before actions, and delete actions. Also, you can move the source code from the designer-generated files to custom files where you can change the code later.

[image: Screenshot shows AddNewBookUIMap.uitest window which contain UI actions such as add new book and assert new book on left from which assert new book is selected. UI control map is shown on right.]

Figure 19.12

Now you can run the UI test in the same way you run the unit tests, as shown earlier in this chapter.

Web Testing

To test web applications, you can create unit tests that invoke methods of the controllers, repository, and utility classes. Tag helpers are simple methods in which the test can be covered by unit tests. Unit tests are used to test the functionality of the algorithms of the methods—in other words, the logic inside the methods. With web applications, it is also a good practice to create performance and load tests. Does the application scale? How many users can the application support with one server? How many servers are needed to support a specific number of users? Which bottleneck is not that easy to scale? To answer these questions, Web tests can help.

With Web tests, HTTP requests are sent from the client to the server. Visual Studio also offers a recorder that needs an add-in within Internet Explorer. At the time of this writing, Microsoft Edge cannot be used as a recorder because this browser currently doesn’t support add-ins.

Creating the Web Test

For creating a Web test, you can create a new ASP.NET Web Application with ASP.NET Core 1.0 named WebApplicationSample. This template has enough functionality built in that allows for creating tests. To create Web tests, you add a Web Performance and Load Test Project named WebAndLoadTestProject to the solution. Click on the WebTest1.webtest file to open the Web Test Editor. Then start a Web recording by clicking the Add Recording button. For this recording, you must have the Web Test Recorder add-in with Internet Explorer that’s installed with the installation of Visual Studio. The recorder records all HTTP requests sent to the server. Click some links on the WebApplicationSample web application such as About and Context, and register a new user. Then click the Stop button to stop the recording.

After the recording is finished, you can edit the recording with the Web Test Editor. You might be seeing requests to browserLinkSignalR if you haven’t disabled the browser link. Browser links make it possible to make HTML code changes without having to restart the browser. For testing, these requests are not relevant, and you can delete them. A recording is shown in Figure 19.13. With all the requests, you can see header information as well as form POST data that you can influence and change.

[image: Screenshot shows WebTest.webtest window which includes localhost addresses for webtest1 and validation rules folder which contain response url and response time goal.]

Figure 19.13

Click the Generate Code button to generate source code to send all the requests programmatically. With Web tests, the test class derives from the base class WebTest and overrides the GetRequestEnumerator method. This method returns one request after the other (code file WebApplicationSample/WebAndLoadTestProject/NavigateAndRegister.cs):

public class NavigateAndRegister: WebTest
{
 public NavigateAndRegister()
 {
 this.PreAuthenticate = true;
 this.Proxy ="default";
 }

 public override IEnumerator<WebTestRequest> GetRequestEnumerator()
 {
 // etc.
 }
}

The method GetRequestEnumerator defines requests to the website—for example, a request to the About page. With this request, a HTTP header is added to define that the request originates from the home page:

public override IEnumerator<WebTestRequest> GetRequestEnumerator()
{
 // etc.
 WebTestRequest request2 =
 new WebTestRequest("http://localhost:13815/Home/About");
 request2.Headers.Add(new WebTestRequestHeader("Referer",
 "http://localhost:13815/"));
 yield return request2;
 request2 = null;
 // etc.
}

And this is the request to send an HTTP POST request to the Register page that is passing form data:

WebTestRequest request6 =
 new WebTestRequest("http://localhost:13815/Account/Register");
request6.Method ="POST";
request6.ExpectedResponseUrl ="http://localhost:13815/";
request6.Headers.Add(new WebTestRequestHeader("Referer",
 "http://localhost:13815/Account/Register"));
FormPostHttpBody request6Body = new FormPostHttpBody();
request6Body.FormPostParameters.Add("Email","sample1@test.com");
request6Body.FormPostParameters.Add("Password","Pa$$w0rd");
request6Body.FormPostParameters.Add("ConfirmPassword","Pa$$w0rd");
request6Body.FormPostParameters.Add("__RequestVerificationToken",
 this.Context["$HIDDEN1.__RequestVerificationToken"].ToString());
request6.Body = request6Body;
ExtractHiddenFields extractionRule2 = new ExtractHiddenFields();
extractionRule2.Required = true;
extractionRule2.HtmlDecode = true;
extractionRule2.ContextParameterName ="1";
request6.ExtractValues +=
 new EventHandler<ExtractionEventArgs>(extractionRule2.Extract);
yield return request6;
request6 = null;

With some data you enter in forms, it can be a good idea to add flexibility by taking the data from a data source. Using the Web Test Editor, you can add a database, CSV file, or XML file as a data source (see Figure 19.14). With this dialog box, you can change form parameters to take data from a data source.

[image: Screenshot shows New Test Data Source Wizard dialog box with header select the type of data source, textfield for data source name, data source type icons such as database, csv file, and xml file.]

Figure 19.14

Adding a data source modifies the testing code. With a data source, the test class is annotated with the DeploymentItem attribute (if a CSV or XML file is used), and with DataSource and DataBinding attributes:

[DeploymentItem("webandloadtestproject\\EmailTests.csv",
 "webandloadtestproject")]
[DataSource("EmailDataSource",
 "Microsoft.VisualStudio.TestTools.DataSource.CSV",
 "|DataDirectory|\\webandloadtestproject\\EmailTests.csv",
 Microsoft.VisualStudio.TestTools.WebTesting.DataBindingAccessMethod.Sequential,
 Microsoft.VisualStudio.TestTools.WebTesting.DataBindingSelectColumns.SelectOnly
 BoundColumns,"EmailTests#csv")]
[DataBinding("EmailDataSource","EmailTests#csv","sample1@test#com",
 "EmailDataSource.EmailTests#csv.sample1@test#com")]
public class NavigateAndRegister1: WebTest
{
 // etc.
}

Now, in the code the data source can be accessed using the Context property of the WebTest that returns a WebTestContext to access the required data source via an index:

request6Body.FormPostParameters.Add("Email",
 this.Context["EmailDataSource.EmailTests#csv.sample1@test#com"].ToString());

Running the Web Test

With the tests in place, the testing can start. You can run—and debug—the test directly from the Web Test Editor. Remember to start the web application before you start the test. When you run the test from the Web Test Editor, you can see the resulting web pages as well as the detail information about requests and responses, as shown in Figure 19.15.

[image: Screenshot shows WebTest1 window which includes localhost addresses for webtest1 and values of headers such as referer, user agent, accept, content type et cetera.]

Figure 19.15

Figure 19.16 shows how you can influence the test runs by specifying a browser type, simulating think times, and running the test multiple times.

[image: Screenshot shows Web Test Run settings window which contain fixed run count selection option, browser type, checkboxes to simulate think items and use request url's directory.]

Figure 19.16

Web Load Test

Using Web Load Tests, you can simulate a high load on the web application. For a really high load one test server is not enough; you can use a list of test servers. With Visual Studio 2015, you can directly use the infrastructure of Microsoft Azure and select a Cloud-based Load Test as shown in Figure 19.17.

[image: Screenshot shows New Load Test Wizard window with header Welcome to the Create New Load Test Wizard and buttons to select cloud based load test with Visual Studio team and on-premise load test.]

Figure 19.17

You can create a load test by adding a new item Web Load Test to the WebAndLoadTestProject project. This starts a wizard where you can do the following:

	Define a constant load or a load that increases over time (see Figure 19.18)

	Establish a test mix model based on the number of tests or the number of virtual users

	Add tests to the load and define which test should run what percentage compared to the other tests

	Specify a network mix to simulate fast and slow networks (what’s the result for a user with a slow network if the server is occupied by clients with fast networks?)

	Determine a browser mix to test with Internet Explorer, Chrome, Firefox, and other browsers

	Establish run settings to run for the time to run the test

[image: Screenshot shows New Load Test Wizard window with header Edit load pattern settings for a load test scenario, load pattern option is selected from the side menu, and selects a load pattern and step load options in content section.]

Figure 19.18

Summary

In this chapter, you’ve seen the most important aspects about testing applications: creating unit tests, coded UI tests, and Web tests.

Visual Studio offers a Test Explorer to run unit tests, no matter whether they have been created using MSTest or xUnit. xUnit has the advantage of supporting .NET Core. This chapter also showed you triple A in action: Arrange, Act, and Assert.

With coded UI tests, you’ve seen how to create recordings and adapt the recordings to modify the UI testing code as needed.

With web applications, you’ve seen how to create a Web test to send requests to the server. You also found out how to change the requests.

Although testing helps with fixing issues with applications before they are deployed, Chapter 20, “Diagnostics and Application Insights,” helps you fix applications that are running.

20
Diagnostics and Application Insights

What’s In This Chapter?

	Simple Tracing with EventSource

	Advanced Tracing with EventSource

	Creating a Custom Trace Listener

	Using Application Insights

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	SimpleEventSourceSample

	EventSourceSampleInheritance

	EventSourceSampleAnnotations

	ClientApp/MyApplicationEvents

	WinAppInsights

Diagnostics Overview

As release cycles for applications become faster and faster, it’s becoming more and more important to learn how the application behaves while it’s running in production. What exceptions are occurring? Knowing what features are used is also of interest. Do users find the new feature of the app? How long do they stay in the page? To answer these questions, you need real-time information on the application.

This chapter explains how to get real-time information about your running application in order to identify any issues that it might have during production or to monitor resource usage to ensure that higher user loads can be accommodated. This is where the namespace System.Diagnostics .Tracing comes into play. This namespace offers classes for tracing using Event Tracing for Windows (ETW).

One way to deal with errors in your application, of course, is by throwing exceptions. However, an application might not fail with an exception, but it still doesn’t behave as expected. The application might be running well on most systems but have a problem on a few. On the live system, you can change the log by starting a trace collector and get detailed live information about what’s going on in the application. You can do this using ETW.

If there are problems with applications, the system administrator needs to be informed. The Event Viewer is a commonly used tool that not only the system administrator should be aware of but also the software developer. With the Event Viewer, you can both interactively monitor problems with applications and can add subscriptions to be informed about specific events that happen. ETW enables you to write information about the application.

Application Insights is a Microsoft Azure cloud service that enables you to monitor apps in the cloud. With just a few lines of code, you can get detailed information about how the application or service is used.

This chapter explains these facilities and demonstrates how you can use them for your applications.

NOTE The System.Diagnostics namespace also offers other classes for tracing, such as Trace and TraceSource. These classes have been used in previous versions of .NET. This chapter goes into only the newest technology for tracing: EventSource. You can read Professional C# 5.0 and .NET 4.5.1 for the older tracing types.

Tracing with EventSource

Tracing enables you to see informational messages about the running application. To get information about a running application, you can start the application in the debugger. During debugging, you can walk through the application step by step and set breakpoints at specific lines and when you reach specific conditions. The problem with debugging is that a program with release code can behave differently from a program with debug code. For example, while the program is stopping at a breakpoint, other threads of the application are suspended as well. Also, with a release build, the compiler-generated output is optimized and, thus, different effects can occur. With optimized release code, garbage collection is much more aggressive than with debug code. The order of calls within a method can be changed, and some methods can be removed completely and be called in place. There is a need to have runtime information from the release build of a program as well. Trace messages are written with both debug and release code.

A scenario showing how tracing helps is described here. After an application is deployed, it runs on one system without problems, whereas on another system intermittent problems occur. When you enable verbose tracing, the system with the problems gives you detailed information about what’s happening inside the application. The system that is running without problems has tracing configured just for error messages redirected to the Windows event log system. Critical errors are seen by the system administrator. The overhead of tracing is very small because you configure a trace level only when needed.

Tracing has quite a history with .NET. After a simple tracing functionality with the first version of .NET and the Trace class, .NET 2.0 made huge improvements on tracing and introduced the TraceSource class. The architecture behind TraceSource is very flexible in separating the source, the listener, and a switch to turn tracing on and off based on a list of trace levels.

Starting with .NET 4.5, again a new tracing class was introduced and enhanced with .NET 4.6: the EventSource class. This class is defined in the System.Diagnostics.Tracing namespace in the NuGet package Sytem.Diagnostics.

The new tracing architecture is based on Event Tracing for Windows (ETW), which was introduced with Windows Vista. It allows for fast system-wide messaging that is also used by the Windows event-logging and performance-monitoring facilities.

Let’s get into the concepts of ETW tracing and the EventSource class.

	An ETW provider is a library that fires ETW events. The applications created with this chapter are ETW providers.

	An ETW manifest describes the events that can be fired from ETW providers. Using a predefined manifest has the advantage that the system administrator already knows what events an application can fire as soon as the application is installed. This way the administrator can already configure listening for specific events. The new version of the EventSource allows both self-describing events and events described by a manifest.

	ETW keywords can be used to create categories for events. They are defined as bit-flags.

	ETW tasks are another way to group events. Tasks can be created to define events based on different scenarios of the program. Tasks are usually used with opcodes.

	ETW opcodes identify operations within a task. Both tasks and opcodes are defined with integer values.

	An event source is the class that fires events. You can either use the EventSource class directly or create a class that derives from the base class EventSource.

	An event method is a method of the event source that fires events. Deriving from the class EventSource, every void method is an event method if it is not annotated with the NonEvent attribute. Event methods can be annotated with the Event attribute.

	The event level defines the severity or verbosity of an event. This can be used to differ between critical, error, warning, informational, and verbose events.

	ETW channels are sinks for events. Events can be written to channels and log files. Admin, Operational, Analytic, and Debug are predefined channels.

Using the EventSource class, you will see the ETW concepts in action.

Examining a Simple Use of EventSource

The sample code using the EventSource class makes use of these dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Net.Http

Namespaces

	System

	System.Collections.Generic

	System.Diagnostics.Tracing

	System.IO

	System.Net.Http

	System.Threading.Tasks

	static System.Console

With the release of .NET 4.6—and with .NET Core 1.0—the class EventSource was extended and simplified to allow instantiating and using it without the need to derive a class. This makes it simpler to use it with small scenarios.

The first example for using EventSource shows a simple case. EventSource is instantiated as a static member of the Program class with a Console Application (Package) project. With the constructor, the name of the event source is specified (code file SimpleEventSourceSample/Program.cs):

private static EventSource sampleEventSource =
 new EventSource("Wrox-EventSourceSample1");

With the Main method of the Program class, the unique identifier of the event source is retrieved using the Guid property. This identifier is created based on the name of the event source. After this, the first event is written to invoke the Write method of EventSource. The parameter required is the event name that needs to be passed. Other parameters are available with overloads of the object. The second parameter that is passed is an anonymous object defining the Info property. This can be used to pass any information about the event to the event log:

static void Main()
{
 WriteLine($"Log Guid: {sampleEventSource.Guid}");
 WriteLine($"Name: {sampleEventSource.Name}");

 sampleEventSource.Write("Startup", new { Info ="started app" });
 NetworkRequestSample().Wait();
 ReadLine();
 sampleEventSource??.Dispose();
}

NOTE Instead of passing an anonymous object with custom data to the Write method, you can create a class that derives from the base class EventSource and mark it with the attribute EventData. This attribute is shown later in this chapter.

The method NetworkRequestSample that is invoked from the Main method makes a network request and writes a trace log passing the URL that is requested to the trace information. On completion of the network call, trace information is written again. The exception-handling code shows another method overload on writing trace information. Different overloads allow passing specific information that is shown in the next sections. The following code snippet shows EventSourceOptions setting a trace level. The Error event level is set by writing error information. This level can be used to filter specific trace information. With filtering you can decide to read just error information—for example, information with the error level and information that is more critical than the error level. During another tracing session you can decide to read all trace information using the verbose level. The EventLevel enumeration defines the values LogAlways, Critical, Error, Warning, Informational, and Verbose:

private static async Task NetworkRequestSample()
{
 try
 {
 using (var client = new HttpClient())
 {
 string url ="http://www.cninnovation.com";
 sampleEventSource.Write("Network", new { Info = $"requesting {url}" });

 string result = await client.GetStringAsync(url);
 sampleEventSource.Write("Network",
 new
 {
 Info =
 $"completed call to {url}, result string length: {result.Length}"
 });
 }
 WriteLine("Complete.................");
 }
 catch (Exception ex)
 {
 sampleEventSource.Write("Network Error",
 new EventSourceOptions { Level = EventLevel.Error },
 new { Message = ex.Message, Result = ex.HResult });
 WriteLine(ex.Message);
 }
}

Before you run the application, you have to do some configuration and use tools for reading the traces. The next section explains how to do this.

NOTE The simple use of EventSource is only available with .NET 4.6, .NET Core 1.0, and later versions. Programs created with earlier versions of .NET need to create a class derived from EventSource as shown in the next sections. Alternatively, to use the simpler options, you can use the NuGet package Microsoft.Diagnostics.Tracing .EventSource that is available for older .NET versions.

Understanding Tools for Tracing

For analyzing trace information, several tools are available. logman is a tool that is part of Windows. With logman you can create and manage event trace sessions and write ETW traces to a binary log file. tracerpt is also available with Windows. This tool enables you to convert the binary information written from logman to a CSV, XML, or EVTX file format. PerfView is a tool that offers graphical information for ETW traces.

Logman

Let’s begin using logman to create a trace session from the previously created application. You need to first start the application to copy the GUID that’s created for the application. You need this GUID to start a log session with logman. The start option starts a new session to log. The -p option defines the name of the provider; here the GUID is used to identify the provider. The -o option defines the output file, and the -ets option sends the command directly to the event trace system without scheduling. Be sure to start logman in a directory where you have write access; otherwise it fails to write the output file mytrace.etl:

logman start mysession -p {3b0e7fa6-0346-5781-db55-49d84d7103de} -o mytrace.etl -ets

After running the application, you can stop the trace session with the stop command:

logman stop mysession -ets

NOTE logman has a lot more commands that are not covered here. Using logman, you can see all the installed ETW trace providers and their names and identifiers, create data collectors to start and stop at specified times, define maximum log file sizes, and more. You can see the different options of logman with logman -h.

Tracerpt

The log file is in a binary format. To get a readable representation, you can use the utility tracerpt. With this tool, it’s possible to extract CSV, XML, and EVTX formats, as specified with the -of option:

tracerpt mytrace.etl -o mytrace.xml -of XML

Now the information is available in a readable format. With the information that is logged by the application, you can see the event name passed to the Write method manifests within the Task element, and you can find the anonymous object within the EventData element:

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event">
 <System>
 <Provider Name="Wrox-SimpleEventSourceSample"
 Guid="{3b0e7fa6-0346-5781-db55-49d84d7103de}" />
 <EventID>2</EventID>
 <Version>0</Version>
 <Level>5</Level>
 <Task>0</Task>
 <Opcode>0</Opcode>
 <Keywords>0x0</Keywords>
 <TimeCreated SystemTime="2015-10-14T21:45:20.874754600Z" />
 <Correlation ActivityID="{00000000-0000-0000-0000-000000000000}" />
 <Execution ProcessID="120" ThreadID="9636" ProcessorID="1" KernelTime="45"
 UserTime="270" />
 <Channel />
 <Computer />
 </System>
 <EventData>
 <Data Name="Info">started app</Data>
 </EventData>
 <RenderingInfo Culture="en-US">
 <Task>Startup</Task>
 </RenderingInfo>
</Event>

The error information is shown with the trace as shown here:

<EventData>
 <Data Name="Message">An error occurred while sending the request.</Data>
 <Data Name="Result">-2146233088</Data>
</EventData>

PerfView

Another tool to read trace information is PerfView. You can download this tool from the Microsoft downloads page http://www.microsoft.com/downloads). Version 1.8 of this tool has great enhancements for using it with Visual Studio 2015 and the self-describing ETW format from EventSource. This tool doesn’t need to be installed; just copy the tool where you need it. After you start this tool, it makes use of the subdirectories where it is located and allows directly opening the binary ETL file. Figure 20.1 shows PerfView opening the file mytrace.etl created by logman.

[image: Screenshot shows the time in milliseconds, process name, and rest of the selected event Wrox-SimpleEventSample/Network. Process filter, text filter, columns to display options are shown on the toolbar.]

Figure 20.1

Deriving from EventSource

Instead of directly using an instance of EventSource, it’s a good practice to define all the information that could be traced in a single place. For many applications, it’s enough to define just one event source. This event source can be defined in a separate logging assembly. The event source class needs to derive from the base class EventSource. With this custom class, all the trace information that should be written can be defined by separate methods that invoke the WriteEvent method of the base class. The class is implemented with the Singleton pattern, which offers a static Log property that returns an instance. Naming this property Log is a convention used with event sources. The private constructor calls the constructor of the base class to set the event source name (code file EventSourceSampleInheritance/SampleEventSource .cs):

public class SampleEventSource : EventSource
{
 private SampleEventSource()
 : base("Wrox-SampleEventSource2")
 {
 }

 public static SampleEventSource Log = new SampleEventSource();

 public void Startup()
 {
 base.WriteEvent(1);
 }

 public void CallService(string url)
 {
 base.WriteEvent(2, url);
 }

 public void CalledService(string url, int length)
 {
 base.WriteEvent(3, url, length);
 }

 public void ServiceError(string message, int error)
 {
 base.WriteEvent(4, message, error);
 }
}

All the void methods of an event source class are used to write event information. In case you’re defining a helper method, it needs to be annotated with the NonEvent attribute.

In a simple scenario where only information messages should be written, nothing more is necessary. Besides passing an event ID to the trace log, the WriteEvent method has 18 overloads that allow passing message strings, int, and long values, and any number of objects.

With this implementation, you can use the members of the SampleEventSource type to write trace messages as shown in the Program class. The Main method makes a trace log calling the Startup method, invokes the NetworkRequestSample method to create a trace log via the CallService method, and makes a trace log in case of an error (code file EventSourceSampleInheritance/Program.cs):

public class Program
{
 public static void Main()
 {
 SampleEventSource.Log.Startup();
 WriteLine($"Log Guid: {SampleEventSource.Log.Guid}");
 WriteLine($"Name: {SampleEventSource.Log.Name}");
 NetworkRequestSample().Wait();
 ReadLine();
 }

 private static async Task NetworkRequestSample()
 {
 try
 {
 var client = new HttpClient();
 string url ="http://www.cninnovation.com";
 SampleEventSource.Log.CallService(url);
 string result = await client.GetStringAsync(url);
 SampleEventSource.Log.CalledService(url, result.Length);
 WriteLine("Complete.................");
 }
 catch (Exception ex)
 {
 SampleEventSource.Log.ServiceError(ex.Message, ex.HResult);
 WriteLine(ex.Message);
 }
 }
}

When you run the app with these commands with a developer command prompt from the directory of the project, you produce an XML file that contains information about the traces:

> logman start mysession -p"{1cedea2a-a420-5660-1ff0-f718b8ea5138}"
 -o log2.etl -ets
> dnx run
> logman stop mysession -ets
> tracerpt log2.etl -o log2.xml -of XML

The event information about the service call is shown here:

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event">
 <System>
 <Provider Name="Wrox-SampleEventSource2"
 Guid="{1cedea2a-a420-5660-1ff0-f718b8ea5138}" />
 <EventID>7</EventID>
 <Version>0</Version>
 <Level>4</Level>
 <Task>0</Task>
 <Opcode>0</Opcode>
 <Keywords>0xF00000000000</Keywords>
 <TimeCreated SystemTime="2015-09-06T07:55:28.865368800Z" />
 <Correlation ActivityID="{00000000-0000-0000-0000-000000000000}" />
 <Execution ProcessID="11056" ThreadID="10816" ProcessorID="0"
 KernelTime="30" UserTime="90" />
 <Channel />
 <Computer />
 </System>
 <EventData>
 <Data Name="url">http://www.cninnovation.com</Data>
 </EventData>
 <RenderingInfo Culture="en-US">
 <Task>CallService</Task>
 </RenderingInfo>
</Event>

Using Annotations with EventSource

Creating an event source class that derives from EventSource, you have more control on defining the trace information. You can add annotations to the methods by using attributes.

By default, the name of the event source is the same as the name of the class, but you can change the name and the unique identifier by applying the EventSource attribute. Every event trace method can be accompanied by the Event attribute. Here you can define the ID of the event, an opcode, the trace level, custom keywords, and tasks. This information is used to create manifest information for Windows to define what information is logged. The base methods WriteEvent that are called within the methods using the EventSource need to match the event ID defined by the Event attribute, and the variable names passed to the WriteEvent methods need to match the argument names of the declared method.

With the sample class SampleEventSource, custom keywords are defined by the inner class Keywords. The members of this class are cast to the enumeration type EventKeywords. EventKeywords is a flag-based enum of type long that defines only values with upper bits starting with bit 42. You can use all the lower bits to define custom keywords. The Keywords class defines values for the lowest four bits set to Network, Database, Diagnostics, and Performance. The enum EventTask is a similar flags-based enumeration. Contrary to EventKeywords, an int is enough for its backing store, and EventTask doesn’t have predefined values (only the enumeration value None = 0 is predefined). Similar to the Keywords class, the Task class defines custom tasks for the EventTask enumeration (code file EventSourceSampleAnnotations/SampleEventSource.cs):

[EventSource(Name="EventSourceSample", Guid="45FFF0E2-7198-4E4F-9FC3-DF6934680096")]
class SampleEventSource : EventSource
{
 public class Keywords
 {
 public const EventKeywords Network = (EventKeywords)1;
 public const EventKeywords Database = (EventKeywords)2;
 public const EventKeywords Diagnostics = (EventKeywords)4;
 public const EventKeywords Performance = (EventKeywords)8;
 }

 public class Tasks
 {
 public const EventTask CreateMenus = (EventTask)1;
 public const EventTask QueryMenus = (EventTask)2;
 }

 private SampleEventSource()
 {
 }

 public static SampleEventSource Log = new SampleEventSource ();

 [Event(1, Opcode=EventOpcode.Start, Level=EventLevel.Verbose)]
 public void Startup()
 {
 base.WriteEvent(1);
 }

 [Event(2, Opcode=EventOpcode.Info, Keywords=Keywords.Network,
 Level=EventLevel.Verbose, Message="{0}")]
 public void CallService(string url)
 {
 base.WriteEvent(2, url);
 }

 [Event(3, Opcode=EventOpcode.Info, Keywords=Keywords.Network,
 Level=EventLevel.Verbose, Message="{0}, length: {1}")]
 public void CalledService(string url, int length)
 {
 base.WriteEvent(3, url, length);
 }

 [Event(4, Opcode=EventOpcode.Info, Keywords=Keywords.Network,
 Level=EventLevel.Error, Message="{0} error: {1}")]
 public void ServiceError(string message, int error)
 {
 base.WriteEvent(4, message, error);
 }

 [Event(5, Opcode=EventOpcode.Info, Task=Tasks.CreateMenus,
 Level=EventLevel.Verbose, Keywords=Keywords.Network)]
 public void SomeTask()
 {
 base.WriteEvent(5);
 }
}

The Program class to write these events is unchanged. The information from these events can now be used on using a listener and filtering only events for specific keywords, for specific log levels, or for specific tasks. You see how to create listeners later in this chapter in the “Creating Custom Listeners” section.

Creating Event Manifest Schema

Creating a custom event source class has the advantage that you can create a manifest that describes all the trace information. Using the EventSource class without inheritance, the Settings property is set to the value EtwSelfDescribingEventFormat of the enumeration EventSourceSettings. The events are directly described by the methods invoked. When you use a class that inherits from EventSource, the Settings property has the value EtwManifestEventFormat. The event information is described by a manifest.

You can create the manifest file by using the static method GenerateManifest of the EventSource class. The first parameter defines the class of the event source; the second parameter describes the path of the assembly that contains the event source type (code file EventSourceSampleAnnotations/Program.cs):

public static void GenerateManifest()
{
 string schema = SampleEventSource.GenerateManifest(
 typeof(SampleEventSource),".");
 File.WriteAllText("sampleeventsource.xml", schema);
}

This is the manifest information containing tasks, keywords, events, and templates for the event messages (code file EventSourceSampleAnnotations/sampleeventsource.xml):

<instrumentationManifest
 xmlns="http://schemas.microsoft.com/win/2004/08/events">
 <instrumentation xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:win="http://manifests.microsoft.com/win/2004/08/windows/events">
 <events xmlns="http://schemas.microsoft.com/win/2004/08/events">
 <provider name="EventSourceSample"
 guid="{45fff0e2-7198-4e4f-9fc3-df6934680096}" resourceFileName="."
 messageFileName="." symbol="EventSourceSample">
 <tasks>
 <task name="CreateMenus" message="$(string.task_CreateMenus)"
 value="1"/>
 <task name="QueryMenus" message="$(string.task_QueryMenus)"
 value="2"/>
 <task name="EventSourceMessage"
 message="$(string.task_EventSourceMessage)" value="65534"/>
 </tasks>
 <opcodes>
 </opcodes>
 <keywords>
 <keyword name="Network" message="$(string.keyword_Network)"
 mask="0x1"/>
 <keyword name="Database" message="$(string.keyword_Database)"
 mask="0x2"/>
 <keyword name="Diagnostics" message="$(string.keyword_Diagnostics)"
 mask="0x4"/>
 <keyword name="Performance" message="$(string.keyword_Performance)"
 mask="0x8"/>
 <keyword name="Session3" message="$(string.keyword_Session3)"
 mask="0x100000000000"/>
 <keyword name="Session2" message="$(string.keyword_Session2)"
 mask="0x200000000000"/>
 <keyword name="Session1" message="$(string.keyword_Session1)"
 mask="0x400000000000"/>
 <keyword name="Session0" message="$(string.keyword_Session0)"
 mask="0x800000000000"/>
 </keywords>
 <events>
 <event value="0" version="0" level="win:LogAlways"
 symbol="EventSourceMessage" task="EventSourceMessage"
 template="EventSourceMessageArgs"/>
 <event value="1" version="0" level="win:Verbose" symbol="Startup"
 opcode="win:Start"/>
 <event value="2" version="0" level="win:Verbose" symbol="CallService"
 message="$(string.event_CallService)" keywords="Network"
 template="CallServiceArgs"/>
 <event value="3" version="0" level="win:Verbose"
 symbol="CalledService" message="$(string.event_CalledService)"
 keywords="Network" template="CalledServiceArgs"/>
 <event value="4" version="0" level="win:Error" symbol="ServiceError"
 message="$(string.event_ServiceError)" keywords="Network"
 template="ServiceErrorArgs"/>
 <event value="5" version="0" level="win:Verbose" symbol="SomeTask"
 keywords="Network" task="CreateMenus"/>
 </events>
 <templates>
 <template tid="FileName_EventSourceMessageArgs">
 <data name="message" inType="win:UnicodeString"/>
 </template>
 <template tid="CallServiceArgs">
 <data name="url" inType="win:UnicodeString"/>
 </template>
 <template tid="CalledServiceArgs">
 <data name="url" inType="win:UnicodeString"/>
 <data name="length" inType="win:Int32"/>
 </template>
 <template tid="ServiceErrorArgs">
 <data name="message" inType="win:UnicodeString"/>
 <data name="error" inType="win:Int32"/>
 </template>
 </templates>
 </provider>
 </events>
 </instrumentation>
 <localization>
 <resources culture="en-GB">
 <stringTable>
 <string id="FileName_event_CalledService" value="%1 length: %2"/>
 <string id="FileName_event_CallService" value="%1"/>
 <string id="FileName_event_ServiceError" value="%1 error: %2"/>
 <string id="FileName_keyword_Database" value="Database"/>
 <string id="FileName_keyword_Diagnostics" value="Diagnostics"/>
 <string id="FileName_keyword_Network" value="Network"/>
 <string id="FileName_keyword_Performance" value="Performance"/>
 <string id="FileName_keyword_Session0" value="Session0"/>
 <string id="FileName_keyword_Session1" value="Session1"/>
 <string id="FileName_keyword_Session2" value="Session2"/>
 <string id="FileName_keyword_Session3" value="Session3"/>
 <string id="FileName_task_CreateMenus" value="CreateMenus"/>
 <string id="FileName_task_EventSourceMessage" value="EventSourceMessage"/>
 <string id="FileName_task_QueryMenus" value="QueryMenus"/>
 </stringTable>
 </resources>
 </localization>
</instrumentationManifest>

Having this metadata and registering it with the system allows the system administrator to filter for specific events and get notifications when something happens. You can handle registration in two ways: static and dynamic. Static registration requires administrative privileges, and a registration via the wevtutil.exe command-line tool, which passes the DLL that contains the manifest. The EventSource class also offers the preferred dynamic registration. This happens during runtime without the need for administrative privileges returning the manifest in an event stream, or in a response to a standard ETW command.

Using Activity IDs

A new feature of the new version of TraceSource makes it possible to easily write activity IDs. As soon as you have multiple tasks running, it helps to know which trace messages belong to each other and not have the trace message based only on time. For example, when you’re using tracing with a web application, multiple requests from clients are dealt concurrently when it is good to know which trace messages belong to one request. Such issues don’t occur only on the server; the problem is also in the client application as soon as you’re running multiple tasks, or when you’re using the C# async and await keywords on calling asynchronous methods. Different tasks come into play.

When you create a class that derives from TraceSource, all you have to do to create activity IDs is define methods that are post-fixed with Start and Stop.

For the sample showing activity IDs in action, a Class Library (Package) supporting .NET 4.6 and .NET Core 1.0 is created. Previous versions of .NET don’t support the new TraceSource features for activity IDs. The ProcessingStart and RequestStart methods are used to start activities; ProcessingStop and RequestStop stop activities (code file MyApplicationEvents/SampleEventSource):

public class SampleEventSource : EventSource
{
 private SampleEventSource()
 : base("Wrox-SampleEventSource")
 {
 }

 public static SampleEventSource Log = new SampleEventSource();

 public void ProcessingStart(int x)
 {
 base.WriteEvent(1, x);
 }
 public void Processing(int x)
 {
 base.WriteEvent(2, x);
 }
 public void ProcessingStop(int x)
 {
 base.WriteEvent(3, x);
 }

 public void RequestStart()
 {
 base.WriteEvent(4);
 }
 public void RequestStop()
 {
 base.WriteEvent(5);
 }
}

The client application that’s writing the events makes use of these dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Diagnostics.Tracing

	System.Threading.Tasks.Parallel

	System.Net.Http

	MyApplicatonEvents

Namespaces

	System

	System.Collections.Generic

	System.Diagnostics.Tracing

	System.Net.Http

	System.Threading.Tasks

	static System.Console

The ParallelRequestSample method invokes the RequestStart and RequestStop methods to start and stop the activity. Between these calls, a parallel loop is created using Parallel.For. The Parallel class uses multiple tasks to run concurrently by calling the delegate of the third parameter. This parameter is implemented as a lambda expression to invoke the ProcessTaskAsync method (code file ClientApp/Program.cs):

private static void ParallelRequestSample()
{
 SampleEventSource.Log.RequestStart();
 Parallel.For(0, 20, x =>
 {
 ProcessTaskAsync(x).Wait();
 });
 SampleEventSource.Log.RequestStop();
 WriteLine("Activity complete");
}

NOTE The Parallel class is explained in detail in Chapter 21, “Tasks and Parallel Programming.”

The method ProcessTaskAsync writes traces using ProcessingStart and ProcessingStop. Here, an activity is started within another activity. As you can see from the output analyzing the logs, activities can be hierarchical (code file ClientApp/Program.cs):

private static async Task ProcessTaskAsync(int x)
{
 SampleEventSource.Log.ProcessingStart(x);
 var r = new Random();
 await Task.Delay(r.Next(500));

 using (var client = new HttpClient())
 {
 var response = await client.GetAsync("http://www.bing.com");
 }
 SampleEventSource.Log.ProcessingStop(x);
}

Previously, you have used the PerfView tool to open an ETL log file. PerfView can also analyze running applications. You can run PerfView with the following option:

PerfView /onlyproviders=*Wrox-SampleEventSource collect

The option collect starts the data collection. Using the qualifier /onlyproviders turns off the Kernel and CLR providers and only logs messages from the providers listed. Use the qualifier -h to see possible options and qualifiers of PerfView. When you start PerfView this way, data collection starts immediately and continues until you click the Stop Collection button (see Figure 20.2).

[image: Screenshot shows Collecting data over a user specified interval window which contain filled textfields for Command, Data file, Current Directory, Mark Text, Circular MB, Thread Time, Status et cetera.]

Figure 20.2

When you run the application after you’ve started the trace collection, and then have stopped the collection afterward, you can see activity IDs generated with the event type Wrox-SampleEventSource/ProcessingStart/Start. The IDs allow a hierarchy, such as //1/2 with one parent activity and a child activity. For every loop iteration, you see a different activity ID (see Figure 20.3). With the event type Wrox-SampleEventSource/ProcessingStop/Stop, you can see the same activity IDs as they relate to the same activity.

[image: Screenshot shows the time in milliseconds, process name, and rest of the selected event Wrox-SimpleEventSource/ProcessingStart/Start. Process filter, text filter, columns to display options are shown on the toolbar.]

Figure 20.3

Using PerfView, you can select multiple event types on the left, and add a filter—for example, //1/4—so you see all the events that belong to this activity (see Figure 20.4). Here you can see that an activity ID can span multiple threads. The start and stop events from the same activity use different threads.

[image: Screenshot shows the time in milliseconds, process name, and rest of the selected event Wrox-SimpleEventSource/ProcessingStop/Stop. Process filter, text filter, columns to display options are shown on the toolbar.]

Figure 20.4

Creating Custom Listeners

As you’ve written trace messages, you’ve seen how to read them using tools such as logman, tracerpt, and PerfView. You can also create a custom in-process event listener to write the events where you want.

You create custom event listeners by creating a class that derives from the base class EventListener. All you need to do is to override the OnEventWritten method. With this method, trace messages are passed to the parameter of type EventWrittenEventArgs. The sample implementation sends information about the event, including the payload, which is the additional data passed to the WriteEvent method of the EventSource (code file ClientApp/MyEventListener.cs):

public class MyEventListener : EventListener
{
 protected override void OnEventSourceCreated(EventSource eventSource)
 {
 WriteLine($"created {eventSource.Name} {eventSource.Guid}");
 }

 protected override void OnEventWritten(EventWrittenEventArgs eventData)
 {
 WriteLine($"event id: {eventData.EventId} source: {eventData.EventSource.Name}");
 foreach (var payload in eventData.Payload)
 {
 WriteLine($"\t{payload}");
 }
 }
}

The listener is activated in the Main method of the Program class. You can access event sources by calling the static method GetSources of the EventSource class (code file ClientApp/Program.cs):

IEnumerable<EventSource> eventSources = EventSource.GetSources();
InitListener(eventSources);

The InitListener method invokes the EnableEvents method of the custom listener and passes every event source. The sample code registers the setting EventLevel.LogAlways to listen to every log message written. You can also specify to just write information messages—which also include errors—or to write errors only.

private static void InitListener(IEnumerable<EventSource> sources)
{
 listener = new MyEventListener();
 foreach (var source in sources)
 {
 listener.EnableEvents(source, EventLevel.LogAlways);
 }
}

When you run the application, you see events of the FrameworkEventSource and the Wrox-SampleEventSource written to the console. Using a custom event listener like this, you can easily write events to Application Insights, which is a cloud-based telemetry service that’s explained in the next section.

Working with Application Insights

Application Insights is a Microsoft Azure technology that allows monitoring usage and performance of applications, no matter where they are used. You can get reports of users having issues with your application—for example, you can find out about exceptions—and you can also find out the features users are using from your application. For example, let’s say you have added a new feature to your app. Are users finding the button to activate the feature?

When you use Application Insights, it’s easy to identify issues that users are having with the app. There’s a good reason Microsoft makes it easy to integrate Application Insights with all kinds of applications (both web and Windows apps).

NOTE Here are some examples of features that users had trouble finding from Microsoft’s own products. The Xbox was the first device to offer a user interface with large tiles. The search feature was available directly below the tiles. Although this button was available directly in front of the user, users didn’t see it. Microsoft moved the search functionality within a tile, and now users are able to find it. Another example is the physical search button on the Windows Phone. This button was meant to be used to search within apps. Users complained about not having an option to search within email because they didn’t think to press this physical button to search for emails. Microsoft changed the functionality. Now the physical search button is used only to search content from the web, and the mail app has its own Search button. Windows 8 had a similar issue with search; users didn’t use the search functionality from the charms bar to search within apps. Windows 8.1 changed the guideline to use search from the charms bar, and now the app contains its own search box; in Windows 10 there’s also an auto suggest box. Does it look like some communalities?

Creating a Universal Windows App

One of the sample apps for making use of Application Insights is a Universal Windows Platform app with two pages—MainPage and SecondPage—and just a few button and textbox controls to simulate an action, throw an exception, and navigate between pages. The user interface is defined in the following code snippet (code file WinAppInsights/MainPage.xaml):

<StackPanel Orientation="Vertical">
 <Button Content="Navigate to SecondPage" Click="OnNavigateToSecondPage" />
 <TextBox x:Name="sampleDataText" Header="Sample Data" />
 <Button Content="Action" Click="OnAction" />
 <Button Content="Create Error" Click="OnError" />
</StackPanel>

Clicking on the Navigate to SecondPage button invokes the OnNavigateToSecondPage event handler method and navigates to the second page (code file WinAppInsights/MainPage.xaml.cs):

private void OnNavigateToSecondPage(object sender, RoutedEventArgs e)
{
 this.Frame.Navigate(typeof(SecondPage));
}

With the OnAction method, a dialog shows the data entered by the user:

private async void OnAction(object sender, RoutedEventArgs e)
{
 var dialog = new ContentDialog
 {
 Title ="Sample",
 Content = $"You entered {sampleDataText.Text}",
 PrimaryButtonText ="Ok"
 };
 await dialog.ShowAsync();
}

And the OnError method throws an unhandled exception:

private void OnError(object sender, RoutedEventArgs e)
{
 throw new Exception("something bad happened");
}

NOTE You can read more information about creating apps using the Universal Windows Platform starting with Chapter 29, “Core XAML,” and especially in Chapter 32, “Windows Apps: User Interfaces,” and Chapter 33, “Advanced Windows Apps.”

Creating an Application Insights Resource

For using Application Insights, you need to create an Application Insights resource to your Microsoft Azure account. In the Microsoft Azure portal (http://portal.azure.com), you can find this resource with the Developer Services. When you create this resource, you need to specify the name, application type, resource group, subscription, and location of the service (see Figure 20.5).

[image: Screenshot shows New, Resource groups, Recent, SQL databases et cetera on side menu and Developer Services on left from which Application Insights is chosen. Application Insights textfields are shown on right.]

Figure 20.5

After creating the Application Insights resource, a resource window is shown where you can see collected information about your application. What you need from this management user interface is the instrumentation key that is available in the Properties settings.

NOTE In case you don’t have a Microsoft Azure account, you can try out one for free. Regarding pricing of Application Insights, different price levels offer different functionality. There’s a free version offering up to 5 million data points per month. For more information, check http://azure.microsoft.com.

NOTE Instead of creating this resource from the web portal, you can select Application Insights from the project template to create this resource in Microsoft Azure.

Configure a Windows App

After creating a Universal Windows App, you can add Application Insights by selecting the project in Solution Explorer, opening the application context menu (by clicking the right mouse key or pressing the application context key on the keyboard), and then selecting Add Application Insights Telemetry. From there you can select the previously created Application Insights resource (see Figure 20.6) or create a new resource. This configuration adds a reference to the NuGet package Microsoft.ApplicationInsights.WindowsApps and the configuration file ApplicationInsights.config. In case you add this configuration file programmatically, you need to copy the instrumentation key from the Azure portal and add it to the InstrumentationKey element (code file WinAppInsights/ApplicationInsights.config):

<?xml version="1.0" encoding="utf-8" ?>
<ApplicationInsights>
 <InstrumentationKey>Add your instrumentation key here</InstrumentationKey>
</ApplicationInsights>

[image: Screenshot shows Application Insights page with options to confirm the Microsoft account and subscription, telemetry sending location in resource group, and Configure settings button.]

Figure 20.6

You need to set the Build action of this file to Content, and you need to copy the file to the output directory (just set the corresponding properties in the Property window).

Next, you initialize Application Insights by invoking the InitializeAsync method of the WindowsAppInitializer class (namespace Microsoft.ApplicationInsights). This method enables you to define what Windows collectors should be used; by default the metadata, session, page view, and unhandled exception collectors are configured (code file WinAppInsights/App.xaml.cs):

public App()
{
 WindowsAppInitializer.InitializeAsync(WindowsCollectors.Metadata |
 WindowsCollectors.Session | WindowsCollectors.PageView |
 WindowsCollectors.UnhandledException);

 this.InitializeComponent();
 this.Suspending += OnSuspending;
}

NOTE The InitializeAsync method by default reads the instrumentation key from the file applicationinsights.config. You can also use an overload of this method to pass the instrumentation key with the first parameter.

Using Collectors

Without doing anything more, you’re getting good information out of Application Insights. Just start the application; the collectors defined by the InitializeAsync methods do their jobs. After you run the app, navigate between pages, and generate the exception, you can go to the Azure portal to see the information reported. Be aware that when running with the debugger, information is immediately transferred to the cloud, but without the debugger information is cached locally and submitted in packages. You might need to wait a few minutes before the information shows up.

See Figure 20.7 for page views. You can see the number of sessions and users, what page has been opened and how often, and information about the user, such as the user’s device, region, IP address, and more.

[image: Screenshot shows Page View Properties that include page view url, continent, country, state, city, client ip address, device id, device name et cetera on right and histograms representing page views details on left.]

Figure 20.7

You can also see information about all the crashes of the app. Figure 20.8 shows the exception, and where and when the exception occurred. Some errors might be related to specific devices, or specific regions. With my picture search app in the Microsoft store, which uses Microsoft’s Bing service, I’ve seen issues in China; some users might be behind a firewall and unable to reach this service. If you are curious to see this app, just search for Picture Search in the Microsoft store and install and run this application.

[image: Screenshot shows information about total crashes by application version, device name, and operating system version on left and exception properties, exception message, call stack, and related items on right.]

Figure 20.8

Writing Custom Events

You can also define your own telemetry information that should be written to the cloud service. To write custom telemetry data, you need to instantiate a TelemetryClient object. This class is thread safe, so you can use an instance from multiple threads. Here, the method OnAction is changed to write event information that call TrackEvent. You can invoke TrackEvent either by passing an event name, optional properties, and metrics or by passing an object of type EventTelemetry (code file WinAppInsights/MainPage.xaml.cs):

private TelemetryClient _telemetry = new TelemetryClient();

private async void OnAction(object sender, RoutedEventArgs e)
{
 _telemetry.TrackEvent("OnAction",
 properties: new Dictionary<string, string>()
 { ["data"] = sampleDataText.Text });
 var dialog = new ContentDialog
 {
 Title ="Sample",
 Content = $"You entered {sampleDataText.Text}",
 PrimaryButtonText ="Ok"
 };
 await dialog.ShowAsync();
}

This event information is shown in Figure 20.9. With properties you can pass a dictionary of string objects that is all shown in the cloud portal. Using metrics, you can pass a dictionary of string and double where you can pass any counts that you need to analyze the usage of the app.

[image: Screenshot shows custom event properties such as event time, event name, and device id, custom data, and related items such as telemetry for that user session and five minutes before and after that event.]

Figure 20.9

When you are catching exceptions, you can write error information by invoking TrackException. With TrackException, you can also pass properties and metrics, and—using the ExceptionTelemetry class—also information about the exception:

private void OnError(object sender, RoutedEventArgs e)
{
 try
 {
 throw new Exception("something bad happened");
 }
 catch (Exception ex)
 {
 _telemetry.TrackException(
 new ExceptionTelemetry
 {
 Exception = ex,
 HandledAt = ExceptionHandledAt.UserCode,
 SeverityLevel = SeverityLevel.Error
 });
 }
}

Other methods you can use to write custom events are TrackMetric to track metric information, TrackPageView to send information about the page, TrackTrace for overall trace information where you can specify a trace level, and TrackRequest, which is mainly useful for web applications.

Summary

In this chapter, you have looked at tracing and logging facilities that can help you find intermittent problems in your applications. You should plan early and build these features into your applications; doing so will help you avoid many troubleshooting problems later.

With tracing, you can write debugging messages to an application that you can also use for the final product delivered. If there are problems, you can turn tracing on by changing configuration values and find the issues.

With Application Insights, you’ve seen that many features come out of the box when you use this cloud service. You can easily analyze app crashes and page views with just a few lines of code. If you add some more lines, you can find out if users don’t use some features of the app because they are having trouble finding them.

Although this chapter had a small snippet on using the Parallel class, the next chapter goes into more details of parallel programming with the Task and Parallel classes.

21
Tasks and Parallel Programming

What’s In This Chapter?

	An overview of multi-threading

	Working with the Parallel class

	Working with Tasks

	Using the Cancellation framework

	Using the Data Flow Library

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Parallel

	Task

	Cancellation

	DataFlow

Overview

There are several reasons for using multiple threads. Suppose that you are making a network call from an application that might take some time. You don’t want to stall the user interface and force the user to wait idly until the response is returned from the server. The user could perform some other actions in the meantime or even cancel the request that was sent to the server. Using threads can help.

For all activities that require a wait—for example, because of file, database, or network access—you can start a new thread to fulfill other activities at the same time. Even if you have only processing-intensive tasks to do, threading can help. Multiple threads of a single process can run on different CPUs, or, nowadays, on different cores of a multiple-core CPU, at the same time.

You must be aware of some issues when running multiple threads, however. Because they can run during the same time, you can easily get into problems if the threads access the same data. To avoid that, you must implement synchronization mechanisms.

Since .NET 4, .NET has offered an abstraction mechanism to threads: tasks. Tasks allow building relations between tasks—for example, one task should continue when the first one is completed. You can also build a hierarchy consisting of multiple tasks.

Instead of using tasks, you can implement parallel activities using the Parallel class. You need to differentiate data parallelism where working with some data is processed simultaneously between different tasks, or task parallelism where different functions are executed simultaneously.

When creating parallel programs, you have a lot of different options. You should use the simplest option that fits your scenario. This chapter starts with the Parallel class that offers very easy parallelism. If this is all you need, just use this class. In case you need more control, such as when you need to manage a relation between tasks or to define a method that returns a task, the Task class is the way to go.

This chapter also covers the data flow library, which might be the easiest one to use if you need an actor-based programming to flow data through pipelines.

In case you even need more control over parallelism, such as setting priorities, the Thread class might be the one to use.

NOTE Synchronization between different tasks is covered in Chapter 22, “Task Synchronization.”

The use of asynchronous methods with the async and await keywords is covered in Chapter 15, “Asynchronous Programming.”

One variant of task parallelism is offered by Parallel LINQ, which is covered in Chapter 13, “Language Integrated Query.”

Parallel Class

One great abstraction of threads is the Parallel class. With this class, both data and task parallelism is offered. This class is in the namespace System.Threading.Tasks.

The Parallel class defines static methods for a parallel for and foreach. With the C# statements for and foreach, the loop is run from one thread. The Parallel class uses multiple tasks and, thus, multiple threads for this job.

Whereas the Parallel.For and Parallel.ForEach methods invoke the same code during each iteration, Parallel.Invoke enables you to invoke different methods concurrently. Parallel.Invoke is for task parallelism, and Parallel.ForEach is for data parallelism.

Looping with the Parallel.For Method

The Parallel.For method is similar to the C# for loop statement for performing a task a number of times. With Parallel.For, the iterations run in parallel. The order of iteration is not defined.

The sample code for ParallelSamples makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Threading.Tasks.Parallel

	System.Threading.Thread

Namespaces

	System.Threading

	System.Threading.Tasks

	static System.Console

NOTE This sample makes use of command-line arguments. To work through the different features, pass different arguments as shown on startup of the sample application, or by checking the Main method. From Visual Studio, you can pass command-line arguments in the Debug options of the project properties. Using the dotnet command line, to pass the command-line argument -pf, you can start the command dotnet run -- -pf.

For having information about the thread and the task, the following Log method writes thread and task identifiers to the console (code file ParallelSamples/Program.cs):

public static void Log(string prefix)
{
 WriteLine($"{prefix}, task: {Task.CurrentId}," +
 $"thread: {Thread.CurrentThread.ManagedThreadId}");
}

Let’s get into the Parallel.For method. With this method, the first two parameters define the start and end of the loop. The following example has the iterations from 0 to 9. The third parameter is an Action<int> delegate. The integer parameter is the iteration of the loop that is passed to the method referenced by the delegate. The return type of Parallel.For is the struct ParallelLoopResult, which provides information if the loop is completed:

public static void ParallelFor()
{
 ParallelLoopResult result =
 Parallel.For(0, 10, i =>
 {
 Log($"S {i}");
 Task.Delay(10).Wait();
 Log($"E {i}");
 });
 WriteLine($"Is completed: {result.IsCompleted}");
}

In the body of Parallel.For, the index, task identifier, and thread identifier are written to the console. As shown in the following output, the order is not guaranteed. You will see different results if you run this program once more. This run of the program had the order 0-4-6-2-8… with nine tasks and six threads. A task does not necessarily map to one thread: a thread can be reused by different tasks.

S 0, task: 5, thread: 1
S 4, task: 7, thread: 6
S 6, task: 8, thread: 7
S 2, task: 6, thread: 5
S 8, task: 9, thread: 8
E 8, task: 9, thread: 8
S 9, task: 14, thread: 8
E 4, task: 7, thread: 6
S 5, task: 17, thread: 6
E 6, task: 8, thread: 7
S 7, task: 18, thread: 7
E 0, task: 5, thread: 1
S 3, task: 5, thread: 1
E 2, task: 6, thread: 5
S 1, task: 16, thread: 10
E 7, task: 18, thread: 7
E 5, task: 17, thread: 6
E 9, task: 14, thread: 8
E 1, task: 16, thread: 10
E 3, task: 5, thread: 1
Is completed: True

The delay within the parallel body waits for 10 milliseconds to have a better chance to create new threads. If you remove this line, you see fewer threads and tasks to be used.

What you can also see with the result is that every end-log of a loop uses the same thread and task as the start-log. Using Task.Delay with the Wait method blocks the current thread until the delay ends.

Change the previous example to now use the await keyword with the Task.Delay method:

public static void ParallelForWithAsync()
{
 ParallelLoopResult result =
 Parallel.For(0, 10, async i =>
 {
 Log($"S {i}");
 await Task.Delay(10);
 Log($"E {i}");
 });
 WriteLine($"is completed: {result.IsCompleted}");
}

The result is in the following code snippet. With the output after the Thread.Delay method you can see the thread change. For example, loop iteration 8, which had thread ID 7 before the delay, has thread ID 5 after the delay. You can also see that tasks no longer exist—there are only threads—and here previous threads are reused. Another important aspect is that the For method of the Parallel class is completed without waiting for the delay. The Parallel class waits for the tasks it created, but it doesn’t wait for other background activity. It is also possible that you won’t see the output from the methods after the delay at all—if the main thread (which is a foreground thread) is finished, all the background threads are stopped. Foreground and background threads are discussed in the next chapter.

S 0, task: 5, thread: 1
S 8, task: 8, thread: 7
S 6, task: 7, thread: 8
S 4, task: 9, thread: 6
S 2, task: 6, thread: 5
S 7, task: 7, thread: 8
S 1, task: 5, thread: 1
S 5, task: 9, thread: 6
S 9, task: 8, thread: 7
S 3, task: 6, thread: 5
Is completed: True
E 2, task: , thread: 8
E 0, task: , thread: 8
E 8, task: , thread: 5
E 6, task: , thread: 7
E 4, task: , thread: 6
E 5, task: , thread: 7
E 7, task: , thread: 7
E 1, task: , thread: 6
E 3, task: , thread: 5
E 9, task: , thread: 8

WARNING As demonstrated here, although using async features with .NET 4.5 and C is very easy, it’s still important to know what’s happening behind the scenes, and you have to pay attention to some issues.

Stopping Parallel.For Early

You can also break Parallel.For early without looping through all the iterations. A method overload of the For method accepts a third parameter of type Action<int, ParallelLoopState>. By defining a method with these parameters, you can influence the outcome of the loop by invoking the Break or Stop methods of the ParallelLoopState.

Remember, the order of iterations is not defined (code file ParallelSamples/Program.cs):

public static void StopParallelForEarly()
{
 ParallelLoopResult result =
 Parallel.For(10, 40, (int i, ParallelLoopState pls) =>
 {
 Log($"S {i}");
 if (i > 12)
 {
 pls.Break();
 Log($"break now... {i}");
 }
 Task.Delay(10).Wait();
 Log($"E {i}");
 });

 WriteLine($"Is completed: {result.IsCompleted}");
 WriteLine($"lowest break iteration: {result.LowestBreakIteration}");
}

This run of the application demonstrates that the iteration breaks up with a value higher than 12, but other tasks can simultaneously run, and tasks with other values can run. All the tasks that have been started before the break can continue to the end. You can use the LowestBreakIteration property to ignore results from tasks that you do not need:

S 31, task: 6, thread: 8
S 17, task: 7, thread: 5
S 10, task: 5, thread: 1
S 24, task: 8, thread: 6
break now 24, task: 8, thread: 6
S 38, task: 9, thread: 7
break now 38, task: 9, thread: 7
break now 31, task: 6, thread: 8
break now 17, task: 7, thread: 5
E 17, task: 7, thread: 5
E 10, task: 5, thread: 1
S 11, task: 5, thread: 1
E 38, task: 9, thread: 7
E 24, task: 8, thread: 6
E 31, task: 6, thread: 8
E 11, task: 5, thread: 1
S 12, task: 5, thread: 1
E 12, task: 5, thread: 1
S 13, task: 5, thread: 1
break now 13, task: 5, thread: 1
E 13, task: 5, thread: 1
Is completed: False
lowest break iteration: 13

Parallel For Initialization

Parallel.For might use several threads to do the loops. If you need an initialization that should be done with every thread, you can use the Parallel.For<TLocal> method. The generic version of the For method accepts—in addition to the from and to values—three delegate parameters. The first parameter is of type Func<TLocal>. Because the example here uses a string for TLocal, the method needs to be defined as Func<string>, a method returning a string. This method is invoked only once for each thread that is used to do the iterations.

The second delegate parameter defines the delegate for the body. In the example, the parameter is of type Func<int, ParallelLoopState, string, string>. The first parameter is the loop iteration; the second parameter, ParallelLoopState, enables stopping the loop, as shown earlier. With the third parameter, the body method receives the value that is returned from the init method. The body method also needs to return a value of the type that was defined with the generic For parameter.

The last parameter of the For method specifies a delegate, Action<TLocal>; in the example, a string is received. This method, a thread exit method, is called only once for each thread (code file ParallelSamples/Program.cs):

public static void ParallelForWithInit()
{
 Parallel.For<string>(0, 10, () =>
 {
 // invoked once for each thread
 Log($"init thread");
 return $"t{Thread.CurrentThread.ManagedThreadId}";
 },
 (i, pls, str1) =>
 {
 // invoked for each member
 Log($"body i {i} str1 {str1}");
 Task.Delay(10).Wait();
 return $"i {i}";
 },
 (str1) =>
 {
 // final action on each thread
 Log($"finally {str1}");
 });
}

The result of running this program once is shown here:

init thread task: 7, thread: 6
init thread task: 6, thread: 5
body i: 4 str1: t6 task: 7, thread: 6
body i: 2 str1: t5 task: 6, thread: 5
init thread task: 5, thread: 1
body i: 0 str1: t1 task: 5, thread: 1
init thread task: 9, thread: 8
body i: 8 str1: t8 task: 9, thread: 8
init thread task: 8, thread: 7
body i: 6 str1: t7 task: 8, thread: 7
body i: 1 str1: i 0 task: 5, thread: 1
finally i 2 task: 6, thread: 5
init thread task: 16, thread: 5
finally i 8 task: 9, thread: 8
init thread task: 17, thread: 8
body i: 9 str1: t8 task: 17, thread: 8
finally i 6 task: 8, thread: 7
init thread task: 18, thread: 7
body i: 7 str1: t7 task: 18, thread: 7
finally i 4 task: 7, thread: 6
init thread task: 15, thread: 10
body i: 3 str1: t10 task: 15, thread: 10
body i: 5 str1: t5 task: 16, thread: 5
finally i 1 task: 5, thread: 1
finally i 5 task: 16, thread: 5
finally i 3 task: 15, thread: 10
finally i 7 task: 18, thread: 7
finally i 9 task: 17, thread: 8

The output shows that the init method is called only once for each thread; the body of the loop receives the first string from the initialization and passes this string to the next iteration of the body with the same thread. Lastly, the final action is invoked once for each thread and receives the last result from every body.

With this functionality, this method fits perfectly to accumulate a result of a huge data collection.

Looping with the Parallel.ForEach Method

Parallel.ForEach iterates through a collection implementing IEnumerable in a way similar to the foreach statement, but in an asynchronous manner. Again, the order is not guaranteed (code file ParallelSamples/Program.cs):

public static void ParallelForEach()
{
 string[] data = {"zero","one","two","three","four","five",
 "six","seven","eight","nine","ten","eleven","twelve"};

 ParallelLoopResult result =
 Parallel.ForEach<string>(data, s =>
 {
 WriteLine(s);
 });
}

If you need to break up the loop, you can use an overload of the ForEach method with a ParallelLoopState parameter. You can do this in the same way you did earlier with the For method. An overload of the ForEach method can also be used to access an indexer to get the iteration number, as shown here:

Parallel.ForEach<string>(data, (s, pls, l) =>
{
 WriteLine($"{s} {l}");
});

Invoking Multiple Methods with the Parallel.Invoke Method

If multiple tasks should run in parallel, you can use the Parallel.Invoke method, which offers the task parallelism pattern. Parallel.Invoke allows the passing of an array of Action delegates, whereby you can assign methods that should run. The example code passes the Foo and Bar methods to be invoked in parallel (code file ParallelSamples/Program.cs):

public static void ParallelInvoke()
{
 Parallel.Invoke(Foo, Bar);
}
public static void Foo()
{
 WriteLine("foo");
}

public static void Bar()
{
 WriteLine("bar");
}

The Parallel class is very easy to use—for both task and data parallelism. If more control is needed, and you don’t want to wait until the action started with the Parallel class is completed, the Task class comes in handy. Of course, it’s also possible to combine the Task and Parallel classes.

Tasks

For more control over the parallel actions, you can use the Task class from the namespace System.Threading.Tasks. A task represents some unit of work that should be done. This unit of work can run in a separate thread, and it is also possible to start a task in a synchronized manner, which results in a wait for the calling thread. With tasks, you have an abstraction layer but also a lot of control over the underlying threads.

Tasks provide much more flexibility in organizing the work you need to do. For example, you can define continuation work—what should be done after a task is complete. This can be differentiated based on whether the task was successful. You can also organize tasks in a hierarchy. For example, a parent task can create new children tasks. Optionally, this can create a dependency, so canceling a parent task also cancels its child tasks.

Starting Tasks

To start a task, you can use either the TaskFactory or the constructor of the Task and the Start method. The Task constructor gives you more flexibility in creating the task.

The sample code for TaskSamples makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Threading.Thread

Namespaces

	System.Threading

	System.Threading.Tasks

	static System.Console

When starting a task, an instance of the Task class can be created, and the code that should run can be assigned with an Action or Action<object> delegate, with either no parameters or one object parameter. In the following example, a method is defined with one parameter: TaskMethod. The implementation invokes the Log method where the ID of the task and the ID of the thread are written to the console, as well as information if the thread is coming from a thread pool, and if the thread is a background thread. Writing multiple messages to the console is synchronized by using the lock keyword with the s_logLock synchronization object. This way, parallel calls to Log can be done, and multiple writes to the console are not interleaving each other. Otherwise the title could be written by one task, and the thread information follows by another task (code file TaskSamples/Program.cs):

public static void TaskMethod(object o)
{
 Log(o?.ToString());
}

private static object s_logLock = new object();

public static void Log(string title)
{
 lock (s_logLock)
 {
 WriteLine(title);
 WriteLine($"Task id: {Task.CurrentId?.ToString() ??"no task"}," +
 $"thread: {Thread.CurrentThread.ManagedThreadId}");
#if (!DNXCORE)
 WriteLine($"is pooled thread: {Thread.CurrentThread.IsThreadPoolThread}");
#endif
 WriteLine($"is background thread: {Thread.CurrentThread.IsBackground}");
 WriteLine();
 }
}

NOTE The Thread API IsThreadPoolThread is not available with the .NET Core 1.0 runtime; that’s why a preprocessor directive is used.

The following sections describe different ways to start a new task.

Tasks Using the Thread Pool

In this section, different ways are shown to start a task that uses a thread from the thread pool. The thread pool offers a pool of background threads. The thread pool manages threads on its own, increasing or decreasing the number of threads within the pool as needed. Threads from the pool are used to fulfill some actions, and returned to the pool afterward.

The first way to create a task is with an instantiated TaskFactory, where the method TaskMethod is passed to the StartNew method, and the task is immediately started. The second approach uses the static Factory property of the Task class to get access to the TaskFactory, and to invoke the StartNew method. This is very similar to the first version in that it uses a factory, but there’s less control over factory creation. The third approach uses the constructor of the Task class. When the Task object is instantiated, the task does not run immediately. Instead, it is given the status Created. The task is then started by calling the Start method of the Task class. The fourth approach calls the Run method of the Task that immediately starts the task. The Run method doesn’t have an overloaded variant to pass an Action<object> delegate, but it’s easy to simulate this by assigning a lambda expression of type Action, and using the parameter within its implementation (code file TaskSamples/Program.cs):

public void TasksUsingThreadPool()
{
 var tf = new TaskFactory();
 Task t1 = tf.StartNew(TaskMethod,"using a task factory");
 Task t2 = Task.Factory.StartNew(TaskMethod,"factory via a task");
 var t3 = new Task(TaskMethod,"using a task constructor and Start");
 t3.Start();
 Task t4 = Task.Run(() => TaskMethod("using the Run method"));
}

The output returned with these variants is as follows. All these versions create a new task, and a thread from the thread pool is used:

factory via a task
Task id: 5, thread: 6
is pooled thread: True
is background thread: True

using the Run method
Task id: 6, thread: 7
is pooled thread: True
is background thread: True

using a task factory
Task id: 7, thread: 5
is pooled thread: True
is background thread: True

using a task constructor and Start
Task id: 8, thread: 8
is pooled thread: True
is background thread: True

With both the Task constructor and the StartNew method of the TaskFactory, you can pass values from the enumeration TaskCreationOptions. Using this creation option, you can change how the task should behave differently, as is shown in the next sections.

Synchronous Tasks

A task does not necessarily mean to use a thread from a thread pool—it can use other threads as well. Tasks can also run synchronously, with the same thread as the calling thread. The following code snippet uses the method RunSynchronously of the Task class (code file TaskSamples/Program.cs):

private static void RunSynchronousTask()
{
 TaskMethod("just the main thread");
 var t1 = new Task(TaskMethod,"run sync");
 t1.RunSynchronously();
}

Here, the TaskMethod is first called directly from the main thread before it is invoked from the newly created Task. As you can see from the following console output, the main thread doesn’t have a task ID. It is not a pooled thread. Calling the method RunSynchronously uses exactly the same thread as the calling thread, but creates a task if one wasn’t created previously:

just the main thread
Task id: no task, thread: 1
is pooled thread: False
is background thread: True

run sync
Task id: 5, thread: 1
is pooled thread: False
is background thread: True

NOTE If you are not using the .NET Core runtime, the thread is a foreground thread. This is an interesting difference between the old .NET runtime and the new one. With the old runtime, the main thread is a foreground thread; with the new runtime, it’s a background thread.

Tasks Using a Separate Thread

If the code of a task should run for a longer time, you should use TaskCreationOptions.LongRunning to instruct the task scheduler to create a new thread, rather than use a thread from the thread pool. This way, the thread doesn’t need to be managed by the thread pool. When a thread is taken from the thread pool, the task scheduler can decide to wait for an already running task to be completed and use this thread instead of creating a new thread with the pool. With a long-running thread, the task scheduler knows immediately that it doesn’t make sense to wait for this one. The following code snippet creates a long-running task (code file TaskSamples/Program.cs):

private static void LongRunningTask()
{
 var t1 = new Task(TaskMethod,"long running",
 TaskCreationOptions.LongRunning);
 t1.Start();
}

Indeed, using the option TaskCreationOptions.LongRunning, a thread from the thread pool is not used. Instead, a new thread is created:

long running
Task id: 5, thread: 7
is pooled thread: False
is background thread: True

Futures—Results from Tasks

When a task is finished, it can write some stateful information to a shared object. Such a shared object must be thread-safe. Another option is to use a task that returns a result. Such a task is also known as future as it returns a result in the future. With early versions of the Task Parallel Library (TPL), the class had the name Future as well. Now it is a generic version of the Task class. With this class it is possible to define the type of the result that is returned with a task.

A method that is invoked by a task to return a result can be declared with any return type. The following example method TaskWithResult returns two int values with the help of a Tuple. The input of the method can be void or of type object, as shown here (code file TaskSamples/Program.cs):

public static Tuple<int, int> TaskWithResult(object division)
{
 Tuple<int, int> div = (Tuple<int, int>)division;
 int result = div.Item1 / div.Item2;
 int reminder = div.Item1 % div.Item2;
 WriteLine("task creates a result...");

 return Tuple.Create(result, reminder);
}

NOTE Tuples allow you to combine multiple values into one. Tuples are explained in Chapter 7, “Arrays and Tuples.”

When you define a task to invoke the method TaskWithResult, you use the generic class Task<TResult>. The generic parameter defines the return type. With the constructor, the method is passed to the Func delegate, and the second parameter defines the input value. Because this task needs two input values in the object parameter, a tuple is created as well. Next, the task is started. The Result property of the Task instance t1 blocks and waits until the task is completed. Upon task completion, the Result property contains the result from the task:

public static void TaskWithResultDemo()
{
 var t1 = new Task<Tuple<int,int>>(TaskWithResult, Tuple.Create(8, 3));
 t1.Start();
 WriteLine(t1.Result);
 t1.Wait();
 WriteLine($"result from task: {t1.Result.Item1} {t1.Result.Item2}");
}

Continuation Tasks

With tasks, you can specify that after a task is finished another specific task should start to run—for example, a new task that uses a result from the previous one or should do some cleanup if the previous task failed.

Whereas the task handler has either no parameter or one object parameter, the continuation handler has a parameter of type Task. Here, you can access information about the originating task (code file TaskSamples/Program.cs):

private static void DoOnFirst()
{
 WriteLine($"doing some task {Task.CurrentId}");
 Task.Delay(3000).Wait();
}

private static void DoOnSecond(Task t)
{
 WriteLine($"task {t.Id} finished");
 WriteLine($"this task id {Task.CurrentId}");
 WriteLine("do some cleanup");
 Task.Delay(3000).Wait();
}

A continuation task is defined by invoking the ContinueWith method on a task. You could also use the TaskFactory for this. t1.OnContinueWith(DoOnSecond) means that a new task invoking the method DoOnSecond should be started as soon as the task t1 is finished. You can start multiple tasks when one task is finished, and a continuation task can have another continuation task, as this next example demonstrates (code file TaskSamples/Program.cs):

public static void ContinuationTasks()
{
 Task t1 = new Task(DoOnFirst);
 Task t2 = t1.ContinueWith(DoOnSecond);
 Task t3 = t1.ContinueWith(DoOnSecond);
 Task t4 = t2.ContinueWith(DoOnSecond);
 t1.Start();
}

So far, the continuation tasks have been started when the previous task was finished, regardless of the result. With values from TaskContinuationOptions, you can define that a continuation task should only start if the originating task was successful (or faulted). Some of the possible values are OnlyOnFaulted, NotOnFaulted, OnlyOnCanceled, NotOnCanceled, and OnlyOnRanToCompletion:

Task t5 = t1.ContinueWith(DoOnError, TaskContinuationOptions.OnlyOnFaulted);

NOTE The compiler-generated code from the await keyword discussed in Chapter 15 makes use of continuation tasks.

Task Hierarchies

With task continuations, one task is started after another. Tasks can also form a hierarchy. When a task starts a new task, a parent/child hierarchy is started.

In the code snippet that follows, within the task of the parent, a new task object is created, and the task is started. The code to create a child task is the same as that to create a parent task. The only difference is that the task is created from within another task (code file TaskSamples/Program.cs):

public static void ParentAndChild()
{
 var parent = new Task(ParentTask);
 parent.Start();
 Task.Delay(2000).Wait();
 WriteLine(parent.Status);
 Task.Delay(4000).Wait();
 WriteLine(parent.Status);
}

private static void ParentTask()
{
 WriteLine($"task id {Task.CurrentId}");
 var child = new Task(ChildTask);
 child.Start();
 Task.Delay(1000).Wait();
 WriteLine("parent started child");
}

private static void ChildTask()
{
 WriteLine("child");
 Task.Delay(5000).Wait();
 WriteLine("child finished");
}

If the parent task is finished before the child task, the status of the parent task is shown as WaitingForChildrenToComplete. The parent task is completed with the status RanToCompletion as soon as all children tasks are completed as well. Of course, this is not the case if the parent creates a task with the TaskCreationOption DetachedFromParent.

Canceling a parent task also cancels the children. The cancellation framework is discussed next.

Returning Tasks from Methods

A method that returns a task with results is declared to return Task<T>—for example, a method that returns a task with a collection of strings:

public Task<IEnumerable<string>> TaskMethodAsync()
{
}

Creating methods that access the network or data access are often asynchronous, with such a result so you can use task features to deal with the results (for example, by using the async keyword as explained in Chapter 15). In case you have a synchronous path, or need to implement an interface that is defined that way with synchronous code, there’s no need to create a task for the sake of the result value. The Task class offers creating a result with a completed task that is finished with the status RanToCompletion using the method FromResult:

return Task.FromResult<IEnumerable<string>>(
 new List<string>() {"one","two" });

Waiting for Tasks

Probably you’ve already seen the WhenAll and WaitAll methods of the Task class and wondered what the difference might be. Both methods wait for all tasks that are passed to these methods to complete. The WaitAll method (available since .NET 4) blocks the calling task until all tasks that are waited for are completed. The WhenAll method (available since .NET 4.5) returns a task which in turn allows you to use the async keyword to wait for the result, and it does not block the waiting task.

Although the WhenAll and WaitAll methods are finished when all the tasks you are waiting for are completed, you can wait for just one task of a list to be completed with WhenAny and WaitAny. Similar to the WhenAll and WaitAll methods, the WaitAny method blocks the calling task, whereas WhenAny returns a task that can be awaited.

A method that already has been used several times with several samples is the Task.Delay method. You can specify a number of milliseconds to wait before the task that is returned from this method is completed.

In case all that should be done is to give up the CPU and thus allow other tasks to run, you can invoke the Task.Yield method. This method gives up the CPU and lets other tasks run. In case no other task is waiting to run, the task calling Task.Yield continues immediately. Otherwise it needs to wait until the CPU is scheduled again for the calling task.

Cancellation Framework

.NET 4.5 introduced a cancellation framework to enable the canceling of long-running tasks in a standard manner. Every blocking call should support this mechanism. Of course, not every blocking call currently implements this new technology, but more and more are doing so. Among the technologies that offer this mechanism already are tasks, concurrent collection classes, and Parallel LINQ, as well as several synchronization mechanisms.

The cancellation framework is based on cooperative behavior; it is not forceful. A long-running task checks whether it is canceled and returns control accordingly.

A method that supports cancellation accepts a CancellationToken parameter. This class defines the property IsCancellationRequested, whereby a long operation can check to see whether it should abort. Other ways for a long operation to check for cancellation include using a WaitHandle property that is signaled when the token is canceled or using the Register method. The Register method accepts parameters of type Action and ICancelableOperation. The method that is referenced by the Action delegate is invoked when the token is canceled. This is similar to the ICancelableOperation, whereby the Cancel method of an object implementing this interface is invoked when the cancellation is done.

The sample code for CancellationSamples makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Threading.Tasks.Parallel

Namespaces

	System

	System.Threading

	System.Threading.Tasks

	static System.Console

Cancellation of Parallel.For

This section starts with a simple example using the Parallel.For method. The Parallel class provides overloads for the For method, whereby you can pass a parameter of type ParallelOptions. With ParallelOptions, you can pass a CancellationToken. The CancellationToken is generated by creating a CancellationTokenSource. CancellationTokenSource implements the interface ICancelableOperation and can therefore be registered with the CancellationToken and allows cancellation with the Cancel method. The example doesn’t call the Cancel method directly, but makes use of a new .NET 4.5 method to cancel the token after 500 milliseconds with the CancelAfter method.

Within the implementation of the For loop, the Parallel class verifies the outcome of the CancellationToken and cancels the operation. Upon cancellation, the For method throws an exception of type OperationCanceledException, which is caught in the example. With the CancellationToken, it is possible to register for information when the cancellation is done. This is accomplished by calling the Register method and passing a delegate that is invoked on cancellation (code file CancellationSamples/Program.cs):

public static void CancelParallelFor()
{
 var cts = new CancellationTokenSource();
 cts.Token.Register(() => WriteLine("*** token cancelled"));

 // send a cancel after 500 ms
 cts.CancelAfter(500);

 try
 {
 ParallelLoopResult result =
 Parallel.For(0, 100, new ParallelOptions
 {
 CancellationToken = cts.Token,
 },
 x =>
 {
 WriteLine($"loop {x} started");
 int sum = 0;
 for (int i = 0; i < 100; i++)
 {
 Task.Delay(2).Wait();
 sum += i;
 }
 WriteLine($"loop {x} finished");
 });
 }
 catch (OperationCanceledException ex)
 {
 WriteLine(ex.Message);
 }
}

When you run the application, you get output similar to the following. Iteration 0, 50, 25, 75, and 1 were all started. This is on a system with a quad-core CPU. With the cancellation, all other iterations were canceled before starting. The iterations that were started are allowed to finish because cancellation is always done in a cooperative way to avoid the risk of resource leaks when iterations are canceled somewhere in between:

loop 0 started
loop 50 started
loop 25 started
loop 75 started
loop 1 started
*** token cancelled
loop 75 finished
loop 50 finished
loop 1 finished
loop 0 finished
loop 25 finished
The operation was canceled.

Cancellation of Tasks

The same cancellation pattern is used with tasks. First, a new CancellationTokenSource is created. If you need just one cancellation token, you can use a default token by accessing Task.Factory.CancellationToken. Then, similar to the previous code, the task is canceled after 500 milliseconds. The task doing the major work within a loop receives the cancellation token via the TaskFactory object. The cancellation token is assigned to the TaskFactory by setting it in the constructor. This cancellation token is used by the task to check whether cancellation is requested by checking the IsCancellationRequested property of the CancellationToken (code file CancellationSamples/Program.cs):

public void CancelTask()
{
 var cts = new CancellationTokenSource();
 cts.Token.Register(() => WriteLine("*** task cancelled"));
 // send a cancel after 500 ms
 cts.CancelAfter(500);
 Task t1 = Task.Run(() =>
 {
 WriteLine("in task");
 for (int i = 0; i < 20; i++)
 {
 Task.Delay(100).Wait();
 CancellationToken token = cts.Token;
 if (token.IsCancellationRequested)
 {
 WriteLine("cancelling was requested," +
 "cancelling from within the task");
 token.ThrowIfCancellationRequested();
 break;
 }
 WriteLine("in loop");
 }
 WriteLine("task finished without cancellation");
 }, cts.Token);
 try
 {
 t1.Wait();
 }
 catch (AggregateException ex)
 {
 WriteLine($"exception: {ex.GetType().Name}, {ex.Message}");
 foreach (var innerException in ex.InnerExceptions)
 {
 WriteLine($"inner exception: {ex.InnerException.GetType()}," +
 $"{ex.InnerException.Message}");
 }
 }
}

When you run the application, you can see that the task starts, runs for a few loops, and gets the cancellation request. The task is canceled and throws a TaskCanceledException, which is initiated from the method call ThrowIfCancellationRequested. With the caller waiting for the task, you can see that the exception AggregateException is caught and contains the inner exception TaskCanceledException. This is used for a hierarchy of cancellations—for example, if you run a Parallel.For within a task that is canceled as well. The final status of the task is Canceled:

in task
in loop
in loop
in loop
in loop
*** task cancelled
cancelling was requested, cancelling from within the task
exception: AggregateException, One or more errors occurred.
inner exception: TaskCanceledException, A task was canceled.

Data Flow

The Parallel and Task classes, and Parallel LINQ, help a lot with data parallelism. However, these classes do not directly support dealing with data flow or transforming data in parallel. For this, you can use Task Parallel Library Data Flow, or TPL Data Flow.

The sample code for the data flow samples makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Threading.Tasks.Dataflow

Namespaces

	System

	System.IO

	System.Threading

	System.Threading.Tasks

	System.Threading.Tasks.DataFlow

	static System.Console

Using an Action Block

The heart of TPL Data Flow is data blocks. These blocks can act as a source to offer some data or a target to receive data, or both. Let’s start with a simple example, a data block that receives some data and writes it to the console. The following code snippet defines an ActionBlock that receives a string and writes information to the console. The Main method reads user input within a while loop, and posts every string read to the ActionBlock by calling the Post method. The Post method posts an item to the ActionBlock, which deals with the message asynchronously, writing the information to the console (code file SimpleDataFlowSample/Program.cs):

static void Main()
{
 var processInput = new ActionBlock<string>(s =>
 {
 WriteLine($"user input: {s}");
 });

 bool exit = false;
 while (!exit)
 {
 string input = ReadLine();
 if (string.Compare(input,"exit", ignoreCase: true) == 0)
 {
 exit = true;
 }
 else
 {
 processInput.Post(input);
 }
 }
}

Source and Target Blocks

When the method assigned to the ActionBlock from the previous example executes, the ActionBlock uses a task to do the execution in parallel. You could verify this by checking the task and thread identifiers, and writing these to the console. Every block implements the interface IDataflowBlock, which contains the property Completion, which returns a Task, and the methods Complete and Fault. Invoking the Complete method, the block no longer accepts any input or produces any more output. Invoking the Fault method puts the block into a faulting state.

As mentioned earlier, a block can be either a source or a target, or both. In this case, the ActionBlock is a target block and thus implements the interface ITargetBlock. ITargetBlock derives from IDataflowBlock and defines the OfferMessage method, in addition to the members of the IDataBlock interface. OfferMessage sends a message that can be consumed by the block. An API that is easier to use than OfferMessage is the Post method, which is implemented as an extension method for the ITargetBlock interface. The Post method was also used by the sample application.

The ISourceBlock interface is implemented by blocks that can act as a data source. ISourceBlock offers methods in addition to the members of the IDataBlock interface to link to a target block and to consume messages.

The BufferBlock acts as both a source and a target, implementing both ISourceBlock and ITargetBlock. In the next example, this BufferBlock is used to both post messages and receive messages (code file SimpleDataFlowSample/Program.cs):

private static BufferBlock<string> s_buffer = new BufferBlock<string>();

The Producer method reads strings from the console and writes them to the BufferBlock by invoking the Post method:

public static void Producer()
{
 bool exit = false;
 while (!exit)
 {
 string input = ReadLine();
 if (string.Compare(input,"exit", ignoreCase: true) == 0)
 {
 exit = true;
 }
 else
 {
 s_buffer.Post(input);
 }
 }
}

The Consumer method contains a loop to receive data from the BufferBlock by invoking the ReceiveAsync method. ReceiveAsync is an extension method for the ISourceBlock interface:

public static async Task ConsumerAsync()
{
 while (true)
 {
 string data = await s_buffer.ReceiveAsync();
 WriteLine($"user input: {data}");
 }
}

Now, you just need to start the producer and consumer. You do this with two independent tasks in the Main method:

static void Main()
{
 Task t1 = Task.Run(() => Producer());
 Task t2 = Task.Run(async () => await ConsumerAsync());
 Task.WaitAll(t1, t2);
}

When you run the application, the producer task reads data from the console, and the consumer receives the data to write it to the console.

Connecting Blocks

This section creates a pipeline by connecting multiple blocks. First, three methods are created that will be used by the blocks. The GetFileNames method receives a directory path and yields the filenames that end with the .cs extension (code file DataFlowSample/Program.cs):

public static IEnumerable<string> GetFileNames(string path)
{
 foreach (var fileName in Directory.EnumerateFiles(path,"*.cs"))
 {
 yield return fileName;
 }
}

The LoadLines method receives a list of filenames and yields every line of the files:

public static IEnumerable<string> LoadLines(IEnumerable<string> fileNames)
{
 foreach (var fileName in fileNames)
 {
 using (FileStream stream = File.OpenRead(fileName))
 {
 var reader = new StreamReader(stream);
 string line = null;
 while ((line = reader.ReadLine()) != null)
 {
 //WriteLine($"LoadLines {line}");
 yield return line;
 }
 }
 }
}

The third method, GetWords, receives the lines collection and splits it up line by line to yield return a list of words:

public static IEnumerable<string> GetWords(IEnumerable<string> lines)
{
 foreach (var line in lines)
 {
 string[] words = line.Split(' ', ';', '(', ')', '{', '}', '.', ',');
 foreach (var word in words)
 {
 if (!string.IsNullOrEmpty(word))
 yield return word;
 }
 }
}

To create the pipeline, the SetupPipeline method creates three TransformBlock objects. The TransformBlock is a source and target block that transforms the source by using a delegate. The first TransformBlock is declared to transform a string to IEnumerable<string>. The transformation is done by the GetFileNames method that is invoked within the lambda expression passed to the constructor of the first block. Similarly, the next two TransformBlock objects are used to invoke the LoadLines and GetWords methods:

public static ITargetBlock<string> SetupPipeline()
{
 var fileNamesForPath = new TransformBlock<string, IEnumerable<string>>(
 path =>
 {
 return GetFileNames(path);
 });
 var lines = new TransformBlock<IEnumerable<string>, IEnumerable<string>>(
 fileNames =>
 {
 return LoadLines(fileNames);
 });

 var words = new TransformBlock<IEnumerable<string>, IEnumerable<string>>(
 lines2 =>
 {
 return GetWords(lines2);
 });

The last block defined is an ActionBlock. This block has been used before and is just a target block to receive data:

 var display = new ActionBlock<IEnumerable<string>>(
 coll =>
 {
 foreach (var s in coll)
 {
 WriteLine(s);
 }
 });

Finally, the blocks are connected to each other. fileNamesForPath is linked to the lines block. The result from fileNamesForPath is passed to the lines block. The lines block links to the words block, and the words block links to the display block. Last, the block to start the pipeline is returned:

 fileNamesForPath.LinkTo(lines);
 lines.LinkTo(words);
 words.LinkTo(display);
 return fileNamesForPath;
}

The Main method now needs to kick off the pipeline. Invoking the Post method to pass a directory, the pipeline starts and finally writes words from the C# source code to the console. Here, it would be possible to start multiple requests for the pipeline, passing more than one directory, and doing these tasks in parallel:

static void Main()
{
 var target = SetupPipeline();
 target.Post(".");
 ReadLine();
}

With this brief introduction to the TPL Data Flow library, you’ve seen the principal way to work with this technology. This library offers a lot more functionality, such as different blocks that deal with data differently. The BroadcastBlock allows passing the input source to multiple targets (for example, writing data to a file and displaying it), the JoinBlock joins multiple sources to one target, and the BatchBlock batches input into arrays. Using DataflowBlockOptions options allows configuration of a block, such as the maximum number of items that are processed within a single task, and passing a cancellation token that allows canceling a pipeline. With links, you can also filter messages and only pass messages that fulfill a specified predicate.

Summary

This chapter explored how to code applications that use multiple tasks by using the System.Threading.Tasks namespace. Using multithreading in your applications takes careful planning. Too many threads can cause resource issues, and not enough threads can cause your application to be sluggish and perform poorly. With tasks, you get an abstraction to threads. This abstraction helps you avoid creating too many threads because threads are reused from a pool.

You’ve seen various ways to create multiple tasks, such as the Parallel class, which offers both task and data parallelism with Parallel.Invoke, Parallel.ForEach, and Parallel.For. With the Task class, you’ve seen how to gain more control over parallel programming. Tasks can run synchronously in the calling thread, using a thread from a thread pool, and a separate new thread can be created. Tasks also offer a hierarchical model that enables the creation of child tasks, also providing a way to cancel a complete hierarchy.

The cancellation framework offers a standard mechanism that can be used in the same manner with different classes to cancel a task early.

The next chapter gives information about an important concept on using tasks: synchronization.

22
Task Synchronization

What’s In This Chapter?

	Threading issues

	The lock Keyword

	Synchronization with Monitor

	Mutex

	Semaphore and SemaphoreSlim

	ManualResetEvent, AutoResetEvent, and CountdownEvent

	Barrier

	Reader Writer Lock

	Timers

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	ThreadingIssues

	SynchronizationSamples

	SemaphoreSample

	EventSample

	EventSampleWithCountdownEvent

	BarrierSample

	ReaderWriterLockSample

	WinAppTimer

Overview

Chapter 21, “Tasks and Parallel Programming,” explains using the Task and Parallel classes to create multithreaded applications. This chapter covers synchronization between multiple processes, tasks, and threads.

It is best when you can avoid synchronization by not sharing data between threads. Of course, this is not always possible. If data sharing is necessary, you must use synchronization techniques so that only one task at a time accesses and changes the shared state. In case you don’t pay attention to synchronization, race conditions and deadlocks can apply. A big issue with these is that errors can occur from time to time. With a higher number of CPU cores, error numbers can increase. Such errors usually are hard to find. So it’s best to pay attention to synchronization from the beginning.

Using multiple tasks is easy as long as they don’t access the same variables. You can avoid this situation to a certain degree, but at some point you will find some data needs to be shared. When sharing data, you need to apply synchronization techniques. When threads access the same data and you don’t apply synchronization, you are lucky when the problem pops up immediately. But this is rarely the case. This chapter shows race conditions and deadlocks, and how you can avoid them by applying synchronization mechanisms.

The .NET Framework offers several options for synchronization. Synchronization objects can be used within a process or across processes. You can use them to synchronize one task or multiple tasks to access a resource or a number of resources. Synchronization objects can also be used to inform tasks that something completed. All these synchronization objects are covered in this chapter.

Let’s start by having a look at the issues that can happen without synchronization.

NOTE Before synchronizing custom collection classes with synchronization types shown here, you should also read Chapter 12, “Special Collections,” to learn about collections that are already thread-safe: concurrent collections.

Threading Issues

Programming with multiple threads is challenging. When starting multiple threads that access the same data, you can get intermittent problems that are hard to find. The problems are the same whether you use tasks, Parallel LINQ, or the Parallel class. To avoid getting into trouble, you must pay attention to synchronization issues and the problems that can occur with multiple threads. This section covers two in particular: race conditions and deadlocks.

The sample code for the ThreadingIssues sample makes use of these dependencies and namespaces:

Dependencies

	NETStandard.Library 1.0.0

	System.Diagnostics.TraceSource

Namespaces

	System.Diagnostics

	System.Threading

	System.Threading.Tasks

	static System.Console

You can start the sample application ThreadingIssues with command-line arguments to simulate either race conditions or deadlocks.

Race Conditions

A race condition can occur if two or more threads access the same objects and access to the shared state is not synchronized. To demonstrate a race condition, the following example defines the class StateObject, with an int field and the method ChangeState. In the implementation of ChangeState, the state variable is verified to determine whether it contains 5; if it does, the value is incremented. Trace.Assert is the next statement, which immediately verifies that state now contains the value 6.

After incrementing by 1 a variable that contains the value 5, you might assume that the variable now has the value 6; but this is not necessarily the case. For example, if one thread has just completed the if (_state == 5) statement, it might be preempted, with the scheduler running another thread. The second thread now goes into the if body and, because the state still has the value 5, the state is incremented by 1 to 6. The first thread is then scheduled again, and in the next statement the state is incremented to 7. This is when the race condition occurs and the assert message is shown (code file ThreadingIssues/SampleTask.cs):

public class StateObject
{
 private int _state = 5;

 public void ChangeState(int loop)
 {
 if (_state == 5)
 {
 _state++;
 Trace.Assert(_state == 6,
 $"Race condition occurred after {loop} loops");
 }
 _state = 5;
 }
}

You can verify this by defining a method for a task. The method RaceCondition of the class SampleTask gets a StateObject as a parameter. Inside an endless while loop, the ChangeState method is invoked. The variable i is used just to show the loop number in the assert message:

public class SampleTask
{
 public void RaceCondition(object o)
 {
 Trace.Assert(o is StateObject,"o must be of type StateObject");
 StateObject state = o as StateObject;

 int i = 0;
 while (true)
 {
 state.ChangeState(i++);
 }
 }
}

In the Main method of the program, a new StateObject is created that is shared among all the tasks. Task objects are created by invoking the RaceCondition method with the lambda expression that is passed to the Run method of the Task. The main thread then waits for user input. However, there’s a good chance that the program will halt before reading user input, as a race condition will happen:

public void RaceConditions()
{
 var state = new StateObject();
 for (int i = 0; i < 2; i++)
 {
 Task.Run(() => new SampleTask().RaceCondition(state));
 }
}

When you start the program, you get race conditions. How long it takes until the first race condition happens depends on your system and whether you build the program as a release build or a debug build. With a release build, the problem happens more often because the code is optimized. If you have multiple CPUs in your system or dual-/quad-core CPUs, where multiple threads can run concurrently, the problem also occurs more often than with a single-core CPU. The problem occurs with a single-core CPU because thread scheduling is preemptive, but the problem doesn’t occur that often.

Figure 22.1 shows an assertion of the program in which the race condition occurred after 1121 loops. If you start the application multiple times, you always get different results.

[image: Screenshot shows a warning message with headline assertion failed, abort equals quit, retry equals debug, ignore equals continue, race condition occurred after 1121 loops and buttons for Abort, Retry, and Ignore.]

Figure 22.1

You can avoid the problem by locking the shared object. You do this inside the thread by locking the variable state, which is shared among the threads, with the lock statement, as shown in the following example. Only one thread can exist inside the lock block for the state object. Because this object is shared among all threads, a thread must wait at the lock if another thread has the lock for state. As soon as the lock is accepted, the thread owns the lock, and gives it up at the end of the lock block. If every thread changing the object referenced with the state variable is using a lock, the race condition no longer occurs:

public class SampleTask
{
 public void RaceCondition(object o)
 {
 Trace.Assert(o is StateObject,"o must be of type StateObject");
 StateObject state = o as StateObject;

 int i = 0;
 while (true)
 {
 lock (state) // no race condition with this lock
 {
 state.ChangeState(i++);
 }
 }
 }
}

2NOTE With the downloaded sample code, you need to uncomment the lock statements for solving the issues with race conditions.

Instead of performing the lock when using the shared object, you can make the shared object thread-safe. In the following code, the ChangeState method contains a lock statement. Because you cannot lock the state variable itself (only reference types can be used for a lock), the variable sync of type object is defined and used with the lock statement. If a lock is done using the same synchronization object every time the value state is changed, race conditions no longer happen:

public class StateObject
{
 private int _state = 5;
 private _object sync = new object();

 public void ChangeState(int loop)
 {
 lock (_sync)
 {
 if (_state == 5)
 {
 _state++;
 Trace.Assert(_state == 6,
 $"Race condition occurred after {loop} loops");
 }
 _state = 5;
 }
 }
}

Deadlocks

Too much locking can get you in trouble as well. In a deadlock, at least two threads halt and wait for each other to release a lock. As both threads wait for each other, a deadlock occurs and the threads wait endlessly.

To demonstrate deadlocks, the following code instantiates two objects of type StateObject and passes them with the constructor of the SampleTask class. Two tasks are created: one task running the method Deadlock1 and the other task running the method Deadlock2 (code file ThreadingIssues/ Program.cs):

var state1 = new StateObject();
var state2 = new StateObject();
new Task(new SampleTask(state1, state2).Deadlock1).Start();
new Task(new SampleTask(state1, state2).Deadlock2).Start();

The methods Deadlock1 and Deadlock2 now change the state of two objects: s1 and s2. That’s why two locks are generated. Deadlock1 first does a lock for s1 and next for s2. Deadlock2 first does a lock for s2 and then for s1. Now, it may happen occasionally that the lock for s1 in Deadlock1 is resolved. Next, a thread switch occurs, and Deadlock2 starts to run and gets the lock for s2. The second thread now waits for the lock of s1. Because it needs to wait, the thread scheduler schedules the first thread again, which now waits for s2. Both threads now wait and don’t release the lock as long as the lock block is not ended. This is a typical deadlock (code file ThreadingIssues/SampleTask.cs):

public class SampleTask
{
 public SampleTask(StateObject s1, StateObject s2)
 {
 _s1 = s1;
 _s2 = s2;
 }
 private StateObject _s1;
 private StateObject _s2;

 public void Deadlock1()
 {
 int i = 0;
 while (true)
 {
 lock (_s1)
 {
 lock (_s2)
 {
 _s1.ChangeState(i);
 _s2.ChangeState(i++);
 WriteLine($"still running, {i}");
 }
 }
 }
 }

 public void Deadlock2()
 {
 int i = 0;
 while (true)
 {
 lock (_s2)
 {
 lock (_s1)
 {
 _s1.ChangeState(i);
 _s2.ChangeState(i++);
 WriteLine($"still running, {i}");
 }
 }
 }
 }
}

As a result, the program runs a number of loops and soon becomes unresponsive. The message “still running” is just written a few times to the console. Again, how soon the problem occurs depends on your system configuration, and the result will vary.

A deadlock problem is not always as obvious as it is here. One thread locks _s1 and then _s2; the other thread locks _s2 and then _s1. In this case, you just need to change the order so that both threads perform the locks in the same order. In a bigger application, the locks might be hidden deeply inside a method. You can prevent this problem by designing a good lock order in the initial architecture of the application, and by defining timeouts for the locks, as demonstrated in the next section.

The lock Statement and Thread Safety

C# has its own keyword for the synchronization of multiple threads: the lock statement. The lock statement provides an easy way to hold and release a lock. Before adding lock statements, however, let’s look at another race condition. The class SharedState demonstrates using shared state between threads and shares an integer value (code file SynchronizationSamples/SharedState.cs):

public class SharedState
{
 public int State { get; set; }
}

The sample code for all the following synchronization samples (with the exception of SingletonWPF) makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library 1.0.0

	System.Threading.Tasks.Parallel

	System.Threading.Thread

Namespaces

	System

	System.Collections.Generic

	System.Linq

	System.Text

	System.Threading

	System.Threading.Tasks

	static System.Console

The class Job contains the method DoTheJob, which is the entry point for a new task. With the implementation, the State of the SharedState object is incremented 50,000 times. The variable sharedState is initialized in the constructor of this class (code file SynchronizationSamples/Job.cs):

public class Job
{
 private SharedState _sharedState;
 public Job(SharedState sharedState)
 {
 _sharedState = sharedState;
 }

 public void DoTheJob()
 {
 for (int i = 0; i < 50000; i++)
 {
 _sharedState.State += 1;
 }
 }
}

In the Main method, a SharedState object is created and passed to the constructor of 20 Task objects. All tasks are started. After starting the tasks, the Main method waits until every one of the 20 tasks is completed. After the tasks are completed, the summarized value of the shared state is written to the console. With 50,000 loops and 20 tasks, a value of 1,000,000 could be expected. Often, however, this is not the case (code file SynchronizationSamples/Program.cs):

class Program
{
 static void Main()
 {
 int numTasks = 20;
 var state = new SharedState();
 var tasks = new Task[numTasks];
 for (int i = 0; i < numTasks; i++)
 {
 tasks[i] = Task.Run(() => new Job(state).DoTheJob());
 }

 Task.WaitAll(tasks);

 WriteLine($"summarized {state.State}");
 }
}

The results of multiple runs of the application are as follows:

summarized 424687
summarized 465708
summarized 581754
summarized 395571
summarized 633601

The behavior is different every time, but none of the results are correct. As noted earlier, you will see big differences between debug and release builds, and the type of CPU that you are using also affects results. If you change the loop count to smaller values, you will often get correct values—but not every time. In this case the application is small enough to see the problem easily; in a large application, the reason for such a problem can be hard to find.

You must add synchronization to this program. To do so, use the lock keyword. Defining the object with the lock statement means that you wait to get the lock for the specified object. You can pass only a reference type. Locking a value type would just lock a copy, which wouldn’t make any sense. In any case, the C# compiler issues an error if value types are used with the lock statement. As soon as the lock is granted—only one thread gets the lock—the block of the lock statement can run. At the end of the lock statement block, the lock for the object is released, and another thread waiting for the lock can be granted access to it:

lock (obj)
{
 // synchronized region
}

To lock static members, you can place the lock on the type object or a static member:

lock (typeof(StaticClass))
{
}

You can make the instance members of a class thread-safe by using the lock keyword. This way, only one thread at a time can access the methods DoThis and DoThat for the same instance:

public class Demo
{
 public void DoThis()
 {
 lock (this)
 {
 // only one thread at a time can access the DoThis and DoThat methods
 }
 }

 public void DoThat()
 {
 lock (this)
 {
 }
 }
}

However, because the object of the instance can also be used for synchronized access from the outside, and you can’t control this from the class itself, you can apply the SyncRoot pattern. With the SyncRoot pattern, a private object named _syncRoot is created, and this object is used with the lock statements:

public class Demo
{
 private object _syncRoot = new object();

 public void DoThis()
 {
 lock (_syncRoot)
 {
 // only one thread at a time can access the DoThis and DoThat methods
 }
 }

 public void DoThat()
 {
 lock (_syncRoot)
 {
 }
 }
}

Using locks costs time and is not always necessary. You can create two versions of a class: synchronized and nonsynchronized. This is demonstrated in the next example code by changing the class Demo. The class Demo is not synchronized, as shown in the implementation of the DoThis and DoThat methods. The class also defines the IsSynchronized property, whereby the client can get information about the synchronization option of the class. To make a synchronized variant of the Demo class, you use the static method Synchronized to pass a nonsynchronized object, and this method returns an object of type SynchronizedDemo. SynchronizedDemo is implemented as an inner class that is derived from the base class Demo and overrides the virtual members of the base class. The overridden members make use of the SyncRoot pattern:

public class Demo
{
 private class SynchronizedDemo: Demo
 {
 private object _syncRoot = new object();
 private Demo _d;

 public SynchronizedDemo(Demo d)
 {
 _d = d;
 }

 public override bool IsSynchronized => true;

 public override void DoThis()
 {
 lock (_syncRoot)
 {
 _d.DoThis();
 }
 }
 public override void DoThat()
 {
 lock (_syncRoot)
 {
 _d.DoThat();
 }
 }
 }
 public virtual bool IsSynchronized => false;

 public static Demo Synchronized(Demo d)
 {
 if (!d.IsSynchronized)
 {
 return new SynchronizedDemo(d);
 }
 return d;
 }
 public virtual void DoThis()
 {
 }

 public virtual void DoThat()
 {
 }
}

Bear in mind that when you use the SynchronizedDemo class, only methods are synchronized. There is no synchronization for invoking other members of this class.

Now, change the SharedState class that was not synchronized at first to use the SyncRoot pattern. If you try to make the SharedState class thread-safe by locking access to the properties with the SyncRoot pattern, you still get the race condition shown earlier in the “Race Conditions” section:

public class SharedState
{
 private int _state = 0;
 private object _syncRoot = new object();

 public int State // there's still a race condition,
 // don't do this!
 {
 get { lock (_syncRoot) { return _state; }}
 set { lock (_syncRoot) { _state = value; }}
 }
}

The thread invoking the DoTheJob method is accessing the get accessor of the SharedState class to get the current value of the state, and then the get accessor sets the new value for the state. In between calling the get and set accessors, the object is not locked, and another thread can read the interim value (code file SynchronizationSamples/Job.cs):

public void DoTheJob()
{
 for (int i = 0; i < 50000; i++)
 {
 _sharedState.State += 1;
 }
}

Therefore, it is better to leave the SharedState class as it was earlier, without thread safety (code file SynchronizationSamples/SharedState.cs):

public class SharedState
{
 public int State { get; set; }
}

In addition, add the lock statement where it belongs, inside the method DoTheJob (code file SynchronizationSamples/Job.cs):

public void DoTheJob()
{
 for (int i = 0; i < 50000; i++)
 {
 lock (_sharedState)
 {
 _sharedState.State += 1;
 }
 }
}

This way, the results of the application are always as expected:

summarized 1000000

NOTE Using the lock statement in one place does not mean that all other threads accessing the object are waiting. You have to explicitly use synchronization with every thread accessing the shared state.

Of course, you can also change the design of the SharedState class and offer incrementing as an atomic operation. This is a design question—what should be an atomic functionality of the class? The next code snippet just keeps the increment locked:

public class SharedState
{
 private int _state = 0;
 private object _syncRoot = new object();

 public int State => _state;

 public int IncrementState()
 {
 lock (_syncRoot)
 {
 return ++_state;
 }
 }
}

There is, however, a faster way to lock the increment of the state, as shown next.

Interlocked

The Interlocked class is used to make simple statements for variables atomic. i++ is not thread-safe. It consists of getting a value from the memory, incrementing the value by 1, and storing the value back in memory. These operations can be interrupted by the thread scheduler. The Interlocked class provides methods for incrementing, decrementing, exchanging, and reading values in a thread-safe manner.

Using the Interlocked class is much faster than other synchronization techniques. However, you can use it only for simple synchronization issues.

For example, instead of using the lock statement to lock access to the variable someState when setting it to a new value, in case it is null, you can use the Interlocked class, which is faster:

lock (this)
{
 if (_someState == null)
 {
 _someState = newState;
 }
}

The faster version with the same functionality uses the Interlocked.CompareExchange method:

Interlocked.CompareExchange<SomeState>(ref someState, newState, null);

Instead of performing incrementing inside a lock statement as shown here:

public int State
{
 get
 {
 lock (this)
 {
 return ++_state;
 }
 }
}

you can use Interlocked.Increment, which is faster:

public int State
{
 get
 {
 return Interlocked.Increment(ref _state);
 }
}

Monitor

The C# compiler resolves the lock statement to use the Monitor class. The following lock statement

lock (obj)
{
 // synchronized region for obj
}

is resolved to invoke the Enter method, which waits until the thread gets the lock of the object. Only one thread at a time may be the owner of the object lock. As soon as the lock is resolved, the thread can enter the synchronized section. The Exit method of the Monitor class releases the lock. The compiler puts the Exit method into a finally handler of a try block so that the lock is also released if an exception is thrown:

Monitor.Enter(obj);
try
{
 // synchronized region for obj
}
finally
{
 Monitor.Exit(obj);
}

NOTE Chapter 14, “Errors and Exceptions,” covers the try/finally block.

The Monitor class has a big advantage over the lock statement of C#: You can add a timeout value for waiting to get the lock. Therefore, instead of endlessly waiting to get the lock, you can use the TryEnter method shown in the following example, passing a timeout value that defines the maximum amount of time to wait for the lock. If the lock for obj is acquired, TryEnter sets the Boolean ref parameter to true and performs synchronized access to the state guarded by the object obj. If obj is locked for more than 500 milliseconds by another thread, TryEnter sets the variable lockTaken to false, and the thread does not wait any longer but is used to do something else. Maybe later, the thread can try to acquire the lock again.

bool _lockTaken = false;
Monitor.TryEnter(_obj, 500, ref _lockTaken);
if (_lockTaken)
{
 try
 {
 // acquired the lock
 // synchronized region for obj
 }
 finally
 {
 Monitor.Exit(obj);
 }
}
else
{
 // didn't get the lock, do something else
}

SpinLock

If the overhead on object-based lock objects (Monitor) would be too high because of garbage collection, you can use the SpinLock struct. SpinLock is useful if you have a large number of locks (for example, for every node in a list) and hold times are always extremely short. You should avoid holding more than one SpinLock, and don’t call anything that might block.

Other than the architectural differences, SpinLock is very similar in usage to the Monitor class. You acquire the lock with Enter or TryEnter and release the lock with Exit. SpinLock also offers two properties to provide information about whether it is currently locked: IsHeld and IsHeldByCurrentThread.

NOTE Be careful when passing SpinLock instances around. Because SpinLock is defined as a struct, assigning one variable to another creates a copy. Always pass SpinLock instances by reference.

WaitHandle

WaitHandle is an abstract base class that you can use to wait for a signal to be set. You can wait for different things, because WaitHandle is a base class and some classes are derived from it.

Wait handles are also used by simple asynchronous delegates. The TakesAWhileDelegate is defined as follows (code file AsyncDelegate/Program.cs):

public delegate int TakesAWhileDelegate(int x, int ms);

The method BeginInvoke of the asynchronous delegate returns an object that implements the interface IAsyncResult. Using IAsyncResult, you can access a WaitHandle with the property AsyncWaitHandle. When you invoke the method WaitOne, the thread waits until a signal is received that is associated with the wait handle, or when the timeout occurs. Invoking the EndInvoke method, the thread finally blocks until the result is here:

static void Main()
{
 TakesAWhileDelegate d1 = TakesAWhile;

 IAsyncResult ar = d1.BeginInvoke(1, 3000, null, null);
 while (true)
 {
 Write(".");
 if (ar.AsyncWaitHandle.WaitOne(50))
 {
 WriteLine("Can get the result now");
 break;
 }
 }
 int result = d1.EndInvoke(ar);
 WriteLine($"result: {result}");
}

public static int TakesAWhile(int x, int ms)
{
 Task.Delay(ms).Wait();
 return 42;
}

NOTE Delegates are explained in Chapter 9, “Delegates, Lambdas, and Events.”

When you run the program, you get this result:

.......................................
...Can get the result now
result: 42

With WaitHandle, you can wait for one signal to occur (WaitOne), multiple objects that all must be signaled (WaitAll), or one of multiple objects (WaitAny). WaitAll and WaitAny are static members of the WaitHandle class and accept an array of WaitHandle parameters.

WaitHandle has a SafeWaitHandle property whereby you can assign a native handle to an operating system resource and wait for that handle. For example, you can assign a SafeFileHandle to wait for a file I/O operation to complete.

The classes Mutex, EventWaitHandle, and Semaphore are derived from the base class WaitHandle, so you can use any of these with waits.

Mutex

Mutex (mutual exclusion) is one of the classes of the .NET Framework that offers synchronization across multiple processes. It is very similar to the Monitor class in that there is just one owner. That is, only one thread can get a lock on the mutex and access the synchronized code regions that are secured by the mutex.

With the constructor of the Mutex class, you can define whether the mutex should initially be owned by the calling thread, define a name for the mutex, and determine whether the mutex already exists. In the following example, the third parameter is defined as an out parameter to receive a Boolean value if the mutex was newly created. If the value returned is false, the mutex was already defined. The mutex might be defined in a different process, because a mutex with a name is known to the operating system and is shared among different processes. If no name is assigned to the mutex, the mutex is unnamed and not shared among different processes.

bool createdNew;
var mutex = new Mutex(false,"ProCSharpMutex", out createdNew);

To open an existing mutex, you can also use the method Mutex.OpenExisting, which doesn’t require the same .NET privileges as creating the mutex with the constructor.

Because the Mutex class derives from the base class WaitHandle, you can do a WaitOne to acquire the mutex lock and be the owner of the mutex during that time. The mutex is released by invoking the ReleaseMutex method:

if (mutex.WaitOne())
{
 try
 {
 // synchronized region
 }
 finally
 {
 mutex.ReleaseMutex();
 }
}
else
{
 // some problem happened while waiting
}

Because a named mutex is known system-wide, you can use it to keep an application from being started twice. In the following WPF application, the constructor of the Mutex object is invoked. Then it is verified whether the mutex with the name SingletonWinAppMutex exists already. If it does, the application exits (code file SingletonWPF/App.xaml.cs):

public partial class App : Application
{
 protected override void OnStartup(StartupEventArgs e)
 {
 bool mutexCreated;
 var mutex = new Mutex(false,"SingletonWinAppMutex", out mutexCreated);
 if (!mutexCreated)
 {
 MessageBox.Show("You can only start one instance of the application");
 Application.Current.Shutdown();
 }

 base.OnStartup(e);
 }
}

Semaphore

A semaphore is very similar to a mutex, but unlike the mutex, the semaphore can be used by multiple threads at once. A semaphore is a counting mutex, meaning that with a semaphore you can define the number of threads that are allowed to access the resource guarded by the semaphore simultaneously. This is useful if you need to limit the number of threads that can access the available resources. For example, if a system has three physical I/O ports available, three threads can access them simultaneously, but a fourth thread needs to wait until the resource is released by one of the other threads.

.NET Core 1.0 provides two classes with semaphore functionality: Semaphore and SemaphoreSlim. Semaphore can be named, can use system-wide resources, and allows synchronization between different processes. SemaphoreSlim is a lightweight version that is optimized for shorter wait times.

In the following example application, in the Main method six tasks are created along with one semaphore with a count of 3. In the constructor of the Semaphore class, you can define the count for the number of locks that can be acquired with the semaphore (the second parameter) and the number of locks that are free initially (the first parameter). If the first parameter has a lower value than the second parameter, the difference between the values defines the already allocated semaphore count. As with the mutex, you can also assign a name to the semaphore to share it among different processes. Here a SemaphoreSlim object is created that can only be used within the process. After the SemaphoreSlim object is created, six tasks are started, and they all wait for the same semaphore (code file SemaphoreSample/Program.cs):

class Program
{
 static void Main()
 {
 int taskCount = 6;
 int semaphoreCount = 3;

 var semaphore = new SemaphoreSlim(semaphoreCount, semaphoreCount);
 var tasks = new Task[taskCount];
 for (int i = 0; i < taskCount; i++)
 {
 tasks[i] = Task.Run(() => TaskMain(semaphore));
 }

 Task.WaitAll(tasks);
 WriteLine("All tasks finished");
 }
 // etc

In the task’s main method, TaskMain, the task does a Wait to lock the semaphore. Remember that the semaphore has a count of 3, so three tasks can acquire the lock. Task 4 must wait, and here the timeout of 600 milliseconds is defined as the maximum wait time. If the lock cannot be acquired after the wait time has elapsed, the task writes a message to the console and repeats the wait in a loop. As soon as the lock is acquired, the thread writes a message to the console, sleeps for some time, and releases the lock. Again, with the release of the lock it is important that the resource be released in all cases. That’s why the Release method of the SemaphoreSlim class is invoked in a finally handler:

 // etc
 public static void TaskMain(SemaphoreSlim semaphore)
 {
 bool isCompleted = false;
 while (!isCompleted)
 {
 if (semaphore.Wait(600))
 {
 try
 {
 WriteLine($"Task {Task.CurrentId} locks the semaphore");
 Task.Delay(2000).Wait();
 }
 finally
 {
 WriteLine($"Task {Task.CurrentId} releases the semaphore");
 semaphore.Release();
 isCompleted = true;
 }
 }
 else
 {
 WriteLine($"Timeout for task {Task.CurrentId}; wait again");
 }
 }
 }
}

When you run the application, you can indeed see that with four threads, the lock is made immediately. The tasks with IDs 7, 8, and 9 must wait. The wait continues in the loop until one of the other threads releases the semaphore:

Task 4 locks the semaphore
Task 5 locks the semaphore
Task 6 locks the semaphore
Timeout for task 7; wait again
Timeout for task 7; wait again
Timeout for task 8; wait again
Timeout for task 7; wait again
Timeout for task 8; wait again
Timeout for task 7; wait again
Timeout for task 9; wait again
Timeout for task 8; wait again
Task 5 releases the semaphore
Task 7 locks the semaphore
Task 6 releases the semaphore
Task 4 releases the semaphore
Task 8 locks the semaphore
Task 9 locks the semaphore
Task 8 releases the semaphore
Task 7 releases the semaphore
Task 9 releases the semaphore
All tasks finished

Events

Like mutex and semaphore objects, events are also system-wide synchronization resources. For using system events from managed code, the .NET Framework offers the classes ManualResetEvent, AutoResetEvent, ManualResetEventSlim, and CountdownEvent in the namespace System.Threading.

NOTE The event keyword from C# that is covered in Chapter 9 has nothing to do with the event classes from the namespace System.Threading; the event keyword is based on delegates. However, both event classes are .NET wrappers to the system-wide native event resource for synchronization.

You can use events to inform other tasks that some data is present, that something is completed, and so on. An event can be signaled or not signaled. A task can wait for the event to be in a signaled state with the help of the WaitHandle class, discussed earlier.

A ManualResetEventSlim is signaled by invoking the Set method, and returned to a nonsignaled state with the Reset method. If multiple threads are waiting for an event to be signaled and the Set method is invoked, then all threads waiting are released. In addition, if a thread invokes the WaitOne method but the event is already signaled, the waiting thread can continue immediately.

An AutoResetEvent is also signaled by invoking the Set method, and you can set it back to a nonsignaled state with the Reset method. However, if a thread is waiting for an auto-reset event to be signaled, the event is automatically changed into a nonsignaled state when the wait state of the first thread is finished. This way, if multiple threads are waiting for the event to be set, only one thread is released from its wait state. It is not the thread that has been waiting the longest for the event to be signaled, but the thread waiting with the highest priority.

To demonstrate events with the ManualResetEventSlim class, the following class Calculator defines the method Calculation, which is the entry point for a task. With this method, the task receives input data for calculation and writes the result to the variable result that can be accessed from the Result property. As soon as the result is completed (after a random amount of time), the event is signaled by invoking the Set method of the ManualResetEventSlim (code file EventSample/Calculator.cs):

 public class Calculator
 {
 private ManualResetEventSlim _mEvent;

 public int Result { get; private set; }

 public Calculator(ManualResetEventSlim ev)
 {
 _mEvent = ev;
 }

 public void Calculation(int x, int y)
 {
 WriteLine($"Task {Task.CurrentId} starts calculation");
 Task.Delay(new Random().Next(3000)).Wait();
 Result = x + y;

 // signal the event-completed!
 WriteLine($"Task {Task.CurrentId} is ready");
 _mEvent.Set();
 }
 }

The Main method of the program defines arrays of four ManualResetEventSlim objects and four Calculator objects. Every Calculator is initialized in the constructor with a ManualResetEventSlim object, so every task gets its own event object to signal when it is completed. Now, the Task class is used to enable different tasks to run the calculation (code file EventSample/Program.cs):

class Program
{
 static void Main()
 {
 const int taskCount = 4;

 var mEvents = new ManualResetEventSlim[taskCount];
 var waitHandles = new WaitHandle[taskCount];
 var calcs = new Calculator[taskCount];

 for (int i = 0; i < taskCount; i++)
 {
 int i1 = i;
 mEvents[i] = new ManualResetEventSlim(false);
 waitHandles[i] = mEvents[i].WaitHandle;
 calcs[i] = new Calculator(mEvents[i]);
 Task.Run(() => calcs[i1].Calculation(i1 + 1, i1 + 3));
 }
 //...

The WaitHandle class is now used to wait for any one of the events in the array. WaitAny waits until any one of the events is signaled. In contrast to ManualResetEvent, ManualResetEventSlim does not derive from WaitHandle. That’s why a separate collection of WaitHandle objects is kept, which is filled from the WaitHandle property of the ManualResetEventSlim class. WaitAny returns an index value that provides information about the event that was signaled. The returned value matches the index of the WaitHandle array that is passed to WaitAny. Using this index, information from the signaled event can be read:

 for (int i = 0; i < taskCount; i++)
 {
 int index = WaitHandle.WaitAny(waitHandles);
 if (index == WaitHandle.WaitTimeout)
 {
 WriteLine("Timeout!!");
 }
 else
 {
 mEvents[index].Reset();
 WriteLine($"finished task for {index}, result: {calcs[index].Result}");
 }
 }
 }
}

When starting the application, you can see the tasks doing the calculation and setting the event to inform the main thread that it can read the result. At random times, depending on whether the build is a debug or release build and on your hardware, you might see different orders and a different number of tasks performing calls:

Task 4 starts calculation
Task 5 starts calculation
Task 6 starts calculation
Task 7 starts calculation
Task 7 is ready
finished task for 3, result: 10
Task 4 is ready
finished task for 0, result: 4
Task 6 is ready
finished task for 1, result: 6
Task 5 is ready
finished task for 2, result: 8

In a scenario like this, to fork some work into multiple tasks and later join the result, the new CountdownEvent class can be very useful. Instead of creating a separate event object for every task, you need to create only one. CountdownEvent defines an initial number for all the tasks that set the event, and after the count is reached, the CountdownEvent is signaled.

The Calculator class is modified to use the CountdownEvent instead of the ManualResetEvent. Rather than set the signal with the Set method, CountdownEvent defines the Signal method (code file EventSampleWithCountdownEvent/Calculator.cs):

public class Calculator
{
 private CountdownEvent _cEvent;

 public int Result { get; private set; }

 public Calculator(CountdownEvent ev)
 {
 _cEvent = ev;
 }
 public void Calculation(int x, int y)
 {
 WriteLine($"Task {Task.CurrentId} starts calculation");
 Task.Delay(new Random().Next(3000)).Wait();
 Result = x + y;

 // signal the event-completed!
 WriteLine($"Task {Task.CurrentId} is ready");
 _cEvent.Signal();
 }
}

You can now simplify the Main method so that it’s only necessary to wait for the single event. If you don’t deal with the results separately as it was done before, this new edition might be all that’s needed:

const int taskCount = 4;
var cEvent = new CountdownEvent(taskCount);
var calcs = new Calculator[taskCount];

for (int i = 0; i < taskCount; i++)
{
 calcs[i] = new Calculator(cEvent);

 int i1 = i;
 Task.Run(() => calcs[i1].Calculation, Tuple.Create(i1 + 1, i1 + 3));
}
cEvent.Wait();
WriteLine("all finished");
for (int i = 0; i < taskCount; i++)
{
 WriteLine($"task for {i}, result: {calcs[i].Result}");
}

Barrier

For synchronization, the Barrier class is great for scenarios in which work is forked into multiple tasks and the work must be joined afterward. Barrier is used for participants that need to be synchronized. While the job is active, you can dynamically add participants—for example, child tasks that are created from a parent task. Participants can wait until the work is done by all the other participants before continuing.

The BarrierSample is somewhat complex, but it’s worthwhile to demonstrate the features of the Barrier type. The sample creates multiple collections of 2 million random strings. Multiple tasks are used to iterate through the collection and count the number of strings, starting with a, b, c, and so on. The work is not only distributed between different tasks, but also within a task. After all tasks are iterated through the first collection of strings, the result is summarized, and the tasks continue later on with the next collection.

The method FillData creates a collection and fills it with random strings (code file BarrierSample/Program.cs):

public static IEnumerable<string> FillData(int size)
{
 var r = new Random();
 return Enumerable.Range(0, size).Select(x => GetString(r));
}

private static string GetString(Random r)
{
 var sb = new StringBuilder(6);
 for (int i = 0; i < 6; i++)
 {
 sb.Append((char)(r.Next(26) + 97));
 }
 return sb.ToString();
}

A helper method to show information about a Barrier is defined with the method LogBarrierInformation:

private static void LogBarrierInformation(string info, Barrier barrier)
{
 WriteLine($"Task {Task.CurrentId}: {info}." +
 $"{barrier.ParticipantCount} current and “ +
 $"{barrier.ParticipantsRemaining} remaining participants," +
 $"phase {barrier.CurrentPhaseNumber}");
}

The CalculationInTask method defines the job performed by a task. With the parameters, the third parameter references the Barrier instance. The data that is used for the calculation is an array of IList<string>. The last parameter, a jagged int array, will be used to write the results as the task progresses.

The task makes the processing in a loop. With every loop, an array element of IList<string>[] is processed. After every loop is completed, the Task signals that it’s ready by invoking the SignalAndWait method, and waits until all the other tasks are ready with this processing as well. This loop continues until the task is fully finished. Then the task removes itself from the barrier by invoking the method RemoveParticipant:

private static void CalculationInTask(int jobNumber, int partitionSize,
 Barrier barrier, IList<string>[] coll, int loops, int[][] results)
{
 LogBarrierInformation("CalculationInTask started", barrier);

 for (int i = 0; i < loops; i++)
 {
 var data = new List<string>(coll[i]);

 int start = jobNumber * partitionSize;
 int end = start + partitionSize;
 WriteLine($"Task {Task.CurrentId} in loop {i}: partition" +
 $"from {start} to {end}");

 for (int j = start; j < end; j++)
 {
 char c = data[j][0];
 results[i][c - 97]++;
 }

 WriteLine($"Calculation completed from task {Task.CurrentId}" +
 $"in loop {i}. {results[i][0]} times a, {results[i][25]} times z");

 LogBarrierInformation("sending signal and wait for all", barrier);
 barrier.SignalAndWait();
 LogBarrierInformation("waiting completed", barrier);
 }

 barrier.RemoveParticipant();
 LogBarrierInformation("finished task, removed participant", barrier);
}

With the Main method, a Barrier instance is created. In the constructor, you can specify the number of participants. In the example, this number is 3 (numberTasks + 1) because there are two created tasks, and the Main method is a participant as well. Using Task.Run, two tasks are created to fork the iteration through the collection into two parts. After starting the tasks, using SignalAndWait, the main method signals its completion and waits until all remaining participants either signal their completion or remove themselves as participants from the barrier. As soon as all participants are ready with one iteration, the results from the tasks are zipped together with the Zip extension method. Then the next iteration is done to wait for the next results from the tasks:

static void Main()
{
 const int numberTasks = 2;
 const int partitionSize = 1000000;
 const int loops = 5;

 var taskResults = new Dictionary<int, int[][]>();
 var data = new List<string>[loops];
 for (int i = 0; i < loops; i++)
 {
 data[i] = new List<string>(FillData(partitionSize * numberTasks);
 }

 var barrier = new Barrier(numberTasks + 1);
 LogBarrierInformation("initial participants in barrier", barrier);

 for (int i = 0; i < numberTasks; i++)
 {
 barrier.AddParticipant();

 int jobNumber = i;
 taskResults.Add(i, new int[loops][]);
 for (int loop = 0; loop < loops; loop++)
 {
 taskResult[i, loop] = new int[26];
 }
 WriteLine("Main - starting task job {jobNumber}");
 Task.Run(() => CalculationInTask(jobNumber, partitionSize,
 barrier, data, loops, taskResults[jobNumber]));
 }

 for (int loop = 0; loop < 5; loop++)
 {
 LogBarrierInformation("main task, start signaling and wait", barrier);
 barrier.SignalAndWait();
 LogBarrierInformation("main task waiting completed", barrier);

 int[][] resultCollection1 = taskResults[0];
 int[][] resultCollection2 = taskResults[1];
 var resultCollection = resultCollection1[loop].Zip(
 resultCollection2[loop], (c1, c2) => c1 + c2);

 char ch = 'a';
 int sum = 0;
 foreach (var x in resultCollection)
 {
 WriteLine($"{ch++}, count: {x}");
 sum += x;
 }

 LogBarrierInformation($"main task finished loop {loop}, sum: {sum}",
 barrier);
 }
 WriteLine("finished all iterations");
 ReadLine();
}

NOTE Jagged arrays are explained in Chapter 7, “Arrays and Tuples.” The Zip extension method is explained in Chapter 13, “Language Integrated Query.”

When you run the application, you can see output similar to the following. In the output you can see that every call to AddParticipant increases the participant count as well as the remaining participant count. As soon as one participant invokes SignalAndWait, the remaining participant count is decremented. When the remaining participant count reaches 0, the wait of all participants ends, and the next phase begins:

Task : initial participants in barrier. 1 current and 1 remaining participants,
phase 0.
Main - starting task job 0
Main - starting task job 1
Task : main task, starting signaling and wait. 3 current and
3 remaining participants, phase 0.
Task 4: CalculationInTask started. 3 current and 2 remaining participants, phase 0.
Task 5: CalculationInTask started. 3 current and 2 remaining participants, phase 0.
Task 4 in loop 0: partition from 0 to 1000000
Task 5 in loop 0: partition from 1000000 to 2000000
Calculation completed from task 4 in loop 0. 38272 times a, 38637 times z
Task 4: sending signal and wait for all. 3 current and
2 remaining participants, phase 0.
Calculation completed from task 5 in loop 0. 38486 times a, 38781 times z
Task 5: sending signal and wait for all. 3 current and
1 remaining participants, phase 0.
Task 5: waiting completed. 3 current and 3 remaining participants, phase 1
Task 4: waiting completed. 3 current and 3 remaining participants, phase 1
Task : main waiting completed. 3 current and 3 remaining participants, phase 1
...

ReaderWriterLockSlim

In order for a locking mechanism to allow multiple readers, but only one writer, for a resource, you can use the class ReaderWriterLockSlim. This class offers a locking functionality whereby multiple readers can access the resource if no writer locked it, and only a single writer can lock the resource.

The ReaderWriterLockSlim class has blocking and nonblocking methods to acquire a read lock, such as EnterReadLock (blocking) and TryEnterReadLock (nonblocking), and to acquire a write lock with EnterWriteLock (blocking) and TryEnterWriteLock (nonblocking). If a task reads first and writes afterward, it can acquire an upgradable read lock with EnterUpgradableReadLock or TryEnterUpgradableReadLock. With this lock, the write lock can be acquired without releasing the read lock.

Several properties of this class offer information about the held locks, such as CurrentReadCount, WaitingReadCount, WaitingUpgradableReadCount, and WaitingWriteCount.

The following example creates a collection containing six items and a ReaderWriterLockSlim object. The method ReaderMethod acquires a read lock to read all items of the list and write them to the console. The method WriterMethod tries to acquire a write lock to change all values of the collection. In the Main method, six tasks are started that invoke either the method ReaderMethod or the method WriterMethod (code file ReaderWriterLockSample/Program.cs):

using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using static System.Console;

namespace ReaderWriterLockSample
{
 class Program
 {
 private static List<int> _items = new List<int>() { 0, 1, 2, 3, 4, 5};
 private static ReaderWriterLockSlim _rwl =
 new ReaderWriterLockSlim(LockRecursionPolicy.SupportsRecursion);

 public static void ReaderMethod(object reader)
 {
 try
 {
 _rwl.EnterReadLock();

 for (int i = 0; i < _items.Count; i++)
 {
 WriteLine($"reader {reader}, loop: {i}, item: {_items[i]}");
 Task.Delay(40).Wait();
 }
 }
 finally
 {
 _rwl.ExitReadLock();
 }
 }

 public static void WriterMethod(object writer)
 {
 try
 {
 while (!_rwl.TryEnterWriteLock(50))
 {
 WriteLine($"Writer {writer} waiting for the write lock");
 WriteLine($"current reader count: {_rwl.CurrentReadCount}");
 }
 WriteLine($"Writer {writer} acquired the lock");
 for (int i = 0; i < _items.Count; i++)
 {
 _items[i]++;
 Task.Delay(50).Wait();
 }
 WriteLine($"Writer {writer} finished");
 }
 finally
 {
 _rwl.ExitWriteLock();
 }
 }

 static void Main()
 {
 var taskFactory = new TaskFactory(TaskCreationOptions.LongRunning,
 TaskContinuationOptions.None);
 var tasks = new Task[6];
 tasks[0] = taskFactory.StartNew(WriterMethod, 1);
 tasks[1] = taskFactory.StartNew(ReaderMethod, 1);
 tasks[2] = taskFactory.StartNew(ReaderMethod, 2);
 tasks[3] = taskFactory.StartNew(WriterMethod, 2);
 tasks[4] = taskFactory.StartNew(ReaderMethod, 3);
 tasks[5] = taskFactory.StartNew(ReaderMethod, 4);

 Task.WaitAll(tasks);
 }
 }
}

When you run the application, the following shows that the first writer gets the lock first. The second writer and all readers need to wait. Next, the readers can work concurrently, while the second writer still waits for the resource:

Writer 1 acquired the lock
Writer 2 waiting for the write lock
current reader count: 0
Writer 2 waiting for the write lock
current reader count: 0
Writer 2 waiting for the write lock
current reader count: 0
Writer 2 waiting for the write lock
current reader count: 0
Writer 1 finished
reader 4, loop: 0, item: 1
reader 1, loop: 0, item: 1
Writer 2 waiting for the write lock
current reader count: 4
reader 2, loop: 0, item: 1
reader 3, loop: 0, item: 1
reader 4, loop: 1, item: 2
reader 1, loop: 1, item: 2
reader 3, loop: 1, item: 2
reader 2, loop: 1, item: 2
Writer 2 waiting for the write lock
current reader count: 4
reader 4, loop: 2, item: 3
reader 1, loop: 2, item: 3
reader 2, loop: 2, item: 3
reader 3, loop: 2, item: 3
Writer 2 waiting for the write lock
current reader count: 4
reader 4, loop: 3, item: 4
reader 1, loop: 3, item: 4
reader 2, loop: 3, item: 4
reader 3, loop: 3, item: 4
reader 4, loop: 4, item: 5
reader 1, loop: 4, item: 5
Writer 2 waiting for the write lock
current reader count: 4
reader 2, loop: 4, item: 5
reader 3, loop: 4, item: 5
reader 4, loop: 5, item: 6
reader 1, loop: 5, item: 6
reader 2, loop: 5, item: 6
reader 3, loop: 5, item: 6
Writer 2 waiting for the write lock
current reader count: 4
Writer 2 acquired the lock
Writer 2 finished

Timers

With a timer, you can do a repeat invocation of a method. Two timers will be covered in this section: the Timer class from the System.Threading namespace, and the DispatcherTimer for XAML-based apps.

Using the System.Threading.Timer class, you can pass the method to be invoked as the first parameter in the constructor. This method must fulfill the requirements of the TimerCallback delegate, which defines a void return type and an object parameter. With the second parameter, you can pass any object, which is then received with the object argument in the callback method. For example, you can pass an Event object to signal the caller. The third parameter specifies the time span during which the callback should be invoked the first time. With the last parameter, you specify the repeating interval for the callback. If the timer should fire only once, set the fourth parameter to the value –1.

If the time interval should be changed after creating the Timer object, you can pass new values with the Change method (code file TimerSample/Program.cs):

private static void ThreadingTimer()
{
 using (var t1 = new Timer(TimeAction, null,
 TimeSpan.FromSeconds(2), TimeSpan.FromSeconds(3)))
 {
 Task.Delay(15000).Wait();
 }
}

private static void TimeAction(object o)
{
 WriteLine($"System.Threading.Timer {DateTime.Now:T}");
}

The DispatcherTimer from the namespaces System.Windows.Threading (for Windows Desktop applications with WPF) and Windows.UI.Xaml (for Windows apps) is a timer for XAML-based apps where the event handler is called within the UI thread, thus it is possible to directly access user interface elements.

The sample application to demonstrate the DispatcherTimer is a Windows app that shows the hand of a clock to switch every second. The following XAML code defines the commands that enable you to start and stop the clock (code file WinAppTimer/MainPage.xaml):

<Page.TopAppBar>
 <CommandBar IsOpen="True">
 <AppBarButton Icon="Play" Click="{x:Bind OnTimer}" />
 <AppBarButton Icon="Stop" Click="{x:Bind OnStopTimer}" />
 </CommandBar>
</Page.TopAppBar>

The hand of the clock is defined using the shape Line. To rotate the line, you use a RotateTransform element:

<Canvas Width="300" Height="300">
 <Ellipse Width="10" Height="10" Fill="Red" Canvas.Left="145"
 Canvas.Top="145" />
 <Line Canvas.Left="150" Canvas.Top="150" Fill="Green" StrokeThickness="3"
 Stroke="Blue" X1="0" Y1="0" X2="120" Y2="0" >
 <Line.RenderTransform>
 <RotateTransform CenterX="0" CenterY="0" Angle="270" x:Name="rotate" />
 </Line.RenderTransform>
 </Line>
</Canvas>

NOTE XAML shapes are explained in Chapter 30, “Styling XAML Apps.”

The DispatcherTimer object is created in the MainPage class. In the constructor, the handler method is assigned to the Tick event, and the Interval is specified to be one second. The timer is started in the OnTimer method—the method that gets called when the user clicks the Play button in the CommandBar (code file WinAppTimer/MainPage.xaml.cs):

private DispatcherTimer _timer = new DispatcherTimer();
public MainPage()
{
 this.InitializeComponent();
 _timer.Tick += OnTick;
 _timer.Interval = TimeSpan.FromSeconds(1);
}

private void OnTimer()
{
 _timer.Start();
}

private void OnTick(object sender, object e)
{
 double newAngle = rotate.Angle + 6;
 if (newAngle >= 360) newAngle = 0;
 rotate.Angle = newAngle;
}

private void OnStopTimer()
{
 _timer.Stop();
}

When you run the application, the clock hand is shown (see Figure 22.2).

[image: Screenshot shows title Windows App Timer and an inclined line connected to a sphere at the bottom.]

Figure 22.2

Summary

Chapter 21 describes how to parallelize applications using tasks. This chapter covered the issues you can have using multiple tasks, such as race conditions and deadlocks.

You’ve seen several synchronization objects that are available with .NET, and with which scenario what synchronization object has its advantage. An easy synchronization can be done using the lock keyword. Behind the scenes, it’s the Monitor type that allows setting timeouts, which is not possible with the lock keyword. For synchronization between processes, the Mutex object offers similar functionality. With the Semaphore object you’ve seen a synchronization object with a count—a number of tasks are allowed to run concurrently. To inform others on information that is ready, different kinds of event objects have been discussed, such as the AutoResetEvent, ManualResetEvent, and CountdownEvent. A simple way to have multiple readers and one writer is offered by the ReaderWriterLock. The Barrier type offers a more complex scenario where multiple tasks can run concurrently until a synchronization point is reached. As soon as all tasks reach this point, all can continue concurrently to meet at the next synchronization point.

Here are some final guidelines regarding threading:

	Try to keep synchronization requirements to a minimum. Synchronization is complex and blocks threads. You can avoid it if you try to avoid sharing state. Of course, this is not always possible.

	Static members of a class should be thread-safe. Usually, this is the case with classes in the .NET Framework.

	Instance state does not need to be thread-safe. For best performance, synchronization is best used outside the class where it is needed, and not with every member of the class. Instance members of .NET Framework classes usually are not thread-safe. In the MSDN library, you can find this information documented for every class of the .NET Framework in the “Thread Safety” section.

The next chapter gives information on another core .NET topic: files and streams.

23
Files and Streams

What’s In This Chapter?

	Exploring the directory structure

	Moving, copying, and deleting files and folders

	Reading and writing text in files

	Using streams to read and write files

	Using readers and writers to read and write files

	Compressing files

	Monitor file changes

	Communication using pipes

	Using Windows Runtime streams

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	DriveInformation

	WorkingWithFilesAndFolders

	WPFEditor

	StreamSamples

	ReaderWriterSamples

	CompressFileSample

	FileMonitor

	MemoryMappedFiles

	NamedPipes

	AnonymousPipes

	WindowsAppEditor

Introduction

When you’re reading and writing to files and directories you can use simple APIs, or you can use advanced ones that offer more features. You also have to differentiate between .NET classes and functionality offered from the Windows Runtime. From Universal Windows Platform (UWP) Windows apps, you don’t have access to the file system in any directory; you have access only to specific directories. Alternatively, you can let the user pick files. This chapter covers all these options. You’ll read and write files by using a simple API and get into more features by using streams. You’ll use both .NET types and types from the Windows Runtime, and you’ll mix both of these technologies to take advantage of .NET features with the Windows Runtime.

As you use streams, you also learn about compressing data and sharing data between different tasks using memory mapped files and pipes.

Managing the File System

The classes used to browse around the file system and perform operations such as moving, copying, and deleting files are shown in Figure 23.1.

[image: Block diagram shows classes such as directory, file, and path on bottom level, directoryinfo and fileinfo on middle level, and filesysteminfo and driveinfo on top level.]

Figure 23.1

The following list explains the function of these classes:

	FileSystemInfo—The base class that represents any file system object

	FileInfo and File—These classes represent a file on the file system.

	DirectoryInfo and Directory—These classes represent a folder on the file system.

	Path—This class contains static members that you can use to manipulate pathnames.

	DriveInfo—This class provides properties and methods that provide information about a selected drive.

NOTE In Windows, the objects that contain files and that are used to organize the file system are termed folders. For example, in the path C:\My Documents\ReadMe .txt, ReadMe.txt is a file and My Documents is a folder. “Folder” is a very Windows-specific term. On virtually every other operating system, the term “directory” is used in place of “folder,” and in accordance with Microsoft’s goal to design .NET as a platform-independent technology, the corresponding .NET base classes are called Directory and DirectoryInfo. However, due to the potential for confusion with LDAP directories and because this is a Windows book, I’m sticking to the term “folder” in this discussion.

Notice in the previous list that two classes are used to work with folders and two classes are for working with files. Which one of these classes you use depends largely on how many operations you need to access that folder or file:

	Directory and File contain only static methods and are never instantiated. You use these classes by supplying the path to the appropriate file system object whenever you call a member method. If you want to do only one operation on a folder or file, using these classes is more efficient because it saves the overhead of creating a .NET object.

	DirectoryInfo and FileInfo implement roughly the same public methods as Directory and File, as well as some public properties and constructors, but they are stateful and the members of these classes are not static. You need to instantiate these classes before each instance is associated with a particular folder or file. This means that these classes are more efficient if you are performing multiple operations using the same object. That’s because they read in the authentication and other information for the appropriate file system object on construction, and then they do not need to read that information again, no matter how many methods and so on you call against each object (class instance). In comparison, the corresponding stateless classes need to check the details of the file or folder again with every method you call.

Checking Drive Information

Before working with files and folders, let’s check the drives of the system. You use the DriveInfo class, which can perform a scan of a system to provide a list of available drives and then dig in deeper to provide a large amount of detail about any of the drives.

To demonstrate using the DriveInfo class, the following example creates a simple Console application that lists information of all the available drives on a computer.

The sample code for DriveInformation makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.IO.FileSystem.DriveInfo

Namespaces

	System.IO

	static System.Console

The following code snippet invokes the static method DriveInfo.GetDrives. This method returns an array of DriveInfo objects. With this array, every drive that is ready is accessed to write information about the drive name, type, and format, and it also shows size information (code file DriveInformation/Program.cs):

DriveInfo[] drives = DriveInfo.GetDrives();
foreach (DriveInfo drive in drives)
{
 if (drive.IsReady)
 {
 WriteLine($"Drive name: {drive.Name}");
 WriteLine($"Format: {drive.DriveFormat}");
 WriteLine($"Type: {drive.DriveType}");
 WriteLine($"Root directory: {drive.RootDirectory}");
 WriteLine($"Volume label: {drive.VolumeLabel}");
 WriteLine($"Free space: {drive.TotalFreeSpace}");
 WriteLine($"Available space: {drive.AvailableFreeSpace}");
 WriteLine($"Total size: {drive.TotalSize}");
 WriteLine();
 }
}

When I run this program on my system, which doesn’t have a DVD drive but has a solid-state disk (SSD) and a memory card, I see this information:

Drive name: C:\
Format: NTFS
Type: Fixed
Root directory: C:\
Volume label: Windows
Free space: 225183154176
Available space: 225183154176
Total size: 505462910976

Drive name: D:\
Format: exFAT
Type: Removable
Root directory: D:\
Volume label:
Free space: 19628294144
Available space: 19628294144
Total size: 127831375872

Working with the Path Class

For accessing files and directories, the names of the files and directories need to be defined—including parent folders. When you combine multiple folders and files using string concatenation operators, you can easily miss a separator character or use one too many characters. The Path class can help with this because this class adds missing separator characters, and it also deals with different platform requirements on Windows- and Unix-based systems.

The Path class exposes some static methods that make operations on pathnames easier. For example, suppose that you want to display the full pathname for a file, ReadMe.txt, in the folder D:\Projects. You could find the path to the file using the following code:

WriteLine(Path.Combine(@"D:\Projects","ReadMe.txt"));

Path.Combine is the method of this class that you are likely to use most often, but Path also implements other methods that supply information about the path or the required format for it.

With the public fields VolumeSeparatorChar, DirectorySeparatorChar, AltDirectorySeparatorChar, and PathSeparator you can get the platform-specific character that is used to separate drives, folders, and files, and the separator of multiple paths. With Windows, these characters are :, \, /, and ;.

The Path class also helps with accessing the user-specific temp folder (GetTempPath) and creating temporary (GetTempFileName) and random filenames (GetRandomFileName). Pay attention that the method GetTempFileName includes the folder, whereas GetRandomFileName just returns the filename without any folder.

The sample code for WorkingWithFilesAndFolders makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	

	

	System.IO.FileSystem

Namespaces

	System

	System.Collections.Generic

	System.IO

	static System.Console

This sample application offers several command line arguments to start the different functionality of the program. Just start the program without command lines or check the source code to see all the different options.

The Environment class defines a list of special folders for accessing special folders with .NET 4.6. The following code snippet returns the documents folder by passing the enumeration value SpecialFolder .MyDocuments to the GetFolderPath method. This feature of the Environment class is not available with .NET Core; thus in the following code the values of the environment variables HOMEDRIVE and HOMEPATH are used (code file WorkingWithFilesAndFolders/Program.cs):

private static string GetDocumentsFolder()
{
#if NET46 return Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments); #else string drive = Environment.GetEnvironmentVariable("HOMEDRIVE"); string path = Environment.GetEnvironmentVariable("HOMEPATH"); return Path.Combine(drive, path,"documents"); #endif

}

Environment.SpecialFolder is a huge enumeration that gives values for music, pictures, program files, app data, and many other folders.

Creating Files and Folders

Now let’s get into using the File, FileInfo, Directory, and DirectoryInfo classes. First, the method CreateAFile creates the file Sample1.txt and adds the string Hello, World! to the file. An easy way to create a text file is to invoke the method WriteAllText of the File class. This method takes a filename and the string that should be written to the file. Everything is done with a single call (code file WorkingWithFilesAndFolders/Program.cs):

const string Sample1FileName ="Sample1.txt";
// etc.

public static void CreateAFile()
{
 string fileName = Path.Combine(GetDocumentsFolder(), Sample1FileName);
 File.WriteAllText(fileName,"Hello, World!");
}

To copy a file, you can use either the Copy method of the File class or the CopyTo method of the FileInfo class:

var file = new FileInfo(@".\ReadMe.txt");
file.CopyTo(@"C:\Copies\ReadMe.txt");

File.Copy(@".\ReadMe.txt", @"C:\Copies\ReadMe.txt");

The first code snippet using FileInfo takes slightly longer to execute because of the need to instantiate an object named file, but it leaves file ready for you to perform further actions on the same file. When you use the second example, there is no need to instantiate an object to copy the file.

You can instantiate a FileInfo or DirectoryInfo class by passing to the constructor a string containing the path to the corresponding file system object. You have just seen the process for a file. For a folder, the code looks similar:

var myFolder = new DirectoryInfo(@"C:\Program Files");

If the path represents an object that does not exist, an exception is not thrown at construction; instead it’s thrown the first time you call a method that actually requires the corresponding file system object to be there. You can find out whether the object exists and is of the appropriate type by checking the Exists property, which is implemented by both of these classes:

var test = new FileInfo(@"C:\Windows");
WriteLine(test.Exists);

Note that for this property to return true, the corresponding file system object must be of the appropriate type. In other words, if you instantiate a FileInfo object by supplying the path of a folder, or you instantiate a DirectoryInfo object by giving it the path of a file, Exists has the value false. Most of the properties and methods of these objects return a value if possible—they won’t necessarily throw an exception just because the wrong type of object has been called, unless they are asked to do something that is impossible. For example, the preceding code snippet might first display false (because C:\Windows is a folder), but it still displays the time the folder was created because a folder has that information. However, if you tried to open the folder as if it were a file, using the FileInfo.Open method, you’d get an exception.

You move and delete files or folders using the MoveTo and Delete methods of the FileInfo and DirectoryInfo classes. The equivalent methods on the File and Directory classes are Move and Delete. The FileInfo and File classes also implement the methods CopyTo and Copy, respectively. However, no methods exist to copy complete folders—you need to do that by copying each file in the folder.

Using all of these methods is quite intuitive. You can find detailed descriptions in the MSDN documentation.

Accessing and Modifying File Properties

Let’s get some information about files. You can use both the File and FileInfo classes to access file information. The File class defines static method, whereas the FileInfo class offers instance methods. The following code snippet shows how to use FileInfo to retrieve multiple information. If you instead used the File class, the access would be slower because every access would mean a check to determine whether the user is allowed to get this information. With the FileInfo class, the check happens only when calling the constructor.

The sample code creates a new FileInfo object and writes the result of the properties Name, DirectoryName, IsReadOnly, Extension, Length, CreationTime, LastAccessTime, and Attributes to the console (code file WorkingWithFilesAndFolders/Program.cs):

private static void FileInformation(string fileName)
{
 var file = new FileInfo(fileName);
 WriteLine($"Name: {file.Name}");
 WriteLine($"Directory: {file.DirectoryName}");
 WriteLine($"Read only: {file.IsReadOnly}");
 WriteLine($"Extension: {file.Extension}");
 WriteLine($"Length: {file.Length}");
 WriteLine($"Creation time: {file.CreationTime:F}");
 WriteLine($"Access time: {file.LastAccessTime:F}");
 WriteLine($"File attributes: {file.Attributes}");
}

Passing the Program.cs filename of the current directory to this method,

FileInformation("./Program.cs");

results in this output (on my machine):

Name: Program.cs
Directory: C:\Users\Christian\Source\Repos\ProfessionalCSharp6\FilesAndStreams\F
ilesAndStreamsSamples\WorkingWithFilesAndFolders
Read only: False
Extension: .cs
Length: 7888
Creation time: Friday, September 25, 2015 5:22:11 PM
Access time: Sunday, December 20, 2015 8:59:23 AM
File attributes: Archive

A few of the properties of the FileInfo class cannot be set; they only define get accessors. It’s not possible to retrieve the filename, the file extension, and the length of the file. The creation time and last access time can be set. The method ChangeFileProperties writes the creation time of a file to the console and later changes the creation time to a date in the year 2023.

private static void ChangeFileProperties()
{
 string fileName = Path.Combine(GetDocumentsFolder(), Sample1FileName);
 var file = new FileInfo(fileName);
 if (!file.Exists)
 {
 WriteLine($"Create the file {Sample1FileName} before calling this method");
 WriteLine("You can do this by invoking this program with the -c argument");
 return;
 }
 WriteLine($"creation time: {file.CreationTime:F}");
 file.CreationTime = new DateTime(2023, 12, 24, 15, 0, 0);
 WriteLine($"creation time: {file.CreationTime:F}");
}
}

Running the program shows the initial creation time of the file as well as the creation time after it has been changed. Creating files in the future (at least specifying the creation time) is possible with this technique.

creation time: Sunday, December 20, 2015 9:41:49 AM
creation time: Sunday, December 24, 2023 3:00:00 PM

NOTE Being able to manually modify these properties might seem strange at first, but it can be quite useful. For example, if you have a program that effectively modifies a file by simply reading it in, deleting it, and creating a new file with the new contents, you would probably want to modify the creation date to match the original creation date of the old file.

Creating a Simple Editor

To show how simple it is to read and write files, you can create a simple Windows desktop application using WPF. The application, named WPFEditor, allows opening a file and saving it again.

NOTE Later in this chapter, you create a similar editor using the Windows Universal Platform.

The user interface is defined with XAML and uses MenuItem controls for Open and Save commands and a TextBox that allows multiline input by setting the AcceptsReturn property (code file WPFEditor/MainWindow.xaml):

<Window.CommandBindings>
 <CommandBinding Command="Open" Executed="OnOpen" />
 <CommandBinding Command="Save" Executed="OnSave" />
</Window.CommandBindings>
<DockPanel>
 <Menu DockPanel.Dock="Top">
 <MenuItem Header="File">
 <MenuItem Header="Open" Command="Open" />
 <MenuItem Header="Save As" Command="Save" />
 </MenuItem>
 </Menu>
 <TextBox x:Name="text1" AcceptsReturn="True" AcceptsTab="True" />
</DockPanel>

The OnOpen method opens a dialog in which the user can select the file to open. You can configure the dialog by setting properties of OpenFileDialog, such as the following:

	Should it check if the path and file exist?

	What filter defines what type of files to open?

	What is the initial directory?

If the user opens a file (and does not cancel the dialog), the ShowDialog method returns true. Then the Text property of the TextBox control is filled with the result of the File.ReadAllText method. This method returns the complete content of a text file within a string (code file WPFEditor/MainWindow.xaml.cs):

private void OnOpen(object sender, ExecutedRoutedEventArgs e)
{
 var dlg = new OpenFileDialog()
 {
 Title ="Simple Editor - Open File",
 CheckPathExists = true,
 CheckFileExists = true,
 Filter ="Text files (*.txt)|*.txt|All files|*.*",
 InitialDirectory = Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments)
 };
 if (dlg.ShowDialog() == true)
 {
 text1.Text = File.ReadAllText(dlg.FileName);
 }
}

The dialog from the running application is shown in Figure 23.2. As configured, the documents folder is opened, and the value of the Filter property is shown in the combo box in the lower right corner.

[image: Screenshot shows title Simple Editor-Open File, onedrive and documents in address bar, available documents temp file folder and a sample text document, and textfield for file name at bottom.]

Figure 23.2

To save the file, the SaveFileDialog is shown. You can write a text file from a string with File.WriteAllText as shown here:

private void OnSave(object sender, ExecutedRoutedEventArgs e)
{
 var dlg = new SaveFileDialog()
 {
 Title ="Simple Editor - Save As",
 DefaultExt ="txt",
 Filter ="Text files (*.txt)|*.txt|All files|*.*",
 };
 if (dlg.ShowDialog() == true)
 {
 File.WriteAllText(dlg.FileName, text1.Text);
 }
}

Reading and writing files to a string works well for small text files. However, there are limits to reading and saving complete files this way. A .NET string has a limit of 2GB, which is enough for a lot of text files, but it’s still not a good idea to let the user wait until a 1GB file is loaded into a string. There are other options, which you can read about later in the “Working with Streams” section.

Using File to Read and Write

With File.ReadAllText and File.WriteAllText you were introduced to a way to read and write a file using a string. Instead of using one string, you can use a string for every line in a file.

Instead of reading all lines to a single string, a string array is returned from the method File.ReadAllLines. With this method you can do a different handling based on every line, but still the complete file needs to be read into memory (code file WorkingWithFilesAndFolders/Program.cs):

public static void ReadingAFileLineByLine(string fileName)
{
 string[] lines = File.ReadAllLines(fileName);
 int i = 1;
 foreach (var line in lines)
 {
 WriteLine($"{i++}. {line}");
 }
 // etc.
}

To read line by line without needing to wait until all lines have been read, you can use the method File .ReadLines. This method returns IEnumerable<string>, where you can already start looping through the file before the complete file has been read:

public static void ReadingAFileLineByLine(string fileName)
{
 // etc.
 IEnumerable<string> lines = File.ReadLines(fileName);

 i = 1;
 foreach (var line in lines)
 {
 WriteLine($"{i++}. {line}");
 }
}

For writing a string collection, you can use the method File.WriteAllLines. This method accepts a filename and an IEnumerable<string> type as parameter:

public static void WriteAFile()
{
 string fileName = Path.Combine(GetDocumentsFolder(),"movies.txt");
 string[] movies =
 {
 "Snow White And The Seven Dwarfs",
 "Gone With The Wind",
 "Casablanca",
 "The Bridge On The River Kwai",
 "Some Like It Hot"
 };

 File.WriteAllLines(fileName, movies);
}

To append strings to an existing file, you use File.AppendAllLines:

string[] moreMovies =
{
 "Psycho",
 "Easy Rider",
 "Star Wars",
 "The Matrix"
};
File.AppendAllLines(fileName, moreMovies);

Enumerating Files

For working with multiple files, you can use the Directory class. Directory defines the method GetFiles that returns a string array of all files in the directory. The method GetDirectories returns a string array of all directories.

All of these methods define overloads that allow passing a search pattern and a value of the SearchOption enumeration. SearchOption enables you to walk through all subdirectories or to stay in the top-level directory by using the value AllDirectories or TopDirectoriesOnly. The search pattern doesn’t allow passing regular expressions as are discussed in Chapter 10, “Strings and Regular Expressions”; it passes only simple expressions using * for any characters and ? for single characters.

When you walk through a huge directory (or subdirectories), the methods GetFiles and GetDirectories need to have the complete result before the result is returned. An alternative is to use the methods EnumerateDirectories and EnumerateFiles. These methods offer the same parameters for the search pattern and options, but they immediately start returning a result with IEnumerable<string>.

Let’s get into an example: Within a directory and all its subdirectories, all files that end with Copy are deleted in case another file exists with the same name and size. You can simulate this easily by selecting all files in a folder by pressing Ctrl+A on the keyboard, entering Ctrl+C on the keyboard for copy, and entering Ctrl+V on the keyboard while the mouse is still in the same folder to paste. The new files have the Copy postfix applied.

The method DeleteDuplicateFiles iterates all files in the directory that is passed with the first argument, walking through all subdirectories using the option SearchOption.AllDirectories. Within the foreach statement, the current file in the iteration is compared to the file in the previous iteration. In cases where the filename is the same and only the Copy postfix is different, and if the size of the files is the same as well, the copied file is deleted by invoking FileInfo.Delete (code file WorkingWithFilesAndFolders/Program .cs):

private void DeleteDuplicateFiles(string directory, bool checkOnly)
{
 IEnumerable<string> fileNames = Directory.EnumerateFiles(directory,
 "*", SearchOption.AllDirectories);

 string previousFileName = string.Empty;

 foreach (string fileName in fileNames)
 {
 string previousName = Path.GetFileNameWithoutExtension(previousFileName);
 if (!string.IsNullOrEmpty(previousFileName) &&
 previousName.EndsWith("Copy") &&
 fileName.StartsWith(previousFileName.Substring(
 0, previousFileName.LastIndexOf(" - Copy"))))
 {
 var copiedFile = new FileInfo(previousFileName);
 var originalFile = new FileInfo(fileName);
 if (copiedFile.Length == originalFile.Length)
 {
 WriteLine($"delete {copiedFile.FullName}");
 if (!checkOnly)
 {
 copiedFile.Delete();
 }
 }
 }
 previousFileName = fileName;
 }
}

Working with Streams

Now let’s get into more powerful options that are available when you work with files: streams. The idea of a stream has been around for a very long time. A stream is an object used to transfer data. The data can be transferred in one of two directions:

	If the data is being transferred from some outside source into your program, it is called reading from the stream.

	If the data is being transferred from your program to some outside source, it is called writing to the stream.

Very often, the outside source will be a file, but that is not always the case. Other possibilities include the following:

	Reading or writing data on the network using some network protocol, where the intention is for this data to be picked up by or sent from another computer

	Reading from or writing to a named pipe

	Reading from or writing to an area of memory

Some streams allow only writing, some streams allow only reading, and some streams allow random access. Random access enables you to position a cursor randomly within a stream—for example, to start reading from the start of the stream to later move to the end of the stream, and continue with a position in the middle of the stream.

Of these examples, Microsoft has supplied a .NET class for writing to or reading from memory: the System.IO.MemoryStream object. The System.Net.Sockets.NetworkStream object handles network data. The Stream class does not make any assumptions of the nature of the data source. It can be file streams, memory streams, network streams, or any data source you can think of.

Some streams can also be chained. For example, the DeflateStream can be used to compress data. This stream in turn can write to the FileStream, MemoryStream, or NetworkStream. The CryptoStream enables you to encrypt data. It’s also possible to chain the DeflateStream to the CryptoStream to write in turn to the FileStream.

NOTE Chapter 24, “Security,” explains how you can use the CryptoStream.

Using streams, the outside source might even be a variable within your own code. This might sound paradoxical, but the technique of using streams to transmit data between variables can be a useful trick for converting data between data types. The C language used something similar—the sprintf function—to convert between integer data types and strings or to format strings.

The advantage of having a separate object for the transfer of data, rather than using the FileInfo or DirectoryInfo classes to do this, is that separating the concept of transferring data from the particular data source makes it easier to swap data sources. Stream objects themselves contain a lot of generic code that concerns the movement of data between outside sources and variables in your code. By keeping this code separate from any concept of a particular data source, you make it easier for this code to be reused in different circumstances.

Although it’s not that easy to directly read and write to streams, you can use readers and writers. This is another separation of concerns. Readers and writers can read and write to streams. For example, the StringReader and StringWriter classes are part of the same inheritance tree as two classes that you use later to read and write text files. The classes will almost certainly share a substantial amount of code behind the scenes. Figure 23.3 illustrates the hierarchy of stream-related classes in the System.IO namespace.

[image: Block diagram shows the classes related with the stream file such as filestream, memorystream, bufferedsteam, binaryreader, binarywriter, and textreader classes stringreader and streamwriter.]

Figure 23.3

As far as reading and writing files goes, the classes that concern us most are the following:

	FileStream—This class is intended for reading and writing binary data in a file.

	StreamReader and StreamWriter—These classes are designed specifically for reading from and writing to streams offering APIs for text formats.

	BinaryReader and BinaryWriter—These classes are designed for reading and writing to streams offering APIs for binary data.

The difference between using these classes and directly using the underlying stream objects is that a basic stream works in bytes. For example, suppose that as part of the process of saving some document you want to write the contents of a variable of type long to a binary file. Each long occupies 8 bytes, and if you use an ordinary binary stream you would have to explicitly write each of those 8 bytes of memory.

In C# code, you would have to perform some bitwise operations to extract each of those 8 bytes from the long value. Using a BinaryWriter instance, you can encapsulate the entire operation in an overload of the BinaryWriter.Write method, which takes a long as a parameter, and which places those 8 bytes into the stream (and if the stream is directed to a file, into the file). A corresponding BinaryReader.Read method extracts 8 bytes from the stream and recovers the value of the long.

Working with File Streams

Let’s get into programming streams reading and writing files. A FileStream instance is used to read or write data to or from a file. To construct a FileStream, you need four pieces of information:

	The file you want to access.

	The mode, which indicates how you want to open the file. For example, are you intending to create a new file or open an existing file? If you are opening an existing file, should any write operations be interpreted as overwriting the contents of the file or appending to the file?

	The access, which indicates how you want to access the file. For example, do you want to read from or write to the file or do both?

	The share access, which specifies whether you want exclusive access to the file. Alternatively, are you willing to have other streams access the file simultaneously? If so, should other streams have access to read the file, to write to it, or to do both?

The first piece of information is usually represented by a string that contains the full pathname of the file, and this chapter considers only those constructors that require a string here. Besides those, however, some additional constructors take a native Windows handle to a file instead. The remaining three pieces of information are represented by three .NET enumerations called FileMode, FileAccess, and FileShare. The values of these enumerations are listed in the following table and are self-explanatory:

	Enumeration
	Values

	FileMode
	Append, Create, CreateNew, Open, OpenOrCreate, or Truncate

	FileAccess
	Read, ReadWrite, or Write

	FileShare
	Delete, Inheritable, None, Read, ReadWrite, or Write

Note that in the case of FileMode, exceptions can be thrown if you request a mode that is inconsistent with the existing status of the file. Append, Open, and Truncate throw an exception if the file does not already exist, and CreateNew throws an exception if it does. Create and OpenOrCreate cope with either scenario, but Create deletes any existing file to replace it with a new, initially empty, one. The FileAccess and FileShare enumerations are bitwise flags, so values can be combined with the C# bitwise OR operator, |.

Creating a FileStream

The sample code for StreamSamples makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.IO.FileSystem

	

	

	

	

	

Namespaces

	System

	System.Collections.Generic

	System.Globalization

	System.IO

	System.Linq

	System.Text

	System.Threading.Tasks

	static System.Console

There are a large number of constructors for the FileStream. The following sample uses one with four parameters (code file StreamSamples/Program.cs):

	The filename

	The FileMode enumeration with the Open value to open an existing file

	The FileAccess enumeration with the Read value to read the file

	The FileShare enumeration with a Read value to allow other programs to read but not change the file at the same time

private void ReadFileUsingFileStream(string fileName)
{
 const int bufferSize = 4096;
 using (var stream = new FileStream(fileName, FileMode.Open,
 FileAccess.Read, FileShare.Read))
 {
 ShowStreamInformation(stream);
 Encoding encoding = GetEncoding(stream);
 //...

Instead of using the constructor of the FileStream class to create a FileStream object, you can create a FileStream directly using the File class with the OpenRead method. The OpenRead method opens a file (similar to FileMode.Open), returns a stream that can be read (FileAccess.Read), and also allows other processes read access (FileShare.Read):

using (FileStream stream = File.OpenRead(filename))
{
 //...

Getting Stream Information

The Stream class defines the properties CanRead, CanWrite, CanSeek, and CanTimeout that you can read to get information about what can be done with a stream. For reading and writing streams, the timeout values ReadTimeout and WriteTimeout specify timeouts in milliseconds. Setting these values can be important in networking scenarios to make sure the user does not have to wait too long when reading or writing the stream fails. The Position property returns the current position of the cursor in the stream. Every time some data is read from the stream, the position moves to the next byte that will be read. The sample code writes information about the stream to the console (code file StreamSamples/Program.cs):

private void ShowStreamInformation(Stream stream)
{
 WriteLine($"stream can read: {stream.CanRead}," +
 $"can write: {stream.CanWrite}, can seek: {stream.CanSeek}," +
 $"can timeout: {stream.CanTimeout}");
 WriteLine($"length: {stream.Length}, position: {stream.Position}");
 if (stream.CanTimeout)
 {
 WriteLine($"read timeout: {stream.ReadTimeout}" +
 $"write timeout: {stream.WriteTimeout}");
 }
}

When you run the program with the file stream that has been opened, you get the following output. The position is currently 0 as read has not yet happened:

stream can read: True, can write: False, can seek: True, can timeout: False
length: 1113, position: 0

Analyzing Text File Encodings

With text files, the next step is to read the first bytes of the stream—the preamble. The preamble gives information about how the file is encoded (the text format used). This is also known as byte order mark (BOM).

You can read a stream by using ReadByte that reads just a byte from the stream, or the Read method that fills a byte array. With the GetEncoding sample method, an array of 5 bytes is created, and the byte array is filled from the Read method. The second and third parameters specify the offset within the byte array and the count of the number of bytes that are available to fill. The Read method returns the number of bytes read; the stream might be smaller than the buffer. In case no more characters are available to read, the Read method returns 0.

The sample code analyzes the first characters of the stream to return the detected encoding and positions the stream after the encoding characters (code file StreamSamples/Program.cs):

private Encoding GetEncoding(Stream stream)
{
 if (!stream.CanSeek) throw new ArgumentException(
 "require a stream that can seek");

 Encoding encoding = Encoding.ASCII;

 byte[] bom = new byte[5];
 int nRead = stream.Read(bom, offset: 0, count: 5);
 if (bom[0] == 0xff && bom[1] == 0xfe && bom[2] == 0 && bom[3] == 0)
 {
 WriteLine("UTF-32");
 stream.Seek(4, SeekOrigin.Begin);
 return Encoding.UTF32;
 }
 else if (bom[0] == 0xff && bom[1] == 0xfe)
 {
 WriteLine("UTF-16, little endian");
 stream.Seek(2, SeekOrigin.Begin);
 return Encoding.Unicode;
 }
 else if (bom[0] == 0xfe && bom[1] == 0xff)
 {
 WriteLine("UTF-16, big endian");
 stream.Seek(2, SeekOrigin.Begin);
 return Encoding.BigEndianUnicode;
 }
 else if (bom[0] == 0xef && bom[1] == 0xbb && bom[2] == 0xbf)
 {
 WriteLine("UTF-8");
 stream.Seek(3, SeekOrigin.Begin);
 return Encoding.UTF8;
 }
 stream.Seek(0, SeekOrigin.Begin);
 return encoding;
}

The start of a file can begin with the characters FF and FE. The order of these bytes gives information about how the document is stored. Two-byte Unicode can be stored in little or big endian. With FF followed by FE, it’s little endian, and when FE is followed by FF, it’s big endian. This endianness goes back to mainframes by IBM that used big endian for byte ordering, and PDP11 systems from Digital Equipment that used little endian. Communicating across the network with computers that have different endianness requires changing the order of bytes on one side. Nowadays, the Intel CPU architecture uses little endian, and the ARM architecture allows switching between little and big endian.

What’s the other difference between these encodings? With ASCII, 7 bits are enough for every character. Originally based on the English alphabet, ASCII offers lowercase, uppercase, and control characters. Extended ASCII makes use of the 8th bit to allow switching to language-specific characters. Switching is not easy as it requires paying attention to the code map and also does not provide enough characters for some Asian languages. UTF-16 (Unicode Text Format) solves this by having 16 bits for every character. Because UTF-16 is still not enough for historical glyphs, UTF-32 uses 32 bit for every character. Although Windows NT 3.1 switched to UTF-16 for the default text encoding (from a Microsoft extension of ASCII before), nowadays the most-used text format is UTF-8. With the web, UTF-8 turned out to be the most-used text format since 2007 (this superseded ASCII, which had been the most common character encoding before). UTF-8 uses a variable length for character definitions. One character is defined by using between 1 and 6 bytes. UTF-8 is detected by this character sequence at the beginning of a file: 0xEF, 0xBB, 0xBF.

Reading Streams

After opening the file and creating the stream, the file is read using the Read method. This is repeated until the method returns 0. A string is created using the Encoder created from the GetEncoding method defined earlier. Do not forget to close the stream using the Dispose method. If possible, use the using statement—as is done with this code sample—to dispose the stream automatically (code file StreamSamples/Program.cs):

public static void ReadFileUsingFileStream(string fileName)
{
 const int BUFFERSIZE = 256;
 using (var stream = new FileStream(fileName, FileMode.Open,
 FileAccess.Read, FileShare.Read))
 {
 ShowStreamInformation(stream);
 Encoding encoding = GetEncoding(stream);

 byte[] buffer = new byte[bufferSize];

 bool completed = false;
 do
 {
 int nread = stream.Read(buffer, 0, BUFFERSIZE);
 if (nread == 0) completed = true;
 if (nread < BUFFERSIZE)
 {
 Array.Clear(buffer, nread, BUFFERSIZE - nread);
 }

 string s = encoding.GetString(buffer, 0, nread);
 WriteLine($"read {nread} bytes");
 WriteLine(s);
 } while (!completed);
 }
}

Writing Streams

How streams can be written is demonstrated by writing a simple string to a text file. To create a stream that can be written to, the File.OpenWrite method can be used. This time a temporary filename is created with the help of Path.GetTempFileName. The default file extension defined by the GetTempFileName is changed to txt with Path.ChangeExtension (code file StreamSamples/Program.cs):

public static void WriteTextFile()
{
 string tempTextFileName = Path.ChangeExtension(Path.GetTempFileName(),
 "txt");

 using (FileStream stream = File.OpenWrite(tempTextFileName))
 {
 //etc.

When you’re writing a UTF-8 file, the preamble needs to be written to the file. This can be done by sending the 3 bytes of the UTF-8 preamble to the stream with the WriteByte method:

 stream.WriteByte(0xef);
 stream.WriteByte(0xbb);
 stream.WriteByte(0xbf);

There’s an alternative for doing this. You don’t need to remember the bytes to specify the encoding. The Encoding class already has this information. The GetPreamble method returns a byte array with the preamble for the file. This byte array is written using the Write method of the Stream class:

 byte[] preamble = Encoding.UTF8.GetPreamble();
 stream.Write(preamble, 0, preamble.Length);

Now the content of the file can be written. As the Write method requires byte arrays to write, strings need to be converted. For converting a string to a byte array with UTF-8, Encoding.UTF8.GetBytes does the job before the byte array is written:

 string hello ="Hello, World!";
 byte[] buffer = Encoding.UTF8.GetBytes(hello);
 stream.Write(buffer, 0, buffer.Length);
 WriteLine($"file {stream.Name} written");
 }
}

You can open the temporary file using an editor such as Notepad, and it will use the correct encoding.

Copying Streams

Now let’s combine reading and writing from streams by copying the file content. With the next code snippet, the readable stream is opened with File.OpenRead, and the writeable stream is opened with File .OpenWrite. A buffer is read using the Stream.Read method and written with Stream.Write (code file StreamSamples/Program.cs):

public static void CopyUsingStreams(string inputFile, string outputFile)
{
 const int BUFFERSIZE = 4096;
 using (var inputStream = File.OpenRead(inputFile))
 using (var outputStream = File.OpenWrite(outputFile))
 {
 byte[] buffer = new byte[BUFFERSIZE];
 bool completed = false;
 do
 {
 int nRead = inputStream.Read(buffer, 0, BUFFERSIZE);
 if (nRead == 0) completed = true;
 outputStream.Write(buffer, 0, nRead);
 } while (!completed);
 }
}

To copy a stream, it’s not necessary to write the code to read and write a stream. Instead, you can use the CopyTo method of the Stream class, as shown here (code file StreamSamples/Program.cs):

public static void CopyUsingStreams2(string inputFile, string outputFile)
{
 using (var inputStream = File.OpenRead(inputFile))
 using (var outputStream = File.OpenWrite(outputFile))
 {
 inputStream.CopyTo(outputStream);
 }
}

Using Random Access to Streams

Random access to streams provides an advantage in that—even with large files—you can access a specific position within the file in a fast way.

To see random access in action, the following code snippet creates a large file. This code snippet creates the file sampledata.data with records that are all the same length and contain a number, a text, and a random date. The number of records that is passed to the method is created with the help of the Enumerable.Range method. The Select method creates an anonymous type that contains Number, Text, and Date properties. Out of these records, a string with # pre- and postfix is created, with a fixed length for every value and a ; separator between each value. The WriteAsync method writes the record to the stream (code file StreamSamples/Program.cs):

const string SampleFilePath ="./samplefile.data";

public static async Task CreateSampleFile(int nRecords)
{
 FileStream stream = File.Create(SampleFilePath);
 using (var writer = new StreamWriter(stream))
 {
 var r = new Random();

 var records = Enumerable.Range(0, nRecords).Select(x => new
 {
 Number = x,
 Text = $"Sample text {r.Next(200)}",
 Date = new DateTime(Math.Abs((long)((r.NextDouble() * 2 - 1) *
 DateTime.MaxValue.Ticks)))
 });

 foreach (var rec in records)
 {
 string date = rec.Date.ToString("d", CultureInfo.InvariantCulture);
 string s =
 $"#{rec.Number,8};{rec.Text,-20};{date}#{Environment.NewLine}";
 await writer.WriteAsync(s);
 }
 }
}

NOTE Chapter 5, “Managed and Unmanaged Resources,” explains that every object implementing IDisposable should be disposed. In the previous code snippet, it looks like FileStream is not disposed. However, that’s not the case. The StreamWriter takes control over the used resource and disposes the stream when the StreamWriter is disposed. To keep the stream opened for a longer period than the StreamWriter, you can configure this with the constructor of the StreamWriter. In that case, you need to dispose the stream explicitly.

Now let’s position a cursor randomly within the stream to read different records. The user is asked to enter a record number that should be accessed. The byte in the stream that should be accessed is based on the record number and the record size. The Seek method of the Stream class now enables you to position the cursor within the stream. The second argument specifies whether the position is based on the beginning of the stream, the end of the stream, or the current position (code file StreamSamples/Program.cs):

public static void RandomAccessSample()
{
 try
 {
 using (FileStream stream = File.OpenRead(SampleFilePath))
 {
 byte[] buffer = new byte[RECORDSIZE];
 do
 {
 try
 {
 Write("record number (or 'bye' to end):");
 string line = ReadLine();
 if (line.ToUpper().CompareTo("BYE") == 0) break;

 int record;
 if (int.TryParse(line, out record))
 {
 stream.Seek((record - 1) * RECORDSIZE, SeekOrigin.Begin);
 stream.Read(buffer, 0, RECORDSIZE);
 string s = Encoding.UTF8.GetString(buffer);
 WriteLine($"record: {s}");
 }
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
 } while (true);
 WriteLine("finished");
 }
 }
 catch (FileNotFoundException)
 {
 WriteLine("Create the sample file using the option -sample first");
 }
}

With this you can experiment with creating a file with 1.5 million records or more. A file this size is slow when you open it using Notepad, but it is extremely fast when you use random access. Depending on your system and the CPU and disk type, you might use higher or lower values for the tests.

NOTE In case the records that should be accessed are not fixed size, it still can be useful to use random access for large files. One way to deal with this is to write the position of the records to the beginning of the file. Another option is to read a larger block where the record could be and find the record identifier and the record limiters within the memory block.

Using Buffered Streams

For performance reasons, when you read or write to or from a file, the output is buffered. This means that if your program asks for the next 2 bytes of a file stream, and the stream passes the request on to Windows, then Windows will not connect to the file system and then locate and read the file off the disk just to get 2 bytes. Instead, Windows retrieves a large block of the file at one time and stores this block in an area of memory known as a buffer. Subsequent requests for data from the stream are satisfied from the buffer until the buffer runs out, at which point Windows grabs another block of data from the file.

Writing to files works in the same way. For files, this is done automatically by the operating system, but you might have to write a stream class to read from some other device that is not buffered. If so, you can create a BufferedStream, which implements a buffer itself, and pass the stream that should be buffered to the constructor. Note, however, that BufferedStream is not designed for the situation in which an application frequently alternates between reading and writing data.

Using Readers and Writers

Reading and writing text files using the FileStream class requires working with byte arrays and dealing with the encoding as described in the previous section. There’s an easier way to do this: using readers and writers. You can use the StreamReader and StreamWriter classes to read and write to the FileStream, and you have an easier job not dealing with byte arrays and encodings.

That’s because these classes work at a slightly higher level and are specifically geared to reading and writing text. The methods that they implement can automatically detect convenient points to stop reading text, based on the contents of the stream. In particular:

	These classes implement methods to read or write one line of text at a time: StreamReader .ReadLine and StreamWriter.WriteLine. In the case of reading, this means that the stream automatically determines where the next carriage return is and stops reading at that point. In the case of writing, it means that the stream automatically appends the carriage return–line feed combination to the text that it writes out.

	By using the StreamReader and StreamWriter classes, you don’t need to worry about the encoding used in the file.

The sample code for ReaderWriterSamples makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.IO.FileSystem

	

	

	

	

	

Namespaces

	System

	System.Collections.Generic

	System.Globalization

	System.IO

	System.Linq

	System.Text

	System.Threading.Tasks

	static System.Console

The StreamReader Class

Let’s start with the StreamReader by converting the previous example to read a file to use the StreamReader. It looks a lot easier now. The constructor of the StreamReader receives the FileStream. You can check for the end of the file by using the EndOfStream property, and you read lines using the ReadLine method (code file ReaderWriterSamples/Program.cs):

public static void ReadFileUsingReader(string fileName)
{
 var stream = new FileStream(fileName, FileMode.Open, FileAccess.Read,
 FileShare.Read);
 using (var reader = new StreamReader(stream))
 {
 while (!reader.EndOfStream)
 {
 string line = reader.ReadLine();
 WriteLine(line);
 }
 }
}

It’s no longer necessary to deal with byte arrays and the encoding. However, pay attention; the StreamReader by default uses the UTF-8 encoding. You can let the StreamReader use the encoding as it is defined by the preamble in the file by specifying a different constructor:

var reader = new StreamReader(stream, detectEncodingFromByteOrderMarks: true);

You can also explicitly specify the encoding:

var reader = new StreamReader(stream, Encoding.Unicode);

Other constructors enable you to set the buffer to be used; the default is 1024 bytes. Also, you can specify that the underlying stream should not be closed on closing the reader. By default, when the reader is closed (using the Dispose method), the underlying stream is closed as well.

Instead of explicitly instantiating a new StreamReader, you can create a StreamReader by using the OpenText method of the File class:

var reader = File.OpenText(fileName);

With the code snippet to read the file, the file was read line by line using the ReadLine method. The StreamReader also allows reading the complete file from the position of the cursor in the stream using ReadToEnd:

string content = reader.ReadToEnd();

The StreamReader also allows the content to read to a char array. This is similar to the Read method of the Stream class; it doesn’t read to a byte array but instead to a char array. Remember, the char type uses two bytes. This is perfect for 16-bit Unicode, but is not as useful with UTF-8 where a single character can be between one and six bytes long:

int nChars = 100;
char[] charArray = new char[nChars];
int nCharsRead = reader.Read(charArray, 0, nChars);

The StreamWriter Class

The StreamWriter works in the same way as the StreamReader, except that you use StreamWriter only to write to a file (or to another stream). The following code snippet shows creating a StreamWriter passing a FileStream. Then a passed string array is written to the stream (code file ReaderWriterSamples/Program.cs):

public static void WriteFileUsingWriter(string fileName, string[] lines)
{
 var outputStream = File.OpenWrite(fileName);
 using (var writer = new StreamWriter(outputStream))
 {
 byte[] preamble = Encoding.UTF8.GetPreamble();
 outputStream.Write(preamble, 0, preamble.Length);
 writer.Write(lines);
 }
}

Remember that the StreamWriter is using the UTF-8 format by default to write the text content. You can define alternative contents by setting an Encoding object in the constructor. Also, similarly to the constructor of the StreamReader, the StreamWriter allows specifying the buffer size and whether the underlying stream should not be closed on closing of the writer.

The Write method of the StreamWriter defines 17 overloads that allow passing strings and several .NET data types. Using the methods passing the .NET data types, remember that all these are changed to strings with the specified encoding. To write the data types in binary format, you can use the BinaryWriter that’s shown next.

Reading and Writing Binary Files

To read and write binary files, one option is to directly use the stream types; in this case, it’s good to use byte arrays for reading and writing. Another option is to use readers and writers defined for this scenario: BinaryReader and BinaryWriter. You use them similarly to the way you use StreamReader and StreamWriter except BinaryReader and BinaryWriter don’t use any encoding. Files are written in binary format rather than text format.

Unlike the Stream type, BinaryWriter defines 18 overloads for the Write method. The overloads accept different types, as shown in the following code snippet that writes a double, an int, a long, and a string (code file ReaderWriterSamples/Program.cs):

public static void WriteFileUsingBinaryWriter(string binFile)
{
 var outputStream = File.Create(binFile);
 using (var writer = new BinaryWriter(outputStream))
 {
 double d = 47.47;
 int i = 42;
 long l = 987654321;
 string s ="sample";
 writer.Write(d);
 writer.Write(i);
 writer.Write(l);
 writer.Write(s);
 }
}

After writing the file, you can open it using the Binary Editor from Visual Studio, as shown in Figure 23.4.

[image: Screenshot shows title FilesAndStreamSamples and two lines of binary data in file tmpFAF0.bin.]

Figure 23.4

To read the file again, you can use a BinaryReader. This class defines methods to read all the different types, such as ReadDouble, ReadInt32, ReadInt64, and ReadString, which are shown here:

public static void ReadFileUsingBinaryReader(string binFile)
{
 var inputStream = File.Open(binFile, FileMode.Open);
 using (var reader = new BinaryReader(inputStream))
 {
 double d = reader.ReadDouble();
 int i = reader.ReadInt32();
 long l = reader.ReadInt64();
 string s = reader.ReadString();
 WriteLine($"d: {d}, i: {i}, l: {l}, s: {s}");
 }
}

The order for reading the file must match exactly the order in which it has been written. Creating your own binary format, you need to know what and how it is stored, and read accordingly. The older Microsoft Word document was using a binary file format, whereas the newer docx file extension is a ZIP file. How ZIP files can be read and written is explained in the next section.

Compressing Files

.NET includes types to compress and decompress streams using different algorithms. You can use DeflateStream and GZipStream to compress and decompress streams; the ZipArchive class enables you to create and read ZIP files.

Both DeflateStream and GZipStream use the same algorithm for compression (in fact, GZipStream uses DeflateStream behind the scenes), but GZipStream adds a cyclic redundancy check to detect data corruption. You can open a ZipArchive directly with Windows Explorer, but you can’t open a file compressed with GZipStream. Third-party gzip tools can open files compressed with GZipStream.

NOTE The algorithm used by DeflateStream and GZipStream is the deflate algorithm. This algorithm is defined by RFC 1951 (https://tools.ietf.org/html/rfc1951). This algorithm is widely thought to be not covered by patents, which is why it is in widespread use.

The sample code for CompressFileSample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.IO.Compression

	System.IO.Compression.ZipFile

Namespaces

	System.Collections.Generic

	System.IO

	System.IO.Compression

	static System.Console

Using the Deflate Stream

As explained earlier, a feature from streams is that you can chain them. To compress a stream, all that’s needed is to create DeflateStream and pass another stream (in this example, the outputStream to write a file) to the constructor, with the argument CompressionMode.Compress for compression. Writing to this stream either using the Write method or by using other features, such as the CopyTo method as shown in this code snippet, is all that’s needed for file compression (code file CompressFileSample/Program.cs):

public static void CompressFile(string fileName, string compressedFileName)
{
 using (FileStream inputStream = File.OpenRead(fileName))
 {
 FileStream outputStream = File.OpenWrite(compressedFileName);
 using (var compressStream =
 new DeflateStream(outputStream, CompressionMode.Compress))
 {
 inputStream.CopyTo(compressStream);
 }
 }
}

To decompress the deflate-compressed file again, the following code snippet opens the file using a FileStream and creates the DeflateStream object with CompressionMode.Decompress passing the file stream for decompression. The Stream.CopyTo method copies the decompressed stream to a MemoryStream. This code snippet then makes use of a StreamReader to read the data from the MemoryStream and write the output to the console. The StreamReader is configured to leave the assigned MemoryStream open (using the leaveOpen argument), so the MemoryStream could also be used after closing the reader:

public static void DecompressFile(string fileName)
{
 FileStream inputStream = File.OpenRead(fileName);
 using (MemoryStream outputStream = new MemoryStream())
 using (var compressStream = new DeflateStream(inputStream,
 CompressionMode.Decompress))
 {
 compressStream.CopyTo(outputStream);
 outputStream.Seek(0, SeekOrigin.Begin);
 using (var reader = new StreamReader(outputStream, Encoding.UTF8,
 detectEncodingFromByteOrderMarks: true, bufferSize: 4096,
 leaveOpen: true))
 {
 string result = reader.ReadToEnd();
 WriteLine(result);
 }
 // could use the outputStream after the StreamReader is closed
 }
}

Zipping Files

Today, the ZIP file format is the standard for many different file types. Word documents (docx) as well as NuGet packages are all stored as a ZIP file. With .NET, it’s easy to create a ZIP archive.

For creating a ZIP archive, you can create an object of ZipArchive. A ZipArchive contains multiple ZipArchiveEntry objects. The ZipArchive class is not a stream, but it uses a stream to read or write to (this is similar to the reader and writer classes discussed earlier). The following code snippet creates a ZipArchive that writes the compressed content to the file stream opened with File.OpenWrite. What’s added to the ZIP archive is defined by the directory passed. Directory.EnumerateFiles enumerates all the files in the directory and creates a ZipArchiveEntry object for every file. Invoking the Open method creates a Stream object. With the CopyTo method of the Stream that is read, the file is compressed and written to the ZipArchiveEntry (code file CompressFileSample/Program.cs):

public static void CreateZipFile(string directory, string zipFile)
{
 FileStream zipStream = File.OpenWrite(zipFile);
 using (var archive = new ZipArchive(zipStream, ZipArchiveMode.Create))
 {
 IEnumerable<string> files = Directory.EnumerateFiles(
 directory,"*", SearchOption.TopDirectoryOnly);
 foreach (var file in files)
 {
 ZipArchiveEntry entry = archive.CreateEntry(Path.GetFileName(file));
 using (FileStream inputStream = File.OpenRead(file))
 using (Stream outputStream = entry.Open())
 {
 inputStream.CopyTo(outputStream);
 }
 }
 }
}

Watching File Changes

With FileSystemWatcher, you can monitor file changes. Events are fired on creating, renaming, deleting, and changing files. This can be used in scenarios where you need to react on file changes—for example, with a server when a file is uploaded, or in a case where a file is cached in memory and the cache needs to be invalidated when the file changes.

As FileSystemWatcher is easy to use, let’s directly get into a sample. The sample code for FileMonitor makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.IO.FileSystem.Watcher

Namespaces

	System.IO

	static System.Console

The sample code starts watching files in the method WatchFiles. Using the constructor of the FileSystemWatcher, you can supply the directory that should be watched. You can also provide a filter to filter only specific files that match with the filter expression. When you set the property IncludeSubdirectories, you can define whether only the files in the specified directory should be watched or whether files in subdirectories should also be watched. With the Created, Changed, Deleted, and Renamed events, event handlers are supplied. All of these events are of type FileSystemEventHandler with the exception of the Renamed event that is of type RenamedEventHandler. RenamedEventHandler derives from FileSystemEventHandler and offers additional information about the event (code file FileMonitor/Program.cs):

public static void WatchFiles(string path, string filter)
{
 var watcher = new FileSystemWatcher(path, filter)
 {
 IncludeSubdirectories = true
 };
 watcher.Created += OnFileChanged;
 watcher.Changed += OnFileChanged;
 watcher.Deleted += OnFileChanged;
 watcher.Renamed += OnFileRenamed;

 watcher.EnableRaisingEvents = true;
 WriteLine("watching file changes...");
}

The information that is received with a file change is of type FileSystemEventArgs. It contains the name of the file that changed as well as the kind of change that is an enumeration of type WatcherChangeTypes:

private static void OnFileChanged(object sender, FileSystemEventArgs e)
{
 WriteLine($"file {e.Name} {e.ChangeType}");
}

On renaming the file, additional information is received with the RenamedEventArgs parameter. This type derives from FileSystemEventArgs and defines additional information about the original name of the file:

private static void OnFileRenamed(object sender, RenamedEventArgs e)
{
 WriteLine($"file {e.OldName} {e.ChangeType} to {e.Name}");
}

When you start the application by specifying a folder to watch and *.txt as the filter, the following is the output after creating the file sample1.txt, adding content, renaming it to sample2.txt, and finally deleting it:

watching file changes...
file New Text Document.txt Created
file New Text Document.txt Renamed to sample1.txt
file sample1.txt Changed
file sample1.txt Changed
file sample1.txt Renamed to sample2.txt
file sample2.txt Deleted

Working with Memory Mapped Files

Memory mapped files enable you to access files or shared memory from different processes. There are several scenarios and features with this technology:

	Fast random access to huge files using maps of the file

	Sharing of files between different processes or tasks

	Sharing of memory between different processes or tasks

	Using accessors to directly read and write from memory positions

	Using streams to read and write

The memory mapped files API allows you to use either a physical file or shared memory—where the system’s page file is used as a backing store. The shared memory can be bigger than the available physical memory, so a backing store is needed. You can create a memory mapped file to a specific file or shared memory. With either of these options, you can assign a name for the memory map. Using a name allows different processes to have access to the same shared memory.

After you’ve created the memory map, you can create a view. A view is used to map a part of the complete memory mapped file to access it for reading or writing.

The MemoryMappedFilesSample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.IO.MemoryMappedFiles

	

	

Namespaces

	System

	System.IO

	System.IO.MemoryMappedFiles

	System.Threading

	System.Threading.Tasks

	static System.Console

The sample application demonstrates using a memory mapped file using both view accessors and streams using multiple tasks. One task creates the memory mapped file and writes data to it; the other task reads data.

NOTE The sample code makes use of tasks and events. Read Chapter 21, “Tasks and Parallel Programming,” for more information about tasks, and Chapter 22, “Task Synchronization,” for more information about events.

Some infrastructure is needed for creating the tasks and signaling when the map is ready and the data is written. The name of the map and ManualResetEventSlim objects are defined as a member of the Program class (code file MemoryMappedFilesSample/Program.cs):

private ManualResetEventSlim _mapCreated =
 new ManualResetEventSlim(initialState: false);
private ManualResetEventSlim _dataWrittenEvent =
 new ManualResetEventSlim(initialState: false);
private const string MAPNAME ="SampleMap";

Tasks are started within the Main method with the Task.Run method:

public void Run()
{
 Task.Run(() => WriterAsync());
 Task.Run(() => Reader());
 WriteLine("tasks started");
 ReadLine();
}

Now let’s create readers and writers using accessors.

Using Accessors to Create Memory Mapped Files

To create a memory-based memory mapped file, the writer invokes the MemoryMappedFile.CreateOrOpen method. This method either opens the object with the name specified with the first parameter, or creates a new one if it doesn’t exist. To open existing files, you can use the method OpenExisting. For accessing physical files, you can use the method CreateFromFile.

Other parameters used in the sample code are the size of the memory mapped file and the access needed. After the memory mapped file is created, the event _mapCreated is signaled to give other tasks the information that the memory mapped file is created and can be opened. Invoking the method CreateViewAccessor returns a MemoryMappedViewAccessor to access the shared memory. With the view accessor, you can define an offset and size that is used by this task. Of course, the maximum size that you can use is the size of the memory mapped file itself. This view is used for writing, thus the file access is set to MemoryMappedFileAccess.Write.

Next, you can write primitive data types to the shared memory using overloaded Write methods of the MemoryMappedViewAccessor. The Write method always needs position information designating where the data should be written to. After all the data is written, an event is signaled to inform the reader that it is now possible to start reading (code file MemoryMappedFilesSample/Program.cs):

private async Task WriterAsync()
{
 try
 {
 using (MemoryMappedFile mappedFile = MemoryMappedFile.CreateOrOpen(
 MAPNAME, 10000, MemoryMappedFileAccess.ReadWrite))
 {
 _mapCreated.Set(); // signal shared memory segment created
 WriteLine("shared memory segment created");

 using (MemoryMappedViewAccessor accessor = mappedFile.CreateViewAccessor(
 0, 10000, MemoryMappedFileAccess.Write))
 {
 for (int i = 0, pos = 0; i < 100; i++, pos += 4)
 {
 accessor.Write(pos, i);
 WriteLine($"written {i} at position {pos}");
 await Task.Delay(10);
 }
 _dataWrittenEvent.Set(); // signal all data written
 WriteLine("data written");
 }
 }
 }
 catch (Exception ex)
 {
 WriteLine($"writer {ex.Message}");
 }
}

The reader first waits for the map to be created before opening the memory mapped file using MemoryMappedFile.OpenExisting. The reader just needs read access to the map. After that, similar to the writer before, a view accessor is created. Before reading data, you wait for the _dataWrittenEvent to be set. Reading is similar to writing in that you supply a position where the data should be accessed, but different Read methods, such as ReadInt32, are defined for reading the different data types:

private void Reader()
{
 try
 {
 WriteLine("reader");
 _mapCreated.Wait();
 WriteLine("reader starting");

 using (MemoryMappedFile mappedFile = MemoryMappedFile.OpenExisting(
 MAPNAME, MemoryMappedFileRights.Read))
 {
 using (MemoryMappedViewAccessor accessor = mappedFile.CreateViewAccessor(
 0, 10000, MemoryMappedFileAccess.Read))
 {
 _dataWrittenEvent.Wait();
 WriteLine("reading can start now");

 for (int i = 0; i < 400; i += 4)
 {
 int result = accessor.ReadInt32(i);
 WriteLine($"reading {result} from position {i}");
 }
 }
 }
 }
 catch (Exception ex)
 {
 WriteLine($"reader {ex.Message}");
 }
}

When you run the application, you might see output such as this:

reader
reader starting
tasks started
shared memory segment created
written 0 at position 0
written 1 at position 4
written 2 at position 8
...
written 99 at 396
data written
reading can start now
reading 0 from position 0
reading 1 from position 4
...

Using Streams to Create Memory Mapped Files

Instead of writing primitive data types with memory mapped files, you can instead use streams. Streams enable you to use readers and writers, as described earlier in this chapter. Now create a writer to use a StreamWriter. The method CreateViewStream from the MemoryMappedFile returns a MemoryMappedViewStream. This method is very similar to the CreateViewAccessor method used earlier in defining a view inside the map; with the offset and size, it is convenient to use all the features of streams. The WriteLineAsync method is then used to write a string to the stream. As the StreamWriter caches writes, the stream position is not updated with every write; it’s updated only when the writer writes blocks. For flushing the cache with every write, you set the AutoFlush property of the StreamWriter to true (code file MemoryMappedFilesSample/Program.cs):

private async Task WriterUsingStreams()
{
 try
 {
 using (MemoryMappedFile mappedFile = MemoryMappedFile.CreateOrOpen(
 MAPNAME, 10000, MemoryMappedFileAccess.ReadWrite))
 {
 _mapCreated.Set(); // signal shared memory segment created
 WriteLine("shared memory segment created");

 MemoryMappedViewStream stream = mappedFile.CreateViewStream(
 0, 10000, MemoryMappedFileAccess.Write);
 using (var writer = new StreamWriter(stream))
 {
 writer.AutoFlush = true;
 for (int i = 0; i < 100; i++)
 {
 string s = $"some data {i}";
 WriteLine($"writing {s} at {stream.Position}");
 await writer.WriteLineAsync(s);
 }
 }
 _dataWrittenEvent.Set(); // signal all data written
 WriteLine("data written");
 }
 }
 catch (Exception ex)
 {
 WriteLine($"writer {ex.Message}");
 }
}

The reader similarly creates a mapped view stream with CreateViewStream, but this time for read access. Now it’s possible to use StreamReader methods to read content from the shared memory:

private async Task ReaderUsingStreams()
{
 try
 {
 WriteLine("reader");
 _mapCreated.Wait();
 WriteLine("reader starting");

 using (MemoryMappedFile mappedFile = MemoryMappedFile.OpenExisting(
 MAPNAME, MemoryMappedFileRights.Read))
 {
 MemoryMappedViewStream stream = mappedFile.CreateViewStream(
 0, 10000, MemoryMappedFileAccess.Read);
 using (var reader = new StreamReader(stream))
 {
 _dataWrittenEvent.Wait();
 WriteLine("reading can start now");

 for (int i = 0; i < 100; i++)
 {
 long pos = stream.Position;
 string s = await reader.ReadLineAsync();
 WriteLine($"read {s} from {pos}");
 }
 }
 }
 }
 catch (Exception ex)
 {
 WriteLine($"reader {ex.Message}");
 }
}

When you run the application, you can see the data written and read. When the data is being written, the position within the stream is always updated because the AutoFlush property is set. When data is being read, always 1024 byte blocks are read.

tasks started
reader
reader starting
shared memory segment created
writing some data 0 at 0
writing some data 1 at 13
writing some data 2 at 26
writing some data 3 at 39
writing some data 4 at 52
...
data written
reading can start now
read some data 0 from 0
read some data 1 from 1024
read some data 2 from 1024
read some data 3 from 1024
...

When communicating via memory mapped files, you have to synchronize the reader and the writer so the reader knows when data is available. Pipes, which are discussed in the next section, give other options in such a scenario.

Communicating with Pipes

For communication between threads and processes, and also fast communication between different systems, you can use pipes. With .NET, pipes are implemented as streams and thus you have an option to not only send bytes into a pipe but you can use all the stream features, such as readers and writers.

Pipes are implemented as different kinds—as named pipes, where the name can be used to connect to each end, and anonymous pipes. Anonymous pipes cannot be used to communicate between different systems; they can be used only for communication between a child and parent process or for communication between different tasks.

The code for all the pipe samples makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.IO.Pipes

	

	

Namespaces

	System

	System.IO

	System.IO.Pipes

	System.Threading

	System.Threading.Tasks

	static System.Console

Let’s start with named pipes for communication between different processes. With the first sample application, two console applications are used. One acts as server and reads data from a pipe; the other one writes messages to the pipe.

Creating a Named Pipe Server

You create the server by creating a new instance of NamedPipeServerStream. NamedPipeServerStream derives from the base class PipeStream that in turn derives from the Stream base class and thus can use all the features of streams—for example, you can create a CryptoStream or a GZipStream to write encrypted or compressed data into the named pipe. The constructor requires a name for the pipe that can be used by multiple processes communicating via the pipe.

The second argument that is used in the following code snippet defines the direction of the pipe. The server stream is used for reading, and thus the direction is set to PipeDirection.In. Named pipes can also be bidirectional for reading and writing; you use PipeDirection.InOut. Anonymous pipes can be only unidirectional. Next, the named pipe waits until the writing party connects by calling the WaitForConnection method. Next, within a loop (until the message “bye” is received), the pipe server reads messages to a buffer array and writes the message to the console (code file PipesReader/Program.cs):

private static void PipesReader(string pipeName)
{
 try
 {
 using (var pipeReader =
 new NamedPipeServerStream(pipeName, PipeDirection.In))
 {
 pipeReader.WaitForConnection();
 WriteLine("reader connected");

 const int BUFFERSIZE = 256;

 bool completed = false;
 while (!completed)
 {
 byte[] buffer = new byte[BUFFERSIZE];
 int nRead = pipeReader.Read(buffer, 0, BUFFERSIZE);
 string line = Encoding.UTF8.GetString(buffer, 0, nRead);
 WriteLine(line);
 if (line =="bye") completed = true;
 }
 }
 WriteLine("completed reading");
 ReadLine();
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
}

The following are some other options that you can configure with named pipes:

	You can set the enumeration PipeTransmissionMode to Byte or Message. With bytes, a continuous stream is sent; with messages every message can be retrieved.

	With the pipe options, you can specify WriteThrough to immediately write to the pipe and not to the cache.

	You can configure buffer sizes for input and output.

	You configure pipe security to designate who is allowed to read and write to the pipe. Security is discussed in Chapter 24.

	You can configure inheritability of the pipe handle, which is important for communicating with child processes.

Because the NamedPipeServerStream is a Stream, you can use StreamReader instead of reading from the byte array; this method simplifies the code:

var pipeReader = new NamedPipeServerStream(pipeName, PipeDirection.In);
using (var reader = new StreamReader(pipeReader))
{
 pipeReader.WaitForConnection();
 WriteLine("reader connected");

 bool completed = false;
 while (!completed)
 {
 string line = reader.ReadLine();
 WriteLine(line);
 if (line =="bye") completed = true;
 }
}

Creating a Named Pipe Client

Now you need a client. As the server reads messages, the client writes them.

You create the client by instantiating a NamedPipeClientStream object. Because named pipes can communicate across the network, you need a server name in addition to the pipe name and the direction of the pipe. The client connects by invoking the Connect method. After the connection succeeds, messages are sent to the server by invoking WriteLine on the StreamWriter. By default, messages are not sent immediately; they are cached. The message is pushed to the server by invoking the Flush method. You can also immediately pass all the messages without invoking the Flush method. For this, you have to configure the option to write through the cache on creating the pipe (code file PipesWriter/Program.cs):

public static void PipesWriter(string pipeName)
{
 var pipeWriter = new NamedPipeClientStream("TheRocks",
 pipeName, PipeDirection.Out);
 using (var writer = new StreamWriter(pipeWriter))
 {
 pipeWriter.Connect();
 WriteLine("writer connected");

 bool completed = false;
 while (!completed)
 {
 string input = ReadLine();
 if (input =="bye") completed = true;

 writer.WriteLine(input);
 writer.Flush();
 }
 }
 WriteLine("completed writing");
}

For starting two projects from within Visual Studio, you can configure multiple startup projects with Debug ➪ Set Startup Projects. When you run the application, input from one console is echoed in the other one.

Creating Anonymous Pipes

Let’s do something similar with anonymous pipes. With anonymous pipes two tasks are created that communicate with each other. For signaling the pipe creation, you use a ManualResetEventSlim object as you did with the memory mapped files. In the Run method of the Program class, two tasks are created that invoke the Reader and Writer methods (code file AnonymousPipes/Program.cs):

private string _pipeHandle;
private ManualResetEventSlim _pipeHandleSet;

static void Main()
{
 var p = new Program();
 p.Run();
 ReadLine();
}

public void Run()
{
 _pipeHandleSet = new ManualResetEventSlim(initialState: false);

 Task.Run(() => Reader());
 Task.Run(() => Writer());
 ReadLine();
}

The server side acts as a reader by creating an AnonymousPipeServerStream, and defining the PipeDirection.In. The other side of the communication needs to know about the client handle of the pipe. This handle is converted to a string from the method GetClientHandleAsString and assigned to the _pipeHandle variable. This variable will be used later by the client that acts as a writer. After the initial process, the pipe server can be acted on as a stream because it is a stream:

private void Reader()
{
 try
 {
 var pipeReader = new AnonymousPipeServerStream(PipeDirection.In,
 HandleInheritability.None);
 using (var reader = new StreamReader(pipeReader))
 {
 _pipeHandle = pipeReader.GetClientHandleAsString();
 WriteLine($"pipe handle: {_pipeHandle}");
 _pipeHandleSet.Set();

 bool end = false;
 while (!end)
 {
 string line = reader.ReadLine();
 WriteLine(line);
 if (line =="end") end = true;
 }
 WriteLine("finished reading");

 }
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
}

The client code waits until the variable _pipeHandleSet is signaled, and thus can open the pipe handle referenced by the _pipeHandle variable. Later processing continues with a StreamWriter:

private void Writer()
{
 WriteLine("anonymous pipe writer");
 _pipeHandleSet.Wait();

 var pipeWriter = new AnonymousPipeClientStream(
 PipeDirection.Out, _pipeHandle);
 using (var writer = new StreamWriter(pipeWriter))
 {
 writer.AutoFlush = true;
 WriteLine("starting writer");
 for (int i = 0; i < 5; i++)
 {
 writer.WriteLine($"Message {i}");
 Task.Delay(500).Wait();
 }
 writer.WriteLine("end");
 }
}

When you run the application, the two tasks communicate and send data between the tasks.

Using Files and Streams with the Windows Runtime

With the Windows Runtime, you implement streams with native types. Although they are implemented with native code, they look like .NET types. However, there’s a difference you need to be aware of: For streams, the Windows Runtime implements its own types in the namespace Windows.Storage.Streams. Here you can find classes such as FileInputStream, FileOutputStream, and RandomAccessStreams. All these classes are based on interfaces, for example, IInputStream, IOutputStream, and IRandomAccessStream. You’ll also find the concept of readers and writers. Windows Runtime readers and writers are the types DataReader and DataWriter.

Let’s look at what’s different from the .NET streams you’ve seen so far and how .NET streams and types can map to these native types.

Windows App Editor

Earlier in this chapter, you created a WPF editor to read and write files. Now you create a new editor as a Windows app starting with the Windows Universal Blank App Visual Studio template.

To add commands for opening and saving a file, a CommandBar with AppBarButton elements is added to the main page (code file WindowsAppEditor/MainPage.xaml):

<Page.BottomAppBar>
 <CommandBar IsOpen="True">
 <AppBarButton Icon="OpenFile" Label="Open" Click="{x:Bind OnOpen}" />
 <AppBarButton Icon="Save" Label="Save" Click="{x:Bind OnSave}" />
 </CommandBar>
</Page.BottomAppBar>

The TextBox added to the Grid fill receive the contents of the file:

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <TextBox x:Name="text1" AcceptsReturn="True" />
</Grid>

The OnOpen handle first starts the dialog where the user can select a file. Remember, you used the OpenFileDialog earlier. With Windows apps, you can use pickers. To open files, the FileOpenPicker is the preferred type. You can configure this picker to define the proposed start location for the user. You set the SuggestedStartLocation to PickerLocationId.DocumentsLibrary to open the user’s documents folder. The PickerLocationId is an enumeration that defines various special folders.

Next, the FileTypeFilter collection specifies the file types that should be listed for the user. Finally, the method PickSingleFileAsync returns the file selected from the user. To allow users to select multiple files, you can use the method PickMultipleFilesAsync instead. This method returns a StorageFile. StorageFile is defined in the namespace Windows.Storage. This class is the equivalent of the FileInfo class for opening, creating, copying, moving, and deleting files (code file WindowsAppEditor/MainPage .xaml.cs):

public async void OnOpen()
{
 try
 {
 var picker = new FileOpenPicker()
 {
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary
 };
 picker.FileTypeFilter.Add(".txt");

 StorageFile file = await picker.PickSingleFileAsync();
 //...

Now, open the file using OpenReadAsync. This method returns a stream that implements the interface IRandomAccessStreamWithContentType, which derives from the interfaces IRandomAccessStream, IInputStream, IOuputStream, IContentProvider, and IDisposable. IRandomAccessStream allows random access to a stream with the Seek method, and it gives information about the size of a stream. IInputStream defines the method ReadAsync to read from a stream. IOutputStream is the opposite; it defines the methods WriteAsync and FlushAsync. IContentTypeProvider defines the property ContentType that gives information about the content of the file. Remember the encodings of the text files? Now it would be possible to read the content of the stream invoking the method ReadAsync. However, the Windows Runtime also knows the reader’s and writer’s concepts that have already been discussed. A DataReader accepts an IInputStream with the constructor. The DataReader type defines methods to read primitive data types such as ReadInt16, ReadInt32, and ReadDateTime. You can read a byte array with ReadBytes, and a string with ReadString. The ReadString method requires the number of characters to read. The string is assigned to the Text property of the TextBox control to display the content:

 //...
 if (file != null)
 {
 IRandomAccessStreamWithContentType stream = await file.OpenReadAsync();
 using (var reader = new DataReader(stream))
 {
 await reader.LoadAsync((uint)stream.Size);

 text1.Text = reader.ReadString((uint)stream.Size);
 }
 }
 }
 catch (Exception ex)
 {
 var dlg = new MessageDialog(ex.Message,"Error");
 await dlg.ShowAsync();
 }
}

NOTE Similarly to the readers and the writers of the .NET Framework, the DataReader and DataWriter manages the stream that is passed with the constructor. On disposing the reader or writer, the stream gets disposed as well. With .NET classes, to keep the underlying stream open for a longer time you can set the leaveOpen argument in the constructor. With the Windows Runtime types, you can detach the stream from the readers and writers by invoking the method DetachStream.

On saving the document, the OnSave method is invoked. First, the FileSavePicker is used to allow the user to select the document—similar to the FileOpenPicker. Next, the file is opened using OpenTransactedWriteAsync. The NTFS file system supports transactions; these are not covered from the .NET Framework but are available with the Windows Runtime. OpenTransactedWriteAsync returns a StorageStreamTransaction object that implements the interface IStorageStreamTransaction. This object itself is not a stream (although the name might lead you to believe this), but it contains a stream that you can reference with the Stream property. This property returns an IRandomAccessStream stream. Similarly to creating a DataReader, you can create a DataWriter to write primitive data types, including strings as in this example. The StoreAsync method finally writes the content from the buffer to the stream. The transaction needs to be committed by invoking the CommitAsync method before disposing the writer:

public async void OnSave()
{
 try
 {
 var picker = new FileSavePicker()
 {
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary,
 SuggestedFileName ="New Document"
 };
 picker.FileTypeChoices.Add("Plain Text", new List<string>() {".txt" });

 StorageFile file = await picker.PickSaveFileAsync();
 if (file != null)
 {
 using (StorageStreamTransaction tx =
 await file.OpenTransactedWriteAsync())
 {
 IRandomAccessStream stream = tx.Stream;
 stream.Seek(0);
 using (var writer = new DataWriter(stream))
 {
 writer.WriteString(text1.Text);
 tx.Stream.Size = await writer.StoreAsync();
 await tx.CommitAsync();
 }
 }
 }
 }
 catch (Exception ex)
 {
 var dlg = new MessageDialog(ex.Message,"Error");
 await dlg.ShowAsync();
 }
}

The DataWriter doesn’t add the preamble defining the kind of Unicode file to the stream. You need to do that explicitly, as explained earlier in this chapter. The DataWriter just deals with the encoding of the file by setting the UnicodeEncoding and ByteOrder properties. The default setting is UnicodeEncoding.Utf8 and ByteOrder.BigEndian. Instead of working with the DataWriter, you can also take advantage of the features of the StreamReader and StreamWriter as well as the .NET Stream class, as shown in the next section.

Mapping Windows Runtime Types to .NET Types

Let’s start with reading the file. To convert a Windows Runtime stream to a .NET stream for reading, you can use the extension method AsStreamForRead. This method is defined in the namespace System.IO (that must be opened) in the assembly System.Runtime.WindowsRuntime. This method creates a new Stream object that manages the IInputStream. Now, you can use it as a normal .NET stream, as shown previously—for example, passing it to a StreamReader and using this reader to access the file:

public async void OnOpenDotnet()
{
 try
 {
 var picker = new FileOpenPicker()
 {
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary
 };
 picker.FileTypeFilter.Add(".txt");

 StorageFile file = await picker.PickSingleFileAsync();
 if (file != null)
 {
 IRandomAccessStreamWithContentType wrtStream =
 await file.OpenReadAsync();
 Stream stream = wrtStream.AsStreamForRead();
 using (var reader = new StreamReader(stream))
 {
 text1.Text = await reader.ReadToEndAsync();
 }
 }
 }
 catch (Exception ex)
 {
 var dlg = new MessageDialog(ex.Message,"Error");
 await dlg.ShowAsync();
 }
}

All the Windows Runtime stream types can easily be converted to .NET streams and the other way around. The following table lists the methods needed:

	Convert From
	Convert To
	Method

	IRandomAccessStream
	Stream
	AsStream

	IInputStream
	Stream
	AsStreamForRead

	IOutputStream
	Stream
	AsStreamForWrite

	Stream
	IInputStream
	AsInputStream

	Stream
	IOutputStream
	AsOutputStream

	Stream
	IRandomAccessStream
	AsRandomAccessStream

Now save the change to the file as well. The stream for writing is converted with the extension method AsStreamForWrite. Now, this stream can be written using the StreamWriter class. The code snippet also writes the preamble for the UTF-8 encoding to the file:

public async void OnSaveDotnet()
{
 try
 {
 var picker = new FileSavePicker()
 {
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary,
 SuggestedFileName ="New Document"
 };
 picker.FileTypeChoices.Add("Plain Text", new List<string>() {".txt" });

 StorageFile file = await picker.PickSaveFileAsync();
 if (file != null)
 {
 StorageStreamTransaction tx = await file.OpenTransactedWriteAsync();
 using (var writer = new StreamWriter(tx.Stream.AsStreamForWrite()))
 {
 byte[] preamble = Encoding.UTF8.GetPreamble();
 await stream.WriteAsync(preamble, 0, preamble.Length);
 await writer.WriteAsync(text1.Text);
 await writer.FlushAsync();
 tx.Stream.Size = (ulong)stream.Length;
 await tx.CommitAsync();
 }
 }
 }
 catch (Exception ex)
 {
 var dlg = new MessageDialog(ex.Message,"Error");
 await dlg.ShowAsync();
 }
}

Summary

In this chapter, you examined how to use the .NET classes to access the file system from your C# code. You have seen that in both cases the base classes expose simple but powerful object models that make it very easy to perform almost any kind of action in these areas. For the file system, these actions are copying files; moving, creating, and deleting files and folders; and reading and writing both binary and text files.

You’ve seen how to compress files using both the deflate algorithm and ZIP files. The FileSystemWatcher was used to get information when files change. You’ve also seen how to communicate with the help of shared memory as well as named and anonymous pipes. Finally, you’ve seen how to map .NET streams to Windows Runtime streams to take advantage of .NET features within Windows apps.

In some other chapters of the book you can see streams in action. For example, Chapter 25, “Networking,” uses streams to send data across the network. Reading and writing XML files and streaming large XML files are shown in Chapter 27, “XML and JSON.”

In the next chapter, you read about security and how to secure files, and you also see how you can use memory mapped files across different processes by adding security information. You also see CryptoStream in action for encrypting streams, no matter whether they are used with files or networking.

24
Security

What’s In This Chapter?

	Authentication and authorization

	Creating and verifying signatures

	Secure data exchange

	Signing and hashing

	Data protection

	Access control to resources

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	WindowsPrincipal

	SigningDemo

	SecureTransfer

	RSASample

	DataProtection

	FileAccessControl

Introduction

Security has several key elements that you need to consider in order to make your applications secure. The primary one, of course, is the user of the application. Is the user actually the person authorized to access the application, or someone posing as the user? How can this user be trusted? As you see in this chapter, ensuring the security of an application in regard of the user is a two-part process: First, users need to be authenticated, and then they need to be authorized to verify that they are allowed to use the requested resources.

What about data that is stored or sent across the network? Is it possible for someone to access this data, for example, by using a network sniffer? Encryption of data is important in this regard. Some technologies, such as Windows Communication Foundation (WCF), provide encryption capabilities by simple configuration, so you can see what’s done behind the scenes.

Yet another aspect is the application itself. If the application is hosted by a web provider, how is the application restricted from doing harm to the server?

This chapter explores the features available in .NET to help you manage security, demonstrating how .NET protects you from malicious code, how to administer security policies, and how to access the security subsystem programmatically.

Verifying User Information

Two fundamental pillars of security are authentication and authorization. Authentication is the process of identifying the user, and authorization occurs afterward to verify that the identified user is allowed to access a specific resource. This section shows how to get information about users with identities and principals.

Working with Windows Identities

You can identify the user running the application by using an identity. The WindowsIdentity class represents a Windows user. If you don’t identify the user with a Windows account, you can use other classes that implement the interface IIdentity. With this interface you have access to the name of the user, information about whether the user is authenticated, and the authentication type.

A principal is an object that contains the identity of the user and the roles to which the user belongs. The interface IPrincipal defines the property Identity, which returns an IIdentity object, and the method IsInRole with which you can verify that the user is a member of a specific role. A role is a collection of users who have the same security permissions, and it is the unit of administration for users. Roles can be Windows groups or just a collection of strings that you define.

The principal classes available with .NET are WindowsPrincipal, GenericPrincipal, and RolePrincipal. Since .NET 4.5, these principal types derive from the base class ClaimsPrincipal. You can also create a custom principal class that implements the interface IPrincipal or derives from ClaimsPrincipal.

The sample code makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Security.Principal.Windows

Namespaces

	System.Collections.Generic

	System.Security.Claims

	System.Security.Principal

	static System.Console

The following example creates a Console Application (Package) that provides access to the principal in an application that, in turn, enables you to access the underlying Windows account. You need to import the System.Security.Principal and System.Security.Claims namespaces. The Main method invokes the method ShowIdentityInformation to write information about the WindowsIdentity to the console, ShowPrincipal to write additional information that is available with principals, and ShowClaims to write information about claims (code file WindowsPrincipal/Program.cs):

static void Main()
{
 WindowsIdentity identity = ShowIdentityInformation();
 WindowsPrincipal principal = ShowPrincipal(identity);
 ShowClaims(principal.Claims);
}

The method ShowIdentityInformation creates a WindowsIdentity object by invoking the static GetCurrent method of the WindowsIdentity and accesses its properties to show the identity type, name of the identity, authentication type, and other values (code file WindowsPrincipal/Program.cs):

public static WindowsIdentity ShowIdentityInformation()
{
 WindowsIdentity identity = WindowsIdentity.GetCurrent();
 if (identity == null)
 {
 WriteLine("not a Windows Identity");
 return null;
 }

 WriteLine($"IdentityType: {identity}");
 WriteLine($"Name: {identity.Name}");
 WriteLine($"Authenticated: {identity.IsAuthenticated}");
 WriteLine($"Authentication Type: {identity.AuthenticationType}");
 WriteLine($"Anonymous? {identity.IsAnonymous}");
 WriteLine($"Access Token: {identity.AccessToken.DangerousGetHandle()}");
 WriteLine();
 return identity;
}

All identity classes, such as WindowsIdentity, implement the IIdentity interface, which contains three properties—AuthenticationType, IsAuthenticated, and Name—for all derived identity classes to implement. The other properties you’ve seen with the WindowsIdentity are specific to this kind of identity.

When you run the application, you see information like what’s shown in the following snippet. The authentication type shows CloudAP because I’m logged into the system using a Microsoft Live account. Active Directory shows up in the authentication type if you’re using Active Directory:

IdentityType: System.Security.Principal.WindowsIdentity
Name: THEROCKS\Christian
Authenticated: True
Authentication Type: CloudAP
Anonymous? False
Access Token: 1072

Windows Principals

A principal contains an identity and offers additional information, such as roles the user belongs to. Principals implement the interface IPrincipal, which offers the method IsInRole in addition to an Identity property. With Windows, all the Windows groups the user is member of are mapped to roles. The method IsInRole is overloaded to accept a security identifier, a role string, or an enumeration value of the WindowsBuiltInRole enumeration. The sample code verifies whether the user belongs to the built-in roles User and Administrator (code file WindowsPrincipal/Program.cs):

public static WindowsPrincipal ShowPrincipal(WindowsIdentity identity)
{
 WriteLine("Show principal information");
 WindowsPrincipal principal = new WindowsPrincipal(identity);
 if (principal == null)
 {
 WriteLine("not a Windows Principal");
 return null;
 }
 WriteLine($"Users? {principal.IsInRole(WindowsBuiltInRole.User)}");
 WriteLine(
 $"Administrators? {principal.IsInRole(WindowsBuiltInRole.Administrator)}");
 WriteLine();
 return principal;
}

When I run the application, my account belongs to the role Users but not Administrator, and I get the following result:

Show principal information
Users? True
Administrator? False

It is enormously beneficial to be able to easily access details about the current users and their roles. With this information, you can make decisions about what actions should be permitted or denied. The ability to make use of roles and Windows user groups provides the added benefit that administration can be handled using standard user administration tools, and you can usually avoid altering the code when user roles change.

Since .NET 4.5, all the principal classes derive from the base class ClaimsPrincipal. This way, it’s possible to access claims from users with the Claims property of a principal object. The following section looks at claims.

Using Claims

Claims offer a lot more flexibility compared to roles. A claim is a statement made about an identity from an authority. An authority such as the Active Directory or the Microsoft Live account authentication service makes claims about users—for example, the claim of the name of the user, claims about groups the user belongs to, or a claim about the age. Is the user already of age 21 or older and eligible for accessing specific resources?

The method ShowClaims accesses a collection of claims to write subject, issuer, claim type, and more options to the console (code file WindowsPrincipal/Program.cs):

public static void ShowClaims(IEnumerable<Claim> claims)
{
 WriteLine("Claims");
 foreach (var claim in claims)
 {
 WriteLine($"Subject: {claim.Subject}");
 WriteLine($"Issuer: {claim.Issuer}");
 WriteLine($"Type: {claim.Type}");
 WriteLine($"Value type: {claim.ValueType}");
 WriteLine($"Value: {claim.Value}");
 foreach (var prop in claim.Properties)
 {
 WriteLine($"\tProperty: {prop.Key} {prop.Value}");
 }
 WriteLine();
 }
}

Here is an extract of the claims from the Microsoft Live account, which provides information about the name, the primary ID, and the group identifiers:

Claims
Subject: System.Security.Principal.WindowsIdentity
Issuer: AD AUTHORITY
Type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
Value type: http://www.w3.org/2001/XMLSchema#string
Value: THEROCKS\Christian

Subject: System.Security.Principal.WindowsIdentity
Issuer: AD AUTHORITY
Type: http://schemas.microsoft.com/ws/2008/06/identity/claims/primarysid
Value type: http://www.w3.org/2001/XMLSchema#string
Value: S-1-5-21-1413171511-313453878-1364686672-1001
 Property: http://schemas.microsoft.com/ws/2008/06/identity/claims/
 windowssubauthority NTAuthority

Subject: System.Security.Principal.WindowsIdentity
Issuer: AD AUTHORITY
Type: http://schemas.microsoft.com/ws/2008/06/identity/claims/groupsid
Value type: http://www.w3.org/2001/XMLSchema#string
Value: S-1-1-0
 Property: http://schemas.microsoft.com/ws/2008/06/identity/claims/
 windowssubauthority WorldAuthority

Subject: System.Security.Principal.WindowsIdentity
Issuer: AD AUTHORITY
Type: http://schemas.microsoft.com/ws/2008/06/identity/claims/groupsid
Value type: http://www.w3.org/2001/XMLSchema#string
Value: S-1-5-114
 Property: http://schemas.microsoft.com/ws/2008/06/identity/claims/
 windowssubauthority NTAuthority
...

You can add claims to a Windows identity from a claim provider. You can also add a claim from a simple client program, such as the age claim here:

identity.AddClaim(new Claim("Age","25"));

Using claims from a program, it’s just a matter to trust this claim. Is this claim true—the age 25? Claims can also be lies. Adding this claim from the client application, you can see that the issuer of this claim is the LOCAL AUTHORITY. Information from the AD AUTHORITY (the Active Directory) is more trustworthy, but here you need to trust the Active Directory system administrators.

The WindowsIdentity deriving from the base class ClaimsIdentity offers several methods checking for claims, or retrieving specific claims. To test whether a claim is available, you can use the HasClaim method:

bool hasName = identity.HasClaim(c => c.Type == ClaimTypes.Name);

To retrieve specific claims, the method FindAll needs a predicate to define a match:

var groupClaims = identity.FindAll(c => c.Type == ClaimTypes.GroupSid);

NOTE A claim type can be a simple string like the "Age" type used earlier. The ClaimType defines a list of known types such as Country, Email, Name, MobilePhone, UserData, Surname, PostalCode, and several more.

NOTE Authentication of users with ASP.NET web applications is discussed in Chapter 41, “ASP.NET MVC.”

Encrypting Data

Confidential data should be secured so that it cannot be read by unprivileged users. This is valid for both data that is sent across the network and stored data. You can encrypt such data with symmetric or asymmetric encryption keys.

With a symmetric key, you can use the same key for encryption and decryption. With asymmetric encryption, different keys are used for encryption and decryption: a public key and a private key. Something encrypted using a public key can be decrypted with the corresponding private key. This also works the other way around: Something encrypted using a private key can be decrypted by using the corresponding public key, but not the private key. It’s practically impossible to calculate the private or public key from the other one.

Public and private keys are always created as a pair. The public key can be made available to everybody, and even put on a website, but the private key must be safely locked away. Following are some examples that demonstrate how public and private keys are used for encryption.

If Alice sends a message to Bob (see Figure 24.1), and she wants to ensure that no one other than Bob can read the message, she uses Bob’s public key. The message is encrypted using Bob’s public key. Bob opens the message and can decrypt it using his secretly stored private key. This key exchange guarantees that no one but Bob can read Alice’s message.

[image: Diagram shows a lady named Alice sending a letter to a man named Bob along with a lady named Eve standing below the letter.]

Figure 24.1

There is one problem, however: Bob can’t be sure that the mail comes from Alice. Eve can use Bob’s public key to encrypt messages sent to Bob and pretend to be Alice. We can extend this principle using public/private keys. Let’s start again with Alice sending a message to Bob. Before Alice encrypts the message using Bob’s public key, she adds her signature and encrypts the signature using her own private key. Then she encrypts the mail using Bob’s public key. Therefore, it is guaranteed that no one other than Bob can read the message. When Bob decrypts it, he detects an encrypted signature. The signature can be decrypted using Alice’s public key. For Bob, it is not a problem to access Alice’s public key because the key is public. After decrypting the signature, Bob can be sure that it was Alice who sent the message.

The encryption and decryption algorithms using symmetric keys are a lot faster than those using asymmetric keys. The problem with symmetric keys is that the keys must be exchanged in a safe manner. With network communication, one way to do this is by using asymmetric keys first for the key exchange and then symmetric keys for encryption of the data that is sent across the wire.

The .NET Framework contains classes for encryption in the namespace System.Security.Cryptography. Several symmetric and asymmetric algorithms are implemented. You can find algorithm classes for many different purposes. Some of the classes have a Cng prefix or suffix. CNG is short for Cryptography Next Generation, which is a newer version of the native Crypto API. This API makes it possible to write a program independently of the algorithm by using a provider-based model.

The following table lists encryption classes and their purposes from the namespace System.Security .Cryptography. The classes without a Cng, Managed, or CryptoServiceProvider suffix are abstract base classes, such as MD5. The Managed suffix means that this algorithm is implemented with managed code; other classes might wrap native Windows API calls. The suffix CryptoServiceProvider is used with classes that implement the abstract base class. The Cng suffix is used with classes that make use of the new Cryptography CNG API.

	Category
	Classes
	Description

	Hash
	MD5 MD5Cng SHA1 SHA1Managed SHA1Cng SHA256 SHA256Managed SHA256Cng SHA384 SHA384Managed SHA384Cng SHA512 SHA512Managed SHA512Cng RIPEMD160 RIPEMD160Managed
	The purpose of hash algorithms is to create a fixed-length hash value from binary strings of arbitrary length. These algorithms are used with digital signatures and for data integrity. If the same binary string is hashed again, the same hash result is returned. MD5 (Message Digest Algorithm 5), developed at RSA Laboratories, is faster than SHA1. SHA1 is stronger against brute force attacks. The SHA algorithms were designed by the National Security Agency (NSA). MD5 uses a 128-bit hash size; SHA1 uses 160 bits. The other SHA algorithms contain the hash size in the name. SHA512 is the strongest of these algorithms, with a hash size of 512 bits; it is also the slowest. RIPEMD160 uses a hash size of 160 bits; it is meant to be a replacement for 128-bit MD4 and MD5. RIPEMD was developed from an EU project named RIPE (Race Integrity Primitives Evaluation).

	Symmetric
	DES DESCryptoServiceProvider TripleDESTripleDESCryptoServiceProvider Aes AesCryptoServiceProvider AesManaged RC2 RC2CryptoServiceProvider Rijndael RijndaelManaged
	Symmetric key algorithms use the same key for encryption and decryption of data. Data Encryption Standard (DES) is now considered insecure because it uses only 56 bits for the key size and can be broken in less than 24 hours. Triple-DES is the successor to DES and has a key length of 168 bits, but the effective security it provides is only 112-bit. Advanced Encryption Standard (AES) has a key size of 128, 192, or 256 bits. Rijndael is very similar to AES but offers more key size options. AES is an encryption standard adopted by the U.S. government.

	Asymmetric
	DSA DSACryptoServiceProvider ECDsa ECDsaCng ECDiffieHellman ECDiffieHellmanCng RSA RSACryptoServiceProvider RSACng
	Asymmetric algorithms use different keys for encryption and decryption. The Rivest, Shamir, Adleman (RSA) algorithm was the first one used for signing as well as encryption. This algorithm is widely used in e-commerce protocols. RSACng is a class new with .NET 4.6 and .NET 5 Core that is based on a Cryptography Next Generation (CNG) implementation. Digital Signature Algorithm (DSA) is a United States Federal Government standard for digital signatures. Elliptic Curve DSA (ECDSA) and EC Diffie-Hellman use algorithms based on elliptic curve groups. These algorithms are more secure, with shorter key sizes. For example, having a key size of 1024 bits for DSA is similar in security to 160 bits for ECDSA. As a result, ECDSA is much faster. EC Diffie-Hellman is an algorithm used to exchange private keys in a secure way over a public channel.

The following section includes some examples demonstrating how these algorithms can be used programmatically.

Creating and Verifying a Signature

The first example demonstrates a signature using the ECDSA algorithm, described in the preceding table, for signing. Alice creates a signature that is encrypted with her private key and can be accessed using her public key. This way, it is guaranteed that the signature is from Alice.

The sample application SigningDemo makes use of these dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Security.Cryptograhy.Algorithms

	System.Security.Cryptography.Cng

	

Namespaces

	System

	System.Security.Cryptography

	System.Text

	static System.Console

First, take a look at the major steps in the Main method: Alice’s keys are created, and the string "Alice" is signed and then verified to be the signature actually from Alice by using the public key. The message that is signed is converted to a byte array by using the Encoding class. To write the encrypted signature to the console, the byte array that contains the signature is converted to a string with the method Convert .ToBase64String (code file SigningDemo/Program.cs):

private CngKey _aliceKeySignature;
private byte[] _alicePubKeyBlob;
static void Main()
{
 var p = new Program();
 p.Run();
}
public void Run()
{
 InitAliceKeys();
 byte[] aliceData = Encoding.UTF8.GetBytes("Alice");
 byte[] aliceSignature = CreateSignature(aliceData, aliceKeySignature);
 WriteLine($"Alice created signature: {Convert.ToBase64String(aliceSignature)}");
 if (VerifySignature(aliceData, aliceSignature, alicePubKeyBlob))
 {
 WriteLine("Alice signature verified successfully");
 }
}

WARNING Never convert encrypted data to a string using the Encoding class. The Encoding class verifies and converts invalid values that are not allowed with Unicode; therefore, converting the string back to a byte array can yield a different result.

InitAliceKeys is the method that creates a new key pair for Alice. This key pair is stored in a static field, so it can be accessed from the other methods. The Create method of CngKey gets the algorithm as an argument to define a key pair for the algorithm. With the Export method, the public key of the key pair is exported. This public key can be given to Bob for verification of the signature. Alice keeps the private key. Instead of creating a key pair with the CngKey class, you can open existing keys that are stored in the key store. Usually Alice would have a certificate containing a key pair in her private store, and the store could be accessed with CngKey.Open:

private void InitAliceKeys()
{
 _aliceKeySignature = CngKey.Create(CngAlgorithm.ECDsaP521);
 _alicePubKeyBlob = aliceKeySignature.Export(CngKeyBlobFormat.GenericPublicBlob);
}

With the key pair, Alice can create the signature using the ECDsaCng class. The constructor of this class receives the CngKey—which contains both the public and private keys—from Alice. The private key is used to sign the data with the SignData method. The method SignData is slightly different with .NET Core. .NET Core requires the algorithm:

public byte[] CreateSignature(byte[] data, CngKey key)
{
 byte[] signature;
 using (var signingAlg = new ECDsaCng(key))
 {
#if NET46
 signature = signingAlg.SignData(data);
 signingAlg.Clear();
#else
 signature = signingAlg.SignData(data, HashAlgorithmName.SHA512);
#endif
 }
 return signature;
}

To verify that the signature was really from Alice, Bob checks the signature by using the public key from Alice. The byte array containing the public key blob can be imported to a CngKey object with the static Import method. The ECDsaCng class is then used to verify the signature by invoking VerifyData:

public bool VerifySignature(byte[] data, byte[] signature, byte[] pubKey)
{
 bool retValue = false;
 using (CngKey key = CngKey.Import(pubKey, CngKeyBlobFormat.GenericPublicBlob))
 using (var signingAlg = new ECDsaCng(key))
 {
#if NET46
 retValue = signingAlg.VerifyData(data, signature);
 signingAlg.Clear();
#else
 retValue = signingAlg.VerifyData(data, signature, HashAlgorithmName.SHA512);
#endif
 }
 return retValue;
}

Implementing Secure Data Exchange

This section uses a more-complex example to demonstrate exchanging a symmetric key for a secure transfer by using the EC Diffie-Hellman algorithm.

NOTE At the time of this writing, .NET Core just includes the ECDiffieHellman abstract base class that can be used by implementers to create concrete classes. A concrete class is not yet here, that’s why this sample uses only .NET 4.6.

The sample application SecureTransfer makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Security.Cryptograhy.Algorithms

	System.Security.Cryptography.Cng

	

	System.Security.Cryptography.Primitives

Namespaces

	System

	System.IO

	System.Security.Cryptography

	System.Text

	System.Threading.Tasks

	static System.Console

The Main method contains the primary functionality. Alice creates an encrypted message and sends it to Bob. Before the message is created and sent, key pairs are created for Alice and Bob. Bob has access only to Alice’s public key, and Alice has access only to Bob’s public key (code file SecureTransfer/Program.cs):

private CngKey _aliceKey;
private CngKey _bobKey;
private byte[] _alicePubKeyBlob;
private byte[] _bobPubKeyBlob;

static void Main()
{
 var p = new Program();
 p.RunAsync().Wait();
 ReadLine();
}

public async Task RunAsync()
{
 try
 {
 CreateKeys();
 byte[] encrytpedData =
 await AliceSendsDataAsync("This is a secret message for Bob");
 await BobReceivesDataAsync(encrytpedData);
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
}

In the implementation of the CreateKeys method, keys are created to be used with the EC Diffie-Hellman 521 algorithm:

public void CreateKeys()
{
 aliceKey = CngKey.Create(CngAlgorithm.ECDiffieHellmanP521);
 bobKey = CngKey.Create(CngAlgorithm.ECDiffieHellmanP521);
 alicePubKeyBlob = aliceKey.Export(CngKeyBlobFormat.EccPublicBlob);
 bobPubKeyBlob = bobKey.Export(CngKeyBlobFormat.EccPublicBlob);
}

In the method AliceSendsDataAsync, the string that contains text characters is converted to a byte array by using the Encoding class. An ECDiffieHellmanCng object is created and initialized with the key pair from Alice. Alice creates a symmetric key by using her key pair and the public key from Bob, calling the method DeriveKeyMaterial. The returned symmetric key is used with the symmetric algorithm AES to encrypt the data. AesCryptoServiceProvider requires the key and an initialization vector (IV). The IV is generated dynamically from the method GenerateIV. The symmetric key is exchanged with the help of the EC Diffie-Hellman algorithm, but the IV must also be exchanged. From a security standpoint, it is OK to transfer the IV unencrypted across the network—only the key exchange must be secured. The IV is stored first as content in the memory stream, followed by the encrypted data where the CryptoStream class uses the encryptor created by the AesCryptoServiceProvider class. Before the encrypted data is accessed from the memory stream, the crypto stream must be closed. Otherwise, end bits would be missing from the encrypted data:

public async Task<byte[]> AliceSendsDataAsync(string message)
{
 WriteLine($"Alice sends message: {message}");
 byte[] rawData = Encoding.UTF8.GetBytes(message);
 byte[] encryptedData = null;

 using (var aliceAlgorithm = new ECDiffieHellmanCng(aliceKey))
 using (CngKey bobPubKey = CngKey.Import(bobPubKeyBlob,
 CngKeyBlobFormat.EccPublicBlob))
 {
 byte[] symmKey = aliceAlgorithm.DeriveKeyMaterial(bobPubKey);
 WriteLine("Alice creates this symmetric key with" +
 $"Bobs public key information: {Convert.ToBase64String(symmKey)}");

 using (var aes = new AesCryptoServiceProvider())
 {
 aes.Key = symmKey;
 aes.GenerateIV();
 using (ICryptoTransform encryptor = aes.CreateEncryptor())
 using (var ms = new MemoryStream())
 {
 // create CryptoStream and encrypt data to send
 using (var cs = new CryptoStream(ms, encryptor,
 CryptoStreamMode.Write))
 {
 // write initialization vector not encrypted
 await ms.WriteAsync(aes.IV, 0, aes.IV.Length);
 cs.Write(rawData, 0, rawData.Length);
 }
 encryptedData = ms.ToArray();
 }
 aes.Clear();
 }
 }
 WriteLine("Alice: message is encrypted:"+
 "{Convert.ToBase64String(encryptedData)}");

 WriteLine();
 return encryptedData;
}

Bob receives the encrypted data in the argument of the method BobReceivesDataAsync. First, the unencrypted initialization vector must be read. The BlockSize property of the class AesCryptoServiceProvider returns the number of bits for a block. The number of bytes can be calculated by dividing by 8, and the fastest way to do this is by doing a bit shift of 3 bits (shifting by 1 bit is a division by 2, 2 bits by 4, and 3 bits by 8). With the for loop, the first bytes of the raw bytes that contain the IV unencrypted are written to the array iv. Next, an ECDiffieHellmanCng object is instantiated with the key pair from Bob. Using the public key from Alice, the symmetric key is returned from the method DeriveKeyMaterial.

Comparing the symmetric keys created from Alice and Bob shows that the same key value is created. Using this symmetric key and the initialization vector, the message from Alice can be decrypted with the AesCryptoServiceProvider class:

public async Task BobReceivesDataAsync(byte[] encryptedData)
{
 WriteLine("Bob receives encrypted data");
 byte[] rawData = null;

 var aes = new AesCryptoServiceProvider();

 int nBytes = aes.BlockSize 3;
 byte[] iv = new byte[nBytes];
 for (int i = 0; i < iv.Length; i++)
 {
 iv[i] = encryptedData[i];
 }

 using (var bobAlgorithm = new ECDiffieHellmanCng(bobKey))
 using (CngKey alicePubKey = CngKey.Import(alicePubKeyBlob,
 CngKeyBlobFormat.EccPublicBlob))
 {
 byte[] symmKey = bobAlgorithm.DeriveKeyMaterial(alicePubKey);
 WriteLine("Bob creates this symmetric key with" +
 $"Alices public key information: {Convert.ToBase64String(symmKey)}");

 aes.Key = symmKey;
 aes.IV = iv;

 using (ICryptoTransform decryptor = aes.CreateDecryptor())
 using (MemoryStream ms = new MemoryStream())
 {
 using (var cs = new CryptoStream(ms, decryptor, CryptoStreamMode.Write))
 {
 await cs.WriteAsync(encryptedData, nBytes,
 encryptedData.Length - nBytes);
 }

 rawData = ms.ToArray();

 WriteLine("Bob decrypts message to:" +
 $"{Encoding.UTF8.GetString(rawData)}");
 }
 aes.Clear();
 }
}

Running the application returns output similar to the following. The message from Alice is encrypted, and then decrypted by Bob with the securely exchanged symmetric key.

Alice sends message: this is a secret message for Bob
Alice creates this symmetric key with Bobs public key information:
q4D182m7lyev9Nlp6f0av2Jvc0+LmHF5zEjXw1O1I3Y=
Alice: message is encrypted: WpOxvUoWH5XY31wC8aXcDWeDUWa6zaSObfGcQCpKixzlTJ9exb
tkF5Hp2WPSZWL9V9n13toBg7hgjPbrVzN2A==

Bob receives encrypted data
Bob creates this symmetric key with Alices public key information:
q4D182m7lyev9Nlp6f0av2Jvc0+LmHF5zEjXw1O1I3Y=
Bob decrypts message to: this is a secret message for Bob

Signing and Hashing Using RSA

A new cryptography algorithm class with .NET 4.6 and .NET Core 1.0 is RSACng. RSA (the name comes from the algorithm designers Ron Rivest, Adi Shamir, and Leonard Adlerman) is an asymmetric algorithm that is widely used. Although the RSA algorithm was already available with .NET with the RSA and RSACryptoServiceProvider classes, RSACng is a class based on the CNG API and is similar in use to the ECDSACng class shown earlier.

With the sample application shown in this section, Alice creates a document, hashes it to make sure it doesn’t get changed, and signs it with a signature to guarantee that the document is generated by Alice. Bob receives the document and checks the guarantees from Alice to make sure the document hasn’t been tampered with.

The RSA sample code makes use of these dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Security.Cryptography.Algorighms

	System.Security.Cryptography.Cng

	

	

	

Namespaces

	Microsoft.Extensions.DependencyInjection

	System

	System.IO

	System.Linq

	static System.Console

The Main method of the application is structured to start with Alice’s tasks to invoke the method AliceTasks to create a document, a hash code, and a signature. This information is then passed to Bob’s tasks to invoke the method BobTasks (code file RSASample/Program.cs):

class Program
{
 private CngKey _aliceKey;
 private byte[] _alicePubKeyBlob;

 static void Main()
 {
 var p = new Program();
 p.Run();
 }

 public void Run()
 {
 byte[] document;
 byte[] hash;
 byte[] signature;
 AliceTasks(out document, out hash, out signature);
 BobTasks(document, hash, signature);
 }
 //...
}

The method AliceTasks first creates the keys needed by Alice, converts the message to a byte array, hashes the byte array, and adds a signature:

public void AliceTasks(out byte[] data, out byte[] hash, out byte[] signature)
{
 InitAliceKeys();

 data = Encoding.UTF8.GetBytes("Best greetings from Alice");
 hash = HashDocument(data);
 signature = AddSignatureToHash(hash, _aliceKey);
}

Similar to before, the keys needed by Alice are created using the CngKey class. As the RSA algorithm is being used now, the enumeration value CngAlgorithm.Rsa is passed to the Create method to create public and private keys. Only the public key is given to Bob, so the public key is extracted with the Export method:

private void InitAliceKeys()
{
 _aliceKey = CngKey.Create(CngAlgorithm.Rsa);
 _alicePubKeyBlob = _aliceKey.Export(CngKeyBlobFormat.GenericPublicBlob);
}

The HashDocument method is invoked from Alice’s tasks to create a hash code for the document. The hash code is created using one of the hash algorithm classes: SHA384. No matter how long the document is, the hash code always has the same length. Creating the hash code for the same document again results in the same hash code. Bob needs to use the same algorithm on the document. If the same hash code is returned, the document hasn’t been changed.

private byte[] HashDocument(byte[] data)
{
 using (var hashAlg = SHA384.Create())
 {
 return hashAlg.ComputeHash(data);
 }
}

Adding a signature guarantees that the document is from Alice. Here, the hash is signed using the RSACng class. Alice’s CngKey, including the public and private keys, is passed to the constructor of the RSACng class; the signature is created by invoking the SignHash method. When the hash is signed, the SignHash method needs to know about the algorithm of the hash; HashAlgorithmName.SHA384 is the algorithm that was used to create the hash. Also, the RSA padding is needed. Possible options with the RSASignaturePadding enumeration are Pss and Pkcs1:

private byte[] AddSignatureToHash(byte[] hash, CngKey key)
{
 using (var signingAlg = new RSACng(key))
 {
 byte[] signed = signingAlg.SignHash(hash,
 HashAlgorithmName.SHA384, RSASignaturePadding.Pss);
 return signed;
 }
}

After hashing and signing from Alice, Bob’s tasks can start in the method BobTasks. Bob receives the document data, the hash code, and the signature, and he uses Alice’s public key. First, Alice’s public key is imported using CngKey.Import and assigned to the aliceKey variable. Next, Bob uses the helper methods IsSignatureValid and IsDocumentUnchanged to verify whether the signature is valid and the document unchanged. Only if both conditions are true, the document is written to the console:

public void BobTasks(byte[] data, byte[] hash, byte[] signature)
{
 CngKey aliceKey = CngKey.Import(_alicePubKeyBlob,
 CngKeyBlobFormat.GenericPublicBlob);
 if (!IsSignatureValid(hash, signature, aliceKey))
 {
 WriteLine("signature not valid");
 return;
 }
 if (!IsDocumentUnchanged(hash, data))
 {
 WriteLine("document was changed");
 return;
 }
 WriteLine("signature valid, document unchanged");
 WriteLine($"document from Alice: {Encoding.UTF8.GetString(data)}");
}

To verify if the signature is valid, the public key from Alice is used to create an instance of the RSACng class. With this class, the VerifyHash method is used to pass the hash, signature, and algorithm information that was used earlier. Now Bob knows the information is from Alice:

private bool IsSignatureValid(byte[] hash, byte[] signature, CngKey key)
{
 using (var signingAlg = new RSACng(key))
 {
 return signingAlg.VerifyHash(hash, signature, HashAlgorithmName.SHA384,
 RSASignaturePadding.Pss);
 }
}

To verify that the document data is unchanged, Bob hashes the document again and uses the LINQ extension method SequenceEqual to verify whether the hash code is the same as was sent earlier. If the hashes are the same, it can be assumed that the document was not changed:

private bool IsDocumentUnchanged(byte[] hash, byte[] data)
{
 byte[] newHash = HashDocument(data);
 return newHash.SequenceEqual(hash);
}

When you run the application, you see output similar to what’s shown here. When you debug the application you can change the document data after it’s hashed by Alice and see that Bob doesn’t accept the changed document. To change the document data, you can easily change the value in the Watch window of the debugger.

signature valid, document unchanged
document from Alice: Best greetings from Alice

Implementing Data Protection

Another feature of .NET that is related to encryption is the new .NET core library support for data protection. The namespace System.Security.DataProtection contains a DpApiDataProtector class that wraps the native Windows Data Protection API (DPAPI). These classes don’t offer the flexibility and features needed on the web server—that’s why the ASP.NET team created classes with the Microsoft.AspNet .DataProtection namespace.

The reason for this library is to store trusted information for later retrieval, but the storage media (such as using hosting environments from a third party) cannot be trusted itself, so the information needs to be stored encrypted on the host.

The sample application is a simple Console Application (Package) that enables you to read and write information using data protection. With this sample, you see the flexibility and features of the ASP.NET data protection.

The data protection sample code makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	Microsoft.AspNet.DataProtection

	Microsoft.AspNet.DataProtection.Abstractions

	Microsoft.Extensions.DependencyInjection

	

	

	

Namespaces

	Microsoft.Extensions.DependencyInjection

	System

	System.IO

	System.Linq

	static System.Console

You can start the console application by using the -r and -w command-line arguments to either read or write from the storage. Also, you need to use the command line to set a filename to read and write. After checking the command-line arguments, the data protection is initialized calling the InitProtection helper method. This method returns an object of type MySafe that embeds an IDataProtector. After that, depending on the command-line arguments, either the Write or Read method is invoked (code file DataProtectionSample/Program.cs):

class Program
{
 private const string readOption ="-r";
 private const string writeOption ="-w";
 private readonly string[] options = { readOption, writeOption };

 static void Main(string[] args)
 {
 if (args.Length != 2 || args.Intersect(options).Count() != 1)
 {
 ShowUsage();
 return;
 }
 string fileName = args[1];

 MySafe safe = InitProtection();

 switch (args[0])
 {
 case writeOption:
 Write(safe, fileName);
 break;
 case readOption:
 Read(safe, fileName);
 break;
 default:
 ShowUsage();
 break;
 }
 }
 //etc.
}

The class MySafe holds a member of IDataProtector. This interface defines the members Protect and Unprotect to encrypt and decrypt data. This interface defines Protect and Unprotect methods with byte array arguments and returning byte arrays. However, the sample code directly sends and returns strings from the Encrypt and Decrypt methods using extension methods that are defined within the Microsoft.AspNet.DataProtection.Abstractions NuGet package. The MySafe class receives an IDataProtectionProvider interface via dependency injection. With this interface, a IDataProtector is returned passing a purpose string. The same string needs to be used when reading and writing from this safe (code file DataProtectionSample/MySafe.cs):

public class MySafe
{
 private IDataProtector _protector;
 public MySafe(IDataProtectionProvider provider)
 {
 _protector = provider.CreateProtector("MySafe.MyProtection.v1");
 }

 public string Encrypt(string input) => _protector.Protect(input);

 public string Decrypt(string encrypted) => _protector.Unprotect(encrypted);
}

With the InitProtection method, the AddDataProtection and ConfigureDataProtection extension methods are invoked to add data protection via dependency injection, and to configure it. The AddDataProtection method registers default services by calling the static method DataProtectionServices.GetDefaultServices.

There’s an interesting special part contained with the ConfigureDataProtection method. Here, it is defined how the keys should be persisted. The sample code persists the key to the actual directory passing a DirectoryInfo instance to the method PersistKeysToFileSystem. Another option is to persist the key to the registry (PersistKeysToRegistry), and you can create your own method to persist the key to a custom store. The lifetime of the created keys is defined by the method SetDefaultKeyLifetime. Next, the keys are protected by calling ProtectKeysWithDpapi. This method protects the keys using the DPAPI, which encrypts the stored keys with the current user. ProtectKeysWithCertificate allows using a certificate for key protection. The API also defines the method UseEphemeralDataProtectionProvider in which keys are stored just in memory. When the application is started again, new keys need to be generated. This is a great feature for unit testing (code file DataProtectionSample/Program.cs):

public static MySafe InitProtection()
{
 var serviceCollection = new ServiceCollection();
 serviceCollection.AddDataProtection();

 serviceCollection.ConfigureDataProtection(c =>
 c.PersistKeysToFileSystem(new DirectoryInfo("."))
 .SetDefaultKeyLifetime(TimeSpan.FromDays(20))
 .ProtectKeysWithDpapi()
);
 IServiceProvider services = serviceCollection.BuildServiceProvider();

 return ActivatorUtilities.CreateInstance<MySafe>(services);
}

Now the heart of the data protection application is implemented, and the Write and Read methods can take advantage of MySafe to encrypt and decrypt the user’s content:

public static void Write(MySafe safe, string fileName)
{
 WriteLine("enter content to write:");
 string content = ReadLine();
 string encrypted = safe.Encrypt(content);
 File.WriteAllText(fileName, encrypted);
 WriteLine($"content written to {fileName}");
}

public static void Read(MySafe safe, string fileName)
{
 string encrypted = File.ReadAllText(fileName);
 string decrypted = safe.Decrypt(encrypted);
 WriteLine(decrypted);
}

Access Control to Resources

Operating system resources such as files and registry keys, as well as handles of a named pipe, are secured by using an access control list (ACL). Figure 24.2 shows the structure mapping this. Associated with the resource is a security descriptor that contains information about the owner of the resource. It references two access control lists: a discretionary access control list (DACL) and a system access control list (SACL). The DACL defines who has access; the SACL defines audit rules for security event logging. An ACL contains a list of access control entries (ACEs), which contain a type, a security identifier, and rights. With the DACL, the ACE can be of type access allowed or access denied. Some of the rights that you can set and get with a file are create, read, write, delete, modify, change permissions, and take ownership.

[image: Block diagram shows DACL and SACL are connected to security descriptor which is connected to resource. Both DACL and SACL include a set of access control entries.]

Figure 24.2

The classes to read and modify access control are located in the namespace System.Security.AccessControl. The following program demonstrates reading the access control list from a file.

The sample application FileAccessControl makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.IO.FileSystem

	System.IO.FileSystem.AccessControl

Namespaces

	System.IO

	System.Security.AccessControl

	System.Security.Principal

	static System.Console

The FileStream class defines the GetAccessControl method, which returns a FileSecurity object. FileSecurity is the .NET class that represents a security descriptor for files. FileSecurity derives from the base classes ObjectSecurity, CommonObjectSecurity, NativeObjectSecurity, and FileSystemSecurity. Other classes that represent a security descriptor are CryptoKeySecurity, EventWaitHandleSecurity, MutexSecurity, RegistrySecurity, SemaphoreSecurity, PipeSecurity, and ActiveDirectorySecurity. All of these objects can be secured using an ACL. In general, the corresponding .NET class defines the method GetAccessControl to return the corresponding security class; for example, the Mutex.GetAccessControl method returns a MutexSecurity, and the PipeStream.GetAccessControl method returns a PipeSecurity.

The FileSecurity class defines methods to read and change the DACL and SACL. The method GetAccessRules returns the DACL in the form of the class AuthorizationRuleCollection. To access the SACL, you can use the method GetAuditRules.

With the method GetAccessRules, you can specify whether inherited access rules, and not only access rules directly defined with the object, should be used. The last parameter defines the type of the security identifier that should be returned. This type must derive from the base class IdentityReference. Possible types are NTAccount and SecurityIdentifier. Both of these classes represent users or groups; the NTAccount class finds the security object by its name and the SecurityIdentifier class finds the security object by a unique security identifier.

The returned AuthorizationRuleCollection contains AuthorizationRule objects. The AuthorizationRule is the .NET representation of an ACE. In the following example, a file is accessed, so the AuthorizationRule can be cast to a FileSystemAccessRule. With ACEs of other resources, different .NET representations exist, such as MutexAccessRule and PipeAccessRule. With the FileSystemAccessRule class, the properties AccessControlType, FileSystemRights, and IdentityReference return information about the ACE (code file FileAccessControl/Program.cs).

class Program
{
 static void Main(string[] args)
 {
 string filename = null;
 if (args.Length == 0) return;

 filename = args[0];

 using (FileStream stream = File.Open(filename, FileMode.Open))
 {
 FileSecurity securityDescriptor = stream.GetAccessControl();
 AuthorizationRuleCollection rules =
 securityDescriptor.GetAccessRules(true, true,
 typeof(NTAccount));

 foreach (AuthorizationRule rule in rules)
 {
 var fileRule = rule as FileSystemAccessRule;
 WriteLine($"Access type: {fileRule.AccessControlType}");
 WriteLine($"Rights: {fileRule.FileSystemRights}");
 WriteLine($"Identity: {fileRule.IdentityReference.Value}");
 WriteLine();
 }
 }
 }
}

By running the application and passing a filename, you can see the ACL for the file. The following output lists full control to Administrators and System, modification rights to authenticated users, and read and execute rights to all users belonging to the group Users:

Access type: Allow
Rights: FullControl
Identity: BUILTIN\Administrators

Access type: Allow
Rights: FullControl
Identity: NT AUTHORITY\SYSTEM

Access type: Allow
Rights: FullControl
Identity: BUILTIN\Administrators

Access type: Allow
Rights: FullControl
Identity: TheOtherSide\Christian

Setting access rights is very similar to reading access rights. To set access rights, several resource classes that can be secured offer the SetAccessControl and ModifyAccessControl methods. The following code modifies the ACL of a file by invoking the SetAccessControl method from the File class. To this method a FileSecurity object is passed. The FileSecurity object is filled with FileSystemAccessRule objects. The access rules listed here deny write access to the Sales group, give read access to the Everyone group, and give full control to the Developers group:

NOTE This program runs on your system only if the Windows groups Sales and Developers are defined. You can change the program to use groups that are available in your environment.

private void WriteAcl(string filename)
{
 var salesIdentity = new NTAccount("Sales");
 var developersIdentity = new NTAccount("Developers");
 var everyOneIdentity = new NTAccount("Everyone");

 var salesAce = new FileSystemAccessRule(salesIdentity,
 FileSystemRights.Write, AccessControlType.Deny);
 var everyoneAce = new FileSystemAccessRule(everyOneIdentity,
 FileSystemRights.Read, AccessControlType.Allow);
 var developersAce = new FileSystemAccessRule(developersIdentity,
 FileSystemRights.FullControl, AccessControlType.Allow);

 var securityDescriptor = new FileSecurity();
 securityDescriptor.SetAccessRule(everyoneAce);
 securityDescriptor.SetAccessRule(developersAce);
 securityDescriptor.SetAccessRule(salesAce);

 File.SetAccessControl(filename, securityDescriptor);
}

NOTE You can verify the access rules by opening the Properties window and selecting a file in Windows Explorer. Select the Security tab to see the ACL.

Distributing Code Using Certificates

You can make use of digital certificates and sign assemblies so that consumers of the software can verify the identity of the software publisher. Depending on where the application is used, certificates may be required. For example, with ClickOnce, the user installing the application can verify the certificate to trust the publisher. Using Windows Error Reporting, Microsoft uses the certificate to determine which vendor to map to the error report.

NOTE ClickOnce is explained in Chapter 36,"Deploying Windows Apps."

In a commercial environment, you obtain a certificate from a company such as Verisign or Thawte. The advantage of buying a certificate from a supplier instead of creating your own is that it provides a high level of trust in the authenticity of the certificate; the supplier acts as a trusted third party. For test purposes, however, .NET includes a command-line utility you can use to create a test certificate. The process of creating certificates and using them for publishing software is complex, but this section walks through a simple example.

The example code is for a fictitious company called ABC Corporation. The company’s software product (simple.exe) should be trusted. First, create a test certificate by typing the following command:

>makecert -sv abckey.pvk -r -n"CN=ABC Corporation" abccorptest.cer

The command creates a test certificate under the name ABC Corporation and saves it to a file called abccorptest.cer. The -sv abckey.pvk argument creates a key file to store the private key. When creating the key file, you are asked for a password that you should remember.

After creating the certificate, you can create a software publisher test certificate with the Software Publisher Certificate Test tool (Cert2spc.exe):

>cert2spc abccorptest.cer abccorptest.spc

With a certificate that is stored in an spc file and the key file that is stored in a pvk file, you can create a pfx file that contains both with the pvk2pfx utility:

>pvk2pfx -pvk abckey.pvk -spc abccorptest.spc -pfx abccorptest.pfx

Now you can use the signtool.exe utility to sign the assembly. The sign option is used for signing, -f specifies the certificate in the pfx file, and -v is for verbose output:

>signtool sign -f abccorptest.pfx -v simple.exe

To establish trust for the certificate, install it with the Trusted Root Certification Authorities and the Trusted Publishers using the Certificate Manager, certmgr, or the MMC snap-in Certificates. Then you can verify the successful signing with the signtool:

>signtool verify -v -a simple.exe

Summary

This chapter covered several aspects of security with .NET applications. Users are represented by identities and principals, classes that implement the interface IIdentity and IPrincipal. You’ve also seen how to access claims from identities.

A brief overview of cryptography demonstrated how the signing and encrypting of data enable the exchange of keys in a secure way. .NET offers both symmetric and asymmetric cryptography algorithms as well as hashing and signing.

With access control lists you can read and modify access to operating system resources such as files. You program ACLs similarly to the way you program secure pipes, registry keys, Active Directory entries, and many other operating system resources.

In many cases you can work with security from higher abstraction levels. For example, using HTTPS to access a web server, keys for encryption are exchanged behind the scenes. Using WCF, you can define what security algorithm to use by changing a configuration file. With the full .NET stack, the File class offers an Encrypt method (using the NTFS file system) to easily encrypt files. Still it’s important to know what happens behind this functionality.

The next chapter covers networking. When creating applications that communicate across the network, it’s really important to know security. By reading the next chapter you can let Alice and Bob communicate across the network, not just within a process as was done in this chapter. Chapter 25, “Networking,” covers the foundation of networking.

25
Networking

What’s In This Chapter?

	Using HttpClient

	Manipulating IP addresses and performing DNS lookups

	Creating a server with WebListener

	Socket programming with TCP, UDP, and socket classes

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	HttpClientSample

	WinAppHttpClient

	HttpServer

	Utilities

	DnsLookup

	HttpClientUsingTcp

	TcpServer

	WPFAppTcpClient

	UdpReceiver

	UdpSender

	SocketServer

	SocketClient

Networking

This chapter takes a fairly practical approach to networking, mixing examples with a discussion of relevant theory and networking concepts as appropriate. This chapter is not a guide to computer networking but an introduction to using the .NET Framework for network communication.

This chapter shows you how to create both clients and servers using network protocols. It starts with the simplest case: sending an HTTP request to a server and storing the information that’s sent back in the response.

Then you see how to create an HTTP server, using utility classes to split up and create URIs and resolve hostnames to IP addresses. You are also introduced to sending and receiving data via TCP and UDP and find out how to make use of the Socket class.

The two namespaces of most interest for networking are System.Net and System.Net.Sockets. The System.Net namespace is generally concerned with higher-level operations, such as downloading and uploading files, and making web requests using HTTP and other protocols, whereas System.Net.Sockets contains classes to perform lower-level operations. You will find these classes useful when you want to work directly with sockets or protocols, such as TCP/IP. The methods in these classes closely mimic the Windows socket (Winsock) API functions derived from the Berkeley sockets interface. You will also find that some of the objects that this chapter works with are found in the System.IO namespace.

The HttpClient Class

The HttpClient class is used to send an HTTP request and receive the response from the request. It is in the System.Net.Http namespace. The classes in the System.Net.Http namespace help make it easy to consume web services for both clients and server.

The HttpClient class derives from the HttpMessageInvoker class. This base class implements the SendAsync method. The SendAsync method is the workhorse of the HttpClient class. As you see later in this section, there are several derivatives of this method to use. As the name implies, the SendAsync method call is asynchronous. This enables you to write a fully asynchronous system for calling web services.

Making an Asynchronous Get Request

In the download code examples for this chapter is HttpClientSample. It calls a web service asynchronously in different ways. To call using the different ways demonstrated by the sample, you use command-line arguments.

The sample code makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Net.Http

	

	

Namespaces

	System

	System.Net

	System.Net.Http

	System.Net.Http.Headers

	System.Threading

	System.Threading.Tasks

	static System.Console

The first code snippet instantiates an HttpClient object. The HttpClient object is thread-safe, so a single HttpClient object can be used to handle multiple requests. Each instance of HttpClient maintains its own thread pool, so requests between HttpClient instances are isolated. Resources are released by invoking the Dispose method.

Invoking the GetAsync makes an HTTP GET request to the server. You pass in the address of the method you’re going to call. The GetAsync call is overloaded to take either a string or a URI object. The example calls into Microsoft’s OData sample site http://services.odata.org, but you could alter that address to call any number of REST web services.

The call to GetAsync returns an HttpResponseMessage object. The HttpResponseMessage class represents a response including headers, status, and content. Checking the IsSuccessfulStatusCode property of the response tell you whether the request was successful. With a successful call, the content returned is retrieved as a string using the ReadAsStringAsync method (code file HttpClientSample/Program.cs):

private const string NorthwindUrl =
 "http://services.data.org/Northwind/Northwind.svc/Regions";
private const string IncorrectUrl =
 "http://services.data.org/Northwind1/Northwind.svc/Regions";

private async Task GetDataSimpleAsync()
{
 using (var client = new HttpClient())
 {
 HttpResponseMessage response = await client.GetAsync(NorthwindUrl);

 if(response.IsSuccessStatusCode)
 {
 WriteLine($"Response Status Code: {(int)response.StatusCode}" +
 $"{response.ReasonPhrase}");
 string responseBodyAsText = await response.Content.ReadAsStringAsync();
 WriteLine($"Received payload of {responseBodyAsText.Length} characters");
 WriteLine();
 WriteLine(responseBodyAsText);
 }
 }
}

Executing this code with the command-line argument -s should produce the following output:

Response Status Code: 200 OK
Received payload of 3379 characters

<?xml version="1.0" encoding="utf-8"?>
<!- ... ->

NOTE Because the HttpClient class used the GetAsync method call with the await keyword, the calling thread returned and could do some other work. When the result is available from the GetAsync method a thread continues with the method, and the response is written to the response variable. The await keyword is explained in Chapter 15, “Asynchronous Programming.” Creating and using tasks is explained in Chapter 21, “Tasks and Parallel Programming.”

Throwing Exceptions

Invoking the GetAsync method of the HttpClient class by default doesn’t generate an exception if the method fails. This could be easily changed by invoking the EnsureSuccessStatusCode method with the HttpResponseMessage. This method checks whether IsSuccessStatusCode is false, and throws an exception otherwise (code file HttpClientSample/Program.cs):

private async Task GetDataWithExceptionsAsync()
{
 try
 {
 using (var client = new HttpClient())
 {
 HttpResponseMessage response = await client.GetAsync(IncorrectUrl);
 response.EnsureSuccessStatusCode();

 WriteLine($"Response Status Code: {(int)response.StatusCode}" +
 $"{response.ReasonPhrase}");
 string responseBodyAsText = await response.Content.ReadAsStringAsync();
 WriteLine($"Received payload of {responseBodyAsText.Length} characters");
 WriteLine();
 WriteLine(responseBodyAsText);
 }
 }
 catch (Exception ex)
 {
 WriteLine($"{ex.Message}");
 }
}

Passing Headers

You didn’t set or change any of the headers when you made the request, but the DefaultRequestHeaders property on HttpClient enables you to do just that. You can add headers to the collection using the Add method. After you set a header value, the header and header value are sent with every request that this instance of HttpClient sends.

By default the response content will be in XML format. You can change this by adding an Accept header to the request to use JSON. Add the following line just before the call to GetAsync and the content is returned in JSON format:

client.DefaultRequestHeaders.Add("Accept","application/json;odata=verbose");

Adding and removing the header and running the example will result in the content in both XML and JSON formats.

The HttpRequestHeaders object returned from the DefaultHeaders property has several helper properties to many of the standard headers. You can read the values of the headers from these properties, but they are read only. To set a value, you need to use the Add method. In the code snippet, the HTTP Accept header is added. Depending on the Accept header received by the server, the server can return different data formats based on the client’s needs. When you send the Accept header application/json, the client informs the server that it accepts data in JSON format. Header information is shown with the ShowHeaders method that is also invoked when receiving the response from the server (code file HttpClientSample/Program.cs):

public static Task GetDataWithHeadersAsync()
{
 try
 {
 using (var client = new HttpClient())
 {
 client.DefaultRequestHeaders.Add("Accept",
 "application/json;odata=verbose");
 ShowHeaders("Request Headers:", client.DefaultRequestHeaders);

 HttpResponseMessage response = await client.GetAsync(NorthwindUrl);
 client.EnsureSuccessStatusCode();

 ShowHeaders("Response Headers:", response.Headers);
 //etc.
 }
}

Contrary to the previous sample, the ShowHeaders method was added, taking an HttpHeaders object as a parameter. HttpHeaders is the base class for HttpRequestHeaders and HttpResponseHeaders. The specialized classes both add helper properties to access headers directly. The HttpHeader object is defined as a KeyValuePair<string, IEnumerable<string>>. This means that each header can have more than one value in the collection. Because of this, it’s important that if you want to change a value in a header, you need to remove the original value and add the new value.

The ShowHeaders function is pretty simple. It iterates all headers in HttpHeaders. The enumerator returns KeyValuePair<string, IEnumerable<string>> elements and shows a stringified version of the values for every key:

public static void ShowHeaders(string title, HttpHeaders headers)
{
 WriteLine(title);
 foreach (var header in headers)
 {
 string value = string.Join("", header.Value);
 WriteLine($"Header: {header.Key} Value: {value}");
 }
 WriteLine();
}

Running this code will now display any headers for the request:

Request Headers:
Header: Accept Value: application/json; odata=verbose

Response Headers:
Header: Vary Value: *
Header: X-Content-Type-Options Value: nosniff
Header: DataServiceVersion Value: 2.0;
Header: Access-Control-Allow-Origin Value: *
Header: Access-Control-Allow-Methods Value: GET
Header: Access-Control-Allow-Headers Value: Accept, Origin, Content-Type,
MaxDataServiceVersion
Header: Access-Control-Expose-Headers Value: DataServiceVersion
Header: Cache-Control Value: private
Header: Date Value: Mon, 06 Jul 2015 09:00:48 GMT
Header: Set-Cookie Value: ARRAffinity=a5ee7717b148daedb0164e6e19088a5a78c47693a6
0e57422887d7e011fb1e5e;Path=/;Domain=services.odata.org
Header: Server Value: Microsoft-IIS/8.0
Header: X-AspNet-Version Value: 4.0.30319
Header: X-Powered-By Value: ASP.NET

Because the client now requests JSON data, the server returns JSON, and you can also see this information:

Response Status Code: 200 OK
Received payload of 1551 characters

{"d":{"results":[{"__metadata":{"id":"http://services.odata.org/Northwind/
Northwind.svc/Regions(1)","uri":

Accessing the Content

The previous code snippets have shown you how to access the Content property to retrieve a string. The Content property in the response returns an HttpContent object. In order to get the data from the HttpContent object you need to use one of the methods supplied. In the example, the ReadAsStringAsync method was used. It returns a string representation of the content. As the name implies, this is an async call. Instead of using the async keyword, the Result property could be used as well. Calling the Result property blocks the call until it’s finished and then continues on with execution.

Other methods to get the data from the HttpContent object are ReadAsByteArrayAsync, which returns a byte array of the data, and ReadAsStreamAsync, which returns a stream. You can also load the content into a memory buffer using LoadIntoBufferAsync.

The Headers property returns the HttpContentHeaders object. This works exactly the same way the request and response headers do in the previous example.

NOTE Instead of using the GetAsync and ReadAsStringAsync methods of the HttpClient and HttpContent classes, the HttpClient class also offers the method GetStringAsync that returns a string without the need to invoke two methods. However, when using this method you don’t have that much control over the error status and other information.

NOTE Streams are explained in Chapter 23, “Files and Streams.”

Customizing Requests with HttpMessageHandler

The HttpClient class can take an HttpMessageHandler as a parameter to its constructor. This makes it possible for you to customize the request. You can pass an instance of the HttpClientHandler. There are numerous properties that can be set for things such as ClientCertificates, Pipelining, CachePolicy, ImpersonationLevel, and so on.

With the next code snippet, a SampleMessageHandler is instantiated and passed to the HttpClient constructor: (code file HttpClientSample/Program.cs):

public static async Task GetDataWithMessageHandlerAsync()
{
 var client = new HttpClient(new SampleMessageHandler("error"));
 HttpResponseMessage response = await client.GetAsync(NorthwindUrl);
 //...
}

The purpose of this handler type, SampleMessageHandler, is to take a string as a parameter and either display it in the console, or, if the message is “error,” set the response’s status code to Bad Request. If you create a class that derives from HttpClientHandler, you can override a few properties and the method SendAsync. SendAsync is typically overridden because the request to the server can be influenced. If the _displayMessage is set to “error”, an HttpResponseMessage with a bad request is returned. The method needs a Task returned. For the error case, asynchronous methods do not need to be called; that’s why the error is simply returned with Task.FromResult (code file HttpClientSample/SampleMessageHandler.cs):

public class SampleMessageHandler : HttpClientHandler
{
 private string _message;

 public SampleMessageHandler(string message)
 {
 _message = message;
 }

 protected override Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {
 WriteLine($"In SampleMessageHandler {_message}");

 if(_message =="error")
 {
 var response = new HttpResponseMessage(HttpStatusCode.BadRequest);
 return Task.FromResult<HttpResponseMessage>(response);
 }
 return base.SendAsync(request, cancellationToken);
 }
}

There are many reasons to add a custom handler. The handler pipeline is set so that multiple handlers can be added. Besides the default, there is the DelegatingHandler, which executes some code and then “delegates” the call back to the inner or next handler. The HttpClientHandler is the last handler in line and sends the request to the addressee. Figure 25.1 shows the pipeline. Each DelegatingHandler added would call the next or inner handler finally ending at the HttpClientHandler-based handler.

[image: Block diagram shows HttpClient, two levels of DelegatingHandler, HttpClientHandler, and the addressee from top to bottom. Adjacent blocks are connected through SendAsync.]

Figure 25.1

Creating an HttpRequestMessage Using SendAsync

Behind the scenes, the GetAsync method of the HttpClient class invokes the SendAsync method. Instead of using the GetAsync method, you can also use the SendAsync method to send an HTTP request. With SendAsync you have even more control over defining the request. The constructor of the HttpRequestMessage class is overloaded to pass a value of the HttpMethod. The GetAsync method creates an HTTP request with HttpMethod.Get. Using HttpMethod, you can not only send GET, POST, PUT, and DELETE requests but you can also send also HEAD, OPTIONS, and TRACE. With the HttpRequestMessage object in place, you can invoke the SendAsync method with the HttpClient:

private async Task GetDataAdvancedAsync()
{
 using (var client = new HttpClient())
 {
 var request = new HttpRequestMessage(HttpMethod.Get, NorthwindUrl);

 HttpResponseMessage response = await client.SendAsync(request);
 //etc.
 }
}

NOTE This chapter only makes HTTP GET requests using the HttpClient class. The HttpClient class also allows sending HTTP POST, PUT, and DELETE requests using the PostAsync, PutAsync, and DeleteAsync methods. These methods are used in Chapter 42, “ASP.NET Web API,” where these requests are done to invoke corresponding action methods in the web service.

After the HttpRequestMessage object is created, the header and content can be supplied by using the Headers and Content properties. With the Version property, the HTTP version can be specified.

NOTE HTTP/1.0 was specified in the year 1996 followed by 1.1 just a few years later. With 1.0, the connection was always closed after the server returned the data; with 1.1, a keep-alive header was added where the client was able to put his or her wish to keep the connection alive as the client might make more requests to receive not only the HTML code, but also CSS and JavaScript files and images. After HTTP/1.1 was defined in 1999, it took 16 years until HTTP/2 was done in the year 2015. What are the advantages of version 2? HTTP/2 allows multiple concurrent requests on the same connection, header information is compressed, the client can define which of the resources is more important, and the server can send resources to the client via server push. HTTP/2 supporting server push means WebSockets will practically be obsolete as soon as HTTP/2 is supported everywhere. All the newer versions of browsers, as well as IIS running on Windows 10 and Windows Server 2016, support HTTP/2.

Using HttpClient with Windows Runtime

At the time of writing this book, the HttpClient class used with console applications and WPF doesn’t support HTTP/2. However, the HttpClient class used with the Universal Windows Platform has a different implementation that is based on features of the Windows 10 API. With this, HttpClient supports HTTP/2, and even uses this version by default.

The next code sample shows a Universal Windows app that makes an HTTP request to a link that is entered in a TextBox and shows the result, as well as giving information about the HTTP version. The following code snippet shows the XAML code, and Figure 25.2 shows the design view (code file WinAppHttpClient/MainPage.xaml):

<StackPanel Orientation="Horizontal">
 <TextBox Header="Url" Text="{x:Bind Url, Mode=TwoWay}" MinWidth="200"
 Margin="5" />
 <Button Content="Send" Click="{x:Bind OnSendRequest}" Margin="10,5,5,5"
 VerticalAlignment="Bottom" />
</StackPanel>
<TextBox Header="Version" Text="{x:Bind Version, Mode=OneWay}" Grid.Row="1"
 Margin="5" IsReadOnly="True" />
<TextBox AcceptsReturn="True" IsReadOnly="True" Text="{x:Bind Result,
 Mode=OneWay}" Grid.Row="2" ScrollViewer.HorizontalScrollBarVisibility="Auto"
 ScrollViewer.VerticalScrollBarVisibility="Auto" />

[image: Screenshot shows Networking Samples page's MainPage.xaml tab which includes textfields for entering url, version, and result and send button on right of url.]

Figure 25.2

NOTE XAML code and dependency properties are explained in Chapter 29, “Core XAML,” and compiled binding is covered in Chapter 31, “Patterns with XAML Apps.”

The properties Url, Version, and Result are implemented as dependency properties for making automatic updates to the UI. The following code snippet shows the Url property (code file WinAppHttpClient/MainPage.xaml.cs):

public string Url
{
 get { return (string)GetValue(UrlProperty); }
 set { SetValue(UrlProperty, value); }
}

public static readonly DependencyProperty UrlProperty =
 DependencyProperty.Register("Url", typeof(string), typeof(MainPage),
 new PropertyMetadata(string.Empty));

The HttpClient class is used in the OnSendRequest method. This method is invoked when clicking the Send button in the UI. As in the previous sample, the SendAsync method is used to make the HTTP request. To see that the request is indeed making a request using the HTTP/2 version, you can check the request.Version property from the debugger. The version answered from the server coming from response.Version is written to the Version property that is bound in the UI. Nowadays, most servers just support the HTTP 1.1 version. As mentioned previously, HTTP/2 is supported by Windows Server 2016:

private async void OnSendRequest()
{
 try
 {
 using (var client = new HttpClient())
 {
 var request = new HttpRequestMessage(HttpMethod.Get, Url);
 HttpResponseMessage response = await client.SendAsync(request);
 Version = response.Version.ToString();
 response.EnsureSuccessStatusCode();
 Result = await response.Content.ReadAsStringAsync();
 }
 }
 catch (Exception ex)
 {
 await new MessageDialog(ex.Message).ShowAsync();
 }
}

Running the application, you make a request to https://http2.akamai.com/demo to see HTTP/2 returned.

Working with the WebListener Class

Using Internet Information Server (IIS) as an HTTP server is usually a great approach because you have access to a lot of features, such as scalability, health monitoring, a graphical user interface for administration, and a lot more. However, you can also easily create your own simple HTTP server. Since .NET 2.0, you have been able to use the HttpListener, but now with .NET Core 1.0 there’s a new one: the WebListener class.

The sample code of the HttpServer makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	Microsoft.Net.Http.Server

	

	

	

	

	

	

Namespaces

	Microsoft.Net.Http.Server

	System

	System.Collections.Generic

	System.Linq

	System.Net

	System.Reflection

	System.Text

	System.Threading.Tasks

	static System.Console

The sample code for the HTTP server is a Console Application (Package) that allows passing a list of URL prefixes that defines where the server listens. An example of such a prefix is http://localhost:8082/samples where the server listens only to requests on port 8082 on the localhost if the path starts with samples. No matter what path follows, the server handles the request. To not only support requests from localhost, you can use the + character, such as http://+:8082/samples. This way the server is also accessible from all its hostnames. In case you are not starting Visual Studio from elevated mode, the user running the listener needs allowance. You can do this by running a command prompt in elevated mode and adding the URL using this netsh command:

>netsh http add urlacl url=http://+:8082/samples user=Everyone

The sample code checks the arguments if at least one prefix is passed and invokes the StartServer method afterward (code file HttpServer/Program.cs):

static void Main(string[] args)
{
 if (args.Length < 1)
 {
 ShowUsage();
 return;
 }
 StartServerAsync(args).Wait();
 ReadLine();
}

private static void ShowUsage()
{
 WriteLine("Usage: HttpServer Prefix [Prefix2] [Prefix3] [Prefix4]");
}

The heart of the program is the StartServer method. Here, the WebListener class is instantiated, and the prefixes as defined from the command argument list are added. Calling the Start method of the WebListener class registers the port on the system. Next, after calling the GetContextAsync method, the listener waits for a client to connect and send data. As soon as a client sends an HTTP request, the request can be read from the HttpContext object that is returned from GetContextAsync. For both the request that is coming from the client and the answer that is sent, the HttpContext object is used. The Request property returns a Request object. The Request object contains the HTTP header information. With an HTTP POST request, the Request also contains the body. The Response property returns a Response object, which allows you to return header information (using the Headers property), status code (StatusCode property), and the response body (the Body property):

public static async Task StartServerAsync(params string[] prefixes)
{
 try
 {
 WriteLine($"server starting at");
 var listener = new WebListener();
 foreach (var prefix in prefixes)
 {
 listener.UrlPrefixes.Add(prefix);
 WriteLine($"\t{prefix}");
 }

 listener.Start();

 do
 {
 using (RequestContext context = await listener.GetContextAsync())
 {
 context.Response.Headers.Add("content-type",
 new string[] {"text/html" });
 context.Response.StatusCode = (int)HttpStatusCode.OK;

 byte[] buffer = GetHtmlContent(context.Request);
 await context.Response.Body.WriteAsync(buffer, 0, buffer.Length);
 }
 } while (true);
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
}

The sample code returns an HTML file that is retrieved using the GetHtmlContent method. This method makes use of the htmlFormat format string with two placeholders in the heading and the body. The GetHtmlContent method fills in the placeholders using the string.Format method. To fill the HTML body, two helper methods are used that retrieve the header information from the request and all the property values of the Request object—GetHeaderInfo and GetRequestInfo:

private static string htmlFormat =
 "<!DOCTYPE html><html><head><title>{0}</title></head>" +
 "
<body>{1}</body></html>";

private static byte[] GetHtmlContent(Request request)
{
 string title ="Sample WebListener";

 var sb = new StringBuilder("<h1>Hello from the server</h1>");
 sb.Append("<h2>Header Info</h2>");
 sb.Append(string.Join("", GetHeaderInfo(request.Headers)));
 sb.Append("<h2>Request Object Information</h2>");
 sb.Append(string.Join("", GetRequestInfo(request)));
 string html = string.Format(htmlFormat, title, sb.ToString());
 return Encoding.UTF8.GetBytes(html);
}

The GetHeaderInfo method retrieves the keys and values from the HeaderCollection to return a div element that contains every key and value:

private static IEnumerable<string> GetHeaderInfo(HeaderCollection headers) =>
 headers.Keys.Select(key =>
 $"<div>{key}: {string.Join(",", headers.GetValues(key))}</div>");

The GetRequestInfo method makes use of reflection to get all the properties of the Request type, and returns the property names as well as its values:

private static IEnumerable<string> GetRequestInfo(Request request) =>
 request.GetType().GetProperties().Select(
 p => $"<div>{p.Name}: {p.GetValue(request)}</div>");

NOTE The GetHeaderInfo and GetRequestInfo methods make use of expression-bodied member functions, LINQ, and reflection. Expression-bodied member functions are explained in Chapter 3, “Objects and Types.” Chapter 13, “Language Integrated Query,” explains LINQ. Chapter 16, “Reflection, Metadata, and Dynamic Programming,” includes reflection as an important topic.

Running the server and using a browser such as Microsoft Edge to access the server using a URL such as http://[hostname]:8082/samples/Hello?sample=text results in output as shown in Figure 25.3.

[image: Screenshot shows sample weblistener page with title Hello from the server and includes details of header info and request object information.]

Figure 25.3

Working with Utility Classes

After dealing with HTTP requests and responses using classes that abstract the HTTP protocol like HttpClient and WebListener, let’s have a look at some utility classes that make web programming easier when dealing with URIs and IP addresses.

On the Internet, you identify servers as well as clients by IP address or host name (also referred to as a Domain Name System (DNS) name). Generally speaking, the host name is the human-friendly name that you type in a web browser window, such as www.wrox.com or www.cninnovation.com. An IP address is the identifier that computers use to recognize each other. IP addresses are the identifiers used to ensure that web requests and responses reach the appropriate machines. It is even possible for a computer to have more than one IP address.

An IP address can be a 32-bit or 128-bit value, depending on whether Internet Protocol version 4 (IPv4) or Internet Protocol version 6 (IPv6) is used. An example of a 32-bit IP address is 192.168.1.100. Because there are now so many computers and other devices vying for a spot on the Internet, IPv6 was developed. IPv6 can potentially provide a maximum number of about 3 × 1038 unique addresses. The .NET Framework enables your applications to work with both IPv4 and IPv6.

For host names to work, you must first send a network request to translate the host name into an IP address—a task that’s carried out by one or more DNS servers. A DNS server stores a table that maps host names to IP addresses for all the computers it knows about, as well as the IP addresses of other DNS servers to look up host names it does not know about. Your local computer should always know about at least one DNS server. Network administrators configure this information when a computer is set up.

Before sending out a request, your computer first asks the DNS server to give it the IP address corresponding to the host name you have typed in. When it is armed with the correct IP address, the computer can address the request and send it over the network. All this work normally happens behind the scenes while the user is browsing the web.

The .NET Framework supplies a number of classes that are able to assist with the process of looking up IP addresses and finding information about host computers.

The sample code makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	

	

Namespaces

	System

	System.Net

	static System.Console

URIs

Uri and UriBuilder are two classes in the System namespace, and both are intended to represent a URI. Uri enables you to parse, combine, and compare URIs, and UriBuilder enables you to build a URI given the strings for the component parts.

The following code snippet demonstrates features of the Uri class. The constructor allows passing relative and absolute URLs. This class defines several read-only properties to access parts of a URL such as the scheme, hostname, port number, query strings, and the segments of an URL (code file Utilities/Program.cs):

public static void UriSample(string url)
{
 var page = new Uri(url);
 WriteLine($"scheme: {page.Scheme}");
#if NET46
WriteLine($"host: {page.Host}, type: {page.HostNameType}");
#else
WriteLine($"host: {page.Host}, type: {page.HostNameType}," +
 $"idn host: {page.IdnHost}");
#endif
 WriteLine($"port: {page.Port}");
 WriteLine($"path: {page.AbsolutePath}");
 WriteLine($"query: {page.Query}");
 foreach (var segment in page.Segments)
 {
 WriteLine($"segment: {segment}");
 }

 // etc.
}

When you run the application and pass this URL and this string that contains a path and a query string http://www.amazon.com/Professional-C-6-0-Christian-Nagel/dp/111909660X/ref=sr_1_4?ie=UTF8&amqid=1438459506&sr=8-4&keywords=professional+c%23+6, you get the following output:

scheme: http
host: www.amazon.com, type: Dns
port: 80
path: /Professional-C-6-0-Christian-Nagel/dp/111909660X/ref=sr_1_4
query: ?ie=UTF8&qid=1438459506&sr=8-4&keywords=professional+c%23+6
segment: /
segment: Professional-C-6-0-Christian-Nagel/
segment: dp/
segment: 111909660X/
segment: ref=sr_1_4

Unlike the Uri class, the UriBuilder defines read-write properties, as shown in the following code snippet. You can create an UriBuilder instance, assign these properties, and get a URL returned from the Uri property:

public static void UriSample(string url)
{
 // etc.

 var builder = new UriBuilder();
 builder.Host ="www.cninnovation.com";
 builder.Port = 80;
 builder.Path ="training/MVC";
 Uri uri = builder.Uri;
 WriteLine(uri);
}

Instead of using properties with the UriBuilder, this class also offers several overloads of the constructor where the parts of an URL can be passed as well.

IPAddress

IPAddress represents an IP address. The address itself is available as a byte array using the GetAddressBytes property and may be converted to a dotted decimal format with the ToString method. IPAddress also implements static Parse and TryParse methods that effectively perform the reverse conversion of ToString—converting from a dotted decimal string to an IPAddress. The code sample also accesses the AddressFamily property and converts an IPv4 address to IPv6, and vice versa (code file Utilities/Program.cs):

public static void IPAddressSample(string ipAddressString)
{
 IPAddress address;
 if (!IPAddress.TryParse(ipAddressString, out address))
 {
 WriteLine($"cannot parse {ipAddressString}");
 return;
 }
 byte[] bytes = address.GetAddressBytes();
 for (int i = 0; i < bytes.Length; i++)
 {
 WriteLine($"byte {i}: {bytes[i]:X}");
 }
 WriteLine($"family: {address.AddressFamily}," +
 $"map to ipv6: {address.MapToIPv6()}, map to ipv4: {address.MapToIPv4()}");

 // etc.
}

Passing the address 65.52.128.33 to the method results in this output:

byte 0: 41
byte 1: 34
byte 2: 80
byte 3: 21
family: InterNetwork, map to ipv6: ::ffff:65.52.128.33, map to ipv4: 65.52.128.3
3

The IPAddress class also defines static properties to create special addresses such as loopback, broadcast, and anycast:

public static void IPAddressSample(string ipAddressString)
{
 // etc.
 WriteLine($"IPv4 loopback address: {IPAddress.Loopback}");
 WriteLine($"IPv6 loopback address: {IPAddress.IPv6Loopback}");
 WriteLine($"IPv4 broadcast address: {IPAddress.Broadcast}");
 WriteLine($"IPv4 any address: {IPAddress.Any}");
 WriteLine($"IPv6 any address: {IPAddress.IPv6Any}");
}

With a loopback address, the network hardware is bypassed. This is the IP address that represents the hostname localhost.

The broadcast address is an address that addresses every node in a local network. Such an address is not available with IPv6, as this concept is not used with the newer version of the Internet Protocol. After the initial definition of IPv4, multicasting was added for IPv6. With multicasting, a group of nodes is addressed instead of all nodes. With IPv6, multicasting completely replaces broadcasting. Both broadcast and multicast is shown in code samples later in this chapter when using UDP.

With an anycast one-to-many routing is used as well, but the data stream is only transmitted to the node closest in the network. This is useful for load balancing. With IPv4, the Border Gateway Protocol (BGP) routing protocol is used to find the shortest path in the network; with IPv6 this feature is inherent.

When you run the application, you can see the following addresses for IPv4 and IPv6:

IPv4 loopback address: 127.0.0.1
IPv6 loopback address: ::1
IPv4 broadcast address: 255.255.255.255
IPv4 any address: 0.0.0.0
IPv6 any address: ::

IPHostEntry

The IPHostEntry class encapsulates information related to a particular host computer. This class makes the host name available via the HostName property (which returns a string), and the AddressList property returns an array of IPAddress objects. You are going to use the IPHostEntry class in the next example.

Dns

The Dns class can communicate with your default DNS server to retrieve IP addresses.

The DnsLookup sample code makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Net.NameResolution

	

Namespaces

	System

	System.Net

	System.Threading.Tasks

	static System.Console

The sample application is implemented as a Console Application (package) that loops to ask the user for hostnames (you can also add an IP address instead) to get an IPHostEntry via Dns.GetHostEntryAsync. From the IPHostEntry, the address list is accessed using the AddressList property. All the addresses of the host, as well as the AddressFamily, are written to the console (code file DnsLookup/Program.cs):

static void Main()
{
 do
 {
 Write("Hostname:\t");
 string hostname = ReadLine();
 if (hostname.CompareTo("exit") == 0)
 {
 WriteLine("bye!");
 return;
 }
 OnLookupAsync(hostname).Wait();
 WriteLine();
 } while (true);
}

public static async Task OnLookupAsync(string hostname)
{
 try
 {
 IPHostEntry ipHost = await Dns.GetHostEntryAsync(hostname);
 WriteLine($"Hostname: {ipHost.HostName}");

 foreach (IPAddress address in ipHost.AddressList)
 {
 WriteLine($"Address Family: {address.AddressFamily}");
 WriteLine($"Address: {address}");
 }
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
}

Run the application and enter a few hostnames to see output such as the following. With the hostname www.orf.at, you can see that this hostname defines multiple IP addresses.

Hostname: www.cninnovation.com
Hostname: www.cninnovation.com
Address Family: InterNetwork
Address: 65.52.128.33

Hostname: www.orf.at
Hostname: www.orf.at
Address Family: InterNetwork
Address: 194.232.104.150
Address Family: InterNetwork
Address: 194.232.104.140
Address Family: InterNetwork
Address: 194.232.104.142
Address Family: InterNetwork
Address: 194.232.104.149
Address Family: InterNetwork
Address: 194.232.104.141
Address Family: InterNetwork
Address: 194.232.104.139

Hostname: exit
bye!

NOTE The Dns class is somewhat limited—for example, you can’t define to use a server that’s different than the default DNS server. Also, the Aliases property of the IPHostEntry is not populated from the method GetHostEntryAsync. It’s only populated from obsolete methods of the Dns class, and these don’t populate this property fully. For a full use of DNS lookups, it’s better to use a third-party library.

Now it’s time to move to some lower-level protocols such as TCP and UDP.

Using TCP

The HTTP protocol is based on the Transmission Control Protocol (TCP). With TCP, the client first needs to open a connection to the server before sending commands. With HTTP, textual commands are sent. The HttpClient and WebListener classes hide the details of the HTTP protocol. When you are using TCP classes and you send HTTP requests, you need to know more about the HTTP protocol. The TCP classes don’t offer functionality for the HTTP protocol; you have to do this on your own. On the other side, the TCP classes give more flexibility because you can use these classes also with other protocols based on TCP.

The TCP classes offer simple methods for connecting and sending data between two endpoints. An endpoint is the combination of an IP address and a port number. Existing protocols have well-defined port numbers—for example, HTTP uses port 80, whereas SMTP uses port 25. The Internet Assigned Numbers Authority, IANA (www.iana.org), assigns port numbers to these well-known services. Unless you are implementing a well-known service, you should select a port number higher than 1,024.

TCP traffic makes up the majority of traffic on the Internet today. It is often the protocol of choice because it offers guaranteed delivery, error correction, and buffering. The TcpClient class encapsulates a TCP connection and provides a number of properties to regulate the connection, including buffering, buffer size, and timeouts. Reading and writing is accomplished by requesting a NetworkStream object via the GetStream method.

The TcpListener class listens for incoming TCP connections with the Start method. When a connection request arrives, you can use the AcceptSocket method to return a socket for communication with the remote machine, or use the AcceptTcpClient method to use a higher-level TcpClient object for communication. The easiest way to see how the TcpListener and TcpClient classes work together is to go through some examples.

Creating an HTTP Client Using TCP

First, create a Console Application (Package) that will send an HTTP request to a web server. You’ve previously done this with the HttpClient class, but with the TcpClient class you need to take a deeper look into the HTTP protocol.

The HttpClientUsingTcp sample code makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	

	

	

Namespaces

	System

	System.IO

	System.Net.Sockets

	System.Text

	System.Threading.Tasks

	static System.Console

The application accepts one command-line argument to pass the name of the server. With this, the method RequestHtmlAsync is invoked to make an HTTP request to the server. It returns a string with the Result property of the Task (code file HttpClientUsingTcp/Program.cs):

static void Main(string[] args)
{
 if (args.Length != 1)
 {
 ShowUsage();
 }
 Task<string> t1 = RequestHtmlAsync(args[0]);
 WriteLine(t1.Result);
 ReadLine();
}

private static void ShowUsage()
{
 WriteLine("Usage: HttpClientUsingTcp hostname");
}

Now let’s look at the most important parts of the RequestHtmlAsync method. First, a TcpClient object is instantiated. Second, with the method ConnectAsync, a TCP connection to the host is made at port 80, the default port for HTTP. Third, a stream to read and write using this connection is retrieved via the GetStream method:

private const int ReadBufferSize = 1024;

public static async Task<string> RequestHtmlAsync(string hostname)
{
 try
 {
 using (var client = new TcpClient())
 {
 await client.ConnectAsync(hostname, 80);
 NetworkStream stream = client.GetStream();

 //etc.
 }
 }
}

The stream can now be used to write a request to the server and read the response. HTTP is a text-based protocol; that’s why it’s easy to define the request in a string. To make a simple request to the server, the header defines the HTTP method GET followed by the path of the URL / and the HTTP version HTTP/1.1. The second line defines the Host header with the hostname and port number, and the third line defines the Connection header. Typically, with the Connection header the client requests keep-alive to ask the server to keep the connection open as the client expects to make more requests. Here we’re just making a single request to the server, so the server should close the connection, thus close is set to the Connection header. To end the header information, you need to add an empty line to the request by using \r\n. The header information is sent with UTF-8 encoding by calling the WriteAsync method of the NetworkStream. To immediately send the buffer to the server, the FlushAsync method is invoked. Otherwise the data might be kept in the local cache:

 //etc.
 string header ="GET / HTTP/1.1\r\n" +
 $"Host: {hostname}:80\r\n" +
 "Connection: close\r\n" +
 "\r\n";
 byte[] buffer = Encoding.UTF8.GetBytes(header);
 await stream.WriteAsync(buffer, 0, buffer.Length);
 await stream.FlushAsync();

Now you can continue the process by reading the answer from the server. As you don’t know how big the answer will be, you create a MemoryStream that grows dynamically. The answer from the server is temporarily written to a byte array using the ReadAsync method, and the content of this byte array is added to the MemoryStream. After all the data is read from the server, a StreamReader takes control to read the data from the stream into a string and return it to the caller:

 var ms = new MemoryStream();
 buffer = new byte[ReadBufferSize];
 int read = 0;
 do
 {
 read = await stream.ReadAsync(buffer, 0, ReadBufferSize);
 ms.Write(buffer, 0, read);
 Array.Clear(buffer, 0, buffer.Length);
 } while (read > 0);
 ms.Seek(0, SeekOrigin.Begin);
 var reader = new StreamReader(ms);
 return reader.ReadToEnd();
 }
 }
 catch (SocketException ex)
 {
 WriteLine(ex.Message);
 return null;
 }
}

When you pass a website to the program, you see a successful request with HTML content shown in the console.

Now it’s time to create a TCP listener with a custom protocol.

Creating a TCP Listener

Creating your own protocol based on TCP needs requires some advance thought about the architecture. You can define your own binary protocol where every bit is saved on the data transfer, but it’s more complex to read; alternatively, you can use a text-based format such as HTTP or FTP. Should a session stay open or be closed with every request? Does the server need to keep state for a client, or is all the data sent with every request?

The custom server will support some simple functionality, such as echo and reverse a message that is sent. Another feature of the custom server is that the client can send state information and retrieve it again using another call. The state is stored temporarily in a session state. Although it’s a simple scenario, you get the idea of what’s needed to set this up.

The TcpServer sample code is implemented as a Console Application (Package) and makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	

	

	

	

	

	

	

Namespaces

	System

	System.Collections

	System.Collections.Concurrent

	System.Linq

	System.Net.Sockets

	System.Text

	System.Threading

	System.Threading.Tasks

	static System.Console

	static TcpServer.CustomProtocol

The custom TCP listener supports a few requests, as shown in the following table.

	Request
	Description

	HELO::v1.0
	This command needs to be sent after initiating the connection. Other commands will not be accepted.

	ECHO::message
	The ECHO command returns the message to the caller.

	REV::message
	The REV command reserves the message and returns it to the caller.

	BYE
	The BYE command closes the connection.

	SET::key=value
	The SET command sets the server-side state that can be retrieved with the GET command.

	GET::key

The first line of the request is a session-identifier prefixed by ID. This needs to be sent with every request except the HELO request. This is used as a state identifier.

All the constants of the protocol are defined in the static class CustomProtocol (code file TcpServer/CustomProtocol.cs):

public static class CustomProtocol
{
 public const string SESSIONID ="ID";
 public const string COMMANDHELO ="HELO";
 public const string COMMANDECHO ="ECO";
 public const string COMMANDREV ="REV";
 public const string COMMANDBYE ="BYE";
 public const string COMMANDSET ="SET";
 public const string COMMANDGET ="GET";

 public const string STATUSOK ="OK";
 public const string STATUSCLOSED ="CLOSED";
 public const string STATUSINVALID ="INV";
 public const string STATUSUNKNOWN ="UNK";
 public const string STATUSNOTFOUND ="NOTFOUND";
 public const string STATUSTIMEOUT ="TIMOUT";

 public const string SEPARATOR ="::";

 public static readonly TimeSpan SessionTimeout = TimeSpan.FromMinutes(2);
}

The Run method (which is invoked from the Main method) starts a timer that cleans up all the session state every minute. The major functionality of the Run method is the start of the server by invoking the method RunServerAsync (code file TcpServer/Program.cs):

static void Main()
{
 var p = new Program();
 p.Run();
}

public void Run()
{
 using (var timer = new Timer(TimerSessionCleanup, null,
 TimeSpan.FromMinutes(1), TimeSpan.FromMinutes(1)))
 {
 RunServerAsync().Wait();
 }
}

The most important part of the server regarding the TcpListener class is in the method RunServerAsync. The TcpListener is instantiated using the constructor the IP address and port number where the listener can be accessed. Calling the Start method, the listener starts listening for client connections. The AcceptTcpClientAsync waits until a client connects. As soon as a client is connected, a TcpClient instance is returned that allows communication with the client. This instance is passed to the RunClientRequest method, where the request is dealt with.

private async Task RunServerAsync()
{
 try
 {
 var listener = new TcpListener(IPAddress.Any, portNumber);
 WriteLine($"listener started at port {portNumber}");
 listener.Start();

 while (true)
 {
 WriteLine("waiting for client...");
 TcpClient client = await listener.AcceptTcpClientAsync();
 Task t = RunClientRequest(client);
 }
 }
 catch (Exception ex)
 {
 WriteLine($"Exception of type {ex.GetType().Name}, Message: {ex.Message}");
 }
}

To read and write from and to the client, the GetStream method of the TcpClient returns a NetworkStream. First you need to read the request from the client. You do this by using the ReadAsync method. The ReadAsync method fills a byte array. This byte array is converted to a string using the Encoding class. The information received is written to the console and passed to the ParseRequest helper method. Depending on the result of the ParseRequest method, an answer for the client is created and returned to the client using the WriteAsync method.

private Task RunClientRequestAsync(TcpClient client)
{
 return Task.Run(async () =>
 {
 try
 {
 using (client)
 {
 WriteLine("client connected");

 using (NetworkStream stream = client.GetStream())
 {
 bool completed = false;
 do
 {
 byte[] readBuffer = new byte[1024];
 int read = await stream.ReadAsync(
 readBuffer, 0, readBuffer.Length);
 string request = Encoding.ASCII.GetString(readBuffer, 0, read);
 WriteLine($"received {request}");

 string sessionId;
 string result;
 byte[] writeBuffer = null;
 string response = string.Empty;

 ParseResponse resp = ParseRequest(
 request, out sessionId, out result);
 switch (resp)
 {
 case ParseResponse.OK:
 string content = $"{STATUSOK}::{SESSIONID}::{sessionId}";
 if (!string.IsNullOrEmpty(result))
 {
 content += $"{SEPARATOR}{result}";
 }
 response = $"{STATUSOK}{SEPARATOR}{SESSIONID}{SEPARATOR}" +
 $"{sessionId}{SEPARATOR}{content}";
 break;
 case ParseResponse.CLOSE:
 response = $"{STATUSCLOSED}";
 completed = true;
 break;
 case ParseResponse.TIMEOUT:
 response = $"{STATUSTIMEOUT}";
 break;
 case ParseResponse.ERROR:
 response = $"{STATUSINVALID}";
 break;
 default:
 break;
 }
 writeBuffer = Encoding.ASCII.GetBytes(response);
 await stream.WriteAsync(writeBuffer, 0, writeBuffer.Length);
 await stream.FlushAsync();
 WriteLine($"returned {Encoding.ASCII.GetString(
 writeBuffer, 0, writeBuffer.Length)}");
 } while (!completed);
 }
 }
 }
 catch (Exception ex)
 {
 WriteLine($"Exception in client request handling" +
 "of type {ex.GetType().Name}, Message: {ex.Message}");
 }
 WriteLine("client disconnected");
 });
}

The ParseRequest method parses the request and filters out the session identifier. The first call to the server (HELO) is the only call where a session identifier is not passed from the client; here it is created using the SessionManager. With the second and later requests, requestColl[0] must contain ID, and requestColl[1] must contain the session identifier. Using this identifier, the TouchSession method updates the current time of the session identifier if the session is still valid. If it is not valid, a timeout is returned. For the functionality of the service, the ProcessRequest method is invoked:

private ParseResponse ParseRequest(string request, out string sessionId,
 out string response)
{
 sessionId = string.Empty;
 response = string.Empty;
 string[] requestColl = request.Split(
 new string[] { SEPARATOR }, StringSplitOptions.RemoveEmptyEntries);

 if (requestColl[0] == COMMANDHELO) // first request
 {
 sessionId = _sessionManager.CreateSession();
 }
 else if (requestColl[0] == SESSIONID) // any other valid request
 {
 sessionId = requestColl[1];

 if (!_sessionManager.TouchSession(sessionId))
 {
 return ParseResponse.TIMEOUT;
 }

 if (requestColl[2] == COMMANDBYE)
 {
 return ParseResponse.CLOSE;
 }
 if (requestColl.Length >= 4)
 {
 response = ProcessRequest(requestColl);
 }
 }
 else
 {
 return ParseResponse.ERROR;
 }
 return ParseResponse.OK;
}

The ProcessRequest method contains a switch statement to handle the different requests. This method in turn makes use of the CommandActions class to echo or reverse the message received. To store and retrieve the session state, the SessionManager is used:

private string ProcessRequest(string[] requestColl)
{
 if (requestColl.Length < 4)
 throw new ArgumentException("invalid length requestColl");

 string sessionId = requestColl[1];
 string response = string.Empty;
 string requestCommand = requestColl[2];
 string requestAction = requestColl[3];

 switch (requestCommand)
 {
 case COMMANDECHO:
 response = _commandActions.Echo(requestAction);
 break;
 case COMMANDREV:
 response = _commandActions.Reverse(requestAction);
 break;
 case COMMANDSET:
 response = _sessionManager.ParseSessionData(sessionId, requestAction);
 break;
 case COMMANDGET:
 response = $"{_sessionManager.GetSessionData(sessionId, requestAction)}";
 break;
 default:
 response = STATUSUNKNOWN;
 break;
 }
 return response;
}

The CommandActions class defines simple methods Echo and Reverse that return the action string or return the string reversed (code file TcpServer/CommandActions.cs):

public class CommandActions
{
 public string Reverse(string action) => string.Join("", action.Reverse());

 public string Echo(string action) => action;
}

After checking the main functionality of the server with the Echo and Reverse methods, it’s time to get into the session management. What’s needed on the server is an identifier and the time the session was last accessed for the purpose of removing the oldest sessions (code file TcpServer/SessionManager.cs):

public struct Session
{
 public string SessionId { get; set; }
 public DateTime LastAccessTime { get; set; }
}

The SessionManager contains thread-safe dictionaries that store all sessions and session data. When you’re using multiple clients, the dictionaries can be accessed from multiple threads simultaneously. That’s why thread-safe dictionaries from the namespace System.Collections.Concurrent are used. The CreateSession method creates a new session and adds it to the _sessions dictionary:

public class SessionManager
{
 private readonly ConcurrentDictionary<string, Session> _sessions =
 new ConcurrentDictionary<string, Session>();
 private readonly ConcurrentDictionary<string, Dictionary<string, string>>
 _sessionData =
 new ConcurrentDictionary<string, Dictionary<string, string>>();

 public string CreateSession()
 {
 string sessionId = Guid.NewGuid().ToString();
 if (_sessions.TryAdd(sessionId,
 new Session
 {
 SessionId = sessionId,
 LastAccessTime = DateTime.UtcNow
 }))
 {
 return sessionId;
 }
 else
 {
 return string.Empty;
 }
 }
 //...
}

The CleanupAllSessions method is called every minute from a timer thread to remove all sessions that haven’t been used recently. This method in turn invokes CleanupSession, which removes a single session. CleanupSession is also invoked when the client sends the BYE message:

public void CleanupAllSessions()
{
 foreach (var session in _sessions)
 {
 if (session.Value.LastAccessTime + SessionTimeout >= DateTime.UtcNow)
 {
 CleanupSession(session.Key);
 }
 }
}

public void CleanupSession(string sessionId)
{
 Dictionary<string, string> removed;
 if (_sessionData.TryRemove(sessionId, out removed))
 {
 WriteLine($"removed {sessionId} from session data");
 }
 Session header;
 if (_sessions.TryRemove(sessionId, out header))
 {
 WriteLine($"removed {sessionId} from sessions");
 }
}

The TouchSession method updates the LastAccessTime of the session, and returns false if the session is no longer valid:

public bool TouchSession(string sessionId)
{
 Session oldHeader;
 if (!_sessions.TryGetValue(sessionId, out oldHeader))
 {
 return false;
 }

 Session updatedHeader = oldHeader;
 updatedHeader.LastAccessTime = DateTime.UtcNow;
 _sessions.TryUpdate(sessionId, updatedHeader, oldHeader);
 return true;
}

For setting session data, the request needs to be parsed. The action that is received for session data contains key and value separated by the equal sign, such as x=42. This is parsed from the ParseSessionData method, which in turn calls the SetSessionData method:

public string ParseSessionData(string sessionId, string requestAction)
{
 string[] sessionData = requestAction.Split('=');
 if (sessionData.Length != 2) return STATUSUNKNOWN;
 string key = sessionData[0];
 string value = sessionData[1];
 SetSessionData(sessionId, key, value);
 return $"{key}={value}";
}

SetSessionData either adds or updates the session state in the dictionary. The GetSessionData retrieves the value, or returns NOTFOUND:

public void SetSessionData(string sessionId, string key, string value)
{
 Dictionary<string, string> data;
 if (!_sessionData.TryGetValue(sessionId, out data))
 {
 data = new Dictionary<string, string>();
 data.Add(key, value);
 _sessionData.TryAdd(sessionId, data);
 }
 else
 {
 string val;
 if (data.TryGetValue(key, out val))
 {
 data.Remove(key);
 }
 data.Add(key, value);
 }
}

public string GetSessionData(string sessionId, string key)
{
 Dictionary<string, string> data;
 if (_sessionData.TryGetValue(sessionId, out data))
 {
 string value;
 if (data.TryGetValue(key, out value))
 {
 return value;
 }
 }
 return STATUSNOTFOUND;
}

After compiling the listener, you can start the program. Now you need a client to connect to the server.

Creating a TCP Client

The client for the example is a WPF desktop application with the name WPFAppTCPClient. This application allows connecting to the TCP server as well as sending all the different commands that are supported by the custom protocol.

NOTE At the time of writing this book, the TcpClient class is not available with Windows apps. You could instead use socket classes, which are covered later in this chapter, to access this TCP server.

The user interface of the application is shown in Figure 25.4. The left-upper part allows connecting to the server. In the top-right part, a ComboBox lists all commands, and the Send button sends the command to the server. In the middle section, the session identifier and the status of the request sent will be shown. The controls in the lower part show the information received from the server and allow you to clear this information.

[image: Screenshot shows TCP client page which include textfields for localhost address, session id, status of the request, and information received, connect, send, and clear log buttons and HELO chosen from the list of commands.]

Figure 25.4

The classes CustomProtocolCommand and CustomProtocolCommands are used for data binding in the user interface. With CustomProtocolCommand, the Name property shows the name of the command while the Action property is the data that is entered by the user to send with the command. The class CustomProtocolCommands contains a list of the commands that are bound to the ComboBox (code file WPFAppTcpClient/CustomProtocolCommands.cs):

public class CustomProtocolCommand
{
 public CustomProtocolCommand(string name)
 : this(name, null)
 {
 }

 public CustomProtocolCommand(string name, string action)
 {
 Name = name;
 Action = action;
 }

 public string Name { get; }
 public string Action { get; set; }

 public override string ToString() => Name;
}

public class CustomProtocolCommands : IEnumerable<CustomProtocolCommand>
{
 private readonly List<CustomProtocolCommand> _commands =
 new List<CustomProtocolCommand>();

 public CustomProtocolCommands()
 {
 string[] commands = {"HELO","BYE","SET","GET","ECO","REV" };
 foreach (var command in commands)
 {
 _commands.Add(new CustomProtocolCommand(command));
 }
 _commands.Single(c => c.Name =="HELO").Action ="v1.0";
 }

 public IEnumerator<CustomProtocolCommand> GetEnumerator() =>
 _commands.GetEnumerator();

 IEnumerator IEnumerable.GetEnumerator() => _commands.GetEnumerator();
}

The class MainWindow contains properties that are bound to the XAML code and methods that are invoked based on user interactions. This class creates an instance of the TcpClient class and several properties that are bound to the user interface.

public partial class MainWindow : Window, INotifyPropertyChanged, IDisposable
{
 private TcpClient _client = new TcpClient();
 private readonly CustomProtocolCommands _commands =
 new CustomProtocolCommands();

 public MainWindow()
 {
 InitializeComponent();
 }

 private string _remoteHost ="localhost";
 public string RemoteHost
 {
 get { return _remoteHost; }
 set { SetProperty(ref _remoteHost, value); }
 }

 private int _serverPort = 8800;
 public int ServerPort
 {
 get { return _serverPort; }
 set { SetProperty(ref _serverPort, value); }
 }

 private string _sessionId;
 public string SessionId
 {
 get { return _sessionId; }
 set { SetProperty(ref _sessionId, value); }
 }

 private CustomProtocolCommand _activeCommand;
 public CustomProtocolCommand ActiveCommand
 {
 get { return _activeCommand; }
 set { SetProperty(ref _activeCommand, value); }
 }

 private string _log;
 public string Log
 {
 get { return _log; }
 set { SetProperty(ref _log, value); }
 }

 private string _status;
 public string Status
 {
 get { return _status; }
 set { SetProperty(ref _status, value); }
 }
 //...
}

The method OnConnect is called when the user clicks the Connect button. The connection to the TCP server is made, invoking the ConnectAsync method of the TcpClient class. In case the connection is in a stale mode, and the OnConnect method is invoked once more, a SocketException is thrown where the ErrorCode is set to 0x2748. A C# 6 exception filter is used here to handle this case of the SocketException and create a new TcpClient, so invoking OnConnect once more likely succeeds:

private async void OnConnect(object sender, RoutedEventArgs e)
{
 try
 {
 await _client.ConnectAsync(RemoteHost, ServerPort);
 }
 catch (SocketException ex) when (ex.ErrorCode == 0x2748)
 {
 _client.Close();
 _client = new TcpClient();
 MessageBox.Show("please retry connect");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

Sending requests to the TCP server is handled by the method OnSendCommand. The code here is very similar to the sending and receiving code on the server. The GetStream method returns a NetworkStream, and this is used to write (WriteAsync) data to the server and read (ReadAsync) data from the server:

private async void OnSendCommand(object sender, RoutedEventArgs e)
{
 try
 {
 if (!VerifyIsConnected()) return;
 NetworkStream stream = _client.GetStream();
 byte[] writeBuffer = Encoding.ASCII.GetBytes(GetCommand());
 await stream.WriteAsync(writeBuffer, 0, writeBuffer.Length);
 await stream.FlushAsync();
 byte[] readBuffer = new byte[1024];
 int read = await stream.ReadAsync(readBuffer, 0, readBuffer.Length);
 string messageRead = Encoding.ASCII.GetString(readBuffer, 0, read);
 Log += messageRead + Environment.NewLine;
 ParseMessage(messageRead);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

To build up the data that can be sent to the server, the GetCommand method is invoked from within OnSendCommand. GetCommand in turn invokes the method GetSessionHeader to build up the session identifier, and then takes the ActiveCommand property (of type CustomProtocolCommand) that contains the selected command name and the entered data:

private string GetCommand() =>
 $"{GetSessionHeader()}{ActiveCommand?.Name}::{ActiveCommand?.Action}";

private string GetSessionHeader()
{
 if (string.IsNullOrEmpty(SessionId)) return string.Empty;
 return $"ID::{SessionId}::";
}

The ParseMessage method is used after the data is received from the server. This method splits up the message to set the Status and SessionId properties:

private void ParseMessage(string message)
{
 if (string.IsNullOrEmpty(message)) return;

 string[] messageColl = message.Split(
 new string[] {"::" }, StringSplitOptions.RemoveEmptyEntries);
 Status = messageColl[0];
 SessionId = GetSessionId(messageColl);
}

When you run the application, you can connect to the server, select commands, set values for echo and reverse returns, and see all the messages coming from the server, as shown in Figure 25.5

[image: Screenshot shows TCP client page which includes textfields for localhost address, session id, status of the request, and information received, connect, send, and clear log buttons and GET is chosen from the list of commands.]

Figure 25.5

TCP vs. UDP

The next protocol covered is UDP (User Datagram Protocol). UDP is a simple protocol with little overhead. Before sending and receiving data with TCP, a connection needs to be made. This is not necessary with UDP. With UDP, just start sending or receiving. Of course, that means that UDP has less overhead than TCP, but it is also more unreliable. When you send data with UDP, you don’t get information when this data is received. UDP is often used for situations in which the speed and performance requirements outweigh the reliability requirements—for example, video streaming. UDP also offers broadcasting messages to a group of nodes. On the other hand, TCP offers a number of features to confirm the delivery of data. TCP provides error correction and retransmission in the case of lost or corrupted packets. Last, but hardly least, TCP buffers incoming and outgoing data and guarantees that a sequence of packets scrambled in transmission is reassembled before delivery to the application. Even with the extra overhead, TCP is the most widely used protocol across the Internet because of its high reliability.

Using UDP

To demonstrate UDP, you create two Console Application (Package) projects that show various features of UDP: directly sending data to a host, broadcasting data to all hosts on the local network, and multicasting data to a group of nodes that belong to the same group.

The UdpSender and UdpReceiver projects use the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Net.NameResolution

	

	

	

	

	

	

	

Namespaces

	System

	System.Linq

	System.Net

	System.Net.Sockets

	System.Text

	System.Threading.Tasks

	static System.Console

Building a UDP Receiver

Start with the receiving application. This application makes use of command-line arguments where you can control the different features of the application. A command-line argument that is required is -p, which specifies the port number where the receiver is available to receive data. An optional argument is -g with a group address for multicasting. The ParseCommandLine method parses the command-line arguments and puts the results into the variables port and groupAddress (code file UdpReceiver/Program.cs):

static void Main(string[] args)
{
 int port;
 string groupAddress;
 if (!ParseCommandLine(args, out port, out groupAddress))
 {
 ShowUsage();
 return;
 }
 ReaderAsync(port, groupAddress).Wait();
 ReadLine();
}

private static void ShowUsage()
{
 WriteLine("Usage: UdpReceiver -p port [-g groupaddress]");
}

The Reader method creates a UdpClient object with the port number that’s passed in the program arguments. The ReceiveAsync method waits until some data arrives. This data can be found with the UdpReceiveResult with the Buffer property. After the data is encoded to a string, it’s written to the console to continue the loop and wait for the next data to receive:

private static async Task ReaderAsync(int port, string groupAddress)
{
 using (var client = new UdpClient(port))
 {
 if (groupAddress != null)
 {
 client.JoinMulticastGroup(IPAddress.Parse(groupAddress));
 WriteLine(
 $"joining the multicast group {IPAddress.Parse(groupAddress)}");
 }

 bool completed = false;
 do
 {
 WriteLine("starting the receiver");
 UdpReceiveResult result = await client.ReceiveAsync();
 byte[] datagram = result.Buffer;
 string received = Encoding.UTF8.GetString(datagram);
 WriteLine($"received {received}");
 if (received =="bye")
 {
 completed = true;
 }
 } while (!completed);
 WriteLine("receiver closing");

 if (groupAddress != null)
 {
 client.DropMulticastGroup(IPAddress.Parse(groupAddress));
 }
 }
}

When you start the application, it waits for a sender to send data. For the time being, ignore the multicast group and just use the argument with the port number because multicasting is discussed after you create the sender.

Creating a UDP Sender

The UDP sender application also enables you to configure it by passing command-line options. It has more options than the receiving application. Besides the command-line argument -p to specify the port number, the sender allows -b for a broadcast to all nodes in the local network, -h to identify a specific host, -g to specify a group, and -ipv6 to indicate that IPv6 should be used instead of IPv4 (code file UdpSender/Program.cs):

static void Main(string[] args)
{
 int port;
 string hostname;
 bool broadcast;
 string groupAddress;
 bool ipv6;
 if (!ParseCommandLine(args, out port, out hostname, out broadcast,
 out groupAddress, out ipv6))
 {
 ShowUsage();
 ReadLine();
 return;
 }
 IPEndpoint endpoint = GetIPEndPoint(port, hostname, broadcast,
 groupAddress, ipv6).Result;
 Sender(endpoint, broadcast, groupAddress).Wait();
 WriteLine("Press return to exit...");
 ReadLine();
}

private static void ShowUsage()
{
 WriteLine("Usage: UdpSender -p port [-g groupaddress | -b | -h hostname]" +
 "[-ipv6]");
 WriteLine("\t-p port number\tEnter a port number for the sender");
 WriteLine("\t-g group address\tGroup address in the range 224.0.0.0" +
 "to 239.255.255.255");
 WriteLine("\t-b\tFor a broadcast");
 WriteLine("\t-h hostname\tUse the hostname option if the message should" +
 "be sent to a single host");
}

To send data, you need an IPEndPoint. Depending on the program arguments, you create this in different ways. With a broadcast, IPv4 defines the address 255.255.255.255 that is returned from IPAddress.Broadcast. There’s no IPv6 address for broadcast because IPv6 doesn’t support broadcasts. IPv6’s replacement for broadcasts are multicasts. Multicasts have been added to IPv4 as well. When you’re passing a hostname, the hostname is resolved using DNS lookup using the Dns class. The method GetHostEntryAsync returns an IPHostEntry where the IPAddress can be retrieved from the AddressList property. Depending on whether IPv4 or IPv6 is used, a different IPAddress is taken from this list. Depending on your network environment, only one of these address types might work. If a group address is passed to the method, the address is parsed using IPAddress.Parse:

public static async Task<IPEndPoint> GetIPEndPoint(int port, string hostName,
 bool broadcast, string groupAddress, bool ipv6)
{
 IPEndPoint endpoint = null;
 try
 {
 if (broadcast)
 {
 endpoint = new IPEndPoint(IPAddress.Broadcast, port);
 }
 else if (hostName != null)
 {
 IPHostEntry hostEntry = await Dns.GetHostEntryAsync(hostName);
 IPAddress address = null;
 if (ipv6)
 {
 address = hostEntry.AddressList.Where(
 a => a.AddressFamily == AddressFamily.InterNetworkV6)
 .FirstOrDefault();
 }
 else
 {
 address = hostEntry.AddressList.Where(
 a => a.AddressFamily == AddressFamily.InterNetwork)
 .FirstOrDefault();
 }

 if (address == null)
 {
 Func<string> ipversion = () => ipv6 ?"IPv6" :"IPv4";
 WriteLine($"no {ipversion()} address for {hostName}");
 return null;
 }
 endpoint = new IPEndPoint(address, port);
 }
 else if (groupAddress != null)
 {
 endpoint = new IPEndPoint(IPAddress.Parse(groupAddress), port);
 }
 else
 {
 throw new InvalidOperationException($"{nameof(hostName)},"
 +"{nameof(broadcast)}, or {nameof(groupAddress)} must be set");
 }
 }
 catch (SocketException ex)
 {
 WriteLine(ex.Message);
 }
 return endpoint;
}

Now, regarding the UDP protocol, the most important part of the sender follows. After creating a UdpClient instance and converting a string to a byte array, data is sent using the SendAsync method. Note that neither the receiver needs to listen nor the sender needs to connect. UDP is really simple. However, in a case in which the sender sends the data to nowhere—nobody receives the data—you also don’t get any error messages:

private async Task Sender(IPEndpoint endpoint, bool broadcast,
 string groupAddress)
{
 try
 {
 string localhost = Dns.GetHostName();
 using (var client = new UdpClient())
 {
 client.EnableBroadcast = broadcast;
 if (groupAddress != null)
 {
 client.JoinMulticastGroup(IPAddress.Parse(groupAddress));
 }

 bool completed = false;
 do
 {
 WriteLine("Enter a message or bye to exit");
 string input = ReadLine();
 WriteLine();
 completed = input =="bye";
 byte[] datagram = Encoding.UTF8.GetBytes($"{input} from {localhost}");
 int sent = await client.SendAsync(datagram, datagram.Length, endpoint);
 } while (!completed);

 if (groupAddress != null)
 {
 client.DropMulticastGroup(IPAddress.Parse(groupAddress));
 }
 }
 }
 catch (SocketException ex)
 {
 WriteLine(ex.Message);
 }
}

Now you can start the receiver with this option:

-p 9400

and the sender with this option:

-p 9400 -h localhost

You can enter data in the sender that will arrive in the receiver. If you stop the receiver, you can go on sending without detecting any error. You can also try to use a hostname instead of localhost and run the receiver on a different system.

With the sender, you can add the -b option and remove the hostname to send a broadcast to all nodes listening to port 9400 on the same network:

-p 9400 -b

Be aware that broadcasts don’t cross most routers, and of course you can’t use broadcasts on the Internet. This situation is different with multicasts, discussed next.

Using Multicasts

Broadcasts don’t cross routers, but multicasts can. Multicasts have been invented to send messages to a group of systems—all nodes that belong to the same group. With IPv4, specific IP addresses are reserved for multicast use. The addresses start with 224.0.0.0 to 239.255.255.253. Many of these addresses are reserved for specific protocols—for example, for routers—but 239.0.0.0/8 can be used privately within an organization. This is very similar to IPv6, which has well-known IPv6 multicast addresses for different routing protocols. Addresses f::/16 are local within an organization; addresses ffxe::/16 have global scope and can be routed over public Internet.

For a sender or receiver to use multicasts, it must join a multicast group by invoking the JoinMulticastGroup method of the UdpClient:

client.JoinMulticastGroup(IPAddress.Parse(groupAddress));

To leave the group again, you can invoke the method DropMulticastGroup:

client.DropMulticastGroup(IPAddress.Parse(groupAddress));

When you start both the receiver and sender with these options,

-p 9400 -g 230.0.0.1

they both belong to the same group, and multicasting is in action. As with broadcasting, you can start multiple receivers and multiple senders. The receivers will receive nearly all messages from each receiver.

Using Sockets

The HTTP protocol is based on TCP, and thus the HttpXX classes offered an abstraction layer over the TcpXX classes. The TcpXX classes, however, give you more control. You can even get more control than offered by the TcpXX or UdpXX classes with sockets. With sockets, you can use different protocols, not only protocols based on TCP or UDP, and also create your own protocol. What might be even more important is that you can have more control over TCP- or UDP-based protocols.

The SocketServerSender and SocketClient projects are implemented as Console Application (Package) and use these dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Net.NameResolution

	

	

	

	

	

	

	

	

Namespaces

	System

	System.Linq

	System.IO

	System.Net

	System.Net.Sockets

	System.Text

	System.Threading

	System.Threading.Tasks

	static System.Console

Creating a Listener Using Sockets

Let’s start with a server that listens to incoming requests. The server requires a port number that is expected with the program arguments. With this, it invokes the Listener method (code file SocketServer/Program.cs):

static void Main(string[] args)
{
 if (args.Length != 1)
 {
 ShowUsage();
 return;
 }
 int port;
 if (!int.TryParse(args[0], out port))
 {
 ShowUsage();
 return;
 }
 Listener(port);
 ReadLine();
}

private void ShowUsage()
{
 WriteLine("SocketServer port");
}

The most important code with regard to sockets is in the following code snippet. The listener creates a new Socket object. With the constructor, the AddressFamily, SocketType, and ProtocolType are supplied. The AddressFamily is a large enumeration that offers many different networks. Examples are DECnet, which was released 1975 by Digital Equipment and used as main network communication between PDP-11 systems; Banyan VINES, which was used to connect client machines; and, of course, InetnetWork for IPv4 and InternetWorkV6 for IPv6. As mentioned previously, you can use sockets for a large number of networking protocols. The second parameter SocketType specifies the kind of socket. Examples are Stream for TCP, Dgram for UDP, or Raw for raw sockets. The third parameter is an enumeration for the ProtocolType. Examples are IP, Ucmp, Udp, IPv6, and Raw. The settings you choose need to match. For example, using TCP with IPv4, the address family must be InterNetwork, the socket type Stream, and the protocol type Tcp. To create a UDP communication with IPv4, the address family needs to be set to InterNetwork, the socket type Dgram, and the protocol type Udp.

public static void Listener(int port)
{
 var listener = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
 ProtocolType.Tcp);
 listener.ReceiveTimeout = 5000; // receive timout 5 seconds
 listener.SendTimeout = 5000; // send timeout 5 seconds
 // etc.

The listener socket returned from the constructor is bound to an IP address and port numbers. With the sample code, the listener is bound to all local IPv4 addresses and the port number is specified with the argument. Calling the Listen method starts the listening mode of the socket. The socket can now accept incoming connection requests. Specifying the parameter with the Listen method defines the size of the backlog queue—how many clients can connect concurrently before their connection is dealt with:

public static void Listener(int port)
{
 // etc.
 listener.Bind(new IPEndPoint(IPAddress.Any, port));
 listener.Listen(backlog: 15);

 WriteLine($"listener started on port {port}");
 // etc.

Waiting for the client to connect happens in the Accept method of the Socket class. This method blocks the thread until a client connects. After a client connects, this method needs to be invoked again to fulfill requests of other clients; this is why this method is called within a while loop. For the listening, a separate task, which can be canceled from the calling thread, is started. The task to read and write using the socket happens within the method CommunicateWithClientUsingSocketAsync. This method receives the Socket instance that is bound to the client to read and write:

public static void Listener(int port)
{
 // etc.
 var cts = new CancellationTokenSource();

 var tf = new TaskFactory(TaskCreationOptions.LongRunning,
 TaskContinuationOptions.None);
 tf.StartNew(() => // listener task
 {
 WriteLine("listener task started");
 while (true)
 {
 if (cts.Token.IsCancellationRequested)
 {
 cts.Token.ThrowIfCancellationRequested();
 break;
 }
 WriteLine("waiting for accept");
 Socket client = listener.Accept();
 if (!client.Connected)
 {
 WriteLine("not connected");
 continue;
 }
 WriteLine($"client connected local address" +
 $"{((IPEndPoint)client.LocalEndPoint).Address} and port" +
 $"{((IPEndPoint)client.LocalEndPoint).Port}, remote address" +
 $"{((IPEndPoint)client.RemoteEndPoint).Address} and port" +
 $"{((IPEndPoint)client.RemoteEndPoint).Port}");

 Task t = CommunicateWithClientUsingSocketAsync(client);
 }
 listener.Dispose();
 WriteLine("Listener task closing");
 }, cts.Token);

 WriteLine("Press return to exit");
 ReadLine();
 cts.Cancel();
}

For the communication with the client, a new task is created. This frees the listener task to immediately make the next iteration to wait for the next client connection. The Receive method of the Socket class accepts a buffer where data can be read to as well as flags for the socket. This byte array is converted to a string and sent back to the client with a small change using the Send method:

private static Task CommunicateWithClientUsingSocketAsync(Socket socket)
{
 return Task.Run(() =>
 {
 try
 {
 using (socket)
 {
 bool completed = false;
 do
 {
 byte[] readBuffer = new byte[1024];
 int read = socket.Receive(readBuffer, 0, 1024, SocketFlags.None);
 string fromClient = Encoding.UTF8.GetString(readBuffer, 0, read);
 WriteLine($"read {read} bytes: {fromClient}");
 if (string.Compare(fromClient,"shutdown", ignoreCase: true) == 0)
 {
 completed = true;
 }
 byte[] writeBuffer = Encoding.UTF8.GetBytes($"echo {fromClient}");
 int send = socket.Send(writeBuffer);
 WriteLine($"sent {send} bytes");
 } while (!completed);
 }
 WriteLine("closed stream and client socket");
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
 });
}

The server is ready as it is. However, let’s look at different ways to make the read and write communication by extending the abstraction level.

Using NetworkStream with Sockets

You’ve already used the NetworkStream class with the TcpClient and TcpListener classes. The NetworkStream constructor allows passing a Socket, so you can use the Stream methods Read and Write instead of socket’s Send and Receive methods. With the constructor of the NetworkStream you can define whether the stream should own the socket. If—as in this code snippet—the stream owns the socket, the socket will be closed when the stream is closed (code file SocketServer/Program.cs):

private static async Task CommunicateWithClientUsingNetworkStreamAsync(
 Socket socket)
{
 try
 {
 using (var stream = new NetworkStream(socket, ownsSocket: true))
 {
 bool completed = false;
 do
 {
 byte[] readBuffer = new byte[1024];
 int read = await stream.ReadAsync(readBuffer, 0, 1024);
 string fromClient = Encoding.UTF8.GetString(readBuffer, 0, read);
 WriteLine($"read {read} bytes: {fromClient}");
 if (string.Compare(fromClient,"shutdown", ignoreCase: true) == 0)
 {
 completed = true;
 }
 byte[] writeBuffer = Encoding.UTF8.GetBytes($"echo {fromClient}");

 await stream.WriteAsync(writeBuffer, 0, writeBuffer.Length);

 } while (!completed);
 }
 WriteLine("closed stream and client socket");
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
}

To use this method in the code sample, you need to change the Listener method to invoke the method CommunicateWithClientUsingNetworkStreamAsync instead of the method CommunicateWithClientUsingSocketAsync.

Using Readers and Writers with Sockets

Let’s add one more abstraction layer. Because the NetworkStream derives from the Stream class, you can also use readers and writers to access the socket. What you need to pay attention to is the lifetime of the readers and writers. Calling the Dispose method of a reader or writer also disposes the underlying stream. That’s why a constructor of the StreamReader and StreamWriter was selected where the leaveOption argument can be set to true. With this in place, the underlying stream is not disposed on disposing the readers and writers. The NetworkStream is disposed on the end of the outer using statement, and this in turn closes the socket because here the socket is owned. There’s another aspect that you need to be aware of when using writers with sockets: By default the writer doesn’t flush the data, so they are kept in the cache until the cache is full. Using network streams, you might need to get an answer faster. Here you can set the AutoFlush property to true (an alternative would be to invoke the FlushAsync method):

public static async Task CommunicateWithClientUsingReadersAndWritersAsync(
 Socket socket)
{
 try
 {
 using (var stream = new NetworkStream(socket, ownsSocket: true))
 using (var reader = new StreamReader(stream, Encoding.UTF8, false,
 8192, leaveOpen: true))
 using (var writer = new StreamWriter(stream, Encoding.UTF8,
 8192, leaveOpen: true))
 {
 writer.AutoFlush = true;

 bool completed = false;
 do
 {
 string fromClient = await reader.ReadLineAsync();
 WriteLine($"read {fromClient}");
 if (string.Compare(fromClient,"shutdown", ignoreCase: true) == 0)
 {
 completed = true;
 }

 await writer.WriteLineAsync($"echo {fromClient}");

 } while (!completed);
 }
 WriteLine("closed stream and client socket");
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
}

To use this method in the code sample, you need to change the Listener method to invoke the method CommunicateWithClientUsingReadersAndWritersAsync instead of the method CommunicateWithClientUsingSocketAsync.

NOTE Streams, readers, and writers are explained in detail in Chapter 23.

Implementing a Receiver Using Sockets

The receiver application SocketClient is implemented as a Console Application (Package) as well. With the command-line arguments, the hostname and the port number of the server need to be passed. With a successful command-line parsing, the method SendAndReceive is invoked to communicate with the server (code file SocketClient/Program.cs):

static void Main(string[] args)
{
 if (args.Length != 2)
 {
 ShowUsage();
 return;
 }
 string hostName = args[0];
 int port;
 if (!int.TryParse(args[1], out port))
 {
 ShowUsage();
 return;
 }
 WriteLine("press return when the server is started");
 ReadLine();
 SendAndReceive(hostName, port).Wait();
 ReadLine();
}

private static void ShowUsage()
{
 WriteLine("Usage: SocketClient server port");
}

The SendAndReceive method uses DNS name resolution to get the IPHostEntry from the hostname. This IPHostEntry is used to get an IPv4 address of the host. After the Socket instance is created (in the same way it was created for the server code), the address is used with the Connect method to make a connection to the server. After the connection was done, the methods Sender and Receiver are invoked that create different tasks, which enables you to run these methods concurrently. The receiver client can simultaneously read and write from and to the server:

public static async Task SendAndReceive(string hostName, int port)
{
 try
 {
 IPHostEntry ipHost = await Dns.GetHostEntryAsync(hostName);
 IPAddress ipAddress = ipHost.AddressList.Where(
 address => address.AddressFamily == AddressFamily.InterNetwork).First();
 if (ipAddress == null)
 {
 WriteLine("no IPv4 address");
 return;
 }

 using (var client = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp))
 {
 client.Connect(ipAddress, port);
 WriteLine("client successfully connected");
 var stream = new NetworkStream(client);
 var cts = new CancellationTokenSource();

 Task tSender = Sender(stream, cts);
 Task tReceiver = Receiver(stream, cts.Token);
 await Task.WhenAll(tSender, tReceiver);
 }
 }
 catch (SocketException ex)
 {
 WriteLine(ex.Message);
 }
}

NOTE If you change the filtering of the address list to get an IPv6 address instead of a IPv4 address, you also need to change the Socket invocation to create a socket for the IPv6 address family.

The Sender method asks the user for input and sends this data to the network stream with the WriteAsync method. The Receiver method receives data from the stream with the ReadAsync method. After the user enters the termination string, cancellation is sent from the Sender task via a CancellationToken:

public static async Task Sender(NetworkStream stream,
 CancellationTokenSource cts)
{
 WriteLine("Sender task");
 while (true)
 {
 WriteLine("enter a string to send, shutdown to exit");
 string line = ReadLine();
 byte[] buffer = Encoding.UTF8.GetBytes($"{line}\r\n");
 await stream.WriteAsync(buffer, 0, buffer.Length);
 await stream.FlushAsync();
 if (string.Compare(line,"shutdown", ignoreCase: true) == 0)
 {
 cts.Cancel();
 WriteLine("sender task closes");
 break;
 }
 }
}

private const int ReadBufferSize = 1024;

public static async Task Receiver(NetworkStream stream,
 CancellationToken token)
{
 try
 {
 stream.ReadTimeout = 5000;
 WriteLine("Receiver task");
 byte[] readBuffer = new byte[ReadBufferSize];
 while (true)
 {
 Array.Clear(readBuffer, 0, ReadBufferSize);
 int read = await stream.ReadAsync(readBuffer, 0, ReadBufferSize, token);
 string receivedLine = Encoding.UTF8.GetString(readBuffer, 0, read);
 WriteLine($"received {receivedLine}");
 }
 }
 catch (OperationCanceledException ex)
 {
 WriteLine(ex.Message);
 }
}

When you run both the client and server, you can see communication across TCP.

NOTE The sample code implements a TCP client and server. TCP requires a connection before sending and receiving data; this is done by calling the Connect method. For UDP, the Connect method could be invoked as well, but it doesn’t do a connection. With UDP, instead of calling the Connect method, you can use the SendTo and ReceiveFrom methods instead. These methods require an EndPoint parameter where the endpoint is defined just when sending and receiving.

NOTE Cancellation tokens are explained in Chapter 21.

Summary

This chapter described the .NET Framework classes available in the System.Net namespace for communication across networks. You have seen some of the .NET base classes that deal with opening client connections on the network and Internet, and how to send requests to and receive responses from servers.

As a rule of thumb, when programming with classes in the System.Net namespace, you should always try to use the most generic class possible. For instance, using the TcpClient class instead of the Socket class isolates your code from many of the lower-level socket details. Moving one step higher, the HttpClient class is an easy way to make use of the HTTP protocol.

This book covers much more networking than the core networking features you’ve seen in this chapter. Chapter 42 covers ASP.NET Web API to offer services using the HTTP protocol. In Chapter 43 you read about WebHooks and SignalR—two technologies that offers event-driven communication. Chapter 44 gives information about WCF (Windows Communication Foundation), a technology for communication with the old style web services approach that offers binary communication as well.

The next chapter is about the Composition Framework, previously known as Managed Extensiblity Framework (MEF).

26
Composition

What’s in This Chapter?

	Architecture of the Composition Framework

	Composition using attributes

	Convention-based registration

	Contracts

	Exports and imports of parts

	Containers used by hosting applications

	Lazy loading of parts

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Attribute-Based Sample

	Convention-Based Sample

	UI Calculator (WPF and UWP)

Introduction

Microsoft Composition is a framework for creating independency between parts and containers. Parts can be used from containers without the need for the container to know the implementation or other details. The container just needs a contract—for example, an interface to use a part.

Microsoft Composition can be used with different scenarios, such as a dependency injection container, or you can even use it for adding functionality to an application after the application is released by dynamically loading add-ins into the application. To get into these scenarios, you need a foundation.

For making development of apps easier, it’s a good practice to have separation of concerns (SoC). SoC is a design principle for separating a program into different sections where each section has its own responsibility. Having different sections allows you to reuse and update these sections independently of each other.

Having a tight coupling between these sections or components makes it hard to reuse and update these components independently of each other. Low coupling—for example, by using interfaces—helps this goal of independence.

Using interfaces for coupling, and allowing them to develop independent of any concrete implementation, is known as the dependency injection design pattern. Dependency injection implements inversion of control where the control to define what implementation is used is reversed. The component for using an interface receives the implementation via a property (property injection) or via a constructor (constructor injection). Using a component just by an interface, it’s not necessary to know about the implementation. Different implementations can be used for different scenarios—for example, with unit testing, a different implementation can be used that supplies test data.

Dependency injection can be implemented by using a dependency injection container. When you use a dependency injection container, the container defines for what interface which implementation should be used. Microsoft Composition can take the functionality of the container. This is one use case of this technology among the others.

NOTE Dependency injection is explained in detail in Chapter 31, “Patterns with XAML Apps.” Chapter 31 shows the use of the dependency injection container Microsoft.Framework.DependencyInjection.

Add-ins (or plug-ins) enable you to add functionality to an existing application. You can create a hosting application that gains more and more functionality over time—such functionality might be written by your team of developers, but different vendors can also extend your application by creating add-ins.

Today, add-ins are used with many different applications, such as Internet Explorer and Visual Studio. Internet Explorer is a hosting application that offers an add-in framework that is used by many companies to provide extensions when viewing web pages. The Shockwave Flash Object enables you to view web pages with Flash content. The Google toolbar offers specific Google features that can be accessed quickly from Internet Explorer. Visual Studio also has an add-in model that enables you to extend Visual Studio with different levels of extensions. Visual Studio add-ins makes use of the Managed Extensibility Framework (MEF), the first version of Microsoft Composition.

For your custom applications, it has always been possible to create an add-in model to dynamically load and use functionality from assemblies. However, all the issues associated with finding and using add-ins need to be resolved. You can accomplish that automatically by using Microsoft Composition. This technology helps to create boundaries and to remove dependencies between parts and the clients or callers that make use of the parts.

NOTE The previous version of Microsoft Composition was known as Microsoft Extensibility Framework (MEF). MEF 1.x is still available with the full .NET Framework in the namespace System.ComponentModel.Composition. The new namespace for Microsoft Composition is System.Composition. Microsoft Composition is available with NuGet packages.

MEF 1.x offers different catalogs—for example, an AssemblyCatalog or a DirectoryCatalog—to find types within an assembly or within a directory. The new version of Microsoft Composition doesn’t offer this feature. However, you can build this part on your own. Chapter 16, “Reflection, Metadata, and Dynamic Programming,” shows you how to load assemblies dynamically, with both .NET 4.6 and .NET Core 5. You can use this information to build your own directory catalog.

NOTE MEF (or Composition) has been available since .NET 4.0 for creating add-ins with .NET. The .NET Framework offers another technology for writing flexible applications that load add-ins dynamically: the Managed Add-in Framework (MAF). MAF has been available since .NET 3.5. MAF uses a pipeline for communication between the add-in and the host application that makes the development process more complex but offers separation of add-ins via app domains or even different processes. In that regard, Composition is the simpler of these technologies. MAF and MEF can be combined to get the advantage of each, but it doubles the work. MAF was not ported to .NET Core and is only available with the full framework.

The major namespace covered in this chapter is System.Composition.

Architecture of the Composition Library

Microsoft Composition is built with parts and containers, as shown in Figure 26.1. A container finds parts that are exported and connects imports to exports, thereby making parts available to the hosting application.

[image: Block diagram shows host application, container, import, and part export. Host application uses container and import. Container maps imports and imports connect part exports.]

Figure 26.1

Here’s the full picture of how parts are loaded. As mentioned, parts are found with exports. Exports can be defined using attributes, or with a fluent API from C# code. Multiple export providers can be connected in chains for customizing exports—for example, with a custom export provider to only allow parts for specific users or roles. The container uses export providers to connect imports to exports and is itself an export provider.

Microsoft Composition consists of the NuGet packages shown in Figure 26.2. This figure also shows the dependencies of the libraries.

[image: Diagram shows NuGet packages that include System.Composition.TypedParts, System.Composition.Hosting, System.Composition.Runtime, System.Composition.AttributedModel, and System.Composition.Convention.]

Figure 26.2

The following table explains the content of these NuGet packages.

	NuGet Package
	Description

	System.Composition.AttributedModel
	This NuGet package contains Export and Import attributes. This package allows using attributes to export and import parts.

	System.Composition.Convention
	With this NuGet package it’s possible to use plain old CLR objects (POCO) as parts. Rules can be applied programmatically to define exports.

	System.Composition.Runtime
	This NuGet package contains the runtime and thus is needed from the hosting application. The class CompositionContext is contained in this package. CompositionContext is an abstract class that allows getting exports for the context.

	System.Composition.Hosting
	This NuGet package contains the CompositionHost. CompositionHost derives from the base class CompositionContext and thus gives a concrete class to retrieve exports.

	System.Composition.TypedParts
	This NuGet package defines the class ContainerConfiguration. With ContainerConfiguration you can define what assemblies and parts should be used for exports. The class CompositionContextExtensions defines the extension method SatisfyImports for the CompositionContext to make it easy to match imports with exports.

Composition Using Attributes

Let’s start with a simple example to demonstrate the Composition architecture. The hosting application can load add-ins. With Microsoft Composition, an add-in is referred to as a part. Parts are defined as exports and are loaded into a container that imports parts.

The sample code for AttributeBasedSample defines these references and namespaces:

CalculatorContract (Class Library)

	Namespaces

	System.Collections.Generic

SimpleCalculator (Class Library)

	References

	CalculatorContract

	System.Composition.AttributedModel

	Namespaces

	System

	System.Collections.Generic

	System.Composition

AdvancedCalculator (Class Library)

	References

	CalculatorContract

	System.Composition.AttributedModel

	Namespaces

	System

	System.Collections.Generic

	System.Composition

SimpleHost (Console Application)

	References

	CalculatorContract

	SimpleCalculator

	System.Composition.AttributedModel

	System.Composition.Hosting

	System.Composition.Runtime

	System.Composition.TypedParts

	Namespaces

	System

	System.Collections.Generic

	System.Composition

	System.Composition.Hosting

	static System.Console

In this example, a Console Application (Package) is created to host calculator parts from a library. To create independence from the host and the calculator part, three projects are required. One project, CalculatorContract, holds the contracts that are used by both the add-in assembly and the hosting executable. The project SimpleCalculator contains the part and implements the contract defined by the contract assembly. The host uses the contract assembly to invoke the part.

The contracts in the assembly CalculatorContract are defined by two interfaces: ICalculator and IOperation. The ICalculator interface defines the methods GetOperations and Operate. The GetOperations method returns a list of all operations that the add-in calculator supports, and with the Operate method an operation is invoked. This interface is flexible in that the calculator can support different operations. If the interface defined Add and Subtract methods instead of the flexible Operate method, a new version of the interface would be required to support Divide and Multiply methods. With the ICalculator interface as it is defined in this example, however, the calculator can offer any number of operations with any number of operands (code file AttributeBasedSample/CalculatorContract/ICalculator.cs):

public interface ICalculator
{
 IList<IOperation> GetOperations();
 double Operate(IOperation operation, double[] operands);
}

The ICalculator interface uses the IOperation interface to return the list of operations and to invoke an operation. The IOperation interface defines the read-only properties Name and NumberOperands (code file AttributeBasedSample/CalculatorContract/IOperation.cs):

public interface IOperation
{
 string Name { get; }
 int NumberOperands { get; }
}

The CalculatorContract assembly doesn’t require any reference to System.Composition assemblies. Only simple .NET interfaces are contained within it.

The add-in assembly SimpleCalculator contains classes that implement the interfaces defined by the contracts. The class Operation implements the interface IOperation. This class contains just two properties as defined by the interface. The interface defines get accessors of the properties; internal set accessors are used to set the properties from within the assembly (code file AttributeBasedSample/SimpleCalculator/Operation.cs):

public class Operation: IOperation
{
 public string Name { get; internal set; }
 public int NumberOperands { get; internal set; }
}

The Calculator class provides the functionality of this add-in by implementing the ICalculator interface. The Calculator class is exported as a part as defined by the Export attribute. This attribute is defined in the System.Composition namespace in the NuGet package System.Composition.AttributedModel (code file AttributeBasedSample/SimpleCalculator/Calculator.cs):

[Export(typeof(ICalculator))]
public class Calculator: ICalculator
{
 public IList<IOperation> GetOperations() =>
 new List<IOperation>()
 {
 new Operation { Name="+", NumberOperands=2},
 new Operation { Name="-", NumberOperands=2},
 new Operation { Name="/", NumberOperands=2},
 new Operation { Name="*", NumberOperands=2}
 };

 public double Operate(IOperation operation, double[] operands)
 {
 double result = 0;
 switch (operation.Name)
 {
 case"+":
 result = operands[0] + operands[1];
 break;
 case"-":
 result = operands[0]—operands[1];
 break;
 case"/":
 result = operands[0] / operands[1];
 break;
 case"*":
 result = operands[0] * operands[1];
 break;
 default:
 throw new InvalidOperationException($"invalid operation {operation.Name}");
 }
 return result;
 }
}

The hosting application is a Console Application (Package). The part uses an Export attribute to define what is exported; with the hosting application, the Import attribute defines what is used. Here, the Import attribute annotates the Calculator property that sets and gets an object implementing ICalculator. Therefore, any calculator add-in that implements this interface can be used here (code file AttributeBasedSample/SimpleHost/Program.cs):

class Program
{
 [Import]
 public ICalculator Calculator { get; set; }
 //etc.
}

In the entry method Main of the console application, a new instance of the Program class is created, and then the Bootstrapper method is invoked. In the Bootstrapper method, a ContainerConfiguration is created. With the ContainerConfiguration, a fluent API can be used to configure this object. The method WithPart<Calculator> finds the exports of the Calculator class to have it available from the composition host. The CompositionHost instance is created using the CreateContainer method of the ContainerConfiguration (code file AttributeBasedSample/SimpleHost/Program.cs):

public static void Main()
{
 var p = new Program();
 p.Bootstrapper();
 p.Run();
}

public void Bootstrapper()
{
 var configuration = new ContainerConfiguration()
 .WithPart<Calculator>();
 using (CompositionHost host = configuration.CreateContainer())
 {
 //etc.
 }
}

Besides using the method WithPart (which has overloads and generic versions as well as non-generic versions), you can also use WithParts to add a list of parts and use WithAssembly or WithAssemblies to add the exports of an assembly.

Using the CompositionHost, you can access exported parts with the GetExport and GetExports methods:

Calculator = host.GetExport<ICalculator>();

You can also use more “magic.” Instead of specifying all the export types you need to access, you can use the SatisfyImports method that is an extension method for the CompositionHost. The first parameter requires an object with imports. Because the Program class itself defines a property that has an Import attribute applied, the instance of the Program class can be passed to the SatisfyImports method. After invoking SatisfyImports, you will see that the Calculator property of the Program class is filled (code file AttributeBasedSample/SimpleHost/Program.cs):

using (CompositionHost host = configuration.CreateContainer())
{
 host.SatisfyImports(this);
}

With the Calculator property, you can use the methods from the interface ICalculator. GetOperations invokes the methods of the previously created add-in, which returns four operations. After asking the user what operation should be invoked and requesting the operand values, the add-in method Operate is called:

public void Run()
{
 var operations = Calculator.GetOperations();
 var operationsDict = new SortedList<string, IOperation>();
 foreach (var item in operations)
 {
 WriteLine($"Name: {item.Name}, number operands:" +
 $"{item.NumberOperands}");
 operationsDict.Add(item.Name, item);
 }
 WriteLine();
 string selectedOp = null;
 do
 {
 try
 {
 Write("Operation?");
 selectedOp =ReadLine();
 if (selectedOp.ToLower() =="exit" ||
 !operationsDict.ContainsKey(selectedOp))
 continue;
 var operation = operationsDict[selectedOp];
 double[] operands = new double[operation.NumberOperands];
 for (int i = 0; i < operation.NumberOperands; i++)
 {
 Write($"\t operand {i + 1}?");
 string selectedOperand = ReadLine();
 operands[i] = double.Parse(selectedOperand);
 }
 WriteLine("calling calculator");
 double result = Calculator.Operate(operation, operands);
 WriteLine($"result: {result}");
 }
 catch (FormatException ex)
 {
 WriteLine(ex.Message);
 WriteLine();
 continue;
 }
 } while (selectedOp !="exit");
}

The output of one sample run of the application is shown here:

Name: +, number operands: 2
Name: -, number operands: 2
Name: /, number operands: 2
Name: *, number operands: 2
Operation? +
 operand 1? 3
 operand 2? 5
calling calculator
result: 8
Operation? -
 operand 1? 7
 operand 2? 2
calling calculator
result: 5
Operation? exit

Without any code changes in the host application, it is possible to use a completely different library for the parts. The project AdvancedCalculator defines a different implementation for the Calculator class to offer more operations. You can use this calculator in place of the other one by referencing the project AdvancedCalculator with the SimpleHost project.

Here, the Calculator class implements the additional operators %, ++, and -- (code file AttributeBasedSample/AdvancedCalculator/Calculator.cs):

[Export(typeof(ICalculator))]
public class Calculator: ICalculator
{
 public IList<IOperation> GetOperations() =>
 new List<IOperation>()
 {
 new Operation { Name="+", NumberOperands=2},
 new Operation { Name="-", NumberOperands=2},
 new Operation { Name="/", NumberOperands=2},
 new Operation { Name="*", NumberOperands=2},
 new Operation { Name="%", NumberOperands=2},
 new Operation { Name="++", NumberOperands=1},
 new Operation { Name="—", NumberOperands=1}
 };

 public double Operate(IOperation operation, double[] operands)
 {
 double result = 0;
 switch (operation.Name)
 {
 case"+":
 result = operands[0] + operands[1];
 break;
 case"-":
 result = operands[0]—operands[1];
 break;
 case"/":
 result = operands[0] / operands[1];
 break;
 case"*":
 result = operands[0] * operands[1];
 break;
 case"%":
 result = operands[0] % operands[1];
 break;
 case"++":
 result = ++operands[0];
 break;
 case"—":
 result =—operands[0];
 break;
 default:
 throw new InvalidOperationException($"invalid operation {operation.Name}");
 }
 return result;
 }
}

NOTE With the SimpleHost you can’t use both implementations of the Calculator at one time. You need to remove the reference SimpleCalculator before using the AdvancedCalculator, and the other way around. Later in this chapter, you see how multiple exports of the same type can be used with one container.

Now you’ve seen imports, exports, and catalogs from the Composition architecture. In case you want to use existing classes where you can’t add an attribute with Composition, you can use convention-based part registration, which is shown in the next section.

Convention-Based Part Registration

Convention-based registration not only allows exporting parts without using attributes, it also gives you more options to define what should be exported—for example, using naming conventions such as the class name ends with PlugIn, or ViewModel, or using the suffix name Controller to find all controllers.

This introduction to convention-based part registration builds the same example code shown previously using attributes, but attributes are no longer needed; therefore, the same code is not repeated here. The same contract interfaces ICalculator and IOperation are implemented, and nearly the same part with the class Calculator. The difference with the Calculator class is that it doesn’t have the Export attribute applied to it.

The solution ConventionBasedSample contains the following projects with these references and namespaces. With the SimpleCalculator project, a NuGet package for Microsoft Composition is not needed, as exports are not defined by this project.

CalculatorContract (Class Library)

	Namespaces

	System.Collections.Generic

SimpleCalculator (Class Library)

	References

	CalculatorContract

	Namespaces

	System

	System.Collections.Generic

	System.Composition

SimpleHost (Console Application)

	References

	CalculatorContract

	System.Composition.AttributedModel

	System.Composition.Convention

	System.Composition.Hosting

	System.Composition.Runtime

	System.Composition.TypedParts

	Namespaces

	System

	System.Collections.Generic

	System.Composition

	System.Composition.Hosting

	static System.Console

NOTE You need to create a directory c:/addins before compiling the solution. The hosting application of this sample solution loads assemblies from the directory c:/addins. That’s why a post-build command is defined with the project SimpleCalculator to copy the library to the c:/addins directory.

When you create the host application, all this becomes more interesting. Similar to before, a property of type ICalculator is created as shown in the following code snippet—it just doesn’t have an Import attribute applied to it (code file ConventionBasedSample/SimpleHost/Program.cs):

public ICalculator Calculator { get; set; }

You can apply the Import attribute to the property Calculator and use only conventions for the exports. You can mix this, using conventions only with exports or imports, or with both—as shown in this example.

The Main method of the Program class looks similar to before; a new instance of Program is created because the Calculator property is an instance property of this class, and then the Bootstrap and Run methods are invoked (code file ConventionBasedSample/SimpleHost/Program.cs):

public static void Main()
{
 var p = new Program();
 p.Bootstrap();
 p.Run();
}

The Bootstrap method now creates a new ConventionBuilder. ConventionBuilder derives from the base class AttributedModelBuilder; thus it can be used everywhere this base class is needed. Instead of using the Export attribute, convention rules are defined for types that derive from ICalculator to export ICalculator with the methods ForTypesDerivedFrom and Export. ForTypesDerivedFrom returns a PartConventionBuilder, which allows using the fluent API to continue with the part definition to invoke the Export method on the part type. Instead of using the Import attribute, the convention rule for the Program class is used to import a property of type ICalculator. The property is defined using a lambda expression (code file ConventionBasedSample/SimpleHost/Program.cs):

public void Bootstrap()
{
 var conventions = new ConventionBuilder();
 conventions.ForTypesDerivedFrom<ICalculator>()
 .Export<ICalculator>();
 conventions.ForType<Program>()
 .ImportProperty<ICalculator>(p => p.Calculator);
 // etc.
}

After the convention rules are defined, the ContainerConfiguration class is instantiated. With the container configuration to use the conventions defined by the ConventionsBuilder, the method WithDefaultConventions is used. WithDefaultConventions requires any parameter that derives from the base class AttributedModelProvider, which is the class ConventionBuilder. After defining to use the conventions, you could use the WithPart method like before to specify the part or parts where the conventions should be applied. For making this more flexible than before, now the WithAssemblies method is used to specify the assemblies that should be applied. All the assemblies that are passed to this method are filtered for types that derive from the interface ICalculator to apply the export. After the container configuration is in place, the CompositionHost is created like in the previous sample (code file ConventionBasedSample/SimpleHost/Program.cs):

public void Bootstrap()
{
 // etc.

 var configuration = new ContainerConfiguration()
 .WithDefaultConventions(conventions)
 .WithAssemblies(GetAssemblies("c:/addins"));

 using (CompositionHost host = configuration.CreateContainer())
 {
 host.SatisfyImports(this, conventions);
 }
}

The GetAssemblies method loads all assemblies from the given directory (code file ConventionBasedSample/SimpleHost/Program.cs):

private IEnumerable<Assembly> GetAssemblies(string path)
{
 IEnumerable<string> files = Directory.EnumerateFiles(path,"*.dll");
 var assemblies = new List<Assembly>();
 foreach (var file in files)
 {
 Assembly assembly = Assembly.LoadFile(file);
 assemblies.Add(assembly);
 }
 return assemblies;
}

As you’ve seen, the ConventionBuilder is the heart of convention-based part registration and Microsoft Composition. It uses a fluent API and offers all the flexibility you’ll see with attributes as well. Conventions can be applied to a specific type with ForType; or for types that derive from a base class or implement an interface, ForTypesDerivedFrom. ForTypesMatching enables specifying a flexible predicate. For example, ForTypesMatching(t => t.Name.EndsWith("ViewModel")) applies a convention to all types that end with the name ViewModel.

The methods to select the type return a PartBuilder. With the PartBuilder, exports and imports can be defined, as well as metadata applied. The PartBuilder offers several methods to define exports: Export to export a specific type, ExportInterfaces to export a list of interfaces, and ExportProperties to export properties. Using the export methods to export multiple interfaces or properties, a predicate can be applied to further define a selection. The same applies to importing properties or constructors with ImportProperty, ImportProperties, and SelectConstructors.

Now that we have briefly looked at the two ways of using Microsoft Composition with attributes and conventions, the next section digs into the details by using Windows applications to host parts.

Defining Contracts

The following sample application extends the first one. The hosting application is composed of WPF (Windows Presentation Foundation) applications and UWP (Universal Windows Platform) apps that load calculator parts for calculation functionality; other add-ins bring their own user interfaces into the host.

NOTE For more information about writing UWP and WPF applications, see Chapters 29 to 36.

The UICalculator is a somewhat bigger solution, at least for a book. It demonstrates using Microsoft Composition with multiple technologies—both UWP and WPF. Of course, you can focus on one of these technologies and still make use of a lot of features of the sample application. The projects and their dependencies of the solution are shown in Figure 26.3. The WPFCalculatorHost and UWPCalculatorHost projects load and manage parts. A similar part as before, SimpleCalculator, is defined and offers some methods. What’s different from the earlier calculator sample is that this part makes use of another part: AdvancedOperations. Other parts that offer a user interface are defined with FuelEconomy and TemperatureConversion. User interfaces are defined with WPF and UWP, but the common functionality is defined in a shared project.

[image: Diagram shows WPFCalculatorHost and UWPCalculatorHost projects load and manage parts such as SimpleCalculator, AdvancedOperations, FuelEconomy, TemperatureConversion, UI CalculatorViewModels et cetera.]

Figure 26.3

These are the needed projects with references and namespaces:

CalculatorContract (Class Library)

	Namespaces

	System.Collections.Generic

CalculatorUtils (Class Library)

	References

	System.Composition.AttributedModel

	Namespaces

	System

	System.Collections.Generic

	System.ComponentModel

	System.Composition

	System.Runtime.CompilerServices

SimpleCalculator (Class Library)

	References

	System.Composition.AttributedModel

	Namespaces

	System

	System.Collections.Generic

	System.Composition

AdvancedOperations (Class Library)

	References

	System.Composition.AttributedModel

	Namespaces

	System.Composition

	System.Threading.Tasks

Fuel Economy and Temp. Conversion UWP (Universal Windows Class Library)

	References

	System.Composition.AttributedModel

	Namespaces

	System.Collections.Generic

	System.Composition

	Windows.UI.Xaml.Controls

Fuel Economy and Temp. Conversion WPF (WPF Class Library)

	References

	System.Composition.AttributedModel

	Namespaces

	System.Collections.Generic

	System.Composition

	System.Windows.Controls

Calculator View Models (Class Library)

	References

	System.Composition.AttributedModel

	System.Composition.Hosting

	System.Composition.TypedParts

	Namespaces

	System

	System.Collections.Generic

	System.Collections.ObjectModel

	System.Composition

	System.Composition.Hosting

	System.Linq

	System.Windows.Input

WPF Calculator Host (WPF Application)

	References

	CalculatorContract

	SimpleCalculator

	System.Composition.AttributedModel

	System.Composition.Hosting

	System.Composition.TypedParts

	Namespaces

	System

	System.Globalization

	System.IO

	System.Windows

	System.Windows.Controls

	System.Windows.Data

	System.Windows.Media.Imaging

For the calculation, the same contracts that were defined earlier are used: ICalculator and IOperation. Added to this example is another contract: ICalculatorExtension. This interface defines the UI property that can be used by the hosting application. The get accessor of this property returns a FrameworkElement. The property type is defined to be of type object to support both WPF and UWP applications with this interface. With WPF, the FrameworkElement is defined in the namespace System.Windows; with UWP it’s in the namespace Windows.UI.Xaml. Defining the property of type object also allows not adding WPF- or UWP-related dependencies to the library.

The UI property enables the add-in to return any user interface element that derives from FrameworkElement to be shown as the user interface within the host application (code file UICalculator/CalculatorContract/ICalculatorExtension.cs):

public interface ICalculatorExtension
{
 object UI { get; }
}

.NET interfaces are used to remove the dependency between one that implements the interface and one that uses it. This way, a .NET interface is also a good contract for Composition to remove a dependency between the hosting application and the add-in. If the interface is defined in a separate assembly, as with the CalculatorContract assembly, the hosting application and the add-in don’t have a direct dependency. Instead, the hosting application and the add-in just reference the contract assembly.

From a Composition standpoint, an interface contract is not required at all. The contract can be a simple string. To avoid conflicts with other contracts, the name of the string should contain a namespace name—for example, Wrox.ProCSharp.Composition.SampleContract, as shown in the following code snippet. Here, the class Foo is exported by using the Export attribute, and a string passed to the attribute instead of the interface:

[Export("Wrox.ProCSharp.Composition.SampleContract")]
public class Foo
{
 public string Bar()
 {
 return"Foo.Bar";
 }
}

The problem with using a contract as a string is that the methods, properties, and events provided by the type are not strongly defined. Either the caller needs a reference to the type Foo to use it, or .NET reflection can be used to access its members. The C# 4 dynamic keyword makes reflection easier to use and can be very helpful in such scenarios.

The hosting application can use the dynamic type to import a contract with the name Wrox.ProCSharp.Composition.SampleContract:

[Import("Wrox.ProCSharp.MEF.SampleContract")]
public dynamic Foo { get; set; }

With the dynamic keyword, the Foo property can now be used to access the Bar method directly. The call to this method is resolved during runtime:

string s = Foo.Bar();

Contract names and interfaces can also be used in conjunction to define that the contract is used only if both the interface and the contract name are the same. This way, you can use the same interface for different contracts.

NOTE The dynamic type is explained in Chapter 16.

Exporting Parts

The previous example showed the part SimpleCalculator, which exports the type Calculator with all its methods and properties. The following example contains the SimpleCalculator as well, with the same implementation that was shown previously; and two more parts, TemperatureConversion and FuelEconomy, are exported. These parts offer a UI for the hosting application.

Creating Parts

The WPF User Control library named TemperatureConversionWPF defines a user interface as shown in Figure 26.4. This control provides conversion between Celsius, Fahrenheit, and Kelvin scales. You use the first and second combo box to select the conversion source and target. Clicking the Calculate button starts the calculation to do the conversion.

[image: Diagram shows a user interface is divided into two columns and three rows of 1 inch width. It shows two textfields in right top arrays, two drop-down boxes in left top arrays, and Calculate button in the bottom row.]

Figure 26.4

For UWP, a library named TemperatureConversionUWP is defined as well. Both of these projects share the common code in a shared library, TemperatureConversionShared. All the C# code used by these UI add-ins is really in this shared project. The XAML code for the UI differs, and it is defined in the WPF and UWP projects.

The user control has a simple implementation for temperature conversion. The enumeration TempConversionType defines the different conversions that are possible with that control. The enumeration values shown in the two combo boxes are bound to the TemperatureConversionTypes property in the TemperatureConversionViewModel. The method ToCelsiusFrom converts the argument t from its original value to Celsius. The temperature source type is defined with the second argument, TempConversionType. The method FromCelsiusTo converts a Celsius value to the selected temperature scale. The method OnCalculate is assigned to the Calculate command and invokes the ToCelsiusFrom and FromCelsiusTo methods to do the conversion according to the user’s selected conversion type (code file UICalculator/TemperatureConversionShared/TemperatureConversionViewModel.cs):

public enum TempConversionType
{
 Celsius,
 Fahrenheit,
 Kelvin
}

public class TemperatureConversionViewModel: BindableBase
{
 public TemperatureConversionViewModel()
 {
 CalculateCommand = new DelegateCommand(OnCalculate);
 }

 public DelegateCommand CalculateCommand { get; }

 public IEnumerable<string> TemperatureConversionTypes =>
 Enum.GetNames(typeof(TempConversionType));

 private double ToCelsiusFrom(double t, TempConversionType conv)
 {
 switch (conv)
 {
 case TempConversionType.Celsius:
 return t;
 case TempConversionType.Fahrenheit:
 return (t—32) / 1.8;
 case TempConversionType.Kelvin:
 return (t—273.15);
 default:
 throw new ArgumentException("invalid enumeration value");
 }
 }

 private double FromCelsiusTo(double t, TempConversionType conv)
 {
 switch (conv)
 {
 case TempConversionType.Celsius:
 return t;
 case TempConversionType.Fahrenheit:
 return (t * 1.8) + 32;
 case TempConversionType.Kelvin:
 return t + 273.15;
 default:
 throw new ArgumentException("invalid enumeration value");
 }
 }

 private string _fromValue;
 public string FromValue
 {
 get { return _fromValue; }
 set { SetProperty(ref _fromValue, value); }
 }

 private string _toValue;
 public string ToValue
 {
 get { return _toValue; }
 set { SetProperty(ref _toValue, value); }
 }

 private TempConversionType _fromType;
 public TempConversionType FromType
 {
 get { return _fromType; }
 set { SetProperty(ref _fromType, value); }
 }

 private TempConversionType _toType;
 public TempConversionType ToType
 {
 get { return _toType; }
 set { SetProperty(ref _toType, value); }
 }

 public void OnCalculate()
 {
 double result = FromCelsiusTo(
 ToCelsiusFrom(double.Parse(FromValue), FromType), ToType);
 ToValue = result.ToString();
 }

So far, this control is just a simple user interface control with a view model. To create a part, the class TemperatureCalculatorExtension is exported by using the Export attribute. The class implements the interface ICalculatorExtension to return the user control TemperatureConversion from the UI property. For UWP and WPF, different binary code gets generated. Both the UWP and WPF projects define the TemperatureConversionUC control class, but with different namespaces. The namespace selection is done with preprocessor directives (code file UICalculator/TemperatureConversion/TemperatureCalculatorExtension.cs):

#if WPF
using TemperatureConversionWPF;
#endif
#if WINDOWS_UWP
using TemperatureConversionUWP;
#endif
using System.Composition;

namespace Wrox.ProCSharp.Composition
{
 [Export(typeof(ICalculatorExtension))]
 [CalculatorExtensionMetadata(
 Title ="Temperature Conversion",
 Description ="Temperature conversion",
 ImageUri ="Images/Temperature.png")]
 public class TemperatureConversionExtension: ICalculatorExtension
 {
 private object _control;
 public object UI =>
 _control ?? (_control = new TemperatureConversionUC());
 }
}

For now, ignore the CalculatorExtension attribute used in the previous code snippet. It is explained in the section “Exporting Metadata” later in this chapter.

The second user control that implements the interface ICalculatorExtension is FuelEconomy. With this control, either miles per gallon or liters per 100 km can be calculated. The user interface is shown in Figure 26.5.

[image: Diagram shows a user interface with a drop-down box on top, two textfields on center-right, and Calculate button on left bottom.]

Figure 26.5

The next code snippet shows the class FuelEconomyViewModel, which defines several properties that are bound from the user interface, such as a list of FuelEcoTypes that enables the user to select between miles and kilometers, and the Fuel and Distance properties, which are filled by the user (code file UICalculator/FuelEconomyShared/FuelEconomyViewModel.cs):

public class FuelEconomyViewModel: BindableBase
{
 public FuelEconomyViewModel()
 {
 InitializeFuelEcoTypes();
 CalculateCommand = new DelegateCommand(OnCalculate);
 }

 public DelegateCommand CalculateCommand { get; }

 // etc.

 public List<FuelEconomyType> FuelEcoTypes { get; } =
 new List<FuelEconomyType>();

 private void InitializeFuelEcoTypes()
 {
 var t1 = new FuelEconomyType
 {
 Id ="lpk",
 Text ="L/100 km",
 DistanceText ="Distance (kilometers)",
 FuelText ="Fuel used (liters)"
 };
 var t2 = new FuelEconomyType
 {
 Id ="mpg",
 Text ="Miles per gallon",
 DistanceText ="Distance (miles)",
 FuelText ="Fuel used (gallons)"
 };
 FuelEcoTypes.AddRange(new FuelEconomyType[] { t1, t2 });
 }

 private FuelEconomyType _selectedFuelEcoType;

 public FuelEconomyType SelectedFuelEcoType
 {
 get { return _selectedFuelEcoType; }
 set { SetProperty(ref _selectedFuelEcoType, value); }
 }

 private string _fuel;
 public string Fuel
 {
 get { return _fuel; }
 set { SetProperty(ref _fuel, value); }
 }

 private string _distance;
 public string Distance
 {
 get { return _distance; }
 set { SetProperty(ref _distance, value); }
 }

 private string _result;
 public string Result
 {
 get { return _result; }
 set { SetProperty(ref _result, value); }
 }
}

NOTE The base class BindableBase that is used with the sample code just offers an implementation of the interface INotifyPropertyChanged. This class is found in the CalculatorUtils project.

The calculation is within the OnCalculate method. OnCalculate is the handler for the Click event of the Calculate button (code file UICalculator/FuelEconomyShared/FuelEconomyViewModel.cs):

public void OnCalculate()
{
 double fuel = double.Parse(Fuel);
 double distance = double.Parse(Distance);
 FuelEconomyType ecoType = SelectedFuelEcoType;
 double result = 0;
 switch (ecoType.Id)
 {
 case"lpk":
 result = fuel / (distance / 100);
 break;
 case"mpg":
 result = distance / fuel;
 break;
 default:
 break;
 }
 Result = result.ToString();
}

Again, the interface ICalculatorExtension is implemented and exported with the Export attribute (code file UICalculator/FuelEconomyShared/FuelCalculatorExtension.cs):

[Export(typeof(ICalculatorExtension))]
[CalculatorExtensionMetadata(
 Title ="Fuel Economy",
 Description ="Calculate fuel economy",
 ImageUri ="Images/Fuel.png")]
public class FuelCalculatorExtension: ICalculatorExtension
{
 private object _control;
 public object UI => _control ?? (_control = new FuelEconomyUC());
}

Before continuing the hosting applications to import the user controls, let’s take a look at what other options you have with exports. A part itself can import other parts, and you can add metadata information to the exports.

Parts Using Parts

The Calculator class now doesn’t directly implement the Add and Subtract methods but uses other parts that do this. To define parts that offer a single operation, the interface IBinaryOperation is defined (code file UICalculator/CalculatorContract/IBinaryOperation.cs):

public interface IBinaryOperation
{
 double Operation(double x, double y);
}

The class Calculator defines a property where a matching part of the Subtract method will be imported. The import is named Subtract, as not all exports of IBinaryOperation are needed—just the exports named Subtract (code file UICalculator/SimpleCalculator/Calculator.cs):

[Import("Subtract")]
public IBinaryOperation SubtractMethod { get; set; }

The Import in the class Calculator matches the Export of the SubtractOperation (code file UICalculator/AdvancedOperations/Operations.cs):

[Export("Subtract", typeof(IBinaryOperation))]
public class SubtractOperation: IBinaryOperation
{
 public double Operation(double x, double y) => x—y;
}

Now only the implementation of the Operate method of the Calculator class needs to be changed to make use of the inner part. There’s no need for the Calculator itself to create a container to match the inner part. This is already automatically done from the hosting container as long as the exported parts are available within the registered types or assemblies (code file UICalculator/SimpleCalculator/Calculator.cs):

public double Operate(IOperation operation, double[] operands)
{
 double result = 0;
 switch (operation.Name)
 {
 // etc.
 case"-":
 result = SubtractMethod.Operation(operands[0], operands[1]);
 break;
 // etc.

Exporting Metadata

With exports, you can also attach metadata information. Metadata enables you to provide information in addition to a name and a type. This can be used to add capability information and to determine, on the import side, which of the exports should be used.

The Calculator class uses an inner part not only for the Subtract method, but also for the Add method. The AddOperation from the following code snippet uses the Export attribute named Add in conjunction with the SpeedMetadata attribute. The SpeedMetadata attribute specifies the Speed information Speed.Fast (code file UICalculator/AdvancedOperations/Operations.cs):

[Export("Add", typeof(IBinaryOperation))]
[SpeedMetadata(Speed = Speed.Fast)]
public class AddOperation: IBinaryOperation
{
 public double Operation(double x, double y) => x + y;
}

There’s another export for an Add method with SpeedMetadata Speed.Slow (code file UICalculator/AdvancedOperations/Operations.cs):

[Export("Add", typeof(IBinaryOperation))]
[SpeedMetadata(Speed = Speed.Slow)]
public class SlowAddOperation: IBinaryOperation
{
 public double Operation(double x, double y)
 {
 Task.Delay(3000).Wait();
 return x + y;
 }
}

Speed is just an enumeration with two values (code file UICalculator/CalculatorUtils/SpeedMetadata.cs):

public enum Speed
{
 Fast,
 Slow
}

You can define metadata by creating an attribute class with the MetadataAttribute applied. This attribute is then applied to a part as you’ve seen with the AddOperation and SlowAddOperation types (code file UICalculator/CalculatorUtils/SpeedMetadataAttribute.cs):

[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class)]
public class SpeedMetadataAttribute: Attribute
{
 public Speed Speed { get; set; }
}

NOTE For more information about how to create custom attributes, read Chapter 16.

To access the metadata with the import, the class SpeedMetadata is defined. SpeedMetadata defines the same properties as the SpeedMetadataAttribute (code file UICalculator/CalculatorUtils/SpeedMetadata.cs):

public class SpeedMetadata
{
 public Speed Speed { get; set; }
}

With multiple Add exports defined, using the Import attribute as shown previously fails during runtime. Multiple exports cannot match just one import. The attribute ImportMany is used if more than one export of the same name and type is available. This attribute is applied to a property of type array or IEnumeration<T>.

Because metadata is applied with the export, the type of the property that matches the Add export is an array of Lazy<IBinaryOperation, SpeedMetadata> (code file UICalculator/SimpleCalculator/Calculator.cs):

[ImportMany("Add")]
public Lazy<IBinaryOperation, SpeedMetadata>[] AddMethods { get; set; }

ImportMany is explained with more detail in the next section. The Lazy type allows accessing metadata with the generic definition Lazy<T, TMetadata>. The class Lazy<T> is used to support lazy initialization of types on first use. Lazy<T, TMetadata> derives from Lazy<T> and supports, in addition to the base class, access to metadata information with the Metadata property.

The call to the Add method is now changed to iterate through the collection of Lazy<IBinaryOperation, SpeedMetadata> elements. With the Metadata property, the key for the capability is checked; if the Speed capability has the value Speed.Fast, the operation is invoked by using the Value property of Lazy<T> to invoke the operation (code file UICalculator/SimpleCalculator/Calculator.cs):

public double Operate(IOperation operation, double[] operands)
{
 double result = 0;
 switch (operation.Name)
 {
 case"+":
 foreach (var addMethod in AddMethods)
 {
 if (addMethod.Metadata.Speed == Speed.Fast)
 {
 result = addMethod.Value.Operation(operands[0], operands[1]);
 }
 }
 break;
 // etc.

Using Metadata for Lazy Loading

Using metadata with Microsoft Composition is not only useful for selecting parts based on metadata information. Another great use is providing information to the host application about the part before the part is instantiated.

The following example is implemented to offer a title, a description, and a link to an image for the calculator extensions FuelEconomy and TemperatureConversion (code file UICalculator/CalculatorUtils/CalculatorExtensionMetadataAttribute.cs):

[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class)]
public class CalculatorExtensionMetadataAttribute: Attribute
{
 public string Title { get; set; }
 public string Description { get; set; }
 public string ImageUri { get; set; }
}

With a part, the CalculatorExtensionMetadata attribute is applied. The following is an example—the FuelCalculatorExtension (code file UICalculator/FuelEconomyShared/FuelCalculatorExtension.cs):

[Export(typeof(ICalculatorExtension))]
[CalculatorExtensionMetadata(
 Title ="Fuel Economy",
 Description ="Calculate fuel economy",
 ImageUri ="Images/Fuel.png")]
public class FuelCalculatorExtension: ICalculatorExtension
{
 private object _control;
 public object UI => _control ?? (_control = new FuelEconomyUC());
}

Parts can consume a large amount of memory. If the user does not instantiate the part, there’s no need to consume this memory. Instead, the title, description, and image can be accessed to give the user information about the part before instantiating it.

Importing Parts

Now let’s take a look at using the user control parts with a hosting application. The design view of the WPF hosting application is shown in Figure 26.6.

[image: Screenshot shows calculator application user interface with number pad on left half and Calculate button on bottom left.]

Figure 26.6

For every part type, a separate import, manager, and view model is created. For using the part implementing the ICalculator interface, the CalculatorImport is used to define the Import, the CalculatorManager is used to create the CompositionHost and load the parts, and the CalculatorViewModel is used to define the properties and commands that are bound to the user interface. For using the part implementing the ICalculatorExtension interface, the CalculatorExtensionImport, CalculatorExtensionManager, and CalculatorExtensionViewModel are defined accordingly.

Let’s start with the CalculatorImport class. With the first sample, just a property has been defined with the Program class to import a part. It’s a good practice to define a separate class for imports. With this class, you can also define a method that is annotated with the attribute OnImportsSatisfied. This attribute marks the method that is called when imports are matched. In the sample code, the event ImportsSatisfied is fired. The Calculator property has the Import attribute applied. Here, the type is Lazy<ICalculator> for late instantiation. The part is instantiated only when the Value of the Lazy type is accessed (code file UICalculator/CalculatorViewModels/CalculatorImport.cs):

public class CalculatorImport
{
 public event EventHandler<ImportEventArgs> ImportsSatisfied;

 [Import]
 public Lazy<ICalculator> Calculator { get; set; }

 [OnImportsSatisfied]
 public void OnImportsSatisfied()
 {
 ImportsSatisfied?.Invoke(this,
 new ImportEventArgs
 {
 StatusMessage ="ICalculator import successful"
 });
 }
}

The CalculatorManager class instantiates the CalculatorImport class in the constructor. With the InitializeContainer method, the ContainerConfiguration class is instantiated to create the CompositionHost container with the types passed to the method. The method SatisfyImports matches exports to imports (code file UICalculator/CalculatorViewModels/CalculatorManager.cs):

public class CalculatorManager
{
 private CalculatorImport _calcImport;
 public event EventHandler<ImportEventArgs> ImportsSatisfied;

 public CalculatorManager()
 {
 _calcImport = new CalculatorImport();
 _calcImport.ImportsSatisfied += (sender, e) =>
 {
 ImportsSatisfied?.Invoke(this, e);
 };
 }

 public void InitializeContainer(params Type[] parts)
 {
 var configuration = new ContainerConfiguration().WithParts(parts);
 using (CompositionHost host = configuration.CreateContainer())
 {
 host.SatisfyImports(_calcImport);
 }
 }
 // etc.
}

The GetOperators method of the CalculatorManager invokes the GetOperations method of the Calculator. This method is used to display all the available operators in the user interface. As soon as a calculation is defined, the InvokeCalculator method is invoked to pass the operation and operands, and in turn invoke the Operate method in the calculator (code file UICalculator/CalculatorViewModels/CalculatorManager.cs):

public class CalculatorManager
{
 // etc.
 public IEnumerable<IOperation> GetOperators() =>
 _calcImport.Calculator.Value.GetOperations();

 public double InvokeCalculator(IOperation operation, double[] operands) =>
 _calcImport.Calculator.Value.Operate(operation, operands);
}

What’s needed by the CalculatorViewModel? This view model defines several properties: the CalcAddInOperators property to list available operators, the Input property that contains the calculation entered by the user, the Result property that shows the result of the operation, and the CurrentOperation property that contains the current operation. It also defines the _currentOperands field that contains the operands selected. With the Init method, the container is initialized, and operators are retrieved from the Calculator part. The OnCalculate method does the calculation using the part (code file UICalculator/CalculatorViewModels/CalculatorViewModel.cs):

public class CalculatorViewModel: BindableBase
{
 public CalculatorViewModel()
 {
 _calculatorManager = new CalculatorManager();
 _calculatorManager.ImportsSatisfied += (sender, e) =>
 {
 Status += $"{e.StatusMessage}\n";
 };
 CalculateCommand = new DelegateCommand(OnCalculate);
 }

 public void Init(params Type[] parts)
 {
 _calculatorManager.InitializeContainer(parts);
 var operators = _calculatorManager.GetOperators();
 CalcAddInOperators.Clear();
 foreach (var op in operators)
 {
 CalcAddInOperators.Add(op);
 }
 }

 private CalculatorManager _calculatorManager;

 public ICommand CalculateCommand { get; set; }

 public void OnCalculate()
 {
 if (_currentOperands.Length == 2)
 {
 string[] input = Input.Split(' ');
 _currentOperands[1] = double.Parse(input[2]);
 Result = _calculatorManager.InvokeCalculator(_currentOperation,
 _currentOperands);
 }
 }

 private string _status;
 public string Status
 {
 get { return _status; }
 set { SetProperty(ref _status, value); }
 }

 private string _input;
 public string Input
 {
 get { return _input; }
 set { SetProperty(ref _input, value); }
 }

 private double _result;
 public double Result
 {
 get { return _result; }
 set { SetProperty(ref _result, value); }
 }

 private IOperation _currentOperation;
 public IOperation CurrentOperation
 {
 get { return _currentOperation; }
 set { SetCurrentOperation(value); }
 }

 private double[] _currentOperands;

 private void SetCurrentOperation(IOperation op)
 {
 try
 {
 _currentOperands = new double[op.NumberOperands];
 _currentOperands[0] = double.Parse(Input);
 Input += $" {op.Name}";
 SetProperty(ref _currentOperation, op, nameof(CurrentOperation));
 }
 catch (FormatException ex)
 {
 Status = ex.Message;
 }
 }
 public ObservableCollection<IOperation> CalcAddInOperators { get; } =
 new ObservableCollection<IOperation>();
}

Importing Collections

An import connects to an export. When using exported parts, an import is needed to make the connection. With the Import attribute, it’s possible to connect to a single export. If more than one part should be loaded, the ImportMany attribute is required and needs to be defined as an array type or IEnumerable<T>. Because the hosting calculator application allows many calculator extensions that implement the interface ICalculatorExtension to be loaded, the class CalculatorExtensionImport defines the property CalculatorExtensions of type IEnumerable<ICalculatorExtension> to access all the calculator extension parts (code file UICalculator/CalculatorViewModels/CalculatorExtensionsImport.cs):

public class CalculatorExtensionsImport
 {
 public event EventHandler<ImportEventArgs> ImportsSatisfied;

 [ImportMany()]
 public IEnumerable<Lazy<ICalculatorExtension,
 CalculatorExtensionMetadataAttribute>>
 CalculatorExtensions { get; set; }

 [OnImportsSatisfied]
 public void OnImportsSatisfied()
 {
 ImportsSatisfied?.Invoke(this, new ImportEventArgs
 {
 StatusMessage ="ICalculatorExtension imports successful"
 });
 }
 }

The Import and ImportMany attributes enable the use of ContractName and ContractType to map the import to an export.

The event ImportsSatisfied of the CalculatorExtensionsImport is connected to an event handler on creation of the CalculatorExtensionsManager to route firing the event, and in turn write a message to a Status property that is bound in the UI for displaying status information (code file UICalculator/CalculatorViewModels/CalculatorExtensionsManager.cs):

public sealed class CalculatorExtensionsManager
{
 private CalculatorExtensionsImport _calcExtensionImport;
 public event EventHandler<ImportEventArgs> ImportsSatisfied;

 public CalculatorExtensionsManager()
 {
 _calcExtensionImport = new CalculatorExtensionsImport();
 _calcExtensionImport.ImportsSatisfied += (sender, e) =>
 {
 ImportsSatisfied?.Invoke(this, e);
 };
 }

 public void InitializeContainer(params Type[] parts)
 {
 var configuration = new ContainerConfiguration().WithParts(parts);
 using (CompositionHost host = configuration.CreateContainer())
 {
 host.SatisfyImports(_calcExtensionImport);
 }
 }

 public IEnumerable<Lazy<ICalculatorExtension,
 CalculatorExtensionMetadataAttribute>> GetExtensionInformation() =>
 _calcExtensionImport.CalculatorExtensions.ToArray();
}

Lazy Loading of Parts

By default, parts are loaded from the container—for example, by calling the extension method SatisfyImports on the CompositionHost. With the help of the Lazy<T> class, the parts can be loaded on first access. The type Lazy<T> enables the late instantiation of any type T and defines the properties IsValueCreated and Value. IsValueCreated is a Boolean that returns the information if the contained type T is already instantiated. Value initializes the contained type T on first access and returns the instance.

The import of an add-in can be declared to be of type Lazy<T>, as shown in the Lazy<ICalculator> example (code file UICalculator/CalculatorViewModels/CalculatorImport.cs):

[Import]
 public Lazy<ICalculator> Calculator { get; set; }

Calling the imported property also requires some changes to access the Value property of the Lazy<T> type. calcImport is a variable of type CalculatorImport. The Calculator property returns Lazy<ICalculator>. The Value property instantiates the imported type lazily and returns the ICalculator interface, enabling the GetOperations method to be invoked in order to get all supported operations from the calculator add-in (code file UICalculator/CalculatorViewModels/CalculatorManager.cs):

public IEnumerable<IOperation> GetOperators() =>
 _calcImport.Calculator.Value.GetOperations();

Reading Metadata

The parts FuelEconomy and TemperatureConversion—all the parts that implement the interface ICalculatorExtension—are lazy loaded as well. As you’ve seen earlier, a collection can be imported with a property of IEnumerable<T>. Instantiating the parts lazily, the property can be of type IEnumerable<Lazy<T>>. Information about these parts is needed before instantiation in order to display information to the user about what can be expected with these parts. These parts offer additional information using metadata, as shown earlier. Metadata information can be accessed using a Lazy type with two generic type parameters. Using Lazy<ICalculatorExtension, CalculatorExtensionMetadataAttribute>, the first generic parameter, ICalculatorExtension, is used to access the members of the instantiated type; the second generic parameter, ICalculatorExtensionMetadataAttribute, is used to access metadata information (code file UICalculator/CalculatorViewModels/CalculatorExtensionsImport.cs):

[ImportMany()]
public IEnumerable<Lazy<ICalculatorExtension,
 CalculatorExtensionMetadataAttribute>> CalculatorExtensions { get; set; }

The method GetExtensionInformation returns an array of Lazy<ICalculatorExtension, CalculatorExtensionMetadataAttribute>, which can be used to access metadata information about the parts without instantiating the part (code file UICalculator/CalculatorViewModels/CalculatorExtensionsManager.cs):

public IEnumerable<Lazy<ICalculatorExtension,
 CalculatorExtensionMetadataAttribute>> GetExtensionInformation() =>
 _calcExtensionImport.CalculatorExtensions.ToArray();

The GetExtensionInformation method is used in the CalculatorExtensionsViewModel class on initialization to fill the Extensions property (code file UICalculator/CalculatorViewModels/CalculatorExtensionsViewModel.cs):

public class CalculatorExtensionsViewModel: BindableBase
{
 private CalculatorExtensionsManager _calculatorExtensionsManager;

 public CalculatorExtensionsViewModel()
 {
 _calculatorExtensionsManager = new CalculatorExtensionsManager();
 _calculatorExtensionsManager.ImportsSatisfied += (sender, e) =>
 {
 Status += $"{e.StatusMessage}\n";
 };
 }
 public void Init(params Type[] parts)
 {
 _calculatorExtensionsManager.InitializeContainer(parts);
 foreach (var extension in
 _calculatorExtensionsManager.GetExtensionInformation())
 {
 var vm = new ExtensionViewModel(extension);
 vm.ActivatedExtensionChanged += OnActivatedExtensionChanged;
 Extensions.Add(vm);
 }
 }

 public ObservableCollection<ExtensionViewModel> Extensions { get; } =
 new ObservableCollection<ExtensionViewModel>();
 //etc.

Within the XAML code, metadata information is bound. The Lazy type has a Metadata property that returns CalculatorExtensionMetadataAttribute. This way, Description, Title, and ImageUri can be accessed for data binding without instantiating the add-ins (code file UICalculator/WPFCalculatorHost/MainWindow.xaml):

<RibbonGroup Header="Addins"
 ItemsSource="{Binding CalculatorExtensionsViewModel.Extensions,
 Mode=OneWay}">
 <RibbonGroup.ItemTemplate>
 <DataTemplate>
 <RibbonButton
 ToolTip="{Binding Extension.Metadata.Description, Mode=OneTime}"
 Label="{Binding Extension.Metadata.Title, Mode=OneTime}"
 Tag="{Binding Path=Extension, Mode=OneTime}"
 LargeImageSource="{Binding Extension.Metadata.ImageUri,
 Converter={StaticResource bitmapConverter}, Mode=OneTime}"
 Command="{Binding ActivateCommand}" />
 </DataTemplate>
 </RibbonGroup.ItemTemplate>
</RibbonGroup>

Figure 26.7 shows the running application where metadata from the calculator extensions is read—it includes the image, the title, and the description. With Figure 26.8 you can see an activated calculator extension.

[image: Screenshot shows calculator application user interface with number pad on left half, Calculate button on bottom left, icons for fuel economy and temperature conversion on menu bar.]

Figure 26.7

[image: Screenshot shows calculator application window with number pad on left, Calculate buttons on bottom left and right, fuel economy and temperature conversion icons on menu bar, and textfields and scale selection boxes on right.]

Figure 26.8

Summary

In this chapter, you learned about the parts, exports, imports, and containers of Microsoft Composition. You’ve learned how an application can be built up with complete independency of its parts and dynamically load parts that can come from different assemblies.

You’ve seen how you can use either attributes or conventions to match exports and imports. Using conventions allows using parts where you can’t change the source code to add attributes, and also gives the option to create a framework based on Composition that doesn’t require the user of your framework to add attributes for importing the parts.

You’ve also learned how parts can be lazy loaded to instantiate them only when they are needed. Parts can offer metadata that can give enough information for the client to decide whether the part should be instantiated.

The next chapter covers XML and JSON—two data formats that you can use to serialize your objects and also use to read and analyze data with these formats.

27
XML and JSON

What’s In This Chapter?

	XML standards

	XmlReader and XmlWriter

	XmlDocument

	XPathNavigator

	LINQ to XML

	Working with objects in the System.Xml.Linq namespace

	Querying XML documents using LINQ

	Creating JSON

	Converting Objects to and from JSON

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	XmlReaderAndWriter

	XmlDocument

	XPathNavigator

	ObjectToXmlSerialization

	ObjectToXmlSerializationWOAttributes

	LinqToXmlSample

	JsonSample

Data Formats

The Extensible Markup Language (XML) has been playing an important part in information technology since 1996. The language is used to describe data, and it’s used with configuration files, source code documentation, web services that make use of SOAP, and more. In recent years, it has been replaced in some ways (for example, configuration files and data transfer from REST-based web services) by JavaScript Object Notation (JSON) because this technology has less overhead and can be used easily from JavaScript. However, JSON cannot replace XML in all the scenarios where XML is used today. Both of these data formats can be used with .NET applications, as covered in this chapter.

For processing XML, different options are available. You can either read the complete document and navigate within the Document Object Model (DOM) hierarchy using the XmlDocument class, or you can use XmlReader and XmlWriter. Using XmlReader is more complex to do, but you can read larger documents. With XmlDocument, the complete document is loaded in the memory. With the XmlReader it is possible to read node by node.

Another way to work with XML is to serialize .NET object trees to XML and deserialize XML data back into .NET objects using the System.Xml.Serialization namespace.

When querying and filtering XML content, you can either use an XML standard XPath or use LINQ to XML. Both technologies are covered in this chapter. LINQ to XML also offers an easy way to create XML documents and fragments.

NOTE If you want to learn more about XML, Wrox’s Professional XML (Wiley, 2007) is a great place to start.

The discussion begins with a brief overview of the current status of XML standards.

XML

The first XML examples use the file books.xml as the source of data. You can download this file and the other code samples for this chapter from the Wrox website (www.wrox.com). The books.xml file is a book catalog for an imaginary bookstore. It includes book information such as genre, author name, price, and International Standard Book Number (ISBN).

This is what the books.xml file looks like:

<?xml version='1.0'?>
<!-- This file represents a fragment of a book store inventory database -->
<bookstore>
 <book genre="autobiography" publicationdate="1991" ISBN="1-861003-11-0">
 <title>The Autobiography of Benjamin Franklin</title>
 <author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
 </author>
 <price>8.99</price>
 </book>
 <book genre="novel" publicationdate="1967" ISBN="0-201-63361-2">
 <title>The Confidence Man</title>
 <author>
 <first-name>Herman</first-name>
 <last-name>Melville</last-name>
 </author>
 <price>11.99</price>
 </book>
 <book genre="philosophy" publicationdate="1991" ISBN="1-861001-57-6">
 <title>The Gorgias</title>
 <author>
 <name>Plato</name>
 </author>
 <price>9.99</price>
 </book>
</bookstore>

Let’s have a look at the parts of this XML content. An XML document should start with an XML declaration that specifies the XML version number:

<?xml version='1.0'?>

You can put comments anywhere in an XML document outside of markup. They start with <!-- and end with -->:

<!-- This file represents a fragment of a book store inventory database -->

A full document can contain only a single root element (whereas an XML fragment can contain multiple elements). With the books.xml file, the root element is bookstore:

<bookstore>
 <!-- child elements here -->
</bookstore>

An XML element can contain child elements. The author element contains the child elements first-name and last-name. The first-name element itself contains inner text Benjamin. first-name is a child element of author, which also means author is a parent element of first-name. first-name and last-name are sibling elements:

<author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
</author>

An XML element can also contain attributes. The book element contains the attributes genre, publicationdate, and ISBN. Values for attributes need to be surrounded by quotes.

<book genre="novel" publicationdate="1967" ISBN="0-201-63361-2">
</book>

NOTE The HTML5 specification doesn’t require quotes with attributes. HTML is not XML; HTML has a more relaxed syntax, whereas XML is strict. HTML documents can also be written using XHTML, which uses XML syntax.

XML Standards Support in .NET

The World Wide Web Consortium (W3C) has developed a set of standards that give XML its power and potential. Without these standards, XML would not have the impact on the development world that it does. The W3C website (www.w3.org) is a valuable source for all things XML.

The .NET Framework supports the following W3C standards:

	XML 1.0 (www.w3.org/TR/REC-xml), including DTD support

	XML namespaces (www.w3.org/TR/REC-xml-names), both stream level and DOM

	XML schemas (www.w3.org/XML/Schema)

	XPath expressions (www.w3.org/TR/xpath)

	XSLT transformations (www.w3.org/TR/xslt)

	DOM Level 1 Core (www.w3.org/TR/REC-DOM-Level-1)

	DOM Level 2 Core (www.w3.org/TR/DOM-Level-2-Core)

	SOAP 1.2 (www.w3.org/TR/SOAP)

The level of standards support changes as the W3C updates the recommended standards and as Microsoft and the community update .NET Core. Therefore, you need to make sure that you stay up to date with the standards and the level of support provided.

Working with XML in the Framework

The .NET Framework gives you many different options for reading and writing XML. You can directly use the DOM tree to work with XmlDocument and classes from the System.Xml namespace and the System.Xml.XmlDocument NuGet package. This works well and is easy to do with files that fit into the memory.

For fast reading and writing XML, you can use the XmlReader and XmlWriter classes. These classes allow streaming and make it possible to work with large XML files. These classes are in the System.Xml namespace as well, but they’re in a different NuGet package: System.Xml.ReaderWriter.

For using the XPath standard to navigate and query XML, you can use the XPathNavigator class. This is defined in the System.Xml.XPath namespace in the NuGet package System.Xml.XmlDocument.

Since .NET 3.5, .NET has offered another syntax to query XML: LINQ. Although LINQ to XML doesn’t support the W3C DOM standard, it provides an easier option to navigate within the XML tree, and also allows easier creating of XML documents or fragments. The namespace needed here is System.Xml.Linq, and the NuGet package System.Xml.XDocument.

NOTE LINQ is covered in Chapter 13, “Language Integrated Query.” The specific implementation of LINQ, LINQ to XML, is covered in this chapter.

To serialize and deserialize .NET objects to XML, you can use the XmlSerializer. With .NET Core, the NuGet package needed here is System.Xml.XmlSerializer with the namespace System.Xml .Serialization.

WCF uses another method for XML serialization: data contract serialization. Although the XmlSerializer does allow you to differ serialization between attributes and elements, this is not possible with the DataContractSerializer serializing XML.

NOTE WCF is covered in Chapter 44, “Windows Communication Foundation.”

JSON

JavaScript Object Notation (JSON) came up in recent years because it can be directly used from JavaScript, and it has less overhead compared to XML. JSON is defined by IETF RFC 7159 (https://tools.ietf.org/html/rfc7159), and the ECMA standard 404 (http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf).

For sending JSON documents, there’s an official MIME type "application/json". Some frameworks still use older, unofficial MIME types "text/json" or "text/javascript".

The same content as the earlier XML file is described here using JSON. Arrays of elements are contained within brackets. In the example, the JSON file contains multiple book objects. Curly brackets define objects or dictionaries. The key and value are separated by a colon. The key needs to be quoted; the value is a string:

 |
 "book": {
 "genre":"autobiography",
 "publicationdate": 1991,
 "ISBN":"1-861003-11-0",
 "title":"The Autobiography of Benjamin Franklin"
 "author": {
 "first-name":"Benjamin",
 "last-name":"Franklin"
 },
 "price": 8.99
 },
 "book": {
 "genre":"novel",
 "publicationdate": 1967,
 "ISBN":"1-861001-57-6",
 "title":"The Confidence Man"
 "author": {
 "first-name":"Herman",
 "last-name":"Melville"
 },
 "price": 11.99
 },
 "book": {
 "genre":"philosophy",
 "publicationdate": 1991,
 "ISBN":"1-861001-57-6",
 "title":"The Georgias"
 "author": {
 "name":"Plato",
 },
 "price": 9.99
 }
|

With .NET, JSON is used in many different places. When you’re creating new DNX projects, you can see JSON used as the project configuration file. It’s used with web projects to serialize data from and to the client using the ASP.NET Web API (see Chapter 42, “ASP.NET Web API.”) and used in data stores such as the NoSQL database DocumentDB that’s available with Microsoft Azure.

Different options are available to you when you’re using JSON with .NET. One of the JSON serializers is the DataContractJsonSerializer. This type derives from the base class XmlObjectSerializer, although it doesn’t really have a relation to XML. At the time when the data contract serialization technology was invented (which happened with .NET 3.0), the idea was that from now on every serialization is XML (XML in binary format is available as well). As time moved on, this assumption was not true anymore. JSON was widely used. As a matter of fact, JSON was added to the hierarchy to be supported with the data contract serialization. However, a faster, more flexible implementation won the market and is now supported by Microsoft and used with many .NET applications: Json.NET. Because this library is the one most used with .NET applications, it is covered in this chapter.

Beside the core JSON standard, JSON grows as well. Features known from XML are added to JSON. Let’s get into examples of the JSON improvements, and compare them to XML features. The XML Schema Definition (XSD) describes XML vocabularies; at the time of this writing, the JSON Schema with similar features is a work in progress. With WCF, XML can be compacted with a custom binary format. You can also serialize JSON in a binary form that is more compact than the text format. A binary version of JSON is described by BSON (Binary JSON): http://bsonspec.org. Sending SOAP (an XML format) across the network makes use of the Web Service Description Language (WSDL) to describe the service. With REST services that are offering JSON data, a description is available as well: Swagger (http://swagger.io).

NOTE ASP.NET Web API and Swagger are covered in Chapter 42.

Now it’s time to get into concrete uses of the .NET Framework classes.

Reading and Writing Streamed XML

The XmlReader and XmlWriter classes provide a fast way to read and write large XML documents. XmlReader-based classes provide a very fast, forward-only, read-only cursor that streams the XML data for processing. Because it is a streaming model, the memory requirements are not very demanding. However, you don’t have the navigation flexibility and the read or write capabilities that would be available from a DOM-based model. XmlWriter-based classes produce an XML document that conforms to the W3C’s XML 1.0 (4th edition).

The sample code using XmlReader and XmlWriter makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Xml.ReaderWriter

Namespaces

	System.Xml

	static System.Console

The application enables you to specify several command-line arguments for all the different sample cases that are defined as const value, and also specifies the filenames to read and write to (code file XmlReaderAndWriterSample/Program.cs):

class Program
{
 private const string BooksFileName ="books.xml";
 private const string NewBooksFileName ="newbooks.xml";
 private const string ReadTextOption ="-r";
 private const string ReadElementContentOption ="-c";
 private const string ReadElementContentOption2 ="-c2";
 private const string ReadDecimalOption ="-d";
 private const string ReadAttributesOption ="-a";
 private const string WriteOption ="-w";
 // etc
}

The Main method invokes the specific sample method based on the command line that is passed:

static void Main(string[] args)
{
 if (args.Length != 1)
 {
 ShowUsage();
 return;
 }

 switch (args[0])
 {
 case ReadTextOption:
 ReadTextNodes();
 break;
 case ReadElementContentOption:
 ReadElementContent();
 break;
 case ReadElementContentOption2:
 ReadElementContent2();
 break;
 case ReadDecimalOption:
 ReadDecimal();
 break;
 case ReadAttributesOption:
 ReadAttributes();
 break;
 default:
 ShowUsage();
 break;
 }
}

Reading XML with XmlReader

The XmlReader enables you to read large XML streams. It is implemented as a pull model parser to pull data into the application that’s requesting it.

The following is a very simple example of reading XML data; later you take a closer look at the XmlReader class. Because the XmlReader is an abstract class, it cannot be directly instantiated. Instead, the factory method Create is invoked to return an instance that derives from the base class XmlReader. The Create method offers several overloads where either a filename, a TextReader, or a Stream can be supplied with the first argument. The sample code directly passes the filename to the Books.xml file. After the reader is created, nodes can be read using the Read method. As soon as no node is available, the Read method returns false. You can debug through the while loop to see all the node types returned from the books.xml file. Only with the nodes of type XmlNodeType.Text is the value written to the console (code file XMLReaderAndWriterSample/Program.cs):

public static void ReadTextNodes()
{
 using (XmlReader reader = XmlReader.Create(BooksFileName))
 {
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Text)
 {
 WriteLine(reader.Value);
 }
 }
 }
}

Running the application with the -r option shows the value of all text nodes:

The Autobiography of Benjamin Franklin
Benjamin
Franklin
8.99
The Confidence Man
Herman
Melville
11.99
The Gorgias
Plato
9.99

Using Read Methods

Several ways exist to move through the document. As shown in the previous example, Read takes you to the next node. You can then verify whether the node has a value (HasValue) or, as you see later, whether the node has any attributes (HasAttributes). You can also use the ReadStartElement method, which verifies whether the current node is the start element and then positions you on the next node. If you are not on the start element, an XmlException is raised. Calling this method is the same as calling the IsStartElement method followed by a Read method.

ReadElementString is similar to ReadString except that you can optionally pass in the name of an element. If the next content node is not a start tag, or if the Name parameter does not match the current node Name, an exception is raised.

Here is an example showing how you can use ReadElementString. Notice that it uses FileStreams, so you need to ensure that you import the System.IO namespace (code file XMLReaderAndWriterSample/Program.cs):

public static void ReadElementContent()
{
 using (XmlReader reader = XmlReader.Create(BooksFileName))
 {
 while (!reader.EOF)
 {
 if (reader.MoveToContent() == XmlNodeType.Element &&
 reader.Name =="title")
 {
 WriteLine(reader.ReadElementContentAsString());
 }
 else
 {
 // move on
 reader.Read();
 }
 }
 }
}

In the while loop, the MoveToContent method is used to find each node of type XmlNodeType.Element with the name title. The EOF property of the XmlTextReader checks the end of the loop condition. If the node is not of type Element or not named title, the else clause issues a Read method to move to the next node. When a node is found that matches the criteria, the result is written to the console. This should leave just the book titles written to the console. Note that you don’t have to issue a Read call after a successful ReadElementString because ReadElementString consumes the entire Element and positions you on the next node.

If you remove && rdr.Name=="title" from the if clause, you have to catch the XmlException when it is thrown. Looking at the XML data file, the first element that MoveToContent finds is the <bookstore> element. Because it is an element, it passes the check in the if statement. However, because it does not contain a simple text type, it causes ReadElementString to raise an XmlException. One way to work around this is to catch the exception and invoke the Read method in the exception handler (code file XmlReaderAndWriterSample/Program.cs):

public static void ReadElementContent2()
{
 using (XmlReader reader = XmlReader.Create(BooksFileName))
 {
 while (!reader.EOF)
 {
 if (reader.MoveToContent() == XmlNodeType.Element)
 {
 try
 {
 WriteLine(reader.ReadElementContentAsString());
 }
 catch (XmlException ex)
 {
 reader.Read();
 }
 }
 else
 {
 // move on
 reader.Read();
 }
 }
 }
}

After running this example, the results should be the same as before. The XmlReader can also read strongly typed data. There are several ReadElementContentAs methods, such as ReadElementContentAsDouble, ReadElementContentAsBoolean, and so on. The following example shows how to read in the values as a decimal and do some math on the value. In this case, the value from the price element is increased by 25 percent (code file XmlReaderAndWriterSample/Program.cs):

public static void ReadDecimal()
{
 using (XmlReader reader = XmlReader.Create(BooksFileName))
 {
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {
 if (reader.Name =="price")
 {
 decimal price = reader.ReadElementContentAsDecimal();
 WriteLine($"Current Price = {price}");
 price += price * .25m;
 WriteLine($"New price {price}");
 }
 else if (reader.Name =="title")
 {
 WriteLine(reader.ReadElementContentAsString());
 }
 }
 }
 }
}

Retrieving Attribute Data

As you play with the sample code, you might notice that when the nodes are read in, you don’t see any attributes. This is because attributes are not considered part of a document’s structure. When you are on an element node, you can check for the existence of attributes and optionally retrieve the attribute values.

For example, the HasAttributes property returns true if there are any attributes; otherwise, it returns false. The AttributeCount property tells you how many attributes there are, and the GetAttribute method gets an attribute by name or by index. If you want to iterate through the attributes one at a time, you can use the MoveToFirstAttribute and MoveToNextAttribute methods.

The following example iterates through the attributes of the books.xml document (code file XmlReaderAndWriterSample/Program.cs):

public static void ReadAttributes()
{
 using (XmlReader reader = XmlReader.Create(BooksFileName))
 {
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {
 for (int i = 0; i < reader.AttributeCount; i++)
 {
 WriteLine(reader.GetAttribute(i));
 }
 }
 }
 }
}

This time you are looking for element nodes. When you find one, you loop through all the attributes and, using the GetAttribute method, load the value of the attribute into the list box. In the preceding example, those attributes would be genre, publicationdate, and ISBN.

Using the XmlWriter Class

The XmlWriter class enables you to write XML to a stream, a file, a StringBuilder, a TextWriter, or another XmlWriter object. Like XmlTextReader, it does so in a forward-only, noncached manner. XmlWriter is configurable, enabling you to specify such things as whether to indent content, the amount to indent, what quote character to use in attribute values, and whether namespaces are supported. This configuration is done using an XmlWriterSettings object.

Here’s a simple example that shows how you can use the XmlTextWriter class (code file XmlReaderAndWriterSample/Program.cs):

public static void WriterSample()
{
 var settings = new XmlWriterSettings
 {
 Indent = true,
 NewLineOnAttributes = true,
 Encoding = Encoding.UTF8,
 WriteEndDocumentOnClose = true
 }

 StreamWriter stream = File.CreateText(NewBooksFileName);
 using (XmlWriter writer = XmlWriter.Create(stream, settings))
 {
 writer.WriteStartDocument();
 //Start creating elements and attributes
 writer.WriteStartElement("book");
 writer.WriteAttributeString("genre","Mystery");
 writer.WriteAttributeString("publicationdate","2001");
 writer.WriteAttributeString("ISBN","123456789");
 writer.WriteElementString("title","Case of the Missing Cookie");
 writer.WriteStartElement("author");
 writer.WriteElementString("name","Cookie Monster");
 writer.WriteEndElement();
 writer.WriteElementString("price","9.99");
 writer.WriteEndElement();
 writer.WriteEndDocument();
 }
}

Here, you are writing to a new XML file called newbook.xml, adding the data for a new book. Note that XmlWriter overwrites an existing file with a new one. (Later in this chapter you read about inserting a new element or node into an existing document.) You are instantiating the XmlWriter object by using the Create static method. In this example, a string representing a filename is passed as a parameter, along with an instance of an XmlWriterSettings class.

The XmlWriterSettings class has properties that control how the XML is generated. The CheckedCharacters property is a Boolean that raises an exception if a character in the XML does not conform to the W3C XML 1.0 recommendation. The Encoding class sets the encoding used for the XML being generated; the default is Encoding.UTF8. The Indent property is a Boolean value that determines whether elements should be indented. The IndentChars property is set to the character string that it is used to indent. The default is two spaces. The NewLine property is used to determine the characters for line breaks. In the preceding example, the NewLineOnAttribute is set to true. This puts each attribute in a separate line, which can make the generated XML a little easier to read.

WriteStartDocument adds the document declaration. Now you start writing data. First is the book element; next, you add the genre, publicationdate, and ISBN attributes. Then you write the title, author, and price elements. Note that the author element has a child element name.

When you click the button, you produce the booknew.xml file, which looks like this:

<?xml version="1.0" encoding="utf-8"?>
<book
 genre="Mystery"
 publicationdate="2001"
 ISBN="123456789">
 <title>Case of the Missing Cookie</title>
 <author>
 <name>Cookie Monster</name>
 </author>
 <price>9.99</price>
</book>

The nesting of elements is controlled by paying attention to when you start and finish writing elements and attributes. You can see this when you add the name child element to the authors element. Note how the WriteStartElement and WriteEndElement method calls are arranged and how that arrangement produces the nested elements in the output file.

Along with the WriteElementString and WriteAttributeString methods, there are several other specialized write methods. WriteComment writes out a comment in proper XML format. WriteChars writes out the contents of a char buffer. WriteChars needs a buffer (an array of characters), the starting position for writing (an integer), and the number of characters to write (an integer).

Reading and writing XML using the XmlReader- and XmlWriter-based classes are flexible and simple to do. Next, you find out how the DOM is implemented in the System.Xml namespace through the XmlDocument and XmlNode classes.

Using the DOM in .NET

The DOM implementation in .NET supports the W3C DOM specifications. The DOM is implemented through the XmlNode class, which is an abstract class that represents a node of an XML document. Concrete classes are XmlDocument, XmlDocumentFragment, XmlAttribute, and XmlNotation. XmlLinkedNode is an abstract class that derives from XmlNode. Concrete classes that derive from XmlLinkedNode are XmlDeclaration, XmlDocumentType, XmlElement, and XmlProcessingInstruction.

An XmlNodeList class is an ordered list of nodes. This is a live list of nodes, and any changes to any node are immediately reflected in the list. XmlNodeList supports indexed access or iterative access.

The XmlNode and XmlNodeList classes make up the core of the DOM implementation in the .NET Framework.

The sample code using XmlDocument makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Xml.XmlDocument

Namespaces

	System

	System.IO

	System.Xml

	static System.Console

Reading with the XmlDocument Class

XmlDocument is a class that represents the XML DOM in .NET. Unlike XmlReader and XmlWriter, XmlDocument provides read and write capabilities as well as random access to the DOM tree.

The example introduced in this section creates an XmlDocument object, loads a document from disk, and loads a text box with data from the title elements. This is similar to one of the examples that you constructed in the section “Reading XML with XmlReader.” The difference is that here you select the nodes you want to work with instead of going through the entire document as in the XmlReader-based example.

Here is the code to create an XmlDocument object. Note how simple it looks in comparison to the XmlReader example (code file XmlDocumentSample/Program.cs):

public static void ReadXml()
{
 using (FileStream stream = File.OpenRead(BooksFileName))
 {
 var doc = new XmlDocument();
 doc.Load(stream);

 XmlNodeList titleNodes = doc.GetElementsByTagName("title");

 foreach (XmlNode node in titleNodes)
 {
 WriteLine(node.OuterXml);
 }
 }
}

If this is all that you wanted to do, using the XmlReader would have been a much more efficient way to read the file, because you just go through the document once and then you are finished with it. This is exactly the type of work that XmlReader was designed for. However, if you want to revisit a node, using XmlDocument is a better way.

Navigating Through the Hierarchy

A big advantage of the XmlDocument class is that you can navigate the DOM tree. The following example accesses all author elements and writes the outer XML to the console (this is the XML including the author element), the inner XML (without the author element), the next sibling, the previous sibling, the first child, and the parent (code file XmlDocumentSample/Program.cs):

public static void NavigateXml()
{
 using (FileStream stream = File.OpenRead(BooksFileName))
 {
 var doc = new XmlDocument();
 doc.Load(stream);

 XmlNodeList authorNodes = doc.GetElementsByTagName("author");

 foreach (XmlNode node in authorNodes)
 {
 WriteLine($"Outer XML: {node.OuterXml}");
 WriteLine($"Inner XML: {node.InnerXml}");
 WriteLine($"Next sibling outer XML: {node.NextSibling.OuterXml}");
 WriteLine($"Previous sibling outer XML:
 {node.PreviousSibling.OuterXml}");
 WriteLine($"First child outer Xml: {node.FirstChild.OuterXml}");
 WriteLine($"Parent name: {node.ParentNode.Name}");
 WriteLine();
 }
 }
}

When you run the application, you can see these values for the first element found:

Outer XML: <author><first-name>Benjamin</first-name>
 <last-name>Franklin</last-name></author>
Inner XML: <first-name>Benjamin</first-name><last-name>Franklin</last-name>
Next sibling outer XML: <price>8.99</price>
Previous sibling outer XML:
 <title>The Autobiography of Benjamin Franklin</title>
First child outer Xml: <first-name>Benjamin</first-name>
Parent name: book

Inserting Nodes with XmlDocument

Earlier, you looked at an example that used the XmlWriter class that created a new document. The limitation was that it would not insert a node into a current document. With the XmlDocument class, you can do just that.

The following code sample creates the element book using CreateElement, adds some attributes, adds some child elements, and after creating the complete book element adds it to the root element of the XML document (code file XmlDocumentSample/Program.cs):

public static void CreateXml()
{
 var doc = new XmlDocument();

 using (FileStream stream = File.OpenRead("books.xml"))
 {
 doc.Load(stream);
 }

 //create a new 'book' element
 XmlElement newBook = doc.CreateElement("book");
 //set some attributes
 newBook.SetAttribute("genre","Mystery");
 newBook.SetAttribute("publicationdate","2001");
 newBook.SetAttribute("ISBN","123456789");
 //create a new 'title' element
 XmlElement newTitle = doc.CreateElement("title");
 newTitle.InnerText ="Case of the Missing Cookie";
 newBook.AppendChild(newTitle);
 //create new author element
 XmlElement newAuthor = doc.CreateElement("author");
 newBook.AppendChild(newAuthor);
 //create new name element
 XmlElement newName = doc.CreateElement("name");
 newName.InnerText ="Cookie Monster";
 newAuthor.AppendChild(newName);
 //create new price element
 XmlElement newPrice = doc.CreateElement("price");
 newPrice.InnerText ="9.95";
 newBook.AppendChild(newPrice);

 //add to the current document
 doc.DocumentElement.AppendChild(newBook);

 var settings = new XmlWriterSettings
 {
 Indent = true,
 IndentChars ="\t",
 NewLineChars = Environment.NewLine
 };
 //write out the doc to disk
 using (StreamWriter streamWriter = File.CreateText(NewBooksFileName))
 using (XmlWriter writer = XmlWriter.Create(streamWriter, settings))
 {
 doc.WriteContentTo(writer);
 }

 XmlNodeList nodeLst = doc.GetElementsByTagName("title");
 foreach (XmlNode node in nodeLst)
 {
 WriteLine(node.OuterXml);
 }
}

When you run the application, the following book element is added to the bookstore and written to the file newbooks.xml:

<book genre="Mystery" publicationdate="2001" ISBN="123456789">
 <title>Case of the Missing Cookie</title>
 <author>
 <name>Cookie Monster</name>
 </author>
 <price>9.95</price>
</book>

After creating the file, the application writes all title nodes to the console. You can see that the added element is now included:

<title>The Autobiography of Benjamin Franklin</title>
<title>The Confidence Man</title>
<title>The Gorgias</title>
<title>Case of the Missing Cookie</title>

You should use the XmlDocument class when you want to have random access to the document. Use the XmlReader-based classes when you want a streaming-type model instead. Remember that there is a cost for the flexibility of the XmlNode-based XmlDocument class: Memory requirements are higher and the performance of reading the document is not as good as when using XmlReader. There is another way to traverse an XML document: the XPathNavigator.

Using XPathNavigator

An XPathNavigator can be used to select, iterate, and find data from an XML document using the XPath syntax. An XPathNavigator can be created from an XPathDocument. The XPathDocument cannot be changed; it is designed for performance and read-only use. Unlike the XmlReader, the XPathNavigator is not a streaming model, so the document is read and parsed only once. Similar to XmlDocument it requires the complete document loaded in memory.

The System.Xml.XPath namespace defined in the NuGet package System.Xml.XPath is built for speed. It provides a read-only view of your XML documents, so there are no editing capabilities. Classes in this namespace are built for fast iteration and selections on the XML document in a cursory fashion.

The following table lists the key classes in System.Xml.XPath and gives a short description of the purpose of each class.

	Class Name
	Description

	XPathDocument
	Provides a view of the entire XML document. Read-only.

	XPathNavigator
	Provides the navigational capabilities to an XPathDocument.

	XPathNodeIterator
	Provides iteration capabilities to a node set.

	XPathExpression
	Represents a compiled XPath expression. Used by SelectNodes, SelectSingleNodes, Evaluate, and Matches.

The sample code makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Xml.XmlDocument

	System.Xml.XPath

Namespaces

	System.IO

	System.Xml

	System.Xml.XPath

	static System.Console

XPathDocument

XPathDocument does not offer any of the functionality of the XmlDocument class. Its sole purpose is to create XPathNavigators. In fact, that is the only method available on the XPathDocument class (other than those provided by Object).

You can create an XPathDocument in a number of different ways. You can pass in an XmlReader, or a Stream-based object to the constructor. This provides a great deal of flexibility.

XPathNavigator

XPathNavigator contains methods for moving and selecting elements. Move methods set the current position of the iterator to the element that should be moved to. You can move to specific attributes of an element: the MoveToFirstAttribute method moves to the first attribute, the MoveToNextAttribute method to the next one. MoveToAttribute allows specifying a specific attribute name. You can move to sibling nodes with MoveToFirst, MoveToNext, MoveToPrevious, and MoveToLast. It’s also possible to move to child elements (MoveToChild, MoveToFirstChild), to parent elements (MoveToParent), and directly to the root element (MoveToRoot).

You can select methods using XPath expressions using the Select method. To filter the selection based on specific nodes in the tree and the current position, other methods exist. SelectAncestor only filters ancestor nodes, and SelectDescendants filters all descendants. Only the direct children are filtered with SelectChildren. SelectSingleNode accepts an XPath expression and returns a single matching node.

The XPathNavigator also allows changing the XML tree using one of the Insert methods if the CanEdit property returns true. The XPathNavigator available with .NET Core always returns false, and these methods are implemented by throwing a NotImplementedException exception. With .NET 4.6, when you use the XmlDocument class to create an XPathNavigator, the CanEdit property of the navigator returns true and thus allows changes using the Insert methods.

XPathNodeIterator

The XPathDocument represents the complete XML document, the XPathNavigator enables you to select nodes and move the cursor within the document to specific nodes, and the XPathNodeIterator enables you to iterate over a set of nodes.

The XPathNodeIterator is returned by the XPathNavigator Select methods. You use it to iterate over the set of nodes returned by a Select method of the XPathNavigator. Using the MoveNext method of the XPathNodeIterator does not change the location of the XPathNavigator that created it. However, you can get a new XPathNavigator using the Current property of an XPathNodeIterator. The Current property returns an XPathNavigator that is set to the current position.

Navigating Through XML Using XPath

The best way to see how these classes are used is to look at some code that iterates through the books.xml document. This enables you to see how the navigation works.

The first example iterates all books that define the genre novel. First, an XPathDocument object is created that receives the XML filename in the constructor. This object, which holds read-only content of the XML file, offers the CreateNavigator method to create an XPathNavigator. When you use this navigator, an XPath expression can be passed to the Select method. When you use XPath, you can access element trees using / between hierarchies. /bookstore/book retrieves all book nodes within the bookstore element. @genre is a shorthand notation to access the attribute genre. The Select method returns an XPathNodeIterator that enables you to iterate all nodes that match the expression. The first while loop iterates all book elements that match calling the MoveNext method. With each iteration, another select method is invoked on the current XPathNavigator—SelectDescendants. SelectDescendants returns all descendants, which means the child nodes, and the children of the child nodes, and the children of those children through the complete hierarchy. With the SelectDescendants method, the overload is taken to match only element nodes and to exclude the book element itself. The second while loop iterates this collection and writes the name and value to the console (code file XPathNavigatorSample/Program.cs):

public static void SimpleNavigate()
{
 //modify to match your path structure
 var doc = new XPathDocument(BooksFileName);
 //create the XPath navigator
 XPathNavigator nav = doc.CreateNavigator();
 //create the XPathNodeIterator of book nodes
 // that have genre attribute value of novel
 XPathNodeIterator iterator = nav.Select("/bookstore/book[@genre='novel']");

 while (iterator.MoveNext())
 {
 XPathNodeIterator newIterator = iterator.Current.SelectDescendants(
 XPathNodeType.Element, matchSelf: false);
 while (newIterator.MoveNext())
 {
 WriteLine($"{newIterator.Current.Name}: {newIterator.Current.Value}");
 }
 }
}

When you run the application, you can see the content of the only book that matches the novel genre with all its children as you can see with the first-name and last-name elements that are contained within author:

title: The Confidence Man
author: HermanMelville
first-name: Herman
last-name: Melville
price: 11.99

Using XPath Evaluations

XPath not only allows fast access to XML nodes within a tree, it also defines some functions—for example, ceiling, floor, number, round, and sum—for numbers. The following sample is somewhat similar to the previous one; it accesses all book elements instead of only the one matching the novel genre. Iterating the book elements, just the title child element is accessed by moving the current position to the first child title node. From the title node, the name and value are written to the console. The very special piece of code is defined with the last statement. The XPath sum function is invoked on the value of /bookstore/book/price elements. Such functions can be evaluated by calling the Evaluate method on the XPathNavigator (code file XPathNavigatorSample/Program.cs):

public static void UseEvaluate()
{
 //modify to match your path structure
 var doc = new XPathDocument(BooksFileName);
 //create the XPath navigator
 XPathNavigator nav = doc.CreateNavigator();
 //create the XPathNodeIterator of book nodes
 XPathNodeIterator iterator = nav.Select("/bookstore/book");
 while (iterator.MoveNext())
 {
 if (iterator.Current.MoveToChild("title", string.Empty))
 {
 WriteLine($"{iterator.Current.Name}: {iterator.Current.Value}");
 }
 }
 WriteLine("=========================");
 WriteLine($"Total Cost = {nav.Evaluate("sum(/bookstore/book/price)")}");
}

When you run the application, you can see all book titles and the summary price:

title: The Autobiography of Benjamin Franklin
title: The Confidence Man
title: The Gorgias
=========================
Total Cost = 30.97

Changing XML Using XPath

Next, make some changes using XPath. This part of the code only works with the full .NET Framework, thus preprocessor directives are used to handle the code differences. To create a changeable XPathNavigator, with .NET 4.6, the XmlDocument class is used. Using .NET Core, XmlDocument does not offer a CreateNavigator method, and thus the navigator is always read-only. With .NET 4.6, the CanEdit property of the XPathNavigator returns true, and thus the InsertAfter method can be invoked. Using InsertAfter, a discount is added as sibling after the price element. The newly created XML document is accessed using the OuterXml property of the navigator, and a new XML file is saved (code file XPathNavigatorSample/Program.cs):

public static void Insert()
{
#if DNX46
 var doc = new XmlDocument();
 doc.Load(BooksFileName);
#else
 var doc = new XPathDocument(BooksFileName);
#endif

 XPathNavigator navigator = doc.CreateNavigator();

 if (navigator.CanEdit)
 {
 XPathNodeIterator iter = navigator.Select("/bookstore/book/price");

 while (iter.MoveNext())
 {
 iter.Current.InsertAfter("<disc>5</disc>");
 }
 }

 using (var stream = File.CreateText(NewBooksFileName))
 {
 var outDoc = new XmlDocument();
 outDoc.LoadXml(navigator.OuterXml);
 outDoc.Save(stream);
 }
}

When you run the application with .NET 4.6, the newly generated XML contains the disc elements:

<?xml version="1.0" encoding="utf-8"?>
<!-- This file represents a fragment of a book store inventory database -->
<bookstore>
 <book genre="autobiography" publicationdate="1991" ISBN="1-861003-11-0">
 <title>The Autobiography of Benjamin Franklin</title>
 <author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
 </author>
 <price>8.99</price>
 <disc>5</disc>
 </book>
 <book genre="novel" publicationdate="1967" ISBN="0-201-63361-2">
 <title>The Confidence Man</title>
 <author>
 <first-name>Herman</first-name>
 <last-name>Melville</last-name>
 </author>
 <price>11.99</price>
 <disc>5</disc>
 </book>
 <book genre="philosophy" publicationdate="1991" ISBN="1-861001-57-6">
 <title>The Gorgias</title>
 <author>
 <name>Plato</name>
 </author>
 <price>9.99</price>
 <disc>5</disc>
 </book>
</bookstore>

Serializing Objects in XML

Serializing is the process of persisting an object to disk. Another part of your application, or even a separate application, can deserialize the object, and it will be in the same state it was in prior to serialization. The .NET Framework includes a couple of ways to do this.

This section looks at the System.Xml.Serialization namespace with the NuGet package System.Xml .XmlSerializer, which contains classes used to serialize objects into XML documents or streams. This means that an object’s public properties and public fields are converted into XML elements, attributes, or both.

The most important class in the System.Xml.Serialization namespace is XmlSerializer. To serialize an object, you first need to instantiate an XmlSerializer object, specifying the type of the object to serialize. Then you need to instantiate a stream/writer object to write the file to a stream/document. The final step is to call the Serialize method on the XMLSerializer, passing it the stream/writer object and the object to serialize.

Data that can be serialized can be primitive types, fields, arrays, and embedded XML in the form of XmlElement and XmlAttribute objects. To deserialize an object from an XML document, you reverse the process in the previous example. You create a stream/reader and an XmlSerializer object and then pass the stream/reader to the Deserialize method. This method returns the deserialized object, although it needs to be cast to the correct type.

NOTE The XML serializer cannot convert private data—only public data—and it cannot serialize cyclic object graphs. However, these are not serious limitations; by carefully designing your classes, you should be able to easily avoid these issues. If you do need to be able to serialize public and private data as well as an object graph containing many nested objects, you can use the runtime or the data contract serialization mechanisms.

The sample code makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Xml.XmlDocument

	System.Xml.XmlSerializer

Namespaces

	System.IO

	System.Xml

	System.Xml.Serialization

	static System.Console

Serializing a Simple Object

Let’s start serializing a simple object. The class Product has XML attributes from the namespace System .Xml.Serialization applied to specify whether a property should be serialized as XML element or attribute. The XmlElement attribute specifies the property to serialize as element; the XmlAttribute attribute specifies to serialize as attribute. The XmlRoot attribute specifies the class to be serialized as the root element (code file ObjectToXmlSerializationSample/Product.cs):

[XmlRoot]
public class Product
{
 [XmlAttribute(AttributeName ="Discount")]
 public int Discount { get; set; }

 [XmlElement]
 public int ProductID { get; set; }

 [XmlElement]
 public string ProductName { get; set; }

 [XmlElement]
 public int SupplierID { get; set; }

 [XmlElement]
 public int CategoryID { get; set; }

 [XmlElement]
 public string QuantityPerUnit { get; set; }

 [XmlElement]
 public Decimal UnitPrice { get; set; }

 [XmlElement]
 public short UnitsInStock { get; set; }

 [XmlElement]
 public short UnitsOnOrder { get; set; }

 [XmlElement]
 public short ReorderLevel { get; set; }

 [XmlElement]
 public bool Discontinued { get; set; }

 public override string ToString() =>
 $"{ProductID} {ProductName} {UnitPrice:C}";
}

With these attributes, you can influence the name, namespace, and type to be generated by using properties of the attribute types.

The following code sample creates an instance of the Product class, fills its properties, and serializes it to a file. Creating the XmlSerializer requires the type of the class to be serialized to be passed with the constructor. The Serialize method is overloaded to accept a Stream, TextWriter, and XmlWriter, and the object to be serialized (code file ObjectToXmlSerializationSample/Program.cs):

public static void SerializeProduct()
{
 var product = new Product
 {
 ProductID = 200,
 CategoryID = 100,
 Discontinued = false,
 ProductName ="Serialize Objects",
 QuantityPerUnit ="6",
 ReorderLevel = 1,
 SupplierID = 1,
 UnitPrice = 1000,
 UnitsInStock = 10,
 UnitsOnOrder = 0
 };

 FileStream stream = File.OpenWrite(ProductFileName);
 using (TextWriter writer = new StreamWriter(stream))
 {
 XmlSerializer serializer = new XmlSerializer(typeof(Product));
 serializer.Serialize(writer, product);
 }
}

The generated XML file lists the Product element with the Discount attribute and the other properties stored as elements:

<?xml version="1.0" encoding="utf-8"?>
<Product xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" Discount="0">
 <ProductID>200</ProductID>
 <ProductName>Serialize Objects</ProductName>
 <SupplierID>1</SupplierID>
 <CategoryID>100</CategoryID>
 <QuantityPerUnit>6</QuantityPerUnit>
 <UnitPrice>1000</UnitPrice>
 <UnitsInStock>10</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>1</ReorderLevel>
 <Discontinued>false</Discontinued>
</Product>

There is nothing out of the ordinary here. You could use this XML file in any way that you would use an XML document—transform it and display it as HTML, load an XmlDocument with it, or, as shown in the example, deserialize it and create an object in the same state that it was in prior to serializing it (which is exactly what you’re doing in the next step.

Creating a new object from the file is done by creating an XmlSerializer and invoking the Deserialize method (code file ObjectToXmlSerializationSample/Program.cs):

public static void DeserializeProduct()
{
 Product product;
 using (var stream = new FileStream(ProductFileName, FileMode.Open))
 {
 var serializer = new XmlSerializer(typeof(Product));
 product = serializer.Deserialize(stream) as Product;
 }
 WriteLine(product);
}

When you run the application, the console shows the product ID, product name, and unit price.

NOTE To ignore properties from the XML serialization, you can use the XmlIgnore attribute.

Serializing a Tree of Objects

What about situations in which you have derived classes and possibly properties that return an array? XmlSerializer has that covered as well. The next example is just slightly more complex so that it can deal with these issues.

In addition to the Product class, the BookProduct (derived from Product) and Inventory classes are created. The Inventory class contains both of the other classes.

The BookProduct class derives from Product and adds the ISBN property. This property is stored with the XML attribute Isbn as defined by the .NET attribute XmlAttribute (code file ObjectToXmlSerializationSample/BookProduct.cs):

public class BookProduct : Product
{
 [XmlAttribute("Isbn")]
 public string ISBN { get; set; }
}

The Inventory class contains an array of inventory items. An inventory item can be a Product or a BookProduct. The serializer needs to know all the derived classes that are stored within the array, otherwise it can’t deserialize them. The items of the array are defined using the XmlArrayItem attribute (code file ObjectToXmlSerializationSample/Inventory.cs):

public class Inventory
{
 [XmlArrayItem("Product", typeof(Product)),
 XmlArrayItem("Book", typeof(BookProduct))]
 public Product[] InventoryItems { get; set; }

 public override string ToString()
 {
 var outText = new StringBuilder();
 foreach (Product prod in InventoryItems)
 {
 outText.AppendLine(prod.ProductName);
 }
 return outText.ToString();
 }
}

In the SerializeInventory method after an Inventory object is created that is filled with a Product and a BookProduct, the inventory is serialized (code file ObjectToXmlSerializationSample/Program.cs):

public static void SerializeInventory()
{
 var product = new Product
 {
 ProductID = 100,
 ProductName ="Product Thing",
 SupplierID = 10
 };

 var book = new BookProduct
 {
 ProductID = 101,
 ProductName ="How To Use Your New Product Thing",
 SupplierID = 10,
 ISBN ="1234567890"
 };

 Product[] items = { product, book };
 var inventory = new Inventory
 {
 InventoryItems = items
 };

 using (FileStream stream = File.Create(InventoryFileName))
 {
 var serializer = new XmlSerializer(typeof(Inventory));
 serializer.Serialize(stream, inventory);
 }
}

The generated XML file defines an Inventory root element and the Product and Book child elements. The BookProduct type is represented as Book element because the XmlItemArray attribute defined the Book name for the BookProduct type:

<?xml version="1.0"?>
<Inventory xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <InventoryItems>
 <Product Discount="0">
 <ProductID>100</ProductID>
 <ProductName>Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Product>
 <Book Discount="0" Isbn="1234567890">
 <ProductID>101</ProductID>
 <ProductName>How To Use Your New Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Book>
 </InventoryItems>
</Inventory>

To deserialize the objects, you need to invoke the Deserialize method of the XmlSerializer:

public static void DeserializeInventory()
{
 using (FileStream stream = File.OpenRead(InventoryFileName))
 {
 var serializer = new XmlSerializer(typeof(Inventory));
 Inventory newInventory = serializer.Deserialize(stream) as Inventory;
 foreach (Product prod in newInventory.InventoryItems)
 {
 WriteLine(prod.ProductName);
 }
 }
}

Serializing Without Attributes

Well, this all works great, but what if you don’t have access to the source code for the types that are being serialized? You can’t add the attribute if you don’t have the source. There is another way: You can use the XmlAttributes class and the XmlAttributeOverrides class. Together these classes enable you to accomplish exactly the same thing as the previous sample but without adding the attributes. This section demonstrates how this works.

For this example, the Inventory, Product, and derived BookProduct classes could also be in a separate library. As the serialization is independent of that, and to make the sample structure easier, these classes are in the same project as in the previous examples, but note that now there are no attributes added to the Inventory class (code file ObjectToXmlSerializationWOAttributes/Inventory.cs):

public class Inventory
{
 public Product[] InventoryItems { get; set; }
 public override string ToString()
 {
 var outText = new StringBuilder();
 foreach (Product prod in InventoryItems)
 {
 outText.AppendLine(prod.ProductName);
 }
 return outText.ToString();
 }
}

The attributes from the Product and BookProduct classes are removed as well.

The implementation to do the serialization is similar to before, with the difference of using a different overload on creating the XmlSerializer. This overload accepts XmlAttributeOverrides. These overrides are coming from the helper method GetInventoryXmlAttributes (code file ObjectToXmlSerializationWOAttributes/Program.cs):

public static void SerializeInventory()
{
 var product = new Product
 {
 ProductID = 100,
 ProductName ="Product Thing",
 SupplierID = 10
 };

 var book = new BookProduct
 {
 ProductID = 101,
 ProductName ="How To Use Your New Product Thing",
 SupplierID = 10,
 ISBN ="1234567890"
 };

 Product[] products = { product, book };
 var inventory = new Inventory
 {
 InventoryItems = products
 };
 using (FileStream stream = File.Create(InventoryFileName))
 {
 var serializer = new XmlSerializer(typeof(Inventory),
 GetInventoryXmlAttributes());
 serializer.Serialize(stream, inventory);
 }
}

The helper method GetInventoryXmlAttributes returns the needed XmlAttributeOverrides. Previously, the Inventory class had the XmlArrayItem attributes applied. They are now done creating XmlAttributes and adding XmlArrayItemAttributes to the XmlArrayItems collection. Another change is that the Product and BookProduct classes had an XmlAttribute applied to the Discount and ISBN properties. To define the same behavior without applying the attributes to the properties directly, XmlAttributeAttribute objects are created and assigned to the XmlAttribute property of XmlAttributes objects. All of these created XmlAttributes are then added to the XmlAttributeOverrides that contains a collection of XmlAttributes. When you invoke the Add method of XmlAttributeOverrides, you need the type where the attribute should be applied, the name of the property, and the corresponding XmlAttributes (code file ObjectToXmlSerializationWOAttributes/Program.cs):

private static XmlAttributeOverrides GetInventoryXmlAttributes()
{
 var inventoryAttributes = new XmlAttributes();
 inventoryAttributes.XmlArrayItems.Add(new XmlArrayItemAttribute("Book",
 typeof(BookProduct)));
 inventoryAttributes.XmlArrayItems.Add(new XmlArrayItemAttribute("Product",
 typeof(Product)));

 var bookIsbnAttributes = new XmlAttributes();
 bookIsbnAttributes.XmlAttribute = new XmlAttributeAttribute("Isbn");

 var productDiscountAttributes = new XmlAttributes();
 productDiscountAttributes.XmlAttribute =
 new XmlAttributeAttribute("Discount");

 var overrides = new XmlAttributeOverrides();

 overrides.Add(typeof(Inventory),"InventoryItems", inventoryAttributes);

 overrides.Add(typeof(BookProduct),"ISBN", bookIsbnAttributes);
 overrides.Add(typeof(Product),"Discount", productDiscountAttributes);
 return overrides;
}

When you run the application, the same XML content is created as before:

<?xml version="1.0"?>
<Inventory xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <InventoryItems>
 <Product Discount="0">
 <ProductID>100</ProductID>
 <ProductName>Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Product>
 <Book Discount="0" Isbn="1234567890">
 <ProductID>101</ProductID>
 <ProductName>How To Use Your New Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Book>
 </InventoryItems>
</Inventory>

NOTE .NET attribute types typically end with the name Attribute. This postfix can be ignored when applying the attribute using brackets. The compiler automatically adds the postfix if it is missing. A class that can be used as an attribute derives from the base class Attribute—directly or indirectly. When you apply the attribute XmlElement using brackets, the compiler instantiates the type XmlElementAttribute. This naming becomes especially noticeable when applying the attribute XmlAttribute using brackets. Behind the scenes, the class XmlAttributeAttribute is used. How does the compiler differentiate this with the class XmlAttribute? The class XmlAttribute is used to read XML attributes from the DOM tree, but it is not a .NET attribute, as it does not derive from the base class Attribute. You can read more information about attributes in Chapter 16, “Reflection, Metadata, and Dynamic Programming.”

With the deserialization code, the same attribute overrides are needed (code file ObjectToXmlSerializationWOAttributes/Program.cs):

public static void DeserializeInventory()
{
 using (FileStream stream = File.OpenRead(InventoryFileName))
 {
 XmlSerializer serializer = new XmlSerializer(typeof(Inventory),
 GetInventoryXmlAttributes());
 Inventory newInventory = serializer.Deserialize(stream) as Inventory;
 foreach (Product prod in newInventory.InventoryItems)
 {
 WriteLine(prod.ProductName);
 }
 }
}

The System.Xml.XmlSerialization namespace provides a very powerful toolset for serializing objects to XML. By serializing and deserializing objects to XML instead of to binary format, you have the option to do something else with this XML, which greatly adds to the flexibility of your designs.

LINQ to XML

Aren’t there already enough options available dealing with XML? Beware, with LINQ to XML another option is available. LINQ to XML allows querying XML code similar to querying object lists and the database. LINQ to Objects are covered in Chapter 13, and LINQ to Entities are covered in Chapter 38, “Entity Framework Core.” Although the DOM tree offered by the XmlDocument and XPath queries offered by the XPathNavigator implement a standards-based approach to query XML data, LINQ to XML offers the simple .NET variant for query—a variant that is similar to querying other data stores. In addition to the methods offered by LINQ to Objects, LINQ to XML adds some XML specifics to this query in the System .Xml.Linq namespace. LINQ to XML also offers easier creating of XML content than the standards-based XmlDocument XML creation.

The following sections describe the objects that are available with LINQ to XML.

NOTE Many of the examples in this section use a file called Hamlet.xml, which you can find at http://metalab.unc.edu/bosak/xml/eg/shaks200.zip. It includes all of Shakespeare’s plays as XML files.

The sample code makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Xml.XDocument

Namespaces

	System

	System.Collections.Generic

	System.Linq

	System.Xml.Linq

	static System.Console

XDocument

The XDocument represents an XML document like the XmlDocument class, but it is easier to work with. The XDocument object works with the other new objects in this space, such as the XNamespace, XComment, XElement, and XAttribute objects.

One of the more important members of the XDocument object is the Load method. Here it loads the file hamlet.xml that is defined by the constant HamletFileName into memory:

XDocument doc = XDocument.Load(HamletFileName);

You can also pass a TextReader or XmlReader object into the Load method. From here, you can programmatically work with the XML code as shown in the following code snippet to access the name of the root element and check whether the root element has attributes (code file LinqToXmlSample/Program.cs):

XDocument doc = XDocument.Load(HamletFileName);
WriteLine($"root name: {doc.Root.Name}");
WriteLine($"has root attributes? {doc.Root.HasAttributes}");

This produces the following results:

root name: PLAY
has root attributes? False

Another important member to be aware of is the Save method, which, like the Load method, enables you to save to a physical disk location or to a TextWriter or XmlWriter object:

XDocument doc = XDocument.Load(HamletFileName);
doc.Save(SaveFileName);

XElement

One object that you will work with frequently is the XElement object. With XElement objects, you can easily create single-element objects that are XML documents themselves, as well as fragments of XML. You can use the Load method with the XElement similarly to how you use the Load method with the XDocument. The following code snippet shows writing an XML element with its corresponding value to the console:

var company = new XElement("Company","Microsoft Corporation");
WriteLine(company);

In the creation of an XElement object, you can define the name of the element as well as the value used in the element. In this case, the name of the element is <Company>, and the value of the <Company> element is Microsoft Corporation. Running this in a console application produces the following result:

<Company>Microsoft Corporation</Company>

You can create an even more complete XML document using multiple XElement objects, as shown in the following example (code file LinqToXmlSample/Program.cs):

public static void CreateXml()
{
 var company =
 new XElement("Company",
 new XElement("CompanyName","Microsoft Corporation"),
 new XElement("CompanyAddress",
 new XElement("Address","One Microsoft Way"),
 new XElement("City","Redmond"),
 new XElement("Zip","WA 98052-6399"),
 new XElement("State","WA"),
 new XElement("Country","USA")));

 WriteLine(company);
}

What’s extremely nice with this API is that the hierarchy of the XML is represented by the API. The first instantiation of the XElement passes the string “Company” to the first parameter. This parameter is of type XName that represents the name of the XML element. The second parameter is another XElement. This second XElement defines the XML child element of the Company. This second element defines "CompanyName" as XName, and "Microsoft Corporation" as its value. The XElement specifying the company address is another child of the Company element. All the other XElement objects that follow are direct child objects of CompanyAddress. The constructor allows passing any number of objects as defined by the type params object[]. All these objects are treated as children.

Running this application produces this result:

<Company>
 <CompanyName>Microsoft Corporation</CompanyName>
 <CompanyAddress>
 <Address>One Microsoft Way</Address>
 <City>Redmond</City>
 <Zip>WA 98052-6399</Zip>
 <State>WA</State>
 <Country>USA</Country>
 </CompanyAddress>
</Company>

NOTE The constructor syntax of XElement allows easy creation of hierarchical XML. This makes it easy to create XML out of LINQ queries (transforming object trees to XML), as is shown later in this section, and you can also transform one XML syntax to another XML syntax.

XNamespace

XNamespace is an object that represents an XML namespace, and it is easily applied to elements within your document. For instance, you can take the previous example and easily apply a namespace to the root element by creating an XNamespace object (code file LinqToXmlSample/Program.cs):

public static void WithNamespace()
{
 XNamespace ns ="http://www.cninnovation.com/samples/2015";

 var company =
 new XElement(ns +"Company",
 new XElement("CompanyName","Microsoft Corporation"),
 new XElement("CompanyAddress",
 new XElement("Address","One Microsoft Way"),
 new XElement("City","Redmond"),
 new XElement("Zip","WA 98052-6399"),
 new XElement("State","WA"),
 new XElement("Country","USA")));

 WriteLine(company);
}

In this case, an XNamespace object is created by assigning it a value of http://www.cninnovation.com/samples/2015. From there, it is actually used in the root element <Company> with the instantiation of the XElement object.

This produces the following result:

<Company>
 <CompanyName>Microsoft Corporation</CompanyName>
 <CompanyAddress>
 <Address>One Microsoft Way</Address>
 <City>Redmond</City>
 <Zip>WA 98052-6399</Zip>
 <State>WA</State>
 <Country>USA</Country>
 </CompanyAddress>
</Company>

NOTE The XNamespace allows creation by assigning a string to the XNamespace instead of using the new operator because this class implements an implicit cast operator from string. It’s also possible to use the + operator with the XNamespace object by having a string on the right side because of an implementation of the + operator that returns an XName. Operator overloading is explained in Chapter 8, “Operators and Casts.”

In addition to dealing with only the root element, you can also apply namespaces to all your elements, as shown in the following example (code file LinqToXmlSample/Program.cs):

public static void With2Namespace()
{
 XNamespace ns1 ="http://www.cninnovation.com/samples/2015";
 XNamespace ns2 ="http://www.cninnovation.com/samples/2015/address";

 var company =
 new XElement(ns1 +"Company",
 new XElement(ns2 +"CompanyName","Microsoft Corporation"),
 new XElement(ns2 +"CompanyAddress",
 new XElement(ns2 +"Address","One Microsoft Way"),
 new XElement(ns2 +"City","Redmond"),
 new XElement(ns2 +"Zip","WA 98052-6399"),
 new XElement(ns2 +"State","WA"),
 new XElement(ns2 +"Country","USA")));

 WriteLine(company);
}

which produces the following result:

<Company xmlns="http://www.cninnovation.com/samples/2015">
 <CompanyName xmlns="http://www.cninnovation.com/samples/2015/address">
 Microsoft Corporation</CompanyName>
 <CompanyAddress xmlns="http://www.cninnovation.com/samples/2015/address">
 <Address>One Microsoft Way</Address>
 <City>Redmond</City>
 <Zip>WA 98052-6399</Zip>
 <State>WA</State>
 <Country>USA</Country>
 </CompanyAddress>
</Company>

In this case, you can see that the subnamespace was applied to everything you specified except for the <Address>, <City>, <State>, and <Country> elements because they inherit from their parent, <CompanyAddress>, which has the namespace declaration.

XComment

The XComment object enables you to easily add XML comments to your XML documents. The following example shows the addition of a comment to the top of the document and within the Company element (code file LinqToXmlSample/Program.cs):

public static void WithComments()
{
 var doc = new XDocument();

 XComment comment = new XComment("Sample XML for Professional C#.");
 doc.Add(comment);

 var company =
 new XElement("Company",
 new XElement("CompanyName","Microsoft Corporation"),
 new XComment("A great company"),
 new XElement("CompanyAddress",
 new XElement("Address","One Microsoft Way"),
 new XElement("City","Redmond"),
 new XElement("Zip","WA 98052-6399"),
 new XElement("State","WA"),
 new XElement("Country","USA")));
 doc.Add(company);

 WriteLine(doc);
}

When you run the application and call the WithComments method, you can see the generated XML comments:

<!--Sample XML for Professional C#.-->
<Company>
 <CompanyName>Microsoft Corporation</CompanyName>
 <!-A great company->
 <CompanyAddress>
 <Address>One Microsoft Way</Address>
 <City>Redmond</City>
 <Zip>WA 98052-6399</Zip>
 <State>WA</State>
 <Country>USA</Country>
 </CompanyAddress>
</Company>

XAttribute

In addition to elements, another important factor of XML is attributes. You add and work with attributes through the use of the XAttribute object. The following example shows the addition of an attribute to the root <Company> node (code file LinqToXmlSample/Program.cs):

public static void WithAttributes()
{
 var company =
 new XElement("Company",
 new XElement("CompanyName","Microsoft Corporation"),
 new XAttribute("TaxId","91-1144442"),
 new XComment("A great company"),
 new XElement("CompanyAddress",
 new XElement("Address","One Microsoft Way"),
 new XElement("City","Redmond"),
 new XElement("Zip","WA 98052-6399"),
 new XElement("State","WA"),
 new XElement("Country","USA")));

 WriteLine(company);
}

The attribute shows up as shown with the Company element:

<Company TaxId="91-1144442">
 <CompanyName>Microsoft Corporation</CompanyName>
 <!-A great company->
 <CompanyAddress>
 <Address>One Microsoft Way</Address>
 <City>Redmond</City>
 <Zip>WA 98052-6399</Zip>
 <State>WA</State>
 <Country>USA</Country>
 </CompanyAddress>
</Company>

Now that you can get your XML documents into an XDocument object and work with the various parts of this document, you can also use LINQ to XML to query your XML documents and work with the results.

Querying XML Documents with LINQ

You will notice that querying a static XML document using LINQ to XML takes almost no work at all. The following example makes use of the hamlet.xml file and queries to get all the players (actors) who appear in the play. Each of these players is defined in the XML document with the <PERSONA> element. The Descendants method of the XDocument class returns an IEnumerable<XElement> containing all the PERSONA elements within the tree. With every PERSONA element of this tree, the Value property is accessed with the LINQ query and written to the resulting collection (code file LinqToXmlSample/Program.cs):

public static void QueryHamlet()
{
 XDocument doc = XDocument.Load(HamletFileName);

 IEnumerable<string> persons = (from people in doc.Descendants("PERSONA")
 select people.Value).ToList();

 WriteLine($"{persons.Count()} Players Found");
 WriteLine();

 foreach (var item in persons)
 {
 WriteLine(item);
 }
}

When you run the application, you can see the following result from the play Hamlet. You can’t say you’re not learning literature from a C# programming book:

26 Players Found

CLAUDIUS, king of Denmark.
HAMLET, son to the late king, and nephew to the present king.
POLONIUS, lord chamberlain.
HORATIO, friend to Hamlet.
LAERTES, son to Polonius.
LUCIANUS, nephew to the king.
VOLTIMAND
CORNELIUS
ROSENCRANTZ
GUILDENSTERN
OSRIC
A Gentleman
A Priest.
MARCELLUS
BERNARDO
FRANCISCO, a soldier.
REYNALDO, servant to Polonius.
Players.
Two Clowns, grave-diggers.
FORTINBRAS, prince of Norway.
A Captain.
English Ambassadors.
GERTRUDE, queen of Denmark, and mother to Hamlet.
OPHELIA, daughter to Polonius.
Lords, Ladies, Officers, Soldiers, Sailors, Messengers, and other Attendants.
Ghost of Hamlet's Father.

Querying Dynamic XML Documents

A lot of dynamic XML documents are available online these days. You can find blog feeds, podcast feeds, and more that provide an XML document by sending a request to a specific URL endpoint. You can view these feeds either in the browser, through an RSS aggregator, or as pure XML. The next example demonstrates how to work with an Atom feed directly from your code.

Here, you can see that the Load method of the XDocument points to a URL where the XML is retrieved. With the Atom feed, the root element is a feed element that contains direct children with information about the feed and a list of entry elements for every article. What might not be missed when accessing the elements is the Atom namespace http://www.w3.org/2005/Atom, otherwise the results will be empty.

With the sample code, first the values of the title and subtitle elements are accessed that are defined as child elements of the root element. The Atom feed can contain multiple link elements. When you use a LINQ query, only the first link element that contains the rel attribute with the value alternate is retrieved. After writing overall information about the feed to the console, all entry elements are retrieved to create an anonymous type with Title, Published, Summary, Url, and Comments properties (code file LinqToXmlSample/Program.cs):

public static void QueryFeed()
{
 XNamespace ns ="http://www.w3.org/2005/Atom";
 XDocument doc = XDocument.Load(@"http://blog.cninnovation.com/feed/atom/");

 WriteLine($"Title: {doc.Root.Element(ns +"title").Value}");
 WriteLine($"Subtitle: {doc.Root.Element(ns +"subtitle").Value}");
 string url = doc.Root.Elements(ns +"link")
 .Where(e => e.Attribute("rel").Value =="alternate")
 .FirstOrDefault()
 ?.Attribute("href")?.Value;
 WriteLine($"Link: {url}");
 WriteLine();

 var queryPosts = from myPosts in doc.Descendants(ns +"entry")
 select new
 {
 Title = myPosts.Element(ns +"title")?.Value,
 Published = DateTime.Parse(
 myPosts.Element(ns +"published")?.Value),
 Summary = myPosts.Element(ns +"summary")?.Value,
 Url = myPosts.Element(ns +"link")?.Value,
 Comments = myPosts.Element(ns +"comments")?.Value
 };

 foreach (var item in queryPosts)
 {
 string shortTitle = item.Title.Length > 50 ?
 item.Title.Substring(0, 50) +"..." : item.Title;
 WriteLine(shortTitle);
 }
}

Run the application to see this overall information for the feed:

Title: Christian Nagel's CN innovation
Subtitle: Infos für Windows- und Web-Entwickler
Link: http://blog.cninnovation.com

and the results of the query showing all titles:

A New Hello, World!
Ein heisser Sommer: Visual Studio 2015, .NET Core ...
Ein Operator Namens Elvis – oder A Lap Aroun...
.NET 2015, C# 6 und Visual Studio 2015 Update Trai...
Building Bridges – Build 2015
Slides und Samples vom Global Azure Boot Camp
Code Samples von der BASTA! 2015 Spring
.NET User Group Austria – Fünf Gründe für Me...
.NET User Group Austria – Welche Storage Tec...
Universal Apps für Windows 10

Transforming to Objects

Using LINQ to SQL, it’s easy to transform an XML document to an object tree. The Hamlet file contains all personas of the play. Some personas that belong to groups are grouped within PGROUP elements. A group contains the name of the group within the GRPDESC element, and personas of the group within PERSONA elements. The following sample creates objects for every group and adds the group name and personas to the object. The code sample makes use of the LINQ method syntax instead of the LINQ query for using an overload of the Select method that offers the index parameter. The index goes into the newly created object as well. The Descendants method of the XDocument filters all the PGROUP elements. Every group is selected with the Select method, and there an anonymous object is created that fills the Number, Description, and Characters properties. The Characters property itself is a list of all values of the PERSONA elements within the group (code file LinqToXmlSample/Program.cs):

public static void TransformingToObjects()
{
 XDocument doc = XDocument.Load(HamletFileName);
 var groups =
 doc.Descendants("PGROUP")
 .Select((g, i) =>
 new
 {
 Number = i + 1,
 Description = g.Element("GRPDESCR").Value,
 Characters = g.Elements("PERSONA").Select(p => p.Value)
 });

 foreach (var group in groups)
 {
 WriteLine(group.Number);
 WriteLine(group.Description);
 foreach (var name in group.Characters)
 {
 WriteLine(name);
 }
 WriteLine();
 }
}

Run the application to invoke the TransformingToObjects method and see two groups with their personas:

1
courtiers.
VOLTIMAND
CORNELIUS
ROSENCRANTZ
GUILDENSTERN
OSRIC

2
officers.
MARCELLUS
BERNARDO

Transforming to XML

Because it’s easy to create XML with the XElement class and its flexible constructor to pass any number of child elements, the previous example can be changed to create XML instead of an object list. The query is the same as in the previous code sample. What’s different is that a new XElement passing the name hamlet is created. hamlet is the root element of this generated XML. The child elements are defined by the result of the Select method that follows the Descendants method to select all PGROUP elements. For every group, a new group XElement gets created. Every group contains an attribute with the group number, an attribute with the description, and a characters element that contains a list of name elements (code file LinqToXmlSample/Program.cs):

public static void TransformingToXml()
{
 XDocument doc = XDocument.Load(HamletFileName);
 var hamlet =
 new XElement("hamlet",
 doc.Descendants("PGROUP")
 .Select((g, i) =>
 new XElement("group",
 new XAttribute("number", i + 1),
 new XAttribute("description", g.Element("GRPDESCR").Value),
 new XElement("characters",
 g.Elements("PERSONA").Select(p => new XElement("name", p.Value))
))));

 WriteLine(hamlet);
}

When you run the application, you can see this generated XML fragment:

<hamlet>
 <group number="1" description="courtiers.">
 <characters>
 <name>VOLTIMAND</name>
 <name>CORNELIUS</name>
 <name>ROSENCRANTZ</name>
 <name>GUILDENSTERN</name>
 <name>OSRIC</name>
 </characters>
 </group>
 <group number="2" description="officers.">
 <characters>
 <name>MARCELLUS</name>
 <name>BERNARDO</name>
 </characters>
 </group>
</hamlet>

JSON

After taking a long tour through many XML features of the .NET Framework, let’s get into the JSON data format. Json.NET offers a large API where you can use JSON to do many aspects you’ve seen in this chapter with XML, and some of these will be covered here.

The sample code makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	Newtonsoft.Json

	System.Xml.XDocument

Namespaces

	Newtonsoft.Json

	Newtonsoft.Json.Linq

	System

	System.IO

	System.Xml.Linq

	static System.Console

Creating JSON

To create JSON objects manually with JSON.NET, several types are available in the Newtonsoft.Json.Linq namespace. A JObject represents a JSON object. JObject is a dictionary with strings for the key (property names with .NET objects), and JToken for the value. This way JObject offers indexed access. An array of JSON objects is defined by the JArray type. Both JObject and JArray derive from the abstract base class JContainer that contains a list of JToken objects.

The following code snippet creates the JObject book1 and book2 objects by filling title and publisher values using indexed dictionary access. Both book objects are added to a JArray (code file JsonSample/Program.cs):

public static void CreateJson()
{
 var book1 = new JObject();
 book1["title"] ="Professional C# 6 and .NET 5 Core";
 book1["publisher"] ="Wrox Press";
 var book2 = new JObject();
 book2["title"] ="Professional C# 5 and .NET 4.5.1";
 book2["publisher"] ="Wrox Press";
 var books = new JArray();
 books.Add(book1);
 books.Add(book2);

 var json = new JObject();
 json["books"] = books;
 WriteLine(json);
}

Run the application to see this JSON code generated:

{
 "books": [
 {
 "title":"Professional C# 6 and .NET 5 Core",
 "publisher":"Wrox Press"
 },
 {
 "title":"Professional C# 5 and .NET 4.5.1",
 "publisher":"Wrox Press"
 }
]
}

Converting Objects

Instead of using JsonObject and JsonArray to create JSON content, you can also use the JsonConvert class. JsonConvert enables you to create JSON from an object tree and convert a JSON string back into an object tree.

With the sample code in this section, you create an Inventory object from the helper method GetInventoryObject (code file JsonSample/Program.cs):

public static Inventory GetInventoryObject() =>
 new Inventory
 {
 InventoryItems = new Product[]
 {
 new Product
 {
 ProductID = 100,
 ProductName ="Product Thing",
 SupplierID = 10
 },
 new BookProduct
 {
 ProductID = 101,
 ProductName ="How To Use Your New Product Thing",
 SupplierID = 10,
 ISBN ="1234567890"
 }
 }
 };

The method ConvertObject retrieves the Inventory object and converts it to JSON using JsonConvert .SerializeObject. The second parameter of SerializeObject allows formatting to be defined None or Indented. None is best for keeping whitespace to a minimum; Indented allows for better readability. The JSON string is written to the console before it is converted back to an object tree using JsonConvert .DeserializeObject. DeserializeObject has a few overloads. The generic variant returns the generic type instead of an object, so a cast is not necessary:

public static void ConvertObject()
{
 Inventory inventory = GetInventoryObject();
 string json = JsonConvert.SerializeObject(inventory, Formatting.Indented);
 WriteLine(json);
 WriteLine();
 Inventory newInventory = JsonConvert.DeserializeObject<Inventory>(json);
 foreach (var product in newInventory.InventoryItems)
 {
 WriteLine(product.ProductName);
 }
}

Running the application shows the generated console output of the JSON generated Inventory type:

{
 "InventoryItems": [
 {
 "Discount": 0,
 "ProductID": 100,
 "ProductName":"Product Thing",
 "SupplierID": 10,
 "CategoryID": 0,
 "QuantityPerUnit": null,
 "UnitPrice": 0.0,
 "UnitsInStock": 0,
 "UnitsOnOrder": 0,
 "ReorderLevel": 0,
 "Discontinued": false
 },
 {
 "ISBN":"1234567890",
 "Discount": 0,
 "ProductID": 101,
 "ProductName":"How To Use Your New Product Thing",
 "SupplierID": 10,
 "CategoryID": 0,
 "QuantityPerUnit": null,
 "UnitPrice": 0.0,
 "UnitsInStock": 0,
 "UnitsOnOrder": 0,
 "ReorderLevel": 0,
 "Discontinued": false
 }
]
}

Converting back JSON to objects, the product names are shown:

Product Thing
How To Use Your New Product Thing

Serializing Objects

Similar to the XmlSerializer, you can also stream the JSON string directly to a file. The following code snippet retrieves the Inventory object and writes it to a file stream using the JsonSerializer (code file JsonSample/Program.cs):

public static void SerializeJson()
{
 using (StreamWriter writer = File.CreateText(InventoryFileName))
 {
 JsonSerializer serializer = JsonSerializer.Create(
 new JsonSerializerSettings { Formatting = Formatting.Indented });
 serializer.Serialize(writer, GetInventoryObject());
 }
}

You can convert JSON from a stream by calling the Deserialize method on the JsonSerializer:

public static void DeserializeJson()
{
 using (StreamReader reader = File.OpenText(InventoryFileName))
 {
 JsonSerializer serializer = JsonSerializer.Create();
 var inventory = serializer.Deserialize(reader, typeof(Inventory))
 as Inventory;
 foreach (var item in inventory.InventoryItems)
 {
 WriteLine(item.ProductName);
 }
 }
}

Summary

This chapter explored many aspects of the System.Xml namespace of the .NET Framework. You looked at how to read and write XML documents using the very fast XmlReader- and XmlWriter-based classes. You saw how the DOM is implemented in .NET and how to use the power of DOM, with the XmlDocument class. In addition, you visited XPath, serialized objects to XML, and were able to bring them back with just a couple of method calls.

By using LINQ to XML, you’ve seen how to easily create XML documents and fragments and create queries using XML data.

Aside of XML, you’ve seen how to serialize objects using JSON with Json.NET, and you’ve parsed JSON strings to build .NET objects.

The next chapter shows how to localize .NET applications by making use of XML-based resource files.

28
Localization

What’s In This Chapter?

	Formatting of numbers and dates

	Using resources for localized content

	Localizing WPF Desktop Applications

	Localizing ASP.NET Core Web Applications

	Localizing Universal Windows apps

	Creating custom resource readers

	Creating custom cultures

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	NumberAndDateFormatting

	SortingDemo

	CreateResource

	WPFCultureDemo

	ResourcesDemo

	WPFApplication

	WebApplication

	UWPLocalization

	DatabaseResourceReader

	CustomCultures

Global Markets

NASA’s Mars Climate Orbiter was lost on September 23, 1999, at a cost of $125 million, because one engineering team used metric units while another one used inches for a key spacecraft operation. When writing applications for international distribution, different cultures and regions must be kept in mind.

Different cultures have diverging calendars and use different number and date formats; and sorting strings may lead to various results because the order of A–Z is defined differently based on the culture. To make usable applications for global markets, you have to globalize and localize them.

This chapter covers the globalization and localization of .NET applications. Globalization is about internationalizing applications: preparing applications for international markets. With globalization, the application supports number and date formats that vary according to culture, calendars, and so on. Localization is about translating applications for specific cultures. For translations of strings, you can use resources such as .NET resources or WPF resource dictionaries.

.NET supports the globalization and localization of Windows and web applications. To globalize an application, you can use classes from the namespace System.Globalization; to localize an application, you can use resources supported by the namespace System.Resources.

Namespace System.Globalization

The System.Globalization namespace holds all the culture and region classes necessary to support different date formats, different number formats, and even different calendars that are represented in classes such as GregorianCalendar, HebrewCalendar, JapaneseCalendar, and so on. By using these classes, you can display different representations according to the user’s locale.

This section looks at the following issues and considerations when using the System.Globalization namespace:

	Unicode issues

	Cultures and regions

	An example showing all cultures and their characteristics

	Sorting

Unicode Issues

A Unicode character has 16 bits, so there is room for 65,536 characters. Is this enough for all languages currently used in information technology? In the case of the Chinese language, for example, more than 80,000 characters are needed. Fortunately, Unicode has been designed to deal with this issue. With Unicode you have to differentiate between base characters and combining characters. You can add multiple combining characters to a base character to build a single display character or a text element.

Take, for example, the Icelandic character Ogonek. Ogonek can be combined by using the base character 0x006F (Latin small letter o), and the combining characters 0x0328 (combining Ogonek), and 0x0304 (combining Macron), as shown in Figure 28.1. Combining characters are defined within ranges from 0x0300 to 0x0345. For American and European markets, predefined characters exist to facilitate dealing with special characters. The character Ogonek is also defined by the predefined character 0x01ED.

[image: Diagram shows character Ogonek is obtained by combining Latin small letter o, dot, and macron. Hexadecimal equivalents of the characters are also shown.]

Figure 28.1

For Asian markets, where more than 80,000 characters are necessary for Chinese alone, such predefined characters do not exist. In Asian languages, you always have to deal with combining characters. The problem is getting the right number of display characters or text elements, and getting to the base characters instead of the combined characters. The namespace System.Globalization offers the class StringInfo, which you can use to deal with this issue.

The following table lists the static methods of the class StringInfo that help in dealing with combined characters.

	Method
	Description

	GetNextTextElement
	Returns the first text element (base character and all combining characters) of a specified string

	GetTextElementEnumerator
	Returns a TextElementEnumerator object that allows iterating all text elements of a string

	ParseCombiningCharacters
	Returns an integer array referencing all base characters of a string

NOTE A single display character can contain multiple Unicode characters. To address this issue, when you write applications that support international markets, don’t use the data type char; use string instead. A string can hold a text element that contains both base characters and combining characters, whereas a char cannot.

Cultures and Regions

The world is divided into multiple cultures and regions, and applications have to be aware of these cultural and regional differences. A culture is a set of preferences based on a user’s language and cultural habits. RFC 4646 (http://www.ietf.org/rfc/rfc4646.txt) defines culture names that are used worldwide, depending on a language and a country or region. Some examples are en-AU, en-CA, en-GB, and en-US for the English language in Australia, Canada, the United Kingdom, and the United States, respectively.

Possibly the most important class in the System.Globalization namespace is CultureInfo. CultureInfo represents a culture and defines calendars, formatting of numbers and dates, and sorting strings used with the culture.

The class RegionInfo represents regional settings (such as the currency) and indicates whether the region uses the metric system. Some regions can use multiple languages. One example is the region of Spain, which has Basque (eu-ES), Catalan (ca-ES), Spanish (es-ES), and Galician (gl-ES) cultures. Similar to one region having multiple languages, one language can be spoken in different regions; for example, Spanish is spoken in Mexico, Spain, Guatemala, Argentina, and Peru, to name only a few countries.

Later in this chapter is a sample application that demonstrates these characteristics of cultures and regions.

Specific, Neutral, and Invariant Cultures

When using cultures in the .NET Framework, you have to differentiate between three types: specific, neutral, and invariant cultures. A specific culture is associated with a real, existing culture defined with RFC 4646, as described in the preceding section. A specific culture can be mapped to a neutral culture. For example, de is the neutral culture of the specific cultures de-AT, de-DE, de-CH, and others. de is shorthand for the German language (Deutsch); AT, DE, and CH are shorthand for the countries Austria, Germany, and Switzerland, respectively.

When translating applications, it is typically not necessary to do translations for every region; not much difference exists between the German language in the countries Austria and Germany. Instead of using specific cultures, you can use a neutral culture to localize applications.

The invariant culture is independent of a real culture. When storing formatted numbers or dates in files, or sending them across a network to a server, using a culture that is independent of any user settings is the best option.

Figure 28.2 shows how the culture types relate to each other.

[image: Diagram shows two divisions of the invariant culture which are de and en and de is subdivided into de-At, de-DE, and de-CH.]

Figure 28.2

CurrentCulture and CurrentUICulture

When you set cultures, you need to differentiate between a culture for the user interface and a culture for the number and date formats. Cultures are associated with a thread, and with these two culture types, two culture settings can be applied to a thread. The CultureInfo class has the static properties CurrentCulture and CurrentUICulture. The property CurrentCulture is for setting the culture that is used with formatting and sort options, whereas the property CurrentUICulture is used for the language of the user interface.

Users can install additional languages to the Windows operating system by selecting Region & Language in the Windows settings (see Figure 28.3). The language configured as default is the current UI culture.

[image: Screenshot shows Region and Language section of settings which includes drop-down box to select country or region, option to add a language, English as windows display language, language pack installed, and related settings.]

Figure 28.3

To change the current culture, you use the Additional Date, Time, & Regional Settings link in the dialog shown in Figure 28.3. From there, you click the Change Date, Time, or Number Formats option to see the dialog shown in Figure 28.4. The language setting for the format influences the current culture. It is also possible to change the defaults for the number format, the time format, and the date format independent of the culture.

[image: Screenshot shows Formats tab of Region dialog box that includes drop-down boxes to select short date, long date, short time, long time formats and first day of week. Examples of date and time are also shown.]

Figure 28.4

These settings provide a very good default, and in many cases you won’t need to change the default behavior. If the culture should be changed, you can easily do this programmatically by changing both cultures to, say, the Spanish culture, as shown in this code snippet (using the namespace System.Globalization):

var ci = new CultureInfo("es-ES");
CultureInfo.CurrentCulture = ci;
CultureInfo.CurrentUICulture = ci;

Now that you know how to set the culture, the following sections discuss number and date formatting, which are influenced by the CurrentCulture setting.

Number Formatting

The number structures Int16, Int32, Int64, and so on in the System namespace have an overloaded ToString method. You can use this method to create a different representation of the number, depending on the locale. For the Int32 structure, ToString is overloaded with the following four versions:

public string ToString();
public string ToString(IFormatProvider);
public string ToString(string);
public string ToString(string, IFormatProvider);

ToString without arguments returns a string without format options. You can also pass a string and a class that implements IFormatProvider.

The string specifies the format of the representation. The format can be a standard numeric formatting string or a picture numeric formatting string. For standard numeric formatting, strings are predefined where C specifies the currency notation, D creates a decimal output, E creates scientific output, F creates fixed-point output, G creates general output, N creates number output, and X creates hexadecimal output. With a picture numeric formatting string, it is possible to specify the number of digits, section and group separators, percent notation, and so on. The picture numeric format string ###,### means two three-digit blocks separated by a group separator.

The IFormatProvider interface is implemented by the NumberFormatInfo, DateTimeFormatInfo, and CultureInfo classes. This interface defines a single method, GetFormat, that returns a format object.

You can use NumberFormatInfo to define custom formats for numbers. With the default constructor of NumberFormatInfo, a culture-independent or invariant object is created. Using the properties of NumberFormatInfo, it is possible to change all the formatting options, such as a positive sign, a percent symbol, a number group separator, a currency symbol, and a lot more. A read-only, culture-independent NumberFormatInfo object is returned from the static property InvariantInfo. A NumberFormatInfo object in which the format values are based on the CultureInfo of the current thread is returned from the static property CurrentInfo.

The sample code NumberAndDateFormatting makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

Namespaces

	System

	System.Globalization

	static System.Console

To create the next example, you can start with a Console Application (Package) project. In this code, the first example shows a number displayed in the format of the current culture (here: English-US, the setting of the operating system). The second example uses the ToString method with the IFormatProvider argument. CultureInfo implements IFormatProvider, so create a CultureInfo object using the French culture. The third example changes the current culture. The culture is changed to German by using the property CurrentCulture of the CultureInfo instance (code file NumberAndDateFormatting\Program.cs):

public static void NumberFormatDemo()
{
 int val = 1234567890;

 // culture of the current thread
 WriteLine(val.ToString("N"));

 // use IFormatProvider
 WriteLine(val.ToString("N", new CultureInfo("fr-FR")));

 // change the current culture
 CultureInfo.CurrentCulture = new CultureInfo("de-DE");
 WriteLine(val.ToString("N"));
}

NOTE Before to .NET 4.6, the CurrentCulture property of the CultureInfo was read-only. With previous editions of .NET, you can set the culture using Thread .CurrentThread.CurrentCulture.

You can compare the following different output for U.S. English, French, and German, respectively, shown here:

1,234,567,890.00
1 234 567 890,00
1.234.567.890,00

Date Formatting

The same support for numbers is available for dates. The DateTime structure has some overloads of the ToString method for date-to-string conversions. You can pass a string format and assign a different culture:

public string ToString();
public string ToString(IFormatProvider);
public string ToString(string);
public string ToString(string, IFormatProvider);

With the string argument of the ToString method, you can specify a predefined format character or a custom format string for converting the date to a string. The class DateTimeFormatInfo specifies the possible values. With DateTimeFormatInfo, the case of the format strings has a different meaning. D defines a long date format; d defines a short date format. Other examples of possible formats are ddd for the abbreviated day of the week, dddd for the full day of the week, yyyy for the year, T for a long time, and t for a short time. With the IFormatProvider argument, you can specify the culture. Using an overloaded method without the IFormatProvider argument implies that the current culture is used:

public static void DateFormatDemo()
{
 var d = new DateTime(2015, 09, 27);

 // current culture
 WriteLine(d.ToLongDateString());

 // use IFormatProvider
 WriteLine(d.ToString("D", new CultureInfo("fr-FR")));

 // use current culture
 WriteLine($"{CultureInfo.CurrentCulture}: {d:D}");

 CultureInfo.CurrentCulture = new CultureInfo("es-ES");
 WriteLine($"{CultureInfo.CurrentCulture}: {d:D}");
}

The output of this example program shows ToLongDateString with the current culture of the thread, a French version where a CultureInfo instance is passed to the ToString method, and a Spanish version where the CurrentCulture property of the thread is changed to es-ES:

Sunday, September 27, 2015
dimanche 27 septembre 2015
en-US: Sunday, September 27, 2015
es-ES: domingo, 27 de septiembre de 2015

Cultures in Action

To see all cultures in action, you can use a sample Windows Presentation Foundation (WPF) application that lists all cultures and demonstrates different characteristics of culture properties. Figure 28.5 shows the user interface of the application in the Visual Studio 2015 WPF Designer.

[image: Screenshot shows blank space on left half and culture name, English name, native name, default calendar, optional calendars, number, full date, time, region, currency and currency information on right half.]

Figure 28.5

During initialization of the application, all available cultures are added to the TreeView control that is placed on the left side of the application. This initialization happens in the method SetupCultures, which is called in the constructor of the MainWindow class (code file WPFCultureDemo/MainWindow.xaml.cs):

public MainWindow()
{
 InitializeComponent();

 SetupCultures();
}

For the data that is shown in the user interface, the custom class CultureData is created. This class can be bound to a TreeView control, as it has a property SubCultures that contains a list of CultureData. Therefore, the TreeView control enables walking through this tree. Other than the subcultures, CultureData contains the CultureInfo type and sample values for a number, a date, and a time. The number returns a string in the number format for the specific culture, and the date and time return strings in the specific culture formats as well. CultureData contains a RegionInfo class to display regions. With some neutral cultures (for example, English), creating a RegionInfo throws an exception, as there are regions only with specific cultures. However, with other neutral cultures (for example, German), creating a RegionInfo succeeds and is mapped to a default region. The exception thrown here is handled (code file WPFCultureDemo/CultureData.cs):

public class CultureData
{
 public CultureInfo CultureInfo { get; set; }
 public List<CultureData> SubCultures { get; set; }
 double numberSample = 9876543.21;

 public string NumberSample => numberSample.ToString("N", CultureInfo);

 public string DateSample => DateTime.Today.ToString("D", CultureInfo);

 public string TimeSample => DateTime.Now.ToString("T", CultureInfo);

 public RegionInfo RegionInfo
 {
 get
 {
 RegionInfo ri;
 try
 {
 ri = new RegionInfo(CultureInfo.Name);
 }
 catch (ArgumentException)
 {
 // with some neutral cultures regions are not available
 return null;
 }
 return ri;
 }
 }
}

In the method SetupCultures, you get all cultures from the static method CultureInfo.GetCultures. Passing CultureTypes.AllCultures to this method returns an unsorted array of all available cultures. The result is sorted by the name of the culture. With the result of the sorted cultures, a collection of CultureData objects is created and the CultureInfo and SubCultures properties are assigned. With the result of this, a dictionary is created to enable fast access to the culture name.

For the data that should be bound, a list of CultureData objects is created that contains all the root cultures for the tree view after the foreach statement is completed. Root cultures can be verified to determine whether they have the invariant culture as their parent. The invariant culture has the Locale Identifier (LCID) 127. Every culture has its own unique identifier that can be used for a fast verification. In the code snippet, root cultures are added to the rootCultures collection within the block of the if statement. If a culture has the invariant culture as its parent, it is a root culture.

If the culture does not have a parent culture, it is added to the root nodes of the tree. To find parent cultures, all cultures are remembered inside a dictionary. (See Chapter 11, “Collections,” for more information about dictionaries, and Chapter 9, “Delegates, Lambdas, and Events,” for details about lambda expressions.) If the culture iterated is not a root culture, it is added to the SubCultures collection of the parent culture. The parent culture can be quickly found by using the dictionary. In the last step, the root cultures are made available to the UI by assigning them to the DataContext of the Window (code file WPFCultureDemo/MainWindow.xaml.cs):

private void SetupCultures()
{
 var cultureDataDict = CultureInfo.GetCultures(CultureTypes.AllCultures)
 .OrderBy(c => c.Name)
 .Select(c => new CultureData
 {
 CultureInfo = c,
 SubCultures = new List<CultureData>()
 })
 .ToDictionary(c => c.CultureInfo.Name);

 var rootCultures = new List<CultureData>();
 foreach (var cd in cultureDataDict.Values)
 {
 if (cd.CultureInfo.Parent.LCID == 127)
 {
 rootCultures.Add(cd);
 }
 else
 {
 CultureData parentCultureData;
 if (cultureDataDict.TryGetValue(cd.CultureInfo.Parent.Name,
 out parentCultureData))
 {
 parentCultureData.SubCultures.Add(cd);
 }
 else
 {
 throw new ParentCultureException(
 "unexpected error—parent culture not found");
 }
 }
 }
 this.DataContext = rootCultures.OrderBy(cd =>
 cd.CultureInfo.EnglishName);
}

When the user selects a node inside the tree, the handler of the SelectedItemChanged event of the TreeView is called. Here, the handler is implemented in the method treeCultures_SelectedItemChanged. Within this method, the DataContext of a Grid control is set to the selected CultureData object. In the XAML logical tree, this Grid is the parent of all controls that display information about the selected culture information:

private void treeCultures_SelectedItemChanged(object sender,
 RoutedPropertyChangedEventArgs<object> e)
{
 itemGrid.DataContext = e.NewValue as CultureData;
}

Now let’s get into the XAML code for the display. A TreeView is used to display all the cultures. For the display of items inside the TreeView, an item template is used. This template uses a TextBlock that is bound to the EnglishName property of the CultureInfo class. For binding the items of the tree view, a HierarchicalDataTemplate is used to bind the property SubCultures of the CultureData type recursively (code file CultureDemo/MainWindow.xaml):

<TreeView SelectedItemChanged="treeCultures_SelectedItemChanged" Margin="5"
 ItemsSource="{Binding}" >
 <TreeView.ItemTemplate>
 <HierarchicalDataTemplate DataType="{x:Type local:CultureData}"
 ItemsSource="{Binding SubCultures}">
 <TextBlock Text="{Binding Path=CultureInfo.EnglishName}" />
 </HierarchicalDataTemplate>
 </TreeView.ItemTemplate>
</TreeView>

To display the values of the selected item, you use several TextBlock controls. These bind to the CultureInfo property of the CultureData class and in turn to properties of the CultureInfo type that is returned from CultureInfo, such as Name, IsNeutralCulture, EnglishName, NativeName, and so on. To convert a Boolean value, as returned from the IsNeutralCulture property, to a Visibility enumeration value, and to display calendar names, you use converters:

<TextBlock Grid.Row="0" Grid.Column="0" Text="Culture Name:" />
<TextBlock Grid.Row="0" Grid.Column="1" Text="{Binding CultureInfo.Name}"
 Width="100" />
<TextBlock Grid.Row="0" Grid.Column="2" Text="Neutral Culture"
 Visibility="{Binding CultureInfo.IsNeutralCulture,
 Converter={StaticResource boolToVisiblity}}" />
<TextBlock Grid.Row="1" Grid.Column="0" Text="English Name:" />
<TextBlock Grid.Row="1" Grid.Column="1" Grid.ColumnSpan="2"
 Text="{Binding CultureInfo.EnglishName}" />
<TextBlock Grid.Row="2" Grid.Column="0" Text="Native Name:" />
<TextBlock Grid.Row="2" Grid.Column="1" Grid.ColumnSpan="2"
 Text="{Binding CultureInfo.NativeName}" />
<TextBlock Grid.Row="3" Grid.Column="0" Text="Default Calendar:" />
<TextBlock Grid.Row="3" Grid.Column="1" Grid.ColumnSpan="2"
 Text="{Binding CultureInfo.Calendar,
 Converter={StaticResource calendarConverter}}" />
<TextBlock Grid.Row="4" Grid.Column="0" Text="Optional Calendars:" />
<ListBox Grid.Row="4" Grid.Column="1" Grid.ColumnSpan="2"
 ItemsSource="{Binding CultureInfo.OptionalCalendars}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding
 Converter={StaticResource calendarConverter}}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

The converter to convert a Boolean value to the Visibility enumeration is defined in the class BooleanToVisibilityConverter (code file WPFCultureDemo\Converters\BooleanToVisiblityConverter.cs):

using System;
using System.Globalization;
using System.Windows;
using System.Windows.Data;

namespace CultureDemo.Converters
{
 public class BooleanToVisibilityConverter: IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 bool b = (bool)value;
 if (b)
 return Visibility.Visible;
 else
 return Visibility.Collapsed;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

The converter for the calendar text to display is just a little bit more complex. Here is the implementation of the Convert method in the class CalendarTypeToCalendarInformationConverter. The implementation uses the class name and calendar type name to return a useful value for the calendar (code file WPFCultureDemo/Converters/CalendarTypeToCalendarInformationConverter.cs):

public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
{
 var c = value as Calendar;
 if (c == null) return null;
 var calText = new StringBuilder(50);
 calText.Append(c.ToString());
 calText.Remove(0, 21); // remove the namespace
 calText.Replace("Calendar","");
 GregorianCalendar gregCal = c as GregorianCalendar;
 if (gregCal != null)
 {
 calText.Append($" {gregCal.CalendarType}");
 }
 return calText.ToString();
}

The CultureData class contains properties to display sample information for number, date, and time formats. These properties are bound with the following TextBlock elements:

<TextBlock Grid.Row="0" Grid.Column="0" Text="Number" />
<TextBlock Grid.Row="0" Grid.Column="1" Text="{Binding NumberSample}" />
<TextBlock Grid.Row="1" Grid.Column="0" Text="Full Date" />
<TextBlock Grid.Row="1" Grid.Column="1" Text="{Binding DateSample}" />
<TextBlock Grid.Row="2" Grid.Column="0" Text="Time" />
<TextBlock Grid.Row="2" Grid.Column="1" Text="{Binding TimeSample}" />

The information about the region is shown with the last part of the XAML code. The complete GroupBox is hidden if the RegionInfo is not available. The TextBlock elements bind the DisplayName, CurrencySymbol, ISOCurrencySymbol, and IsMetric properties of the RegionInfo type:

<GroupBox x:Name="groupRegion" Header="Region Information" Grid.Row="6"
 Grid.Column="0" Grid.ColumnSpan="3" Visibility="{Binding RegionInfo,
 Converter={StaticResource nullToVisibility}}">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0" Grid.Column="0" Text="Region" />
 <TextBlock Grid.Row="0" Grid.Column="1" Grid.ColumnSpan="2"
 Text="{Binding RegionInfo.DisplayName}" />
 <TextBlock Grid.Row="1" Grid.Column="0" Text="Currency" />
 <TextBlock Grid.Row="1" Grid.Column="1"
 Text="{Binding RegionInfo.CurrencySymbol}" />
 <TextBlock Grid.Row="1" Grid.Column="2"
 Text="{Binding RegionInfo.ISOCurrencySymbol}" />
 <TextBlock Grid.Row="2" Grid.Column="1" Text="Is Metric"
 Visibility="{Binding RegionInfo.IsMetric,
 Converter={StaticResource boolToVisiblity}}" />
 </Grid>

When you start the application, you can see all available cultures in the tree view, and selecting a culture lists its characteristics, as shown in Figure 28.6.

[image: Screenshot shows list of languages on left half and culture name, English name, native name, default calendar, optional calendars, number, full date, time, region, currency and currency information on right half.]

Figure 28.6

Sorting

The sample SortingDemo makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Collections.NonGeneric

Namespaces

	System

	System.Collections

	System.Collections.Generic

	System.Globalization

	static System.Console

Sorting strings varies according to the culture. The algorithms that compare strings for sorting by default are culture-specific. For example, in Finnish the characters V and W are treated the same. To demonstrate this behavior with a Finnish sort, the following code creates a small sample console application in which some U.S. states are stored unsorted inside an array.

The method DisplayNames shown here is used to display all elements of an array or a collection on the console (code file SortingDemo/Program.cs):

public static void DisplayNames(string title, IEnumerable<string> e)
{
 WriteLine(title);
 WriteLine(string.Join("-", e));
 WriteLine();
}

In the Main method, after creating the array with some of the U.S. states, the thread property CurrentCulture is set to the Finnish culture so that the following Array.Sort uses the Finnish sort order. Calling the method DisplayNames displays all the states on the console:

public static void Main()
{
 string[] names = {"Alabama","Texas","Washington","Virginia",
 "Wisconsin","Wyoming","Kentucky","Missouri","Utah",
 "Hawaii","Kansas","Louisiana","Alaska","Arizona"};

 CultureInfo.CurrentCulture = new CultureInfo("fi-FI");

 Array.Sort(names);
 DisplayNames("Sorted using the Finnish culture", names);
 // etc.
}

After the first display of some U.S. states in the Finnish sort order, the array is sorted once again. If you want a sort that is independent of the users’ culture, which would be useful when the sorted array is sent to a server or stored somewhere, you can use the invariant culture.

You can do this by passing a second argument to Array.Sort. The Sort method expects an object implementing IComparer with the second argument. The Comparer class from the System.Collections namespace implements IComparer. Comparer.DefaultInvariant returns a Comparer object that uses the invariant culture for comparing the array values for a culture-independent sort:

public static void Main()
{
 // etc.
 // sort using the invariant culture
 Array.Sort(names, System.Collections.Comparer.DefaultInvariant);
 DisplayNames("Sorted using the invariant culture", names);
}

The program output shows different sort results with the Finnish and culture-independent cultures—Virginia is before Washington when using the invariant sort order, and vice versa when using Finnish:

Sorted using the Finnish culture
Alabama-Alaska-Arizona-Hawaii-Kansas-Kentucky-Louisiana-Missouri-Texas-Utah-
Washington-Virginia-Wisconsin-Wyoming

Sorted using the invariant culture
Alabama-Alaska-Arizona-Hawaii-Kansas-Kentucky-Louisiana-Missouri-Texas-Utah-
Virginia-Washington-Wisconsin-Wyoming

NOTE If sorting a collection should be independent of a culture, the collection must be sorted with the invariant culture. This can be particularly useful when sending the sort result to a server or storing it inside a file. To display a sorted collection to the user, it’s best to sort it with the user’s culture.

In addition to a locale-dependent formatting and measurement system, text and pictures may differ depending on the culture. This is where resources come into play.

Resources

You can put resources such as pictures or string tables into resource files or satellite assemblies. Such resources can be very helpful when localizing applications, and .NET has built-in support to search for localized resources. Before you see how to use resources to localize applications, the following sections explain how you can create and read resources without looking at language aspects.

Resource Readers and Writers

With .NET Core, the resource readers and writers are limited compared to the full .NET version (at the time of this writing). However, for many scenarios—including multiplatform support—what is needed is available.

The CreateResource sample application creates a resource file dynamically, and reads resources from the file. This sample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	System.Resources.ReaderWriter

Namespaces

	System.Collections

	System.IO

	System.Resources

	static System.Console

ResourceWriter enables you to create binary resource files. The constructor of the writer requires a Stream that is created using the File class. You add resources by using the AddResource method. The simple resource writer for .NET Core requires strings with both the key and the value. The resource writer for the full .NET Framework defines overloads to store other types as well (code file CreateResource/Program.cs):

private const string ResourceFile ="Demo.resources";
public static void CreateResource()
{
 FileStream stream = File.OpenWrite(ResourceFile);
 using (var writer = new ResourceWriter(stream))
 {
 writer.AddResource("Title","Professional C#");
 writer.AddResource("Author","Christian Nagel");
 writer.AddResource("Publisher","Wrox Press");
 }
}

To read the resources of a binary resource file, you can use ResourceReader. The GetEnumerator method of the reader returns an IDictionaryEnumerator that is used within the following foreach statement to access the key and value of the resource:

public static void ReadResource()
{
 FileStream stream = File.OpenRead(ResourceFile);
 using (var reader = new ResourceReader(stream))
 {
 foreach (DictionaryEntry resource in reader)
 {
 WriteLine($"{resource.Key} {resource.Value}");
 }
 }
}

Running the application returns the keys and values that have been written to the binary resource file. As shown in the next section, you can also use a command-line tool—the Resource File Generator (resgen)—to create and convert resource files.

Using the Resource File Generator

Resource files can contain items such as pictures and string tables. A resource file is created by using either a normal text file or a .resX file that uses XML. This section starts with a simple text file.

You can create a resource that embeds a string table by using a normal text file. The text file assigns strings to keys. The key is the name that can be used from a program to get the value. Spaces are allowed in both keys and values.

This example shows a simple string table in the file Wrox.ProCSharp.Localization.MyResources.txt:

Title = Professional C#
Chapter = Localization
Author = Christian Nagel
Publisher = Wrox Press

NOTE When saving text files with Unicode characters, you must save the file with the proper encoding. To select the UTF8 encoding, use the Save As dialog.

You can use the Resource File Generator (Resgen.exe) utility to create a resource file out of Wrox .ProCSharp.Localization.MyResources.txt. Typing the line

resgen Wrox.ProCSharp.Localization.MyResources.txt

creates the file Wrox.ProCSharp.Localization.MyResources.resources. The resulting resource file can be either added to an assembly as an external file or embedded into the DLL or EXE. Resgen also supports the creation of XML-based .resX resource files. One easy way to build an XML file is by using Resgen itself:

resgen Wrox.ProCSharp.Localization.MyResources.txt
 Wrox.ProCSharp.Localization.MyResources.resX

This command creates the XML resource file Wrox.ProCSharp.LocalizationMyResources.resX. Resgen supports strongly typed resources. A strongly typed resource is represented by a class that accesses the resource. You can create the class with the /str option of the Resgen utility:

resgen /str:C#,Wrox.ProCSharp.Localization,MyResources,MyResources.cs
Wrox.ProCSharp.Localization.MyResources.resX

With the /str option, the language, namespace, class name, and filename for the source code are defined, in that order.

Using Resource Files with ResourceManager

With the old C# compiler csc.exe, you can add resource files to assemblies using the /resource option. With the new .NET Core compiler, you need to add a resx file to the folder, and it will be embedded within the assembly. By default, all resx files are embedded in the assembly. You can customize this by using the resource, resourceFiles, and resourceExclude nodes in the project.json file.

The default setting for resource is to embed all resource files:

"resource": ["embed/**/*.*"]

To define that the directories foo and bar should be excluded, you define the resourceExclude:

"resourceExclude": ["foo/**/*.resx","bar/**/*.*"],

To define specific resource files, you use the resourceFiles node:

"resourceFiles": ["embed/Resources/Sample.resx","embed/Views/View1.resources"],

To see how resource files can be loaded with the ResourceManager class, create a Console Application (Package) and name it ResourcesDemo. This sample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

Namespaces

	System.Globalization

	System.Reflection

	System.Resources

	static System.Console

Create a Resources folder, and add a Messages.resx file to this folder. The Messages.resx file is filled with a key and value for English-US content—for example, the key GoodMorning and the value Good Morning! This will be the default language. You can add other language resource files with the naming convention to add the culture to the resource file, for example, Messages.de.resx for German languages and Messages.de-AT.resx for Austrian differences.

To access the embedded resource, use the ResourceManager class from the System.Resources namespace and the System.Resources.ResourceManager NuGet package. When you’re instantiating the ResourceManager, one overload of the constructor needs the name of the resource and the assembly. The namespace of the application is ResourcesDemo; the resource file is in the folder Resources, which defines the sub-namespace Resources, and it has the name Messages.resx. This defines the name ResourcesDemo .Resources.Messages. You can retrieve the assembly of the resource using the GetTypeInfo method of the Program type, which defines an Assembly property. Using the resources instance, the GetString method returns the value of the key passed from the resource file. Passing a culture such as de-AT for the second argument looks for resources in the de-AT resource file. If it’s not found there, the neutral language for de is taken, the de resource file. If it’s not found there, the default resource file without culture naming succeeds to return the value (code file ResourcesDemo/Program.cs):

var resources = new ResourceManager("ResourcesDemo.Resources.Messages",
 typeof(Program).GetTypeInfo().Assembly);
string goodMorning = resources.GetString("GoodMorning",
 new CultureInfo("de-AT"));
WriteLine(goodMorning);

Another overload of the ResourceManager constructor just requires the type of the class. This ResourceManager looks for a resource file named Program.resx:

var programResources = new ResourceManager(typeof(Program));
WriteLine(programResources.GetString("Resource1"));

The System.Resources Namespace

Before moving on to the next example, this section provides a review of the classes contained in the System.Resources namespace that deal with resources:

	ResourceManager—Can be used to get resources for the current culture from assemblies or resource files. Using the ResourceManager, you can also get a ResourceSet for a particular culture.

	ResourceSet—Represents the resources for a particular culture. When a ResourceSet instance is created, it enumerates over a class, implementing the interface IResourceReader, and it stores all resources in a Hashtable.

	IResourceReader—Used from the ResourceSet to enumerate resources. The class ResourceReader implements this interface.

	ResourceWriter—Used to create a resource file. ResourceWriter implements the interface IResourceWriter.

Localization with WPF

With WPF, you can use .NET resources, similar to what you’ve seen with console applications. To see the use of resources with a WPF application, create a simple WPF application containing just one button, as shown in Figure 28.7.

[image: Screenshot shows WPRF sample dialog box which includes only a button labeled as English Button Text.]

Figure 28.7

The XAML code for this application is shown here:

<Window x:Class="WpfApplication.MainWindow"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="WPF Sample" Height="350" Width="525">
 <Grid>
 <Button Name="button1" Margin="30,20,30,20" Click="Button_Click"
 Content="English Button" />
 </Grid>
</Window>

With the handler code for the Click event of the button, only a message box containing a sample message pops up:

private void Button_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("English Message");
}

NOTE You can read more about WPF and XAML in Chapter 29, “Core XAML,” and Chapter 34, “Windows Desktop Applications with WPF.”

You add .NET resources to a WPF application similarly to how you add them to other applications. Define the resources named Button1Text and Button1Message in the file Resources.resx. This file is automatically created with a WPF project. You can find it in the Properties folder in Solution Explorer. By default, this resource file has an Internal access modifier to create the Resources class. To use it from within XAML, you must change this to Public within the Managed Resources Editor. While selecting the resource file and opening the Properties Window, you can see that the custom tool PublicResXFileCodeGenerator is assigned to the file. This code generator creates a strongly typed code file to access the resources. The generated code file offers public static properties with the name of the resource keys that accesses a ResourceManager as you can see with the Button1Text property in the following code snippet. The ResourceManager used here is a property that returns an instance of the ResourceManager class, which is created using a Singleton pattern:

public static string Button1Text
{
 get
 {
 return ResourceManager.GetString("Button1Text", resourceCulture);
 }
}

To use the generated resource class, you need to change the XAML code. Add an XML namespace alias to reference the .NET namespace WpfApplication.Properties as shown in the following code. Here, the alias is set to the value props. From XAML elements, properties of this class can be used with the x:Static markup extension. The Content property of the Button is set to the Button1Text property of the Resources class (code file WPFApplication\MainWindow.xaml):

<Window x:Class="WpfApplication.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:props="clr-namespace:WpfApplication.Properties"
 Title="WPF Sample" Height="350" Width="525">
 <Grid>
 <Button Name="button1" Margin="30,20,30,20" Click="Button_Click"
 Content="{x:Static Member=props:Resources.Button1Text}" />
 </Grid>
</Window>

To use the .NET resource from code-behind, just access the Button1Message property directly (code file WPFApplication\MainWindow.xaml.cs):

private void Button_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show(Properties.Resources.Button1Message);
}

Now the resources can be localized as before.

Localization with ASP.NET Core

NOTE For using localization with ASP.NET Core, you need to know about both cultures and resources that are discussed in this chapter as well as creating ASP.NET Core applications. In case you didn’t create ASP.NET Core web applications with .NET Core before, you should read Chapter 40, “ASP.NET Core,” before continuing with this part of the chapter.

For localization of ASP.NET Core web applications, you can use the CultureInfo class and resources similar to what you’ve seen earlier in this chapter, but there are some additional issues that you need to resolve. Setting the culture for the complete application doesn’t fulfill usual needs because users are coming from different cultures. So it’s necessary to set the culture with every request to the server.

How do you know about the culture of the user? There are different options. The browser sends preferred languages within the HTTP header with every request. This information from the browser can come from browser settings or when the browser itself checks the installed languages. Another option is to define URL parameters or use different domain names for different languages. You can use different domain names in some scenarios, such as www.cninnovation.com for an English version of the site and www.cninnovation.de for a German version. But what about www.cninnovation.ch? This should be offered both in German and French and probably Italian. URL parameters such as www.cninnovation.com/culture=de could help here. Using www.cninnovation.com/de works similar to the URL parameter by defining a specific route. Another option is to allow the user to select the language and define a cookie to remember this option.

All of these scenarios are supported out of the box by ASP.NET Core 1.0.

Registering Localization Services

To start seeing this in action, create a new ASP.NET Web Application using an Empty ASP.NET Core 1.0 project template. This project makes use of the following dependencies and namespaces:

Dependencies

	Microsoft.AspNetCore.Hosting

	Microsoft.AspNetCore.Features

	Microsoft.AspNetCore.IISPlatformHandler

	Microsoft.AspNetCore.Localization

	Microsoft.AspNetCore.Server.Kestrel

	Microsoft.Extensions.Localization

	System.Globalization

Namespaces

	Microsoft.AspNetCore.Builder

	Microsoft.AspNetCore.Hosting

	Microsoft.AspNetCore.Http

	Microsoft.AspNetCore.Http.Features

	Microsoft.AspNetCore.Localization

	Microsoft.Extensions.DependencyInjection

	Microsoft.Extensions.Localization

	System

	System.Globalization

	System.Net

Within the Startup class, you need to invoke the AddLocalization extension method to register services for localization (code file WebApplicationSample/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 services.AddLocalization(
options => options.ResourcesPath ="CustomResources");
}

The AddLocalization method registers services for the interfaces IStringLocalizerFactory and IStringLocalizer. With the registration code, the type ResourceManagerStringLocalizerFactory is registered as a singleton, and StringLocalizer is registered with transient lifetime. The class ResourceManagerStringLocalizerFactory is a factory for ResourceManagerStringLocalizer. This class in turn makes use of the ResourceManager class shown earlier for retrieving strings from resource files.

Injecting Localization Services

After localization is added to the service collection, you can request localization in the Configure method of the Startup class. The UseRequestLocalization method defines an overload where you can pass RequestLocalizationOptions. The RequestLocalizationOptions enables you to customize what cultures should be supported and to set the default culture. Here, the DefaultRequestCulture is set to en-US. The class RequestCulture is just a small wrapper around the culture for formatting—which is accessible via the Culture property—and the culture for using the resources (UICulture property). The sample code accepts en-US, de-AT, and de cultures for SupportedCultures and SupportedUICultures:

public void Configure(IApplicationBuilder app, IStringLocalizer<Startup> sr)
{
 app.UseIISPlatformHandler();

 var options = new RequestLocalizationOptions
 {
 DefaultRequestCulture = new RequestCulture(new CultureInfo("en-US")),
 SupportedCultures = new CultureInfo[]
 {
 new CultureInfo("en-US"),
 new CultureInfo("de-AT"),
 new CultureInfo("de"),
 },
 SupportedUICultures = new CultureInfo[]
 {
 new CultureInfo("en-US"),
 new CultureInfo("de-AT"),
 new CultureInfo("de"),
 }
 };

 app.UseRequestLocalization(options);

 // etc.
}

With the RequestLocalizationOptions settings, the property RequestCultureProviders is also set. By default, three providers are configured: QueryStringRequestCultureProvider, CookieRequestCultureProvider, and AcceptLanguageHeaderRequestCultureProvider.

Culture Providers

Let’s get into more details on these culture providers. The QueryStringRequestCultureProvider uses the query string to retrieve the culture. By default, the query parameters culture and ui-culture are used with this provider, as shown with this URL:

http://localhost:5000/?culture=de&ui-culture=en-US

You can also change the query parameters by setting the QueryStringKey and UIQueryStringKey properties of the QueryStringRequestCultureProvider.

The CookieRequestCultureProvider defines the cookie named ASPNET_CULTURE (which can be set using the CookieName property). The values from this cookie are retrieved to set the culture. To create a cookie and send it to the client, you can use the static method MakeCookieValue to create a cookie from a RequestCulture and send it to the client. The CookieRequestCultureProvider uses the static method ParseCookieValue to get a RequestCulture.

With the third option for culture settings, you can use the HTTP header information that is sent by the browser. The HTTP header that is sent looks like this:

Accept-Language: en-us, de-at;q=0.8, it;q=0.7

The AcceptLanguageHeaderRequestCultureProvider uses this information to set the culture. You use up to three language values in the order as defined by the quality value to find a first match with the supported cultures.

The following code snippet now uses the request culture to generate HTML output. First, you access the requested culture using the IRequestCultureFeature contract. The RequestCultureFeature that implements the interface IRequestCultureFeature uses the first culture provider that matches the culture setting. If a URL defines a query string that matches the culture parameter, the QueryStringRequestCultureProvider is used to return the requested culture. If the URL does not match, but a cookie with the name ASPNET_CULTURE is received, the CookieRequestCultureProvider is used, and otherwise the AcceptLanguageRequestCultureProvider. The resulting culture that is used by the user is written to the response stream using properties of the returned RequestCulture. Then, today’s date is written to the stream using the current culture. The variable of type IStringLocalizer used here needs some more examination next:

public void Configure(IApplicationBuilder app, IStringLocalizer<Startup> sr)
{
 // etc.

 app.Run(async context =>
 {
 IRequestCultureFeature requestCultureFeature =
 context.GetFeature<IRequestCultureFeature>();
 RequestCulture requestCulture = requestCultureFeature.RequestCulture;

 var today = DateTime.Today;
 context.Response.StatusCode = 200;
 await context.Response.WriteAsync("<h1>Sample Localization</h1>");
 await context.Response.WriteAsync(
 $"<div>{requestCulture.Culture} {requestCulture.UICulture}</div>");
 await context.Response.WriteAsync($"<div>{today:D}</div>");
 // etc.

 await context.Response.WriteAsync($"<div>{sr["message1"]}</div>");
 await context.Response.WriteAsync($"<div>{sr.GetString("message1")}</div>");
 await context.Response.WriteAsync($"<div>{sr.GetString("message2",
 requestCulture.Culture, requestCulture.UICulture)}</div>");
 });
}

Using Resources from ASP.NET Core

Resource files, as you’ve seen in the Resources section, can be used with ASP.NET Core 1.0. The sample project adds the file Startup.resx as well as to the CustomResources folder. Localized versions for the resources are offered with Startup.de.resx and Startup.de-AT.resx.

The folder name where the resources are found is defined with the options when injecting the localization service (code file WebApplicationSample/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 services.AddLocalization(
 options => options.ResourcesPath ="CustomResources");
}

With dependency injection, IStringLocalizer<Startup> is injected as a parameter of the Configure method. The generic type Startup parameter is used to find a resource file with the same name in the resources directory; this matches with Startup.resx.

public void Configure(IApplicationBuilder app, IStringLocalizer<Startup> sr)
{
 // etc.
}

The following code snippet makes use of the sr variable of type IStringLocalizer<Startup> to access a resource named message1 using an indexer and with the GetString method. The resource message2 uses string format placeholders, which are injected with an overload of the GetString method where any number of parameters can be passed to:

public void Configure(IApplicationBuilder app, IStringLocalizer<Startup> sr)
{
 // etc.

 app.Run(async context =>
 {
 // etc.

 await context.Response.WriteAsync($"<div>{sr["message1"]}</div>");
 await context.Response.WriteAsync($"<div>{sr.GetString("message1")}</div>");
 await context.Response.WriteAsync($"<div>{sr.GetString("message2",
 requestCulture.Culture, requestCulture.UICulture)}</div>");
 });
}
string localized1 = sr["message1"];

The resource for message2 is defined with string format placeholders:

Using culture {0} and UI culture {1}

Running the web application results in the view shown in Figure 28.8.

[image: Screenshot shows localhost tab with header Sample Localization and message en-US, Monday September 14, 2015, Greeting all readers of Professional C-hash, Using culture en-US and UI culture en-US.]

Figure 28.8

Localization with the Universal Windows Platform

Localization with the Universal Windows Platform (UWP) is based on the concepts you’ve learned so far, but it brings some fresh ideas, as described in this section. For the best experience, you need to install the Multilingual App Toolkit that is available via Visual Studio Extensions and Updates.

The concepts of cultures, regions, and resources are the same, but because Windows apps can be written with C# and XAML, C++ and XAML, and JavaScript and HTML, these concepts need to be available with all languages. Only Windows Runtime is available with all these programming languages and Windows Store apps. Therefore, new namespaces for globalization and resources are available with Windows Runtime: Windows.Globalization and Windows.ApplicationModel.Resources. With the globalization namespaces you can find Calendar, GeographicRegion (compare with the .NET RegionInfo), and Language classes. With sub-namespaces, there are also classes for number and date formatting that vary according to the language. With C# and Windows apps you can still use the .NET classes for cultures and regions.

Let’s get into an example so you can see localization with a Universal Windows app in action. Create a small application using the Blank App (Universal App) Visual Studio project template. Add two TextBlock controls and one TextBox control to the page.

Within the OnNavigatedTo method of the code file you can assign a date with the current format to the Text property of the text1 control. You can use the DateTime structure in the same way you’ve done it with the console application earlier in this chapter (code file UWPLocalization/MainPage.xaml.cs):

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 text1.Text = DateTime.Today.ToString("D");
 //...
}

Using Resources with UWP

With UWP, you can create resource files with the file extension resw instead of resx. Behind the scenes, the same XML format is used with resw files, and you can use the same Visual Studio resource editor to create and modify these files. The following example uses the structure shown in Figure 28.9. The subfolder Messages contains a subdirectory, en-us, in which two resource files Errors.resw and Messages.resw are created. In the folder Strings\en-us, the resource file Resources.resw is created.

[image: Screenshot shows Solution Explorer menu with header UWP Localization or Universal Windows and folders such as Properties, References, Assets, messages, Strings, App.xaml, MainPage.xaml, project.json et cetera.]

Figure 28.9

The Messages.resw file contains some English text resources, Hello with a value of Hello World, and resources named GoodDay, GoodEvening, and GoodMorning. The file Resources.resw contains the resources Text3.Text and Text3.Width, with the values "This is a sample message for Text 4" and a value of "300".

With the code, you can access resources with the help of the ResourceLoader class from the namespace Windows.ApplicationModel.Resources. Here you use the string "Messages" with the method GetForCurrentView. Thus, you’re using the resource file Messages.resw. Invoking the method GetString retrieves the resource with the key "Hello" (code file UWPLocalization/MainPage.xaml.cs):

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 // etc.
 var resourceLoader = ResourceLoader.GetForCurrentView("Messages");
 text2.Text = resourceLoader.GetString("Hello");
}

With UWP Windows apps it is also easy to use the resources directly from XAML code. With the following TextBox, the x:Uid attribute is assigned the value Text3. This way, a resource named Text3 with extensions is searched for in the resource file Resources.resw. This resource file contains value for the keys Text3.Text and Text3.Width. The values are retrieved, and both the Text and Width properties are set (code file UWPLocalization/MainPage.xaml):

<TextBox x:Uid="FileName_Text3" HorizontalAlignment="Left" Margin="50"
 TextWrapping="Wrap" Text="TextBox" VerticalAlignment="Top"/>

Localization with the Multilingual App Toolkit

To localize UWP apps you can download the previously mentioned Multilingual App Toolkit. This toolkit integrates with Visual Studio 2015. After installing the toolkit, you can enable it within Visual Studio using the menu Tools ➪ Multilingual App Toolkit ➪ Enable Selection. This adds a build command to the project file and adds one more option to the context menu in Solution Explorer. Open the context menu in Solution Explorer and select Multilingual App Toolkit ➪ Add Translation Languages to invoke the dialog shown in Figure 28.10, where you can choose which languages should be translated. The sample uses Pseudo Language, French, German, and Spanish. For these languages, a Microsoft Translator is available. This tool now creates a MultilingualResources subdirectory that contains .xlf files for the selected languages. The .xlf files are defined with the XLIFF (XML Localisation Interchange File Format) standard. This is a standard of the Open Architecture for XML Authoring and Localization (OAXAL) reference architecture.

[image: Image described by surrounding text.]

Figure 28.10

NOTE The Multilingual App Toolkit can also be installed from http://aka.ms/matinstallv4 without using Visual Studio. Download the Multilingual App Toolkit.

The next time you start the build process for the project, the XLIFF files are filled with content from all the resources. When you select the XLIFF files in Solution Explorer, you can send it to translation. To do so, open the context menu in Solution Explorer while selecting the .xlf files, and select Multilingual App Toolkit ➪ Export translations. . . , which opens the dialog shown in Figure 28.11. With this dialog you can configure the information that should be sent, and you can send an e-mail with the XLIFF files attached.

[image: Screenshot shows Export string resources dialog box which includes buttons to choose mail recipient and file folder location, file format options, check box to use compressed folder, and list of included files.]

Figure 28.11

For translation, you can also use Microsoft’s translation service. Select the .xlf files in Visual Studio Solution Explorer, and after opening the context menu, select Multilingual App Toolkit ➪ Generate Machine Translations.

When you open the .xlf files, the Multilingual Editor (see Figure 28.12) is opened. With this tool you can verify the automatic translations and make necessary changes.

[image: Screenshot shows Good Morning in the source field, Guten Morgen in the translation field, Good Morning as resource id, and Needs Review as state. Bottom table has rows with source, translation, comments, and id columns.]

Figure 28.12

Don’t use the machine translation without a manual review. The tool shows a status for every resource that is translated. After the automatic translation, the status is set to Needs Review. You have probably seen applications with machine translations that are incorrect—and sometimes really funny.

Creating Custom Cultures

Over time, more and more languages have become supported by the .NET Framework. However, not all languages of the world are available with .NET, and for these you can create a custom culture. For example, creating a custom culture can be useful to support a minority within a region or to create subcultures for different dialects.

You can create custom cultures and regions with the class CultureAndRegionInfoBuilder in the namespace System.Globalization. This class is located in the assembly sysglobl.

With the constructor of the class CultureAndRegionInfoBuilder, you can pass the culture’s name. The second argument of the constructor requires an enumeration of type CultureAndRegionModifiers. This enumeration allows one of three values: Neutral for a neutral culture, Replacement if an existing Framework culture should be replaced, or None.

After the CultureAndRegionInfoBuilder object is instantiated, you can configure the culture by setting properties. With the properties of this class, you can define all the cultural and regional information, such as name, calendar, number format, metric information, and so on. If the culture should be based on existing cultures and regions, you can set the properties of the instance using the methods LoadDataFromCultureInfo and LoadDataFromRegionInfo, changing the values that are different by setting the properties afterward.

Calling the method Register registers the new culture with the operating system. Indeed, you can find the file that describes the culture in the directory <windows>\Globalization. Look for files with the extension .nlp (code file CustomCultures\Program.cs):

using System;
using System.Globalization;
using static System.Console;

namespace CustomCultures
{
 class Program
 {
 static void Main()
 {
 try
 {
 // Create a Styria culture
 var styria = new CultureAndRegionInfoBuilder("de-AT-ST",
 CultureAndRegionModifiers.None);
 var cultureParent = new CultureInfo("de-AT");
 styria.LoadDataFromCultureInfo(cultureParent);
 styria.LoadDataFromRegionInfo(new RegionInfo("AT"));
 styria.Parent = cultureParent;
 styria.RegionNativeName ="Steiermark";
 styria.RegionEnglishName ="Styria";
 styria.CultureEnglishName ="Styria (Austria)";
 styria.CultureNativeName ="Steirisch";

 styria.Register();
 }
 catch (UnauthorizedAccessException ex)
 {
 WriteLine(ex.Message);
 }
 }
 }
}

Because registering custom languages on the system requires administrative privileges, the sample application is built using the Console Application project template, and an application manifest file is added. This manifest file specifies the requested execution rights. In the project properties, the manifest file needs to be set in the Application settings:

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1"
xmlsn:asmv1="urn:schemas-microsoft-com:asm.v1" xmlns:asmv2="urn:schemas-microsoft-
com:asm.v2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 <assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
 <requestedExecutionLevel level="requireAdministrator"
 uiAccess="false" />
 </requestedPrivileges>
 </security>
 </trustInfo>
</asmv1:assembly>

You can now use the newly created culture like other cultures:

var ci = new CultureInfo("de-AT-ST");
CultureInfo.CurrentCulture = ci;
CultureInfo.CurrentUICulture = ci;

You can use the culture for formatting and for resources. If you start the Cultures In Action application that was written earlier in this chapter, you can see the custom culture as well.

Summary

This chapter demonstrated how to globalize and localize .NET applications. For the globalization of applications, you learned about using the namespace System.Globalization to format culture-dependent numbers and dates. Furthermore, you learned that sorting strings by default varies according to the culture, and you looked at using the invariant culture for a culture-independent sort. Using the CultureAndRegionInfoBuilder class, you’ve learned how to create a custom culture.

Localizing an application is accomplished by using resources, which you can pack into files, satellite assemblies, or a custom store such as a database. The classes used with localization are in the namespace System.Resources. To read resources from other places, such as satellite assemblies or resource files, you can create a custom resource reader.

You also learned how to localize WPF, ASP.NET Core, and apps using the Universal Windows Platform.

The next chapter provides information about XAML. XAML is used with both the Universal Windows Platform and WPF, so the next chapter gives the foundation for both of these technologies.

PART III
Windows Apps

	Chapter 37: ADO.NET

	Chapter 38: Entity Framework Core

	Chapter 39: Windows Services

	Chapter 40: ASP.NET Core

	Chapter 41: ASP.NET MVC

	Chapter 42: ASP.NET Web API

	Chapter 43: WebHooks and SignalR

	Chapter 44: Windows Communication Foundation

	Chapter 45: Deploying Websites and Services

29
Core XAML

What’s In This Chapter?

	XAML syntax

	Dependency properties

	Routed events

	Attached properties

	Markup extensions

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples, for both WPF and Universal Windows apps:

	Code Intro

	XAML Intro

	Dependency Objects

	Routed Events

	Attached Properties

	Markup Extensions

Uses of XAML

When you’re writing a .NET application, usually C# is not the only syntax you need to know. If you write Universal Windows apps, Windows desktop applications using Windows Presentation Foundation (WPF), or workflows with Windows Workflow Foundation (WF); create XPS documents, or write Silverlight apps, you also need XAML. XAML (eXtensible Application Markup Language) is a declarative XML syntax that’s usually needed with these applications. This chapter describes the syntax of XAML and the extensibility mechanisms that are available with this markup language. The chapter describes the differences between XAML in WPF applications and Windows apps using the Universal Windows Platform (UWP).

All that can be done with XAML can also be done with C#—so why is there a need for XAML? XAML is typically used to describe objects and their properties, and this is possible in a deep hierarchy. For example, a Window control contains a Grid control; the Grid control contains a StackPanel and other controls; and the StackPanel contains Button and TextBox controls. XAML makes it easy to describe such a hierarchy and assign properties of objects via XML attributes or elements.

XAML allows writing code in a declarative manner. Whereas C# is mainly an imperative programming language, XAML allows for declarative definitions. With an imperative programming language, a for loop that is defined with C# code, the compiler creates a for loop with Intermediate Language (IL) code. With a declarative programming language, you declaratively declare what should be done, but not how it should be done. Although C# is not a pure imperative programming language, when using LINQ you also write syntax in a declarative way.

XAML is an XML syntax, but it defines several enhancements to XML. XAML is still valid XML, but some enhancements have special meaning—for example, using curly brackets within XML attributes and how child elements are named.

Before you can use XAML efficiently, you need to understand some important features of this language. This chapter introduces these XAML features:

	Dependency properties—From the outside, dependency properties look like normal properties. However, they need less storage and implement change notification.

	Routed events—From the outside, routed events look like normal .NET events. However, you use custom event implementation with add and remove accessors to allow bubbling and tunneling. Events can tunnel from outer controls to inner controls, and bubble from inner controls to outer controls.

	Attached properties—With attached properties it is possible to add properties to other controls. For example, the Button control doesn’t have a property to position it within a Grid control in a specific row and column. With XAML, it looks like it has such a property.

	Markup extensions—Writing XML attributes requires less coding compared to XML elements. However, XML attributes can only be strings; you can write much more powerful syntax with XML elements. To reduce the amount of code that needs to be written, markup extensions allow writing powerful syntax within attributes.

NOTE .NET properties are explained in Chapter 3, “Objects and Types.” Events, including writing custom events with add and remove accessors, are explained in Chapter 9, “Delegates, Lambdas, and Events.” The power of XML is explained in Chapter 27, “XML and JSON.”

XAML Foundation

XAML code is declared using textual XML. You can use designers to create XAML code or write XAML code by hand. Visual Studio contains designers to write XAML code for WPF, Silverlight, WF, or Universal Windows apps. Other tools are also available to create XAML, such as Blend for Visual Studio 2015. Whereas Visual Studio is best for writing source code, Blend is best for creating styles, templates, and animations. With Visual Studio 2013, Blend and Visual Studio started to share the same XAML designer. Blend 2015 was rewritten to share the same shell with Visual Studio. As a Visual Studio user, you’ll immediately feel at home using Blend 2015.

Let’s get into XAML. With WPF applications, an XAML element maps to a .NET class, but that’s not a strict requirement for XAML. With Silverlight 1.0, .NET was not available with the plug-in and the XAML code was interpreted and could be accessed programmatically with JavaScript. This changed with Silverlight 2.0, in which a smaller version of the .NET Framework is part of the Silverlight plug-in. With Silverlight or WPF, every XAML element maps to a .NET class; with Windows Apps every XAML element maps to a Windows Runtime type.

What happens with XAML code on a build process? To compile a WPF project, MSBuild tasks are defined in the assembly PresentationBuildTasks named MarkupCompilePass1 and MarkupCompilePass2. These MSBuild tasks create a binary representation of the markup code named BAML (Binary Application Markup Language) that is added to the .NET resources of an assembly. During runtime, the binary representation is used.

Mapping Elements to Classes with WPF

As mentioned earlier, usually an XAML element maps to a .NET or a Windows Runtime class. In this section you begin by creating a Button object inside a Window programmatically with a C# console project. To compile the following code, wherein a Button object is instantiated with the Content property set to a string, you define a Window with Title and Content properties set, and you need to reference the assemblies PresentationFramework, PresentationCore, WindowsBase, and System.Xaml (code file CodeIntroWPF/Program.cs).

using System;
using System.Windows;
using System.Windows.Controls;

namespace CodeIntroWPF
{
 class Program
 {
 [STAThread]
 static void Main()
 {
 var b = new Button
 {
 Content ="Click Me!"
 };
 b.Click += (sender, e) =>
 {
 b.Content ="clicked";
 };

 var w = new Window
 {
 Title ="Code Demo",
 Content = b
 };

 var app = new Application();
 app.Run(w);
 }
 }
}

NOTE With the .NET Framework, everything below the System.Windows namespace with the exception of System.Windows.Forms (which covers the older Windows Forms technology) belongs to WPF.

You can create a similar UI can by using XAML code. As before, you create a Window element that contains a Button element. The Window element has the Title attribute set in addition to its content (code file XAMLIntroWPF/MainWindow.xaml):

<Window x:Class="XAMLIntroWPF.MainWindow"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="XAML Demo" Height="350" Width="525">
 <!—etc.—>
 <Button Content="Click Me!" Click="OnButtonClicked" />
 <!—etc.—>
</Window>

Of course, the Application instance in the last code example is missing. You can define this with XAML as well. In the Application element, the StartupUri attribute is set, which links to the XAML file that contains the main window (code file XAMLIntroWPF/App.xaml):

<Application x:Class="XAMLIntroWPF.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>
 </Application.Resources>
</Application>

Mapping Elements to Classes with Universal Windows Apps

Mapping to types with Universal Windows Platform (UWP) apps is similar to doing it with WPF, but there are completely different types defined with the Windows Runtime. Let’s start again without using XAML. You can create an app using the Blank App template for Windows Universal apps and remove the XAML files (both MainPage.xaml as well as App.xaml including the code behind C# files). To not automatically create the Main method from the designer, you must set the conditional compilation symbol DISABLE_XAML_GENERATED_MAIN using the Build settings in the Project properties.

With the Main method, you need to start the application. Similarly to WPF, you use an Application class here. This time, it’s from the Windows.UI.Xaml namespace. Instead of invoking the instance Run method, this class defines a static Start method. The Start method defines an ApplicationInitializationCallback delegate parameter that is invoked during the initialization of the app. Within this initialization, a Button (namespace Windows.UI.Xaml.Controls) is created, and the current window is activated:

using System;
using Windows.ApplicationModel.Activation;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

namespace CodeIntroUWP
{
 partial class Program
 {
 [STAThread]
 public static void Main()
 {
 Application.Start(p =>
 {
 var b = new Button
 {
 Content ="Click Me!"
 };
 b.Click += (sender, e) =>
 {
 b.Content ="clicked";
 };

 Window.Current.Content = b;
 Window.Current.Activate();
 });
 }
 }
}

Creating the same UI with XAML, a new Universal Windows app project is created. The XAML code looks very similar to the WPF XAML code, but you use a Page instead of a Window. Even the XML namespaces are the same. However, the XAML types map to namespaces from the Windows Runtime (code file XamlIntroUWP/MainPage.xaml):

<Page x:Class="XamlIntroUWP.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <!—etc.—>
 <Button Content="Click Me!" x:Name="button1" Click="OnButtonClick" />
 <!—etc.—>
</Page>

Using Custom .NET Classes

To use custom .NET classes within XAML code, only the .NET namespace needs to be declared within XAML, and an XML alias must be defined. To demonstrate this, a simple Person class with the FirstName and LastName properties is defined as shown here (code file DataLib/Person.cs):

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public override string ToString() => $"{FirstName} {LastName}";
}

NOTE For using types within both WPF and UWP apps, the DataLib library is created as a Portable library.

In XAML, an XML namespace alias named datalib is defined that maps to the .NET namespace DataLib in the assembly DataLib. In case the type is in the same assembly as the window, you can remove the assembly name from this declaration. With this alias in place, it’s now possible to use all classes from this namespace by prefixing the alias name with the elements.

In the XAML code, you add a ListBox that contains items of type Person. Using XAML attributes, you set the values of the properties FirstName and LastName. When you run the application, the output of the ToString method is shown inside the ListBox (code file XAMLIntroWPF/MainWindow.xaml):

<Window x:Class="XamlIntroWPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:datalib="clr-namespace:DataLib;assembly=DataLib"
 Title="XAML Demo" Height="350" Width="525">
 <StackPanel>
 <Button Content="Click Me!" />
 <ListBox>
 <datalib:Person FirstName="Stephanie" LastName="Nagel" />
 <datalib:Person FirstName="Matthias" LastName="Nagel" />
 </ListBox>
 </StackPanel>
</Window>

With UWP apps, the XAML declaration is different in that using is used instead of clr-namespace, and the name of the assembly is not needed (code file XAMLIntroUWP/MainPage.xaml):

<Page
 x:Class="XamlIntroUWP.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:datalib="using:DataLib">

NOTE The reason why UWP apps do not use clr-namespace within the alias declaration is that XAML with UWP is neither based on nor restricted on .NET. You can use native C++ with XAML as well, and thus clr would not be a good fit.

Instead of defining a .NET namespace and an assembly name with the XML alias in WPF applications, you can map a .NET namespace to an XML namespace using the assembly attribute XmlNsDefinition within the library. One argument of this attribute defines the XML namespace, the other the .NET namespace. Using this attribute, it is also possible to map multiple .NET namespaces to a single XML namespace:

[assembly: XmlnsDefinition("http://www.wrox.com/Schemas/2015","Wrox.ProCSharp.XAML")]

With this attribute in place, the namespace declaration in the XAML code can be changed to map to the XML namespace:

<Window x:Class="Wrox.ProCSharp.XAML.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:datalib="http://www.wrox.com/Schemas/2015"
 Title="XAML Demo" Height="350" Width="525">

Setting Properties as Attributes

You can set properties as attributes as long as the property type can be represented as a string or there is a conversion from a string to the property type. The following code snippet sets the Content and Background properties of the Button element with attributes:

<Button Content="Click Me!" Background="LightGoldenrodYellow" />

With the previous code snippet, the Content property is of type object and thus accepts a string. The Background property is of type Brush. The Brush type defines the BrushConverter class as a converter type with the attribute TypeConverter, with which the class is annotated. BrushConverter uses a list of colors to return a SolidColorBrush from the ConvertFromString method.

NOTE A type converter derives from the base class TypeConverter in the System.ComponentModel namespace. The type of the class that needs conversion defines the type converter with the TypeConverter attribute. WPF uses many type converters to convert XML attributes to a specific type, including ColorConverter, FontFamilyConverter, PathFigureCollectionConverter, ThicknessConverter, and GeometryConverter, to name just a few.

Using Properties as Elements

It’s always also possible to use the element syntax to supply the value for properties. You can set the Background property of the Button class with the child element Button.Background. The following code snippet defines the Button with the same result as shown earlier with attributes:

<Button>
 Click Me!
 <Button.Background>
 <SolidColorBrush Color="LightGoldenrodYellow" />
 </Button.Background>
</Button>

Using elements instead of attributes allows you to apply more complex brushes to the Background property, such as a LinearGradientBrush, as shown in the following example (code file XAMLSyntax/MainWindow.xaml):

<Button>
 Click Me!
 <Button.Background>
 <LinearGradientBrush StartPoint="0.5,0.0" EndPoint="0.5, 1.0">
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="0.3" Color="Orange" />
 <GradientStop Offset="0.7" Color="Red" />
 <GradientStop Offset="1" Color="DarkRed" />
 </LinearGradientBrush>
 </Button.Background>
</Button>

NOTE When setting the content in the sample, neither the Content attribute nor a Button.Content element is used to write the content; instead, the content is written directly as a child value to the Button element. That’s possible because with a base class of the Button class (ContentControl), the ContentProperty attribute is applied with [ContentProperty("Content")]. This attribute marks the Content property as a ContentProperty. This way the direct child of the XAML element is applied to the Content property.

Using Collections with XAML

In the ListBox that contains Person elements, you’ve already seen a collection within XAML. In the ListBox, the items have been directly defined as child elements. In addition, the LinearGradientBrush contained a collection of GradientStop elements. This is possible because the base class ItemsControl has the attribute ContentProperty set to the Items property of the class, and the GradientBrush base class sets the attribute ContentProperty to GradientStops.

The following example shows a longer version that defines the background by directly setting the GradientStops property and defining the GradientStopCollection element as its child:

<Button Click="OnButtonClick">
 Click Me!
 <Button.Background>
 <LinearGradientBrush StartPoint="0.5, 0.0" EndPoint="0.5, 1.0">
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="0.3" Color="Orange" />
 <GradientStop Offset="0.7" Color="Red" />
 <GradientStop Offset="1" Color="DarkRed" />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Button.Background>
</Button>

With WPF, to define an array, you can use the x:Array extension. The x:Array extension has a Type property that enables you to specify the type of the array’s items:

<Window.Resources>
 <x:Array Type="datalib:Person" x:Key="personArray">
 <datalib:Person FirstName="Stephanie" LastName="Nagel" />
 <datalib:Person FirstName="Matthias" LastName="Nagel" />
 </x:Array>
</Window.Resources>

Dependency Properties

XAML uses dependency properties for data binding, animations, property change notification, styling, and so forth. What’s the reason for dependency properties? Let’s assume you create a class with 100 properties of type int, and this class is instantiated 100 times on a single form. How much memory is needed? Because an int has a size of 4 bytes, the result is 4 × 100 × 100 = 40,000 bytes. Did you already have a look at the properties of an XAML element? Because of the huge inheritance hierarchy, an XAML element defines hundreds of properties. The property types are not simple int types, but a lot more complex types instead. I think you can imagine that such properties could consume a huge amount of memory. However, usually you change only the values of a few of these properties, and most of the properties keep their default values that are common for all instances. This dilemma is solved with dependency properties. With dependency properties, an object memory is not allocated for every property and every instance. Instead, the dependency property system manages a dictionary of all properties and allocates memory only if a value is changed. Otherwise, the default value is shared between all instances.

Dependency properties also have built-in support for change notification. With normal properties, you need to implement the interface INotifyPropertyChanged for change notification. How this can be done is explained in Chapter 31, “Patterns with XAML Apps.” Such a change mechanism is built-in with dependency properties. For data binding, the property of the UI element that is bound to the source of a .NET property must be a dependency property. Now, let’s get into the details of dependency properties.

From the outside, a dependency property looks like a normal .NET property. However, with a normal .NET property you usually also define the data member that is accessed by the get and set accessors of the property:

private int _value;
public int Value
{
 get
 {
 return _value;
 }
 set
 {
 _value = value;
 }
}

That’s not the case with dependency properties. A dependency property usually has a get and set accessor of a property as well. This is common with normal properties. However, with the implementation of the get and set accessors, the methods GetValue and SetValue are invoked. GetValue and SetValue are members of the base class DependencyObject, which also stipulates a requirement for dependency objects—that they must be implemented in a class that derives from DependencyObject. With WPF, the base class is defined in the namespace System.Windows, with UWP in the namespace Windows.UI.Xaml.

With a dependency property, the data member is kept inside an internal collection that is managed by the base class and only allocates data if the value changes. With unchanged values the data can be shared between different instances or base classes. The GetValue and SetValue methods require a DependencyProperty argument. This argument is defined by a static member of the class that has the same name as the property appended to the term Property. With the property Value, the static member has the name ValueProperty. DependencyProperty.Register is a helper method that registers the property in the dependency property system. The following code snippet uses the Register method with four arguments to define the name of the property, the type of the property, the type of the owner—that is, the class MyDependencyObject—and the default value with the help of PropertyMetadata (code file DependencyObject[WPF|UWP]/MyDependencyObject.cs):

public class MyDependencyObject: DependencyObject
{
 public int Value
 {
 get { return (int)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }

 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register("Value", typeof(int),
 typeof(MyDependencyObject), new PropertyMetadata(0));
}

Creating a Dependency Property

This section looks at an example that defines not one but three dependency properties. The class MyDependencyObject defines the dependency properties Value, Minimum, and Maximum. All of these properties are dependency properties that are registered with the method DependencyProperty.Register. The methods GetValue and SetValue are members of the base class DependencyObject. For the Minimum and Maximum properties, default values are defined that can be set with the DependencyProperty.Register method and a fourth argument to set the PropertyMetadata. Using a constructor with one parameter, PropertyMetadata, the Minimum property is set to 0, and the Maximum property is set to 100 (code file DependencyObject[WPF|UWP]/MyDependencyObject.cs):

public class MyDependencyObject: DependencyObject
{
 public int Value
 {
 get { return (int)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }

 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register(nameof(Value), typeof(int),
 typeof(MyDependencyObject));

 public int Minimum
 {
 get { return (int)GetValue(MinimumProperty); }
 set { SetValue(MinimumProperty, value); }
 }
 public static readonly DependencyProperty MinimumProperty =
 DependencyProperty.Register(nameof(Minimum), typeof(int),
 typeof(MyDependencyObject), new PropertyMetadata(0));

 public int Maximum
 {
 get { return (int)GetValue(MaximumProperty); }
 set { SetValue(MaximumProperty, value); }
 }
 public static readonly DependencyProperty MaximumProperty =
 DependencyProperty.Register(nameof(Maximum), typeof(int),
 typeof(MyDependencyObject), new PropertyMetadata(100));
}

NOTE Within the implementation of the get and set property accessors, you should not do anything other than invoke the GetValue and SetValue methods. Using the dependency properties, the property values can be accessed from the outside with the GetValue and SetValue methods, which is also done from WPF; therefore, the strongly typed property accessors might not be invoked at all. They are just here for convenience, so you can use the normal property syntax from your custom code.

Value Changed Callbacks and Events

To get some information on value changes, dependency properties also support value changed callbacks. You can add a DependencyPropertyChanged event handler to the DependencyProperty.Register method that is invoked when the property value changes. In the sample code, the handler method OnValueChanged is assigned to the PropertyChangedCallback of the PropertyMetadata object. In the OnValueChanged method, you can access the old and new values of the property with the DependencyPropertyChangedEventArgs argument (code file DependencyObject[WPF|UWP]/MyDependencyObject.cs):

public class MyDependencyObject: DependencyObject
{
 public int Value
 {
 get { return (int)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }

 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register(nameof(Value), typeof(int),
 typeof(MyDependencyObject),
 new PropertyMetadata(0, OnValueChanged, CoerceValue));

 // etc.

 private static void OnValueChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs e)
 {
 int oldValue = (int)e.OldValue;
 int newValue = (int)e.NewValue;
 // etc.
 }
}

Coerce Value Callback with WPF

With WPF, dependency properties also support coercion. Using coercion, you can check the value of a property to see whether it is valid—for example, that it falls within a valid range. That’s why the Minimum and Maximum properties are included in the sample. Now the registration of the Value property is changed to pass the event handler method CoerceValue to the constructor of PropertyMetadata, which is passed as an argument to the DependencyProperty.Register method. The CoerceValue method is invoked with every change of the property value from the implementation of the SetValue method. Within CoerceValue, the set value is checked to determine whether it falls within the specified minimum and maximum range; if not, the value is set accordingly (code file DependencyObjectWPF/MyDependencyObject.cs).

using System;
using System.Windows;

namespace DependencyObjectWPF
{
 public class MyDependencyObject: DependencyObject
 {
 public int Value
 {
 get { return (int)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }
 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register(nameof(Value), typeof(int),
 typeof(MyDependencyObject),
 new PropertyMetadata(0, OnValueChanged, CoerceValue));

 private static object CoerceValue(DependencyObject d, object baseValue)
 {
 int newValue = (int)baseValue;
 MyDependencyObject control = (MyDependencyObject)d;

 newValue = Math.Max(control.Minimum, Math.Min(control.Maximum, newValue));
 return newValue;
 }

 // etc.

 public int Minimum
 {
 get { return (int)GetValue(MinimumProperty); }
 set { SetValue(MinimumProperty, value); }
 }
 public static readonly DependencyProperty MinimumProperty =
 DependencyProperty.Register(nameof(Minimum), typeof(int),
 typeof(MyDependencyObject), new PropertyMetadata(0));

 public int Maximum
 {
 get { return (int)GetValue(MaximumProperty); }
 set { SetValue(MaximumProperty, value); }
 }
 public static readonly DependencyProperty MaximumProperty =
 DependencyProperty.Register(nameof(Maximum), typeof(int),
 typeof(MyDependencyObject), new PropertyMetadata(100));

 }
}

Routed Events

Chapter 9 covers the .NET event model. With XAML-based applications, the event model is extended by routing events. Elements contain elements to form a hierarchy. With routed events, an event is routed through the hierarchy of elements. If a routed event is fired from a control—for example, a Button—the event can be handled with the button itself, but then it routes up to all its parent controls where it can be handled as well. This is also called bubbling—events bubble up through the control hierarchy. It’s possible to stop the routing to the parent by setting the Handled property of the event to true.

Routed Events with Windows apps

This section provides an example with a UWP Windows app. This app defines a UI consisting of a CheckBox that, if selected, stops the routing; a Button control with the Tapped event set to the OnTappedButton handler method; and a Grid with the Tapped event set to the OnTappedGrid handler. The Tapped event is one of the routed events of Universal Windows apps. This event can be fired with the mouse, touch, and pen devices (code file RoutedEventsUWP/MainPage.xaml):

<Grid Tapped="OnTappedGrid">
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <StackPanel Grid.Row="0" Orientation="Horizontal">
 <CheckBox x:Name="CheckStopRouting" Margin="20">Stop Routing</CheckBox>
 <Button Click="OnCleanStatus">Clean Status</Button>
 </StackPanel>
 <Button Grid.Row="1" Margin="20" Tapped="OnTappedButton">Tap me!</Button>
 <TextBlock Grid.Row="2" Margin="20" x:Name="textStatus" />
</Grid>

The OnTappedXX handler methods write status information to a TextBlock to show the handler method as well as the control that was the original source of the event (code file RoutedEventsUWP/MainPage.xaml.cs):

private void OnTappedButton(object sender, TappedRoutedEventArgs e)
{
 ShowStatus(nameof(OnTappedButton), e);
 e.Handled = CheckStopRouting.IsChecked == true;
}

private void OnTappedGrid(object sender, TappedRoutedEventArgs e)
{
 ShowStatus(nameof(OnTappedGrid), e);
 e.Handled = CheckStopRouting.IsChecked == true;
}

private void ShowStatus(string status, RoutedEventArgs e)
{
 textStatus.Text += $"{status} {e.OriginalSource.GetType().Name}";
 textStatus.Text +="\r\n";
}

private void OnCleanStatus(object sender, RoutedEventArgs e)
{
 textStatus.Text = string.Empty;
}

When you run the application and click outside the button but within the grid, you see the OnTappedGrid event handled with the Grid control as the originating source:

OnTappedGrid Grid

Click in the middle of the button to see that the event is routed. The first handler that is invoked is OnTappedButton followed by OnTappedGrid:

OnTappedButton TextBlock
OnTappedGrid TextBlock

What’s also interesting is that the event source is not the Button, but a TextBlock. The reason is that the button is styled using a TextBlock to contain the button text. If you click to other positions within the button, you can also see Grid or ContentPresenter as the originating event source. The Grid and ContentPresenter are other controls the button is created from.

Checking the check box CheckStopRouting before clicking on the button, you can see that the event is no longer routed because the Handled property of the event arguments is set to true:

OnTappedButton TextBlock

Within the MSDN documentation of the events, you can see whether an event type is routing within the remarks section of the documentation. With Universal Windows apps, tapped, drag and drop, key up and key down, pointer, focus, and manipulation events are routed events.

Bubbling and Tunneling with WPF

With WPF, a lot more events support routing than are supported with Windows Universal apps. Besides the concept of bubbling up through the control hierarchy, WPF also supports tunneling. Tunneling events go in the direction opposite of bubbling—from outside to inside controls. An event is either a bubbling event, a tunneling event, or a direct event.

Often events are defined in pairs. PreviewMouseMove is a tunneling event that tunnels from the outside to the inside. First the outer controls receive the event followed by the inner controls. The MouseMove event follows the PreviewMouseMove event and is a bubbling event that bubbles from the inside to the outside.

To demonstrate tunneling and bubbling, the following XAML code contains a grid and a button that have both the MouseMove and the PreviewMouseMove events assigned. As MouseMove events can occur in high count, the TextBlock that displays the mouse move information is surrounded by a ScrollViewer control to show scroll bars as needed. With CheckBox controls, you can set the tunneling and bubbling to stop (code file RoutedEventsWPF/MainWindow.xaml):

<Grid MouseMove="OnGridMouseMove" PreviewMouseMove="OnGridPreviewMouseMove">
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <StackPanel Grid.Row="0" Orientation="Horizontal">
 <CheckBox x:Name="CheckStopPreview" Margin="20">
 Stop Preview
 </CheckBox>
 <CheckBox x:Name="CheckStopBubbling" Margin="20">
 Stop Bubbling
 </CheckBox>
 <CheckBox x:Name="CheckIgnoreGridMove" Margin="20">
 Ignore Grid Move
 </CheckBox>
 <Button Margin="20" Click="OnCleanStatus">Clean Status</Button>
 </StackPanel>
 <Button x:Name="button1" Grid.Row="1" Margin="20"
 MouseMove="OnButtonMouseMove"
 PreviewMouseMove="OnButtonPreviewMouseMove">
 Move
 </Button>
 <ScrollViewer Grid.Row="2">
 <TextBlock Margin="20" x:Name="textStatus" />
 </ScrollViewer>
</Grid>

Within the code-behind file, the ShowStatus method accesses RoutedEventArgs to display event information. Unlike what happens with Universal Windows apps, the RoutedEventArgs type contains not only the original source of the event, but also the source, which is accessible with the Source property. This method shows both the type and the name of the source (code file RoutedEventsWPF/MainWindow .xaml.cs):

private void ShowStatus(string status, RoutedEventArgs e)
{
 textStatus.Text += $"{status} source: {e.Source.GetType().Name}," +
 $"{(e.Source as FrameworkElement)?.Name}," +
 $"original source: {e.OriginalSource.GetType().Name}";
 textStatus.Text +="\r\n";
}

Because there are still too many MouseMove events, the handlers are implemented to ignore them with the exception of the ones with the button1 source in case the CheckIgnoreGridMove Checkbox is checked.

private bool IsButton1Source(RoutedEventArgs e) =>
 (e.Source as FrameworkElement).Name == nameof(button1);

private void OnButtonMouseMove(object sender, MouseEventArgs e)
{
 ShowStatus(nameof(OnButtonMouseMove), e);
 e.Handled = CheckStopBubbling.IsChecked == true;
}

private void OnGridMouseMove(object sender, MouseEventArgs e)
{
 if (CheckIgnoreGridMove.IsChecked == true && !IsButton1Source(e) return;

 ShowStatus(nameof(OnGridMouseMove), e);
 e.Handled = CheckStopBubbling.IsChecked == true;
}

private void OnGridPreviewMouseMove(object sender, MouseEventArgs e)
{
 if (CheckIgnoreGridMove.IsChecked == true && !IsButton1Source(e) return:

 ShowStatus(nameof(OnGridPreviewMouseMove), e);
 e.Handled = CheckStopPreview.IsChecked == true;
}

private void OnButtonPreviewMouseMove(object sender, MouseEventArgs e)
{
 ShowStatus(nameof(OnButtonPreviewMouseMove), e);
 e.Handled = CheckStopPreview.IsChecked == true;
}

private void OnCleanStatus(object sender, RoutedEventArgs e)
{
 textStatus.Text = string.Empty;
}

When you run the application and move over the Button control you see these event handler actions:

OnGridPreviewMouseMove source: Button button1, original source: Border
OnButtonPreviewMouseMove source: Button button1, original source: Border
OnButtonMouseMove source: Button button1, original source: Border
OnGridMouseMove source: Button button1, original source: Border

In case you make the check to stop bubbling, the Button handler OnButtonMouseMove is the last one invoked. This is similar to what you’ve seen with bubbling and Universal Windows apps:

OnGridPreviewMouseMove source: Button button1, original source: Border
OnButtonPreviewMouseMove source: Button button1, original source: Border
OnButtonMouseMove source: Button button1, original source: Border

When you stop the routing actions with the tunneling event handler, bubbling does not occur. This is an important characteristic of tunneling. In case you already set the Handled property to true within a tunneling event handler, the bubbling event never occurs:

OnGridPreviewMouseMove source: Button button1, original source: Border

Implementing Custom Routed Events with WPF

To define bubbling and tunneling events in custom classes, the MyDependencyObject is changed to support an event on a value change. For bubbling and tunneling event support, the class must derive from UIElement instead of DependencyObject because this class defines AddHandler and RemoveHandler methods for events.

To enable the caller of the MyDependencyObject to receive information about value changes, the class defines the ValueChanged event. The event is declared with explicit add and remove handlers, where the AddHandler and RemoveHandler methods of the base class are invoked. These methods require a RoutedEvent type and the delegate as parameters. The routed event named ValueChangedEvent is declared very similarly to a dependency property. It is declared as a static member and registered by calling the method EventManager.RegisterRoutedEvent. This method requires the name of the event, the routing strategy (which can be Bubble, Tunnel, or Direct), the type of the handler, and the type of the owner class. The EventManager class also enables you to register static events and get information about the events registered (code file DependencyObjectWPF/MyDependencyObject.cs):

using System;
using System.Windows;

namespace Wrox.ProCSharp.XAML
{
 class MyDependencyObject: UIElement
 {
 public int Value
 {
 get { return (int)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }

 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register(nameof(Value), typeof(int),
 typeof(MyDependencyObject),
 new PropertyMetadata(0, OnValueChanged, CoerceValue));

 // etc.
 private static void OnValueChanged(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
 {
 MyDependencyObject control = (MyDependencyObject)d;
 var e1 = new RoutedPropertyChangedEventArgs<int>((int)e.OldValue,
 (int)e.NewValue, ValueChangedEvent);
 control.OnValueChanged(e1);
 }

 public static readonly RoutedEvent ValueChangedEvent =
 EventManager.RegisterRoutedEvent(nameof(ValueChanged), RoutingStrategy.Bubble,
 typeof(RoutedPropertyChangedEventHandler<int>), typeof(MyDependencyObject));

 public event RoutedPropertyChangedEventHandler<int> ValueChanged
 {
 add
 {
 AddHandler(ValueChangedEvent, value);
 }
 remove
 {
 RemoveHandler(ValueChangedEvent, value);
 }
 }

 protected virtual void OnValueChanged(RoutedPropertyChangedEventArgs<int> args)
 {
 RaiseEvent(args);
 }
 }
}

Now you can use this with bubbling functionality in the same way that you’ve seen it used before with the button MouseMove event.

Attached Properties

Whereas dependency properties are properties available with a specific type, with an attached property you can define properties for other types. Some container controls define attached properties for their children; for example, if the DockPanel control is used, a Dock property is available for its children. The Grid control defines Row and Column properties.

The following code snippet demonstrates how this looks in XAML. The Button class doesn’t have the property Dock, but it’s attached from the DockPanel:

<DockPanel>
 <Button Content="Top" DockPanel.Dock="Top" Background="Yellow" />
 <Button Content="Left" DockPanel.Dock="Left" Background="Blue" />
</DockPanel>

Attached properties are defined very similarly to dependency properties, as shown in the next example. The class that defines the attached properties must derive from the base class DependencyObject and defines a normal property, where the get and set accessors invoke the methods GetValue and SetValue of the base class. This is where the similarities end. Instead of invoking the method Register with the DependencyProperty class, now RegisterAttached is invoked, which registers an attached property that is now available with every element (code file AttachedPropertyDemo[WPF|UWP]/MyAttachedProperyProvider.cs):

public class MyAttachedPropertyProvider: DependencyObject
{
 public string MySample
 {
 get { return (string)GetValue(MySampleProperty); }
 set { SetValue(MySampleProperty, value); }
 }

 public static readonly DependencyProperty MySampleProperty =
 DependencyProperty.RegisterAttached(nameof(MySample), typeof(string),
 typeof(MyAttachedPropertyProvider), new PropertyMetadata(string.Empty));

 public static void SetMySample(UIElement element, string value) =>
 element.SetValue(MySampleProperty, value);

 public static int GetMyProperty(UIElement element) =>
 (string)element.GetValue(MySampleProperty);
}

NOTE You might assume that DockPanel.Dock can only be added to elements within a DockPanel. In reality, attached properties can be added to any element. However, no one would use this property value. The DockPanel is aware of this property and reads it from its children elements to arrange them.

In the XAML code, the attached property can now be attached to any elements. The second Button control, named button2, has the property MyAttachedPropertyProvider.MySample attached to it and the value 42 assigned (code file AttachedPropertyDemo[WPF|UWP]/Main[Window|Page].xaml):

<Grid x:Name="grid1">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Button Grid.Row="0" x:Name="button1" Content="Button 1" />
 <Button Grid.Row="1" x:Name="button2" Content="Button 2"
 local:MyAttachedPropertyProvider.MySample="42" />
 <ListBox Grid.Row="2" x:Name="list1" />
 </Grid>
</Window>

Doing the same in code-behind it is necessary to invoke the static method SetMyProperty of the class MyAttachedPropertyProvider. It’s not possible to extend the class Button with a property. The method SetProperty gets a UIElement instance that should be extended by the property and the value. In the following code snippet, the property is attached to button1 and the value is set to sample value (code file AttachedPropertyDemoWPF/MainPage.xaml.cs):

public MainPage()
{
 InitializeComponent();

 MyAttachedPropertyProvider.SetMySample(button1,"sample value");
 // etc.
}

To read attached properties that are assigned to elements, the VisualTreeHelper can be used to iterate every element in the hierarchy and try to read its attached properties. The VisualTreeHelper is used to read the visual tree of the elements during runtime. The method GetChildrenCount returns the count of the child elements. To access a child, the method GetChild passing an index returns the element. The method implementation returns elements only if they are of type FrameworkElement (or derived thereof), and if the predicate passed with the Func argument returns true.

private IEnumerable<FrameworkElement> GetChildren(FrameworkElement element,
 Func<FrameworkElement, bool> pred)
{
 int childrenCount = VisualTreeHelper.GetChildrenCount(rootElement);
 for (int i = 0; i < childrenCount; i++)
 {
 var child = VisualTreeHelper.GetChild(rootElement, i) as FrameworkElement;
 if (child != null && pred(child))
 {
 yield return child;
 }
 }
}

The method GetChildren is now used from within the constructor of the page to add all elements with an attached property to the ListBox control:

public MainPage()
{
 InitializeComponent();

 MyAttachedPropertyProvider.SetMySample(button1,"sample value");
 foreach (var item in GetChildren(grid1, e =>
 MyAttachedPropertyProvider.GetMySample(e) != string.Empty))
 {
 list1.Items.Add(
 $"{item.Name}: {MyAttachedPropertyProvider.GetMySample(item)}");
 }
}

When you run the application (either the WPF or the UWP app) you see the two button controls in the ListBox with these values:

button1: sample value
button2: 42

Until now, the sample code for attached properties is the same for WPF and Universal Windows apps with the exception that with WPF a MainWindow control is used instead of the MainPage. However, WPF has another option to iterate through the elements. Both WPF and Universal Windows apps can use the VisualTreeHelper to iterate the visual tree that contains all the elements created during runtime, including templates and styles. With WPF you can also use the LogicalTreeHelper. This helper class iterates the logical tree of elements. The logical tree is the same tree used during design time. This tree can also be shown within Visual Studio in the Document Outline (see Figure 29.1).

[image: Screenshot shows the Document Outline window which includes a page tree with elements BottomAppBar, grid1, button1, button2, and list1.]

Figure 29.1

Using the LogicalTreeHelper, the method to iterate the children elements can be changed as follows. The LogicalTreeHelper class offers a GetChildren method instead of needing to ask for the number of children and to iterate them using a for loop (code file AttachedPropertyDemoWPF/MainWindow .xaml.cs):

public MainWindow()
{
 InitializeComponent();

 MyAttachedPropertyProvider.SetMySample(button1,"sample value");

 foreach (var item in LogicalTreeHelper.GetChildren(grid1).
 OfType<FrameworkElement>().Where(
 e => MyAttachedPropertyProvider.GetMySample(e) != string.Empty))
 {
 list1.Items.Add(
 $"{item.Name}: {MyAttachedPropertyProvider.GetMySample(item)}");
 }
}

NOTE Chapter 30, “Styling XAML Apps,” and Chapters 31 through 35 use XAML to show many different attached properties in action—for example, attached properties from container controls such as Canvas, DockPanel, and Grid, but also the ErrorTemplate property from the Validation class.

Markup Extensions

With markup extensions you can extend XAML with either element or attribute syntax. If an XML attribute contains curly brackets, that’s a sign of a markup extension. Often markup extensions with attributes are used as shorthand notation instead of using elements.

One example of such a markup extension is StaticResourceExtension, which finds resources. Here’s a resource of a linear gradient brush with the key gradientBrush1 (code file MarkupExtensionsUWP/MainPage.xaml):

<Page.Resources>
 <LinearGradientBrush x:Key="gradientBrush1" StartPoint="0.5,0.0" EndPoint="0.5, 1.0">
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="0.3" Color="Orange" />
 <GradientStop Offset="0.7" Color="Red" />
 <GradientStop Offset="1" Color="DarkRed" />
 </LinearGradientBrush>
</Page.Resources>

This resource can be referenced by using the StaticResourceExtension with attribute syntax to set the Background property of a Button. Attribute syntax is defined by curly brackets and the name of the extension class without the Extension suffix:

<Button Content="Test" Background="{StaticResource gradientBrush1}" />

WPF also allows the longer form of the attribute shorthand notation with element syntax, as the next code snippet demonstrates. StaticResourceExtension is defined as a child element of the Button.Background element. The property ResourceKey is set with an attribute to gradientBrush1. In the previous example, the resource key is not set with the property ResourceKey (which would be possible as well) but with a constructor overload where the resource key can be set:

<Button Content="Test">
 <Button.Background>
 <StaticResourceExtension ResourceKey="gradientBrush1" />
 </Button.Background>
</Button>

Creating Custom Markup Extensions

UWP apps can use only predefined markup extensions. With WPF, you can create custom markup extensions. A markup extension is created by defining a class that derives from the base class MarkupExtension. Most markup extensions have the Extension suffix (this naming convention is similar to the Attribute suffix with attributes, which you can read about in Chapter 16, “Reflection, Metadata, and Dynamic Programming”). With a custom markup extension, you only need to override the method ProvideValue, which returns the value from the extension. The type that is returned is annotated to the class with the attribute MarkupExtensionReturnType. With the method ProvideValue, an IServiceProvider object is passed. With this interface you can query for different services, such as IProvideValueTarget or IXamlTypeResolver. You can use IProvideValueTarget to access the control and property to which the markup extension is applied with the TargetObject and TargetProperty properties. You can use IXamlTypeResolver to resolve XAML element names to CLR objects. The custom markup extension class CalculatorExtension defines the properties X and Y of type double and an Operation property that is defined by an enumeration. Depending on the value of the Operation property, different calculations are done on the X and Y input properties, and a string is returned (code file MarkupExtensionsWPF/CalculatorExtension.cs):

using System;
using System.Windows;
using System.Windows.Markup;
namespace Wrox.ProCSharp.XAML
{
 public enum Operation
 {
 Add,
 Subtract,
 Multiply,
 Divide
 }

 [MarkupExtensionReturnType(typeof(string))]
 public class CalculatorExtension: MarkupExtension
 {
 public CalculatorExtension()
 {
 }
 public double X { get; set; }
 public double Y { get; set; }
 public Operation Operation { get; set; }

 public override object ProvideValue(IServiceProvider serviceProvider)
 {
 IProvideValueTarget provideValue =
 serviceProvider.GetService(typeof(IProvideValueTarget))
 as IProvideValueTarget;
 if (provideValue != null)
 {
 var host = provideValue.TargetObject as FrameworkElement;
 var prop = provideValue.TargetProperty as DependencyProperty;
 }
 double result = 0;
 switch (Operation)
 {
 case Operation.Add:
 result = X + Y;
 break;
 case Operation.Subtract:
 result = X—Y;
 break;
 case Operation.Multiply:
 result = X * Y;
 break;
 case Operation.Divide:
 result = X / Y;
 break;
 default:
 throw new ArgumentException("invalid operation");
 }
 return result.ToString();
 }
 }
}

You can now use the markup extension with an attribute syntax in the first TextBlock to add the values 3 and 4, or with the element syntax with the second TextBlock (code file MarkupExtensionsWPF/MainWindow.xaml).

<Window x:Class="Wrox.ProCSharp.XAML.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Wrox.ProCSharp.XAML"
 Title="MainWindow" Height="350" Width="525">
 <StackPanel>
 <TextBlock Text="{local:Calculator Operation=Add, X=3, Y=4}" />
 <TextBlock>
 <TextBlock.Text>
 <local:CalculatorExtension>
 <local:CalculatorExtension.Operation>
 <local:Operation>Multiply</local:Operation>
 </local:CalculatorExtension.Operation>
 <local:CalculatorExtension.X>7</local:CalculatorExtension.X>
 <local:CalculatorExtension.Y>11</local:CalculatorExtension.Y>
 </local:CalculatorExtension>
 </TextBlock.Text>
 </TextBlock>
 </StackPanel>
</Window>

Using XAML-Defined Markup Extensions

Markup extensions provide a lot of capabilities, and indeed XAML-defined markup extensions have already been used in this chapter. x:Array, which was shown in the “Using Collections with XAML” section, is defined as the markup extension class ArrayExtension. With this markup extension, using the attribute syntax is not possible because it would be difficult to define a list of elements.

Other markup extensions that are defined with XAML are the TypeExtension (x:Type), which returns the type based on string input; NullExtension (x:Null), which can be used to set values to null in XAML; and StaticExtension (x:Static), which is used to invoke static members of a class.

An XAML-defined markup extension that is currently only offered for Universal Windows apps is compiled binding (x:Bind) for data binding with better performance. This data binding is covered in Chapter 32, “Windows Apps: User Interfaces.”

WPF, WF, WCF, and Universal Windows apps define markup extensions that are specific to these technologies. WPF and Universal Windows apps use markup extensions for accessing resources, for data binding, and for color conversion; WF apps use markup extensions with activities; and WCF apps define markup extensions for endpoint definitions.

Summary

In this chapter, you’ve seen the core functionality of XAML with samples for both WPF and Universal Windows apps. You’ve also seen some specific characteristics, such as dependency properties, attached properties, routed events, and markup extensions. With these features, you’ve not only seen the foundation of XAML-based technologies, but you were also introduced to how C# and .NET features, such as properties and events, can be adapted to extended-use cases. Properties have been enhanced to support change notification and validation (dependency properties). Attached properties enable you to use properties with controls where the controls themselves don’t offer these properties. Events have been enhanced with bubbling and tunneling functionality.

All these features facilitate the foundation for different XAML technologies, such as WPF, WF, and UWP apps.

The next chapter continues the discussion of XAML and is about styles and resources.

30
Styling XAML Apps

What’s In This Chapter?

	Styling for WPF and UWP Apps

	Creating the base drawing with shapes and geometry

	Scaling, rotating, and skewing with transformations

	Using brushes to fill backgrounds

	Working with styles, templates, and resources

	Creating animations

	Visual State Manager

Wrox.com Code Downloads For This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Shapes

	Geometry

	Transformation

	Brushes

	Styles and Resources

	Templates

	Animation

	Transitions

	Visual State

Styling

In recent years, developers have become a lot more concerned with having good-looking apps. When Windows Forms was the technology for creating desktop applications, the user interface didn’t offer many options for styling the applications. Controls had a standard look that varied slightly based on the operating system version on which the application was running, but it was not easy to define a complete custom look.

This changed with Windows Presentation Foundation (WPF). WPF is based on DirectX and thus offers vector graphics that allow easy resizing of Windows and controls. Controls are completely customizable and can have different looks. Styling of applications has become extremely important. An application can have any look. With a good design, the user can work with the application without the need to know how to use a Windows application. Instead, the user just needs to have his domain knowledge. For example, the airport in Zurich created a WPF application where buttons look like airplanes. With the button, the user can get information of the position of the plane (the complete application looks like the airport). Colors of the buttons can have different meanings based on the configuration: they can show the either the airline, or on-time/delay information of the plane. This way, the user of the app easily sees what planes that are currently at the airport have small or big delays.

Having different looks of the app is even more important with Universal Windows Platform (UWP) apps. With these apps, the device can be used by users who haven’t used Windows applications before. With users who are knowledgeable of Windows applications, you should think about helping these users be more productive by having the typical process for how the user works easily accessible.

Microsoft has not provided a lot of guidance for styling WPF applications. How an application looks mainly depends on your (or the designer’s) imagination. With UWP apps, Microsoft has provided a lot more guidance and predefined styles, but you’re still able to change anything you like.

This chapter starts with the core elements of XAML—shapes that enable you to draw lines, ellipses, and path elements. After that you’re introduced to the foundation of shapes—geometry elements. You can use geometry elements to create fast vector-based drawings.

With transformations, you can scale and rotate any XAML element. With brushes you can create solid color, gradient, or more advanced backgrounds. You see how to use brushes within styles and place styles within XAML resources.

Finally, with templates you can completely customize the look of controls, and you also learn how to create animations in this chapter.

The sample code is available both with UWP apps and with WPF. Of course, where features are only available in one of these technologies, the sample code is only available there.

Shapes

Shapes are the core elements of XAML. With shapes you can draw two-dimensional graphics using rectangles, lines, ellipses, paths, polygons, and polylines that are represented by classes derived from the abstract base class Shape. Shapes are defined in the namespaces System.Windows.Shapes (WPF) and Windows.UI.Xaml.Shapes (UWP).

The following XAML example draws a yellow face consisting of an ellipse for the face, two ellipses for the eyes, two ellipses for the pupils in the eyes, and a path for the mouth (code file Shapes[WPF|UWP]/Main[Window|Page].xaml):

<Canvas>
 <Ellipse Canvas.Left="10" Canvas.Top="10" Width="100" Height="100"
 Stroke="Blue" StrokeThickness="4" Fill="Yellow" />
 <Ellipse Canvas.Left="30" Canvas.Top="12" Width="60" Height="30">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0.5,0" EndPoint="0.5, 1">
 <GradientStop Offset="0.1" Color="DarkGreen" />
 <GradientStop Offset="0.7" Color="Transparent" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Ellipse Canvas.Left="30" Canvas.Top="35" Width="25" Height="20"
 Stroke="Blue" StrokeThickness="3" Fill="White" />
 <Ellipse Canvas.Left="40" Canvas.Top="43" Width="6" Height="5"
 Fill="Black" />
 <Ellipse Canvas.Left="65" Canvas.Top="35" Width="25" Height="20"
 Stroke="Blue" StrokeThickness="3" Fill="White" />
 <Ellipse Canvas.Left="75" Canvas.Top="43" Width="6" Height="5"
 Fill="Black" />
 <Path Stroke="Blue" StrokeThickness="4" Data="M 40,74 Q 57,95 80,74" />
</Canvas>

Figure 30.1 shows the result of the XAML code.

[image: Diagram shows a smiley face emoticon.]

Figure 30.1

All these XAML elements can be accessed programmatically—even if they are buttons or shapes, such as lines or rectangles. Setting the Name or x:Name property with the Path element to mouth enables you to access this element programmatically with the variable name mouth:

<Path Name="mouth" Stroke="Blue" StrokeThickness="4"
 Data="M 40,74 Q 57,95 80,74" />

With the next code changes, the mouth of the face is changed dynamically from code-behind. A button with a click handler is added where the SetMouth method is invoked (code file Shapes[WPF|UWP]/Main[Window|Page].xaml.cs):

private void OnChangeShape(object sender, RoutedEventArgs e)
{
 SetMouth();
}

When you’re using WPF, you can use the Path Markup Language (PML) from code-behind similar to what you’ve seen in the code snippets in this section with the Path element in XAML markup. Geometry.Parse interprets PML to create a new Geometry object. With PML, the letter M defines the starting point of the path, and the letter Q specifies a control point and an endpoint for a quadratic Bézier curve (code file ShapesWPF/MainWindow.xaml.cs):

private bool _laugh = false;

private void SetMouth2()
{
 if (_laugh)
 {
 mouth.Data = Geometry.Parse("M 40,82 Q 57,65 80,82");
 }
 else
 {
 mouth.Data = Geometry.Parse("M 40,74 Q 57,95 80,74");
 }
 _laugh = !_laugh;
}

Running the application results in the image shown in Figure 30.2.

[image: Diagram shows an emoticon for sad.]

Figure 30.2

With UWP apps, the Geometry class doesn’t offer a Parse method, and you must create the geometry using figures and segments. First, you create a two-dimensional array of six points to define three points for the happy and three points for the sad state (code file Shapes[WPF|UWP]/Main[Window|Page].xaml.cs):

private readonly Point[,] _mouthPoints = new Point[2, 3]
{
 {
 new Point(40, 74), new Point(57, 95), new Point(80, 74),
 },
 {
 new Point(40, 82), new Point(57, 65), new Point(80, 82),
 }
};

Next, you assign a new PathGeometry object to the Data property of the Path. The PathGeometry contains a PathFigure with the start point defined (setting the StartPoint property is the same as the letter M with PML). The PathFigure contains a QuadraticBezierSegment with two Point objects assigned to the properties Point1 and Point2 (the same as the letter Q with two points):

private bool _laugh = false;
public void SetMouth()
{
 int index = _laugh ? 0: 1;

 var figure = new PathFigure() { StartPoint = _mouthPoints[index, 0] };
 figure.Segments = new PathSegmentCollection();
 var segment1 = new QuadraticBezierSegment();
 segment1.Point1 = _mouthPoints[index, 1];
 segment1.Point2 = _mouthPoints[index, 2];
 figure.Segments.Add(segment1);
 var geometry = new PathGeometry();
 geometry.Figures = new PathFigureCollection();
 geometry.Figures.Add(figure);

 mouth.Data = geometry;
 _laugh = !_laugh;
}

Using segments and figures is explained in more detail in the next section.

The following table describes the shapes available in the namespaces System.Windows.Shapes and Windows.Ui.Xaml.Shapes.

	Shape Class
	Description

	Line
	You can draw a line from the coordinates X1,Y1 to X2,Y2.

	Rectangle
	You draw a rectangle by specifying Width and Height for this class.

	Ellipse
	You can draw an ellipse.

	Path
	You can draw a series of lines and curves. The Data property is a Geometry type. You can do the drawing by using classes that derive from the base class Geometry, or you can use the path markup syntax to define geometry.

	Polygon
	You can draw a closed shape formed by connected lines. The polygon is defined by a series of Point objects assigned to the Points property.

	Polyline
	Similar to the Polygon class, you can draw connected lines with Polyline. The difference is that the polyline does not need to be a closed shape.

Geometry

The previous sample showed that one of the shapes, Path, uses Geometry for its drawing. You can also use Geometry elements in other places, such as with a DrawingBrush.

In some ways, geometry elements are very similar to shapes. Just as there are Line, Ellipse, and Rectangle shapes, there are also geometry elements for these drawings: LineGeometry, EllipseGeometry, and RectangleGeometry. There are also big differences between shapes and geometries. A Shape is a FrameworkElement that you can use with any class that supports UIElement as its children. FrameworkElement derives from UIElement. Shapes participate with the layout system and render themselves. The Geometry class can’t render itself and has fewer features and less overhead than Shape. With WPF, the Geometry class derives from the Freezable base class and can be shared from multiple threads. With UWP apps, the Geometry class directly derives from DependencyObject. Freezable is not available here.

The Path class uses Geometry for its drawing. The geometry can be set with the Data property of the Path. Simple geometry elements that can be set are EllipseGeometry for drawing an ellipse, LineGeometry for drawing a line, and RectangleGeometry for drawing a rectangle.

Geometries Using Segments

You can also create geometries by using segments. The geometry class PathGeometry uses segments for its drawing. The following code segment uses the BezierSegment and LineSegment elements to build one red and one green figure, as shown in Figure 30.3. The first BezierSegment draws a Bézier curve between the points 70,40, which is the starting point of the figure, and 150,63 with control points 90,37 and 130,46. The following LineSegment uses the ending point of the Bézier curve and draws a line to 120,110 (code file Geometry[WPF|UWP]/Main[Window|Page].xaml):

[image: Diagram shows two Bezier curved surfaces of opposite orientations and different colors with outlines.]

Figure 30.3

<Path Canvas.Left="0" Canvas.Top="0" Fill="Red" Stroke="Blue"
 StrokeThickness="2.5">
 <Path.Data>
 <GeometryGroup>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="70,40" IsClosed="True">
 <PathFigure.Segments>
 <BezierSegment Point1="90,37" Point2="130,46" Point3="150,63" />
 <LineSegment Point="120,110" />
 <BezierSegment Point1="100,95" Point2="70,90" Point3="45,91" />
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </GeometryGroup>
 </Path.Data>
</Path>

<Path Canvas.Left="0" Canvas.Top="0" Fill="Green" Stroke="Blue"
 StrokeThickness="2.5">
 <Path.Data>
 <GeometryGroup>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="160,70">
 <PathFigure.Segments>
 <BezierSegment Point1="175,85" Point2="200,99"
 Point3="215,100" />
 <LineSegment Point="195,148" />
 <BezierSegment Point1="174,150" Point2="142,140"
 Point3="129,115" />
 <LineSegment Point="160,70" />
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </GeometryGroup>
 </Path.Data>
</Path>

Other than the BezierSegment and LineSegment elements, you can use ArcSegment to draw an elliptical arc between two points. With PolyLineSegment you can define a set of lines: PolyBezierSegment consists of multiple Bézier curves, QuadraticBezierSegment creates a quadratic Bézier curve, and PolyQuadraticBezierSegment consists of multiple quadratic Bézier curves.

Geometries Using PML

Earlier in this chapter you saw a use of PML with the Path shape. Using PML, behind the scenes WPF creates a speedy drawing with StreamGeometry. XAML for UWP apps creates figures and segments. Programmatically, you can define the figure by creating lines, Bézier curves, and arcs. With XAML, you can use PML syntax. You can use PML with the Data property of the Path class. Special characters define how the points are connected. In the following example, M marks the start point, L is a line command to the point specified, and Z is the Close command to close the figure. Figure 30.4 shows the result. The path markup syntax allows more commands such as horizontal lines (H), vertical lines (V), cubic Bézier curves (C), quadratic Bézier curves (Q), smooth cubic Bézier curves (S), smooth quadratic Bézier curves (T), and elliptical arcs (A) (code file Geometry[WPF|UWP]/Main[Window|Page].xaml):

[image: Diagram shows the clipart icon of a star. The edges are shorter and widely spaced on the left side.]

Figure 30.4

<Path Canvas.Left="0" Canvas.Top="200" Fill="Yellow" Stroke="Blue"
 StrokeThickness="2.5"
 Data="M 120,5 L 128,80 L 220,50 L 160,130 L 190,220 L 100,150
 L 80,230 L 60,140 L0,110 L70,80 Z" StrokeLineJoin="Round">
</Path>

Combined Geometries (WPF)

WPF offers another feature with geometries. With WPF, you can combine geometries using the CombinedGeometry class as demonstrated in the next example.

CombinedGeometry has the properties Geometry1 and Geometry2 and allows them to combine with GeometryCombineMode to form a Union, Intersect, Xor, and Exclude. Union merges the two geometries. With Intersect, only the area that is covered with both geometries is visible. Xor contrasts with Intersect by showing the area that is covered by one of the geometries but not showing the area covered by both. Exclude shows the area of the first geometry minus the area of the second geometry.

The following example (code file GeometryWPF/MainWindow.xaml) combines an EllipseGeometry and a RectangleGeometry to form a union, as shown in Figure 30.5.

[image: Diagram shows WPF icons for union, xor, intersect, and exclude, designed by combining elliptical and rectangular frames.]

Figure 30.5

<Path Canvas.Top="0" Canvas.Left="250" Fill="Blue" Stroke="Black" >
 <Path.Data>
 <CombinedGeometry GeometryCombineMode="Union">
 <CombinedGeometry.Geometry1>
 <EllipseGeometry Center="80,60" RadiusX="80" RadiusY="40" />
 </CombinedGeometry.Geometry1>
 <CombinedGeometry.Geometry2>
 <RectangleGeometry Rect="30,60 105 50" />
 </CombinedGeometry.Geometry2>
 </CombinedGeometry>
 </Path.Data>
</Path>

Figure 30.5 shows this XAML code in different variants—from left to right, Union, Xor, Intersect, and Exclude.

Transformation

Because XAML is vector based, you can resize every element. In the next example, the vector-based graphics are now scaled, rotated, and skewed. Hit testing (for example, with mouse moves and mouse clicks) still works but without the need for manual position calculation.

Figure 30.6 shows a rectangle in several different forms. All the rectangles are positioned within a StackPanel element with horizontal orientation to have the rectangles one beside the other. The first rectangle has its original size and layout. The second one is resized, the third moved, the forth rotated, the fifth skewed, the sixth transformed using a transformation group, and the seventh transformed using a matrix. The following sections get into the code samples of all these options.

[image: Image described by surrounding text.]

Figure 30.6

Scaling

Adding the ScaleTransform element to the RenderTransform property of the Rectangle element, as shown here, resizes the content of the complete rectangle by 0.5 in the x axis and 0.4 in the y axis (code file Transformation[WPF|UWP]/Main[Window|Page].xaml):

<Rectangle Width="120" Height="60" Fill="Red" Margin="20">
 <Rectangle.RenderTransform>
 <ScaleTransform ScaleX="0.5" ScaleY="0.4" />
 </Rectangle.RenderTransform>
</Rectangle>

You can do more than transform simple shapes like rectangles; you can transform any XAML element as XAML defines vector graphics. In the following code, the Canvas element with the face shown earlier is put into a user control named SmilingFace, and this user control is shown first without transformation and then resized. You can see the result in Figure 30.7.

[image: Diagram shows a smiling emoticon and its resized version. Resized image is squashed at its ends and swollen at the center.]

Figure 30.7

<local:SmilingFace />
<local:SmilingFace>
 <local:SmilingFace.RenderTransform>
 <ScaleTransform ScaleX="1.6" ScaleY="0.8" CenterY="180" />
 </local:SmilingFace.RenderTransform>
</local:SmilingFace>

Translating

For moving an element in x or y direction, you can use TranslateTransform. In the following snippet, the element moves to the left by assigning -90 to X, and in the direction to the bottom by assigning 20 to Y (code file Transformation[WPF|UWP]/Main[Window|Page].xaml):

<Rectangle Width="120" Height="60" Fill="Green" Margin="20">
 <Rectangle.RenderTransform>
 <TranslateTransform X="-90" Y="20" />
 </Rectangle.RenderTransform>
</Rectangle>

Rotating

You can rotate an element by using RotateTransform. With RotateTransform, you set the angle of the rotation and the center of the rotation with CenterX and CenterY (code file Transformation[WPF|UWP]/Main[Window|Page].xaml):

<Rectangle Width="120" Height="60" Fill="Orange" Margin="20">
 <Rectangle.RenderTransform>
 <RotateTransform Angle="45" CenterX="10" CenterY="-80" />
 </Rectangle.RenderTransform>
</Rectangle>

Skewing

For skewing, you can use the SkewTransform element. With skewing you can assign angles for the x and y axes (code file Transformation[WPF|UWP]/Main[Window|Page].xaml):

<Rectangle Width="120" Height="60" Fill="LightBlue" Margin="20">
 <Rectangle.RenderTransform>
 <SkewTransform AngleX="20" AngleY="30" CenterX="40" CenterY="390" />
 </Rectangle.RenderTransform>
</Rectangle>

Transforming with Groups and Composite Transforms

An easy way to do multiple transformations at once is by using the CompositeTransform (with UWP apps) and TransformationGroup elements. The TransformationGroup element can have SkewTransform, RotateTransform, TranslateTransform, and ScaleTransform as its children (code file Transformation[WPF|UWP]/Main[Window|Page].xaml):

<Rectangle Width="120" Height="60" Fill="LightGreen" Margin="20">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <SkewTransform AngleX="45" AngleY="20" CenterX="-390" CenterY="40" />
 <RotateTransform Angle="90" />
 <ScaleTransform ScaleX="0.5" ScaleY="1.2" />
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

To rotate and skew together, it is possible to define a TransformGroup that contains both RotateTransform and SkewTransform. The class CompositeTransform defines properties to do multiple transformations at once—for example, ScaleX and ScaleY for scaling as well as TranslateX and TranslateY for moving an element. You can also define a MatrixTransform whereby the Matrix element specifies the properties M11 and M22 for stretching and M12 and M21 for skewing, as shown in the next section.

Transforming Using a Matrix

Another option for defining multiple transformations at once is to specify a matrix. Here, you use MatrixTransform. MatrixTransform defines a Matrix property that has six values. Setting the values 1, 0, 0, 1, 0, 0 doesn’t change the element. With the values 0.5, 1.4, 0.4, 0.5, –200, and 0, the element is resized, skewed, and translated (code file Transformation[WPF|UWP]/Main[Window|Page].xaml):

<Rectangle Width="120" Height="60" Fill="Gold" Margin="20">
 <Rectangle.RenderTransform>
 <MatrixTransform Matrix="0.5, 1.4, 0.4, 0.5, -200, 0" />
 </Rectangle.RenderTransform>
 </Rectangle>

The Matrix type is a struct and thus cannot be instantiated within XAML code in a UWP app. However, the previous sample puts all the value of the matrix into a string, which gets converted. With WPF, you can instantiate a struct within XAML code, and thus it is possible to define the same values by assigning the Matrix properties by its name. The properties M11 and M22 are used for scaling, M12 and M21 for skewing, and OffsetX and OffsetY for translating:

<Rectangle Width="120" Height="60" Fill="Gold" Margin="20">
 <Rectangle.RenderTransform>
 <MatrixTransform>
 <MatrixTransform.Matrix>
 <Matrix M11="0.5" M12="1.4" M21="0.4" M22="0.5"
 OffsetX="-200" OffsetY="0" />
 </MatrixTransform.Matrix>
 </MatrixTransform>
 </Rectangle.RenderTransform>
</Rectangle>

Directly assigning the values in a string to the Matrix property of the MatrixTransform class has this order: M11—M12—M21—M22—OffsetX—OffsetY.

Transforming Layouts

The transformation samples have used RenderTransform. WPF also supports LayoutTransform. With RenderTransform, the transformation takes place after the layout phase is done, so it’s not taking into account when elements have a need for different sizes after the transformation. With LayoutTransform, the transformation happens before the layout phase—which is best demonstrated with an example. In the following code snippet, two rectangles are defined within a StackPanel. Both have the same height and width defined, but the first one is resized by a factor of 1.5 using render transformation. Looking at Figure 30.8 you can see that the rectangles overlay each other. The layout phase was done before the transformation, and thus the first rectangle doesn’t have enough room and just moves outside its positions for display (code file TransformationWPF/MainWindow.xaml):

[image: Image described by surrounding text.]

Figure 30.8

<StackPanel Orientation="Horizontal">
 <Rectangle Width="120" Height="60" Fill="Blue" Margin="20">
 <Rectangle.RenderTransform>
 <ScaleTransform ScaleX="1.5" ScaleY="1.5" />
 </Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle Width="120" Height="60" Fill="Blue" Margin="20" />
</StackPanel>

By using the same rectangles and ScaleTransformation but now with LayoutTransform (which is supported with WPF), you can see in Figure 30.9 that more room is made. The layout phase is done after the transformation.

[image: Diagram shows a large rectangle on left and its scaled down version on right.]

Figure 30.9

<StackPanel Orientation="Horizontal">
 <Rectangle Width="120" Height="60" Fill="Blue" Margin="20">
 <Rectangle.LayoutTransform>
 <ScaleTransform ScaleX="1.5" ScaleY="1.5" />
 </Rectangle.LayoutTransform>
 </Rectangle>
 <Rectangle Width="120" Height="60" Fill="Blue" Margin="20" />
</StackPanel>

NOTE In addition to LayoutTransform there’s also a RenderTransform. LayoutTransform happens before the layout phase and RenderTransform happens after.

Brushes

This section demonstrates how to use XAML’s brushes for drawing backgrounds and foregrounds. When you use brushes, WPF has a lot more to offer than UWP apps. Consequently, this section starts by covering brushes that are offered by both technologies and then it gets into brushes that are available only with specific XAML technologies.

The first examples in this section reference Figure 30.10, which shows the effects of using various brushes within the Background of Button elements.

[image: Diagram shows different background effects such as solid color, linear gradient brush, image brush, and webview brush.]

Figure 30.10

SolidColorBrush

The first button in Figure 30.10 uses the SolidColorBrush, which, as the name suggests, uses a solid color. The complete area is drawn with the same color.

You can define a solid color just by setting the Background attribute to a string that defines a solid color. The string is converted to a SolidColorBrush element with the help of the BrushValueSerializer (code file Brushes[WPF|UWP]/Main[Window|Page].xaml):

<Button Height="30" Background="#FFC9659C">Solid Color</Button>

Of course, you will get the same effect by setting the Background child element and adding a SolidColorBrush element as its content (code file BrushesDemo/MainWindow.xaml). The first button in the application uses a hexadecimal value for the solid background color:

<Button Content="Solid Color" Margin="10">
 <Button.Background>
 <SolidColorBrush Color="#FFC9659C" />
 </Button.Background>
</Button>

LinearGradientBrush

For a smooth color change, you can use the LinearGradientBrush, as the second button in Figure 30.10 shows. This brush defines the StartPoint and EndPoint properties. With this, you can assign two-dimensional coordinates for the linear gradient. The default gradient is diagonal linear from 0,0 to 1,1. By defining different values, the gradient can take different directions. For example, with a StartPoint of 0,0 and an EndPoint of 0,1, you get a vertical gradient. The StartPoint and EndPoint value of 1,0 creates a horizontal gradient.

With the content of this brush, you can define the color values at the specified offsets with the GradientStop element. Between the stops, the colors are smoothed (code file Brushes[WPF|UWP]/Main[Window|Page].xaml):

<Button Content="Linear Gradient Brush" Margin="10">
 <Button.Background>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="LightGreen" />
 <GradientStop Offset="0.4" Color="Green" />
 <GradientStop Offset="1" Color="DarkGreen" />
 </LinearGradientBrush>
 </Button.Background>
</Button>

ImageBrush

To load an image into a brush, you can use the ImageBrush element. With this element, the image defined by the ImageSource property is displayed. The image can be accessed from the file system or from a resource within the assembly. In the code example, the image is added from the file system (code file Brushes[WPF|UWP]/Main[Window|Page].xaml):

<Button Content="Image Brush" Width="100" Height="80" Margin="5"
 Foreground="White">
 <Button.Background>
 <ImageBrush ImageSource="Build2015.png" Opacity="0.5" />
 </Button.Background>
 </Button>

WebViewBrush

A mighty brush that is available only with UWP apps is the WebViewBrush. This brush uses the content of a WebView as a brush.

With the WebView control, you can use a local HTML file that is distributed with the application using the ms-appx-web prefix as in the sample code (code file BrushesUWP/MainPage.xaml):

<WebView x:Name="webView1" Source="ms-appx-web:///HTML/HTMLBrushContent.html"
 LoadCompleted="OnWebViewCompleted" Width="100" Height="80" />

Instead of using a file that is distributed with the application, it is also possible to access the Internet and retrieve the HTML file using http://. When you’re using the ms-appdata:/// prefix, you can use files from the local file system.

The WebViewBrush references the WebView with the SourceName property:

<Button Content="WebView Brush" Width="300" Height="180" Margin="20">
 <Button.Background>
 <WebViewBrush x:Name="webViewBrush" SourceName="webView1" Opacity="0.5" />
 </Button.Background>
</Button>

The WebViewBrush is drawn as soon as XAML is loaded. If the WebView did not load the source at that time, the brush needs to be redrawn. That’s why the WebView defines the LoadCompleted event. With the event handler that is associated with this event, the WebViewBrush is redrawn by invoking the Redraw method, and the Visibility property of the WebView is set to Collapsed. In case the WebView control would be collapsed from the beginning, the brush would never show the HTML content (code file BrushesUWP/MainPage.xaml.cs):

private void OnWebViewCompleted(object sender, NavigationEventArgs e)
{
 webViewBrush.Redraw();
 webView1.Visibility = Visibility.Collapsed;
}

WPF-Only Brushes

The WebViewBrush covered in the preceding section is available only with UWP apps, but now we’re moving on to the category of brushes that are available only with WPF. All the brushes described in the following sections can be used only with WPF. Figure 30.11 shows the WPF-only brushes RadialGradientBrush, DrawingBrush, and VisualBrush (two times). Let’s start with the RadialGradientBrush.

[image: Diagram shows the examples of elements using WPF-only brushes such as visual brush with media, visual brush drawing button, drawing brush, and radial gradient brush.]

Figure 30.11

RadialGradientBrush

The RadialGradientBrush is similar to the LinearGradientBrush in that you can define a list of colors for a gradient look. With the RadialGradientBrush you can smooth the color in a radial way. In Figure 30.11, the far-left element is a Path that uses RadialGradientBrush. This brush defines the color start with the GradientOrigin point (code file BrushesWPF/MainWindow.xaml):

<Canvas Width="200" Height="150">
 <Path Canvas.Top="0" Canvas.Left="20" Stroke="Black" >
 <Path.Fill>
 <RadialGradientBrush GradientOrigin="0.2,0.2">
 <GradientStop Offset="0" Color="LightBlue" />
 <GradientStop Offset="0.6" Color="Blue" />
 <GradientStop Offset="1.0" Color="DarkBlue" />
 </RadialGradientBrush>
 </Path.Fill>
 <Path.Data>
 <CombinedGeometry GeometryCombineMode="Union">
 <CombinedGeometry.Geometry1>
 <EllipseGeometry Center="80,60" RadiusX="80" RadiusY="40" />
 </CombinedGeometry.Geometry1>
 <CombinedGeometry.Geometry2>
 <RectangleGeometry Rect="30,60 105 50" />
 </CombinedGeometry.Geometry2>
 </CombinedGeometry>
 </Path.Data>
 </Path>
</Canvas>

DrawingBrush

The DrawingBrush enables you to define a drawing that is created with the brush. The button that is shown in Figure 30.11 with the Content value Drawing Brush defines the background using a DrawingBrush. This brush makes use of a GeometryDrawing element. The GeometryDrawing in turn uses two SolidColorBrush elements: one red and one blue. The red brush is used as the background and the blue brush is used for the pen, which results in the stroke around the geometry element. The content of the GeometryDrawing is defined by a PathGeometry, which was discussed earlier in this chapter in the “Geometry” section (code file BrushesWPF/MainWindow.xaml):

<Button Content="Drawing Brush" Margin="10" Padding="10">
 <Button.Background>
 <DrawingBrush>
 <DrawingBrush.Drawing>
 <GeometryDrawing Brush="Red">
 <GeometryDrawing.Pen>
 <Pen>
 <Pen.Brush>
 <SolidColorBrush>Blue</SolidColorBrush>
 </Pen.Brush>
 </Pen>
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="70,40">
 <PathFigure.Segments>
 <BezierSegment Point1="90,37" Point2="130,46"
 Point3="150,63" />
 <LineSegment Point="120,110" />
 <BezierSegment Point1="100,95" Point2="70,90"
 Point3="45,91" />
 <LineSegment Point="70,40" />
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 </DrawingBrush.Drawing>
 </DrawingBrush>
 </Button.Background>
</Button>

VisualBrush

The VisualBrush enables you to use other XAML elements in a brush. The following example (code file BrushesWPF/MainWindow.xaml) adds a StackPanel with Rectangle and Button elements to the Visual property. The third element from the left in Figure 30.11 contains a Rectangle and a Button:

<Button Content="Visual Brush" Width="100" Height="80">
 <Button.Background>
 <VisualBrush Opacity="0.5">
 <VisualBrush.Visual>
 <StackPanel Background="White">
 <Rectangle Width="25" Height="25" Fill="Blue" />
 <Button Content="Drawing Button" Background="Red" />
 </StackPanel>
 </VisualBrush.Visual>
 </VisualBrush>
 </Button.Background>
</Button>

You can add any UIElement to the VisualBrush. For example, you can play a video by using the MediaElement:

<Button Content="Visual Brush with Media" Width="200" Height="150"
 Foreground="White">
 <Button.Background>
 <VisualBrush>
 <VisualBrush.Visual>
 <MediaElement Source="./IceSkating.mp4" LoadedBehavior="Play" />
 </VisualBrush.Visual>
 </VisualBrush>
 </Button.Background>
</Button>

You can also use the VisualBrush to create interesting effects, such as reflection. The button coded in the following example (shown on the far right of Figure 30.11) contains a StackPanel that itself contains a MediaElement that plays a video and a Border. The Border contains a Rectangle that is filled with a VisualBrush. This brush defines an opacity value and a transformation. The Visual property is bound to the Border element. The transformation is achieved by setting the RelativeTransform property of the VisualBrush. This transformation uses relative coordinates. By setting ScaleY to -1, you create a reflection in the y axis. TranslateTransform moves the transformation in the y axis so that the reflection is below the original object.

<Button Width="200" Height="200" Foreground="White" Click="OnMediaButtonClick">
 <StackPanel>
 <MediaElement x:Name="media1" Source="IceSkating.mp4"
 LoadedBehavior="Manual" />
 <Border Height="100">
 <Rectangle>
 <Rectangle.Fill>
 <VisualBrush Opacity="0.35" Stretch="None"
 Visual="{Binding ElementName=media1}">
 <VisualBrush.RelativeTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="1" ScaleY="-1" />
 <TranslateTransform Y="1" />
 </TransformGroup>
 </VisualBrush.RelativeTransform>
 </VisualBrush>
 </Rectangle.Fill>
 </Rectangle>
 </Border>
 </StackPanel>
</Button>

NOTE Data binding and the Binding element used here are explained in detail in Chapter 31, “Patterns with XAML Apps.”

In the code-behind code the Click event handler of the Button starts the video (code file BrushesWPF/MainWindow.xaml.cs):

private void OnMediaButtonClick(object sender, RoutedEventArgs e)
{
 media1.Position = TimeSpan.FromSeconds(0);
 media1.Play();
}

You can see the result in Figure 30.12.

[image: Screenshot shows a video playing in the upper half of the screen.]

Figure 30.12

Styles and Resources

You can define the look and feel of the XAML elements by setting properties, such as FontSize and Background, with the Button element (code file StylesAndResources[WPF|UWP]/Main[Window|Page] .xaml):

<Button Width="150" FontSize="12" Background="AliceBlue" Content="Click Me!" />

Instead of defining the look and feel with every element, you can define styles that are stored with resources. To completely customize the look of controls, you can use templates and add them to resources.

Styles

You can assign the Style property of a control to a Style element that has setters associated with it. A Setter element defines the Property and Value properties to set the specific properties and values for the target element. In the following example, the Background, FontSize, FontWeight, and Margin properties are set. The Style is set to the TargetType Button, so that the properties of the Button can be directly accessed (code file StylesAndResources[WPF|UWP]/Main[Window|Page].xaml):

<Button Width="150" Content="Click Me!">
 <Button.Style>
 <Style TargetType="Button">
 <Setter Property="Background" Value="Yellow" />
 <Setter Property="FontSize" Value="14" />
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="Margin" Value="5" />
 </Style>
 </Button.Style>
</Button>

Setting the Style directly with the Button element doesn’t really help a lot with style sharing. Styles can be put into resources. Within the resources you can assign styles to specific elements, assign a style to all elements of a type, or use a key for the style. To assign a style to all elements of a type, use the TargetType property of the Style and assign it to a Button. To define a style that needs to be referenced, x:Key must be set:

<Page.Resources>
 <Style TargetType="Button">
 <Setter Property="Background" Value="LemonChiffon" />
 <Setter Property="FontSize" Value="18" />
 <Setter Property="Margin" Value="5" />
 </Style>
 <Style x:Key="ButtonStyle1" TargetType="Button">
 <Setter Property="Background" Value="Red" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="FontSize" Value="18" />
 <Setter Property="Margin" Value="5" />
 </Style>
</Page.Resources>

In the sample application, the styles that are defined globally within the page or window are defined within <Page.Resources> in the UWP app and <Window.Resources> in WPF.

In the following XAML code the first button—which doesn’t have a style defined with the element properties—gets the style that is defined for the Button type. With the next button, the Style property is set with the StaticResource markup extension to {StaticResource ButtonStyle}, whereas ButtonStyle specifies the key value of the style resource defined earlier, so this button has a red background and a white foreground:

<Button Width="200" Content="Default Button style" Margin="3" />
<Button Width="200" Content="Named style"
 Style="{StaticResource ButtonStyle1}" Margin="3" />

Rather than set the Background of a button to just a single value, you can do more. You can set the Background property to a LinearGradientBrush with a gradient color definition:

<Style x:Key="FancyButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="22" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Margin" Value="5" />
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0.0" Color="LightCyan" />
 <GradientStop Offset="0.14" Color="Cyan" />
 <GradientStop Offset="0.7" Color="DarkCyan" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

The next button in this example has a fancy style with cyan applied as the linear gradient:

<Button Width="200" Content="Fancy button style"
 Style="{StaticResource FancyButtonStyle}" Margin="3" />

Styles offer a kind of inheritance. One style can be based on another one. The style AnotherButtonStyle is based on the style FancyButtonStyle. It uses all the settings defined by the base style (referenced by the BasedOn property), except the Foreground property—which is set to LinearGradientBrush:

<Style x:Key="AnotherButtonStyle" BasedOn="{StaticResource FancyButtonStyle}"
 TargetType="Button">
 <Setter Property="Foreground">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0.2" Color="White" />
 <GradientStop Offset="0.5" Color="LightYellow" />
 <GradientStop Offset="0.9" Color="Orange" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

The last button has AnotherButtonStyle applied:

<Button Width="200" Content="Style inheritance"
 Style="{StaticResource AnotherButtonStyle}" Margin="3" />

The result of all these buttons after styling is shown in Figure 30.13.

[image: Screenshot shows Default Button style on top, followed by Named style, Fancy button style, and Style inheritance on bottom.]

Figure 30.13

Resources

As you have seen with the styles sample, usually styles are stored within resources. You can define any freezable (WPF) or sharable (UWP apps) element within a resource. For example, the brush created earlier for the background style of the button can be defined as a resource, so you can use it everywhere a brush is required.

The following example defines a LinearGradientBrush with the key name MyGradientBrush inside the StackPanel resources. button1 assigns the Background property by using a StaticResource markup extension to the resource MyGradientBrush (code file StylesAndResources[WPF|UWP]/ResourceDemo[Page|Window].xaml):

<StackPanel x:Name="myContainer">
 <StackPanel.Resources>
 <LinearGradientBrush x:Key="MyGradientBrush" StartPoint="0,0"
 EndPoint="0.3,1">
 <GradientStop Offset="0.0" Color="LightCyan" />
 <GradientStop Offset="0.14" Color="Cyan" />
 <GradientStop Offset="0.7" Color="DarkCyan" />
 </LinearGradientBrush>
 </StackPanel.Resources>
 <Button Width="200" Height="50" Foreground="White" Margin="5"
 Background="{StaticResource MyGradientBrush}" Content="Click Me!" />
</StackPanel>

Here, the resources have been defined with the StackPanel. In the previous example, the resources were defined with the Page or Window element. The base class FrameworkElement defines the property Resources of type ResourceDictionary. That’s why resources can be defined with every class that is derived from the FrameworkElement—any XAML element.

Resources are searched hierarchically. If you define the resource with the root element, it applies to every child element. If the root element contains a Grid, and the Grid contains a StackPanel, and you define the resource with the StackPanel, then the resource applies to every control within the StackPanel. If the StackPanel contains a Button, and you define the resource just with the Button, then this style is valid only for the Button.

NOTE In regard to hierarchies, you need to pay attention if you use the TargetType without a Key for styles. If you define a resource with the Canvas element and set the TargetType for the style to apply to TextBox elements, then the style applies to all TextBox elements within the Canvas. The style even applies to TextBox elements that are contained in a ListBox when the ListBox is in the Canvas.

If you need the same style for more than one window, then you can define the style with the application. With both WPF and UWP apps created with Visual Studio, the file App.xaml is created for defining global resources of the application. The application styles are valid for every page or window of the application. Every element can access resources that are defined with the application. If resources are not found with the parent window, then the search for resources continues with the Application (code file StylesAndResourcesUWP/App.xaml):

<Application x:Class="StylesAndResourcesUWP.App"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 RequestedTheme="Light">
 <Application.Resources>

 </Application.Resources>
</Application>

Accessing Resources from Code

To access resources from code-behind, the Resources property of the base class FrameworkElement returns a ResourceDictionary. This dictionary offers access to the resources using an indexer with the name of the resource. You can use the ContainsKey method to check whether the resource is available.

Let’s see that in action. The Button control button1 doesn’t have a background specified, but the Click event is assigned to the method OnApplyResources to change this dynamically (code file StylesAndResources[WPF|UWP]/ResourceDemo[Page|Window].xaml):

<Button Name="button1" Width="220" Height="50" Margin="5"
 Click="OnApplyResources" Content="Apply Resource Programmatically" />

Now you can have a slightly different implementation to find resources in the hierarchy with WPF and UWP Apps. With WPF, the ResourceDictionary offers the methods FindResource and TryFindResource to get a resource from the hierarchy. FindResource throws an exception when the resource is not found; TryFindResource just returns null (code file StylesAndResources[WPF|UWP]/ResourceDemo.xaml.cs):

private void OnApplyResources(object sender, RoutedEventArgs e)
{
 Control ctrl = sender as Control;
 ctrl.Background = ctrl.TryFindResource("MyGradientBrush") as Brush;
}

With UWP apps, TryFindResource is not available with the ResourceDictionary. However, you can easily implement such a method using an extension method, and thus the implementation of OnApplyResources can stay the same.

The method TryFindResource checks whether the resource requested is available using ContainsKey, and it recursively invokes the method in case the resource is not yet found (code file StylesAndResourcesUWP/FrameworkElementExtensions.cs):

public static class FrameworkElementExtensions
{
 public static object TryFindResource(this FrameworkElement e, string key)
 {
 if (e == null) throw new ArgumentNullException(nameof(e));
 if (key == null) throw new ArgumentNullException(nameof(key));

 if (e.Resources.ContainsKey(key))
 {
 return e.Resources[key];
 }
 else
 {
 var parent = e.Parent as FrameworkElement;
 if (parent == null) return null;
 return TryFindResource(parent, key);
 }
 }
}

Dynamic Resources (WPF)

With the StaticResource markup extension, resources are searched at load time. If the resource changes while the program is running, then instead you can use the DynamicResource markup extension with WPF. UWP apps don’t support the DynamicResource markup extension.

The next example uses the same resource defined previously. The earlier example used StaticResource. This button uses DynamicResource with the DynamicResource markup extension. The event handler of this button changes the resource programmatically. The handler method OnChangeDynamicResource is assigned to the Click event handler (code file StylesAndResourcesWPF/ResourceDemo.xaml):

<Button Name="button2" Width="200" Height="50" Foreground="White" Margin="5"
 Background="{DynamicResource MyGradientBrush}" Content="Change Resource"
 Click="OnChangeDynamicResource" />

The implementation of OnChangeDynamicResource clears the resources of the StackPanel and adds a new resource with the same name, MyGradientBrush. This new resource is very similar to the resource defined in XAML code, but it defines different colors (code file StylesAndResourcesWPF/ResourceDemo.xaml.cs):

private void OnChangeDynamicResource(object sender, RoutedEventArgs e)
{
 myContainer.Resources.Clear();
 var brush = new LinearGradientBrush
 {
 StartPoint = new Point(0, 0),
 EndPoint = new Point(0, 1)
 };

 brush.GradientStops = new GradientStopCollection()
 {
 new GradientStop(Colors.White, 0.0),
 new GradientStop(Colors.Yellow, 0.14),
 new GradientStop(Colors.YellowGreen, 0.7)
 };
 myContainer.Resources.Add("MyGradientBrush", brush);
}

When the application runs, you change the resource dynamically by clicking the Change Resource button. When you use the button with DynamicResource, the result is the dynamically created resource; when you use the button with StaticResource, the result looks the same as before.

Resource Dictionaries

If you use the same resources with different pages or even different apps, it’s useful to put the resource in a resource dictionary. When you use resource dictionaries, you can share the files between multiple apps, or you can put the resource dictionary into an assembly that is shared.

To share a resource dictionary in an assembly, create a library. You can add a resource dictionary file—here Dictionary1.xaml—to the assembly. With WPF, the build action for this file must be set to Resource so that it is added as a resource to the assembly.

Dictionary1.xaml defines two resources: LinearGradientBrush with the CyanGradientBrush key, and a style for a Button that can be referenced with the PinkButtonStyle key (code file download ResourcesLib[WPF|UWP]/Dictionary1.xaml):

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <LinearGradientBrush x:Key="CyanGradientBrush" StartPoint="0,0"
 EndPoint="0.3,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.0" Color="LightCyan" />
 <GradientStop Offset="0.14" Color="Cyan" />
 <GradientStop Offset="0.7" Color="DarkCyan" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>

 <Style x:Key="PinkButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="22" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.0" Color="Pink" />
 <GradientStop Offset="0.3" Color="DeepPink" />
 <GradientStop Offset="0.9" Color="DarkOrchid" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

With the target project, the library needs to be referenced, and the resource dictionary needs to be added to the dictionaries. You can use multiple resource dictionary files that you can add by using the MergedDictionaries property of the ResourceDictionary. You can add a list of resource dictionaries to the merged dictionaries.

How the reference to the library is handled is different between WPF and UWP apps. With WPF, the pack URI syntax is used. The pack URI can be assigned as absolute, which means the URI begins with pack://, or as relative, as it is used in this example. With relative syntax, the referenced assembly ResourceLibWPF, which includes the dictionary, is first after the / followed by ;component. Component means that the dictionary is included as a resource in the assembly. After that, you add the name of the dictionary file Dictionary1.xaml. If the dictionary is added into a subfolder, the folder name must be declared as well (code file StylesAndResourcesWPF/App.xaml):

<Application x:Class="StylesAndResourcesWPF.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary
 Source="/ResourcesLibWPF;component/Dictionary1.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

With UWP apps, the reference looks slightly different. Here, the referenced resource dictionary must be prefixed with the ms-appx:/// scheme (code file StylesAndResourcesUWP/App.xaml):

<Application x:Class="StylesAndResourcesUWP.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StylesAndResourcesUWP"
 RequestedTheme="Light">
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary
 Source="ms-appx:///ResourcesLibUWP/Dictionary1.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

Now it is possible to use the resources from the referenced assembly in the same way as local resources (code file StylesAndResources[WPF|UWP]/ResourceDemo[Window|Page].xaml):

<Button Width="300" Height="50" Style="{StaticResource PinkButtonStyle}"
 Content="Referenced Resource" />

Theme Resources (UWP)

Although UWP apps don’t support the DynamicResource markup extension, these apps also have a way to change styles dynamically. This feature is based on themes. With themes, you can allow the user to switch between a light and a dark theme (similar to the themes you can change with Visual Studio).

Defining Theme Resources

Theme resources can be defined in a resource dictionary within the ThemeDictionaries collection. The ResourceDictionary objects that are defined within the ThemeDictionaries collection need to have a key assigned that has the name of a theme—either Light or Dark. The sample code defines a button for the light theme that has a light background and dark foreground, and for the dark theme a dark background and light foreground. The key for the style is the same within both dictionaries: SampleButtonStyle (code file StylesAndResourcesUWP/Styles/SampleThemes.xaml):

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StylesAndResourcesUWP">
 <ResourceDictionary.ThemeDictionaries>
 <ResourceDictionary x:Key="Light">
 <Style TargetType="Button" x:Key="SampleButtonStyle">
 <Setter Property="Background" Value="LightGray" />
 <Setter Property="Foreground" Value="Black" />
 </Style>
 </ResourceDictionary>
 <ResourceDictionary x:Key="Dark">
 <Style TargetType="Button" x:Key="SampleButtonStyle">
 <Setter Property="Background" Value="Black" />
 <Setter Property="Foreground" Value="White" />
 </Style>
 </ResourceDictionary>
 </ResourceDictionary.ThemeDictionaries>
</ResourceDictionary>

You can assign the style using the ThemeResource markup extension. Other than using a different markup extension, everything else is the same as with the StaticResource markup extension (code file StylesAndResourcesUWP/ThemeDemoPage.xaml):

<Button Style="{ThemeResource SampleButtonStyle}" Click="OnChangeTheme"
 Content="Change Theme" />

Depending on the theme that is selected, the corresponding style will be used.

Selecting a Theme

There are different ways to select a theme. First, there’s a default for the app itself. The RequestedTheme property of the Application class defines the default theme of the app. This is defined within App.xaml, which is the place where the themes dictionary file is referenced as well (code file StylesAndResourcesUWP/App.xaml):

<Application
 x:Class="StylesAndResourcesUWP.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StylesAndResourcesUWP"
 RequestedTheme="Light">
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="ms-appx:///StylesLib/Dictionary1.xaml" />
 <ResourceDictionary Source="Styles/SampleThemes.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

The RequestedTheme property is defined in the XAML element hierarchy. Every element can override the theme to be used for itself and its children. The following Grid element changes the default theme for the Dark theme. This is now the theme used for the Grid and all its children elements (code file StylesAndResourcesUWP/ThemeDemoPage.xaml):

<Grid x:Name="grid1"
 Background="{ThemeResource ApplicationPageBackgroundThemeBrush}"
 RequestedTheme="Dark">
 <Button Style="{ThemeResource SampleButtonStyle}" Click="OnChangeTheme"
 Content="Change Theme" />
</Grid>

You can also dynamically change the theme by setting the RequestedTheme property from code (code file StylesAndResourcesUWP/ThemeDemoPage.xaml.cs):

private void OnChangeTheme(object sender, RoutedEventArgs e)
{
 grid1.RequestedTheme = grid1.RequestedTheme == ElementTheme.Dark ?
 ElementTheme.Light: ElementTheme.Dark;
}

NOTE Using the ThemeResource markup extension is useful only in cases where the resource should look different based on the theme. If the resource should look the same, with all themes, keep using the StaticResource markup extension.

Templates

An XAML Button control can contain any content. The content can be simple text, but you can also add a Canvas element, which can contain shapes; a Grid; or a video. In fact, you can do even more than that with a button! With template-based XAML controls, the functionality of controls is completely separate from their look and feel. A button has a default look, but you can completely customize that look.

WPF and UWP apps provide several template types that derive from the base class FrameworkTemplate.

	Template Type
	Description

	ControlTemplate
	Enables you to specify the visual structure of a control and override its look.

	ItemsPanelTemplate
	For an ItemsControl you can specify the layout of its items by assigning an ItemsPanelTemplate. Each ItemsControl has a default ItemsPanelTemplate. For the MenuItem, it is a WrapPanel. The StatusBar uses a DockPanel, and the ListBox uses a VirtualizingStackPanel.

	DataTemplate
	These are very useful for graphical representations of objects. When styling a ListBox, by default the items of the ListBox are shown according to the output of the ToString method. By applying a DataTemplate you can override this behavior and define a custom presentation of the items.

	HierarchicalDataTemplate
	Used for arranging a tree of objects. This control supports HeaderedItemsControls, such as TreeViewItem and MenuItem. This template class is only available with WPF.

NOTE The HierarchicalDataTemplate is discussed with the TreeControl in Chapter 34, “Windows Desktop Applications with WPF.”

Control Templates

Previously in this chapter you’ve seen how you can style the properties of a control. If setting simple properties of the controls doesn’t give you the look you want, you can change the Template property. With the Template property, you can customize the complete look of the control. The next example demonstrates customizing buttons, and later in the chapter list views are customized step by step so you can see the intermediate results of the changes.

You customize the Button type in a separate resource dictionary file: ControlTemplates.xaml. Here, a style with the key name RoundedGelButton is defined. The style RoundedGelButton sets the properties Background, Height, Foreground, and Margin, and the Template. The Template is the most interesting aspect with this style. The Template specifies a Grid with just one row and one column.

Inside this cell, you can find an ellipse with the name GelBackground. This ellipse has a linear gradient brush for the stroke. The stroke that surrounds the rectangle is very thin because the StrokeThickness is set to 0.5.

The second ellipse, GelShine, is a small ellipse whose size is defined by the Margin property and so is visible within the first ellipse. The stroke is transparent, so there is no line surrounding the ellipse. This ellipse uses a linear gradient fill brush, which transitions from a light, partly transparent color to full transparency. This gives the ellipse a shimmering effect (code file Templates[WPF|UWP]/Styles/ControlTemplates.xaml):

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Style x:Key="RoundedGelButton" TargetType="Button">
 <Setter Property="Width" Value="100" />
 <Setter Property="Height" Value="100" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid>
 <Ellipse Name="GelBackground" StrokeThickness="0.5" Fill="Black">
 <Ellipse.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#ff7e7e7e" />
 <GradientStop Offset="1" Color="Black" />
 </LinearGradientBrush>
 </Ellipse.Stroke>
 </Ellipse>
 <Ellipse Margin="15,5,15,50">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#aaffffff" />
 <GradientStop Offset="1" Color="Transparent" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

From the app.xaml file, the resource dictionary is referenced as shown here (code file Templates[WPF|UWP]/App.xaml):

<Application x:Class="TemplateDemo.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>
 <ResourceDictionary Source="Styles/ControlTemplates.xaml" />
 </Application.Resources
</Application>

Now a Button control can be associated with the style. The new look of the button is shown in Figure 30.14 and uses code file Templates[WPF|UWP]/StyledButtons.xaml:

[image: Diagram shows a partially transparent button with shiny surface.]

Figure 30.14

<Button Style="{StaticResource RoundedGelButton}" Content="Click Me!" />

The button now has a completely different look. However, the content that is defined with the button itself is missing. The template created previously must be extended to get the content of the Button into the new look. What needs to be added is a ContentPresenter. The ContentPresenter is the placeholder for the control’s content, and it defines the place where the content should be positioned. In the code that follows, the content is placed in the first row of the Grid, as are the Ellipse elements. The Content property of the ContentPresenter defines what the content should be. The content is set to a TemplateBinding markup expression. TemplateBinding binds the template parent, which is the Button element in this case. {TemplateBinding Content} specifies that the value of the Content property of the Button control should be placed inside the placeholder as content. Figure 30.15 shows the result with the content shown in the here (code file Templates[WPF|UWP]/Styles/ControlTemplates.xaml):

[image: Diagram shows a partially transparent button with shiny surface labeled with content Click me!]

Figure 30.15

<Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid>
 <Ellipse Name="GelBackground" StrokeThickness="0.5" Fill="Black">
 <Ellipse.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#ff7e7e7e" />
 <GradientStop Offset="1" Color="Black" />
 </LinearGradientBrush>
 </Ellipse.Stroke>
 </Ellipse>
 <Ellipse Margin="15,5,15,50">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#aaffffff" />
 <GradientStop Offset="1" Color="Transparent" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter Name="GelButtonContent"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Content="{TemplateBinding Content}" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>

NOTE The TemplateBinding allows talking values to the template that are defined by the control. This can not only be used for the content but also can be used for colors and stroke styles and much more.

Such a styled button now looks very fancy on the screen, but there’s still a problem: There is no action if the button is clicked or touched, or the mouse moves over the button. This isn’t the typical experience a user has with a button. However, there is a solution. With a template-styled button, you must have visual states or triggers that enable the button to have different looks in response to mouse moves and mouse clicks. Visual states also make use of animations; thus I’m delaying this change to later in this chapter.

However, for getting an advance glimpse into this, you can use Visual Studio to create a button template. Instead of creating such a template fully from scratch, you can select a Button control either in the XAML designer or in the Document Explorer, and select Edit Template from the context menu. Here, you can create an empty template or copy the predefined template. You use a copy of the template to have a look at how the predefined template looks. You see the dialog to create a style resource (see Figure 30.16). Here you can define whether the resource containing the template should be created in the document, the application (when used for multiple pages and windows), or a resource dictionary. For the previously styled button, the resource dictionary ControlTemplates.xaml already exists; with the sample code the resource is created there.

[image: Screenshot shows Create Style Resource dialog box which includes radio buttons to select specific button style or apply to all, options to define in application, resource containing document, or resource dictionary.]

Figure 30.16

The default templates for UWP apps and WPF are very different—both because of the different features available with these technologies and because of different designs. Some highlights of the template for the default button template for UWP apps are shown in the following code snippets. Several of the button settings, such as Background, Foreground, and BorderBrush, are taken from theme resources. They are different based on the light or dark theme. Some values, such as Padding and HorizontalAlignment, are fixed. You can change these by creating a custom style (code file TemplatesUWP/Styles/ControlTemplates.xaml):

<Style x:Key="ButtonStyle1" TargetType="Button">
 <Setter Property="Background"
 Value="{ThemeResource SystemControlBackgroundBaseLowBrush}"/>
 <Setter Property="Foreground"
 Value="{ThemeResource SystemControlForegroundBaseHighBrush}"/>
 <Setter Property="BorderBrush"
 Value="{ThemeResource SystemControlForegroundTransparentBrush}"/>
 <Setter Property="BorderThickness"
 Value="{ThemeResource ButtonBorderThemeThickness}"/>
 <Setter Property="Padding" Value="8,4,8,4"/>
 <Setter Property="HorizontalAlignment" Value="Left"/>
 <Setter Property="VerticalAlignment" Value="Center"/>
 <Setter Property="FontFamily"
 Value="{ThemeResource ContentControlThemeFontFamily}"/>
 <Setter Property="FontWeight" Value="Normal"/>
 <Setter Property="FontSize"
 Value="{ThemeResource ControlContentThemeFontSize}"/>
 <Setter Property="UseSystemFocusVisuals" Value="True"/>

The template of the control consists of a Grid and a ContentPresenter where values for brushes and borders are bound using TemplateBinding. This way it is possible to define these values directly with the Button control to influence the look.

<Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid x:Name="RootGrid" Background="{TemplateBinding Background}">
 <!—Visual State Manager settings removed—>
 <ContentPresenter x:Name="ContentPresenter"
 AutomationProperties.AccessibilityView="Raw"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 ContentTransitions="{TemplateBinding ContentTransitions}"
 Content="{TemplateBinding Content}"
 HorizontalContentAlignment=
 "{TemplateBinding HorizontalContentAlignment}"
 Padding="{TemplateBinding Padding}"
 VerticalContentAlignment=
 "{TemplateBinding VerticalContentAlignment}"/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

For dynamic button changes, if the mouse moves over the button, or the button is pressed, the UWP app template for the button makes use of the VisualStateManager. Here, key-frame animations are defined when the button changes to the states PointerOver, Pressed, and Disabled:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal"/>
 <VisualState x:Name="PointerOver">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetProperty="BorderBrush"
 Storyboard.TargetName="ContentPresenter">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{ThemeResource SystemControlHighlightBaseMediumLowBrush}"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetProperty="Foreground"
 Storyboard.TargetName="ContentPresenter">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{ThemeResource SystemControlHighlightBaseHighBrush}"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Pressed">
 <Storyboard>
 <!—animations removed—>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Disabled">
 <Storyboard>
 <!—animations removed—>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

With WPF, the default button template retrieves resources for brushes using StaticResource and DynamicResource markup extensions because theme resources are not available here. The x.Static markup extension accesses static members of a class, here SystemColors.ControlTextBrushKey. The SystemColors class accesses resources that can be configured by the user, and thus the user can partially style the look. For the dynamic look when the mouse moves over the button, or the button is clicked, property triggers are used to change the look (code file TemplatesWPF/Styles/ControlTemplates.xaml):

<Style x:Key="ButtonStyle1" TargetType="{x:Type Button}">
 <Setter Property="FocusVisualStyle" Value="{StaticResource FocusVisual}"/>
 <Setter Property="Background"
 Value="{StaticResource Button.Static.Background}"/>
 <Setter Property="BorderBrush"
 Value="{StaticResource Button.Static.Border}"/>
 <Setter Property="Foreground"
 Value="{DynamicResource {x:Static SystemColors.ControlTextBrushKey}}"/>
 <Setter Property="BorderThickness" Value="1"/>
 <Setter Property="HorizontalContentAlignment" Value="Center"/>
 <Setter Property="VerticalContentAlignment" Value="Center"/>
 <Setter Property="Padding" Value="1"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Border x:Name="border" BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 Background="{TemplateBinding Background}" SnapsToDevicePixels="true">
 <ContentPresenter x:Name="contentPresenter" Focusable="False"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 Margin="{TemplateBinding Padding}" RecognizesAccessKey="True"
 SnapsToDevicePixels="{TemplateBinding SnapsToDevicePixels}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}"/>
 </Border>
 <ControlTemplate.Triggers>
 <Trigger Property="IsDefaulted" Value="true">
 <Setter Property="BorderBrush" TargetName="border"
 Value="{DynamicResource
 {x:Static SystemColors.HighlightBrushKey}}"/>
 </Trigger>
 <Trigger Property="IsMouseOver" Value="true">
 <Setter Property="Background" TargetName="border"
 Value="{StaticResource Button.MouseOver.Background}"/>
 <Setter Property="BorderBrush" TargetName="border"
 Value="{StaticResource Button.MouseOver.Border}"/>
 </Trigger>

 <!—more trigger settings for IsPressed and IsEnabled—>

 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Data Templates

The content of ContentControl elements can be any content—not only XAML elements but also .NET objects. For example, an object of the Country type can be assigned to the content of a Button class. In the following example, the Country class is created to represent the name and flag with a path to an image. This class defines the Name and ImagePath properties, and it has an overridden ToString method for a default string representation (code file Models[WPF|UWP]/Country.cs):

public class Country
{
 public string Name { get; set; }
 public string ImagePath { get; set; }

 public override string ToString() => Name;
}

How does this content look within a Button or any other ContentControl? By default, the ToString method is invoked, and the string representation of the object is shown.

For a custom look, you can create a DataTemplate for the Country type. The sample code defines the key CountryDataTemplate. You can use this key to reference the template. Within the DataTemplate the main elements are a TextBlock with the Text property bound to the Name property of the Country, and an Image with the Source property bound to the ImagePath property of the Country. The Grid and Border elements define the layout and visual appearance (code file Templates[WPF|UWP]/Styles/DataTemplates.xaml):

<DataTemplate x:Key="CountryDataTemplate">
 <Border Margin="4" BorderThickness="2" CornerRadius="6">
 <Border.BorderBrush>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#aaa" />
 <GradientStop Offset="1" Color="#222" />
 </LinearGradientBrush>
 </Border.BorderBrush>
 <Border.Background>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#444" />
 <GradientStop Offset="1" Color="#fff" />
 </LinearGradientBrush>
 </Border.Background>
 <Grid Margin="4">
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 </Grid.RowDefinitions>
 <Image Width="120" Source="{Binding ImagePath}" />
 <TextBlock Grid.Row="1" Opacity="0.6" FontSize="16"
 VerticalAlignment="Bottom" HorizontalAlignment="Right" Margin="15"
 FontWeight="Bold" Text="{Binding Name}" />
 </Grid>
 </Border>
</DataTemplate>

With the XAML code in the Window or Page, a simple Button element with the name button1 is defined:

<Button x:Name="countryButton" Grid.Row="2" Margin="20"
 ContentTemplate="{StaticResource CountryDataTemplate}" />

In the code-behind a new Country object is instantiated that is assigned to the Content property (code file Templates[WPF|UWP]/StyledButtons.xaml.cs):

this.countryButton.Content = new Country
{
 Name ="Austria",
 ImagePath ="images/Austria.bmp"
};

After running the application, you can see that the DataTemplate is applied to the Button because the Country data type has a default template, shown in Figure 30.17.

[image: Screenshot shows the flag of Austria and the name Austria on bottom right.]

Figure 30.17

Of course, you can also create a control template and use a data template from within.

Styling a ListView

Changing a style of a button or a label is a simple task, such as changing the style of an element that contains a list of elements. For example, how about changing a ListView? Again, this list control has behavior and a look. It can display a list of elements, and you can select one or more elements from the list. For the behavior, the ListView class defines methods, properties, and events. The look of the ListView is separate from its behavior. It has a default look, but you can change this look by creating a template.

To fill a ListView with some items, the class CountryRepository returns a list of a few countries that will be displayed (code file Models[WPF|UWP]/CountryRepository.cs):

public sealed class CountryRepository
{
 private static IEnumerable<Country> s_countries;

 public IEnumerable<Country> GetCountries() =>
 s_countries ?? (s_countries = new List<Country>
 {
 new Country { Name="Austria", ImagePath ="Images/Austria.bmp" },
 new Country { Name="Germany", ImagePath ="Images/Germany.bmp" },
 new Country { Name="Norway", ImagePath ="Images/Norway.bmp" },
 new Country { Name="USA", ImagePath ="Images/USA.bmp" }
 });
}

Inside the code-behind file in the constructor of the StyledList class, a read-only property Countries is created and filled with the help of the GetCountries method of the CountryRepository (code file Templates[WPF|UWP]/StyledList.xaml.cs):

public ObservableCollection<Country> Countries { get; } =
 new ObservableCollection<Country>();

public StyledListBox()
{
 this.InitializeComponent();
 this.DataContext = this;
 var countries = new CountryRepository().GetCountries();
 foreach (var country in countries)
 {
 Countries.Add(country);
 }
}

The DataContext is a data binding feature discussed in the next chapter.

Within the XAML code, the ListView named countryList1 is defined. countryList1 just uses the default style. The property ItemsSource is set to the Binding markup extension, which is used by data binding. From the code-behind, you have seen that the binding is done to an array of Country objects. Figure 30.18 shows the default look of the ListView. By default, only the names of the countries returned by the ToString method are displayed in a simple list (code file Templates[WPF|UWP]/StyledList.xaml):

[image: List shows the names of four countries; Austria, Germany Norway, and USA from top to bottom.]

Figure 30.18

<Grid>
 <ListView ItemsSource="{Binding Countries}" Margin="10"
 x:Name="countryList1" />
</Grid>

DataTemplate for ListView Items

Next, you use the DataTemplate created earlier for the ListView control. The DataTemplate can be directly assigned to the ItemTemplate property (code file Templates[WPF|UWP]/StyledList.xaml):

<ListView ItemsSource="{Binding Countries}" Margin="10"
 ItemTemplate="{StaticResource CountryDataTemplate}" />

With this XAML in place, the items are displayed as shown in Figure 30.19.

[image: Screenshot shows the flags of four countries along with the name of the country on bottom. From left to right, the countries are Austria, Germany, Norway, and USA.]

Figure 30.19

Of course it’s also possible to define a style that references the data template (code file Templates[WPF|UWP]/Styles/ListTemplates.xaml):

<Style x:Key="ListViewStyle1" TargetType="ListView">
 <Setter Property="ItemTemplate"
 Value="{StaticResource CountryDataTemplate}" />
</Style>

And use this style from the ListView control (code file Templates[WPF|UWP]/StyledList.xaml):

<ListView ItemsSource="{Binding Countries}" Margin="10"
 Style="{StaticResource ListViewStyle1}" />

Item Container Style

The data template defines the look for every item, and there’s also a container for every item. The ItemContainerStyle can define how the container for every item looks—for example, what foreground and background brushes should be used when the item is selected, pressed, and so on. For an easy view of the boundaries of the container, the Margin and Background properties are set (TemplatesUWP/Styles/ListTemplates.xaml):

<Style x:Key="ListViewItemStyle1" TargetType="ListViewItem">
 <Setter Property="Background" Value="Orange"/>
 <Setter Property="Margin" Value="5" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="ListViewItem">
 <ListViewItemPresenter ContentMargin="{TemplateBinding Padding}"
 FocusBorderBrush=
 "{ThemeResource SystemControlForegroundAltHighBrush}"
 HorizontalContentAlignment=
 "{TemplateBinding HorizontalContentAlignment}"
 PlaceholderBackground=
 "{ThemeResource ListViewItemPlaceholderBackgroundThemeBrush}"
 SelectedPressedBackground=
 "{ThemeResource SystemControlHighlightListAccentHighBrush}"
 SelectedForeground=
 "{ThemeResource SystemControlHighlightAltBaseHighBrush}"
 SelectedBackground=
 "{ThemeResource SystemControlHighlightListAccentLowBrush}"
 VerticalContentAlignment=
 "{TemplateBinding VerticalContentAlignment}"/>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

With WPF, a ListViewItemPresenter is not available, but you can use a ContentPresenter as shown in the following code snippet (code file TemplatesWPF/Styles/ListTemplates.xaml):

<Style x:Key="ListViewItemStyle1" TargetType="{x:Type ListViewItem}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListViewItem}">
 <Grid Margin="8" Background="Orange">
 <ContentPresenter />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

The style is associated with the ItemContainerStyle property of the ListView. The result of this style is shown in Figure 30.20. This figure gives a good view of the boundaries of the items container (code file Templates[WPF|UWP]/StyledList.xaml):

[image: Screenshot shows the flags of four countries along with the name of the country on bottom. From left to right, the countries are Austria, Germany, Norway, and USA. Flags are surrounded by a colored item container.]

Figure 30.20

<ListView ItemsSource="{Binding Countries}" Margin="10"
 ItemContainerStyle="{StaticResource ListViewItemStyle1}"
 Style="{StaticResource ListViewStyle1}" MaxWidth="180" />

Items Panel

By default, the ListView arranges the items vertically. This is not the only way to arrange the items with this view; you can arrange them in other ways as well, such as horizontally. Arranging the items in an items control is the responsibility of the items panel.

The following code snippet defines a resource for an ItemsPanelTemplate and arranges the ItemsStackPanel horizontally instead of vertically (code file TemplatesUWP/Styles/ListTemplates.xaml):

<ItemsPanelTemplate x:Key="ItemsPanelTemplate1">
 <ItemsStackPanel Orientation="Horizontal" Background="Yellow" />
</ItemsPanelTemplate>

The WPF version is a little different in using a VirtualizingStackPanel instead of an ItemsStackPanel (code file TemplatesWPF/Styles/ListTemplates.xaml):

The following ListView declaration uses the same Style and ItemContainerStyle as before but adds the resource for the ItemsPanel. Figure 30.21 shows the items now arranged horizontally (code file Templates[WPF|UWP]/StyledList.xaml):

<ItemsPanelTemplate x:Key="ItemsPanelTemplate1">
 <VirtualizingStackPanel IsItemsHost="True" Orientation="Horizontal" Background="Yellow"/>
</ItemsPanelTemplate>
<ListView ItemsSource="{Binding Countries}" Margin="10"
 ItemContainerStyle="{StaticResource ListViewItemStyle1}"
 Style="{StaticResource ListViewStyle1}"
 ItemsPanel="{StaticResource ItemsPanelTemplate1}" />

[image: Screenshot shows a colored item panel filled with four item containers that contain flags and country names on bottom. Some space is free on right side of the item panel.]

Figure 30.21

List View Control Template

What’s still missing with the control is the scroll functionality in case the items do not fit on the screen. This behavior can be changed by defining the template for the ListView control.

The style ListViewStyle2 defines horizontal and vertical scroll bar behaviors as required with a horizontal items alignment. This style also includes a resource reference to the date templates and container item templates defined earlier. By setting the Template property, you can now also change the UI of the complete ListView control (code file TemplatesUWP/Styles/ListTemplates.xaml)):

<Style x:Key="ListViewStyle2" TargetType="ListView">
 <Setter Property="ScrollViewer.HorizontalScrollBarVisibility" Value="Auto"/>
 <Setter Property="ScrollViewer.VerticalScrollBarVisibility"
 Value="Disabled"/>
 <Setter Property="ScrollViewer.HorizontalScrollMode" Value="Auto"/>
 <Setter Property="ScrollViewer.IsHorizontalRailEnabled" Value="False"/>
 <Setter Property="ScrollViewer.VerticalScrollMode" Value="Disabled"/>
 <Setter Property="ScrollViewer.IsVerticalRailEnabled" Value="False"/>
 <Setter Property="ScrollViewer.ZoomMode" Value="Disabled"/>
 <Setter Property="ScrollViewer.IsDeferredScrollingEnabled" Value="False"/>
 <Setter Property="ScrollViewer.BringIntoViewOnFocusChange" Value="True"/>
 <Setter Property="ItemTemplate"
 Value="{StaticResource CountryDataTemplate}" />
 <Setter Property="ItemContainerStyle"
 Value="{StaticResource ListViewItemStyle1}" />
 <Setter Property="ItemsPanel">
 <Setter.Value>
 <ItemsPanelTemplate>
 <ItemsStackPanel Orientation="Horizontal" Background="Yellow"/>
 </ItemsPanelTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="ListView">
 <Border BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 Background="{TemplateBinding Background}">
 <ScrollViewer x:Name="ScrollViewer">
 <!—ScrollViewer definitions removed for clarity—>
 <ItemsPresenter FooterTransitions=
 "{TemplateBinding FooterTransitions}"
 FooterTemplate="{TemplateBinding FooterTemplate}"
 Footer="{TemplateBinding Footer}"
 HeaderTemplate="{TemplateBinding HeaderTemplate}"
 Header="{TemplateBinding Header}"
 HeaderTransitions="{TemplateBinding HeaderTransitions}"
 Padding="{TemplateBinding Padding}"/>
 </ScrollViewer>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

NOTE With WPF, the template for the ListView control looks similar to the UWP template. The ItemsPresenter doesn't offer many properties of the UWP ItemsPresenter, such as the properties related to the transitions.

With this resource available, the definition of the ListView becomes simple as just the ListViewStyle2 needs to be referenced in addition to the ItemsSource to retrieve the data (code file Templates[WPF|UWP]/StyledList.xaml):

<ListView ItemsSource="{Binding Countries}" Margin="10"
 Style="{StaticResource ListViewStyle2}" />

The new view is shown in Figure 30.22. Now a scrollbar is available.

[image: Screenshot shows a colored item panel with a horizontal scroll bar on bottom. Item panel shows a part of Austria flag on left side and flags of Germany, Norway, and USA along with country names on bottom.]

Figure 30.22

Animations

Using animations, you can make a smooth transition between images by using moving elements, color changes, transforms, and so on. XAML makes it easy to create animations. You can animate the value of any dependency property. Different animation classes exist to animate the values of different properties, depending on their type.

The most important element of an animation is the timeline. This element defines how a value changes over time. Different kinds of timelines are available for changing different types of values. The base class for all timelines is Timeline. To animate a property of type double, you can use the class DoubleAnimation. The Int32Animation is the animation class for int values. You use PointAnimation to animate points and ColorAnimation to animate colors.

You can combine multiple timelines by using the Storyboard class. The Storyboard class itself is derived from the base class TimelineGroup, which derives from Timeline.

NOTE The namespace for animation classes is with WPF System.Windows.Media .Animation and with UWP apps Windows.UI.Xaml.Media.Animation.

Timeline

A Timeline defines how a value changes over time. The following example animates the size of an ellipse. In the code that follows, DoubleAnimation timelines change scaling and translation of an ellipse; ColorAnimation changes the color of the fill brush. The Triggers property of the Ellipse class is set to an EventTrigger. The event trigger is fired when the ellipse is loaded. BeginStoryboard is a trigger action that begins the storyboard. With the storyboard, a DoubleAnimation element is used to animate the ScaleX, ScaleY, TranslateX, and TranslateY properties of the CompositeTransform class. The animation changes the horizontal scale to 5 and the vertical scale to 3 within ten seconds (code file AnimationUWP/SimpleAnimation.xaml):

<Ellipse x:Name="ellipse1" Width="100" Height="40"
 HorizontalAlignment="Left" VerticalAlignment="Top">
 <Ellipse.Fill>
 <SolidColorBrush Color="Green" />
 </Ellipse.Fill>
 <Ellipse.RenderTransform>
 <CompositeTransform ScaleX="1" ScaleY="1" TranslateX="0" TranslateY="0" />
 </Ellipse.RenderTransform>
 <Ellipse.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard x:Name="MoveResizeStoryboard">
 <DoubleAnimation Duration="0:0:10" To="5"
 Storyboard.TargetName="ellipse1"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).(CompositeTransform.ScaleX)" />
 <DoubleAnimation Duration="0:0:10" To="3"
 Storyboard.TargetName="ellipse1"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).(CompositeTransform.ScaleY)" />
 <DoubleAnimation Duration="0:0:10" To="400"
 Storyboard.TargetName="ellipse1"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).(CompositeTransform.TranslateX)" />
 <DoubleAnimation Duration="0:0:10" To="200"
 Storyboard.TargetName="ellipse1"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).(CompositeTransform.TranslateY)" />
 <ColorAnimation Duration="0:0:10" To="Red"
 Storyboard.TargetName="ellipse1"
 Storyboard.TargetProperty=
 "(Ellipse.Fill).(SolidColorBrush.Color)" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
</Ellipse>

With WPF, the XAML code is slightly different. Because there isn’t a CompositeTransform element, the TransformationGroup element is used (code file AnimationWPF/SimpleAnimation.xaml):

<Ellipse.RenderTransform>
 <TransformGroup>
 <ScaleTransform x:Name="scale1" ScaleX="1" ScaleY="1" />
 <TranslateTransform X="0" Y="0" />
 </TransformGroup>
</Ellipse.RenderTransform>

Using ScaleTransform and TranslateTransform results in animations accessing the collection of the TransformGroup and accessing the ScaleX, ScaleY, X, and Y properties by using an indexer:

<DoubleAnimation Duration="0:0:10" To="5" Storyboard.TargetName="ellipse1"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).Children[0].(ScaleTransform.ScaleX)" />
<DoubleAnimation Duration="0:0:10" To="3" Storyboard.TargetName="ellipse1"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).Children[0].(ScaleTransform.ScaleY)" />
<DoubleAnimation Duration="0:0:10" To="400" Storyboard.TargetName="ellipse1"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).Children[1].(TranslateTransform.X)" />
<DoubleAnimation Duration="0:0:10" To="200" Storyboard.TargetName="ellipse1"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).Children[1].(TranslateTransform.Y)" />

Instead of using the indexer within the transformation group it would also be possible to access the ScaleTransform element by its name. The following code simplifies the name of the property:

<DoubleAnimation Duration="0:0:10" To="5" Storyboard.TargetName="scale1"
 Storyboard.TargetProperty="(ScaleX)" />

With WPF it is also necessary to specify the RoutedEvent property with the EventTrigger. With Windows Universal apps, the event is automatically fired on loading of the element. This can be explicitly specified with WPF:

<EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>

Figures 30.23 and 30.24 show two states from the animated ellipse.

[image: Diagram shows an ellipse elongated at its left and right sides.]

Figure 30.23

[image: Diagram shows an ellipse with less height and more elongated at its left and right sides.]

Figure 30.24

Animations are far more than typical window-dressing animation that appears onscreen constantly and immediately. You can add animation to business applications that make the user interface feel more responsive. The look when a cursor moves over a button, or a button is clicked, is defined by animations.

The following table describes what you can do with a timeline.

	Timeline Properties
	Description

	AutoReverse
	Use this property to specify whether the value that is animated should return to its original value after the animation.

	SpeedRatio
	Use this property to transform the speed at which an animation moves. You can define the relation in regard to the parent. The default value is 1; setting the ratio to a smaller value makes the animation move slower; setting the value greater than 1 makes it move faster.

	BeginTime
	Use this to specify the time span from the start of the trigger event until the moment the animation starts. You can specify days, hours, minutes, seconds, and fractions of seconds. This might not be real time, depending on the speed ratio. For example, if the speed ratio is set to 2, and the beginning time is set to six seconds, the animation will start after three seconds.

	Duration
	Use this property to specify the length of time for one iteration of the animation.

	RepeatBehavior
	Assigning a RepeatBehavior struct to the RepeatBehavior property enables you to define how many times or for how long the animation should be repeated.

	FillBehavior
	This property is important if the parent timeline has a different duration. For example, if the parent timeline is shorter than the duration of the actual animation, setting FillBehavior to Stop means that the actual animation stops. If the parent timeline is longer than the duration of the actual animation, HoldEnd keeps the actual animation active before resetting it to its original value (if AutoReverse is set).

Depending on the type of the Timeline class, more properties may be available. For example, with DoubleAnimation you can specify From and To properties for the start and end of the animation. An alternative is to specify the By property, whereby the animation starts with the current value of the Bound property and is incremented by the value specified by By.

Easing Functions

With the animations you’ve seen so far, the value changes in a linear way. In real life, a move never happens in a linear way. The move could start slowly and progressively get faster until reaching the highest speed, and then it slows down before reaching the end. When you let a ball fall against the ground, the ball bounces a few times before staying on the ground. Such nonlinear behavior can be created by using easing functions.

Animation classes have an EasingFunction property. This property accepts an object that implements the interface IEasingFunction (with WPF) or derives from the base class EasingFunctionBase (with Windows Universal apps). With this type, an easing function object can define how the value should be animated over time. Several easing functions are available to create a nonlinear animation. Examples include ExponentialEase, which uses an exponential formula for animations; QuadraticEase, CubicEase, QuarticEase, and QuinticEase, with powers of 2, 3, 4, or 5; and PowerEase, with a power level that is configurable. Of special interest are SineEase, which uses a sinusoid curve; BounceEase, which creates a bouncing effect; and ElasticEase, which resembles animation values of a spring oscillating back and forth.

The following code snippet adds the BounceEase function to the DoubleAnimation. Adding different ease functions results in very interesting animation effects:

<DoubleAnimation Storyboard.TargetProperty="(Ellipse.Width)"
 Duration="0:0:3" AutoReverse="True"
 FillBehavior=" RepeatBehavior="Forever"
 From="100" To="300">
 <DoubleAnimation.EasingFunction>
 <BounceEase EasingMode="EaseInOut" />
 </DoubleAnimation.EasingFunction>
</DoubleAnimation>

To see different easing animations in action, the next sample lets an ellipse move between two small rectangles. The Rectangle and Ellipse elements are defined within a Canvas, and the ellipse defines a TranslateTransform transformation to move the ellipse (code file Animation[WPF|UWP]\EasingFunctions.xaml):

<Canvas Grid.Row="1">
 <Rectangle Fill="Blue" Width="10" Height="200" Canvas.Left="50"
 Canvas.Top="100" />
 <Rectangle Fill="Blue" Width="10" Height="200" Canvas.Left="550"
 Canvas.Top="100" />
 <Ellipse Fill="Red" Width="30" Height="30" Canvas.Left="60" Canvas.Top="185">
 <Ellipse.RenderTransform>
 <TranslateTransform x:Name="translate1" X="0" Y="0" />
 </Ellipse.RenderTransform>
 </Ellipse>
</Canvas>

Figure 30.25 shows the rectangles and ellipse.

[image: Diagram shows two narrow vertical beams separated by a small distance. A small sphere is placed on the center of the left beam.]

Figure 30.25

The user starts the animation by clicking a button. Before clicking the button, the user can select the easing function from the ComboBox comboEasingFunctions and an EasingMode enumeration value using radio buttons.

<StackPanel Orientation="Horizontal">
 <ComboBox x:Name="comboEasingFunctions" Margin="10" />
 <Button Click="OnStartAnimation" Margin="10">Start</Button>
 <Border BorderThickness="1" BorderBrush="Black" Margin="3">
 <StackPanel Orientation="Horizontal">
 <RadioButton x:Name="easingModeIn" GroupName="EasingMode" Content="In" />
 <RadioButton x:Name="easingModeOut" GroupName="EasingMode" Content="Out"
 IsChecked="True" />
 <RadioButton x:Name="easingModeInOut" GroupName="EasingMode"
 Content="InOut" />
 </StackPanel>
 </Border>
</StackPanel>

The list of easing functions that are shown in the ComboBox and activated with the animation is returned from the EasingFunctionModels property of the EasingFunctionManager. This manager converts the easing function to an EasingFunctionModel for display (code file Animation[WPF|UWP]\EasingFunctionsManager.cs):

public class EasingFunctionsManager
{
 private static IEnumerable<EasingFunctionBase> s_easingFunctions =
 new List<EasingFunctionBase>()
 {
 new BackEase(),
 new SineEase(),
 new BounceEase(),
 new CircleEase(),
 new CubicEase(),
 new ElasticEase(),
 new ExponentialEase(),
 new PowerEase(),
 new QuadraticEase(),
 new QuinticEase()
 };

 public IEnumerable<EasingFunctionModel> EasingFunctionModels =>
 s_easingFunctions.Select(f => new EasingFunctionModel(f));
}

The class EasingFunctionModel defines a ToString method that returns the name of the class that defines the easing function. This name is shown in the combo box (code file Animation[WPF|UWP]\EasingFunctionModel.cs):

public class EasingFunctionModel
{
 public EasingFunctionModel(EasingFunctionBase easingFunction)
 {
 EasingFunction = easingFunction;
 }

 public EasingFunctionBase EasingFunction { get; }

 public override string ToString() => EasingFunction.GetType().Name;
}

The ComboBox is filled in the constructor of the code-behind file (code file Animation[WPF|UWP]/EasingFunctions.xaml.cs):

private EasingFunctionsManager _easingFunctions = new EasingFunctionsManager();
private const int AnimationTimeSeconds = 6;

public EasingFunctions()
{
 this.InitializeComponent();
 foreach (var easingFunctionModel in _easingFunctions.EasingFunctionModels)
 {
 comboEasingFunctions.Items.Add(easingFunctionModel);
 }
}

From the user interface you can not only select the type of easing function that should be used for the animation but you also can select the easing mode. The base class of all easing functions (EasingFunctionBase) defines the EasingMode property that can be a value of the EasingMode enumeration.

Clicking the button to start the animation invokes the OnStartAnimation method. This in turn invokes the StartAnimation method. With this method a Storyboard containing a DoubleAnimation is created programmatically. You’ve seen similar code earlier using XAML. The animation animates the X property of the translate1 element. Creating animations programmatically with WPF and UWP apps is slightly different; the code differences are handled by preprocessor commands (code file Animation[WPF|UWP]\EasingFunctions.xaml.cs):

private void OnStartAnimation(object sender, RoutedEventArgs e)
{
 var easingFunctionModel =
 comboEasingFunctions.SelectedItem as EasingFunctionModel;
 if (easingFunctionModel != null)
 {
 EasingFunctionBase easingFunction = easingFunctionModel.EasingFunction;
 easingFunction.EasingMode = GetEasingMode();
 StartAnimation(easingFunction);
 }
}

private void StartAnimation(EasingFunctionBase easingFunction)
{
#if WPF
 NameScope.SetNameScope(translate1, new NameScope());
#endif

 var storyboard = new Storyboard();
 var ellipseMove = new DoubleAnimation();
 ellipseMove.EasingFunction = easingFunction;
 ellipseMove.Duration = new
 Duration(TimeSpan.FromSeconds(AnimationTimeSeconds));
 ellipseMove.From = 0;
 ellipseMove.To = 460;
#if WPF
 Storyboard.SetTargetName(ellipseMove, nameof(translate1));
 Storyboard.SetTargetProperty(ellipseMove,
 new PropertyPath(TranslateTransform.XProperty));
#else
 Storyboard.SetTarget(ellipseMove, translate1);
 Storyboard.SetTargetProperty(ellipseMove,"X");
#endif
 // start the animation in 0.5 seconds
 ellipseMove.BeginTime = TimeSpan.FromSeconds(0.5);
 // keep the position after the animation
 ellipseMove.FillBehavior = FillBehavior.HoldEnd;
 storyboard.Children.Add(ellipseMove);
#if WPF
 storyboard.Begin(this);
#else
 storyBoard.Begin();
#endif
}

Now you can run the application and see the ellipse move from the left to the right rectangle in different ways—with different easing functions. With some of the easing functions, such as BackEase, BounceEase, or ElasticEase, the difference is obvious. The difference is not as noticeable with some of the other easing functions. To better understand how the easing values behave, a line chart is created that shows a line with the value that is returned by the easing function based on time.

To display the line chart, you create a user control that defines a Canvas element. By default, the x direction goes from left to right and the y direction from top to bottom. To change the y direction to go from bottom to top, you define a transformation (code file Animation[WPF|UWP]/EasingChartControl.xaml):

<Canvas x:Name="canvas1" Width="500" Height="500" Background="Yellow">
 <Canvas.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="1" ScaleY="-1" />
 <TranslateTransform X="0" Y="500" />
 </TransformGroup>
 </Canvas.RenderTransform>
</Canvas>

In the code-behind file, the line chart is drawn using line segments. Line segments were previously discussed using XAML code in this chapter in the section “Geometries Using Segments.” Here you see how they can be used from code. The Ease method of the easing function returns a value that is shown in the y axis passing a normalized time value that is shown in the x axis (code file Animation[WPF|UWP]/EasingChartControl.xaml.cs):

private const double SamplingInterval = 0.01;

public void Draw(EasingFunctionBase easingFunction)
{
 canvas1.Children.Clear();

 var pathSegments = new PathSegmentCollection();

 for (double i = 0; i < 1; i += _samplingInterval)
 {
 double x = i * canvas1.Width;
 double y = easingFunction.Ease(i) * canvas1.Height;

 var segment = new LineSegment();
 segment.Point = new Point(x, y);

 pathSegments.Add(segment);
 }
 var p = new Path();
 p.Stroke = new SolidColorBrush(Colors.Black);
 p.StrokeThickness = 3;
 var figures = new PathFigureCollection();
 figures.Add(new PathFigure { Segments = pathSegments });
 p.Data = new PathGeometry { Figures = figures };
 canvas1.Children.Add(p);
}

The Draw method of the EasingChartControl is invoked on the start of the animation (code file Animation[WPF|UWP]/EasingFunctions.xaml.cs):

private void StartAnimation(EasingFunctionBase easingFunction)
{
 // show the chart
 chartControl.Draw(easingFunction);
 //...

When you run the application, you can see in Figure 30.26 what it looks like to use CubicEase and EaseOut. When you select EaseIn, the value changes slower in the beginning of the animation and faster in the end, as shown in Figure 30.27. Figure 30.28 shows what it looks like to use CubicEase with EaseInOut. The chart for BounceEase, BackEase, and ElasticEase is shown in Figures 30.29, 30.30, and 30.31.

[image: Diagram on bottom shows a steadily rising curve. Diagram on top shows two narrow vertical beams separated by a small distance and a small sphere on right of the left beam.]

Figure 30.26

[image: Diagram shows an exponentially rising curve.]

Figure 30.27

[image: Diagram shows an S shaped curve.]

Figure 30.28

[image: Diagram shows an oscillation ascending toward top right corner.]

Figure 30.29

[image: Diagram shows two narrow vertical beams separated by a small distance and a small sphere on right of the right beam along with a curve on bottom which initially rises and starts to decline after a peak.]

Figure 30.30

[image: Diagram shows two narrow vertical beams separated by a small distance and a small sphere to the left of the right beam along with a damped oscillation at bottom.]

Figure 30.31

Keyframe Animations

With ease functions, you’ve seen how animations can be built in a nonlinear fashion. If you need to specify several values for an animation, you can use keyframe animations. Like normal animations, keyframe animations are various animation types that exist to animate properties of different types.

DoubleAnimationUsingKeyFrames is the keyframe animation for double types. Other keyframe animation types are Int32AnimationUsingKeyFrames, PointAnimationUsingKeyFrames, ColorAnimationUsingKeyFrames, SizeAnimationUsingKeyFrames, and ObjectAnimationUsingKeyFrames.

The following example XAML code animates the position of an ellipse by animating the X and Y values of a TranslateTransform element. The animation starts when the ellipse is loaded by defining an EventTrigger to RoutedEvent Ellipse.Loaded. The event trigger starts a Storyboard with the BeginStoryboard element. The Storyboard contains two keyframe animations of type DoubleAnimationUsingKeyFrame. A keyframe animation consists of frame elements. The first keyframe animation uses a LinearKeyFrame, a DiscreteDoubleKeyFrame, and a SplineDoubleKeyFrame; the second animation is an EasingDoubleKeyFrame. The LinearDoubleKeyFrame makes a linear change of the value. The KeyTime property defines when in the animation the value of the Value property should be reached.

Here, the LinearDoubleKeyFrame has three seconds to move the property X to the value 30. DiscreteDoubleKeyFrame makes an immediate change to the new value after four seconds. SplineDoubleKeyFrame uses a Bézier curve whereby two control points are specified by the KeySpline property. EasingDoubleKeyFrame is a frame class that supports setting an easing function such as BounceEase to control the animation value (code file AnimationUWP/KeyFrameAnimation.xaml):

<Canvas>
 <Ellipse Fill="Red" Canvas.Left="20" Canvas.Top="20" Width="25" Height="25">
 <Ellipse.RenderTransform>
 <TranslateTransform X="50" Y="50" x:Name="ellipseMove" />
 </Ellipse.RenderTransform>
 <Ellipse.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="X"
 Storyboard.TargetName="ellipseMove">
 <LinearDoubleKeyFrame KeyTime="0:0:2" Value="30" />
 <DiscreteDoubleKeyFrame KeyTime="0:0:4" Value="80" />
 <SplineDoubleKeyFrame KeySpline="0.5,0.0 0.9,0.0"
 KeyTime="0:0:10" Value="300" />
 <LinearDoubleKeyFrame KeyTime="0:0:20" Value="150" />
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="Y"
 Storyboard.TargetName="ellipseMove">
 <SplineDoubleKeyFrame KeySpline="0.5,0.0 0.9,0.0"
 KeyTime="0:0:2" Value="50" />
 <EasingDoubleKeyFrame KeyTime="0:0:20" Value="300">
 <EasingDoubleKeyFrame.EasingFunction>
 <BounceEase />
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
 </Ellipse>
</Canvas>

With WPF, the same keyframe-animation can be used. The only difference with the UWP file is that there’s no default event with the EventTrigger. With WPF the RoutedEvent attribute needs to be added, otherwise the XAML code is the same (code file AnimationWPF/KeyFrameAnimation.xaml):

<EventTrigger RoutedEvent="Ellipse.Loaded">
 <!-- storyboard -->
</EventTrigger>

Transitions (UWP Apps)

For making it easier for you to create animated user interfaces, UWP apps define transitions. Transitions make it easier to create compelling apps without the need to think about what makes a cool animation. Transitions predefine animations for adding, removing, and rearranging items in a list; opening panels; changing the content of content controls; and more.

The following sample demonstrates several transitions to show them in the left side of a user control versus the right side, and it shows similar elements without transitions, which helps you see the differences. Of course, you need to start the application to see the difference, as it is hard to demonstrate this in a printed book.

Reposition Transition

The first example makes use of the RepositionThemeTransition within the Transitions property of a Button element. A transition always needs to be defined within a TransitionCollection because such collections are never created automatically, and there’s a misleading runtime error in case you don’t use the TransitionCollection. The second button doesn’t use a transition (code file TransitionsUWP/RepositionUserControl.xaml):

<Button Grid.Row="1" Click="OnReposition" Content="Reposition"
 x:Name="buttonReposition" Margin="10">
 <Button.Transitions>
 <TransitionCollection>
 <RepositionThemeTransition />
 </TransitionCollection>
 </Button.Transitions>
</Button>
<Button Grid.Row="1" Grid.Column="1" Click="OnReset" Content="Reset"
 x:Name="button2" Margin="10" />

The RepositionThemeTransition is a transition when a control changes its position. In the code-behind file, when the user clicks the button, the Margin property is changed, which also changes the position of the button.

private void OnReposition(object sender, RoutedEventArgs e)
{
 buttonReposition.Margin = new Thickness(100);
 button2.Margin = new Thickness(100);
}

private void OnReset(object sender, RoutedEventArgs e)
{
 buttonReposition.Margin = new Thickness(10);
 button2.Margin = new Thickness(10);
}

Pane Transition

The PopupThemeTransition and PaneThemeTransition are shown in the next user control. Here, the transitions are defined with the ChildTransitions property of the Popup control (code file TransitionsUWP\PaneTransitionUserControl.xaml):

<StackPanel Orientation="Horizontal" Grid.Row="2">
 <Popup x:Name="popup1" Width="200" Height="90" Margin="60">
 <Border Background="Red" Width="100" Height="60">
 </Border>
 <Popup.ChildTransitions>
 <TransitionCollection>
 <PopupThemeTransition />
 </TransitionCollection>
 </Popup.ChildTransitions>
 </Popup>
 <Popup x:Name="popup2" Width="200" Height="90" Margin="60">
 <Border Background="Red" Width="100" Height="60">
 </Border>
 <Popup.ChildTransitions>
 <TransitionCollection>
 <PaneThemeTransition />
 </TransitionCollection>
 </Popup.ChildTransitions>
 </Popup>
 <Popup x:Name="popup3" Margin="60" Width="200" Height="90">
 <Border Background="Green" Width="100" Height="60">
 </Border>
 </Popup>
</StackPanel>

The code-behind file opens and closes the Popup controls by setting the IsOpen property. This in turn starts the transition (code file TransitionsUWP\PaneTransitionUserControl.xaml):

private void OnShow(object sender, RoutedEventArgs e)
{
 popup1.IsOpen = true;
 popup2.IsOpen = true;
 popup3.IsOpen = true;
}

private void OnHide(object sender, RoutedEventArgs e)
{
 popup1.IsOpen = false;
 popup2.IsOpen = false;
 popup3.IsOpen = false;
}

When you run the application, you can see that the PopupThemeTransition looks good for opening Popup and Flyout controls. The PaneThemeTransition opens the popup slowly from the right side. This transition can also be configured to open from other sides by setting properties, and thus is best for panels, such as the settings bar, that move in from a side.

Transitions for Items

Adding and removing items from an items control also defines a transition. The following ItemsControl makes use of the EntranceThemeTransition and RepositionThemeTransition. The EntranceThemeTransition is used when an item is added to the collection; the RepositionThemeTransition is used when items are re-arranged—for example, by removing an item from the list (code file TransitionsUWP\ListItemsUserControl.xaml):

<ItemsControl Grid.Row="1" x:Name="list1">
 <ItemsControl.ItemContainerTransitions>
 <TransitionCollection>
 <EntranceThemeTransition />
 <RepositionThemeTransition />
 </TransitionCollection>
 </ItemsControl.ItemContainerTransitions>
</ItemsControl>
<ItemsControl Grid.Row="1" Grid.Column="1" x:Name="list2" />

In the code-behind file, Rectangle objects are added and removed from the list control. As one of the ItemsControl objects doesn’t have a transition associated, you can easily the difference in behavior when you run the application (code file TransitionsUWP\ListItemsUserControl.xaml.cs):

private void OnAdd(object sender, RoutedEventArgs e)
{
 list1.Items.Add(CreateRectangle());
 list2.Items.Add(CreateRectangle());
}

private Rectangle CreateRectangle() =>
 new Rectangle
 {
 Width = 90,
 Height = 40,
 Margin = new Thickness(5),
 Fill = new SolidColorBrush { Color = Colors.Blue }
 };

private void OnRemove(object sender, RoutedEventArgs e)
{
 if (list1.Items.Count > 0)
 {
 list1.Items.RemoveAt(0);
 list2.Items.RemoveAt(0);
 }
}

NOTE With these transitions, you get an idea of how they reduce the work needed to animate the user interface. Be sure to check out more transitions available with UWP apps. You can see all the transitions by checking the derived classes from Transition in the MSDN documentation.

Visual State Manager

Earlier in this chapter in the section “Control Templates,” you saw how to create control templates to customize the look of controls. Something was missing there. With the default template of a button, the button reacts to mouse moves and clicks and looks differently when the mouse moves over the button or the button is clicked. This look change is handled with the help of visual states and animations, controlled by the visual state manager.

This section looks at changing the button style to react to mouse moves and clicks, but it also describes how to create custom states to deal with changes of a complete page when several controls should switch to the disabled state—for example, when some background processing occurs.

With an XAML element, visual states, state groups, and states can be defined that specify specific animations for a state. State groups exist to allow having multiple states at once. For one group, only one state is allowed at one time. However, another state of another group can be active at the same time. Examples for this are the states and state groups with a WPF button. The WPF Button control defines the state groups CommonStates, FocusStates, and ValidationStates. States defined with FocusStates are Focused and Unfocused; states defined with the group ValidationStates are Valid, InvalidFocused, and InvalidUnfocused. The CommonStates group defines the states Normal, MouseOver, Pressed, and Disabled. With these options, multiple states can be active at the same time, but there is always only one state active within a state group. For example, a button can be in focus and valid while the mouse moves over it. It can also be unfocused and valid and be in the normal state. With UWP apps the Button control only defines states of the CommonStates group. Also, WPF defines the MouseOver state, but with UWP this state is PointerOver. You can also define custom states and state groups.

Let’s get into concrete examples.

Predefined States with Control Templates

Let’s take the custom control template created earlier to style the Button control and enhance it by using visual states. An easy way to do this is by using Microsoft Blend for Visual Studio. Figure 30.32 shows the States Window that is shown when you are selecting the control template. Here you can see available states of the control and record changes based on these states.

[image: Screenshot shows the States Window which includes Base, Common States, and Default transition selecting options such as Normal, Pressed, Disabled, and PointerOver, where PointerOver is selected.]

Figure 30.32

The button template from before is changed to define visual states for the states Pressed, Disabled, and PointerOver. Within the states, a Storyboard defines a ColorAnimation to change the color of the Fill property of an ellipse (code file VisualStatesUWP/MainPage.xaml):

<Style x:Key="RoundedGelButton" TargetType="Button">
 <Setter Property="Width" Value="100" />
 <Setter Property="Height" Value="100" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal"/>
 <VisualState x:Name="Pressed">
 <Storyboard>
 <ColorAnimation Duration="0" To="#FFC8CE11"
 Storyboard.TargetProperty=
 "(Shape.Fill).(SolidColorBrush.Color)"
 Storyboard.TargetName=
 "GelBackground" />
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Disabled">
 <Storyboard>
 <ColorAnimation Duration="0" To="#FF606066"
 Storyboard.TargetProperty=
 "(Shape.Fill).(SolidColorBrush.Color)"
 Storyboard.TargetName="GelBackground" />
 </Storyboard>
 </VisualState>
 <VisualState x:Name="PointerOver">
 <Storyboard>
 <ColorAnimation Duration="0" To="#FF0F9D3A"
 Storyboard.TargetProperty=
 "(Shape.Fill).(SolidColorBrush.Color)"
 Storyboard.TargetName="GelBackground" />
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <Ellipse x:Name="GelBackground" StrokeThickness="0.5" Fill="Black">
 <Ellipse.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#ff7e7e7e" />
 <GradientStop Offset="1" Color="Black" />
 </LinearGradientBrush>
 </Ellipse.Stroke>
 </Ellipse>
 <Ellipse Margin="15,5,15,50">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#aaffffff" />
 <GradientStop Offset="1" Color="Transparent" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter x:Name="GelButtonContent"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Content="{TemplateBinding Content}" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Now when you run the application, you can see the color changes based on moving and clicking the mouse.

Defining Custom States

You can define custom states by using the VisualStateManager, defining custom state groups using VisualStateGroup and states with VisualState. The following code snippet creates the Enabled and Disabled states within the CustomStates group. The visual states are defined within the Grid of the main window. On changing the state, the IsEnabled property of a Button element is changed using a DiscreteObjectKeyFrame animation in no time (code file VisualStatesUWP/MainPage.xaml):

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CustomStates">
 <VisualState x:Name="Enabled"/>
 <VisualState x:Name="Disabled">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetProperty="(Control.IsEnabled)"
 Storyboard.TargetName="button1">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <x:Boolean>False</x:Boolean>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetProperty="(Control.IsEnabled)"
 Storyboard.TargetName="button2">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <x:Boolean>False</x:Boolean>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Setting Custom States

Now the states need to be set. You can do this easily by invoking the GoToState method of the VisualStateManager class. In the code-behind file, the OnEnable and OnDisable methods are Click event handlers for two buttons in the page (code file VisualStatesUWP/MainPage.xaml.cs):

private void OnEnable(object sender, RoutedEventArgs e)
{
 VisualStateManager.GoToState(this,"Enabled", useTransitions: true);
}

private void OnDisable(object sender, RoutedEventArgs e)
{
 VisualStateManager.GoToState(this,"Disabled", useTransitions: true);
}

In a real application, you can change the state in a similar manner—for example, when a network call is invoked and the user should not act on some of the controls within the page. The user should still be allowed to click a cancellation button. By changing the state, you can also show progress information.

Summary

In this chapter you have taken a tour through many of the features of styling WPF and UWP apps. With XAML it is easy to separate the work of developers and designers. All UI features can be created with XAML, and the functionality can be created by using code-behind.

You have seen many shapes and geometry elements, which are the basis for all other controls that you’ll see in the next chapters. Vector-based graphics enable XAML elements to be scaled, sheared, and rotated.

Different kinds of brushes are available for painting the background and foreground of elements. You can use not only solid brushes and linear or radial gradient brushes but also visual brushes that enable you to include reflections or show videos.

Styling and templates enable you to customize the look of controls; with the visual state manager you can change properties of XAML elements dynamically. You can easily create animations by animating a property value from an XAML control. The next chapter continues with XAML-based apps, covering the MVVM pattern and data binding, commands, and several more features.

31
Patterns with XAML Apps

What’s In This Chapter?

	Sharing Code

	Creating Models

	Creating Repositories

	Creating ViewModels

	Locators

	Dependency Injection

	Messaging between ViewModels

	Using an IoC Container

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Books Desktop App (WPF)

	Books Universal App (UWP)

Why MVVM?

Technologies and frameworks change. I created the first version of my company website (http://www.cninnovation.com) with ASP.NET Web Forms. When ASP.NET MVC came along, I tried it out to migrate a feature of my site to MVC. The progress was a lot faster than I expected. Within one day I transformed the complete site to MVC. The site uses SQL Server, integrates RSS feeds, and shows trainings and books. Information about the trainings and books is coming from the SQL Server database. The fast migration to ASP.NET MVC was only possible because I had separation of concerns from the beginning; I had created separate layers for the data access and business logic. With ASP.NET Web Forms it would have been possible to directly use data source and data controls within the ASPX page. Separating the data access and business logic took more time in the beginning, but it turned out to be a huge advantage, as it allows for unit tests and reuse. Because I had separated things this way, moving to another technology was a breeze.

With regard to Windows applications, technology changes fast as well. For many years, Windows Forms was the technology of choice for wrapping native Windows controls to create desktop applications. Next followed Windows Presentation Foundation (WPF), in which the user interface is defined using XML for Applications Markup Language (XAML). Silverlight offered a lightweight framework for XAML-based applications that run within the browser. Windows Store apps followed with Windows 8, changing to Universal Windows apps with Windows 8.1 for apps running both on the PC and the Windows phone. With Windows 8.1 and Visual Studio 2013, three projects with shared code have been created to support both the PC and the phone. This changed with Visual Studio 2015, Windows 10, and the Universal Windows Platform (UWP). You can have one project that can support the PC, the phone, Xbox One, Windows IoT, large screens with the Surface Hub, and even Microsoft’s HoloLens.

One project to support all Windows 10 platforms might not fit your needs. Can you write a program that supports Windows 10 only? Some of your customers might still be running Windows 7. In this case, WPF is the answer, but it doesn’t support the phone and other Windows 10 devices. What about supporting Android and iOS? You can use Xamarin to create C# and .NET code here as well, but it’s different.

The goal should be to reuse as much code as possible, to support the platforms needed, and to have an easy switch from one technology to another. These goals—with many organizations where administration and development joins as DevOps to bring new features and bug fixes in a fast pace to the user—require automated tests. Unit testing is a must that needs to be supported by the application architecture.

NOTE Unit testing is covered in Chapter 19, “Testing.”

With XAML-based applications, the Model-View-ViewModel (MVVM) design pattern is favored for separating the view from functionality. This design pattern was invented by John Gossman of the Expression Blend team as a better fit to XAML with advancements to the Model-View-Controller (MVC) and Model-View-Presenter (MVP) patterns because it uses data binding, a number-one feature of XAML.

With XAML-based applications, the XAML file and code-behind file are tightly coupled to each other. This makes it hard to reuse the code-behind and also hard to do unit testing. To solve this issue, the MVVM pattern allows for a better separation of the code from the user interface.

In principle, the MVVM pattern is not that hard to understand. However, when you’re creating applications based on the MVVM pattern, you need to pay attention to a lot more needs: several patterns come into play for making applications work and making reuse possible, including dependency injection mechanisms for being independent of the implementation and communication between view models.

All this is covered in this chapter, and with this information you can not only use the same code with Windows apps and Windows desktop applications, but you can also use it for iOS and Android with the help of Xamarin. This chapter gives you a sample app that covers all the different aspects and patterns needed for a good separation to support different technologies.

Defining the MVVM Pattern

First, let’s have a look at the MVC design pattern that is one of the origins of the MVVM pattern. The Model-View-Controller (MVC) pattern separates the model, the view, and the controller (see Figure 31.1). The model defines the data that is shown in the view as well as business rules about how the data can be changed and manipulated. The controller is the manager between the model and the view, updates the model, and sends data for display to the view. When a user request comes in, the controller takes action, uses the model, and updates the view.

[image: Block diagram shows controller, model, and view. Flow occurs from controller to both model and view.]

Figure 31.1

NOTE The MVC pattern is heavily used with ASP.NET MVC, which is covered in Chapter 41, “ASP.NET MVC.”

With the Model-View-Presenter (MVP) pattern (see Figure 31.2), the user interacts with the view. The presenter contains all the business logic for the view. The presenter can be decoupled from the view by using an interface to the view as contract. This allows easily changing the view implementation for unit tests. With MVP, the view and model are completely shielded from each other.

[image: Block diagram shows presenter, model, and view. Presenter has two-way connection to both model and view.]

Figure 31.2

The main pattern used with XAML-based applications is the Model-View-ViewModel pattern (MVVM) (see Figure 31.3). This pattern takes advantage of the data-binding capabilities with XAML. With MVVM, the user interacts with the view. The view uses data binding to access information from the view model and invokes commands in the view model that are bound in the view as well. The view model doesn’t have a direct dependency to the view. The view model itself uses the model to access data and gets change information from the model as well.

[image: Block diagram shows view, view-model, and model as arranged from top to bottom.]

Figure 31.3

In the following sections of this chapter you see how to use this architecture with the application to create views, view models, models, and other patterns that are needed.

Sharing Code

Before creating the sample solution and starting to create a model, we need to take a step back and have a look at different options for how to share code between different platforms. This section covers different options to address the different platforms you need to support and the APIs you need.

Using API Contracts with the Universal Windows Platform

The Universal Windows Platform defines an API that is available with all Windows 10 devices. However, this API can change with newer versions. With the Application settings in the Project Properties (see Figure 31.4) you can define the target version of your application (this is the version that you build for) and the minimum version that is required on the system. The versions of all Software Developer Kits (SDKs) you select need to be installed on your system, so you can verify what APIs are available. For using features of the target version that are not available within the minimum version, you need to programmatically check whether the device supports the specific feature you need, before using that API.

[image: Screenshot shows UWPSharingCode window that includes application, build, build events, debug et cetera on side menu. Application include assembly name, default namespace, target, target version and minimum version et cetera.]

Figure 31.4

With the UWP, you can support different device families. The UWP defines several device families: Universal, Desktop (PC), Mobile (tablet, phablet, phone), IoT (Raspberry Pi, Microsoft Band), Surface Hub, Holographic (HoloLens), and Xbox. Over time, more device families will follow. Each of these device families offers APIs that are available only for this family of devices. The APIs of device families are specified via an API contract. Each device family can offer multiple API contracts.

You can use features specific to device families, but you can still create one binary image that runs on all. Typically, your application will not support all the device families, but it might support a few of them. To support specific device families and use those families’ APIs, you can add an Extension SDK from Solution Explorer; select References ➪ Add Reference and then select Universal Windows ➪ Extensions (see Figure 31.5). There you can see your installed SDKs and select the ones you need.

[image: Screenshot shows Reference Manager UWPSharingCode window which contains the list of names and versions of SDKs applicables.]

Figure 31.5

After selecting the Extension SDK, you can use the API from the code after verifying whether the API contract is available. The ApiInformation class (namespace Windows.Foundation.Metadata) defines the IsApiContractPresent method where you can check whether a specific API contract with a specific major and minor version is available. The following code snippet asks for the Windows.Phone.PhoneContract, major version 1. If this contract is available, the VibrationDevice can be used:

if (ApiInformation.IsApiContractPresent("Windows.Phone.PhoneContract", 1))
{
 VibrationDevice vibration = VibrationDevice.GetDefault();
 vibration.Vibrate(TimeSpan.FromSeconds(1));
}

You might be afraid to get convoluted code that checks all over the place using the checks for the API contracts. In a case where you’re targeting just a single device family, it’s not necessary to check to see whether the API is present. In the previous sample, if the application is only targeted for the phone, the API check is not necessary. In a case where you’re targeting multiple device platforms, you only have to check for the device-specific APIs you’re calling. You can write useful apps spanning multiple device families just by using the Universal API. In a case where you’re supporting multiple device families with a lot of device-specific API calls, I propose you avoid using the ApiInformation and instead use dependency injection, which is covered later in this chapter in the section “Services and Dependency Injection.”

Working with Shared Projects

Using the same binary with API contracts is possible only with the Universal Windows Platform. This is not an option if you need to share code, for example, between Windows desktop applications with WPF and UWP apps, or between Xamarin.Forms apps and UWP apps. When you create these project types where you can’t use the same binary, you can use the Shared Project template with Visual Studio 2015.

The Shared Project template with Visual Studio creates a project that doesn’t create a binary—no assembly is built. Instead, code is shared between all projects that reference this shared project. You compile the code within each project that references the shared project.

When you create a class as shown in the following code snippet, this class can be used in all projects that reference the shared project. You can even use platform-specific code using preprocessor directives. The Visual Studio 2015 Universal Windows App template sets the conditional compilation symbol WINDOWS_UWP, so you can use this symbol for code that should only compile for the Universal Windows Platform. For WPF, you add WPF to the conditional compilation symbols with a WPF project.

public partial class Demo
{
 public int Id { get; set; }
 public string Title { get; set; }

#if WPF
 public string WPFOnly { get; set; }
#endif

#if WINDOWS_UWP
 public string WinAppOnly {get; set; }
#endif
}

Editing shared code with the Visual Studio editor, you can select the project name in the upper-left bar, and the parts of the code that are not active for the actual project are dimmed (see Figure 31.6). When you’re editing the file, IntelliSense also offers the API for the corresponding selected project.

[image: Image described by surrounding text.]

Figure 31.6

Instead of using the preprocessor directives, you can also maintain differing parts of the class in the WPF or Universal Windows Platform projects. There was a good reason to declare the class partial.

NOTE The C# partial keyword is explained in Chapter 3, “Objects and Types.”

When you define the same class name with the same namespace in the WPF project, you can extend the shared class. It is also possible to use a base class (if the shared project doesn’t define a base class):

public class MyBase
{
 // etc.
}
public partial class Demo: MyBase
{
 public string WPFTitle => $"WPF{Title}";
}

Working with Portable Libraries

There’s another option for sharing code: shared libraries. If all the technologies can use .NET Core, this is an easy task: Just create a .NET Core library, and you can share it between different platforms. If the technologies you need to support can make use of .NET Core NuGet packages, it’s best to use these. If that’s not the case, you can use Portable Libraries.

NOTE Creating NuGet packages is discussed in Chapter 17, “Visual Studio 2015.”

With portable libraries, Microsoft maintains a huge list of which API is supported by what platform. When you’re creating a portable library, you see the dialog to configure what target platforms you need to support. Figure 31.7 shows a selection for .NET Framework 4.6, Windows Universal 10.0, Xamarin.Android, and Xamarin.iOS. With the selection, you’re limited to the APIs that are available with all selected target platforms. With the current selection, you can read the note in the dialog that .NET Framework 4.5, Windows 8, and Xamarion.iOS (Classic) are automatically targeted as well because these platforms do not have any APIs that are not already in the combined intersect of the selection.

[image: Image described by surrounding text.]

Figure 31.7

The big disadvantage of the portable library is that you can’t have any code that is available only with specific platforms. You can use only what’s available everywhere, with all the selected target platforms. As a way around this, you can use portable libraries to define code for contracts and implement the contracts with platform-specific libraries where needed. To use the code from the platform-specific libraries with libraries that are not platform specific, you can use dependency injection. How to do this is part of the bigger sample in this chapter, which is covered in the “View Models” section.

Sample Solution

The sample solution consists of a WPF and a Universal Windows Platform app for showing and editing a list of books. For this, the solution uses these projects:

	BooksDesktopApp—A WPF project for the UI of the desktop application with .NET Framework 4.6

	BooksUniversalApp—A UWP app project for the UI of a modern app

	Framework—A portable library containing classes that are useful for all XAML-based applications

	ViewModels—A portable library containing view models for both WPF and UWP

	Services—A portable library containing services used by the view models

	Models—A portable library containing shared models

	Repositories—A portable library that returns and updates items

	Contracts—A portable library for contract interfaces used with dependency injection

The portable libraries are configured with the targets .NET Framework 4.6 and Windows Universal 10.0.

Figure 31.8 shows the projects with their dependencies. The Framework and Contracts are needed from all other projects. Have a look at the ViewModels project; this will call the services, but it doesn’t have a dependency on the services—just the contracts that are implemented by the services.

[image: Block diagram shows the dependencies among the projects such as Services, Repositories, Models, VIewModels, Framework, Contracts, BookUniversalApp, and BookDesktopApp.]

Figure 31.8

The user interface of the application will have two views: one view to show as a list of books and one view to show book details. When you select a book from the list, the detail is shown. It’s also possible to add and edit books.

Models

Let’s start with the Models library to define the Book type. This is the type that will be shown and edited in the UI. To support data binding, the properties where values are updated from the user interface need a change notification implementation. The BookId property is only shown but not changed, so change notification is not needed with this property. The method SetProperty is defined by the base class BindableBase (code file Models/Book.cs):

public class Book: BindableBase
{
 public int BookId { get; set; }

 private string _title;
 public string Title
 {
 get { return _title; }
 set { SetProperty(ref _title, value); }
 }

 private string _publisher;
 public string Publisher
 {
 get { return _publisher; }
 set { SetProperty(ref _publisher, value); }
 }

 public override string ToString() => Title;
}

Implementing Change Notification

The object source of XAML elements needs either dependency properties or INotifyPropertyChanged to allow change notification with data binding. With model types, it makes sense to implement INotifyPropertyChanged. For having an implementation available with different projects, the implementation is done within the Framework library project in the class BindableBase. The INotifyPropertyChanged interface defines the event PropertyChanged. To fire the change notification, the method SetProperty is implemented as a generic function for supporting any property type. Before the notification is fired, a check is done to see whether the new value is different from the current value (code file Framework/BindableBase.cs):

public abstract class BindableBase: INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged(
 [CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }

 protected virtual bool SetProperty<T>(ref T item, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (EqualityComparer<T>.Default.Equals(item, value)) return false;
 item = value;
 OnPropertyChanged(propertyName);
 return true;
 }
}

NOTE Dependency properties are explained in Chapter 29, “Core XAML.”

Using the Repository Pattern

Next you need a way to retrieve, update, and delete Book objects. You can read and write books from a database with the ADO.NET Entity Framework. Although Entity Framework 7 can be accessed from the Universal Windows Platform, usually this is a task from the back end and is consequently not covered in this chapter. To make the back end accessible from a client app, ASP.NET Web API is the technology of choice on the server side. These topics are covered in Chapter 38, “Entity Framework Core,” and Chapter 42, “ASP.NET Web API.” With the client application it’s best to be independent of the data store. For this, the Repository design pattern was defined. The Repository pattern is a mediator between the model and the data access layer; it can act as an in-memory collection of objects. It gives an abstraction of the data access layer and allows for easier unit tests.

The generic interface IQueryRepository defines methods for retrieving one item by ID or a list of items (code file Contracts/IQueryRepository.cs):

public interface IQueryRepository<T, in TKey>
 where T: class
{
 Task<T> GetItemAsync(TKey id);
 Task<IEnumerable<T>> GetItemsAsync();
}

The generic interface IUpdateRepository defines methods to add, update, and delete items (code file Contracts/IUpdateRepository.cs):

public interface IUpdateRepository<T, in TKey>
 where T: class
{
 Task<T> AddAsync(T item);
 Task<T> UpdateAsync(T item);
 Task<bool> DeleteAsync(TKey id);
}

The IBooksRepository interface makes the previous two generic interfaces concrete by defining the type Book for the generic type T (code file Contracts/IBooksRepository.cs):

public interface IBooksRepository: IQueryRepository<Book, int>,
 IUpdateRepository<Book, int>
{
}

By using these interfaces, it’s possible to change the repository. Create a sample repository BooksSampleRepository that implements the members of the interface IBooksRepository and contains a list of initial books (code file Repositories/BooksSampleRepository.cs):

public class BooksSampleRepository: IBooksRepository
{
 private List<Book> _books;
 public BooksRepository()
 {
 InitSampleBooks();
 }

 private void InitSampleBooks()
 {
 _books = new List<Book>()
 {
 new Book
 {
 BookId = 1,
 Title ="Professional C# 6 and .NET Core 1.0",
 Publisher ="Wrox Press"
 },
 new Book
 {
 BookId = 2,
 Title ="Professional C# 5.0 and .NET 4.5.1",
 Publisher ="Wrox Press"
 },
 new Book
 {
 BookId = 3,
 Title ="Enterprise Services with the .NET Framework",
 Publisher ="AWL"
 }
 };
 }

 public Task<bool> DeleteAsync(int id)
 {
 Book bookToDelete = _books.Find(b => b.BookId == id);
 if (bookToDelete != null)
 {
 return Task.FromResult<bool>(_books.Remove(bookToDelete));
 }
 return Task.FromResult<bool>(false);
 }

 public Task<Book> GetItemAsync(int id)
 {
 return Task.FromResult(_books.Find(b => b.BookId == id));
 }

 public Task<IEnumerable<Book>> GetItemsAsync() =>
 Task.FromResult<IEnumerable<Book>>(_books);

 public Task<Book> UpdateAsync(Book item)
 {
 Book bookToUpdate = _books.Find(b => b.BookId == item.BookId);
 int ix = _books.IndexOf(bookToUpdate);
 _books[ix] = item;
 return Task.FromResult(_books[ix]);
 }

 public Task<Book> AddAsync(Book item)
 {
 item.BookId = _books.Select(b => b.BookId).Max() + 1;
 _books.Add(item);
 return Task.FromResult(item);
 }
}

NOTE The repository defines asynchronous methods, although they are not needed in this case because books are retrieved and updated only within memory. The methods are defined asynchronously because repositories for accessing the ASP.NET Web API or the Entity Framework are asynchronous in nature.

View Models

Let’s create the library containing view models. Every view has a view model. With the sample app, the BooksView has the BooksViewModel associated, and the BookView the BookViewModel. There’s a one-to-one mapping between view and view model. In reality, there’s a many-to-one mapping between view and view model because the same view exists with different technologies—both WPF and the UWP. This makes it important that the view model doesn’t know anything about the view, but the view knows the view model. The view model is implemented with a portable library, which allows using it from both WPF and the UWP.

The portable library ViewModels has references to the Contracts, Models, and Framework libraries, which are portable libraries as well.

A view model contains properties for the items to show and commands for actions. The BooksViewModel class defines the properties Books—for showing a list of books—and SelectedBook, which is the currently selected book. BooksViewModel also defines the commands GetBooksCommand and AddBookCommand (code file ViewModels/BooksViewModel.cs):

public class BooksViewModel: ViewModelBase
{
 private IBooksService _booksService;

 public BooksViewModel(IBooksService booksService)
 {
 // etc.
 }

 private Book _selectedBook;
 public Book SelectedBook
 {
 get { return _selectedBook; }
 set
 {
 if (SetProperty(ref _selectedBook, value))
 {
 // etc.
 }
 }
 }

 public IEnumerable<Book> Books => _booksService.Books;
 public ICommand GetBooksCommand { get; }

 public async void OnGetBooks()
 {
 // etc.
 }

 private bool _canGetBooks = true;

 public bool CanGetBooks() => _canGetBooks;

 private void OnAddBook()
 {
 // etc.
 }

 public ICommand AddBookCommand { get; }
}

The BookViewModel class defines the property Book to display the selected book and the command SaveBookCommand (code file ViewModels/BookViewModel.cs):

public class BookViewModel: ViewModelBase
{
 private IBooksService _booksService;
 public BookViewModel(IBooksService booksService)
 {
 // etc.
 }

 public ICommand SaveBookCommand { get; }

 private void LoadBook(object sender, BookInfoEvent bookInfo)
 {
 if (bookInfo.BookId == 0)
 {
 Book = new Book();
 }
 else
 {
 Book = _booksService.GetBook(bookInfo.BookId);
 }
 }

 private Book _book;
 public Book Book
 {
 get { return _book; }
 set { SetProperty(ref _book, value); }
 }

 private async void OnSaveBook()
 {
 Book book = await _booksService.AddOrUpdateBookAsync(Book);
 Book = book;
 }
}

The properties of the view models need change notification for UI updates. The interface INotifyPropertyChanged is implemented via the base class BindableBase. The view model class derives from the ViewModelBase class to get this implementation. You can use the ViewModelBase class to support additional features for view models, such as giving information about progress information and input validation (code file Frameworks/ViewModelBase.cs):

public abstract class ViewModelBase: BindableBase
{
}

Commands

The view models offer commands that implement the interface ICommand. Commands allow a separation between the view and the command handler method via data binding. Commands also offer the functionality to enable or disable the command. The ICommand interface defines the methods Execute and CanExecute, and the event CanExecuteChanged.

To map the commands to methods, the DelegateCommand class is defined in the Framework assembly.

DelegateCommand defines two constructors, where a delegate can be passed for the method that should be invoked via the command, and another delegate defines whether the command is available (code file Framework/DelegateCommand.cs):

public class DelegateCommand: ICommand
{
 private Action _execute;
 private Func<bool> _canExecute;

 public DelegateCommand(Action execute, Func<bool> canExecute)
 {
 if (execute == null)
 throw new ArgumentNullException("execute");

 _execute = execute;
 _canExecute = canExecute;
 }

 public DelegateCommand(Action execute)
 : this(execute, null)
 { }

 public event EventHandler CanExecuteChanged;

 public bool CanExecute(object parameter) => _canExecute?.Invoke() ?? true;

 public void Execute(object parameter)
 {
 _execute();
 }

 public void RaiseCanExecuteChanged()
 {
 CanExecuteChanged?.Invoke(this, EventArgs.Empty);
 }
}

The constructor of the BooksViewModel creates new DelegateCommand objects and assigns the methods OnGetBooks and OnAddBook when the command is executed. The CanGetBooks method returns true or false, depending on whether the GetBooksCommand should be available (code file ViewModels/BooksViewModel.cs):

public BooksViewModel(IBooksService booksService)
{
 // etc.
 GetBooksCommand = new DelegateCommand(OnGetBooks, CanGetBooks);
 AddBookCommand = new DelegateCommand(OnAddBook);
}

The CanGetBooks method that is assigned to the GetBooksCommand returns the value of _canGetBooks, which has an initial value of true:

private bool _canGetBooks = true;

public bool CanGetBooks() => _canGetBooks;

The handler for the GetBooksCommand (the OnGetBooks method) loads all books using a books service, and it changes the availability of the GetBooksCommand:

public async void OnGetBooks()
{
 await _booksService.LoadBooksAsync();

 _canGetBooks = false;
 (GetBooksCommand as DelegateCommand)?.RaiseCanExecuteChanged();
}

The LoadBooksAsync method that is defined by the books service is implemented in the next section, “Services and Dependency Injection.”

From the XAML code, the GetBooksCommand can be bound to the Command property of a Button. This is discussed when creating the views in more detail:

<Button Content="Load" Command="{Binding ViewModel.GetBooksCommand,
 Mode=OneTime}" />

NOTE With WPF, currently data binding is not possible with events. When handlers are added to events, the handler is strongly coupled to the XAML code. Commands give this separation between views and view models that allow data binding. Using compiled binding with the UWP, data binding is also possible with events. Here, commands offer additional functionality to event handlers in that they give information if the command is available.

Services and Dependency Injection

The BooksViewModel makes use of a service implementing the interface IBooksService. The IBooksService is injected with the constructor of the BooksViewModel (code file ViewModels/BooksViewModel.cs):

private IBooksService _booksService;
public BooksViewModel(IBooksService booksService)
{
 _booksService = booksService;
 // etc.
}

The same is true for the BookViewModel; it uses the same IBooksService (code file ViewModels/BookViewModel.cs):

private IBooksService _booksService;
public BookViewModel(IBooksService booksService)
{
 _booksService = booksService;
 // etc.
}

The interface IBooksService defines all the features needed by the view models for accessing books. This contract is defined in a portable library like the view models, so the view model project can reference the project of the service contract (code file Contracts/IBooksService.cs):

public interface IBooksService
{
 Task LoadBooksAsync();
 IEnumerable<Book> Books { get; }
 Book GetBook(int bookId);
 Task<Book> AddOrUpdateBookAsync(Book book);
}

The interface IBooksService is used with the BooksViewModel in the OnGetBooks method—the handler for the GetBooksCommand (code file ViewModels/BooksViewModel.cs):

public async void OnGetBooks()
{
 await _booksService.LoadBooksAsync();

 _canGetBooks = false;
 (GetBooksCommand as DelegateCommand)?.RaiseCanExecuteChanged();
}

Also, the BookViewModel makes use of IBooksService (code file ViewModels/BookViewModel.cs):

private async void OnSaveBook()
{
 Book = await _booksService.AddOrUpdateBookAsync(Book);
}

The view model doesn’t need to know the concrete implementation of the IBooksService—only the interface is needed. This is known as the principle Inversion of Control (IoC) or the Hollywood principle (“Don’t call us; we call you”). The pattern is named Dependency Injection. The dependency that is needed is injected from somewhere else (in our case, it’s in the WPF or UWP application).

The service itself could be implemented with a project that is incompatible to portable libraries. It just needs to be compatible with the UI technology—for example, WPF or UWP. The view model doesn’t have a direct dependency on the service implementation because it just uses the interface contract.

The class BooksService implements the interface IBooksService to load books, access single books, and add or update a book. This one in turn makes use of the repository library that was created earlier. The BooksService makes use of dependency injection as well. With the constructor, an instance that implements the interface IBooksRepository is passed (code file Services/BooksService.cs):

public class BooksService: IBooksService
{
 private ObservableCollection<Book> _books = new ObservableCollection<Book>();
 private IBooksRepository _booksRepository;
 public BooksService(IBooksRepository repository)
 {
 _booksRepository = repository;
 }

 public async Task LoadBooksAsync()
 {
 if (_books.Count > 0) return;

 IEnumerable<Book> books = await _booksRepository.GetItemsAsync();
 _books.Clear();
 foreach (var b in books)
 {
 _books.Add(b);
 }
 }

 public Book GetBook(int bookId)
 {
 return _books.Where(b => b.BookId == bookId).SingleOrDefault();
 }

 public async Task<Book> AddOrUpdateBookAsync(Book book)
 {
 Book updated = null;
 if (book.BookId == 0)
 {
 updated = await _booksRepository.AddAsync(book);
 _books.Add(updated);
 }
 else
 {
 updated = await _booksRepository.UpdateAsync(book);
 Book old = _books.Where(b => b.BookId == updated.BookId).Single();
 int ix = _books.IndexOf(old);
 _books.RemoveAt(ix);
 _books.Insert(ix, updated);
 }
 return updated;
 }

 IEnumerable<Book> IBooksService.Books => _books;
}

The injection of the IBooksRepository happens with the WPF application in the App class. The property BooksService instantiates a BooksService object and passes a new BooksSampleRepository on first access of the property (code file BooksDesktopApp/App.xaml.cs):

private BooksService _booksService;
public BooksService BooksService =>
 _booksService ?? (_booksService =
 new BooksService(new BooksSampleRepository()));

The BooksViewModel is instantiated with the ViewModel property initializer in the BooksView class. Here, the concrete implementation of the BooksService is injected on creating the BooksViewModel (code file BooksDesktopApp/Views/BooksView.xaml.cs):

public partial class BooksView: UserControl
{
 // etc.

 public BooksViewModel ViewModel { get; } =
 new BooksViewModel((App.Current as App).BooksService);
}

Views

Now that you’ve been introduced to creating the view models, it’s time to get into the views. The views are defined as user controls within the Views subdirectory in both the BooksDesktopApp and the BooksUniversalApp projects.

The BooksView contains two buttons (Load and Add) and a ListBox to show all books, as shown in Figure 31.9. The BookView shows the details of a single book and contains a button (Save) and two TextBox controls as shown in Figure 31.10.

[image: Screenshot shows Document Outline window which includes dropdown for booksView, Grid and StackPanel along with a ListBox at the bottom.]

Figure 31.9

[image: Screenshot shows Document Outline window which includes dropdown for UserControl, Grid and StackPanels, and two TextBox controls.]

Figure 31.10

The main view shows the two user controls within two columns of a grid (code file BooksDesktopApp/MainWindow.xaml):

<Window x:Class="BooksDesktopApp.MainWindow"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:BooksDesktopApp"
 xmlns:uc="clr-namespace:BooksDesktopApp.Views"
 Title="Books Desktop App" Height="350" Width="525">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <uc:BooksView Grid.Column="0" />
 <uc:BookView Grid.Column="1" />
 </Grid>
</Window>

With the UWP project, the grid is defined in the same way, but a Page is used instead of the Window, and the XML alias mapped to the .NET namespace is defined with the using keyword instead of clr-namespace (code file BooksUniversalApp/MainPage.xaml):

<Page x:Class="BooksUniversalApp.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:BooksUniversalApp"
 xmlns:uc="using:BooksUniversalApp.Views">
 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <uc:BooksView Grid.Column="0" />
 <uc:BookView Grid.Column="1" />
 </Grid>
</Page>

NOTE The sample for the UWP project doesn’t use specific controls available with the Universal Windows Platform, such as CommandBar and RelativePanel, because this chapter has the focus on a maintainable and flexible application architecture. Specific UWP UI controls are covered in Chapter 32, “Windows Apps: User Interfaces.”

Injecting the View Models

What’s important with the views is how the view models are mapped. To map the view model to the view, a ViewModel property is defined in the code behind where the needed view model is instantiated. The code is the same both for WPF and UWP with the exception of the sealed class with UWP (code file BooksDesktopApp/Views/BookView.xaml.cs and BooksUniversalApp/Views/BookView.xaml.cs):

public sealed partial class BookView: UserControl
{
 // etc.
 public BooksViewModel ViewModel { get; } =
 new BooksViewModel((App.Current as App).BooksService);
}

Data Binding with WPF

For data binding with WPF, you need to set the DataContext in the XAML code. With every data binding that is used with elements, within the tree of the parent elements the DataContext is checked to find the source of the binding. With this it is possible to have different sources as needed. However, for an easy switch to the delayed binding shown in the next section, the DataContext is set only once for the root element. The context is directly set to the root element via element binding using the expression {Binding ElementName=booksView}. The UserControl itself is named booksView (code file BooksDesktopApp/Views/BooksView.xaml):

<UserControl x:Class="BooksDesktopApp.Views.BooksView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:BooksDesktopApp.Views"
 x:Name="booksView"
 DataContext="{Binding ElementName=booksView}">

With the Button controls, the Command property is bound to the GetBooksCommand of the view model. Because the DataContext of the BooksView is set to the BooksView, and the BooksView has a ViewModel property that returns the BooksViewModel, the commands are bound to the GetBooksCommand and the AddBookCommand properties using the dot notation with the property name prefixed by ViewModel. Because the commands do not change, using the mode OneTime is the best option:

<Button Content="Load"
 Command="{Binding ViewModel.GetBooksCommand, Mode=OneTime}" />
<Button Content="Add"
 Command="{Binding ViewModel.AddBookCommand, Mode=OneTime}" />

The data binding mode OneTime doesn’t register for change notification. Setting the mode to OneWay registers to change notification of the data source and updates the user interface regarding whether the source is either implemented as a dependency property or implements the interface INotifyPropertyChanged. Setting the mode to TwoWay not only updates the UI from the source but also updates the source from the UI.

The ItemsSource property of the ListBox binds to the list of books. This list can change; thus you use the mode OneTime with data binding. For list updates, the source needs to implement INotifyCollectionChanged. You do this by using the ObservableCollection type for the books, as you’ve seen previously with the BooksService implementation. Selecting an item in the ListBox updates the SelectedBook property that in turn should make an update in the BookViewModel. The update of the other view model is currently missing because you need to implement a messaging mechanism that is shown later in this chapter in the section “Messaging Using Events.” For the display of every item in the ListBox, you use a DataTemplate where a TextBlock binds to the Title property of a Book:

<ListBox Grid.Row="1" ItemsSource="{Binding ViewModel.Books, Mode=OneTime}"
 SelectedItem="{Binding ViewModel.SelectedBook, Mode=TwoWay}" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Vertical">
 <TextBlock Text="{Binding Title, Mode=OneWay}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

NOTE XAML syntax is explained in Chapter 29. Styling XAML and data templates are covered in Chapter 30, “Styling XAML Apps.”

With the BookView there’s nothing special that hasn’t already been covered with the BooksView. Just note that the two TextBox controls are bound to the Title and Publisher properties of the Book, and the setting for the Mode is to TwoWay because the user should be able to change the values and update the Book source (code file BooksDesktopApp/Views/BookView.xaml):

<StackPanel Orientation="Horizontal">
 <Button Content="Save" Command="{Binding ViewModel.SaveBookCommand}" />
</StackPanel>
<StackPanel Orientation="Vertical" Grid.Row="1">
 <TextBox Text="{Binding ViewModel.Book.Title, Mode=TwoWay}" />
 <TextBox Text="{Binding ViewModel.Book.Publisher, Mode=TwoWay}" />
</StackPanel>

NOTE The default mode of the binding differs between different technologies. For example, binding with the Text property of a TextBox element by default has TwoWay binding with WPF. Using the same property and element with compiled binding by default has the OneTime mode. To avoid confusion, it’s best to always define the mode explicitly.

NOTE All the features of data binding with WPF are shown in Chapter 34, “Windows Desktop Applications with WPF.” WPF supports more binding options than the UWP has to offer. On the other side, the UWP offers compiled data binding that is not yet available with WPF. This chapter concentrates on data binding that can be easily converted between the traditional data binding used with the WPF sample and the compiled data binding with the UWP app sample.

With the current state of the application, you can run the WPF application and see the list of books populated after clicking the Load button. What’s not working yet is the filling of the BookView after selecting a book in the ListBox because the BookViewModel needs to be informed about the change. This will be done after the data binding for the UWP project is implemented in the section Messaging.

Compiled Data Binding with UWP

With the UWP, you could use the same data binding as you use with WPF. However, the binding expression makes use of .NET reflection. Microsoft Office as well as several tools within Windows 10 make use of XAML, and the binding was too slow for the hundreds of controls used here. Setting properties directly is a lot faster. Setting the properties directly has the disadvantage that code sharing and unit testing cannot be implemented as easily as with the view models you’ve seen in this chapter. Because of this, the XAML team invented compiled data binding that is now available with the UWP but is not yet available with WPF.

When you’re using compiled data binding, you use the x:Bind markup extension instead of Binding. With the exception of the name of the markup extension element, comparing x:Bind and Binding looks very similar, as this code snippet shows:

<TextBox Text="{Binding ViewModel.Book.Title, Mode=TwoWay}" />
<TextBox Text="{x:Bind ViewModel.Book.Title, Mode=TwoWay}" />

Behind the scenes, the Text property of the TextBox is directly accessed, and the Title property from the book is retrieved on setting the TextBox. Besides being faster, compiled binding also has the advantage that you get compiler errors when you are not using the correct property names. With the traditional data binding, by default errors with binding are ignored, and you don’t see a result.

Let’s have a look at the XAML code of the BooksView. The DataContext doesn’t need to be set with compiled binding; it is not used. Instead, the binding always maps directly to the root element. That’s why in the WPF example the DataContext was set to the root element as well to make the bindings similar.

With the UserControl definition, some more .NET namespaces need to be opened to map the Book type in the Models namespace, and a converter that will be defined in the BooksUniversalApp.Converters namespace (code file BooksUniversalApp/Views/BooksView.xaml):

<UserControl
 x:Class="BooksUniversalApp.Views.BooksView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:BooksUniversalApp.Views"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:model="using:Models"
 xmlns:conv="using:BooksUniversalApp.Converters">

The Command properties of the Button controls are bound in a similar manner as before, but the x:Bind markup expression is used this time:

<Button Content="Load"
 Command="{x:Bind ViewModel.GetBooksCommand, Mode=OneTime}" />
<Button Content="Add"
 Command="{x:Bind ViewModel.AddBookCommand, Mode=OneTime}" />

NOTE Instead of using the Command property with data binding, when you’re using compiled data binding it is also possible to bind event handlers to events. You can bind the Click event to a void method without parameters, or you can bind a method with two parameters of type object and RoutedEventArgs as defined by the delegate type of the Click event.

With the ListBox, the ItemsSource is set similarly to the way you set it before—just with the x:Bind markup extension. What’s different now is the binding to the SelectedItem. If you change the Binding markup expression with the x:Bind markup expression, you get a compiler error: Cannot bind type 'Models.Book' to 'System.Object' without a converter. The reason is that SelectedItem is of type object, and the SelectedBook property returns a Book. Using a converter, this can be solved easily (code file BooksUniversalApp/Views/BooksView.xaml):

<ListBox Grid.Row="1" ItemsSource="{x:Bind ViewModel.Books, Mode=OneTime}"
 SelectedItem="{x:Bind ViewModel.SelectedBook, Mode=TwoWay,
 Converter={StaticResource ObjectToObjectConverter}}" >
 <!—etc.—>
</ListBox>

A converter implements the interface IValueConverter. For two-way binding, the interface IValueConverter defines the methods Convert and ConvertBack. In this case the implementation can be simple to return the same object that is received (code file BooksUniversalApp/Converters/ObjectToObjectConverter.cs):

public class ObjectToObjectConverter: IValueConverter
{
 public object Convert(object value,
 Type targetType,
 object parameter,
 string language) => value;

 public object ConvertBack(object value,
 Type targetType,
 object parameter,
 string language) => value;
}

Using the resources of the user control, the ObjectToObjectConverter is instantiated with the same name as the key to reference the converter using the StaticResource markup extension with ItemsSource binding in the ListBox shown earlier (code file BooksUniversalApp/Views/BooksView.xaml):

<UserControl.Resources>
 <conv:ObjectToObjectConverter x:Key="ObjectToObjectConverter" />
</UserControl.Resources>

Another difference with the compiled binding is with the data template. Binding the Text property of the TextBlock to the Title property of the Book, the Book needs to be known. For this, the x:DataType was added to the DataTemplate element:

<ListBox.ItemTemplate>
 <DataTemplate x:DataType="model:Book">
 <StackPanel Orientation="Vertical">
 <TextBlock Text="{x:Bind Title, Mode=OneWay}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>

With the compiled data binding in place, the UWP app is in the same state as the WPF application.

NOTE Compiled binding is also used in Chapter 32 and Chapter 33, “Advanced Windows Apps.”

Messaging Using Events

With the current state of the application there’s the issue that the BookViewModel needs to update the current book when the book is selected with the BooksViewModel. To solve this, it is possible to define a contract where one view model invokes another one. However, this is a small scenario, and such notifications of other parts of the application will be needed in other places as well. Direct communication can become a nightmare very quickly.

One way to solve this is by using events. A generic EventAggregator is defined with the Framework project. This aggregator defines an event named Event where a handler of type Action<object, TEvent> can subscribe and unsubscribe, and a method Publish fires the event. This aggregator is implemented as a singleton to make it easily accessible without needing to create an instance (code file Framework/EventAggregator.cs):

public class EventAggregator<TEvent>
 where TEvent: EventArgs
{
 private static EventAggregator<TEvent> s_eventAggregator;

 public static EventAggregator<TEvent> Instance =>
 s_eventAggregator ?? (s_eventAggregator = new EventAggregator<TEvent>());

 private EventAggregator()
 {
 }

 public event Action<object, TEvent> Event;

 public void Publish(object source, TEvent ev)
 {
 Event?.Invoke(source, ev);
 }
}

NOTE With a generic Singleton class, there’s not only one instance created; there’s one instance for every generic parameter type used. That’s fine for the EventAggregator, as different event types don’t need to share some data, and allows for better scalability.

For passing the information about the book from the BooksViewModel to the BooksView, just the book identifier is needed, and thus the BookInfoEvent class is defined (code file Contracts/Events/BookInfoEvent.cs):

public class BookInfoEvent: EventArgs
{
 public int BookId { get; set; }
}

The BookViewModel can now subscribe to the event. With the constructor of the BookViewModel, the static member Instance is accessed to get the singleton object of the BookInfoEvent type, and the LoadBook handler method is assigned to the event Event. Within the handler method, the book with the requested ID is retrieved via the books service (code file ViewModels/BookViewModel.cs):

public class BookViewModel: ViewModelBase, IDisposable
{
 private IBooksService _booksService;
 public BookViewModel(IBooksService booksService)
 {
 _booksService = booksService;

 SaveBookCommand = new DelegateCommand(OnSaveBook);

 EventAggregator<BookInfoEvent>.Instance.Event += LoadBook;
 }

 public ICommand SaveBookCommand { get; }

 private void LoadBook(object sender, BookInfoEvent bookInfo)
 {
 if (bookInfo.BookId == 0)
 {
 Book = new Book();
 }
 else
 {
 Book = _booksService.GetBook(bookInfo.BookId);
 }
 }

 public void Dispose()
 {
 EventAggregator<BookInfoEvent>.Instance.Event -= LoadBook;
 }
 // etc.

The event is published when a book is selected in the ListBox, and thus the SelectedBook property calls the set accessor. Here, the EventAggregator can be accessed similar to subscription using the static Instance property, now by invoking the Publish method, which passes a BookInfoEvent object (code file ViewModels/BooksViewModel.cs):

private Book _selectedBook;
public Book SelectedBook
{
 get { return _selectedBook; }
 set
 {
 if (SetProperty(ref _selectedBook, value))
 {
 EventAggregator<BookInfoEvent>.Instance.Publish(
 this, new BookInfoEvent { BookId = _selectedBook.BookId });
 }
 }
}

With the messaging mechanism in place, you can start the application, select books, and add them as shown in Figure 31.11.

[image: Screenshot shows Books Desktop App window which includes Add options from which Professional C-hash and .NET 4.5.1 is selected, and save options on right that include Programming Universal Apps and Self.]

Figure 31.11

IoC Container

With dependency injection, you can also use an Inversion of Control (IoC) container. With dependency injection from the previous code snippets you’ve injected a concrete type from the client application directly—for example, the BooksService instance within the BooksViewModel (code file BooksDesktopApp/Views/BooksView.xaml.cs):

public BooksViewModel ViewModel { get; } =
 new BooksViewModel((App.Current as App).BooksService);

You can change this to let an IoC container inject dependencies. Several IoC containers are offered as NuGet packages, for example Castle Windsor (http://castleproject.org/projects/Windsor), Unity (http://unity.codeplex.com), Autofac (http://github.com/autofac), Managed Extensibility Framework (which is covered in Chapter 26, “Composition”), and many more. With .NET Core 1.0 there’s another IoC container from Microsoft that is available with the NuGet package Microsoft.Framework.DependencyInjection (http://github.com/aspnet/DependencyInjection). This is a lightweight framework that supports constructor injection and also the dependency injection container used by ASP.NET Core 1.0 (see Chapter 40, “ASP.NET Core”). The code sample in this section uses this .NET Core 1.0 IoC container.

For using the container, you need to add the NuGet package Microsoft.Framework.DependencyInjection. Within the App class, you can add the services to the ServiceCollection (namespace Microsoft .Framework.DependencyInjection). The AddTransient method registers a type that is newly instantiated with every resolve of the type; AddSingleton instantiates the type only once and returns the same instance every time the type is resolved. Passing two generic parameters (done with the books service and books repository), the first type can be requested, and the container creates an instance of the second parameter. The method BuildServiceProvider returns an object implementing IServiceProvider that can be used later on for resolving the types. With WPF, the returned IServiceProvider object is assigned to the Container method within the OnStartup method (code file BooksDesktopApp/App.xaml.cs):

private IServiceProvider RegisterServices()
{
 var serviceCollection = new ServiceCollection();
 serviceCollection.AddTransient<BooksViewModel>();
 serviceCollection.AddTransient<BookViewModel>();
 serviceCollection.AddSingleton<IBooksService, BooksService>();
 serviceCollection.AddSingleton<IBooksRepository, BooksSampleRepository>();
 return serviceCollection.BuildServiceProvider();
}

public IServiceProvider Container { get; private set; }

protected override void OnStartup(StartupEventArgs e)
{
 base.OnStartup(e);

 Container = RegisterServices();

 var mainWindow = new MainWindow();
 mainWindow.Show();
}

With the UWP project, the method RegisterServices and property Container is the same in the App class. What’s different is the startup method OnLaunched where the RegisterServices method is invoked (code file BooksUniversalApp/App.xaml.cs):

protected override void OnLaunched(LaunchActivatedEventArgs e)
{
 Container = RegisterServices();

 // etc.
}

Within the code-behind of the views, you can initialize the ViewModel property by calling the GetService method of the IServiceProvider. The Container property of the App class returns an IServiceProvider. The generic version of the GetService method is an extension method that is available in the namespace Microsoft.Framework.DependencyInjection, which needs to be imported to have this extension method available (code file BooksDesktopApp/Views/BooksView.xaml.cs and BooksUniversalApp/Views/BooksView.xaml.cs):

public BooksViewModel ViewModel { get; } =
 (App.Current as App).Container.GetService<BooksViewModel>();

The same change needs to be made in the BookView.xaml.cs file, otherwise a different BooksService instance is created. With the downloadable sample file, you need to uncomment this setting of the property and comment the previous one to make the IoC container the active one.

Now when you run the application, the BooksViewModel is instantiated from the container. As the constructor of this view model requires the type IBooksService, a BooksService instance is created and passed, as these types are registered as well with the container. The BooksService in turn requires the IBooksRepository with the constructor. Here, the BooksSampleRepository is injected. In case you miss registering any of these dependencies, an exception of type InvalidOperationException is thrown. Failing to register the IBooksRepository interface gives the error message Unable to resolve service for type 'Contracts.IBooksRepository' while attempting to activate 'Services.BooksService'.

Using a Framework

With the sample application, you’ve seen classes defined in a Framework project such as BindableBase, DelegateCommand, and EventAggregator. These classes are needed with all MVVM-based applications, and you don’t need to implement them on your own. They are not a big deal to do, but you can instead use an existing MVVM framework. MVVM Light (http://mvvmlight.net), from Laurent Bugnion, is a small framework that exactly fits the purpose of MVVM applications and is available for many different platforms.

Another framework that originally was created by the Microsoft Patterns and Practices team and has now moved to the community is Prism.Core (http://github.com/PrismLibrary). Although the Prism framework is a full-blown framework that supports add-ins and regions in which to position the controls, Prism.Core is very light and contains only a few types such as BindableBase, DelegateCommand, and ErrorsContainer. With the code download you will find the sample of this chapter implemented with Prism.Core as well.

Summary

This chapter gave you an architectural guideline for creating XAML-based applications around the MVVM pattern. You’ve seen a separation of concerns with the model, view, and view model. Besides that, you’ve seen implementing change notification with the interface INotifyPropertyChanged, data binding and compiled data binding, the repository pattern to separate the data access code, messaging between view models (that can also be used to communicate with views) by using events, and dependency injection with and without an IoC container.

All this allows for code sharing while still using features of specific platforms. You can use platform-specific features with repository and service implementations, and contracts are available with all platforms. For code sharing, you’ve seen the API contracts with the UWP, shared projects, and portable libraries.

The next chapter guides you through user interface features of the Universal Windows Platform apps.

32
Windows Apps: User Interfaces

What’s In This Chapter?

	Navigation between pages

	Creating a hamburger button

	Using the SplitView

	Layouts with RelativePanel

	Adaptive UI for different screen sizes

	Using the AutoSuggest control

	Using the Pen with InkCanvas

	Defining commands with app bar controls

	Compiled binding features

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter contains one big sample that shows the various aspects of this chapter:

	Page Navigation

	App Shell

	Layout

	Controls

	Compiled Binding

Overview

The Windows apps covered in this chapter are applications using the Universal Windows Platform (UWP)—apps that run on Windows 10 devices. This chapter covers user interface features such as navigating between pages, creating page layouts, and defining commands to allow the user to do some actions, use the new compiled data binding, and to use some special controls.

The previous chapters cover XAML: Chapter 29 covers the core information, Chapter 30 defines styles for apps, and Chapter 31 covers several patterns that are commonly used with XAML-based apps.

This chapter starts with some specific topics related to user interface elements of the Windows apps: using the UWP. Apps created for the UWP can run on Windows 10, the Windows Phone, and other device families such as Xbox, HoloLens, and Internet of Things (IoT).

The chapter starts with creating navigation between pages and using the new system back button, the hamburger button, and the SplitView to adapt navigation controls for different screen sizes. It covers different kinds of main pages, such as the Hub and Pivot controls, to allow for different kinds of navigation, and the chapter also explains creating a custom app shell.

You find out how to create a layout of single pages using the VariableSizedWrapGrid and the RelativePanel with adaptive triggers. Deferred loading allows for showing the user interface faster.

With compiled binding, you can see another performance improvement that helps you detect errors earlier.

In the “Controls” section, you see some new controls in action, such as the AutoSuggest control and the InkCanvas, which provides for easy drawing using a pen, touchscreen, and mouse.

Before reading this chapter, you should be familiar with XAML as discussed in Chapters 29, 30, and 31. Only specific UWP apps features are covered in this chapter.

Navigation

If your application is composed of multiple pages, you need the ability to navigate between these pages. The heart of navigation is the Frame class. The Frame class enables you to navigate to specific pages using the Navigate method and optionally pass parameters. The Frame class keeps a stack of the pages to which you have navigated, which makes it possible to go back, go forward, limit the number of pages in the stack, and more.

An important aspect of navigation is having the ability to navigate back. With Windows 8, back navigation was usually handled by a button with a back arrow in the upper-left corner of the page. The Windows Phone always had a physical back button. With Windows 10, this functionality needs to be combined. The following sections show you the new way of using back navigation.

Navigating to the Initial Page

Let’s start creating a Windows app with multiple pages to navigate between the pages. The template-generated code contains the OnLaunched method within the App class where a Frame object gets instantiated and then used to navigate to the MainPage by calling the Navigate method (code file PageNavigation/App.xaml.cs):

protected override void OnLaunched(LaunchActivatedEventArgs e)
{
 Frame rootFrame = Window.Current.Content as Frame;

 if (rootFrame == null)
 {
 rootFrame = new Frame();

 rootFrame.NavigationFailed += OnNavigationFailed;

 if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 //TODO: Load state from previously suspended application
 }

 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 rootFrame.Navigate(typeof(MainPage), e.Arguments);
 }
 Window.Current.Activate();
}

NOTE The source code has a TODO comment to load the state from the previously suspended application. How you can deal with suspension is explained in Chapter 33, “Advanced Windows Apps.”

The Frame class keeps a stack of pages that have been visited. The GoBack method makes it possible to navigate back within this stack (if the CanGoBack property returns true), and the GoForward method enables you to go forward one page after a back navigation. The Frame class also offers several events for navigation, such as Navigating, Navigated, NavigationFailed, and NavigationStopped.

To see navigation in action, besides the MainPage, the SecondPage and ThirdPage pages are created to navigate between these pages. From the MainPage, you can navigate to the SecondPage, and from the SecondPage to the ThirdPage, by passing some data.

Because there’s common functionality between these pages, a base class BasePage is created from which all these pages derive. The BasePage class derives from the base class Page and implements the interface INotifyPropertyChanged for user interface updates.

public abstract class BasePage : Page, INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 private string _navigationMode;

 public string NavigationMode
 {
 get { return _navigationMode; }
 set
 {
 _navigationMode = value;
 OnPropertyChanged();
 }
 }

 protected virtual void OnPropertyChanged(
 [CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }

 // etc.
}

NOTE The interface INotifyPropertyChanged is discussed in Chapter 31, “Patterns with XAML Apps,” to implement change notifications.

Overriding Page Class Navigation

The Page class that is the base class of BasePage (and the base class of XAML pages) defines methods that are used on navigation. The method OnNavigatedTo is invoked when the page is navigated to. Within this page you can read how the navigation was done (NavigationMode property) and parameters for the navigation. The method OnNavigatingFrom is the first method that is invoked when you navigate away from the page. Here, the navigation can be cancelled. The method OnNavigatedFrom is finally invoked when you navigate away from this page. Here, you should do some cleanup of resources that have been allocated with the OnNavigatedTo method (code file PageNavigation/App.xaml.cs):

public abstract class BasePage : Page, INotifyPropertyChanged
{
 // etc.
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);

 NavigationMode = $"Navigation Mode: {e.NavigationMode}";
 // etc.
 }

 protected override void OnNavigatingFrom(NavigatingCancelEventArgs e)
 {
 base.OnNavigatingFrom(e);
 }

 protected override void OnNavigatedFrom(NavigationEventArgs e)
 {
 base.OnNavigatedFrom(e);
 // etc.
 }
}

Navigating Between Pages

Let’s implement the three pages. For using the BasePage class, the code-behind file needs to be modified to use the BasePage as a base class (code file PageNavigation/MainPage.xaml.cs):

public sealed partial class MainPage : BasePage
{
 // etc.
}

The change of the base class also needs to be reflected in the XAML file using the BasePage element instead of the Page (code file PageNavigation/MainPage.xaml):

<local:BasePage
 x:Class="PageNavigation.MainPage"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PageNavigation"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

The MainPage contains a TextBlock element that binds to the NavigationMode property declared in the BasePage, and a Button control with a Click event binding to the method OnNavigateToSecondPage (code file PageNavigation/MainPage.xaml):

<StackPanel Orientation="Vertical">
 <TextBlock Style="{StaticResource TitleTextBlockStyle}" Margin="8">
 Main Page</TextBlock>
 <TextBlock Text="{x:Bind NavigationMode, Mode=OneWay}" Margin="8" />
 <Button Content="Navigate to SecondPage" Click="OnNavigateToSecondPage"
 Margin="8" />
</StackPanel>

The handler method OnNavigateToSecondPage navigates to the SecondPage using Frame.Navigate. Frame is a property of the Page class that returns the Frame instance (code file PageNavigation/MainPage.xaml.cs):

public void OnNavigateToSecondPage()
{
 Frame.Navigate(typeof(SecondPage));
}

When you navigate from the SecondPage to the ThirdPage, a parameter is passed to the target page. The parameter can be entered in the TextBox that is bound to the Data property (code file PageNavigation/SecondPage.xaml):

<StackPanel Orientation="Vertical">
 <TextBlock Style="{StaticResource TitleTextBlockStyle}" Margin="8">
 Second Page</TextBlock>
 <TextBlock Text="{x:Bind NavigationMode, Mode=OneWay}" Margin="8" />
 <TextBox Header="Data" Text="{x:Bind Data, Mode=TwoWay}" Margin="8" />
 <Button Content="Navigate to Third Page"
 Click="{x:Bind OnNavigateToThirdPage, Mode=OneTime}" Margin="8" />
</StackPanel>

With the code-behind file, the Data property is passed to the Navigate method (code file PageNavigation/SecondPage.xaml.cs):

public string Data { get; set; }

public void OnNavigateToThirdPage()
{
 Frame.Navigate(typeof(ThirdPage), Data);
}

The parameter received is retrieved in the ThirdPage. In the OnNavigatedTo method, the NavigationEventArgs receives the parameter with the Parameter property. The Parameter property is of type object as you can pass any data with the page navigation (code file PageNavigation/ThirdPage.xaml.cs):

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 Data = e.Parameter as string;
}

private string _data;
public string Data
{
 get { return _data; }
 set
 {
 _data = value;
 OnPropertyChanged();
 }
}

Back Button

When you have navigation in the app, it’s necessary to include a way to go back. With Windows 8, a custom back button was located in the upper-left corner of the page. You can still do this with Windows 10. Indeed, some Microsoft apps include such a button; Microsoft Edge puts a back and forward button at the top-left position. It makes sense to have a back button nearby when there is also a forward button. With Windows 10, you can make use of the system back button.

Depending on whether the app is running in desktop mode or tablet mode, the back button is located in different positions. To enable this back button, you need to set the AppViewBackButtonVisibility of the SystemNavigationManager to AppViewBackButtonVisiblitity, which is the case in the following when the property Frame.CanGoBack returns true (code file PageNavigation/BasePage.cs):

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 NavigationMode = $"Navigation Mode: {e.NavigationMode}";

 SystemNavigationManager.GetForCurrentView().AppViewBackButtonVisibility =
 Frame.CanGoBack ? AppViewBackButtonVisibility.Visible :
 AppViewBackButtonVisibility.Collapsed;

 base.OnNavigatedTo(e);
}

Next, you use the BackRequested event of the SystemNavigationManager class. Reacting to the BackRequestedEvent can be done globally for the complete app as it is shown here. In case you need this functionality only in a few pages, you can also put this code within the OnNavigatedTo method of the page (code file PageNavigation/App.xaml.cs):

protected override void OnLaunched(LaunchActivatedEventArgs e)
{
 // etc.

 SystemNavigationManager.GetForCurrentView().BackRequested +=
 App_BackRequested;

 Window.Current.Activate();
}

The handler method App_BackRequested invokes the GoBack method on the frame object (code file PageNavigation/App.xaml.cs):

private void App_BackRequested(object sender, BackRequestedEventArgs e)
{
 Frame rootFrame = Window.Current.Content as Frame;
 if (rootFrame == null) return;

 if (rootFrame.CanGoBack && e.Handled == false)
 {
 e.Handled = true;
 rootFrame.GoBack();
 }
}

When you run the app in desktop mode, you can see the back button in the left corner of the top border (see Figure 32.1). In cases where the app is running in tablet mode, the border is not visible, but the back button is shown in the bottom border beside the Windows button (see Figure 32.2). This is the new back button of the app. In cases where navigation in the app is not possible, the user navigates back to the previous app when he or she taps the back button.

[image: Image described by surrounding text.]

Figure 32.1

[image: Image described by surrounding text.]

Figure 32.2

When you run the app on the Windows Phone, you can use the physical phone button to navigate back (see Figure 32.3).

[image: Image described by surrounding text.]

Figure 32.3

Hub

You can also allow the user to navigate between content within a single page using the Hub control. An example where this can be used is if you want to show an image as an entry point for the app and more information is shown as the user scrolls (see Figure 32.4, the Picture Search app).

[image: Image described by surrounding text.]

Figure 32.4

With the Hub control you can define multiple sections. Each section has a header and content. You can also make the header clickable—for example, to navigate to a detail page. The following code sample defines a Hub control where you can click the headers of sections 2 and 3. When you click the section header, the method assigned with the SectionHeaderClick event of the Hub control is invoked. Each section consists of a header and some content. The content of the section is defined by a DataTemplate (code file NavigationControls/HubPage.xaml):

<Hub Background="{ThemeResource ApplicationPageBackgroundThemeBrush}"
 SectionHeaderClick="{x:Bind OnHeaderClick}">
 <Hub.Header>
 <StackPanel Orientation="Horizontal">
 <TextBlock>Hub Header</TextBlock>
 <TextBlock Text="{x:Bind Info, Mode=TwoWay}" />
 </StackPanel>
 </Hub.Header>

 <HubSection Width="400" Background="LightBlue" Tag="Section 1">
 <HubSection.Header>
 <TextBlock>Section 1 Header</TextBlock>
 </HubSection.Header>
 <DataTemplate>
 <TextBlock>Section 1</TextBlock>
 </DataTemplate>
 </HubSection>
 <HubSection Width="300" Background="LightGreen" IsHeaderInteractive="True"
 Tag="Section 2">
 <HubSection.Header>
 <TextBlock>Section 2 Header</TextBlock>
 </HubSection.Header>
 <DataTemplate>
 <TextBlock>Section 2</TextBlock>
 </DataTemplate>
 </HubSection>
 <HubSection Width="300" Background="LightGoldenrodYellow"
 IsHeaderInteractive="True" Tag="Section 3">
 <HubSection.Header>
 <TextBlock>Section 3 Header</TextBlock>
 </HubSection.Header>
 <DataTemplate>
 <TextBlock>Section 3</TextBlock>
 </DataTemplate>
 </HubSection>
</Hub>

When you click the header section, the Info dependency property is assigned the value of the Tag property. The Info property in turn is bound within the header of the Hub control (code file NavigationControls/HubPage.xaml.cs):

public void OnHeaderClick(object sender, HubSectionHeaderClickEventArgs e)
{
 Info = e.Section.Tag as string;
}

public string Info
{
 get { return (string)GetValue(InfoProperty); }
 set { SetValue(InfoProperty, value); }
}

public static readonly DependencyProperty InfoProperty =
 DependencyProperty.Register("Info", typeof(string), typeof(HubPage),
 new PropertyMetadata(string.Empty));

NOTE Dependency properties are explained in Chapter 29, “Core XAML.”

When you run the app, you can see multiple hub sections (see Figure 32.5) with a See More link in sections 2 and 3 because with these sections IsHeaderInteractive is set to true. Of course, you can create a custom header template to have a different look for the header.

[image: Image described by surrounding text.]

Figure 32.5

NOTE Creating custom templates is explained in Chapter 30, “Styling XAML Apps.”

Pivot

You can create a pivot-like look for the navigation using the Pivot control. With Windows 8, this control was only available for the phone, but now it is available for the UWP.

The Pivot control can contain multiple PivotItem controls. Each of these item controls has a header and content. The Pivot itself contains left and right headers. The sample code fills the right header (code file NavigationControls/PivotPage.xaml):

<Pivot Title="Pivot Sample"
 Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Pivot.RightHeader>
 <StackPanel>
 <TextBlock>Right Header</TextBlock>
 </StackPanel>
 </Pivot.RightHeader>
 <PivotItem>
 <PivotItem.Header>Header Pivot 1</PivotItem.Header>
 <TextBlock>Pivot 1 Content</TextBlock>
 </PivotItem>
 <PivotItem>
 <PivotItem.Header>Header Pivot 2</PivotItem.Header>
 <TextBlock>Pivot 2 Content</TextBlock>
 </PivotItem>
 <PivotItem>
 <PivotItem.Header>Header Pivot 3</PivotItem.Header>
 <TextBlock>Pivot 3 Content</TextBlock>
 </PivotItem>
 <PivotItem>
 <PivotItem.Header>Header Pivot 4</PivotItem.Header>
 <TextBlock>Pivot 4 Content</TextBlock>
 </PivotItem>
</Pivot>

When you run the application, you can see the Pivot control (see Figure 32.6). The right header is always visible on the right. Click one of the headers to see the content of the item.

[image: Image described by surrounding text.]

Figure 32.6

In case all headers do not fit the screen, the user can scroll. Using the mouse for navigation, you can see arrows on the left and right as shown in Figure 32.7.

[image: Image described by surrounding text.]

Figure 32.7

Application Shells

Windows 10 apps often use the SplitView control. (See the later section “Split View” for more information about this control.) This control usually is used to show navigation menus—made of images and/or text—on the left side and the selected content on the right. With a hamburger button, the menus can be visible or hidden. For example, the Groove Music app looks different depending on the available width. Figure 32.8 shows the app with a SplitView pane on the left side showing menus using text and icons. When the display width is reduced, the SplitView pane leaves a collapsed view with only icons, as shown in Figure 32.9. When the width is reduced even more, the menus are completely removed, as shown in Figure 32.10.

[image: Image described by surrounding text.]

Figure 32.8

[image: Image described by surrounding text.]

Figure 32.9

[image: Image described by surrounding text.]

Figure 32.10

The sample application, which uses the SplitView and hamburger button, adds some more features. When navigating between multiple pages using a menu, it’s a good idea to have the menu available in all the pages. Navigation works using methods of the Frame class, as you’ve seen in the “Navigation” section earlier in this chapter. You can create a page and use it as an application shell, and you can add a frame in the content of the SplitView. The AppShellSample app demonstrates how you can do this.

With the template-generated code, in the OnLaunched method of the App class a Frame object is created, and the frame navigates to the MainPage. This code is changed to create an AppShell and use the frame from within the AppShell (shell.AppFrame) to navigate to the MainPage (code file AppShellSample/App.xaml.cs):

protected override void OnLaunched(LaunchActivatedEventArgs e)
{
 AppShell shell = Window.Current.Content as AppShell;

 if (shell == null)
 {
 shell = new AppShell();
 shell.Language = ApplicationLanguages.Languages[0];
 shell.AppFrame.NavigationFailed += OnNavigationFailed;

 if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 //TODO: Load state from previously suspended application
 }
 }

 Window.Current.Content = shell;

 if (shell.AppFrame.Content == null)
 {
 shell.AppFrame.Navigate(typeof(MainPage), e.Arguments,
 new SuppressNavigationTransitionInfo());
 }
 Window.Current.Activate();
}

The application that’s created is created like the other XAML pages, using the Blank Page Visual Studio item template. For adding a frame to the application shell, you add a SplitView control, and you add a Frame element to the content of the SplitView. With the Frame, you also assign the Navigating and Navigated events to event handlers of the page (code file AppShellSample/AppShell.xaml):

<SplitView x:Name="RootSplitView"
 DisplayMode="Inline"
 OpenPaneLength="256"
 IsTabStop="False">
 <SplitView.Pane>
 <!-- pane content comes here -->
 </SplitView.Pane>
 <Frame x:Name="frame"
 Navigating="OnNavigatingToPage"
 Navigated="OnNavigatedToPage">
 <Frame.ContentTransitions>
 <TransitionCollection>
 <NavigationThemeTransition>
 <NavigationThemeTransition.DefaultNavigationTransitionInfo>
 <EntranceNavigationTransitionInfo/>
 </NavigationThemeTransition.DefaultNavigationTransitionInfo>
 </NavigationThemeTransition>
 </TransitionCollection>
 </Frame.ContentTransitions>
 </Frame>
</SplitView>

NOTE With the Frame, you define a ContentTransition to animate the content within the frame using an EntraceNavigationTransitionInfo. Animations are explained in Chapter 30.

To access the Frame object within the SplitView by using the AppShell class, you add the AppFrame property as well as the handler methods for the frame navigation (code file AppShellSample/AppShell.xaml.cs):

public Frame AppFrame => frame;

private void OnNavigatingToPage(object sender, NavigatingCancelEventArgs e)
{
}

private void OnNavigatedToPage(object sender, NavigationEventArgs e)
{
}

Hamburger Button

To open and close the pane of the SplitView, you usually use a hamburger button. The hamburger button is defined within the application shell. This button is defined within the root Grid as a ToggleButton. The style is set to the resource SplitViewTogglePaneButtonStyle that defines the look. Clicking this button changes the value of the IsChecked property that binds to a SplitView control that is defined next. This binding opens and closes the pane of the SplitView (code file AppShellSample/AppShell.xaml):

<ToggleButton x:Name="TogglePaneButton"
 TabIndex="1"
 Style="{StaticResource SplitViewTogglePaneButtonStyle}"
 IsChecked="{x:Bind Path=RootSplitView.IsPaneOpen, Mode=TwoWay,
 Converter={StaticResource boolConverter}}"
 Unchecked="HamburgerMenu_UnChecked"
 AutomationProperties.Name="Menu"
 ToolTipService.ToolTip="Menu" />

The look of the hamburger button is mainly defined by using the font character 0xe700 of the font Segoe MDL2 Assets. This font is referenced from the resource SymbolThemeFontFamily (code file AppShellSample/Styles/Styles.xaml):

<Style x:Key="SplitViewTogglePaneButtonStyle" TargetType="ToggleButton">
 <Setter Property="FontSize" Value="20" />
 <Setter Property="FontFamily"
 Value="{ThemeResource SymbolThemeFontFamily}" />
 <Setter Property="Background" Value="Transparent" />
 <Setter Property="Foreground" Value=
 "{ThemeResource SystemControlForegroundBaseHighBrush}" />
 <Setter Property="Content" Value="" />
 <!-- etc. -->

NOTE To see all the symbols and their character number of the Segoe MDL2 Assets font, it’s best to use the Character Map desktop application, as shown in Figure 32.11.

[image: Screenshot shows Character Map window in which font selected as Segoe MDL2 Assets, a table of symbols, textfield for Characters to copy, checkbox for Advanced view, and Select, Copy, and Help buttons.]

Figure 32.11

The hamburger button of the app is shown in Figure 32.12.

[image: Diagram shows the hamburger button which is a symbol consisting of three parallel horizontal lines.]

Figure 32.12

Split View

The hamburger button controls the opening and closing of the SplitView control. Let’s get into details on the SplitView. The OpenPaneLength property of the SplitView defines the pane size when the pane is open. The DisplayMode property has four different modes: Inline, Overlay, CompactInline, and CompactOverlay. The difference between the inline and overlay modes is that opening the pane either overlays the content of the SplitView (the frame), or moves the content to the right to have a place for the pane. The compact modes have a smaller pane; for example, they show only icons instead of the text of the menu.

In the AppShell XAML code, the SplitView is defined with an OpenPaneLength of 256 and DisplayMode Inline (code file AppShellSample/AppShell.xaml):

<SplitView x:Name="RootSplitView"
 DisplayMode="Inline"
 OpenPaneLength="256"
 IsTabStop="False">
 <SplitView.Pane>
 <!-- etc. -->
 </SplitView.Pane>
 <Frame x:Name="frame"
 Navigating="OnNavigatingToPage"
 Navigated="OnNavigatedToPage">
 <Frame.ContentTransitions>
 <TransitionCollection>
 <NavigationThemeTransition>
 <NavigationThemeTransition.DefaultNavigationTransitionInfo>
 <EntranceNavigationTransitionInfo/>
 </NavigationThemeTransition.DefaultNavigationTransitionInfo>
 </NavigationThemeTransition>
 </TransitionCollection>
 </Frame.ContentTransitions>
 </Frame>
</SplitView>

To open and close the pane of the SplitView, you can set the IsPaneOpen property. When you click the hamburger button, the pane should open and close; thus you can use data binding to connect the hamburger button to the SplitView. The IsPaneOpen property is of type bool, and the IsChecked property of the ToggleButton is of type bool?. So a converter between bool and bool? is needed (code file AppShellSample/Converters/BoolToNullableBoolConverter):

public class BoolToNullableBoolConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 string language) => value;

 public object ConvertBack(object value, Type targetType, object parameter,
 string language)
 {
 bool defaultValue = false;
 if (parameter != null)
 {
 defaultValue = (bool)parameter;
 }

 bool? val = (bool?)value;
 return val ?? defaultValue;
 }
}

NOTE Data binding is explained in Chapter 31. Compiled data binding, a feature of the UWP, is covered in detail later in this chapter in the section “Data Binding.”

The BoolToNullableBoolConverter is instantiated with the resources of the page (code file AppShellSample/AppShell.xaml):

<Page.Resources>
 <conv:BoolToNullableBoolConverter x:Key="boolConverter" />
</Page.Resources>

With the ToggleButton, the IsChecked property is bound to the IsPaneOpen of the split view, using the BoolToNullableBoolConverter referenced as a static resource.

<ToggleButton x:Name="TogglePaneButton"
 TabIndex="1"
 Style="{StaticResource SplitViewTogglePaneButtonStyle}"
 IsChecked="{x:Bind Path=RootSplitView.IsPaneOpen, Mode=TwoWay,
 Converter={StaticResource boolConverter}}"
 Unchecked="HamburgerMenu_UnChecked"
 AutomationProperties.Name="Menu"
 ToolTipService.ToolTip="Menu" />

NOTE Compiled binding doesn’t support element-to-element binding as traditional binding does. However, as the SplitView has the name RootSplitView assigned, this variable can be directly used from code, and thus from compiled binding.

Lastly, some content needs to be added to the SplitView pane.

Adding Content to the SplitView Pane

The pane of the SplitView should now list menu buttons for navigation to different pages. The sample code makes use of simple button controls within a ListView control. The ListView defines a Header, Footer, and Items section. The Header section includes a back button. Previously, the system back button was used with the help of the SystemNavigationManager. Instead of this system back button, you can use a custom button, as is used here. This button element binds the IsEnabled property to AppFrame.CanGoBack to change the IsEnabled mode depending on whether there’s a back stack available. The Footer of the ListView defines a settings button. Within the items list of the ListView, Home and Edit buttons are created to navigate to these corresponding pages (code file AppShellSample/AppShell.xaml):

<SplitView.Pane>
 <ListView TabIndex="3" x:Name="NavMenuList" Margin="0,48,0,0">
 <ListView.Header>
 <Button x:Name="BackButton"
 TabIndex="2"
 Style="{StaticResource NavigationBackButtonStyle}"
 IsEnabled="{x:Bind AppFrame.CanGoBack, Mode=OneWay}"
 Width="{x:Bind Path=NavMenuList.Width, Mode=OneWay}"
 HorizontalAlignment=
 "{x:Bind Path=NavMenuList.HorizontalAlignment, Mode=OneWay}"
 Click="{x:Bind Path=BackButton_Click}"/>
 </ListView.Header>
 <ListView.Items>
 <Button x:Name="HomeButton" Margin="-12" Padding="0"
 TabIndex="3"
 Style="{StaticResource HomeButtonStyle}"
 Width="{x:Bind Path=NavMenuList.Width}"
 HorizontalAlignment=
 "{x:Bind Path=NavMenuList.HorizontalAlignment}"
 Click="{x:Bind Path=GoToHomePage}" />
 <Button x:Name="EditButton" Margin="-12" Padding="0"
 TabIndex="4"
 Style="{StaticResource EditButtonStyle}"
 Width="{x:Bind Path=NavMenuList.Width}"
 HorizontalAlignment=
 "{x:Bind Path=NavMenuList.HorizontalAlignment}"
 Click="{x:Bind Path=GoToEditPage}" />
 </ListView.Items>
 <ListView.Footer>
 <Button x:Name="SettingsButton"
 TabIndex="3"
 Style="{StaticResource SettingsButtonStyle}"
 Width="{x:Bind Path=NavMenuList.Width}"
 HorizontalAlignment=
 "{x:Bind Path=NavMenuList.HorizontalAlignment}" />
 </ListView.Footer>
 </ListView>
</SplitView.Pane>

The symbol of these buttons is defined using the Segoe MDL2 Assets font, much like the hamburger button created earlier. These buttons need text and an icon. This is defined within a Grid element (code file AppShellSample/Styles/Styles.xaml):

<Style x:Key="NavigationBackButtonStyle" TargetType="Button"
 BasedOn="{StaticResource NavigationBackButtonNormalStyle}">
 <Setter Property="HorizontalAlignment" Value="Stretch"/>
 <Setter Property="HorizontalContentAlignment" Value="Stretch"/>
 <Setter Property="Height" Value="48"/>
 <Setter Property="Width" Value="NaN"/>
 <Setter Property="MinWidth" Value="48"/>
 <Setter Property="AutomationProperties.Name" Value="Back"/>
 <Setter Property="Content">
 <Setter.Value>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="48" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <FontIcon Grid.Column="0" FontSize="16" Glyph=""
 MirroredWhenRightToLeft="True" VerticalAlignment="Center"
 HorizontalAlignment="Center"/>
 <TextBlock Grid.Column="1" Style="{ThemeResource BodyTextBlockStyle}"
 Text="Back" VerticalAlignment="Center" />
 </Grid>
 </Setter.Value>
 </Setter>
</Style>

The handler method GoToEditPage that is invoked by clicking on the Edit button navigates to the Edit page using the Frame within the SplitView (code file AppShellSample/AppShell.xaml.cs):

public void GoToEditPage()
{
 AppFrame?.Navigate(typeof(EditPage));
}

When you click the Home button, the navigation should not only go to the main page, but it should also get rid of the complete stack from the Frame. The Frame does not offer a direct clear method to remove the pages from the stack, but this can be done in a while loop as long as CanGoBack returns true (code file AppShellSample/AppShell.xaml.cs):

public void GoToHomePage()
{
 while (AppFrame?.CanGoBack ?? false) AppFrame.GoBack();
}

When you run the application, you can see that the SplitView pane is closed in Figure 32.13 and open in Figure 32.14.

[image: Screenshot shows AppShellSample window with hamburger button and header Main Page on top left corner.]

Figure 32.13

[image: Screenshot shows AppShellSample window with hamburger button and a list view that contain Home, Edit, and Settings options on left side and right side has the header Main Page.]

Figure 32.14

Layout

The SplitView control discussed in the previous section is already an important control to organize the layout of the user interface. With many new Windows 10 apps you can see this control used for the main layout. There are several other controls to define a layout. This section demonstrates the VariableSizedWrapGrid for arranging multiple items in a grid that automatically wraps, the RelativePanel for arranging items relative to each other or relative to a parent, and adaptive triggers for rearranging the layout depending on the window size.

VariableSizedWrapGrid

VariableSizedWrapGrid is a wrap grid that automatically wraps to the next row or column if the size available for the grid is not large enough. The second feature of this grid is an allowance for items with multiple rows or columns; that’s why it’s called variable.

The following code snippet creates a VariableSizedWrappedGrid with orientation Horizontal, a maximum number of 20 items in the row, and rows and columns that have a size of 50 (code file LayoutSamples/Views/VariableSizedWrapGridSample.xaml):

<VariableSizedWrapGrid x:Name="grid1" MaximumRowsOrColumns="20" ItemHeight="50"
 ItemWidth="50" Orientation="Horizontal" />

The VariableSizedWrapGrid is filled with 30 Rectangle and TextBlock elements that have random sizes and colors. Depending on the size, 1 to 3 rows or columns can be used within the grid. The size of the items is set using the attached properties VariableSizedWrapGrid.ColumnSpan and VariableSizedWrapGrid.RowSpan (code file LayoutSamples/Views/VariableSizedWrapGridSample.xaml.cs):

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 Random r = new Random();
 Grid[] items =
 Enumerable.Range(0, 30).Select(i =>
 {
 byte[] colorBytes = new byte[3];
 r.NextBytes(colorBytes);
 var rect = new Rectangle
 {
 Height = r.Next(40, 150),
 Width = r.Next(40, 150),
 Fill = new SolidColorBrush(new Color
 {
 R = colorBytes[0],
 G = colorBytes[1],
 B = colorBytes[2],
 A = 255
 })
 };
 var textBlock = new TextBlock
 {
 Text = (i + 1).ToString(),
 HorizontalAlignment =HorizontalAlignment.Center,
 VerticalAlignment = VerticalAlignment.Center
 };
 Grid grid = new Grid();
 grid.Children.Add(rect);
 grid.Children.Add(textBlock);
 return grid;
 }).ToArray();

 foreach (var item in items)
 {
 grid1.Children.Add(item);
 Rectangle rect = item.Children.First() as Rectangle;
 if (rect.Width > 50)
 {
 int columnSpan = ((int)rect.Width / 50) + 1;
 VariableSizedWrapGrid.SetColumnSpan(item, columnSpan);
 int rowSpan = ((int)rect.Height / 50) + 1;
 VariableSizedWrapGrid.SetRowSpan(item, rowSpan);
 }
 }

When you run the application, you can see the rectangles and how they wrap for different window sizes in Figures 32.15 and 32.16.

[image: Screenshot shows LayoutSamples window which contain 30 rectangles of different size and colors.]

Figure 32.15

[image: Screenshot shows LayoutSamples window which contain 18 rectangles of different size and colors.]

Figure 32.16

RelativePanel

RelativePanel is a new panel for the UWP that allows one element to be positioned in relation to another element. If you’ve used the Grid control with definitions for rows and columns and you had to insert a row, you had to change all elements that were below the row that was inserted. The reason is that all rows and columns are indexed by numbers. This is not an issue with the RelativePanel, which enables you to place elements in relation to each other.

NOTE Compared to the RelativePanel, the Grid control still has its advantages with auto, star, and fixed sizing. Read Chapter 34, “Windows Desktop Applications with WPF,” in which the Grid control is explained in detail. This control is covered with WPF, but you can use it in a similar way with the UWP.

The following code snippet aligns several TextBlock and TextBox controls, a Button, and a Rectangle within a RelativePanel. The TextBox elements are positioned to the right of the corresponding TextBlock elements; the Button is positioned relative to the bottom of the panel; and the Rectangle is aligned with the top with the first TextBlock and to the right of the first TextBox (code file LayoutSamples/Views/RelativePanelSample.xaml):

<RelativePanel>
 <TextBlock x:Name="FirstNameLabel" Text="First Name" Margin="8" />
 <TextBox x:Name="FirstNameText" RelativePanel.RightOf="FirstNameLabel"
 Margin="8" Width="150" />
 <TextBlock x:Name="LastNameLabel" Text="Last Name"
 RelativePanel.Below="FirstNameLabel" Margin="8" />
 <TextBox x:Name="LastNameText" RelativePanel.RightOf="LastNameLabel"
 Margin="8" RelativePanel.Below="FirstNameText" Width="150" />
 <Button Content="Save" RelativePanel.AlignHorizontalCenterWith="LastNameText"
 RelativePanel.AlignBottomWithPanel="True" Margin="8" />
 <Rectangle x:Name="Image" Fill="Violet" Width="150" Height="250"
 RelativePanel.AlignTopWith="FirstNameLabel"
 RelativePanel.RightOf="FirstNameText" Margin="8" />
</RelativePanel>

Figure 32.17 shows the alignment of the controls when you run the application.

[image: Screenshot shows the alignment of the controls first name, last name and save in a layoutsamples window.]

Figure 32.17

Adaptive Triggers

The RelativePanel is a great control for alignment. However, to support multiple screen sizes and rearrange the controls depending on the screen size, you can use adaptive triggers with the RelativePanel control. For example, on a small screen the TextBox controls should be arranged below the TextBlock controls, but on a larger screen the TextBox controls should be right of the TextBlock controls.

In the following code, the RelativePanel from before is changed to remove all RelativePanel attached properties that should not apply to all screen sizes, and an optional image is added (code file LayoutSamples/Views/AdaptiveRelativePanelSample.xaml):

<RelativePanel ScrollViewer.VerticalScrollBarVisibility="Auto" Margin="16">
 <TextBlock x:Name="FirstNameLabel" Text="First Name" Margin="8" />
 <TextBox x:Name="FirstNameText" Margin="8" Width="150" />
 <TextBlock x:Name="LastNameLabel" Text="Last Name" Margin="8" />
 <TextBox x:Name="LastNameText" Margin="8" Width="150" />
 <Button Content="Save" RelativePanel.AlignBottomWithPanel="True"
 Margin="8" />
 <Rectangle x:Name="Image" Fill="Violet" Width="150" Height="250"
 Margin="8" />
 <Rectangle x:Name="OptionalImage" RelativePanel.AlignRightWithPanel="True"
 Fill="Red" Width="350" Height="350" Margin="8" />
</RelativePanel>

Using an adaptive trigger—with which the MinWindowWidth can be set to define when the trigger is fired—values for different properties are set to arrange the elements depending on the space available for the app. As the screen size gets smaller, the width needed by the app gets smaller as well. Moving elements below instead of beside reduces the width needed. Instead, the user can scroll down. With the smallest window width, the optional image is set collapsed (code file LayoutSamples/Views/AdaptiveRelativePanelSample.xaml):

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState x:Name="WideState">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="1024" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Target="FirstNameText.(RelativePanel.RightOf)"
 Value="FirstNameLabel" />
 <Setter Target="LastNameLabel.(RelativePanel.Below)"
 Value="FirstNameLabel" />
 <Setter Target="LastNameText.(RelativePanel.Below)"
 Value="FirstNameText" />
 <Setter Target="LastNameText.(RelativePanel.RightOf)"
 Value="LastNameLabel" />
 <Setter Target="Image.(RelativePanel.AlignTopWith)"
 Value="FirstNameLabel" />
 <Setter Target="Image.(RelativePanel.RightOf)" Value="FirstNameText" />
 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="MediumState">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="720" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Target="FirstNameText.(RelativePanel.RightOf)"
 Value="FirstNameLabel" />
 <Setter Target="LastNameLabel.(RelativePanel.Below)"
 Value="FirstNameLabel" />
 <Setter Target="LastNameText.(RelativePanel.Below)"
 Value="FirstNameText" />
 <Setter Target="LastNameText.(RelativePanel.RightOf)"
 Value="LastNameLabel" />
 <Setter Target="Image.(RelativePanel.Below)" Value="LastNameText" />
 <Setter Target="Image.(RelativePanel.AlignHorizontalCenterWith)"
 Value="LastNameText" />
 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="NarrowState">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="320" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Target="FirstNameText.(RelativePanel.Below)"
 Value="FirstNameLabel" />
 <Setter Target="LastNameLabel.(RelativePanel.Below)"
 Value="FirstNameText" />
 <Setter Target="LastNameText.(RelativePanel.Below)"
 Value="LastNameLabel" />
 <Setter Target="Image.(RelativePanel.Below)" Value="LastNameText" />
 <Setter Target="OptionalImage.Visibility" Value="Collapsed" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

You can establish the minimum window width needed by the application by setting the SetPreferredMinSize with the ApplicationView class (code file LayoutSamples/App.xaml.cs):

protected override void OnLaunched(LaunchActivatedEventArgs e)
{
 ApplicationView.GetForCurrentView().SetPreferredMinSize(
 new Size { Width = 320, Height = 300 });
 // etc.
}

When you run the application, you can see different layout arrangements with the smallest width (see Figure 32.18), a medium width (see Figure 32.19), and the maximum width (see Figure 32.20).

[image: Screenshot shows the layout arrangements of the controls first name, last name and save in a layoutsamples window with the smallest width.]

Figure 32.18

[image: Screenshot shows the layout arrangements of the controls first name, last name and save in a layoutsamples window with a medium width.]

Figure 32.19

[image: Screenshot shows the layout arrangements of the controls first name, last name and save in a layoutsamples window with the maximum width.]

Figure 32.20

The adaptive trigger is also good to use to change the look of the SplitView to CompactInline or Overlay mode (code file AppShellSample/AppShell.xaml):

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState>
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="720" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Target="RootSplitView.DisplayMode" Value="CompactInline"/>
 <Setter Target="RootSplitView.IsPaneOpen" Value="True"/>
 </VisualState.Setters>
 </VisualState>
 <VisualState>
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="0" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Target="RootSplitView.DisplayMode" Value="Overlay"/>
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

XAML Views

Adaptive triggers can help support a lot of different window sizes as well as support layouts of the app for running it on the phone and the desktop. If the user interface for your app should have more differences than can be solved by using the RelativePanel, the best option can be to use different XAML views. An XAML view contains just XAML code and uses the same code-behind as the corresponding page. You can create different XAML views for the same page for every device family.

You can define XAML views for mobile devices by creating a folder DeviceFamily-Mobile. The device-specific folder always starts with the name DeviceFamily. Examples of other device families supported are Team, Desktop, and IoT. You can use this device family name as postfix to specify XAML views for the corresponding device family. You create an XAML view using the XAML View Visual Studio item template. This template creates the XAML code but no code-behind file. This view needs to have the same name as the page where the view should be replaced.

Instead of creating a different folder for the mobile XAML views, you can also create the views in the same folder as the page but the view file is named using DeviceFamily-Mobile.

Deferred Loading

For a faster UI, you can delay creation of controls until they are needed. On small devices, some controls might not be needed at all, but with larger screens and faster systems they are needed. With previous versions of XAML applications, elements that have been added to the XAML code also have been instantiated. This is no longer the case with Windows 10. Here you can defer loading of controls as they are needed.

You can use deferred loading with adaptive triggers to load only some controls at a later time. One sample scenario where this is useful is when you have a smaller window that the user can resize to be larger. With the smaller window, some controls should not be visible, but they should be visible with the bigger size of the window. Another scenario where deferred loading can be useful is when some parts of the layout may take more time to load. Instead of letting the user wait until he sees the complete loaded layout, you can use deferred loading.

To use deferred loading, you need to add the x:DeferLoadingStrategy attribute to a control, as shown in the following code snippet with a Grid control. This control also needs to have a name assigned to it (code file LayoutSamples/Views/DelayLoadingSample.xaml):

<Grid x:DeferLoadStrategy="Lazy" x:Name="deferGrid">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="0" />
 <Rectangle Fill="Green" Grid.Row="0" Grid.Column="1" />
 <Rectangle Fill="Blue" Grid.Row="1" Grid.Column="0" />
 <Rectangle Fill="Yellow" Grid.Row="1" Grid.Column="1" />
</Grid>

To make this deferred control visible, all you need to do is invoke the FindName method to access the identifier of the control. This not only makes the control visible but also loads the XAML tree of the control before the control is made visible (code file LayoutSamples/Views/DelayLoadingSample.xaml.cs):

private void OnDeferLoad(object sender, RoutedEventArgs e)
{
 FindName(nameof(deferGrid));
}

When you run the application, you can verify with the Life Visual Tree window that the tree containing the deferGrid element is not available (see Figure 32.21), but after the FindName method is invoked to find the deferGrid element, the deferGrid element is added to the tree (see Figure 32.22).

[image: Image described by surrounding text.]

Figure 32.21

[image: Image described by surrounding text.]

Figure 32.22

Commands

Earlier in this chapter you saw how you can handle navigation for the user. You’ve seen the hamburger button and normal buttons that are used to navigate to different pages. With apps, you need more controls that allow the user to start some actions. Windows 8 had some interesting aspects for bringing command bars into action when the user swipes from top or bottom; the hidden commands allowed for less-crowded screen. Some really important command controls were still allowed to be placed directly on the screen. Microsoft’s OneNote had an interesting control that used only a small circle; when the user clicked inside it, the control grew larger to offer more options. The issue with this design is that it turned out to not be intuitive enough. The users had a hard time to find out which apps allowed for swiping from top or bottom, and often had no idea that they could do that. With Windows 10, where Windows apps can run in a small window instead of full-screen, this even has more issues. With Windows 10, it’s acceptable to have command bars that stay open all the time—just check Microsoft’s new version of OneNote that has a command control that looks like the Ribbon control.

NOTE The Ribbon control is discussed in Chapter 34.

An easy way to create a list of controls that can be activated by the user is by using the CommandBar and AppBar classes. CommandBar is easier to use but doesn’t have the flexibility of the AppBar. With the CommandBar, you can add only specific types of controls, whereas the AppBar enables you to use any element.

The following code sample creates a CommandBar that is positioned on top of the page. This CommandBar contains three AppBarButton controls (code file ControlsSample/Views/InkSample.xaml):

<Page.TopAppBar>
 <CommandBar>
 <AppBarButton Icon="Save" Label="Save" Click="{x:Bind OnSave}" />
 <AppBarButton Icon="OpenFile" Label="Open" Click="{x:Bind OnLoad}" />
 <AppBarButton Icon="Clear" Label="Clear" Click="{x:Bind OnClear}" />
 </CommandBar>
</Page.TopAppBar>

The Page class contains TopAppBar and BottomAppBar properties to position the app bars on top or bottom. These properties were necessary with Windows 8, but now they’re just for convenience. You can position the app bar within the page where you’d like it to be.

The AppBarButton controls are defined as children of the CommandBar. The symbol of the AppBar button can be defined in several ways. Using the Icon property, you can assign a BitmapIcon, FontIcon, PathIcon, or SymbolIcon. (Read Chapter 29 for information on how to define vector graphics with the Path element.) Using the Icon property, you can directly assign a predefined symbol, which in turn sets a SymbolIcon. Examples of predefined icons are Save, OpenFile, and Clear. Figure 32.23 shows the CommandBar with three AppBar button controls in expanded mode. In collapsed mode—which you can switch by clicking the ellipsis button—the values of the Label properties are not shown.

[image: Screenshot shows three button controls save, open and clear in a controlssamples window.]

Figure 32.23

AppBarSeparator and AppBarToggleButton are other controls that can be contained in the CommandBar—in other words, any control that implements the interface ICommandBarElement. This interface defines the IsCompact property to make the button larger or smaller to show or not show the label part.

The following example adds AddBarToggleButton controls. The AppBarToggleButton class derives from ToggleButton and adds the interfaces ICommandBarElement and IAppBarToggleButton. This button, like the base class ToggleButton, allows for three states—checked, unchecked, and indeterminate—but by default only checked and unchecked are used. For the symbol, the font Segoe MDL2 Assets is used to define a vector-graphic glyph element (code file ControlsSample/Views/InkSample.xaml):

<AppBarToggleButton IsChecked="{x:Bind Path=ColorSelection.Red, Mode=TwoWay}"
 Background="Red" Label="Red">
 <AppBarToggleButton.Icon>
 <FontIcon Glyph="" />
 </AppBarToggleButton.Icon>
</AppBarToggleButton>
<AppBarToggleButton IsChecked="{x:Bind ColorSelection.Green, Mode=TwoWay}"
 Background="Green" Label="Green">
 <AppBarToggleButton.Icon>
 <FontIcon Glyph=""/>
 </AppBarToggleButton.Icon>
</AppBarToggleButton>
<AppBarToggleButton IsChecked="{x:Bind ColorSelection.Blue, Mode=TwoWay}"
 Background="Blue" Label="Blue">
 <AppBarToggleButton.Icon>
 <FontIcon Glyph=""/>
 </AppBarToggleButton.Icon>
</AppBarToggleButton>

Figure 32.24 shows the command bar with both previously created AppBarButton controls as well as the AppBarToggleButton controls, this time in compact mode.

[image: Screenshot shows a controlssamples window with three button controls for save, open and clear and three toggle button controls in different colors.]

Figure 32.24

The CommandBar also allows for secondary commands. In case you need more commands that don’t fit into a line—especially with mobile devices—you can use secondary commands. Secondary commands can be defined assigned to the property SecondaryCommands of the CommandBar element.

<CommandBar>
 <CommandBar.SecondaryCommands>
 <AppBarButton Label="One" Icon="OneBar" />
 <AppBarButton Label="Two" Icon="TwoBars" />
 <AppBarButton Label="Three" Icon="ThreeBars" />
 <AppBarButton Label="Four" Icon="FourBars" />
 </CommandBar.SecondaryCommands>
 <!-- etc. -->

With Windows 10, secondary commands are opened by clicking on the ellipsis button, as shown in Figure 32.25.

[image: Screenshot shows a controlssamples window with the barbutton clicked and the secondary commands listed as one, two, three and four.]

Figure 32.25

Compiled Data Binding

Compiled data binding is the faster alternative to the Binding markup extension using x:Bind that was introduced in Chapter 31 and has already been mentioned in this chapter. Now we’re getting deeper into the features of compiled binding.

You can use compiled data binding as a faster replacement for the Binding markup extension. There are just a few reasons when the old binding syntax is needed—for example, when triggering the binding on property change instead of on focus change. I’m sure this will change in a future version when compiled binding gets even more enhanced. Currently this is not reason enough to not use compiled binding at all because you can mix compiled binding with the Binding markup expression.

Chapter 31 includes the new syntax for compiled binding with x:Bind instead of Binding where code gets compiled, and you even get a compiler error.

As compiled binding is focused on performance, the default mode is OneTime. In case you need to update the user interface from changes from the code, you need to explicitly set the mode to OneWay. For updating the source from the UI, you need to set the TwoWay mode. The compiled binding uses the same modes as the Binding expression, but the defaults differ.

Because compiled binding was already discussed in Chapter 31, this chapter covers only some special features of compiled binding, such as using it from within resources, and controlling the binding life cycle.

Compiled Binding Lifecycle

With compiled binding, code gets generated from binding. You can also programmatically influence the lifetime of the binding.

Let’s start with a simple Book type that is bound from the user interface (code file CompiledBindingSample/Models/Book.cs):

public class Book : BindableBase
{
 public int BookId { get; set; }
 private string _title;

 public string Title
 {
 get { return _title; }
 set { SetProperty(ref _title, value); }
 }

 public string Publisher { get; set; }

 public override string ToString() => Title;
}

With the page class, a read-only property Book is created that returns a Book instance. The values of the Book instance can be changed, whereas the Book instance itself is read only (code file CompiledBindingSample/Views/LifetimeSample.xaml.cs):

public Book Book { get; } = new Book
 {
 Title ="Professional C# 6",
 Publisher ="Wrox Press"
 };

With the XAML code, the Title property is in OneWay mode to the Text property of a TextBlock, and the Publisher is bound without specifying a mode, which means it is bound OneTime (code file CompiledBindingSample/Views/LifetimeSample.xaml):

<StackPanel>
 <TextBlock Text="{x:Bind Book.Title, Mode=OneWay}" />
 <TextBlock Text="{x:Bind Book.Publisher}" />
</StackPanel>

Next, several AppBarButton controls are bound to change the lifetime of the compiled binding. The Click event of one button is bound to the method OnChangeBook. This method changes the title of the book. If you try this out, the title gets immediately updated because a OneTime binding was done (code file CompiledBindingSample/Views/LifetimeSample.xaml.cs):

public void OnChangeBook()
{
 Book.Title ="Professional C# 6 and .NET Core 5";
}

However, you can stop the tracking of the binding. Invoking the method StopTracking using the Bindings property of the page (this property is created if you are using compiled binding) removes all binding listeners. When you call this method before invoking the method OnChangeBook, the update of the book is not reflected in the user interface:

private void OnStopTracking()
{
 Bindings.StopTracking();
}

To explicitly update the user interface from bound sources, you can invoke the Update method. Calling this method reflects changes not only from OneWay or TwoWay bindings, but also OneTime bindings:

private void OnUpdateBinding()
{
 Bindings.Update();
}

For bringing the listeners back in place to make immediate updates to the user interface, the Initialize method needs to be invoked.

Initialize, Update, and StopTracking are the three important methods for controlling the lifetime with compiled binding.

Using Resources for Compiled Data Templates

Defining data templates using compiled binding is easy; you just need to specify the x:DataType attribute with the data template because this is needed for the strongly typed code generation. However, there’s an issue with placing the data template within a resource file. Using data templates within a page is easy because the page already creates code-behind code, and this is necessary for the data template that contains compiled bindings as well. Let’s have a look at what you need to do to put such a data template within a resource file.

With the sample code, a resource file DataTemplates.xaml is generated. All that’s needed for the resource is a sealed class (code file CompiledBindingSample/Styles/DataTemplates.xaml.cs):

namespace CompiledBindingSample.Styles
{
 public sealed partial class DataTemplates
 {
 public DataTemplates()
 {
 this.InitializeComponent();
 }
 }
}

The XAML file contains the data template as usual. Just pay attention to the x:Class attribute to map the ResourceDictionary to the class in the code-behind file. The data template also contains an XML alias to the .NET Models namespace to map the Book type and compiled bindings to the Title and Publisher properties (code file CompiledBindingSample/Styles/DataTemplates.xaml):

<ResourceDictionary
 x:Class="CompiledBindingSample.Styles.DataTemplates"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:model="using:CompiledBindingSample.Models"
 xmlns:local="using:CompiledBindingSample.Styles">
 <DataTemplate x:DataType="model:Book" x:Name="BookTemplate">
 <StackPanel>
 <TextBlock Text="{x:Bind Title}" />
 <TextBlock Text="{x:Bind Publisher}" />
 </StackPanel>
 </DataTemplate>
</ResourceDictionary>

When referencing the resource file from the App.xaml file, the file cannot be referenced as usual with the ResourceDictionary element. Instead an instance is created (code file CompiledBindingSample/App.xaml):

<Application
 x:Class="CompiledBindingSample.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:CompiledBindingSample"
 xmlns:model="using:CompiledBindingSample.Models"
 xmlns:styles="using:CompiledBindingSample.Styles"
 RequestedTheme="Light">
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <styles:DataTemplates />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

With all this in place, the data template can be referenced as usual—for example, with an ItemTemplate for the ListBox (code file CompiledBindingSample/Views/BooksListPage.xaml):

<ListBox ItemTemplate="{StaticResource BookTemplate}"
 ItemsSource="{x:Bind Books}" Margin="8" />

Controls

All the controls offered by the UWP cannot be covered in this book. However, they are simple to use and when you know how to use some of them, it’s not hard to use the others. Many controls have similarities to WPF controls, so you can read more information about controls in Chapter 34

TextBox Control

One thing worth a special mention with the UWP controls is the Header property available with the TextBox control. Previously in this chapter you’ve seen how to arrange an edit form with the RelativePanel. In that example, a TextBox control was used in correlation with a TextBlock control. Usually the information that should be entered in a TextBox is described by a label close to this text input control. The TextBlock control served this purpose in the sample with the RelativePanel. There’s another way to add information to a TextBox. When you use the Header property of the TextBox control, there’s no need to define a separate TextBlock control. Filling the Header property will do. The value of the Header property just shows up close to the TextBox (see Figure 32.26).

[image: Screenshot shows a text box with a label email.]

Figure 32.26

When you set the InputScope property, you can specify which on-screen keyboard should show up. Figure 32.27 shows the Windows onscreen keyboard where the InputScope is set to Formula, as shown in the following code snippet. With this keyboard you can see some formula-specific keys (code file ControlsSamples/Views/TextSample.xaml):

<TextBox Header="Email" InputScope="EmailNameOrAddress"></TextBox>
<TextBox Header="Currency" InputScope="CurrencyAmountAndSymbol"></TextBox>
<TextBox Header="Alpha Numeric" InputScope="AlphanumericFullWidth"></TextBox>
<TextBox Header="Formula" InputScope="Formula"></TextBox>
<TextBox Header="Month" InputScope="DateMonthNumber"></TextBox>

[image: Image described by surrounding text.]

Figure 32.27

AutoSuggest

A new control with the UWP is the AutoSuggest control. This control allows offering suggestions to the user while the user types into the control. Three events are important with this control. As soon as the user types into the control, the TextChanged event is fired. With the sample code, the OnTextChanged handler method is invoked. In cases where suggestions are offered to the user and the user selects a suggestion, the SuggestionChosen event is fired. After the text—which might be a suggestion or other words typed—is entered by the user, the QuerySubmitted event is fired (code file ControlsSample/Views/AutoSuggestSample.xaml):

<AutoSuggestBox TextChanged="{x:Bind OnTextChanged}"
 SuggestionChosen="{x:Bind OnSuggestionChosen}"
 QuerySubmitted="{x:Bind OnQuerySubmitted}" />

For having some sample code to create a suggestion, an XML file containing Formula 1 champions is loaded from http://www.cninnovation.com/downloads/Racers.xml using the HttpClient class. On navigating to the page, the XML file is retrieved, and the content is converted to a list of Racer objects (code file ControlsSamples/Views/AutoSuggestSample.xaml.cs):

private const string RacersUri =
 "http://www.cninnovation.com/downloads/Racers.xml";
private IEnumerable<Racer> _racers;

protected async override void OnNavigatedTo(NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 XElement xmlRacers = null;

 using (var client = new HttpClient())
 using (Stream stream = await client.GetStreamAsync(RacersUri))
 {
 xmlRacers = XElement.Load(stream);
 }

 _racers = xmlRacers.Elements("Racer").Select(r => new Racer
 {
 FirstName = r.Element("Firstname").Value,
 LastName = r.Element("Lastname").Value,
 Country = r.Element("Country").Value
 }).ToList();
}

The Racer class contains FirstName, LastName, and Country properties and an overload of the ToString method (code file ControlsSamples/Models/Racer.cs):

public class Racer
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Country { get; set; }
 public override string ToString() => $"{FirstName} {LastName}, {Country}";
}

The OnTextChanged event is invoked as soon as the text of the AutoSuggestBox changes. Arguments received are the AutoSuggestBox itself—the sender—and AutoSuggestBoxTextChangedEventArgs. With the AutoSuggestBoxTextChangedEventArgs, the reason for the change is shown in the Reason property. Possible reasons are UserInput, ProgrammaticChange, and SuggestionChosen. Only if the reason is UserInput is there a need to offer suggestions to the user. Here, a check is also done to see whether the user entered at least two characters. The user input is retrieved by accessing the Text property of the AutoSuggestBox. This text is used to query the first names, last names, and countries based on the input string. The result from the query is assigned to the ItemsSource property of the AutoSuggestBox (code file ControlsSamples/Views/AutoSuggestSample.xaml.cs):

private void OnTextChanged(AutoSuggestBox sender,
 AutoSuggestBoxTextChangedEventArgs args)
{
 if (args.Reason == AutoSuggestionBoxTextChangeReason.UserInput &&
 sender.Text.Length >= 2)
 {
 string input = sender.Text;
 var q = _racers.Where(
 r => r.FirstName.StartsWith(input,
 StringComparison.CurrentCultureIgnoreCase))
 .OrderBy(r => r.FirstName).ThenBy(r => r.LastName)
 .ThenBy(r => r.Country).ToArray();
 if (q.Length == 0)
 {
 q = _racers.Where(r => r.LastName.StartsWith(input,
 StringComparison.CurrentCultureIgnoreCase))
 .OrderBy(r => r.LastName).ThenBy(r => r.FirstName)
 .ThenBy(r => r.Country).ToArray();
 if (q.Length == 0)
 {
 q = _racers.Where(r => r.Country.StartsWith(input,
 StringComparison.CurrentCultureIgnoreCase))
 .OrderBy(r => r.Country).ThenBy(r => r.LastName)
 .ThenBy(r => r.FirstName).ToArray();
 }
 }
 sender.ItemsSource = q;
 }
}

When you run the app and enter Aus in the AutoSuggestBox, the query can’t find first or last names starting with this text, but it does find countries. Formula 1 champions from countries starting with Aus are shown in the suggestion list as shown in Figure 32.28.

[image: Image described by surrounding text.]

Figure 32.28

In cases where the user selects one of the suggestions, the OnSuggestionChosen handler is invoked. The suggestion can be retrieved from the SelectedItem property of the AutoSuggestBoxSuggestionChosenEventArgs:

private async void OnSuggestionChosen(AutoSuggestBox sender,
 AutoSuggestBoxSuggestionChosenEventArgs args)
{
 var dlg = new MessageDialog($"suggestion: {args.SelectedItem}");
 await dlg.ShowAsync();
}

No matter whether the user selects a suggestion, the OnQuerySubmitted method gets invoked to show the result. The result is shown in the QueryText property of the AutoSuggestBoxQuerySubmittedEventArgs argument. In case a suggestion was selected, this is found in the ChosenSuggestion property:

private async void OnQuerySubmitted(AutoSuggestBox sender,
 AutoSuggestBoxQuerySubmittedEventArgs args)
{
 string message = $"query: {args.QueryText}";
 if (args.ChosenSuggestion != null)
 {
 message += $" suggestion: {args.ChosenSuggestion}";
 }
 var dlg = new MessageDialog(message);
 await dlg.ShowAsync();
}

Inking

Using a pen with ink is easily supported using UWP apps with the new InkCanvas control. This control supports inking using the pen, touchscreen, and mouse, and it also supports retrieving all the created strokes, which allows saving this information.

All that’s needed to support inking is to add an InkCanvas control (code file ControlsSamples/Views/InkSample.xaml):

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <InkCanvas x:Name="inkCanvas" />
</Grid>

By default, the InkCanvas control is configured to support the pen. You can also define it to support the mouse and touchscreen by setting the InputDevicesType property of the InkPresenter (code file ControlsSamples/Views/InkSample.xaml.cs):

public InkSample()
{
 this.InitializeComponent();
 inkCanvas.InkPresenter.InputDeviceTypes = CoreInputDeviceTypes.Mouse |
 CoreInputDeviceTypes.Touch │ CoreInputDeviceTypes.Pen;
 ColorSelection = new ColorSelection(inkCanvas);
}

public ColorSelection ColorSelection { get; }

With the InkCanvas in place, you already can use an input device and create the same drawings with a black pen. Earlier in this chapter when commands were defined, a few AppBarToggleButton controls were added to the CommandBar. These buttons are now used to control the ink color. The ColorSelection class is a helper class that binds the selections of the AppBarToggleButton controls. The Red, Green, and Blue properties are bound by the IsChecked property of the AppBarToggleButton controls. The constructor of the ColorSelection receives an instance of the InkCanvas. This way, the InkCanvas control can be used to modify the drawing attributes (code file ControlsSamples/Utilities/ColorSelection.cs):

public class ColorSelection : BindableBase
{
 public ColorSelection(InkCanvas inkCanvas)
 {
 _inkCanvas = inkCanvas;
 Red = false;
 Green = false;
 Blue = false;
 }
 private InkCanvas _inkCanvas;

 private bool? _red;
 public bool? Red
 {
 get { return _red; }
 set { SetColor(ref _red, value); }
 }
 private bool? _green;
 public bool? Green
 {
 get { return _green; }
 set { SetColor(ref _green, value); }
 }
 private bool? _blue;
 public bool? Blue
 {
 get { return _blue; }
 set { SetColor(ref _blue, value); }
 }
 // etc.
}

The change of the ink color as well the form and size of the pen is handled in the SetColor method. The existing drawing attributes of the InkCanvas can be retrieved using the CopyDefaultDrawingAttributes using the InkPresenter. The UpdateDefaultDrawingAttributes method sets the drawing attributes of the InkCanvas. The Red, Green, and Blue properties of the ColorSelection class are used to create a color (code file ControlsSamples/Utilities/ColorSelection.cs):

public class ColorSelection : BindableBase
{
 // etc.

 public void SetColor(ref bool? item, bool? value)
 {
 SetProperty(ref item, value);

 InkDrawingAttributes defaultAttributes =
 _inkCanvas.InkPresenter.CopyDefaultDrawingAttributes();
 defaultAttributes.PenTip = PenTipShape.Rectangle;
 defaultAttributes.Size = new Size(3, 3);

 defaultAttributes.Color = new Windows.UI.Color()
 {
 A = 255,
 R = Red == true ? (byte)0xff : (byte)0,
 G = Green == true ? (byte)0xff : (byte)0,
 B = Blue == true ? (byte)0xff : (byte)0
 };
 _inkCanvas.InkPresenter.UpdateDefaultDrawingAttributes(
 defaultAttributes);
 }
}

When you run the application, as shown in Figure 32.29, it’s easy to create a drawing using the pen. In case you don’t have a pen, you can also use a finger with your touch device or use the mouse because the InputDeviceTypes property has been configured accordingly.

[image: Screenshot shows three button controls, three toggle button controls and a drawing in the controlssamples window.]

Figure 32.29

Pickers for Reading and Writing Strokes

As previously mentioned, the InkCanvas control also supports accessing the created strokes. These strokes are used with the following sample to store it in a file. The file is selected using the FileSavePicker. The method OnSave is invoked on clicking the Save AppBarButton that was created previously. The FileSavePicker is the UWP variant of the SaveFileDialog. With Windows 8, this picker has been full screen, but now with UWP, where it can be contained in smaller windows, this picker has changed as well.

First, the FileSavePicker is configured by assigning a start location, a file type extension, and a filename. At least one file type choice needs to be added to allow the user to select a file type. Invoking the method PickSaveFileAsync, the user is asked to select a file. This file is opened to transactional write invoking the method OpenTransactedWriteAsync. The strokes of the InkCanvas are stored in the StrokeContainer of the InkPresenter. The strokes can be directly saved to a stream with the SaveAsync method (code file ControlsSamples/Views/InkSample.xaml.cs):

private const string FileTypeExtension =".strokes";
public async void OnSave()
{
 var picker = new FileSavePicker
 {
 SuggestedStartLocation = PickerLocationId.PicturesLibrary,
 DefaultFileExtension = FileTypeExtension,
 SuggestedFileName ="sample"
 };
 picker.FileTypeChoices.Add("Stroke File", new List<string>()
 { FileTypeExtension });
 StorageFile file = await picker.PickSaveFileAsync();
 if (file != null)
 {
 using (StorageStreamTransaction tx = await file.OpenTransactedWriteAsync())
 {
 await inkCanvas.InkPresenter.StrokeContainer.SaveAsync(tx.Stream);
 await tx.CommitAsync();
 }
 }
}

NOTE Using the FileOpenPicker and FileSavePicker to read and write streams is discussed in more detail in Chapter 23, “Files and Streams.”

When you run the application, you can open the FileSavePicker as shown in Figure 32.30.

[image: Screenshot shows a save as window with file name saved as sample and stroke file as the file type.]

Figure 32.30

To load a file, the FileOpenPicker and the StrokeContainer with the LoadAsync method are used:

public async void OnLoad()
{
 var picker = new FileOpenPicker
 {
 SuggestedStartLocation = PickerLocationId.PicturesLibrary
 };
 picker.FileTypeFilter.Add(FileTypeExtension);

 StorageFile file = await picker.PickSingleFileAsync();
 if (file != null)
 {
 using (var stream = await file.OpenReadAsync())
 {
 await inkCanvas.InkPresenter.StrokeContainer.LoadAsync(stream);
 }
 }
}

NOTE Some more controls are shown in the next chapter, which discusses contracts and sensors. As the Map control is best used with GPS, you can read about this control in Chapter 33.

Summary

This chapter provided an introduction to many different aspects of programming UWP apps. You’ve seen how XAML is very similar to programming WPF applications, as described in previous chapters.

In this chapter, you’ve seen how different screen sizes can be dealt with. You’ve seen how the hamburger button works in conjunction with SplitView to offer larger or smaller navigation menus, and how the RelativePanel works with adaptive triggers. You’ve also had a look at XAML views.

You’ve seen how to make performance improvements using deferred loading and compiled binding. You’ve also been introduced to new controls, such as the AutoSuggest control and the InkCanvas control.

The next chapter gives more information on Windows apps, including contracts and sensors, more controls—such as the Map control—and background services.

33
Advanced Windows Apps

What’s In This Chapter?

	App Lifetime

	Sharing Data

	Using App Services

	Creating a Background Task

	Using the Camera

	Accessing Geolocation Information

	Using the MapControl

	Using Sensors

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter contains one big sample that shows the various aspects of this chapter:

	AppLifetime Sample

	Sharing Samples

	AppServices

	Camera Sample

	Map Sample

	Sensor Sample

	Rolling Marble

Overview

The previous chapter introduced you to user interface (UI) elements for Universal Windows Platform (UWP) apps. This chapter continues from there to show you several aspects specific to UWP apps. You see how UWP apps have a lifetime management that is different from desktop applications. You use the share contract to create share source and target apps to share data between apps. You make use of different devices and sensors—such as the camera to take pictures and record videos—get location information, and get information about how the user moves the device by using several sensors, such as accelerometer and inclinometer.

Let’s start with the app lifetime of Windows apps, which is very different from the lifetime of desktop applications.

App Lifetime

Windows 8 introduced a new life cycle for apps that is completely different from the life cycle of desktop applications. This changed a little with Windows 8.1, and again with Windows 10. If you’re using Windows 10 and tablet mode, the life cycle of the app is different compared to desktop mode. With tablet mode, apps are typically full-screen. You can either switch to tablet mode automatically by detaching the keyboard (with tablet devices such as the Microsoft Surface), or by using the Tablet Mode button in the Action Center. When you run an application in tablet mode, the app gets suspended if it moves to the background (the user switches to another app), and it doesn’t get any more CPU utilization. This way the app doesn’t consume any battery. The app just uses memory while it’s in the background and gets activated again as soon as the user switches to this app.

In case memory resources are low, Windows can terminate suspended applications. To terminate an app, the process is killed. No information is sent to the application, so it cannot react to this event. That’s why an application should act on the suspended event and save its state there. Upon termination it is too late to save the state.

When receiving the suspended event, an app should store its state on disk. If the app is started again, the app can present itself to the user as if it was never terminated. You just need to store information about the page stack to navigate the user to the page where he or she left off, allow the user to go back by restoring the page back stack, and initialize the fields to the data the user entered.

The sample app for this section—ApplicationLifetimeSample—does exactly this. With this app, multiple pages allow navigation between the pages, and the state can be entered. The page stack is stored and state is stored when the app is suspended, and both are restored when the app is started.

Application Execution States

States of the application are defined with the ApplicationExecutionState enumeration. This enumeration defines the states NotRunning, Running, Suspended, Terminated, and ClosedByUser. The application needs to be aware of and store its state, as users returning to the application expect to continue where they left it previously.

With the OnLaunched method in the App class, you can get the previous execution state of the application with the PreviousExecutionState property of the LaunchActivatedEventArgs argument. The previous execution state is NotRunning if the application is being started for the first time after installing it, or after a reboot, or when the user stopped the process from the Task Manager. The application is in the Running state if it was already running when the user activated it from a second tile or it’s activated by one of the activation contracts. The PreviousExecutionState property returns Suspended when the application was suspended previously. Usually there’s no need to do anything special in that case as the state is still available in memory. While in a suspended state, the app doesn’t use any CPU cycles, and there’s no disk access.

NOTE The application can implement one or more activation contracts and then can be activated with one of these. An example of such a contract is share. With this contract, the user can share some data from another application and start a UWP app by using it as a share target. Implementing the share contract is shown later in this chapter in the “Sharing Data” section.

Navigation Between Pages

The sample application for demonstrating the life cycle of Windows apps (ApplicationLifetimeSample) is started with the Blank App template. After creating the project, you add the pages Page1 and Page2 to implement navigation between the pages.

To the MainPage, you add two Button controls for navigation to Page1 and Page2 and two TextBox controls to allow passing data with the navigation (code file ApplicationLifetimeSample/MainPage .xaml):

<Button Content="Page 1" Click="{x:Bind GotoPage1}" Grid.Row="0" />
<TextBox Text="{x:Bind Parameter1, Mode=TwoWay}" Grid.Row="0"
 Grid.Column="1" />
<Button Content="Page 2" Click="{x:Bind GotoPage2}" Grid.Row="1" />
<TextBox Text="{x:Bind Parameter2, Mode=TwoWay}" Grid.Row="1"
 Grid.Column="1" />

The code-behind file contains the event handler with navigation code to Page1 and Page2 and properties for the parameters (code file ApplicationLifetimeSample/MainPage.xaml.cs):

public void GotoPage1()
{
 Frame.Navigate(typeof(Page1), Parameter1);
}

public string Parameter1 { get; set; }

public void GotoPage2()
{
 Frame.Navigate(typeof(Page2), Parameter2);
}

public string Parameter2 { get; set; }

The UI elements for Page1 show the data that is received on navigating to this page, a Button to allow the user to navigate to Page2, and a TextBox to allow the user to enter some state information that should be saved when the app is terminated (code file ApplicationLifetimeSample/Page1.xaml):

<TextBlock FontSize="30" Text="Page 1" />
<TextBlock Grid.Row="1" Text="{x:Bind ReceivedContent, Mode=OneTime}" />
<TextBox Grid.Row="2" Text="{x:Bind Parameter1, Mode=TwoWay}" />
<Button Grid.Row="3" Content="Navigate to Page 2"
 Click="{x:Bind GotoPage2, Mode=OneTime}" />

Similar to the MainPage, the navigation code for Page1 defines an auto-implemented property for the data that is passed with the navigation and an event handler implementation for navigating to Page2 (code file ApplicationLifetimeSample/Page1.xaml.cs):

public void GotoPage2()
{
 Frame.Navigate(typeof(Page2), Parameter1);
}

public string Parameter1 { get; set; }

With the code-behind file, the navigation parameter is received in the OnNavigatedTo method override. The received parameter is assigned to the auto-implemented property ReceivedContent (code file ApplicationLifetimeSample/Page1.xaml.cs):

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 //...

 ReceivedContent = e.Parameter?.ToString() ?? string.Empty;
 Bindings.Update();
}

public string ReceivedContent { get; private set; }

With the implementation of the navigation, Page2 is very similar to Page1, so I’m not repeating its implementation here.

Using the system back button is covered in Chapter 32, “Windows Apps: User Interfaces.” Here, the visibility and handler of the back button is defined in the class BackButtonManager. The implementation of the constructor makes the back button visible if the CanGoBack property of the frame instance returns true. The method OnBackRequested is implemented to go back in the page stack if the stack is available (code file ApplicationLifetimeSample/Utilities/BackButtonManager.cs):

public class BackButtonManager: IDisposable
{
 private SystemNavigationManager _navigationManager;
 private Frame _frame;

 public BackButtonManager(Frame frame)
 {
 _frame = frame;
 _navigationManager = SystemNavigationManager.GetForCurrentView();
 _navigationManager.AppViewBackButtonVisibility = frame.CanGoBack ?
 AppViewBackButtonVisibility.Visible:
 AppViewBackButtonVisibility.Collapsed;
 _navigationManager.BackRequested += OnBackRequested;
 }

 private void OnBackRequested(object sender, BackRequestedEventArgs e)
 {
 if (_frame.CanGoBack) _frame.GoBack();
 e.Handled = true;
 }

 public void Dispose()
 {
 _navigationManager.BackRequested -= OnBackRequested;
 }
}

With all the pages, the BackButtonManager is instantiated by passing the Frame in the OnNavigatedTo method, and it’s disposed in the OnNavigatedFrom method (code file ApplicationLifetimeSample/MainPage.xaml.cs):

private BackButtonManager _backButtonManager;
protected override void OnNavigatedTo(NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 _backButtonManager = new BackButtonManager(Frame);
}

protected override void OnNavigatingFrom(NavigatingCancelEventArgs e)
{
 base.OnNavigatingFrom(e);
 _backButtonManager.Dispose();
}

With all this code in place, the user can navigate back and forward between the three different pages. What needs to be done next is to remember the page and the page stack to navigate the app to the page the user accessed most recently.

Navigation State

To store and load the navigation state, the class NavigationSuspensionManager defines the methods SetNavigationStateAsync and GetNavigationStateAsync. The page stack for the navigation can be represented in a single string. This string is written to a local cache file named as defined by a constant. In case the file already exists from a previous app run, it is just overwritten. You don’t need to remember page navigations between multiple app runs (code file ApplicationLifetimeSample/Utilities/NavigationSuspensionManager.cs):

public class NavigationSuspensionManager
{
 private const string NavigationStateFile ="NavigationState.txt";

 public async Task SetNavigationStateAsync(string navigationState)
 {
 StorageFile file = await
 ApplicationData.Current.LocalCacheFolder.CreateFileAsync(
 NavigationStateFile, CreationCollisionOption.ReplaceExisting);
 Stream stream = await file.OpenStreamForWriteAsync();
 using (var writer = new StreamWriter(stream))
 {
 await writer.WriteLineAsync(navigationState);
 }
 }

 public async Task<string> GetNavigationStateAsync()
 {
 Stream stream = await
 ApplicationData.Current.LocalCacheFolder.OpenStreamForReadAsync(
 NavigationStateFile);
 using (var reader = new StreamReader(stream))
 {
 return await reader.ReadLineAsync();
 }
 }
}

NOTE The NavigationSuspensionManager class makes use of the Windows Runtime API with the .NET Stream class to read and write contents to a file. Both features are shown in detail in Chapter 23, “Files and Streams.”

Suspending the App

To save state on suspension of the application, the Suspending event of the App class is set in the OnSuspending event handler. The event is fired when the application moves into suspended mode (code file ApplicationLifetimeSample/App.xaml.cs):

public App()
{
 this.InitializeComponent();
 this.Suspending += OnSuspending;
}

The method OnSuspending is an event handler method, and thus is declared to return void. There’s an issue with that. As soon as the method is finished, the app can be terminated. However, as the method is declared void it is not possible to wait for the method until it is finished. Because of this, the received SuspendingEventArgs parameter defines a SuspendingDeferral that can be retrieved by calling the method GetDeferral. As soon as the async functionality of your code is completed, you need to invoke the Complete method on the deferral. This way, the caller knows the method is finished, and the app can be terminated (code file ApplicationLifetimeSample/App.xaml.cs):

private async void OnSuspending(object sender, SuspendingEventArgs e)
{
 var deferral = e.SuspendingOperation.GetDeferral();

 //...

 deferral.Complete();
}

NOTE You can read details about asynchronous methods in Chapter 15, “Asynchronous Programming.”

Within the implementation of the OnSuspending method, the page stack is written to the temporary cache. You can retrieve the pages on the page stack using the BackStack property of the Frame. This property returns a list of PageStackEntry objects where every instance represents the type, navigation parameter, and navigation transition information. For storing the page track with the SetNavigationStateAsync method, just a string is needed that contains the complete page stack information. This string can be retrieved by calling the GetNavigationState method of the Frame (code file ApplicationLifetimeSample/App.xaml.cs):

private async void OnSuspending(object sender, SuspendingEventArgs e)
{
 var deferral = e.SuspendingOperation.GetDeferral();

 var frame = Window.Current.Content as Frame;
 if (frame?.BackStackDepth >= 1)
 {
 var suspensionManager = new NavigationSuspensionManager();
 string navigationState = frame.GetNavigationState();
 if (navigationState != null)
 {
 await suspensionManager.SetNavigationStateAsync(navigationState);
 }
 }

 //...

 deferral.Complete();
}

With Windows 8, you have only a few seconds for suspending the app before it can be terminated. With Windows 10 you can extend this time for also making network calls, retrieving data from a service or uploading data to a service, or doing location tracking. All you have to do for this is to create an ExtendedExecutionSession within the OnSuspending method, set a reason, such as ExtendedExecutionReason.SavingData, and request the extension by calling RequestExecutionAsync. As long as the extended execution is not denied, you can go on with the extended task.

Activating the App from Suspension

The string returned from GetNavigationState is comma-separated and lists the complete information of the page stack including type information and parameters. You shouldn’t parse the string to get the different parts because this can be changed with newer implementations of the Windows Runtime. Just using this string to restore the state later to recover the page stack with SetNavigationState is okay. In case the string format changes with a future version, both of these methods will be changed as well.

To set the page stack when the app is started, you need to change the OnLaunched method. This method is overridden from the Application base class, and it’s invoked when the app is started. The argument LaunchActivatedEventArgs gives information on how the app is started. The Kind property returns an ActivationKind enumeration value where you can read whether the app was started by the user clicking on the tile stating a voice command, or from Windows, such as by launching it as a share target. The PreviousExecutionState—which is needed in this scenario—returns an ApplicationExecutionState enumeration value that provides the information of how the app ended previously. If the app ended with the ClosedByUser value, no special action is needed; the app should start fresh. However, if the app was previously terminated, the PreviousExecutionState contains the value Terminated. With this state, it’s useful to arrange the app to a state where the user previously left it. Here, the page stack is retrieved from the NavigationSuspensionManager and set to the root frame by passing the previously saved string to the method SetNavigationState (code file ApplicationLifetimeSample/App.xaml.cs):

protected override async void OnLaunched(LaunchActivatedEventArgs e)
{
 Frame rootFrame = Window.Current.Content as Frame;

 if (rootFrame == null)
 {
 rootFrame = new Frame();

 rootFrame.NavigationFailed += OnNavigationFailed;

 if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 var suspensionManager = new NavigationSuspensionManager();
 string navigationState =
 await suspensionManager.GetNavigationStateAsync();
 rootFrame.SetNavigationState(navigationState);

 // etc.
 }

 // Place the frame in the current Window
 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 rootFrame.Navigate(typeof(MainPage), e.Arguments);
 }
 Window.Current.Activate();
}

Testing Suspension

Now you can start the application (see Figure 33.1), navigate to another page, and then open other applications to wait until the application is terminated. With the Task Manager, you can see the suspended applications with the Details view if the Status Values option is set to Show Suspended Status. This is not an easy way to test suspension (because it can take a long time before the termination happens), however, and it would be nice to debug the different states.

[image: Screenshot shows an applicationlifetimesample window with a label main page and two button controls page1 and page2.]

Figure 33.1

When you use the debugger, everything works differently. If the application would be suspended as soon as it doesn’t have a focus, it would be suspended every time a breakpoint is reached. That’s why suspension is disabled while running under the debugger. So the normal suspension mechanism doesn’t apply. However, it’s easy to simulate. If you open the Debug Location toolbar, there are three buttons for Suspend, Resume, and Suspend and shutdown (see Figure 33.2). If you click Suspend and shutdown and then start the application again, the application continues from the previous state of ApplicationExecutionState.Terminated and thus opens the page the user opened previously.

[image: Image described by surrounding text.]

Figure 33.2

Page State

Any data that was input by the user should be restored as well. For this demonstration, on Page1 two input fields are created (code file ApplicationLifetimeSample/Page1.xaml):

<TextBox Header="Session State 1" Grid.Row="4"
 Text="{x:Bind Data.Session1, Mode=TwoWay}" />
<TextBox Header="Session State 2" Grid.Row="5"
 Text="{x:Bind Data.Session2, Mode=TwoWay}" />

The data representation of this input field is defined by the DataManager class that is returned from the Data property, as shown in the following code snippet (code file ApplicationLifetimeSample/Page1.xaml.cs):

public DataManager Data { get; } = DataManager.Instance;

The DataManager class defines the properties Session1 and Session2 where the values are stored within a Dictionary (code file ApplicationLifetimeSamlple/Services/DataManager.cs):

public class DataManager: INotifyPropertyChanged
{
 private const string SessionStateFile ="TempSessionState.json";
 private Dictionary<string, string> _state = new Dictionary<string, string>()
 {
 [nameof(Session1)] = string.Empty,
 [nameof(Session2)] = string.Empty
 };

 private DataManager()
 {
 }

 public event PropertyChangedEventHandler PropertyChanged;

 protected void OnPropertyChanged(
 [CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }

 public static DataManager Instance { get; } = new DataManager();

 public string Session1
 {
 get { return _state[nameof(Session1)]; }
 set
 {
 _state[nameof(Session1)] = value;
 OnPropertyChanged();
 }
 }

 public string Session2
 {
 get { return _state[nameof(Session2)]; }
 set
 {
 _state[nameof(Session2)] = value;
 OnPropertyChanged();
 }
 }

For loading and storing the session state, the methods SaveTempSessionAsync and LoadTempSessionAsync are defined. The implementation makes use of Json.Net to serialize the dictionary in JSON format. However, you can use any serialization you like (code file ApplicationLifetimeSample/Services/DataManager.cs):

public async Task SaveTempSessionAsync()
{
 StorageFile file =
 await ApplicationData.Current.LocalCacheFolder.CreateFileAsync(
 SessionStateFile, CreationCollisionOption.ReplaceExisting);
 Stream stream = await file.OpenStreamForWriteAsync();

 var serializer = new JsonSerializer();
 using (var writer = new StreamWriter(stream))
 {
 serializer.Serialize(writer, _state);
 }
}

public async Task LoadTempSessionAsync()
{
 Stream stream = await
 ApplicationData.Current.LocalCacheFolder.OpenStreamForReadAsync(
 SessionStateFile);
 var serializer = new JsonSerializer();
 using (var reader = new StreamReader(stream))
 {
 string json = await reader.ReadLineAsync();
 Dictionary<string, string> state =
 JsonConvert.DeserializeObject<Dictionary<string, string>>(json);
 _state = state;

 foreach (var item in state)
 {
 OnPropertyChanged(item.Key);
 }
 }
}

NOTE Serialization with XML and JSON is discussed in Chapter 27, “XML and JSON.”

What’s left is to invoke the SaveTempSessionAsync and LoadTempSessionAsync methods on suspending and activating of the app. These methods are added to the same places where the page stack is written and read, to the OnSuspending and OnLaunched methods (code file ApplicationLifetimeSample/App.xaml.cs):

private async void OnSuspending(object sender, SuspendingEventArgs e)
{
 var deferral = e.SuspendingOperation.GetDeferral();
 //...

 await DataManager.Instance.SaveTempSessionAsync();

 deferral.Complete();
}

protected override async void OnLaunched(LaunchActivatedEventArgs e)
{
 Frame rootFrame = Window.Current.Content as Frame;

 if (rootFrame == null)
 {
 rootFrame = new Frame();

 rootFrame.NavigationFailed += OnNavigationFailed;

 if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 //...
 await DataManager.Instance.LoadTempSessionAsync();
 }
 // Place the frame in the current Window
 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 rootFrame.Navigate(typeof(MainPage), e.Arguments);
 }
 Window.Current.Activate();
}

Now you can run the app, enter state in Page2, suspend and terminate the app, start it again, and the state shows up again.

With the app lifetime you’ve seen how special programming is needed for UWP apps to consider battery consumption. The next session discusses sharing data between apps, which is also available on the phone platform.

Sharing Data

Your app becomes a lot more useful when it can interact with other apps. With Windows 10, apps can share data using drag and drop, even with desktop applications. Between Windows apps, it’s also possible to share data using a sharing contract.

When you use a sharing contract, one app (the sharing source) can share data in many different formats—for example, text, HTML, image, or custom data—and the user can select an app that accepts the data format as a sharing target. Windows finds the apps that support the corresponding data format by using a contract that’s registered with the app at installation time.

Sharing Source

The first consideration in terms of sharing is determining what data should be shared in what format. It’s possible to share simple text, rich text, HTML, and images, but also a custom type. Of course, all these types must be known and used from other applications—the sharing targets. Sharing custom types can only be done with other applications that know the type and are a share target for the type. The sample application offers shared data in text format and a book list in HTML format.

To offer book information in HTML format, you define a simple Book class (code file SharingSource\Models\Book.cs):

public class Book
{
 public string Title { get; set; }
 public string Publisher { get; set; }
}

A list of Book objects is returned from the GetSampleBooks method of the BooksRepository class (code file SharingSource\Models\BooksRepository.cs):

public class BooksRepository
{
 public IEnumerable<Book> GetSampleBooks() =>
 new List<Book>()
 {
 new Book
 {
 Title ="Professional C# 6 and .NET 5 Core",
 Publisher ="Wrox Press"
 },
 new Book
 {
 Title ="Professional C# 5.0 and .NET 4.5.1",
 Publisher ="Wrox Press"
 }
 };
}

To convert a list of Book objects to HTML, the extension method ToHtml returns an HTML table with the help of LINQ to XML (code file SharingSource\Utilities\BooksExtensions.cs):

public static class BookExtensions
{
 public static string ToHtml(this IEnumerable<Book> books) =>
 new XElement("table",
 new XElement("thead",
 new XElement("tr",
 new XElement("td","Title"),
 new XElement("td","Publisher"))),
 books.Select(b =>
 new XElement("tr",
 new XElement("td", b.Title),
 new XElement("td", b.Publisher)))).ToString();
}

NOTE LINQ to XML is covered in Chapter 27.

With the MainPage, you define a Button, where the user can initiate the sharing, and a TextBox control for the user to enter textual data to share (code file SharingSource\MainPage.xaml):

<RelativePanel Margin="24">
 <Button x:Name="shareDataButton" Content="Share Data"
 Click="{x:Bind DataSharing.ShowShareUI, Mode=OneTime}" Margin="12" />
 <TextBox RelativePanel.RightOf="shareDataButton"
 Text="{x:Bind DataSharing.SimpleText, Mode=TwoWay}" Margin="12" />
</RelativePanel>

In the code-behind file, the DataSharing property returns the ShareDataViewModel where all the important features for sharing are implemented (code file SharingSource\MainPage.xaml.cs):

public ShareDataViewModel DataSharing { get; set; } = new ShareDataViewModel();

The ShareDataViewModel defines the property SimpleText that is bound by the XAML file to enter the simple text to be shared. For sharing, the event handler method ShareDataRequested is assigned to the event DataRequested of the DataTransferManager. This event is fired when the user requests sharing data (code file SharingSource\ViewModels\ShareDataViewModel.cs):

public class ShareDataViewModel
{
 public ShareDataViewModel()
 {
 DataTransferManager.GetForCurrentView().DataRequested +=
 ShareDataRequested;
 }

 public string SimpleText { get; set; } = string.Empty;

 //...

When the event is fired, the OnShareDataRequested method is invoked. This method receives the DataTransferManager as the first argument, and DataRequestedEventArgs as the second. On sharing data, the DataPackage referenced by args.Request.Data needs to be filled. You can use the Title, Description, and Thumbnail properties to give information to the user interface. The data that should be shared must be passed with one of the SetXXX methods. The sample code shares a simple text and HTML code, thus the methods SetText and SetHtmlFormat are used. The HtmlFormatHelper class helps create the surrounding HTML code that’s needed for sharing. The HTML code for the books is created with the extension method ToHtml that was shown earlier (code file SharingSource\ViewModels\ShareDataViewModel.cs):

private void ShareDataRequested(DataTransferManager sender,
 DataRequestedEventArgs args)
{
 var books = new BooksRepository().GetSampleBooks();

 Uri baseUri = new Uri("ms-appx:///");
 DataPackage package = args.Request.Data;
 package.Properties.Title ="Sharing Sample";
 package.Properties.Description ="Sample for sharing data";
 package.Properties.Thumbnail = RandomAccessStreamReference.CreateFromUri(
 new Uri(baseUri,"Assets/Square44x44Logo.png"));
 package.SetText(SimpleText);
 package.SetHtmlFormat(HtmlFormatHelper.CreateHtmlFormat(books.ToHtml()));
}

In case you need the information when the sharing operation is completed—for example, to remove the data from the source application—the DataPackage class fires OperationCompleted and Destroyed events.

NOTE Instead of offering text or HTML code, other methods, such as SetBitmap, SetRtf, and SetUri, make it possible to offer other data formats.

NOTE In case you need to build the data for sharing using async methods within the ShareDataRequested method, you need to use a deferral to give the information when the data is available. This is similar to the page suspension mechanism shown earlier in this chapter. Using the Request property of the DataRequestedEventArgs type, you can invoke the GetDeferral method. This method returns a deferral of type DataRequestedDeferral. With this object, you can invoke the Complete method when the data is readily available.

Finally, the user interface for sharing needs to be shown. This enables the user to select the target app:

public void ShowShareUI()
{
 DataTransferManager.ShowShareUI();
}

Figure 33.3 shows the user interface after calling the ShowShareUI method of the DataTransferManager. Depending on what data format is offered and the apps that are installed, the corresponding apps are shown for selection.

[image: Screenshot shows the debug location toolbar window with three buttons for suspend, resume, and suspend and shutdown.]

Figure 33.3

If you select the Mail app, HTML information is passed. Figure 33.4 shows the received data within this app.

[image: Screenshot shows a mail app window with the details of a received e-mail.]

Figure 33.4

NOTE With Windows 8, a user can use the charms bar to start sharing data from an app. With this, if data is not available to share, it is important to give information to the user about what needs to be done for sharing—for example, selecting an item first or entering some data. Such error information can be returned to invoke the method FailWithDisplayText on the Request property of the DataRequestedEventArgs type. With Windows 10, you need to explicitly offer a visible control (for example, a button) where the user can start sharing. If no data is available to share, just don’t offer this visible control.

Sharing Target

Now let’s have a look at the recipient of sharing. If an application should receive information from a sharing source, it needs to be declared as a share target. Figure 33.5 shows the Manifest Designer’s Declarations page within Visual Studio, where you can define share targets. Here is where you add the Share Target declaration, which must include at least one data format. Possible data formats are Text, URI, Bitmap, HTML, StorageItems, or RTF. You can also specify which file types should be supported by adding the appropriate file extensions.

[image: Screenshot shows a sharingsample window where the manifest designer declarations page is selected.]

Figure 33.5

The information in the package manifest is used upon registration of the application. This tells Windows which applications are available as a share target. The sample app SharingTarget defines share targets for Text and HTML.

When the user launches the app as a share target, the OnShareTargetActivated method is called in the App class instead of the OnLaunched method. Here, a different page (ShareTargetPage) gets created that shows the screen when the user selects this app as a share target (code file SharingTarget/App.xaml.cs):

protected override void OnShareTargetActivated(ShareTargetActivatedEventArgs args)
{
 Frame rootFrame = CreateRootFrame();
 rootFrame.Navigate(typeof(ShareTargetPage), args.ShareOperation);
 Window.Current.Activate();
}

To not create the root frame in two different places, the OnLaunched method has been refactored to put the frame creation code in a separate method: CreateRootFrame. This method is now called from both OnShareTargetActivated as well as OnLaunched:

private Frame CreateRootFrame()
{
 Frame rootFrame = Window.Current.Content as Frame;
 if (rootFrame == null)
 {
 rootFrame = new Frame();
 rootFrame.NavigationFailed += OnNavigationFailed;
 Window.Current.Content = rootFrame;
 }
 return rootFrame;
}

The change of the OnLaunched method is shown here. Contrary to the OnShareTargetActivated, this method navigates to the MainPage:

protected override void OnLaunched(LaunchActivatedEventArgs e)
{
 Frame rootFrame = CreateRootFrame();

 if (rootFrame.Content == null)
 {
 rootFrame.Navigate(typeof(MainPage), e.Arguments);
 }
 Window.Current.Activate();
}

The ShareTargetPage contains controls where the user can see information about the data shared, such as the title and description, and a combo box that shows the available data formats the user can select (code file SharingTarget/ShareTargetPage.xaml):

<StackPanel Orientation="Vertical">
 <TextBlock Text="Share Target Page" />
 <TextBox Header="Title" IsReadOnly="True"
 Text="{x:Bind ViewModel.Title, Mode=OneWay}" Margin="12" />
 <TextBox Header="Description" IsReadOnly="True"
 Text="{x:Bind ViewModel.Description, Mode=OneWay}" Margin="12" />
 <ComboBox ItemsSource="{x:Bind ViewModel.ShareFormats, Mode=OneTime}"
 SelectedItem="{x:Bind ViewModel.SelectedFormat, Mode=TwoWay}"
 Margin="12" />
 <Button Content="Retrieve Data"
 Click="{x:Bind ViewModel.RetrieveData, Mode=OneTime}" Margin="12" />
 <Button Content="Report Complete"
 Click="{x:Bind ViewModel.ReportCompleted, Mode=OneTime}" Margin="12" />
 <TextBox Header="Text" IsReadOnly="True"
 Text="{x:Bind ViewModel.Text, Mode=OneWay}" Margin="12" />
 <TextBox AcceptsReturn="True" IsReadOnly="True"
 Text="{x:Bind ViewModel.Html, Mode=OneWay}" Margin="12" />
</StackPanel>

In the code-behind file, a ShareTargetPageViewModel is assigned to the ViewModel property. In the XAML code earlier, this property is used with compiled binding. Also, with the OnNavigatedTo method, the SharedTargetPageViewModel is activated passing a ShareOperation object to the Activate method (code file SharingTarget/ShareTargetPage.xaml.cs):

public sealed partial class ShareTargetPage: Page
{
 public ShareTargetPage()
 {
 this.InitializeComponent();
 }

 public ShareTargetPageViewModel ViewModel { get; } =
 new ShareTargetPageViewModel();

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 ViewModel.Activate(e.Parameter as ShareOperation);

 base.OnNavigatedTo(e);
 }
}

The class ShareTargetPageViewModel defines properties for values that should be displayed in the page, as well as change notification by implementing the interface INotifyPropertyChanged (code file SharingTarget/ViewModels/ShareTargetViewModel.cs):

public class ShareTargetPageViewModel: INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 public void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }

 // etc.

 private string _text;
 public string Text
 {
 get { return _text; }
 set
 {
 _text = value;
 OnPropertyChanged();
 }
 }

 private string _html;
 public string Html
 {
 get { return _html; }
 set
 {
 _html = value;
 OnPropertyChanged();
 }
 }

 private string _title;
 public string Title
 {
 get { return _title; }
 set
 {
 _title = value;
 OnPropertyChanged();
 }
 }

 private string _description;
 public string Description
 {
 get { return _description; }
 set
 {
 _description = value;
 OnPropertyChanged();
 }
 }
}

The Activate method is an important part of the ShareTargetPageViewModel. Here, the ShareOperation object is used to access information about the share data and get some metadata available to display it to the user, such as Title, Description, and the list of available data formats. In case of an error, error information is shown to the user by invoking the ReportError method of the ShareOperation:

public class ShareTargetPageViewModel: INotifyPropertyChanged
{
 // etc.

 private ShareOperation _shareOperation;
 private readonly ObservableCollection<string> _shareFormats =
 new ObservableCollection<string>();
 public string SelectedFormat { get; set; }
 public IEnumerable<string> ShareFormats => _shareFormats;

 public void Activate(ShareOperation shareOperation)
 {
 string title = null;
 string description = null;
 try
 {
 _shareOperation = shareOperation;

 title = _shareOperation.Data.Properties.Title;
 description = _shareOperation.Data.Properties.Description;
 foreach (var format in _shareOperation.Data.AvailableFormats)
 {
 _shareFormats.Add(format);
 }

 Title = title;
 Description = description;
 }
 catch (Exception ex)
 {
 _shareOperation.ReportError(ex.Message);
 }
 }
 // etc.
}

As soon as the user chooses the data format, he or she can click the button to retrieve the data. This in turn invokes the method RetrieveData. Depending on the user’s selection, either GetTextAsync or GetHtmlFormatAsync is invoked on the DataPackageView instance that is returned from the Data property. Before retrieving the data, the method ReportStarted is invoked; after the data is retrieved, the method ReportDataRetrieved is invoked:

public class ShareTargetPageViewModel: INotifyPropertyChanged
{
 // etc.
 private bool dataRetrieved = false;
 public async void RetrieveData()
 {
 try
 {
 if (dataRetrieved)
 {
 await new MessageDialog("data already retrieved").ShowAsync();
 }
 _shareOperation.ReportStarted();
 switch (SelectedFormat)
 {
 case"Text":
 Text = await _shareOperation.Data.GetTextAsync();
 break;
 case"HTML Format":
 Html = await _shareOperation.Data.GetHtmlFormatAsync();
 break;
 default:
 break;
 }
 _shareOperation.ReportDataRetrieved();
 dataRetrieved = true;
 }
 catch (Exception ex)
 {
 _shareOperation.ReportError(ex.Message);
 }
 }
 // etc.
}

With the sample app, the retrieved data is shown in the user interface. With a real app, you can use the data in any form—for example, store it locally on the client or call your own web service and pass the data there.

Finally, the user can click the Report Completed button in the UI. Using the Click handler, this invokes the ReportCompleted method in the view model, which in turn invokes the ReportCompleted method on the ShareOperation instance. This method closes the dialog:

public class ShareTargetPageViewModel: INotifyPropertyChanged
{
 // etc.

 public void ReportCompleted()
 {
 _shareOperation.ReportCompleted();
 }

 // etc.
}

With your app, you can invoke the ReportCompleted method earlier after retrieving the data. Just remember that the dialog of the app is closed when this method is called.

The running SharingTarget app is shown in Figure 33.6.

[image: Screenshot shows a sharingtarget app window with label share target page, three test boxes labelled tittle, description and text, two control buttons labelled retrieve data and report complete.]

Figure 33.6

NOTE The best way to test sharing with all the formats you would like to support is by using the sample app’s Sharing Content Source app sample and Sharing Content Target app sample. Both sample apps are available at https://github.com/Microsoft/Windows-universal-samples. In case you have an app as sharing source, use the sample target app, and vice versa.

NOTE An easy way to debug share targets is to set the Debug option Do Not Launch, but Debug My Code When It Starts. This setting is in the Project Properties, Debug tab (see Figure 33.7). With this setting you can start the debugger, and the app starts as soon as you share data with this app from a data source app.

[image: Screenshot shows a sharingtarget app window with the debug option selected.]

Figure 33.7

App Services

Another way to share data between your apps is by using app services. App services is a new feature with Windows 10 that you can compare to calling into web services, but the service is local on the user’s system. Multiple apps can access the same service, which is how you can share information between apps. An important difference between app services and web services is that the user doesn’t need to interact using this feature; it all can be done from the app.

The sample app AppServices uses a service to cache Book objects. Calling the service, the list of Book objects can be retrieved, and new Book objects can be added to the service.

The app consists of multiple projects.

	One .NET Portable library (BooksCacheModel) defines the model of this app—the Book class. For an easy transfer of data, extension methods are offered to convert Book objects to JSON and the other way around. This library is used from all the other projects.

	The second project (BooksCacheService) is a Windows Runtime component that defines the book service itself. Such a service needs to run in the background; thus a background task is implemented.

	The background task needs to be registered with the system. This project is a Windows app: BooksCacheProvider.

	The client application calling the app service is a Windows app: BooksCacheClient.

Let’s get into these parts.

Creating the Model

The portable library BooksCacheModel contains the Book class, a converter to JSON with the help of the NuGet package Newtonsoft.Json, and a repository.

The Book class defines Title and Publisher properties (code file AppServices/BooksCacheModel/Book.cs):

public class Book
{
 public string Title { get; set; }
 public string Publisher { get; set; }
}

The BooksRepository class holds a memory cache of Book objects, allows the user to add book objects via the AddBook method, and returns all the cached books with the Books property. To already see a book without adding a new book, one book is added to the list at initialization time (code file AppServices/BooksCacheModel/BooksRepository.cs):

public class BooksRepository
{
 private readonly List<Book> _books = new List<Book>()
 {
 new Book {Title ="Professional C# 6", Publisher ="Wrox Press" }
 };
 public IEnumerable<Book> Books => _books;

 private BooksRepository()
 {
 }

 public static BooksRepository Instance = new BooksRepository();

 public void AddBook(Book book)
 {
 _books.Add(book);
 }
}

Because the data that is sent across an app service needs to be serializable, the extension class BookExtensions defines a few extension methods that convert a Book and a Book list to a JSON string, and the other way around. Passing a string across the App service is a simple task. The extension methods make use of the class JsonConvert that is available with the NuGet package Newtonsoft.Json (code file AppServices/BooksCacheModel(BookExtensions.cs):

public static class BookExtensions
{
 public static string ToJson(this Book book) =>
 JsonConvert.SerializeObject(book);

 public static string ToJson(this IEnumerable<Book> books) =>
 JsonConvert.SerializeObject(books);

 public static Book ToBook(this string json) =>
 JsonConvert.DeserializeObject<Book>(json);

 public static IEnumerable<Book> ToBooks(this string json) =>
 JsonConvert.DeserializeObject<IEnumerable<Book>>(json);
}

Creating a Background Task for App Service Connections

Now let’s get into the heart of this sample app: the app service. You need to implement the app service as a Windows Runtime component library and as a background task by implementing the interface IBackgroundTask. Windows background tasks can run in the background without user interaction.

Different kinds of background tasks are available. Background tasks can be started based on a timer interval, Windows push notifications, location information, Bluetooth device connections, or other events.

The class BooksCacheTask is a background task for the app service. The interface IBackgroundTask defines the Run method that needs to be implemented. Within the implementation, a request handler is defined on receiving an app service connection (code file AppServices/BooksCacheService/BooksCacheTask.cs):

public sealed class BooksCacheTask: IBackgroundTask
{
 private BackgroundTaskDeferral _taskDeferral;

 public void Run(IBackgroundTaskInstance taskInstance)
 {
 _taskDeferral = taskInstance.GetDeferral();
 taskInstance.Canceled += OnTaskCanceled;

 var trigger = taskInstance.TriggerDetails as AppServiceTriggerDetails;
 AppServiceConnection connection = trigger.AppServiceConnection;
 connection.RequestReceived += OnRequestReceived;
 }

 private void OnTaskCanceled(IBackgroundTaskInstance sender,
 BackgroundTaskCancellationReason reason)
 {
 _taskDeferral?.Complete();
 }

 // etc.

With the implementation of the OnRequestReceived handler, the service can read the request and needs to supply an answer. The request received is contained in the Request.Message property of the AppServiceRequestReceivedEventArgs. The Message property returns a ValueSet object. ValueSet is a dictionary of keys with their corresponding values. The service here requires a command key with either the value GET or POST. The GET command returns a list of all books, whereas the POST command requires the additional key book with a JSON string as the value for the Book object representation. Depending on the message received, either the GetBooks or AddBook helper method is invoked. The result returned from these messages is returned to the caller by invoking SendResponseAsync:

private async void OnRequestReceived(AppServiceConnection sender,
 AppServiceRequestReceivedEventArgs args)
 {
 AppServiceDeferral deferral = args.GetDeferral();
 try
 {
 ValueSet message = args.Request.Message;
 ValueSet result = null;

 switch (message["command"].ToString())
 {
 case"GET":
 result = GetBooks();
 break;
 case"POST":
 result = AddBook(message["book"].ToString());
 break;
 default:
 break;
 }
 await args.Request.SendResponseAsync(result);
 }
 finally
 {
 deferral.Complete();
 }
 }

The GetBooks method uses the BooksRepository to get all the books in JSON format, and it creates a ValueSet with the result key:

private ValueSet GetBooks()
 {
 var result = new ValueSet();
 result.Add("result", BooksRepository.Instance.Books.ToJson());
 return result;
 }

The AddBook method uses the repository to add a book, and returns a ValueSet with a result key and the value ok:

private ValueSet AddBook(string book)
 {
 BooksRepository.Instance.AddBook(book.ToBook());
 var result = new ValueSet();
 result.Add("result","ok");
 return result;
 }

Registering the App Service

You now need to register the app service with the operating system. This is done by creating a normal UWP app that has a reference to the BooksCacheService. With this app, you must define a declaration in the package.appxmanifest (see Figure 33.8). Add an app service to the app declaration list and give it a name. You need to set the entry point to the background task, including the namespace and the class name.

[image: Screenshot shows an appservice window where the manifest designer declarations page is selected for defining the properties, name and entry point.]

Figure 33.8

For the client app, you need the name of the app that you defined with the package.appxmanifest as well as the package name. To see the package name, you can invoke Package.Current.Id.FamilyName. To see this name easily, it is written to the property PackageFamilyName that is bound within a control in the user interface (code file AppServices/BooksCacheProvider/MainPage.xaml.cs):

public sealed partial class MainPage: Page
{
 public MainPage()
 {
 this.InitializeComponent();
 PackageFamilyName = Package.Current.Id.FamilyName;
 }

 public string PackageFamilyName
 {
 get { return (string)GetValue(PackageFamilyNameProperty); }
 set { SetValue(PackageFamilyNameProperty, value); }
 }

 public static readonly DependencyProperty PackageFamilyNameProperty =
 DependencyProperty.Register("PackageFamilyName", typeof(string),
 typeof(MainPage), new PropertyMetadata(string.Empty));
}

When you run this app, it registers the background task and shows the package name that you need for the client app.

Calling the App Service

With the client app, the app service can now be called. The main parts of the client app BooksCacheClient are implemented with the view model. The Books property is bound in the UI to show all books returned from the service. This collection is filled by the GetBooksAsync method. GetBooksAsync creates a ValueSet with the GET command that is sent to the app service with the helper method SendMessageAsync. This helper method returns a JSON string, which in turn is converted to a Book collection that is used to fill the ObservableCollection for the Books property (code file AppServices/BooksCacheClient/ViewModels/BooksViewModel.cs):

public class BooksViewModel
{
 private const string BookServiceName ="com.CNinnovation.BooksCache";
 private const string BooksPackageName =
 "CNinnovation.Samples.BookCache_p2wxv0ry6mv8g";

 public ObservableCollection<Book> Books { get; } =
 new ObservableCollection<Book>();

 public async void GetBooksAsync()
 {
 var message = new ValueSet();
 message.Add("command","GET");
 string json = await SendMessageAsync(message);
 IEnumerable<Book> books = json.ToBooks();
 foreach (var book in books)
 {
 Books.Add(book);
 }
 }

The method PostBookAsync creates a Book object, serializes it to JSON, and sends it via a ValueSet to the SendMessageAsync method:

public string NewBookTitle { get; set; }
 public string NewBookPublisher { get; set; }

 public async void PostBookAsync()
 {
 var message = new ValueSet();
 message.Add("command","POST");
 string json = new Book
 {
 Title = NewBookTitle,
 Publisher = NewBookPublisher
 }.ToJson();
 message.Add("book", json);
 string result = await SendMessageAsync(message);
 }

The app service–relevant client code is contained within the method SendMessageAsync. Here, an AppServiceConnection is created. The connection is closed after use by disposing it with the using statement. To map the connection to the correct service, the AppServiceName and PackageFamilyName properties need to be supplied. After setting these properties, the connection is opened by invoking the method OpenAsync. Only when the connection is opened successfully is a request sent with the ValueSet received from the calling method. The AppServiceConnection method SendMessageAsync makes the request to the service and returns an AppServiceResponse object. The response contains the result from the service, which is dealt with accordingly:

private async Task<string> SendMessageAsync(ValueSet message)
 {
 using (var connection = new AppServiceConnection())
 {
 connection.AppServiceName = BookServiceName;
 connection.PackageFamilyName = BooksPackageName;

 AppServiceConnectionStatus status = await connection.OpenAsync();
 if (status == AppServiceConnectionStatus.Success)
 {
 AppServiceResponse response =
 await connection.SendMessageAsync(message);
 if (response.Status == AppServiceResponseStatus.Success &&
 response.Message.ContainsKey("result"))
 {
 string result = response.Message["result"].ToString();
 return result;
 }
 else
 {
 await ShowServiceErrorAsync(response.Status);
 }
 }
 else
 {
 await ShowConnectionErrorAsync(status);
 }
 return string.Empty;
 }
 }

After building the solution and deploying both the provider and the client app, you can start the client app and invoke the service. You can also create multiple client apps calling the same service.

After communicating between apps, let’s make use of some hardware. The next section makes use of the camera to record photos and videos.

Camera

As apps are becoming more and more visual, and more devices offer one or two cameras built-in, using the camera is becoming a more and more important aspect of apps—and it is easy to do with the Windows Runtime.

NOTE Using the camera requires that you configure the Webcam capability in the Manifest Editor. For recording videos, you need to configure the Microphone capability as well.

Photos and videos can be captured with the CameraCaptureUI class (in the namespace Windows.Media.Capture). First, you need to configure the photo and video settings to use the CaptureFileAsync method. The first code snippet captures a photo. After instantiating the CameraCaptureUI class, PhotoSettings are applied. Possible photo formats are JPG, JPGXR, and PNG. It is also possible to define cropping where the UI for the camera capture directly asks the user to select a clipping from the complete picture based on the cropping size. For cropping, you can define either a pixel size with the property CroppedSizeInPixels or just a ratio with CroppedAspectRatio. After the user takes the photo, the sample code uses the returned StorageFile from the method CaptureFileAsync to store it as a file inside a user-selected folder with the help of the FolderPicker (code file CameraSample/MainPage.xaml.cs)

private async void OnTakePhoto(object sender, RoutedEventArgs e)
{
 var cam = new CameraCaptureUI();
 cam.PhotoSettings.AllowCropping = true;
 cam.PhotoSettings.Format = CameraCaptureUIPhotoFormat.Png;
 cam.PhotoSettings.CroppedSizeInPixels = new Size(300, 300);
 StorageFile file = await cam.CaptureFileAsync(CameraCaptureUIMode.Photo);

 if (file != null)
 {
 var picker = new FileSavePicker();
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
 picker.FileTypeChoices.Add("Image File", new string[] {".png" });
 StorageFile fileDestination = await picker.PickSaveFileAsync();
 if (fileDestination != null)
 {
 await file.CopyAndReplaceAsync(fileDestination);
 }
 }
}

The second code snippet is used to record a video. As before, you first need to take care of the configuration. Besides the PhotoSettings property, the CameraCaptureUI type defines the VideoSettings property. You can restrict the video recording based on the maximum resolution (using the enumeration value CameraCaptureUIMaxVideoResolution.HighestAvailable allows the user to select any available resolution) and the maximum duration. Possible video formats are WMV and MP4:

private async void OnRecordVideo(object sender, RoutedEventArgs e)
{
 var cam = new CameraCaptureUI();
 cam.VideoSettings.AllowTrimming = true;
 cam.VideoSettings.MaxResolution =
 CameraCaptureUIMaxVideoResolution.StandardDefinition;
 cam.VideoSettings.Format = CameraCaptureUIVideoFormat.Wmv;
 cam.VideoSettings.MaxDurationInSeconds = 5;
 StorageFile file = await cam.CaptureFileAsync(
 CameraCaptureUIMode.Video);

 if (file != null)
 {
 var picker = new FileSavePicker();
 picker.SuggestedStartLocation = PickerLocationId.VideosLibrary;
 picker.FileTypeChoices.Add("Video File", new string[] {".wmv" });
 StorageFile fileDestination = await picker.PickSaveFileAsync();
 if (fileDestination != null)
 {
 await file.CopyAndReplaceAsync(fileDestination);
 }
 }
}

In cases where the user should be offered the option to capture either a video or a photo, you can pass the parameter CameraCaptureUIMode.PhotoOrVideo to the method CaptureFileAsync.

Because the camera also records location information, when the user runs the app for the first time, he or she is asked if recording location information should be allowed (see Figure 33.9).

[image: Image described by surrounding text.]

Figure 33.9

Running the application, you can record photos and videos.

Geolocation and MapControl

Knowing the location of the user is an important aspect of apps, whether it’s an app to show a map, an app that shows the weather of the area of the user, or an app for which you need to decide in what nearest cloud center the data of the user should be saved. When ads are used in the app, the user location can be important to show ads from the near area (if available).

With UWP apps you can also show maps. With Windows 10, a MapControl is available as part of the Windows API, and you don’t need to use additional libraries, such as the Bing SDK, for doing this.

The sample app uses both the Geolocator (namespace Windows.Devices.Geolocation), to give information about the address of the user, and the MapControl (namespace Windows.UI.Xaml.Controls.Maps). Of course, you can also use these types independent of each other in your apps.

Using the MapControl

With the sample app, a MapControl is defined in the MainPage where different properties and events bind to values from the MapsViewModel that is accessed via the ViewModel property of the page. This way, you can dynamically change some settings in the app and see different features available with the MapControl (code file MapSample/MainPage.xaml):

<maps:MapControl x:Name="map"
 Center="{x:Bind ViewModel.CurrentPosition, Mode=OneWay}"
 MapTapped="{x:Bind ViewModel.OnMapTapped, Mode=OneTime}"
 Style="{x:Bind ViewModel.CurrentMapStyle, Mode=OneWay}"
 ZoomLevel="{x:Bind Path=ViewModel.ZoomLevel, Mode=OneWay}"
 DesiredPitch="{x:Bind Path=ViewModel.DesiredPitch, Mode=OneWay}"
 TrafficFlowVisible="{x:Bind checkTrafficFlow.IsChecked, Mode=OneWay,
 Converter={StaticResource nbtob}}"
 BusinessLandmarksVisible="{x:Bind checkBusinessLandmarks.IsChecked,
 Mode=OneWay, Converter={StaticResource nbtob}}"
 LandmarksVisible="{x:Bind checkLandmarks.IsChecked, Mode=OneWay,
 Converter={StaticResource nbtob}}"
 PedestrianFeaturesVisible="{x:Bind checkPedestrianFeatures.IsChecked,
 Mode=OneWay, Converter={StaticResource nbtob}}" />

The sample app defines controls to configure the MapControl within the Pane of the SplitView that is positioned on the right side. The MapControl is defined within the content of the SplitView. You can read more about the SplitView control in Chapter 32.

With the code-behind file, the ViewModel property is defined, and a MapsViewModel is instantiated by passing the MapControl to the constructor. Usually it’s best to avoid having Windows controls directly accessible to the view model, and you should only use data binding to map. However, when you use some special features, such as street-side experience, it’s easier to directly use the MapControl in the MapsViewModel class. Because this view model type is not doing anything else and cannot be used on anything other than Windows devices anyway, it’s a compromise for passing the MapControl to the constructor of the MapsViewModel (code file MapSample/MainPage.xaml.cs):

public sealed partial class MainPage: Page
{
 public MainPage()
 {
 this.InitializeComponent();
 ViewModel = new MapsViewModel(map);
 }

 public MapsViewModel ViewModel { get; }
}

The constructor of the MapsViewModel initializes some properties that are bound to properties of the MapControl, such as the position of the map to a location within Vienna, the map style to a road variant, the pitch level to 0, and the zoom level to 12 (code file MapSample/ViewModels/MapsViewModel.cs):

public class MapsViewModel: BindableBase
{
 private readonly CoreDispatcher _dispatcher;
 private readonly Geolocator _locator = new Geolocator();
 private readonly MapControl _mapControl;

 public MapsViewModel(MapControl mapControl)
 {
 _mapControl = mapControl;
 StopStreetViewCommand = new DelegateCommand(
 StopStreetView, () => IsStreetView);
 StartStreetViewCommand = new DelegateCommand(
 StartStreetViewAsync, () => !IsStreetView);

 if (!DesignMode.DesignModeEnabled)
 {
 _dispatcher = CoreWindow.GetForCurrentThread().Dispatcher;
 }

 _locator.StatusChanged += async (s, e) =>
 {
 await _dispatcher.RunAsync(CoreDispatcherPriority.Low, () =>
 PositionStatus = e.Status);
 };

 // intialize defaults at startup
 CurrentPosition = new Geopoint(
 new BasicGeoposition { Latitude = 48.2, Longitude = 16.3 });
 CurrentMapStyle = MapStyle.Road;
 DesiredPitch = 0;
 ZoomLevel = 12;
 }

Upon starting the app with the initial configuration, you can see the maps loaded with a location in Vienna as defined by the BasicGeoposition, the controls on the right side for managing the MapControl, and textual information about the loading status of the map (see Figure 33.10).

[image: Image described by surrounding text.]

Figure 33.10

When you zoom in, change the pitch level, and select landmarks and business landmarks to be visible, you can see famous buildings such as the Stephansdom in Vienna, as shown in Figure 33.11.

[image: Image described by surrounding text.]

Figure 33.11

When you switch to the Aerial view, you can see real images, as shown in Figure 33.12.

[image: Image described by surrounding text.]

Figure 33.12

Some locations also show nice images with the Aerial3D view, as shown in Figure 33.13.

[image: Image described by surrounding text.]

Figure 33.13

Location Information with Geolocator

Next, you need to get the actual position of the user with the help of the Geolocator instance _locator. The method GetPositionAsync returns the geolocation by returning a Geoposition instance. The result is applied to the CurrentPosition property of the view model that is bound to the center of the MapControl (code file MapSample/ViewModels/MapsViewModel.cs):

public async void GetCurrentPositionAsync()
{
 try
 {
 Geoposition position = await _locator.GetGeopositionAsync(
 TimeSpan.FromMinutes(5), TimeSpan.FromSeconds(5));
 CurrentPosition = new Geopoint(new BasicGeoposition
 {
 Longitude = position.Coordinate.Point.Position.Longitude,
 Latitude = position.Coordinate.Point.Position.Latitude
 });

 }
 catch (UnauthorizedAccessException ex)
 {
 await new MessageDialog(ex.Message).ShowAsync();
 }
}

The Geoposition instance returned from GetGeopositionAsync lists information about how the Geolocator came to the conclusion of the position: using a cellular network with a phone, satellite, a Wi-Fi network that is recorded, or an IP address. When you configure the Geolocator, you can specify how accurate the information should be. By setting the property DesiredAccuracyInMeters, you can define how exact the location should be within a meter range. Of course, this accuracy is what you hope for, but it might not be possible to achieve. If the location should be more exact, GPS information from accessing satellite information can be used. Depending on the technology needed, more battery is used, so you shouldn’t specify such accuracy if it’s not really necessary. Satellite or cellular information cannot be used if the device doesn’t offer these features. In those cases, you can use only the Wi-Fi network (if available) or an IP address. Of course, the IP address can be imprecise. Maybe you’re getting the geolocation of an IP provider instead of the user. With the device and network I’m using, I get an accuracy of 64 meters. The source of the position is Wi-Fi. The result is very accurate. You can see the map in Figure 33.14.

[image: Image described by surrounding text.]

Figure 33.14

Street-Side Experience

Another feature offered by the MapControl is street-side experience. This feature is not available with all devices. You need to check the IsStreetsideSupported property from the MapControl before using it. In cases where street view is supported by the device, you can try to find nearby street-side places using the static method FindNearbyAsync of the StreetsidePanorama class. Street-side experience is available only for some locations. You can test to find out whether it is available in your location. If StreetsidePanorama information is available, it can be passed to the StreetsideExperience constructor and assigned to the CustomExperience property of the MapControl (code file MapSample/ViewModels/MapsViewModel.cs):

public async void StartStreetViewAsync()
{
 if (_mapControl.IsStreetsideSupported)
 {
 var panorama = await StreetsidePanorama.FindNearbyAsync(CurrentPosition);
 if (panorama == null)
 {
 var dlg = new MessageDialog("No streetside available here");
 await dlg.ShowAsync();
 return;
 }
 IsStreetView = true;
 _mapControl.CustomExperience = new StreetsideExperience(panorama);
 }
}

Street-side experience looks like what’s shown in Figure 33.15.

[image: Screenshot shows a mapsample window displaying the street-side experience feature.]

Figure 33.15

Continuously Requesting Location Information

Instead of getting the location just once using the Geolocator, you can also retrieve the location based on a time interval or the movement of the user. With the Geolocator, you can set the ReportInterval property to a minimum time interval in milliseconds between location updates. Updates can still happen more often—for example, if another app requested geo information with a smaller time interval. Instead of using a time interval, you can specify that the movement of the user fire location information. The property MovementThreshold specifies the movement in meters.

After setting the time interval or movement threshold, the PositionChanged event is fired every time a position update occurs:

private GeoLocator locator;
private void OnGetContinuousLocation(object sender, RoutedEventArgs e)
{
 locator = new Geolocator();
 locator.DesiredAccuracy = PositionAccuracy.High;
 // locator.ReportInterval = 1000;
 locator.MovementThreshold = 10;
 locator.PositionChanged += (sender1, e1) =>
 {
 // position updated
 };
 locator.StatusChanged += (sender1, e1) =>
 {
 // status changed
 };
}

NOTE Debugging apps with position changes does not require that you now get into a car and debug your app while on the road. Instead, the simulator is a helpful tool.

Sensors

For a wide range of sensors, the Windows Runtime offers direct access. The namespace Windows.Devices.Sensors contains classes for several sensors that can be available with different devices.

Before stepping into the code, it helps to have an overview of the different sensors and what they can be used for with the following table. Some sensors are very clear with their functionality, but others need some explanation. Windows 10 also offers some new sensors.

	Sensor
	Features

	LightSensor
	The light sensor returns the light in lux. This information is used by Windows to set the screen brightness.

	Compass
	The compass gives information about how many degrees the device is directed to the north using a magnetometer. This sensor differentiates magnetic and geographic north.

	Accelerometer
	The accelerometer measures G-force values along x, y, and z device axes. This could be used by an app that shows a marble rolling across the screen.

	Gyrometer
	The gyrometer measures angular velocities along x, y, and z device axes. If the app cares about device rotation, this is the sensor that can be used. However, moving the device also influences the gyrometer values. It might be necessary to compensate the gyrometer values using accelerometer values to remove moving of the device and just work with the real angular velocities.

	Inclinometer
	The inclinometer gives number of degrees as the device rotates across the x-axis (pitch), y-axis (roll), and z-axis (yaw). An example of when this could be used is an app showing an airplane that matches yaw, pitch, and roll.

	OrientationSensor
	The orientation uses data from the accelerometer, gyrometer, and magnetometer and offers the values both in a quaternion and a rotation matrix.

	Barometer (new with Windows 10)
	The barometer measures atmospheric pressure.

	Altimeter (new with Windows 10)
	The altimeter measures the relative altitude.

	Magnetometer
	The magnetometer measures the strength and direction of a magnetic field.

	Pedometer (new with Windows 10)
	The pedometer measures the steps taken. Usually you’re not walking with your desktop PC, which doesn’t have such a sensor, but a pedometer is available with many Windows 10 phones.

	ProximitySensor (new with Windows 10)
	The proximity sensor measures the distance of nearby objects. It uses an electromagnetic field or infrared sensor to measure the distance.

Depending on your device, only a few of these sensors are available. Many of these sensors are used only within mobile devices. For example, counting your steps with a desktop PC might not result in the number of steps you should reach during a day.

An important aspect with sensors that return coordinates is that it’s not the display orientation coordinate system that is used with Windows apps. Instead, it’s using device orientation, which can be different based on the device. For example, for a Surface Pro that is by default positioned horizontally, the x-axis goes to right, y-axis to top, and the z-axis away from the user.

The sample app for using the sensors shows the results of several sensors in two ways: You can get the sensor value once, or you can read it continuously using events. You can use this app to see what sensor data is available with your device and also see what data is returned as you move the device.

For each of the sensors shown in the app, a RelativePanel that contains two Button and two Textblock controls is added to the MainPage. The following code snippet defines the controls for the light sensor (code file SensorSampleApp/MainPage.xaml):

<Border BorderThickness="3" Margin="12" BorderBrush="Blue">
 <RelativePanel>
 <Button x:Name="GetLightButton" Margin="8" Content="Get Light"
 Click="{x:Bind LightViewModel.OnGetLight}" />
 <Button x:Name="GetLightButtonReport" Margin="8"
 RelativePanel.Below="GetLightButton" Content="Get Light Report"
 Click="{x:Bind LightViewModel.OnGetLightReport}" />
 <TextBlock x:Name="LightText" Margin="8"
 RelativePanel.RightOf="GetLightButtonReport"
 RelativePanel.AlignBottomWith="GetLightButton" Text="{x:Bind
 LightViewModel.Illuminance, Mode=OneWay}" />
 <TextBlock x:Name="LightReportText" Margin="8"
 RelativePanel.AlignLeftWith="LightText"
 RelativePanel.AlignBottomWith="GetLightButtonReport" Text="{x:Bind
 LightViewModel.IlluminanceReport, Mode=OneWay}" />
 </RelativePanel>
</Border>

Light

As soon as you know how to work with one sensor, the other ones are very similar. Let’s start with the LightSensor. First, an object is accessed invoking the static method GetDefault. You can get the actual value of the sensor by calling the method GetCurrentReading. With the LightSensor, GetCurrentReading returns a LightSensorReading object. This reading object defines the IlluminanceInLux property that returns the luminance in lux (code file SensorSample/ViewModels/LightViewModel.cs):

public class LightViewModel: BindableBase
{
 public void OnGetLight()
 {
 LightSensor sensor = LightSensor.GetDefault();
 if (sensor != null)
 {
 LightSensorReading reading = sensor.GetCurrentReading();
 Illuminance = $"Illuminance: {reading?.IlluminanceInLux}";
 }
 else
 {
 Illuminance ="Light sensor not found";
 }
 }

 private string _illuminance;

 public string Illuminance
 {
 get { return _illuminance; }
 set { SetProperty(ref _illuminance, value); }
 }

 // etc.

}

For getting continuous updated values, the ReadingChanged event is fired. Specifying the ReportInterval property specifies the time interval that should be used to fire the event. It may not be lower than MinimumReportInterval. With the event, the second parameter e is of type LightSensorReadingChangedEventArgs and specifies the LightSensorReading with the Reading property:

public class LightViewModel: BindableBase
{
 // etc

 public void OnGetLightReport()
 {
 LightSensor sensor = LightSensor.GetDefault();
 if (sensor != null)
 {
 sensor.ReportInterval = Math.Max(sensor.MinimumReportInterval, 1000);
 sensor.ReadingChanged += async (s, e) =>
 {
 LightSensorReading reading = e.Reading;

 await CoreApplication.MainView.Dispatcher.RunAsync(
 CoreDispatcherPriority.Low, () =>
 {
 IlluminanceReport =
 $"{reading.IlluminanceInLux} {reading.Timestamp:T}";
 });
 };
 }
 }

 private string _illuminanceReport;
 public string IlluminanceReport
 {
 get { return _illuminanceReport; }
 set { SetProperty(ref _illuminanceReport, value); }
 }
}

Compass

The compass can be used very similarly. The GetDefault method returns the Compass object, and GetCurrentReading retrieves the CompassReading representing the current values of the compass. CompassReading defines the properties HeadingAccuracy, HeadingMagneticNorth, and HeadingTrueNorth.

In cases where HeadingAccuracy returns MagnometerAccuracy.Unknown or Unreliable, the compass needs to be calibrated (code file SensorSampleApp/ViewModels/CompassviewModel.cs):

public class CompassViewModel: BindableBase
{
 public void OnGetCompass()
 {
 Compass sensor = Compass.GetDefault();
 if (sensor != null)
 {
 CompassReading reading = sensor.GetCurrentReading();
 CompassInfo = $"magnetic north: {reading.HeadingMagneticNorth}" +
 $"real north: {reading.HeadingTrueNorth}" +
 $"accuracy: {reading.HeadingAccuracy}";
 }
 else
 {
 CompassInfo ="Compass not found";
 }
 }

 private string _compassInfo;
 public string CompassInfo
 {
 get { return _compassInfo; }
 set { SetProperty(ref _compassInfo, value); }
 }

 // etc.
}

Continuous updates are available with the compass as well:

public class CompassViewModel: BindableBase
{
 // etc.

 public void OnGetCompassReport()
 {
 Compass sensor = Compass.GetDefault();
 if (sensor != null)
 {
 sensor.ReportInterval = Math.Max(sensor.MinimumReportInterval, 1000);
 sensor.ReadingChanged += async (s, e) =>
 {
 CompassReading reading = e.Reading;
 await CoreApplication.MainView.Dispatcher.RunAsync(
 CoreDispatcherPriority.Low, () =>
 {
 CompassInfoReport =
 $"magnetic north: {reading.HeadingMagneticNorth}" +
 $"real north: {reading.HeadingTrueNorth}" +
 $"accuracy: {reading.HeadingAccuracy} {reading.Timestamp:T}";
 });
 };
 }
 }

 private string _compassInfoReport;
 public string CompassInfoReport
 {
 get { return _compassInfoReport; }
 set { SetProperty(ref _compassInfoReport, value); }
 }
}

Accelerometer

The accelerometer gives information about the g-force values along x-, y-, and z-axes of the device. With a landscape device, the x-axis is horizontal, the y-axis is vertical, and the z-axis is oriented in direction from the user. For example, if the device stands upright at a right angle on the table with the Windows button on bottom, the x has a value of −1. When you turn the device around to have the Windows button on top, x has a value of +1.

Similar to the other sensors you’ve seen so far, the static method GetDefault returns the Accelerometer, and GetCurrentReading gives the actual accelerometer values with the AccelerometerReading object. AccelerationX, AccelerationY, and AccererationZ are the values that can be read (code file SensorSampleApp/ViewModels/AccelerometerViewModel.cs):

public class AccelerometerViewModel: BindableBase
{
 public void OnGetAccelerometer()
 {
 Accelerometer sensor = Accelerometer.GetDefault();
 if (sensor != null)
 {
 AccelerometerReading reading = sensor.GetCurrentReading();
 AccelerometerInfo = $"X: {reading.AccelerationX}" +
 $"Y: {reading.AccelerationY} Z: {reading.AccelerationZ}";
 }
 else
 {
 AccelerometerInfo ="Compass not found";
 }
 }

 private string _accelerometerInfo;
 public string AccelerometerInfo
 {
 get { return _accelerometerInfo; }
 set { SetProperty(ref _accelerometerInfo, value); }
 }
 // etc.
}

You get continuous values from the accelerometer by assigning an event handler to the ReadingChanged event. As this is exactly the same as with the other sensors that have been covered so far, the code snippet is not shown in the book. However, you get this functionality with the code download of this chapter. You can test your device and move it continuously while reading the accelerometer values.

Inclinometer

The inclinometer is for advanced orientation; it gives yaw, pitch, and roll values in degrees with respect to gravity. The resulting values are specified by the properties PitchDegrees, RollDegrees, and YawDegrees (code file SensorSampleApp/ViewModels/InclinometerViewModel.cs):

public class InclinometerViewModel: BindableBase
{
 public void OnGetInclinometer()
 {
 Inclinometer sensor = Inclinometer.GetDefault();
 if (sensor != null)
 {
 InclinometerReading reading = sensor.GetCurrentReading();
 InclinometerInfo = $"pitch degrees: {reading.PitchDegrees}" +
 $"roll degrees: {reading.RollDegrees}" +
 $"yaw accuracy: {reading.YawAccuracy}" +
 $"yaw degrees: {reading.YawDegrees}";
 }
 else
 {
 InclinometerInfo ="Inclinometer not found";
 }
 }

 private string _inclinometerInfo;
 public string InclinometerInfo
 {
 get { return _inclinometerInfo; }
 set { SetProperty(ref _inclinometerInfo, value); }
 }
 // etc.
}

Gyrometer

The Gyrometer gives angular velocity values for the x-, y-, and z- device axes (code file SensorSampleApp/ViewModels/GyrometerViewModel.cs):

public class GyrometerViewModel: BindableBase
{
 public void OnGetGyrometer()
 {
 Gyrometer sensor = Gyrometer.GetDefault();
 if (sensor != null)
 {
 GyrometerReading reading = sensor.GetCurrentReading();
 GyrometerInfo = $"X: {reading.AngularVelocityX}" +
 $"Y: {reading.AngularVelocityY} Z: {reading.AngularVelocityZ}";
 }
 else
 {
 GyrometerInfo ="Gyrometer not found";
 }
 }

 private string _gyrometerInfo;
 public string GyrometerInfo
 {
 get { return _gyrometerInfo; }
 set { SetProperty(ref _gyrometerInfo, value); }
 }
 // etc.
}

Orientation

The OrientationSensor is the most complex sensor because it takes values from the accelerometer, gyrometer, and magnetometer. You get all the values in either a quaternion represented by the Quaternion property or a rotation matrix (RotationMatrix property).

Try the sample app to see the values and how you move the device (code file SensorSampleApp/ViewModels/OrientationViewModel.cs):

public static class OrientationSensorExtensions
{
 public static string Output(this SensorQuaternion q) =>
 $"x {q.X} y {q.Y} z {q.Z} w {q.W}";

 public static string Ouput(this SensorRotationMatrix m) =>
 $"m11 {m.M11} m12 {m.M12} m13 {m.M13}" +
 $"m21 {m.M21} m22 {m.M22} m23 {m.M23}" +
 $"m31 {m.M31} m32 {m.M32} m33 {m.M33}";
}

public class OrientationViewModel: BindableBase
{
 public void OnGetOrientation()
 {
 OrientationSensor sensor = OrientationSensor.GetDefault();
 if (sensor != null)
 {
 OrientationSensorReading reading = sensor.GetCurrentReading();
 OrientationInfo = $"Quaternion: {reading.Quaternion.Output()}" +
 $"Rotation: {reading.RotationMatrix.Ouput()}" +
 $"Yaw accuracy: {reading.YawAccuracy}";
 }
 else
 {
 OrientationInfo ="Compass not found";
 }
 }

 private string _orientationInfo;
 public string OrientationInfo
 {
 get { return _orientationInfo; }
 set { SetProperty(ref _orientationInfo, value); }
 }
 // etc.
}

When you run the app, you can see sensor data as shown in Figure 33.16.

[image: Screenshot shows a sensorsampleapp fetching various parameters like get light, get light report, get compass, get compass report, get accelerometer, get inclinometer, et cetera.]

Figure 33.16

Rolling Marble Sample

For seeing sensor values in action not only with result values in a TextBlock element, you can make a simple sample app that makes use of the Accelerometer to roll a marble across the screen.

The marble is represented by a red ellipse. Having an Ellipse element positioned within a Canvas element allows moving the Ellipse with an attached property (code file RollingMarble/MainPage.xaml):

<Canvas Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Ellipse Fill="Red" Width="100" Height="100" Canvas.Left="550"
 Canvas.Top="400" x:Name="ell1" />
</Canvas>

NOTE Attached properties are explained in Chapter 29, “Core XAML.” More information about the Canvas element is in Chapter 34, “Windows Desktop Applications with WPF.”

The constructor of the MainPage initializes the Accelerometer and requests continuous reading with the minimum interval. To know the boundaries of the window, with the LayoutUpdated event of the page, MaxX and MaxY are set to the width and height of the window minus the size of the ellipse (code file RollingMarble/MainPage.xaml.cs):

public sealed partial class MainPage: Page
{
 private Accelerometer _accelerometer;
 private double MinX = 0;
 private double MinY = 0;
 private double MaxX = 1000;
 private double MaxY = 600;
 private double currentX = 0;
 private double currentY = 0;

 public MainPage()
 {
 this.InitializeComponent();
 accelerometer = Accelerometer.GetDefault();
 accelerometer.ReportInterval = accelerometer.MinimumReportInterval;
 accelerometer.ReadingChanged += OnAccelerometerReading;
 this.DataContext = this;

 this.LayoutUpdated += (sender, e) =>
 {
 MaxX = this.ActualWidth—100;
 MaxY = this.ActualHeight—100;
 };
 }

With every value received from the accelerometer, the ellipse is moved within the Canvas element in the event handler method OnAccelerometerReading. Before the value is set, it is checked according to the boundaries of the window:

private async void OnAccelerometerReading(Accelerometer sender,
 AccelerometerReadingChangedEventArgs args)
{
 currentX += args.Reading.AccelerationX * 80;
 if (currentX < MinX) currentX = MinX;
 if (currentX > MaxX) currentX = MaxX;

 currentY += -args.Reading.AccelerationY * 80;
 if (currentY < MinY) currentY = MinY;
 if (currentY > MaxY) currentY = MaxY;

 await this.Dispatcher.RunAsync(CoreDispatcherPriority.High, () =>
 {
 Canvas.SetLeft(ell1, currentX);
 Canvas.SetTop(ell1, currentY);
 });
}

Now you run the app and move the device to get the marble rolling as shown in Figure 33.17.

[image: Image described by surrounding text.]

Figure 33.17

Summary

This chapter provided more information on writing UWP Windows apps. You’ve seen how the life cycle is different compared to Window desktop applications, and how you need to take action on the Suspending event.

Interaction with other apps was covered by using share contracts. The DataTransferManager was used to offer HTML data for other apps. Implementing a share target contract enables the app to receive data from other apps.

Another main part of this chapter covered several devices, including the camera for taking pictures and recording videos, a geolocator for getting the location of the user, and a bunch of different sensors for getting information about how the device moves.

The next chapter continues with XAML technologies and covers Windows desktop applications using Windows Presentation Foundation (WPF).

34
Windows Desktop Applications with WPF

What’s In This Chapter?

	WPF Controls

	Layout

	Triggers

	Menu and ribbon controls

	Using commanding for input handling

	Data binding to elements, objects, lists, and XML

	Value conversions and validation

	Using the TreeViewto display hierarchical data

	Displaying and grouping data with the DataGrid

	Live shaping with the Collection View Source

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Controls Sample

	Layout Sample

	Trigger Sample

	Books

	Multi Binding Sample

	Priority Binding Sample

	XML Binding Sample

	Validation Sample

	Formula-1

	Live Shaping

Introduction

In Chapter 29, “Core XAML,” and Chapter 30, “Styling XAML Apps,” you read about some of the core features of XAML. This chapter continues the journey through XAML using it from WPF. Here you read about important aspects for the control hierarchy, creating complete applications, using data binding and command handling, and using the DataGrid control. Data binding is an important concept for bringing data from .NET classes into the user interface and allowing the user to change data. WPF not only allows binding to simple entities or lists, but it also offers binding of one UI property to multiple properties of possible different types with multibinding and priority binding that are discussed in this chapter as well. It is also important to validate data entered by a user. Here, you can read about different ways to handle validation, including the interface INotifyDataErrorInfo that is new since .NET 4.5. Also covered in this chapter is commanding, which enables mapping events from the UI to code. In contrast to the event model, this provides a better separation between XAML and code. This chapter covers using predefined commands and creating custom commands.

The TreeView and DataGrid controls are UI controls to display bound data. This chapter explains using the TreeView control to display data in the tree where data is loaded dynamically depending on what the user selects. With the DataGrid control you find out how to use filtering, sorting, and grouping, as well as one new .NET 4.5 feature named live shaping that allows changing sorting or filtering options in real time.

To begin, let’s start with the Menu and the Ribbon controls. The Ribbon control made it into the release of .NET 4.5.

Controls

Because you can use hundreds of controls with WPF, they are categorized into groups, each of which is described in the following sections.

Simple Controls

Simple controls are controls that don’t have a Content property. The Button class has come up in other chapters, where you have seen that the Button can contain any shape or any element you like. This is not possible with simple controls. The following table describes the simple controls.

	Simple Control
	Description

	TextBox
	This control is used to display simple, unformatted text.

	RichTextBox
	This control supports rich text with the help of the FlowDocument class. RichTextBox and TextBox are derived from the same base class—TextBoxBase.

	Calendar
	This control displays a month, year, or decade. The user can select a date or range of dates.

	DatePicker
	This control opens a calendar onscreen for date selection by the user.

	PasswordBox
	This control is used to enter a password. It has specific properties for password input, such as PasswordChar, to define the character that should be displayed as the user enters the password, or Password, to access the password entered. The PasswordChanged event is invoked as soon as the password is changed.

	ScrollBar
	This control contains a Thumb that enables the user to select a value. A scrollbar can be used, for example, if a document doesn’t fit on the screen. Some controls contain scrollbars that are displayed if the content is too big.

	ProgressBar
	This control indicates the progress of a lengthy operation.

	Slider
	This control enables users to select a range of values by moving a Thumb. ScrollBar, ProgressBar, and Slider are derived from the same base class—RangeBase.

NOTE Although simple controls do not have a Content property, you can completely customize the look of a control by defining a template. Templates are discussed later in this chapter in the section “Templates.”

Content Controls

A ContentControl has a Content property, with which you can add any content to the control. The Button class derives from the base class ContentControl, so you can add any content to this control. In a previous example, you saw a Canvas control within the Button. Content controls are described in the following table.

	Content Control
	Description

	Button, RepeatButton, ToggleButton, CheckBox, RadioButton
	The classes Button, RepeatButton, ToggleButton, and GridViewColumnHeader are derived from the same base class—ButtonBase. All buttons react to the Click event. RepeatButton raises the Click event repeatedly until the button is released. ToggleButton is the base class for CheckBox and RadioButton. These buttons have an on and off state. The CheckBox can be selected and cleared by the user; the RadioButton can be selected by the user. Clearing the RadioButton must be done programmatically.

	Label
	The Label class represents the text label for a control. This class also has support for access keys—for example, a menu command.

	Frame
	The Frame control supports navigation. You can navigate to a page’s content with the Navigate method. If the content is a web page, then the WebBrowser control is used for display.

	ListBoxItem
	An item inside a ListBox control.

	StatusBarItem
	An item inside a StatusBar control.

	ScrollViewer
	A content control that includes scrollbars. You can put any content in this control; the scrollbars are displayed as needed.

	ToolTip
	Creates a pop-up window to display additional information for a control.

	UserControl
	Using this class as a base class provides a simple way to create custom controls. However, the UserControl base class does not support templates.

	Window
	This class enables you to create windows and dialogs. It includes a frame with minimize/maximize/close buttons and a system menu. When showing a dialog, you can use the ShowDialog method; the Show method opens a window.

	NavigationWindow
	This class derives from the Window class and supports content navigation.

Only a Frame control is contained within the Window of the following XAML code. The Source property is set to http://www.cninnovation.com, so the Frame control navigates to this website, as shown in Figure 34.1 (code file ControlsSample/FramesWindow.xaml):

<Window x:Class="ControlsSamples.FramesWindow"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Frames Sample" Height="500" Width="800">
 <Frame Source="http://www.cninnovation.com" Grid.Row="1" />
</Window>

[image: Image described by surrounding text.]

Figure 34.1

NOTE In Chapter 32, “Windows Apps: User Interfaces,” you can read how to use the Frame class to navigate between pages. With WPF, you can also use the Frame class for navigation.

Headered Content Controls

Content controls with a header are derived from the base class HeaderedContentControl, which itself is derived from the base class ContentControl. The HeaderedContentControl class has a property Header to define the content of the header and HeaderTemplate for complete customization of the header. The controls derived from the base class HeaderedContentControl are listed in the following table.

	HeaderedContentControl
	Description

	Expander
	This control enables you to create an “advanced” mode with a dialog that, by default, does not show all information but can be expanded by the user for additional details. In the unexpanded mode, header information is shown. In expanded mode, the content is visible.

	GroupBox
	Provides a border and a header to group controls.

	TabItem
	These controls are items within the class TabControl. The Header property of the TabItem defines the content of the header shown with the tabs of the TabControl.

A simple use of the Expander control is shown in the next example. The Expander control has the property Header set to Click for more. This text is displayed for expansion. The content of this control is shown only if the control is expanded. Figure 34.2 shows the application with a collapsed Expander control, and Figure 34.3 shows the same application with an expanded Expander control. The code is as follows (code file ControlsSample/ExpanderWindow.xaml):

<Window x:Class="ControlsSample.ExpanderWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Expander Sample" Height="300" Width="300">
 <StackPanel>
 <TextBlock>Short information</TextBlock>
 <Expander Header="Additional Information">
 <Border Height="200" Width="200" Background="Yellow">
 <TextBlock HorizontalAlignment="Center" VerticalAlignment="Center">
 More information here!
 </TextBlock>
 </Border>
 </Expander>
 </StackPanel>
</Window>

[image: Screenshot shows an expander sample window with a textbox header labelled short information, an expander control and an expander header named additional information.]

Figure 34.2

[image: Screenshot shows an expander sample window with a textbox header labelled short information, an expanded expander control and an expander header named additional information.]

Figure 34.3

NOTE To make the header text of the Expander control change when the control is expanded, you can create a trigger. Triggers are explained later in this chapter in the section “Triggers.”

Items Controls

The ItemsControl class contains a list of items that can be accessed with the Items property. Classes derived from ItemsControl are shown in the following table.

	ItemsControl
	Description

	Menu and ContextMenu
	These classes are derived from the abstract base class MenuBase. You can offer menus to the user by placing MenuItem elements in the items list and associating commands.

	StatusBar
	This control is usually shown at the bottom of an application to give status information to the user. You can put StatusBarItem elements inside a StatusBar list.

	TreeView
	Use this control for a hierarchical display of items.

	ListBoxComboBoxTabControl
	These have the same abstract base class, Selector. This base class makes it possible to select items from a list. The ListBox displays the items from a list. The ComboBox has an additional Button control to display the items only if the button is clicked. With TabControl, content can be arranged in tabular form.

	DataGrid
	This control is a customizable grid that displays data. It is discussed in detail in the next chapter.

Headered Items Controls

HeaderedItemsControl is the base class of controls that include items but also have a header. The class HeaderedItemsControl is derived from ItemsControl.

Classes derived from HeaderedItemsControl are listed in the following table.

	HeaderedItemsControl
	Description

	MenuItem
	The menu classes Menu and ContextMenu include items of the MenuItem type. Menu items can be connected to commands, as the MenuItem class implements the interface ICommandSource.

	TreeViewItem
	This class can include items of type TreeViewItem.

	ToolBar
	This control is a container for a group of controls, usually Button and Separator elements. You can place the ToolBar inside a ToolBarTray that handles the rearranging of ToolBar controls.

Decoration

You can add decorations to a single element with the Decorator class. Decorator is a base class that has derivations such as Border, Viewbox, and BulletDecorator. Theme elements such as ButtonChrome and ListBoxChrome are also decorators.

The following example demonstrates a Border, Viewbox, and BulletDecorator, as shown in Figure 34.4. The Border class decorates the Children element by adding a border around it. You can define a brush and the thickness of the border, the background, the radius of the corner, and the padding of its children (code file ControlsSample/DecorationsWindow.xaml):

<Border BorderBrush="Violet" BorderThickness="5.5">
 <Label>Label with a border</Label>
</Border>

[image: Image described by surrounding text.]

Figure 34.4

The Viewbox stretches and scales its child to the available space. The StretchDirection and Stretch properties are specific to the functionality of the Viewbox. These properties enable specifying whether the child is stretched in both directions, and whether the aspect ratio is preserved:

<Viewbox StretchDirection="Both" Stretch="Uniform">
 <Label>Label with a viewbox</Label>
</Viewbox>

The BulletDecorator class decorates its child with a bullet. The child can be any element (in this example, a TextBlock). Similarly, the bullet can also be any element. The example uses an Image, but you can use any UIElement:

<BulletDecorator>
 <BulletDecorator.Bullet>
 <Image Width="25" Height="25" Margin="5" HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Source="/DecorationsDemo;component/images/apple1.jpg" />
 </BulletDecorator.Bullet>
 <BulletDecorator.Child>
 <TextBlock VerticalAlignment="Center" Padding="8">Granny Smith</TextBlock>
 </BulletDecorator.Child>
</BulletDecorator>

Layout

To define the layout of the application, you can use a class that derives from the Panel base class. A layout container needs to do two main tasks: measure and arrange. With measuring, the container asks its children for the preferred sizes. Because the full size requested by the controls might not be available, the container determines the available sizes and arranges the positions of its children accordingly. This section discusses several available layout containers.

StackPanel

The Window can contain just a single element as content, but if you want more than one element inside it, you can use a StackPanel as a child of the Window and add elements to the content of the StackPanel. The StackPanel is a simple container control that shows one element after the other. The orientation of the StackPanel can be horizontal or vertical. The class ToolBarPanel is derived from StackPanel (code file LayoutSamples/StackPanelWindow.xaml):

<Window x:Class="LayoutSamples.StackPanelWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Stack Panel" Height="300" Width="300">
 <StackPanel Orientation="Vertical">
 <Label>Label</Label>
 <TextBox>TextBox</TextBox>
 <CheckBox>CheckBox</CheckBox>
 <CheckBox>CheckBox</CheckBox>
 <ListBox>
 <ListBoxItem>ListBoxItem One</ListBoxItem>
 <ListBoxItem>ListBoxItem Two</ListBoxItem>
 </ListBox>
 <Button>Button</Button>
 </StackPanel>
</Window>

Figure 34.5 shows the child controls of the StackPanel organized vertically.

[image: Screenshot shows a stack panel with a label, a textbox, two checkboxes, a button and two list box item.]

Figure 34.5

WrapPanel

The WrapPanel positions the children from left to right, one after the other, as long as they fit on one line, and then it continues with the next line. The panel’s orientation can be horizontal or vertical (code file LayoutSamples/WrapPanelWindow.xaml):

<Window x:Class="LayoutSamples.WrapPanelWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/ xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/ winfx/2006/xaml"
 Title="WrapPanelWindow" Height="300" Width="300">
 <WrapPanel>
 <WrapPanel.Resources>
 <Style TargetType="Button">
 <Setter Property="Width" Value="100" />
 <Setter Property="Margin" Value="5" />
 </Style>
 </WrapPanel.Resources>
 <Button>Button</Button>
 <Button>Button</Button>
 <Button>Button</Button>
 <Button>Button</Button>
 <Button>Button</Button>
 <Button>Button</Button>
 <Button>Button</Button>
 <Button>Button</Button>
 </WrapPanel>
</Window>

Figure 34.6 shows the output of the panel. If you resize the application, the buttons are rearranged accordingly to have just that many buttons as fit in a line.

[image: Screenshot shows a wrap panel with eight buttons.]

Figure 34.6

Canvas

Canvas is a panel that enables you to explicitly position controls. Canvas defines the attached properties Left, Right, Top, and Bottom that can be used by the children for positioning within the panel (code file LayoutSamples/CanvasWindow.xaml):

<Canvas Background="LightBlue">
 <Label Canvas.Top="30" Canvas.Left="20">Enter here:</Label>
 <TextBox Canvas.Top="30" Canvas.Left="120" Width="100" />
 <Button Canvas.Top="70" Canvas.Left="130" Content="Click Me!" Padding="5" />
</Canvas>

Figure 34.7 shows the output of the Canvas panel with the positioned children Label, TextBox, and Button.

[image: Screenshot shows a canvas panel with a label named enter here, a text box and a click me button.]

Figure 34.7

NOTE The Canvas control is best used for the layout of graphic elements, like Shape controls shown in Chapter 30.

DockPanel

The DockPanel is very similar to the Windows Forms docking functionality. Here, you can specify the area in which child controls should be arranged. DockPanel defines the attached property Dock; you can set the property in the children of the controls using the values Left, Right, Top, and Bottom. Figure 34.8 shows the outcome of text blocks with borders that are arranged in the dock panel. For easier differentiation, different colors are specified for the various areas (code file LayoutSamples/DockPanelWindow.xaml):

<DockPanel>
 <Border Height="25" Background="AliceBlue" DockPanel.Dock="Top">
 <TextBlock>Menu</TextBlock>
 </Border>
 <Border Height="25" Background="Aqua" DockPanel.Dock="Top">
 <TextBlock>Ribbon</TextBlock>
 </Border>
 <Border Height="30" Background="LightSteelBlue" DockPanel.Dock="Bottom">
 <TextBlock>Status</TextBlock>
 </Border>
 <Border Height="80" Background="Azure" DockPanel.Dock="Left">
 <TextBlock>Left Side</TextBlock>
 </Border>
 <Border Background="HotPink">
 <TextBlock>Remaining Part</TextBlock>
 </Border>
</DockPanel>

[image: Screenshot shows a dock panel with coloured textboxes for menu, ribbon, left side, remaining part and status.]

Figure 34.8

Grid

Using the Grid, you can arrange your controls with rows and columns. For every column, you can specify a ColumnDefinition. For every row, you can specify a RowDefinition. The following example code lists two columns and three rows. With each column and row, you can specify the width or height. ColumnDefinition has a Width dependency property; RowDefinition has a Height dependency property. You can define the height and width in pixels, centimeters, inches, or points, or you can set it to Auto to base the size on the content. The grid also allows star sizing, which means the space for the rows and columns is calculated according to the available space and relative to other rows and columns. When providing the available space for a column, you can set the Width property to *. To have the size doubled for another column, you specify 2*. The sample code, which defines two columns and three rows, doesn’t define additional settings with the column and row definitions; the default is the star sizing.

The grid contains several Label and TextBox controls. Because the parent of these controls is a grid, you can set the attached properties Column, ColumnSpan, Row, and RowSpan (code file LayoutSamples/GridWindow.xaml):

<Grid ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Label Grid.Column="0" Grid.ColumnSpan="2" Grid.Row="0"
 VerticalAlignment="Center" HorizontalAlignment="Center"
 Content="Title" />
 <Label Grid.Column="0" Grid.Row="1" VerticalAlignment="Center"
 Content="Firstname:" Margin="10" />
 <TextBox Grid.Column="1" Grid.Row="1" Width="100" Height="30" />
 <Label Grid.Column="0" Grid.Row="2" VerticalAlignment="Center"
 Content="Lastname:" Margin="10" />
 <TextBox Grid.Column="1" Grid.Row="2" Width="100" Height="30" />
</Grid>

The outcome of arranging controls in a grid is shown in Figure 34.9. For easier viewing of the columns and rows, the property ShowGridLines is set to true.

[image: Screenshot shows a grid panel with partitions for positioning three labels and two text boxes.]

Figure 34.9

NOTE For a grid in which every cell is the same size, you can use the UniformGrid class.

Triggers

In Chapter 30, you can read about using the Visual State Manager that you can use to dynamically change the look of controls. The Visual State Manager is supported by both WPF and the Universal Windows Platform. WPF also offers property triggers for the same scenario, and there are other trigger types for different scenarios. This section discusses property triggers, multi-triggers, and data triggers.

With triggers, you can change the look and feel of your controls dynamically based on certain events or property value changes. For example, when the user moves the mouse over a button, the button can change its look. Usually, you need to do this with the C# code. With WPF, you can also do this with XAML as long as only the UI is influenced.

Property triggers are activated as soon as a property value changes. Multi-triggers are based on multiple property values. Event triggers fire when an event occurs. Data triggers happen when data that is bound is changed.

Property Triggers

The Style class has a Triggers property with which you can assign property triggers. The following example includes a Button element inside a Grid panel. With the Window resources, a default style for Button elements is defined. This style specifies that the Background is set to LightBlue and the FontSize to 17. This is the style of the Button elements when the application is started. Using triggers, the style of the controls changes. The triggers are defined within the Style.Triggers element, using the Trigger element. One trigger is assigned to the property IsMouseOver; the other trigger is assigned to the property IsPressed. Both of these properties are defined with the Button class to which the style applies. If IsMouseOver has a value of true, then the trigger fires and sets the Foreground property to Red and the FontSize property to 22. If the Button is pressed, then the property IsPressed is true, and the second trigger fires and sets the Foreground property of the TextBox to Yellow (code file TriggerSamples/PropertyTriggerWindow.xaml):

<Window x:Class="TriggerSamples.PropertyTriggerWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Property Trigger" Height="300" Width="300">
 <Window.Resources>
 <Style TargetType="Button">
 <Setter Property="Background" Value="LightBlue" />
 <Setter Property="FontSize" Value="17" />
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="Foreground" Value="Red" />
 <Setter Property="FontSize" Value="22" />
 </Trigger>
 <Trigger Property="IsPressed" Value="True">
 <Setter Property="Foreground" Value="Yellow" />
 <Setter Property="FontSize" Value="22" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>
 <Grid>
 <Button Width="200" Height="30" Content="Click me!" />
 </Grid>
</Window>

NOTE If the IsPressed property is set to true, the IsMouseOver property will be true as well. Pressing the button also requires the mouse to be over the button. Pressing the button triggers it to fire and changes the properties accordingly. Here, the order of triggers is important. If the IsPressed property trigger is moved before the IsMouseOver property trigger, the IsMouseOver property trigger overwrites the values that the first trigger set.

You don’t need to reset the property values to the original values when the reason for the trigger is not valid anymore. For example, you don’t need to define a trigger for IsMouseOver=true and IsMouseOver=false. As soon as the reason for the trigger is no longer valid, the changes made by the trigger action are reset to the original values automatically.

Figure 34.10 shows the trigger sample application in which the foreground and font size of the button are changed from their original values when the button has the focus.

[image: Screenshot shows a property trigger panel with a click me button.]

Figure 34.10

NOTE When using property triggers, it is extremely easy to change the look of controls, fonts, colors, opacity, and the like. When the mouse moves over them, the keyboard sets the focus—not a single line of programming code is required.

The Trigger class defines the following properties to specify the trigger action.

	Trigger Property
	Description

	PropertyValue
	With property triggers, the Property and Value properties are used to specify when the trigger should fire—for example, Property="IsMouseOver" Value="True".

	Setters
	As soon as the trigger fires, you can use Setters to define a collection of Setter elements to change values for properties. The Setter class defines the properties Property, TargetName, and Value for the object properties to change.

	EnterActions, ExitActions
	Instead of defining setters, you can define EnterActions and ExitActions. With both of these properties, you can define a collection of TriggerAction elements. EnterActions fires when the trigger starts (with a property trigger, when the Property/Value combination applies); ExitActions fires before it ends (just at the moment when the Property/Value combination no longer applies). Trigger actions that you can specify with these actions are derived from the base class TriggerAction, such as SoundPlayerAction and BeginStoryboard. With SoundPlayerAction, you can start the playing of sound. BeginStoryboard is used with animation, discussed later in this chapter.

MultiTrigger

A property trigger fires when a value of a property changes. If you need to set a trigger because two or more properties have a specific value, you can use MultiTrigger.

MultiTrigger has a Conditions property whereby valid values of properties can be specified. It also has a Setters property that enables you to specify the properties that need to be set. In the following example, a style is defined for TextBox elements such that the trigger applies if the IsEnabled property is True and the Text property has the value Test. Try it by typing Test into the blank text box. If both apply, the Foreground property of the TextBox is set to Red (code file TriggerSamples/MultiTriggerWindow.xaml):

<Window x:Class="TriggerSamples.MultiTriggerWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Multi Trigger" Height="300" Width="300">
 <Window.Resources>
 <Style TargetType="TextBox">
 <Style.Triggers>
 <MultiTrigger>
 <MultiTrigger.Conditions>
 <Condition Property="IsEnabled" Value="True" />
 <Condition Property="Text" Value="Test" />
 </MultiTrigger.Conditions>
 <MultiTrigger.Setters>
 <Setter Property="Foreground" Value="Red" />
 </MultiTrigger.Setters>
 </MultiTrigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>
 <Grid>
 <TextBox />
 </Grid>
</Window>

Data Triggers

Data triggers fire if bound data to a control fulfills specific conditions. In the following example, a Book class is used that has different displays depending on the publisher of the book.

The Book class defines the properties Title and Publisher and has an overload of the ToString method (code file TriggerSamples/Book.cs):

public class Book
{
 public string Title { get; set; }
 public string Publisher { get; set; }

 public override string ToString() => Title;
}

In the XAML code, a style is defined for ListBoxItem elements. The style contains DataTrigger elements that are bound to the Publisher property of the class that is used with the items. If the value of the Publisher property is Wrox Press, the Background is set to Red. With the publishers Dummies and Wiley, the Background is set to Yellow and DarkGray, respectively (code file TriggerSamples/DataTriggerWindow.xaml):

<Window x:Class="TriggerSamples.DataTriggerWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Data Trigger" Height="300" Width="300">
 <Window.Resources>
 <Style TargetType="ListBoxItem">
 <Style.Triggers>
 <DataTrigger Binding="{Binding Publisher}" Value="Wrox Press">
 <Setter Property="Background" Value="Red" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Publisher}" Value="Dummies">
 <Setter Property="Background" Value="Yellow" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Publisher}" Value="Wiley">
 <Setter Property="Background" Value="DarkGray" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>
 <Grid>
 <ListBox x:Name="list1" />
 </Grid>
</Window>

In the code-behind, the list with the name list1 is initialized to contain several Book objects (code file TriggerSamples/DataTriggerWindow.xaml.cs):

public DataTriggerWindow()
{
 InitializeComponent();

 list1.Items.Add(new Book
 {
 Title ="Professional C# 6 and .NET Core 1.0",
 Publisher ="Wrox Press"
 });
 list1.Items.Add(new Book
 {
 Title ="C# 5 All-in-One for Dummies",
 Publisher ="For Dummies"
 });
 list1.Items.Add(new Book
 {
 Title ="HTML and CSS: Design and Build Websites",
 Publisher ="Wiley"
 });
}

When you run the application, the ListBoxItem elements are formatted according to the publisher value, as shown in Figure 34.11.

[image: Screenshot shows a data trigger panel and listing three titles.]

Figure 34.11

With DataTrigger, multiple properties must be set for MultiDataTrigger (similar to Trigger and MultiTrigger).

NOTE Data triggers update the user interface when the data bound changes (in case the interface INotifyPropertyChanged is implemented). The “Live Shaping” section later in this chapter includes an example.

Menu and Ribbon Controls

Many data-driven applications contain menus and toolbars or ribbon controls to enable users to control actions. As of WPF 4.5, ribbon controls are available as well, so both menu and ribbon controls are covered here.

In this section, you create two new WPF applications named BooksDemoMenu and BooksDemoRibbon and the library BooksDemoLib to use throughout this chapter—not only with menu and ribbon controls but also with commanding and data binding. This application displays a single book, a list of books, and a grid of books. Actions are started from menu or ribbon controls to which commands are associated.

Menu Controls

You can easily create menus with WPF using the Menu and MenuItem elements, as shown in the following code snippet that contains two main menu items, File and Edit, and a list of submenu entries. The _ in front of the characters marks the special character that users can employ to access the menu item easily without using the mouse. Using the Alt key makes these characters visible and enables access to the menu with this character. Some of these menu items have a command assigned, as discussed in the next section (code file BooksDemoMenu/MainWindow.xaml):

<Window x:Class="Wrox.ProCSharp.WPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:BooksDemo"
 Title="Books Demo App" Height="400" Width="600">
 <DockPanel>
 <Menu DockPanel.Dock="Top">
 <MenuItem Header="_File">
 <MenuItem Header="Show _Book" />
 <MenuItem Header="Show Book_s" />
 <Separator />
 <MenuItem Header="E_xit" />
 </MenuItem>
 <MenuItem Header="_Edit">
 <MenuItem Header="Undo" Command="Undo" />
 <Separator />
 <MenuItem Header="Cut" Command="Cut" />
 <MenuItem Header="Copy" Command="Copy" />
 <MenuItem Header="Paste" Command="Paste" />
 </MenuItem>
 </Menu>
 </DockPanel>
</Window>

Running the application results in the menus shown in Figure 34.12. The menus are not active yet because commands are not active.

[image: Screenshot shows a book demo app panel with inactive commands in menu.]

Figure 34.12

Ribbon Controls

An alternative to the menu controls are the ribbon controls. Microsoft Office 2007 was the first application released with Microsoft’s ribbon control. Shortly after its introduction, many users of previous versions of Office complained that they could not find the actions they wanted with the new UI. Users who hadn’t used Office prior to Office 2007 had a better experience with the new UI; they were able to easily find actions that users of previous versions found hard to detect.

Of course, nowadays the ribbon control is very common in many applications. Since Windows 8, the ribbon has been in many tools delivered with the Windows operating system—for example, Windows Explorer, Paint, and WordPad.

The WPF ribbon control is in the namespace System.Windows.Controls.Ribbon and requires referencing the assembly System.Windows.Controls.Ribbon.

Figure 34.13 shows the ribbon control of the sample application. In the topmost line left of the window title is the quick access toolbar. The leftmost item in the second line is the application menu, followed by two ribbon tabs: Home and Ribbon Controls. The Home tab, which is selected, shows two groups: Clipboard and Show. Both of these groups contain some button controls.

[image: Image described by surrounding text.]

Figure 34.13

The Ribbon control is defined in the following code snippet. The first children of the Ribbon element are defined by the QuickAccessToolBar property. This toolbar contains two RibbonButton controls with small images referenced. These buttons provide users with direct access to quickly and easily fulfill actions (code file BooksDemoRibbon/MainWindow.xaml):

<Ribbon DockPanel.Dock="Top">
 <Ribbon.QuickAccessToolBar>
 <RibbonQuickAccessToolBar>
 <RibbonButton SmallImageSource="Assets/one.png" />
 <RibbonButton SmallImageSource="Assets/list.png" />
 </RibbonQuickAccessToolBar>
 </Ribbon.QuickAccessToolBar>
 <!-- etc. -->
</Ribbon>

To get these buttons from the quick access toolbar directly to the chrome of the window, the base class needs to be changed to the RibbonWindow class instead of the Window class (code file BooksDemoRibbon/MainWindow.xaml.cs):

public partial class MainWindow : RibbonWindow
{

Changing the base class with the code-behind also requires a change in the XAML code to use the RibbonWindow element:

<RibbonWindow x:Class="Wrox.ProCSharp.WPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF"
 Title="Books Demo App" Height="400" Width="600">

The application menu is defined by using the ApplicationMenu property. The application menu defines two menu entries—the first one to show a book, the second one to close the application:

<Ribbon.ApplicationMenu>
 <RibbonApplicationMenu SmallImageSource="Assets/books.png" >
 <RibbonApplicationMenuItem Header="Show _Book" />
 <RibbonSeparator />
 <RibbonApplicationMenuItem Header="Exit" Command="Close" />
 </RibbonApplicationMenu>
</Ribbon.ApplicationMenu>

After the application menu, the content of the Ribbon control is defined by using RibbonTab elements. The title of the tab is defined with the Header property. The RibbonTab contains two RibbonGroup elements. Each of the RibbonGroup elements contains RibbonButton elements. With the buttons, you can set a Label to display text and either SmallImageSource or LargeImageSource properties for displaying an image:

<RibbonTab Header="Home">
 <RibbonGroup Header="Clipboard">
 <RibbonButton Command="Paste" Label="Paste"
 LargeImageSource="Assets/paste.png" />
 <RibbonButton Command="Cut" SmallImageSource="Assets/cut.png" />
 <RibbonButton Command="Copy" SmallImageSource="Assets/copy.png" />
 <RibbonButton Command="Undo" LargeImageSource="Assets/undo.png" />
 </RibbonGroup>
 <RibbonGroup Header="Show">
 <RibbonButton LargeImageSource="Assets/one.png" Label="Book" />
 <RibbonButton LargeImageSource="Assets/list.png" Label="Book List" />
 <RibbonButton LargeImageSource="Assets/grid.png" Label="Book Grid" />
 </RibbonGroup>
</RibbonTab>

The second RibbonTab demonstrates different controls that can be used within a ribbon control, for example, text box, check box, combo box, split button, and gallery elements. Figure 34.14 shows this tab open.

<RibbonTab Header="Ribbon Controls">
 <RibbonGroup Header="Sample">
 <RibbonButton Label="Button" />
 <RibbonCheckBox Label="Checkbox" />
 <RibbonComboBox Label="Combo1">
 <Label>One</Label>
 <Label>Two</Label>
 </RibbonComboBox>
 <RibbonTextBox>Text Box </RibbonTextBox>
 <RibbonSplitButton Label="Split Button">
 <RibbonMenuItem Header="One" />
 <RibbonMenuItem Header="Two" />
 </RibbonSplitButton>
 <RibbonComboBox Label="Combo2" IsEditable="False">
 <RibbonGallery SelectedValuePath="Content" MaxColumnCount="1"
 SelectedValue="Green">
 <RibbonGalleryCategory>
 <RibbonGalleryItem Content="Red" Foreground="Red" />
 <RibbonGalleryItem Content="Green" Foreground="Green" />
 <RibbonGalleryItem Content="Blue" Foreground="Blue" />
 </RibbonGalleryCategory>
 </RibbonGallery>
 </RibbonComboBox>
 </RibbonGroup>
</RibbonTab>

[image: Image described by surrounding text.]

Figure 34.14

Commanding

Commanding is a WPF concept that creates a loose coupling between the source of an action (for example, a button) and the target that does the work (for example, a handler method). This concept is based on the Command pattern from the Gang of Four. With WPF, events are strongly coupled. Compiling the XAML code that includes references to events requires that the code-behind have a handler implemented and available at compile time. With commands, the coupling is loose.

NOTE The command pattern is a behavioral design pattern that makes unit testing easier by separating the client from the receiver of the command.

The action that is executed is defined by a command object. Commands implement the interface ICommand. Command classes that are used by WPF are RoutedCommand and a class that derives from it, RoutedUICommand. RoutedUICommand defines an additional Text property that is not defined by ICommand. This property can be used as textual information in the UI. ICommand defines the methods Execute and CanExecute, which are executed on a target object.

The command source is an object that invokes the command. Command sources implement the interface ICommandSource. Examples of such command sources are button classes that derive from ButtonBase, Hyperlink, and InputBinding. KeyBinding and MouseBinding are examples of InputBinding derived classes. Command sources have a Command property whereby a command object implementing ICommand can be assigned. This fires the command when the control is used, such as with the click of a button.

The command target is an object that implements a handler to perform the action. With command binding, a mapping is defined to map the handler to a command. Command bindings define what handler is invoked on a command. Command bindings are defined by the CommandBinding property that is implemented in the UIElement class. Thus, every class that derives from UIElement has the CommandBinding property. This makes finding the mapped handler a hierarchical process. For example, a button that is defined within a StackPanel that is inside a ListBox—which itself is inside a Grid—can fire a command. The handler is specified with command bindings somewhere up the tree—such as with command bindings of a Window. The next section changes the implementation of the BooksDemoRibbon project to use commands.

Defining Commands

.NET gives you classes that return predefined commands. The ApplicationCommands class defines the static properties New, Open, Close, Print, Cut, Copy, Paste, and others. These properties return RoutedUICommand objects that can be used for a specific purpose. Other classes offering commands are NavigationCommands and MediaCommands. NavigationCommands is self-explanatory, providing commands that are common for navigation such as GoToPage, NextPage, and PreviousPage. MediaCommands are useful for running a media player, with Play, Pause, Stop, Rewind, and Record.

It’s not hard to define custom commands that fulfill application domain–specific actions. For this, the BooksCommands class is created, which returns RoutedUICommands with the ShowBook and ShowBooksList properties. You can also assign an input gesture to a command, such as KeyGesture or MouseGesture. In the following example, a KeyGesture is assigned that defines the key B with the Alt modifier. An input gesture is a command source, so clicking the Alt+B combination invokes the command (code file BooksDemoLib/Commands/BooksCommands.cs):

public static class BooksCommands
{
 private static RoutedUICommand s_showBook;
 public static ICommand ShowBook =>
 s_showBook ?? (s_showBook = new RoutedUICommand("Show Book",
 nameof(ShowBook), typeof(BooksCommands)));

 private static RoutedUICommand s_showBooksList;
 public static ICommand ShowBooksList
 {
 get
 {
 if (s_showBooksList == null)
 {
 s_showBooksList = new RoutedUICommand("Show Books",
 nameof(ShowBooksList), typeof(BooksCommands));
 s_showBooksList.InputGestures.Add(new KeyGesture(Key.B,
 ModifierKeys.Alt));
 }
 return s_showBooksList;
 }
 }
 // etc.
}

Defining Command Sources

Every class that implements the ICommandSource interface can be a source of commands, such as Button and MenuItem. Inside the Ribbon control created earlier, the Command property is assigned to several RibbonButton elements—for example, in the quick access toolbar—as shown in the following code snippet (code file BooksDemoRibbon/MainWindow.xaml):

<Ribbon.QuickAccessToolBar>
 <RibbonQuickAccessToolBar>
 <RibbonButton SmallImageSource="Assets/one.png"
 Command="local:BooksCommands.ShowBook" />
 <RibbonButton SmallImageSource="Assets/list.png"
 Command="local:BooksCommands.ShowBooksList" />
 </RibbonQuickAccessToolBar>
</Ribbon.QuickAccessToolBar>

Predefined commands such as ApplicationCommands.Cut, Copy, and Paste are assigned to the Command property of RibbonButton elements as well. With the predefined commands the shorthand notation is used:

<RibbonGroup Header="Clipboard">
 <RibbonButton Command="Paste" Label="Paste"
 LargeImageSource="Images/paste.png" />
 <RibbonButton Command="Cut" SmallImageSource="Images/cut.png" />
 <RibbonButton Command="Copy" SmallImageSource="Images/copy.png" />
 <RibbonButton Command="Undo" LargeImageSource="Images/undo.png" />
</RibbonGroup>

Command Bindings

Command bindings need to be added to connect them to handler methods. In the following example, the command bindings are defined within the Window element so these bindings are available to all elements within the window. When the command ApplicationCommands.Close is executed, the OnClose method is invoked. When the command BooksCommands.ShowBooks is executed, the OnShowBooks method is called (code file BooksDemoRibbon/MainWindow.xaml):

<Window.CommandBindings>
 <CommandBinding Command="Close" Executed="OnClose" />
 <CommandBinding Command="commands:BooksCommands.ShowBooksList"
 Executed="OnShowBooksList" />
</Window.CommandBindings>

With command binding you can also specify the CanExecute property, whereby a method is invoked to verify whether the command is available. For example, if a file is not changed, the ApplicationCommands.Save command could be unavailable.

The handler needs to be defined with an object parameter, for the sender, and ExecutedRoutedEventArgs, where information about the command can be accessed (code file BooksDemoRibbon/MainWindow.xaml.cs):

private void OnClose(object sender, ExecutedRoutedEventArgs e)
{
 Application.Current.Shutdown();
}

NOTE You can also pass parameters with a command. You can do this by specifying the CommandParameter property with a command source, such as the MenuItem. To access the parameter, use the Parameter property of ExecutedRoutedEventArgs.

Command bindings can also be defined by controls. The TextBox control defines bindings for ApplicationCommands.Cut, ApplicationCommands.Copy, ApplicationCommands.Paste, and ApplicationCommands.Undo. This way, you only need to specify the command source and use the existing functionality within the TextBox control.

Data Binding

WPF data binding takes another huge step forward compared with previous technologies. Data binding gets data from .NET objects for the UI or the other way around. Simple objects can be bound to UI elements, lists of objects, and XAML elements themselves. With WPF data binding, the target can be any dependency property of a WPF element, and every property of a CLR object can be the source. Because a WPF element is implemented as a .NET class, every WPF element can be the source as well. Figure 34.15 shows the connection between the source and the target. The Binding object defines the connection.

[image: Screenshot shows the connection between the source and the target defined by a binding object.]

Figure 34.15

Binding supports several binding modes between the target and source. With one-way binding, the source information goes to the target, but if the user changes information in the user interface, the source is not updated. For updates to the source, two-way binding is required.

The following table shows the binding modes and their requirements.

	Binding Mode
	Description

	One-time
	Binding goes from the source to the target and occurs only once when the application is started or the data context changes. Here, you get a snapshot of the data.

	One-way
	Binding goes from the source to the target. This is useful for read-only data, because it is not possible to change the data from the user interface. To get updates to the user interface, the source must implement the interface INotifyPropertyChanged.

	Two-way
	With two-way binding, the user can make changes to the data from the UI. Binding occurs in both directions—from the source to the target and from the target to the source. The source needs to implement read/write properties so that changes can be updated from the UI to the source.

	One-way-to-source
	With one-way-to-source binding, if the target property changes, the source object is updated.

WPF data binding involves many facets besides the binding modes. This section provides details on binding to XAML elements, binding to simple .NET objects, and binding to lists. Using change notifications, the UI is updated with changes in the bound objects. The material presented here discusses getting the data from object data providers and directly from the code. Multibinding and priority binding demonstrate different binding possibilities other than the default binding. This section also describes dynamically selecting data templates, and validation of binding values.

Let’s start with the BooksDemoRibbon sample application.

BooksDemo Application Content

In the previous sections, a ribbon and commands have been defined with the BooksDemoLib and BooksDemoRibbon projects. Now content is added. Change the XAML file MainWindow.xaml by adding a ListBox, a Hyperlink, and a TabControl (code file BooksDemoRibbon/MainWindow.xaml):

<ListBox DockPanel.Dock="Left" Margin="5" MinWidth="120">
 <Hyperlink Command="local:BooksCommand.ShowBook">Show Book</Hyperlink>
</ListBox>
<TabControl Margin="5" x:Name="tabControl1">
</TabControl>

Now add a WPF user control named BookUC. This user control contains a DockPanel, a Grid with several rows and columns, a Label, and TextBox controls (code file BooksDemoLib/Controls/BookUC.xaml):

<UserControl x:Class="Wrox.ProCSharp.WPF.BookUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <DockPanel>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label Content="Title" Grid.Row="0" Grid.Column="0" Margin="10,0,5,0"
 HorizontalAlignment="Left" VerticalAlignment="Center" />
 <Label Content="Publisher" Grid.Row="1" Grid.Column="0"
 Margin="10,0,5,0" HorizontalAlignment="Left"
 VerticalAlignment="Center" />
 <Label Content="Isbn" Grid.Row="2" Grid.Column="0"
 Margin="10,0,5,0" HorizontalAlignment="Left"
 VerticalAlignment="Center" />
 <TextBox Grid.Row="0" Grid.Column="1" Margin="5" />
 <TextBox Grid.Row="1" Grid.Column="1" Margin="5" />
 <TextBox Grid.Row="2" Grid.Column="1" Margin="5" />
 <StackPanel Grid.Row="3" Grid.Column="0" Grid.ColumnSpan="2">
 <Button Content="Show Book" Margin="5" Click="OnShowBook" />
 </StackPanel>
 </Grid>
 </DockPanel>
</UserControl>

Within the OnShowBook handler in the MainWindow.xaml.cs, create a new instance of the user control BookUC and add a new TabItem to the TabControl. Then change the SelectedIndex property of the TabControl to open the new tab (code file BooksDemoLib/MainWindow.xaml.cs):

private void OnShowBook(object sender, ExecutedRoutedEventArgs e)
{
 var bookUI = new BookUC();
 this.tabControl1.SelectedIndex = this.tabControl1.Items.Add(
 new TabItem { Header ="Book", Content = bookUI });
}

After building the project you can start the application and open the user control within the TabControl by clicking the hyperlink.

Binding with XAML

In addition to being the target for data binding, a WPF element can also be the source. You can bind the source property of one WPF element to the target of another WPF element.

In the following code example, data binding is used to resize the controls within the user control with a slider. You add a StackPanel control to the user control BookUC, which contains a Label and a Slider control. The Slider control defines Minimum and Maximum values that define the scale, and an initial value of 1 is assigned to the Value property (code file BooksDemoLib/BooksUC.xaml):

<DockPanel>
 <StackPanel DockPanel.Dock="Bottom" Orientation="Horizontal"
 HorizontalAlignment="Right">
 <Label Content="Resize" />
 <Slider x:Name="slider1" Value="1" Minimum="0.4" Maximum="3"
 Width="150" HorizontalAlignment="Right" />
 </StackPanel>

Now you set the LayoutTransform property of the Grid control and add a ScaleTransform element. With the ScaleTransform element, the ScaleX and ScaleY properties are data bound. Both properties are set with the Binding markup extension. In the Binding markup extension, the ElementName is set to slider1 to reference the previously created Slider control. The Path property is set to the Value property to get the value of the slider:

<Grid>
 <Grid.LayoutTransform>
 <ScaleTransform x:Name="scale1"
 ScaleX="{Binding Path=Value, ElementName=slider1}"
 ScaleY="{Binding Path=Value, ElementName=slider1}" />
 </Grid.LayoutTransform>

When running the application, you can move the slider and thus resize the controls within the Grid, as shown in Figures 34.16 and 34.17.

[image: Screenshot shows a book demo app panel with a slider for resizing the controls and grids.]

Figure 34.16

[image: Screenshot shows a book demo app panel where the slider moved for resizing the controls and grids.]

Figure 34.17

Rather than define the binding information with XAML code, as shown in the preceding code with the Binding metadata extension, you can do it with code-behind. With code-behind you have to create a new Binding object and set the Path and Source properties. The Source property must be set to the source object; here, it is the WPF object slider1. The Path is set to a PropertyPath instance that is initialized with the name of the property of the source object, Value. With controls that derive from FrameworkElement, you can invoke the method SetBinding to define the binding. However, ScaleTransform does not derive from FrameworkElement but from the Freezable base class instead. Use the helper class BindingOperations to bind such controls. The SetBinding method of the BindingOperations class requires a DependencyObject—which is the ScaleTransform instance in the example. With the second and third arguments, the SetBinding method requires the dependency property of the target (which should be bound), and the Binding object:

var binding = new Binding
{
 Path = new PropertyPath("Value"),
 Source = slider1
};
BindingOperations.SetBinding(scale1, ScaleTransform.ScaleXProperty, binding);
BindingOperations.SetBinding(scale1, ScaleTransform.ScaleYProperty, binding);

NOTE Remember that all classes that derive from DependencyObject can have dependency properties. You can learn more about dependency properties in Chapter 29.

You can configure a number of binding options with the Binding class, as described in the following table:

	Binding Class Members
	Description

	Source
	Use this property to define the source object for data binding.

	RelativeSource
	Specify the source in relation to the target object. This is useful to display error messages when the source of the error comes from the same control.

	ElementName
	If the source is a WPF element, you can specify the source with the ElementName property.

	Path
	Use this property to specify the path to the source object. This can be the property of the source object, but indexers and properties of child elements are also supported.

	XPath
	With an XML data source, you can define an XPath query expression to get the data for binding.

	Mode
	The mode defines the direction for the binding. The Mode property is of type BindingMode. BindingMode is an enumeration with the following values: Default, OneTime, OneWay, TwoWay, and OneWayToSource. The default mode depends on the target: with a TextBox, two-way binding is the default; with a Label that is read-only, the default is one-way. OneTime means that the data is only init loaded from the source; OneWay updates from the source to the target. With TwoWay binding, changes from the WPF elements are written back to the source. OneWayToSource means that the data is never read but always written from the target to the source.

	Converter
	Use this property to specify a converter class that converts the data for the UI and back. The converter class must implement the interface IValueConverter, which defines the methods Convert and ConvertBack. You can pass parameters to the converter methods with the ConverterParameter property. The converter can be culture-sensitive; and the culture can be set with the ConverterCulture property.

	FallbackValue
	Use this property to define a default value that is used if binding doesn’t return a value.

	ValidationRules
	Using this property, you can define a collection of ValidationRule objects that are checked before the source is updated from the WPF target elements. The class ExceptionValidationRule is derived from the class ValidationRule and checks for exceptions.

	Delay
	This property is new with WPF 4.5. It enables you to specify an amount of time to wait before the binding source is updated. This can be used in scenarios where you want to give the user some time to enter more characters before starting a validation.

Simple Object Binding

To bind to CLR objects, with the .NET classes you just have to define properties, as shown in the Book class example and the properties Title, Publisher, Isbn, and Authors. This class is in the Models folder of the BooksDemoLib project (code file BooksDemoLib/Models/Book.cs).

using System.Collections.Generic;

namespace BooksDemo.Models
{
 public class Book
 {
 public Book(string title, string publisher, string isbn,
 params string[] authors)
 {
 Title = title;
 Publisher = publisher;
 Isbn = isbn;
 Authors = authors;
 }
 public Book()
 : this("unknown","unknown","unknown")
 {
 }

 public string Title { get; set; }
 public string Publisher { get; set; }
 public string Isbn { get; set; }

 public string[] Authors { get; }

 public override string ToString() => Title;
 }
}

In the XAML code of the user control BookUC, several labels and TextBox controls are defined to display book information. Using Binding markup extensions, the TextBox controls are bound to the properties of the Book class. With the Binding markup extension, nothing more than the Path property is defined to bind it to the property of the Book class. There’s no need to define a source because the source is defined by assigning the DataContext, as shown in the code-behind that follows. The mode is defined by its default with the TextBox element, and this is two-way binding (code file BooksDemoLib/Controls/BookUC.xaml):

<TextBox Text="{Binding Title}" Grid.Row="0" Grid.Column="1" Margin="5" />
<TextBox Text="{Binding Publisher}" Grid.Row="1" Grid.Column="1" Margin="5" />
<TextBox Text="{Binding Isbn}" Grid.Row="2" Grid.Column="1" Margin="5" />

With the code-behind, a new Book object is created, and the book is assigned to the DataContext property of the user control. DataContext is a dependency property that is defined with the base class FrameworkElement. Assigning the DataContext with the user control means that every element in the user control has a default binding to the same data context (code file BooksDemoRibbon/MainWindow.xaml.cs):

private void OnShowBook(object sender, ExecutedRoutedEventArgs e)
{
 var bookUI = new BookUC();
 bookUI.DataContext = new Book
 {
 Title ="Professional C# 5.0 and .NET 4.5.1"
 Publisher ="Wrox Press",
 Isbn ="978-0-470-50225-9"
 };
 this.tabControl1.SelectedIndex =
 this.tabControl1.Items.Add(
 new TabItem { Header ="Book", Content = bookUI });
}

After starting the application, you can see the bound data, as shown in Figure 34.18.

[image: Screenshot shows a book demo app panel where the details of the book like the title, the publisher and the isbn codes are bounded.]

Figure 34.18

To see two-way binding in action (changes to the input of the WPF element are reflected inside the CLR object), the Click event handler of the button in the user control, the OnShowBook method, is implemented. When implemented, a message box pops up to show the current title and ISBN number of the book1 object. Figure 34.19 shows the output from the message box after the user types Professional C# 6 into the input while running the app (code file BooksDemoLib/Controls/BookUC.xaml.cs):

[image: Screenshot shows a message box with isbn as title and book title as the message.]

Figure 34.19

private void OnShowBook(object sender, RoutedEventArgs e)
{
 Book theBook = this.DataContext as Book;
 if (theBook != null)
 {
 MessageBox.Show(theBook.Title, theBook.Isbn);
 }
}

Change Notification

With the current two-way binding, the data is read from the object and written back. However, if data is not changed by the user, but is instead changed directly from the code, the UI does not receive the change information. You can easily verify this by adding a button to the user control and implementing the Click event handler OnChangeBook (code file BooksDemoLib/Controls/BookUC.xaml):

<StackPanel Grid.Row="3" Grid.Column="0" Grid.ColumnSpan="2"
 Orientation="Horizontal" HorizontalAlignment="Center">
 <Button Content="Show Book" Margin="5" Click="OnShowBook" />
 <Button Content="Change Book" Margin="5" Click="OnChangeBook" />
</StackPanel>

Within the implementation of the handler, the book inside the data context is changed but the user interface doesn’t show the change (code file BooksDemoLib/Controls/BookUC.xaml.cs):

private void OnChangeBook(object sender, RoutedEventArgs e)
{
 Book theBook = this.DataContext as Book;
 if (theBook != null)
 {
 theBook.Title ="Professional C# 6";
 theBook.Isbn ="978-0-470-31442-5";
 }
}

To get change information to the user interface, the entity class must implement the interface INotifyPropertyChanged. Instead of having an implementation with every class that needs this interface, the abstract base class BindableObject is created. This base class implements the interface INotifyPropertyChanged. The interface defines the event PropertyChanged, which is fired from the OnPropertyChanged method. As a convenience for firing the event from the property setters from the derived classes, the method SetProperty makes the change of the property and invokes the method OnPropertyChanged to fire the event. This method makes use of the caller information feature from C# using the attribute CallerMemberName. Defining the parameter propertyName as an optional parameter with this attribute, the C# compiler passes the name of the property with this parameter, so it’s not necessary to add a hard-coded string to the code (code file BooksDemoLib/Models/BindableObject.cs):

using System.Collections.Generic;
using System.ComponentModel;
using System.Runtime.CompilerServices;
namespace BooksDemo.Model
{
 public abstract class BindableObject : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;
 protected void OnPropertyChanged(string propertyName)
 {
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }

 protected void SetProperty<T>(ref T item, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (!EqualityComparer<T>.Default.Equals(item, value))
 {
 item = value;
 OnPropertyChanged(propertyName);
 }
 }
 }
}

NOTE Caller information is covered in Chapter 14, “Errors and Exceptions.”

The class Book is now changed to derive from the base class BindableObject in order to inherit the implementation of the interface INotifyPropertyChanged. The property setters are changed to invoke the SetProperty method, as shown here (code file BooksDemoLib/Data/Book.cs):

using System.ComponentModel;
using System.Collections.Generic;

namespace Wrox.ProCSharp.WPF.Data
{
 public class Book : BindableObject
 {
 public Book(string title, string publisher, string isbn,
 params string[] authors)
 {
 Title = title;
 Publisher = publisher;
 Isbn = isbn;
 Authors = authors;
 }
 public Book()
 : this("unknown","unknown","unknown")
 {
 }

 private string _title;
 public string Title {
 get
 {
 return _title;
 }
 set
 {
 SetProperty(ref _title, value);
 }
 }
 private string _publisher;
 public string Publisher
 {
 get
 {
 return _publisher;
 }
 set
 {
 SetProperty(ref _publisher, value);
 }
 }
 private string _isbn;
 public string Isbn
 {
 get
 {
 return _isbn;
 }
 set
 {
 SetProperty(ref _isbn, value);
 }
 }
 public string[] Authors { get; }
 public override string ToString() => Title;
 }
}

With this change, the application can be started again to verify that the user interface is updated following a change notification in the event handler.

Object Data Provider

Instead of instantiating the object in code-behind, you can do it with XAML. To reference a class from code-behind within XAML, you have to reference the namespace with the namespace declarations in the XML root element. The XML attribute xmlns:local="clr-namespace:Wrox.ProCsharp.WPF" assigns the .NET namespace Wrox.ProCSharp.WPF to the XML namespace alias local.

One object of the Book class is now defined with the Book element inside the DockPanel resources. By assigning values to the XML attributes Title, Publisher, and Isbn, you set the values of the properties from the Book class. x:Key="theBook" defines the identifier for the resource so that you can reference the book object:

<UserControl x:Class="BooksDemo.BookUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF.Data"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <DockPanel>
 <DockPanel.Resources>
 <local:Book x:Key="theBook" Title="Professional C# 5.0 and .NET 4.5.1"
 Publisher="Wrox Press" Isbn="978-1-118-83303-2" />
 </DockPanel.Resources>

NOTE If the .NET namespace to reference is in a different assembly, you have to add the assembly to the XML declaration:

xmlsn:sys="clr-namespace:System;assembly=mscorlib"

In the TextBox element, the Source is defined with the Binding markup extension that references the theBook resource:

<TextBox Text="{Binding Path=Title, Source={StaticResource theBook}}"
 Grid.Row="0" Grid.Column="1" Margin="5" />
<TextBox Text="{Binding Path=Publisher, Source={StaticResource theBook}}"
 Grid.Row="1" Grid.Column="1" Margin="5" />
<TextBox Text="{Binding Path=Isbn, Source={StaticResource theBook}}"
 Grid.Row="2" Grid.Column="1" Margin="5" />

Because all these TextBox elements are contained within the same control, it is possible to assign the DataContext property with a parent control and set the Path property with the TextBox binding elements. Because the Path property is a default, you can also reduce the Binding markup extension to the following code:

<Grid x:Name="grid1" DataContext="{StaticResource theBook}">
 <!-- ... -->
 <TextBox Text="{Binding Title}" Grid.Row="0" Grid.Column="1" Margin="5" />
 <TextBox Text="{Binding Publisher}" Grid.Row="1" Grid.Column="1"
 Margin="5" />
 <TextBox Text="{Binding Isbn}" Grid.Row="2" Grid.Column="1" Margin="5" />

Instead of defining the object instance directly within XAML code, you can define an object data provider that references a class to invoke a method. For use by the ObjectDataProvider, it’s best to create a factory class that returns the object to display, as shown with the BooksRepository class (code file BooksDemoLib/Models/BooksRepository.cs):

using System.Collections.Generic;

namespace BooksDemo.Models
{
 public class BooksRepository
 {
 private List<Book> books = new List<Book>();

 public BooksRepository()
 {
 books.Add(new Book
 {
 Title ="Professional C# 5.0 and .NET 4.5.1",
 Publisher ="Wrox Press",
 Isbn ="978-1-118-83303-2"
 });
 }

 public Book GetTheBook() => books[0];
 }
}

The ObjectDataProvider element can be defined in the resources section. The XML attribute ObjectType defines the name of the class; with MethodName you specify the name of the method that is invoked to get the book object (code file BooksDemoLib/Controls/BookUC.xaml):

<DockPanel.Resources>
 <ObjectDataProvider x:Key="theBook" ObjectType="local:BooksRepository"
 MethodName="GetTheBook" />
</DockPanel.Resources>

The properties you can specify with the ObjectDataProvider class are listed in the following table:

	ObjectDataProvider Property
	Description

	ObjectType
	Defines the type to create an instance.

	ConstructorParameters
	Using the ConstructorParameters collection, you can add parameters to the class to create an instance.

	MethodName
	Defines the name of the method that is invoked by the object data provider.

	MethodParameters
	Using this property, you can assign parameters to the method defined with the MethodName property.

	ObjectInstance
	Using this property, you can get and set the object that is used by the ObjectDataProvider class. For example, you can assign an existing object programmatically rather than define the ObjectType so that an object is instantiated by ObjectDataProvider.

	Data
	Enables you to access the underlying object that is used for data binding. If the MethodName is defined, with the Data property you can access the object that is returned from the method defined.

List Binding

Binding to a list is more frequently done than binding to simple objects. Binding to a list is very similar to binding to a simple object. You can assign the complete list to the DataContext from code-behind, or you can use an ObjectDataProvider that accesses an object factory that returns a list. With elements that support binding to a list (for example, a ListBox), the complete list is bound. With elements that support binding to just one object (for example, a TextBox), the current item is bound.

With the BooksRepository class, now a list of Book objects is returned (code file BooksDemoLib/Models/BooksRepository.cs):

public class BooksRepository
{
 private List<Book> _books = new List<Book>();

 public BooksRepository()
 {
 _books.Add(new Book("Professional C# 5.0 and .NET 4.5.1","Wrox Press",
 "978-1-118-83303-2","Christian Nagel","Jay Glynn",
 "Morgan Skinner"));
 _books.Add(new Book("Professional C# 2012 and .NET 4.5","Wrox Press",
 "978-0-470-50225-9","Christian Nagel","Bill Evjen",
 "Jay Glynn","Karli Watson","Morgan Skinner"));
 _books.Add(new Book("Professional C# 4 with .NET 4","Wrox Press",
 "978-0-470-19137-8","Christian Nagel","Bill Evjen",
 "Jay Glynn","Karli Watson","Morgan Skinner"));
 _books.Add(new Book("Beginning Visual C# 2010","Wrox Press",
 "978-0-470-50226-6","Karli Watson","Christian Nagel",
 "Jacob Hammer Pedersen","Jon D. Reid",
 "Morgan Skinner","Eric White"));
 _books.Add(new Book("Windows 8 Secrets","Wiley","978-1-118-20413-9",
 "Paul Thurrott","Rafael Rivera"));
 _books.Add(new Book("C# 5 All-in-One for Dummies","For Dummies",
 "978-1-118-38536-5","Bill Sempf","Chuck Sphar"));
 }

 public IEnumerable<Book> GetBooks() => _books;
}

To use the list, create a new BooksUC user control. The XAML code for this control contains Label and TextBox controls that display the values of a single book, as well as a ListBox control that displays a book list. The ObjectDataProvider invokes the GetBooks method of the BookFactory, and this provider is used to assign the DataContext of the DockPanel. The DockPanel has ListBox and TextBox as its children. Both the ListBox and TextBox make use of the DataContext from the DockPanel with the data binding (code file BooksDemoLib/Controls/BooksUC.xaml):

<UserControl x:Class="Wrox.ProCSharp.WPF.BooksUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF.Data"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <UserControl.Resources>
 <ObjectDataProvider x:Key="books" ObjectType="local:BookFactory"
 MethodName="GetBooks" />
 </UserControl.Resources>
 <DockPanel DataContext="{StaticResource books}">
 <ListBox DockPanel.Dock="Left" ItemsSource="{Binding}" Margin="5"
 MinWidth="120" />
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label Content="Title" Grid.Row="0" Grid.Column="0" Margin="10,0,5,0"
 HorizontalAlignment="Left" VerticalAlignment="Center" />
 <Label Content="Publisher" Grid.Row="1" Grid.Column="0" Margin="10,0,5,0"
 HorizontalAlignment="Left" VerticalAlignment="Center" />
 <Label Content="Isbn" Grid.Row="2" Grid.Column="0" Margin="10,0,5,0"
 HorizontalAlignment="Left" VerticalAlignment="Center" />
 <TextBox Text="{Binding Title}" Grid.Row="0" Grid.Column="1" Margin="5" />
 <TextBox Text="{Binding Publisher}" Grid.Row="1" Grid.Column="1"
 Margin="5" />
 <TextBox Text="{Binding Isbn}" Grid.Row="2" Grid.Column="1" Margin="5" />
 </Grid>
 </DockPanel>
</UserControl>

The new user control is started by adding a Hyperlink to MainWindow.xaml. It uses the Command property to assign the ShowBooks command. The command binding must be specified as well to invoke the event handler OnShowBooksList. (code file BooksDemoRibbon/MainWindow.xaml):

<ListBox DockPanel.Dock="Left" Margin="5" MinWidth="120">
 <ListBoxItem>
 <Hyperlink Command="local:BooksCommands.ShowBook">Show Book</Hyperlink>
 </ListBoxItem>
 <ListBoxItem>
 <Hyperlink Command="local:ShowCommands.ShowBooksList">
 Show Books List</Hyperlink>
 </ListBoxItem>
</ListBox>

The implementation of the event handler adds a new TabItem control to the TabControl, assigns the Content to the user control BooksUC,and sets the selection of the TabControl to the newly created TabItem (code file BooksDemoRibbon/MainWindow.xaml.cs):

private void OnShowBooksList(object sender, ExecutedRoutedEventArgs e)
{
 var booksUI = new BooksUC();
 this.tabControl1.SelectedIndex =
 this.tabControl1.Items.Add(
 new TabItem { Header="Books List", Content=booksUI});
}

Because the DockPanel has the Book array assigned to the DataContext, and the ListBox is placed within the DockPanel, the ListBox shows all books with the default template, as illustrated in Figure 34.20.

[image: Screenshot shows a book demo app panel with the details of the books being bounded and a list box displaying all the books.]

Figure 34.20

For a more flexible layout of the ListBox, you have to define a template, as discussed in Chapter 33, “Advanced Windows Apps,” for ListBox styling. The ItemTemplate of the ListBox defines a DataTemplate with a Label element. The content of the label is bound to the Title. The item template is repeated for every item in the list. Of course, you can also add the item template to a style within resources:

<ListBox DockPanel.Dock="Left" ItemsSource="{Binding}" Margin="5"
 MinWidth="120">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Label Content="{Binding Title}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Master Details Binding

Instead of just showing all the elements inside a list, you might want or need to show detail information about the selected item. It doesn’t require a lot of work to do this. The Label and TextBox controls are already defined; currently, they only show the first element in the list.

There’s one important change you have to make to the ListBox. By default, the labels are bound to just the first element of the list. By setting the ListBox property IsSynchronizedWithCurrentItem="True", the selection of the list box is set to the current item (code file BooksDemoLib/Controls/BooksUC.xaml):

<ListBox DockPanel.Dock="Left" ItemsSource="{Binding}" Margin="5"
 MinWidth="120" IsSynchronizedWithCurrentItem="True">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Label Content="{Binding Title}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

MultiBinding

Binding is one of the classes that can be used for data binding. BindingBase is the abstract base class of all bindings and has different concrete implementations. Besides Binding, there’s also MultiBinding and PriorityBinding. MultiBinding enables you to bind one WPF element to multiple sources. For example, with a Person class that has LastName and FirstName properties, it is interesting to bind both properties to a single WPF element (code file MultiBindingSample/Person.cs):

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

For MultiBinding, a markup extension is not available—therefore, the binding must be specified with XAML element syntax. The child elements of MultiBinding are Binding elements that specify the binding to the various properties. In the following example, the FirstName and LastName properties are used. The data context is set with the Grid element to reference the person1 resource.

To connect the properties, MultiBinding uses a Converter to convert multiple values to one. This converter uses a parameter that allows for different conversions based on the parameter (code file MultiBindingSample/MainWindow.xaml):

<Window x:Class="MultiBindingSample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:system="clr-namespace:System;assembly=mscorlib"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF"
 Title="Multi Binding" Height="240" Width="500">
 <Window.Resources>
 <local:Person x:Key="person1" FirstName="Tom" LastName="Turbo" />
 <local:PersonNameConverter x:Key="personNameConverter" />
 </Window.Resources>
 <Grid DataContext="{StaticResource person1}">
 <TextBox>
 <TextBox.Text>
 <MultiBinding Converter="{StaticResource personNameConverter}" >
 <MultiBinding.ConverterParameter>
 <system:String>FirstLast</system:String>
 </MultiBinding.ConverterParameter>
 <Binding Path="FirstName" />
 <Binding Path="LastName" />
 </MultiBinding>
 </TextBox.Text>
 </TextBox>
 </Grid>
</Window>

The multivalue converter implements the interface IMultiValueConverter. This interface defines two methods: Convert and ConvertBack. Convert receives multiple values with the first argument from the data source and returns one value to the target. With the implementation, depending on whether the parameter has a value of FirstLast or LastFirst, the result varies (code file MultiBindingSample/PersonNameConverter.cs):

using System;
using System.Globalization;
using System.Windows.Data;

namespace MultiBindingSample
{
 public class PersonNameConverter : IMultiValueConverter
 {
 public object Convert(object[] values, Type targetType, object parameter,
 CultureInfo culture)
 {
 switch (parameter as string)
 {
 case"FirstLast":
 return values[0] +"" + values[1];
 case"LastFirst":
 return values[1] +"," + values[0];
 default:
 throw new ArgumentException($"invalid argument {parameter}");
 }
 }

 public object[] ConvertBack(object value, Type[] targetTypes,
 object parameter, CultureInfo culture)
 {
 throw new NotSupportedException();
 }
 }
}

In such simple scenarios, just combining some strings with a MultiBinding doesn’t require an implementation of IMultiValueConverter. Instead, a definition for a format string is adequate, as shown in the following XAML code snippet. The string format defined with the MultiBinding first needs a {} prefix. With XAML the curly brackets usually define a markup expression. Using {} as a prefix escapes this and defines that no markup expression, but instead a normal string, follows. The sample specifies that both Binding elements are separated by a comma and a blank (code file MultiBindingSample/MainWindow.xaml):

 <TextBox>
 <TextBox.Text>
 <MultiBinding StringFormat="{}{0}, {1}">
 <Binding Path="LastName" />
 <Binding Path="FirstName" />
 </MultiBinding>
 </TextBox.Text>
 </TextBox>

Priority Binding

PriorityBinding makes it easy to bind to data that is not readily available. If you need time to get the result with PriorityBinding, you can inform users about the progress so they are aware of the wait.

To illustrate priority binding, use the PriorityBindingDemo project to create the Data class. Accessing the ProcessSomeData property requires some time, which is simulated by calling the Thread.Sleep method (code file PriorityBindingSample/Data.cs):

public class Data
{
 public string ProcessSomeData
 {
 get
 {
 Task.Delay(8000).Wait(); // blocking call
 return"the final result is here";
 }
 }
}

The Information class provides information to the user. The information from property Info1 is returned immediately, whereas Info2 returns information after five seconds. With a real implementation, this class could be associated with the processing class to get an estimated time frame for the user (code file PriorityBindingSample/Information.cs):

public class Information
{
 public string Info1 =>"please wait…";

 public string Info2
 {
 get
 {
 Task.Delay(5000).Wait(); // blocking call
 return"please wait a little more";
 }
 }
}

In the MainWindow.xaml file, the Data and Information classes are referenced and initiated within the resources of the Window (code file PriorityBindingDemo/MainWindow.xaml):

<Window.Resources>
 <local:Data x:Key="data1" />
 <local:Information x:Key="info" />
</Window.Resources>

PriorityBinding is done in place of normal binding within the Content property of a Label. It consists of multiple Binding elements whereby all but the last one have the IsAsync property set to True. Because of this, if the first binding expression result is not immediately available, the binding process chooses the next one. The first binding references the ProcessSomeData property of the Data class, which needs some time. Because of this, the next binding comes into play and references the Info2 property of the Information class. Info2 does not return a result immediately, and because IsAsync is set, the binding process does not wait but continues to the next binding. The last binding uses the Info1 property. If it doesn’t immediately return a result, you would wait for the result because IsAsync is set to the default, False:

<Label>
 <Label.Content>
 <PriorityBinding>
 <Binding Path="ProcessSomeData" Source="{StaticResource data1}"
 IsAsync="True" />
 <Binding Path="Info2" Source="{StaticResource info}"
 IsAsync="True" />
 <Binding Path="Info1" Source="{StaticResource info}"
 IsAsync="False" />
 </PriorityBinding>
 </Label.Content>
</Label>

When the application starts, you can see the message “please wait…” in the user interface. After a few seconds the result from the Info2 property is returned as “please wait a little more.” It replaces the output from Info1. Finally, the result from ProcessSomeData replaces the output again.

Value Conversion

Returning to the BooksDemo application, the authors of the book are still missing in the user interface. If you bind the Authors property to a Label element, the ToString method of the Array class is invoked, which returns the name of the type. One solution to this is to bind the Authors property to a ListBox. For the ListBox, you can define a template for a specific view. Another solution is to convert the string array returned by the Authors property to a string and use the string for binding.

The class StringArrayConverter converts a string array to a string. WPF converter classes must implement the interface IValueConverter from the namespace System.Windows.Data. This interface defines the methods Convert and ConvertBack. With the StringArrayConverter, the Convert method converts the string array from the variable value to a string by using the String.Join method. The separator parameter of the Join is taken from the variable parameter received with the Convert method (code file BooksDemoLib/Utilities/StringArrayConverter.cs):

using System;
using System.Diagnostics.Contracts;
using System.Globalization;
using System.Windows.Data;

namespace Wrox.ProCSharp.WPF.Utilities
{
 [ValueConversion(typeof(string[]), typeof(string))]
 class StringArrayConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 if (value == null) return null;
 string[] stringCollection = (string[])value;
 string separator = parameter == null;
 return String.Join(separator, stringCollection);
 }

 public object ConvertBack(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

NOTE You can read more about the methods of the String classes in Chapter 10, “Strings and Regular Expressions.”

In the XAML code, the StringArrayConverter class can be declared as a resource. This resource can be referenced from the Binding markup extension (code file BooksDemoLib/Controls/BooksUC.xaml):

<UserControl x:Class="Wrox.ProCSharp.WPF.BooksUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF.Data"
 xmlns:utils="clr-namespace:Wrox.ProCSharp.WPF.Utilities"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <UserControl.Resources>
 <utils:StringArrayConverter x:Key="stringArrayConverter" />
 <ObjectDataProvider x:Key="books" ObjectType="local:BookFactory"
 MethodName="GetBooks" />
 </UserControl.Resources>
 <!-- etc. -->

For multiline output, a TextBlock element is declared with the TextWrapping property set to Wrap to make it possible to display multiple authors. In the Binding markup extension, the Path is set to Authors, which is defined as a property returning a string array. The string array is converted from the resource stringArrayConverter as defined by the Converter property. The Convert method of the converter implementation receives the ConverterParameter=', ' as input to separate the authors:

<TextBlock Text="{Binding Authors,
 Converter={StaticResource stringArrayConverter},
 ConverterParameter=', '}"
 Grid.Row="3" Grid.Column="1" Margin="5"
 VerticalAlignment="Center" TextWrapping="Wrap" />

Figure 34.21 shows the book details, including authors.

[image: Screenshot shows a book demo app panel with the details of the books including authors and a list box displaying all the books.]

Figure 34.21

Adding List Items Dynamically

If list items are added dynamically, the WPF element must be notified of elements added to the list.

In the XAML code of the WPF application, a Button element is added inside a StackPanel. The Click event is assigned to the method OnAddBook (code file BooksDemo/Controls/BooksUC.xaml):

<StackPanel Orientation="Horizontal" DockPanel.Dock="Bottom"
 HorizontalAlignment="Center">
 <Button Margin="5" Padding="4" Content="Add Book" Click="OnAddBook" />
</StackPanel>

In the method OnAddBook, a new Book object is added to the list. If you test the application with the BookFactory as it is implemented now, there’s no notification to the WPF elements that a new object has been added to the list (code file BooksDemoLib/Controls/BooksUC.xaml.cs):

private void OnAddBook(object sender, RoutedEventArgs e)
{
 ((this.FindResource("books") as ObjectDataProvider).Data as IList<Book>).
 Add(new Book("HTML and CSS: Design and Build Websites",
 "Wiley","978-1118-00818-8"));
}

The object that is assigned to the DataContext must implement the interface INotifyCollectionChanged. This interface defines the CollectionChanged event that is used by the WPF application. Instead of implementing this interface on your own with a custom collection class, you can use the generic collection class ObservableCollection<T> that is defined with the namespace System.Collections.ObjectModel in the assembly WindowsBase. Now, as a new item is added to the collection, the new item immediately appears in the ListBox (code file BooksDemo/Models/BooksRepository.cs):

public class BooksRepository
{
 private ObservableCollection<Book> _books = new ObservableCollection<Book>();
 // etc.

 public IEnumerable<Book> GetBooks() => _books;
}

Adding Tab Items Dynamically

Adding items dynamically to a list is in principle the same scenario as adding user controls to the tab control dynamically. Until now, the tab items have been added dynamically using the Add method of the Items property from the TabControl class. In the following example, the TabControl is directly referenced from code-behind. Using data binding instead, information about the tab item can be added to an ObservableCollection<T>.

The code from the BookSample application is now changed to use data binding with the TabControl. First, the class UIControlInfo is defined. This class contains properties that are used with data binding within the TabControl. The Title property is used to show heading information within tab items, and the Content property is used for the content of the tab items:

using System.Windows.Controls;
namespace Wrox.ProCSharp.WPF
{
 public class UIControlInfo
 {
 public string Title { get; set; }
 public UserControl Content { get; set; }
 }
}

Now an observable collection is needed to allow the tab control to refresh the information of its tab items. userControls is a member variable of the MainWindow class. The property Controls—used for data binding—returns the collection (code file BooksDemoRibbon/MainWindow.xaml.cs):

 private ObservableCollection<UIControlInfo> _userControls =
 new ObservableCollection<UIControlInfo>();

 public IEnumerable<UIControlInfo> Controls => _userControls;

With the XAML code the TabControl is changed. The ItemsSource property is bound to the Controls property. Now, two templates need to be specified. One template, ItemTemplate, defines the heading of the item controls. The DataTemplate specified with the ItemTemplate just uses a TextBlock element to display the value from the Text property in the heading of the tab item. The other template is ContentTemplate. This template specifies using the ContentPresenter that binds to the Content property of the bound items:

<TabControl Margin="5" x:Name="tabControl1" ItemsSource="{Binding Controls}">
 <TabControl.ContentTemplate>
 <DataTemplate>
 <ContentPresenter Content="{Binding Content}" />
 </DataTemplate>
 </TabControl.ContentTemplate>
 <TabControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="0">
 <TextBlock Text="{Binding Title}" Margin="0" />
 </StackPanel>
 </DataTemplate>
 </TabControl.ItemTemplate>
</TabControl>

Now the event handlers can be modified to create new UIControlInfo objects and add them to the observable collection instead of creating TabItem controls. Changing the item and content templates is a much easier way to customize the look, instead of doing this with code-behind.

private void OnShowBooksList(object sender, ExecutedRoutedEventArgs e)
{
 var booksUI = new BooksUC();
 userControls.Add(new UIControlInfo
 {
 Title ="Books List",
 Content = booksUI
 });
}

Data Template Selector

The previous chapter described how you can customize controls with templates. You also saw how to create a data template that defines a display for specific data types. A data template selector can create different data templates dynamically for the same data type. It is implemented in a class that derives from the base class DataTemplateSelector.

The following example implements a data template selector by selecting a different template based on the publisher. These templates are defined within the user control resources. One template can be accessed by the key name wroxTemplate; the other template has the key name dummiesTemplate, and the third one is bookTemplate (code file BooksDemoLib/Controls/BooksUC.xaml):

<DataTemplate x:Key="wroxTemplate" DataType="{x:Type local:Book}">
 <Border Background="Red" Margin="10" Padding="10">
 <StackPanel>
 <Label Content="{Binding Title}" />
 <Label Content="{Binding Publisher}" />
 </StackPanel>
 </Border>
</DataTemplate>

<DataTemplate x:Key="dummiesTemplate" DataType="{x:Type local:Book}">
 <Border Background="Yellow" Margin="10" Padding="10">
 <StackPanel>
 <Label Content="{Binding Title}" />
 <Label Content="{Binding Publisher}" />
 </StackPanel>
 </Border>
</DataTemplate>

<DataTemplate x:Key="bookTemplate" DataType="{x:Type local:Book}">
 <Border Background="LightBlue" Margin="10" Padding="10">
 <StackPanel>
 <Label Content="{Binding Title}" />
 <Label Content="{Binding Publisher}" />
 </StackPanel>
 </Border>
</DataTemplate>

For selecting the template, the class BookDataTemplateSelector overrides the method SelectTemplate from the base class DataTemplateSelector. The implementation selects the template based on the Publisher property from the Book class (code file BooksDemoLib/Utilities/BookTemplateSelector.cs):

using System.Windows;
using System.Windows.Controls;
using BooksDemo;

namespace BooksDemo.Utilities
{
 public class BookTemplateSelector : DataTemplateSelector
 {
 public override DataTemplate SelectTemplate(object item,
 DependencyObject container)
 {
 if (item != null && item is Book)
 {
 var book = item as Book;
 switch (book.Publisher)
 {
 case"Wrox Press":
 return (container as FrameworkElement).FindResource(
 "wroxTemplate") as DataTemplate;
 case"For Dummies":
 return (container as FrameworkElement).FindResource(
 "dummiesTemplate") as DataTemplate;
 default:
 return (container as FrameworkElement).FindResource(
 "bookTemplate") as DataTemplate;
 }
 }
 return null;
 }
 }
}

For accessing the class BookDataTemplateSelector from XAML code, the class is defined within the Window resources (code file BooksDemoLib/Controls/BooksUC.xaml):

<src:BookDataTemplateSelector x:Key="bookTemplateSelector" />

Now the selector class can be assigned to the ItemTemplateSelector property of the ListBox:

<ListBox DockPanel.Dock="Left" ItemsSource="{Binding}" Margin="5"
 MinWidth="120" IsSynchronizedWithCurrentItem="True"
 ItemTemplateSelector="{StaticResource bookTemplateSelector}">

When you run the application, you can see different data templates based on the publisher, as shown in Figure 34.22.

[image: Screenshot shows a book demo app panel with the details of the books including authors and a list box displaying all the books based on the publisher as different data templates.]

Figure 34.22

Binding to XML

WPF data binding has special support for binding to XML data. You can use XmlDataProvider as a data source and bind the elements by using XPath expressions. For a hierarchical display, you can use the TreeView control and create the view for the items by using the HierarchicalDataTemplate.

The following XML file containing Book elements is used as a source in the next examples (code file XmlBindingSample/Books.xml):

<?xml version="1.0" encoding="utf-8" ?>
<Books>
 <Book isbn="978-1-118-31442-5">
 <Title>Professional C# 2012</Title>
 <Publisher>Wrox Press</Publisher>
 <Author>Christian Nagel</Author>
 <Author>Jay Glynn</Author>
 <Author>Morgan Skinner</Author>
 </Book>
 <Book isbn="978-0-470-50226-6">
 <Title>Beginning Visual C# 2010</Title>
 <Publisher>Wrox Press</Publisher>
 <Author>Karli Watson</Author>
 <Author>Christian Nagel</Author>
 <Author>Jacob Hammer Pedersen</Author>
 <Author>Jon D. Reid</Author>
 <Author>Morgan Skinner</Author>
 </Book>
</Books>

Similarly to defining an object data provider, you can define an XML data provider. Both ObjectDataProvider and XmlDataProvider are derived from the same base class, DataSourceProvider. With the XmlDataProvider in the example, the Source property is set to reference the XML file books .xml. The XPath property defines an XPath expression to reference the XML root element Books. The Grid element references the XML data source with the DataContext property. With the data context for the grid, all Book elements are required for a list binding, so the XPath expression is set to Book. Inside the grid, you can find the ListBox element that binds to the default data context and uses the DataTemplate to include the title in TextBlock elements as items of the ListBox. You can also see three Label elements with data binding set to XPath expressions to display the title, publisher, and ISBN numbers (code file XmlBindingSample/MainWindow.xaml):

<Window x:Class="XmlBindingDemo.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Main Window" Height="240" Width="500">
 <Window.Resources>
 <XmlDataProvider x:Key="books" Source="Books.xml" XPath="Books" />
 <DataTemplate x:Key="listTemplate">
 <TextBlock Text="{Binding XPath=Title}" />
 </DataTemplate>

 <Style x:Key="labelStyle" TargetType="{x:Type Label}">
 <Setter Property="Width" Value="190" />
 <Setter Property="Height" Value="40" />
 <Setter Property="Margin" Value="5" />
 </Style>
 </Window.Resources>

 <Grid DataContext="{Binding Source={StaticResource books}, XPath=Book}">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ListBox IsSynchronizedWithCurrentItem="True" Margin="5"
 Grid.Column="0" Grid.RowSpan="4" ItemsSource="{Binding}"
 ItemTemplate="{StaticResource listTemplate}" />

 <Label Style="{StaticResource labelStyle}"
 Content="{Binding XPath=Title}" Grid.Row="0" Grid.Column="1" />
 <Label Style="{StaticResource labelStyle}"
 Content="{Binding XPath=Publisher}" Grid.Row="1" Grid.Column="1" />
 <Label Style="{StaticResource labelStyle}"
 Content="{Binding XPath=@isbn}" Grid.Row="2" Grid.Column="1" />
 </Grid>
</Window>

Figure 34.23 shows the result of the XML binding.

[image: Screenshot shows an xml binding panel with the details of the books and their list.]

Figure 34.23

NOTE If XML data should be shown hierarchically, you can use the TreeView control.

Binding Validation and Error Handling

Several options are available to validate data from the user before it is used with the .NET objects:

	Handling exceptions

	Handling data error information errors

	Handling notify data error information errors

	Defining custom validation rules

Handling Exceptions

The first option demonstrated here reflects the fact that the .NET class throws an exception if an invalid value is set, as shown in the class SomeData. The property Value1 accepts values only larger than or equal to 5 and smaller than 12 (code file ValidationSample/SomeData.cs):

public class SomeData
{
 private int _value1;
 public int Value1 {
 get { return _value1; }
 set
 {
 if (value < 5 || value > 12)
 {
 throw new ArgumentException(
 "value must not be less than 5 or greater than 12");
 }
 _value1 = value;
 }
 }
}

In the constructor of the MainWindow class, a new object of the class SomeData is initialized and passed to the DataContext for data binding (code file ValidationSample/MainWindow.xaml.cs):

public partial class MainWindow: Window
{
 private SomeData _p1 = new SomeData { Value1 = 11 };

 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = _p1;

 }

The event handler method OnShowValue displays a message box to show the actual value of the SomeData instance:

private void OnShowValue(object sender, RoutedEventArgs e)
{
 MessageBox.Show(_p1.Value1.ToString());
}

With simple data binding, the following shows the Text property of a TextBox bound to the Value1 property. If you run the application now and try to change the value to an invalid one, you can verify that the value never changed by clicking the Submit button. WPF catches and ignores the exception thrown by the set accessor of the property Value1 (code file ValidationSample/MainWindow.xaml):

<Label Grid.Row="0" Grid.Column="0" >Value1:</Label>
<TextBox Grid.Row="0" Grid.Column="1" Text="{Binding Path=Value1}" />

To display an error as soon as the context of the input field changes, you can set the ValidatesOnException property of the Binding markup extension to True. With an invalid value (as soon as the exception is thrown when the value should be set), the TextBox is surrounded by a red line. The application showing the error rectangle is shown in Figure 34.24.

<Label Grid.Row="0" Grid.Column="0" >Value1:</Label>
<TextBox Grid.Row="0" Grid.Column="1"
 Text="{Binding Path=Value1, ValidatesOnExceptions=True}" />

[image: Screenshot shows validation window displaying value1 as 42 and show value.]

Figure 34.24

To show the error information in a different way to the user, the Validation class defines the attached property ErrorTemplate. You can define a custom ControlTemplate and assign it to the ErrorTemplate. The new template as shown in the following code snippet puts a red exclamation point in front of the existing control content:

<ControlTemplate x:Key="validationTemplate">
 <DockPanel>
 <TextBlock Foreground="Red" FontSize="40">!</TextBlock>
 <AdornedElementPlaceholder/>
 </DockPanel>
</ControlTemplate>

Setting the validationTemplate with the Validation.ErrorTemplate attached property activates the template with the TextBox:

<Label Margin="5" Grid.Row="0" Grid.Column="0" >Value1:</Label>
<TextBox Margin="5" Grid.Row="0" Grid.Column="1"
 Text="{Binding Path=Value1, ValidatesOnExceptions=True}"
 Validation.ErrorTemplate="{StaticResource validationTemplate}" />

The new look of the application is shown in Figure 34.25.

[image: Screenshot shows validation window displaying value1 as 3 and show value.]

Figure 34.25

NOTE Another option for a custom error message is to register to the Error event of the Validation class. In this case, the property NotifyOnValidationError must be set to true.

The error information itself can be accessed from the Errors collection of the Validation class. To display the error information in the ToolTip of the TextBox you can create a property trigger as shown next. The trigger is activated as soon as the HasError property of the Validation class is set to True. The trigger sets the ToolTip property of the TextBox:

<Style TargetType="{x:Type TextBox}">
 <Style.Triggers>
 <Trigger Property="Validation.HasError" Value="True">
 <Setter Property="ToolTip"
 Value="{Binding RelativeSource={x:Static RelativeSource.Self},
 Path=(Validation.Errors)[0].ErrorContent}" />
 </Trigger>
 </Style.Triggers>
</Style>

Data Error Information

Another way to deal with errors is when the .NET object implements the interface IDataErrorInfo. The class SomeData is now changed to implement this interface, which defines the property Error and an indexer with a string argument. With WPF validation during data binding, the indexer is called and the name of the property to validate is passed as the columnName argument. With the implementation, the value is verified as valid; if it isn’t, an error string is passed. Here, the validation is done on the property Value2, which is implemented by using the C# automatic property notation (code file ValiationSample/SomeData.cs):

public class SomeData: IDataErrorInfo
{
 // etc.

 public int Value2 { get; set; }

 string IDataErrorInfo.Error => null;

 string IDataErrorInfo.this[string columnName]
 {
 get
 {
 if (columnName =="Value2")
 {
 if (this.Value2 < 0 || this.Value2 > 80)
 return"age must not be less than 0 or greater than 80";
 }
 return null;
 }
 }
}

NOTE With a .NET object, it would not be clear what an indexer would return; for example, what would you expect from an object of type Person calling an indexer? That’s why it is best to do an explicit implementation of the interface IDataErrorInfo. This way, the indexer can be accessed only by using the interface, and the .NET class could use a different implementation for other purposes.

If you set the property ValidatesOnDataErrors of the Binding class to true, the interface IDataErrorInfo is used during binding. In the following code, when the TextBox is changed the binding mechanism invokes the indexer of the interface and passes Value2 to the columnName variable (code file ValidationSample/MainWindow.xaml):

<Label Margin="5" Grid.Row="1" Grid.Column="0" >Value2:</Label>
<TextBox Margin="5" Grid.Row="1" Grid.Column="1"
 Text="{Binding Path=Value2, ValidatesOnDataErrors=True}" />

Notify Data Error Info

Besides supporting validation with exceptions and the IDataErrorInfo interface, WPF with .NET 4.5 supports validation with the interface INotifyDataErrorInfo as well. Unlike the interface IDataErrorInfo, whereby the indexer to a property can return one error, with INotifyDataErrorInfo multiple errors can be associated with a single property. These errors can be accessed using the GetErrors method. The HasErrors property returns true if the entity has any error. Another great feature of this interface is the notification of errors with the event ErrorsChanged. This way, errors can be retrieved asynchronously on the client—for example, a web service can be invoked to verify the input from the user. In this case, the user can continue working with the input form while the result is retrieved, and can be informed asynchronously about any mismatch.

Let’s get into an example in which validation is done using INotifyDataErrorInfo. The base class NotifyDataErrorInfoBase is defined, which implements the interface INotifyDataErrorInfo. This class derives from the base class BindableObject to get an implementation for the interface INotifyPropertyChanged that you’ve seen earlier in this chapter. NotifyDataErrorInfoBase uses a dictionary named errors that contains a list for every property to store error information. The property HasErrors returns true if any property has an error; the method GetErrors returns the error list for a single property; and the event ErrorsChanged is fired every time error information is changed. In addition to the members of the interface INotifyDataErrorInfo, the base class implements the methods SetError, ClearErrors, and ClearAllErrors to make it easier to deal with setting errors (code file ValidationSample/NotifyDataErrorInfoBase.cs):

using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace ValidationSamlple
{
 public abstract class NotifyDataErrorInfoBase : BindableObject,
 INotifyDataErrorInfo
 {
 private Dictionary<string, List<string>> _errors =
 new Dictionary<string, List<string>>();

 public void SetError(string errorMessage,
 [CallerMemberName] string propertyName = null)
 {
 List<string> errorList;
 if (_errors.TryGetValue(propertyName, out errorList))
 {
 errorList.Add(errorMessage);
 }
 else
 {
 errorList = new List<string> { errorMessage };
 _errors.Add(propertyName, errorList);
 }
 HasErrors = true;
 OnErrorsChanged(propertyName);
 }

 public void ClearErrors([CallerMemberName] string propertyName = null)
 {
 if (hasErrors)
 {
 List<string> errorList;
 if (_errors.TryGetValue(propertyName, out errorList))
 {
 _errors.Remove(propertyName);
 }
 if (_errors.Count == 0)
 {
 HasErrors = false;
 }
 OnErrorsChanged(propertyName);
 }
 }

 public void ClearAllErrors()
 {
 if (HasErrors)
 {
 _errors.Clear();
 HasErrors = false;
 OnErrorsChanged(null);
 }
 }

 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

 public IEnumerable GetErrors(string propertyName)
 {
 List<string> errorsForProperty;
 bool err = _errors.TryGetValue(propertyName, out errorsForProperty);
 if (!err) return null;
 return errorsForProperty;
 }
 private bool hasErrors = false;
 public bool HasErrors
 {
 get { return hasErrors; }
 protected set {
 if (SetProperty(ref hasErrors, value))
 {
 OnErrorsChanged(propertyName: null);
 }
 }
 }
 protected void OnErrorsChanged(
 [CallerMemberName] string propertyName = null)
 {
 ErrorsChanged?.Invoke(this,
 new DataErrorsChangedEventArgs(propertyName));
 }
 }
}

The class SomeDataWithNotifications is the data object that is bound to the XAML code. This class derives from the base class NotifyDataErrorInfoBase to inherit the implementation of the interface INotifyDataErrorInfo. The property Val1 is validated asynchronously. For the validation, the method CheckVal1 is invoked after the property is set. This method makes an asynchronous call to the method ValidationSimulator.Validate. After invoking the method, the UI thread can return to handle other events, and as soon as the result is returned, the SetError method of the base class is invoked if an error was returned. You can easily change the async invocation to call a web service or perform another async activity (code file ValidationSample/SomeDataWithNotifications.cs):

using System.Runtime.CompilerServices;
using System.Threading.Tasks;
namespace ValidationSample
{
 public class SomeDataWithNotifications : NotifyDataErrorInfoBase
 {
 private int val1;
 public int Val1
 {
 get { return val1; }
 set
 {
 SetProperty(ref val1, value);
 CheckVal1(val1, value);
 }
 }
 private async void CheckVal1(int oldValue, int newValue,
 [CallerMemberName] string propertyName = null)
 {
 ClearErrors(propertyName);
 string result = await ValidationSimulator.Validate(
 newValue, propertyName);
 if (result != null)
 {
 SetError(result, propertyName);
 }
 }
 }

The Validate method of the ValidationSimulator has a delay of three seconds before checking the value, and returns an error message if the value is larger than 50 (code file ValidationSample/ValidationSimulator.cs):

 public static class ValidationSimulator
 {
 public static Task<string> Validate(int val,
 [CallerMemberName] string propertyName = null)
 {
 return Task<string>.Run(async () =>
 {
 await Task.Delay(3000);
 if (val > 50) return"bad value";
 else return null;
 });
 }
 }

With data binding, just the ValidatesOnNotifyDataErrors property must be set to True to make use of the async validation of the interface INotifyDataErrorInfo (code file ValidationDemo/NotificationWindow.xaml):

<TextBox Grid.Row="0" Grid.Column="1"
 Text="{Binding Val1, ValidatesOnNotifyDataErrors=True}" Margin="8" />

When you run the application, open the notification window and enter invalid text. You can see the text box surrounded by the default rectangle three seconds after you entered wrong input. Showing error information in a different way can be handled in the same way you’ve seen it before—with error templates and triggers accessing validation errors.

Custom Validation Rules

To get more control of the validation you can implement a custom validation rule. A class implementing a custom validation rule needs to derive from the base class ValidationRule. In the previous two examples, validation rules have been used as well. Two classes that derive from the abstract base class ValidationRule are DataErrorValidationRule and ExceptionValidationRule. DataErrorValidationRule is activated by setting the property ValidatesOnDataErrors and uses the interface IDataErrorInfo; ExceptionValidationRule deals with exceptions and is activated by setting the property ValidatesOnException.

In the following example, a validation rule is implemented to verify a regular expression. The class RegularExpressionValidationRule derives from the base class ValidationRule and overrides the abstract method Validate that is defined by the base class. With the implementation, the RegEx class from the namespace System.Text.RegularExpressions is used to validate the expression defined by the Expression property:

 public class RegularExpressionValidationRule : ValidationRule
 {
 public string Expression { get; set; }
 public string ErrorMessage { get; set; }
 public override ValidationResult Validate(object value,
 CultureInfo cultureInfo)
 {
 ValidationResult result = null;
 if (value != null)
 {
 var regEx = new Regex(Expression);
 bool isMatch = regEx.IsMatch(value.ToString());
 result = new ValidationResult(isMatch, isMatch ?
 null: ErrorMessage);
 }
 return result;
 }
 }

NOTE Regular expressions are explained in Chapter 10.

Instead of using the Binding markup extension, now the binding is done as a child of the TextBox.Text element. The bound object defines an Email property that is implemented with the simple property syntax. The UpdateSourceTrigger property defines when the source should be updated. Possible options for updating the source are as follows:

	When the property value changes, which is every character typed by the user

	When the focus is lost

	Explicitly

ValidationRules is a property of the Binding class that contains ValidationRule elements. Here, the validation rule used is the custom class RegularExpressionValidationRule, where the Expression property is set to a regular expression that verifies whether the input is a valid e-mail address; and the ErrorMessage property, which outputs the error message if the data entered in the TextBox is invalid:

 <Label Margin="5" Grid.Row="2" Grid.Column="0">Email:</Label>
 <TextBox Margin="5" Grid.Row="2" Grid.Column="1">
 <TextBox.Text>
 <Binding Path="Email" UpdateSourceTrigger="LostFocus">
 <Binding.ValidationRules>
 <src:RegularExpressionValidationRule
 Expression="^([\w-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.
 [0-9]{1,3}\.)|(([\w-]+\.)+))([a-zA-Z]{2,4}|
 [0-9]{1,3})(\]?)$"
 ErrorMessage="Email is not valid" />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
 </TextBox>

TreeView

The TreeView control is used to display hierarchical data. Binding to a TreeView is very similar to the binding you’ve seen with the ListBox. What’s different is the hierarchical data display—you can use a HierarchicalDataTemplate.

The next example uses hierarchical displays and the DataGrid control. The Formula1 sample database is accessed with the ADO.NET Entity Framework. The model types are shown in Figure 34.26. The Race class contains information about the date of the race and is associated with the Circuit class. The Circuit class has information about the Country and the name of the race circuit. Race also has an association with RaceResult. A RaceResult contains information about the Racer and the Team.

[image: Screenshot shows formula1demo.exe window with sub window formula1demo.model displaying interconnection between team, raceresult with racer and race, and race with circuit.]

Figure 34.26

NOTE You can find the Formula1 database that is used with the Formula1Demo project as a backup file in the Database directory of the Formula1Demo sample. Please restore the backup file using SQL Server Management Studio to the database Formula1 before running the sample application.

NOTE The ADO.NET Entity Framework is covered in Chapter 38, “Entity Framework Core.”

With the XAML code a TreeView is declared. TreeView derives from the base class ItemsControl, where binding to a list can be done with the ItemsSource property. ItemsSource is bound to the data context. The data context is assigned in the code-behind, as you see soon. Of course, this could also be done with an ObjectDataProvider. To define a custom display for the hierarchical data, HierarchicalDataTemplate elements are defined. The data templates here are defined for specific data types with the DataType property. The first HierarchicalDataTemplate is the template for the Championship class and binds the Year property of this class to the Text property of a TextBlock. The ItemsSource property defines the binding for the data template itself to specify the next level in the data hierarchy. If the Races property of the Championship class returns a collection, you bind the ItemsSource property directly to Races. However, because this property returns a Lazy<T> object, binding is done to Races.Value. The advantages of the Lazy<T> class are discussed later in this chapter.

The second HierarchicalDataTemplate element defines the template for the F1Race class and binds the Country and Date properties of this class. With the Date property a StringFormat is defined with the binding. The next level of the hierarchy is defined binding the ItemsSource to Results.Value.

The class F1RaceResult doesn’t have a children collection, so the hierarchy stops here. For this data type, a normal DataTemplate is defined to bind the Position, Racer, and Car properties (code file Formula1Demo/Controls/TreeUC.xaml):

<UserControl x:Class="Formula1Demo.Controls.TreeUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:local="clr-namespace:Formula1Demo"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <Grid>
 <TreeView ItemsSource="{Binding}" >
 <TreeView.Resources>
 <HierarchicalDataTemplate DataType="{x:Type local:Championship}"
 ItemsSource="{Binding Races.Value}">
 <TextBlock Text="{Binding Year}" />
 </HierarchicalDataTemplate>

 <HierarchicalDataTemplate DataType="{x:Type local:F1Race}"
 ItemsSource="{Binding Results.Value}">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Country}" Margin="5,0,5,0" />
 <TextBlock Text="{Binding Date, StringFormat=d}" Margin="5,0,5,0" />
 </StackPanel>
 </HierarchicalDataTemplate>

 <DataTemplate DataType="{x:Type local:F1RaceResult}">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Position}" Margin="5,0,5,0" />
 <TextBlock Text="{Binding Racer}" Margin="5,0,0,0" />
 <TextBlock Text="," />
 <TextBlock Text="{Binding Car}" />
 </StackPanel>
 </DataTemplate>
 </TreeView.Resources>
 </TreeView>
 </Grid>
</UserControl>

Now for the code that fills the hierarchical control. In the code-behind file of the XAML code, DataContext is assigned to the Years property. The Years property uses a LINQ query, defined in the GetYears helper method, to get all the years of the Formula-1 races in the database and to create a new Championship object for every year. With the instance of the Championship class, the Year property is set. This class also has a Races property to return the races of the year, but this information is not yet filled in (code file Formula1Demo/TreeUC.xaml.cs):

using System.Collections.Generic;
using System.Linq;
using System.Windows.Controls;

namespace Formula1Demo
{
 public partial class TreeUC : UserControl
 {
 public TreeUC()
 {
 InitializeComponent();
 this.DataContext = Years;
 }

 private List<Championship> _years;

 private List<Championship> GetYears()
 {
 using (var data = new Formula1Context())
 {
 return data.Races.Select(r => new Championship
 {
 Year = r.Date.Year
 }).Distinct().OrderBy(c => c.Year).ToList();
 }
 }

 public IEnumerable<Championship> Years => _years ?? (_years = GetYears());
 }
}

NOTE LINQ is discussed in Chapter 13, “Language Integrated Query,” and Chapter 38.

The Championship class has a simple automatic property for the year. The Races property is of type Lazy<IEnumerable<F1Race>>. The Lazy<T> class was introduced with .NET 4 for lazy initialization. With a TreeView control, this class comes in very handy. If the data behind the tree is large and you do not want to load the full tree in advance, but only when a user makes a selection, lazy loading can be used. With the constructor of the Lazy<T> class, a delegate Func<IEnumerable<F1Race>> is used. With this delegate, IEnumerable<F1Race> needs to be returned. The implementation of the lambda expression, assigned to the delegate, uses a LINQ query to create a list of F1Race objects that have the Date and Country property assigned (code file Formula1Demo/Championship.cs):

public class Championship
{
 public int Year { get; set; }

 private IEnumerable<F1Race> GetRaces()
 {
 using (var context = new Formula1Context())
 {
 return (from r in context.Races
 where r.Date.Year == Year
 orderby r.Date
 select new F1Race
 {
 Date = r.Date,
 Country = r.Circuit.Country
 }).ToList();
 }
 }

 public Lazy<IEnumerable<F1Race>> Races =>
 new Lazy<IEnumerable<F1Race>>(() => GetRaces());
}

The F1Race class again defines the Results property that uses the Lazy<T> type to return a list of F1RaceResult objects (code file Formula1Demo/Championship.cs):

public class F1Race
{
 public string Country { get; set; }
 public DateTime Date { get; set; }

 private IEnumerable<F1RaceResult> GetResults()
 {
 using (var context = new Formula1Context())
 {
 return (from rr in context.RaceResults
 where rr.Race.Date == this.Date
 select new F1RaceResult
 {
 Position = rr.Position,
 Racer = rr.Racer.FirstName +"" + rr.Racer.LastName,
 Car = rr.Team.Name
 }).ToList();
 }
 }

 public Lazy<IEnumerable<F1RaceResult>> Results =>
 new Lazy<IEnumerable<F1RaceResult>>(() => GetResults());
}

The final class of the hierarchy is F1RaceResult, which is a simple data holder for Position, Racer, and Car (code file Formula1Demo/Championship.cs):

public class F1RaceResult
{
 public int Position { get; set; }
 public string Racer { get; set; }
 public string Car { get; set; }
}

When you run the application, you can see at first all the years of the championships in the tree view. Because of binding, the next level is already accessed—every Championship object already has the F1Race objects associated. The user doesn’t need to wait for the first level after the year or an open year with the default appearance of a small triangle. As shown in Figure 34.27, the year 1984 is open. As soon as the user clicks a year to see the second-level binding, the third level is done and the race results are retrieved.

[image: Screenshot shows formula 1 demo window displaying a tree which opens Belgium 4/29/1984 under 1984 with the names of six people.]

Figure 34.27

Of course, you can also customize the TreeView control and define different styles for the complete template or the items in the view.

DataGrid

To display and edit data using rows and columns, you can use the DataGrid control. The DataGrid control is an ItemsControl and defines the ItemsSource property that is bound to a collection. The XAML code of this user interface also defines two RepeatButton controls that are used for paging functionality. Instead of loading all the race information at once, paging is used so users can step through pages. In a simple scenario, only the ItemsSource property of the DataGrid needs to be assigned. By default, the DataGrid creates columns based on the properties of the bound data (code file Formula1Demo/Controls/GridUC.xaml):

<UserControl x:Class="Formula1Demo.Controls.GridUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <Grid>
 <Grid.RowDefinitions>
 <RepeatButton Margin="5" Click="OnPrevious">Previous</RepeatButton>
 <RepeatButton Margin="5" Click="OnNext">Next</RepeatButton>
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal" Grid.Row="0">
 <Button Click="OnPrevious">Previous</Button>
 <Button Click="OnNext">Next</Button>
 </StackPanel>
 <DataGrid Grid.Row="1" ItemsSource="{Binding}" />
 </Grid>
</UserControl>

The code-behind uses the same Formula1 database as the previous TreeView example. The DataContext of the UserControl is set to the Races property. This property returns IEnumerable<object>. Instead of assigning a strongly typed enumeration, an object is used to make it possible to create an anonymous class with the LINQ query. The LINQ query creates the anonymous class with Year, Country, Position, Racer, and Car properties and uses a compound to access Races and RaceResults. It also accesses other associations of Races to get country, racer, and team information. With the Skip and Take methods, paging functionality is implemented. The size of a page is fixed to 50 items, and the current page changes with the OnNext and OnPrevious handlers (code file Formula1Demo/Controls/GridUC.xaml.cs):

using System.Collections.Generic;
using System.Linq;
using System.Windows;
using System.Windows.Controls;

namespace Formula1Demo
{
 public partial class GridUC : UserControl
 {
 private int _currentPage = 0;
 private int _pageSize = 50;

 public GridUC()
 {
 InitializeComponent();
 this.DataContext = Races;
 }

 private IEnumerable<object> GetRaces()
 {
 using (var data = new Formula1Context())
 {
 return (from r in data.Races
 from rr in r.RaceResults
 orderby r.Date ascending
 select new
 {
 r.Date.Year,
 r.Circuit.Country,
 rr.Position,
 Racer = rr.Racer.FirstName +"" + rr.Racer.LastName,
 Car = rr.Team.Name
 }).Skip(_currentPage * _pageSize).Take(_pageSize).ToList();
 }
 }

 public IEnumerable<object> Races => GetRaces();

 private void OnPrevious(object sender, RoutedEventArgs e)
 {
 if (_currentPage > 0)
 {
 _currentPage--;
 this.DataContext = Races;
 }
 }

 private void OnNext(object sender, RoutedEventArgs e)
 {
 _currentPage++;
 this.DataContext = Races;
 }
 }
}

Figure 34.28 shows the running application with the default grid styles and headers.

[image: Screenshot shows formula 1 demo window displaying datagrid which includes year, country, position, racer and car in 1960's.]

Figure 34.28

In the next DataGrid example, the grid is customized with custom columns and grouping.

Custom Columns

Setting the property AutoGenerateColumns of the DataGrid to False doesn’t generate default columns. You can create custom columns with the Columns property. You can also specify elements that derive from DataGridColumn. You can use predefined classes, and DataGridTextColumn can be used to read and edit text. DataGridHyperlinkColumn is for displaying hyperlinks. DataGridCheckBoxColumn displays a check box for Boolean data. For a list of items in a column, you can use the DataGridComboBoxColumn. More DataGridColumn types will be available in the future, but if you need a different representation now, you can use the DataGridTemplateColumn to define and bind any elements you want.

The example code uses DataGridTextColumn elements that are bound to the Position and Racer properties. The Header property is set to a string for display. Of course, you can also use a template to define a complete custom header for the column (code file Formula1Demo/Controls/GridCustomUC.xaml.cs):

<DataGrid ItemsSource="{Binding}" AutoGenerateColumns="False">
 <DataGrid.Columns>
 <DataGridTextColumn Binding="{Binding Position, Mode=OneWay}"
 Header="Position" />
 <DataGridTextColumn Binding="{Binding Racer, Mode=OneWay}"
 Header="Racer" />
 </DataGrid.Columns>

Row Details

When a row is selected, the DataGrid can display additional information for the row. You do this by specifying a RowDetailsTemplate with the DataGrid. A DataTemplate is assigned to the RowDetailsTemplate, which contains several TextBlock elements that display the car and points (code file Formula1Demo/Controls/GridCustomUC.xaml):

<DataGrid.RowDetailsTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Car:" Margin="5,0,0,0" />
 <TextBlock Text="{Binding Car}" Margin="5,0,0,0" />
 <TextBlock Text="Points:" Margin="5,0,0,0" />
 <TextBlock Text="{Binding Points}" />
 </StackPanel>
 </DataTemplate>
</DataGrid.RowDetailsTemplate>

Grouping with the DataGrid

The Formula-1 races have several rows that contain the same information, such as the year and the country. For such data, grouping can be helpful to organize the information for the user.

For grouping, you can use the CollectionViewSource in XAML code. It also supports sorting and filtering. With code-behind you can also use the ListCollectionView class, which is used only by the CollectionViewSource.

CollectionViewSource is defined within a Resources collection. The source of CollectionViewSource is the result from an ObjectDataProvider. The ObjectDataProvider invokes the GetRaces method of the F1Races type. This method has two int parameters that are assigned from the MethodParameters collection. The CollectionViewSource uses two descriptions for grouping—first by the Year property and then by the Country property (code file Formula1Demo/Controls/GridGroupingUC.xaml):

<Grid.Resources>
 <ObjectDataProvider x:Key="races" ObjectType="{x:Type local:F1Races}"
 MethodName="GetRaces">
 <ObjectDataProvider.MethodParameters>
 <sys:Int32>0</sys:Int32>
 <sys:Int32>20</sys:Int32>
 </ObjectDataProvider.MethodParameters>
 </ObjectDataProvider>
 <CollectionViewSource x:Key="viewSource"
 Source="{StaticResource races}">
 <CollectionViewSource.GroupDescriptions>
 <PropertyGroupDescription PropertyName="Year" />
 <PropertyGroupDescription PropertyName="Country" />
 </CollectionViewSource.GroupDescriptions>
 </CollectionViewSource>
</Grid.Resources>

How the group is displayed is defined with the DataGrid GroupStyle property. With the GroupStyle element you need to customize the ContainerStyle as well as the HeaderTemplate and the complete panel. To dynamically select the GroupStyle and HeaderStyle, you can also write a container style selector and a header template selector. It is very similar in functionality to the data template selector described earlier.

The GroupStyle in the example sets the ContainerStyle property of the GroupStyle. With this style, the GroupItem is customized with a template. The GroupItem appears as the root element of a group when grouping is used. Displayed within the group is the name, using the Name property, and the number of items, using the ItemCount property. The third column of the Grid contains all the normal items using the ItemsPresenter. If the rows are grouped by country, the labels of the Name property would all have a different width, which doesn’t look good. Therefore, the SharedSizeGroup property is set with the second column of the grid to ensure all items are the same size. The shared size scope needs to be set for all elements that have the same size. This is done in the DataGrid setting Grid.IsSharedSizeScope ="True":

<DataGrid.GroupStyle>
 <GroupStyle>
 <GroupStyle.ContainerStyle>
 <Style TargetType="{x:Type GroupItem}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate >
 <StackPanel Orientation="Horizontal" >
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition SharedSizeGroup="LeftColumn" />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Label Grid.Column="0" Background="Yellow"
 Content="{Binding Name}" />
 <Label Grid.Column="1" Content="{Binding ItemCount}" />
 <Grid Grid.Column="2" HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <ItemsPresenter/>
 </Grid>
 </Grid>
 </StackPanel>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </GroupStyle.ContainerStyle>
 </GroupStyle>
</DataGrid.GroupStyle>

The class F1Races that is used by the ObjectDataProvider uses LINQ to access the Formula1 database and returns a list of anonymous types with Year, Country, Position, Racer, Car, and Points properties. The Skip and Take methods are used to access part of the data (code file Formula1Demo/F1Races.cs):

using System.Collections.Generic;
using System.Linq;

namespace Formula1Demo
{
 public class F1Races
 {
 private int _lastpageSearched = -1;
 private IEnumerable<object> _cache = null;

 public IEnumerable<object> GetRaces(int page, int pageSize)
 {
 using (var data = new Formula1Context())
 {
 if (_lastpageSearched == page)
 return _cache;
 _lastpageSearched = page;

 var q = (from r in data.Races
 from rr in r.RaceResults
 orderby r.Date ascending
 select new
 {
 Year = r.Date.Year,
 Country = r.Circuit.Country,
 Position = rr.Position,
 Racer = rr.Racer.FirstName +"" + rr.Racer.LastName,
 Car = rr.Team.Name,
 Points = rr.Points
 }).Skip(page * pageSize).Take(pageSize);
 _cache = q.ToList();
 return _cache;
 }
 }
 }
}

Now all that’s left is for the user to set the page number and change the parameter of the ObjectDataProvider. In the user interface, a TextBox and a Button are defined (code file Formula1Demo/Controls/GridGroupingUC.xaml):

<StackPanel Orientation="Horizontal" Grid.Row="0">
 <TextBlock Margin="5" Padding="4" VerticalAlignment="Center">
 Page:
 </TextBlock>
 <TextBox Margin="5" Padding="4" VerticalAlignment="Center"
 x:Name="textPageNumber" Text="0" />
 <Button Click="OnGetPage">Get Page</Button>
</StackPanel>

The OnGetPage handler of the button in the code-behind accesses the ObjectDataProvider and changes the first parameter of the method. It then invokes the Refresh method so the ObjectDataProvider requests the new page (code file Formula1Demo/GridGroupingUC.xaml.cs):

private void OnGetPage(object sender, RoutedEventArgs e)
{
 int page = int.Parse(textPageNumber.Text);
 var odp = (sender as FrameworkElement).FindResource("races")
 as ObjectDataProvider;
 odp.MethodParameters[0] = page;
 odp.Refresh();
}

When you run the application, you can see grouping and row detail information, as shown in Figure 34.29.

[image: Screenshot shows formula 1 demo window displaying datagrid of page number 44 which includes year, country, position and racer. It highlights racer Jo Siffert at position 4 in 1967.]

Figure 34.29

Live Shaping

A new feature since WPF 4.5 is live shaping. You’ve seen the collection view source with its support for sorting, filtering, and grouping. However, if the collection changes over time in that sorting, filtering, or grouping returns different results, the CollectionViewSource didn’t help—until now. For live shaping, a new interface, ICollectionViewLiveShaping, is used. This interface defines the properties CanChangeLiveFiltering, CanChangeLiveGrouping, and CanChangeLiveSorting to check the data source if these live shaping features are available. The properties IsLiveFiltering, IsLiveGrouping, and IsLiveSorting enable turning on the live shaping features—if available. With LiveFilteringProperties, LiveGroupingProperties, and LiveSortingProperties, you can define the properties of the source that should be used for live filtering, grouping, and sorting.

The sample application shows how the results of a Formula 1 race—this time the race from Barcelona in 2012—change lap by lap.

A racer is represented by the Racer class. This type has the simple properties Name, Team, and Number. These properties are implemented using auto properties, as the values of this type don’t change when the application is run (code file LiveShaping/Racer.cs):

public class Racer
{
 public string Name { get; set; }
 public string Team { get; set; }
 public int Number { get; set; }
 public override string ToString() => Name;
}

The class Formula1 returns a list of all racers who competed at the Barcelona race 2012 (code file LiveShaping/Formula1.cs):

public class Formula1
{
 private List<Racer> _racers;
 public IEnumerable<Racer> Racers => _racers ?? (_racers = GetRacers());

 private List<Racer> GetRacers()
 {
 return new List<Racer>()
 {
 new Racer { Name="Sebastian Vettel", Team="Red Bull Racing", Number=1 },
 new Racer { Name="Mark Webber", Team="Red Bull Racing", Number=2 },
 new Racer { Name="Jenson Button", Team="McLaren", Number=3 },
 new Racer { Name="Lewis Hamilton", Team="McLaren", Number=4 },
 new Racer { Name="Fernando Alonso", Team="Ferrari", Number=5 },
 new Racer { Name="Felipe Massa", Team="Ferrari", Number=6 },
 new Racer { Name="Michael Schumacher", Team="Mercedes", Number=7 },
 new Racer { Name="Nico Rosberg", Team="Mercedes", Number=8 },
 new Racer { Name="Kimi Raikkonen", Team="Lotus", Number=9 },
 new Racer { Name="Romain Grosjean", Team="Lotus", Number=10 },
 new Racer { Name="Paul di Resta", Team="Force India", Number=11 },
 new Racer { Name="Nico Hülkenberg", Team="Force India", Number=12 },
 new Racer { Name="Kamui Kobayashi", Team="Sauber", Number=14 },
 new Racer { Name="Sergio Perez", Team="Sauber", Number=15 },
 new Racer { Name="Daniel Riccardio", Team="Toro Rosso", Number=16 },
 new Racer { Name="Jean-Eric Vergne", Team="Toro Rosso", Number=17 },
 new Racer { Name="Pastor Maldonado", Team="Williams", Number=18 },
 //... more racers in the source code download
 };
 }
}

Now it gets more interesting. The LapRacerInfo class is the type that is shown in the DataGrid control. The class derives from the base class BindableObject to get an implementation of INotifyPropertyChanged as you’ve seen earlier. The properties Lap, Position, and PositionChange change over time. Lap gives the current lap number, Position gives the position in the race in the specified lap, and PositionChange provides information about how the position changed from the previous lap. If the position did not change, the state is None; if the position is lower than in the previous lap, it is Up; if it is higher, then it is Down; and if the racer is out of the race, the PositionChange is Out. This information can be used within the UI for a different representation (code file LiveShaping/LapRacerInfo.cs):

public enum PositionChange
{
 None,
 Up,
 Down,
 Out
}

public class LapRacerInfo : BindableObject
{
 public Racer Racer { get; set; }
 private int _lap;
 public int Lap
 {
 get { return _lap; }
 set { SetProperty(ref _lap, value); }
 }
 private int _position;
 public int Position
 {
 get { return _position; }
 set { SetProperty(ref _position, value); }
 }
 private PositionChange _positionChange;
 public PositionChange PositionChange
 {
 get { return _positionChange; }
 set { SetProperty(ref _positionChange, value); }
 }
}

The class LapChart contains all the information about all laps and racers. This class could be changed to access a live web service to retrieve this information, and then the application could show the current live results from an active race.

The method SetLapInfoForStart creates the initial list of LapRacerInfo items and fills the position to the grid position. The grid position is the first number of the List<int> collection that is added to the positions dictionary. Then, with every invocation of the NextLap method, the items inside the lapInfo collection change to a new position and set the PositionChange state information (code file LiveShaping/LapChart.cs):

public class LapChart
{
 private Formula1 _f1 = new Formula1();
 private List<LapRacerInfo> _lapInfo;
 private int _currentLap = 0;
 private const int PostionOut = 999;
 private int _maxLaps;

 public LapChart()
 {
 FillPositions();
 SetLapInfoForStart();
 }

 private Dictionary<int, List<int>> _positions =
 new Dictionary<int, List<int>>();
 private void FillPositions()
 {
 _positions.Add(18, new List<int> { 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1 });
 _positions.Add(5, new List<int> { 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 1, 1, 1, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2 });
 _positions.Add(10, new List<int> { 3, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 9, 7,
 6, 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 4, 4, 4, 4, 4, 4 });
 // more position information with the code download
 _maxLaps = positions.Select(p => p.Value.Count).Max() - 1;
 }

 private void SetLapInfoForStart()
 {
 _lapInfo = _positions.Select(x => new LapRacerInfo
 {
 Racer = _f1.Racers.Where(r => r.Number == x.Key).Single(),
 Lap = 0,
 Position = x.Value.First(),
 PositionChange = PositionChange.None
 }).ToList();
 }

 public IEnumerable<LapRacerInfo> GetLapInfo() => lapInfo;

 public bool NextLap()
 {
 _currentLap++;
 if (_currentLap > _maxLaps) return false;
 foreach (var info in _lapInfo)
 {
 int lastPosition = info.Position;
 var racerInfo = _positions.Where(x => x.Key == info.Racer.Number)
 .Single();
 if (racerInfo.Value.Count > _currentLap)
 {
 info.Position = racerInfo.Value[currentLap];
 }
 else
 {
 info.Position = lastPosition;
 }
 info.PositionChange = GetPositionChange(lastPosition, info.Position);

 info.Lap = currentLap;
 }
 return true;
 }

 private PositionChange GetPositionChange(int oldPosition, int newPosition)
 {
 if (oldPosition == PositionOut ||| newPosition == PositionOut)
 return PositionChange.Out;
 else if (oldPosition == newPosition)
 return PositionChange.None;
 else if (oldPosition < newPosition)
 return PositionChange.Down;
 else
 return PositionChange.Up;
 }
}

In the main window, the DataGrid is specified and contains some DataGridTextColumn elements that are bound to properties of the LapRacerInfo class that is returned from the collection shown previously. DataTrigger elements are used to define a different background color for the row depending on whether the racer has a better or worse position compared to the previous lap by using the enumeration value from the PositionChange property (code file LiveShaping/MainWindow.xaml):

<DataGrid IsReadOnly="True" ItemsSource="{Binding}"
 DataContext="{StaticResource cvs}" AutoGenerateColumns="False">
 <DataGrid.CellStyle>
 <Style TargetType="DataGridCell">
 <Style.Triggers>
 <Trigger Property="IsSelected" Value="True">
 <Setter Property="Background" Value="{x:Null}" />
 <Setter Property="BorderBrush" Value="{x:Null}" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </DataGrid.CellStyle>
 <DataGrid.RowStyle>
 <Style TargetType="DataGridRow">
 <Style.Triggers>
 <Trigger Property="IsSelected" Value="True">
 <Setter Property="Background" Value="{x:Null}" />
 <Setter Property="BorderBrush" Value="{x:Null}" />
 </Trigger>
 <DataTrigger Binding="{Binding PositionChange}" Value="None">
 <Setter Property="Background" Value="LightGray" />
 </DataTrigger>
 <DataTrigger Binding="{Binding PositionChange}" Value="Up">
 <Setter Property="Background" Value="LightGreen" />
 </DataTrigger>
 <DataTrigger Binding="{Binding PositionChange}" Value="Down">
 <Setter Property="Background" Value="Yellow" />
 </DataTrigger>
 <DataTrigger Binding="{Binding PositionChange}" Value="Out">
 <Setter Property="Background" Value="Red" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </DataGrid.RowStyle>
 <DataGrid.Columns>
 <DataGridTextColumn Binding="{Binding Position}" />
 <DataGridTextColumn Binding="{Binding Racer.Number}" />
 <DataGridTextColumn Binding="{Binding Racer.Name}" />
 <DataGridTextColumn Binding="{Binding Racer.Team}" />
 <DataGridTextColumn Binding="{Binding Lap}" />
 </DataGrid.Columns>
</DataGrid>

The data context specified with the DataGrid control is found in the resources of the window with the CollectionViewSource. The collection view source is bound to the data context that is specified with the code-behind. The important property set here is IsLiveSortingRequested. The value is set to true to change the order of the elements in the user interface. The property used for sorting is Position. As the position changes, the items are reordered in real time:

<Window.Resources>
 <CollectionViewSource x:Key="cvs" Source="{Binding}"
 IsLiveSortingRequested="True">
 <CollectionViewSource.SortDescriptions>
 <scm:SortDescription PropertyName="Position" />
 </CollectionViewSource.SortDescriptions>
 </CollectionViewSource>
</Window.Resources>

Now, you just need to get to the code-behind source code where the data context is set and the live values are changed dynamically. In the constructor of the main window, the DataContext property is set to the initial collection of type LapRacerInfo. Next, a background task invokes the NextLap method every three seconds to change the values in the UI with the new positions. The background task makes use of an async lambda expression. The implementation could be changed to get live data from a web service (code file LiveShaping/MainWindow.xaml.cs).

public partial class MainWindow : Window
{
 private LapChart _lapChart = new LapChart();

 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = _lapChart.GetLapInfo();
 Task.Run(async () =>
 {
 bool raceContinues = true;
 while (raceContinues)
 {
 await Task.Delay(3000);
 raceContinues = _lapChart.NextLap();
 }
 });
 }
}

Figure 34.30 shows a run of the application while in lap 23, with a leading Fernando Alonso driving a Ferrari.

[image: Screenshot shows live shaping window displaying racer names along with their corresponding used cars. Racers with up's, down's and out's categories are highlighted using different colors.]

Figure 34.30

Summary

This chapter covered the main features of WPF that are extremely important for business applications. You’ve seen the hierarchy of controls, and different options for the layout of controls. For clear and easy interaction with data, WPF data binding provides a leap forward. You can bind any property of a .NET class to a property of a WPF element. The binding mode defines the direction of the binding. You can bind .NET objects and lists, and define a data template to create a default look for a .NET class.

Command binding makes it possible to map handler code to menus and toolbars. You’ve also seen how easy it is to copy and paste with WPF because a command handler for this technology is already included in the TextBox control. You’ve also seen many more WPF features, such as using a DataGrid, the CollectionViewSource for sorting and grouping, and all this with live shaping as well.

The next chapter goes into another facet of WPF: working with documents.

35
Creating Documents with WPF

What’s In This Chapter?

	Using text elements

	Creating flow documents

	Creating fixed documents

	Creating XPS documents

	Printing documents

Wrox.com Code Downloads For This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Show Fonts

	Text Effects

	Table

	Flow Documents

	Create XPS

	Printing

Introduction

Creating documents is a large part of WPF. The namespace System.Windows.Documents supports creating both flow documents and fixed documents. This namespace contains elements with which you can have a rich Word-like experience with flow documents, and create WYSIWYG fixed documents.

Flow documents are geared toward screen reading; the content of the document is arranged based on the size of the window, and the flow of the document changes if the window is resized. Fixed documents are mainly used for printing and page-oriented content and the content is always arranged in the same way.

This chapter teaches you how to create and print flow documents and fixed documents, and covers the namespaces System.Windows.Documents, System.Windows.Xps, and System.IO.Packaging.

Text Elements

To build the content of documents, you need document elements. The base class of these elements is TextElement. This class defines common properties for font settings, foreground and background, and text effects. TextElement is the base class for the classes Block and Inline, whose functionality is explored in the following sections.

Fonts

An important aspect of text is how it looks, and thus the importance of the font. With the TextElement, the font can be specified with the properties FontWeight, FontStyle, FontStretch, FontSize, and FontFamily:

	FontWeight—Predefined values are specified by the FontWeights class, which offers values such as UltraLight, Light, Medium, Normal, Bold, UltraBold, and Heavy.

	FontStyle—Values are defined by the FontStyles class, which offers Normal, Italic, and Oblique.

	FontStretch—Use this to specify the degrees to stretch the font compared to the normal aspect ratio. FrontStretch defines predefined stretches that range from 50% (UltraCondensed) to 200% (UltraExpanded). Predefined values in between the range are ExtraCondensed (62.5%), Condensed (75%), SemiCondensed (87.5%), Normal (100%), SemiExpanded (112.5%), Expanded (125%), and ExtraExpanded (150%).

	FontSize—This is of type double and enables you to specify the size of the font in device-independent units, inches, centimeters, and points.

	FontFamily—Use this to define the name of the preferred font family, for example, Arial or Times New Roman. With this property you can specify a list of font family names so if one font is not available, the next one in the list is used. (If neither the selected font nor the alternate font is available, a flow document falls back to the default MessageFontFamily.) You can also reference a font family from a resource or use a URI to reference a font from a server. With fixed documents there’s no fallback on a font not available because the font is available with the document.

To give you a feel for the look of different fonts, the following sample WPF application includes a ListBox. The ListBox defines an ItemTemplate for every item in the list. This template uses four TextBlock elements whereby the FontFamily is bound to the Source property of a FontFamily object. With different TextBlock elements, FontWeight and FontStyle are set (code file DocumentsDemos/ShowFontsDemo/MainWindow.xaml):

<ListBox ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal" >
 <StackPanel.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Margin" Value="3,0,3,0" />
 <Setter Property="FontSize" Value="18" />
 <Setter Property="FontFamily" Value="{Binding Source}" />
 </Style>
 </StackPanel.Resources>

 <TextBlock Text="{Binding Path=Source}" />
 <TextBlock FontStyle="Italic" Text="Italic" />
 <TextBlock FontWeight="UltraBold" Text="UltraBold" />
 <TextBlock FontWeight="UltraLight" Text="UltraLight" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

In the code-behind, the data context is set to the result of the SystemFontFamilies property of the System.Windows.Media.Font class. This returns all the available fonts (code file DocumentsDemos/ShowFontsDemo/MainWindow.xaml.cs):

public partial class ShowFontsWindow: Window
{
 public ShowFontsWindow()
 {
 InitializeComponent();

 this.DataContext = Fonts.SystemFontFamilies;
 }
}

When you run the application, you get a large list of system font families with italic, bold, ultrabold, and ultralight characteristics, as shown in Figure 35.1.

[image: Image described by surrounding text.]

Figure 35.1

TextEffect

Now let’s have a look into TextEffect, as it is also common to all document elements. TextEffect is defined in the namespace System.Windows.Media and derives from the base class Animatable, which enables the animation of text.

TextEffect enables you to animate a clipping region, the foreground brush, and a transformation. With the properties PositionStart and PositionCount you specify the position in the text to which the animation applies.

For applying the text effects, the TextEffects property of a Run element is set. The TextEffect element specified within the property defines a foreground and a transformation. For the foreground, a SolidColorBrush with the name brush1 is used that is animated with a ColorAnimation element. The transformation makes use of a ScaleTransformation with the name scale1, which is animated from two DoubleAnimation elements (code file DocumentsDemos/TextEffectsDemo/MainWindow.xaml):

<TextBlock>
 <TextBlock.Triggers>
 <EventTrigger RoutedEvent="TextBlock.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation AutoReverse="True" RepeatBehavior="Forever"
 From="Blue" To="Red" Duration="0:0:16"
 Storyboard.TargetName="brush1"
 Storyboard.TargetProperty="Color" />
 <DoubleAnimation AutoReverse="True"
 RepeatBehavior="Forever"
 From="0.2" To="12" Duration="0:0:16"
 Storyboard.TargetName="scale1"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation AutoReverse="True"
 RepeatBehavior="Forever"
 From="0.2" To="12" Duration="0:0:16"
 Storyboard.TargetName="scale1"
 Storyboard.TargetProperty="ScaleY" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </TextBlock.Triggers>
 <Run FontFamily="Segoe UI">
 cn|elements
 <Run.TextEffects>
 <TextEffect PositionStart="0" PositionCount="30">
 <TextEffect.Foreground>
 <SolidColorBrush x:Name="brush1" Color="Blue" />
 </TextEffect.Foreground>
 <TextEffect.Transform>
 <ScaleTransform x:Name="scale1" ScaleX="3" ScaleY="3" />
 </TextEffect.Transform>
 </TextEffect>
 </Run.TextEffects>
 </Run>
</TextBlock>

When you run the application, you can see the changes in size and color as shown in Figures 35.2 and 35.3.

[image: Screenshot shows texteffect demo window displaying a text with smaller size and color.]

Figure 35.2

[image: Screenshot shows texteffect demo window displaying a text with larger size and different color.]

Figure 35.3

Inline

The base class for all inline flow content elements is Inline. You can use Inline elements within a paragraph of a flow document. Because within a paragraph one Inline element can follow another, the Inline class provides the PreviousInline and NextInline properties to navigate from one element to another. You can also get a collection of all peer inlines with SiblingInlines.

The Run element that was used earlier to write some text is an Inline element for formatted or unformatted text, but there are many more. You can have a new line after a Run element by using the LineBreak element.

The Span element derives from the Inline class and enables the grouping of Inline elements. Only Inline elements are allowed within the content of Span. The self-explanatory Bold, Hyperlink, Italic, and Underline classes all derive from Span and thus have the same functionality to enable Inline elements as its content, but to act on these elements differently. The following XAML code demonstrates using Bold, Italic, Underline, and LineBreak, as shown in Figure 35.4 (code file DocumentsDemos/FlowDocumentsDemo/FlowDocument1.xaml):

<Paragraph FontWeight="Normal">

 Normal
 <Bold>Bold</Bold>
 <Italic>Italic</Italic>
 <LineBreak />
 <Underline>Underline</Underline>

</Paragraph>

[image: Screenshot shows a window displaying texts normal, bold, italic and underline.]

Figure 35.4

AnchoredBlock is an abstract class that derives from Inline and is used to anchor Block elements to flow content. Figure and Floater are concrete classes that derive from AnchoredBlock. Because these two inline elements become interesting in relation to blocks, these elements are discussed later in this chapter.

NOTE The flow documents added to the solution need to be set to Build Action ="Content" and Copy to Output Directory ="Copy if newer" with the Visual Studio Properties Window for having them available in the same directory as the executables.

Another Inline element that maps UI elements that have been used in previous chapters is InlineUIContainer. InlineUIContainer enables adding all UIElement objects (for example, a Button) to the document. The following code segment adds an InlineUIContainer with ComboBox, RadioButton, and TextBox elements to the document (the result is shown in Figure 35.5) (code file DocumentsDemos/FlowDocumentsDemo/FlowDocument2.xaml):

<Paragraph TextAlignment="Center">

 <Italic>cn|elements</Italic>

 <LineBreak />
 <LineBreak />
 <InlineUIContainer>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ComboBox Width="40" Margin="3" Grid.Row="0">
 <ComboBoxItem Content="Filet Mignon" />
 <ComboBoxItem Content="Rib Eye" />
 <ComboBoxItem Content="Sirloin" />
 </ComboBox>
 <StackPanel Grid.Row="0" Grid.RowSpan="2" Grid.Column="1">
 <RadioButton Content="Raw" />
 <RadioButton Content="Medium" />
 <RadioButton Content="Well done" />
 </StackPanel>
 <TextBox Grid.Row="1" Grid.Column="0" Width="140" />
 </Grid>
 </InlineUIContainer>
</Paragraph>

[image: Screenshot shows a bolded text of larger size with selected options as rib eye and medium.]

Figure 35.5

Block

Block is an abstract base class for block-level elements. Blocks enable grouping elements contained to specific views. Common to all blocks are the properties PreviousBlock, NextBlock, and SiblingBlocks that enable you to navigate from block to block. Setting BreakPageBefore and BreakColumnBefore page and column breaks are done before the block starts. A Block also defines a border with the BorderBrush and BorderThickness properties.

Classes that derive from Block are Paragraph, Section, List, Table, and BlockUIContainer. BlockUIContainer is similar to InlineUIContainer in that you can add elements that derive from UIElement.

Paragraph and Section are simple blocks; Paragraph contains inline elements, and Section is used to group other Block elements. With the Paragraph block you can determine whether a page or column break is allowed within the paragraph or between paragraphs. You can use KeepTogether to disallow breaking within the paragraph; KeepWithNext tries to keep one paragraph and the next together. If a paragraph is broken by a page or column break, MinWidowLines defines the minimum number of lines that are placed after the break; MinOrphanLines defines the minimum number of lines before the break.

The Paragraph block also enables decorating the text within the paragraph with TextDecoration elements. Predefined text decorations are defined by TextDecorations: Baseline, Overline, Strikethrough, and Underline.

The following XAML code shows multiple Paragraph elements. One Paragraph element with a title follows another with the content belonging to this title. These two paragraphs are connected with the attribute KeepWithNext. It’s also assured that the paragraph with the content is not broken by setting KeepTogether to True (code file DocumentsDemos/FlowDocumentsDemo/ParagraphDemo.xaml):

<FlowDocument
 ColumnWidth="300" FontSize="16" FontFamily="Segoe UI" ColumnRuleWidth="3"
 ColumnRuleBrush="Violet">
 <Paragraph FontSize="36">
 <Run>Lyrics</Run>
 </Paragraph>
 <Paragraph TextIndent="10" FontSize="24" KeepWithNext="True">
 <Bold>
 <Run>Mary had a little lamb</Run>
 </Bold>
 </Paragraph>
 <Paragraph KeepTogether="True">
 <Run>Mary had a little lamb,</Run>
 <LineBreak />
 <Run>little lamb, little lamb,</Run>
 <LineBreak />
 <Run>Mary had a little lamb,</Run>
 <LineBreak />
 <Run>whose fleece was white as snow.</Run>
 <LineBreak />
 <Run>And everywhere that Mary went,</Run>
 <LineBreak />
 <Run>Mary went, Mary went,</Run>
 <LineBreak />
 <Run>and everywhere that Mary went,</Run>
 <LineBreak />
 <Run>the lamb was sure to go.</Run>
 </Paragraph>
 <Paragraph TextIndent="10" FontSize="24" KeepWithNext="True">
 <Bold>
 <Run>Humpty Dumpty</Run>
 </Bold>
 </Paragraph>
 <Paragraph KeepTogether="True">
 <Run>Humpty dumpty sat on a wall</Run>
 <LineBreak />
 <Run>Humpty dumpty had a great fall</Run>
 <LineBreak />
 <Run>All the King's horses</Run>
 <LineBreak />
 <Run>And all the King's men</Run>
 <LineBreak />
 <Run>Couldn't put Humpty together again</Run>
 </Paragraph>
</FlowDocument>

The result is shown in Figure 35.6.

[image: Screenshot shows a page displaying the lyrics of poems like Mary had a little lamb and Humpty Dumpty.]

Figure 35.6

Lists

The List class is used to create textual unordered or ordered lists. List defines the bullet style of its items by setting the MarkerStyle property. MarkerStyle is of type TextMarkerStyle and can be a number (Decimal), a letter (LowerLatin and UpperLatin), a roman numeral (LowerRoman and UpperRoman), or a graphic (Disc, Circle, Square, Box). List can only contain ListItem elements, which in turn can only contain Block elements.

Defining the following list with XAML results in the output shown in Figure 35.7 (code file DocumentsDemos/FlowDocumentsDemo/ListDemo.xaml):

<List MarkerStyle="Square">
 <ListItem>
 <Paragraph>Monday</Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>Tuesday</Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>Wednesday</Paragraph>
 </ListItem>
</List>

[image: Screenshot shows a page displaying Monday, Tuesday and Wednesday with checkboxes.]

Figure 35.7

Tables

The Table class is very similar to the Grid class that defines rows and columns (see Chapter 34, “Windows Desktop Applications with WPF”). The following example demonstrates creating a FlowDocument with a Table. The table is now created programmatically, and the XAML file contains the FlowDocumentReader (code file DocumentsDemos/TableDemo/MainWindow.xaml):

<Window x:Class="TableDemo.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Table Demo" Height="350" Width="525">
 <FlowDocumentReader x:Name="reader" />
</Window>

The data that is shown in the table is returned from the property F1Results (code file DocumentsDemos/TableDemo/MainWindow.xaml.cs):

private string[][] F1Results =>
 new string[][]
 {
 new string[] {"1.","Lewis Hamilton","384" },
 new string[] {"2.","Nico Rosberg","317" },
 new string[] {"3.","David Riccardio","238" },
 new string[] {"4.","Valtteri Botas","186" },
 new string[] {"5.","Sebastian Vettel","167"}
 };

To create tables, you can add TableColumn objects to the Columns property. With TableColumn you can specify the width and background.

The Table also contains TableRowGroup objects. The TableRowGroup has a Rows property whereby TableRow objects can be added. The TableRow class defines a Cells property that enables adding TableCell objects. TableCell objects can contain any Block element. Here, a Paragraph is used that contains the Inline element Run:

var doc = new FlowDocument();
var t1 = new Table();
t1.Columns.Add(new TableColumn
{
 Width = new GridLength(50, GridUnitType.Pixel)
});
t1.Columns.Add(new TableColumn
{
 Width = new GridLength(1, GridUnitType.Auto)
});
t1.Columns.Add(new TableColumn
{
 Width = new GridLength(1, GridUnitType.Auto)
});

var titleRow = new TableRow { Background = Brushes.LightBlue };
var titleCell = new TableCell
{
 ColumnSpan = 3, TextAlignment = TextAlignment.Center
};
titleCell.Blocks.Add(
 new Paragraph(new Run("Formula 1 Championship 2014")
 {
 FontSize=24, FontWeight = FontWeights.Bold
 }));
titleRow.Cells.Add(titleCell);

var headerRow = new TableRow
{
 Background = Brushes.LightGoldenrodYellow
};
headerRow.Cells.Add(
 new TableCell(new Paragraph(new Run("Pos"))
 {
 FontSize = 14,
 FontWeight=FontWeights.Bold
 }));
 headerRow.Cells.Add(new TableCell(new Paragraph(new Run("Name"))
 {
 FontSize = 14, FontWeight = FontWeights.Bold
 }));
headerRow.Cells.Add(
 new TableCell(new Paragraph(new Run("Points"))
 {
 FontSize = 14, FontWeight = FontWeights.Bold
 }));
var rowGroup = new TableRowGroup();
rowGroup.Rows.Add(titleRow);
rowGroup.Rows.Add(headerRow);

List<TableRow> rows = F1Results.Select(row =>
{
 var tr = new TableRow();
 foreach (var cell in row)
 {
 tr.Cells.Add(new TableCell(new Paragraph(new Run(cell))));
 }
 return tr;
}).ToList();
rows.ForEach(r => rowGroup.Rows.Add(r));
t1.RowGroups.Add(rowGroup);
doc.Blocks.Add(t1);
reader.Document = doc;

When you run the application, you can see the nicely formatted table as shown in Figure 35.8.

[image: Table shows names of 5 people with their corresponding points in formula 1 championship 2014.]

Figure 35.8

Anchor to Blocks

Now that you’ve learned about the Inline and Block elements, you can combine the two by using the Inline elements of type AnchoredBlock. AnchoredBlock is an abstract base class with two concrete implementations: Figure and Floater.

The Floater displays its content parallel to the main content with the properties HorizontalAlignment and Width.

Starting with the earlier example, a new paragraph is added that contains a Floater. This Floater is aligned to the left and has a width of 120. As shown in Figure 35.9, the next paragraph flows around it (code file DocumentsDemos/FlowDocumentsDemo/ParagraphKeepTogether.xaml):

<Paragraph TextIndent="10" FontSize="24" KeepWithNext="True">
 <Bold>
 <Run>Mary had a little lamb</Run>
 </Bold>
</Paragraph>
<Paragraph>
 <Floater HorizontalAlignment="Left" Width="120">
 <Paragraph Background="LightGray">
 <Run>Sarah Josepha Hale</Run>
 </Paragraph>
 </Floater>
</Paragraph>
<Paragraph KeepTogether="True">
 <Run>Mary had a little lamb</Run>
 <LineBreak />
 <!—...—>
</Paragraph>

[image: Screenshot shows a page displaying the lyrics of the poem Mary had a little lamb along with the author's name.]

Figure 35.9

A Figure aligns horizontally and vertically and can be anchored to the page, content, a column, or a paragraph. The Figure in the following code is anchored to the page center but with a horizontal and vertical offset. The WrapDirection is set so that both left and right columns wrap around the figure. Figure 35.10 shows the result of the wrap (code file DocumentsDemos/FlowDocumentsDemo/FigureAlignment.xaml):

<Paragraph>

<Figure HorizontalAnchor="PageCenter" HorizontalOffset="20"
 VerticalAnchor="PageCenter" VerticalOffset="20" WrapDirection="Both" >
 <Paragraph Background="LightGray" FontSize="24">
 <Run>Lyrics Samples</Run>
 </Paragraph>
 </Figure>
</Paragraph>

[image: Screenshot shows a mainwindow with flowdocumentpageviewer displaying the lyrics of poems such as Mary had a little lamb and Humpty Dumpty in a single page with minimum volume level.]

Figure 35.10

Floater and Figure are both used to add content that is not in the main flow. Although these two features seem similar, the characteristics of these elements are quite different. The following table explains the differences between Floater and Figure.

	Characteristic
	Floater
	Figure

	Position
	A floater cannot be positioned. It is rendered where space is available.
	A figure can be positioned with horizontal and vertical anchors. It can be docked relative to the page, content, column, or paragraph.

	Width
	A floater can be placed only within one column. If the width is set larger than the column’s size, it is ignored.
	A figure can be sized across multiple columns. The width of a figure can be set to 0.5 pages or two columns.

	Pagination
	If a floater is larger than a column’s height, the floater breaks and paginates to the next column or page.
	If a figure is larger than a column’s height, only the part of the figure that fits in the column is rendered; the other content is lost.

Flow Documents

With all the Inline and Block elements, now you know what should be put into a flow document. The class FlowDocument can contain Block elements, and the Block elements can contain Block or Inline elements, depending on the type of the Block.

A major functionality of the FlowDocument class is that it is used to break up the flow into multiple pages. This is done via the IDocumentPaginatorSource interface, which is implemented by FlowDocument.

Other options with a FlowDocument are to set up the default font and foreground and background brushes, and to configure the page and column sizes.

The following XAML code for the FlowDocument defines a default font and font size, a column width, and a ruler between columns:

<FlowDocument xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 ColumnWidth="300" FontSize="16" FontFamily="Segoe UI"
 ColumnRuleWidth="3" ColumnRuleBrush="Violet">

Now you just need a way to view the documents. The following list describes several viewers:

	RichTextBox—A simple viewer that also allows editing (as long as the IsReadOnly property is not set to true). The RichTextBox doesn’t display the document with multiple columns but instead in scroll mode. This is similar to the Web layout in Microsoft Word. The scrollbar can be enabled by setting the HorizontalScrollbarVisibility to ScrollbarVisibility.Auto.

	FlowDocumentScrollViewer—A reader that is meant only to read but not edit documents. This reader enables zooming into the document. There’s also a toolbar with a slider for zooming that can be enabled with the property IsToolbarEnabled. Settings such as CanIncreaseZoom, CanDecreaseZoom, MinZoom, and MaxZoom enable setting the zoom features.

	FlowDocumentPageViewer—A viewer that paginates the document. With this viewer you not only have a toolbar to zoom into the document, you can also switch from page to page.

	FlowDocumentReader—A viewer that combines the functionality of FlowDocumentScrollViewer and FlowDocumentPageViewer. This viewer supports different viewing modes that can be set from the toolbar or with the property ViewingMode that is of type FlowDocumentReaderViewingMode. This enumeration has the possible values Page, TwoPage, and Scroll. You can also disable the viewing modes according to your needs.

The sample application to demonstrate flow documents defines several readers such that one reader can be chosen dynamically. Within the Grid element you can find the FlowDocumentReader, RichTextBox, FlowDocumentScrollViewer, and FlowDocumentPageViewer. With all the readers the Visibility property is set to Collapsed, so on startup none of the readers appear. The ComboBox that is the first child element within the grid enables the user to select the active reader. The ItemsSource property of the ComboBox is bound to the Readers property to display the list of readers. On selection of a reader, the method OnReaderSelectionChanged is invoked (code file DocumentsDemos/FlowDocumentsDemo/MainWindow.xaml):

<Grid x:Name="grid1">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <ComboBox ItemsSource="{Binding Readers}" Grid.Row="0" Grid.Column="0"
 Margin="4" SelectionChanged="OnReaderSelectionChanged"
 SelectedIndex="0">
 <ComboBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Text="{Binding Name}" />
 </StackPanel>
 </DataTemplate>
 </ComboBox.ItemTemplate>
 </ComboBox>
 <Button Grid.Column="1" Margin="4" Padding="3" Click="OnOpenDocument">
 Open Document
 </Button>
 <FlowDocumentReader ViewingMode="TwoPage" Grid.Row="1"
 Visibility="Collapsed" Grid.ColumnSpan="2" />
 <RichTextBox IsDocumentEnabled="True" HorizontalScrollBarVisibility="Auto"
 VerticalScrollBarVisibility="Auto" Visibility="Collapsed"
 Grid.Row="1" Grid.ColumnSpan="2" />
 <FlowDocumentScrollViewer Visibility="Collapsed" Grid.Row="1"
 Grid.ColumnSpan="2" />
 <FlowDocumentPageViewer Visibility="Collapsed" Grid.Row="1"
 Grid.ColumnSpan="2" />
</Grid>

The Readers property of the MainWindow class invokes the GetReaders method to return the readers to the ComboBox data binding. The GetReaders method returns the list assigned to the variable documentReaders. In case documentReaders was not yet assigned, the LogicalTreeHelper class is used to get all the flow document readers within the grid grid1. As there is not a base class for a flow document reader nor an interface implemented by all readers, the LogialTreeHelper looks for all elements of type FrameworkElement that have a property Document. The Document property is common to all flow document readers. With every reader a new anonymous object is created with the properties Name and Instance. The Name property is used to appear in the ComboBox to enable the user to select the active reader, and the Instance property holds a reference to the reader to show the reader if it should be active (code file DocumentsDemos/FlowDocumentsDemo/MainWindow.xaml.cs):

public IEnumerable<object> Readers => GetReaders();

private List<object> _documentReaders = null;
private IEnumerable<object> GetReaders()
{
 return _documentReaders ??
 (
 _documentReaders =
 LogicalTreeHelper.GetChildren(grid1).OfType<FrameworkElement>()
 .Where(el => el.GetType().GetProperties()
 .Where(pi => pi.Name =="Document").Count() > 0)
 .Select(el => new
 {
 Name = el.GetType().Name,
 Instance = el
 }).Cast<object>().ToList());
 }
}

NOTE The coalescing operator (??) used with the GetReaders method is explained in detail in Chapter 8, "Operators and Casts."

NOTE The sample code makes use of the dynamic keyword—the variable activeDocumentReader is declared as dynamic type. The dynamic keyword is used because the SelectedItem from the ComboBox returns either a FlowDocumentReader, a FlowDocumentScrollViewer, a FlowDocumentPageViewer, or a RichTextBox. All these types are flow document readers that offer a Document property of type FlowDocument. However, there’s no common base class or interface defining this property. The dynamic keyword allows accessing these different types from the same variable and using the Document property. The dynamic keyword is explained in detail in Chapter 16, “Reflection, Metadata, and Dynamic Programming.”

When the user selects a flow document reader, the method OnReaderSelectionChanged is invoked. The XAML code that references this method was shown earlier. Within this method the previously selected flow document reader is made invisible by setting it to collapsed, and the variable activeDocumentReader is set to the selected reader:

private void OnReaderSelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 dynamic item = (sender as ComboBox).SelectedItem;
 if (_activedocumentReader != null)
 {
 _activedocumentReader.Visibility = Visibility.Collapsed;
 }
 _activedocumentReader = item.Instance;
}

private dynamic _activedocumentReader = null;

When the user clicks the button to open a document, the method OnOpenDocument is invoked. With this method the XamlReader class is used to load the selected XAML file. If the reader returns a FlowDocument (which is the case when the root element of the XAML is the FlowDocument element), the Document property of the activeDocumentReader is assigned, and the Visibility is set to visible:

private void OnOpenDocument(object sender, RoutedEventArgs e)
{
 try
 {
 var dlg = new OpenFileDialog();
 dlg.DefaultExt ="*.xaml";
 dlg.InitialDirectory = Environment.CurrentDirectory;
 if (dlg.ShowDialog() == true)
 {
 using (FileStream xamlFile = File.OpenRead(dlg.FileName))
 {
 var doc = XamlReader.Load(xamlFile) as FlowDocument;
 if (doc != null)
 {
 _activedocumentReader.Document = doc;
 _activedocumentReader.Visibility = Visibility.Visible;
 }
 }
 }
 }
 catch (XamlParseException ex)
 {
 MessageBox.Show($"Check content for a Flow document: {ex.Message}");
 }
}

The running application is shown in Figure 35.11. This figure shows a flow document with the FlowDocumentReader in TwoPage mode.

[image: Screenshot shows a mainwindow with flowdocumentreader displaying the lyrics of poems such as Mary had a little lamb and Humpty Dumpty in two pages with minimum volume level.]

Figure 35.11

Fixed Documents

Fixed documents always define the same look, the same pagination, and the same fonts—no matter where the document is copied or used. WPF defines the class FixedDocument to create fixed documents, and the class DocumentViewer to view fixed documents.

This section uses a sample application to create a fixed document programmatically by requesting user input for a menu plan. The data for the menu plan is the content of the fixed document. Figure 35.12 shows the main user interface of this application, where the user can select a day with the DatePicker class, enter menus for a week in a DataGrid, and click the Create Doc button to create a new FixedDocument. This application uses Page objects that are navigated within a NavigationWindow. Clicking the Create Doc button navigates to a new page that contains the fixed document.

[image: Screenshot shows menu planner window displaying days from Monday to Saturday, menu's and corresponding prices. It selects Saturday's menu and price along with create doc button.]

Figure 35.12

The event handler for the Create Doc button, OnCreateDoc, navigates to a new page. To do this, the handler instantiates the new page: DocumentPage. This page includes a handler—NavigationService_LoadCompleted—that is assigned to the LoadCompleted event of the NavigationService. Within this handler the new page can access the content that is passed to the page. Then the navigation is done by invoking the Navigate method to page2. The new page receives the object menus that contains all the menu information needed to build the fixed page. _menus is a readonly variable of type ObservableCollection<MenuEntry> (code file CreateXps/CreateXps/MenuPlannerPage.xaml.cs):

private void OnCreateDoc(object sender, RoutedEventArgs e)
{
 if (_menus.Count == 0)
 {
 MessageBox.Show("Select a date first","Menu Planner",
 MessageBoxButton.OK);
 return;
 }

 var page2 = new DocumentPage();
 NavigationService.LoadCompleted += page2.NavigationService_LoadCompleted;
 NavigationService.Navigate(page2, _menus);
}

Within the DocumentPage, a DocumentViewer is used to provide read access to the fixed document. The fixed document is created in the method NavigationService_LoadCompleted. With the event handler, the data that is passed from the first page is received with the ExtraData property of NavigationEventArgs.

The received ObservableCollection<MenuEntry> is assigned to a menus variable that is used to build the fixed page (code file CreateXps/CreateXps/MenuDocumentPage.xaml.cs):

internal void NavigationService_LoadCompleted(object sender,
 NavigationEventArgs e)
{
 _menus = e.ExtraData as ObservableCollection<MenuEntry>;

 _fixedDocument = new FixedDocument();
 var pageContent1 = new PageContent();
 _fixedDocument.Pages.Add(pageContent1);
 var page1 = new FixedPage();
 pageContent1.Child = page1;
 page1.Children.Add(GetHeaderContent());
 page1.Children.Add(GetLogoContent());
 page1.Children.Add(GetDateContent());
 page1.Children.Add(GetMenuContent());

 viewer.Document = _fixedDocument;

 NavigationService.LoadCompleted -= NavigationService_LoadCompleted;
}

Fixed documents are created with the FixedDocument class. The FixedDocument element only contains PageContent elements that are accessible via the Pages property. The PageContent elements must be added to the document in the order in which they should appear on the page. PageContent defines the content of a single page.

PageContent has a Child property such that a FixedPage can be associated with it. To the FixedPage you can add elements of type UIElement to the Children collection. This is where you can add all the elements you’ve learned about in the last two chapters, including a TextBlock element that itself can contain Inline and Block elements.

In the sample code, the children to the FixedPage are created with helper methods GetHeaderContent, GetLogoContent, GetDateContent, and GetMenuContent.

The method GetHeaderContent creates a TextBlock that is returned. The TextBlock has the Inline element Bold added, which in turn has the Run element added. The Run element then contains the header text for the document. With FixedPage.SetLeft and FixedPage.SetTop the position of the TextBox within the fixed page is defined:

private static UIElement GetHeaderContent()
{
 var text1 = new TextBlock
 {
 FontFamily = new FontFamily("Segoe UI"),
 FontSize = 34,
 HorizontalAlignment = HorizontalAlignment.Center
 };
 text1.Inlines.Add(new Bold(new Run("cn|elements")));
 FixedPage.SetLeft(text1, 170);
 FixedPage.SetTop(text1, 40);
 return text1;
}

The method GetLogoContent adds a logo in the form of an Ellipse with a RadialGradientBrush to the fixed document:

private static UIElement GetLogoContent()
{
 var ellipse = new Ellipse
 {
 Width = 90,
 Height = 40,
 Fill = new RadialGradientBrush(Colors.Yellow, Colors.DarkRed)
 };
 FixedPage.SetLeft(ellipse, 500);
 FixedPage.SetTop(ellipse, 50);
 return ellipse;
}

The method GetDateContent accesses the menus collection to add a date range to the document:

private UIElement GetDateContent()
{
 string dateString = $"{menus[0].Day:d} to {menus[menus.Count - 1].Day:d}";
 var text1 = new TextBlock
 {
 FontSize = 24,
 HorizontalAlignment = HorizontalAlignment.Center
 };
 text1.Inlines.Add(new Bold(new Run(dateString)));
 FixedPage.SetLeft(text1, 130);
 FixedPage.SetTop(text1, 90);
 return text1;
}

Finally, the method GetMenuContent creates and returns a Grid control. This grid contains columns and rows that contain the date, menu, and price information:

private UIElement GetMenuContent()
{
 var grid1 = new Grid
 {
 ShowGridLines = true
 };

 grid1.ColumnDefinitions.Add(new ColumnDefinition
 {
 Width= new GridLength(50)
 });
 grid1.ColumnDefinitions.Add(new ColumnDefinition
 {
 Width = new GridLength(300)
 });
 grid1.ColumnDefinitions.Add(new ColumnDefinition
 {
 Width = new GridLength(70)
 });
 for (int i = 0; i < _menus.Count; i++)
 {
 grid1.RowDefinitions.Add(new RowDefinition
 {
 Height = new GridLength(40)
 });
 var t1 = new TextBlock(new Run($"{_menus[i].Day:ddd}"));
 var t2 = new TextBlock(new Run(_menus[i].Menu));
 var t3 = new TextBlock(new Run(_menus[i].Price.ToString()));
 var textBlocks = new TextBlock[] { t1, t2, t3 };

 for (int column = 0; column < textBlocks.Length; column++)
 {
 textBlocks[column].VerticalAlignment = VerticalAlignment.Center;
 textBlocks[column].Margin = new Thickness(5, 2, 5, 2);
 Grid.SetColumn(textBlocks[column], column);
 Grid.SetRow(textBlocks[column], i);
 grid1.Children.Add(textBlocks[column]);
 }
 }
 FixedPage.SetLeft(grid1, 100);
 FixedPage.SetTop(grid1, 140);
 return grid1;
}

Run the application to see the created fixed document shown in Figure 35.13.

[image: Screenshot shows menu planner window displaying a table with days as Monday to Saturday, menu's and corresponding prices from January to June 2015.]

Figure 35.13

XPS Documents

With Microsoft Word you can save a document as a PDF or an XPS file. XPS is the XML Paper Specification, a subset of WPF. Windows includes an XPS reader.

.NET includes classes and interfaces to read and write XPS documents with the namespaces System .Windows.Xps, System.Windows.Xps.Packaging, and System.IO.Packaging.

XPS is packaged in the zip file format, so you can easily analyze an XPS document by renaming a file with an .xps extension to .zip and opening the archive.

An XPS file requires a specific structure in the zipped document that is defined by the XML Paper Specifications (which you can download from http://www.microsoft.com/whdc/xps/xpsspec.mspx). The structure is based on the Open Packaging Convention (OPC) that Word documents (OOXML or Office Open XML) are based on as well. Within such a file you can find different folders for metadata, resources (such as fonts and pictures), and the document itself. Within the document folder of an XPS document is the XAML code representing the XPS subset of XAML.

To create an XPS document, you use the XpsDocument class from the namespace System.Windows.Xps.Packaging. To use this class, you need to reference the assembly ReachFramework as well. With this class you can add a thumbnail (AddThumbnail) and fixed document sequences (AddFixedDocumentSequence) to the document, as well as digitally sign the document. A fixed document sequence is written by using the interface IXpsFixedDocumentSequenceWriter, which in turn uses an IXpsFixedDocumentWriter to write the document within the sequence.

If a FixedDocument already exists, there’s an easier way to write the XPS document. Instead of adding every resource and every document page, you can use the class XpsDocumentWriter from the namespace System .Windows.Xps. For this class the assembly System.Printing must be referenced.

With the following code snippet you can see the handler to create the XPS document. First, a filename for the menu plan is created that uses a week number in addition to the name menuplan. The week number is calculated with the help of the GregorianCalendar class. Then the SaveFileDialog is opened to enable the user to overwrite the created filename and select the directory where the file should be stored. The SaveFileDialog class is defined in the namespace Microsoft.Win32 and wraps the native file dialog. Then a new XpsDocument is created whose filename is passed to the constructor. Recall that the XPS file uses a .zip format to compress the content. With the CompressionOption you can specify whether the compression should be optimized for time or space.

Next, an XpsDocumentWriter is created with the help of the static method XpsDocument .CreateXpsDocumentWriter. The Write method of the XpsDocumentWriter is overloaded to accept different content or content parts to write the document. Examples of acceptable options with the Write method are FixedDocumentSequence, FixedDocument, FixedPage, string, and a DocumentPaginator. In the sample code, only the fixedDocument that was created earlier is passed (code file CreateXps/CreateXps/MenuDocumentPage.xaml.cs):

private void OnCreateXPS(object sender, RoutedEventArgs e)
{
 var c = new GregorianCalendar();
 int weekNumber = c.GetWeekOfYear(_menus[0].Day,
 CalendarWeekRule.FirstFourDayWeek, DayOfWeek.Monday);

 var dlg = new SaveFileDialog
 {
 FileName = $"menuplan{weekNumber}",
 DefaultExt ="xps",
 Filter ="XPS Documents|*.xps|All Files|*.*",
 AddExtension = true
 };
 if (dlg.ShowDialog() == true)
 {
 var doc = new XpsDocument(dlg.FileName, FileAccess.Write,
 CompressionOption.Fast);
 XpsDocumentWriter writer = XpsDocument.CreateXpsDocumentWriter(doc);
 writer.Write(fixedDocument);
 doc.Close();
 }
}

By running the application to store the XPS document, you can view the document with an XPS viewer, as shown in Figure 35.14.

[image: Image described by surrounding text.]

Figure 35.14

To one overload of the Write method of the XpsDocumentWriter you can also pass a Visual, which is the base class of UIElement, and thus you can pass any UIElement to the writer to create an XPS document easily. This functionality is used in the following printing example.

Printing

The simplest way to print a FixedDocument that is shown onscreen with the DocumentViewer is to invoke the Print method of the DocumentViewer with which the document is associated. This is all that needs to be done with the menu planner application in an OnPrint handler. The Print method of the DocumentViewer opens the PrintDialog and sends the associated FixedDocument to the selected printer (code file CreateXps/CerateXpsDocumentPage.xaml.cs):

private void OnPrint(object sender, RoutedEventArgs e)
{
 viewer.Print();
}

Printing with the PrintDialog

If you want more control over the printing process, the PrintDialog can be instantiated, and the document printed with the PrintDocument method. The PrintDocument method requires a DocumentPaginator with the first argument. The FixedDocument returns a DocumentPaginator object with the DocumentPaginator property. The second argument defines the string that appears with the current printer and in the printer dialogs for the print job:

var dlg = new PrintDialog();
if (dlg.ShowDialog() == true)
{
 dlg.PrintDocument(fixedDocument.DocumentPaginator,"Menu Plan");
}

Printing Visuals

It’s also simple to create UIElement objects. The following XAML code defines an Ellipse, a Rectangle, and a Button that is visually represented with two Ellipse elements. With the Button, there’s a Click handler OnPrint that starts the print job of the visual elements (code file DocumentsDemo/PrintingDemo/MainWindow.xaml):

<Canvas x:Name="canvas1">
 <Ellipse Canvas.Left="10" Canvas.Top="20" Width="180" Height="60"
 Stroke="Red" StrokeThickness="3" >
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Offset="0" Color="LightBlue" />
 <GradientStop Offset="1" Color="DarkBlue" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Rectangle Width="180" Height="90" Canvas.Left="50" Canvas.Top="50">
 <Rectangle.LayoutTransform>
 <RotateTransform Angle="30" />
 </Rectangle.LayoutTransform>
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Aquamarine" />
 <GradientStop Offset="1" Color="ForestGreen" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 <Rectangle.Stroke>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="LawnGreen" />
 <GradientStop Offset="1" Color="SeaGreen" />
 </LinearGradientBrush>
 </Rectangle.Stroke>
 </Rectangle>
 <Button Canvas.Left="90" Canvas.Top="190" Content="Print" Click="OnPrint">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Ellipse Grid.Row="0" Grid.RowSpan="2" Width="60"
 Height="40" Fill="Yellow" />
 <Ellipse Grid.Row="0" Width="52" Height="20"
 HorizontalAlignment="Center">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0.5,0" EndPoint="0.5,1">
 <GradientStop Color="White" Offset="0" />
 <GradientStop Color="Transparent" Offset="0.9" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter Grid.Row="0" Grid.RowSpan="2"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
 </ControlTemplate>
 </Button.Template>
 </Button>
</Canvas>

In the OnPrint handler, the print job can be started by invoking the PrintVisual method of the PrintDialog. PrintVisual accepts any object that derives from the base class Visual (code file PrintingDemo/MainWindow.xaml.cs):

private void OnPrint(object sender, RoutedEventArgs e)
{
 var dlg = new PrintDialog();
 if (dlg.ShowDialog() == true)
 {
 dlg.PrintVisual(canvas1,"Print Demo");
 }
}

To programmatically print without user intervention, the PrintDialog classes from the namespace System .Printing can be used to create a print job and adjust print settings. The class LocalPrintServer provides information about print queues and returns the default PrintQueue with the DefaultPrintQueue property. You can configure the print job with a PrintTicket. PrintQueue.DefaultPrintTicket returns a default PrintTicket that is associated with the queue. The PrintQueue method GetPrintCapabilities returns the capabilities of a printer, and, depending on those, you can configure the PrintTicket as shown in the following code segment. After configuration of the print ticket is complete, the static method PrintQueue .CreateXpsDocumentWriter returns an XpsDocumentWriter object. The XpsDocumentWriter class was used previously to create an XPS document. You can also use it to start a print job. The Write method of the XpsDocumentWriter accepts not only a Visual or FixedDocument as the first argument but also a PrintTicket as the second argument. If a PrintTicket is passed with the second argument, the target of the writer is the printer associated with the ticket and thus the writer sends the print job to the printer:

var printServer = new LocalPrintServer();
PrintQueue queue = printServer.DefaultPrintQueue;
PrintTicket ticket = queue.DefaultPrintTicket;
PrintCapabilities capabilities = queue.GetPrintCapabilities(ticket);
if (capabilities.DuplexingCapability.Contains(Duplexing.TwoSidedLongEdge))
 ticket.Duplexing = Duplexing.TwoSidedLongEdge;
if (capabilities.InputBinCapability.Contains(InputBin.AutoSelect))
 ticket.InputBin = InputBin.AutoSelect;
if (capabilities.MaxCopyCount > 3)
 ticket.CopyCount = 3;
if (capabilities.PageOrientationCapability.Contains(PageOrientation.Landscape))
 ticket.PageOrientation = PageOrientation.Landscape;
if (capabilities.PagesPerSheetCapability.Contains(2))
 ticket.PagesPerSheet = 2;
if (capabilities.StaplingCapability.Contains(Stapling.StapleBottomLeft))
 ticket.Stapling = Stapling.StapleBottomLeft;
XpsDocumentWriter writer = PrintQueue.CreateXpsDocumentWriter(queue);
writer.Write(canvas1, ticket);

Summary

In this chapter you learned how WPF capabilities can be used with documents, and how to create flow documents that adjust automatically depending on the screen sizes and fixed documents that always look the same. You’ve also seen how to print documents and how to send visual elements to the printer.

The next chapter concludes the client apps programming section of this book with a discussion about deployment.

36
Deploying Windows Apps

What’s in this Chapter?

	Deployment requirements

	Deployment scenarios

	Deployment using ClickOnce

	Deployment UWP Apps

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is found in the following examples:

	WPFSampleApp

	UniversalWinApp

Deployment as Part of the Application Life Cycle

The development process does not end when the source code is compiled and the testing is complete. At that stage, the job of getting the application into the user’s hands begins. Whether it’s an ASP.NET application, a WPF client application, or a Universal Windows Platform (UWP) app, the software must be deployed to a target environment.

Deployment should be considered very early in the design of the application, as this can influence the technology to be used for the application itself.

The .NET Framework has made deployment much easier than it was in the past. The pains of registering COM components and writing new hives to the registry have been eliminated.

This chapter looks at the options that are available for application deployment, from both a desktop client application (WPF) and UWP apps.

NOTE Deployment of Web applications is covered in Chapter 45, “Deploying Websites and Services.”

Planning for Deployment

Often, deployment is an afterthought in the development process that can lead to nasty, if not costly, surprises. To avoid grief in deployment scenarios, you should plan the deployment process during the initial design stage. Any special deployment considerations—such as server capacity, desktop security, or the location from which assemblies will be loaded—should be built into the design from the start, resulting in a much smoother deployment process.

Another issue that you should address early in the development process is the environment in which to test the deployment. Whereas unit testing of application code and deployment options can be done on the developer’s system, the deployment must be tested in an environment that resembles the target system. This is important to eliminate the dependencies that don’t exist on a targeted computer. An example of this might be a third-party library that has been installed on the developer’s computer early in the project. The target computer might not have this library on it. It can be easy to forget to include it in the deployment package. Testing on the developer’s system would not uncover the error because the library already exists. Documenting dependencies can help to eliminate this potential problem.

Deployment processes can be complex for a large application. Planning for the deployment can save time and effort when the deployment process is actually implemented.

You must choose the proper deployment option with the same care and planning you use for any other aspect of the system you’re developing. Choosing the wrong option makes the process of getting the software into the users’ hands difficult and frustrating.

Overview of Deployment Options

This section provides an overview of the deployment options that are available to .NET developers. Most of these options are discussed in greater detail later in this chapter:

	

xcopy—The xcopy utility lets you copy an assembly or group of assemblies to an application folder, reducing your development time. Because assemblies are self-discovering (that is, the metadata that describes the assembly is included in the assembly), you do not need to register anything in the registry.

Each assembly keeps track of what other assemblies it requires to execute. By default, the assembly looks in the current application folder for the dependencies. The process of moving (or probing) assemblies to other folders is discussed later in this chapter.

	ClickOnce—The ClickOnce technology offers a way to build self-updating Windows-based applications. ClickOnce enables an application to be published to a website, a file share, or even a CD. As updates and new builds are made to the application, they can be published to the same location or site by the development team. As the application is used by the end user, it can automatically check the location to see if an update is available. If so, an update is attempted.

	Windows Installer—There are some restrictions when ClickOnce doesn’t work. If the installation requires administrative privileges (for example, for deploying Windows Services), Windows Installer can be the best option.

	UWP apps—These apps can be deployed from the Windows Store or by using a command-line tool. Creating packages for Windows Store apps is covered later in this chapter.

Deployment Requirements

It is instructive to look at the runtime requirements of a .NET-based application. The CLR has certain requirements on the target platform before any managed application can execute.

The first requirement that must be met is the operating system. Currently, the following operating systems can run .NET 4.6–based applications:

	Windows Vista SP2

	Windows 7 SP1

	Windows 8 (.NET 4.5 is already included)

	Windows 8.1 (.NET 4.5.1 is already included)

	Windows 10 (.NET 4.6 is already included)

The following server platforms are supported:

	Windows Server 2008 SP2

	Windows Server 2008 R2 SP1

	Windows Server 2012 (.NET 4.5 is already included)

	Windows Server 2012 R2 (.NET 4.5.1 is already included)

Windows Store apps that are created with Visual Studio 2012 run on Windows 8 and 8.1. Windows Store apps created with Visual Studio 2013 run on Windows 8.1.

You also must consider hardware requirements when deploying .NET applications. The minimum hardware requirements for both the client and the server are a CPU with 1GHz and 512MB of RAM.

For best performance, increase the amount of RAM—the more RAM the better your .NET application runs. This is especially true for server applications. You can use the Performance Monitor to analyze the RAM usage of your applications.

Deploying the .NET Runtime

When you’re using .NET Core with applications, the application includes the runtime. When you’re creating apps using the full framework, the .NET runtime needs to be installed on the target system. With Windows 10, .NET 4.6 is already included.

You can download different versions of the .NET runtime from Microsoft MSDN, https://msdn .microsoft.com/library/ee942965.aspx, either Web installer or Offline installer packages. Either you need to offer installation of the runtime with your installation package, or the runtime needs to have been installed before the app is installed.

Traditional Deployment

If deployment is part of an application’s original design considerations, deployment can be as simple as copying a set of files to the target computer. This section discusses simple deployment scenarios and different options for deployment.

To see the first deployment option in action, you must have an application to deploy. At first, the ClientWPF solution is used, which requires the library AppSupport.

ClientWPF is a rich client application using WPF. AppSupport is a class library that contains one simple class that returns a string with the current date and time.

The sample applications use AppSupport to fill a label with a string containing the current date. To use the examples, first load and build AppSupport. Then, in the ClientWPF project, set a reference to the newly built AppSupport.dll.

Here is the code for the AppSupport assembly:

using System;
namespace AppSupport
{
 public class DateService
 {
 public string GetLongDateInfoString() =>
 $"Today's date is {DateTime.Today:D}";

 public string GetShortDateInfoString() =>
 $"Today's date is {DateTime.Today:d}";
 }
}

This simple assembly suffices to demonstrate the deployment options available to you.

xcopy Deployment

xcopy deployment is a term used for the process of copying a set of files to a folder on the target machine and then executing the application on the client. The term comes from the DOS command xcopy.exe. Regardless of the number of assemblies, if the files are copied into the same folder, the application will execute—rendering the task of editing the configuration settings or registry obsolete.

To see how an xcopy deployment works, execute the following steps:

	Open the ClientWPF solution (ClientWPF.sln) that is part of the sample download file.

	Change the target to Release and do a full compile.

	Use the File Explorer to navigate to the project folder \ClientWPF\bin\Release and double-click ClientWPF.exe to run the application.

	Click the button to see the current date displayed in the two text boxes. This verifies that the application functions properly. Of course, this folder is where Visual Studio placed the output, so you would expect the application to work.

	Create a new folder and call it ClientWPFTest. Copy just the two assemblies (AppSupport.dll and ClientWPFTest.exe) from the release folder to this new folder and then delete the release folder. Again, double-click the ClientWPF.exe file to verify that it’s working.

That’s all there is to it; xcopy deployment provides the capability to deploy a fully functional application simply by copying the assemblies to the target machine. Although the example used here is simple, you can use this process for more complex applications. There really is no limit to the size or number of assemblies that can be deployed using this method.

Scenarios in which you might not want to use xcopy deployment are when you need to place assemblies in the global assembly cache (GAC) or add icons to the Start menu. Also, if your application still relies on a COM library of some type, you will not be able to register the COM components easily.

Windows Installer

ClickOnce is Microsoft’s preferred technology for installing Windows applications; it is discussed in more depth later in this chapter. However, ClickOnce has some restrictions. ClickOnce installation doesn’t require administrator rights and installs applications in a directory where the user has rights. If multiple users are working on one system, the application needs to be installed for all users. Also, it is not possible to install shared COM components and configure them in the registry, install assemblies to the GAC, and register Windows services. All these tasks require administrative privileges.

To do these administrative tasks, you need to create a Windows installer package. Installer packages are MSI files (which can be started from setup.exe) that make use of the Windows Installer technology.

Creating Windows installer packages is not part of Visual Studio 2015, but you can use InstallShield Limited Edition, which is free, with Visual Studio 2015. A project template includes information for the download and registration with Flexera Software.

InstallShield Limited Edition offers a simple wizard to create an installation package based on application information (name, website, version number); installation requirements (supported operating systems and prerequisite software before the installation can start); application files and their shortcuts on the Start menu and the desktop; and settings for the registry. You can optionally prompt the user for a license agreement.

If this is all that you need, and you don’t need to add custom dialogs to the installation experience, InstallShield Limited Edition can provide an adequate deployment solution. Otherwise, you need to install another product such as the full version of InstallShield (www.flexerasoftware.com/products/installshield.htm) or the free WiX toolset (http://wix.codeplex.com).

ClickOnce and deployment of UWP apps are discussed in detail in this chapter. Let’s start with ClickOnce.

ClickOnce

ClickOnce is a deployment technology that enables applications to be self-updating. Applications are published to a file share, a website, or media such as a CD. When published, ClickOnce apps can be automatically updated with minimal user input.

ClickOnce also solves the security permission problem. Normally, to install an application the user needs Administrative rights. With ClickOnce, a user without admin rights can install and run the application. However, the application is installed in a user-specific directory. In case multiple users log in to the same system, every user needs to install the application.

ClickOnce Operation

ClickOnce applications have two XML-based manifest files associated with them. One is the application manifest, and the other is the deployment manifest. These two files describe everything that is required to deploy an application.

The application manifest contains information about the application such as permissions required, assemblies to include, and other dependencies. The deployment manifest contains details about the application’s deployment, such as settings and location of the application manifest. The complete schemas for the manifests are in the .NET SDK documentation.

As mentioned earlier, ClickOnce has some limitations, such as assemblies cannot be added to the GAC, and Windows Services cannot be configured in the registry. In such scenarios, Windows Installer is clearly a better choice. You can still use ClickOnce for a large number of applications, however.

Publishing a ClickOnce Application

Because everything that ClickOnce needs to know is contained in the two manifest files, the process of publishing an application for ClickOnce deployment is simply generating the manifests and placing the files in the proper location. The manifest files can be generated in Visual Studio. There is also a command-line tool (mage.exe) and a version with a GUI (mageUI.exe).

You can create the manifest files in Visual Studio 2015 in two ways. At the bottom of the Publish tab on the Project Properties dialog are two buttons: Publish Wizard and Publish Now. The Publish Wizard asks several questions about the deployment of the application and then generates the manifest files and copies all the needed files to the deployment location. The Publish Now button uses the values that have been set in the Publish tab to create the manifest files and copies the files to the deployment location.

To use the command-line tool, mage.exe, the values for the various ClickOnce properties must be passed in. Manifest files can be both created and updated using mage.exe. Typing mage.exe -help at the command prompt gives the syntax for passing in the values required.

The GUI version of mage.exe (mageUI.exe) is similar in appearance to the Publish tab in Visual Studio 2015. You can use the GUI tool to create and update an application and deployment manifest file.

ClickOnce applications appear in the Install/Uninstall Programs control panel applet just like any other installed application. One big difference is that the user is presented with the choice of either uninstalling the application or rolling back to the previous version. ClickOnce keeps the previous version in the ClickOnce application cache.

Let’s start with the process of creating a ClickOnce installation. As a prerequisite for this process, you need to have Internet Information Server (IIS) installed on the system, and Visual Studio must be started with elevated privileges. The ClickOnce installation program will be directly published to the local IIS, which requires administrative privileges.

Open the ClientWPF project with Visual Studio, select the Publish tab in the Project properties, and click the Publish Wizard button. The first screen, shown in Figure 36.1, asks for the publish location. Use the local publish\ folder to publish the package to a local folder.

[image: Image described by surrounding text.]

Figure 36.1

NOTE With previous versions of Visual Studio, you could directly install the ClickOnce package from Visual Studio to the local IIS. This is no longer possible with Visual Studio 2015. However, you can create an installation package in a local folder and add it manually to an IIS Website.

The next screen asks how the users will install the application—from either a website, a file share, or CD-ROM/DVD-ROM (see Figure 36.2). This setting influences how users get updates of the app.

[image: Image described by surrounding text.]

Figure 36.2

The third screen provides options for running this application when the client is offline or only when the client system is online (see Figure 36.3). Using the online option, the application runs directly from the network location. Using the offline option, the application is installed locally. Choose the offline option.

[image: Image described by surrounding text.]

Figure 36.3

After the summary screen that follows as the fourth screen, you are ready to publish, and a browser window is opened to install the application. You can find the application files for installation in the folder you selected previously—for example, publish\.

Before installing the application using ClickOnce, the next section covers the settings that have been made by the wizard.

ClickOnce Settings

Several properties are available for both manifest files. You can configure many of these properties with the Publish tab (see Figure 36.4) within the Visual Studio project settings. The most important property is the location from which the application should be deployed. I’ve used a network share.

[image: Screenshot shows clientWPF window with selected publish option displaying publishing folder location and installation folder url. Install mode and settings selects application available offline option along with publish wizard button.]

Figure 36.4

The Publish tab has an Application Files button that invokes a dialog that lists all assemblies and configuration files required by the application (see Figure 36.5). You can change this configuration; in the list of all files, use the publish status to indicate whether the file should be included with the package. The debug symbols are by default left out. For testing scenarios, you might add these files.

[image: Image described by surrounding text.]

Figure 36.5

The Prerequisite button displays a list of common prerequisites that can be installed along with the application. These prerequisites are defined by Microsoft Installer packages and need to be installed before the ClickOnce application can be installed. In Figure 36.6, you can see that .NET Framework 4.6 was detected as a prerequisite and is part of the installation. You have the choice of installing the prerequisites from the same location from which the application is being published or from the vendor’s website.

[image: Image described by surrounding text.]

Figure 36.6

The Updates button displays a dialog (see Figure 36.7) containing information about how the application should be updated. As new versions of an application are made available, ClickOnce can be used to update the application. Options include checking for updates every time the application starts or checking in the background. If the background option is selected, a specified period of time between checks can be entered. Options for allowing the user to be able to decline or accept the update are available. This can be used to force an update in the background so that users are never aware that the update is occurring. The next time the application is run, the new version is used instead of the older version. A separate location for the update files can be used as well. This way, the original installation package can be located in one location and installed for new users, and all the updates can be staged in another location.

[image: Image described by surrounding text.]

Figure 36.7

You can set up the application so that it runs in either online or offline mode. In offline mode the application can be run from the Start menu and acts as if it were installed using the Windows Installer. Online mode means that the application runs only if the installation folder is available.

Application Cache for ClickOnce Files

Applications distributed with ClickOnce are not installed in the Program Files folder. Instead, they are placed in an application catch that resides in the %LocalAppData%\Apps\2.0 folder. Controlling this aspect of the deployment means that multiple versions of an application can reside on the client PC at the same time. If the application is set to run online, every version that the user has accessed is retained. For applications that are set to run locally, the current and previous versions are retained.

This makes it a very simple process to roll back a ClickOnce application to its previous version. If the user selects the Install/Uninstall Programs control panel applet, the dialog presented contains the options to remove the ClickOnce application or roll back to the previous version. An administrator can change the manifest file to point to the previous version. If the administrator does this, the next time the user runs that application, a check is made for an update. Instead of finding new assemblies to deploy, the application restores the previous version without any interaction from the user.

Application Installation

Now let’s start the application installation. Copy the files from the publish folder to the network share that was specified when you created the package. Then start the Setup.exe from the network share. The first dialog shown gives a warning (see Figure 36.8). Because the publisher of the test certificate is not trusted by the system, a red flag is shown. Click the More Information link to get more information about the certificate and see that the application wants full-trust access. If you trust the application, you can click the Install button to install the application. Before adding the ClickOnce package to the production environment, you can buy a trusted certificate to add to the package.

[image: Screenshot shows application install-security warning window displaying name, location and publisher and selects don't install button.]

Figure 36.8

After you click the Install button, the app is installed locally.

After the installation, you can find the application with the Start menu. In addition, it’s listed with Programs and Features in the Control Panel, where you can also uninstall it (see Figure 36.9).

[image: Screenshot shows clientwpf-programs and features window displaying name, publisher, installed on, size and version. It also displays number and total size of currently installed programs as 117 and 42.6 gigabyte respectively.]

Figure 36.9

ClickOnce Deployment API

With the ClickOnce settings you can configure the application to automatically check for updates, as discussed earlier. Often this is not a practical approach. Maybe some super-users should get a new version of the application earlier. If they are happy with the new version, other users should be privileged to receive the update as well. With such a scenario, you can use your own user-management information database, and update the application programmatically.

For programmatic updates, the assembly System.Deployment and classes from the System.Deployment namespace can be used to check application version information and do an update. The following code snippet (code file MainWindow.xaml.cs) contains a click handler for an Update button in the application. It first checks whether the application is a ClickOnce-deployed application by checking the IsNetworkDeployed property from the ApplicationDeployment class. Using the CheckForUpdateAsync method, it determines whether a newer version is available on the server (in the update directory specified by the ClickOnce settings). On receiving the information about the update, the CheckForUpdateCompleted event is fired. With this event handler, the second argument (type CheckForUpdateCompletedEventArgs) contains information on the update, the version number, and whether it is a mandatory update. If an update is available, it is installed automatically by calling the UpdateAsync method (code file ClientWPF/MainWindow.xaml.cs):

private void OnUpdate(object sender, RoutedEventArgs e)
{
 if (ApplicationDeployment.IsNetworkDeployed)
 {
 ApplicationDeployment.CurrentDeployment.CheckForUpdateCompleted +=
 (sender1, e1) =>
 {
 if (e1.UpdateAvailable)
 {
 ApplicationDeployment.CurrentDeployment.UpdateCompleted +=
 (sender2, e2) =>
 {
 MessageBox.Show("Update completed");
 };
 ApplicationDeployment.CurrentDeployment.UpdateAsync();
 }
 else
 {
 MessageBox.Show("No update available");
 }
 };
 ApplicationDeployment.CurrentDeployment.CheckForUpdateAsync();
 }
 else
 {
 MessageBox.Show("not a ClickOnce installation");
 }
}

By using the Deployment API code, you can manually test for updates directly from the application.

UWP Apps

Installing Windows apps is a completely different story. With traditional .NET applications, copying the executable with the DLLs as shown earlier with xcopy deployment is one way to go. This is not an option with Universal Windows apps.

Universal Windows apps need to be packaged. This enables the app to make the application broadly available in the Windows Store. There’s also a different option to deploy Windows apps in an environment without adding it to the Windows Store. This is known as sideloading. With all these options it is necessary to create an app package, so let’s start with that.

Creating an App Package

A Windows app package is a file with the .appx file extension, which is really just a zip file. This file contains all the XAML files, binaries, pictures, and configurations. You can create a package with either Visual Studio or the command-line utility MakeAppx.exe.

You can create a simple Windows app with the Visual Studio application template Blank App (Universal Windows) that is in the Windows ➪ Universal category. The sample app has the name UniversalWindowsApp.

What’s important for the packaging are images in the Assets folder. The files Logo, SmallLogo, and StoreLogo represent logos of the application that should be replaced by custom application logos. The file Package.appxmanifest is an XML file that contains all the definitions needed for the app package. Opening this file from the Solution Explorer invokes the Package Editor, which contains six tabs: Application, Visual Assets, Capabilities, Declarations, Content URIs, and Packaging. The Packaging dialog is shown in Figure 36.10. Here you can configure the package name, the logo for the store, the version number, and the certificate. By default, only a certificate for testing purposes is created. When you associate the app with the store, the certificate is replaced.

[image: Image described by surrounding text.]

Figure 36.10

The Application tab enables configuration of the application name, and a description of the application. With the Visual Assets tab, you can see all the logos—small, square, and wide—that you can associate with the app. Configurable capabilities vary according to the system features and the devices the application is using, for example, the Music Library or the webcam. The user is informed about which capabilities the application is using. If the application does not specify the capabilities it needs, during runtime the application is not allowed to use it. With the Declarations tab, the application can register more features, such as to use it as a share target or to specify whether some functionality should run in the background.

Using Visual Studio, you can create a package by clicking the project in Solution Explorer and select the context menu Store ➪ Create App Packages. The first selection with this Create App Package wizard is to specify whether the application should be uploaded to the Windows Store. If that’s not the case, you can use sideloading to deploy the package, as discussed later. In case you didn’t register your account with the Windows Store yet, select the sideloading option. In the second dialog of the wizard, select Release instead of Debug Code for the package; you can also select the platforms for which the package should be generated: x86, x64, and ARM CPUs. This is all that’s needed to build the package (see Figure 36.11). To view what’s in the package, you can rename the .appx file to a .zip file extension and find all the images, metadata, and binaries.

[image: Image described by surrounding text.]

Figure 36.11

Windows App Certification Kit

Before submitting an app package to the Windows Store, and also before sideloading it to other devices, you should run the Windows App Certification Kit. This tool is part of the Windows SDK that is installed alongside Visual Studio.

When you deploy your application to the Windows Store, it is necessary for the application to fulfill some requirements. You can check most of the requirements beforehand.

You should give the application some time when you’re running this tool. It requires several minutes to test the application and get the results. During this time you shouldn’t interact with the tool or your running application. The app is checking to make sure the package is correctly built using release and not debug code, the app does not crash or hang, only supported APIs are called, capabilities are used correctly, cancellation handlers of background tasks are implemented, and more. Just start the tool to see all the tests it runs.

Figure 36.12 shows a dialog for starting the certification kit where you can select what tests to run.

[image: Image described by surrounding text.]

Figure 36.12

Sideloading

To have the broadest set of customers, you should publish the app to the Windows Store. With the store you have flexibility in terms of licensing; that is, you can have a version for sale to individuals, or volume licensing whereby you can identify who is running the app based on a unique ID and device. You can also use the store in enterprise scenarios where the app is not visible on the public market place. Of course, you can also have a good reason for not putting the app into the store. As of Windows 10, bypassing the store has become a lot easier. Windows 8 required buying keys to make this possible, but with Windows 10 you just need to enable the device for sideloading. On the For Developers tab of the Update & Security settings (see Figure 36.13), you can change the setting to Sideload Apps to enable sideloading. Of course, on your system you’ve already configured Developer mode, which doesn’t require the Sideload setting. You just need to enable this setting on systems that are not configured with Developer mode.

[image: Image described by surrounding text.]

Figure 36.13

To install a Windows app with sideloading, you can use WinAppDeployCmd.exe. This tool is part of the Windows 10 SDK.

This tool allows you to scan all devices on the network available for installation using

WinAppDeployCmd.exe devices

To install an app on a device, use the following install option:

WinAppDeployCmd.exe install -file SampleApp.appx -ip 10.10.0.199 -pin ABC3D5

To update an app, you can use the update option:

WinAppDeployCmd.exe update -file SampleApp.appx -ip 10.10.0.199

And to uninstall an app, you use the option uninstall:

WinAppDeployCmd.exe uninstall -package packagename

Summary

Deployment is an important part of the application life cycle that you need to consider from the beginning of the project because the deployment method influences the technology you use. Deploying different application types has been shown in this chapter.

You’ve seen the deployment of Windows applications using ClickOnce. ClickOnce offers an easy automatic update capability that can also be triggered directly from within the application, as you’ve seen with the System.Deployment API.

You also learned how to deploy UWP apps, which you can publish in the Windows Store, but you can also deploy using command-line tools without using the store.

The next chapter is the first of a group covering services and web applications, starting with ADO.NET to access the database.

PART IV
Web Applications and Services

	Chapter 37: ADO.NET

	Chapter 38: Entity Framework Core

	Chapter 39: Windows Services

	Chapter 40: ASP.NET Core

	Chapter 41: ASP.NET MVC

	Chapter 42: ASP.NET Web API

	Chapter 43: WebHooks and SignalR

	Chapter 44: Windows Communication Foundation

	Chapter 45: Deploying Websites and Services

37
ADO.NET

What’s In This Chapter?

	Connecting to the database

	Executing commands

	Calling stored procedures

	The ADO.NET object model

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	ConnectionSamples

	CommandSamples

	AsyncSamples

	TransactionSamples

ADO.NET Overview

This chapter discusses how to access a relational database like SQL Server from your C# programs using ADO.NET. It shows you how to connect to and disconnect from a database, how to use queries, and how to add and update records. You learn the various command object options and see how commands can be used for each of the options presented by the SQL Server provider classes; how to call stored procedures with command objects; and how to use transactions.

ADO.NET previously shipped different database providers: a provider for SQL Server and one for Oracle, using OLEDB and ODBC. The OLEDB technology is discontinued, so this provider shouldn’t be used with new applications. Accessing the Oracle database, Microsoft’s provider is discontinued as well because a provider from Oracle (http://www.oracle.com/technetwork/topics/dotnet/) better fits the needs. For other data sources (also for Oracle), many third-party providers are available. Before using the ODBC provider, you should use a provider specific for the data source you access. The code samples in this chapter are based on SQL Server, but you can easily change it to use different connection and command objects, such as OracleConnection and OracleCommand when accessing the Oracle database instead of SqlConnection and SqlCommand.

NOTE This chapter does not cover the DataSet to have tables in memory. Datasets enable you to retrieve records from a database and store the content within in-memory data tables with relations. Instead you should use Entity Framework, which is covered in Chapter 38, “Entity Framework Core.” Entity Framework enables you to have object relations instead of table-based relations.

Sample Database

The examples in this chapter use the AdventureWorks2014 database. You can download this database from https://msftdbprodsamples.codeplex.com/. With this link you can download a backup of the AdventureWorks2014 database in a zip file. Select the recommended download—Adventure Works 2014 Full Database Backup.zip. After unzipping the file, you can restore the database backup using SQL Server Management Studio as shown in Figure 37.1. In case you don’t have SQL Server Management Studio on your system, you can download a free version from http://www.microsoft.com/downloads.

[image: Screenshot shows restore database-adventureworks2014 window displaying device, database, restore to along with restore name, component, type and server. Finally, selects ok button.]

Figure 37.1

The SQL server used with this chapter is SQL Server LocalDb. This is a database server that is installed as part of Visual Studio. You can use any other SQL Server edition as well; you just need to change the connection string accordingly.

NuGet Packages and Namespaces

The sample code for all the ADO.NET samples makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	Microsoft.Extensions.Configuration

	Microsoft.Extensions.Configuration.Json

	System.Data.SqlClient

Namespaces

	Microsoft.Extensions.Configuration

	System

	System.Data

	System.Data.SqlClient

	System.Threading.Tasks

	static System.Console

Using Database Connections

To access the database, you need to provide connection parameters, such as the machine on which the database is running and possibly your login credentials. You make a connection to SQL Server using the SqlConnection class.

The following code snippet illustrates how to create, open, and close a connection to the AdventureWorks2014 database (code file ConnectionSamples/Program.cs):

public static void OpenConnection()
{
 string connectionString = @"server=(localdb)\MSSQLLocalDB;" +
 "integrated security=SSPI;" +
 "database=AdventureWorks2014";
 var connection = new SqlConnection(connectionString);
 connection.Open();

 // Do something useful
 WriteLine("Connection opened");

 connection.Close();
}

NOTE The SqlConnection class implements the IDisposable interface with the Dispose method in addition to the Close method. Both do the same, to release the connection. With this, you can use the using statement to close the connection.

In the example connection string, the parameters used are as follows (the parameters are delimited by a semicolon in the connection string):

	server=(localdb)\MSSQLLocalDB—This denotes the database server to connect to. SQL Server permits a number of separate database server instances to be running on the same machine. Here, you are connecting to the localdb Server and the MSSQLLocalDB SQL Server instance that is created with the installation of SQL Server. If you are using the local installation of SQL Server, change this part to server=(local). Instead of using the keyword server, you can use Data Source instead. Connecting to SQL Azure, you can set Data Source=servername.database.windows.net.

	database=AdventureWorks2014—This describes the database instance to connect to; each SQL Server process can expose several database instances. Instead of the keyword database, you can instead use Initial Catalog.

	integrated security=SSPI—This uses Windows Authentication to connect to the database. In case you are using SQL Azure, you need to set User Id and Password instead.

NOTE You can find great information about connection strings with many different databases at http://www.connectionstrings.com.

The ConnectionSamples example opens a database connection using the defined connection string and then closes that connection. After you have opened the connection, you can issue commands against the data source; when you are finished, you can close the connection.

Managing Connection Strings

Instead of hard-coding the connection string with the C# code, it is better to read it from a configuration file. With .NET 4.6 and .NET Core 1.0, configuration files can be JSON or XML formats, or read from environmental variables. With the following sample, the connection string is read from a JSON configuration file (code file ConnectionSamples/config.json):

{
 "Data": {
 "DefaultConnection": {
 "ConnectionString":
 "Server=(localdb)\\MSSQLLocalDB;Database=AdventureWorks2014;
 Trusted_Connection=True;"
 }
 }
}

The JSON file can be read using the Configuration API defined in the NuGet package Microsoft.Framework.Configuration. To use JSON configuration files, the NuGet package Microsoft.Framework.Configuration.Json is added as well. For reading a configuration file, the ConfigurationBuilder is created. The AddJsonFile extension method adds the JSON file config.json to read configuration information from this file—if it is in the same path as the program. To configure a different path, you can invoke the method SetBasePath. Invoking the Build method of the ConfigurationBuilder builds up the configuration from all the added configuration files and returns an object implementing the IConfiguration interface. With this, the configuration values can be retrieved, such as the configuration value for Data:DefaultConnection:ConnectionString (code file ConnectionSamples/Program.cs):

public static void ConnectionUsingConfig()
{
 var configurationBuilder =
 new ConfigurationBuilder().AddJsonFile("config.json");
 IConfiguration config = configurationBuilder.Build();
 string connectionString = config["Data:DefaultConnection:ConnectionString"];
 WriteLine(connectionString);
}

Connection Pools

When two-tier applications were done several years ago it was a good idea to open the connection on application start and close it only when the application was closed. Nowadays, this is not a good idea. The reason for this program architecture was that it takes some time to open a connection. Now, closing a connection doesn’t close the connection with the server. Instead, the connection is added to a connection pool. When you open the connection again, it can be taken from the pool, thus it is very fast to open a connection; it only takes time to open the first connection.

Pooling can be configured with several options in the connection string. Setting the option Pooling to false disables the connection pool; by default it’s enabled—Pooling = true. Min Pool Size and Max Pool Size enable you to configure the number of connections in the pool. By default, Min Pool Size has a value of 0 and Max Pool Size has a value of 100. Connection Lifetime defines how long a connection should stay inactive in the pool before it is really released.

Connection Information

After creating a connection, you can register event handlers to get some information about the connection. The SqlConnection class defines the InfoMessage and StateChange events. The InfoMessage event is fired every time an information or warning message is returned from SQL Server. The StateChange event is fired when the state of the connection changes—for example, the connection is opened or closed (code file ConnectionSamples/Program.cs):

public static void ConnectionInformation()
{
 using (var connection = new SqlConnection(GetConnectionString()))
 {
 connection.InfoMessage += (sender, e) =>
 {
 WriteLine($"warning or info {e.Message}");
 };
 connection.StateChange += (sender, e) =>
 {
 WriteLine($"current state: {e.CurrentState}, before: {e.OriginalState}");
 };
 connection.Open();

 WriteLine("connection opened");
 // Do something useful
 }
}

When you run the application, you can see the StateChange event fired and the Open and Closed state:

current state: Open, before: Closed
connection opened
current state: Closed, before: Open

Commands

The “Using Database Connections” section briefly touched on the idea of issuing commands against a database. A command is, in its simplest form, a string of text containing SQL statements to be issued to the database. A command could also be a stored procedure, shown later in this section.

A command can be constructed by passing the SQL statement as a parameter to the constructor of the Command class, as shown in this example (code file CommandSamples/Program.cs):

public static void CreateCommand()
{
 using (var connection = new SqlConnection(GetConnectionString()))
 {
 string sql ="SELECT BusinessEntityID, FirstName, MiddleName, LastName" +
 "FROM Person.Person";
 var command = new SqlCommand(sql, connection);

 connection.Open();

 // etc.
 }
}

A command can also be created by invoking the CreateCommand method of the SqlConnection and assigning the SQL statement to the CommandText property:

SqlCommand command = connection.CreateCommand();
command.CommandText = sql;

Commands often need parameters. For example, the following SQL statement requires an EmailPromotion parameter. Don’t be incited to use string concatenation to build up parameters. Instead, always use the parameter features of ADO.NET:

string sql ="SELECT BusinessEntityID, FirstName, MiddleName, LastName" +
 "FROM Person.Person WHERE EmailPromotion = @EmailPromotion";
var command = new SqlCommand(sql, connection);

When you add the parameter to the SqlCommand object, there’s a simple way to use the Parameters property that returns a SqlParameterCollection and the AddWithValue method:

command.Parameters.AddWithValue("EmailPromotion", 1);

A more efficient method that’s more programming work is to use overloads of the Add method by passing the name and the SQL data type:

command.Parameters.Add("EmailPromotion", SqlDbType.Int);
command.Parameters["EmailPromotion"].Value = 1;

It’s also possible to create a SqlParameter object and add this to the SqlParameterCollection.

NOTE Don’t be inclined to use string concatenation with SQL parameters. This is often misused for SQL injection attacks. Using SqlParameter objects inhibits such attacks.

After you have defined the command, you need to execute it. There are several ways to issue the statement, depending on what, if anything, you expect to be returned from that command. The SqlCommand class provides the following ExecuteXX methods:

	ExecuteNonQuery—Executes the command but does not return any output

	ExecuteReader—Executes the command and returns a typed IDataReader

	ExecuteScalar—Executes the command and returns the value from the first column of the first row of any result set

ExecuteNonQuery

The ExecuteNonQuery method is commonly used for UPDATE, INSERT, or DELETE statements, for which the only returned value is the number of records affected. This method can, however, return results if you call a stored procedure that has output parameters. The sample code creates a new record within the Sales.SalesTerritory table. This table has a TerritoryID as primary key that is an identity column and thus does not need to be supplied creating the record. All the columns of this table don’t allow null (see Figure 37.2), but several of them have default values—such as a few sales and cost columns, the rowguid, and the ModifiedDate. The rowguid column is created from the function newid, and the ModifiedDate column is created from getdate. When creating a new row, just the Name, the CountryRegionCode, and Group columns need to be supplied. The method ExecuteNonQuery defines the SQL INSERT statement, adds values for the parameters, and invokes the ExecuteNonQuery method of the SqlCommand class (code file CommandSamples/Program.cs):

public static void ExecuteNonQuery
{
 try
 {
 using (var connection = new SqlConnection(GetConnectionString()))
 {
 string sql ="INSERT INTO [Sales].[SalesTerritory]" +
 "([Name], [CountryRegionCode], [Group])" +
 "VALUES (@Name, @CountryRegionCode, @Group)";

 var command = new SqlCommand(sql, connection);
 command.Parameters.AddWithValue("Name","Austria");
 command.Parameters.AddWithValue("CountryRegionCode","AT");
 command.Parameters.AddWithValue("Group","Europe");

 connection.Open();
 int records = command.ExecuteNonQuery();
 WriteLine($"{records} inserted");
 }
 }
 catch (SqlException ex)
 {
 WriteLine(ex.Message);
 }
}

[image: Image described by surrounding text.]

Figure 37.2

ExecuteNonQuery returns the number of rows affected by the command as an int. When you run the method the first time, one record is inserted. When you run the same method a second time, you get an exception because of a unique index conflict. The Name has a unique index defined and thus is allowed only once. To run the method a second time, you need to delete the created record first.

ExecuteScalar

On many occasions it is necessary to return a single result from a SQL statement, such as the count of records in a given table or the current date/time on the server. You can use the ExecuteScalar method in such situations:

public static void ExecuteScalar()
{
 using (var connection = new SqlConnection(GetConnectionString()))
 {
 string sql ="SELECT COUNT(*) FROM Production.Product";
 SqlCommand command = connection.CreateCommand();
 command.CommandText = sql;
 connection.Open();
 object count = command.ExecuteScalar();
 WriteLine($”counted {count} product records”);
 }
}

The method returns an object, which you can cast to the appropriate type if required. If the SQL you are calling returns only one column, it is preferable to use ExecuteScalar over any other method of retrieving that column. That also applies to stored procedures that return a single value.

ExecuteReader

The ExecuteReader method executes the command and returns a data reader object. The object returned can be used to iterate through the record(s) returned. The ExecuteReader sample makes use of an SQL INNER JOIN clause that is shown in the following code snippet. This SQL INNER JOIN clause is used to get a price history of a single product. The price history is stored in the table Production.ProductCostHistory, the name of the product in the table Production.Product. With the SQL statement a single parameter is needed for the product identifier (code file CommandSamples/Program.cs):

private static string GetProductInformationSQL() =>
 "SELECT Prod.ProductID, Prod.Name, Prod.StandardCost, Prod.ListPrice," +
 "CostHistory.StartDate, CostHistory.EndDate, CostHistory.StandardCost" +
 "FROM Production.ProductCostHistory AS CostHistory " +
 "INNER JOIN Production.Product AS Prod ON" +
 "CostHistory.ProductId = Prod.ProductId" +
 "WHERE Prod.ProductId = @ProductId";

When you invoke the method ExecuteReader of the SqlCommand object, a SqlDataReader is returned. Note that the SqlDataReader needs to be disposed after it has been used. Also note that this time the SqlConnection object is not explicitly disposed at the end of the method. Passing the parameter CommandBehavior.CloseConnection to the ExecuteReader method automatically closes the connection on closing of the reader. If you don’t supply this setting, you still need to close the connection.

For reading the records from the data reader, the Read method is invoked within a while loop. The first call to the Read method moves the cursor to the first record returned. When Read is invoked again, the cursor is positioned to the next record—as long as there’s a record available. The Read method returns false if no record is available at the next position. When accessing the values of the columns, different GetXXX methods are invoked, such as GetInt32, GetString, and GetDateTime. These methods are strongly typed as they return the specific type needed, such as int, string, and DateTime. The index passed to these methods corresponds to the columns retrieved with the SQL SELECT statement, so the index stays the same even if the database structure changes. With the strongly typed GetXXX methods you need to pay attention to values where null is returned from the database; here the GetXXX method throws an exception. With the data retrieved, only the CostHistory.EndDate can be null; all other columns can’t be null as defined by the database schema. To avoid an exception in this case, the C# conditional statement ?: is used to check whether the value is null with the SqlDataReader.IsDbNull method. In that case, null is assigned to a nullable DateTime. Only if the value is not null, the DateTime is accessed with the GetDateTime method (code file CommandSamples/Program.cs):

public static void ExecuteReader(int productId)
{
 var connection = new SqlConnection(GetConnectionString());

 string sql = GetProductInformationSQL();
 var command = new SqlCommand(sql, connection);
 var productIdParameter = new SqlParameter("ProductId", SqlDbType.Int);
 productIdParameter.Value = productId;
 command.Parameters.Add(productIdParameter);
 connection.Open();

 using (SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection))
 {
 while (reader.Read())
 {
 int id = reader.GetInt32(0);
 string name = reader.GetString(1);
 DateTime from = reader.GetDateTime(4);
 DateTime? to =
 reader.IsDBNull(5) ? (DateTime?)null: reader.GetDateTime(5);
 decimal standardPrice = reader.GetDecimal(6);
 WriteLine($"{id} {name} from: {from:d} to: {to:d};" +
 $"price: {standardPrice}");
 }
 }
}

When you run the application and pass the product ID 717 to the ExecuteReader method, you see this output:

717 HL Road Frame—Red, 62 from: 5/31/2011 to: 5/29/2012; price: 747.9682
717 HL Road Frame—Red, 62 from: 5/30/2012 to: 5/29/2013; price: 722.2568
717 HL Road Frame—Red, 62 from: 5/30/2013 to:; price: 868.6342

For the possible values for the product ID, check the content of the database.

With the SqlDataReader, instead of using the typed methods GetXXX, you can use the untyped indexer that returns an object. With this, you need to cast to the corresponding type:

int id = (int)reader[0];
string name = (string)reader[1];
DateTime from = (DateTime)reader[2];
DateTime? to = (DateTime?)reader[3];

The indexer of the SqlDataReader also allows a string to be used instead of the int, passing the column name. This is the slowest method of these different options, but it might fulfill your needs. Compared to the time it costs to make a service call, the additional time needed to access the indexer can be ignored:

int id = (int)reader["ProductID"];
string name = (string)reader["Name"];
DateTime from = (DateTime)reader["StartDate"];
DateTime? to = (DateTime?)reader["EndDate"];

Calling Stored Procedures

Calling a stored procedure with a command object is just a matter of defining the name of the stored procedure, adding a definition for each parameter of the procedure, and then executing the command with one of the methods presented in the previous section.

The following sample calls the stored procedure uspGetEmployeeManagers to get all the managers of an employee. This stored procedure receives one parameter to return records of all managers using recursive queries:

CREATE PROCEDURE [dbo].[uspGetEmployeeManagers]
 @BusinessEntityID [int]
AS
—...

To see the implementation of the stored procedure, check the AdventureWorks2014 database.

To invoke the stored procedure, the CommandText of the SqlCommand object is set to the name of the stored procedure, and the CommandType is set to CommandType.StoredProcedure. Other than that, the command is invoked similarly to the way you’ve seen before. The parameter is created using the CreateParameter method of the SqlCommand object, but you can use other methods to create the parameter used earlier as well. With the parameter, the SqlDbType, ParameterName, and Value properties are filled. Because the stored procedure returns records, it is invoked by calling the method ExecuteReader (code file CommandSamples/Program.cs):

private static void StoredProcedure(int entityId)
{
 using (var connection = new SqlConnection(GetConnectionString()))
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText ="[dbo].[uspGetEmployeeManagers]";
 command.CommandType = CommandType.StoredProcedure;
 SqlParameter p1 = command.CreateParameter();
 p1.SqlDbType = SqlDbType.Int;
 p1.ParameterName ="@BusinessEntityID";
 p1.Value = entityId;
 command.Parameters.Add(p1);
 connection.Open();
 using (SqlDataReader reader = command.ExecuteReader())
 {
 while (reader.Read())
 {
 int recursionLevel = (int)reader["RecursionLevel"];
 int businessEntityId = (int)reader["BusinessEntityID"];
 string firstName = (string)reader["FirstName"];
 string lastName = (string)reader["LastName"];
 WriteLine($"{recursionLevel} {businessEntityId}" +
 $"{firstName} {lastName}");
 }
 }
 }
}

When you run the application and pass the entity ID 251, you get the managers of this employee as shown:

0 251 Mikael Sandberg
1 250 Sheela Word
2 249 Wendy Kahn

Depending on the return of the stored procedure, you need to invoke the stored procedure with ExecuteReader, ExecuteScalar, or ExecuteNonQuery.

With a stored procedure that contains Output parameters, you need to specify the Direction property of the SqlParameter. By default, the direction is ParameterDirection.Input:

var pOut = new SqlParameter();
pOut.Direction = ParameterDirection.Output;

Asynchronous Data Access

Accessing the database can take some time. Here you shouldn’t block the user interface. The ADO.NET classes offer task-based asynchronous programming by offering asynchronous methods in addition to the synchronous ones. The following code snippet is similar to the previous one using the SqlDataReader, but it makes use of Async method calls. The connection is opened with SqlConnection.OpenAsync, the reader is returned from the method SqlCommand.ExecuteReaderAsync, and the records are retrieved using SqlDataReader.ReadAsync. With all these methods, the calling thread is not blocked but can do other work before getting the result (code file AsyncSamples/Program.cs):

public static void Main()
{
 ReadAsync(714).Wait();
}

public static async Task ReadAsync(int productId)
{
 var connection = new SqlConnection(GetConnectionString());

 string sql =
 "SELECT Prod.ProductID, Prod.Name, Prod.StandardCost, Prod.ListPrice," +
 "CostHistory.StartDate, CostHistory.EndDate, CostHistory.StandardCost" +
 "FROM Production.ProductCostHistory AS CostHistory " +
 "INNER JOIN Production.Product AS Prod ON" +
 "CostHistory.ProductId = Prod.ProductId" +
 "WHERE Prod.ProductId = @ProductId";

 var command = new SqlCommand(sql, connection);
 var productIdParameter = new SqlParameter("ProductId", SqlDbType.Int);
 productIdParameter.Value = productId;
 command.Parameters.Add(productIdParameter);

 await connection.OpenAsync();

 using (SqlDataReader reader = await command.ExecuteReaderAsync(
 CommandBehavior.CloseConnection))
 {
 while (await reader.ReadAsync())
 {
 int id = reader.GetInt32(0);
 string name = reader.GetString(1);
 DateTime from = reader.GetDateTime(4);
 DateTime? to = reader.IsDBNull(5) ? (DateTime?)null:
 reader.GetDateTime(5);
 decimal standardPrice = reader.GetDecimal(6);
 WriteLine($"{id} {name} from: {from:d} to: {to:d};" +
 $"price: {standardPrice}");
 }
 }
}

Using the asynchronous method calls is not only advantageous with Windows applications but also useful on the server side for making multiple calls simultaneous. The asynchronous methods of the ADO.NET API have overloads to support the CancellationToken for an earlier stop of a long-running method.

NOTE For more information about asynchronous method calls and the CancellationToken, read Chapter 15, “Asynchronous Programming.”

Transactions

By default, a single command is running within a transaction. If you need to issue multiple commands, and either all of these or none happen, you can start and commit transactions explicitly.

Transactions are described by the term ACID. ACID is a four-letter acronym for atomicity, consistency, isolation, and durability:

	Atomicity—Represents one unit of work. With a transaction, either the complete unit of work succeeds or nothing is changed.

	Consistency—The state before the transaction was started and after the transaction is completed must be valid. During the transaction, the state may have interim values.

	Isolation—Transactions that happen concurrently are isolated from the state, which is changed during a transaction. Transaction A cannot see the interim state of transaction B until the transaction is completed.

	Durability—After a transaction is completed, it must be stored in a durable way. This means that if the power goes down or the server crashes, the state must be recovered at reboot.

NOTE Transactions and valid state can easily be described as a wedding ceremony. A bridal couple is standing before a transaction coordinator. The transaction coordinator asks the first of the couple: “Do you want to marry this person on your side?” If the first one agrees, the second is asked: “Do you want to marry this person?” If the second one declines, the first receives a rollback. A valid state with this transaction is only that both are married, or none are. If both agree, the transaction is committed and both are in the married state. If one denies, the transaction is aborted and both stay in the unmarried state. An invalid state is that one is married, and the other is not. The transaction guarantees that the result is never in an invalid state.

With ADO.NET, transactions can be started by invoking the BeginTransaction method of the SqlConnection. A transaction is always associated with one connection; you can’t create transactions over multiple connections. The method BeginTransaction returns an SqlTransaction that in turn needs to be used with the commands running under the same transaction (code file TransactionSamples/Program.cs):

public static void TransactionSample()
{
 using (var connection = new SqlConnection(GetConnectionString()))
 {
 await connection.OpenAsync();
 SqlTransaction tx = connection.BeginTransaction();
 // etc.
 }
}

NOTE Indeed, you can create transactions spanning multiple connections. With this, using the Windows operating system, the Distributed Transaction Coordinator is used. You can create distributed transactions using the TransactionScope class. However, this class is only part of the full .NET Framework and has not been brought forward to .NET Core; thus it is not part of this book. In case you need to know more about TransactionScope, consult a previous edition of the book, such as Professional C# 5 and .NET 4.5.1.

The code sample creates a record in the Sales.CreditCard table. Using the SQL clause INSERT INTO, a record is added. The CreditCard table defines an auto-increment identifier that is returned with the second SQL statement SELECT SCOPE_IDENTITY() that returns the created identifier. After the SqlCommand object is instantiated, the connection is assigned by setting the Connection property, and the transaction is assigned by setting the Transaction property. With ADO.NET transactions, you cannot assign the transaction to a command that uses a different connection. However, you can also create commands with the same connection that are not related to a transaction:

public static void TransactionSample()
{
 // etc.
 try
 {
 string sql ="INSERT INTO Sales.CreditCard" +
 "(CardType, CardNumber, ExpMonth, ExpYear)" +
 "VALUES (@CardType, @CardNumber, @ExpMonth, @ExpYear);" +
 "SELECT SCOPE_IDENTITY()";

 var command = new SqlCommand();
 command.CommandText = sql;
 command.Connection = connection;
 command.Transaction = tx;
 // etc.
}

After defining the parameters and filling the values, the command is executed by invoking the method ExecuteScalarAsync. This time the ExecuteScalarAsync method is used with the INSERT INTO clause because the complete SQL statement ends by returning a single result: The created identifier is returned from SELECT SCOPE_IDENTITY(). In case you set a breakpoint after the WriteLine method and check the result in the database, you will not see the new record in the database although the created identifier is already returned. The reason is that the transaction is not yet committed:

public static void TransactionSample()
{
 // etc.

 var p1 = new SqlParameter("CardType", SqlDbType.NVarChar, 50);
 var p2 = new SqlParameter("CardNumber", SqlDbType.NVarChar, 25);
 var p3 = new SqlParameter("ExpMonth", SqlDbType.TinyInt);
 var p4 = new SqlParameter("ExpYear", SqlDbType.SmallInt);
 command.Parameters.AddRange(new SqlParameter[] { p1, p2, p3, p4 });

 command.Parameters["CardType"].Value ="MegaWoosh";
 command.Parameters["CardNumber"].Value ="08154711123";
 command.Parameters["ExpMonth"].Value = 4;
 command.Parameters["ExpYear"].Value = 2019;

 object id = await command.ExecuteScalarAsync();
 WriteLine($"record added with id: {id}");

 // etc.
}

Now another record can be created within the same transaction. With the sample code, the same command is used that has the connection and transaction still associated, just the values are changed before invoking ExecuteScalarAsync again. You could also create a new SqlCommand object that accesses a different table in the same database. The transaction is committed invoking the Commit method of the SqlTransaction object. After the commit, you can see the new records in the database:

public static void TransactionSample()
{
 // etc.
 command.Parameters["CardType"].Value ="NeverLimits";
 command.Parameters["CardNumber"].Value ="987654321011";
 command.Parameters["ExpMonth"].Value = 12;
 command.Parameters["ExpYear"].Value = 2025;

 id = await command.ExecuteScalarAsync();
 WriteLine($"record added with id: {id}");

 // throw new Exception("abort the transaction");

 tx.Commit();
 }
 // etc.
}

In case an error occurs, the Rollback method makes an undo of all the SQL commands in the same transaction. The state is reset as it was before the transaction was started. You can easily simulate a rollback by uncommenting the exception before the commit:

public static void TransactionSample()
{
 // etc.

 catch (Exception ex)
 {
 WriteLine($"error {ex.Message}, rolling back");
 tx.Rollback();
 }
 }
}

In case you run the program in debugging mode and have a breakpoint active for too long, the transaction will be aborted because the transaction timeout is reached. Transactions are not meant to have user input while the transaction is active. It’s also not useful to increase the transaction timeout for user input, because having a transaction active causes locks within the database. Depending on the records you read and write, either row locks, page locks, or table locks can happen. You can influence the locks and thus performance of the database by setting an isolation level for creating the transaction. However, this also influences the ACID properties of the transaction—for example, not everything is isolated.

The default isolation level that is applied to the transaction is ReadCommitted. The following table shows the different options you can set.

	Isolation Level
	Description

	ReadUncommitted
	Transactions are not isolated from each other. With this level, there is no wait for locked records from other transactions. This way, uncommitted data can be read from other transactions—dirty reads. This level is usually only used for reading records for which it does not matter if you read interim changes, such as reports.

	ReadCommitted
	Waits for records with a write-lock from other transactions. This way, a dirty read cannot happen. This level sets a read-lock for the current record read and a write-lock for the records being written until the transaction is completed. During the reading of a sequence of records, with every new record that is read, the prior record is unlocked. That’s why nonrepeatable reads can happen.

	RepeatableRead
	Holds the lock for the records read until the transaction is completed. This way, the problem of nonrepeatable reads is avoided. Phantom reads can still occur.

	Serializable
	Holds a range lock. While the transaction is running, it is not possible to add a new record that belongs to the same range from which the data is being read.

	Snapshot
	With this level a snapshot is done from the actual data. This level reduces the locks as modified rows are copied. That way, other transactions can still read the old data without needing to wait for releasing of the lock.

	Unspecified
	Indicates that the provider is using an isolation level that is different from the values defined by the IsolationLevel enumeration.

	Chaos
	This level is similar to ReadUncommitted, but in addition to performing the actions of the ReadUncommitted value, Chaos does not lock updated records.

The following table summarizes the problems that can occur as a result of setting the most commonly used transaction isolation levels.

	Isolation Level
	Dirty Reads
	Nonrepeatable Reads
	Phantom Reads

	ReadUncommitted
	Y
	Y
	Y

	ReadCommitted
	N
	Y
	Y

	RepeatableRead
	N
	N
	Y

	Serializable
	Y
	Y
	Y

Summary

In this chapter, you’ve seen the core foundation of ADO.NET. You first looked at the SqlConnection object to open a connection to SQL Server. You’ve seen how to retrieve the connection string from a configuration file.

This chapter explained how to use connections properly so that they can be closed as early as possible, which preserves valuable resources. All the connection classes implement the IDisposable interface, called when the object is placed within a using statement. If there is one thing you should take away from this chapter, it is the importance of closing database connections as early as possible.

With commands you’ve seen passing parameters, getting a single return value, and retrieving records using the SqlDataReader. You’ve also seen how stored procedures can be invoked using the SqlCommand object.

Similar to other parts of the framework where processing can take some time, ADO.NET implements the task-based async pattern that was shown as well. You’ve also seen how to create and use transactions with ADO.NET.

The next chapter is about the ADO.NET Entity Framework that offers an abstraction to data access by offering a mapping between relations in the database and object hierarchies, and uses ADO.NET classes behind the scenes when you’re accessing a relational database.

38
Entity Framework Core

What’s In This Chapter?

	Introducing Entity Framework Core 1.0

	Using Dependency Injection with Entity Framework

	Creating a Model with Relations

	Using Migrations with the .NET CLI Tools and MSBuild

	Object Tracking

	Updating Objects and Object Trees

	Conflict Handling with Updates

	Using Transactions

Wrox.Com Code Downloads For This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/ professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Books Sample

	Books Sample with DI

	Menus Sample

	Menus with Data Annotations

	Conflict Handling Sample

	Transactions Sample

History of Entity Framework

Entity Framework is a framework offering mapping of entities to relationships. With this, you can create types that map to database tables, create database queries using LINQ, create and update objects, and write them to the database.

After many years of few changes to Entity Framework, the newest version is a complete rewrite. Let’s have a look at the history of Entity Framework to see the reasons for the rewrite.

	Entity Framework 1—The first version of Entity Framework was not ready with .NET 3.5, but it was soon available with .NET 3.5 SP1. Another product offering somewhat similar functionality that was already available with .NET 3.5 was LINQ to SQL. Both LINQ to SQL and Entity Framework offered similar features from a wide view. However, LINQ to SQL was simpler to use but was only available for accessing SQL Server. Entity Framework was provider-based and offered access to several different relational databases. It included more features, such as many-to-many mapping without the need for mapping objects, and n-to-n mapping was possible. One disadvantage of Entity Framework was that it required model types to derive from the EntityObject base class. Mapping the objects to relations was done using an EDMX file that contains XML. The XML contained is defined by three schemas: the Conceptual Schema Definition (CSD) defines the object types with their properties and associations; the Storage Schema Definition (SSD) defines the database tables, columns, and relations; and the Mapping Schema Language (MSL) defines how the CSD and SSD map to each other.

	Entity Framework 4—Entity Framework 4 was available with .NET 4 and received major improvements, many coming from LINQ to SQL ideas. Because of the big changes, versions 2 and 3 have been skipped. With this edition, lazy loading was added to fetch relations on accessing a property. Creating a database was possible after designing a model using SQL Data Definition Language (DDL). The two models using Entity Framework were now Database First or Model First. Possibly the most important feature added was the support for Plain Old CLR Objects (POCO), so it was no longer necessary to derive from the base class EntityObject.

With later updates (such as Entity Framework 4.1, 4.2), additional features have been added with NuGet packages. This allowed adding features faster. Entity Framework 4.1 offers the Code First model where the EDMX file to define the mappings is no longer used. Instead, all the mapping is defined using C# code—either using attributes or with a fluent API to define the mapping using code.

Entity Framework 4.3 added support for Migrations. With this, it is possible to define updates to the database schemas using C# code. The database update can be automatically applied from the application using the database.

	Entity Framework 5—The NuGet package for Entity Framework 5 supported both .NET 4.5 and .NET 4 applications. However, many of the features of Entity Framework 5 have been available with .NET 4.5. Entity Framework was still based on types that are installed on the system with .NET 4.5. New with this release were performance improvements as well as supporting new SQL Server features, such as spatial data types.

	Entity Framework 6—Entity Framework 6 solved some issues with Entity Framework 5, which was partly a part of the framework installed on the system and partly available via NuGet extensions. Now the complete code of Entity Framework has moved to NuGet packages. For not creating conflicts, a new namespace was used. When porting apps to the new version, the namespace had to be changed.

This book covers the newest version of Entity Framework, Entity Framework Core 1.0. This version is a complete rewrite and removes old behaviors. This version no longer supports the XML file mapping with CSDL, SSDL, and MSL. Only Code First is supported now—the model that was added with Entity Framework 4.1. Code First doesn’t mean that the database can’t exist first. You can either create the database first or define the database purely from code; both options are possible.

NOTE The name Code First is somewhat misleading. With Code First, either the code or the database can be created first. Originally with the beta version of Code First, the name was Code Only. Because the other model options had First in their names, the name Code Only was changed as well.

The complete rewrite of Entity Framework was also done to not only support relational databases but to also support NoSql databases as well—you just need a provider. Currently, at the time of this writing, provider support is limited, but offers will increase over time.

The new version of Entity Framework is based on .NET Core; thus it is possible to use this framework on Linux and Mac systems as well.

Entity Framework Core 1.0 does not support all the features that were offered by Entity Framework 6. More features will be available over time with newer releases of Entity Framework. You just need to pay attention to what version of Entity Framework you are using. There are many valid reasons to stay with Entity Framework 6, but using ASP.NET Core 1.0 on non-Windows platforms, using Entity Framework with the Universal Windows Platform, and using nonrelational data stores all require the use of Entity Framework Core 1.0.

This chapter introduces you to Entity Framework Core 1.0. It starts with a simple model reading and writing information from SQL Server. Later on, relations are added, and you will be introduced to the change tracker and conflict handling when writing to the database. Creating and modifying database schemas using migrations is another important part of this chapter.

NOTE This chapter uses the Books database. This database is included with the download of the code samples at www.wrox.com/go/professionalcsharp6.

Introducing Entity Framework

The first example uses a single Book type and maps this type to the Books table in a SQL Server database. You write records to the database and then read, update, and delete them.

With the first example, you create the database first. You can do this with the SQL Server Object Explorer that is part of Visual Studio 2015. Select the database instance (localdb)\MSSQLLocalDB is installed with Visual Studio), click the Databases node in the tree view, and select Add New Database. The sample database has only a single table named Books.

You can create the table Books by selecting the Tables node within the Books database and then selecting Add New Table. Using the designer shown in Figure 38.1, or by entering the SQL DDL statement in the T-SQL editor, you can create the table Books. The following code snippet shows the T-SQL code for creating the table. When you click the Update button, you can submit the changes to the database.

CREATE TABLE [dbo].[Books]
(
 [BookId] INT NOT NULL PRIMARY KEY IDENTITY,
 [Title] NVARCHAR(50) NOT NULL,
 [Publisher] NVARCHAR(25) NOT NULL
)

Creating a Model

The sample application BookSample for accessing the Books database is a Console Application (Package). This sample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	Microsoft.EntityFrameworkCore

	Microsoft.EntityFrameworkCore.SqlServer

Namespaces

	Microsoft.EntityFrameworkCore

	System.ComponentModel.DataAnnotations.Schema

	System

	System.Linq

	System.Threading.Tasks

	static System.Console

[image: Screenshot shows entityframeworksamples window displaying a table with name, data type, allow nulls and default along with T-SQL code. Names include bookId, title and publisher.]

Figure 38.1

The class Book is a simple entity type that defines three properties. The BookId property maps to the primary key of the table, the Title property to the Title column, and the Publisher property to the Publisher column. To map the type to the Books table, the Table attribute is applied to the type (code file BooksSample/Book.cs):

[Table("Books")]
public class Book
{
 public int BookId { get; set; }
 public string Title { get; set; }
 public string Publisher { get; set; }
}

Creating a Context

The association of the Book table with the database is done creating the BooksContext class. This class derives from the base class DbContext. The BooksContext class defines the Books property that is of type DbSet<Book>. This type allows creating queries and adding Book instances for storing it in the database. To define the connection string, the OnConfiguring method of the DbContext can be overridden. Here, the UseSqlServer extension method maps the context to a SQL Server database (code file BooksSample/BooksContext.cs):

public class BooksContext: DbContext
{
 private const string ConnectionString =
 @"server=(localdb)\MSSQLLocalDb;database=Books;trusted_connection=true";

 public DbSet<Book> Books { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {
 base.OnConfiguring(optionsBuilder);
 optionsBuilder.UseSqlServer(ConnectionString);
 }
}

Another option to define the connection string is by using dependency injection, which is shown later in this chapter.

Writing to the Database

The database with the Books table is created; the model and context classes is defined and now you can fill the table with data. The AddBookAsync method is created to add a Book object to the database. First, the BooksContext object is instantiated. With the using statement it is ensured that the database connection is closed. After adding the object to the context using the Add method, the entity is written to the database calling SaveChangesAsync (code file BooksSample/Program.cs):

private async Task AddBookAsync(string title, string publisher)
{
 using (var context = new BooksContext())
 {
 var book = new Book
 {
 Title = title,
 Publisher = publisher
 };
 context.Add(book);
 int records = await context.SaveChangesAsync();

 WriteLine($"{records} record added");
 }
 WriteLine();
}

For adding a list of books, you can use the AddRange method (code file BooksSample/Program.cs):

private async Task AddBooksAsync()
{
 using (var context = new BooksContext())
 {
 var b1 = new Book
 {
 Title ="Professional C# 5 and .NET 4.5.1",
 Publisher ="Wrox Press"
 };
 var b2 = new Book
 {
 Title ="Professional C# 2012 and .NET 4.5",
 Publisher ="Wrox Press"
 };
 var b3 = new Book
 {
 Title ="JavaScript for Kids",
 Publisher ="Wrox Press"
 };
 var b4 = new Book
 {
 Title ="Web Design with HTML and CSS",
 Publisher ="For Dummies"
 };
 context.AddRange(b1, b2, b3, b4);
 int records = await context.SaveChangesAsync();

 WriteLine($"{records} records added");
 }
 WriteLine();
}

When you run the application and invoke these methods, you can see the data written to the database using the SQL Server Object Explorer.

Reading from the Database

To read the data from C# code, you just need to invoke the BooksContext and access the Books property. Accessing this property creates a SQL statement to retrieve all books from the database (code file BooksSample/Program.cs):

private void ReadBooks()
{
 using (var context = new BooksContext())
 {
 var books = context.Books;
 foreach (var b in books)
 {
 WriteLine($"{b.Title} {b.Publisher}");
 }
 }
 WriteLine();
}

When you open the IntelliTrace Events window during debugging, you can see the SQL statement that is sent to the database (this requires Visual Studio Enterprise edition):

SELECT [b].[BookId], [b].[Publisher], [b].[Title]
FROM [Books] AS [b]

Entity Framework offers a LINQ provider. With that, you can create LINQ queries to access the database. You can either use the method syntax as shown here:

private void QueryBooks()
{
 using (var context = new BooksContext())
 {
 var wroxBooks = context.Books.Where(b => b.Publisher =="Wrox Press");
 foreach (var b in wroxBooks)
 {
 WriteLine($"{b.Title} {b.Publisher}");
 }
 }
 WriteLine();
}

or use the declarative LINQ query syntax:

var wroxBooks = from b in context.Books
 where b.Publisher =="Wrox Press"
 select b;

With both syntax variants, this SQL statement is sent to the database:

SELECT [b].[BookId], [b].[Publisher], [b].[Title]
FROM [Books] AS [b]
WHERE [b].[Publisher] = 'Wrox Press'

NOTE LINQ is discussed in detail in Chapter 13, “Language Integrated Query.”

Updating Records

Updating records can be easily achieved just by changing objects that have been loaded with the context, and invoking SaveChangesAsync (code file BooksSample/Program.cs):

private async Task UpdateBookAsync()
{
 using (var context = new BooksContext())
 {
 int records = 0;
 var book = context.Books.Where(b => b.Title =="Professional C# 6")
 .FirstOrDefault();
 if (book != null)
 {
 book.Title ="Professional C# 6 and .NET Core 5";
 records = await context.SaveChangesAsync();
 }
 WriteLine($"{records} record updated");
 }
 WriteLine();
}

Deleting Records

Finally, let’s clean up the database and delete all records. You do this by retrieving all records and invoking the Remove or RemoveRange method to set the state of the objects in the context to deleted. Invoking the SaveChangesAsync method now deletes the records from the database and invokes SQL Delete statements for every object (code file BooksSample/Program.cs):

private async Task DeleteBooksAsync()
{
 using (var context = new BooksContext())
 {
 var books = context.Books;
 context.Books.RemoveRange(books);
 int records = await context.SaveChangesAsync();
 WriteLine($"{records} records deleted");
 }
 WriteLine();
}

NOTE An object-relational mapping tool such as Entity Framework is not useful with all scenarios. Deleting all objects was not done efficiently with the sample code. You can delete all records using a single SQL statement instead of one for every record. How this can be done is explained in Chapter 37, “ADO.NET.”

Now that you’ve seen how to add, query, update, and delete records, this chapter steps into features behind the scenes and gets into advanced scenarios using Entity Framework.

Using Dependency Injection

Entity Framework Core 1.0 has built-in support for dependency injection. Instead of defining the connection and the use of SQL Server with the DbContext derived class, the connection and SQL Server selection can be injected by using a dependency injection framework.

To see this in action, the previous sample has been modified with the BooksSampleWithDI sample project.

This sample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	Microsoft.EntityFrameworkCore

	Microsoft.EntityFrameworkCore.SqlServer

	Microsoft.Framework.DependencyInjection

Namespaces

	Microsoft.EntityFrameworkCore

	System.Linq

	System.Threading.Tasks

	static System.Console

The BooksContext class now looks a lot simpler in just defining the Books property (code file BooksSampleWithDI/BooksContext.cs):

public class BooksContext: DbContext
{
 public DbSet<Book> Books { get; set; }
}

The BooksService is the new class that makes use of the BooksContext. Here, the BooksContext is injected via constructor injection. The methods AddBooksAsync and ReadBooks are very similar to these methods from the previous sample, but they use the context member of the BooksService class instead of creating a new one (code file BooksSampleWithDI/BooksService.cs):

public class BooksService
{
 private readonly BooksContext _booksContext;
 public BooksService(BooksContext context)
 {
 _booksContext = context;
 }

 public async Task AddBooksAsync()
 {
 var b1 = new Book
 {
 Title ="Professional C# 5 and .NET 4.5.1",
 Publisher ="Wrox Press"
 };
 var b2 = new Book
 {
 Title ="Professional C# 2012 and .NET 4.5",
 Publisher ="Wrox Press"
 };
 var b3 = new Book
 {
 Title ="JavaScript for Kids",
 Publisher ="Wrox Press"
 };
 var b4 = new Book
 {
 Title ="Web Design with HTML and CSS",
 Publisher ="For Dummies"
 };
 _booksContext.AddRange(b1, b2, b3, b4);
 int records = await _booksContext.SaveChangesAsync();

 WriteLine($"{records} records added");
 }

 public void ReadBooks()
 {
 var books = _booksContext.Books;
 foreach (var b in books)
 {
 WriteLine($"{b.Title} {b.Publisher}");
 }
 WriteLine();
 }
}

The container of the dependency injection framework is initialized in the InitializeServices method. Here, a ServiceCollection instance is created, and the BooksService class is added to this collection with a transient lifetime management. With this, the ServiceCollection is instantiated every time this service is requested. For registering Entity Framework and SQL Server, the extension methods AddEntityFramework, AddSqlServer, and AddDbContext are available. The AddDbContext method requires an Action delegate as parameter where a DbContextOptionsBuilder parameter is received. With this options parameter, the context can be configured using the UseSqlServer extension method. This is the similar functionality to register SQL Server with Entity Framework in the previous sample (code file BooksSampleWithDI/Program.cs):

private void InitializeServices()
{
 const string ConnectionString =
 @"server=(localdb)\MSSQLLocalDb;database=Books;trusted_connection=true";

 var services = new ServiceCollection();
 services.AddTransient<BooksService>();
 services.AddEntityFramework()
 .AddSqlServer()
 .AddDbContext<BooksContext>(options =>
 options.UseSqlServer(ConnectionString));

 Container = services.BuildServiceProvider();
}

public IServiceProvider Container { get; private set; }

The initialization of the services as well as the use of the BooksService is done from the Main method. The BooksService is retrieved invoking the GetService method of the IServiceProvider (code file BooksSampleWithDI/Program.cs):

static void Main()
{
 var p = new Program();
 p.InitializeServices();

 var service = p.Container.GetService<BooksService>();
 service.AddBooksAsync().Wait();
 service.ReadBooks();
}

When you run the application, you can see that records are added and read from the Books database.

NOTE You can read more information about dependency injection and the Microsoft.Framework.DependencyInjection package in Chapter 31, “Patterns with XAML Apps,” and also see it in action in Chapter 40, “ASP.NET Core,” and Chapter 41, “ASP.NET MVC.”

Creating a Model

The first example of this chapter mapped a single table. The second example shows creating a relation between tables. Instead of creating the database with a SQL DDL statement (or by using the designer), in this section C# code is used to create the database.

The sample application MenusSample makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	Microsoft.EntityFrameworkCore

	Microsoft.EntityFrameworkCore.SqlServer

Namespaces

	Microsoft.EntityFrameworkCore

	Microsoft.EntityFrameworkCore.ChangeTracking

	System

	System.Collections.Generic

	System.ComponentModel.DataAnnotations

	System.ComponentModel.DataAnnotations.Schema

	System.Linq

	System.Threading

	System.Threading.Tasks

	static System.Console

Creating a Relation

Let’s start creating a model. The sample project defines a one-to-many relation using the MenuCard and Menu types. The MenuCard contains a list of Menu objects. This relation is simply defined by the Menu property of type List<Menu> (code file MenusSample/MenuCard.cs):

public class MenuCard
{
 public int MenuCardId { get; set; }
 public string Title { get; set; }
 public List<Menu> Menus { get; } = new List<Menu>();

 public override string ToString() => Title;
}

The relation can also be accessed in the other direction; a Menu can access the MenuCard using the MenuCard property. The MenuCardId property is specified to define a foreign key relationship (code file MenusSample/Menu.cs):

public class Menu
{
 public int MenuId { get; set; }
 public string Text { get; set; }
 public decimal Price { get; set; }

 public int MenuCardId { get; set; }
 public MenuCard MenuCard { get; set; }

 public override string ToString() => Text;
}

The mapping to the database is done by the MenusContext class. This class is defined similarly to the previous context type; it just contains two properties to map the two object types: the properties Menus and MenuCards (code file MenusSamples/MenusContext.cs):

public class MenusContext: DbContext
{
 private const string ConnectionString = @"server=(localdb)\MSSQLLocalDb;" +
 "Database=MenuCards;Trusted_Connection=True";

 public DbSet<Menu> Menus { get; set; }
 public DbSet<MenuCard> MenuCards { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {
 base.OnConfiguring(optionsBuilder);
 optionsBuilder.UseSqlServer(ConnectionString);
 }
}

Migrations with .NET CLI

To automatically create the database using C# code, the .NET CLI tools can be extended with the ef tools using the package dotnet-ef. This package contains commands to create C# code for the migration. The commands are made available by installing the dotnet-ef NuGet package. You install it by referencing this package from the tools section in the project configuration file (code file MenusSample/project.json):

"tools": {
 "dotnet-ef":"1.0.0-*"
 }

With the ef command in place, it offers the commands database, dbcontext, and migrations. The database command is used to upgrade the database to a specific migration state. The dbcontext command lists all DbContext derived types from the project (dbcontext list), and it creates context and entity from the database (dbcontext scaffold). The migrations command allows creating and removing migrations, as well as creating a SQL script to create the database with all the migrations. In case the production database should only be created and modified from the SQL administrator using SQL code, you can hand the generated script over to the SQL administrator.

To create an initial migration to create the database from code, the following command can be invoked from the developer command prompt. This command creates a migration named InitMenuCards:

>dotnet ef migrations add InitMenuCards

The command migrations add accesses the DbContext derived classes using reflection and in turn the referenced model types. With this information, it creates two classes to create and update the database. With the Menu, MenuCard, and MenusContext classes, two classes are created, the MenusContextModelSnapshot and InitMenuCards. You can find both types in the Migrations folder after the command succeeds.

The MenusContextModelSnapshot class contains the current state of the model to build the database:

[DbContext(typeof(MenusContext))]
partial class MenusContextModelSnapshot: ModelSnapshot
{
 protected override void BuildModel(ModelBuilder modelBuilder)
 {
 modelBuilder
 .HasAnnotation("ProductVersion","7.0.0-rc1-16348")
 .HasAnnotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn);

 modelBuilder.Entity("MenusSample.Menu", b =>
 {
 b.Property<int>("MenuId")
 .ValueGeneratedOnAdd();
 b.Property<int>("MenuCardId");
 b.Property<decimal>("Price");
 b.Property<string>("Text");
 b.HasKey("MenuId");
 });

 modelBuilder.Entity("MenusSample.MenuCard", b =>
 {
 b.Property<int>("MenuCardId")
 .ValueGeneratedOnAdd();

 b.Property<string>("Title");
 b.HasKey("MenuCardId");
 });

 modelBuilder.Entity("MenusSample.Menu", b =>
 {
 b.HasOne("MenusSample.MenuCard")
 .WithMany()
 .HasForeignKey("MenuCardId");
 });
 }
}

The InitMenuCards class defines Up and Down methods. The Up method lists all the actions that are needed to create the MenuCard and Menu tables including the primary keys, columns, and the relation. The Down method drops the two tables:

public partial class InitMenuCards: Migration
{
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name:"MenuCard",
 columns: table => new
 {
 MenuCardId = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 Title = table.Column<string>(nullable: true)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_MenuCard", x => x.MenuCardId);
 });

 migrationBuilder.CreateTable(
 name:"Menu",
 columns: table => new
 {
 MenuId = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 MenuCardId = table.Column<int>(nullable: false),
 Price = table.Column<decimal>(nullable: false),
 Text = table.Column<string>(nullable: true)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Menu", x => x.MenuId);
 table.ForeignKey(
 name:"FK_Menu_MenuCard_MenuCardId",
 column: x => x.MenuCardId,
 principalTable:"MenuCard",
 principalColumn:"MenuCardId",
 onDelete: ReferentialAction.Cascade);
 });
 }

 protected override void Down(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.DropTable("Menu");
 migrationBuilder.DropTable("MenuCard");
 }
}

NOTE With every change you’re doing, you can create another migration. The new migration only defines the changes needed to get from the previous version to the new version. In case a customer’s database needs to be updated from any earlier version, the necessary migrations are invoked when migrating the database.

During the development process, you don’t need all the migrations that you might create with the project, as no database with such interim states might exist. In that case you can remove a migration and create a new, larger one.

Migrations with MSBuild

In case you are using the Entity Framework migrations with MSBuild-based projects instead of DNX, the commands for migration are different. With full framework Console applications, WPF applications, or ASP.NET 4.6 project types, you need to specify migration commands in the NuGet Package Manager Console instead of the Developer Command Prompt. You start the Package Manager Console from Visual Studio via Tools ➪ Library Package Manager ➪ Package Manager Console.

With the Package Manager Console, you can use PowerShell scripts to add and remove migrations. The command

> Add-Migration InitMenuCards

creates a Migrations folder including the migration classes as shown before.

Creating the Database

Now, with the migrations types in place, the database can be created. The DbContext derived class MenusContext contains a Database property that returns a DatabaseFacade object. Using the DatabaseFacade, you can create and delete databases. The method EnsureCreated creates a database if it doesn’t exist. If the database already exists, nothing is done. The method EnsureDeletedAsync deletes the database. The following code snippet creates the database if it doesn’t exist (code file MenusSample/Program.cs):

private static async Task CreateDatabaseAsync()
{
 using (var context = new MenusContext())
 {
 bool created = await context.Database.EnsureCreatedAsync();

 string createdText = created ?"created":"already exists";
 WriteLine($"database {createdText}");
 }
}

NOTE In case the database exists but has an older schema version, the EnsureCreatedAsync method doesn’t apply schema changes. You can make schema upgrades by invoking the Migrate method. Migrate is an extension method to the DatabaseFacade class that is defined in the Microsoft.Data.Entity namespace.

When you run the program, the tables MenuCard and Menu are created. Based on default conventions, the tables have the same name as the entity types. Another convention is used on creating the primary key: the column MenuCardId is defined as primary key because the property name ended with Id.

CREATE TABLE [dbo].[MenuCard] (
 [MenuCardId] INT IDENTITY (1, 1) NOT NULL,
 [Title] NVARCHAR (MAX) NULL,
 CONSTRAINT [PK_MenuCard] PRIMARY KEY CLUSTERED ([MenuCardId] ASC)
);

The Menu table defines the MenuCardId that is a foreign key to the MenuCard table. Deleting a MenuCard also deletes all associated Menu rows because of the DELETE CASCADE:

CREATE TABLE [dbo].[Menu] (
 [MenuId] INT IDENTITY (1, 1) NOT NULL,
 [MenuCardId] INT NOT NULL,
 [Price] DECIMAL (18, 2) NOT NULL,
 [Text] NVARCHAR (MAX) NULL,
 CONSTRAINT [PK_Menu] PRIMARY KEY CLUSTERED ([MenuId] ASC),
 CONSTRAINT [FK_Menu_MenuCard_MenuCardId] FOREIGN KEY ([MenuCardId])
 REFERENCES [dbo].[MenuCard] ([MenuCardId]) ON DELETE CASCADE
);

There are some parts in the creation code that would be useful to change. For example, the size of the Text and Title column could be reduced in size from NVARCHAR(MAX), SQL Server defines a Money type that could be used for the Price column, and the schema name could be changed from dbo. Entity Framework gives you two options to make these changes from code: data annotations and the Fluent API, which are both discussed next.

Data Annotations

One way to influence the generated database is to add data annotations to the entity types. The name of the tables can be changed by using the Table attribute. To change the schema name, the Table attribute defines the Schema property. To specify a different length for a string type, you can apply the MaxLength attribute (code file MenusWithDataAnnotations/MenuCard.cs):

[Table("MenuCards", Schema ="mc")]
public class MenuCard
{
 public int MenuCardId { get; set; }
 [MaxLength(120)]
 public string Title { get; set; }
 public List<Menu> Menus { get; }
}

With the Menu class, the Table and MaxLength attributes are applied as well. To change the SQL type, the Column attribute can be used (code file MenusWithDataAnnotations/Menu.cs):

[Table("Menus", Schema ="mc")]
public class Menu
{
 public int MenuId { get; set; }
 [MaxLength(50)]
 public string Text { get; set; }
 [Column(TypeName ="Money")]
 public decimal Price { get; set; }
 public int MenuCardId { get; set; }
 public MenuCard MenuCard { get; set; }
}

After applying the migrations and creating the database, you can see the new names of the tables with the schema name, as well as the changed data types on the Title, Text, and Price columns:

CREATE TABLE [mc].[MenuCards] (
 [MenuCardId] INT IDENTITY (1, 1) NOT NULL,
 [Title] NVARCHAR (120) NULL,
 CONSTRAINT [PK_MenuCard] PRIMARY KEY CLUSTERED ([MenuCardId] ASC)
);

CREATE TABLE [mc].[Menus] (
 [MenuId] INT IDENTITY (1, 1) NOT NULL,
 [MenuCardId] INT NOT NULL,
 [Price] MONEY NOT NULL,
 [Text] NVARCHAR (50) NULL,
 CONSTRAINT [PK_Menu] PRIMARY KEY CLUSTERED ([MenuId] ASC),
 CONSTRAINT [FK_Menu_MenuCard_MenuCardId] FOREIGN KEY ([MenuCardId])
 REFERENCES [mc].[MenuCards] ([MenuCardId]) ON DELETE CASCADE
);

Fluent API

Another way to influence the tables created is to use the Fluent API with the OnModelCreating method of the DbContext derived class. Using this has the advantage that you can keep the entity types simple without adding any attributes, and the fluent API also gives you more options than you have with applying attributes.

The following code snippet shows the override of the OnModelCreating method of the BooksContext class. The ModelBuilder class that is received as parameter offers a few methods, and several extension methods are defined. The HasDefaultSchema is an extension method that applies a default schema to the model that is now used with all types. The Entity method returns an EntityTypeBuilder that enables you to customize the entity, such as mapping it to a specific table name and defining keys and indexes (code file MenusSample/MenusContext.cs):

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);

 modelBuilder.HasDefaultSchema("mc");

 modelBuilder.Entity<MenuCard>()
 .ToTable("MenuCards")
 .HasKey(c => c.MenuCardId);

 // etc.

 modelBuilder.Entity<Menu>()
 .ToTable("Menus")
 .HasKey(m => m.MenuId);

 // etc.
}

The EntityTypeBuilder defines a Property method to configure a property. The Property method returns a PropertyBuilder that in turn enables you to configure the property with max length values, required settings, and SQL types and to specify whether values should be automatically generated (such as identity columns):

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 // etc.

 modelBuilder.Entity<MenuCard>()
 .Property<int>(c => c.MenuCardId)
 .ValueGeneratedOnAdd();

 modelBuilder.Entity<MenuCard>()
 .Property<string>(c => c.Title)
 .HasMaxLength(50);

 modelBuilder.Entity<Menu>()
 .Property<int>(m => m.MenuId)
 .ValueGeneratedOnAdd();

 modelBuilder.Entity<Menu>()
 .Property<string>(m => m.Text)
 .HasMaxLength(120);

 modelBuilder.Entity<Menu>()
 .Property<decimal>(m => m.Price)
 .HasColumnType("Money");

 // etc.
}

To define one-to-many mappings, the EntityTypeBuilder defines mapping methods. The method HasMany combined with WithOne defines a mapping of many menus with one menu card. HasMany needs to be chained with WithOne. The method HasOne needs a chain with WithMany or WithOne. Chaining HasOne with WithMany defines a one-to-many relationship; chaining HasOne with WithOne defines a one-to-one relationship:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 // etc.

 modelBuilder.Entity<MenuCard>()
 .HasMany(c => c.Menus)
 .WithOne(m => m.MenuCard);
 modelBuilder.Entity<Menu>()
 .HasOne(m => m.MenuCard)
 .WithMany(c => c.Menus)
 .HasForeignKey(m => m.MenuCardId);
}

After creating the mapping in the OnModelCreating method, you can create migrations as shown before.

Scaffolding a Model from the Database

Instead of creating the database from the model, you can also create the model from the database.

To do this from a SQL Server database you have to add the EntityFramework.MicrosoftSqlServer.Design NuGet package in addition to the other packages to a DNX project. Then you can use the following command from the Developer Command Prompt:

> dnx ef dbcontext scaffold
"server=(localdb)\MSSQLLocalDb;database=SampleDatabase;
trusted_connection=true""EntityFramework.MicrosoftSqlServer"

The dbcontext command enables you to list DbContext objects from the project, as well as create DBContext objects. The command scaffold creates DbContext-derived classes as well as model classes. The dnx ef dbcontext scaffold needs two required arguments: the connection string to the database and the provider that should be used. With the statement shown earlier, the database SampleDatabase was accessed on the SQL Server (localdb)\MSSQLLocalDb. The provider used was EntityFramework.MicrosoftSqlServer. This NuGet package as well as the NuGet package with the same name and the Design postfix need to be added to the project.

After running this command, you can see the DbContext derived classes as well as the model types generated. The configuration of the model by default is done using the fluent API. However, you can change that to using the data annotations supplying the -a option. You can also influence the generated context class name as well as the output directory. Just check the different available options using the option -h.

Working with Object State

After creating the database, you can write to it. In the first sample you’ve written to a single table. What about writing a relationship?

Adding Objects with Relations

The following code snippet writes a relationship, a MenuCard containing Menu objects. Here, the MenuCard and Menu objects are instantiated. The bidirectional associations are assigned. With the Menu, the MenuCard property is assigned to the MenuCard, and with the MenuCard, the Menus property is filled with Menu objects. The MenuCard instance is added to the context invoking the Add method of the MenuCards property. When you add an object to the context, by default all objects are added to the tree with the state added. Not only the MenuCard but also the Menu objects are saved. IncludeDependents is set. With this option, all the associated Menu objects are added to the context as well. Invoking SaveChanged on the context now creates four records (code file MenusSample/Program.cs):

private static async Task AddRecordsAsync()
{
 // etc.
 using (var context = new MenusContext())
 {
 var soupCard = new MenuCard();
 Menu[] soups =
 {
 new Menu
 {
 Text ="Consommé Célestine (with shredded pancake)",
 Price = 4.8m,
 MenuCard = soupCard
 },
 new Menu
 {
 Text ="Baked Potato Soup",
 Price = 4.8m,
 MenuCard = soupCard
 },
 new Menu
 {
 Text ="Cheddar Broccoli Soup",
 Price = 4.8m,
 MenuCard = soupCard
 },
 };

 soupCard.Title ="Soups";
 soupCard.Menus.AddRange(soups);
 context.MenuCards.Add(soupCard);

 ShowState(context);

 int records = await context.SaveChangesAsync();
 WriteLine($"{records} added");

 // etc.
}

The method ShowState that is invoked after adding the four objects to the context shows the state of all objects that are associated with the context. The DbContext class has a ChangeTracker associated that can be accessed using the ChangeTracker property. The Entries method of the ChangeTracker returns all the objects the change tracker knows about. With the foreach loop, every object including its state is written to the console (code file MenusSample/Program.cs):

public static void ShowState(MenusContext context)
{
 foreach (EntityEntry entry in context.ChangeTracker.Entries())
 {
 WriteLine($"type: {entry.Entity.GetType().Name}, state: {entry.State}," +
 $" {entry.Entity}");
 }
 WriteLine();
}

Run the application to see the Added state with these four objects:

type: MenuCard, state: Added, Soups
type: Menu, state: Added, Consommé Célestine (with shredded pancake)
type: Menu, state: Added, Baked Potato Soup
type: Menu, state: Added, Cheddar Broccoli Soup

Because of this state, the SaveChangesAsync method creates SQL Insert statements to write every object to the database.

Object Tracking

You’ve seen the context knows about added objects. However, the context also needs to know about changes. To know about changes, every object retrieved needs its state in the context. For seeing this in action let’s create two different queries that return the same object. The following code snippet defines two different queries where each query returns the same object with the menus as they are stored in the database. Indeed, only one object gets materialized, as with the second query result it is detected that the record returned has the same primary key value as an object already referenced from the context. Verifying whether the references of the variables m1 and m2 are the same results in returning the same object (code file MenusSample/Program.cs):

private static void ObjectTracking()
{
 using (var context = new MenusContext())
 {
 var m1 = (from m in context.Menus
 where m.Text.StartsWith("Con")
 select m).FirstOrDefault();

 var m2 = (from m in context.Menus
 where m.Text.Contains("(")
 select m).FirstOrDefault();

 if (object.ReferenceEquals(m1, m2))
 {
 WriteLine("the same object");
 }
 else
 {
 WriteLine("not the same");
 }

 ShowState(context);
 }
}

The first LINQ query results in a SQL SELECT statement with a LIKE comparison to compare for the string to start with the value Con:

SELECT TOP(1) [m].[MenuId], [m].[MenuCardId], [m].[Price], [m].[Text]
FROM [mc].[Menus] AS [m]
WHERE [m].[Text] LIKE 'Con' + '%'

With the second LINQ query, the database needs to be consulted as well. Here, a LIKE comparison is done to compare for a (in the middle of the text:

SELECT TOP(1) [m].[MenuId], [m].[MenuCardId], [m].[Price], [m].[Text]
FROM [mc].[Menus] AS [m]
WHERE [m].[Text] LIKE ('%' + '(') + '%'

When you run the application, the same object is written to the console, and only one object is kept with the ChangeTracker. The state is Unchanged:

the same object
type: Menu, state: Unchanged, Consommé Célestine (with shredded pancake)

To not track the objects running queries from the database, you can invoke the AsNoTracking method with the DbSet:

var m1 = (from m in context.Menus.AsNoTracking()
 where m.Text.StartsWith("Con")
 select m).FirstOrDefault();

You can also configure the default tracking behavior of the ChangeTracker to QueryTrackingBehavior.NoTracking:

using (var context = new MenusContext())
{
 context.ChangeTracker.QueryTrackingBehavior =
 QueryTrackingBehavior.NoTracking;

With such a configuration, two queries are made to the database, two objects are materialized, and the state information is empty.

NOTE Using the NoTracking configuration is useful when the context is used to only read records, but changes are not made. This reduces the overhead of the context as state information is not kept.

Updating Objects

As objects are tracked, they can be updated easily, as shown in the following code snippet. First, a Menu object is retrieved. With this tracked object, the price is modified before the change is written to the database. In between all changes, state information is written to the console (code file MenusSample/Program.cs):

private static async Task UpdateRecordsAsync()
{
 using (var context = new MenusContext())
 {
 Menu menu = await context.Menus
 .Skip(1)
 .FirstOrDefaultAsync();

 ShowState(context);
 menu.Price += 0.2m;
 ShowState(context);

 int records = await context.SaveChangesAsync();
 WriteLine($"{records} updated");
 ShowState(context);
 }
}

When you run the application, you can see that the state of the object is Unchanged after loading the record, Modified after the property value is changed, and Unchanged after saving is completed:

type: Menu, state: Unchanged, Baked Potato Soup
type: Menu, state: Modified, Baked Potato Soup
1 updated
type: Menu, state: Unchanged, Baked Potato Soup

When you access the entries from the change tracker, by default changes are automatically detected. You configure this by setting the AutoDetectChangesEnabled property of the ChangeTracker. For checking manually to see whether changes have been done, you invoke the method DetectChanges. With the invocation of SaveChangesAsync, the state is changed back to Unchanged. You can do this manually by invoking the method AcceptAllChanges.

Updating Untracked Objects

Object contexts are usually very short-lived. Using Entity Framework with ASP.NET MVC, with one HTTP request one object context is created to retrieve objects. When you receive an update from the client, the object must again be created on the server. This object is not associated with the object context. To update it in the database, the object needs to be associated with the data context, and the state changed to create an INSERT, UPDATE, or DELETE statement.

Such a scenario is simulated with the next code snippet. The GetMenuAsync method returns a Menu object that is disconnected from the context; the context is disposed at the end of the method (code file MenusSample/Program.cs):

private static async Task<Menu> GetMenuAsync()
{
 using (var context = new MenusContext())
 {
 Menu menu = await context.Menus
 .Skip(2)
 .FirstOrDefaultAsync();
 return menu;
 }
}

The GetMenuAsync method is invoked by the method ChangeUntrackedAsync. This method changes the Menu object that is not associated with any context. After the change, the Menu object is passed to the method UpdateUntrackedAsync to save it in the database (code file MenusSample/Program.cs):

private static async Task ChangeUntrackedAsync()
{
 Menu m = await GetMenuAsync();
 m.Price += 0.7m;
 await UpdateUntrackedAsync(m);
}

The method UpdateUntrackedAsync receives the updated object and needs to attach it with the context. One way to attach an object with the context is by invoking the Attach method of the DbSet, and set the state as needed. The Update method does both with one call: attaching the object and setting the state to Modified (code file MenusSample/Program.cs):

private static async Task UpdateUntrackedAsync(Menu m)
{
 using (var context = new MenusContext())
 {
 ShowState(context);

 // EntityEntry<Menu> entry = context.Menus.Attach(m);
 // entry.State = EntityState.Modified;

 context.Menus.Update(m);
 ShowState(context);

 await context.SaveChangesAsync();
 }
}

When you run the application with the ChangeUntrackedAsync method, you can see that the state is modified. The object was untracked at first, but because the state was explicitly updated, you can see the Modified state:

type: Menu, state: Modified, Cheddar Broccoli Soup

Conflict Handling

What if multiple users change the same record and then save the state? Who will win with the changes?

If multiple users accessing the same database work on different records, there’s no conflict. All users can save their data without interfering with data edited by other users. If multiple users work on the same record, though, you need to give some thought to conflict resolution. You have different ways to deal with this. The easiest one is that the last one wins. The user saving the data last overwrites changes from the user that did the changes previously.

Entity Framework also offers a way for letting the first one win. With this option, when saving a record, a verification is needed if the data originally read is still in the database. If this is the case, saving data can continue as no changes occurred between reading and writing. However, if the data changed, a conflict resolution needs to be done.

Let’s get into these different options.

The Last One Wins

The default scenario is that the last one saving changes wins. To see multiple accesses to the database, the BooksSample application is extended.

For an easy simulation of two users, the method ConflictHandlingAsync invokes the method PrepareUpdateAsync two times, makes different changes to two Book objects that reference the same record, and invokes the UpdateAsync method two times. Last, the book ID is passed to the CheckUpdateAsync method, which shows the actual state of the book from the database (code file BooksSample/Program.cs):

public static async Task ConflictHandlingAsync()
{
 // user 1
 Tuple<BooksContext, Book> tuple1 = await PrepareUpdateAsync();
 tuple1.Item2.Title ="updated from user 1";

 // user 2
 Tuple<BooksContext, Book> tuple2 = await PrepareUpdateAsync();
 tuple2.Item2.Title ="updated from user 2";

 // user 1
 await UpdateAsync(tuple1.Item1, tuple1.Item2);
 // user 2
 await UpdateAsync(tuple2.Item1, tuple2.Item2);

 context1.Item1.Dispose();
 context2.Item1.Dispose();

 await CheckUpdateAsync(tuple1.Item2.BookId);
}

The PrepareUpdateAsync method opens a BookContext and returns both the context and the book within a Tuple object. Remember, this method is invoked two times, and different Book objects associated with different context objects are returned (code file BooksSample/Program.cs):

private static async Task<Tuple<BooksContext, Book>> PrepareUpdateAsync()
{
 var context = new BooksContext();
 Book book = await context.Books
 .Where(b => b.Title =="Conflict Handling")
 .FirstOrDefaultAsync();
 return Tuple.Create(context, book);
}

NOTE Tuples are explained in Chapter 7, “Arrays and Tuples.”

The UpdateAsync method receives the opened BooksContext with the updated Book object to save the book to the database. Remember, this method is invoked two times as well (code file BooksSample/Program.cs):

private static async Task UpdateAsync(BooksContext context, Book book)
{
 await context.SaveChangesAsync();
 WriteLine($"successfully written to the database: id {book.BookId}" +
 $"with title {book.Title}");
}

The CheckUpdateAsync method writes the book with the specified id to the console (code file BooksSample/Program.cs):

private static async Task CheckUpdateAsync(int id)
{
 using (var context = new BooksContext())
 {
 Book book = await context.Books
 .Where(b => b.BookId == id)
 .FirstOrDefaultAsync();
 WriteLine($"updated: {book.Title}");
 }
}

What happens when you run the application? You see the first update is successful, and so is the second update. When updating a record, it is not verified whether any changes happened after reading the record, which is the case with this sample application. The second update just overwrites the data from the first update, as you can see with the application output:

successfully written to the database: id 7038 with title updated from user 1
successfully written to the database: id 7038 with title updated from user 2
updated: updated from user 2

The First One Wins

In case you need a different behavior, such as the first user’s changes being saved to the record, you need to do some changes. The sample project ConflictHandlingSample uses the Book and BookContext objects like before, but it deals with the first-one-wins scenario.

This sample application makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	Microsoft.EntityFrameworkCore

	Microsoft.EntityFrameworkCore.SqlServer

Namespaces

	Microsoft.EntityFrameworkCore

	 Microsoft.EntityFrameworkCore.ChangeTracking

	System

	System.Linq

	System.Text

	System.Threading.Tasks

	static System.Console

For conflict resolution, you need to specify the properties that should be verified if any change happened between reading and updating with a concurrency token. Based on the property you specify, the SQL UPDATE statement is modified to verify not only for the primary key, but also all properties that are marked with the concurrency token. Adding many concurrency tokens to the entity type creates a huge WHERE clause with the UPDATE statement, which is not very efficient. Instead you can add a property that is updated from SQL Server with every UPDATE statement—and this is what’s done with the Book class. The property TimeStamp is defined as timeStamp in SQL Server (code file ConflictHandlingSample/Book.cs):

public class Book
{
 public int BookId { get; set; }
 public string Title { get; set; }
 public string Publisher { get; set; }

 public byte[] TimeStamp { get; set; }
}

To define the TimeStamp property as a timestamp type in SQL Server, you use the Fluent API. The SQL data type is defined using the HasColumnType method. The method ValueGeneratedOnAddOrUpdate informs the context that with every SQL INSERT or UPDATE statement the TimeStamp property can change, and it needs to be set with the context after these operations. The IsConcurrencyToken method marks this property as required to check whether it didn’t change after reading it (code file ConflictHandlingSample/BooksContext.cs):

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);
 var book = modelBuilder.Entity<Book>();
 book.HasKey(p => p.BookId);
 book.Property(p => p.Title).HasMaxLength(120).IsRequired();
 book.Property(p => p.Publisher).HasMaxLength(50);
 book.Property(p => p.TimeStamp)
 .HasColumnType("timestamp")
 .ValueGeneratedOnAddOrUpdate()
 .IsConcurrencyToken();
}

NOTE Instead of using the IsConcurrencyToken method with the Fluent API, you can also apply the attribute ConcurrencyCheck to the property where concurrency should be checked.

The process of the conflict-handling check is similar to what was done before. Both user 1 and user 2 invoke the PrepareUpdateAsync method, change the book title, and call the UpdateAsync method to make the change in the database (code file ConflictHandlingSample/Program.cs):

public static async Task ConflictHandlingAsync()
{
 // user 1
 Tuple<BooksContext, Book> tuple1 = await PrepareUpdateAsync();
 tuple1.Item2.Title ="user 1 wins";

 // user 2
 Tuple<BooksContext, Book> tuple2 = await PrepareUpdateAsync();
 tuple2.Item2.Title ="user 2 wins";

 // user 1
 await UpdateAsync(tuple1.Item1, tuple1.Item2);
 // user 2
 await UpdateAsync(tuple2.Item1, tuple2.Item2);

 context1.Item1.Dispose();
 context2.Item1.Dispose();

 await CheckUpdateAsync(context1.Item2.BookId);
}

The PrepareUpdateAsync method is not repeated here, as this method is implemented in the same way as with the previous sample. What’s quite different is the UpdateAsync method. To see the different timestamps, before and after the update, a custom extension method StringOutput for the byte array is implemented that writes the byte array in a readable form to the console. Next, the changes of the Book object are shown calling the ShowChanges helper method. The SaveChangesAsync method is invoked to write all updates to the database. In case the update fails with a DbUpdateConcurrencyException, information is written to the console about the failure (code file ConflictHandlingSample/Program.cs):

private static async Task UpdateAsync(BooksContext context, Book book,
 string user)
{
 try
 {
 WriteLine($"{user}: updating id {book.BookId}," +
 $"timestamp: {book.TimeStamp.StringOutput()}");
 ShowChanges(book.BookId, context.Entry(book));

 int records = await context.SaveChangesAsync();
 WriteLine($"{user}: updated {book.TimeStamp.StringOutput()}");
 WriteLine($"{user}: {records} record(s) updated while updating" +
 $"{book.Title}");
 }
 catch (DbUpdateConcurrencyException ex)
 {
 WriteLine($"{user}: update failed with {book.Title}");
 WriteLine($"error: {ex.Message}");
 foreach (var entry in ex.Entries)
 {
 Book b = entry.Entity as Book;
 WriteLine($"{b.Title} {b.TimeStamp.StringOutput()}");
 ShowChanges(book.BookId, context.Entry(book));
 }
 }
}

With objects that are associated with the context, you can access the original values and the current values with a PropertyEntry object. The original values that were retrieved when reading the object from the database can be accessed with the OriginalValue property, the current values with the CurrentValue property. The PropertyEntry object can be accessed with the Property method of an EntityEntry as shown in the ShowChanges and ShowChange methods (code file ConflictHandlingSample/Program.cs):

private static void ShowChanges(int id, EntityEntry entity)
{
 ShowChange(id, entity.Property("Title"));
 ShowChange(id, entity.Property("Publisher"));
}

private static void ShowChange(int id, PropertyEntry propertyEntry)
{
 WriteLine($"id: {id}, current: {propertyEntry.CurrentValue}," +
 $"original: {propertyEntry.OriginalValue}," +
 $"modified: {propertyEntry.IsModified}");
}

To convert the byte array of the TimeStamp property that is updated from SQL Server for visual output, the extension method StringOutput is defined (code file ConflictHandlingSample/Program.cs):

static class ByteArrayExtension
{
 public static string StringOutput(this byte[] data)
 {
 var sb = new StringBuilder();
 foreach (byte b in data)
 {
 sb.Append($"{b}.");
 }
 return sb.ToString();
 }
}

When you run the application, you can see output such as the following. The timestamp values and book IDs differ with every run. The first user updates the book with the original title sample book to the new title user 1 wins. The IsModified property returns true for the Title property but false for the Publisher property, as only the title changed. The original timestamp ends with 1.1.209; after the update to the database the timestamp is changed to 1.17.114. In the meantime, user 2 opened the same record; this book still has a timestamp of 1.1.209. User 2 updates this book, but here the update failed because the timestamp of this book does not match the timestamp from the database. Here, a DbUpdateConcurrencyException exception is thrown. In the exception handler, the reason of the exception is written to the console as you can see in the program output:

user 1: updating id 17, timestamp 0.0.0.0.0.1.1.209.
id: 17, current: user 1 wins, original: sample book, modified: True
id: 17, current: Sample, original: Sample, modified: False
user 1: updated 0.0.0.0.0.1.17.114.
user 1: 1 record(s) updated while updating user 1 wins
user 2: updating id 17, timestamp 0.0.0.0.0.1.1.209.
id: 17, current: user 2 wins, original: sample book, modified: True
id: 17, current: Sample, original: Sample, modified: False
user 2 update failed with user 2 wins
user 2 error: Database operation expected to affect 1 row(s) but actually affected 0 row(s).
Data may have been modified or deleted since entities were loaded.
See http://go.microsoft.com/fwlink/?LinkId=527962 for information on
understanding and handling optimistic concurrency exceptions.
user 2 wins 0.0.0.0.0.1.1.209.
id: 17, current: user 2 wins, original: sample book, modified: True
id: 17, current: Sample, original: Sample, modified: False
updated: user 1 wins

When using concurrency tokens and handling the DbConcurrencyException, you can deal with concurrency conflicts as needed. You can, for example, automatically resolve concurrency issues. If different properties are changed, you can retrieve the changed record and merge the changes. If the property changed is a number where you do some calculations—for example, a point system—you can increment or decrement the values from both updates and just throw an exception if a limit is reached. You can also ask the user to resolve the concurrency issue by giving the user the information that’s currently in the database and ask what changes he or she would like to do. Just don’t ask too much from the user. It’s likely that the only thing the user wants is to get rid of this rarely shown dialog, which means he or she might click OK or Cancel without reading the content. For rare conflicts, you can also write logs and inform the system administrator that an issue needs to be resolved.

Using Transactions

Chapter 37 introduces programming with transactions. With every access of the database using the Entity Framework, a transaction is involved, too. You can use transactions implicitly or create them explicitly with configurations as needed. The sample project used with this section demonstrates transactions in both ways. Here, the Menu, MenuCard, and MenuContext classes are used as shown earlier with the MenusSample project. This sample application makes use of following dependencies and namespaces:

Dependencies

	NETStandard.Library

	Microsoft.EntityFrameworkCore

	Microsoft.EntityFrameworkCore.SqlServer

Namespaces

	Microsoft.EntityFrameworkCore

	Microsoft.EntityFrameworkCore.Storage

	System.Linq

	System.Threading

	System.Threading.Tasks

	static System.Console

Using Implicit Transactions

An invocation of the SaveChangesAsync method automatically resolves to one transaction. If one part of the changes that need to be done fails—for example, because of a database constraint—all the changes already done are rolled back. This is demonstrated with the following code snippet. Here, the first Menu (m1) is created with valid data. A reference to an existing MenuCard is done by supplying the MenuCardId. After the update succeeds, the MenuCard property of the Menu m1 is filled automatically. However, the second Menu created, mInvalid, references an invalid menu card by supplying a MenuCardId that is one value higher than the highest ID available in the database. Because of the defined foreign key relation between MenuCard and Menu, adding this object will fail (code file TransactionsSample/Program.cs):

private static async Task AddTwoRecordsWithOneTxAsync()
{
 WriteLine(nameof(AddTwoRecordsWithOneTxAsync));
 try
 {
 using (var context = new MenusContext())
 {
 var card = context.MenuCards.First();
 var m1 = new Menu
 {
 MenuCardId = card.MenuCardId,
 Text ="added",
 Price = 99.99m
 };

 int hightestCardId = await context.MenuCards.MaxAsync(c => c.MenuCardId);
 var mInvalid = new Menu
 {
 MenuCardId = ++hightestCardId,
 Text ="invalid",
 Price = 999.99m
 };
 context.Menus.AddRange(m1, mInvalid);

 int records = await context.SaveChangesAsync();
 WriteLine($"{records} records added");
 }
 }
 catch (DbUpdateException ex)
 {
 WriteLine($"{ex.Message}");
 WriteLine($"{ex?.InnerException.Message}");
 }
 WriteLine();
}

After running the application invoking the method AddTwoRecordsWithOneTxAsync, you can verify the content of the database to see that not a single record was added. The exception message as well as the message of the inner exception gives the details:

AddTwoRecordsWithOneTxAsync
An error occurred while updating the entries. See the inner exception for details.
The INSERT statement conflicted with the FOREIGN KEY constraint"FK_Menu_MenuCard_MenuCardId".
The conflict occurred in database"MenuCards", table"mc.MenuCards", column 'MenuCardId'.

In case writing the first record to the database should be successful even if the second record write fails, you have to invoke the SaveChangesAsync method multiple times as shown in the following code snippet. In the method AddTwoRecordsWithTwoTxAsync, the first invocation of SaveChangesAsync inserts the m1 Menu object, whereas the second invocation tries to insert the mInvalid Menu object (code file TransactionsSample/Program.cs):

private static async Task AddTwoRecordsWithTwoTxAsync()
{
 WriteLine(nameof(AddTwoRecordsWithTwoTxAsync));
 try
 {
 using (var context = new MenusContext())
 {
 var card = context.MenuCards.First();
 var m1 = new Menu
 {
 MenuCardId = card.MenuCardId,
 Text ="added",
 Price = 99.99m
 };
 context.Menus.Add(m1);

 int records = await context.SaveChangesAsync();
 WriteLine($"{records} records added");

 int hightestCardId = await context.MenuCards.MaxAsync(c => c.MenuCardId);
 var mInvalid = new Menu
 {
 MenuCardId = ++hightestCardId,
 Text ="invalid",
 Price = 999.99m
 };
 context.Menus.Add(mInvalid);

 records = await context.SaveChangesAsync();
 WriteLine($"{records} records added");
 }
 }
 catch (DbUpdateException ex)
 {
 WriteLine($"{ex.Message}");
 WriteLine($"{ex?.InnerException.Message}");
 }
 WriteLine();
}

When you run the application, adding the first INSERT statement succeeds, but of course the second one results in a DbUpdateException. You can verify the database to see that one record was added this time:

AddTwoRecordsWithTwoTxAsync
1 records added
An error occurred while updating the entries. See the inner exception for details.
The INSERT statement conflicted with the FOREIGN KEY constraint"FK_Menu_MenuCard_MenuCardId".
The conflict occurred in database"MenuCards", table"mc.MenuCards", column 'MenuCardId'.

Creating Explicit Transactions

Instead of using implicitly created transactions, you can also create them explicitly. This gives you the advantage of also having the option to roll back in case some of your business logic fails, and you can combine multiple invocations of SaveChangesAsync within one transaction. To start a transaction that is associated with the DbContext derived class, you need to invoke the BeginTransactionAsync method of the DatabaseFacade class that is returned from the Database property. The transaction returned implements the interface IDbContextTransaction. The SQL statements done with the associated DbContext are enlisted with the transaction. To commit or roll back, you have to explicitly invoke the methods Commit or Rollback. In the sample code, Commit is done when the end of the DbContext scope is reached; Rollback is done in cases where an exception occurs (code file TransactionsSample/Program.cs):

private static async Task TwoSaveChangesWithOneTxAsync()
{
 WriteLine(nameof(TwoSaveChangesWithOneTxAsync));
 IDbContextTransaction tx = null;
 try
 {
 using (var context = new MenusContext())
 using (tx = await context.Database.BeginTransactionAsync())
 {

 var card = context.MenuCards.First();
 var m1 = new Menu
 {
 MenuCardId = card.MenuCardId,
 Text ="added with explicit tx",
 Price = 99.99m
 };

 context.Menus.Add(m1);
 int records = await context.SaveChangesAsync();
 WriteLine($"{records} records added");

 int hightestCardId = await context.MenuCards.MaxAsync(c => c.MenuCardId);
 var mInvalid = new Menu
 {
 MenuCardId = ++hightestCardId,
 Text ="invalid",
 Price = 999.99m
 };
 context.Menus.Add(mInvalid);

 records = await context.SaveChangesAsync();
 WriteLine($"{records} records added");

 tx.Commit();
 }
 }
 catch (DbUpdateException ex)
 {
 WriteLine($"{ex.Message}");
 WriteLine($"{ex?.InnerException.Message}");

 WriteLine("rolling back…");
 tx.Rollback();
 }
 WriteLine();
}

When you run the application, you can see that no records have been added, although the SaveChangesAsync method was invoked multiple times. The first return of SaveChangesAsync lists one record as being added, but this record is removed based on the Rollback later on. Depending on the setting of the isolation level, the updated record can only be seen before the rollback was done within the transaction, but not outside the transaction.

TwoSaveChangesWithOneTxAsync
1 records added
An error occurred while updating the entries. See the inner exception for details.
The INSERT statement conflicted with the FOREIGN KEY constraint"FK_Menu_MenuCard_MenuCardId".
The conflict occurred in database"MenuCards", table"mc.MenuCards", column 'MenuCardId'.
rolling back...

NOTE With the BeginTransactionAsync method, you can also supply a value for the isolation level to specify the isolation requirements and locks needed in the database. Isolation levels are discussed in Chapter 37.

Summary

This chapter introduced you to the features of the Entity Framework Core. You’ve learned how the object context keeps knowledge about entities retrieved and updated, and how changes can be written to the database. You’ve also seen how migrations can be used to create and change the database schema from C# code. To define the schema, you've seen how the database mapping can be done using data annotations, and you've also seen the fluent API that offers more features compared to the annotations.

You’ve seen possibilities for reacting to conflicts when multiple users work on the same record, as well as using transactions implicitly or explicitly for more transactional control.

The next chapter shows using Windows Services to create a program that automatically starts with the system. You can make use of Entity Framework within Windows Services.

39
Windows Services

What’s In This Chapter?

	The architecture of a Windows Service

	Creating a Windows Service program

	Windows Services installation programs

	Windows Services control programs

	Troubleshooting Windows Services

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code is in the Chapter 39 download and individually named according to the names throughout the chapter.

	Quote Server

	Quote Client

	Quote Service

	Service Control

What Is a Windows Service?

Windows Services are programs that can be started automatically at boot time without the need for anyone to log on to the machine. If you need to have programs start up without user interaction or need to run under a different user than the interactive user, which can be a user with more privileges, you can create a Windows Service. Some examples could be a WCF host (if you can’t use Internet Information Services (IIS) for some reason), a program that caches data from a network server, or a program that reorganizes local disk data in the background.

This chapter starts with looking at the architecture of Windows Services, creates a Windows Service that hosts a networking server, and gives you information to start, monitor, control, and troubleshoot your Windows Services.

As previously mentioned, Windows Services are applications that can be automatically started when the operating system boots. These applications can run without having an interactive user logged on to the system and can do some processing in the background.

For example, on a Windows Server, system networking services should be accessible from the client without a user logging on to the server; and on the client system, services enable you to do things such as get a new software version online or perform some file cleanup on the local disk.

You can configure a Windows Service to run from a specially configured user account or from the system user account—a user account that has even more privileges than that of the system administrator.

NOTE Unless otherwise noted, when I refer to a service, I am referring to a Windows Service.

Here are a few examples of services:

	Simple TCP/IP Services is a service program that hosts some small TCP/IP servers: echo, daytime, quote, and others.

	World Wide Web Publishing Service is a service of IIS.

	Event Log is a service to log messages to the event log system.

	Windows Search is a service that creates indexes of data on the disk.

	Superfetch is a service that preloads commonly used applications and libraries into memory, thus improving the startup time of these applications.

You can use the Services administration tool, shown in Figure 39.1, to see all the services on a system. You get to the program by entering Services on the Start screen.

[image: Screenshot shows services window displaying names, description, status, startup type and log on as data in the extended sheet and selects hyper-v virtual machine management category.]

Figure 39.1

NOTE You can’t create a Windows Service with .NET Core; you need the .NET Framework. To control services, you can use .NET Core.

Windows Services Architecture

Three program types are necessary to operate a Windows Service:

	A service program

	A service control program

	A service configuration program

The service program is the implementation of the service. With a service control program, it is possible to send control requests to a service, such as start, stop, pause, and continue. With a service configuration program, a service can be installed; it is copied to the file system, and information about the service needs to be written to the registry. This registry information is used by the service control manager (SCM) to start and stop the service. Although .NET components can be installed simply with an xcopy—because they don’t need to write information to the registry—installation for services requires registry configuration. You can also use a service configuration program to change the configuration of that service at a later point. These three ingredients of a Windows Service are discussed in the following subsections.

Service Program

In order to put the .NET implementation of a service in perspective, this section takes a brief look at the Windows architecture of services in general, and the inner functionality of a service.

The service program implements the functionality of the service. It needs three parts:

	A main function

	A service-main function

	A handler

Before discussing these parts, however, it would be useful to digress for a moment for a short introduction to the SCM, which plays an important role for services—sending requests to your service to start it and stop it.

Service Control Manager

The SCM is the part of the operating system that communicates with the service. Using a sequence diagram, Figure 39.2 illustrates how this communication works.

[image: Sequence diagram shows SCM communicating with the service via start service process, register service-mains, service-main and register handler.]

Figure 39.2

At boot time, each process for which a service is set to start automatically is started, and so the main function of this process is called. The service is responsible for registering the service-main function for each of its services. The main function is the entry point of the service program, and in this function the entry points for the service-main functions must be registered with the SCM.

Main Function, Service-Main, and Handlers

The main function of the service is the normal entry point of a program, the Main method. The main function of the service might register more than one service-main function. The service-main function contains the actual functionality of the service, which must register a service-main function for each service it provides. A service program can provide a lot of services in a single program; for example, <windows>\system32\services.exe is the service program that includes Alerter, Application Management, Computer Browser, and DHCP Client, among other items.

The SCM calls the service-main function for each service that should be started. One important task of the service-main function is registering a handler with the SCM.

The handler function is the third part of a service program. The handler must respond to events from the SCM. Services can be stopped, suspended, and resumed, and the handler must react to these events.

After a handler has been registered with the SCM, the service control program can post requests to the SCM to stop, suspend, and resume the service. The service control program is independent of the SCM and the service itself. The operating system contains many service control programs, such as the Microsoft Management Console (MMC) Services snap-in shown earlier in Figure 39.1. You can also write your own service control program; a good example of this is the SQL Server Configuration Manager shown in Figure 39.3 which runs within MMC.

[image: Screenshot shows Sql server configuration manager window displaying names, state, start mode, log on as, process ID data et cetera and selects SQL Server browser category.]

Figure 39.3

Service Control Program

As the self-explanatory name suggests, with a service control program you can stop, suspend, and resume the service. To do so, you can send control codes to the service, and the handler should react to these events. It is also possible to ask the service about its actual status (if the service is running or suspended, or in some faulted state) and to implement a custom handler that responds to custom control codes.

Service Configuration Program

Because services must be configured in the registry, you can’t use xcopy installation with services. The registry contains the startup type of the service, which can be set to automatic, manual, or disabled. You also need to configure the user of the service program and dependencies of the service—for example, any services that must be started before the current one can start. All these configurations are made within a service configuration program. The installation program can use the service configuration program to configure the service, but this program can also be used later to change service configuration parameters.

Classes for Windows Services

In the .NET Framework, you can find service classes in the System.ServiceProcess namespace that implement the three parts of a service:

	You must inherit from the ServiceBase class to implement a service. The ServiceBase class is used to register the service and to answer start and stop requests.

	The ServiceController class is used to implement a service control program. With this class, you can send requests to services.

	The ServiceProcessInstaller and ServiceInstaller classes are, as their names suggest, classes to install and configure service programs.

Now you are ready to create a new service.

Creating a Windows Service Program

The service that you create in this chapter hosts a quote server. With every request that is made from a client, the quote server returns a random quote from a quote file. The first part of the solution uses three assemblies: one for the client and two for the server. Figure 39.4 provides an overview of the solution. The assembly QuoteServer holds the actual functionality. The service reads the quote file in a memory cache and answers requests for quotes with the help of a socket server. The QuoteClient is a WPF rich–client application. This application creates a client socket to communicate with the QuoteServer. The third assembly is the actual service. The QuoteService starts and stops the QuoteServer; the service controls the server.

[image: Block diagram shows client and server communicating from quoteclient to quoteserver. Quoteclient is connected to socket client and quoteserver is connected from quoteserver via windows service. Quoteserver is also connected to socket server.]

Figure 39.4

Before creating the service part of your program, create a simple socket server in an extra C# class library that will be used from your service process. How this can be done is discussed in the following section.

Creating Core Functionality for the Service

You can build any functionality in a Windows Service, such as scanning for files to do a backup or a virus check or starting a WCF server. However, all service programs share some similarities. The program must be able to start (and to return to the caller), stop, and suspend. This section looks at such an implementation using a socket server.

With Windows 10, the Simple TCP/IP Services can be installed as part of the Windows components. Part of the Simple TCP/IP Services is a “quote of the day,” or qotd, TCP/IP server. This simple service listens to port 17 and answers every request with a random message from the file <windows>\system32\drivers\etc\quotes. With the sample service, a similar server will be built. The sample server returns a Unicode string, in contrast to the qotd server, which returns an ASCII string.

First, create a class library called QuoteServer and implement the code for the server. The following walks through the source code of your QuoteServer class in the file QuoteServer.cs: (code file QuoteServer/QuoteServer.cs):

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading.Tasks;
namespace Wrox.ProCSharp.WinServices
{
 public class QuoteServer
 {
 private TcpListener _listener;
 private int _port;
 private string _filename;
 private List<string> _quotes;
 private Random _random;
 private Task _listenerTask;

The constructor QuoteServer is overloaded so that a filename and a port can be passed to the call. The constructor where just the filename is passed uses the default port 7890 for the server. The default constructor defines the default filename for the quotes as quotes.txt:

 public QuoteServer()
 : this ("quotes.txt")
 {
 }
 public QuoteServer(string filename)
 : this (filename, 7890)
 {
 }
 public QuoteServer(string filename, int port)
 {
 if (filename == null) throw new ArgumentNullException(nameof(filename));
 if (port < IPEndPoint.MinPort || port > IPEndPoint.MaxPort)
 throw new ArgumentException("port not valid", nameof(port));

 _filename = filename;
 _port = port;
 }

ReadQuotes is a helper method that reads all the quotes from a file that was specified in the constructor. All the quotes are added to the List<string> quotes. In addition, you are creating an instance of the Random class that will be used to return random quotes:

 protected void ReadQuotes()
 {
 try
 {
 _quotes = File.ReadAllLines(filename).ToList();
 if (_quotes.Count == 0)
 {
 throw new QuoteException("quotes file is empty");
 }
 _random = new Random();
 }
 catch (IOException ex)
 {
 throw new QuoteException("I/O Error", ex);
 }
 }

Another helper method is GetRandomQuoteOfTheDay. This method returns a random quote from the quotes collection:

 protected string GetRandomQuoteOfTheDay()
 {
 int index = random.Next(0, _quotes.Count);
 return _quotes[index];
 }

In the Start method, the complete file containing the quotes is read in the List<string> quotes by using the helper method ReadQuotes. After this, a new thread is started, which immediately calls the Listener method—similarly to the TcpReceive example in Chapter 25, “Networking.”

Here, a task is used because the Start method cannot block and wait for a client; it must return immediately to the caller (SCM). The SCM would assume that the start failed if the method didn’t return to the caller in a timely fashion (30 seconds). The listener task is a long-running background thread. The application can exit without stopping this thread:

 public void Start()
 {
 ReadQuotes();
 _listenerTask = Task.Factory.StartNew(Listener, TaskCreationOptions.LongRunning);
 }

The task function Listener creates a TcpListener instance. The AcceptSocketAsync method waits for a client to connect. As soon as a client connects, AcceptSocketAsync returns with a socket associated with the client. Next, GetRandomQuoteOfTheDay is called to send the returned random quote to the client using clientSocket.Send:

 protected async Task ListenerAsync()
 {
 try
 {
 IPAddress ipAddress = IPAddress.Any;
 _listener = new TcpListener(ipAddress, port);
 _listener.Start();
 while (true)
 {
 using (Socket clientSocket = await _listener.AcceptSocketAsync())
 {
 string message = GetRandomQuoteOfTheDay();
 var encoder = new UnicodeEncoding();
 byte[] buffer = encoder.GetBytes(message);
 clientSocket.Send(buffer, buffer.Length, 0);
 }
 }
 }
 catch (SocketException ex)
 {
 Trace.TraceError($"QuoteServer {ex.Message}");
 throw new QuoteException("socket error", ex);
 }
 }

In addition to the Start method, the following methods, Stop, Suspend, and Resume, are needed to control the service:

 public void Stop() => _listener.Stop();

 public void Suspend() => _listener.Stop();

 public void Resume() => Start();

Another method that will be publicly available is RefreshQuotes. If the file containing the quotes changes, the file is reread with this method:

 public void RefreshQuotes() => ReadQuotes();
 }
}

Before you build a service around the server, it is useful to build a test program that creates just an instance of the QuoteServer and calls Start. This way, you can test the functionality without having to handle service-specific issues. You must start this test server manually, and you can easily walk through the code with a debugger.

The test program is a C# console application, TestQuoteServer. You need to reference the assembly of the QuoteServer class. After you create an instance of the QuoteServer, the Start method of the QuoteServer instance is called. Start returns immediately after creating a thread, so the console application keeps running until Return is pressed (code file TestQuoteServer/Program.cs):

 static void Main()
 {
 var qs = new QuoteServer("quotes.txt", 4567);
 qs.Start();
 WriteLine("Hit return to exit");
 ReadLine();
 qs.Stop();
 }

Note that QuoteServer will be running on port 4567 on localhost using this program—you have to use these settings in the client later.

QuoteClient Example

The client is a simple WPF Windows application in which you can request quotes from the server. This application uses the TcpClient class to connect to the running server and receives the returned message, displaying it in a text box. The user interface contains two controls: a Button and a TextBlock. Clicking the button requests the quote from the server, and the quote is displayed.

With the Button control, the Click event is assigned to the method OnGetQuote, which requests the quote from the server, and the IsEnabled property is bound to the EnableRequest method to disable the button while a request is active. With the TextBlock control, the Text property is bound to the Quote property to display the quote that is set (code file QuoteClientWPF/MainWindow.xaml):

<Button Margin="3" VerticalAlignment="Stretch" Grid.Row="0"
 IsEnabled="{Binding EnableRequest, Mode=OneWay}" Click="OnGetQuote">
 Get Quote</Button>
<TextBlock Margin="6" Grid.Row="1" TextWrapping="Wrap"
 Text="{Binding Quote, Mode=OneWay}" />

The class QuoteInformation defines the properties EnableRequest and Quote. These properties are used with data binding to show the values of these properties in the user interface. This class implements the interface INotifyPropertyChanged to enable WPF to receive changes in the property values (code file QuoteClientWPF/QuoteInformation.cs):

using System.Collections.Generic;
using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace Wrox.ProCSharp.WinServices
{
 public class QuoteInformation: INotifyPropertyChanged
 {
 public QuoteInformation()
 {
 EnableRequest = true;
 }

 private string _quote;
 public string Quote
 {
 get { return _quote; }
 internal set { SetProperty(ref _quote, value); }
 }

 private bool _enableRequest;
 public bool EnableRequest
 {
 get { return _enableRequest; }
 internal set { SetProperty(ref _enableRequest, value); }
 }

 private void SetProperty<T>(ref T field, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (!EqualityComparer<T>.Default.Equals(field, value))
 {
 field = value;
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 }
}

NOTE Implementation of the interface INotifyPropertyChanged makes use of the attribute CallerMemberNameAttribute. This attribute is explained in Chapter 14, “Errors and Exceptions.”

An instance of the class QuoteInformation is assigned to the DataContext of the Window class MainWindow to allow direct data binding to it (code file QuoteClientWPF/MainWindow.xaml.cs):

using System;
using System.Net.Sockets;
using System.Text;
using System.Windows;
using System.Windows.Input;
namespace Wrox.ProCSharp.WinServices
{
 public partial class MainWindow: Window
 {
 private QuoteInformation _quoteInfo = new QuoteInformation();
 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = _quoteInfo;
 }

You can configure server and port information to connect to the server from the Settings tab inside the properties of the project (see Figure 39.5). Here, you can define default values for the ServerName and PortNumber settings. With the Scope set to User, the settings can be placed in user-specific configuration files, so every user of the application can have different settings. This Settings feature of Visual Studio also creates a Settings class so that the settings can be read and written with a strongly typed class.

[image: Image described by surrounding text.]

Figure 39.5

The major functionality of the client lies in the handler for the Click event of the Get Quote button:

protected async void OnGetQuote(object sender, RoutedEventArgs e)
{
 const int bufferSize = 1024;
 Cursor currentCursor = this.Cursor;
 this.Cursor = Cursors.Wait;
 quoteInfo.EnableRequest = false;

 string serverName = Properties.Settings.Default.ServerName;
 int port = Properties.Settings.Default.PortNumber;

 var client = new TcpClient();
 NetworkStream stream = null;
 try
 {
 await client.ConnectAsync(serverName, port);
 stream = client.GetStream();
 byte[] buffer = new byte[bufferSize];
 int received = await stream.ReadAsync(buffer, 0, bufferSize);
 if (received <= 0)
 {
 return;
 }
 quoteInfo.Quote = Encoding.Unicode.GetString(buffer).Trim('\0');
 }
 catch (SocketException ex)
 {
 MessageBox.Show(ex.Message,"Error Quote of the day",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 finally
 {
 stream?.Close();

 if (client.Connected)
 {
 client.Close();
 }
 }

 this.Cursor = currentCursor;
 quoteInfo.EnableRequest = true;
}

After starting the test server and this Windows application client, you can test the functionality. Figure 39.6 shows a successful run of this application.

[image: Screenshot shows quote of the day window displaying a quote based on telephone from western union internal memo in 1876.]

Figure 39.6

At this point, you need to implement the service functionality in the server. The program is already running, so now you want to ensure that the server program starts automatically at boot time without anyone logged on to the system. You can do that by creating a service program, which is discussed next.

Windows Service Program

Using the C# Windows Service template from the Add New Project dialog, you can now create a Windows Service program. For the new service, use the name QuoteService.

After you click the OK button to create the Windows Service program, the designer surface appears but you can’t insert any UI components because the application cannot directly display anything on the screen. The designer surface is used later in this chapter to add components such as installation objects, performance counters, and event logging.

Selecting the properties of this service opens the Properties dialog, where you can configure the following values:

	AutoLog—Specifies that events are automatically written to the event log for starting and stopping the service.

	CanPauseAndContinue, CanShutdown, and CanStop—Specify pause, continue, shut down, and stop requests.

	ServiceName—The name of the service written to the registry and used to control the service.

	CanHandleSessionChangeEvent—Defines whether the service can handle change events from a terminal server session.

	CanHandlePowerEvent—This is a very useful option for services running on a laptop or mobile devices. If this option is enabled, the service can react to low-power events and change the behavior of the service accordingly. Examples of power events include battery low, power status change (because of a switch from or to A/C power), and change to suspend.

NOTE The default service name is Service1, regardless of what the project is called. You can install only one Service1 service. If you get installation errors during your testing process, you might already have installed a Service1 service. Therefore, ensure that you change the name of the service in the Properties dialog to a more suitable name at the beginning of the service’s development.

Changing these properties within the Properties dialog sets the values of your ServiceBase-derived class in the InitializeComponent method. You already know this method from Windows Forms applications. It is used in a similar way with services.

A wizard generates the code but changes the filename to QuoteService.cs, the name of the namespace to Wrox.ProCSharp.WinServices, and the class name to QuoteService. The code of the service is discussed in detail shortly.

The ServiceBase Class

The ServiceBase class is the base class for all Windows Services developed with the .NET Framework. The class QuoteService is derived from ServiceBase; this class communicates with the SCM using an undocumented helper class, System.ServiceProcess.NativeMethods, which is just a wrapper class to the Windows API calls. The NativeMethods class is internal, so it cannot be used in your code.

The sequence diagram in Figure 39.7 shows the interaction of the SCM, the class QuoteService, and the classes from the System.ServiceProcess namespace. You can see the lifelines of objects vertically and the communication going on horizontally. The communication is time-ordered from top to bottom.

[image: Sequence diagram shows interaction of SCM, quoteservice, :servicebase and :native methods via main(), run(), servicemaincallback(), onstart(), servicecommandcallback(), onstop() et cetera.]

Figure 39.7

The SCM starts the process of a service that should be started. At startup, the Main method is called. In the Main method of the sample service, the Run method of the base class ServiceBase is called. Run registers the method ServiceMainCallback using NativeMethods.StartServiceCtrlDispatcher in the SCM and writes an entry to the event log.

Next, the SCM calls the registered method ServiceMainCallback in the service program. ServiceMainCallback itself registers the handler in the SCM using NativeMethods.RegisterServiceCtrlHandler[Ex] and sets the status of the service in the SCM. Then the OnStart method is called. In OnStart, you need to implement the startup code. If OnStart is successful, the string “Service started successfully” is written to the event log.

The handler is implemented in the ServiceCommandCallback method. The SCM calls this method when changes are requested from the service. The ServiceCommandCallback method routes the requests further to OnPause, OnContinue, OnStop, OnCustomCommand, and OnPowerEvent.

Main Function

This section looks into the application template–generated main function of the service process. In the main function, an array of ServiceBase classes, ServicesToRun, is declared. One instance of the QuoteService class is created and passed as the first element to the ServicesToRun array. If more than one service should run inside this service process, it is necessary to add more instances of the specific service classes to the array. This array is then passed to the static Run method of the ServiceBase class. With the Run method of ServiceBase, you are giving the SCM references to the entry points of your services. The main thread of your service process is now blocked and waits for the service to terminate.

Here is the automatically generated code (code file QuoteService/Program.cs):

static void Main()
{
 ServiceBase[] servicesToRun = new ServiceBase[]
 {
 new QuoteService()
 };
 ServiceBase.Run(servicesToRun);
}

If there is only a single service in the process, the array can be removed; the Run method accepts a single object derived from the class ServiceBase, so the Main method can be reduced to this:

ServiceBase.Run(new QuoteService());

The service program Services.exe includes multiple services. If you have a similar service, where more than one service is running in a single process in which you must initialize some shared state for multiple services, the shared initialization must be done before the Run method. With the Run method, the main thread is blocked until the service process is stopped, and any subsequent instructions are not reached before the end of the service.

The initialization shouldn’t take longer than 30 seconds. If the initialization code were to take longer than this, the SCM would assume that the service startup failed. You need to take into account the slowest machines where this service should run within the 30-second limit. If the initialization takes longer, you could start the initialization in a different thread so that the main thread calls Run in time. An event object can then be used to signal that the thread has completed its work.

Service Start

At service start, the OnStart method is called. In this method, you can start the previously created socket server. You must reference the QuoteServer assembly for the use of the QuoteService. The thread calling OnStart cannot be blocked; this method must return to the caller, which is the ServiceMainCallback method of the ServiceBase class. The ServiceBase class registers the handler and informs the SCM that the service started successfully after calling OnStart (code file QuoteService/QuoteService.cs):

protected override void OnStart(string[] args)
{
 _quoteServer = new QuoteServer(Path.Combine(
 AppDomain.CurrentDomain.BaseDirectory,"quotes.txt"),
 5678);
 _quoteServer.Start();
}

The _quoteServer variable is declared as a private member in the class:

namespace Wrox.ProCSharp.WinServices
{
 public partial class QuoteService: ServiceBase
 {
 private QuoteServer _quoteServer;

Handler Methods

When the service is stopped, the OnStop method is called. You should stop the service functionality in this method (code file QuoteService/QuoteService.cs):

protected override void OnStop() => _quoteServer.Stop();

In addition to OnStart and OnStop, you can override the following handlers in the service class:

	OnPause—Called when the service should be paused.

	OnContinue—Called when the service should return to normal operation after being paused. To make it possible for the overridden methods OnPause and OnContinue to be called, you must set the CanPauseAndContinue property to true.

	OnShutdown—Called when Windows is undergoing system shutdown. Normally, the behavior of this method should be similar to the OnStop implementation; if more time is needed for a shutdown, you can request more. Similarly to OnPause and OnContinue, a property must be set to enable this behavior: CanShutdown must be set to true.

	OnPowerEvent—Called when the power status of the system changes. Information about the change of the power status is in the argument of type PowerBroadcastStatus. PowerBroadcastStatus is an enumeration with values such as Battery Low and PowerStatusChange. Here, you will also get information if the system would like to suspend (QuerySuspend), which you can approve or deny. You can read more about power events later in this chapter.

	OnCustomCommand—This is a handler that can serve custom commands sent by a service control program. The method signature of OnCustomCommand has an int argument where you retrieve the custom command number. The value can be in the range from 128 to 256; values below 128 are system-reserved values. In your service, you are rereading the quotes file with the custom command 128:

protected override void OnPause() => _quoteServer.Suspend();

protected override void OnContinue() => _quoteServer.Resume();

public const int CommandRefresh = 128;
protected override void OnCustomCommand(int command)
{
 switch (command)
 {
 case CommandRefresh:
 quoteServer.RefreshQuotes();
 break;

 default:
 break;
 }
}

Threading and Services

As stated earlier in this chapter, the SCM assumes that the service failed if the initialization takes too long. To deal with this, you need to create a thread.

The OnStart method in your service class must return in time. If you call a blocking method such as AcceptSocket from the TcpListener class, you need to start a thread to do so. With a networking server that deals with multiple clients, a thread pool is also very useful. AcceptSocket should receive the call and hand the processing off to another thread from the pool. This way, no one waits for the execution of code and the system seems responsive.

Service Installation

Services must be configured in the registry. All services are found in HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services. You can view the registry entries by using regedit. Found here are the type of the service, the display name, the path to the executable, the startup configuration, and so on. Figure 39.8 shows the registry configuration of the W3SVC service.

[image: Screenshot shows registry editor window displaying W3SVC service with names, type and data.]

Figure 39.8

You can do this configuration by using the installer classes from the System.ServiceProcess namespace, as discussed in the following section.

Installation Program

You can add an installation program to the service by switching to the design view with Visual Studio and then selecting the Add Installer option from the context menu . With this option, a new ProjectInstaller class is created, along with a ServiceInstaller instance and a ServiceProcessInstaller instance.

Figure 39.9 shows the class diagram of the installer classes for services.

Keep this diagram in mind as we go through the source code in the file ProjectInstaller.cs that was created with the Add Installer option.

The Installer Class

The class ProjectInstaller is derived from System.Configuration.Install.Installer. This is the base class for all custom installers. With the Installer class, it is possible to build transaction-based installations. With a transaction-based installation, you can roll back to the previous state if the installation fails, and any changes made by this installation up to that point will be undone. As shown in Figure 39.9, the Installer class has Install, Uninstall, Commit, and Rollback methods, and they are called from installation programs.

[image: Block diagram shows projectinstaller connected to installer, serviceInstaller and serviceprocessinstaller. Serviceinstaller and serviceprocessinstaller are connected to componentinstaller which is connected to installer.]

Figure 39.9

The attribute [RunInstaller(true)] means that the class ProjectInstaller should be invoked when installing an assembly. Custom action installers, as well as installutil.exe (which is used later in this chapter), check for this attribute.

InitializeComponent is called inside the constructor of the ProjectInstaller class (code file QuoteService/ProjectInstaller.cs):

using System.ComponentModel;
using System.Configuration.Install;

namespace Wrox.ProCSharp.WinServices
{
 [RunInstaller(true)]
 public partial class ProjectInstaller: Installer
 {
 public ProjectInstaller()
 {
 InitializeComponent();
 }
 }
}

Now let’s move to the other installers of the installation program that are invoked by the project installer.

Process Installer and Service Installer

Within the implementation of InitializeComponent, instances of the ServiceProcessInstaller class and the ServiceInstaller class are created. Both of these classes derive from the ComponentInstaller class, which itself derives from Installer.

Classes derived from ComponentInstaller can be used with an installation process. Remember that a service process can include more than one service. The ServiceProcessInstaller class is used for the configuration of the process that defines values for all services in this process, and the ServiceInstaller class is for the configuration of the service, so one instance of ServiceInstaller is required for each service. If three services are inside the process, you need to add three ServiceInstaller objects:

partial class ProjectInstaller
{
 private System.ComponentModel.IContainer components = null;

 private void InitializeComponent()
 {
 this.serviceProcessInstaller1 =
 new System.ServiceProcess.ServiceProcessInstaller();
 this.serviceInstaller1 =
 new System.ServiceProcess.ServiceInstaller();

 this.serviceProcessInstaller1.Password = null;
 this.serviceProcessInstaller1.Username = null;

 this.serviceInstaller1.ServiceName ="QuoteService";
 this.serviceInstaller1.Description ="Sample Service for Professional C#";
 this.serviceInstaller1.StartType = System.ServiceProcess.ServiceStartMode.Manual;

 this.Installers.AddRange(
 new System.Configuration.Install.Installer[]
 {this.serviceProcessInstaller1,
 this.serviceInstaller1});
 }

 private System.ServiceProcess.ServiceProcessInstaller
 serviceProcessInstaller1;
 private System.ServiceProcess.ServiceInstaller serviceInstaller1;

}

The class ServiceProcessInstaller installs an executable that contains a class that derives from the base class ServiceBase. ServiceProcessInstaller has properties for the complete service process. The following table describes the properties shared by all the services inside the process.

	Property
	Description

	Username, Password
	Indicates the user account under which the service runs if the Account property is set to ServiceAccount.User.

	Account
	With this property, you can specify the account type of the service.

	HelpText
	A read-only property that returns the help text for setting the username and password.

The process that is used to run the service can be specified with the Account property of the ServiceProcessInstaller class using the ServiceAccount enumeration. The following table describes the different values of the Account property.

	Value
	Description

	LocalSystem
	Setting this value specifies that the service uses a highly privileged user account on the local system, and acts as the computer on the network.

	NetworkService
	Similarly to LocalSystem, this value specifies that the computer’s credentials are passed to remote servers; but unlike LocalSystem, such a service acts as a nonprivileged user on the local system. As the name implies, this account should be used only for services that need resources from the network.

	LocalService
	This account type presents anonymous credentials to any remote server and has the same privileges locally as NetworkService.

	User
	Setting the Account property to ServiceAccount.User means that you can define the account that should be used from the service.

ServiceInstaller is the class needed for every service; it has the following properties for each service inside a process: StartType, DisplayName, ServiceName, and ServicesDependentOn, as described in the following table.

	Property
	Description

	StartType
	The StartType property indicates whether the service is manually or automatically started. Possible values are ServiceStartMode.Automatic, ServiceStartMode.Manual, and ServiceStartMode.Disabled. With the last one, the service cannot be started. This option is useful for services that shouldn’t be started on a system. You might want to set the option to Disabled if, for example, a required hardware controller is not available.

	DelayedAutoStart
	This property is ignored if the StartType is not set to Automatic. Here, you can specify that the service should not be started immediately when the system boots but afterward.

	DisplayName
	DisplayName is the friendly name of the service that is displayed to the user. This name is also used by management tools that control and monitor the service.

	ServiceName
	ServiceName is the name of the service. This value must be identical to the ServiceName property of the ServiceBase class in the service program. This name associates the configuration of the ServiceInstaller to the required service program.

	ServicesDependentOn
	Specifies an array of services that must be started before this service can be started. When the service is started, all these dependent services are started automatically, and then your service will start.

NOTE If you change the name of the service in the ServiceBase-derived class, be sure to also change the ServiceName property in the ServiceInstaller object!

NOTE In the testing phases, set StartType to Manual. This way, if you can’t stop the service (for example, when it has a bug), you still have the possibility to reboot the system; but if you have StartType set to Automatic, the service would be started automatically with the reboot! You can change this configuration later when you are sure that it works.

The ServiceInstallerDialog Class

Another installer class in the System.ServiceProcess.Design namespace is ServiceInstallerDialog. This class can be used if you want the system administrator to enter the account that the service should use by assigning the username and password during the installation.

If you set the Account property of the class ServiceProcessInstaller to ServiceAccount.User and the Username and Password properties to null, you see the Set Service Login dialog at installation time (see Figure 39.10). You can also cancel the installation at this point.

[image: Screenshot shows set service login dialog box displaying fields to be filled such as username, password and confirm password. Finally, selects ok button.]

Figure 39.10

installutil

After adding the installer classes to the project, you can use the installutil.exe utility to install and uninstall the service. You can use this utility to install any assembly that has an Installer class. The installutil.exe utility calls the method Install of the class that derives from the Installer class for installation, and Uninstall for the uninstallation.

The command-line inputs for the installation and uninstallation of our example service are as follows:

installutil quoteservice.exe
installutil /u quoteservice.exe

NOTE If the installation fails, be sure to check the installation log files, InstallUtil.InstallLog and <servicename>.InstallLog. Often, you can find very useful information, such as “The specified service already exists.”

After the service has been successfully installed, you can start the service manually from the Services MMC (see the next section for details), and then you can start the client application.

Monitoring and Controlling Windows Services

To monitor and control Windows Services, you can use the Services MMC snap-in that is part of the Computer Management administration tool. Every Windows system also has a command-line utility, net.exe, which enables you to control services. Another Windows command-line utility is sc.exe. This utility has much more functionality than net.exe. You can also control services directly from the Visual Studio Server Explorer. In this section, you also create a small Windows application that makes use of the System.ServiceProcess.ServiceController class to monitor and control services.

MMC Snap-in

Using the Services snap-in to the MMC, you can view the status of all services (see Figure 39.11). It is also possible to send control requests to services to stop, enable, or disable them, as well as to change their configuration. The Services snap-in is a service control program as well as a service configuration program.

[image: Image described by surrounding text.]

Figure 39.11

Double-click QuoteService to get the Properties dialog shown in Figure 39.12. From here you can view the service name, the description, the path to the executable, the startup type, and the status. The service is currently started. The account for the service process can be changed by selecting the Log On tab in this dialog.

[image: Screenshot shows quoteservice properties window displaying service and display names as quoteservice, description and startup type under general category. Finally, selects ok button.]

Figure 39.12

net.exe Utility

The Services snap-in is easy to use, but system administrators cannot automate it because it is not usable within an administrative script. To control services with a tool that can be automated with a script, you can use the command-line utility net.exe. The net start command shows all running services, net start servicename starts a service, and net stop servicename sends a stop request to the service. It is also possible to pause and continue a service with net pause and net continue (if the service allows it, of course).

sc.exe Utility

Another little-known utility delivered as part of the operating system is sc.exe. This is a great tool for working with services. You can do much more with sc.exe than with the net.exe utility. With sc.exe, you can check the actual status of a service, or configure, remove, and add services. This tool also facilitates the uninstallation of the service if it fails to function correctly.

Visual Studio Server Explorer

To monitor services using the Server Explorer within Visual Studio, select Servers from the tree view, and then select your computer, then the Services element. You can see the status of all services as shown in Figure 39.13. By selecting a service, you can see the properties of the service.

[image: Screenshot shows server explorer window displaying services such as plug and play, power, print spooler, portable device enumeration et cetera and selects quoteservice.]

Figure 39.13

Writing a Custom Service Controller

In this section, you create a small WPF application that uses the ServiceController class to monitor and control Windows Services.

Create a WPF application with a user interface as shown in Figure 39.14. The main window of this application has a list box to display all services; four text boxes to show the display name, status, type, and name of the service; and six buttons. Four buttons are used to send control events, one button is used for a refresh of the list, and one button is used to exit the application.

[image: Screenshot shows a window divided into left and right columns. Left column represents service control space and right column displays six buttons for start, stop, pause, continue, refresh and exit.]

Figure 39.14

NOTE You can read more about WPF and XAML in Chapters 29 through 35.

Monitoring the Service

With the ServiceController class, you can get information about each service. The following table shows the properties of the ServiceController class:

	Property
	Description

	CanPauseAndContinue
	Returns true if pause and continue requests can be sent to the service.

	CanShutdown
	Returns true if the service has a handler for a system shutdown.

	CanStop
	Returns true if the service is stoppable.

	DependentServices
	Returns a collection of dependent services. If the service is stopped, then all dependent services are stopped beforehand.

	ServicesDependentOn
	Returns a collection of the services on which this service depends.

	DisplayName
	Specifies the name that should be displayed for this service.

	MachineName
	Specifies the name of the machine on which the service runs.

	ServiceName
	Specifies the name of the service.

	ServiceType
	Specifies the type of the service. The service can be run inside a shared process, whereby more than one service uses the same process (Win32ShareProcess), or run in such a way that there is just one service in a process (Win32OwnProcess). If the service can interact with the desktop, the type is InteractiveProcess.

	Status
	Specifies the service’s status, which can be running, stopped, paused, or in some intermediate mode such as start pending, stop pending, and so on. The status values are defined in the enumeration ServiceControllerStatus.

In the sample application, the properties DisplayName, ServiceName, ServiceType, and Status are used to display the service information. CanPauseAndContinue and CanStop are used to enable or disable the Pause, Continue, and Stop buttons.

To get all the needed information for the user interface, the class ServiceControllerInfo is created. This class can be used for data binding and offers status information, the name of the service, the service type, and information about which buttons to control the service should be enabled or disabled.

NOTE Because the class System.ServiceProcess.ServiceController is used, you must reference the assembly System.ServiceProcess.

ServiceControllerInfo contains an embedded ServiceController that is set with the constructor of the ServiceControllerInfo class. There is also a read-only property Controller to access the embedded ServiceController (code file ServiceControlWPF/ServiceControllerInfo.cs):

public class ServiceControllerInfo
{
 public ServiceControllerInfo(ServiceController controller)
 {
 Controller = controller;
 }

 public ServiceController Controller { get; }
 // etc.
}

To display current information about the service, the ServiceControllerInfo class has the read-only properties DisplayName, ServiceName, ServiceTypeName, and ServiceStatusName. The implementation of the properties DisplayName and ServiceName just accesses the properties of those names of the underlying ServiceController class. With the implementation of the properties ServiceTypeName and ServiceStatusName, more work is needed—the status and type of the service cannot be returned that easily because a string should be displayed instead of a number, which is what the ServiceController class returns. The property ServiceTypeName returns a string that represents the type of the service. The ServiceType you get from the property ServiceController.ServiceType represents a set of flags that can be combined by using the bitwise OR operator. The InteractiveProcess bit can be set together with Win32OwnProcess and Win32ShareProcess. Therefore, the first check determines whether the InteractiveProcess bit is set before continuing to check for the other values. With services, the string returned will be "Win32 Service Process" or "Win32 Shared Process" (code file ServiceControlWPF/ServiceControllerInfo.cs):

public class ServiceControllerInfo
{
 // etc.
 public string ServiceTypeName
 {
 get
 {
 ServiceType type = controller.ServiceType;
 string serviceTypeName ="";
 if ((type & ServiceType.InteractiveProcess) != 0)
 {
 serviceTypeName ="Interactive";
 type -= ServiceType.InteractiveProcess;
 }
 switch (type)
 {
 case ServiceType.Adapter:
 serviceTypeName +="Adapter";
 break;
 case ServiceType.FileSystemDriver:
 case ServiceType.KernelDriver:
 case ServiceType.RecognizerDriver:
 serviceTypeName +="Driver";
 break;
 case ServiceType.Win32OwnProcess:
 serviceTypeName +="Win32 Service Process";
 break;
 case ServiceType.Win32ShareProcess:
 serviceTypeName +="Win32 Shared Process";
 break;
 default:
 serviceTypeName +="unknown type" + type.ToString();
 break;
 }
 return serviceTypeName;
 }
 }

 public string ServiceStatusName
 {
 get
 {
 switch (Controller.Status)
 {
 case ServiceControllerStatus.ContinuePending:
 return"Continue Pending";
 case ServiceControllerStatus.Paused:
 return"Paused";
 case ServiceControllerStatus.PausePending:
 return"Pause Pending";
 case ServiceControllerStatus.StartPending:
 return"Start Pending";
 case ServiceControllerStatus.Running:
 return"Running";
 case ServiceControllerStatus.Stopped:
 return"Stopped";
 case ServiceControllerStatus.StopPending:
 return"Stop Pending";
 default:
 return"Unknown status";
 }
 }
 }

 public string DisplayName => Controller.DisplayName;

 public string ServiceName => Controller.ServiceName;

 // etc.
}

The ServiceControllerInfo class has some other properties to enable the Start, Stop, Pause, and Continue buttons: EnableStart, EnableStop, EnablePause, and EnableContinue. These properties return a Boolean value according to the current status of the service (code file ServiceControlWPF/ServiceControllerInfo.cs):

public class ServiceControllerInfo
{
 // etc.

 public bool EnableStart => Controller.Status == ServiceControllerStatus.Stopped;

 public bool EnableStop => Controller.Status == ServiceControllerStatus.Running;

 public bool EnablePause =>
 Controller.Status == ServiceControllerStatus.Running &&
 Controller.CanPauseAndContinue;

 public bool EnableContinue => Controller.Status == ServiceControllerStatus.Paused;
}

In the ServiceControlWindow class, the method RefreshServiceList gets all the services using ServiceController.GetServices for display in the list box. The GetServices method returns an array of ServiceController instances representing all Windows Services installed on the operating system. The ServiceController class also has the static method GetDevices that returns a ServiceController array representing all device drivers. The returned array is sorted with the help of the extension method OrderBy. The sort is done by the DisplayName as defined with the lambda expression that is passed to the OrderBy method. Using Select, the ServiceController instances are converted to the type ServiceControllerInfo. In the following code, a lambda expression is passed that invokes the ServiceControllerInfo constructor for every ServiceController object. Last, the result is assigned to the DataContext property of the window for data binding (code file ServiceControlWPF/MainWindow .xaml.cs):

protected void RefreshServiceList()
{
 this.DataContext = ServiceController.GetServices().
 OrderBy(sc => sc.DisplayName).
 Select(sc => new ServiceControllerInfo(sc));
}

The method RefreshServiceList, to get all the services in the list box, is called within the constructor of the class ServiceControlWindow. The constructor also defines the event handler for the Click event of the buttons:

public ServiceControlWindow()
{
 InitializeComponent();

 RefreshServiceList();
}

Now, you can define the XAML code to bind the information to the controls. First, a DataTemplate is defined for the information that is shown inside the ListBox. The ListBox contains a Label in which the Content is bound to the DisplayName property of the data source. As you bind an array of ServiceControllerInfo objects, the property DisplayName is defined with the ServiceControllerInfo class (code file ServiceControlWPF/MainWindow.xaml):

<Window.Resources>
 <DataTemplate x:Key="listTemplate">
 <Label Content="{Binding DisplayName}"/>
 </DataTemplate>
</Window.Resources>

The ListBox that is placed in the left side of the window sets the ItemsSource property to {Binding}. This way, the data that is shown in the list is received from the DataContext property that was set in the RefreshServiceList method. The ItemTemplate property references the resource listTemplate that is defined with the DataTemplate shown earlier. The property IsSynchronizedWithCurrentItem is set to True so that the TextBox and Button controls inside the same window are bound to the current item selected with the ListBox:

<ListBox Grid.Row="0" Grid.Column="0" HorizontalAlignment="Left"
 Name="listBoxServices" VerticalAlignment="Top"
 ItemsSource="{Binding}"
 ItemTemplate="{StaticResource listTemplate}"
 IsSynchronizedWithCurrentItem="True">
</ListBox>

To differentiate the Button controls to start/stop/pause/continue the service, the following enumeration is defined (code file ServiceControlWPF/ButtonState.cs):

public enum ButtonState
{
 Start,
 Stop,
 Pause,
 Continue
}

With the TextBlock controls, the Text property is bound to the corresponding property of the ServiceControllerInfo instance. Whether the Button controls are enabled or disabled is also defined from the data binding by binding the IsEnabled property to the corresponding properties of the ServiceControllerInfo instance that return a Boolean value. The Tag property of the buttons is assigned to a value of the ButtonState enumeration defined earlier to differentiate the button within the same handler method OnServiceCommand (code file ServiceControlWPF/MainWindow.xaml):

<TextBlock Grid.Row="0" Grid.ColumnSpan="2"
 Text="{Binding /DisplayName, Mode=OneTime}" />
<TextBlock Grid.Row="1" Grid.ColumnSpan="2"
 Text="{Binding /ServiceStatusName, Mode=OneTime}" />
<TextBlock Grid.Row="2" Grid.ColumnSpan="2"
 Text="{Binding /ServiceTypeName, Mode=OneTime}" />
<TextBlock Grid.Row="3" Grid.ColumnSpan="2"
 Text="{Binding /ServiceName, Mode=OneTime}" />
<Button Grid.Row="4" Grid.Column="0" Content="Start"
 IsEnabled="{Binding /EnableStart, Mode=OneTime}"
 Tag="{x:Static local:ButtonState.Start}"
 Click="OnServiceCommand" />
<Button Grid.Row="4" Grid.Column="1" Name="buttonStop" Content="Stop"
 IsEnabled="{Binding /EnableStop, Mode=OneTime}"
 Tag="{x:Static local:ButtonState.Stop}"
 Click="OnServiceCommand" />
<Button Grid.Row="5" Grid.Column="0" Name="buttonPause" Content="Pause"
 IsEnabled="{Binding /EnablePause, Mode=OneTime}"
 Tag="{x:Static local:ButtonState.Pause}"
 Click="OnServiceCommand" />
<Button Grid.Row="5" Grid.Column="1" Name="buttonContinue"
 Content="Continue"
 IsEnabled="{Binding /EnableContinue,
 Tag="{x:Static local:ButtonState.Continue}"
 Mode=OneTime}" Click="OnServiceCommand" />
<Button Grid.Row="6" Grid.Column="0" Name="buttonRefresh"
 Content="Refresh"
 Click="OnRefresh" />
<Button Grid.Row="6" Grid.Column="1" Name="buttonExit"
 Content="Exit" Click="OnExit" />

Controlling the Service

With the ServiceController class, you can also send control requests to the service. The following table describes the methods that can be applied.

	Method
	Description

	Start
	Tells the SCM that the service should be started. In the example service program, OnStart is called.

	Stop
	Calls OnStop in the example service program with the help of the SCM if the property CanStop is true in the service class.

	Pause
	Calls OnPause if the property CanPauseAndContinue is true.

	Continue
	Calls OnContinue if the property CanPauseAndContinue is true.

	ExecuteCommand
	Enables sending a custom command to the service.

The following code controls the services. Because the code for starting, stopping, suspending, and pausing is similar, only one handler is used for the four buttons (code file ServiceControlWPF/MainWindow.xaml.cs):

protected void OnServiceCommand(object sender, RoutedEventArgs e)
{
 Cursor oldCursor = this.Cursor;
 try
 {
 this.Cursor = Cursors.Wait;
 ButtonState currentButtonState = (ButtonState)(sender as Button).Tag;
 var si = listBoxServices.SelectedItem as ServiceControllerInfo;
 if (currentButtonState == ButtonState.Start)
 {
 si.Controller.Start();
 si.Controller.WaitForStatus(ServiceControllerStatus.Running,
 TimeSpan.FromSeconds(10));
 }
 else if (currentButtonState == ButtonState.Stop)
 {
 si.Controller.Stop();
 si.Controller.WaitForStatus(ServiceControllerStatus.Stopped,
 TimeSpan.FromSeconds(10));
 }
 else if (currentButtonState == ButtonState.Pause)
 {
 si.Controller.Pause();
 si.Controller.WaitForStatus(ServiceControllerStatus.Paused,
 TimeSpan.FromSeconds(10));
 }
 else if (currentButtonState == ButtonState.Continue)
 {
 si.Controller.Continue();
 si.Controller.WaitForStatus(ServiceControllerStatus.Running,
 TimeSpan.FromSeconds(10));
 }
 int index = listBoxServices.SelectedIndex;
 RefreshServiceList();
 listBoxServices.SelectedIndex = index;
 }
 catch (System.ServiceProcess.TimeoutException ex)
 {
 MessageBox.Show(ex.Message,"Timout Service Controller",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 catch (InvalidOperationException ex)
 {
 MessageBox.Show(String.Format("{0} {1}", ex.Message,
 ex.InnerException != null ? ex.InnerException.Message:
 String.Empty), MessageBoxButton.OK, MessageBoxImage.Error);
 }
 finally
 {
 this.Cursor = oldCursor;
 }
}

protected void OnExit(object sender, RoutedEventArgs e) =>
 Application.Current.Shutdown();

protected void OnRefresh_Click(object sender, RoutedEventArgs e) =>
 RefreshServiceList();

Because the action of controlling the services can take some time, the cursor is switched to the wait cursor in the first statement. Then a ServiceController method is called depending on the pressed button. With the WaitForStatus method, you are waiting to confirm that the service changes the status to the requested value, but the wait maximum is only 10 seconds. After that, the information in the ListBox is refreshed, and the selected index is set to the same value as it was before. The new status of this service is then displayed.

Because the application requires administrative privileges, just as most services require that for starting and stopping, an application manifest with the requestedExecutionLevel set to requireAdministrator is added to the project (application manifest file ServiceControlWPF/app.manifest):

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly manifestVersion="1.0"

 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
 <requestedExecutionLevel level="requireAdministrator"
 uiAccess="false" />
 </requestedPrivileges>
 </security>
 </trustInfo>
</asmv1:assembly>

Figure 39.15 shows the completed, running application.

[image: Screenshot shows mainwindow page divided into left and right columns. Left column displays various services and selects quoteservice. Right column displays six buttons and selects start, pause and continue buttons.]

Figure 39.15

Troubleshooting and Event Logging

Troubleshooting services is different from troubleshooting other types of applications. This section touches on some service issues, problems specific to interactive services, and event logging.

The best way to start building a service is to create an assembly with the functionality you want and a test client, before the service is actually created. Here, you can do normal debugging and error handling. As soon as the application is running, you can build a service by using this assembly. Of course, there might still be problems with the service:

	Don’t display errors in a message box from the service (except for interactive services that are running on the client system). Instead, use the event logging service to write errors to the event log. Of course, in the client application that uses the service, you can display a message box to inform the user about errors.

	The service cannot be started from within a debugger, but a debugger can be attached to the running service process. Open the solution with the source code of the service and set breakpoints. From the Visual Studio Debug menu, select Processes and attach the running process of the service.

	Performance Monitor can be used to monitor the activity of services, and you can add your own performance objects to the service. This can add some useful information for debugging. For example, with the Quote service, you could set up an object to provide the total number of quotes returned, the time it takes to initialize, and so on.

Services can report errors and other information by adding events to the event log. A service class derived from ServiceBase automatically logs events when the AutoLog property is set to true. The ServiceBase class checks this property and writes a log entry at start, stop, pause, and continue requests.

Figure 39.16 shows an example of a log entry from a service.

[image: Screenshot shows event properties-event 0, service 1 window displaying details such as log name, source, event ID, level, user, opcode, logged, task category, keywords and computer.]

Figure 39.16

NOTE You can read more about event logging and how to write custom events in Chapter 20, “Diagnostics and Application Insights.”

Summary

In this chapter, you have seen the architecture of Windows Services and how you can create them with the .NET Framework. Applications can start automatically at boot time with Windows Services, and you can use a privileged system account as the user of the service. Windows Services are built from a main function, a service-main function, and a handler; and you looked at other relevant programs in regard to Windows Services, such as a service control program and a service installation program.

The .NET Framework has great support for Windows Services. All the plumbing code that is necessary for building, controlling, and installing services is built into the .NET Framework classes in the System .ServiceProcess namespace. By deriving a class from ServiceBase, you can override methods that are invoked when the service is paused, resumed, or stopped. For installation of services, the classes ServiceProcessInstaller and ServiceInstaller deal with all registry configurations needed for services. You can also control and monitor services by using ServiceController.

In the next chapter you can read about ASP.NET Core 1.0, a technology that makes use of a web server that itself is typically running within a Windows Service (if the server is used on the Windows operating system).

40
ASP.NET Core

What’s In This Chapter?

	Understanding ASP.NET Core 1.0 and Web Technologies

	Using Static Content

	Working with HTTP Request and Response

	Using Dependency Injection with ASP.NET

	Defining Custom Simple Routing

	Creating Middleware Components

	Using Sessions for State Management

	Reading Configuration Settings

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter contains this example project: WebSampleApp.

ASP.NET Core 1.0

After 15 years of ASP.NET, ASP.NET Core 1.0 is a complete rewrite of ASP.NET. It features modular programming, is fully open sourced, is lightweight for best use on the cloud, and is available to non-Microsoft platforms.

A full rewrite of ASP.NET gives a lot of advantages, but this also means reworking existing web applications based on older versions of ASP.NET. Is it necessary to rewrite existing web applications to ASP.NET Core 1.0? Let’s try to answer this question.

ASP.NET Web Forms is no longer part of ASP.NET Core 1.0. However, having web applications that include this technology does not mean you have to rewrite them. It’s still possible to maintain legacy applications written with ASP.NET Web Forms with the full framework. ASP.NET Web Forms even received some enhancements with the newest version ASP.NET 4.6, such as asynchronous model binding.

ASP.NET MVC is still part of ASP.NET Core 1.0. Because ASP.NET MVC 6 has been completely rewritten, you need to make some changes to web applications written with ASP.NET MVC 5 or older versions to bring them to the new application stack.

Converting ASP.NET Web Forms to ASP.NET MVC might be a lot of work. ASP.NET Web Forms abstracts HTML and JavaScript from the developer. Using ASP.NET Web Forms, it’s not necessary to know HTML and JavaScript. Instead you use server-side controls with C# code. The server-side controls themselves return HTML and JavaScript. This programming model is similar to the old Windows Forms programming model. With ASP.NET MVC, developers need to know HTML and JavaScript. ASP.NET MVC is based on the Model-View-Controller (MVC) pattern, which makes unit testing easy. Because ASP.NET Web Forms and ASP.NET MVC are based on very different architecture patterns, it can be a huge undertaking to migrate ASP.NET Web Forms applications to ASP.NET MVC. Before taking on this task, you should create a checklist of the advantages and the disadvantages of keeping the old technology with your solution and compare this with the advantages and disadvantages of going to the new technology. You will still be able to work with ASP.NET Web Forms for many years to come.

NOTE My website at http://www.cninnoation.com was originally created with ASP.NET Web Forms. I’ve converted this website with an early version of ASP.NET MVC to this new technology stack. Because my original site already made use of a lot of separate components to abstract the database and service code, it was not really a huge undertaking and was done very fast. I was able to use the database and service code directly from ASP.NET MVC. On the other hand, if I had used Web Forms controls to access the database instead of using my own controls, it would have been a lot more work.

NOTE This book does not cover the legacy technology ASP.NET Web Forms. ASP.NET MVC 5 is also not covered. This book has a focus on new technologies; consequently with regard to web applications, the material is based on ASP.NET 5 and ASP.NET MVC 6. These technologies should be used for new web applications. In case you need to maintain older applications, you should read older editions of this book, such as Professional C# 5.0 and .NET 4.5.1, which covers ASP.NET 4.5, ASP.NET Web Forms 4.5, and ASP.NET MVC 5.

This chapter covers the foundation of ASP.NET Core 1.0, and Chapter 41 explains using ASP.NET MVC 6, a framework that is built on top of ASP.NET Core 1.0.

Web Technologies

Before getting into the foundations of ASP.NET later in this chapter, this section describes core web technologies that are important to know when creating web applications: HTML, CSS, JavaScript, and jQuery.

HTML

HTML is the markup language that is interpreted by web browsers. It defines elements to display various headings, tables, lists, and input elements such as text and combo boxes.

HTML5 has been a W3C recommendation since October 2014 (http://w3.org/TR/html5), and it is already offered by all the major browsers. With the features of HTML5, several browser add-ins (such as Flash and Silverlight) are not required anymore because the things the add-ins do can now be done directly with HTML and JavaScript. Of course, you might still need Flash and Silverlight because not all websites have moved to the new technologies or your users might still be using older browser versions that don’t support HTML5.

HTML5 adds new semantic elements that search engines are better able to use for analyzing the site. A canvas element enables the dynamic use of 2D shapes and images, and video and audio elements make the object element obsolete. With recent additions to the media source (http://w3c.github.io/media-source), adaptive streaming is also offered by HTML; previously this had been an advantage of Silverlight.

HTML5 also defines APIs for drag-and-drop, storage, web sockets, and much more.

CSS

Whereas HTML defines the content of web pages, CSS defines the look. In the earlier days of HTML, for example, the list item tag defined whether list elements should be displayed with a circle, a disc, or a square. Nowadays such information is completely removed from HTML and is instead put into a cascading style sheet (CSS).

With CSS styles, you can use flexible selectors to select HTML elements, and you can define styles for these elements. You can select an element via its ID or its name, and you can define CSS classes that can be referenced from within the HTML code. With newer versions of CSS, you can define quite complex rules for selecting specific HTML elements.

As of Visual Studio 2015, the web project templates make use of Twitter Bootstrap. This is a collection of CSS and HTML conventions, and you can easily adapt different looks and download ready-to-use templates. Visit www.getbootstrap.com for documentation and basic templates.

JavaScript and TypeScript

Not all platforms and browsers can use .NET code, but nearly every browser understands JavaScript. One common misconception about JavaScript is that it has something to do with Java. In fact, only the name is similar because Netscape (the originator of JavaScript) made an agreement with Sun (Sun invented Java) to be allowed to use Java in the name. Nowadays, both of these companies no longer exist. Sun was bought by Oracle, and now Oracle holds the trademark for Java.

Both Java and JavaScript (and C#) have the same roots—the C programming language. JavaScript is a functional programming language that is not object-oriented, although object-oriented capabilities have been added to it.

JavaScript enables accessing the document object model (DOM) from the HTML page, which makes it possible to change elements dynamically on the client.

ECMAScript is the standard that defines the current and upcoming features of the JavaScript language. Because other companies are not allowed to use the term Java with their language implementations, the standard has the name ECMAScript. Microsoft’s implementation of JavaScript had the name JScript. Check http://www.ecmascript.org for the current state and future changes of the JavaScript language.

Even though many browsers don’t support the newest ECMAScript version, you can still write ECMAScript 5 code. Instead of writing JavaScript code, you can use TypeScript. The TypeScript syntax is based on ECMAScript, but it has some enhancements, such as strongly typed code and annotations. You’ll find many similarities between C# and TypeScript. Because the TypeScript compiler compiles to JavaScript, TypeScript can be used in every place where JavaScript is needed. For more information on TypeScript, check http://www.typescriptlang.org.

Scripting Libraries

Beside the JavaScript programming language, you also need scripting libraries to make life easier.

	jQuery (http://www.jquery.org) is a library that abstracts browser differences when accessing DOM elements and reacting to events.

	Angular (http://angularjs.org) is a library based on the MVC pattern for simplifying development and testing with single-page web applications. (Unlike ASP.NET MVC, Angular offers the MVC pattern with client-side code.)

The ASP.NET web project template includes jQuery libraries and Bootstrap. Visual Studio 2015 supports IntelliSense and debugging JavaScript code.

NOTE Styling web applications and writing JavaScript code is not covered in this book. You can read more about HTML and styles in HTML and CSS: Design and Build Websites by John Ducket (Wiley, 2011); and get up to speed with Professional JavaScript for Web Developers by Nicholas C. Zakas (Wrox, 2012).

ASP.NET Web Project

Start by creating an empty ASP.NET Core 1.0 Web Application named WebSampleApp (see Figure 40.1). You start with an empty template and add features as you make your way through this chapter.

[image: Screenshot shows new ASP.NET project-websampleapp window displaying ASP.NET 4.6 templates and ASP.NET 5 templates. It selects empty ASP.NET 5 template and ok button.]

Figure 40.1

NOTE With the sample code download of this chapter, you need to uncomment specific code blocks in the Startup class to activate the features discussed. You can also create the project from scratch. There’s not too much code to write to see all the functionality in action.

After you’ve created the project, you see a solution and a project file named WebSampleApp, which includes a few files and folders (see Figure 40.2).

[image: Screenshot shows solution explorer window displaying folders such as solution items and websampleapp file under src.]

Figure 40.2

The solution includes the global.json configuration file. This file lists the directories of the solution. You can see this with the values of the projects key in the following code snippet. The src directory contains all the projects of the solution with the source code. The test directory is for defining the unit tests, although they don’t exist yet. The sdk setting defines the version number of the SDK used (code file global.json).

{
 "projects": ["src","test"],
 "sdk": {
 "version":"1.0.0-0"
 }
}

Within the project structure, when you open the file Project_Readme.html with a browser, you see some overall information about ASP.NET Core 1.0. You can see a References folder within the project folder. This contains all the referenced NuGet packages. With an empty ASP.NET Web Application project, the only packages referenced are Microsoft.AspNetCore.IISPlatformHandler and Microsoft.AspNetCore.Server.Kestrel.

IISPlatformHandler contains a Module for IIS that maps the IIS infrastructure to ASP.NET Core 1.0. Kestrel is a new web server for ASP.NET Core 1.0 that you can also use on the Linux platform.

You can also find the references for the NuGet packages within the project.json file. (In the following code snippet, they are in the dependencies section.) The frameworks section lists the supported .NET frameworks, such as net452 (.NET 4.5.2) and netstandard1.0 (.NET Core 1.0). You can remove the one you don’t need for hosting. The exclude section lists the files and directories that should not be used for compiling the application. The publishExclude section lists the files and folders that should not be published (code file WebSampleApp/project.json):

{
 "version":"1.0.0-*",
 "compilationOptions": {
 "emitEntryPoint": true
 },

 "dependencies": {
 "NETStandard.Library":"1.0.0-*",
 "Microsoft.AspNetCore.IISPlatformHandler":"1.0.0-*",
 "Microsoft.AspNetCore.Server.Kestrel":"1.0.0-*"
 },

 "frameworks": {
 "net452": { },
 "netstandard1.0": {
 "dependencies": {
 "NETStandard.Library":"1.0.0-*"
 }
 }
 },
 "content": ["hosting.json"]
 "exclude": [
 "wwwroot",
 "node_modules"
],
 "publishExclude": [
 "**.user",
 "**.vspscc"
]
}

You can configure the web server that is used while developing with Visual Studio with the Debug option in Project settings (see Figure 40.3). By default, IIS Express is configured with the port number specified with the Debug settings. IIS Express derives from Internet Information Server (IIS) and offers all the core features of IIS. This makes it easy to develop the web application in practically the same environment where the application will be hosted later (if IIS is used for hosting).

[image: Screenshot shows websampleapp window with selected debug caption with fields such as profile, launch, launch URL, environment variables and app URL. It also selects enable anonymous authentication URL.]

Figure 40.3

To run the application with the Kestrel server, you can select the web profile with the Debug Project settings. The options that are available with the list in the Profile options are the commands listed in project.json.

The settings that you change with the Visual Studio project settings influence the configuration of the launchSettings.json file. With this file you can define some additional configurations such as command line arguments (code file WebSampleApp/Properties/launchsettings.json):

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl":"http://localhost:19879/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName":"IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "Hosting:Environment":"Development"
 }
 },
 "web": {
 "commandName":"web",
 "launchBrowser": true,
 "launchUrl":"http://localhost:5000/",
 "commandLineArgs":"Environment=Development",
 "environmentVariables": {
 "Hosting:Environment":"Development"
 }
 }
 }
}

The Dependencies folder in the project structure in Solution Explorer shows the dependencies on the JavaScript libraries. When you create an empty project, this folder is empty. You add dependencies later in this chapter in the section “Adding Static Content.”

The wwwroot folder is the folder for static files that need to be published to the server. Currently, this folder is empty, but as you work through this chapter you add HTML and CSS files and JavaScript libraries.

A C# source file—Startup.cs—is included with an empty project as well. This file is discussed next.

During the creation of the project, these dependencies and namespaces are needed:

Dependencies

	Microsoft.AspNetCore.Http.Abstractions

	Microsoft.AspNetCore.IISPlatformHandler

	Microsoft.AspNetCore.Server.Kestrel

	Microsoft.AspNetCore.StaticFiles

	Microsoft.AspNetCore.Session

	Microsoft.Extensions.Configuration

	Microsoft.Extensions.Configuration.UserSecrets

	Microsoft.Extensions.Logging

	Microsoft.Extensions.Logging.Console

	Microsoft.Extensions.Logging.Debug

	Microsoft.Extensions.PlatformAbstractions

	Newtonsoft.Json

	System.Globalization

	System.Text.Encodings.Web

	System.Runtime

Namespaces

	Microsoft.AspNetCore.Builder;

	Microsoft.AspNetCore.Hosting;

	Microsoft.AspNetCore.Http;

	Microsoft.Extensions.Configuration

	Microsoft.Extensions.DependencyInjection

	Microsoft.Extensions.Logging

	Microsoft.Extensions.PlatformAbstractions

	Newtonsoft.Json

	System

	System.Globalization

	System.Linq

	System.Text

	System.Text.Encodings.Web

	System.Threading.Tasks

Startup

It’s time to start to get some functionality out of the web application. To get information about the client and return a response, you need to write a response to the HttpContext.

The empty ASP.NET web application template creates a Startup class that contains the following code (code file WebSampleApp/Startup.cs):

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
// etc.

namespace WebSampleApp
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 }

 public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
 {
 app.UseIISPlatformHandler();
 // etc.

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 }

 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseDefaultConfiguration(args)
 .UseStartup<Startup>()
 .Build();
 host.Run();
 }
 }
}

The entry point for the web application is the Main method. With the emitEntryPoint configuration you’ve seen earlier in the project.json configuration file you can define if a Main method should be used. You also defined the Main method with .NET Core console applications created in this book. Only libraries don’t need a Main method.

With the default implementation as it is generated from the Visual Studio template, the web application is configured with the help of a WebHostBuilder instance. Using the WebHostBuilder, the method UseDefaultConfiguration is invoked. This method receives the command-line arguments and creates a configuration that includes the optional hosting file (hosting.json), adds environmental variables, and adds the command-line arguments to the configuration. The method UseStartup defines to use the Startup class, which in turn invokes the methods ConfigureServices and Configure. The last method invoked with the WebApplicationBuilder is the Build method, which returns an object implementing the interface IWebApplication. With the returned application object, the Run method is invoked, which starts the hosting engine; now the server is listening and waiting for requests.

The hosting.json file is used to configure the server (code file WebSampleApp/hosting.json):

{
 "server":"Microsoft.AspNetCore.Server.Kestrel",
 "server.urls":"http://localhost:5000"
}

Because the Startup class is passed to the UseStartup method with a generic template parameter, in turn the methods ConfigureServices and Configure are invoked.

The Configure method receives an internal application builder type via dependency injection that implements the interface IApplicationBuilder. This interface is used to define services used by the application. Calling the Use method of this interface, you can build the HTTP request pipeline to define what should be done in answer to a request. The Run method is an extension method for the interface IApplicationBuilder; it invokes the Use method. This method is implemented via the RunExtensions extension class in the assembly Microsoft.AspNetCore.Http.Abstractions and the namespace Microsoft.AspNetCore.Builder.

The parameter of the Run method is a delegate of type RequestDelegate. This type receives an HttpContext as a parameter, and it returns a Task. With the HttpContext (the context variable in the code snippet), you have access to the request information from the browser (HTTP headers, cookies, and form data) and can send a response. The code snippet returns a simple string—Hello, World!—to the client, as shown in Figure 40.4.

[image: Image described by surrounding text.]

Figure 40.4

NOTE If you’re using Microsoft Edge for testing the web application, you need to enable localhost. Type about:flags in the URL box, and enable the Allow Localhost Loopback option (see Figure 40.5). Instead of using the built-in user interface of Microsoft Edge to set this option, you can also use a command line option: the utility CheckNetIsolation. The command CheckNetIsolation LoopbackExempt -a -n=Microsoft.MicrosoftEdge_8wekyb3d8bbwe enables localhost similarly to using the more friendly user interface for Microsoft Edge. The utility CheckNetIsolation is useful if you want to configure other Windows apps to allow localhost.

[image: Screenshot shows a window displaying developer settings, experimental features such as styling and scrolling.]

Figure 40.5

Adding logging information to your web application is really useful to get more information about what’s going on. For this, the Configure method of the Startup class receives an ILoggerFactory object. With this interface you can add logger providers using the AddProvider method, and you create a logger implementing the ILogger interface with the CreateLogger method. The AddConsole and AddDebug methods shown in the following code snippet are extension methods to add different providers. The AddConsole method adds a provider to write log information to the console, the AddDebug method adds a provider to write log information to the debugger. Using both of these methods without passing argument values, a default is used to configure log messages. The default specifies to write log messages of type information and higher. You can use different overloads to specify other filters for logging, or you can use configuration files to configure logging (code file WebSampleApp/Startup.cs):

public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
 // etc.
 loggerFactory.AddConsole();
 loggerFactory.AddDebug();

 // etc.
}

With the ILogger interface you can write custom log information using the Log method.

Adding Static Content

Usually you don’t want to just send simple strings to the client. By default, simple HTML files and other static content can’t be sent. ASP.NET 5 reduces the overhead as much as possible. Even static files are not returned from the server if you do not enable them.

To enable static files served from the web server, you can add the extension method UseStaticFiles (and comment the previously created Run method):

public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
 app.UseiISPlatformHandler();
 app.UseStaticFiles();

 //etc.
}

As soon as you add this code line with the same capitalization to the Configure method, the smart tag from the editor offers adding the NuGet package Microsoft.AspNet.StaticFiles. Select this, and the NuGet package is downloaded and listed in project.json:

 "dependencies": {
 "Microsoft.AspNetCore.IISPlatformHandler":"1.0.0-*",
 "Microsoft.AspNetCore.Server.Kestrel":"1.0.0-*",
 "Microsoft.AspNetCore.StaticFiles":"1.0.0-*"
 },

The folder where you add static files is the wwwroot folder within the project. You can configure the name of the folder in the project.json file with the webroot setting. If no folder is configured, it’s wwwroot. With the configuration and the NuGet package added, you can add an HTML file to the wwwroot folder (code file WebSampleApp/wwwroot/Hello.html), as shown here:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title></title>
</head>

<body>
 <h1>Hello, ASP.NET with Static Files</h1>
</body>
</html>

Now you make a request to the HTML file from the browser after starting the server—for example, http://localhost:5000/Hello.html. Depending on the configuration you are using, the port number might differ for your project.

NOTE When creating web applications with ASP.NET MVC, you also need to know HTML, CSS, JavaScript, and some JavaScript libraries. As this book’s focus is C# and .NET, the content for these topics is kept to a minimum. I just cover the most important tasks you need to know with ASP.NET MVC and Visual Studio.

Using a JavaScript Package Manager: npm

With web applications, you typically need some JavaScript libraries. Before Visual Studio 2015, JavaScript libraries were available as NuGet packages—similarly to how .NET assemblies are available as NuGet packages. Because the communities around script libraries typically don’t use the NuGet server, they also don’t create NuGet packages. Extra work was required from Microsoft or Microsoft-friendly communities to create NuGet packages for JavaScript libraries. Instead of using NuGet, communities around JavaScript use servers with functionality similar to NuGet.

The Node Package Manager (npm) is a package manager for JavaScript libraries. Originally coming from Node.Js (a JavaScript library for server-side development), npm is strong with server-side scripts. However, more and more client-side scripting libraries are available with npm as well.

Using Visual Studio 2015, you can add npm to the project by adding the NPM Configuration File from the item templates. When you add the item template, the package.json file is added to the project:

{
 "version":"1.0.0",
 "name":"ASP.NET",
 "private":"true",
 "devDependencies": {
 }
}

With the file open within Visual Studio, you can see the npm logo in the editor, as shown in Figure 40.6.

[image: Image described by surrounding text.]

Figure 40.6

NOTE The package.json file is visible in the Solution Explorer only if you click the button Show All Files.

If you start adding JavaScript libraries to the devDependencies section of this file, the npm server is contacted as you type to allow completing the JavaScript library, and to show available version numbers. When you select the version number in the editor, you also get the offer for a ^ and ~ prefix. Without the prefix, exactly the version of the library with the exact name you typed is retrieved from the server. With the ^ prefix, the latest library with the same major version number is retrieved; with the ~ prefix, the latest library with the same minor version number is retrieved.

The following package.json file references a few gulp libraries and the rimraf library. As you save the package.json file, the npm packages are loaded from the server. In the Solution Explorer you can see the npm-loaded libraries in the Dependencies section. The Dependencies section has an npm child node where all the libraries loaded are shown.

{
 "version":"1.0.0",
 "name":"ASP.NET",
 "private":"true",
 "devDependencies": {
 "gulp":"3.9.0",
 "gulp-concat":"2.6.0",
 "gulp-cssmin":"0.1.7",
 "gulp-uglify":"1.2.0",
 "rimraf":"2.4.2"
 }
}

What are these JavaScript libraries referenced good for? gulp is a build system that is discussed in the next section. gulp-concat concatenates JavaScript files; gulp-cssmin minifies CSS files; gulp-uglify minifies JavaScript files; and rimraf allows you to delete files in a hierarchy. Minification removes all unnecessary characters.

After the packages are added, you can easily update or uninstall the package using the npm node within the Dependencies section in Solution Explorer.

Building with Gulp

Gulp is a build system for JavaScript. Whereas npm can be compared to NuGet, gulp can be compared to .NET Development Utility (DNU). JavaScript code is interpreted; why do you need a build system with JavaScript? There are a lot of things to do with HTML, CSS, and JavaScript before putting these files on the server. With a build system, you can convert Syntactically Awesome Stylesheets (SASS) files (CSS with scripting features) to CSS, you can minify and compress files, you can start unit tests for scripts, and you can analyze JavaScript code (for example, with JSHint)—there are a lot useful tasks you can do.

After adding gulp with npm, a Gulp Configuration File can be added using a Visual Studio item template. This template creates the following gulp file (code file MVCSampleApp/gulpfile.js):

/*
This file is the main entry point for defining Gulp tasks and using Gulp plugins.
Click here to learn more. http://go.microsoft.com/fwlink/?LinkId=518007
*/

var gulp = require('gulp');

gulp.task('default', function () {
 // place code for your default task here
});

The editor with the gulp logo is shown in Figure 40.7.

[image: Image described by surrounding text.]

Figure 40.7

Now let’s add some tasks to the gulp file. The first lines define required libraries for this file and assign variables to the scripts. Here, the libraries that have been added with npm are in use. The gulp.task function creates gulp tasks that you can start using the Visual Studio Task Runner Explorer:

"use strict";
var gulp = require("gulp"),
 rimraf = require("rimraf"),
 concat = require("gulp-concat"),
 cssmin = require("gulp-cssmin"),
 uglify = require("gulp-uglify")

var paths = {
 webroot:"./wwwroot/"
};

paths.js = paths.webroot +"js/**/*.js";
paths.minJs = paths.webroot +"js/**/*.min.js";
paths.css = paths.webroot +"css/**/*.css";
paths.minCss = paths.webroot +"css/**/*.min.css";
paths.concatJsDest = paths.webroot +"js/site.min.js";
paths.concatCssDest = paths.webroot +"css/site.min.css";

gulp.task("clean:js", function (cb) {
 rimraf(paths.concatJsDest, cb);
});

gulp.task("clean:css", function (cb) {
 rimraf(paths.concatCssDest, cb);
});

gulp.task("clean", ["clean:js","clean:css"]);

gulp.task("min:js", function () {
 gulp.src([paths.js,"!" + paths.minJs], { base:"." })
 .pipe(concat(paths.concatJsDest))
 .pipe(uglify())
 .pipe(gulp.dest("."));
});

gulp.task("min:css", function () {
 gulp.src([paths.css,"!" + paths.minCss])
 .pipe(concat(paths.concatCssDest))
 .pipe(cssmin())
 .pipe(gulp.dest("."));
});

gulp.task("min", ["min:js","min:css"]);

Visual Studio 2015 offers a Task Runner Explorer (see Figure 40.8) for gulp files. Double-click on a task to start it. You can also map the gulp tasks to Visual Studio commands. This way gulp tasks are started automatically when a project is opened, before or after the build, or when the Clean menu entry is selected within the Build menu.

[image: Screenshot shows task runner explorer window displaying gulpfile, tasks and clean.]

Figure 40.8

NOTE Another JavaScript build system supported by Visual Studio is Grunt. The focus in Grunt is building via configuration, whereas the focus in Gulp is on building via JavaScript code.

Using Client-Side Libraries with Bower

Most client-side JavaScript libraries are available via Bower. Bower is a package manager like npm. Whereas the npm project started with JavaScript libraries for server-side code (although many client-side scripting libraries are also available with npm), Bower offers thousands of JavaScript client libraries.

Bower can be added to an ASP.NET web project by using the item template Bower Configuration File. This template adds the file bower.json as shown here:

{
 "name":"ASP.NET",
 "private": true,
 "dependencies": {
 }
}

Adding Bower to the project also adds the .bowerrc file that configures Bower. By default, when you use the directory setting, the script files (as well as CSS and HTML files that come with the scripting libraries) are copied to the wwwroot/lib directory:

{
 "directory":"wwwroot/lib"
}

NOTE Similar to NPM, you need to click the Show All Files button in the Solution Explorer to see the bower-related files.

Visual Studio 2015 has special support for Bower. Figure 40.9 shows the Bower logo in the editor.

[image: Image described by surrounding text.]

Figure 40.9

If you start adding scripting libraries to the bower.json file, you get IntelliSense by typing both the name of the library and the version number. Similarly to npm, when you save the file, libraries are retrieved from the server and can be found within the Dependencies folder. Because of the configuration within .bowerrc, the files from the scripting libraries are copied to the wwwroot/lib folder (code file MVCSampleApp/.bowerrc):

{
 "name":"ASP.NET",
 "private": true,
 "dependencies": {
 "bootstrap":"3.3.5",
 "jquery":"2.1.4",
 "jquery-validation":"1.14.0",
 "jquery-validation-unobtrusive":"3.2.5"
 }
}

Management of Bower packages is also available with the Manage Bower Packages tool that you can access by clicking the application context menu Manage Bower Packages. This tool is very similar to the NuGet Package Manager; it just makes it easy to manage Bower packages (see Figure 40.10).

[image: Screenshot shows websampleapp window displaying browse page and selects jquery-validation for installation, include prerelease and save changes to bower.json.]

Figure 40.10

Now that the infrastructure is in place, it’s time to get into the HTTP request and response.

Request and Response

With the HTTP protocol, the client makes a request to the server. This request is answered with a response.

The request consists of a header and, in many cases, body information to the server. The server uses the body information to define different results based on the needs of the client. Let’s have a look at what information can be read from the client.

To return an HTML-formatted output to the client, the GetDiv method creates a div element that contains span elements with the passed arguments key and value (code file WebSampleApp/RequestAndResponseSample.cs):

public static string GetDiv(string key, string value) =>
 $"<div>{key}:{value}</div>";

Because such HTML div and span tags are needed to surround strings in following examples, extension methods are created to cover this functionality (code file WebSampleApp/HtmlExtensions.cs):

public static class HtmlExtensions
{
 public static string Div(this string value) =>
 $"<div>{value}</div>";

 public static string Span(this string value) =>
 $"{value}";
}

The method GetRequestInformation uses an HttpRequest object to access Scheme, Host, Path, QueryString, Method, and Protocol properties (code file WebSampleApp/RequestAndResponseSample.cs):

public static string GetRequestInformation(HttpRequest request)
{
 var sb = new StringBuilder();
 sb.Append(GetDiv("scheme", request.Scheme));
 sb.Append(GetDiv("host", request.Host.HasValue ? request.Host.Value :
 "no host"));
 sb.Append(GetDiv("path", request.Path));
 sb.Append(GetDiv("query string", request.QueryString.HasValue ?
 request.QueryString.Value :"no query string"));

 sb.Append(GetDiv("method", request.Method));
 sb.Append(GetDiv("protocol", request.Protocol));

 return sb.ToString();
}

The Configure method of the Startup class is changed to invoke the GetRequestInformation method and pass the HttpRequest via the Request property of the HttpContext. The result is written to the Response object (code file WebSampleApp/Startup.cs):

app.Run(async (context) =>
{
 await context.Response.WriteAsync(
 RequestAndResponseSample.GetRequestInformation(context.Request));
});

Starting the program from Visual Studio results in the following information:

scheme:http
host:localhost:5000
path: /
query string: no query string
method: GET
protocol: HTTP/1.1

Adding a path, such as http://localhost:5000/Index, to the request results in the path value set:

scheme:http
host:localhost:5000
path: /Index
query string: no query string
method: GET
protocol: HTTP/1.1

When you add a query string, such as http://localhost:5000/Add?x=3&y=5, the query string accessing the property QueryString shows up:

query string: ?x=3&y=5

In the next code snippet you use the Path property of the HttpRequest to create a lightweight custom routing. Depending on the path that is set by the client, different methods are invoked (code file WebSampleApp/Startup.cs):

app.Run(async (context) =>
{
 string result = string.Empty;
 switch (context.Request.Path.Value.ToLower())
 {
 case"/header":
 result = RequestAndResponseSample.GetHeaderInformation(context.Request);
 break;
 case"/add":
 result = RequestAndResponseSample.QueryString(context.Request);
 break;
 case"/content":
 result = RequestAndResponseSample.Content(context.Request);
 break;
 case"/encoded":
 result = RequestAndResponseSample.ContentEncoded(context.Request);
 break;
 case"/form":
 result = RequestAndResponseSample.GetForm(context.Request);
 break;
 case"/writecookie":
 result = RequestAndResponseSample.WriteCookie(context.Response);
 break;
 case"/readcookie":
 result = RequestAndResponseSample.ReadCookie(context.Request);
 break;
 case"/json":
 result = RequestAndResponseSample.GetJson(context.Response);
 break;
 default:
 result = RequestAndResponseSample.GetRequestInformation(context.Request);
 break;
 }
 await context.Response.WriteAsync(result);
});

The following sections implement the different methods to show request headers, query strings, and more.

Request Headers

Let’s have a look at what information the client sends within the HTTP header. To access the HTTP header information, the HttpRequest object defines the Headers property. This is of type IHeaderDictionary, and it contains a dictionary with the name of the header and a string array for the values. Using this information, the GetDiv method created earlier is used to write div elements for the client (code file WebSampleApp/RequestAndResponseSample.cs):

public static string GetHeaderInformation(HttpRequest request)
{
 var sb = new StringBuilder();

 IHeaderDictionary headers = request.Headers;
 foreach (var header in request.Headers)
 {
 sb.Append(GetDiv(header.Key, string.Join(";", header.Value)));
 }
 return sb.ToString();
}

The results you see depend on the browser you’re using. Let’s compare a few of them. The following is from Internet Explorer 11 on a Windows 10 touch device:

Connection: Keep-Alive
Accept: text/html,application/xhtml+xml,image/jxr,*.*
Accept-Encoding: gzip, deflate
Accept-Language: en-Us,en;q=0.8,de-AT;q=0.6,de-DE;q=0.4,de;q=0.2
Host: localhost:5000
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; Touch; rv:11.0)
like Gecko

Google Chrome version 47.0 shows this information, including version numbers from AppleWebKit, Chrome, and Safari:

Connection: keep-alive
Accept: text/html,application/xhtml,application/xml;q=0.9,image/webp,*.*;q=0.8
Accept-Encoding: gzip, deflate, sdch
Accept-Language: en-Us;en;q=0.8
Host: localhost:5000
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome 47.0.2526.80 Safari/537.36

And Microsoft Edge comes with this information, including version numbers from AppleWebKit, Chrome, Safari, and Edge:

Connection: Keep-Alive
Accept: text/html,application/xhtml+xml,image/jxr,*.*
Accept-Encoding: gzip, deflate
Accept-Language: en-Us,en;q=0.8,de-AT;q=0.6,de-DE;q=0.4,de;q=0.2
Host: localhost:5000
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML,

What can you get out of this header information?

The Connection header was an enhancement of the HTTP 1.1 protocol. With this header the client can request to keep connections open. Usually with HTML, the client makes multiple requests, e.g. to get the images, CSS, and JavaScript files. The server might honor the request, or it might ignore the request in case the load is too high and it’s better to close the connection.

The Accept header defines the mime formats the browser accepts. The list is in order by the preferred formats. Depending on this information, you might decide to return data with different formats based on the client’s needs. IE prefers HTML followed by XHTML and JXR. Google Chrome has a different list. It prefers these formats: HTML, XHTML, XML, and WEBP. With some of this information, a quantifier is also defined. The browsers used for the output all have *.* at the end of this list to accept all data returned.

The Accept-Language header information shows the languages the user has configured. Using this information, you can return localized information. Localization is discussed in Chapter 28, “Localization.”

NOTE In ancient times, the server kept long lists of browser capabilities. These lists have been used to know what feature is available with which browser. To identify a browser, the agent string from the browser was used to map the capabilities. Over time, browsers lied by giving wrong information, or they even allowed the user to configure the browser name that should be used so that they could get some more features (because browser lists often were not updated on the server). In the past, Internet Explorer (IE) often required different programming than all the other browsers. Microsoft Edge is very different from IE and has more features in common with other vendors’ browsers. That’s why Microsoft Edge shows Mozilla, AppleWebKit, Chrome, Safari, and Edge in the User-Agent string. It’s best not to use this User-Agent string at all for getting a list of features available. Instead, check for specific features you need programmatically.

The header information that you’ve seen so far that was sent with the browser is what is sent for very simple sites. Usually, there will be more detail, such as cookies, authentication information, and also custom information. To see all the information that is sent to and from a server, including the header information, you can use the browser’s developer tools and start a Network session; you’ll see not only all the requests that are sent to the server but also header, body, parameters, cookies, and timing information as shown in Figure 40.11.

[image: Image described by surrounding text.]

Figure 40.11

Query String

You can use the Add method to analyze the query string. This method requires x and y parameters, makes an addition if these parameters are numbers, and returns the calculation within a div tag. The method GetRequestInformation shown in the previous section demonstrated how to access the complete query string using the QueryString property of the HttpRequest object. To access the parts of the query string, you can use the Query property. The following code snippet accesses the values of x and y by using the Get method. This method returns null if the corresponding key is not found in the query string (code file WebSampleApp/RequestAndResponseSample.cs):

public static string QueryString(HttpRequest request)
{
 var sb = new StringBuilder();
 string xtext = request.Query["x"];
 string ytext = request.Query["y"];
 if (xtext == null ∥ ytext == null)
 {
 return"x and y must be set";
 }
 int x, y;
 if (!int.TryParse(xtext, out x))
 {
 return $"Error parsing {xtext}";
 }
 if (!int.TryParse(ytext, out y))
 {
 return $"Error parsing {ytext}";
 }
 return $"{x} + {y} = {x + y}".Div();
}

The IQueryCollection returned from the Query string also enables you to access all the keys using the Keys property, and it offers a ContainsKey method to check whether a specified key is available.

Using the URL http://localhost:5000/add?x=39&y=3 shows this result in the browser:

39 + 3 = 42

Encoding

Returning data that has been entered by a user can be dangerous. Let’s do this with the Content method. The following method directly returns the data that is passed with the query data string (code file WebSampleApp/RequestAndResponseSample.cs):

public static string Content(HttpRequest request) =>
 request.Query["data"];

Invoking this method using the URL http://localhost:5000/content?data=sample, just the string sample is returned. Using the same method, users can also pass HTML content such as http://localhost:5000/content?data=<h1>Heading 1</h1> What’s the result of this? Figure 40.12 shows that the h1 element is interpreted by the browser, and the text is shown with the heading format. There are cases where you want to allow this—for example, when users (maybe not anonymous users) are writing articles for a site.

[image: Screenshot shows an address bar with a link of localhost which displays a text as Heading 1.]

Figure 40.12

Without checking the user input, it is also possible for the users to pass JavaScript such as http://localhost:5000/content?data=<script>alert("hacker");</script>. You can use the JavaScript alert function to make a message box pop up. It’s similarly easy to redirect the user to a different site. When this user input is stored in the site, one user can enter such a script, and all other users who open this page are redirected accordingly.

Returning user-entered data should always be encoded. Let’s have a look at how the result looks with and without encoding. You can do HTML encoding using the HtmlEncoder class as shown in the following code snippet (code file WebSampleApp/RequestResponseSample.cs):

public static string ContentEncoded(HttpRequest request) =>
 HtmlEncoder.Default.Encode(request.Query["data"]);

NOTE Using the HtmlEncoder requires the NuGet package System.Text.Encodings.Web.

When the application is run, the same JavaScript code with encoding is passed using http://localhost:5000/encoded?data=<script>alert("hacker");</script>, and the client just sees the JavaScript code in the browser; it is not interpreted (see Figure 40.13).

[image: Screenshot shows an address bar with a link of localhost which displays Javascript code as <script>alert(“hacker”);>/script<.]

Figure 40.13

The encoded string that is sent looks like the following example—with the character reference less-than sign (<), greater-than sign (>), and quotation mark ("):

<script>alert("hacker");</script>

Form Data

Instead of passing data from the user to the server with a query string, you can use the form HTML element. This example uses an HTTP POST request instead of GET. With a POST request the user data are passed with the body of the request instead of within the query string.

Using form data is defined with two requests. First, the form is sent to the client with a GET request and then the user fills in the form and submits the data with a POST request. The method that is invoked passing the /form path in turn invokes the GetForm or ShowForm method, depending on the HTTP method type (code file WebSampleApp/RequestResponseSample.cs):

public static string GetForm(HttpRequest request)
{
 string result = string.Empty;
 switch (request.Method)
 {
 case"GET":
 result = GetForm();
 break;
 case"POST":
 result = ShowForm(request);
 break;
 default:
 break;
 }
 return result;
}

The form is created with an input element named text1 and a Submit button. Clicking the Submit button invokes the form’s action method with an HTTP method as defined with the method argument:

private static string GetForm() =>
 "<form method=\"post\" action=\"form\">" +
 "<input type=\"text\" name=\"text1\" />" +
 "<input type=\"submit\" value=\"Submit\" />" +
 "</form>";

For reading the form data, the HttpRequest class defines a Form property. This property returns an IFormCollection object that contains all the data from the form that is sent to the server:

private static string ShowForm(HttpRequest request)
{
 var sb = new StringBuilder();
 if (request.HasFormContentType)
 {
 IFormCollection coll = request.Form;
 foreach (var key in coll.Keys)
 {
 sb.Append(GetDiv(key, HtmlEncoder.Default.Encode(coll[key])));
 }
 return sb.ToString();
 }
 else return"no form".Div();
}

Using the /form link, the form is received with the GET request (see Figure 40.14). When you click the Submit button, the form is sent with the POST request, and you can see the text1 key of the form data (see Figure 40.15).

[image: Screenshot shows an address bar with a link of localhost which displays hello in the empty field with a submit button.]

Figure 40.14

[image: Screenshot shows an address bar with a link of localhost which displays text 1 as hello.]

Figure 40.15

Cookies

To remember user data between multiple requests, you can use cookies. Adding a cookie to the HttpResponse object sends the cookie within the HTTP header from the server to the client. By default, a cookie is temporary (not stored on the client), and the browser sends it back to the server if the URL is the same domain where the cookie was coming from. You can set the Path to restrict when the browser returns the cookie. In this case, the cookie is only returned when it comes from the same domain and the path /cookies is used. When you set the Expires property, the cookie is a persistent cookie and thus is stored on the client. When the expiration time passes, the cookie will be removed. However, there’s no guarantee that the cookie isn’t removed earlier (code file WebSampleApp/RequestResponseSample.cs):

public static string WriteCookie(HttpResponse response)
{
 response.Cookies.Append("color","red",
 new CookieOptions
 {
 Path ="/cookies",
 Expires = DateTime.Now.AddDays(1)
 });
 return"cookie written".Div();
}

The cookie can be read again by reading the HttpRequest object. The Cookies property contains all the cookies that are returned by the browser:

public static string ReadCookie(HttpRequest request)
{
 var sb = new StringBuilder();
 IRequestCookieCollection cookies = request.Cookies;
 foreach (var key in cookies.Keys)
 {
 sb.Append(GetDiv(key, cookies[key]));
 }
 return sb.ToString();
}

For testing cookies, you can also use the browser’s developer tools. The tools show all the information about the cookies that are sent and received.

Sending JSON

The server returns more than HTML code; it also returns many different kind of data formats, such as CSS files, images, and videos. The client knows what kind of data it receives with the help of a mime type in the response header.

The method GetJson creates a JSON string from an anonymous object with Title, Publisher, and Author properties. To serialize this object with JSON, the NuGet package NewtonSoft.Json is added, and the namespace NewtonSoft.Json imported. The mime type for the JSON format is application /json. This is set via the ContentType property of the HttpResponse (code file WebSampleApp/RequestResponseSample.cs):

public static string GetJson(HttpResponse response)
{
 var b = new
 {
 Title ="Professional C# 6",
 Publisher ="Wrox Press",
 Author ="Christian Nagel"
 };

 string json = JsonConvert.SerializeObject(b);
 response.ContentType ="application/json";
 return json;
}

NOTE To use the JsonConvert class, the NuGet package Newtonsoft.Json needs to be added.

This is the data returned to the client.

{"Title":"Professional C# 6","Publisher":"Wrox Press",
 "Author":"Christian Nagel"}

NOTE Sending and receiving JSON is covered in Chapter 42, “ASP.NET Web API.”

Dependency Injection

Dependency injection is deeply integrated within ASP.NET Core. This design pattern gives loose coupling as a service is used only with an interface. The concrete type that implements the interface is injected. With the ASP.NET built-in dependency injection mechanism, injection happens via constructors that have arguments of the injected interface type.

Dependency injection separates the service contract and the service implementation. The service can be used without knowing the concrete implementation—just a contract is needed. This allows replacing the service (e.g. logging) in a single place for all using the service.

Let’s have a more detailed look at dependency injection by creating a custom service.

Defining a Service

First, a contract for a sample service is declared. Defining a contract via an interface enables you to separate the service implementation from its use—for example, to use a different implementation for unit testing (code file WebSampleApp/Services/ISampleService.cs):

public interface ISampleService
{
 IEnumerable<string> GetSampleStrings();
}

You implement the interface ISampleService with the class DefaultSampleService (code file WebSampleApp/Services/DefaultSampleService.cs):

public class DefaultSampleService : ISampleService
{
 private List<string> _strings = new List<string> {"one","two","three" };
 public IEnumerable<string> GetSampleStrings() => _strings;
}

Registering the Service

Using the AddTransient method (which is an extension method for IServiceCollection defined in the assembly Microsoft.Extensions.DependencyInjection.Abstractions in the namespace Microsoft.Extensions.DependencyInjection), the type DefaultSampleService is mapped to ISampleService. When you use the ISampleService interface, the DefaultSampleService type is instantiated (code file WebSampleApp/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 services.AddTransient<ISampleService, DefaultSampleService>();
 // etc.
}

The built-in dependency injection service defines several lifetime options. Using the AddTransient method, the service is newly instantiated every time the service is injected.

Using the AddSingleton method, the service is instantiated only once. Every injection makes use of the same instance:

services.AddSingleton<ISampleService, DefaultSampleService>();

The AddInstance method requires you to instantiate a service and pass the instance to this method. This way you’re defining the lifetime of the service:

var sampleService = new DefaultSampleService();
services.AddInstance<ISampleService>(sampleService);

With the fourth option, the lifetime of the service is based on the current context. With ASP.NET MVC, the current context is based on the HTTP request. As long as actions for the same request are invoked, the same instance is used with different injections. With a new request, a new instance is created. For defining a context-based lifetime, the AddScoped method maps the service contract to the service:

services.AddScoped<ISampleService>();

Injecting the Service

After the service is registered, you can inject it. A controller type named HomeController is created in the directory Controllers. The built-in dependency injection framework makes use of constructor injection; thus a constructor is defined that receives an ISampleService interface. The method Index receives an HttpContext and can use this to read request information, and it returns a HTTP status value. Within the implementation, the ISampleService is used to get the strings from the service. The controller adds some HTML elements to put the strings in a list (code file WebSampleApp/Controllers/HomeController.cs):

public class HomeController
{
 private readonly ISampleService _service;
 public HomeController(ISampleService service)
 {
 _service = service;
 }

 public async Task<int> Index(HttpContext context)
 {
 var sb = new StringBuilder();
 sb.Append("");
 sb.Append(string.Join("", _service.GetSampleStrings().Select(
 s => $"{s}").ToArray()));
 sb.Append("");
 await context.Response.WriteAsync(sb.ToString());
 return 200;
 }
}

NOTE This sample controller directly returns HTML code. It’s better to separate the functionality from the user interface and to create the HTML code from a different class—a view. For this separation it’s best to use a framework: ASP.NET MVC. This framework is explained in Chapter 41.

Calling the Controller

To instantiate the controller via dependency injection, the HomeController class is registered with the IServiceCollection services. This time you do not use an interface; thus you need only the concrete implementation of the service type with the AddTransient method call (code file WebSampleApp/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 services.AddTransient<ISampleService, DefaultSampleService>();
 services.AddTransient<HomeController>();
 // etc.
}

The Configure method that contains the route information is now changed to check for the /home path. If this expression returns true, the HomeController is instantiated via dependency injection by calling the GetService method on the registered application services. The IApplicationBuilder interface defines an ApplicationServices property that returns an object implementing IServiceProvider. Here, you can access all the services that have been registered. Using this controller, the Index method is invoked by passing the HttpContext. The status code is written to the response object:

public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
 app.Run(async (context) =>
 {
 // etc.
 if (context.Request.Path.Value.ToLower() =="/home")
 {
 HomeController controller =
 app.ApplicationServices.GetService<HomeController>();
 int statusCode = await controller.Index(context);
 context.Response.StatusCode = statusCode;
 return;
 }
 });
 // etc.
}

Figure 40.16 shows the output of the unordered list when you run the application with a URL to the home address.

[image: Screenshot shows an address bar with a link of localhost which displays one, two and three.]

Figure 40.16

Routing Using Map

With the previous code snippet, the HomeController class was invoked when the path of the URL equals /home. You didn’t pay attention to query strings or subfolders. Of course, you could do this by checking only a subset of the string. However, there’s a much better way. ASP.NET supports subapplications with an extension of the IApplicationBuilder: the Map method.

The following code snippet defines a map to the /home2 path and runs the Invoke method of the HomeController (code file WebSampleApp/Startup.cs):

public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
 // etc.
 app.Map("/home2", homeApp =>
 {
 homeApp.Run(async context =>
 {
 HomeController controller =
 app.ApplicationServices.GetService<HomeController>();
 int statusCode = await controller.Index(context);
 context.Response.StatusCode = statusCode;
 });
 });

 // etc.
}

Instead of using the Map method, you can also use MapWhen. With the following code snippet, the map managed by MapWhen applies when the path starts with /configuration. The remaining path is written to the variable remaining and can be used to differ with the method invocations:

PathString remaining;
app.MapWhen(context =>
 context.Request.Path.StartsWithSegments("/configuration", out remaining),
 configApp =>
 {
 configApp.Run(async context =>
 {
 // etc.
 }
 });

Instead of just using the path, you can also access any other information of the HttpContext, such as the host information of the client (context.Request.Host) or authenticated users (context.User.Identity .IsAuthenticated).

Using Middleware

ASP.NET Core makes it easy to create modules that are invoked before the controller is invoked. This can be used to add header information, verify tokens, build a cache, create log traces, and so on. One middleware module is chained after the other until all connected middleware types have been invoked.

You can create a middleware class by using the Visual Studio item template Middleware Class. With this middleware type, you create a constructor that receives a reference to the next middleware type. RequestDelegate is a delegate that receives an HttpContext as parameter and returns a Task. This is exactly the signature of the Invoke method. Within this method, you have access to request and response information. The type HeaderMiddleware adds a sample header to the response of the HttpContext. As the last action, the Invoke method invokes the next middleware module (code file WebSampleApp/Middleware/HeaderMiddleware.cs):

public class HeaderMiddleware
{
 private readonly RequestDelegate _next;

 public HeaderMiddleware(RequestDelegate next)
 {
 _next = next;
 }

 public Task Invoke(HttpContext httpContext)
 {
 httpContext.Response.Headers.Add("sampleheader",
 new string[] {"addheadermiddleware"});
 return _next(httpContext);
 }
}

For making it easy to configure the middleware type, the extension method UseHeaderMiddleware extends the interface IApplicationBuilder where the method UseMiddleware is called:

public static class HeaderMiddlewareExtensions
{
 public static IApplicationBuilder UseHeaderMiddleware(
 this IApplicationBuilder builder) =>
 builder.UseMiddleware<HeaderMiddleware>();
}

Another middleware type is Heading1Middleware. This type is similar to the previous middleware type; it just writes heading 1 to the response (code file WebSampleApp/Middleware/Heading1Middleware.cs):

public class Heading1Middleware
{
 private readonly RequestDelegate _next;

 public Heading1Middleware(RequestDelegate next)
 {
 _next = next;
 }

 public async Task Invoke(HttpContext httpContext)
 {
 await httpContext.Response.WriteAsync("<h1>From Middleware</h1>");
 await _next(httpContext);
 }
}

public static class Heading1MiddlewareExtensions
{
 public static IApplicationBuilder UseHeading1Middleware(
 this IApplicationBuilder builder) =>
 builder.UseMiddleware<Heading1Middleware>();
}

Now it’s the job of the Startup class and the Configure method to configure all the middleware types. The extension methods are already prepared for invocation (code file WebSampleApp/Startup.cs):

public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
 // etc.

 app.UseHeaderMiddleware();
 app.UseHeading1Middleware();

 // etc.
}

When you run the application, you see the header returned to the client (using the browser’s developer tools), and the heading shows up in every page, no matter which of the previously created links you use (see Figure 40.17).

[image: Screenshot shows an address bar with a link of localhost which displays a title as From Middleware.]

Figure 40.17

Session State

A service that is implemented using middleware is session state. Session state enables temporarily remembering data from the client on the server. Session state itself is implemented as middleware.

Session state is initiated when a user first requests a page from a server. While the user keeps opening pages on the server, the session continues until a timeout (typically 10 minutes) occurs. To keep state on the server while the user navigates to a new page, state can be written to a session. When a timeout is reached, the session data is removed.

To identify a session, on the first request a temporary cookie with a session identifier is created. This cookie is returned from the client with every request to the server until the browser is closed, and then the cookie is deleted. Session identifiers can also be sent in the URL string as an alternative to using cookies.

On the server side, session information can be stored in memory. In a web farm, session state that is stored in memory doesn’t propagate between different systems. With a sticky session configuration, the user always returns to the same physical server. Using sticky sessions, it doesn’t matter that the same state is not available on other systems (with the exception when one server fails). Without sticky sessions, and to also deal with failing servers, options exist to store session state within distributed memory of a SQL server database. Storing session state in distributed memory also helps with process recycling of the server process; recycling kills session state also if you’re using just a single server process.

For using session state with ASP.NET, you need to add the NuGet package Microsoft.AspNet.Session. This package gives the AddSession extension method that can be called within the ConfigureServices method in the Startup class. The parameter enables you to configure the idle timeout and the cookie options. The cookie is used to identify the session. The session also makes use of a service that implements the interface IDistributedCache. A simple implementation is the cache for in-process session state. The method AddCaching adds the following cache service (code file WebSampleApp/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 services.AddTransient<ISampleService, DefaultSampleService>();
 services.AddTransient<HomeController>();
 services.AddCaching();
 services.AddSession(options =>
 options.IdleTimeout = TimeSpan.FromMinutes(10));
}

NOTE Other implementations of IDistributedCache are RedisCache and SqlServerCache in the NuGet packages Microsoft.Extensions.Caching.Redis and Microsoft.Extensions.Caching.SqlServer.

For using the session, you need to configure the session by calling the UseSession extension method. You need to invoke this method before any response is written to the response—such as is done with the UseHeaderMiddleware and UseHeading1Middleware—thus UseSession is called before the other methods. The code that uses session information is mapped to the /session path (code file WebSampleApp/Startup.cs):

public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
 // etc.
 app.UseSession();
 app.UseHeaderMiddleware();
 app.UseHeading1Middleware();

 app.Map("/session", sessionApp =>
 {
 sessionApp.Run(async context =>
 {
 await SessionSample.SessionAsync(context);
 });
 });
 // etc.
}

You can write session state using Setxxx methods, such as SetString and SetInt32. These methods are defined with the ISession interface that is returned from the Session property of the HttpContext. Session data is retrieved using Getxxx methods (code file WebSampleApp/SessionSample.cs):

public static class SessionSample
{
 private const string SessionVisits = nameof(SessionVisits);
 private const string SessionTimeCreated = nameof(SessionTimeCreated);

 public static async Task SessionAsync(HttpContext context)
 {
 int visits = context.Session.GetInt32(SessionVisits) ?? 0;
 string timeCreated = context.Session.GetString(SessionTimeCreated) ??
 string.Empty;
 if (string.IsNullOrEmpty(timeCreated))
 {
 timeCreated = DateTime.Now.ToString("t", CultureInfo.InvariantCulture);
 context.Session.SetString(SessionTimeCreated, timeCreated);
 }
 DateTime timeCreated2 = DateTime.Parse(timeCreated);
 context.Session.SetInt32(SessionVisits, ++visits);
 await context.Response.WriteAsync(
 $"Number of visits within this session: {visits}" +
 $"that was created at {timeCreated2:T};" +
 $"current time: {DateTime.Now:T}");
 }
}

NOTE The sample code uses an invariant culture to store the time when the session was created. The time shown to the user is using a specific culture. It’s a good practice to use invariant cultures storing culture-specific data on the server. Information about invariant cultures and how to set cultures is explained in Chapter 28, “Localization.”

Configuring ASP.NET

With web applications, it’s necessary to store configuration information that can be changed by system administrators—for example, connection strings. In the next chapter you create a data-driven application where a connection string is needed.

Configuration of ASP.NET Core 1.0 is no longer based on the XML configuration files web.config and machine.config as was the case with previous versions of ASP.NET. With the old configuration file, assembly references and assembly redirects were mixed with database connection strings and application settings. This is no longer the case. You’ve seen the project.json file to define assembly references. Connection strings and application settings are not defined there. Application settings are typically stored within appsettings.json, but the configuration is a lot more flexible and you can choose to make your configuration with several JSON or XML files and with environment variables.

A default ASP.NET configuration file—appsettings.json—is added from the item template ASP.NET Configuration File. The item template automatically creates the DefaultConnection setting; the AppSettings have been added later on (code file WebSampleApp/appsettings.json):

{
 "AppSettings": {
 "SiteName":"Professional C# Sample"
 },
 "Data": {
 "DefaultConnection": {
 "ConnectionString":
 "Server=(localdb)\\MSSQLLocalDB;Database=_CHANGE_ME;Trusted_Connection=True;"
 }
 }
}

You need to configure the configuration file that’s used. You do this in the constructor of the Startup class. The ConfigurationBuilder class is used to build the configuration from configuration files. There can be more than one configuration file.

The sample code adds appsettings.json to the ConfigurationBuilder using the extension method AddJsonFile. After the setup of the configuration is done, the configuration files are read using the Build method. The returned IConfigurationRoot result is assigned to the read-only property Configuration, which makes it easy to read configuration information later on (code file WebSampleApp/Startup.cs):

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .AddJsonFile("appsettings.json");

 // etc.
 Configuration = builder.Build();
}

public IConfigurationRoot Configuration { get; }
// etc.

You can use the methods AddXmlFile to add an XML configuration file, AddEnvironmentVariables to add environment variables, and AddCommandLine to add command line arguments to the configuration.

For the configuration files, by default the current directory of the web application is used. In case you need to change the directory, you can invoke the method SetBasePath before invoking the method AddJsonFile. To retrieve the directory of the web application, you can inject the IApplicationEnvironment interface in the constructor and use the ApplicationBasePath property.

Reading the Configuration

The different configuration values are read by mapping the /configuration/appsettings, /configuration/database, and /configuration/secret links (code file WebSampleApp/Startup.cs):

PathString remaining;
app.MapWhen(context =>
 context.Request.Path.StartsWithSegments("/configuration", out remaining),
 configApp =>
 {
 configApp.Run(async context =>
 {
 if (remaining.StartsWithSegments("/appsettings"))
 {
 await ConfigSample.AppSettings(context, Configuration);
 }
 else if (remaining.StartsWithSegments("/database"))
 {
 await ConfigSample.ReadDatabaseConnection(context, Configuration);
 }
 else if (remaining.StartsWithSegments("/secret"))
 {
 await ConfigSample.UserSecret(context, Configuration);
 }
 });
 });

The configuration can now be read by using the indexer of the IConfigurationRoot object. You can access the hierarchical elements of the JSON tree by using a colon (code file WebSampleApp/ConfigSample.cs):

public static async Task AppSettings(HttpContext context,
 IConfigurationRoot config)
{
 string settings = config["AppSettings:SiteName"];
 await context.Response.WriteAsync(settings.Div());
}

This is similar to accessing the database connection string:

public static async Task ReadDatabaseConnection(HttpContext context,
 IConfigurationRoot config)
{
 string connectionString = config["Data:DefaultConnection:ConnectionString"];
 await context.Response.WriteAsync(connectionString.Div());
}

Running the web application accessing the corresponding /configuration URLs returns the values from the configuration file.

Different Configurations Based on the Environment

When running your web application with different environments—for example, during development, testing, and production—you might also use a staging server because it’s likely you are using some different configurations. You don’t want to add test data to the production database.

ASP.NET 4 created transformations for XML files to define the differences from one configuration to the other. This can be done in a simpler way with ASP.NET Core 1.0. For the configuration values that should be different, you can use different configuration files.

The following code snippet adds the JSON configuration files with the environment name—for example, appsettings.development.json or appsettings.production.json (code file WebSampleApp/Startup.cs):

var builder = new ConfigurationBuilder()
 .AddJsonFile("appsettings.json")
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true);

You can configure the environment by setting an environmental variable or application arguments in the project properties as shown in Figure 40.18.

[image: Screenshot shows websampleapp window with selected debug caption with fields such as profile, launch, command, application arguments, working directory, launch URL and environment variables.]

Figure 40.18

To verify the hosting environment programmatically, extension methods are defined for the IHostingEnvironment, such as IsDevelopment, IsStaging, and IsProduction. To test for any environmental name, you can pass a verification string to IsEnvironment:

if (env.IsDevelopment())
{
 // etc.
}

User Secrets

Having the connection string in the configuration file is not a big problem as long as Windows authentication is used. When you store username and password with the connection string, adding the connection string to a configuration file and storing the configuration file along with the source code repository can be a big issue. Having a public repository and storing Amazon keys with the configuration can lead to losing thousands of dollars very quickly. Hackers’ background jobs comb through public GitHub repositories to find Amazon keys to hijack accounts and create virtual machines for making Bitcoins. You can read http://readwrite.com/2014/04/15/amazon-web-services-hack-bitcoin-miners-github to find out more about this situation.

ASP.NET Core 1.0 has some mitigations around this: user secrets. With user secrets, configuration is not stored in a configuration file of the project; it’s stored in a configuration file associated with your account.

With the installation of Visual Studio, the SecretManager is already installed on your system. On other systems, you need to install the NuGet package Microsoft.Extensions.SecretManager.

After the SecretManager is installed and secrets are defined with the application, you can use the command-line tool user-secret to set, remove, and list user secrets from the application.

Secrets are stored in this user-specific location:

%AppData%\Microsoft\UserSecrets

An easy way to manage user secrets is from the Solution Explorer in Visual Studio. Select the project node and open the context menu to select Manage User Secrets. When you select this the first time in the project, it adds a secret identifier to project.json (code file WebSampleApp/project.json):

"userSecretsId":"aspnet5-WebSampleApp-20151215011720"

This identifier represents the same subdirectory you will find in the user-specific UserSecrets folder. The Manage User Secrets command also opens the file secrets.json, where you can add JSON configuration information:

{
 "secret1": "this is a user secret"
}

The user secrets are now added only if the hosting environment is Development (code file WebSampleApp/Startup.cs):

if (env.IsDevelopment())
{
 builder.AddUserSecrets();
}

This way your secrets are not stored in the code repository, and they can be stolen only by hacking your system.

Summary

In this chapter, you explored the foundation of ASP.NET and web applications. You’ve seen tools such as npm, Gulp, and Bower, and how they are integrated with Visual Studio. The chapter discussed dealing with requests from the client and answering with a response. You’ve seen the foundation of ASP.NET with dependency injection and services, and you’ve seen a concrete implementation using dependency injection such as session state. You’ve also seen how configuration information can be stored in different ways, such as JSON configuration for different environments such as development and production, and how to store secrets such as keys to cloud services.

The next chapter shows how ASP.NET MVC 6, which uses the foundation discussed in this chapter, can be used to create web applications.

41
ASP.NET MVC

What’s In This Chapter?

	Features of ASP.NET MVC 6

	Routing

	Creating Controllers

	Creating Views

	Validating User Inputs

	Using Filters

	Working with HTML and Tag Helpers

	Creating Data-Driven Web Applications

	Implementing Authentication and Authorization

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/ professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	MVC Sample App

	Menu Planner

Setting Up Services for ASP.NET MVC 6

Chapter 40, “ASP.NET Core,” showed you the foundation of ASP.NET MVC: ASP.NET Core 1.0 Chapter 40 shows you middleware and how dependency injection works with ASP.NET. This chapter makes use of dependency injection by injecting ASP.NET MVC services.

ASP.NET MVC is based on the MVC (Model-View-Controller) pattern. As shown in Figure 41.1, this standard pattern (a pattern documented in Design Patterns: Elements of Reusable Object-Oriented Software book by the Gang of Four [Addison-Wesley Professional, 1994]) defines a model that implements data entities and data access, a view that represents the information shown to the user, and a controller that makes use of the model and sends data to the view. The controller receives a request from the browser and returns a response. To build the response, the controller can make use of a model to provide some data, and a view to define the HTML that is returned.

[image: Block diagram shows a controller connected to model and view. Controller is provided with an input request and an output response.]

Figure 41.1

With ASP.NET MVC, the controller and model are typically created with C# and .NET code that is run server-side. The view is HTML code with JavaScript and just a little C# code for accessing server-side information.

The big advantage of this separation in the MVC pattern is that you can use unit tests to easily test the functionality. The controller just contains methods with parameters and return values that can be covered easily with unit tests.

Let’s start setting up services for ASP.NET MVC 6. With ASP.NET Core 1.0 dependency injection is deeply integrated as you’ve seen in Chapter 40. You can create an ASP.NET MVC 6 project selecting the ASP.NET Core 1.0 Template Web Application. This template already includes NuGet packages required with ASP.NET MVC 6, and a directory structure that helps with organizing the application. However, here we’ll start with the Empty template (similar to Chapter 40), so you can see what’s all needed to build up an ASP.NET MVC 6 project, without the extra stuff you might not need with your project.

The first project created is named MVCSampleApp. To use ASP.NET MVC with the web application MVCSampleApp, you need to add the NuGet package Microsoft.AspNet.Mvc. With the package in place, you add the MVC services by invoking the extension method AddMvc within the ConfigureServices method (code file MVCSampleApp/Startup.cs):

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
// etc.

namespace MVCSampleApp
{
 public class Startup
 {
 // etc.

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 // etc.

 }
 // etc.
 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseDefaultConfiguration(args)
 .UseStartup<Startup>()
 .Build();
 host.Run();

 }
 }
}

The AddMvc extension method adds and configures several ASP.NET MVC core services, such as configuration features (IConfigureOptions with MvcOptions and RouteOptions); controller factories and controller activators (IControllerFactory, IControllerActivator); action method selectors, invocators, and constraint providers (IActionSelector, IActionInvokerFactory, IActionConstraintProvider); argument binders and model validators (IControllerActionArgumentBinder, IObjectModelValidator); and filter providers (IFilterProvider).

In addition to the core services it adds, the AddMvc method adds ASP.NET MVC services to support authorization, CORS, data annotations, views, the Razor view engine, and more.

Defining Routes

Chapter 40 explains how the Map extension method of the IApplicationBuilder defines a simple route. This chapter shows how the ASP.NET MVC routes are based on this mapping to offer a flexible routing mechanism for mapping URLs to controllers and action methods.

The controller is selected based on a route. A simple way to create the default route is to invoke the method UseMvcWithDefaultRoute in the Startup class (code file MVCSampleApp/Startup.cs):

public void Configure(IApplicationBuilder app)
{
 // etc.
 app.UseIISPlatformHandler();

 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 // etc.
}

NOTE The extension method UseStaticFiles is discussed in Chapter 40. This method requires adding the Microsoft.AspNet.StaticFiles NuGet package.

With this default route, the name of the controller type (without the Controller suffix) and the method name make up the route, such as http://server[:port]/controller/action. You can also use an optional parameter named id, like so: http://server[:port]/controller/action/id. The default name of the controller is Home; the default name of the action method is Index.

The following code snippet shows another way to specify the same default route. The UseMvc method can receive a parameter of type Action<IRouteBuilder>. This IRouteBuilder interface contains a list of routes that are mapped. You define routes using the MapRoute extension method:

app.UseMvc(routes =< with => routes.MapRoute(
 name:"default",
 template:"{controller}/{action}/{id?}",
 defaults: new {controller ="Home", action ="Index"}
));

This route definition is the same as the default one. The template parameter defines the URL; the ? with the id defines that this parameter is optional; the defaults parameter defines the default values for the controller and action part of the URL.

Let’s have a look at this URL:

http://localhost:[port]/UseAService/GetSampleStrings

With this URL, UseAService maps to the name of the controller, because the Controller suffix is automatically added; the type name is UseAServiceController; and GetSampleStrings is the action, which represents a method in the UseAServiceController type.

Adding Routes

There are several reasons to add or change routes. For example, you can modify routes to use actions with the link, to define Home as the default controller, to add entries to the link, or to use multiple parameters.

You can define a route where the user can use links—such as http://<server>/About to address the About action method in the Home controller without passing a controller name—as shown in the following snippet. Notice that the controller name is left out from the URL. The controller keyword is mandatory with the route, but you can supply it with the defaults:

app.UseMvc(routes => routes.MapRoute(
 name:"default",
 template:"{action}/{id?}",
 defaults: new {controller ="Home", action ="Index"}
));

Another scenario for changing the route is shown in the following code snippet. In this snippet, you are adding the variable language to the route. This variable is set to the section within the URL that follows the server name and is placed before the controller—for example, http://server/en/Home/About. You can use this to specify a language:

app.UseMvc(routes => routes.MapRoute(
 name:"default",
 template:"{controller}/{action}/{id?}",
 defaults: new {controller ="Home", action ="Index"}
).MapRoute(
 name:"language",
 template:"{language}/{controller}/{action}/{id?}",
 defaults: new {controller ="Home", action ="Index"}
);

If one route matches and the controller and action method are found, the route is taken; otherwise the next route is selected until one route matches.

Using Route Constraints

When you map the route, you can specify constraints. This way, URLs other than those defined by the constraint are not possible. The following constraint defines that the language parameter can be only en or de by using the regular expression (en)|(de). URLs such as http://<server>/en/Home/About or http://<server>/de/Home/About are valid:

app.UseMvc(routes => routes.MapRoute(
 name:"language",
 template:"{language}/{controller}/{action}/{id?}",
 defaults: new {controller ="Home", action ="Index"},
 constraints: new {language = @"(en)|(de)"}
));

If a link should enable only numbers (for example, to access products with a product number), the regular expression \d+ matches any number of numerical digits, but it must match at least one:

app.UseMvc(routes => routes.MapRoute(
 name:"products",
 template:"{controller}/{action}/{productId?}",
 defaults: new {controller ="Home", action ="Index"},
constraints: new {productId = @"\d+"}
));

Now you’ve seen how routing specifies the controller that is used and the action of the controller. The next section, “Creating Controllers,” covers the details of controllers.

Creating Controllers

A controller reacts to requests from the user and sends a response. As described in this section, a view is not required.

There are some conventions for using ASP.NET MVC. Conventions are preferred over configuration. With controllers you’ll also see some conventions. You can find controllers in the directory Controllers, and the name of the controller class must be suffixed with the name Controller.

Before creating the first controller, create the Controllers directory. Then you can create a controller by selecting this directory in Solution Explorer, select Add ➪ New Item from the context menu, and select the MVC Controller Class item template. The HomeController is created for the route that is specified.

The generated code contains a HomeController class that derives from the base class Controller. This class also contains an Index method that corresponds to the Index action. When you request an action as defined by the route, a method within the controller is invoked (code file MVCSampleApp/Controllers/HomeController.cs):

 public class HomeController : Controller
 {
 public IActionResult Index() => View();
 }

Understanding Action Methods

A controller contains action methods. A simple action method is the Hello method from the following code snippet (code file MVCSampleApp/Controllers/HomeController.cs):

public string Hello() =>"Hello, ASP.NET MVC 6";

You can invoke the Hello action in the Home controller with the link http://localhost:5000/Home/Hello. Of course, the port number depends on your settings, and you can configure it with the web properties in the project settings. When you open this link from the browser, the controller returns just the string Hello, ASP.NET MVC 6; no HTML—just a string. The browser displays the string.

An action can return anything—for example, the bytes of an image, a video, XML or JSON data, or, of course, HTML. Views are of great help for returning HTML.

Using Parameters

You can declare action methods with parameters, as in the following code snippet (code file MVCSampleApp/Controllers/HomeController.cs):

public string Greeting(string name) =>
 HtmlEncoder.Default.Encode($"Hello, {name}");

NOTE The HtmlEncoder requires the NuGet package System.Text.Encodings.Web.

With this declaration, the Greeting action method can be invoked to request this URL to pass a value with the name parameter in the URL: http://localhost:18770/Home/Greeting?name=Stephanie.

To use links that can be better remembered, you can use route information to specify the parameters. The Greeting2 action method specifies the parameter named id.

public string Greeting2(string id) =>
 HtmlEncoder.Default.Encode($"Hello, {id}");

This matches the default route {controller}/{action}/{id?} where id is specified as an optional parameter. Now you can use this link, and the id parameter contains the string Matthias: http://localhost:5000/Home/Greeting2/Matthias.

You can also declare action methods with any number of parameters. For example, you can add the Add action method to the Home controller with two parameters, like so:

public int Add(int x, int y) => x + y;

You can invoke this action with the URL http://localhost:18770/Home/Add?x=4&y=5 to fill the x and y parameters.

With multiple parameters, you can also define a route to pass the values with a different link. The following code snippet shows an additional route defined in the route table to specify multiple parameters that fill the variables x and y (code file MVCSampleApp/Startup.cs):

app.UseMvc(routes =< routes.MapRoute(
 name:"default",
 template:"{controller}/{action}/{id?}",
 defaults: new {controller ="Home", action ="Index"}
).MapRoute(
 name:"multipleparameters",
 template:"{controller}/{action}/{x}/{y}",
 defaults: new {controller ="Home", action ="Add"},
 constraints: new {x = @"\d", y = @"\d"}
));

Now you can invoke the same action as before using this URL: http://localhost:18770/Home/Add/7/2.

NOTE Later in this chapter, in the section “Passing Data to Views,” you see how parameters of custom types can be used and how data from the client can map to properties.

Returning Data

So far, you have returned only string values from the controller. Usually, an object implementing the interface IActionResult is returned.

Following are several examples with the ResultController class. The first code snippet uses the ContentResult class to return simple text content. Instead of creating an instance of the ContentResult class and returning the instance, you can use methods from the base class Controller to return ActionResults. In the following example, the method Content is used to return text content. The Content method enables specifying the content, the MIME type, and encoding (code file MVCSampleApp/Controllers/ResultController.cs):

public IActionResult ContentDemo() =>
 Content("Hello World","text/plain");

To return JSON-formatted data, you can use the Json method. The following sample code creates a Menu object:

public IActionResult JsonDemo()
{
 var m = new Menu
 {
 Id = 3,
 Text ="Grilled sausage with sauerkraut and potatoes",
 Price = 12.90,
 Date = new DateTime(2016, 3, 31),
 Category ="Main"
 };
 return Json(m);
}

The Menu class is defined within the Models directory and defines a simple POCO class with a few properties (code file MVCSampleApp/Models/Menu.cs):

public class Menu
{
 public int Id {get; set;}
 public string Text {get; set;}
 public double Price {get; set;}
 public DateTime Date {get; set;}
 public string Category {get; set;}
}

The client sees this JSON data in the response body. JSON data can easily be consumed as a JavaScript object:

{"Id":3,"Text":"Grilled sausage with sauerkraut and potatoes",
"Price":12.9,"Date":"2016-03-31T00:00:00","Category":"Main"}

Using the Redirect method of the Controller class, the client receives an HTTP redirect request. After receiving the redirect request, the browser requests the link it received. The Redirect method returns a RedirectResult (code file MVCSampleApp/Controllers/ResultController.cs):

public IActionResult RedirectDemo() => Redirect("http://www.cninnovation.com");

You can also build a redirect request to the client by specifying a redirect to another controller and action. RedirectToRoute returns a RedirectToRouteResult that enables specifying route names, controllers, actions, and parameters. This builds a link that is returned to the client with an HTTP redirect request:

public IActionResult RedirectRouteDemo() =>
 RedirectToRoute(new {controller ="Home", action="Hello"});

The File method of the Controller base class defines different overloads that return different types. This method can return FileContentResult, FileStreamResult, and VirtualFileResult. The different return types depend on the parameters used—for example, a string for a VirtualFileResult, a Stream for a FileStreamResult, and a byte array for a FileContentResult.

The next code snippet returns an image. Create an Images folder and add a JPG file. For the next code snippet to work, create an Images folder in the wwwroot directory and add the file Matthias.jpg. The sample code returns a VirtualFileResult that specifies a filename with the first parameter. The second parameter specifies the contentType argument with the MIME type image/jpeg:

public IActionResult FileDemo() =>
 File("~/images/Matthias.jpg","image/jpeg");

The next section shows how to return different ViewResult variants.

Working with the Controller Base Class and POCO Controllers

So far, all the controllers created have been derived from the base class Controller. ASP.NET MVC 6 also supports controllers—known as known as POCO (Plain Old CLR Objects) controllers—that do not derive from this base class. This way you can use your own base class to define your own type hierarchy with controllers.

What do you get out of the Controller base class? With this base class, the controller can directly access properties of the base class. The following table describes these properties and their functionality.

	Property
	Description

	ActionContext
	This property wraps some other properties. Here you can get information about the action descriptor, which contains the name of the action, controller, filters, and method information; the HttpContext, which is directly accessible from the Context property; the state of the model that is directly accessible from the ModelState property, and route information that is directly accessible from the RouteData property.

	Context
	This property returns the HttpContext. With this context you can access the ServiceProvider to access services registered with dependency injection (ApplicationServices property), authentication and user information, request and response information that is also directly accessible from the Request and Response properties, and web sockets (if they are in use).

	BindingContext
	With this property you can access the binder that binds the received data to the parameters of the action method. Binding request information to custom types is discussed later in this chapter in the section “Submitting Data from the Client.”

	MetadataProvider
	You use a binder to bind parameters. The binder can make use of metadata that is associated with the model. Using the MetadataProvider property, you can access information about what providers are configured to deal with metadata information.

	ModelState
	The ModelState property lets you know whether model binding was successful or had errors. In case of errors, you can read the information about what properties resulted in errors.

	Request
	With this property you can access all information about the HTTP request: header and body information, the query string, form data, and cookies. The header information contains a User-Agent string that gives information about the browser and client platform.

	Response
	This property holds information that is returned to the client. Here, you can send cookies, change header information, and write directly to the body. Earlier in this chapter, in the section Startup, you’ve seen how a simple string can be returned to the client by using the Response property.

	Resolver
	The Resolver property returns the ServiceProvider where you can access the services that are registered for dependency injection.

	RouteData
	The RouteData property gives information about the complete route table that is registered in the startup code.

	ViewBag
	You use these properties to send information to the view. This is explained later in the section “Passing Data to Views.”

	ViewData

	TempData
	This property is written to the user state that is shared between multiple requests (whereas data written to ViewBag and ViewData can be written to share information between views and controllers within a single request). By default, TempData writes information to the session state.

	User
	The User property returns information, including identity and claims, about an authenticated user.

A POCO controller doesn’t have the Controller base class, but it’s still important to access such information. The following code snippet defines a POCO controller that derives from the object base class (you can use your own custom type as a base class). To create an ActionContext with the POCO class, you can create a property of this type. The POCOController class uses ActionContext as the name of this property, similar to the way the Controller class does. However, just having a property doesn’t set it automatically. You need to apply the ActionContext attribute. Using this attribute injects the actual ActionContext. The Context property directly accesses the HttpContext property from the ActionContext. The Context property is used from the UserAgentInfo action method to access and return the User-Agent header information from the request (code file MVCSampleApp/Controllers/POCOController.cs):

public class POCOController
{
 public string Index() =>
 "this is a POCO controller";

 [ActionContext]
 public ActionContext ActionContext {get; set;}
 public HttpContext Context => ActionContext.HttpContext;
 public ModelStateDictionary ModelState => ActionContext.ModelState;

 public string UserAgentInfo()
 {
 if (Context.Request.Headers.ContainsKey("User-Agent"))
 {
 return Context.Request.Headers["User-Agent"];
 }
 return"No user-agent information";
 }
}

Creating Views

The HTML code that is returned to the client is best specified with a view. For the samples in this section, the ViewsDemoController is created. The views are all defined within the Views folder. The views for the ViewsDemo controller need a ViewsDemo subdirectory. This is a convention for the views (code file MVCSampleApp/Controllers/ViewsDemoController.cs):

 public ActionResult Index() => View();

NOTE Another place where views are searched is the Shared directory. You can put views that should be used by multiple controllers (and special partial views used by multiple views) into the Shared directory.

After creating the ViewsDemo directory within the Views directory, the view can be created using Add ➪ New Item and selecting the MVC View Page item template. Because the action method has the name Index, the view file is named Index.cshtml.

The action method Index uses the View method without parameters, and thus the view engine searches for a view file with the same name as the action name in the ViewsDemo directory. The View method used in the controller has overloads that enable passing a different view name. In that case, the view engine looks for a view with the name passed to the View method.

A view contains HTML code mixed with a little server-side code, as shown in the following snippet (code file MVCSampleApp/Views/ViewsDemo/Index.cshtml):

@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Index</title>
</head>

<body>
 <div>
 </div>
</body>
</html>

Server-side code is written using the @ sign, which starts the Razor syntax, which is discussed later in this chapter. Before getting into the details of the Razor syntax, the next section shows how to pass data from a controller to a view.

Passing Data to Views

The controller and view run in the same process. The view is directly created from within the controller. This makes it easy to pass data from the controller to the view. To pass data, you can use a ViewDataDictionary. This dictionary stores keys as strings and enables object values. You can use the ViewDataDictionary with the ViewData property of the Controller class—for example, you can pass a string to the dictionary where the key value MyData is used: ViewData["MyData"] ="Hello". An easier syntax uses the ViewBag property. ViewBag is a dynamic type that enables assigning any property name to pass data to the view (code file MVCSampleApp/Controllers/SubmitDataController.cs):

public IActionResult PassingData()
{
 ViewBag.MyData ="Hello from the controller";
 return View();
}

NOTE Using dynamic types has the advantage that there is no direct dependency from the view to the controller. Dynamic types are explained in detail in Chapter 16, “Reflection, Metadata, and Dynamic Programming.”

From within the view, you can access the data passed from the controller in a similar way as in the controller. The base class of the view (WebViewPage) defines a ViewBag property (code file MVCSampleApp/Views/ViewsDemo/PassingData.cshtml):

<div>
 <div>@ViewBag.MyData</div>
</div>

Understanding Razor Syntax

As discussed earlier when you were introduced to views, the view contains both HTML and server-side code. With ASP.NET MVC you can use Razor syntax to write C# code in the view. Razor uses the @ character as a transition character. Starting with @, C# code begins.

With Razor you need to differentiate statements that return a value and methods that don’t. A value that is returned can be used directly. For example, ViewBag.MyData returns a string. The string is put directly between the HTML div tags as shown here:

<div>@ViewBag.MyData</div>

When you’re invoking methods that return void, or specifying some other statements that don’t return a value, you need a Razor code block. The following code block defines a string variable:

@{
 string name ="Angela";
}

You can now use the variable with the simple syntax; you just use the transition character @ to access the variable:

<div>@name</div>

With the Razor syntax, the engine automatically detects the end of the C# code when it finds an HTML element. There are some cases in which the end of the C# code cannot be detected automatically. You can resolve this by using parentheses as shown in the following example to mark a variable, and then the normal text continues:

<div>@(name), Stephanie</div>

Another way to start a Razor code block is with the foreach statement:

@foreach(var item in list)
{
 The item name is @item.
}

NOTE Usually text content is automatically detected with Razor—for example, Razor detects an opening angle bracket or parentheses with a variable. There are a few cases in which this does not work. Here, you can explicitly use @: to define the start of text.

Creating Strongly Typed Views

Passing data to views, you’ve seen the ViewBag in action. There’s another way to pass data to a view—pass a model to the view. Using models allows you to create strongly typed views.

The ViewsDemoController is now extended with the action method PassingAModel. The following example creates a new list of Menu items, and this list is passed as the model to the View method of the Controller base class (code file MVCSampleApp/Controllers/ViewsDemoController.cs):

public IActionResult PassingAModel()
{
 var menus = new List<Menu>
 {
 new Menu
 {
 Id=1,
 Text="Schweinsbraten mit Knödel und Sauerkraut",
 Price=6.9,
 Category="Main"
 },
 new Menu
 {
 Id=2,
 Text="Erdäpfelgulasch mit Tofu und Gebäck",
 Price=6.9,
 Category="Vegetarian"
 },
 new Menu
 {
 Id=3,
 Text="Tiroler Bauerngröst'l mit Spiegelei und Krautsalat",
 Price=6.9,
 Category="Main"
 }
 };
 return View(menus);
}

When model information is passed from the action method to the view, you can create a strongly typed view. A strongly typed view is declared using the model keyword. The type of the model passed to the view must match the declaration of the model directive. In the following code snippet, the strongly typed view declares the type IEnumerable<Menu>, which matches the model type. Because the Menu class is defined within the namespace MVCSampleApp.Models, this namespace is opened with the using keyword.

The base class of the view that is created from the .cshtml file derives from the base class RazorPage. With a model in place, the base class is of type RazorPage<TModel>; with the following code snippet the base class is RazorPage<IEnumerable<Menu>>. This generic parameter in turn defines a Model property of type IEnumerable<Menu>. With the code snippet, the Model property of the base class is used to iterate through the Menu items with @foreach and displays a list item for every menu (code file MVCSampleApp/ViewsDemo/PassingAModel.cshtml):

@using MVCSampleApp.Models
@model IEnumerable<Menu>
@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>PassingAModel</title>
</head>

<body>
 <div>

 @foreach (var item in Model)
 {
 @item.Text
 }

 </div>
</body>
</html>

You can pass any object as the model—whatever you need with the view. For example, when you’re editing a single Menu object, you’d use a model of type Menu. When you’re showing or editing a list, you can use IEnumerable<Menu>.

When you run the application showing the defined view, you see a list of menus in the browser, as shown in Figure 41.2.

[image: Screenshot shows passingamodel titlebar along with address bar displaying three types of models.]

Figure 41.2

Defining the Layout

Usually many pages of web applications share some of the same content—for example, copyright information, a logo, and a main navigation structure. Until now, all your views have contained complete HTML content, but there’s an easier way to managed the shared content. This is where layout pages come into play.

To define a layout, you set the Layout property of the view. For defining default properties for all views, you can create a view start page. You need to put this file into the Views folder, and you can create it using the item template MVC View Start Page. This creates the file _ViewStart.cshtml (code file MVCSampleApp/Views/_ViewStart.cshtml):

@{
 Layout ="_Layout";
}

For all views that don’t need a layout, you can set the Layout property to null:

@{
 Layout = null;
}

Using a Default Layout Page

You can create the default layout page using the item template MVC View Layout Page. You can create this page in the Shared folder so that it is available for all views from different controllers. The item template MVC View Layout Page creates the following code:

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>

<body>
 <div>
 @RenderBody()
 </div>
</body>
</html>

The layout page contains the HTML content that is common to all pages (for example, header, footer, and navigation) that use this layout page. You’ve already seen how views and controllers can communicate with the ViewBag. The same mechanism can be used with the layout page. You can define the value for ViewBag.Title within a content page; from the layout page, it is shown in the preceding code snippet within the HTML title element. The RenderBody method of the base class RazorPage renders the content of the content page and thus defines the position in which the content should be placed.

With the following code snippet, the generated layout page is updated to reference a style sheet and to add header, footer, and navigation sections to every page. environment, asp-controller, and asp-action are Tag Helpers that create HTML elements. Tag Helpers are discussed later in this chapter in the “Helpers” section (code file MVCSampleApp/Views/Shared/_Layout.cshtml):

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <environment names="Development">
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="~/css/site.min.css"
 asp-append-version="true" />
 </environment>
 <title>@ViewBag.Title - My ASP.NET Application</title>
</head>

<body>
 <div class="container">
 <header>
 <h1>ASP.NET MVC Sample App</h1>
 </header>
 <nav>

 <a asp-controller="ViewsDemo" asp-action="LayoutSample">
 Layout Sample
 <a asp-controller="ViewsDemo" asp-action="LayoutUsingSections">
 Layout Using Sections

 </nav>
 <div>
 @RenderBody()
 </div>
 <hr />
 <footer>
 <p>
 <div>Sample Code for Professional C#</div>
 © @DateTime.Now.Year - My ASP.NET Application
 </p>
 </footer>
 </div>
</body>
</html>

A view is created for the action LayoutSample (code file MVCSampleApp/Views/ViewsDemo/LayoutSample.cshtml). This view doesn’t set the Layout property and thus uses the default layout. The following code snippet sets ViewBag.Title, which is used within the HTML title element in the layout:

@{
 ViewBag.Title ="Layout Sample";
}
<h2>LayoutSample</h2>
<p>
 This content is merged with the layout page
</p>

When you run the application now, the content from the layout and the view is merged, as shown in Figure 41.3.

[image: Screenshot shows title bar along with address bar displaying title as ASP.NET MVC Sample App with two hyperlinks such as layout sample and layout using sections. It also displays subtitle layoutsample.]

Figure 41.3

Using Sections

Rendering the body and using the ViewBag is not the only way to exchange data between the layout and the view. With section areas you can define where the named content should be placed within a view. The following code snippet makes use of a section named PageNavigation. Such sections are required by default, and loading the view fails if the section is not defined. When the required parameter is set to false, the section becomes optional (code file MVCSampleApp/Views/Shared/_Layout.cshtml):

<!-- etc. -->
<div>
 @RenderSection("PageNavigation", required: false)
</div>
<div>
 @RenderBody()
</div>
<!-- etc. -->

Within the view page, the section keyword defines the section. The position where the section is placed is completely independent from the other content. The view doesn’t define the position within the page; this is defined by the layout (code file MVCSampleApp/Views/ViewsDemo/LayoutUsingSections.cshtml):

@{
 ViewBag.Title ="Layout Using Sections";
}
<h2>Layout Using Sections</h2>
Main content here
@section PageNavigation
{
 <div>Navigation defined from the view</div>

 Nav1
 Nav2

}

When you run the application, the content from the view and the layout are merged according to the positions defined by the layout, as shown in Figure 41.4.

[image: Screenshot shows title bar along with address bar displaying title as ASP.NET MVC Sample App with two hyperlinks such as layout sample and layout using sections with two navigations. It also displays subtitle layout using sections.]

Figure 41.4

NOTE Sections aren’t used only to place some content within the body of an HTML page; they are also useful for allowing the view to place something in the head—for example, metadata from the page.

Defining Content with Partial Views

Whereas layouts give an overall definition for multiple pages from the web application, you can use partial views to define content within views. A partial view doesn’t have a layout.

Other than that, partial views are similar to normal views. Partial views use the same base class as normal views, and they have a model.

Following is an example of partial views. Here you start with a model that contains properties for independent collections, events, and menus as defined by the class EventsAndMenusContext (code file MVCSampleApp/Models/EventsAndMenusContext.cs):

public class EventsAndMenusContext
{
 private IEnumerable<Event> events = null;
 public IEnumerable<Event> Events
 {
 get
 {
 return events ?? (events = new List<Event>()
 {
 new Event
 {
 Id=1,
 Text="Formula 1 G.P. Australia, Melbourne",
 Day=new DateTime(2016, 4, 3)
 },
 new Event
 {
 Id=2,
 Text="Formula 1 G.P. China, Shanghai",
 Day = new DateTime(2016, 4, 10)
 },
 new Event
 {
 Id=3,
 Text="Formula 1 G.P. Bahrain, Sakhir",
 Day = new DateTime(2016, 4, 24)
 },
 new Event
 {
 Id=4,
 Text="Formula 1 G.P. Russia, Socchi",
 Day = new DateTime(2016, 5, 1)
 }
 });
 }
 }

 private List<Menu> menus = null;
 public IEnumerable<Menu> Menus
 {
 get
 {
 return menus ?? (menus = new List<Menu>()
 {
 new Menu
 {
 Id=1,
 Text="Baby Back Barbecue Ribs",
 Price=16.9,
 Category="Main"
 },
 new Menu
 {
 Id=2,
 Text="Chicken and Brown Rice Piaf",
 Price=12.9,
 Category="Main"
 },
 new Menu
 {
 Id=3,
 Text="Chicken Miso Soup with Shiitake Mushrooms",
 Price=6.9,
 Category="Soup"
 }
 });
 }
 }
}

The context class is registered with the dependency injection startup code to have the type injected with the controller constructor (code file MVCSampleApp/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
services.AddMvc();
services.AddScoped<EventsAndMenusContext>();
}

This model will now be used with partial view samples in the following sections, a partial view that is loaded from server-side code, as well as a view that is requested using JavaScript code on the client.

Using Partial Views from Server-Side Code

In the ViewsDemoController class, the constructor is modified to inject the EventsAndMenusContext type (code file MVCSampleApp/Controllers/ViewsDemoController.cs):

public class ViewsDemoController : Controller
{
 private EventsAndMenusContext _context;
 public ViewsDemoController(EventsAndMenusContext context)
 {
 _context = context;
 }
 // etc.

The action method UseAPartialView1 passes an instance of EventsAndMenus to the view (code file MVCSampleApp/Controllers/ViewsDemoController.cs):

public IActionResult UseAPartialView1() => View(_context);

The view page is defined to use the model of type EventsAndMenusContext. You can show a partial view by using the HTML Helper method Html.PartialAsync. This method returns a Task<HtmlString>. With the sample code that follows, the string is written as content of the div element using the Razor syntax. The first parameter of the PartialAsync method accepts the name of the partial view. With the second parameter, the PartialAsync method enables passing a model. If no model is passed, the partial view has access to the same model as the view. Here, the view uses the model of type EventsAndMenusContext, and the partial view just uses a part of it with the type IEnumerable<Event> (code file MVCSampleApp/Views/ViewsDemo/UseAPartialView1.cshtml):

@model MVCSampleApp.Models.EventsAndMenusContext
@{
 ViewBag.Title ="Use a Partial View";
 ViewBag.EventsTitle ="Live Events";
}
<h2>Use a Partial View</h2>
<div>this is the main view</div>
<div>
 @await Html.PartialAsync("ShowEvents", Model.Events)
</div>

Instead of using an async method, you can use the synchronous variant Html.Partial. This is an extension method that returns an HtmlString.

Another way to render a partial view within the view is to use the HTML Helper method Html.RenderPartialAsync, which is defined to return a Task. This method directly writes the partial view content to the response stream. This way, you can use RenderPartialAsync within a Razor code block.

You create the partial view similar to the way you create a normal view. You have access to the model and also to the dictionary that is accessed by using the ViewBag property. A partial view receives a copy of the dictionary to receive the same dictionary data that can be used (code file MVCSampleApp/Views/ViewsDemo/ShowEvents.cshtml):

@using MVCSampleApp.Models
@model IEnumerable<Event>
<h2>
 @ViewBag.EventsTitle
</h2>
<table>
 @foreach (var item in Model)
 {
 <tr>
 <td>@item.Day.ToShortDateString()</td>
 <td>@item.Text</td>
 </tr>
 }
</table>

When you run the application, the view, partial view, and layout are rendered, as shown in Figure 41.5.

[image: Screenshot shows title bar along with address bar displaying title as ASP.NET MVC Sample App with two hyperlinks such as layout sample and layout using sections. It also displays subtitles use a partial view and live events.]

Figure 41.5

Returning Partial Views from the Controller

So far the partial view has been loaded directly without the interaction with a controller, but you can also use controllers to return a partial view.

In the following code snippet, two action methods are defined within the class ViewsDemoController. The first action method UsePartialView2 returns a normal view; the second action method ShowEvents returns a partial view using the base class method PartialView. The partial view ShowEvents was already created and used previously, and it is used here. With the method PartialView a model containing the event list is passed to the partial view (code file MVCSampleApp/Controllers/ViewDemoController.cs):

public ActionResult UseAPartialView2() => View();

public ActionResult ShowEvents()
{
 ViewBag.EventsTitle ="Live Events";
 return PartialView(_context.Events);
}

When the partial view is offered from the controller, the partial view can be called directly from client-side code. The following code snippet makes use of jQuery: An event handler is linked to the click event of a button. Inside the event handler, a GET request is made to the server with the jQuery load function to request /ViewsDemo/ShowEvents. This request returns a partial view, and the result from the partial view is placed within the div element named events (code file MVCSampleApp/Views/ViewsDemo/UseAPartialView2.cshtml):

@model MVCSampleApp.Models.EventsAndMenusContext
@{
 ViewBag.Title ="Use a Partial View";
}
<script src="~/lib/jquery/dist/jquery.js"></script>
<script>
 $(function () {
 $("#getEvents").click(function () {
 $("#events").load("/ViewsDemo/ShowEvents");
 });
 });
</script>
<h2>Use a Partial View</h2>
<div>this is the main view</div>
<button id="FileName_getEvents">Get Events</button>
<div id="FileName_events">
</div>

Working with View Components

ASP.NET MVC 6 offers a new alternative to partial views: view components. View components are very similar to partial views; the main difference is that view components are not related to a controller. This makes it easy to use them with multiple controllers. Examples of where view components are really useful are dynamic navigation of menus, a login panel, or sidebar content in a blog. These scenarios are useful independent of a single controller.

Like controllers and views, view components have two parts. With view components the controller functionality is taken over by a class that derives from ViewComponent (or a POCO class with the attribute ViewComponent). The user interface is defined similarly to a view, but the method to invoke the view component is different.

The following code snippet defines a view component that derives from the base class ViewComponent. This class makes use of the EventsAndMenusContext type that was earlier registered in the Startup class to be available with dependency injection. This works similarly to the controllers with constructor injection. The InvokeAsync method is defined to be called from the view that shows the view component. This method can have any number and type of parameters, as the method defined by the IViewComponentHelper interface defines a flexible number of parameters using the params keyword. Instead of using an async method implementation, you can synchronously implement this method returning IViewComponentResult instead of Task<IViewComponentResult>. However, typically the async variant is the best to use—for example, for accessing a database. The view component needs to be stored in a ViewComponents directory. This directory itself can be placed anywhere within the project (code file MVCSampleApp/ViewComponents/EventListViewComponent.cs):

public class EventListViewComponent : ViewComponent
{
 private readonly EventsAndMenusContext _context;
 public EventListViewComponent(EventsAndMenusContext context)
 {
 _context = context;
 }

 public Task<IViewComponentResult> InvokeAsync(DateTime from, DateTime to)
 {
 return Task.FromResult<IViewComponentResult>(
 View(EventsByDateRange(from, to)));
 }

 private IEnumerable<Event> EventsByDateRange(DateTime from, DateTime to)
 {
 return _context.Events.Where(e => e.Day >= from && e.Day <= to);
 }
}

The user interface for the view component is defined within the following code snippet. The view for the view component can be created with the item template MVC View Page; it uses the same Razor syntax. Specifically, it must be put into the Components/[viewcomponent] folder—for example, Components/EventList. For the view component to be available with all the controls, you need to create the Components folder in the Shared folder for the views. When you’re using a view component only from one specific controller, you can put it into the views controller folder instead. What’s different with this view, though, is that it needs to be named default.cshtml. You can create other view names as well; you need to specify these views using a parameter for the View method returned from the InvokeAsync method (code file MVCSampleApp/Views/Shared/Components/EventList/default.cshtml):

@using MVCSampleApp.Models;
@model IEnumerable<Event>

<h3>Formula 1 Calendar</h3>

 @foreach (var ev in Model)
 {
 <div>@ev.Day.ToString("D")</div><div>@ev.Text</div>
 }

Now as the view component is completed, you can show it by invoking the InvokeAsync method. Component is a dynamically created property of the view that returns an object implementing IViewComponentHelper. IViewComponentHelper allows you to invoke synchronous or asynchronous methods such as Invoke, InvokeAsync, RenderInvoke, and RenderInvokeAsync. Of course you can only invoke these methods that are implemented by the view component, and only use the parameters accordingly (code file MVCSampleApp/Views/ViewsDemo/UseViewComponent.cshtml):

@{
 ViewBag.Title ="View Components Sample";
}
<h2>@ViewBag.Title</h2>
<p>
 @await Component.InvokeAsync("EventList", new DateTime(2016, 4, 10),
 new DateTime(2016, 4, 24))
</p>

Running the application, you can see the view component rendered as shown in Figure 41.6.

[image: Screenshot shows title bar along with address bar displaying title as ASP.NET MVC Sample App with two hyperlinks layout sample and layout using sections with subtitle view components sample and formula 1 calendar details.]

Figure 41.6

Using Dependency Injection in Views

In case a service is needed directly from within a view, you can inject it using the inject keyword:

@using MVCSampleApp.Services
@inject ISampleService sampleService
<p>
 @string.Join("*", sampleService.GetSampleStrings())
</p>

When you do this, it’s a good idea to register services using the AddScoped method. As previously mentioned, registering a service that way means it’s only instantiated once for one HTTP request. Using AddScoped, injecting the same service within a controller and the view, it is only instantiated once for a request.

Importing Namespaces with Multiple Views

All the previous samples for views have used the using keyword to open all the namespaces needed. Instead of opening the namespaces with every view, you can use the Visual Studio item template MVC View Imports Page to create a file (_ViewImports.cshml) that defines all using declarations (code file MVCSampleApp/Views/_ViewImports.cshtml):

@using MVCSampleApp.Models
@using MVCSampleApp.Services

With this file in place, there’s no need to add all the using keywords to all the views.

Submitting Data from the Client

Until now you used only HTTP GET requests from the client to retrieve HTML code from the server. What about sending form data from the client?

To submit form data, you create the view CreateMenu for the controller SubmitData. This view contains an HTML form element that defines what data should be sent to the server. The form method is declared as an HTTP POST request. The input elements that define the input fields all have names that correspond to the properties of the Menu type (code file MVCSampleApp/Views/SubmitData/CreateMenu.cshtml):

@{
 ViewBag.Title ="Create Menu";
}
<h2>Create Menu</h2>
<form action="/SubmitData/CreateMenu" method="post">
<fieldset>
 <legend>Menu</legend>
 <div>Id:</div>
 <input name="id" />
 <div>Text:</div>
 <input name="text" />
 <div>Price:</div>
 <input name="price" />
 <div>Category:</div>
 <input name="category" />
 <div></div>
 <button type="submit">Submit</button>
</fieldset>
</form>

Figure 41.7 shows the opened page within the browser.

[image: Screenshot shows title bar along with address bar displaying ASP.NET MVC Sample App, create menu with empty fields menu id, text, price and category. It also displays submit button.]

Figure 41.7

Within the SubmitData controller, two CreateMenu action methods are created: one for an HTTP GET request and another for an HTTP POST request. Because C# has different methods with the same name, it’s required that the parameter numbers or types are different. Of course, this requirement is the same with action methods. Action methods also need to differ with the HTTP request method. By default, the request method is GET; when you apply the attribute HttpPost, the request method is POST. For reading HTTP POST data, you could use information from the Request object . However, it’s much simpler to define the CreateMenu method with parameters. The parameters are matched with the name of the form fields (code file MVCSampleApp/Controllers/SubmitDataController.cs):

public IActionResult Index() => View();

public IActionResult CreateMenu() => View();

[HttpPost]
public IActionResult CreateMenu(int id, string text, double price,
 string category)
{
 var m = new Menu { Id = id, Text = text, Price = price };
 ViewBag.Info =
 $"menu created: {m.Text}, Price: {m.Price}, category: {m.Category}";
 return View("Index");
}

To display the result, just the value of the ViewBag.Info is shown (code file MVCSampleApp/Views/SubmitData/Index.cshtml):

@ViewBag.Info

Model Binder

Instead of using multiple parameters with the action method, you can also use a type that contains properties that match the incoming field names (code file MVCSampleApp/Controllers/SubmitDataController.cs):

[HttpPost]
public IActionResult CreateMenu2(Menu m)
{
 ViewBag.Info =
 $"menu created: {m.Text}, Price: {m.Price}, category: {m.Category}";
 return View("Index");
}

When the user submits the data with the form, a CreateMenu method is invoked that shows the Index view with the submitted menu data, as shown in Figure 41.8.

[image: Screenshot shows title bar along with address bar displaying ASP.NET MVC Sample App along with menu, price and category data.]

Figure 41.8

A model binder is responsible for transferring the data from the HTTP POST request. A model binder implements the interface IModelBinder. By default the FormCollectionModelBinder class is used to bind the input fields to the model. This binder supports primitive types, model classes (such as the Menu type), and collections implementing ICollection<T>, IList<T>, and IDictionary<TKey, TValue>.

In case not all the properties of the parameter type should be filled from the model binder, you can use the Bind attribute. With this attribute you can specify a list of property names that should be included with the binding.

You can also pass the input data to the model using an action method without parameters, as demonstrated by the next code snippet. Here, a new instance of the Menu class is created, and this instance is passed to the TryUpdateModelAsync method of the Controller base class. TryUpdateModelAsync returns false if the updated model is not in a valid state after the update:

[HttpPost]
public async Task<IActionResult> CreateMenu3Result()
{
 var m = new Menu();
 bool updated = await TryUpdateModelAsync<Menu>(m);
 if (updated)
 {
 ViewBag.Info =
 $"menu created: {m.Text}, Price: {m.Price}, category: {m.Category}";
 return View("Index");
 }
 else
 {
 return View("Error");
 }
}

Annotations and Validation

You can add some annotations to the model type; the annotations are used when updating the data for validation. The namespace System.ComponentModel.DataAnnotations contains attribute types that can be used to specify some information for data on the client and can be used for validation.

The Menu type is changed with these added attributes (code file MVCSampleApp/Models/Menu.cs):

public class Menu
{
 public int Id { get; set; }
 [Required, StringLength(50)]
 public string Text { get; set; }
 [Display(Name="Price"), DisplayFormat(DataFormatString="{0:C}")]
 public double Price { get; set; }
 [DataType(DataType.Date)]
 public DateTime Date { get; set; }
 [StringLength(10)]
 public string Category { get; set; }
}

Possible attribute types you can use for validation are CompareAttribute to compare different properties, CreditCardAttribute to verify a valid credit card number, EmailAddressAttribute to verify an e-mail address, EnumDataTypeAttribute to compare the input to enumeration values, and PhoneAttribute to verify a phone number.

You can also use other attributes to get values for display and error messages—for example, DataTypeAttribute and DisplayFormatAttribute.

To use the validation attributes, you can verify the state of the model using ModelState.IsValid within an action method as shown here (code file MVCSampleApp/Controllers/SubmitDataController.cs):

[HttpPost]
public IActionResult CreateMenu4(Menu m)
{
 if (ModelState.IsValid)
 {
 ViewBag.Info =
 $"menu created: {m.Text}, Price: {m.Price}, category: {m.Category}";
 }
 else
 {
 ViewBag.Info ="not valid";
 }
 return View("Index");
}

If you use tool-generated model classes, you might think it’s hard to add attributes to properties. As the tool-generated classes are defined as partial classes, you can extend the class by adding properties and methods, by implementing additional interfaces, and by implementing partial methods that are used by the tool-generated classes. You cannot add attributes to existing properties and methods if you can’t change the source code of the type, but there’s help for such scenarios! Assume the Menu class is a tool-generated partial class. Then a new class with a different name (for example, MenuMetadata) can define the same properties as the entity class and add the annotations, as shown here:

public class MenuMetadata
{
 public int Id { get; set; }
 [Required, StringLength(25)]
 public string Text { get; set; }
 [Display(Name="Price"), DisplayFormat(DataFormatString="{0:C}")]
 public double Price { get; set; }
 [DataType(DataType.Date)]
 public DateTime Date { get; set; }
 [StringLength(10)]
 public string Category { get; set; }
}

The MenuMetadata class must be linked to the Menu class. With tool-generated partial classes, you can create another partial type in the same namespace to add the MetadataType attribute to the type definition that creates the connection:

[MetadataType(typeof(MenuMetadata))]
public partial class Menu
{
}

HTML Helper methods can also make use of annotations to add information to the client.

Working with HTML Helpers

HTML Helpers are helpers that create HTML code. You can use them directly within the view using Razor syntax.

Html is a property of the view base class RazorPage and is of type IHtmlHelper. HTML Helper methods are implemented as extension methods to extend the IHtmlHelper interface.

The class InputExtensions defines HTML Helper methods to create check boxes, password controls, radio buttons, and text box controls. The Action and RenderAction helpers are defined by the class ChildActionExtensions. Helper methods for display are defined by the class DisplayExtensions. Helper methods for HTML forms are defined by the class FormExtensions.

The following sections get into some examples using HTML Helpers.

Using Simple Helpers

The following code snippet uses the HTML Helper methods BeginForm, Label, and CheckBox. BeginForm starts a form element. There’s also an EndForm for ending the form element. The sample makes use of the IDisposable interface implemented by the MvcForm returned from the BeginForm method. On disposing of the MvcForm, EndForm is invoked. This way the BeginForm method can be surrounded by a using statement to end the form at the closing curly brackets. The method DisplayName directly returns the content from the argument; the method CheckBox is an input element with the type attribute set to checkbox (code file MVCSampleApp/Views/HelperMethods/SimpleHelper.cshtml):

@using (Html.BeginForm()) {
 @Html.DisplayName("Check this (or not)")
 @Html.CheckBox("check1")
}

The resulting HTML code is shown in the next code snippet. The CheckBox method creates two input elements with the same name; one is set to hidden. There’s a good reason for this behavior: If a check box has a value of false, the browser does not pass this information to the server with the forms content. Only check box values of selected check boxes are passed to the server. This HTML characteristic creates a problem with automatic binding to the parameters of action methods. A simple solution is performed by the CheckBox helper method. This method creates a hidden input element with the same name that is set to false. If the check box is not selected, the hidden input element is passed to the server, and the false value can be bound. If the check box is selected, two input elements with the same name are sent to the server. The first input element is set to true; the second one is set to false. With automatic binding, only the first input element is selected to bind:

<form action="/HelperMethods/SimpleHelper" method="post">
 Check this (or not)
 <input id="FileName_check1" name="check1" type="checkbox" value="true" />
 <input name="check1" type="hidden" value="false" />
</form>

Using Model Data

You can use helper methods with model data. This example creates a Menu object. This type was declared earlier in this chapter within the Models directory and passes a sample menu as a model to the view (code file MVCSampleApp/Controllers/HTMLHelpersController.cs):

public IActionResult HelperWithMenu() => View(GetSampleMenu());

private Menu GetSampleMenu() =>
 new Menu
 {
 Id = 1,
 Text ="Schweinsbraten mit Knödel und Sauerkraut",
 Price = 6.9,
 Date = new DateTime(2016, 10, 5),
 Category ="Main"
 };

The view has the model defined to be of type Menu. The DisplayName HTML Helper returns the text from the parameter, as shown with the previous sample. The Display method uses an expression as the parameter where a property name can be passed in the string format. This way this property tries to find a property with this name and accesses the property accessor to return the value of the property (code file MVCSampleApp/Views/HTMLHelpers/HelperWithMenu.cshtml):

@model MVCSampleApp.Models.Menu
@{
 ViewBag.Title ="HelperWithMenu";
}
<h2>Helper with Menu</h2>
@Html.DisplayName("Text:")
@Html.Display("Text")

@Html.DisplayName("Category:")
@Html.Display("Category")

With the resulting HTML code, you can see this as output from calling the DisplayName and Display methods:

Text:
Schweinsbraten mit Knödel und Sauerkraut

Category:
Main

NOTE Helper methods also offer strongly typed variants to access members of the model. See the “Using Strongly Typed Helpers” section for more information.

Defining HTML Attributes

Most HTML Helper methods have overloads in which you can pass any HTML attributes. For example, the following TextBox method creates an input element of type text. The first parameter defines the name; the second parameter defines the value that is set with the text box. The third parameter of the TextBox method is of type object that enables passing an anonymous type where every property is changed to an attribute of the HTML element. Here, the result of the input element has the required attribute set to required, the maxlength attribute to 15, and the class attribute to CSSDemo. Because class is a C# keyword, it cannot be directly set as a property. Instead it is prefixed with @ to generate the class attribute for CSS styling:

@Html.TextBox("text1","input text here",
 new { required="required", maxlength=15, @class="CSSDemo" });

The resulting HTML output is shown here:

<input class="Test" id="FileName_text1" maxlength="15" name="text1" required="required"
 type="text" value="input text here" />

Creating Lists

For displaying lists, helper methods such as DropDownList and ListBox exist. These methods create the HTML select element.

Within the controller, first a dictionary is created that contains keys and values. The dictionary is then converted to a list of SelectListItem with the custom extension method ToSelectListItems. The DropDownList and ListBox methods make use of SelectListItem collections (code file MVCSampleApp/Controllers/HTMLHelpersController.cs):

public IActionResult HelperList()
{
 var cars = new Dictionary<int, string>();
 cars.Add(1,"Red Bull Racing");
 cars.Add(2,"McLaren");
 cars.Add(3,"Mercedes");
 cars.Add(4,"Ferrari");
 return View(cars.ToSelectListItems(4));
}

The custom extension method ToSelectListItems is defined within the class SelectListItemsExtensions that extends IDictionary<int, string>, the type from the cars collection. Within the implementation, a new SelectListItem object is returned for every item in the dictionary (code file MVCSampleApp/Extensions/SelectListItemsExtensions.cs):

public static class SelectListItemsExtensions
{
 public static IEnumerable<SelectListItem> ToSelectListItems(
 this IDictionary<int, string> dict, int selectedId)
 {
 return dict.Select(item =>
 new SelectListItem
 {
 Selected = item.Key == selectedId,
 Text = item.Value,
 Value = item.Key.ToString()
 });
 }
}

With the view, the helper method DropDownList directly accesses the Model that is returned from the controller (code file MVCSampleApp/Views/HTMLHelpers/HelperList.cshtml):

@{
 ViewBag.Title ="Helper List";
}
@model IEnumerable<SelectListItem>
<h2>Helper2</h2>
@Html.DropDownList("carslist", Model)

The resulting HTML creates a select element with option child elements as created from the SelectListItem and defines the selected item as returned from the controller:

<select id="FileName_carslist" name="carslist">
 <option value="1">Red Bull Racing</option>
 <option value="2">McLaren</option>
 <option value="3">Mercedes</option>
 <option selected="selected" value="4">Ferrari</option>
</select>

Using Strongly Typed Helpers

The HTML Helper methods offer strongly typed methods to access the model passed from the controller. These methods are all suffixed with the name For. For example, instead of the TextBox method, here the TextBoxFor method can be used.

The next sample again makes use of a controller that returns a single entity (code file MVCSampleApp/Controllers/HTMLHelpersController.cs):

public IActionResult StronglyTypedMenu() => View(GetSampleMenu());

The view uses the Menu type as a model; thus the methods DisplayNameFor and DisplayFor can directly access the Menu properties. By default, DisplayNameFor returns the name of the property (in this example, it’s the Text property), and DisplayFor returns the value of the property (code file MVCSampleApp/Views/HTMLHelpers/StronglyTypedMenu.cshtml):

@model MVCSampleApp.Models.Menu
@Html.DisplayNameFor(m => m.Text)

@Html.DisplayFor(m => m.Text)

Similarly, you can use Html.TextBoxFor(m => m.Text), which returns an input element that enables setting the Text property of the model. This method also makes use of the annotations added to the Text property of the Menu type. The Text property has the Required and MaxStringLength attributes added, which is why the data-val-length, data-val-length-max, and data-val-required attributes are returned from the TextBoxFor method:

<input data-val="true"
 data-val-length="The field Text must be a string with a maximum length of 50."
 data-val-length-max="50"
 data-val-required="The Text field is required."
 id="FileName_Text" name="Text"
 type="text"
 value="Schweinsbraten mit Knödel und Sauerkraut" />

Working with Editor Extensions

Instead of using at least one helper method for every property, helper methods from the class EditorExtensions offer an editor for all the properties of a type.

Using the same Menu model as before, with the method Html.EditorFor(m => m) the complete user interface (UI) for editing the menu is built. The result from this method invocation is shown in Figure 41.9.

[image: Screenshot shows title bar along with address bar displaying ASP.NET MVC Sample App, helperwithmenu with filled up field's id, text, price, date and category.]

Figure 41.9

Instead of using Html.EditorFor(m => m), you can use Html.EditorForModel. The method EditorForModel makes use of the model of the view without the need to specify it explicitly. EditorFor has more flexibility in using other data sources (for example, properties offered by the model), and EditorForModel needs fewer parameters to add.

Implementing Templates

A great way to extend the outcome from HTML Helpers is by using templates. A template is a simple view used—either implicitly or explicitly—by the HTML Helper methods. Templates are stored within special folders. Display templates are stored within the DisplayTemplates folder that is in the view folder (for example, Views/HelperMethods) or in a shared folder (Shared/DisplayTemplates). The shared folder is used by all views; the specific view folder is used only by views within this folder. Editor templates are stored in the folder EditorTemplates.

Now have a look at an example. With the Menu type, the Date property has the annotation DataType with a value of DataType.Date. When you specify this attribute, the DateTime type by default does not show as date and time; it shows only with the short date format (code file MVCSampleApp/Models/Menu.cs):

public class Menu
{
 public int Id { get; set; }
 [Required, StringLength(50)]
 public string Text { get; set; }
 [Display(Name="Price"), DisplayFormat(DataFormatString="{0:c}")]
 public double Price { get; set; }
 [DataType(DataType.Date)]
 public DateTime Date { get; set; }
 [StringLength(10)]
 public string Category { get; set; }
}

Now the template for the date is created. With this template, the Model is returned using a long date string format D, which is embedded within a div tag that has the CSS class markRed (code file MVCSampleApp/Views/HTMLHelpers/DisplayTemplates/Date.cshtml):

<div class="markRed">
 @string.Format("{0:D}", Model)
</div>

The markRed CSS class is defined within the style sheet to set the color red (code file MVCSampleApp/wwwroot/styles/Site.css):

.markRed {
 color: #f00;
}

Now a display HTML Helper such as DisplayForModel can be used to make use of the defined template. The model is of type Menu, so the DisplayForModel method displays all properties of the Menu type. For the Date it finds the template Date.cshtml, so this template is used to display the date in long date format with the CSS style (code file MVCSampleApp/Views/HTMLHelpers/Display.cshtml):

@model MVCSampleApp.Models.Menu
@{
 ViewBag.Title ="Display";
}
<h2>@ViewBag.Title</h2>
@Html.DisplayForModel()

If a single type should have different presentations in the same view, you can use other names for the template file. Then you can use the attribute UIHint to specify the template name, or you can specify the template with the template parameter of the helper method.

Getting to Know Tag Helpers

ASP.NET MVC 6 offers a new technology that can be used instead of HTML Helpers: Tag Helpers. With Tag Helpers you don’t write C# code mixed with HTML; instead you use HTML attributes and elements that are resolved on the server. Nowadays many JavaScript libraries extend HTML with their own attributes (such as Angular), so it’s very convenient to be able to do use custom HTML attributes with server-side technology. Many of the ASP.NET MVC Tag Helpers have the prefix asp-, so you can easily see what’s resolved on the server. These attributes are not sent to the client but instead are resolved on the server to generate HTML code.

Activating Tag Helpers

To use the ASP.NET MVC Tag Helpers, you need to activate the tags by calling addTagHelper. The first parameter defines the types to use (a * opens all Tag Helpers of the assembly); the second parameter defines the assembly of the Tag Helpers. With removeTagHelper, the Tag Helpers are deactivated again. Deactivating Tag Helpers might be important—for example, to not get into naming conflicts with scripting libraries. You’re most likely not getting into a conflict using the built-in Tag Helpers with the asp- prefix, but conflicts can easily happen with other Tag Helpers that can have the same names as other Tag Helpers or HTML attributes used with scripting libraries.

To have the Tag Helpers available with all views, add the addTagHelper statement to the shared file _ViewImports.cshtml (code file MVCSampleApp/Views/_ViewImports.cshtml):

@addTagHelper *, Microsoft.AspNet.Mvc.TagHelpers

Using Anchor Tag Helpers

Let’s start with Tag Helpers that extend the anchor a element. The sample controller for the Tag Helpers is TagHelpersController. The Index action method returns a view for showing the anchor Tag Helpers (code file MVCSampleApp/Controllers/TagHelpersController.cs):

public class TagHelpersController : Controller
{
 public IActionResult Index() => View();

 // etc.
}

The anchor Tag Helper defines the asp-controller and asp-action attributes. With these, the controller and action methods are used to build up the URL for the anchor element. With the second and third examples, the controller is not needed because it’s the same controller the view is coming from (code file MVCSampleApp/Views/TagHelpers/Index.cshtml):

<a asp-controller="Home" asp-action="Index">Home

<a asp-action="LabelHelper">Label Tag Helper

<a asp-action="InputTypeHelper">Input Type Tag Helper

The following snippet shows the resulting HTML code. The asp-controller and asp-action attributes generate an href attribute for the a element. With the first sample to access the Index action method in the Home controller, as both are defaults as defined by the route, an href to / is all that’s needed in the result. When you specify the asp-action LabelHelper, the href directs to /TagHelpers/LabelHelper, the action method LabelHelper in the current controller:

Home

Label Tag Helper

Input Type Tag Helper

Using Label Tag Helpers

In the following code snippet, which demonstrates the features of the label Tag Helper, the action method LabelHelper passes a Menu object to the view (code file MVCSampleApp/Controllers/TagHelpersController.cs):

public IActionResult LabelHelper() => View(GetSampleMenu());

private Menu GetSampleMenu() =>
 new Menu
 {
 Id = 1,
 Text ="Schweinsbraten mit Knödel und Sauerkraut",
 Price = 6.9,
 Date = new DateTime(2016, 10, 5),
 Category ="Main"
 };
}

The Menu class has some data annotations applied to influence the outcome of the Tag Helpers. Have a look at the Display attribute for the Text property. It sets the Name property of the Display attribute to "Menu" (code file MVCSampleApp/Models/Menu.cs):

public class Menu
{
 public int Id { get; set; }

 [Required, StringLength(50)]
 [Display(Name ="Menu")]
 public string Text { get; set; }

 [Display(Name ="Price"), DisplayFormat(DataFormatString ="{0:C}")]
 public double Price { get; set; }

 [DataType(DataType.Date)]
 public DateTime Date { get; set; }

 [StringLength(10)]
 public string Category { get; set; }
}

The view makes use of asp-for attributes applied to label controls. The value that is used for this attribute is a property of the model of the view. With Visual Studio 2015, you can use IntelliSense for accessing the Text, Price, and Date properties (code file MVCSampleApp/Views/TagHelpers/LabelHelper.cshtml):

@model MVCSampleApp.Models.Menu
@{
 ViewBag.Title ="Label Tag Helper";
}
<h2>@ViewBag.Title</h2>

<label asp-for="Text"></label>

<label asp-for="Price"></label>

<label asp-for="Date"></label>

With the generated HTML code, you can see the for attribute, which references elements with the same name as the property names and the content that is either the name of the property or the value of the Display attribute. You can use this attribute also to localize values:

<label for="Text">Menu</label>

<label for="Price">Price</label>

<label for="Date">Date</label>

Using Input Tag Helpers

An HTML label typically is associated with an input element. The following code snippet gives you a look at what’s generated using input elements with Tag Helpers:

<label asp-for="Text"></label>
<input asp-for="Text"/>

<label asp-for="Price"></label>
<input asp-for="Price" />

<label asp-for="Date"></label>
<input asp-for="Date" />

Checking the result of the generated HTML code reveals that the input type Tag Helpers create a type attribute depending on the type of the property, and they also apply the DateType attribute. The property Price is of type double, which results in a number input type. Because the Date property has the DataType with a value of DataType.Date applied, the input type is a date. In addition to that you can see data-val-length, data-val-length-max, and data-val-required attributes that are created because of annotations:

<label for="Text">Menu</label>
<input type="text" data-val="true"
 data-val-length=
 "The field Menu must be a string with a maximum length of 50."
 data-val-length-max="50"
 data-val-required="The Menu field is required."
 id="FileName_Text" name="Text"
 value="Schweinsbraten mit Knödel und Sauerkraut" />

<label for="Price">Price</label>
<input type="number" data-val="true"
 data-val-required="The Price field is required."
 id="FileName_Price" name="Price" value="6.9" />

<label for="Date">Date</label>
<input type="date" data-val="true"
 data-val-required="The Date field is required."
 id="FileName_Date" name="Date" value="10/5/2016" />

Modern browsers have a special look for HTML 5 input controls such as date control. The input date control of Microsoft Edge is shown in Figure 41.10.

[image: Screenshot shows title bar along with address bar displaying ASP.NET MVC Sample App, input helper with a table of months, dates and years. It also selects 18 July 2015.]

Figure 41.10

Using a Form with Validation

For sending data to the server, the input fields need to be surrounded by a form. A Tag Helper for the form defines the action attribute by using asp-method and asp-controller. With input controls, you’ve seen that validation information is defined by these controls. The validation errors need to be displayed. For display, the validation message Tag Helper extends the span element with asp-validation-for (code file MVCSampleApp/Views/TagHelpers/FormHelper.cs):

<form method="post" asp-method="FormHelper">
 <input asp-for="Id" hidden="hidden" />
 <hr />
 <label asp-for="Text"></label>
 <div>
 <input asp-for="Text" />

 </div>

 <label asp-for="Price"></label>
 <div>
 <input asp-for="Price" />

 </div>

 <label asp-for="Date"></label>
 <div>
 <input asp-for="Date" />

 </div>
 <label asp-for="Category"></label>
 <div>
 <input asp-for="Category" />

 </div>
 <input type="submit" value="Submit" />
</form>

The controller verifies whether the receive data is correct by checking the ModelState. In case it’s not correct, the same view is displayed again (code file MVCSampleApp/Controllers/TagHelpersController.cs):

public IActionResult FormHelper() => View(GetSampleMenu());

[HttpPost]
public IActionResult FormHelper(Menu m)
{
 if (!ModelState.IsValid)
 {
 return View(m);
 }
 return View("ValidationHelperResult", m);
}

When you run the application, you can see error information like that shown in Figure 41.11.

[image: Screenshot shows title bar along with address bar displaying ASP.NET MVC Sample App, form helper with filled up field's menu, price, date and category. It also displays submit button.]

Figure 41.11

Creating Custom Tag Helpers

Aside from using the predefined Tag Helpers, you can create a custom Tag Helper. The sample custom Tag Helper you build in this section extends the HTML table element to show a row for every item in a list and a column for every property.

The controller implements the method CustomHelper to return a list of Menu objects (code file MVCSampleApp/Controllers/TagHelpersController.cs):

public IActionResult CustomHelper() => View(GetSampleMenus());

private IList<Menu> GetSampleMenus() =>
 new List<Menu>()
 {
 new Menu
 {
 Id = 1,
 Text ="Schweinsbraten mit Knödel und Sauerkraut",
 Price = 8.5,
 Date = new DateTime(2016, 10, 5),
 Category ="Main"
 },
 new Menu
 {
 Id = 2,
 Text ="Erdäpfelgulasch mit Tofu und Gebäck",
 Price = 8.5,
 Date = new DateTime(2016, 10, 6),
 Category ="Vegetarian"
 },
 new Menu
 {
 Id = 3,
 Text ="Tiroler Bauerngröst'l mit Spiegelei und Krautsalat",
 Price = 8.5,
 Date = new DateTime(2016, 10, 7),
 Category ="Vegetarian"
 }
 };

Now step into the Tag Helper. The custom implementation needs these namespaces:

using Microsoft.AspNet.Mvc.Rendering;
using Microsoft.AspNet.Razor.Runtime.TagHelpers;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;

A custom Tag Helper derives from the base class TagHelper. The attribute TargetElement defines what HTML elements are extended by the Tag Helper. This Tag Helper extends the table element; thus the string "table" is passed to the constructor of the element. With the property Attributes, you can define a list of attributes that are assigned to the HTML element that are used by the Tag Helper. This Tag Helper makes use of the items attribute. You can use the Tag Helper with this syntax: <table items="Model"></table>, where Model needs to be a list that can be iterated. In case you’re creating a Tag Helper that should be used with multiple HTML elements, you just need to apply the attribute TargetElement multiple times. To automatically assign the value of the items attribute to the Items property, the attribute HtmlAttributeName is assigned to this property (code file MVCSampleApp/Extensions/TableTagHelper.cs):

[TargetElement("table", Attributes = ItemsAttributeName)]
public class TableTagHelper : TagHelper
{
 private const string ItemsAttributeName ="items";

 [HtmlAttributeName(ItemsAttributeName)]
 public IEnumerable<object> Items { get; set; }

 // etc.
}

The heart of the Tag Helper is in the method Process. This method needs to create HTML code that is returned from the helper. With the parameters of the Process method you receive a TagHelperContext This context contains both the attributes of the HTML element where the Tag Helper is applied and all child elements. With the table element, rows and columns could already have been defined, and you could merge the result with the existing content. In the sample, this is ignored, and just the attributes are taken to put them in the result. The result needs to be written to the second parameter: the TagHelperOutput object. For creating HTML code, the TagBuilder type is used. The TagBuilder helps create HTML elements with attributes, and it deals with closing of elements. To add attributes to the TagBuilder, you use the method MergeAttributes. This method requires a dictionary of all attribute names and their values. This dictionary is created by using the LINQ extension method ToDictionary. With the Where method, all of the existing attributes—with the exception of the items attribute—of the table element are taken. The items attribute is used for defining items with the Tag Helper but is not needed later on by the client:

public override void Process(TagHelperContext context, TagHelperOutput output)
{
 TagBuilder table = new TagBuilder("table");
 table.GenerateId(context.UniqueId,"id");
 var attributes = context.AllAttributes
 .Where(a => a.Name != ItemsAttributeName).ToDictionary(a => a.Name);
 table.MergeAttributes(attributes);
 // etc.
}

NOTE In case you need to invoke asynchronous methods within the Tag Helper implementation, you can override the ProcessAsync method instead of the Process method.

NOTE LINQ is explained in Chapter 13, “Language Integrated Query.”

Next create the first row in the table. This row contains a tr element as a child of the table element, and it contains td elements for every property. To get all the property names, you invoke the First method to retrieve the first object of the collection. You access the properties of this instance using reflection, invoking the GetProperties method on the Type object, and writing the name of the property to the inner text of the th HTML element:

 // etc.
 var tr = new TagBuilder("tr");
 var heading = Items.First();
 PropertyInfo[] properties = heading.GetType().GetProperties();
 foreach (var prop in properties)
 {
 var th = new TagBuilder("th");
 th.InnerHtml.Append(prop.Name);
 th.InnerHtml.AppendHtml(th);

 }
 table.InnerHtml.AppendHtml(tr);
 // etc.

NOTE Reflection is explained in Chapter 16.

The final part of the Process method iterates through all items of the collection and creates more rows (tr) for every item. With every property, a td element is added, and the value of the property is written as inner text. Last, the inner HTML code of the created table element is written to the output:

foreach (var item in Items)
{
 tr = new TagBuilder("tr");
 foreach (var prop in properties)
 {
 var td = new TagBuilder("td");
 td.InnerHtml.Append(prop.GetValue(item).ToString());
 td.InnerHtml.AppendHtml(td);
 }
 table.InnerHtml.AppendHtml(tr);
}
output.Content.Append(table.InnerHtml);

After you’ve created the Tag Helper, creating the view becomes very simple. After you’ve defined the model, you reference the Tag Helper with addTagHelper passing the assembly name. The Tag Helper itself is instantiated when you define an HTML table with the attribute items (code file MVCSampleApp/Views/TagHelpers/CustomHelper.cshtml):

@model IEnumerable<Menu>
@addTagHelper"*, MVCSampleApp"

<table items="Model" class="sample"></table>

When you run the application, the table you see should look like the one shown in Figure 41.12. After you’ve created the Tag Helper, it is really easy to use. All the formatting that is defined using CSS still applies as all the attributes of the defined HTML table are still in the resulting HTML output.

[image: Screenshot shows title bar along with address bar displaying title as ASP.NET MVC Sample App with id, text, price, date and category for three models.]

Figure 41.12

Implementing Action Filters

ASP.NET MVC is extensible in many areas. For example, you can implement a controller factory to search and instantiate a controller (interface IControllerFactory). Controllers implement the IController interface. Finding action methods in a controller is resolved by using the IActionInvoker interface. You can use attribute classes derived from ActionMethodSelectorAttribute to define the HTTP methods allowed. The model binder that maps the HTTP request to parameters can be customized by implementing the IModelBinder interface. The section “Model Binder” uses the FormCollectionModelBinder type. You can use different view engines that implement the interface IViewEngine. This chapter uses the Razor view engine. You can also customize by using HTML Helpers, Tag Helpers, and action filters. Most of the extension points are out of the scope of this book, but action filters are likely ones that you will implement or use, and thus these are covered here.

Action filters are called before and after an action is executed. They are assigned to controllers or action methods of controllers using attributes. Action filters are implemented by creating a class that derives from the base class ActionFilterAttribute. With this class, the base class members OnActionExecuting, OnActionExecuted, OnResultExecuting, and OnResultExecuted can be overridden. OnActionExecuting is called before the action method is invoked, and OnActionExecuted is called when the action method is completed. After that, before the result is returned, the method OnResultExecuting is invoked, and finally OnResultExecuted is invoked.

Within these methods, you can access the Request object to retrieve information of the caller. Using the Request object you can decide some actions depending on the browser, you can access routing information, you can change the view result dynamically, and so on. The code snippet accesses the variable language from routing information. To add this variable to the route, you can change the route as described earlier in this chapter in the section “Defining Routes.” By adding a language variable with the route information, you can access the value supplied with the URL using RouteData.Values as shown in the following code snippet. You can use the retrieved value to change the culture for the user:

public class LanguageAttribute : ActionFilterAttribute
{
 private string _language = null;
 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 _language = filterContext.RouteData.Values["language"] == null ?
 null : filterContext.RouteData.Values["language"].ToString();
 //…
 }
 public override void OnResultExecuting(ResultExecutingContext filterContext)
 {
 }
}

NOTE Globalization and localization, setting cultures, and other regional specifics are explained in Chapter 28, “Localization.”

With the created action filter attribute class, you can apply the attribute to a controller as shown in the following code snippet. Using the attribute with the class, the members of the attribute class are invoked with every action method. Instead, you can also apply the attribute to an action method, so the members are invoked only when the action method is called:

[Language]
public class HomeController : Controller
{

The ActionFilterAttribute implements several interfaces: IActionFilter, IAsyncActionFilter, IResultFilter, IAsyncResultFilter, IFilter, and IOrderedFilter.

ASP.NET MVC includes some predefined action filters, such as a filter to require HTTPS, authorize callers, handle errors, or cache data.

Using the attribute Authorize is covered later in this chapter in the section “Authentication and Authorization.”

Creating a Data-Driven Application

Now that you’ve read about all the foundations of ASP.NET MVC, it’s time to look into a data-driven application that uses the ADO.NET Entity Framework. Here you can see features offered by ASP.NET MVC in combination with data access.

NOTE The ADO.NET Entity Framework is covered in detail in Chapter 38, “Entity Framework Core.”

The sample application MenuPlanner is used to maintain restaurant menu entries in a database. Only an authenticated account may perform maintenance of the database entries. Browsing menus should be possible for non-authenticated users.

This project is started by using the ASP.NET Core 1.0 Web Application template. For the authentication, you use the default selection of Individual User Accounts. This project template adds several folders for ASP.NET MVC and controllers, including a HomeController and AccountController. It also adds several script libraries.

Defining a Model

Start by defining a model within the Models directory. You create the model using the ADO.NET Entity Framework. The MenuCard type defines some properties and a relation to a list of menus (code file MenuPlanner/Models/MenuCard.cs):

public class MenuCard
{
 public int Id { get; set; }
 [MaxLength(50)]
 public string Name { get; set; }
 public bool Active { get; set; }
 public int Order { get; set; }
 public virtual List<Menu> Menus { get; set; }
}

The menu types that are referenced from the MenuCard are defined by the Menu class (code file MenuPlanner/Models/Menu.cs):

public class Menu
{
 public int Id { get; set; }
 public string Text { get; set; }
 public decimal Price { get; set; }
 public bool Active { get; set; }
 public int Order { get; set; }
 public string Type { get; set; }
 public DateTime Day { get; set; }
 public int MenuCardId { get; set; }
 public virtual MenuCard MenuCard { get; set; }
}

The connection to the database, and the sets of both Menu and MenuCard types, are managed by MenuCardsContext. Using ModelBuilder, the context specifies that the Text property of the Menu type may not be null, and it has a maximum length of 50 (code file MenuPlanner/Models/MenuCardsContext.cs):

public class MenuCardsContext : DbContext
{
 public DbSet<Menu> Menus { get; set; }
 public DbSet<MenuCard> MenuCards { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Menu>().Property(p => p.Text)
 .HasMaxLength(50).IsRequired();
 base.OnModelCreating(modelBuilder);
 }
}

The startup code for the web application defines MenuCardsContext to be used as data context, and reads the connection string from the configuration file (code file MenuPlanner/Startup.cs):

public IConfiguration Configuration { get; set; }

public void ConfigureServices(IServiceCollection services)
{
 // Add Entity Framework services to the services container.
 services.AddEntityFramework()
 .AddSqlServer()
 .AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:DefaultConnection:ConnectionString"]))
 .AddDbContext<MenuCardsContext>(options =>
 options.UseSqlServer(
 Configuration["Data:MenuCardConnection:ConnectionString"]));

 // etc.
}

With the configuration file, the MenuCardConnection connection string is added. This connection string references the SQL instance that comes with Visual Studio 2015. Of course, you can change this and also add a connection string to SQL Azure (code file MenuPlanner/appsettings.json):

{
 "Data": {
 "DefaultConnection": {
 "ConnectionString":"Server=(localdb)\\mssqllocaldb;
 Database=aspnet5-MenuPlanner-4d3d9092-b53f-4162-8627-f360ef6b2aa8;
 Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 "MenuCardConnection": {
 "ConnectionString":"Server=(localdb)\\mssqllocaldb;Database=MenuCards;
 Trusted_Connection=True;MultipleActiveResultSets=true"
 }
 },
 // etc.
}

Creating a Database

You can use Entity Framework commands to create the code to create the database. With a command-line prompt, you use the .NET Core Command Line (CLI) and the ef command to create code to create the database automatically. Using the command prompt, you must set the current folder to the directory where the project.json file is located:

>dotnet ef migrations add InitMenuCards --context MenuCardsContext

NOTE The dotnet tools are discussed in Chapter 1, “.NET Application Architectures”, and Chapter 17, “Visual Studio 2015.”

Because multiple data contexts (the MenuCardsContext and the ApplicationDbContext) are defined with the project, you need to specify the data context with the ––context option. The ef command creates a Migrations folder within the project structure and the InitMenuCards class with an Up method to create the database tables, and the Down method to delete the changes again (code file MenuPlanner/Migrations/[date]InitMenuCards.cs):

public partial class InitMenuCards : Migration
{
 public override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name:"MenuCard",
 columns: table => new
 {
 Id = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 Active = table.Column<bool>(nullable: false),
 Name = table.Column<string>(nullable: true),
 Order = table.Column<int>(nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_MenuCard", x => x.Id);
 });
 migrationBuilder.CreateTable(
 name:"Menu",
 columns: table => new
 {
 Id = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 Active = table.Column<bool>(nullable: false),
 Day = table.Column<DateTime>(nullable: false),
 MenuCardId = table.Column<int>(nullable: false),
 Order = table.Column<int>(nullable: false),
 Price = table.Column<decimal>(nullable: false),
 Text = table.Column<string>(nullable: false),
 Type = table.Column<string>(nullable: true)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Menu", x => x.Id);
 table.ForeignKey(
 name:"FK_Menu_MenuCard_MenuCardId",
 column: x => x.MenuCardId,
 principalTable:"MenuCard",
 principalColumn:"Id",
 onDelete: RefeerentialAction.Cascade);
 });
 }
 public override void Down(MigrationBuilder migration)
 {
 migration.DropTable("Menu");
 migration.DropTable("MenuCard");
 }
}

Now you just need some code to start the migration process, filling the database with initial sample data. The MenuCardDatabaseInitializer applies the migration process by invoking the extension method MigrateAsync on the DatabaseFacade object that is returned from the Database property. This in turn checks whether the database associated with the connection string already has the same version as the database specified with the migrations. If it doesn’t have the same version, required Up methods are invoked to get to the same version. In addition to that, a few MenuCard objects are created to have them stored in the database (code file MenuPlanner/Models/MenuCardDatabaseInitializer.cs):

using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace MenuPlanner.Models
{
 public class MenuCardDatabaseInitializer
 {
 private static bool _databaseChecked = false;

 public MenuCardDatabaseInitializer(MenuCardsContext context)
 {
 _context = context;
 }
 private MenuCardsContext _context;

 public async Task CreateAndSeedDatabaseAsync()
 {
 if (!_databaseChecked)
 {
 _databaseChecked = true;

 await _context.Database.MigrateAsync();

 if (_context.MenuCards.Count() == 0)
 {
 _context.MenuCards.Add(
 new MenuCard { Name ="Breakfast", Active = true, Order = 1 });
 _context.MenuCards.Add(
 new MenuCard { Name ="Vegetarian", Active = true, Order = 2 });
 _context.MenuCards.Add(
 new MenuCard { Name ="Steaks", Active = true, Order = 3 });
 }

 await _context.SaveChangesAsync();
 }
 }
 }
}

With the database and model in place, you can create a service.

Creating a Service

Before creating the service, you create the interface IMenuCardsService that defines all the methods that are needed by the service (code file MenuPlanner/Services/IMenuCardsService.cs):

using MenuPlanner.Models;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace MenuPlanner.Services
{
 public interface IMenuCardsService
 {
 Task AddMenuAsync(Menu menu);
 Task DeleteMenuAsync(int id);
 Task<Menu> GetMenuByIdAsync(int id);
 Task<IEnumerable<Menu>> GetMenusAsync();
 Task<IEnumerable<MenuCard>> GetMenuCardsAsync();
 Task UpdateMenuAsync(Menu menu);
 }
}

The service class MenuCardsService implements the methods to return menus and menu cards, and it creates, updates, and deletes menus (code file MenuPlanner/Services/MenuCardsService.cs):

using MenuPlanner.Models;
using Microsoft.EntityFrameworkCore
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace MenuPlanner.Services
{
 public class MenuCardsService : IMenuCardsService
 {
 private MenuCardsContext _menuCardsContext;
 public MenuCardsService(MenuCardsContext menuCardsContext)
 {
 _menuCardsContext = menuCardsContext;
 }

 public async Task<IEnumerable<Menu>> GetMenusAsync()
 {
 await EnsureDatabaseCreated();

 var menus = _menuCardsContext.Menus.Include(m => m.MenuCard);
 return await menus.ToArrayAsync();
 }

 public async Task<IEnumerable<MenuCard>> GetMenuCardsAsync()
 {
 await EnsureDatabaseCreated();

 var menuCards = _menuCardsContext.MenuCards;
 return await menuCards.ToArrayAsync();
 }

 public async Task<Menu> GetMenuByIdAsync(int id)
 {
 return await _menuCardsContext.Menus.SingleOrDefaultAsync(
 m => m.Id == id);
 }

 public async Task AddMenuAsync(Menu menu)
 {
 _menuCardsContext.Menus.Add(menu);
 await _menuCardsContext.SaveChangesAsync();
 }

 public async Task UpdateMenuAsync(Menu menu)
 {
 _menuCardsContext.Entry(menu).State = EntityState.Modified;
 await _menuCardsContext.SaveChangesAsync();
 }

 public async Task DeleteMenuAsync(int id)
 {
 Menu menu = _menuCardsContext.Menus.Single(m => m.Id == id);

 _menuCardsContext.Menus.Remove(menu);
 await _menuCardsContext.SaveChangesAsync();
 }

 private async Task EnsureDatabaseCreated()
 {
 var init = new MenuCardDatabaseInitializer(_menuCardsContext);
 await init.CreateAndSeedDatabaseAsync();
 }
 }
}

To have the service available via dependency injection, the service is registered in the service collection using the AddScoped method (code file MenuPlanner/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 // etc.
 services.AddScoped<IMenuCardsService, MenuCardsService>();
 // etc.
}

Creating a Controller

ASP.NET MVC offers scaffolding to create controllers for directly accessing the database. You can do this by selecting the Controllers folder in Solution Explorer, and from the context menu select Add ➪ Controller. The Add Scaffold dialog opens. From the Add Scaffold dialog, you can select MVC 6 Controller views, using Entity Framework. Clicking the Add button opens the Add Controller dialog shown in Figure 41.13. With this dialog, you can select the Menu model class and the Entity Framework data context MenuCardsContext, configure to generate views, and give the controller a name. Create the controller with the views to look at the generated code including the views.

[image: Screenshot shows add controller window displaying filled up fields such as model class, data context class, controller name and selects views, asynchronous controller actions and add button.]

Figure 41.13

The book sample doesn’t use the data context directly from the controller but puts a service in between. Doing it this way offers more flexibility. You can use the service from different controllers and also use the service from a service such as ASP.NET Web API.

NOTE ASP.NET Web API is discussed in Chapter 42.

With the following sample code, the ASP.NET MVC controller injects the menu card service via constructor injection (code file MenuPlanner/Controllers/MenuAdminController.cs):

public class MenuAdminController : Controller
{
 private readonly IMenuCardsService _service;
 public MenuAdminController(IMenuCardsService service)
 {
 _service = service;
 }
 // etc.
}

The Index method is the default method that is invoked when only the controller is referenced with the URL without passing an action method. Here, all Menu items from the database are created and passed to the Index view. The Details method returns the Details view passing the menu found from the service. Pay attention to the error handling. When no ID is passed to the Details method, an HTTP Bad Request (400 error response) is returned using the HttpBadRequest method from the base class. When the menu ID is not found in the database, an HTTP Not Found (404 error response) is returned via the HttpNotFound method:

public async Task<IActionResult> Index()
{
 return View(await _service.GetMenusAsync());
}

public async Task<IActionResult> Details(int? id = 0)
{
 if (id == null)
 {
 return HttpBadRequest();
 }
 Menu menu = await _service.GetMenuByIdAsync(id.Value);
 if (menu == null)
 {
 return HttpNotFound();
 }
 return View(menu);
}

When the user creates a new menu, the first Create method is invoked after an HTTP GET request from the client. With this method, ViewBag information is passed to the view. This ViewBag contains information about the menu cards in a SelectList. The SelectList allows the user to select an item. Because the MenuCard collection is passed to the SelectList, the user can select a menu card with the newly created menu.

public async Task<IActionResult> Create()
{
 IEnumerable<MenuCard> cards = await _service.GetMenuCardsAsync();
 ViewBag.MenuCardId = new SelectList(cards,"Id","Name");
 return View();
}

NOTE To use the SelectList type, you must add the NuGet package Microsoft.AspNet.Mvc.ViewFeatures to the project.

After the user fills out the form and submits the form with the new menu to the server, the second Create method is invoked from an HTTP POST request. This method uses model binding to pass the form data to the Menu object and adds the Menu object to the data context to write the newly created menu to the database:

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Create(
 [Bind("Id","MenuCardId","Text","Price","Active","Order","Type","Day")]
 Menu menu)
{
 if (ModelState.IsValid)
 {
 await _service.AddMenuAsync(menu);
 return RedirectToAction("Index");
 }

 IEnumerable<MenuCard> cards = await _service.GetMenuCardsAsync();
 ViewBag.MenuCards = new SelectList(cards,"Id","Name");
 return View(menu);
}

To edit a menu card, two action methods named Edit are defined—one for a GET request, and one for a POST request. The first Edit method returns a single menu item; the second one invokes the UpdateMenuAsync method of the service after the model binding is done successfully:

public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return HttpBadRequest();
 }

 Menu menu = await _service.GetMenuByIdAsync(id.Value);
 if (menu == null)
 {
 return HttpNotFound();
 }

 IEnumerable<MenuCard> cards = await _service.GetMenuCardsAsync();
 ViewBag.MenuCards = new SelectList(cards,"Id","Name", menu.MenuCardId);
 return View(menu);
}

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(
 [Bind("Id","MenuCardId","Text","Price","Order","Type","Day")]
 Menu menu)
{
 if (ModelState.IsValid)
 {
 await _service.UpdateMenuAsync(menu);
 return RedirectToAction("Index");
 }

 IEnumerable<MenuCard> cards = await _service.GetMenuCardsAsync();
 ViewBag.MenuCards = new SelectList(cards,"Id","Name", menu.MenuCardId);
 return View(menu);
}

The last part of the implementation of the controller includes the Delete methods. Because both methods have the same parameter—which is not possible with C#—the second method has the name DeleteConfirmed. However, the second method can be accessed from the same URL Link as the first Delete method, but the second method is accessed with HTTP POST instead of GET using the ActionName attribute. This method invokes the DeleteMenuAsync method of the service:

public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return HttpBadRequest();
 }
 Menu menu = await _service.GetMenuByIdAsync(id.Value);
 if (menu == null)
 {
 return HttpNotFound();
 }
 return View(menu);
}

[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 Menu menu = await _service.GetMenuByIdAsync(id);
 await _service.DeleteMenuAsync(menu.Id);
 return RedirectToAction("Index");
}

Creating Views

Now it’s time to create views. The views are created within the folder Views/MenuAdmin. You can create the view by selecting the MenuAdmin folder in Solution Explorer and select Add ➪ View from the context menu. This opens the Add View dialog as shown in Figure 41.14. With this dialog you can choose List, Details, Create, Edit, Delete templates, which arrange HTML elements accordingly. The Model class you select with this dialog defines the model that the view is based on.

[image: Screenshot shows add view window displaying filled up fields such as view name, template, model class, data context class and selects reference script libraries, layout page and add button.]

Figure 41.14

The Index view, which defines an HTML table, has a Menu collection as its model. For the header elements of the table, the HTML element label with a Tag Helper asp-for is used to access property names for display. For displaying the items, the menu collection is iterated using @foreach, and every property value is accessed with a Tag Helper for the input element. A Tag Helper for the anchor element creates links for the Edit, Details, and Delete pages (code file MenuPlanner/Views/MenuAdmin/Index.cshtml):

@model IList<MenuPlanner.Models.Menu>
@{
 ViewBag.Title ="Index";
}
<h2>@ViewBag.Title</h2>
<p>
 <a asp-action="Create">Create New
</p>
@if (Model.Count() > 0)
{
 <table>
 <tr>
 <th>
 <label asp-for="@Model[0].MenuCard.Item"></label>
 </th>
 <th>
 <label asp-for="@Model[0].Text"></label>
 </th>
 <th>
 <label asp-for="Model[0].Day"></label>
 </th>
 </tr>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 <input asp-for="@item.MenuCard.Name" readonly="readonly"
 disabled="disabled" />
 </td>
 <td>
 <input asp-for="@item.Text" readonly="readonly"
 disabled="disabled" />
 </td>
 <td>
 <input asp-for="@item.Day" asp-format="{0:yyyy-MM-dd}"
 readonly="readonly" disabled="disabled" />
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.Id">Edit
 <a asp-action="Details" asp-route-id="@item.Id">Details
 <a asp-action="Delete" asp-route-id="@item.Id">Delete
 </td>
 </tr>
 }
 </table>
}

In the MenuPlanner project, the second view for the MenuAdmin controller is the Create view. The HTML form uses the asp-action Tag Helper to reference the Create action method of the controller. It’s not necessary to reference the controller with the asp-controller helper, as the action method is in the same controller where the view was coming from. The form content is built up using the Tag Helpers for label and input elements. The asp-for helper for the label returns the name of the property; the asp-for helper for the input element returns the value (code file MenuPlanner/Views/MenuAdmin/Create.cshtml):

@model MenuPlanner.Models.Menu
@{
 ViewBag.Title ="Create";
}

<h2>@ViewBag.Title</h2>

<form asp-action="Create" method="post">
 <div class="form-horizontal">
 <h4>Menu</h4>
 <hr />
 <div asp-validation-summary="ValidationSummary.All" style="color:blue"
 id="FileName_validation_day" class="form-group">
 Some error occurred
 </div>

 <div class="form-group">
 <label asp-for="@Model.MenuCardId" class="control-label col-md2"></label>
 <div class="col-md-10">
 <select asp-for="@(Model.MenuCardId)"
 asp-items="@((IEnumerable<SelectListItem>)ViewBag.MenuCards)"
 size="2" class="form-control">
 <option value="" selected="selected">Select a menu card</option>
 </select>
 </div>
 </div>
 <div class="form-group">
 <label asp-for="Text" class="control-label col-md-2"></label>
 <div class="col-md-10">
 <input asp-for="Text" />
 </div>
 </div>
 <div class="form-group">
 <label asp-for="Price" class="control-label col-md-2"></label>
 <div class="col-md-10">
 <input asp-for="Price" />
 Price of the menu
 </div>
 </div>
 <div class="form-group">
 <label asp-for="Day" class="control-label col-md-2"></label>
 <div class="col-md-10">
 <input asp-for="Day" />
 Date of the menu
 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </div>
 </div>
</form>
<a asp-action="Index">Back

The other views are created similarly to the views shown here, so they are not covered in this book. Just get the views from the downloadable code.

You can now use the application to add and edit menus to existing menu cards.

Implementing Authentication and Authorization

Authentication and authorization are important aspects of web applications. If a website or parts of it should not be public, users must be authorized. For authentication of users, different options are available when creating an ASP.NET Web Application (see Figure 41.15: No Authentication, Individual User Accounts, and Work and School Accounts. The Windows Authentication selection is not available for ASP.NET Core 5.

[image: Screenshot shows change authentication window which selects individual user accounts and ok button.]

Figure 41.15

With Work and School Accounts, you can select an Active Directory from the cloud to do the authentication.

Using Individual User Accounts, you can store user profiles within an SQL Server database. Users can register and log in, and they also can use existing accounts from Facebook, Twitter, Google, or Microsoft.

Storing and Retrieving User Information

For user management, user information needs to be added to a store. The type IdentityUser (namespace Microsoft.AspNet.Identity.EntityFramework) defines a name and lists roles, logins, and claims. The Visual Studio template that you’ve used to create the MenuPlanner application created some noticeable code to save the user: the class ApplicationUser that is part of the project derives from the base class IdentityUser (namespace Microsoft.AspNet.Identity.EntityFramework). The ApplicationUser is empty by default, but you can add information you need from the user, and the information will be stored in the database (code file MenuPlanner/Models/IdentityModels.cs):

public class ApplicationUser : IdentityUser
{
}

The connection to the database is made via the IdentityDbContext<TUser> type. This is a generic class that derives from DbContext and thus makes use of the Entity Framework. The IdentityDbContext<TUser> type defines properties Roles and Users of type IDbSet<TEntity>. The IDbSet<TEntity> type defines the mapping to the database tables. For convenience, the ApplicationDbContext is created to define the ApplicationUser type as the generic type for the IdentityDbContext class:

public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
{
 protected override void OnModelCreating(ModelBuilder builder)
 {
 base.OnModelCreating(builder);
 }
}

Starting Up the Identity System

The connection to the database is registered with the dependency injection service collection in the startup code. Similar to the MenuCardsContext that you created earlier, the ApplicationDbContext is configured to use SQL Server with a connection string from the config file. The identity service itself is registered using the extension method AddIdentity. The AddIdentity method maps the type of the user and role classes that are used by the identity service. The class ApplicationUser is the previously mentioned class that derives from IdentityUser; IdentityRole is a string-based role class that derives from IdentityRole<string>. An overloaded method of the AddIdentity method allows you to configure the identity system with two-factor authentication; e-mail token providers; user options, such as requiring unique e-mails; or a regular expression that requires a username to match. AddIdentity returns an IdentityBuilder that allows additional configurations for the identity system, such as the entity framework context that is used (AddEntityFrameworkStores), and the token providers (AddDefaultTokenProviders). Other providers that can be added are for errors, password validators, role managers, user managers, and user validators (code file MenuPlanner/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 services.AddEntityFramework()
 .AddSqlServer()
 .AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:DefaultConnection:ConnectionString"]))
 .AddDbContext<MenuCardsContext>(options =>
 options.UseSqlServer(
 Configuration["Data:MenuCardConnection:ConnectionString"]));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.Configure<FacebookAuthenticationOptions>(options =>
 {
 options.AppId = Configuration["Authentication:Facebook:AppId"];
 options.AppSecret = Configuration["Authentication:Facebook:AppSecret"];
 });

 services.Configure<MicrosoftAccountAuthenticationOptions>(options =>
 {
 options.ClientId =
 Configuration["Authentication:MicrosoftAccount:ClientId"];
 options.ClientSecret =
 Configuration["Authentication:MicrosoftAccount:ClientSecret"];
 });

 // etc.
}

Performing User Registration

Now let’s step into the generated code for registering and logging in the user. The heart of the functionality is within the AccountController class. The controller class has the Authorize attribute applied, which restricts all action methods to authenticated users. The constructor receives a user manager, sign-in manager, and database context via dependency injection. E-mail and SMS sender are used for two-factor authentication. In case you don’t implement the empty AuthMessageSender class that is part of the generated code, you can remove the injection for IEmailSender and ISmsSender (code file MenuPlanner/Controllers/AccountController.cs):

[Authorize]
public class AccountController : Controller
{
 private readonly UserManager<ApplicationUser> _userManager;
 private readonly SignInManager<ApplicationUser> _signInManager;
 private readonly IEmailSender _emailSender;
 private readonly ISmsSender _smsSender;
 private readonly ApplicationDbContext _applicationDbContext;
 private static bool _databaseChecked;

 public AccountController(
 UserManager<ApplicationUser> userManager,
 SignInManager<ApplicationUser> signInManager,
 IEmailSender emailSender,
 ISmsSender smsSender,
 ApplicationDbContext applicationDbContext)
 {
 _userManager = userManager;
 _signInManager = signInManager;
 _emailSender = emailSender;
 _smsSender = smsSender;
 _applicationDbContext = applicationDbContext;
 }

To register a user, you define RegisterViewModel. This model defines what data the user needs to enter on registration. From the generated code, this model only requires e-mail, password, and confirmation password (which must be the same as the password). In case you would like to get more information from the user, you can add properties as needed (code file MenuPlanner/Models/AccountViewModels.cs):

public class RegisterViewModel
{
 [Required]
 [EmailAddress]
 [Display(Name ="Email")]
 public string Email { get; set; }

 [Required]
 [StringLength(100, ErrorMessage =
 "The {0} must be at least {2} characters long.", MinimumLength = 6)]
 [DataType(DataType.Password)]
 [Display(Name ="Password")]
 public string Password { get; set; }

 [DataType(DataType.Password)]
 [Display(Name ="Confirm password")]
 [Compare("Password", ErrorMessage =
 "The password and confirmation password do not match.")]
 public string ConfirmPassword { get; set; }
}

User registration must be possible for non-authenticated users. That’s why the AllowAnonymous attribute is applied to the Register methods of the AccountController. This overrules the Authorize attribute for these methods. The HTTP POST variant of the Register method receives the RegisterViewModel object and writes an ApplicationUser to the database by calling the method _userManager.CreateAsync. After the user is created successfully, sign-in is done via _signInManager.SignInAsync (code file MenuPlanner/Controllers/AccountController.cs):

[HttpGet]
[AllowAnonymous]
public IActionResult Register()
{
 return View();
}

[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Register(RegisterViewModel model)
{
 EnsureDatabaseCreated(_applicationDbContext);
 if (ModelState.IsValid)
 {
 var user = new ApplicationUser
 {
 UserName = model.Email,
 Email = model.Email
 };
 var result = await _userManager.CreateAsync(user, model.Password);
 if (result.Succeeded)
 {
 await _signInManager.SignInAsync(user, isPersistent: false);
 return RedirectToAction(nameof(HomeController.Index),"Home");
 }
 AddErrors(result);
 }

 // If we got this far, something failed, redisplay form
 return View(model);
}

Now the view (code file MenuPlanner/Views/Account/Register.cshtml) just needs information from the user. Figure 41.16 shows the dialog that asks the user for information.

[image: Screenshot shows menuplanner window with registration page for creating a new account asking for email, password and confirm password. Register button is provided at the bottom of the page.]

Figure 41.16

Setting Up User Login

When the user registers, a login occurs directly after the successful registration is completed. The LoginViewModel model defines UserName, Password, and RememberMe properties—all the information the user is asked with the login. This model has some annotations used with HTML Helpers (code file MenuPlanner/Models/AccountViewModels.cs):

public class LoginViewModel
{
 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }

 [Display(Name ="Remember me?")]
 public bool RememberMe { get; set; }
}

To log in a user that is already registered, you need to call the Login method of the AccountController. After the user enters login information, the sign-in manager is used to validate login information with PasswordSignInAsync. If login is successful, the user is redirected to the original requested page. If login fails, the same view is returned to give the user one more option to enter the username and password correctly (code file MenuPlanner/Controllers/AccountController.cs):

[HttpGet]
[AllowAnonymous]
public IActionResult Login(string returnUrl = null)
{
 ViewData["ReturnUrl"] = returnUrl;
 return View();
}

[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Login(LoginViewModel model,
 string returnUrl = null)
{
 EnsureDatabaseCreated(_applicationDbContext);
 ViewData["ReturnUrl"] = returnUrl;
 if (ModelState.IsValid)
 {
 var result = await _signInManager.PasswordSignInAsync(
 model.Email, model.Password, model.RememberMe, lockoutOnFailure: false);
 if (result.Succeeded)
 {
 return RedirectToLocal(returnUrl);
 }
 if (result.RequiresTwoFactor)
 {
 return RedirectToAction(nameof(SendCode),
 new { ReturnUrl = returnUrl, RememberMe = model.RememberMe });
 }
 if (result.IsLockedOut)
 {
 return View("Lockout");
 }
 else
 {
 ModelState.AddModelError(string.Empty,"Invalid login attempt.");
 return View(model);
 }
 }
 return View(model);
}

Authenticating Users

With the authentication infrastructure in place, it’s easy to require user authentication by annotating the controller or action methods with the Authorize attribute. Applying this attribute to the class requires the role for every action method of the class. If there are different authorization requirements on different action methods, the Authorize attribute can also be applied to the action methods. With this attribute, it is verified if the caller is already authorized (by checking the authorization cookie). If the caller is not yet authorized, a 401 HTTP status code is returned with a redirect to the login action.

Applying the attribute Authorize without setting parameters requires users to be authenticated. To have more control you can define that only specific user roles are allowed to access the action methods by assigning roles to the Roles property as shown in the following code snippet:

[Authorize(Roles="Menu Admins")]
public class MenuAdminController : Controller
{

You can also access user information by using the User property of the Controller base class, which allows a more dynamic approval or deny of the user. For example, depending on parameter values passed, different roles are required.

NOTE You can read more information about user authentication and other information about security in Chapter 24, “Security.”

Summary

In this chapter, you explored the latest web technology to make use of the ASP.NET MVC 6 framework. You saw how this provides a robust structure for you to work with, which is ideal for large-scale applications that require proper unit testing. You saw how easy it is to provide advanced capabilities with minimum effort, and how the logical structure and separation of functionality that this framework provides makes code easy to understand and easy to maintain.

The next chapter continues with ASP.NET Core but discusses communication with services in the form of the ASP.NET Web API.

42
ASP.NET Web API

What’s In This Chapter?

	Overview of the ASP.NET Web API

	Creating Web API controllers

	Using repositories with dependency injection

	Creating .NET clients calling REST APIs

	Using Entity Framework from services

	Creating Metadata using Swagger

	Using OData

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Book Service Sample

	Book Service Async Sample

	Book Service Client App

	Metadata Samples

Overview

When Windows Communication Foundation (WCF) was announced with .NET 3.0, it was the technology for communication and replaced several other technologies in the .NET stack (a few mentioned here are .NET Remoting and ASP.NET Web Services). The goal was to have one communication technology that is very flexible and fulfills all needs. However, WCF was initially based on SOAP (Simple Object Access Protocol). Nowadays we have many scenarios where the powerful SOAP enhancements are not needed. For simpler scenarios such as HTTP requests returning JSON, WCF is too complex. That’s why another technology was introduced in 2012: ASP.NET Web API. With the release of ASP.NET MVC 6 and Visual Studio 2015, the third major version of ASP.NET Web API was released. ASP.NET MVC and ASP.NET Web API previously had different types and configurations (the previous versions were ASP.NET MVC 5 and ASP.NET Web API 2), but ASP.NET Web API is now part of ASP.NET MVC 6.

ASP.NET Web API offers a simple communication technology based on Representational State Transfer (REST). REST is an architecture style based on some constraints. Let’s compare a service that is based on the REST architectural style with a service that makes use of SOAP to see these constraints.

Both REST services and services making use of the SOAP protocol make use of a client-server technology. SOAP services can be stateful or stateless; REST services are always stateless. SOAP defines its own message format with a header and body to select a method of the service. With REST, HTTP verbs such as GET, POST, PUT, and DELETE are used. GET is used to retrieve resources, POST to add new resources, PUT to update resources, and DELETE to delete resources.

This chapter takes you through a journey covering various important aspects of ASP.NET Web API—creating a service, using different routing methods, creating a client, using OData, securing the service, and using custom hosts.

NOTE SOAP and WCF are covered in Chapter 44, “Windows Communication Foundation.”

Creating Services

Let’s start with creating a service. Using the new .NET Core framework, you need to start with an ASP.NET web application and select the ASP.NET Core 1.0 Template Web API (see Figure 42.1). This template adds folders and references needed with ASP.NET Web API. You can also use the template Web Application in case you need both web pages and services.

[image: Image described by surrounding text.]

Figure 42.1

NOTE ASP.NET MVC is discussed in Chapter 41, “ASP.NET MVC,” the core technology that is the foundation of ASP.NET MVC in Chapter 40, “ASP.NET Core.”

The directory structure that is created with this template contains folders that are needed for creating the services. The Controllers directory contains the Web API controllers. You’ve seen such controllers already in Chapter 41, and indeed, ASP.NET Web API and ASP.NET MVC make use of the same infrastructure. This was not the case with previous versions.

The Models directory is for the data model. You can add your entity types to this directory, as well as repositories that return model types.

The service that is created returns a list of book chapters and allows adding and deleting chapters dynamically. The sample project that offers this service has the name BookServiceSample.

Defining a Model

First you need a type that represents the data to return and change. The class defined in the Models directory has the name BookChapter and includes simple properties to represent a chapter (code file BookServiceSample/Models/BookChapter.cs):

public class BookChapter
{
 public Guid Id { get; set; }
 public int Number { get; set; }
 public string Title { get; set; }
 public int Pages { get; set; }
}

Creating a Repository

Next, you create a repository. The methods offered by the repository are defined with the interface IBookChapterRepository—methods to retrieve, add, and update book chapters (code file BookServiceSample/Models/IBookChaptersRepository.cs):

public interface IBookChaptersRepository
{
 void Init();
 void Add(BookChapter bookChapter);
 IEnumerable<BookChapter> GetAll();
 BookChapter Find(Guid id);
 BookChapter Remove(Guid id);
 void Update(BookChapter bookChapter);
}

The implementation of the repository is defined by the class SampleBookChaptersRepository. The book chapters are kept in a collection class. Because multiple tasks from different client requests can access the collection concurrently, the type ConcurrentList is used for the book chapters. This class is thread safe. The Add, Remove, and Update methods make use of the collection to add, remove, and update book chapters (code file BookServiceSample/Models/SampleBookChapterRepository.cs):

public class SampleBookChaptersRepository: IBookChapterRepository
{
 private readonly ConcurrentDictionary<Guid, BookChapter> _chapters =
 new ConcurrentDictionary<Guid, BookChapter>();

 public void Init()
 {
 Add(new BookChapter
 {
 Number = 1,
 Title ="Application Architectures",
 Pages = 35
 });
 Add(new BookChapter
 {
 Number = 2,
 Title ="Core C#",
 Pages = 42
 });
 // more chapters
 }

 public void Add(BookChapter chapter)
 {
 chapter.Id = Guid.NewGuid();
 _chapters[chapter.Id] = chapter;
 }

 public BookChapter Find(Guid id)
 {
 BookChapter chapter;
 _chapters.TryGetValue(id, out chapter);
 return chapter;
 }

 public IEnumerable<BookChapter> GetAll() => _chapters.Values;

 public BookChapter Remove(Guid id)
 {
 BookChapter removed;
 _chapters.TryRemove(id, out removed);
 return removed;
 }

 public void Update(BookChapter chapter)
 {
 _chapters[chapter.Id] = chapter;
 }
}

NOTE With the sample code, the Remove method makes sure that the BookChapter passed with the id parameter is not in the dictionary. If the dictionary already does not contain the book chapter, that’s okay.

An alternative implementation of the Remove method can throw an exception if the book chapter passed cannot be found.

NOTE Concurrent collections are discussed in Chapter 12, “Special Collections.”

With the startup, the SampleBookChapterRepository is registered with the AddSingleton method of the dependency injection container to create just one instance for all clients requesting the service. In this code snippet, an overloaded method of AddSingleton is used that allows passing a previously created instance, which allows initializing the instance by invoking the Init method (code file BookServiceSample/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 IBookChaptersRepository repos = new SampleBookChaptersRepository();
 repos.Init();
 services.AddSingleton<IBookChaptersRepository>(repos);

 // etc.
}

Creating a Controller

The ASP.NET Web API controller uses the repository. The controller can be created from the Solution Explorer context menu Add New Item ➪ Web API Controller Class. The controller class to manage book chapters is named BookChaptersController. This class derives from the base class Controller. The route to the controller is defined with the Route attribute. The route starts with api followed by the name of the controller—which is the name of the controller class without the Controller postfix. The constructor of the BooksChapterController requires an object implementing the interface IBookChapterRepository. This object is injected via dependency injection (code file BookServiceSample/Controllers/BookChaptersController.cs):

[Route("api/[controller]"]
public class BookChaptersController: Controller
{
 private readonly IBookChapterRepository _repository;
 public BookChaptersController(IBookChapterRepository bookChapterRepository)
 {
 _repository = bookChapterRepository;
 }

The Get method that is created from the template is renamed and modified to return the complete collection of type IEnumerable<BookChapter>:

// GET api/bookchapters
[HttpGet]
public IEnumerable<BookChapter> GetBookChapters() => _repository.GetAll();

The Get method with a parameter is renamed to GetBookChapterById and filters the dictionary of the repository with the Find method. The parameter of the filter, id, is retrieved from the URL. The repository’s Find method returns null if the chapter was not found. In this case, NotFound is returned. NotFound returns a 404 (not found) response. When the object is found, it is returned creating a new ObjectResult: The ObjectResult returns a status code 200 with the book chapter in the body:

// GET api/bookchapters/guid
[HttpGet("{id}", Name=nameof(GetBookChapterById))]
public IActionResult GetBookChapterById(Guid id)
{
 BookChapter chapter = _repository.Find(id);
 if (chapter == null)
 {
 return NotFound();
 }
 else
 {
 return new ObjectResult(chapter);
 }
}

NOTE Read Chapter 41 for information on defining routes.

On adding a new book chapter, the method PostBookChapter is added. This method receives a BookChapter as part of the HTTP body that is assigned to the method parameter after deserialization. In case the parameter chapter is null, an BadRequest (HTTP error 400) is returned. Adding the BookChapter, this method returns CreatedAtRoute. CreatedAtRoute returns the HTTP status 201 (Created) with the object serialized. The returned header information contains a link to the resource—that is, a link to the GetBookChapterById with the id set to the identifier of the newly created object:

// POST api/bookchapters
[HttpPost]
public IActionResult PostBookChapter([FromBody]BookChapter chapter)
{
 if (chapter == null)
 {
 return BadRequest();
 }
 _repository.Add(chapter);
 return CreatedAtRoute(nameof(GetBookChapterById), new { id = chapter.Id },
 chapter);
}

Updating items is based on the HTTP PUT request. The PutBookChapter method updates an existing item from the collection. In case the object is not yet in the collection, NotFound is returned. If the object is found, it is updated, and a success result 204—no content with an empty body—is returned:

// PUT api/bookchapters/guid
[HttpPut("{id}")]
public IActionResult PutBookChapter(Guid id, [FromBody]BookChapter chapter)
{
 if (chapter == null || id != chapter.Id)
 {
 return BadRequest();
 }
 if (_repository.Find(id) == null)
 {
 return NotFound();
 }
 _repository.Update(chapter);
 return new NoContentResult();
}

With the HTTP DELETE request, book chapters are simply removed from the dictionary:

// DELETE api/bookchapters/5
[HttpDelete("{id}")]
public void Delete(Guid id)
{
 _repository.Remove(id);
}

With this controller in place, it is already possible to do first tests from the browser. Opening the link http://localhost:5000/api/BookChapters returns JSON.

Port 5000 is the default port number when using the Kestrel web server. You can select this server in the Debug section of the project properties (see Figure 42.2) by choosing the Web profile.

[image: Image described by surrounding text.]

Figure 42.2

When you open this link in a browser, a JSON array is returned as shown:

[{"Id":"2d0c7eac-cb37-409f-b8da-c8ca497423a2",
 "Number":6,"Title":"Generics","Pages":22},
 {"Id":"d62e1182-3254-4504-a56b-f0441ee1ce8e",
 "Number":1,"Title":"Application Architectures","Pages":35},
 {"Id":"cb624eed-7e6c-40c6-88f2-28cf03eb652e",
 "Number":4,"Title":"Inheritance","Pages":18},
 {"Id":"6e6d48b5-fa04-43b5-b5f5-acd11b72c821",
 "Number":3,"Title":"Objects and Types","Pages":30},
 {"Id":"55c1ea93-2c0d-4071-8cee-cc172b3746b5",
 "Number":2,"Title":"Core C#","Pages":42},
 {"Id":"5c391b33-76f3-4e12-8989-3a8fbc621e96",
 "Number":5,"Title":"Managed and Unmanaged Resources","Pages":20}]

Changing the Response Format

ASP.NET Web API 2 returned JSON or XML, depending on the requested format by the client. With ASP.NET MVC 6, when returning an ObjectResult, by default JSON is returned. In case you need to return XML as well, you can add the NuGet package Microsoft.AspNet.Mvc.Formatters.Xml and add a call to AddXmlSerializerFormatters to the Startup class. AddXmlSerializerFormatters is an extension method for the IMvcBuilder interface and can be added using fluent API to the AddMvc method (code file BooksServiceSample/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc().AddXmlSerializerFormatters();

 IBookChaptersRepository repos = new SampleBookChaptersRepository();
 repos.Init();
 services.AddSingleton<IBookChaptersRepository>(repos);
}

With the controllers, the allowed content type(s) and selectable result can be specified with the Produces attribute (BooksServiceSample/Controllers/BookChaptersController.cs):

[Produces("application/json","application/xml")]
[Route("api/[controller]")]
public class BookChaptersController: Controller
{
 // etc.
}

NOTE Later in this chapter, in the section “Receiving XML from the Service,” you see how to receive XML-formatted responses.

REST Results and Status Codes

The following table summarizes the results a service returns based on the HTTP methods:

	HTTP Method
	Description
	Request Body
	Response Body

	GET
	Returns a resource
	Empty
	The resource

	POST
	Adds a resource
	The resource to add
	The resource

	PUT
	Updates a resource
	The resource to update
	None

	DELETE
	Deletes a resource
	Empty
	Empty

The following table shows important HTTP status codes as well as the Controller method with the instantiated object that returns the status code. To return any HTTP status code, you can return an HttpStatusCodeResult object that can be initialized with the status code you need:

	HTTP Status Code
	Controller Method
	Type

	200 OK
	Ok
	OkResult

	201 Created
	CreatedAtRoute
	CreatedAtRouteResult

	204 No Content
	NoContent
	NoContentResult

	400 Bad Request
	BadRequest
	BadRequestResult

	401 Unauthorized
	Unauthorized
	UnauthorizedResult

	404 Not Found
	NotFound
	NotFoundResult

	Any status code
	
	StatusCodeResult

All success status codes start with 2; error status codes start with 4. You can find a list of status codes in RFC 2616: http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Creating an Async Service

The previous sample code made use of a synchronous repository. Using Entity Framework Core with your repository, you can use either synchronous or asynchronous methods. Entity Framework supports both. However, many technologies, for example calling other services with the HttpClient class, offer only asynchronous methods. This can lead to an asynchronous repository as shown in the project BooksServiceAsyncSample.

With the asynchronous project, the IBookChaptersRepository has been changed to an asynchronous version. This interface is defined to use it with repositories accessing asynchronous methods, such as network or database clients. All the methods return a Task (code file BooksServiceAsyncSample/Models/IBookChaptersRepository.cs):

public interface IBookChaptersRepository
{
 Task InitAsync();
 Task AddAsync(BookChapter chapter);
 Task<BookChapter> RemoveAsync(Guid id);
 Task<IEnumerable<BookChapter>> GetAllAsync();
 Task<BookChapter> FindAsync(Guid id);
 Task UpdateAsync(BookChapter chapter);
}

The class SampleBookChaptersRepository implements the asynchronous methods. When reading and writing from the dictionary, asynchronous functionality is not needed, so the Task to return is created using the FromResult method (code file BooksServiceAsyncSample/Models/SampleBookChaptersRepository.cs):

public class SampleBookChaptersRepository: IBookChaptersRepository
{
 private readonly ConcurrentDictionary<string, BookChapter> _chapters =
 new ConcurrentDictionary<string, BookChapter>();

 public async Task InitAsync()
 {
 await AddAsync(new BookChapter
 {
 Number = 1,
 Title ="Application Architectures",
 Pages = 35
 });
 //... more book chapters
 }

 public Task AddAsync(BookChapter chapter)
 {
 chapter.Id = Guid.NewGuid();
 _chapters[chapter.Id] = chapter;
 return Task.FromResult<object>(null);
 }

 public Task<BookChapter> RemoveAsync(Guid id)
 {
 BookChapter removed;
 _chapters.TryRemove(id, out removed);
 return Task.FromResult(removed);
 }

 public Task<IEnumerable<BookChapter>> GetAllAsync() =>
 Task.FromResult<IEnumerable<BookChapter>>(_chapters.Values);

 public Task<BookChapter> FindAsync(Guid id)
 {
 BookChapter chapter;
 _chapters.TryGetValue(id, out chapter);
 return Task.FromResult(chapter);
 }

 public Task UpdateAsync(BookChapter chapter)
 {
 _chapters[chapter.Id] = chapter;
 return Task.FromResult<object>(null);
 }
}

The API controller BookChaptersController just needs a few changes to be implemented as asynchronous. The controller methods return a Task as well. With this it is easy to invoke the asynchronous methods of the repository (code file BooksServiceAsyncSample/Controllers/BookChaptersController.cs):

[Produces("application/json","application/xml")]
[Route("api/[controller]")]
public class BookChaptersController: Controller
{
 private readonly IBookChaptersRepository _repository;
 public BookChaptersController(IBookChaptersRepository repository)
 {
 _repository = repository;
 }

 // GET: api/bookchapters
 [HttpGet()]
 public Task<IEnumerable<BookChapter>> GetBookChaptersAsync() =>
 _repository.GetAllAsync();

 // GET api/bookchapters/guid
 [HttpGet("{id}", Name = nameof(GetBookChapterByIdAsync))]
 public async Task<IActionResult> GetBookChapterByIdAsync(Guid id)
 {
 BookChapter chapter = await _repository.FindAsync(id);
 if (chapter == null)
 {
 return NotFound();
 }
 else
 {
 return new ObjectResult(chapter);
 }
 }

 // POST api/bookchapters
 [HttpPost]
 public async Task<IActionResult> PostBookChapterAsync(
 [FromBody]BookChapter chapter)
 {
 if (chapter == null)
 {
 return BadRequest();
 }
 await _repository.AddAsync(chapter);
 return CreatedAtRoute(nameof(GetBookChapterByIdAsync),
 new { id = chapter.Id }, chapter);
 }

 // PUT api/bookchapters/guid
 [HttpPut("{id}")]
 public async Task<IActionResult> PutBookChapterAsync(
 string id, [FromBody]BookChapter chapter)
 {
 if (chapter == null || id != chapter.Id)
 {
 return BadRequest();
 }
 if (await _repository.FindAsync(id) == null)
 {
 return NotFound();
 }

 await _repository.UpdateAsync(chapter);
 return new NoContentResult();
 }

 // DELETE api/bookchapters/guid
 [HttpDelete("{id}")]
 public async Task DeleteAsync(Guid id)
 {
 await _repository.RemoveAsync(id);
 }
}

For the client, it doesn’t matter if the controller is implemented as synchronous or asynchronous. The client creates the same HTTP requests for both kinds.

Creating a .NET Client

Using the browser to call the service is a simple way to handle testing. The clients more typically make use of JavaScript—this is where JSON shines—and .NET clients. In this book, a Console Application (Package) project is created to call the service.

The sample code for BookServiceClientApp makes use of the following dependencies and namespaces:

Dependencies

	NETStandard.Library

	Newtonsoft.Json

	System.Net.Http

	System.Xml.XDocument

Namespaces

	Newtonsoft.Json

	System

	System.Collections.Generic

	System.Linq

	System.Linq.Xml

	System.Net.Http

	System.Net.Http.Headers

	System.Text

	System.Threading.Tasks

	static System.Console

Sending GET Requests

For sending HTTP requests, you use the HttpClient class. This class is introduced in Chapter 25, “Networking.” In this chapter, this class is used to send different kinds of HTTP requests. To use the HttpClient class, you need to add the NuGet package System.Net.Http and open the namespace System .Net.Http. To convert JSON data to a .NET type, the NuGet package Newtonsoft.Json is added.

NOTE JSON serialization and using Json.NET is discussed in Chapter 27, “XML and JSON.”

With the sample project, the generic class HttpClientHelper is created to have just one implementation for different data types. The constructor expects a base address of the service (code file BookServiceClientApp/HttpClientHelper.cs):

public abstract class HttpClientHelper<T>
 where T: class
{
 private Uri _baseAddress;

 public HttpClientHelper(string baseAddress)
 {
 if (baseAddress == null)
 throw new ArgumentNullException(nameof(baseAddress));
 _baseAddress = new Uri(baseAddress);
 }
 // etc.
}

The method GetInternalAsync makes a GET request to receive a list of items. This method invokes the GetAsync method of the HttpClient to send a GET request. The HttpResponseMessage contains the information received. The status code of the response is written to the console to show the result. In case the server returns an error, the GetAsync method doesn’t throw an exception. An exception is thrown from the method EnsureSuccessStatusCode that is invoked with the HttpResponseMessage instance that is returned. This method throws an exception in case the HTTP status code is of an error type. The body of the response contains the JSON data returned. This JSON information is read as string and returned (code file BookServiceClientApp/HttpClientHelper.cs):

private async Task<string> GetInternalAsync(string requestUri)
{
 using (var client = new HttpClient())
 {
 client.BaseAddress = _baseAddress;
 HttpResponseMessage resp = await client.GetAsync(requestUri);
 WriteLine($"status from GET {resp.StatusCode}");
 resp.EnsureSuccessStatusCode();
 return await resp.Content.ReadAsStringAsync();
 }
}

The server controller defines two methods with GET requests: one method that returns all chapters and the other one returns just a single chapter but requires the chapter’s identifier with the URI. The method GetAllAsync invokes the GetInternalAsync method to convert the returned JSON information to a collection, while the method GetAsync converts the result to a single item. These methods are declared virtual to allow overriding them from a derived class (code file BookServiceClientApp/HttpClientHelper.cs):

public async virtual Task<T> GetAllAsync(string requestUri)
{
 string json = await GetInternalAsync(requestUri);
 return JsonConvert.DeserializeObject<IEnumerable<T>>(json);
}

public async virtual Task<T> GetAsync(string requestUri)
{
 string json = await GetInternalAsync(requestUri);
 return JsonConvert.DeserializeObject<T>(json);
}

Instead of using the generic HttpClientHelper class from the client code, a specialization is done with the BookChapterClient class. This class derives from HttpClientHelper passing a BookChapter for the generic parameter. This class also overrides the GetAllAsync method from the base class to have the returned chapters sorted by the chapter number (code file BookServiceClientApp/BookChapterClient.cs):

public class BookChapterClient: HttpClientHelper<BookChapter>
{
 public BookChapterClient(string baseAddress)
 : base(baseAddress) { }

 public override async Task<IEnumerable<BookChapter>> GetAllAsync(
 string requestUri)
 {
 IEnumerable<BookChapter> chapters = await base.GetAllAsync(requestUri);
 return chapters.OrderBy(c => c.Number);
 }
}

The BookChapter class contains the properties that are received with the JSON content (code file BookServiceClientApp/BookChapter.cs):

public class BookChapter
{
 public Guid Id { get; set; }
 public int Number { get; set; }
 public string Title { get; set; }
 public int Pages { get; set; }
}

The Main method of the client application invokes the different methods to show GET, POST, PUT, and DELETE requests (code file BookServiceClientApp/Program.cs):

static void Main()
{
 WriteLine("Client app, wait for service");
 ReadLine();
 ReadChaptersAsync().Wait();
 ReadChapterAsync().Wait();
 ReadNotExistingChapterAsync().Wait();
 ReadXmlAsync().Wait();
 AddChapterAsync().Wait();
 UpdateChapterAsync().Wait();
 RemoveChapterAsync().Wait();
 ReadLine();
}

The method ReadChaptersAsync invokes the GetAllAsync method from the BookChapterClient to retrieve all chapters and shows the titles of the chapters on the console (code file BookServiceClientApp/Program.cs):

private static async Task ReadChaptersAsync()
{
 WriteLine(nameof(ReadChaptersAsync));
 var client = new BookChapterClient(Addresses.BaseAddress);
 IEnumerable<BookChapter> chapters =
 await client.GetAllAsync(Addresses.BooksApi);

 foreach (BookChapter chapter in chapters)
 {
 WriteLine(chapter.Title);
 }
 WriteLine();
}

When you run the application (starting both the service and the client app), the ReadChaptersAsync method shows the OK status code and the titles from the chapters:

ReadChaptersAsync
status from GET OK
Application Architectures
Core C#
Objects and Types
Inheritance
Managed and Unmanaged Resources
Generics

The method ReadChapterAsync shows the GET request to retrieve a single chapter. With this, the identifier of a chapter is added to the URI string (code file BookServiceClientApp/Program.cs):

private static async Task ReadChapterAsync()
{
 WriteLine(nameof(ReadChapterAsync));
 var client = new BookChapterClient(Addresses.BaseAddress);
 var chapters = await client.GetAllAsync(Addresses.BooksApi);
 Guid id = chapters.First().Id;
 BookChapter chapter = await client.GetAsync(Addresses.BooksApi + id);
 WriteLine($"{chapter.Number} {chapter.Title}");
 WriteLine();
}

The result of the ReadChapterAsync method is shown here. It shows the OK status two times because the first time this method retrieves all the chapters before sending a request for a single chapter:

ReadChapterAsync
status from GET OK
status from GET OK
1 Application Architectures

What if a GET request is sent with a nonexistent chapter identifier? How to deal with this is shown in the method ReadNotExistingChapterAsync. Calling the GetAsync method is similar to the previous code snippet, but an identifier that does not exist is added to the URI. Remember from the implementation of the HttpClientHelper class, the GetAsync method of the HttpClient class does not throw an exception. However, the EnsureSuccessStatusCode does. This exception is caught with a catch to the HttpRequestException type. Here, an exception filter is also used to only handle exception code 404 (not found) (code file BookServiceClientApp/Program.cs):

private static async Task ReadNotExistingChapterAsync()
{
 WriteLine(nameof(ReadNotExistingChapterAsync));
 string requestedIdentifier = Guid.NewGuid().ToString();
 try
 {
 var client = new BookChapterClient(Addresses.BaseAddress);
 BookChapter chapter = await client.GetAsync(
 Addresses.BooksApi + requestedIdentifier.ToString());
 WriteLine($"{chapter.Number} {chapter.Title}");
 }
 catch (HttpRequestException ex) when (ex.Message.Contains("404"))
 {
 WriteLine($"book chapter with the identifier {requestedIdentifier}" +
 "not found");
 }
 WriteLine();
}

NOTE Handling exceptions and using exception filters is discussed in Chapter 14, “Errors and Exceptions.”

The result of the method shows the NotFound result from the service:

ReadNotExistingChapterAsync
status from GET NotFound
book chapter with the identifier d38ea0c5-64c9-4251-90f1-e21c07d6937a not found

Receiving XML from the Service

In the section “Changing the Response Format,” the XML format was added to the service. With a service that is enabled to return XML beside JSON, XML content can be explicitly requested by adding the accept header value to accept application/xml content.

How this can be done is shown in the following code snippet. Here, the MediaTypeWithQualityHeaderValue specifying application/xml is added to the Accept headers collection. Then, the result is parsed as XML using the XElement class (code file BookServiceClientApp/BookChapterClient.cs):

public async Task<XElement> GetAllXmlAsync(string requestUri)
{
 using (var client = new HttpClient())
 {
 client.BaseAddress = _baseAddress;
 client.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/xml"));
 HttpResponseMessage resp = await client.GetAsync(requestUri);
 WriteLine($"status from GET {resp.StatusCode}");
 resp.EnsureSuccessStatusCode();
 string xml = await resp.Content.ReadAsStringAsync();
 XElement chapters = XElement.Parse(xml);
 return chapters;
 }
}

NOTE The XElement class and XML serialization are discussed in Chapter 27.

From the Program class, the GetAllXmlAsync method is invoked to directly write the XML result to the console (code file BookServiceClientApp/Program.cs):

private static async Task ReadXmlAsync()
{
 WriteLine(nameof(ReadXmlAsync));
 var client = new BookChapterClient(Addresses.BaseAddress);
 XElement chapters = await client.GetAllXmlAsync(Addresses.BooksApi);
 WriteLine(chapters);
 WriteLine();
}

When you run this method, you can see that now XML is returned from the service:

ReadXmlAsync
status from GET OK
<ArrayOfBookChapter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <BookChapter>
 <Id>1439c261-2722-4e73-a328-010e82866511</Id>
 <Number>4</Number>
 <Title>Inheritance</Title>
 <Pages>18</Pages>
 </BookChapter>
 <BookChapter>
 <Id>d1a53440-94f2-404c-b2e5-7ce29ad91ef6</Id>
 <Number>3</Number>
 <Title>Objects and Types</Title>
 <Pages>30</Pages>
 </BookChapter>
 <BookChapter>
 <Id>ce1a5203-5b77-43e9-b6a2-62b6a18fac44</Id>
 <Number>38</Number>
 <Title>Windows Store Apps</Title>
 <Pages>45</Pages>
 </BookChapter>
 <!—... more chapters ...—>

Sending POST Requests

Let’s send new objects to the service using the HTTP POST request. The HTTP POST request works similarly to the GET request. This request creates a new object server side. The PostAsync method of the HttpClient class requires the object that is added with the second parameter. You use Json.NET’s JsonConvert class to serialize the object to JSON. With a successful return, the Headers.Location property contains a link where the object can be retrieved again from the service. The response also contains a body with the object returned. When the object changed from the service, the Id property was filled in the service code on creating the object. This new information is returned by the PostAsync method after deserialization of the JSON code (code file BookServiceClientApp/HttpClientHelper.cs):

public async Task<T> PostAsync(string uri, T item)
{
 using (var client = new HttpClient())
 {
 client.BaseAddress = _baseAddress;
 string json = JsonConvert.SerializeObject(item);
 HttpContent content = new StringContent(json, Encoding.UTF8,
 "application/json");
 HttpResponseMessage resp = await client.PostAsync(uri, content);
 WriteLine($"status from POST {resp.StatusCode}");
 resp.EnsureSuccessStatusCode();
 WriteLine($"added resource at {resp.Headers.Location}");

 json = await resp.Content.ReadAsStringAsync();
 return JsonConvert.DeserializeObject<T>(json);
 }
}

With the Program class, you can see the chapter that is added to the service. After invoking the PostAsync method of the BookChapterClient, the returned Chapter contains the new identifier (code file BookServiceClientApp/Program.cs):

private static async Task AddChapterAsync()
{
 WriteLine(nameof(AddChapterAsync));
 var client = new BookChapterClient(Addresses.BaseAddress);
 BookChapter chapter = new BookChapter
 {
 Number = 42,
 Title ="ASP.NET Web API",
 Pages = 35
 };
 chapter = await client.PostAsync(Addresses.BooksApi, chapter);
 WriteLine($"added chapter {chapter.Title} with id {chapter.Id}");
 WriteLine();
}

The result of the AddChapterAsync method shows a successful run to create the object:

AddChapterAsync
status from POST Created
added resource at http://localhost:5000/api/BookChapters/0e99217d-8769-46cd-93a4-2cf615cda5ae
added chapter ASP.NET Web API with id 0e99217d-8769-46cd-93a4-2cf615cda5ae

Sending PUT Requests

The HTTP PUT request—used for updating a record—is sent with the help of the HttpClient method PutAsync. PutAsync requires the updated content with the second parameter, and the URL to the service including the identifier in the first (code file BookServiceClientApp/HttpClientHelper.cs):

public async Task PutAsync(string uri, T item)
{
 using (var client = new HttpClient())
 {
 client.BaseAddress = _baseAddress;
 string json = JsonConvert.SerializeObject(item);
 HttpContent content = new StringContent(json, Encoding.UTF8,
 "application/json");
 HttpResponseMessage resp = await client.PutAsync(uri, content);
 WriteLine($"status from PUT {resp.StatusCode}");
 resp.EnsureSuccessStatusCode();
 }
}

In the Program class, the chapter Windows Store Apps is updated to a different chapter number and the title Windows Apps (code file BookServiceClientApp/Program.cs):

private static async Task UpdateChapterAsync()
{
 WriteLine(nameof(UpdateChapterAsync));
 var client = new BookChapterClient(Addresses.BaseAddress);
 var chapters = await client.GetAllAsync(Addresses.BooksApi);
 var chapter = chapters.SingleOrDefault(c => c.Title =="Windows Store Apps");
 if (chapter != null)
 {
 chapter.Number = 32;
 chapter.Title ="Windows Apps";
 await client.PutAsync(Addresses.BooksApi + chapter.Id, chapter);
 WriteLine($"updated chapter {chapter.Title}");
 }

 WriteLine();
}

The console output of the UpdateChapterAsync method shows an HTTP NoContent result and the updated chapter title:

UpdateChapterAsync
status from GET OK
status from PUT NoContent
updated chapter Windows Apps

Sending DELETE Requests

The last request shown with the sample client is the HTTP DELETE request. After invoking GetAsync, PostAsync, and PutAsync of the HttpClient class, it should be obvious that the format is DeleteAsync. What’s shown in this code snippet is that the DeleteAsync method just needs a URI parameter to identify the object to delete (code file BookServiceClientApp/HttpClientHelper.cs):

public async Task DeleteAsync(string uri)
{
 using (var client = new HttpClient())
 {
 client.BaseAddress = _baseAddress;
 HttpResponseMessage resp = await client.DeleteAsync(uri);
 WriteLine($"status from DELETE {resp.StatusCode}");
 resp.EnsureSuccessStatusCode();
 }
}

The Program class defines the RemoveChapterAsync method (code file BookServiceClientApp/Program.cs):

private static async Task RemoveChapterAsync()
{
 WriteLine(nameof(RemoveChapterAsync));
 var client = new BookChapterClient(Addresses.BaseAddress);
 var chapters = await client.GetAllAsync(Addresses.BooksApi);
 var chapter = chapters.SingleOrDefault(c => c.Title =="ASP.NET Web Forms");
 if (chapter != null)
 {
 await client.DeleteAsync(Addresses.BooksApi + chapter.Id);
 WriteLine($"removed chapter {chapter.Title}");
 }
 WriteLine();
}

When you run the application, the RemoveChapterAsync method first shows the status of the HTTP GET method as a GET request is done first to retrieve all chapters, and then the successful DELETE request on deleting the ASP.NET Web Forms chapter:

RemoveChapterAsync
status from GET OK
status from DELETE OK
removed chapter ASP.NET Web Forms

Writing to the Database

Chapter 38, “Entity Framework Core,” introduced you to mapping objects to relations with the Entity Framework. An ASP.NET Web API controller can easily use a DbContext. In the sample app, you don’t need to change the controller at all; you just need to create and register a different repository for using the Entity Framework. All the steps needed are described in this section.

Defining the Database

Let’s start defining the database. For using Entity Framework with SQL Server, the NuGet packages EntityFramework.Core and EntityFramework.MicrosoftSqlServer need to be added to the service project. To create the database from code, the NuGet package EntityFramework.Commands is added as well.

The BookChapter class was already defined earlier. This class stays unchanged for filling instances from the database. Mapping to properties is defined in the BooksContext class. With this class, the OnModelCreating method is overridden to map the BookChapter type to the Chapters table and to define a unique identifier for the Id column with a default unique identifier created from the database. The Title column is restricted to a maximum of 120 characters (code file BookServiceAsyncSample/Models/BooksContext.cs):

public class BooksContext: DbContext
{
 public DbSet<BookChapter> Chapters { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);
 EntityTypeBuilder<BookChapter> chapter = modelBuilder
 .Entity<BookChapter>();
 chapter.ToTable("Chapters").HasKey(p => p.Id);
 chapter.Property<Guid>(p => p.Id)
 .HasColumnType("UniqueIdentifier")
 .HasDefaultValueSql("newid()");
 chapter.Property<string>(p => p.Title)
 .HasMaxLength(120);
 }
}

To allow creation of the database using .NET CLI tools, the ef command is defined in the project.json configuration file to map it to the EntityFrameworkCore.Commands (code file BookServiceAsyncSample/project .json):

"tools": {
 "dotnet-ef":"1.0.*"
 },

With the dependency injection container, Entity Framework and SQL Server need to be added to invoke the extension methods AddEntityFramework and AddSqlServer. The just-created BooksContext needs to be registered as well. The BooksContext is added with the method AddDbContext. With the options of this method, the connection string is passed (code file BookServiceAsyncSample/Startup.cs):

public async void ConfigureServices(IServiceCollection services)
{
 services.AddMvc().AddXmlSerializerFormatters();

 // etc.

 services.AddEntityFramework()
 .AddSqlServer()
 .AddDbContext<BooksContext>(options =>
 options.UseSqlServer(
 Configuration["Data:BookConnection:ConnectionString"]));

 // etc.
}

The connection string itself is defined with the application settings (code file BookServiceAsyncSample/appsettings.json):

"Data": {
 "BookConnection": {
 "ConnectionString":
 "Server=(localdb)\\mssqllocaldb;Database=BooksSampleDB;
 Trusted_Connection=True;MultipleActiveResultSets=true"
 }
},

With this in place, it’s now possible to create migrations and the database. To add code-based migrations to the project, you can start this dnx command from a Developer Command Prompt where you change the current directory to the directory of the project—the directory where the project.json file is placed. This statement uses the ef command that is defined in the project.json file to invoke migrations and add the InitBooks migration to the project. After a successful run of this command, you can see a Migrations folder in the project with classes to create the database:

>dotnet ef migrations add InitBooks

The following command creates the database based on the connection string defined with the startup code:

>dotnet ef database update

Creating the Repository

For using the BooksContext, you need to create a repository implementing the interface IBookChaptersRepository. The class BookChaptersRepository makes use of the BooksContext instead of using an in-memory dictionary as was done with the SampleBookChaptersRepository (code file BookServiceAsyncSample/Models/BookChaptersRepository.cs):

public class BookChaptersRepository: IBookChaptersRepository, IDisposable
{
 private BooksContext _booksContext;

 public BookChaptersRepository(BooksContext booksContext)
 {
 _booksContext = booksContext;
 }

 public void Dispose()
 {
 _booksContext?.Dispose();
 }

 public async Task AddAsync(BookChapter chapter)
 {
 _booksContext.Chapters.Add(chapter);
 await _booksContext.SaveChangesAsync();
 }

 public Task<BookChapter> FindAsync(Guid id) =>
 _booksContext.Chapters.SingleOrDefaultAsync(c => c.Id == id);

 public async Task<IEnumerable<BookChapter>> GetAllAsync() =>
 await _booksContext.Chapters.ToListAsync();

 public Task InitAsync() => Task.FromResult<object>(null);

 public async Task<BookChapter> RemoveAsync(Guid id)
 {
 BookChapter chapter = await _booksContext.Chapters
 .SingleOrDefaultAsync(c => c.Id == id);
 if (chapter == null) return null;

 _booksContext.Chapters.Remove(chapter);
 await _booksContext.SaveChangesAsync();
 return chapter;
 }

 public async Task UpdateAsync(BookChapter chapter)
 {
 _booksContext.Chapters.Update(chapter);
 await _booksContext.SaveChangesAsync();
 }
}

If you are wondering about the use of the context, read Chapter 38, which covers more information about the Entity Framework Core.

To use this repository, you have to remove the SampleBookChaptersRepository from the registration in the container (or comment it out), and add the BookChaptersRepository to let the dependency injection container create an instance of this class when asked for the interface IBookChapterRepository (code file BookServiceAsyncSample/Startup.cs):

public async void ConfigureServices(IServiceCollection services)
{
 services.AddMvc().AddXmlSerializerFormatters();
 // comment the following three lines to use the DookChaptersRepository
 //IBookChaptersRepository repos = new SampleBookChaptersRepository();
 //services.AddSingleton<IBookChaptersRepository>(repos);
 //await repos.InitAsync();

 services.AddEntityFramework()
 .AddSqlServer()
 .AddDbContext<BooksContext>(options => options.UseSqlServer(
 Configuration["Data:BookConnection:ConnectionString"]));

 services.AddSingleton<IBookChaptersRepository, BookChaptersRepository>();
}

Now—without changing the controller or the client—you can run the service and client again. Depending on the data you enter initially in the database, you see results for the GET/POST/PUT/DELETE requests.

Creating Metadata

Creating metadata for a service allows getting a description on the service, and also allows you to create the client by using this metadata. With web services using SOAP, metadata have been around since the early days of SOAP—with the Web Services Description Language (WSDL). WSDL is explained in detail in Chapter 44. Nowadays, metadata for REST services is here as well. Currently it’s not a standard as with WSDL, but the most popular framework for describing APIs is Swagger (http://www.swagger.io). As of January 2016, the Swagger specification has been renamed to OpenAPI, and a standard is in the works (http://www.openapis.org).

To add Swagger or OpenAPI to an ASP.NET Web API service, you can use Swashbuckle. The NuGet package Swashbuckle.SwaggerGen contains code to generate swagger, the package Swashbuckle.SwaggerUi to offer a dynamically created user interface. Both packages will be used to extend the BooksServiceSample project.

After you add the NuGet packages, you need to add Swagger to the service collection. AddSwaggerGen is an extension method to add swagger services to the collection. To configure Swagger, you invoke the methods ConfigureSwaggerDocument and ConfigureSwaggerSchema. ConfigureSwaggerDocument configures the title, description, and the API version. ConfigureSwaggerSchema defines how the generated JSON schema should look. The sample code is configured that obsolete properties are not shown, and enum values should be shown as strings (code file BooksServiceSample/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 IBookChaptersRepository repos = new SampleBookChaptersRepository();
 repos.Init();
 services.AddSingleton<IBookChaptersRepository>(repos);

 services.AddSwaggerGen();
 services.ConfigureSwaggerDocument(options =>
 {
 options.SingleApiVersion(new Info
 {
 Version ="v1",
 Title ="Book Chapters",
 Description ="A sample for Professional C# 6"
 });
 options.IgnoreObsoleteActions = true;
 });

 services.ConfigureSwaggerSchema(options =>
 {
 options.DescribeAllEnumsAsStrings = true;
 options.IgnoreObsoleteProperties = true;
 }
}

What’s left is the Swagger configuration in the Configure method of the Startup class. The extension method UseSwaggerGen specifies that a JSON schema file should be generated. The default URL that you can configure with UseSwaggerGen is /swagger/{version}/swagger.json. With the document configured in the previous code snippet, the URL is /swagger/v1/swagger.json. The method UseSwaggerUi defines the URL for the Swagger user interface. Using the method without arguments, the URL is swagger/ui, but of course you can change this URL by using a different overload of the UseSwaggerUi method:

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
 ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 app.UseIISPlatformHandler();
 app.UseStaticFiles();
 app.UseMvc();

 app.UseSwaggerGen();
 app.UseSwaggerUi();
}

When you run the application with Swagger configured, you can see nice information about the APIs offered by the service. Figure 42.3 shows the APIs offered by the BooksServiceSample, the template generated by Values service, and the BooksService sample. You can also see the title and description as configured with the Swagger document.

[image: Screenshot shows swagger site displaying book chapters and values.]

Figure 42.3

Figure 42.4 shows the details of the BookChapters service. You can see details of every API including the model, and also test the API calls.

[image: Screenshot shows swagger site displaying book chapters details such as parameter, value, description, parameter type and data type.]

Figure 42.4

Creating and Using OData Services

The ASP.NET Web API offers direct support for the Open Data Protocol (OData). OData offers CRUD access to a data source via the HTTP protocol. Sending a GET request retrieves a collection of entity data; a POST request creates a new entity; a PUT request updates existing entities; and a DELETE request removes an entity. In this chapter you’ve already seen the HTTP methods mapped to action methods in the controller. OData is built on JSON and AtomPub (an XML format) for the data serialization. You’ve seen direct support of JSON and XML with the ASP.NET Web API as well. What OData offers more of is that every resource can be accessed with simple URI queries. For having a look into that, and how this is solved with ASP.NET Web API, let’s get into a sample and start with a database.

With the service application BooksODataService, for offering OData, the NuGet package Microsoft.AspNet.OData needs to be added. To use OData with ASP.NET Core 1.0, you need at least version 6 of the Microsoft.AspNet.OData package. The sample service enables you to query Book and Chapter objects and the relation between.

Creating a Data Model

The sample service defines the Book and Chapter classes for the model. The Book class defines simple properties and a one-to-many relationship with the Chapter type (code file BooksODataService/Models/Book.cs):

public class Book
{
 public Book()
 {
 Chapters = new List<Book>();
 }

 public int BookId { get; set; }
 public string Isbn { get; set; }
 public string Title { get; set; }
 public List<Chapter> Chapters { get; }
}

The Chapter class defines simple properties and a many-to-one relation to the Book type (code file BooksODataService/Models/Book.cs):

public class Chapter
{
 public int ChapterId { get; set; }
 public int BookId { get; set; }
 public Book Book { get; set; }
 public string Title { get; set; }
 public int Number { get; set; }
 public string Intro { get; set; }
}

The BooksContext class defines the Books and Chapters properties as well as the definition of the SQL database relations (code file BooksODataService/Models/BooksContext.cs):

public class BooksContext: DbContext
{
 public DbSet<Book> Books { get; set; }
 public DbSet<Chapter> Chapters { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);
 EntityTypeBuilder<Book> bookBuilder = modelBuilder.Entity<Book>();
 bookBuilder.HasMany(b => b.Chapters)
 .WithOne(c => c.Book)
 .HasForeignKey(c => c.BookId);
 bookBuilder.Property<string>(b => b.Title)
 .HasMaxLength(120)
 .IsRequired();
 bookBuilder.Property<string>(b => b.Isbn)
 .HasMaxLength(20)
 .IsRequired(false);

 EntityTypeBuilder<Chapter> chapterBuilder = modelBuilder.Entity<Chapter>();
 chapterBuilder.Property<string>(c => c.Title)
 .HasMaxLength(120);
 }
}

Creating a Service

With ASP.NET Core 5, you can easily add OData Services. You don’t need to make many changes to a controller. Of course, you need to add OData to the dependency injection container (code file BooksODataService/Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddEntityFramework()
 .AddSqlServer()
 .AddDbContext<BooksContext>(options => options.UseSqlServer(
 Configuration["Data:BookConnection:ConnectionString"]));
 services.AddOData();
}

The BooksController class just needs the EnableQuery attribute applied. This makes it an OData controller. You can use OData queries to access the controller. The Route attribute applied to the BooksController class defines an odata prefix for the route. This is just a convention, and you can change the route as you like (code file BooksODataService/Controllers/BooksController.cs):

[EnableQuery]
[Route("odata/[controller]")]
public class BooksController: Controller
{
 private readonly BooksContext _booksContext;

 public BooksController(BooksContext booksContext)
 {
 _booksContext = booksContext;
 }

 [HttpGet]
 public IEnumerable<Book> GetBooks() =>
 _booksContext.Books.Include(b => b.Chapters).ToList();

 // GET api/values/5
 [HttpGet("{id}")]
 public Book GetBook(int id) =>
 _booksContext.Books.SingleOrDefault(b => b.BookId == id);

 // etc.
}

Other than the change with the EnableQuery attribute, no other special actions are needed for the controller.

OData Query

Now it’s an easy task to get all the books from the database using this URL (the port number might differ on your system):

http://localhost:50000/odata/Books

For getting just a single book, the identifier of the book can be passed with the URL. This request calls the GetBook action method passing the key that returns a single result:

http://localhost:50000/odata/Books(9)

Each book has multiple results. With a URL query it’s also possible to get all the chapter results of one book:

http://localhost:50000/odata/Books(9)/Chapters

OData offers more query options that are supported by ASP.NET Web API. The OData specification allows passing parameters to the server for paging, filtering, and sorting. Let’s get into these.

To return only a limited number of entities to the client, the client can limit the count using the $top parameter. This also allows paging by using $skip; for example, you can skip 3 and take 3:

 http://localhost:50000/odata/Books?$top=3&$skip=3

With $skip and $top options, the client decides the number of entities to retrieve. In case you want to restrict what the client can request—for example, having millions of records that should never be requested with one call—you can limit this by configuring the EnableQuery attribute. Setting the PageSize to 10 only returns 10 entities at max:

[EnableQuery(PageSize=10)]

There are many more named parameters for the Queryable attribute to restrict the query—for example, the maximum skip and top values, the maximum expansion depth, and restrictions for sorting.

To filter the requests based on properties of the Book type, the $filter option can be applied to properties of the Book. To filter only the books that are from the publisher Wrox Press, you can use the eq operator (equals) with $filter:

http://localhost:50000/odata/Books?$filter=Publisher eq 'Wrox Press'

You can use lt (less than) and gt (greater than) logical operators with $filter as well. This request returns only chapters with more than 40 pages:

http://localhost:50000/odata/Chapters?$filter=Pages gt 40

To request a sorted result, the $orderby option defines the sorting order. Adding the desc keyword makes the sorting in descending order:

http://localhost:50000/odata/Book(9)/Chapters?$orderby=Pages%20desc

You can easily make all these requests to the service by using the HttpClient class. However, there are other options as well, such as by using a WCF Data Services created proxy.

NOTE With the service, you can also restrict the query options by setting the AllowedQueryOptions of the EnableQuery attribute. You can also restrict logical and arithmetic operators with the properties AllowedLogicalOperators and AllowedArithmeticOperators.

Summary

This chapter described the features of the ASP.NET Web API that is now part of ASP.NET MVC. This technology offers an easy way to create services that can be called from any client—be it JavaScript or a .NET client—with the help of the HttpClient class. Either JSON or XML can be returned.

Dependency injection was already used in several chapters of this book, particularly in Chapter 31, “Patterns with XAML Apps.” In this chapter you’ve seen how easy it is to replace a memory-based repository using a dictionary with a repository by making use of the Entity Framework.

This chapter also introduced you to OData with which it’s easy to reference data in a tree using resource identifiers.

The next chapter continues with web technologies and gives information on publish and subscribe technologies such as WebHooks and SignalR.

CHAPTER 43
WebHooks and SignalR

What’s In This Chapter?

	Overview of SignalR

	Creating a SignalR hub

	Creating a SignalR client with HTML and JavaScript

	Creating a SignalR .NET client

	Using groups with SignalR

	Overview of WebHooks

	Creating WebHook receivers for GitHub and Dropbox

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Chat Server using SignalR

	WPF Chat Client using SignalR

	SaaS WebHooks Receiver Sample

Overview

With .NET you can use events to get notifications. You can register an event handler method with an event, also known as subscribing to events, and as soon as the event is fired from another place, your method gets invoked. Events cannot be used with web applications.

Previous chapters have covered a lot about web applications and web services. What was common with these applications and services is that the request was always started from the client application. The client makes an HTTP request and receives a response.

What if the server has some news to tell? There’s nothing like events that you can subscribe to, or are there? With the web technologies you’ve seen so far, this can be resolved by the client polling for new information. The client has to make a request to the server to ask whether new information is available. Depending on the request interval defined, this way of communication results in either a high load of requests on the network that just result in “no new information is available,” or the client misses actual information and when asking for new information receives information that is already old.

If the client is itself a web application, the direction of the communication can be turned around, and the server can send messages to the client. This is how WebHooks work.

With clients behind a firewall, using the HTTP protocol there’s no way for the server to initiate a connection to the client. The connection always needs to be started from the client side. Because HTTP connections are stateless, and clients often can’t connect to ports other than port 80, WebSockets can help. WebSockets are initiated with an HTTP request, but they’re upgraded to a WebSocket connection where the connection stays open. Using the WebSockets protocol, the server can send information to the client over the open connection as soon as the server has new information.

NOTE Using WebSockets from lower-level API calls is discussed in Chapter 25, “Networking.”

SignalR is an ASP.NET web technology that offers an easy abstraction over WebSockets. Using SignalR is a lot easier than programming using the sockets interface. Also, if the client does not support the WebSocket API, SignalR automatically switches to a polling mechanism without you having to change the program.

NOTE At the time of this writing, SignalR for ASP.NET Core 1.0 is not yet available. That’s why this chapter shows using SignalR 2 using ASP.NET 4.6 and ASP.NET Web API 2. Check http://www.github.com/ProfessionalCSharp for additional samples with SignalR 3 for ASP.NET Core 1.0 as SignalR 3 becomes available.

WebHooks is a technology that is offered by many SaaS (Software as a Service) providers. You can register with such a provider, provide a public Web API to the service provider, and this way the service provider can call back as soon as new information is available.

This chapter covers both SignalR and WebHooks. As these technologies complement each other, they can also be used in combination.

Architecture of SignalR

SignalR consists of multiple NuGet packages that can be used on the server and the client side.

	NuGet Package
	Description

	Microsoft.AspNet.SignalR
	This package references other packages for the server-side implementation.

	Microsoft.AspNet.SignalR.Core
	This is the core package for SignalR. This package contains the Hub class

	Microsoft.AspNet.SignalR.SystemWeb
	This NuGet package contains extensions for ASP.NET 4.x to define the routes.

	Microsoft.AspNet.SignalR.JavaScript
	This NuGet package contains JavaScript libraries for SignalR clients.

	Microsoft.AspNet.SignalR.Client
	This NuGet package contains types for .NET clients. A HubProxy is used to connect to a Hub.

With SignalR, the server defines a hub where clients connect to (see Figure 43.1). The hub keeps a connection to every client. Using the hub, you can send a message to every client connected. You can either send messages to all clients, or select specific clients or groups of clients to send messages to.

[image: Image described by surrounding text.]

Figure 43.1

A Simple Chat Using SignalR

The first SignalR sample application is a chat application, which is easy to create with SignalR. With this application, multiple clients can be started to communicate with each other via the SignalR hub. When one of the client applications sends a message, all the connected clients receive this message in turn.

The server application is written with ASP.NET 4.6, one of the clients is created with HTML and JavaScript, and the other client application is a .NET application using WPF for the user interface.

Creating a Hub

As previously mentioned, ASP.NET Core is not supported with SignalR—at least at the time of this writing. That’s why you start creating a hub with a new ASP.NET Web Application, select the Empty ASP.NET 4.6 template, and name it ChatServer. After creating the project, add a new item and select SignalR Hub class (see Figure 43.2). Adding this item also adds the NuGet packages that are needed server side.

[image: Screenshot shows add new item-chatserver window displaying the name as chathub.cs and sort by as default. It also selects signalR hub class (v2) of type visual C hash and add button.]

Figure 43.2

To define the URL for SignalR, you can create an OWIN Startup class (using the OWIN Startup Class item template) and add the invocation to MapSignalR to the Configuration method. The MapSignalR method defines the signalR URI as a path for requests to the SignalR hubs (code file ChatServer/Startup.cs):

using Microsoft.Owin;
using Owin;

[assembly: OwinStartup(typeof(ChatServer.Startup))]

namespace ChatServer
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }
}

The main functionality of SignalR is defined with the hub. The hub is indirectly invoked by the clients, and in turn the clients are called. The class ChatHub derives from the base class Hub to get the needed hub functionality. The method Send is defined to be invoked by the client applications sending a message to the other clients. You can use any method name with any number of parameters. The client code just needs to match the method name as well as the parameters. To send a message to the clients, the Clients property of the Hub class is used. The Clients property returns an IHubCallerConnectContext<dynamic> that allows sending messages to specific clients or to all connected clients. The sample code invokes the BroadcastMessage with all connected clients using the All property. The All property (with the Hub class as the base class) returns a dynamic object. This way you can invoke any method name you like with any number of parameters; the client code just needs to match this (code file ChatServer/ChatHub.cs):

public class ChatHub: Hub
{
 public void Send(string name, string message)
 {
 Clients.All.BroadcastMessage(name, message);
 }
}

NOTE The dynamic type is explained in Chapter 16, “Reflection, Metadata, and Dynamic Programming.”

NOTE Instead of using the dynamic type within the hub implementation, you can also define your own interface with methods that are invoked in the client. How this can be done is shown later in this chapter in the “Grouping Connections” sections, when grouping functionality is added.

Creating a Client with HTML and JavaScript

With the help of the SignalR JavaScript library, you can easily create a HTML/JavaScript client to use the SignalR hub. The client code connects to the SignalR hub, invokes the Send method, and adds a handler to receive the BroadcastMessage method.

For the user interface, two simple input elements are defined to allow entering the name and the message to send, a button to call the Send method, and an unordered list where all the messages received are shown (code file ChatServer/ChatWindow.html):

Enter your name <input type="text" id="name" />

Message <input type="text" id="message" />
<button type="button" id="sendmessage">Send</button>

<ul id="messages">

The scripts that need to be included are shown in the following code snippet. The versions might differ with your implementation. jquery.signalR defines the client side functionality for the SignalR implementation. The hub proxy is used to make the call to the SignalR server. The reference to the script signalr/hubs contain automatically generated scripting code that creates hub proxies that matches the custom code from the hub code (code file ChatServer/ChatWindow.html):

<script src="Scripts/jquery-1.11.3.js"></script>
<script src="Scripts/jquery.signalR-2.2.0.js"></script>
<script src="signalr/hubs"></script>

After including the script files, custom script code can be created to make the call to the hub, and to receive the broadcasts. In the following code snippet, $.connection.chatHub returns a hub proxy to invoke the methods of the ChatHub class in turn. chat is a variable defined to in turn use this variable instead of accessing $.connection.chatHub. Assigning a function to chat.client.broadcastMessage defines the function that is invoked when the BroadcastMessage is called by the server-side hub code. As the BroadcastMessage method passes two string parameters for the name and the message, the declared function matches the same parameters. The parameter values are added to the unordered list item within a list item element. After defining the implementation of the broadcastMessage call, you make a connection to the server by starting the connection with $.connection.hub.start(). As soon as the start of the connection is completed, the function assigned to the done function is invoked. Here, the click handler to the sendmessage button is defined. When you clicking this button, a message to the server is sent using chat.server.send, passing two string values (code file ChatServer/ChatWindow.html):

<script>
 $(function () {
 var chat = $.connection.chatHub;

 chat.client.broadcastMessage = function (name, message) {
 var encodedName = $('<div />').text(name).html();
 var encodedMessage = $('<div />').text(message).html();
 $('#messages').append('' + encodedName + ': ' +
 encodedMessage + '');
 };

 $.connection.hub.start().done(function () {
 $('#sendmessage').click(function () {
 chat.server.send($('#name').val(), $('#message').val());
 $('#message').val('');
 $('#message').focus();
 });
 });
 });
</script>

When you run the application, you can open multiple browser windows—even using different browsers—you can enter names and messages for a chat (see Figure 43.3).

[image: Screenshot shows an address bar with a link of localhost chat client sample which enters Christian in the name field and hello in the message field with a send button and displays as Christian: hello, signalR with an exclamation mark.]

Figure 43.3

When you use the Internet Explorer Developer Tools (press F12 while Internet Explorer is open) you can use Network Monitoring to see the upgrade from the HTTP protocol to the WebSocket protocol, as shown in Figure 43.4.

[image: Screenshot shows a window of title bar chatwindow.html-F12 developer tools displaying network categories, request headers and response headers.]

Figure 43.4

Creating SignalR .NET Clients

The sample .NET client application to use the SignalR server is a WPF application. The functionality is similar to the HTML/JavaScript application shown earlier. This application makes use of these NuGet packages and namespaces:

NuGet Packages

	Microsoft.AspNet.SignalR.Client

	Microsoft.Extensions.DependencyInjection

	Newtonsoft.Json

Namespaces

	Microsoft.AspNet.SignalR.Client

	Microsoft.Extensions.DependencyInjection

	System

	System.Collections.ObjectModel

	System.Net.Http

	System.Windows

The user interface of the WPF application defines two TextBox, two Button, and one ListBox element to enter the name and message, to connect to the service hub, and to show a list of received messages (code file WPFChatClient/MainWindow.xaml):

<TextBlock Text="Name" />
<TextBox Text="{Binding ViewModel.Name, Mode=TwoWay}" />
<Button Content="Connect" Command="{Binding ViewModel.ConnectCommand}" />
<TextBlock Text="Message" />
<TextBox Text="{Binding ViewModel.Message, Mode=TwoWay}" />
<Button Content="Send" Command="{Binding ViewModel.SendCommand, Mode=OneTime}" />
<ListBox ItemsSource="{Binding ViewModel.Messages, Mode=OneWay}" />

In the startup code of the application, the dependency injection container is defined, and services as well as view models are registered (code file WPFChatClient/App.xaml.cs):

public partial class App: Application
{
 protected override void OnStartup(StartupEventArgs e)
 {
 base.OnStartup(e);
 IServiceCollection services = new ServiceCollection();
 services.AddTransient<ChatViewModel>();
 services.AddTransient<GroupChatViewModel>();
 services.AddSingleton<IMessagingService, MessagingService>();

 Container = services.BuildServiceProvider();
 }

 public IServiceProvider Container { get; private set; }
}

Within the code-behind file of the view, the ChatViewModel is assigned to the ViewModel property using the dependency injection container (code file WPFChatClient/MainWindow.xaml.cs):

public partial class MainWindow: Window
{
 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = this;
 }

 public ChatViewModel ViewModel { get; } =
 (App.Current as App).Container.GetService<ChatViewModel>();
}

NOTE WPF is covered in detail in Chapter 34, “Windows Desktop Applications with WPF.” The Model-View-ViewModel (MVVM) pattern is explained in Chapter 31, “Patterns with XAML Apps.”

The hub-specific code is implemented in the class ChatViewModel. First, have a look at the bound properties and commands. The property Name is bound to enter the chat name, the Message property to enter the message. The ConnectCommand property maps to the OnConnect method to initiate the connection to the server; the SendCommand property maps to the OnSendMessage method to send a chat message (code file WPFChatClient/ViewModels/ChatViewModel.cs):

public sealed class ChatViewModel: IDisposable
{
 private const string ServerURI ="http://localhost:45269/signalr";
 private readonly IMessagingService _messagingService;
 public ChatViewModel(IMessagingService messagingService)
 {
 _messagingService = messagingService;

 ConnectCommand = new DelegateCommand(OnConnect);
 SendCommand = new DelegateCommand(OnSendMessage);
 }

 public string Name { get; set; }
 public string Message { get; set; }

 public ObservableCollection<string> Messages { get; } =
 new ObservableCollection<string>();

 public DelegateCommand SendCommand { get; }

 public DelegateCommand ConnectCommand { get; }

 // etc.
}

The OnConnect method initiates the connection to the server. First, a new HubConnection object passing the URL to the server is created. With the HubConnection, the proxy can be created using CreateHubProxy, passing the name of the hub. Using the proxy, methods of the service can be called. To register with messages that are returned from the server, the On method is invoked. The first parameter passed to the On method defines the method name that is called by the server; the second parameter defines a delegate to the method that is invoked. The method OnMessageReceived has the parameters specified with the generic parameter arguments of the On method: two strings. To finally initiate the connection, the Start method on the HubConnection instance is invoked (code file WPFChatClient/ViewModels/ChatViewModel.cs):

private HubConnection _hubConnection;
private IHubProxy _hubProxy;

public async void OnConnect()
{
 CloseConnection();
 _hubConnection = new HubConnection(ServerURI);
 _hubConnection.Closed += HubConnectionClosed;
 _hubProxy = _hubConnection.CreateHubProxy("ChatHub");
 _hubProxy.On<string, string>("BroadcastMessage", OnMessageReceived);

 try
 {
 await _hubConnection.Start();
 }
 catch (HttpRequestException ex)
 {
 _messagingService.ShowMessage(ex.Message);
 }
 _messagingService.ShowMessage("client connected");
}

Sending messages to SignalR requires only calls to the Invoke method of the IHubProxy. The first parameter is the name of the method that should be invoked by the server; the following parameters are the parameters of the method on the server (code file WPFChatClient/ViewModels/ChatViewModel.cs):

public void OnSendMessage()
{
 _hubProxy.Invoke("Send", Name, Message);
}

When receiving a message, the OnMessageReceived method is invoked. Because this method is invoked from a background thread, you need to switch back to the UI thread that updates bound properties and collections (code file WPFChatClient/ViewModels/ChatViewModel.cs):

public void OnMessageReceived(string name, string message)
{
 App.Current.Dispatcher.Invoke(() =>
 {
 Messages.Add($"{name}: {message}");
 });
}

When you run the application, you can receive and send messages from the WPF client as shown in Figure 43.5. You can also open the web page simultaneously and communicate between them.

[image: Screenshot shows chat client window displaying fields such as name and message along with connect and send buttons.]

Figure 43.5

Grouping Connections

Usually you don’t want to communicate among all clients, but you instead want to communicate among a group of clients. There’s support out of the box for such a scenario with SignalR.

In this section, you add another chat hub with grouping functionality and also have a look at other options that are possible using SignalR hubs. The WPF client application is extended to enter groups and send a message to a selected group.

Extending the Hub with Groups

To support a group chat, you create the class GroupChatHub. With the previous hub, you saw how to use the dynamic keyword to define the message that is sent to the clients. Instead of using the dynamic type, you can also create a custom interface as shown in the following code snippet. This interface is used as a generic parameter with the base class Hub (code file ChatServer/GroupChatHub.cs):

public interface IGroupClient
{
 void MessageToGroup(string groupName, string name, string message);
}

public class GroupChatHub: Hub<IGroupClient>
{
 // etc.
}

AddGroup and LeaveGroup are methods defined to be called by the client. Registering the group, the client sends a group name with the AddGroup method. The Hub class defines a Groups property where connections to groups can be registered. The Groups property of the Hub class returns IGroupManager. This interface defines two methods: Add and Remove. Both of these methods need a group name and a connection identifier to add or remove the specified connection to the group. The connection identifier is a unique identifier associated with a client connection. The client connection identifier—as well as other information about the client—can be accessed with the Context property of the Hub class. The following code snippet invokes the Add method of the IGroupManager to register a group with the connection, and the Remove method to unregister a group (code file ChatServer/GroupChatHub.cs):

public Task AddGroup(string groupName) =>
 Groups.Add(Context.ConnectionId, groupName);

public Task LeaveGroup(string groupName) =>
 Groups.Remove(Context.ConnectionId, groupName);

NOTE The Context property of the Hub class returns an object of type HubCallerContext. With this class, you can not only access the connection identifier associated with the connection, but you can access other information about the client, such as the header, query string, and cookie information from the HTTP request and also information about the user. This information can be used for user authentication.

Invoking the Send method—this time with three parameters including the group—sends information to all connections that are associated with the group. The Clients property is now used to invoke the Group method. The Group method accepts a group string to send the MessageToGroup message to all connections associated with the group name. With an overload of the Group method you can add connection IDs that should be excluded. Because the Hub implements the interface IGroupClient, the Groups method returns the IGroupClient. This way, the MessageToGroup method can be invoked using compile-time support (code file ChatServer/GroupChatHub.cs):

public void Send(string group, string name, string message)
{
 Clients.Group(group).MessageToGroup(group, name, message);
}

Several other extension methods are defined to send information to a list of client connections. You’ve seen the Group method to send messages to a group of connections that’s specified by a group name. With this method, you can exclude client connections. For example, the client who sent the message might not need to receive it. The Groups method accepts a list of group names where a message should be sent to. You’ve already seen the All property to send a message to all connected clients. Methods to exclude sending the message to the caller are OthersInGroup and OthersInGroups. These methods send a message to one specific group excluding the caller, or a message to a list of groups excluding the caller.

You can also send messages to a customized group that’s not based on the built-in grouping functionality. Here, it helps to override the methods OnConnected, OnDisconnected, and OnReconnected. The OnConnected method is invoked every time a client connects; the OnDisconnected method is invoked when a client disconnects. Within these methods, you can access the Context property of the Hub class to access client information as well as the client-associated connection ID. Here, you can write the connection information to a shared state to have your server scalable using multiple instances, accessing the same shared state. You can also select clients based on your own business logic, or implement priorities when sending messages to privilege specific clients.

public override Task OnConnected()
{
 return base.OnConnected();
}

public override Task OnDisconnected(bool stopCalled)
{
 return base.OnDisconnected(stopCalled);
}

Extending the WPF Client with Groups

After having the grouping functionality with the hub ready, you can extend the WPF client application. For the grouping features, another XAML page associated with the GroupChatViewModel class is defined.

The GroupChatViewModel class defines some more properties and commands compared to the ChatViewModel defined earlier. The NewGroup property defines the group the user registers to. The SelectedGroup property defines the group that is used with the continued communication, such as sending a message to the group or leaving the group. The SelectedGroup property needs change notification to update the user interface on changing this property; that’s why the INotifyPropertyChanged interface is implemented with the GroupChatViewModel class, and the set accessor of the property SelectedGroup fires a notification. Commands to join and leave the group are defined as well: the EnterGroupCommand and LeaveGroupCommand properties (code file WPFChatClient/ViewModels/GroupChatViewModel.cs):

public sealed class GroupChatViewModel: IDisposable, INotifyPropertyChanged
{
 private readonly IMessagingService _messagingService;
 public GroupChatViewModel(IMessagingService messagingService)
 {
 _messagingService = messagingService;

 ConnectCommand = new DelegateCommand(OnConnect);
 SendCommand = new DelegateCommand(OnSendMessage);
 EnterGroupCommand = new DelegateCommand(OnEnterGroup);
 LeaveGroupCommand = new DelegateCommand(OnLeaveGroup);
 }

 private const string ServerURI ="http://localhost:45269/signalr";

 public event PropertyChangedEventHandler PropertyChanged;

 public string Name { get; set; }
 public string Message { get; set; }
 public string NewGroup { get; set; }

 private string _selectedGroup;
 public string SelectedGroup
 {
 get { return _selectedGroup; }
 set
 {
 _selectedGroup = value;
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(
 nameof(SelectedGroup)));
 }
 }

 public ObservableCollection<string> Messages { get; } =
 new ObservableCollection<string>();
 public ObservableCollection<string> Groups { get; } =
 new ObservableCollection<string>();

 public DelegateCommand SendCommand { get; }
 public DelegateCommand ConnectCommand { get; }
 public DelegateCommand EnterGroupCommand { get; }
 public DelegateCommand LeaveGroupCommand { get; }
 // etc.
}

The handler methods for the EnterGroupCommand and LeaveGroupCommand commands are shown in the following code snippet. Here, the AddGroup and RemoveGroup methods are called within the group hub (code file WPFChatClient/ViewModels/GroupChatViewModel.cs):

public async void OnEnterGroup()
{
 try
 {
 await _hubProxy.Invoke("AddGroup", NewGroup);
 Groups.Add(NewGroup);
 SelectedGroup = NewGroup;
 }
 catch (Exception ex)
 {
 _messagingService.ShowMessage(ex.Message);
 }
}

public async void OnLeaveGroup()
{
 try
 {
 await _hubProxy.Invoke("RemoveGroup", SelectedGroup);
 Groups.Remove(SelectedGroup);
 }
 catch (Exception ex)
 {
 _messagingService.ShowMessage(ex.Message);
 }
}

Sending and receiving the messages is very similar to the previous sample, with the difference that the group information is added now (code file WPFChatClient/ViewModels/GroupChatViewModel.cs):

public async void OnSendMessage()
{
 try
 {
 await _hubProxy.Invoke("Send", SelectedGroup, Name, Message);
 }
 catch (Exception ex)
 {
 _messagingService.ShowMessage(ex.Message);
 }
}

public void OnMessageReceived(string group, string name, string message)
{
 App.Current.Dispatcher.Invoke(() =>
 {
 Messages.Add($"{group}-{name}: {message}");
 });
}

When you run the application, you can send messages for all groups that have been joined and see received messages for all registered groups, as shown in Figure 43.6.

[image: Screenshot shows group chat window displaying fields such as name, group and message along with connect, enter group, send and leave group buttons.]

Figure 43.6

Architecture of WebHooks

WebHooks offer publish/subscribe functionality with web applications. That’s the only similarity between WebHooks and SignalR. Otherwise, WebHooks and SignalR are very different and can take advantage of each other. Before discussing how they can be used together, let’s get into an overview of WebHooks.

With WebHooks, an SaaS (Software as a Service) service can call into your website. You just need to register your site with the SaaS service. The SaaS service than calls your website (see Figure 43.7). In your website, the receiver controller receives all messages from WebHooks senders and forwards it to the corresponding receiver. The receiver verifies security to check whether the message is from the registered sender, and then it forwards the message to the handler. The handler contains your custom code to process the request.

[image: Block diagram shows receiver controller connected to dropbox, github, wordpress and their corresponding receivers. Github receiver is again connected to handlers. Receiver controller, receivers and handlers forms the web site.]

Figure 43.7

Contrary to the SignalR technology, the sender and receiver are not always connected. The receiver just offers a service API that is invoked by the sender when needed. The receiver needs to be available on a public Internet address.

The beauty of WebHooks is the ease of use on the receiver side and the support it receives from many SaaS providers, such as Dropbox, GitHub, WordPress, PayPal, Slack, SalesForce, and others. More new providers are coming every week.

Creating a sender is not as easy as creating a receiver, but there’s also great support with an ASP.NET Framework. A sender needs a registration option for WebHook receivers, which is typically done using a Web UI. Of course you can also create a Web API instead to register programmatically. With the registration, the sender receives a secret from the receiver together with the URL it needs to call into. This secret is verified by the receiver to only allow senders with this secret. As events occur with the sender, the sender fires a WebHook, which in reality involves invoking a web service of the receiver and passing (mostly) JSON information.

Microsoft’s ASP.NET NuGet packages for WebHooks make it easy to implement receivers for different services by abstracting the differences. It’s also easy to create the ASP.NET Web API service that verifies the secrets sent by the senders and forward the calls to custom handlers.

To see the ease of use and the beauty of WebHooks, a sample application is shown to create Dropbox and GitHub receivers. When creating multiple receivers you see what’s different between the providers and what functionality is offered by the NuGet packages. You can create a receiver to other SaaS providers in a similar manner.

Creating Dropbox and GitHub Receivers

To create and run the Dropbox and GitHub receiver example, you need both a GitHub and a Dropbox account. With GitHub you need admin access to a repository. Of course, for learning WebHooks, it’s fine to use just one of these technologies. What’s needed with all the receivers, no matter what service you use, is for you to have a way to make your website publicly available—for example, by publishing to Microsoft Azure.

Dropbox (http://www.dropbox.com) offers a file store in the cloud. You can save your files and directories and also share them with others. With WebHooks you can receive information about changes in your Dropbox storage—for example, you can be notified when files are added, modified, and deleted.

GitHub (http://www.github.com) offers source code repositories. .NET Core and ASP.NET Core 1.0 are available in public repositories on GitHub, and so is the source code for this book (http://www.github.com/ProfessionalCSharp/ProfessionalCSharp6). With the GitHub WebHook you can receive information about push events or about all changes to the repository, such as forks, updates to Wiki pages, issues, and more.

Creating a Web Application

Start by creating an ASP.NET Web Application named SaasWebHooksReceiverSample. Select MVC with the ASP.NET 4.6 Templates and add Web API to the options (see Figure 43.8).

[image: Image described by surrounding text.]

Figure 43.8

Next, add the NuGet packages Microsoft.AspNet.WebHooks.Receivers.Dropbox and Microsoft.AspNet .WebHooks.Receivers.GitHub. These are the NuGet packages that support receiving messages from Dropbox and GitHub. With the NuGet package manager you’ll find many more NuGet packages that support other SaaS services.

Configuring WebHooks for Dropbox and GitHub

You can initialize WebHooks for Dropbox by invoking the extension method InitializeReceiveDropboxWebHooks and initialize WebHooks for GitHub by invoking the extension method InitializeReceiveGitHubWebHooks. You invoke these methods with HttpConfiguration in the startup code (code file SaaSWebHooksReceiverSample/App_Start/WebApiConfig.cs):

using System.Web.Http;

namespace SaaSWebHooksReceiverSample
{
 public static class WebApiConfig
 {
 public static void Register(HttpConfiguration config)
 {
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name:"DefaultApi",
 routeTemplate:"api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.InitializeReceiveDropboxWebHooks();
 config.InitializeReceiveGitHubWebHooks();
 }
 }
}

To only allow messages from the defined SaaS services, secrets are used. You can configure these secrets with the application settings. The key for the settings is predefined from the code in the NuGet packages. For Dropbox, the key MS_WebHookReceiverSecret_Dropbox is used, with GitHub MS_WebHookReceiverSecret_GitHub. Such a secret needs to be at least 15 characters long.

In case you would like to use different Dropbox accounts or different GitHub repositories, you can use different secrets to define multiple secrets with identifiers, as shown in the following code snippet (code file SaaSWebHooksReceiverSample/Web.config):

<appSettings>
 <add key="webpages:Version" value="3.0.0.0" />
 <add key="webpages:Enabled" value="false" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
 <add key="MS_WebHookReceiverSecret_Dropbox"
 value="123451234512345123456789067890,
 dp1=987654321000987654321000988" />
 <add key="MS_WebHookReceiverSecret_Github"
 value="123456789012345678901234567890,
 gh1=98765432109876543210, gh2=8765432109876543210" />
</appSettings>

Implementing the Handler

The functionality of the WebHook is implemented in the WebHookHandler. What can be done in this handler? You can write the information to a database, to a file, to invoke other services, and so on. Just be aware that the implementation shouldn’t take too long—just a few seconds. In cases where the implementation takes too long, the sender might resend the request. For longer activities, it’s best to write the information to a queue and work through the queue after the method is finished—for example, by using a background process.

For the sample application receiving an event, a message is written into the Microsoft Azure Storage queue. For using this queuing system you need to create a Storage account at http://portal.azure.com. With the sample application, the Storage account is named professionalcsharp. For using Microsoft Azure Storage, you can add the NuGet package WindowsAzure.Storage to the project.

After creating the Azure Storage account, open the portal and copy the account name and primary access key, and add this information to the configuration file (code file SaaSWebHooksSampleReceiver/web.config):

<add key="StorageConnectionString"
 value="DefaultEndpointsProtocol=https;
 AccountName=add your account name;AccountKey=add your account key==" />

To send a message to the queue, you create the QueueManager. In the constructor, you create a CloudStorageAccount object by reading the configuration files from the configuration file. The CloudStorageAccount allows accessing the different Azure Storage facilities such as queue, table, and blob storage. The method CreateCloudQueueClient returns a CloudQueueClient that allows creating queues and writing messages to queues. If the queue does not yet exist, it is created by CreateIfNotExists. The AddMessage of the queue writes a message (code file SaaSWebHooksSampleReceiver/WebHookHandlers/QueueManager.cs):

public class QueueManager
{
 private CloudStorageAccount _storageAccount;

 public QueueManager()
 {
 _storageAccount = CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings["StorageConnectionString"]);
 }

 public void WriteToQueueStorage(string queueName, string actions,
 string json)
 {
 CloudQueueClient client = _storageAccount.CreateCloudQueueClient();

 CloudQueue queue = client.GetQueueReference(queueName);
 queue.CreateIfNotExists();
 var message = new CloudQueueMessage(actions +"—-" + json);
 queue.AddMessage(message);
 }
}

Next, let’s get into the most important part of the WebHook implementation: the custom handlers for the Dropbox and GitHub events. A WebHook handler derives from the base class WebHookHandler and overrides the abstract method ExecuteAsync from the base class. With this method, you receive the receiver and the context from the WebHook. The receiver contains the information about the SaaS service—for example, github and dropbox with the sample code. After the responsible receiver received the event, all the handlers are invoked one after the other. If every handler is used for a different service, it’s best to check the receiver first and compare it to the corresponding service before executing the code. With the sample code, both handlers invoke the same functionality with the only difference being different queue names. Here, just one handler would suffice. However, because you usually have different implementations based on the SaaS service, two handlers have been implemented in the sample code where each checks for the receiver name. With the WebHookHandlerContext you can access a collection of actions, which is a list of reasons why the WebHook was fired, information about the request from the caller, and the JSON object that was sent from the service. The actions and the JSON object are written to the Azure Storage queue (code file SaaSWebHooksSampleReceiver/WebHookHandlers/GithubWebHookHandler.cs):

public class GithubWebHookHandler: WebHookHandler
{
 public override Task ExecuteAsync(string receiver,
 WebHookHandlerContext context)
 {
 if ("GitHub".Equals(receiver, StringComparison.CurrentCultureIgnoreCase))
 {
 QueueManager queue = null;
 try
 {
 queue = new QueueManager();
 string actions = string.Join(",", context.Actions);
 JObject incoming = context.GetDataOrDefault<JObject>();

 queue.WriteToQueueStorage("githubqueue", actions, incoming.ToString());
 }
 catch (Exception ex)
 {
 queue?.WriteToQueueStorage("githubqueue","error", ex.Message);
 }
 }
 return Task.FromResult<object>(null);
 }
}

With the implementation in a production scenario you can already read information from the JSON object and react accordingly. However, remember that you should do the work within the handler within a few seconds. Otherwise the service can resend the WebHook. This behavior is different based on the providers.

With the handlers implemented, you can build the project and publish the application to Microsoft Azure. You can publish directly from the Solution Explorer in Visual Studio. Select the project, choose the Publish context menu, and select a Microsoft Azure App Service target.

NOTE Publishing your website to Microsoft Azure is explained in Chapter 45, “Deploying Websites and Services.”

After publishing you can configure Dropbox and GitHub. For these configurations, the site already needs to be publicly available.

Configuring the Application with Dropbox and GitHub

To enable WebHooks with Dropbox, you need to create an app in the Dropbox App Console at https://www.dropbox.com/developers/apps, as shown in Figure 43.9.

[image: Screenshot shows developers-dropbox window displaying API selection, type of access required and naming the application under my apps category.]

Figure 43.9

To receive WebHooks from Dropbox, you need to register the public URI of your website. When you host the site with Microsoft Azure, the host name is <hostname>.azurewebsites.net. The service of the receiver listens at /api/webhooks/incoming/provider—for example, with Dropbox at https://professionalcsharp.azurewebsites.net/api/webhooks/incoming/dropbox. In case you registered more than one secret, other than the URIs of the other secrets, add the secret key to the URI, such as /api/webhooks/incoming/dropbox/dp1.

Dropbox verifies a valid URI by sending a challenge that must be returned. You can try that out with your receiver that is configured for Dropbox to access the URI hostname/api/webhooks/incoming/dropbox/?challenge=12345, which should return the string 12345.

To enable WebHooks with GitHub, open the Settings of a GitHub repository (see Figure 43.10). There you need to add a payload link, which is http://<hostname>/api/webhooks/incoming/github with this project. Also, don’t forget to add the secret, which must be the same as defined in the configuration file. With the GitHub configuration, you can select either application/json or Form-based application/x-www-form-urlencoded content from GitHub. With the events, you can select to receive just push events, all events, or select individual events.

NOTE If you use an ASP.NET Web App, you can use a Wizard to enable WebHooks with GitHub.

[image: Screenshot shows a window displaying webhooks and services under settings option with filled up field's payload URL and content type and selects update webbook button.]

Figure 43.10

Running the Application

With the configured public web application, as you make changes to your Dropbox folder or changes in your GitHub repository, you will find new messages arriving in the Microsoft Azure Storage queue. From within Visual Studio, you can directly access the queue using the Cloud Explorer. Selecting your storage account within the Storage Accounts tree entry, you can see the Queues entry that shows all the generated queues. When you open the queue, you can see messages like the one shown in Figure 43.11.

[image: Screenshot shows webhookssample main window which displays id, message text preview, size, insertion time, expiration time et cetera. It also displays a sub window with the message and ok button.]

Figure 43.11

Summary

This chapter described publish/subscribe mechanisms with web applications. With SignalR there’s an easy way to make use of the WebSocket technology that keeps a network connection open to allow passing information from the server to the client. SignalR also works with older clients in that as a fallback polling is used if WebSockets is not available.

You’ve seen how to create SignalR hubs and communicate both from a JavaScript as well as a .NET client.

With SignalR’s support of groups, you’ve seen how the server can send information to a group of clients.

With the sample code you’ve seen how to chat between multiple clients using SignalR. Similarly, you can use SignalR with many other scenarios—for example, if you have some information from devices that call Web APIs with the server, you can inform connected clients with this information.

In the coverage of WebHooks you’ve seen another technology based on a publish/subscribe mechanism. WebHooks is unlike SignalR in that it can be used only with receivers available with public Internet addresses because the senders (typically SaaS services) publish information by calling web services. With the features of WebHooks, you’ve seen that many SaaS services provide WebHooks, and it’s easy to create receivers that receive information from these services.

To get WebHooks forwarded to clients that are behind the firewall, you can combine WebHooks with SignalR. You just need to pass on WebHook information to connected SignalR clients.

The next chapter gives you information about Windows Communication Foundation (WCF), a mature technology that is based on SOAP and offers advanced features for communication.

CHAPTER 44
Windows Communication Foundation

What’s In This Chapter?

	WCF overview

	Creating a simple service and client

	Defining service, operation, data, and message contracts

	Implementing a service

	Using binding for communication

	Creating different hosts for services

	Creating clients with a service reference and programmatically

	Using duplex communication

	Using routing

Wrox.com Code Downloads for This Chapter

You can find the wrox.com code downloads for this chapter at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is divided into the following major examples:

	Simple service and client

	WebSockets

	Duplex communication

	Routing

WCF Overview

Chapter 42 covered ASP.NET Web API, a communication technology based on Representational State Transfer (REST). The big and older brother for communication between client and server is Windows Communication Foundation (WCF). This technology was originally invented with .NET 3.0 to replace different technologies, such as .NET Remoting for fast communication between .NET applications and ASP.NET Web Services and Web Services Enhancements (WSE) for platform-independent communication. Nowadays, WCF is much more complex compared to ASP.NET Web API, but it also offers some more features, such as reliability, transactions, and web services security. In case you don’t need any of these advance communication features, ASP.NET Web API might be the better choice. WCF is important for these additional features and to support legacy applications.

The major namespace covered in this chapter is System.ServiceModel.

NOTE Although most chapters in this book are based on the new .NET Framework stack—.NET Core 1.0—this chapter requires the full framework. The client-side part of WCF is available with .NET Core, but the server side requires the full .NET Framework. With these samples, .NET 4.6 is used. Where possible, I make use of .NET Core. The libraries used for defining the contracts and doing data access are built using .NET Core.

You can get the following from WCF:

	Hosting for components and services—Just as you can use custom hosts with .NET Remoting and Web Service Enhancements (WSE), you can host a WCF service in the ASP.NET runtime, a Windows service, a COM+ process, or a WPF application for peer-to-peer computing.

	Declarative behavior—Instead of the requirement to derive from a base class (this requirement exists with .NET Remoting and Enterprise Services), attributes can be used to define the services. This is similar to web services developed with ASP.NET.

	Communication channels—Although .NET Remoting is flexible for changing the communication channel, WCF is a good alternative because it offers the same flexibility. WCF offers multiple channels to communicate using HTTP, TCP, or an IPC channel. Custom channels using different transport protocols can be created as well.

	Security infrastructure—For implementing platform-independent web services, you must use a standardized security environment. The proposed standards are implemented with WSE 3.0, and this continues with WCF.

	Extensibility—.NET Remoting has a rich extensibility story. It is not only possible to create custom channels, formatters, and proxies but also to inject functionality inside the message flow on the client and on the server. WCF offers similar extensibilities; however, here the extensions are created by using SOAP headers.

The final goal is to send and receive messages between a client and a service across processes or different systems, across a local network, or across the Internet. This should be done, if required, in a platform-independent way and as fast as possible. From a distant view, the service offers an endpoint that is described by a contract, a binding, and an address. The contract defines the operations offered by the service; binding gives information about the protocol and encoding; and the address is the location of the service. The client needs a compatible endpoint to access the service.

Figure 44.1 shows the components that participate with a WCF communication.

[image: Block diagram shows client code connected to proxy and service connected to dispatcher. Both proxy and dispatcher are connected to channel.]

Figure 44.1

The client invokes a method on the proxy. The proxy offers methods as defined by the service but converts the method call to a message and transfers the message to the channel. The channel has a client-side part and a server-side part that communicate across a networking protocol. From the channel, the message is passed to the dispatcher, which converts the message to a method call invoked with the service.

WCF supports several communication protocols. For platform-independent communication, web services standards are supported. For communication between .NET applications, faster communication protocols with less overhead can be used.

Chapter 42 describes communication across HTTP using REST programming style passing objects in a JavaScript Object Notation (JSON) format, and a description of the service API with Swagger. With WCF, some other technologies are important: SOAP, a platform-independent protocol that is the foundation of several web service specifications to support security, transactions, and reliability, and the Web Services Description Language (WSDL) that offers metadata to describe the service.

SOAP

For platform-independent communication, you can use the SOAP protocol; it is directly supported from WCF. SOAP originally was shorthand for Simple Object Access Protocol, but since SOAP 1.2 this is no longer the case. SOAP no longer is an object access protocol because instead messages are sent that can be defined by an XML schema. Now it’s not an acronym anymore; SOAP is just SOAP.

A service receives a SOAP message from a client and returns a SOAP response message. A SOAP message consists of an envelope, which contains a header and a body:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Header>
 </s:Header>
 <s:Body>
 <ReserveRoom>
 <roomReservation xmlns:a=
 "http://schemas.datacontract.org/2004/07/Wrox.ProCSharp.WCF.Contracts"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <a:Contact>UEFA</a:Contact>
 <a:EndTime>2015–07–28T22:00:00</a:EndTime>
 <a:Id>0</a:Id>
 <a:RoomName>Athens</a:RoomName>
 <a:StartTime>2015–07–28T20:00:00</a:StartTime>
 <a:Text>Panathinaikos-Club Brugge</a:Text>
 </roomReservation>
 </ReserveRoom>
 </s:Body>
</s:Envelope>

The header is optional and can contain information about addressing, security, and transactions. The body contains the message data.

WSDL

A Web Services Description Language (WSDL) document describes the operations and messages of the service. WSDL defines metadata of the service that can be used to create a proxy for the client application.

The WSDL contains this information:

	Types for the messages described using an XML schema.

	Messages sent to and from the service. Parts of the messages are the types defined with an XML schema.

	Port types map to service contracts and list operations defined with the service contract. Operations contain messages; for example, an input and an output message as used with a request and response sequence.

	Binding information that contains the operations listed with the port types and that defines the SOAP variant used.

	Service information that maps port types to endpoint addresses.

NOTE With WCF, WSDL information is offered by Metadata Exchange (MEX) endpoints.

Creating a Simple Service and Client

Before going into the details of WCF, start with a simple service. The service is used to reserve meeting rooms.

For a backing store of room reservations, a simple SQL Server database with the table RoomReservations is used. The database is created with the sample application using Entity Framework Migrations.

Following are the next steps to create a service and a client:

	Create service and data contracts.

	Create a library to access the database using the Entity Framework Core.

	Implement the service.

	Use the WCF Service Host and WCF Test Client.

	Create a custom service host.

	Create a client application using metadata.

	Create a client application using shared contracts.

	Configure diagnostics.

Defining Service and Data Contracts

To start, create a new solution with the name RoomReservation. Add a new project of type Class Library to the solution, and name the project RoomReservationContracts.

The sample code for the RoomReservationContracts library makes use of the following dependencies and namespaces:

Dependencies

	System.ComponentModel.DataAnnotations

	System.Runtime.Serialization

	System.ServiceModel

Namespaces

	System

	System.Collections.Generic

	System.ComponentModel

	System.ComponentModel.DataAnnotations

	System.Runtime.CompilerServices

	System.Runtime.Serialization

	System.ServiceModel

Create a new class named RoomReservation. This class contains the properties Id, RoomName, StartTime, EndTime, Contact, and Text to define the data needed in the database and sent across the network. For sending the data across a WCF service, the class is annotated with the DataContract and the DataMember attributes. The attributes StringLength from the namespace System.ComponentModel.DataAnnotations can not only be used with validation on user input but they can also define column schemas on creating the database table (code file RoomReservation/RoomReservationContracts/RoomReservation.cs):

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.Runtime.CompilerServices;
using System.Runtime.Serialization;

namespace Wrox.ProCSharp.WCF.Contracts
{
 [DataContract]
 public class RoomReservation : INotifyPropertyChanged
 {
 private int _id;

 [DataMember]
 public int Id
 {
 get { return _id; }
 set { SetProperty(ref _id, value); }
 }

 private string _roomName;

 [DataMember]
 [StringLength(30)]
 public string RoomName
 {
 get { return _roomName; }
 set { SetProperty(ref _roomName, value); }
 }

 private DateTime _startTime;

 [DataMember]
 public DateTime StartTime
 {
 get { return _startTime; }
 set { SetProperty(ref _startTime, value); }
 }

 private DateTime _endTime;

 [DataMember]
 public DateTime EndTime
 {
 get { return _endTime; }
 set { SetProperty(ref _endTime, value); }
 }

 private string _contact;

 [DataMember]
 [StringLength(30)]
 public string Contact
 {
 get { return _contact; }
 set { SetProperty(ref _contact, value); }
 }

 private string _text;

 [DataMember]
 [StringLength(50)]
 public string Text
 {
 get { return _text; }
 set { SetProperty(ref _text, value); }
 }

 protected virtual void OnNotifyPropertyChanged(string propertyName)
 {
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }

 protected virtual void SetProperty<T>(ref T item, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (!EqualityComparer<T>.Default.Equals(item, value))
 {
 item = value;
 OnNotifyPropertyChanged(propertyName);
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 }
}

Next, create the service contract. The operations offered by the service can be defined by an interface. The interface IRoomService defines the methods ReserveRoom and GetRoomReservations. The service contract is defined with the attribute ServiceContract. The operations defined by the service have the attribute OperationContract applied (code file RoomReservation/RoomReservationContracts/IRoomService.cs).

using System;
using System.ServiceModel;

namespace Wrox.ProCSharp.WCF.Contracts
{
 [ServiceContract(
 Namespace="http://www.cninnovation.com/RoomReservation/2016")]
 public interface IRoomService
 {
 [OperationContract]
 bool ReserveRoom(RoomReservation roomReservation);

 [OperationContract]
 RoomReservation[] GetRoomReservations(DateTime fromTime, DateTime toTime);
 }
}

Data Access

Next, create a library used to access, read, and write reservations to the database named RoomReservationData with Entity Framework 6.1. The class to define the entities was already defined with the RoomReservationContracts assembly, so this assembly needs to be referenced. Also the Microsoft.EntityFrameworkCore as well as Microsoft.EntityFrameworkCore.SqlServer NuGet packages are required.

The sample code for all the RoomReservationData library makes use of the following dependencies and namespaces:

Dependencies

	Microsoft.EntityFrameworkCore

	Microsoft.EntityFrameworkCore.Commands

	Microsoft.EntityFrameworkCore.SqlServer

Namespaces

	Microsoft.EntityFrameworkCore

	System

	System.Linq

	Wrox.ProCSharp.WCF.Contracts

Now the RoomReservationContext class can be created. This class derives from the base class DbContext to act as a context for the ADO.NET Entity Framework and defines a property named RoomReservations to return a DbSet<RoomReservation> (code file RoomReservation/RoomReservationData/RoomReservationContext.cs):

using Microsoft.EntityFrameworkCore;
using Wrox.ProCSharp.WCF.Contracts;

namespace Wrox.ProCSharp.WCF.Data
{
 public class RoomReservationContext : DbContext
 {
 protected void override OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder.UseSqlServer(@"server=(localdb)\mssqllocaldb;" +
 @"Database=RoomReservation;trusted_connection=true");
 }

 public DbSet<RoomReservation> RoomReservations { get; set; }
 }
}

Entity Framework defines the OnConfiguring method with the DbContext where the data context can be configured. The UseSqlServer extension method (that is defined within the EntityFramework.MicrosoftSqlServer NuGet package) allows setting the connection string to the database.

The commands to create the database depend on whether you created a .NET 4.6 class library or a .NET Core class library. With a .NET 4.6 class library, you can create the database using the NuGet Package Manager Console and apply the following commands. With the Add-Migration command, a Migrations folder is created in the project with code to create the table RoomReservation. The Update-Database command applies the migration and creates the database.

> Add-Migration InitRoomReservation
> Update-Database

Functionality that will be used by the service implementation is defined with the RoomReservationRepository class. The method ReserveRoom writes a new record to the database, and the method GetReservations returns a collection of RoomReservation for a specified time span (code file RoomReservation/RoomReservationData/RoomReservationRepository.cs):

using System;
using System.Linq;
using Wrox.ProCSharp.WCF.Contracts;

namespace Wrox.ProCSharp.WCF.Data
{
 public class RoomReservationRepository
 {
 public void ReserveRoom(RoomReservation roomReservation)
 {
 using (var data = new RoomReservationContext())
 {
 data.RoomReservations.Add(roomReservation);
 data.SaveChanges();
 }
 }

 public RoomReservation[] GetReservations(DateTime fromTime,
 DateTime toTime)
 {
 using (var data = new RoomReservationContext())
 {
 return (from r in data.RoomReservations
 where r.StartTime > fromTime && r.EndTime < toTime
 select r).ToArray();
 }
 }
 }
}

NOTE Chapter 38, “Entity Framework Core,” gives you the details of the ADO .NET Entity Framework, including configuring migrations with .NET Core projects.

Service Implementation

Now you can step into the implementation of the service. Create a WCF service library named RoomReservationService. By default, this library type contains both the service contract and the service implementation. If the client application just uses metadata information to create a proxy for accessing the service, this model is okay to work with. However, if the client might use the contract types directly, it is a better idea to put the contracts in a separate assembly as it was done here. With the first client that is done, a proxy is created from metadata. Later you can see how to create a client to share the contract assembly. Splitting the contracts and implementation is a good preparation for this.

The service class RoomReservationService implements the interface IRoomService. The service is implemented just by invoking the appropriate methods of the RoomReservationData class (code file RoomReservation/RoomReservationService/RoomReservationService.cs):

using System;
using System.ServiceModel;
using Wrox.ProCSharp.WCF.Contracts;
using Wrox.ProCSharp.WCF.Data;

namespace Wrox.ProCSharp.WCF.Service
{
 [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
 public class RoomReservationService : IRoomService
 {
 public bool ReserveRoom(RoomReservation roomReservation)
 {
 var data = new RoomReservationRepository();
 data.ReserveRoom(roomReservation);
 return true;
 }

 public RoomReservation[] GetRoomReservations(DateTime fromTime,
 DateTime toTime)
 {
 var data = new RoomReservationRepository();
 return data.GetReservations(fromTime, toTime);
 }
 }
}

Figure 44.2 shows the assemblies created so far and their dependencies. The RoomReservationContracts assembly is used by both RoomReservationData and RoomReservationService.

[image: Block diagram shows RoomReservation service is connected to both RoomReservation data and RoomReservation contracts. RoomReservation data is connected to RoomReservation contracts.]

Figure 44.2

WCF Service Host and WCF Test Client

The WCF Service Library project template creates an application configuration file named App.config that you need to adapt to the new class and interface names. The service element references the service type RoomReservationService, including the namespace; the contract interface needs to be defined with the endpoint element (configuration file RoomReservation/RoomReservationService/app.config):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <compilation debug="true" />
 </system.web>
 <system.serviceModel>
 <services>
 <service name="Wrox.ProCSharp.WCF.Service.RoomService">
 <endpoint address="" binding="basicHttpBinding"
 contract="Wrox.ProCSharp.WCF.Service.IRoomService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress=
"http://localhost:8733/Design_Time_Addresses/RoomReservationService/Service1/"
 />
 </baseAddresses>
 </host>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled="True" httpsGetEnabled="True"/>
 <serviceDebug includeExceptionDetailInFaults="False" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

NOTE The service address http://localhost:8733/Design_Time_Addresses has an access control list (ACL) associated with it that enables the interactive user to create a listener port. By default, a nonadministrative user is not allowed to open ports in listening mode. You can view the ACLs with the command-line utility netsh http show urlacl and add new entries with netsh http add urlacl url=http://+:8080/MyURI user=someUser listen=yes

Starting this library from Visual Studio 2015 starts the WCF Service Host, which appears as an icon in the notification area of the taskbar. Clicking this icon opens the WCF Service Host window (see Figure 44.3), where you can see the status of the service. The project properties of a WCF library application include the tab WCF options, where you can select whether the WCF service host should be started when running a project from the same solution. By default, this option is turned on. Also, with the Debug configuration of the project properties, you can find the command-line argument /client:"WcfTestClient.exe" defined. With this option, the WCF Service host starts the WCF Test Client (see Figure 44.4), which you can use to test the application. When you double-click an operation, input fields appear on the right side of the application that you can fill to send data to the service. When you click the XML tab, you can see the SOAP messages that have been sent and received.

[image: Image described by surrounding text.]

Figure 44.3

[image: Image described by surrounding text.]

Figure 44.4

Custom Service Host

WCF enables services to run in any host. You can create a Windows Presentation Foundation (WPF) application for peer-to-peer services. Or you can create a Windows service or host the service with Windows Activation Services (WAS) or Internet Information Services (IIS). A console application is also good to demonstrate a simple custom host.

With the service host, you must reference the library RoomReservationService in addition to the assembly System.ServiceModel. The service is started by instantiating and opening an object of type ServiceHost. This class is defined in the namespace System.ServiceModel. The RoomReservationService class that implements the service is defined in the constructor. Invoking the Open method starts the listener channel of the service—the service is ready to listen for requests. The Close method stops the channel. The code snippet also adds a behavior of type ServiceMetadataBehavior. This behavior is added to allow creating a client application by using WSDL (code file RoomReservation/RoomReservationHost/Program.cs):

using System;
using System.ServiceModel;
using System.ServiceModel.Description;
using Wrox.ProCSharp.WCF.Service;
using static System.Console;

namespace Wrox.ProCSharp.WCF.Host
{
 class Program
 {
 internal static ServiceHost s_ServiceHost = null;

 internal static void StartService()
 {
 try
 {
 s_ServiceHost = new ServiceHost(typeof(RoomReservationService),
 new Uri("http://localhost:9000/RoomReservation"));
 s_ServiceHost.Description.Behaviors.Add(
 new ServiceMetadataBehavior
 {
 HttpGetEnabled = true
 });
 myServiceHost.Open();
 }
 catch (AddressAccessDeniedException)
 {
 WriteLine("either start Visual Studio in elevated admin" +
 "mode or register the listener port with netsh.exe");
 }
 }

 internal static void StopService()
 {
 if (s_ServiceHost != null &&
 s_ServiceHost.State 	== CommunicationState.Opened)
 {
 s_ServiceHost.Close();
 }
 }

 static void Main()
 {
 StartService();

 WriteLine("Server is running. Press return to exit");
 ReadLine();

 StopService();
 }
 }
}

For the WCF configuration, you can copy the application configuration file created with the service library to the host application. You can edit this configuration file with the WCF Service Configuration Editor (see Figure 44.5).

[image: Image described by surrounding text.]

Figure 44.5

Instead of using the configuration file, you can configure everything programmatically and also use several defaults. The sample code for the host application doesn’t need any configuration file. The second parameter of the ServiceHost constructor defines a base address for the service. With the protocol of this base address, a default binding is defined. The default for the HTTP is the BasicHttpBinding.

Using the custom service host, you can deselect the WCF option to start the WCF Service Host in the project settings of the WCF library.

WCF Client

For the client, WCF is flexible in what application type can be used. The client can be a simple console application. However, for reserving rooms, you create a simple WPF application with controls, as shown in Figure 44.6.

[image: Screenshot shows room reservation application format with fields to be entered such as room, begin time, end time, contact and event. Reserve room button is provided at the bottom of the format.]

Figure 44.6

Because the service host is configured with the ServiceMetadataBehavior, it offers a MEX endpoint. After the service host is started, you can add a service reference from Visual Studio. After you add the service reference, the dialog shown in Figure 44.7 pops up. Enter the link to the service metadata with the URL http://localhost:9000/RoomReservation?wsdl, and set the namespace name to RoomReservationService. This defines the namespace of the generated proxy class.

[image: Screenshot shows add service reference window displaying fields such as address and namespace and selects IRoomService, GetRoomReservations under services and operations category with ok button.]

Figure 44.7

Adding a service reference adds references to the assemblies System.Runtime.Serialization and System.ServiceModel, and it also adds a configuration file containing the binding information and the endpoint address to the service.

From the data contract, the class RoomReservation is generated as a partial class. This class contains all [DataMember] elements of the contract. The class RoomServiceClient is the proxy for the client that contains methods that are defined by the operation contracts. Using this client, you can send a room reservation to the running service.

In the code file RoomReservation/RoomReservationClient/MainWindow.xaml.cs, the OnReserveRoom method is invoked with the Click event of the button. The ReserveRoomAsync is invoked with the service proxy. The reservation variable receives the data from the UI via data binding.

public partial class MainWindow : Window
{
 private RoomReservation _reservation;

 public MainWindow()
 {
 InitializeComponent();
 reservation = new RoomReservation
 {
 StartTime = DateTime.Now,
 EndTime = DateTime.Now.AddHours(1)
 };
 this.DataContext = _reservation;
 }

 private async void OnReserveRoom(object sender, RoutedEventArgs e)
 {
 var client = new RoomServiceClient();
 bool reserved = await client.ReserveRoomAsync(reservation);
 client.Close();
 if (reserved)
 {
 MessageBox.Show("reservation ok");
 }
 }
}

With the settings of the RoomReservation solution, you can configure multiple startup projects, which should be RoomReservationClient and RoomReservationHost in this case. By running both the service and the client, you can add room reservations to the database.

Diagnostics

When running a client and service application, it can be helpful to know what’s happening behind the scenes. For this, WCF makes use of a trace source that just needs to be configured. You can configure tracing using the Service Configuration Editor, selecting Diagnostics, and enabling Tracing and Message Logging. Setting the trace level of the trace sources to Verbose produces detailed information. This configuration change adds trace sources and listeners to the application configuration file as shown here:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add
 name="RoomReservation" providerName="System.Data.SqlClient"
 connectionString="Server=(localdb)\mssqllocaldb;Database=RoomReservation;
 Trusted_Connection=true;MultipleActiveResultSets=True" />
 </connectionStrings>

 <system.diagnostics>
 <sources>
 <source name="System.ServiceModel.MessageLogging"
 switchValue="Verbose,ActivityTracing">
 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener" name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelMessageLoggingListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 <source propagateActivity="true" name="System.ServiceModel"
 switchValue="Warning,ActivityTracing">
 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener" name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelTraceListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add initializeData=
 "c:\logs\wcf\roomreservation\roomreservationhost\app_messages.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System,
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 name="ServiceModelMessageLoggingListener"
 traceOutputOptions="DateTime, Timestamp, ProcessId, ThreadId">
 <filter type="" />
 </add>
 <add initializeData=
 "c:\logs\wcf\roomreservation\roomreservationhost\app_tracelog.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System,
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 name="ServiceModelTraceListener"
 traceOutputOptions="DateTime, Timestamp, ProcessId, ThreadId">
 <filter type="" />
 </add>
 </sharedListeners>
 </system.diagnostics>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6" />
 </startup>
 <system.serviceModel>
 <diagnostics>
 <messageLogging logEntireMessage="true" logMalformedMessages="true"
 logMessagesAtTransportLevel="true" />
 <endToEndTracing propagateActivity="true" activityTracing="true"
 messageFlowTracing="true" />
 </diagnostics>
 </system.serviceModel>
</configuration>

NOTE The implementation of the WCF classes uses the trace sources named System.ServiceModel and System.ServiceModel.MessageLogging for writing trace messages. You can read more about tracing and configuring trace sources and listeners in Chapter 20, “Diagnostics and Application Insights.”

When you start the application, the trace files soon get large with verbose trace settings. To analyze the information from the XML log file, the .NET SDK includes the Service Trace Viewer tool, svctraceviewer.exe. Figure 44.8 shows the client application with some data entered, and Figure 44.9 shows the view from the svctraceviewer.exe after selecting the trace and message log files. The BasicHttpBinding is light with the messages sent across. If you change the configuration to use the WsHttpBinding, you see many messages related to security. Depending on your security needs, you can choose other configuration options.

[image: Screenshot shows room reservation window displaying filled up fields such as room, begin time, end time, contact and event. Reserve room button is provided at the bottom of the window page.]

Figure 44.8

[image: Screenshot shows Microsoft service trace viewer window displaying activities, descriptions and basic information. Open service activity and processing message 1 are selected.]

Figure 44.9

The following sections discuss the details and different options of WCF.

Sharing Contract Assemblies with the Client

With the previous WPF client application, a proxy class was created using the metadata, adding a service reference with Visual Studio. You can also create a client by using the shared contract assembly as is shown now. Using the contract interface, the ChannelFactory<TChannel> class is used to instantiate the channel to connect to the service.

The constructor of the class ChannelFactory<TChannel> accepts the binding configuration and endpoint address. The binding must be compatible with the binding defined with the service host, and the address defined with the EndpointAddress class references the URI of the running service. The CreateChannel method creates a channel to connect to the service. Then you can invoke methods of the service (code file RoomReservation/RoomReservationClientSharedAssembly/MainWindow.xaml.cs):

using System;
using System.ServiceModel;
using System.Windows;
using Wrox.ProCSharp.WCF.Contracts;

namespace RoomReservationClientSharedAssembly
{
 public partial class MainWindow : Window
 {
 private RoomReservation _roomReservation;

 public MainWindow()
 {
 InitializeComponent();
 _roomReservation = new RoomReservation
 {
 StartTime = DateTime.Now,
 EndTime = DateTime.Now.AddHours(1)
 };
 this.DataContext = _roomReservation;
 }

 private void OnReserveRoom(object sender, RoutedEventArgs e)
 {
 var binding = new BasicHttpBinding();
 var address = new EndpointAddress(
 "http://localhost:9000/RoomReservation");
 var factory = new ChannelFactory<IRoomService>(binding, address);
 IRoomService channel = factory.CreateChannel();
 if (channel.ReserveRoom(_roomReservation))
 {
 MessageBox.Show("success");
 }
 }
 }
}

Contracts

A contract defines what functionality a service offers and what functionality can be used by the client. The contract can be completely independent of the implementation of the service.

The contracts defined by WCF can be grouped into four different contract types: Data, Service, Message, and Fault. The contracts can be specified by using .NET attributes:

	Data contract—The data contract defines the data received by and returned from the service. The classes used for sending and receiving messages have data contract attributes associated with them.

	Service contract—The service contract is used to define the WSDL that describes the service. This contract is defined with interfaces or classes.

	Operation contract—The operation contract defines the operation of the service and is defined within the service contract.

	Message contract—If you need complete control over the SOAP message, a message contract can specify what data should go into the SOAP header and what belongs in the SOAP body.

	Fault contract—The fault contract defines the error messages that are sent to the client.

The following sections explore these contract types further and discuss versioning issues that you should think about when defining the contracts.

Data Contract

With the data contract, CLR types are mapped to XML schemas. The data contract is different from other .NET serialization mechanisms: with runtime serialization, all fields are serialized (including private fields); with XML serialization, only the public fields and properties are serialized. The data contract requires explicit marking of the fields that should be serialized with the DataMember attribute. This attribute can be used regardless of whether the field is private or public, or if it is applied to a property.

[DataContract(Namespace="http://www.cninnovation.com/Services/2016"]
public class RoomReservation
{
 [DataMember] public string Room { get; set; }
 [DataMember] public DateTime StartTime { get; set; }
 [DataMember] public DateTime EndTime { get; set; }
 [DataMember] public string Contact { get; set; }
 [DataMember] public string Text { get; set; }
}

To be platform-independent and provide the option to change data with new versions without breaking older clients and services, using data contracts is the best way to define which data should be sent. However, you can also use XML serialization and runtime serialization. XML serialization is the mechanism used by ASP.NET web services; .NET Remoting uses runtime serialization.

With the attribute DataMember, you can specify the properties described in the following table.

	DataMember Property
	Description

	Name
	By default, the serialized element has the same name as the field or property where the [DataMember] attribute is applied. You can change the name with the Name property.

	Order
	The Order property defines the serialization order of the data members.

	IsRequired
	With the IsRequired property, you can specify that the element must be received with serialization. This property can be used for versioning. If you add members to an existing contract, the contract is not broken because, by default, the fields are optional (IsRequired=false). You can break an existing contract by setting IsRequired to true.

	EmitDefaultValue
	The property EmitDefaultValue defines whether the member should be serialized if it has the default value. If EmitDefaultValue is set to true, the member is not serialized if it has the default value for the type.

Versioning

When you create a new version of a data contract, pay attention to what kind of change it is and act accordingly if old and new clients and old and new services should be supported simultaneously.

When defining a contract, you should add XML namespace information with the Namespace property of the DataContractAttribute. This namespace should be changed if a new version of the data contract is created that breaks compatibility. If just optional members are added, the contract is not broken—this is a compatible change. Old clients can still send a message to the new service because the additional data is not needed. New clients can send messages to an old service because the old service just ignores the additional data.

Removing fields or adding required fields breaks the contract. Here, you should also change the XML namespace. The name of the namespace can include the year and the month—for example, http://www.cninnovation.com/Services/2016/08. Every time a breaking change is done, the namespace is changed—for example, by changing the year and month to the actual value.

Service and Operation Contracts

The service contract defines the operations the service can perform. You use the attribute ServiceContract with interfaces or classes to define a service contract. The methods that are offered by the service have the attribute OperationContract applied, as you can see with the interface IRoomService:

[ServiceContract]
public interface IRoomService
{
 [OperationContract]
 bool ReserveRoom(RoomReservation roomReservation);
}

The possible properties that you can set with the ServiceContract attribute are described in the following table.

	ServiceContract Property
	Description

	ConfigurationName
	This property defines the name of the service configuration in a configuration file.

	CallbackContract
	When the service is used for duplex messaging, the property CallbackContract defines the contract that is implemented in the client.

	Name
	The Name property defines the name for the <portType> element in the WSDL.

	Namespace
	The Namespace property defines the XML namespace for the <portType> element in the WSDL.

	SessionMode
	With the SessionMode property, you can define whether sessions are required for calling operations of this contract. The possible values Allowed, NotAllowed, and Required are defined with the SessionMode enumeration.

	ProtectionLevel
	The ProtectionLevel property defines whether the binding must support protecting the communication. Possible values defined by the ProtectionLevel enumeration are None, Sign, and EncryptAndSign.

With the OperationContract, you can specify properties, as shown in the following table.

	OperationContract Property
	Description

	Action
	WCF uses the Action of the SOAP request to map it to the appropriate method. The default value for the Action is a combination of the contract XML namespace, the name of the contract, and the name of the operation. If the message is a response message, Response is added to the Action string. You can override the Action value by specifying the Action property. If you assign the value “*”, the service operation handles all messages.

	ReplyAction
	Whereas Action sets the Action name of the incoming SOAP request, ReplyAction sets the Action name of the reply message.

	AsyncPattern
	If the operation is implemented by using an asynchronous pattern, set the AsyncPattern property to true. The async pattern is discussed in Chapter 15, “Asynchronous Programming.”

	IsInitiating IsTerminating
	If the contract consists of a sequence of operations, the initiating operation should have the IsInitiating property assigned to it; the last operation of the sequence needs the IsTerminating property assigned. The initiating operation starts a new session; the server closes the session with the terminating operation.

	IsOneWay
	With the IsOneWay property set, the client does not wait for a reply message. Callers of a one-way operation have no direct way to detect a failure after sending the request message.

	Name
	The default name of the operation is the name of the method the operation contract is assigned to. You can change the name of the operation by applying the Name property.

	ProtectionLevel
	With the ProtectionLevel property, you define whether the message should be signed or encrypted and signed.

With the service contract, you can also define the requirements that the service has from the transport with the attribute [DeliveryRequirements]. The property RequireOrderedDelivery defines that the messages sent must arrive in the same order. With the property QueuedDeliveryRequirements, you can define that the message should be sent in a disconnected mode, for example, by using Message Queuing.

Message Contract

A message contract is used if complete control over the SOAP message is needed. With the message contract, you can specify what part of the message should go into the SOAP header and what belongs in the SOAP body. The following example shows a message contract for the class ProcessPersonRequestMessage. The message contract is specified with the attribute MessageContract. The header and body of the SOAP message are specified with the attributes MessageHeader and MessageBodyMember. By specifying the Position property, you can define the element order within the body. You can also specify the protection level for header and body fields.

[MessageContract]
public class ProcessPersonRequestMessage
{
 [MessageHeader]
 public int employeeId;

 [MessageBodyMember(Position=0)]
 public Person person;
}

The class ProcessPersonRequestMessage is used with the service contract defined with the interface IProcessPerson:

[ServiceContract]
public interface IProcessPerson
{
 [OperationContract]
 public PersonResponseMessage ProcessPerson(
 ProcessPersonRequestMessage message);
}

Another contract that is important for WCF services is the fault contract. This contract is discussed in the next section.

Fault Contract

By default, the detailed exception information that occurs in the service is not returned to the client application. The reason for this behavior is security. You wouldn’t want to give detailed exception information to a third party by using your service. Instead, the exception should be logged on the service (which you can do with tracing and event logging), and an error with useful information should be returned to the caller.

You can return SOAP faults by throwing a FaultException. Throwing a FaultException creates an untyped SOAP fault. The preferred way to return errors is to generate a strongly typed SOAP fault.

The information that should be passed with a strongly typed SOAP fault is defined with a data contract, as shown with the RoomReservationFault class (code file RoomReservation/RoomReservationContracts/RoomReservationFault.cs):

[DataContract]
public class RoomReservationFault
{
 [DataMember]
 public string Message { get; set; }
}

The type of the SOAP fault must be defined by using the FaultContractAttribute with the operation contract:

[FaultContract(typeof(RoomReservationFault))]
[OperationContract]
bool ReserveRoom(RoomReservation roomReservation);

With the implementation, a FaultException<TDetail> is thrown. With the constructor, you can assign a new TDetail object, which is a StateFault in the example. In addition, error information within a FaultReason can be assigned to the constructor. FaultReason supports error information in multiple languages.

FaultReasonText[] text = new FaultReasonText[2];
text[0] = new FaultReasonText("Sample Error", new CultureInfo("en"));
text[1] = new FaultReasonText("Beispiel Fehler", new CultureInfo("de"));
FaultReason reason = new FaultReason(text);

throw new FaultException<RoomReservationFault>(
 new RoomReservationFault() { Message = m }, reason);

With the client application, exceptions of type FaultException<RoomReservationFault> can be caught. The reason for the exception is defined by the Message property; the RoomReservationFault is accessed with the Detail property:

try
{
 // etc.
}
catch (FaultException<RoomReservationFault> ex)
{
 WriteLine(ex.Message);
 StateFault detail = ex.Detail;
 WriteLine(detail.Message);
}

In addition to catching the strongly typed SOAP faults, the client application can also catch exceptions of the base class of FaultException<Detail>: FaultException and CommunicationException. By catching CommunicationException, you can also catch other exceptions related to the WCF communication.

NOTE During development you can return exceptions to the client. To enable exceptions propagated, you need to configure a service behavior configuration with the serviceDebug element. The serviceDebug element has the attribute IncludeExceptionDetailInFaults that can be set to true to return exception information.

Service Behaviors

The implementation of the service can be marked with the attribute ServiceBehavior, as shown with the class RoomReservationService:

[ServiceBehavior]
public class RoomReservationService: IRoomService
{
 public bool ReserveRoom(RoomReservation roomReservation)
 {
 // implementation
 }
}

The attribute ServiceBehavior is used to describe behavior as is offered by WCF services to intercept the code for required functionality, as shown in the following table.

	ServiceBehavior Property
	Description

	TransactionAutoCompleteOnSessionClose
	When the current session is finished without error, the transaction is automatically committed. This is similar to the AutoComplete attribute used with Enterprise Services.

	TransactionIsolationLevel
	To define the isolation level of the transaction within the service, the property TransactionIsolationLevel can be set to one value of the IsolationLevel enumeration.

	ReleaseServiceInstanceOn TransactionComplete
	When the transaction finishes, the instance of the service recycles.

	AutomaticSessionShutdown
	If the session should not be closed when the client closes the connection, you can set the property AutomaticSessionShutdown to false. By default, the session is closed.

	InstanceContextMode
	With the property InstanceContextMode, you can define whether stateful or stateless objects should be used. The default setting is InstanceContextMode.PerCall to create a new object with every method call. Other possible settings are PerSession and Single. With both of these settings, stateful objects are used. However, with PerSession a new object is created for every client. Single enables the same object to be shared with multiple clients.

	ConcurrencyMode
	Because stateful objects can be used by multiple clients (or multiple threads of a single client), you must pay attention to concurrency issues with such object types. If the property ConcurrencyMode is set to Multiple, multiple threads can access the object, and you must deal with synchronization. If you set the option to Single, only one thread accesses the object at a time. Here, you don’t have to do synchronization; however, scalability problems can occur with a higher number of clients. The value Reentrant means that only a thread coming back from a callout might access the object. For stateless objects, this setting has no meaning because new objects are instantiated with every method call and thus no state is shared.

	UseSynchronizationContext
	With user interface code, members of controls can be invoked only from the creator thread. If the service is hosted in a Windows application, and the service methods invoke control members, set the UseSynchronizationContext to true. This way, the service runs in a thread defined by the SynchronizationContext.

	IncludeExceptionDetailInFaults
	With .NET, errors show up as exceptions. SOAP defines that a SOAP fault is returned to the client in case the server has a problem. For security reasons, it’s not a good idea to return details of server-side exceptions to the client. Thus, by default, exceptions are converted to unknown faults. To return specific faults, throw an exception of type FaultException. For debugging purposes, it can be helpful to return the real exception information. This is the case when changing the setting of IncludeExceptionDetailIn Faults to true. Here a FaultException<TDetail> is thrown where the original exception contains the detail information.

	MaxItemsInObjectGraph
	With the property MaxItemsInObjectGraph, you can limit the number of objects that are serialized. The default limitation might be too low if you serialize a tree of objects.

	ValidateMustUnderstand
	The property ValidateMustUnderstand set to true means that the SOAP headers must be understood (which is the default).

To demonstrate a service behavior, the interface IStateService defines a service contract with two operations to set and get state. With a stateful service contract, a session is needed. That’s why the SessionMode property of the service contract is set to SessionMode.Required. The service contract also defines methods to initiate and close the session by applying the IsInitiating and IsTerminating properties to the operation contract:

[ServiceContract(SessionMode=SessionMode.Required)]
public interface IStateService
{
 [OperationContract(IsInitiating=true)]
 void Init(int i);

 [OperationContract]
 void SetState(int i);

 [OperationContract]
 int GetState();

 [OperationContract(IsTerminating=true)]
 void Close();
}

The service contract is implemented by the class StateService. The service implementation defines the InstanceContextMode.PerSession to keep state with the instance:

[ServiceBehavior(InstanceContextMode=InstanceContextMode.PerSession)]
public class StateService: IStateService
{
 int _i = 0;

 public void Init(int i)
 {
 _i = i;
 }

 public void SetState(int i)
 {
 _i = i;
 }

 public int GetState()
 {
 return _i;
 }

 public void Close()
 {
 }
}

Now the binding to the address and protocol must be defined. Here, the basicHttpBinding is assigned to the endpoint of the service:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service behaviorConfiguration="StateServiceSample.Service1Behavior"
 name="Wrox.ProCSharp.WCF.StateService">
 <endpoint address="" binding="basicHttpBinding"
 bindingConfiguration=""
 contract="Wrox.ProCSharp.WCF.IStateService">
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8731/Design_Time_Addresses/
 StateServiceSample/Service1/" />
 </baseAddresses>
 </host>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="StateServiceSample.Service1Behavior">
 <serviceMetadata httpGetEnabled="True"/>
 <serviceDebug includeExceptionDetailInFaults="False" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

If you start the service host with the defined configuration, an exception of type InvalidOperationException is thrown. The error message with the exception gives this error message: Contract Requires Session, but Binding ‘BasicHttpBinding’ Doesn’t Support It or Isn’t Configured Properly to Support It.

Not all bindings support all services. Because the service contract requires a session with the attribute [ServiceContract(SessionMode=SessionMode.Required)], the host fails because the configured binding does not support sessions.

As soon as you change the configuration to a binding that supports sessions (for example, the wsHttpBinding), the server starts successfully:

<endpoint address="" binding="wsHttpBinding"
 bindingConfiguration=""
 contract="Wrox.ProCSharp.WCF.IStateService">
</endpoint>

With the implementation of the service, you can apply the properties in the following table to the service methods, with the attribute OperationBehavior.

	OperationBehavior Property
	Description

	AutoDisposeParameters
	By default, all disposable parameters are automatically disposed. If the parameters should not be disposed, you can set the property AutoDisposeParameters to false. Then the sender is responsible for disposing the parameters.

	Impersonation
	With the Impersonation property, the caller can be impersonated, and the method runs with the identity of the caller.

	ReleaseInstanceMode
	The InstanceContextMode defines the lifetime of the object instance with the service behavior setting. With the operation behavior setting, you can override the setting based on the operation. The ReleaseInstanceMode defines an instance release mode with the enumeration ReleaseInstanceMode. The value None uses the instance context mode setting. With the values BeforeCall, AfterCall, and BeforeAndAfterCall, you can define recycle times with the operation.

	TransactionScopeRequired
	With the property TransactionScopeRequired, you can specify whether a transaction is required with the operation. If a transaction is required and the caller already flows a transaction, the same transaction is used. If the caller doesn’t flow a transaction, a new transaction is created.

	TransactionAutoComplete
	The TransactionAutoComplete property specifies whether the transaction should complete automatically. If the TransactionAutoComplete property is set to true, the transaction is aborted if an exception is thrown. The transaction is committed if it is the root transaction and no exception is thrown.

Binding

A binding describes how a service wants to communicate. With binding, you can specify the following features:

	Transport protocol

	Security

	Encoding format

	Transaction flow

	Reliability

	Shape change

	Transport upgrade

Standard Bindings

A binding is composed of multiple binding elements that describe all binding requirements. You can create a custom binding or use one of the predefined bindings that are shown in the following table.

	Standard Binding
	Description

	BasicHttpBinding
	BasicHttpBinding is the binding for the broadest interoperability, the first-generation web services. Transport protocols used are HTTP or HTTPS; security is available only from the transport protocol.

	WSHttpBinding
	WSHttpBinding is the binding for the next-generation web services, platforms that implement SOAP extensions for security, reliability, and transactions. The transports used are HTTP or HTTPS; for security the WS-Security specification is implemented; transactions are supported, as has been described, with the WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity specifications; reliable messaging is supported with an implementation of WS-ReliableMessaging. WS-Profile also supports Message Transmission Optimization Protocol (MTOM) encoding for sending attachments. You can find specifications for the WS-* standards at http://www.oasis-open.org.

	WS2007HttpBinding
	WS2007HttpBinding derives from the base class WSHttpBinding and supports security, reliability, and transaction specifications defined by Organization for the Advancement of Structured Information Standards (OASIS). This class offers newer SOAP standards.

	WSHttpContextBinding
	WSHttpContextBinding derives from the base class WSHttpBinding and adds support for a context without using cookies. This binding adds a ContextBindingElement to exchange context information. The context binding element was needed with Windows Workflow Foundation (WF) 3.0.

	WebHttpBinding
	This binding is used for services that are exposed through HTTP requests instead of SOAP requests. This is useful for scripting clients—for example, ASP.NET AJAX.

	WSFederationHttpBinding
	WSFederationHttpBinding is a secure and interoperable binding that supports sharing identities across multiple systems for authentication and authorization.

	WSDualHttpBinding
	The binding WSDualHttpBinding, in contrast to WSHttpBinding, supports duplex messaging.

	NetTcpBinding
	All standard bindings prefixed with the name Net use a binary encoding used for communication between .NET applications. This encoding is faster than the text encoding with WSxxx bindings. The binding NetTcpBinding uses the TCP/IP protocol.

	NetTcpContextBinding
	Similar to WSHttpContextBinding, NetTcpContextBinding adds a ContextBindingElement to exchange context with the SOAP header.

	NetHttpBinding
	This is a new binding since .NET 4.5 to support the Web Socket transport protocol.

	NetPeerTcpBinding
	NetPeerTcpBinding provides a binding for peer-to-peer communication.

	NetNamedPipeBinding
	NetNamedPipeBinding is optimized for communication between different processes on the same system.

	NetMsmqBinding
	The binding NetMsmqBinding brings queued communication to WCF. Here, the messages are sent to the message queue.

	MsmqIntegrationBinding
	MsmqIntegrationBinding is the binding for existing applications that uses message queuing. In contrast, the binding NetMsmqBinding requires WCF applications on both the client and server.

	CustomBinding
	With a CustomBinding the transport protocol and security requirements can be completely customized.

Features of Standard Bindings

Depending on the binding, different features are supported. The bindings starting with WS are platform-independent, supporting web services specifications. Bindings that start with the name Net use binary formatting for high-performance communication between .NET applications. Other features are support of sessions, reliable sessions, transactions, and duplex communication; the following table lists the bindings supporting these features.

	Feature
	Binding

	Sessions
	WSHttpBinding, WSDualHttpBinding, WsFederationHttpBinding, NetTcpBinding, NetNamedPipeBinding

	Reliable Sessions
	WSHttpBinding, WSDualHttpBinding, WsFederationHttpBinding, NetTcpBinding

	Transactions
	WSHttpBinding, WSDualHttpBinding, WSFederationHttpBinding, NetTcpBinding, NetNamedPipeBinding, NetMsmqBinding, MsmqIntegrationBinding

	Duplex Communication
	WsDualHttpBinding, NetTcpBinding, NetNamedPipeBinding, NetPeerTcpBinding

Along with defining the binding, the service must define an endpoint. The endpoint is dependent on the contract, the address of the service, and the binding. In the following code sample, a ServiceHost object is instantiated, and the address http://localhost:8080/RoomReservation, a WsHttpBinding instance, and the contract are added to an endpoint of the service:

static ServiceHost s_host;

static void StartService()
{
 var baseAddress = new Uri("http://localhost:8080/RoomReservation");
 s_host = new ServiceHost(typeof(RoomReservationService));

 var binding1 = new WSHttpBinding();
 s_host.AddServiceEndpoint(typeof(IRoomService), binding1, baseAddress);
 s_host.Open();
}

In addition to defining the binding programmatically, you can define it with the application configuration file. The configuration for WCF is placed inside the element <system.serviceModel>. The <service> element defines the services offered. Similarly, as you’ve seen in the code, the service needs an endpoint, and the endpoint contains address, binding, and contract information. The default binding configuration of wsHttpBinding is modified with the bindingConfiguration XML attribute that references the binding configuration wsHttpBinding. This is the binding configuration you can find inside the <bindings> section, which is used to change the wsHttpBinding configuration to enable reliableSession.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name="Wrox.ProCSharp.WCF.RoomReservationService">
 <endpoint address=" http://localhost:8080/RoomReservation"
 contract="Wrox.ProCSharp.WCF.IRoomService"
 binding="wsHttpBinding" bindingConfiguration="wsHttpBinding" />
 </service>
 </services>
 <bindings>
 <wsHttpBinding>
 <binding name="wsHttpBinding">
 <reliableSession enabled="true" />
 </binding>
 </wsHttpBinding>
 </bindings>
 </system.serviceModel>
</configuration>

Web Sockets

Web Sockets is a new communication protocol based on TCP. The HTTP protocol is stateless. With HTTP the server can close the connection every time it answers the request. If a client wants to receive ongoing information from the server, this always had some issues with the HTTP protocol.

Because the HTTP connection is kept, one way to deal with this would be to have a service running on the client, and the server connects to the client and sends responses. If a firewall is between the client and the server, this usually doesn’t work because the firewall blocks incoming requests.

Another way to deal with this is to use another protocol than the HTTP protocol. The connection can stay alive. The issue with other protocols is that the port needs to be opened with the firewall. Firewalls are always an issue, but they are needed to keep the bad folks out.

The way such a scenario was usually done is by instantiating the request every time from the client. The client polls the server to ask if there’s something new. This works but has the disadvantage that either the client asks too many times for news when there is none and thus increases the network traffic, or the client does get old information.

A new solution for this scenario is the Web Sockets protocol. This protocol is defined by the World Wide Web Consortium (W3C, http://www.w3.org/TR/websockets) and starts with an HTTP request. Starting with an HTTP request from the client, the firewall usually allows the request. The client starts with a GET request with Upgrade: websocket Connection: Upgrade in the HTTP header, along with the WebSocket version and security information. If the server supports the WebSocket protocol, the server answers with an upgrade and switches from HTTP to the WebSocket protocol.

With WCF, the two bindings new since .NET 4.5 support the WebSocket protocol: netHttpBinding and netHttpsBinding.

Now get into a sample to make use of the WebSocket protocol. Start with an empty web application used to host the service.

The default binding for the HTTP protocol is the basicHttpBinding. This can be changed to define the protocolMapping to specify the netHttpBinding as shown. This way it’s not necessary to configure the service element to match the contract, binding, and address to an endpoint. With the configuration, serviceMetadata is enabled to allow the client to reference the service with the Add Service Reference dialog (configuration file WebSocketsSample/WebSocketsSample/Web.config).

<configuration>
 <!— etc. —>
 <system.serviceModel>
 <protocolMapping>
 <remove scheme="http" />
 <add scheme="http" binding="netHttpBinding" />
 <remove scheme="https" />
 <add scheme="https" binding="netHttpsBinding" />
 </protocolMapping>
 <behaviors>
 <serviceBehaviors>
 <behavior name="">
 <serviceMetadata httpGetEnabled="true" httpsGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"
 multipleSiteBindingsEnabled="true" />
 </system.serviceModel>
</configuration>

The service contract is defined by the interfaces IDemoServices and IDemoCallback. IDemoService is the service interface that defines the method StartSendingMessages. The client invokes the method StartSendingMessages to start the process that the service can return messages to the client. The client therefore needs to implement the interface IDemoCallback. This interface is invoked by the server and implemented by the client.

The methods of the interfaces are defined to return Task. With this the service can easily make use of asynchronous features, but this doesn’t go through to the contract. Defining the methods asynchronously is independent of the WSDL generated (code file WebSocketsSample/WebSocketsSample/IDemoService.cs):

using System.ServiceModel;
using System.Threading.Tasks;

namespace WebSocketsSample
{
 [ServiceContract]
 public interface IDemoCallback
 {
 [OperationContract(IsOneWay = true)]
 Task SendMessage(string message);
 }
 [ServiceContract(CallbackContract = typeof(IDemoCallback))]
 public interface IDemoService
 {
 [OperationContract]
 void StartSendingMessages();
 }
}

The implementation of the service is done in the DemoService class. Within StartSendingMessages, the callback interface to go back to the client is retrieved with OperationContext.Current.GetCallbackChannel. When the client invokes the method, it returns immediately as soon as the first time the SendMessage method is invoked. The thread is not blocked until the SendMessage method completes. With await, a thread just comes back to the StartSendingMessages when the SendMessage is completed. Then a delay of 1 second occurs before the client receives another message. In case the communication channel is closed the while loop exits (code file WebSocketsSample/WebSocketsSample/DemoService.svc.cs:

using System.ServiceModel;
using System.ServiceModel.Channels;
using System.Threading.Tasks;

namespace WebSocketsSample
{
 public class DemoService : IDemoService
 {
 public async Task StartSendingMessages()
 {
 IDemoCallback callback =
 OperationContext.Current.GetCallbackChannel<IDemoCallback>();

 int loop = 0;
 while ((callback as IChannel).State == CommunicationState.Opened)
 {
 await callback.SendMessage($"Hello from the server {loop++}");
 await Task.Delay(1000);
 }
 }
 }
}

The client application is created as a console application. Because metadata is available with the service, adding a service reference creates a proxy class that can be used to call the service and also to implement the callback interface. Adding the service reference not only creates the proxy class, but also adds the netHttpBinding to the configuration file (configuration file WebSocketsSample/ClientApp/App.config):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6" />
 </startup>
 <system.serviceModel>
 <bindings>
 <netHttpBinding>
 <binding name="NetHttpBinding_IDemoService">
 <webSocketSettings transportUsage="Always" />
 </binding>
 </netHttpBinding>
 </bindings>
 <client>
 <endpoint address="ws://localhost:20839/DemoService.svc"
 binding="netHttpBinding"
 bindingConfiguration="NetHttpBinding_IDemoService"
 contract="DemoService.IDemoService"
 name="NetHttpBinding_IDemoService" />
 </client>
 </system.serviceModel>
</configuration>

The implementation of the callback interface just writes a message to the console with the information received from the service. To start all the processing, a DemoServiceClient instance is created that receives an InstanceContext object. The InstanceContext object contains an instance to the CallbackHandler, a reference retrieved by the service to go back to the client (code file WebSocketsSample/ClientApp/Program.cs):

using System;
using System.ServiceModel;
using ClientApp.DemoService;
using static System.Console;

namespace ClientApp
{
 class Program
 {
 private class CallbackHandler : IDemoServiceCallback
 {
 public void SendMessage(string message)
 {
 WriteLine($"message from the server {message}");
 }
 }

 static void Main()
 {
 WriteLine("client… wait for the server");
 ReadLine();
 StartSendRequest();
 WriteLine("next return to exit");
 ReadLine();
 }

 static async void StartSendRequest()
 {
 var callbackInstance = new InstanceContext(new CallbackHandler());
 var client = new DemoServiceClient(callbackInstance);
 await client.StartSendingMessagesAsync();
 }
 }
}

When you run the application, the client requests the messages from the service, and the service responds independent of the client:

client… wait for the server
next return to exit
message from the server Hello from the server 0
message from the server Hello from the server 1
message from the server Hello from the server 2
message from the server Hello from the server 3
message from the server Hello from the server 4
Press any key to continue . . .

Hosting

WCF is flexible when you are choosing a host to run the service. The host can be a Windows service, WAS or IIS, a Windows application, or just a simple console application. When creating a custom host with Windows Forms or WPF, you can easily create a peer-to-peer solution.

Custom Hosting

Start with a custom host. The sample code shows hosting of a service within a console application; however, in other custom host types, such as Windows services or Windows applications, you can program the service in the same way.

In the Main method, a ServiceHost instance is created. After the ServiceHost instance is created, the application configuration file is read to define the bindings. You can also define the bindings programmatically, as shown earlier. Next, the Open method of the ServiceHost class is invoked, so the service accepts client calls. With a console application, you need to be careful not to close the main thread until the service should be closed. Here, the user is asked to press Return to exit the service. When the user does this, the Close method is called to actually end the service:

using System;
using System.ServiceModel;
using static System.Console;

class Program
{
 static void Main()
 {
 using (var serviceHost = new ServiceHost())
 {
 serviceHost.Open();

 WriteLine("The service started. Press return to exit");
 ReadLine();

 serviceHost.Close();
 }
 }
}

To abort the service host, you can invoke the Abort method of the ServiceHost class. To get the current state of the service, the State property returns a value defined by the CommunicationState enumeration. Possible values are Created, Opening, Opened, Closing, Closed, and Faulted.

NOTE If you start the service from within a Windows Forms or WPF application and the service code invokes methods of Windows controls, you must be sure that only the control’s creator thread is allowed to access the methods and properties of the control. With WCF, this behavior can be achieved easily by setting the UseSynchronizatonContext property of the attribute [ServiceBehavior].

WAS Hosting

With Windows Activation Services (WAS) hosting, you get the features from the WAS worker process such as automatic activation of the service, health monitoring, and process recycling.

To use WAS hosting, you just need to create a website and a .svc file with the ServiceHost declaration that includes the language and the name of the service class. The code shown here is using the class Service1. In addition, you must specify the file that contains the service class. This class is implemented in the same way that you saw earlier when defining a WCF service library.

<%@ServiceHost language="C#" Service="Service1" CodeBehind="Service1.svc.cs" %>

If you use a WCF service library that should be available from WAS hosting, you can create a .svc file that just contains a reference to the class:

<%@ ServiceHost Service="Wrox.ProCSharp.WCF.Services.RoomReservationService" %>

NOTE Using IIS with WAS doesn’t restrict you to the HTTP protocol. With WAS you can use .NET TCP and Message Queue bindings. In the intranet, this is a useful scenario.

Preconfigured Host Classes

To reduce the configuration necessities, WCF also offers some hosting classes with preconfigured bindings. One example is located in the assembly System.ServiceModel.Web in the namespace System.ServiceModel.Web with the class WebServiceHost. This class creates a default endpoint for HTTP and HTTPS base addresses if a default endpoint is not configured with the WebHttpBinding. Also, this class adds the WebHttpBehavior if another behavior is not defined. With this behavior, simple HTTP GET and POST, PUT, and DELETE (with the WebInvoke attribute) operations can be done without additional setup (code file RoomReservation/RoomReservationWebHost/Program.cs).

using System;
using System.ServiceModel;
using System.ServiceModel.Web;
using Wrox.ProCSharp.WCF.Service;
using static System.Console;

namespace RoomReservationWebHost
{
 class Program
 {
 static void Main()
 {
 var baseAddress = new Uri("http://localhost:8000/RoomReservation");
 var host = new WebServiceHost(typeof(RoomReservationService),
 baseAddress);
 host.Open();

 WriteLine("service running");
 WriteLine("Press return to exit…");
 ReadLine();

 if (host.State == CommunicationState.Opened)
 {
 host.Close();
 }
 }
 }
}

To use a simple HTTP GET request to receive the reservations, the method GetRoomReservation needs a WebGet attribute to map the method parameters to the input from the GET request. In the following code, a UriTemplate is defined that requires Reservations to be added to the base address followed by From and To parameters. The From and To parameters in turn are mapped to the fromTime and toTime variables (code file RoomReservationService/RoomReservationService.cs).

[WebGet(UriTemplate="Reservations?From={fromTime}&To={toTime}")]
public RoomReservation[] GetRoomReservations(DateTime fromTime,
 DateTime toTime)
{
 var data = new RoomReservationData();
 return data.GetReservations(fromTime, toTime);
}

Now the service can be invoked with a simple request as shown. All the reservations for the specified time frame are returned.

http://localhost:8000/RoomReservation/Reservations?From=2012/1/1&To=2012/8/1

System.Data.Services.DataServiceHost is another class with preconfigured features. This class derives itself from WebServiceHost.

Clients

A client application needs a proxy to access a service. There are three ways to create a proxy for the client:

	Visual Studio Add Service Reference—This utility creates a proxy class from the metadata of the service.

	ServiceModel Metadata Utility tool (Svcutil.exe)—You can create a proxy class with the Svcutil utility. This utility reads metadata from the service to create the proxy class.

	ChannelFactory class—This class is used by the proxy generated from Svcutil; however, it can also be used to create a proxy programmatically.

Using Metadata

Adding a service reference from Visual Studio requires accessing a WSDL document. The WSDL document is created by an MEX endpoint that needs to be configured with the service. With the following configuration, the endpoint with the relative address mex uses the mexHttpBinding and implements the contract IMetadataExchange. To access the metadata with an HTTP GET request, the behaviorConfiguration MexServiceBehavior is configured.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service behaviorConfiguration=" MexServiceBehavior"
 name="Wrox.ProCSharp.WCF.RoomReservationService">
 <endpoint address="Test" binding="wsHttpBinding"
 contract="Wrox.ProCSharp.WCF.IRoomService" />
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress=
 "http://localhost:8733/Design_Time_Addresses/RoomReservationService/" />
 <baseAddresses>
 </host>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="MexServiceBehavior">
 <!  — To avoid disclosing metadata information,
 set the value below to false and remove the metadata endpoint above
 before deployment  — >
 <serviceMetadata httpGetEnabled="True"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Similar to the Add service reference from Visual Studio, the Svcutil utility needs metadata to create the proxy class. The Svcutil utility can create a proxy from the MEX metadata endpoint, the metadata of the assembly, or WSDL and XSD documentation:

svcutil http://localhost:8080/RoomReservation?wsdl /language:C# /out:proxy.cs
svcutil CourseRegistration.dll
svcutil CourseRegistration.wsdl CourseRegistration.xsd

After the proxy class is generated, it just needs to be instantiated from the client code, the methods need to be called, and finally the Close method must be invoked:

var client = new RoomServiceClient();
client.RegisterForCourse(roomReservation);
client.Close();

Sharing Types

The generated proxy class derives from the base class ClientBase<TChannel> that wraps the ChannelFactory<TChannel> class. Instead of using a generated proxy class, you can use the ChannelFactory<TChannel> class directly. The constructor requires the binding and endpoint address; next, you can create the channel and invoke methods as defined by the service contract. Finally, the factory must be closed:

var binding = new WsHttpBinding();
var address = new EndpointAddress("http://localhost:8080/RoomService");

var factory = new ChannelFactory<IStateService>(binding, address);

IRoomService channel = factory.CreateChannel();
 channel.ReserveRoom(roomReservation);

 // etc.
 factory.Close();

The ChannelFactory<TChannel> class has several properties and methods, as shown in the following table.

	ChannelFactory Members
	Description

	Credentials
	Credentials is a read-only property to access the ClientCredentials object assigned to the channel for authentication with the service. The credentials can be set with the endpoint.

	Endpoint
	Endpoint is a read-only property to access the ServiceEndpoint associated with the channel. The endpoint can be assigned in the constructor.

	State
	The State property is of type CommunicationState to return the current state of the channel. CommunicationState is an enumeration with the values Created, Opening, Opened, Closing, Closed, and Faulted.

	Open
	The Open method is used to open the channel.

	Close
	The Close method closes the channel.

	OpeningOpenedClosingClosedFaulted
	You can assign event handlers to get informed about state changes of the channel. Events are fired before and after the channel is opened, before and after the channel is closed, and in case of a fault.

Duplex Communication

The next sample application shows how a duplex communication can be done between the client and the service. The client starts the connection to the service. After the client connects to the service, the service can call back into the client. Duplex communication was shown earlier with the WebSocket protocol as well. Instead of using the WebSocket protocol (which has been supported since Windows 8 and Windows Server 2012), duplex communication can also be done with the WsHttpBinding and the NetTcpBinding as shown here.

Contract for Duplex Communication

For duplex communication, a contract must be specified that is implemented in the client. Here the contract for the client is defined by the interface IMyMessageCallback. The method implemented by the client is OnCallback. The operation has the operation contract setting IsOneWay=true applied. This way, the service doesn’t wait until the method is successfully invoked on the client. By default, the service instance can be invoked from only one thread. (See the ConcurrencyMode property of the service behavior, which is, by default, set to ConcurrencyMode.Single.)

If the service implementation now does a callback to the client and waits to get an answer from the client, the thread getting the reply from the client must wait until it gets a lock to the service object. Because the service object is already locked by the request to the client, a deadlock occurs. WCF detects the deadlock and throws an exception. To avoid this situation, you can change the ConcurrencyMode property to the value Multiple or Reentrant. With the setting Multiple, multiple threads can access the instance concurrently. Here, you must implement locking on your own. With the setting Reentrant, the service instance stays single-threaded but enables answers from callback requests to reenter the context. Instead of changing the concurrency mode, you can specify the IsOneWay property with the operation contract. This way, the caller does not wait for a reply. Of course, this setting is possible only if return values are not expected.

The contract of the service is defined by the interface IMyMessage. The callback contract is mapped to the service contract with the CallbackContract property of the service contract definition (code file DuplexCommunication/MessageService/IMyMessage.cs):

public interface IMyMessageCallback
{
 [OperationContract(IsOneWay=true)]
 void OnCallback(string message);
}

[ServiceContract(CallbackContract=typeof(IMyMessageCallback))]
public interface IMyMessage
{
 [OperationContract]
 void MessageToServer(string message);
}

Service for Duplex Communication

The class MessageService implements the service contract IMyMessage. The service writes the message from the client to the console. To access the callback contract, you can use the OperationContext class. OperationContext.Current returns the OperationContext associated with the current request from the client. With the OperationContext, you can access session information, message headers and properties, and, in the case of a duplex communication, the callback channel. The generic method GetCallbackChannel returns the channel to the client instance. This channel can then be used to send a message to the client by invoking the method OnCallback, which is defined with the callback interface IMyMessageCallback. To demonstrate that it is also possible to use the callback channel from the service independently of the completion of the method, a new thread that receives the callback channel is created. The new thread sends messages to the client by using the callback channel (code file DuplexCommunication/MessageService/MessageService.cs).

public class MessageService: IMyMessage
{
 public void MessageToServer(string message)
 {
 WriteLine($"message from the client: {message}");
 IMyMessageCallback callback =
 OperationContext.Current.GetCallbackChannel<IMyMessageCallback>();

 callback.OnCallback("message from the server");

 Task.Run(() => TaskCallback(callback));
 }

 private async void TaskCallback(object callback)
 {
 IMyMessageCallback messageCallback = callback as IMyMessageCallback;
 for (int i = 0; i < 10; i++)
 {
 messageCallback.OnCallback(#$"message {i}");
 await Task.Delay(1000);
 }
 }
}

Hosting the service is the same as it was with the previous samples, so it is not shown here. However, for duplex communication, you must configure a binding that supports a duplex channel. One of the bindings supporting a duplex channel is wsDualHttpBinding, which is configured in the application’s configuration file (configuration file DuplexCommunication/DuplexHost/app.config):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name="Wrox.ProCSharp.WCF.MessageService">
 <endpoint address="" binding="wsDualHttpBinding"
 contract="Wrox.ProCSharp.WCF.IMyMessage" />
 <host>
 <baseAddresses>
 <add baseAddress=
 "http://localhost:8733/Design_Time_Addresses/MessageService/Service1" />
 </baseAddresses>
 </host>
 </service>
 </services>
 </system.serviceModel>
</configuration>

Client Application for Duplex Communication

With the client application, the callback contract must be implemented as shown here with the class ClientCallback that implements the interface IMyMessageCallback (code file DuplexCommunication/MessageClient/Program.cs):

class ClientCallback: IMyMessageCallback
{
 public void OnCallback(string message)
 {
 WriteLine($"message from the server: {message}");
 }
}

With a duplex channel, you cannot use the ChannelFactory to initiate the connection to the service as was done previously. To create a duplex channel, you can use the DuplexChannelFactory class. This class has a constructor with one more parameter in addition to the binding and address configuration. This parameter specifies an InstanceContext that wraps one instance of the ClientCallback class. When passing this instance to the factory, the service can invoke the object across the channel. The client just needs to keep the connection open. If the connection is closed, the service cannot send messages across it.

private async static void DuplexSample()
{
 var binding = new WSDualHttpBinding();
 var address = new EndpointAddress("http://localhost:8733/Service1");

 var clientCallback = new ClientCallback();
 var context = new InstanceContext(clientCallback);

 var factory = new DuplexChannelFactory<IMyMessage>(context, binding,
 address);

 IMyMessage messageChannel = factory.CreateChannel();

 await Task.Run(() => messageChannel.MessageToServer("From the client"));
}

Duplex communication is achieved by starting the service host and the client application.

Routing

Using the SOAP protocol has some advantages to HTTP GET requests with REST. One of the advanced features that can be done with SOAP is routing. With routing, the client does not directly address the service, but a router in between that forwards the request.

There are different scenarios to use this feature. One is for failover (see Figure 44.10). If the service cannot be reached or returns in an error, the router calls the service on a different host. This is abstracted from the client; the client just receives a result.

[image: Block diagram shows a client connected to a router and the router is connected to both serviceA and serviceB. Router connects serviceB via failover.]

Figure 44.10

Routing can also be used to change the communication protocol (see Figure 44.11). The client can use the HTTP protocol to call a request and sends this to the router. The router acts as a client with the net.tcp protocol and calls a service forwarding the message.

[image: Block diagram shows a client connected to a router via HTTP protocol and the router is connected to serviceA via net.tcp protocol.]

Figure 44.11

Using routing for scalability is another scenario (see Figure 44.12). Depending on a field of the message header or also information from the message content, the router can decide to forward a request to one or the other server. Requests from customers that start with the letter A–F go to the first server, G–N to the second one, and O–Z to the third.

[image: Block diagram shows a client connected to a router and the router is connected to service A-F, service G-N and service O-Z.]

Figure 44.12

Sample Routing Application

With the routing sample application, a simple service contract is defined where the caller can invoke the GetData operation from the IDemoService interface (code file RoutingSample/DemoService/IDemoService.cs):

using System.ServiceModel;
namespace Wrox.ProCSharp.WCF
{
 [ServiceContract(Namespace="http://www.cninnovation.com/Services/2016")]
 public interface IDemoService
 {
 [OperationContract]
 string GetData(string value);
 }
}

The implementation of the service just returns a message with the GetData method. The message contains the information received along a server-side string that is initialized from the host. This way you can see the host that returned the call to the client (code file RoutingSample/DemoService/DemoService.cs):

using System;
using static System.Console;

namespace Wrox.ProCSharp.WCF
{
 public class DemoService : IDemoService
 {
 public static string Server { get; set; }

 public string GetData(string value)
 {
 string message = $"Message from {Server}, You entered: {value}";
 WriteLine(message);
 return message;
 }
 }
}

Two sample hosts just create a ServiceHost instance and open it to start the listener. Each of the hosts defined assigns a different value to the Server property of the DemoService.

Routing Interfaces

For routing, WCF defines the interfaces ISimplexDataGramRouter, ISimplexSessionRouter, IRequestReplyRouter, and IDuplexSessionRouter. Depending on the service contract, you can use different interfaces. You can use ISimplexDataGramRouter with operations that have the OperationContract with IsOneWay settings. With ISimplexDatagramRouter, sessions are optional. You can use ISimplexSessionRouter for one-way messages like ISimlexDatagramRouter, but here sessions are mandatory. You use IRequestReplyRouter for the most common scenario: messages with request and response. With duplex communications (for example, with the WsDualHttpBinding used earlier), you use the interface IDuplexSessionRouter.

Depending on the message pattern used, a custom router needs to implement the corresponding router interface.

WCF Routing Service

Instead of creating a custom router, you can use the RoutingService from the namespace System.ServiceModel.Routing. This class implements all the routing interfaces, and thus you use it with all the message patterns. It can be hosted just like any other service. In the StartService method, a new ServiceHost is instantiated by passing the RoutingService type. This is just like the other hosts you’ve seen before (code file RoutingSample/Router/Program.cs):

using System;
using System.ServiceModel;
using System.ServiceModel.Routing;
using static System.Console;

namespace Router
{
 class Program
 {
 internal static ServiceHost s_routerHost = null;

 static void Main()
 {
 StartService();
 WriteLine("Router is running. Press return to exit");
 ReadLine();
 StopService();
 }

 internal static void StartService()
 {
 try
 {
 _routerHost = new ServiceHost(typeof(RoutingService));
 _routerHost.Faulted += myServiceHost_Faulted;
 _routerHost.Open();
 }
 catch (AddressAccessDeniedException)
 {
 WriteLine("either start Visual Studio in elevated admin" +
 "mode or register the listener port with netsh.exe");
 }
 }

 static void myServiceHost_Faulted(object sender, EventArgs e)
 {
 WriteLine("router faulted");
 }

 internal static void StopService()
 {
 if (_routerHost != null &&
 _routerHost.State == CommunicationState.Opened)
 {
 _routerHost.Close();
 }
 }
 }
}

Using a Router for Failover

More interesting than the hosting code is the configuration of the router. The router acts as a server to the client application and as a client to the service. So both parts need to be configured. The configuration as shown here offers the wsHttpBinding as a server part and uses the wsHttpBinding as a client to connect to the service. The service endpoint needs to specify the contract that is used with the endpoint. With the request-reply operations offered by the service, the contract is defined by the IRequestReplyRouter interface (configuration file Router/App.config):

<system.serviceModel>
 <services>
 <service behaviorConfiguration="routingData"
 name="System.ServiceModel.Routing.RoutingService">
 <endpoint address="" binding="wsHttpBinding"
 name="reqReplyEndpoint"
 contract="System.ServiceModel.Routing.IRequestReplyRouter" />
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8000/RoutingDemo/router" />
 </baseAddresses>
 </host>
 </service>
 </services>
 <!— etc. —>

The client part of the router defines two endpoints for services. For testing the routing service, you can use one system. Of course, usually the hosts run on a different system. The contract can be set to * to allow all contracts to pass through to the services covered by these endpoints.

<system.serviceModel>
 <!— etc. —>
 <client>
 <endpoint address="http://localhost:9001/RoutingDemo/HostA"
 binding="wsHttpBinding" contract="*" name="RoutingDemoService1" />
 <endpoint address="http://localhost:9001/RoutingDemo/HostB"
 binding="wsHttpBinding" contract="*" name="RoutingDemoService2" />
 </client>
 <!— etc. —>

The behavior configuration for the service becomes important for routing. The behavior configuration named routingData is referenced with the service configuration you’ve seen earlier. For routing, the routing element must be set with the behavior, and here a routing table is referenced using the attribute filterTableName.

<system.serviceModel>
 <!— etc. —>
 <behaviors>
 <serviceBehaviors>
 <behavior name="routingData">
 <serviceMetadata httpGetEnabled="True"/>
 <routing filterTableName="routingTable1" />
 <serviceDebug includeExceptionDetailInFaults="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <!— etc. —>

The filter table named routingTable1 contains a filter with the filterType MatchAll. This filter matches with every request. Now every request from the client is routed to the endpoint name RoutingDemoService1. If this service fails and cannot be reached, the backup list takes importance. The backup list named failOver1 defines the second endpoint used in case the first one fails.

<system.serviceModel>
 <!— etc. —>
 <routing>
 <filters>
 <filter name="MatchAllFilter1" filterType="MatchAll" />
 </filters>
 <filterTables>
 <filterTable name="routingTable1">
 <add filterName="MatchAllFilter1" endpointName="RoutingDemoService1"
 backupList="failOver1" />
 </filterTable>
 </filterTables>
 <backupLists>
 <backupList name="failOver1">
 <add endpointName="RoutingDemoService2"/>
 </backupList>
 </backupLists>
 </routing>

With the routing server and routing configuration in place, you can start the client that makes a call to a service via the router. If everything is fine, the client gets an answer from the service running in host 1. If you stop host 1, and another request from the client, host 2 takes responsibility and returns an answer.

Bridging for Protocol Changes

If the router should act to change the protocol, you can configure the host to use the netTcpBinding instead of the wsHttpBinding. With the router, the client configuration needs to be changed to reference the other endpoint.

<endpoint address="net.tcp://localhost:9010/RoutingDemo/HostA"
 binding="netTcpBinding" contract="*" name="RoutingDemoService1" />

That’s all that needs to be done to change the scenario.

Filter Types

With the sample application, a match-all filter has been used. WCF offers more filter types.

	Filter Type
	Description

	Action
	The Action filter enables filtering depending on the action of the message. See the Action property of the OperationContract.

	Address
	The Address filter enables filtering on the address that is in the To field of the SOAP header.

	AddressPrefix
	The AddressPrefix filter does not match on the complete address but on the best prefix match of the address.

	MatchAll
	The MatchAll filter is a filter that matches every request.

	XPath
	With the XPath message filter, an XPath expression can be defined to filter on the message header. You can add information to the SOAP header with a message contract.

	Custom
	If you need to route depending on the content of the message, a Custom filter type is required. With a custom filter type, you need to create a class that derives from the base class MessageFilter. Initialization of the filter is done with a constructor that takes a string parameter. This string can be passed from the configuration initialization.

If multiple filters apply to a request, priorities can be used with filters. However, it’s best to avoid priorities as this decreases performance.

Summary

In this chapter, you learned how to use Windows Communication Foundation for communication between a client and a server. WCF can be used in a platform-independent way to communicate with other platforms, but it can also take advantage of specific Windows features.

WCF has a heavy focus on contracts to make it easier to isolate developing clients and services, and to support platform independence. It defines three different contract types: service contracts, data contracts, and message contracts. You can use several attributes to define the behavior of the service and its operations.

You saw how to create clients from the metadata offered by the service and also by using the .NET interface contract. You learned the features of different binding options. WCF offers not only bindings for platform independence, but also bindings for fast communication between .NET applications. You’ve seen how to create custom hosts and also make use of the WAS host. You saw how duplex communication is achieved by defining a callback interface, applying a service contract, and implementing a callback contract in the client application.

CHAPTER 45
Deploying Websites and Services

What’s in this Chapter?

	Deployment preparations

	Deployment to Internet Information Server

	Deployment to Microsoft Azure

	Deployment using Docker

Wrox.com Code Downloads for This Chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6 on the Download Code tab. The code for this chapter is found in the following examples:

	WebDotnetFramework

	WebDotnetCore

Deploying Web Applications

ASP.NET web applications traditionally have been deployed on Internet Information Server (IIS). Also, it was important to have on the server the same version of the .NET Framework as was used during development. Using .NET Core, this is no longer the case. .NET Core not only runs on Windows, but also on Linux. Also, the runtime that is needed with the application is delivered as a part of the application. These changes give you more deployment options to run your application.

This chapter shows different options for deploying web applications. One, of course, is to deploy the application on a local Internet Information Server. It’s also easy to deploy to Microsoft Azure. Using Microsoft Azure, you can easily scale applications, and you don’t need to buy all the systems you probably need up front. You also add additional systems as needed and only buy for the time you need these systems.

This chapter shows you how to create a Docker image with Visual Studio. Docker allows you to prepare the infrastructure you need for your application. You can directly use these Docker images on the target systems, and all the infrastructure is in place.

NOTE This book doesn’t cover all the different configuration options for IIS and Microsoft Azure and what can be done with Docker. Consult other books to get more detail. This chapter just gives you the most important information about these topics that you need to know as a developer.

Preparing for Deployment

What needs to be deployed with web applications? Static files as HTML, CSS, JavaScript, and image files, the binary compiled image from the C# source files, and the database. Configuration files are needed as well. Configuration files contain application settings, including connection strings to connect to the database. Most likely, the application settings differ between testing and production environments. You probably have a staging environment as well so you can do some final tests before moving to production. You need to change the configuration between the different environments as well.

To deploy sample applications, you create two applications: one application using the .NET Framework 4.6 and the other application with ASP.NET Core 1.0 using .NET Core. Both applications use a database that’s accessed using the Entity Framework Core.

NOTE Read Chapter 38 for more information about the Entity Framework Core.

Creating an ASP.NET 4.6 Web Application

Create the first application named WebDotnetFramework with the Visual Studio project template ASP.NET Web Application. Select the ASP.NET 4.6 template MVC and select the Authentication Individual User Accounts (see Figure 45.1).

[image: Image described by surrounding text.]

Figure 45.1

When you run this application, a few screens are available, and you can register a new user (see Figure 45.2). This registration creates a database on the SQL LocalDB instance that is installed with Visual Studio.

[image: Screenshot shows registration window for creating a new account asking for email, password and confirm password. Register button is provided at the bottom of the window page.]

Figure 45.2

Creating an ASP.NET Core 1.0 Web Application

Create the second application named WebDotnetCore again using the Visual Studio project template ASP.NET Web Application, but now select the ASP.NET Core 1.0 template Web Application, again using Authentication with Individual User Accounts (see Figure 45.3).

[image: Image described by surrounding text.]

Figure 45.3

Running this application results in the screen shown in Figure 45.4. Again, a LocalDB database is created on registering a user.

[image: Screenshot shows a window for home page with webcoreframework which includes ASP.NET 5, windows, linux and OSX. It also displays application uses, how to and overview contents.]

Figure 45.4

Having both these applications for deployment fulfills different scenarios: using the web application running .NET 4.6 requires the .NET Framework to be installed on the target system before the application can be deployed. You need a system having .NET 4.6 available; usually IIS (also on Microsoft Azure) is used for deployment.

With ASP.NET Core 1.0, either you can host the application using .NET 4.5 or later, or you can use .NET Core 1.0. Using .NET 5 Core, you can host the application on non-Windows systems as well, and it’s not required that you have the .NET runtime installed on the target system before deploying the application. The .NET runtime can be delivered with the application.

Using ASP.NET Core 1.0, you can still decide to host the application with .NET 4.6, which has similarities to the deployment of the first application. However, the web configuration file with ASP.NET Core 1.0 looks very different from the Web configuration file with ASP.NET 4.6; that’s why I decided for this chapter to give you ASP.NET 4.6 and ASP.NET Core 1.0 as the two options, so you can see the typical deployment needs you have with your application.

Let’s start deploying the web application on your local Internet Information Server (IIS).

Configuration Files with ASP.NET 4.6

One important part of the web application is the configuration file. With ASP.NET 4.6, the configuration file (Web.config) is in an XML format and contains application settings, database connections strings, ASP.NET configurations such as authentication and authorization, session state, and more, as well as assembly redirection configuration.

In terms of deployment, you have to consider different versions of this file. For example, if you are using a different database for the web application that is running on the local system, there’s a special testing database for the staging server, and of course there’s a live database for the production server. The connection string is different for these servers. Also, the debug configuration differs. If you create separate Web.config files for these scenarios and then add a new configuration value to the local Web.config file, it would be easy to overlook changing the other configuration files.

Visual Studio offers a special feature to deal with that. You can create one configuration file and define how the file should be transformed to the staging and deployment servers. By default, with an ASP.NET web project, in the Solution Explorer you can see a Web.config file alongside Web.Debug.config and Web.Release.config. These two later files contain only transformations. You can also add other configuration files—for example, for a staging server. You do this by selecting the solution in Solution Explorer, opening the Configuration Manager, and adding a new configuration (for example, a Staging configuration as shown in Figure 45.5). As soon as a new configuration is available, you can select the Web.config file and choose the Add Config Transform option from the context menu. This then adds a config transformation file with the name of the configuration—for example, Web.Staging.config.

[image: Screenshot shows configuration manager window displaying new solution configuration sub window filling the fields for name as staging, copy settings from as release and activates create new project configurations with ok button.]

Figure 45.5

The content of the transformation configuration files just defines transformations from the original configuration file. For example, the compilation element below system.web is changed to remove the debug attribute as follows:

<system.web>
 <compilation xdt:Transform=<i>"</i>RemoveAttributes(debug)<i>"</i> />

Configuration Files with ASP.NET Core 1.0

Configuration files with ASP.NET Core 1.0 are very different from the previous ASP.NET versions. By default, JSON configuration files are used, but you can use other file formats, such as XML files, as well. project.json is the configuration file for the project that contains dependencies to NuGet packages, application metadata, and supported .NET Framework versions. Contrary to the previous ASP.NET versions, this information is separated from the application settings and connection strings.

You can add all the different application configuration files in the constructor of the Startup class. The default code generated adds the appsettings.json file with the extension method AddJsonFile, and environment variables with the extension method AddEnvironmentVariables. The Build method of the ConfigurationBuilder creates an IConfigurationRoot that can be used to access the settings in the configuration files. With ASP.NET 4.6, you’ve seen transformation to create different configurations for different environments. This is handled differently with ASP.NET Core 1.0. Here, a JSON file with an environmental name in the filename is used to define the settings that differ (code file WebCoreFramework/Startup.cs):

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .AddJsonFile("appsettings.json")
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json",
 optional: true);

 if (env.IsDevelopment())
 {
 builder.AddUserSecrets();
 }

 builder.AddEnvironmentVariables();
 Configuration = builder.Build();
}

public IConfigurationRoot Configuration { get; set; }

In case you prefer XML configurations over JSON, you can add an XML file by adding the NuGet package Microsoft.Extensions.Configuration.Xml and using the method AddXmlFile.

For testing the different environmental configurations from within Visual Studio, you can change the environmental variable EnvironmentName in the Debug settings of the Project Properties, as shown in Figure 45.6.

[image: Screenshot shows webcoreframework window with selected debug caption with fields to be filled such as profile, launch, command, application arguments, working directory, launch URL and environment variables.]

Figure 45.6

NOTE Within the development environment, you add user secrets with the AddUserSecrets method. Secret configuration, such as keys for a cloud service, had better not be configured within the source code that is checked in with a source code repository. User secrets store such information elsewhere for the current user. This functionality is shown in Chapter 40, “ASP.NET Core.”

Deploying to Internet Information Server

Let’s start with deployment to IIS. Before deploying the web application to IIS, you need to make sure that Internet Information Services is available on your system. You can install IIS with the Windows Features (select Programs and Features, and use the Turn Windows Features On or Off link) as shown in Figure 45.7. At least you need these options:

	.NET Extensibility 4.6

	ASP.NET 4.6

	Default Document

	Static Content

	IIS Management Console

	IIS Management Scripts and Tools

	IIS Management Service

[image: Screenshot shows windows features page with selected options such as IIS management console, service, scripts and tools, .NET extensibility 4.6, ASP.NET 4.6, ISAPI extensions et cetera. Finally, chooses ok button.]

Figure 45.7

Depending on your security and other requirements, you might need other options as well.

Preparing a Web Application Using IIS Manager

After you start the IIS Manager, you can prepare the server for installing the web application. Figure 45.8 shows the IIS Manager started on a Windows 10 system.

[image: Screenshot shows internet information services manager window displaying THEROCKS home page which includes components for ASP.NET, IIS, management et cetera.]

Figure 45.8

Creating an Application Pool

The web application needs a process to run within. For this, you need to configure an application pool. Within the IIS Manager, you can see the Application Pools node in the left tree view. Select this node to configure existing application pools, as well as create new ones.

Figure 45.9 shows creating a new application pool named ProCSharpPool. With the Add Application Pool dialog you can select the version of the .NET runtime (.NET CLR version). For .NET Framework 4.6 and other 4.x versions you need to select .NET CLR 4.0 for the runtime. Be aware that .NET Framework versions after 4.0 updated the 4.0 runtime, so these updates need to be installed on the system. With Windows 10 and Windows Server 2016, .NET 4.6 is installed anyway. With this dialog you can also select the Managed Pipeline Mode. All you need to know here is that when using the Classic pipeline mode, native handlers and modules are running within the application pool, whereas with the Integrated pipeline mode .NET modules and handlers are used. So with newer applications it’s usually best to stick with the Integrated pipeline mode.

[image: Screenshot shows add application pool window displaying the fields to be filled such as name, .NET CLR version, managed pipeline mode and selects Start application pool immediately with ok button.]

Figure 45.9

After creating the application pool, you can configure a lot more options in the Advanced Settings (see Figure 45.10). Here you can configure the number of CPU cores to use, the user identity of the process, health monitoring, a Web Garden (multiple number of processes to be used), and more.

[image: Image described by surrounding text.]

Figure 45.10

Creating a Website

After defining a pool, you can create a website. The default website listens to port 80 for all IP addresses of the system. You can either use this existing website or configure a new one. Figure 45.11 configures a new website that uses the ProCSharpPool application pool, is defined within the physical path c:\inetpub\ProCSharpWebRoot, and listens to port 8080. With multiple websites, you need to either use different port numbers, have multiple IP addresses configured on the system where different websites are accessible through different addresses, or use different hostnames. With different hostnames, the client needs to send the hostname requested within the HTTP header. This way IIS can decide which website the request should be forwarded to.

[image: Screenshot shows add website window displaying site name, application pool, physical path, type, IP address, port, host name and selects start website immediately with ok button.]

Figure 45.11

Later you can modify bindings to the IP address, port number, and hostname by clicking the Edit button in the Site Binding dialog (see Figure 45.12). You can also define other protocols such as net.tcp or net.http that can be used to host a Windows Communication Foundation (WCF) application. For this to be available, you need to install optional Windows features: WCF Services are available with the .NET Framework 4.6 Advanced Services in the Turn Windows Features On or Off management tool.

[image: Image described by surrounding text.]

Figure 45.12

NOTE Read Chapter 44, “Windows Communication Foundation,” for more information about WCF.

Creating an Application

Next, you can create an application. Figure 45.13 shows creating an application named ProCSharpApp within the site ProCSharpSite running within the application pool ProCSharpPool.

[image: Screenshot shows add application window displaying alias, application pool and physical path. Bottom of the window page has ok and cancel buttons.]

Figure 45.13

The configurations available with the IIS Manager are grouped with the categories ASP.NET, IIS, and Management settings (see Figure 45.14). Here you can configure Application Settings, Connection Strings, Session State, and more. Mainly this configuration offers a graphical UI to the XML configuration file web.config.

[image: Screenshot shows internet information services manager window displaying ProCSharpApp home page which includes components for ASP.NET, IIS, management et cetera.]

Figure 45.14

Web Deploying to IIS

When you have an application prepared in the IIS Manager, you can directly deploy the web application from within Visual Studio to IIS. Before doing this, create a new empty database with IIS named ProCSharpWebDeploy1 on the server (localdb)\MSSQLLocalDB. You can do this from within Visual Studio in the SQL Server Object Explorer. Select SQL Server, Databases, and Add New Database.

With the configuration file Web.Staging.config, add the connection string to the new SQL Server database instance and add the transformation as shown to change the connection string defined by Web.config (code file WebDotnetFramework/Web.Staging.config):

<connectionStrings>
 <add name="DefaultConnection"
 connectionString="Data Source=(localdb)\MSSQLLocalDB;
 Initial Catalog=WebDeploy1;Integrated Security=True;
 Connect Timeout=30;Encrypt=False;
 TrustServerCertificate=False;ApplicationIntent=ReadWrite;
 MultiSubnetFailover=False"
 providerName="System.Data.SqlClient"
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)" />
</connectionStrings>

For deploying the database directly with the deployment, you can configure the Package/Publish SQL configuration with the Project Properties (see Figure 45.15). Here you can import the connection string from the web.config file. You can also add custom SQL scripts with the deployment and either deploy only the database schema or also copy the data as well.

[image: Image described by surrounding text.]

Figure 45.15

To deploy directly to the local IIS, Visual Studio needs to be started in elevated mode (Run as Administrator).

After you open the project WebDotnetFramework that you created earlier, in the Solution Explorer select the project and open the application context menu Publish. With the opened Publish Web dialog (see Figure 45.16) you need to select Custom as the publish target. Name the profile PublishToIIS, as this is what you do next.

[image: Screenshot shows publish web window with selected profile caption with options for selecting a publish target such as Microsoft azure app service, Microsoft azure API apps, import and custom along with more options category.]

Figure 45.16

With the Connection configuration, select Web Deploy in the Publish Method drop-down menu. Define the server, the site name, and the destination URL to publish to the local IIS (see Figure 45.17).

[image: Image described by surrounding text.]

Figure 45.17

With the Settings tab (see Figure 45.18) you configure file publish options. Here, you can select the configuration to choose the corresponding web configuration file. You can precompile the source files during publishing. This way you don’t need to deliver the C# source files with the package. Also, you can exclude files from the App_Data folder. This folder can be used for file uploading and a local database. In case you have only test data in this folder, you can safely exclude this folder from the package. Also, you can select the database connection string with the Package/Publish SQL configuration.

[image: Screenshot shows publish web window with selected settings option displaying publishtolls, file publish options, defaultconnection and selects runtime connection string and update database.]

Figure 45.18

When you publish successfully, you will find the files copied to the previously configured application within IIS, and the browser opened to the home page.

Deploying to Microsoft Azure

When deploying to Microsoft Azure, you need to think about deploying your data store. With Microsoft Azure, SQL Database is a good option to deploy relational data. With SQL Database you have different options based on Database Transaction Units (DTUs) and database sizes starting from 5 DTUs and 2GB of data up to 1750 DTUs and 1 TB of data. A DTU is a measurement unit based on database transactions. Microsoft measured how many transactions could be completed per second under full load, and thus 5 DTUs allow for 5 transactions per second.

After creating the database, the tables will be created as defined with the WebCoreFramework sample application. Then, a web application will be created with Microsoft Azure to host the sample application.

Creating a SQL Database

You can create a new SQL Database by logging in with http://portal.azure.com in the SQL databases section. When creating a database, you can select the pricing tier. For the first tests using SQL Database, select the cheapest edition—Basic. For running the web application, you don’t need any additional features. You can change it later as needed. The database from the book is named ProfessionalCSharpDB. You need to use a different name as this name is unique.

To directly access the database from Visual Studio, you need to change the firewall setting of the SQL server and allow your local IP address to access the server. Your local IP address is shown with the Firewall settings.

Testing the Local Website with SQL Azure

Before deploying the website to Microsoft Azure, try to change the database connection string to use the SQL Database on Microsoft Azure and test the website locally.

First, you need to get the connections string to the Azure Database. Find your connection string in the Azure Portal by selecting the SQL Database. The connection string is accessible from the Essentials configuration.

With Visual Studio, open the WebCoreFramework project and add a new JSON file named appsettings.staging.json. Add the connection string to your SQL Database running on Microsoft Azure. Pay attention to adding the password that just has a placeholder by copying the connection string from the portal (code file WebDotnetCore/appsettings.json.config):

{
 "Data": {
 "DefaultConnection": {
 "ConnectionString":"add your database connection string"
 }
 }
}

This file is loaded when the Host:Environment environmental variable is set to Staging (code file WebDotnetCore/Startup.cs):

var builder = new ConfigurationBuilder()
 .AddJsonFile("appsettings.json")
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true);

Remember, you can configure this setting to be used while running the application from Visual Studio in the Project>Debug properties (see Figure 45-45.6).

To add the tables to the SQL Database, you can use Entity Framework migrations. Migrations are configured for the Entity Framework model with the ApplicationDbContext.

When you run the application locally, the database tables are created because the Migrations folder exists to contain information about the needed tables and schemas, as well as the invocation of Database.Migrate in the Startup code (code file WebCoreFramework/Startup.cs):

try
{
 using (var serviceScope = app.ApplicationServices
 .GetRequiredService<IServiceScopeFactory>().CreateScope())
 {
 serviceScope.ServiceProvider
 .GetService<ApplicationDbContext>()
 .Database.Migrate();
 }
}
catch { }

To manually handle the migration and create the initial tables, you can start the Developer Command Prompt, change the current directory to the directory where the project.json file of the project is stored, and set the environmental variable to use the correct configuration file for the connect string:

>set Hosting:Environment-staging

You also start the web server with the command

>dotnet run

and start the migration with the database command:

>dotnet ef database update

The website now runs locally with the SQL Database in the cloud. It’s time to move the website to Microsoft Azure.

Deploying to a Microsoft Azure Web App

Using the Azure Portal, you can create an Azure web app where the website can be hosted. From the Solution Explorer in Visual Studio, you can select the Publish Web context menu. Microsoft Azure App Service is one of the available options. Using this option, you can deploy the website to Microsoft Azure.

After selecting Microsoft Azure App Service, you can log in to Microsoft Azure and select one of your web apps. You can also create a new web app directly from this dialog.

After deployment is completed, you can use the website from the cloud.

Deploying to Docker

Another option for publishing is Docker. Docker offers a new concept for deployment. Instead of installing all requirements and preparing the correct configuration on the target system before installing the web application, you can supply a complete Docker image that contains everything needed.

Would it not be possible to do the same using a virtual machine image and load this on a Hyper-V server? The problem with virtual machine images is that they are huge, containing the complete operating system and every tool needed. Of course, you can use virtual machine images with Microsoft Azure. Prepare an image, and install the web application after installing the web server infrastructure.

This is very different from Docker. Docker is built up using an onion-like system. A layer is built up above another layer. Every layer just contains the differences from the other layer. You can use one already-prepared system that includes the requirements from the operating system, add another layer for the web server, and then add one or more layers for the website you want to deploy. These images are small as only changes are recorded.

If you add the Visual Studio Extension Tools for Docker, you can see another option with the Publish menu: to deploy a Docker image. This deployment is available for Windows Server 2016 as well as different Linux variants. Just select the image you like and deploy your website. Of course, when you’re running on Linux, only .NET Core is available.

Summary

How you deploy web applications has undergone big changes in the last years. Creating installer packages is rarely used nowadays. Instead, you can directly publish from Visual Studio.

You’ve seen how to publish to an Internet Information Server that can be hosted on premise (a custom-managed IIS), as well as how to publish to a server on Microsoft Azure. Using Microsoft Azure, a lot of work managing the infrastructure can be avoided.

You’ve also read about an introduction to Docker, another deployment option that allows creating small prepared images where everything needed for the one running the application is prepared to run.

[image:]

 WILEY END USER LICENSE AGREEMENT

 Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

OEBPS/Images/image01543.jpeg
Seecta g
ASP.NET 4.6 Templates
P E—
13 ol
Web Forms

Aaure APl App Azure Mobie ~ Azure Mobile

il

Web AP|

Empty

(Preview) App Service:
ASPNET S Templntes
. . .
b TR o A i
ey Wb e

=]
Singl Page
Applcation

A project template for creating ASP.NET MVC

| applications. ASP.NET MVC allows you to buid
applications using the Model-View-Controller
architecture. ASP NET MVC includes many festures that
enable fast. test-criven development for creating
appiications that use the latst standards.

Learn more

Authentication: Individual User Accounts

Add folders and core references for:

[WebForms v/ MVC (] Web APl

[Add it tests

Test project name: | WebApplication’ Tests

5 Microsoft Azure
@ [Hostinthe doud

‘Web App &

OEBPS/Images/image01664.jpeg
ONO,

OEBPS/Images/image01785.jpeg
W7 TetEffect Demo

cnlelements

OEBPS/Images/image01906.jpeg
@ rubtshvies

Select a publish target

I & Microsoft Azure App Service
| & Microsoft Azure API Apps (Preview)
|) Import

|) Custom

{(») More Options

I [E Microsoft Azure Virtual Machines

Find other hosting options at our web hosting gallery

<Prev Next >

OEBPS/Images/image01544.jpeg
=X

Solution Explorer
® o-50® £
Search Solution Explorer (Ctrl+;) P

23 Solution 'ConsoleApp1' (1 project)

4 @l sic
4 [3) ConsoleApp1

b f Properties
4 »W References

b BEE NET Framework 4.6

b BEE DNX Core 5.0

e Dependencies
4 C® program.cs

4 % Program

@ Main(string[]) : void
4« & project.json
D projectlockjson

Solution Explorer | Team Explorer

OEBPS/Images/image01665.jpeg
OJO,

OEBPS/Images/image01786.jpeg
cn|elements

OEBPS/Images/image01907.jpeg
@ s

profile PublishTolls *
... (e :
Settings
view
Server: httpy/localhost
Site name: | ProCSharpsite/ProCsharpApp

Save password

Destination URL: | http://localhost:8080

Validate Connection

e | [T | [| [oom

OEBPS/Images/image01541.jpeg
B WpfApplicationt

WpfApplication1 & X
iquration: [NIAY =
Buid
fatforr: [NA
Build Events
Debug Assembly pame: Defauit namespace:
Resources WhfApplication? [Wfapplicationt
Services
Torget framework: Output type:
Settings
ET Framework 452 Windows Application
NET Framework 2.0
Signing NET Framework 3.0
oty NET Framework 3.5 [
NET Framework 3.5 Client Profile
Fublehy | NET Framework 4
Code Analysis LNET Framework 4 nm profile
NET Framework 4
[Fament 421

NET Framework 4.6
NET Framework 4.6.1
Install other frameworks.

con:
[Defolt 1con)

pplication. To embed a custom manifes, first add
below.

OEBPS/Images/image01662.jpeg
Guten Morgen <<Clckto 3dd 3 comments>

OEBPS/Images/image01783.jpeg
Live Shaping

1 |5 |Femando Alonso | Ferrari 23| None
2 [18]Pastor Maldonado | Wiliams 23[None
3 |9 |Kimi Raikionen | Lotus 23[None
4 | 10| Romain Grosjean _ | Lotus 23[None
5 |1 |Sebastian Vettel | Red Bull Racing| 23| None
6 |3 |Jenson Button Mclaren 23| None
7_|14|Kamui Kobayashi | Sauber 3
8 [6 |Felipe Massa Ferrar
9 |4 |LewisHamilton | Mclaren
10[11]Paul di Resta Force India n
11] 16| Daniel Riccardio | Toro Ro:

7 Toro n

Me

20| Heikki Kovalainen

14 Caterham 23| None
15]12| Nico Halkenberg | Force India__| 23| None
16]2 | Mark Webber Red Bull Racing | 23| None
1721 Witali Petrow Caterham 23 None
18] 15| Sergio Perez Sauber 23 None
19]24]Timo Glock Marussia 23None
20[25 | Charles Pic 23None

Pedro de la Rosa

Morussia
HRT

OEBPS/Images/image01904.jpeg
’ /ProCSharpApp Home

- 7o - GShows | Groupy: aves

OEBPS/Images/image01542.jpeg
wE

Visual

Vi
Vs ch
Vsl ch
vamice

Vil Co

[Serch ntoed Tmplates 1oty P

Type: Visusl 4
Windows Presentation Foundation cient
applcation

[Create directory for solution
[0 Add to source control

o]

OEBPS/Images/image01663.jpeg
ument Outline .

1 [Page]
@&
4 D) [Page]
BottomAppBar
grid1 0
X button1 o2
@ button2 DLC
> o

B list1

OEBPS/Images/image01784.jpeg
#1 Fonts Demo - o X

Bookman Old Style cn |elements Italic UltraBold UltraLight 4
Bradley Hand ITC on|elements rzlie Ultra®old Ultralight
itanni Italic Ultralight
Berlin Sans FB cnlelements /talic UltraBold UltraLight
Ex yen| Italic L UltraLight
Buck Seript M7 en | clements Tealic WithaBold Tltralishs
9/ /FRe=h 8TRA/Z QINBeE NN G AEX B
Californian FB cn|elements Italic UltraBold UltraLight
Calisto MT cn | elements Jralic UltraBold UltraLight
CASTELLAR CN[ELEMENTS JTALIC ULTRABOLD ULTRALIGHT

<

OEBPS/Images/image01905.jpeg
~

‘WebDotnet tamework

Confiuration: Actve taging) . Pltfom: Actwe (Any CPU)

enty
Learn more about Puckage/Puish SQL
Dstobase s
[oeploy Neme
DefaabConnecion Deployment

Import from Web config

Dstabase ity Detas

Connection sringfor destination database:

‘appication’ deployed Web.confgfe. use Wie o0’ iansorm.

OEBPS/Images/image01547.jpeg

OEBPS/Images/image01545.jpeg
NET Fromenork 45~ Sortby: Defoult

« it [o Forms aopicaion
4 vismlch =
+ Windows
+ Unwersal
» Windowe’s B corsoie Appicaton
Clssc Desktop -
Web. B swedroea
Andoid .
oy N sty
Eensbity i
- QR s oy ot
Ling G wrrowes ppicaon
Offce/strctoint &
Reportng
5 emyen
e X7 emoyprope
Tt
L windows service
b u]
Worion B e custom convetiy
Homsght L
» OtherLangusges & e ooty
 OtherProjectTypes d
Modelno Proects N R
b Oakw Clckber 10 00 onbne) o templtes.
Nome: sasichep
ocation: Chcode\Corsclenppt

Visual 8

Visual G4

Visual ¥

Visusl G4

Visual G4

Visual G4

Visual 4

Visual 4

Visual &8

Visual G0

Search Instaled Temy

Types Vicusl C#
Windows Pesentation Foundation dient
applation

OEBPS/Images/image01666.jpeg

OEBPS/Images/image01787.jpeg
Normal Bold Italic
Underline

OEBPS/Images/image01546.jpeg
@ b-5e =g

Search Solution Explorer (Ctrl+u) P~

Solution 'DemoSolution’ (2 projects)
4 Solution ltems
g globaljson
¥ NuGet.Config
4 @lsrc
b] ConsoleApp1
4 [BasicForm
b Properties
b =W References
¥ App.config
b L) Appxaml
b D) MainWindow.xaml

Solution Explorer | Team Explorer

OEBPS/Images/image01667.jpeg

OEBPS/Images/image01788.jpeg
cn|elements

Rib Eye]9

OEBPS/Images/image01909.jpeg
Programmer to Programmer™

Connect with Wrox.

User Group Program

ok onlne by artcating B cnber ke g of o
orums @ p2pwoscom theleneis
Wrox Blox Wrox on
Dowricad shot informatiorlpecsandcode w @wroxon T theioow
{okeepyou up o date and out f e onthe testrews inthe word of Weox

Join the Community Wrox on IZZE20R

Y ——

S up forurfree montnynewsieter o

‘on new books and publications a5 wel

Wrox.com

cion of Wrox s €-books

and blogs and find ety

Contact Us.

el e bk e oy g

Letus know by emailing

OEBPS/Images/image01668.jpeg

OEBPS/Images/image01789.jpeg
Lyrics

Mary had a little lamb

Mary had a little lamb,

little lamb, little lamb,

Mary had a little lamb,

whose fleece was white as snow.
And everywhere that Mary went,
Mary went, Mary went,

and everywhere that Mary went,
the lamb was sure to go.

Humpty Dumpty

Humpty dumpty sat on a wall
Humpty dumpty had a great fall

All the King's horses

And all the King’s men

Couldn't put Humpty together again

OEBPS/Images/image01908.jpeg
B s

profile PublishTolls *

Connection
Configuration: | Staging D
(2) File Publish Options

Preview

[] Remove additional files at destination
[Precompile during publishing
(] Exclude files from the App_Data folder

Databases

() DefaultConnection

Data Sou QLocalDB iniial Catalog -ProCSharpWebDeploy | []

[] Use this connection string at runtime (update destination web.config)

Update database Configure database updates

e | [| [| [

OEBPS/Images/image01550.jpeg
b Projects. NET 3 ic Search Assemblies (Ctri+E) P ~
. Accessibilty 4000 Accessibilty

CustomMarshalers 4000 Version:

DNX Core 50 ISymWrapy 4000 1000
Recent Micosol Acttes Bud 4000
Microsoft Build 4000
Micosoft Buid Conversion vd 0 4000
4000
4000
Microsoft Build Tasks v4 0 4000
Microsoft Bui Ut 4000
Mictosoft.CSharp 4000
Mirosoft Script 10000
Microsoft VisualBasic 10000
Mictosoft VisualBasic Compali 10000
Microsoft VisualBasic Compali 10000
Miarosoft VisualC 10000
Midosoft VisualC STLCLR 2000
mscorb 1000
e 4000

Present 4000
Ptesenmmnfmmewmk 4000 >

OEBPS/Images/image01671.jpeg

OEBPS/Images/image01792.jpeg
Mary had a little lamb

Sarah
Josepha Hale Mary had a little lamb,
little lamb, little lamb,
Mary had a little lamb,
whose fleece was white as snow.
And everywhere that Mary went,
Mary went, Mary went,
and everywhere that Mary went,
the lamb was sure to go.

OEBPS/Images/image01551.jpeg
Extensions
Recent

Projects
Shared Projects
com

Browse

Targeting: NET Framework 4.6

O

Name

ity
CustomMarshalers
ISymWrapy
MirosoftAchites B
Microsoft Build
M'ausah Build Conversionva 0

id.
Mictosoft.CSharp
Microsoft Script
Microsoft VisualBasic

»cmso« Vnsna\csncm
mscoriib
Presentati nwmam

Presentati
Pvesenl-ﬂmnfmmewmk

Version
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
10000
10000
10000
10000
10000
2000
4000
4000
4000
4000

P

Search Assemblies (Ctrl+£)

Nam
Accessibity

Microsot Corporation
Version:
00

File Version:
46810 built by: NETPXREL

OEBPS/Images/image01672.jpeg

OEBPS/Images/image01793.jpeg
7 MainWindow

| FlowDocumentPageViewer

Mary had a little lamb

Mary had a little lamb,

little lamb, little lamb,

Mary had a little lamb,

whose fleece was white as snow.
And everywhere that Mary went,
Mary went, Mary went,

and everywhere that Mary went,
the lamb was sure to go.

Humpty Dumpty

Humpty dumpty sat on a wall
Humpty dumpty had a great fall
All the King's horses
And all the King's men

Lyrics Samples Couldn't put Humpty
together again

{1of1) o9 —o&

OEBPS/Images/image01548.jpeg
Solution Explorer v

0o @ sS¢a £=R

Search Solution Explorer (Ctrl+u) poid

CB MainWindow (BasicForm) [Base Types]
4 *3 Window (Windows)
4 *3 ContentControl (Controls)
4 ‘Q Control (Controls)
4 *3 FrameworkElement (Windows)
4 *3 UlElement (Windows)
4 *3 Visual (Media)
4 *3 DependencyObject (Windows)
4 *3 DispatcherObject (Threading)
#3 object (System)

Solution Explorer | Team Explorer

OEBPS/Images/image01669.jpeg

OEBPS/Images/image01790.jpeg
O Monday
QO Tuesday
O Wednesday

OEBPS/Images/image01549.jpeg
A=
o 3
o 0

[
o1
m

Reporting
SaL Server
Storm tems
Workiow

b Online

Name: Window xami

Sort by: Default

Window (WPF)

Page (WPF)

User Control (WPF)

Resource Dictionary (WPF)

Custom Control (WPF)

Flow Document (WPF)

Poge Function (WPF)

Splash Scren (WPP)

Visual C#

Visual o

Visual C#

Visual C#

Visual Co

Visual C#

Visual C#

Visual Co

Seatch Installed Templates (Ctr+£)

»

Type: Vicual C#
Windows Presentation Foundation
window

OEBPS/Images/image01670.jpeg
(OJ O
~r

OEBPS/Images/image01791.jpeg
L4

Formula 1 Championship 2014

Name

Lewis Hamilton
Nico Rosberg
David Riccardio
Valtteri Botas
Sebastian Vettel

Points
384
317
238
186
167

OEBPS/Images/image01532.jpeg

OEBPS/Images/image01653.jpeg
< setngs
€37 REGION & LANGUAGE

Country or region

ocal content

[

Languages

Add a language to read and type in that language.

. Add s lengusge

(An English (United States)
F Windows display language

(@), Deutsch (Osterreich)
AT Language pack installed

Deutsch (Deutschland)
AT Language pack installed
Related settings

Additional date, time, & regional settings

OEBPS/Images/image01774.jpeg
| Books Demo App

= o X
B o | Ribbon Controls
PERIE

Paste Book Book
Clipboard
Show Book Books I
Professional C# 50 and NET45.1 | 1e [Professional C# 5.0 and NET
| Professional C# 2012 and .NET 45
Professional C# 4 with NET 4 - ‘Wrox Press
= Publisher |
Beginning Visual C# 2010 [
‘Windows & Secrets.

i 978-1-118-83303-2
C#5 All-in-One for Dummies =0 \

Christian Nagel, Jay Glynn,
Authors 4o rgan Ski

OEBPS/Images/image01895.jpeg
Configuration Manager

Adtive solution configuration:

Active solution platform:

Debug v AnyCPU
Project contets (check the project configurations to buid or deploy):

Project Configuration Platform Build Deploy
WebDotretFramework Debug ~ | Any CPU ~

Neme:

Staging

Copy settings from:

Release

[Create new project configurations

OEBPS/Images/image01533.jpeg
D DynamicSamples - CalculatorLib*
Calculatorlibe & X

Application

Configuration: |Active (Debug)

Platform: Active (Any CPU)
Debug

Produce outputs on build

OEBPS/Images/image01654.jpeg
Fomats Localon Adminstialie.

Format: English (United States)

Language preferences
Date and time formats

Shortdate:
longdate: [ddddmMayy]
Short time: remm tt ~|
Lang ime:
Fistdayofwec [Sndyy ¥

Examples

Short date: 91212015

Long date: Saturday, September 12, 2015
Short time: 917 AM

Long time: 9714 AM

[Addonalsetngs.
o] oo | [|

OEBPS/Images/image01775.jpeg
Books Demo App

Publisher

lson

Authors

Windows § Secrets

(978-1-118-20413-9

Paul Thurrot, Rafael Rivera

OEBPS/Images/image01896.jpeg
0 WebCoroFramework

Application onlioa A = - =
Build
i -]] [e

Launcn Command
Command o
Aoptcaton Agumenss. |

s

] taunch URL
] Use Specfc Runtime. Version Prtiom Aehtoctno

100+c1updatel NET Framenork 6
Envionment Varabies Name. Vae

Homtng Emirceerent Dovaoprrd

OEBPS/Images/image01530.jpeg
meraEreaion
St

OEBPS/Images/image01651.jpeg
0x01ED 0x006F 0x0928 0x0904

OEBPS/Images/image01772.jpeg
978-0-470-50225-9 X

Professional C# 6

OEBPS/Images/image01893.jpeg
Select a template:

[ASEINET 45,1 tempiates

" " «

g L B | =

Empty Viebforms MVC Web API Single Page
Application

e I v
Azure APl App Azure Mobile Azure Mobile
op e
ASENET 5 Templates
:
&l

Empty

Add folders and core references for:

[Web Forms] MVC [] Web AP

Add it tests

Test project name: WebDotnetCore Tests

crecting an ASPNET 5
-pplm« The template uses ASP.NET MVC and can be.
used to build Web Applications and RESTIul HTTP
Services.

Learn more

Autherticaton: Individual User Accounts
S Microsoft Azure
(® [Hostin the doud

App Service

OEBPS/Images/image01531.jpeg

OEBPS/Images/image01652.jpeg
Invariant

de-AT

de-DE

de-CH

OEBPS/Images/image01773.jpeg
Clipboard

Ribbon Controls

#

Book Book Book
List Grid
Show

Books

| Professional C# 5.0 and .NET 45.1
Professional C# 2012 and .NET 45 |
Professional C# 4 with NET 4
Beginning Visual C# 2010
Windows 8 Secrets
C# 5 All-in-One for Dummies

Title

Professional C# 5.0 and .NET
978-1-118-83303-2

Isbn

OEBPS/Images/image01894.jpeg
‘ocahost > - G| Home Poge - WebDotnetCore

Leam More

Application uses

+ Sample pages using ASP.NET MVC 6
and for managing clent.side ibraries

+ Theming using

How to

Overview v

OEBPS/Images/image01536.jpeg
17 6T e o e v v o B s o st o o v

- | Dok o b ey s ot O iR

e
254 bonoe 0sf

NP | o Lavnch O4-01

OEBPS/Images/image01657.jpeg
English Button Text

OEBPS/Images/image01537.jpeg
Fle BB Vew Poet Buld Dbwg Tem ook Aditeciae Tet Wel Mama(l)
-0 8- D-C-|lowwm | b Loy D EdR - Reactor Rename. (12)
B Ed Reoctor Exvac Method.(Co1 7 1)

owesre
e L) “To M
Vi
[F5in Vi ot i gion

11 e b1 e ttem template 15 docamerted 3t DRtg://ERLBICCUADILLS

Cnamespace wonRp
«

|| e e e o o i .

7 PRI e el s e e Optors(1

PN Mot Prkages (1)
i Itttz componert 0 Seach Ol for NGt Fcges motding

hi

i
£
i
!
1
i

Show utput o B
e e uu s
oo eriin s ey B

laonos, conigoration oeb 186

i to Lo
peployment. complete (s4n6). Full package - caco

o Lt ook Lot | Ot i sl 1

OEBPS/Images/image01534.jpeg
B DynamicSemples =

Build

=

Environment Variatles: Name. Value

OEBPS/Images/image01655.jpeg
Cult :
English Name:
Native Name:
Default Calendar:
Optional Calendars 7]

Samples

Number

Full Date

Time

Neutral Culture

Region Information
Region
Currency

s Metric

OEBPS/Images/image01776.jpeg
&7 XML Binding

Emeessioml C# 2012 f

Beginning Visual C% 2010

Professional C# 2012

Wrox Press

978-1-118-31442-5

OEBPS/Images/image01897.jpeg
Turn Windows features on or off (]

To turn a feature on, select its checkbox. To turn a feature off, clear its checkbox. A filled
box means that only part of the feature is tumed on.

= @] Internet Information Services A

@[]0 FIP Server

= [®] © Web Management Tools

& []7 115 6 Management Compali

IS Management Console
[7 11S Management Scripts and Tools
IS Management Service
' World Wide Web Services
[®] © Application Development Features
| NET Extensibility 3.5
' NET Extensibility 4.6
[C17 Application Initialization
00 asp
[]7 ASPNET3S
| ASPNET46
07 cal

| ISAPI Extensions
21 _canciy

=

OEBPS/Images/image01535.jpeg
&1 DIR Host Sample
O Discount Based on Cost
@ Discount Based on No of Items

Total No of Items: 15
Total Amount: 330
Discounted Amount: 297

Amount With Tax: 3564

Calculate Tax

OEBPS/Images/image01656.jpeg
¥ Russian

" Rwa

© Saho

v Sakha

© Samburu

© Sango

b Sangu

v Sanskit

4 Scottish Gaelic

" Sena

" Serbian

¥ Sesotho

" Sesotho sa Leboa
¥ Setswana

© Shambala

© Shona

>

Culture Name: 9d-GB
English Name: Scottish Gaelic (United Kingdom)
Native Name: Gaidhlig (An Rioghachd Aonaichte)
Default Calendar: G ian Localized
O clries
Samples.
Number 9,876,543.21
Full Date Disathairne, 12mh dhen t-Sultain 2015
Time 09:59:49
Region Information
Region United Kingdom
Currency £

Is Metric

OEBPS/Images/image01777.jpeg
& Validation

Valuel:

42

Show Value

OEBPS/Images/image01898.jpeg
T T T

@ THeEROCKS Home [t

Mg sevr
Fnes. + % Go - G ShowAll | Group by res - f:
> e ASPNET “ 8 [|® e
2 S @™ e 9 B B ¥ Viewhoptcontook |
WY N MTte M ATt Aepbaton Comecion Machnekey Vewses_
it Compiton brg Gobkoton s g [
EH R & - v
Pagsand P Sosion e ST -t
(= © v
" R
R o B & B 9§ = M
Miberic. D Mde MTP Samd APk MMETe Mo
ot Mg Togon. Co e
= &8 9 & 2
Odpa Rt e WOM ot
G RN cmom Amer hoo
[r— &
R B
Contm_Eoet et -
eV o o

OEBPS/Images/image01778.jpeg
& Validation

3
Value1: |

Show Value

OEBPS/Images/image01899.jpeg
Name:

[ProcsharpPool

.NET CLR version:
NET CLR Version v4.0.30319

Managed pipeline mode:
Integrated v

Start application pool immediately

Cancel

OEBPS/Images/image01539.jpeg
O Start Page - Microzoft Vil Studio

Edt View Debug Team

B-LEP

Tooks

Arhtectre Test Arabyze Window Help

> ach - | B

&

Quick Leunch (Cul+

P -

i
i,

Visual Studio

Start
Open Projec
Open from Source Conirol

Recent

[y
Consoerppt
Complerpatiorn

Discover what's new in Enterprise 2015

e ot e s in s 2015
S0 what s nowinthe NET Framews
oo ot e Vil S our S

New on Microsoft Platforms

22 Windows
 Mictosot e

v ASPNET S and Web

0 Microsoft Office

8 ShareFoint Development

News.

New feature to enable C# 6 / VB 14
#orvain

Winappracagesample
ClentwPF
KanlineM101Web2013

‘web apps has changed over th pastfew yeas. Inthe
pest o everage a new vrsionof C# o VB you would.
Wednesday, December 16, 2015

Clang with Microsoft CodeGen in VS
2015 Updat
One of thechllnaes it devicoina ard

Data Tools Operations - Package Manager Console Eior st Output Find Resufs 1

»

—————

B x

OEBPS/Images/image01660.jpeg
Available Languages Search

[4 Pseudo Language (Pseudo) [qps-ploc] 2a
] Afar (aa)

[Afrikaans (af] £3

[Aghem fagal

[Atan fak)

[Albanian (sq] $5

O Alsatian [gsw]

[Amharic (aml $5

[Avabic) £5 5%

[J Armenian fhy] £5

[Assamese [as] §%

[Asturian [ast]

O Asufasal

[Azerbaijani (Cyrillic) [az-Cyrl]

[Azerbaijani (Latin) [az-Latn] £5

Multiingual App Toolkit Feedback &

OEBPS/Images/image01781.jpeg
DataGrid

Previous Next

Year Country Position Racer Car
1950 |Belgium |3 Olivier Gendebien_|Cooper|
1960|Belgium |4 Phil Hill Ferrari
1960[Belgium _|5 Jim Clark Lotus
1960|Belgium |6 Lucien Bianchi___| Cooper|
1960 | France 1 Jack Brabham Cooper
1950 | France 2 Olivier Gendebien_| Cooper|
1950 | France 3 Bruce Mclaren | Cooper]
1960] France 2 Henry Taylor Cooper
1950 | France 5 Jim Clark Lotus
1950 | France 6 Ron Flockhart___| Lotus
1960] France 5 Dan Gumey Eagle
1960| Great Britain| 1 Jack Brabham | Cooper
1960] Great Britain| 2 John Surtees Lotus
1960| Great Britain | 3 Innes Ireland Lotus
1960 Great Britain| 4 Bruce McLaren Cooper
om0l < Toni Rk Coribe

OEBPS/Images/image01902.jpeg
Type HostName

Port
2080

IP Address Binding Informa...

[rmoe |

OEBPS/Images/image01540.jpeg
b Recent
4 nstalled

4 Templates
4 Vi co
4 Windows

‘Windows IoT Core
Wb,

b Officersnarstoint

Andicid

Clowd

Extensbity

lightSwitch
» Onine

Name: op
Location: Chcoder

Solionname: App

NET Fromencrc 46 [Sotby: Deloult

NET Framemor 20

NET Framenors
NET Fromencr
NET Famencrics [WRows)
NET Framencr 45

rsal Windows)

NET Framenor 451
NET Fromencrk 452

NET Fameworc 461 ferat windows)

<More Framenorc..»

JB] Coed U Test roject Windows Phone)
B i

5] coa et s

Visual o

Visual o

Visual G4

Visual C#

Visual 9

Visual o

Visual o

Search nstaled Templates (Cu1sE) P~
Type: Visual C#
project for a single-page Universal
Windows Plaform app thathas ro
predefned controlsor layout
03 Show ekmety in the Windows
Dev Conter
Installs the Application Insights SOK
1o send usage telemetry to
Windows Dev

Helo me understand Applcation

Insights
Pracy statemant

- [oows

[Creatediectoryfor soluion
0] Add to source control

oc [Gl

OEBPS/Images/image01661.jpeg
©
O Hile folder location
Path: =
Format
Export s: [XLFETZEH]

Include:

Excluded non-Translatable resources

Total resources included after apply filters: |21

V! Use compressed (zipped) folder

Name: | UWPLocalization-2015_12_28.zip

Included files
UWPLocalization.de.xf
UWPLocalization.esxf
UWPLocalization frxdf

o] Mol]

Multiingual App Toolkit Feedback G

OEBPS/Images/image01782.jpeg
DataGrid with Grc

Page: | 44 | (Get Page
| |

1967

20 Netherlands

Belgium

France

Great Britain

a

a

Position

Racer

Denny Hulme

Chris Amon

Mike Parkes

Ludovico Scarfiotti

Dan Gurney

Jackie Stewart

Chris Amon

Jochen Rindt

Mike Spence

Jim Clark

Jack Brabham

Denny Hulme

wv[=[o|n]s|w|n]=]|a]n|s|w

Car: Coo

Jackie Stewart

er_Points:3.00

Chris Irwin

Pedro Rodriguez

Jim Clark

Denny Hulme

Chris Amon

slwln|=|o|n

Jack Brabham

OEBPS/Images/image01903.jpeg
Add Application

Site name: ProCSharpSite
Path: /

Alias: Application pool:
lPro(SharpApp J !ProCShaeroal l Select...

Example: sales

Physical path:
[CAinetpub\ProCSharpWebRoot \ E

Pass-through authentication
Connect as... Test Settings...

[Enable Preload

oK Cancel

OEBPS/Images/image01658.jpeg
B localhost X [

& > 0O ‘lo:ilhost‘iﬂg

Sample Localization

en-US en-US

Monday, September 14, 2015

Greeting all readers of Professional C#
Greeting all readers of Professional C#
Using culture en-US and UI culture en-US

* |

O =

OEBPS/Images/image01779.jpeg
FormulaiDemo.exe

(s ot

OEBPS/Images/image01900.jpeg
v (General) 7
NET CLR Version vao

Eneble 32-8it Applications False
Managed Pipeline Mode Integrated
Name ProCSharpPool
Queue Length 1000
Start Mode OnDemand
v U
Limit (percent))
Limit Action NoAction
Limit Interval (minutes) 5
Processor Affinty Encbled False
Processor Affinity Mask 4204967295

Processor Affinity Mask (64-bit ¢ 4294967295
~ Process Model
Generate Process Model Event L

Identity ApplicationPoolldentity
Idle Time-out (minutes) 20
Idie Time-out Action Terminate v
Name
[name] The lication pool
application peol.

oK Cancel

OEBPS/Images/image01538.jpeg
=

Choose a Default Collection of Settings

Which collection of settings do you want to reset to?

£} General

£} JavaScript

£} Visual Basic

£} Visual C#

£¥ Visual C++

£} Web Development

£} Web Development (Code Only)

< Previous

Description:

Customizes the environment to maximize
code editor screen space and improve
the visibility of commands specific to C#.
Increases productivity with keyboard
shortcuts that are designed to be easy to
learn and use.

Cancel

OEBPS/Images/image01659.jpeg
Solution E

B o-s50ca@ &[=n

(<]

T

Search Solution Explorer (Ctrl+)

[UWPLocalization (Universal Windows)
b/ Properties
b = References
b W Assets
4 & Messages
4 @l en-us

N

v v

O Errorsresw
) Messages.resw
! Strings
4 wlenus
[Resources.resw
D) Appxaml
L) MainPagexaml
5] Package.appxmanifest
&7 projectjson
2] UWPLocalization_TemporaryKey.pfx

OEBPS/Images/image01780.jpeg
Tree v

14
b
>

(s

1980
1981
1982
1983
1984

I Brazil 3/25/1984

I South Africa 4/7/1984

4 Belgium 4/29/1984
Michele Alboreto, Ferrari
Derek Warwick, Renault
Rene Amoux, Ferrari
Keke Rosberg, Williams
Elio de Angelis, Lotus
Ayrton Senna, Toleman
I San Marino 5/6/1984
I France 5/20/1984
| Monaco 6/3/1

o s wn

OEBPS/Images/image01901.jpeg
Site name:

[ProCsharpsite | [ProCsharpPool

Content Directory
Physical path:
[Crinetpub\ProCsharpiebRoot

Pass-through authentication

Connectas.. | Test Settings...

Binding
Type: 1P address:
hitp ~ [AllUnessigned v
Host name:

[]

Example: www.contoso.com or marketing.contoso.com

[4 start Website immediately

Port:

Cancel

OEBPS/Images/image01565.jpeg
T E— 1

Browse: NET for Windows Universal -l=| @ BB
<Search> Q-
b +8 System.Globalization = , TAccumulate,
§ +a System Globalzation Colendrs @ ™
© +8 System Globalzaton Exensions @
o vaSystem. o,
b *8 System. O Compression @
b+ System 0. Compression ZipFile @
o v System O Fies, o,
¥+ System.O FlsystemPrimities
b+ System.Olsobtedsionge i . i
b +85ystem.OUnmansgedMemonyStresm 9 g St ColecionsGnsicliumertedoslr)
4 rasysemling
44} Systeming QAvmge(IhsSymmcolmmnxﬁmmbimm-b\adlmby
b %] @, Average(thi System Collections GenerclEnumerabe <Host>)
b +0 Groupings ey, TElement> @ Averacaithi Sesters Collections Gensric Enumerabe int>)
b +0 lLookup<TKey, TEement> Ll >
5 o
b 4 Looka<Tkey, Trlement> Membe of System.ding
3
3 Summary:
3 Provid
3 System Collections Generic Enumerable <T>.
b o SystemNetHitp
b+ System NetHitp tc ttributes:
§ +8 System NetNetworkiformation {System Runtime CompilerServices EtensionAtribute]
A &

+8 Systerm.Nat Primitiv

OEBPS/Images/image01686.jpeg

OEBPS/Images/image01807.jpeg
0 UniversalWindowsApp =

setor modity one or more o the
properies.
Applction Vol Asscts Capabities Dedarations Content URls Paciaging
Package name: 84307007 557b Adif 3c0d 150642819ch0
Package disply name: UniversaWindowsApp
Moor Minor ould
Version: o ° More information
Publsher: v=avi
Publisher cisply name: chis

Package family nome:

2642819650 p2ve0ybrmveg

OEBPS/Images/image01566.jpeg
4

“Eifek
b & Cloud Services
b M Data Factory
b @ HDInsight
> [[] Mobile Services
b & Notification Hubs
b @ Service Bus
> M SQL Databases
b @V Storage
> A\ Virtual Machines
@¥ Data Connections
= Servers
4 TheRocks
b [¢] Event Logs
b &2 Message Queues
14 Performance Counters
> !ga Services

OEBPS/Images/image01687.jpeg

OEBPS/Images/image01563.jpeg
Name <No Name>

Type Button

Arrange by: Category ~
P Brush
b Appearance
b Common
4 Layout
Width
Height
Zindex
HorizontalAlignment
VerticalAlignment

Margin

b Text

Auto (30)

Auto (20)

0

== =E]
T w1
«0

t0
v

*0
+0

4O
Zo

OEBPS/Images/image01684.jpeg

OEBPS/Images/image01805.jpeg
ity Warnin:

Publisher cannot be verified.
Are you sure you want to install this application? ?

Name:
ClientWPF

From (Hover over the string below to see the full domain):
\\therocks\ClickOncePublish

Publisher:
Unknown Publisher

Install Don't Install

9 While applications from the Internet can be useful, they can potentially harm your computer. If
you do not trust the source, do not install this software. More Information...

OEBPS/Images/image01564.jpeg
- o -3
<Search> - P
- o X
b ¥ Project References
4 ()} BasicForm
b %3 App
4 *3 MainWindow
4 [Base Types
*0 |ComponentConnector
> *3 Window
b {} BasicForm.Properties
4 [c#] ConsoleApp1.DNX Core 5.0
D I Project References

Solution Explorer Team Explorer | Class View

OEBPS/Images/image01685.jpeg
- m i

OEBPS/Images/image01806.jpeg
&~ 4 @ > Contiol Panel > Programs > Programs and Features v U x

Contre PanslHome Uninstall or change a program

® Tun Windows featues on or
off

Publsher Instaled On Size

‘Currently installed programs Tota! size: 426 GB
117 programs nstaled

OEBPS/Images/image01567.jpeg
< Microsoft Azure

Resource Types | &

<7 MedixtogicApp
» @ Scheduler Job Collections
4 @ Search Senvices

@ menutest

@ searchsample
» @ SQL Databases
» B SQLServers
» [Storage Accounts (Classic)
» (3] Virtual Machines (Classic)
» > Virtual Networks (Classic)

Actions Properties

Open in Portal

>

@ Open In Browser

B Attach Debugger

[View Streaming Logs
What do you like about this tool?

Wht don't vou ke or feel & missing?.

OEBPS/Images/image01568.jpeg
L [RibbonWindow]

> a
4 =] [RibbonWindow]

4 [[DockPanel] Do
4 © [Ribbon] @0
4 © [RibbonTab] "Home" @0

@ Header
b © [RibbonGroup] “Clipboard® @ ©
b © [RibbonGroup] "Show" @0
4 © [RibbonTab] "Ribbon Controls” = ©

@ Header
4 © [RibbonGroup] "Sample" @0

@ Header

@ [RibbonButton] @ o
@ [RibbonCheckBox] @ o
b & [RibbonComboBox] @0
& [RibbonTextBox] D0
b & [RibbonSplitButton] @ o
b & [RibbonComboBox] @0
BB [ListBox] @0
& tabControl1 @ o

OEBPS/Images/image01689.jpeg

OEBPS/Images/image01810.jpeg
& setings

5% UPDATE & SECURITY
Windows Update

Windows Defender

Backup.

Recovery

Activation

Find My Device

Use developer features

‘These settings are intended for development use only.
Leamn more

O Windows Store epps
Only install apps from the Windowis Store.

QO sideload apps
Install apps from other sources that you trust, such as your

_ © eveloper mode

Install any signed d use advanced features.

OEBPS/Images/image01569.jpeg
d

DemoSolution

Build
Build Events

Reference Paths
Signing

Publsh
Code Analysis

A

B oo [
Assembly name: Defoult namespace:
Besefom
b ouptpe:
NET Framework 46 ~ Windows Application ¥
e
Cotiet - e
S
St o iy s b st
® lcon and manifest
e frstodd
5y et Vs i e A o B

\

(Default icon) v|i=l @y

Wontst

Embed manifest with defaultsettings

O Resource file:

OEBPS/Images/image01690.jpeg

OEBPS/Images/image01811.jpeg
Ssaipt - DHelp
Source
Comwe I
® Device: i’] E]
Database: | v
Destnation
Datobase: / 4
Restore to: [July 17,2014 41818 PM) | Timeline...
Rastore plan

mmwm

Type Sever

Dotobas|
-mmmmwmmnm Database Full VCG-SCULLESQLOTAMULTI - Adventy

OEBPS/Images/image01808.jpeg
m Select and Configure Packages

OEBPS/Images/image01688.jpeg

OEBPS/Images/image01809.jpeg
Select Tests

Select and run the following certification tests on your Store app.

Learn more about these tests

-4 App manifest resources tests
[pebug configuration test
1% and launch tests
[/ Direct3D Feature Test
-[FFile encoding test
[AlPackage compliance test
[Package sanity test
[AResource Usage Test
[supported 4Pi test
M Windows Runtime metadata validation
@ [Awindows security features test v
@ We recommend running all tests before submitting to the Store. Tests Learn more
marked with an asterisk (*) cannot be run in the current test environment.

[eaac | [hea]

OEBPS/Images/image01572.jpeg
0 Demosolution - ConsoleApp1

Applcation configuration: |Active (Debug) B Potiorr: [AENSIATCET)

Debug

[1piod i
] Compie TypeScrpton buld

OEBPS/Images/image01693.jpeg

OEBPS/Images/image01814.jpeg
Fie Action View Help

e Y]

@mww—
e Ve bucpion Suts | SwnTpe | LogOnds

MicrosoltHyp.. Runming Aomatic Local System
Stonthesenvice Provides s me.. Manusl (...~ LocelSystem
Restas Provides snin.. Manusl (...~ LocelSystem
Provdessme.. Manual (...~ LocalSystem
§ Montors the .. Manual(Trg... - LocalSystem
Desaiion Provides wpp. Mol LocaSytem ||
. Provides aplat.. Manual (Tig...~LocalSystem
Vit machines. G Hyper-¥ Time Synchronza.._Synchvonizest. Manual (g LocalSenice
CyHyper-V M Session Senvice Provides a me... Manual (Trig... Local System
G Hyper-¥ Volume Shadow C... Coordinatest.. Manusl(Tig...~LocalSystem
r - . Manusi(Tig...~LocelSystem
Detects other.. Manusl
IntelR) Conte.. Runming Manusl LocalSytem
Service forlnt.. Automatic (T LocalSystem
wsern.. Manual Lol System
Provdes netw. Manual LocalSystem v
\ Etended /(Standard]

OEBPS/Images/image01573.jpeg
b DemoSolution =SB C

[BasicForm -~ *#3 BasicForm MainWindow ~ @, button_Click(object sender, Route: ~
Sinamespace BasicForm & AcceptsRetum false i
5 AcceptsTab false

90 %

-4

/1] <summary>

717 Tntaraction logic for Mainind et HECHE &
71/ </summary> # ActualWidth 120
w i # AllowDrop true
public partial class Mainind 5 aptured false
AreAnyTouchesCapturedWithin ~ false
Bu‘t;l;é Mainkindow() & AreAnyTouchesDirectlyOver false
& AreAnyTouchesOver false
TnitializeComponent(); # AutoWordSelection false
} b % Background Q ~ (#FFFFFFFF) -—
b % BindingGroup nul
R s
Q - (#FFABADB3}
} ToWS.CONTOTS. TeXEG @
}
»

OEBPS/Images/image01694.jpeg

OEBPS/Images/image01815.jpeg
1

[.

i start service process -
» Service

1

1

[

register service-mains

service-main

-y __ 1

register handler

R

OEBPS/Images/image01570.jpeg
0 DemoSolution

Build
Debug

Detault namespace. [Fonsoleapp1
Soluon DNX SDK verson | 1001c2-16357

ieb root

OEBPS/Images/image01691.jpeg

OEBPS/Images/image01812.jpeg
g ADONetsamples

110%
o Connaction Ready'

-4

4 Update | Sarpt File: SalesSalesTerritorysal -
Name DataType | AlowNulls Default 4 Keys ()
Name ot o PK_SalesTerritory TerrtorylD (Primary Key, Clus
4 Chack Constraints (4
CountryfegionCode nvarcharG)
i L) K SolesTertitory_SaksYTD. (SalesYTD)
el Lot o K SalesTeritory Saeslastyeor (SalesLastiear
Sales¥TD money 0O o K SalesTeritory CostLastVear (CostLastYear)
SalesLastfear money [m) K SalesTettory CostYTD (CostYTD)
CostD money O b)
e s O lwom AK SolesTertory Neme_ (Unique: Neme)
e e p T T ey u,s.;esrez‘n‘x;ry,-mma Unique:rowguid)
Mo, daeme O |tgedatet FK SaesTertory CountryRegion CountryRegio
8] Triggers (0]
/B Design 1 L)
~ICREATE TABLE [Sales]. [S-leﬂerrnory] (+*
[urrmrym] I0ENTITY (1, 1) NOT NULL, -
e) dbo].[Nm.] NOT NULL
[countryhnnn(nde] NVARCHAR (3) NOT NULL,
[Group] NVARCHAR (58) NOT NUL
[salesyT HoNE CONSTRAINT [0F_SalesTerritory_SalesyTD] DEFAULT ((¢
[salestastvear] MONEY CONSTRAINT [DF_SalesTerritory_Salesiastvear] DEFAUL
[CostyTD] MONEY CONSTRAINT [DF_SalesTerritory_CostYTD] DEFAULT ((@
[Costiastvear] MONEY. CONSTRAINT [OF_SalesTerritory_CostlLastvear] DEFAUL"
[rowguid] UNIQUEIDENTIFIER CONSTRAINT [nr SalesTerritory_rowguid] DEFAULT (nei__
[Modifiedvate] OATETIHE USTRAINT [OF_SalesTerritory Yodifieddate) DEFAULT

| flocaldb)\MSSQLLocalDB | THEROCKS\Christian | AdventureWorks2014

OEBPS/Images/image01571.jpeg
g Demcsolution - BascForm

Appscatian Configuration: Active (Debug) ¥ Platform: Active (Any CPU)
sl vt
Debug Genersl
Resources. [
Suviss [Define DEBUG constant
et) Defne TRACE constant
T T 5
s) oo 32
e] Aowunssie code
Code Anaiysis L Optremence
[Ra—
Warieg e 4 2
Suppees g

Treat warmings s erors
® None
Oan
O Speciic warnings:
Output

Output path: bin\Debug

] XML documentation fie:

Genareto serialzation assembly: AULO

OEBPS/Images/image01692.jpeg

OEBPS/Images/image01813.jpeg
b EntityFrameworkSamples - 0 X
4 Update | Script File: dbo.Tablesql* =
Nome DataType | Allow Nulls | Default 4 Keys ()
o Bookid int (m <unnamed> (Primary Key, Clustered: Bookid)
Title nvarchar(50) (m} Check Constraints (0)
Publisher marchar25) [dames ()
= Forsign Keys (0)
Triggers (0)

BDesign 1 sisq
| SICREATE TABLE [dbo] . [Books]
[BookId] INT NOT NULL PRIMARY KEY IDENTITY,

[Title] NVARCHAR(50) NOT NULL,
[Publisher] NVARCHAR(25) NOT NULL

100% -
w! Connection Ready (localdb)\MSSQlLocalDB | THEROCKS\chris | Books

OEBPS/Images/image01554.jpeg
Search Options (Clrl+£)

‘Web Browser
b Projects and Solutions

Avalable package sources:

ugetorg
hitpsi/epinugetorg/v3/indexjson

4 NuGet Package Manager
General

b Office Tools
b Productivity Power Tools

b SQL Server Tools

b Text Templating

b Tools for Apache Cordova

b Web Essentials

b Web Forms Designer

b Web Performance Test Tools
b Windows Forms Designer

b

b Source Control) NETCore
Flactang hitos://wwwmygetorg/F/dotnet-core/

» Debugging [Nightly £

b InteliTrace hitos//wwwmyget ora/F/aspnetvnex/apirv2/

b Performance Tools] ASPretvnext

b NET Portabiity

b Data Factory] NET Core Daily

b Database Tools hitos://wwwmyget.org/F/dotnet-core/api/v3/indecjson
b Graphics Diagnostics [Web Nightly

httos://www:myget.ora/F/aspnetwebstacknightly/

Machine-vide package
[Microsoft and .NET

Name: My local sources
Source: |

OEBPS/Images/image01675.jpeg

OEBPS/Images/image01796.jpeg
1 crdements M Pannes

Jee@EEE

Deciotiofs oo

cn|elements

6/1/2015 to 6/6/2015
Mon. | Micad vt ascaop it mahed otatos sod s o5
Tor | Cratates s e s il ke rsd gl s
Wes | e st of s i ot gt s s ot o2
T ok i e rd sl 050
L T e— 020
-

[re] emmn] [coe]

OEBPS/Images/image01555.jpeg
N DemoSolution

[¥] ConsoleApp1.DNX 4.6~ *2 ConsoleApp1.Program
lsing System;

using System.Collections.Generic;

using System.Ling;

using System.Threading.Tasks;

=namespace ConsoleAppl

O referances
B public class Program

{

0 references

public void Main(string[] args)

}

90 % hd

~ 1@ Main(string(] args)

fo el]«

OEBPS/Images/image01676.jpeg
Default Button style

Named style

dnce

OEBPS/Images/image01797.jpeg
cn|elements
6/1/2015 to 6/6/2015

Minced ves escalope with mashed potatoes and camots

Chantareles incream sauce with white resd dumpings

Brised saddle of hare with potatoe gratin and brussels sprout

Borkstew with rice and green salad

Trout au bl with parle poatoes

OEBPS/Images/image01552.jpeg
b Assemblies Fitered to: SDKs applicable to UWPAD Search Universal Windows (C 0 *
b Projects Name Version o
o Sehaviors SDK (GAML) 120 Windows loT Extensions for the
3
Shand Poacs ET Native Runtime Package for Wind.. 1.1
4 Universal Windows Nictorft Genes MIDNOLS or Uil windo. 100105 Version:
Microsoft General MIDI DLS for Universal Windo... 10.0.102 10.0.10586.0
Core Microsoft Universal CRT Debug Runtime 100105 et
e Micosoft Universal CRT Debug Runtime 100102 UAP 10001
Microsoft Universal CRT Debug Runtime 100101 T
Recent Microsolft Visual C+-+ 2013 Runtime Package for.. 140 TR
o s 140
i st for Managed Projects 140
Vi o3 2015 s fr b Wi 140
Windows Deskiop Extensions for the UWP 100,105
Windows Deskiop Extensions for the UWP 100102
Windows loT Extensions for the UWP. 100102
Windows Mobile Extensions for the UWP 100.105...
Windows Mobile Extensions for the UWP 100,102
Windows Tear Extensions for the UWP 100.105...
Windows Team Extensions for the UWP 100.102...

OEBPS/Images/image01673.jpeg
S N oo Wb B

OEBPS/Images/image01794.jpeg
5 MainWindow

- o

X

| FlowDocumentReader

Lyrics

Mary had a little lamb

Mary had a little lamb,

little lamb, little lamb,

Mary had a little lamb,

whose fleece was white as snow.
And everywhere that Mary went,
Mary went, Mary went,

and everywhere that Mary went,
the lamb was sure to go.

1of 20

Humpty Dumpty

Humpty dumpty sat on a wall
Humpty dumpty had a great fall

All the King's horses

And all the King's men

Couldn’t put Humpty together again

| [Geen Document

E-—S5—=*

OEBPS/Images/image01553.jpeg
G Demosoluon

NuGet Package Manager: BasicForm
Browse nstaled Updates

<]
<
(5]
(]
=

o £ (] ke preciese:

EntityFramework by Micosof 15M cowronds

Json 219 douricads
5onNETic popuae High parformance KON framascekfor NET

bootstray
[——

iQuery by ey Foundaten. . 17.5M doveicads
Javmyis anew ki of it by,

oy Mirosot, 135W ol
T pckage contas e i sl fox ASPNET AV

oy

s

2

w23

0106 notshow

[——— =

. EntityFramework

Version: Lt s 613 [

for =,
fo—

ity vk Mol commndd s s
gy for e ol

Ao Wicosolt

Uomse: hupi/gomisonolonvinio?

st pbiahad: sy, irch 10,2015 (10/2079)

Pl OB oo i
oD 320540

OEBPS/Images/image01674.jpeg
VisualBrush

Drawing Button

OEBPS/Images/image01795.jpeg

OEBPS/Images/image01556.jpeg
o Demosolution

] ConsoleApp1.NET Framework 46 ~| %3 ConsoleApp1.Program ~ @ Main(string(] args)

bsing System;

using System.Collections.Generic;
using System.Ling;

using System.Threading.Tasks;

amespace ConsoleAppl

0 references

n
{
| ubiie etass progran]
b

B
E‘
L

100% ~

LA 2

OEBPS/Images/image01677.jpeg

OEBPS/Images/image01557.jpeg
D DemoSolution - Program.cs* -

onsoleApp1..NET Framework 46 - #3 ConsoleApp1.Program ~]© Main(string(args)

using System;
using System.Collections.Generic;
using System.Ling;

using System. Threzdxng.’l’asks 3

-namespace ConsoleAppl
4

Oreferences
.| public class Program
<
I #region Some Implementation of the Main method
Oreferences
) public static void Main(string[] args)
1
3
#endregion|
5

? 4
100% <~ 4

OEBPS/Images/image01678.jpeg

OEBPS/Images/image01799.jpeg
How will users install the application? @

O From a Web site

[Browse

® From a UNC path or file share
‘Specify the UNC path:
[WrheRocks\Ciickoncepublish{ Browse..

O From a CD-ROM or DVD-ROM

< Previous

Finish Cancel

OEBPS/Images/image01558.jpeg
D¢ Demosolution - Program.cs* -

ConsoleApp1.NET Framework 46 - #z ConsoleApp1.Program ~1® Main(string() args)

Eusing System;
using System.Collections.Generic;
using System.Ling;
using System.Threading.Tasks;
= namespace ConsoleAppl
€

0 references

| public class Program
{
ml]
[3
b

100% -

» el e

OEBPS/Images/image01679.jpeg
Create Style Resource

Name (Key)
(O] ButtonStyle1
O Applytoall
Define in
O Application
O This document Page: <no name>

Resource dictionary} C Temp xaml ~

[o [[comel]

OEBPS/Images/image01800.jpeg
Will the application be available offline?

@

A shortcut will be added to the Start Menu, and the application can be uninstalled via Add/Remove

=== (@® Yes, this application is available online or offline
g

Programs.
[T@ O No, this application s only available online

No shortcut will be added to the Start Menu. The application will be run directly from the publish
location.

< Previous

Finish Cancel

OEBPS/Images/image01798.jpeg
Publish Wizard

Where do you want to publish the application?

Specify the location to publish this application:
|publish\

You may publish the application to an FTP server or file path.
Examples:

Disk path: c\deploy\myapplication

File share: \\server\myapplication

FTP server: ftp://ftp.contoso.com/myapplication

< Previous

OEBPS/Images/image01561.jpeg
R SR B S R e
Search Toolbox 2=
4 BooksDesktopApp Controls

X Pointer

&1 BookView (BooksDesktopApp Views)

&1 BooksView (BooksDesktopApp.Views)
4 Common WPF Controls

Pointer

Border

Button

CheckBox

ComboBox

DataGrid

Grid

Image

Label

ListBox
RadioButton
Rectangle

StackPanel

TabControl

TextBlock

TextBox

\l WPF Controls

BE!'BE0OCHA>R=RdE O ~

>

OEBPS/Images/image01682.jpeg
Germany
Norway

OEBPS/Images/image01803.jpeg
Create setup program to install prerequisite components

Choose which prerequisites to install:

[#iMicrosoft NET Framework 4 Client Profile (86 and x64) and Update for .NET Framework « ~
|0 8 Microsoft NET Framework 45 (x@6 and x64)

[& Microsoft NET Framework 4.5.1 (<86 and x64)

‘[] i Microsoft NET Framework 4.5.2 (x86 and x64)

[B Microsoft NET Framework 4.6 (x86 and x64)

[#i Microsoft Report Viewer 2014 Runtime
| 8 Microsoft Visual Studio 2010 Tools for Office Runtime (+86 and x64)

[i Microsoft® System CLR Types for SO Sorver® 2014 (64

Man e 5 Conne 2nea sy A
kS

Check Microsoft Update for more redistributable components

Specfy the install location for prerequisites
® Dovmload prerequisites from the component vendor's web site
O Download prerequisites from the same location as my application

O Dowmload prerequisites from the following location:

Browse.

o

OEBPS/Images/image01562.jpeg
QuoteService System.ServiceProcess.ServiceBase v

QuoteService

Autolog True
CanHandlePowerEvent False
CanHandleSessionChangeEvent False
CanPauseAndContinue False
CanShutdown False
CanStop True
ExitCode 0
Language (Default)
Localizable False
ServiceName Servicel
(Name)

Indicates the name used in code to identify the object.

OEBPS/Images/image01683.jpeg
Austria

Germany

Norway

M

OEBPS/Images/image01804.jpeg
The application should check for updates

Choose when the application should check for updates:

O After the application starts
Choose this option to speed up application start time. Updates will not be installed until the next time the application is run.

Before the application starts
Choose this option to ensure that users who are connected to the network always run with the latest updates.

7 <] dayts)
[] Specify a minimum required version for this application

Update location (f different than publish location):

V| Browse..

OEBPS/Images/image01559.jpeg
P "
243 ot st s Vel
. o
25 usic s ook

e

EREE
3

T T e gl
Sieceics comric: *
ey =
pork

TR e s SR 1 sty changs

Flic evnt Froperchangatvensiner Srpertychnes;

Frachad A o ety a1 vt e, gty sl

Bratected virtunl bool Setproperty<ra(eef T item, T value, [callerentesnc] string propertybine

56 (it compirer > Sefalt Gl 8em, el roen fls

vropeychar g propertyame)s

OEBPS/Images/image01680.jpeg
Austria

OEBPS/Images/image01801.jpeg
DG ClientWPF - ClientWPF*

Appiication woton: [H oo [N
Buld
Buld Events
Debug Publih Location
Rosources Publising Folder Location (tp server o i pothy
Services [publish ~
Settings Installation Folder URL (f different than above):
Reference Paths [WrheRocks\ClickOncePublish v
Signing Install Mode and Setings
Seakl. O The application s avaiable onine ordy Application Fies..
® icat is
e Prarequistes..
Updates.
Options..
Publih Version

Major Minor Buld: Revision:
N | X | O |

rement revision with each publish

P

OEBPS/Images/image01560.jpeg
Language:
CSharp v

Location:
C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC#\Snippets\1033\Visual C#

> W Refactoring ~

> M Test

v Visual C#
M #if
[#region
[attribute
[checked
] class.
M ctor
DOow
Mdo
I else

OEBPS/Images/image01681.jpeg
Austria
Germany
Norway

LISA

OEBPS/Images/image01802.jpeg
les

oplic
File Name Publish Status Download Group Hash
AppSupport.dil Include (Auto) | (Required) v |Include v
ClientWPF exe Include (Auto) | (Required) Include v
ClientWPF exe.config Include (Auto) | (Required) Include
ClientWPF exe.manifest Include (Auto) | (Required) Include v
[[] Show all files Reset All

OEBPS/Images/image01587.jpeg
@ select Tools® & Zoom n & Zoom Out Th Reset View

Show Events fom Externs Code

OEBPS/Images/image01585.jpeg

OEBPS/Images/image01706.jpeg
| oad|Add

Save|

F ional C# 6 and .NET Core 1.0

| C# 6 and .NET Core 1.0

Professional C# 5.0 and .NET 4.5.1

Enterprise Services with the .NET Framework
Programming Universal Apps

| Wrox Press

OEBPS/Images/image01827.jpeg

OEBPS/Images/image01586.jpeg

OEBPS/Images/image01707.jpeg
Second Page

Navigation Mode: New

Data

[Helto uw]

OEBPS/Images/image01507.jpeg
D CoreCSharpSamples - 0
iApphication) onfiguration: [N} i latform: (NS -
Buid

Proto Jrrr— <] [[oome

Lancn Commana

Commarct NgumentsSagie

Appication Arguments: fabic

vones ey

] taunch URL

] Use SpecicRuntme. Verson Pitorn e

1004210357 NETFramewor 360
Ervronmet Varapies Namo Voo

Romove

OEBPS/Images/image01506.jpeg
CoreCSharpSamples b

ot e <]] [o

Launch Commard
Command HelloviordApp
Appicaton Argumenis:

[—

[tawnen uRL

7] Usa Spectic Buntime:

Environment Variables

Romoyo

OEBPS/Images/image01505.jpeg
B C\WINDOWS\system32\cmd.exe

Hello, World! A
Press any key to continue .

OEBPS/Images/image01504.jpeg
b CoreCSharpSamples - HelloorldApp
HelloWorldApp # X

Application Configuration: [EEIaIBEEu)

Debug

roduce outputs on build

[] Compile TypoScripton buiid

Platform: ~ Active (Any CPU)

OEBPS/Images/image01503.jpeg
D CoreCSharpsamples

HelloWorldApp # X
| ropicaion 3 son: [
Build
Debug
Detault namespace
Solution DNX SDK version.

‘Web root:

Wirox HelloworldApp

1.0.04c2-16357

N/A

OEBPS/Images/image01502.jpeg
Explorer =[S

eo® b-5aB@ £=g

Search Solution Explorer (Ctrl+) P~
HelloWorldApp
V3 Properties

4 =W References
4 B8 NET Framework 4.6
b '@ NETStandard Library (1.0.0-rc2-23707)
b B98 Framework Assemblies
4 §H DNX Core 5.0
(2.} NETStandard.Library (1.0.0-rc2-23707)
" Dependencies
b ¢* Program.cs
b &T projectjson

Solution Explorer | Team Explorer _

OEBPS/Images/image01501.jpeg
b Recent NETFromework 46+ Sortby: Defaut - wE

[Seachnstaled empiotes (o) P -

L N . Vs

enpies
4 Vini o BNE cos by ucoge Vi

Andicid

» Cloud

Etensibiity

»ios
© Online Clck bere 10 g0 onkne and find tempates.
HName: [Feloerdap
ocaton: S = —
Soluionname: HelloWordApp.

Type: Visual G0

PREVIEW - A prcject templatefor rsaing
Ioe e e
that can run on N Famework or NET

& Creste directory for souton
(O Add to source contral

o] [Comat]

OEBPS/Images/image01500.jpeg
oom] S8 £=R

[Search Solution Explorer (Ctrl+;)

OEBPS/Images/image01499.jpeg
»

e sl Temples Gl

NET Fomework 46~ Sort by: Defautt

B I || Vet | s Vo e St

Solution nome:

Create an empty solution containing no
projects

Click here o go onin and find templates,

e
e reSora e Peiond e st .
(¥ Create direct
Add to source control

[Coc | [Ccanan]

OEBPS/Images/image01498.jpeg
F Program:Main : void()

Find _Find Next

.-method private hidebysig static void Main() cil managed
<

¥

_entrypoint
/1 tode size 13 (0xd)

.maxstack 8

1L_0000: nop

1L_0001: ldstr “Hello, Worldt"

1L70006: call void [mscorlib]System.Console::WriteLine(string)
1L_000b: nop

1L_000c: ret

/7 end of method Program::Hain

OEBPS/Images/image01708.jpeg
154 M
® & & B gunms

OEBPS/Images/image01590.jpeg
Specify the profiling method

Profiling your application can help diagnose performance problems and identify the most common
expensive methods in your application. To begin, choose a profiling method from the options below.

What method of profiling would you like to use?

(® CPU sampling (recommended)
Monitor CPU-bound applications with low overhead

O Instrumentation
Measure function call counts and timing

() .NET memory allocation
Track managed memory allocation

() Resource contention data (concurrency)
Detect threads waiting for other threadis

Read more about profiling methods

Next >

Cancel

OEBPS/Images/image01711.jpeg
Hub Header

ction 1 Header Section 2 Header Seemore | Section 3 Header

Section 2 Section 3

OEBPS/Images/image01591.jpeg
YT avyy RN

@

0 o2 o6
Wl Clod Time Seconds)

— cruUnge)

 Coakator
= WioxProCShara MEFAppMan)
 Sytem

Rebted Views Cll e Factors

Functions With Most Individual Work

Systam Windows Applcation

Fun)
Syt Windows Appicaton LoadComponentiobject dassSysem)

WX ProCSha ME Propeties Setings get AddinDiecory)

@ View Guidance

OEBPS/Images/image01712.jpeg
Pivot Sample
Right Heade

Header Pivot 3 Header Pivot 4 Header Piv.

Pivot 3 Content

OEBPS/Images/image01588.jpeg
B wPFCalulator

>

Analysis Target

| Startup Project
3
fo} Calculator
Change
Torget ¥

A sol et to Debug. Switch t

Available Tools

[Application Timeline
Examine where time is spent in your application. Useful when
troubleshooting issues fike low frame rate

[cPU Usage

See where the CPU is spending time executing your code.
Useful when the CPU is the performance bottleneck

[GPU Usage &
Examine GPU usage in your DirectX application. Useful to
determine whether the CPU or GPU is the performance
bottleneck

[Memory Usage &
Investigate application memory to find issues such as.
memory lea

[Performance Wizard

for

Show all tools

OEBPS/Images/image01709.jpeg
all
Third Page

Navigation Mode: New

Hello UWP

OEBPS/Images/image01589.jpeg
B werCalaulator

& Zo0m 10 @ Reset Zoom &

Diagnostis sesion: 17763 seconds

4 Ul thvead utilzation (%)
100

4 Visualthroughput (FPS)

C AR

Timeline details

Aopiiction Startup
11+ Parsing (MainWindow)
I Garboge colecon
| Render

1 Layout @41

|
| Render

I Layout G1)

| Gubage collection
I

|

i

5 106 15
Wrarsing Miayout MRender B0 MApp Code MiXoml Other

0
- Lu_. a_.l..‘.l..l.la.‘_a_ - sbieden

5 Compositon Thread MU Thvead

BER L i
e UL W =

Sotby. Swtime [0 B Y- B

10 e

77243 ms A Selecton duraion: 17765
1131662 ms (3891 ms) (67 . o
T4s6ms

Ul tvesd summary:
116349 ms 0041 ms)

1004 ms 00085 ms) R\ |
11868 ms 0249

13s4ms

10016ms

16643 ms 6751 m)

12837 ms

1868 ms (832 ms) 2%
1018 ms
aeoe

OEBPS/Images/image01710.jpeg
Picture Search

a Cang) reniy ‘ N

L — - =\ .
N,

OEBPS/Images/image01594.jpeg
4 () WroxProCSharp.MEF
b % App
b %% CalculatorCommands.
D * CalculatorExtensionimport

-] min

Maintainabilty In

&
100

o

Cydomatic Comp... Depth of inherta.

®

@oa# 8

Class Coupling __ Lines of Code.

&
1
3

10
8
u
5
2
9
3

B

aES

OEBPS/Images/image01715.jpeg
Groove Music

Artists

>¢ shuffleall Fiter: Al Sortby;

@ Play your music for free on al your devices.
Find out how

Mike Oldifield
album

— %

Man On The Rock
Mike Oldfield

OEBPS/Images/image01595.jpeg
SLORNTARIR SISUAPAS Sy § s,
public class Aesource : Disposasle
%

3

© 50535 esource does notmplement nerace

[r——
il ocuences s Docment | Prct | Sl

OEBPS/Images/image01716.jpeg
1 sailing
Mike Oldfield

3 Dreaming In The Wind
Mike Oldfield

73 Castaway
Mike Oldfield

131 Give Myself Away

OEBPS/Images/image01592.jpeg
B wercaladato

Caling functions

Relted Views: CallCallee Functons

Function Code View

¢
private string status;
public string status
i

et { retumn states;)
set { setsroperty(ref status, valu
)

private string laput;
blic string 1opet
e bt)
Setbroperty(ref 1oput, value);)

Peformance metric Bepsed Incsie Tine

OEBPS/Images/image01713.jpeg
Right Headel

eader Pivot 4 Header Pivot 1 Header PI

Pivot 4 Content

OEBPS/Images/image01593.jpeg
B wPFCalculator

Utiization

i Zoom| Sortby: Start Time v Mokers~ [4 F $[2 2 5| = :
Seconds

Thead D Crye N UG . SN AN L

Disk 0 Reads &

11400 Main Thread

T STt R T Vet o i ——
11400 TaskWit: System Threadin
1856 Worker Thread 1
11672 Worker Thread .

Visible Timeline Profile profile Report | &L Current | 5T Unblocking Stack | @ Hints
1% B Execution = | Per Thread Summary Export..
91% M Synchronization 30000
o% . o Z 20000
2 o% EEN Skep g,
0% M Memory Management E
o
0% W Preemption] SEsezees e
§8CEETEYsRIsaREREER:
8% M Ul Processing EEEEETABRRAS RARR IE R
Thread ID

OEBPS/Images/image01714.jpeg
Artists

¢ Shuffe sl Fier: A

& Abums @ Play your music for ree on ailyour devices.
find out how

Q atsts

A songs

» Radio

© explore

di Now playing

Mike Oldfield
1 slbum

@ chistantage
@ Getmusic in Store >

Man On The

[y

OEBPS/Images/image01576.jpeg
YO=7d8 +#0

Search Live Visual Tree (Alt+0) Vel
4 © [MainWindow] B (24)
4 H [Border] (23
4 ¢ [AdornerDecorator] (22)
2 I [ContentPresenter] (20)
4 [Grid) (19)
4 Q button [Button] 3)
4 X border [Border])
4 IF contentPresenter [C (1)
[[TextBlock]
b A labell [Label] B (3)

4 textBox1 [TextBox] BN (10)

OEBPS/Images/image01697.jpeg
Presenter - View P
<_

OEBPS/Images/image01577.jpeg
Name Value

Type
b @ this {BasicForm.MainWindow} Q ~ BasicForr
b @ sender {System Windows.Controls. Button: Button} Q ~ object {S
4 ol S,
& Handled bool
b S OriginalSource {System.Windows.Controls.Button: Button} Q ~ object {S:
(3 lick) SystemV.
b Source {System.Windows.Controls.Button: Button} Q ~ object {S'

b % Static members
b @ Non-Public members

Locals | Watch 1

OEBPS/Images/image01574.jpeg
Visual Treo Properties of toxtBoxT : TextBox
Search Iext Fillr Clear
4 Manwindow Name A Vawe Source ~
4 Border AcceptsRetun Faise Defauit
4+ AdomerDecorator AcoepisTab Faise Defauit
4 :ContentPresenter ActualHeight 23 Local
a0 ActualWidth 120 Local
L utton AllowDrop True DefaultStyle
bjabe Latel AnnotationAlternates. 0 Detauit
’ AveAnyTouchesCaplured Faise Default
AdommerLayes AreAnyTouchesCapturedWithin Faise Default
AreAnyTouchesDirectyOver Faise Defauit
AreAnyTou Faiso Default
Faise Default
Rendering oftextBox' - TextBox Background white Detautstylo
BetwoenShowDelay 100 Default
BindingGroup il Defauit
TextBox BitmapEfrect null Default
< >

Close.

OEBPS/Images/image01695.jpeg
=l
2
4 CommonStates -
Default transition 0s
o Normal -
o Pressed -
?_’ v -

Disabled

- PointerOver ’-) 2 l

Solution Explorer Assets States Data

OEBPS/Images/image01816.jpeg
Fle Action View Hep
e 2TH0000
8 50t Sever Configuration Manager loca) | Name

site
NT Senvice MSSQL.. 17968

NT Senvice\SQLAge.
NT SenvicelMSSQL

3 SQU Seve Network Configuraion (264 - —
3 50U Native Clrt 110 Configuration (32| S o - $02-. Running
EDsQL Server Agent... Stopped
+ T 50t server Network Configuestion
aporidipaiia L350t Futed Fite.. Running
B SQL Native Clent 11.0 Configuration

OEBPS/Images/image01575.jpeg
Expression: [son |
Value:
| Search P~
4 JSON]
4 Inventoryltems
“

Discount: 0

ProductiD: 100

ProductName: *Product Thing®

SupplierlD: 10

CategorylD: 0

QuantityPerUnit: **

UnitPrice: "0°

UnitsinStock: 0

UnitsOnOrder: 0

ReorderL evel: 0

Discontinued: False
v

OEBPS/Images/image01696.jpeg
Model

Controller

View

OEBPS/Images/image01817.jpeg
Client

Windows Forms Application

and Socket client

Server

Socket Server

l

3 «assembly»
— Q

«assembly»e Windows Service

QuoteSer

OEBPS/Images/image01497.jpeg
J MANIFEST - = X
d Find Next

/7 Wetadata version: uk.0.30319
.assenbly extern mscorlib

.publickeytoken = (B7 7A 5C 56 19 34 EO 89) ZIn:
wver 4: :0

>

-assembly HelloWorld

{
.custom instance void [mscorlib]System.Runtime.CompilerServices.Compilati
.custom instance void [mscorlib]System.Runtime.ConpilerServices.RuntineCo
// --- The following custom attribute is added automatically, do not unco
/7 .custom instance void [mscorlib]System.Diagnostics.DebuggableAttribut

.hash algorithm ©x00008004
-ver 0:0:0:

.module HelloWorld.exe
// WUID: {7E6EA73C-6BB6-41C4-8F22-1F655979E41E)
1mgenase lxuuuummn

OEBPS/Images/image01496.jpeg
7 HelloWorld.exe - IL DASM
File View Help

5@ HelloWorld.exe
)
&-JJE Program
P .class private auto ansi beforefieldinit
W .ctor : void()
@ main : void()

.assembly HelloWorld
1

OEBPS/Images/image01495.jpeg
0 HeloworidApp - NuGet: HelloWordApp

Lo
NuGet Package Manager: HelloWorldApp

Browse Installed Updates Package source: nugetorg BE

Search (Ct1+) P include prereloase

. EntityFramework by Micosoft 15M dowrlosds wis . EntityFramework

iy Fameacrc i Micosof' racommended dataxcss ..
Verios Ltestsiable 613 [
o e — oz

J50nNET s & populr highpeformance JSON famework (o

© options
E bootstrap 3.75M dowrioad: V36
Incompatibe: Use Boser nstead Descrption
Bootsira famemork i CS.Inkdes fonts and IvaScrpt (R ook ¥ Mol i s mames
o echnclogyfo newapplcatins.
@) iQuery 17.6m doweloscs 220 by
t Use Bover nstend Voo 613
Query s new kind of ovScrot ey T ks
1 Microsoft.AspNet.Mvc by wicrosoft 13.6M donrioads ¥23 v license: Titp:/go mictosof com/fwink/2LnkID=320539
" Date published: Iuesday,Mch 10,2015 (3/10/2015)
ordoes Rgrantany
Tcenses o, thecpary pocksge. ProfectURL: p/go miccsofcom/Twink LKD=320540
1] 00 ot show this sgan Report Abuse: g et crg/packoaes/

Bt T s

OEBPS/Images/image01494.jpeg
WPF

ASP.NET 4.x and
ASP.NET Core 1.0

ASP.NET Core 1.0

Universal
Windows Apps

.NET Framework 4.6

CLR

.NET Core 1.0

CoreCLR

.NET Native

Shared

Runtime Components

‘ Libraries

‘ ‘ Compiliers

OEBPS/Images/image01492.jpeg

OEBPS/Images/image01491.jpeg
q

OEBPS/Images/image01490.jpeg
WIrox:

AWiey Brand

OEBPS/Images/image01818.jpeg
Q) quoteserver

Application
Build

Buid Events.
Debug
Resources
Services.

Reference Paths
Sigring
Security
Publish

Synchronize. ad Web Set © View Code | Access Modifier: Intemal -

uto store and and for your application
e e e e e
Lear more about application settings.

OEBPS/Images/image01579.jpeg
Tasks

ID Sta‘tus Start Tim... | Duration... | Location Task
vYve 1 @ Deadlock 0.000 39.843 Wrox.Prot Wrox
iy 2 @ Deadlock 0.000

39.843 Wrox.Prot Wrox

»

OEBPS/Images/image01700.jpeg
FWRSTONCR NRBgRE - LIV IamOSO0e ~
b Assembles Fitered to: SOKs applicable to UWPSharingCode Search Universal Windows (C =
b Projects Name Version Nasae
; Behaviors SOK (AML) 120 Windows lof Extensions for the
3
had Boiscss Microsoft NET Core Runtime Package for W.. 1.1 uwp
4 Universa Windows Microsoft General MIDI DLS for Universal W.. 100102400 Versiom:
Microsoft Mobil Extansion SDK for Univers... 10.00.1 100102400
G Microsoft Universal CRT Debug Runtime 100102400 Targets:
e Microsoft Universal CRT Debug Runtime 10.0.10150.0 UAP 10001

Microsoft Visual C++ 2013 Runtime Packag.
Microsoft Visual C++ 2013 Runtime Packag..
Microsoft Visual C+ + Runtime Package

More Information

Microsoft Visual Studio Test Core.

Microsoft Visual Studio Test Core.

MSTest for Managed Projects

MSTest for Managed Projects

\rm C++ 2015 Runtime m Universal Win..
Desktop Extensions for the UWP

[Windows Mobile Extensions for the UWP 100102400
Windows Team Extensions for the UWP 100102400

« »

[Corowse- J[ox |

OEBPS/Images/image01821.jpeg
@%windin%\system32\inetsr\isres dIL-30004
@%windi%\system32\inetsrv\isres.dl-30003

OEBPS/Images/image01580.jpeg
1Thread 1 Thread 1 Thread
[External Code] [External Code] [External Code]
© SampleTask.Deadlock1 ‘SampleTask Deadlock2

Program Deadlock

[External Code]

OEBPS/Images/image01701.jpeg
D UWPSharingCode

[&¥ WPFSharingCode ~ | 3 SharedSample.Demo ~| & WPFOnly

= namespace SharedSample
£
| 0 references | 0 changes | 0 authors, 0 changes
= public partial class Demo
b

0 references | O changes | 0 authors, O changes
public int Id { get; set; }
0 references | 0 changes | 0 authors, 0 changes
| public string Title { get; set; }
#if WPF
0 references | 0 changes | 0 authors, 0 changes
| public string WPFOnly { get; set; }
#endif
#if WINDOWS_UWP
| public string WinAppOnly {get; set; }
#endif
L3
¥

100% ~ 4

OEBPS/Images/image01822.jpeg
Installer

Install()
Uninstall()
Commit()
Rollback()

Componentinstaller

Servicelnstaller

StartType
o

ServiceName
ServiceDependentOn

ServiceProcesslInstaller

Username

Password

OEBPS/Images/image01698.jpeg
‘ View
A

Y

‘ ViewModel

A

Y

Model

OEBPS/Images/image01819.jpeg
Get Quote

"This 'telephone’ has too many shortcomings to be
seriously considered as a means of communication.
The device is inherently of no value to us." Western
Union internal memo, 1876

OEBPS/Images/image01578.jpeg
Search

Break When Thrown

b Ct Exceptions
4 [W Common Language Runtime Exceptions

Ooooooooooag

<All Common Language Runtime Exceptions not in this list
Microsoft.JScript.JScriptException
System.AccessViolationException
System.AggregateException
System.AppDomainUnloadedException
System.ApplicationException
System.ArgumentException
System.ArgumentNullException
System.ArgumentOutOfRangeException
System.ArithmeticException
System.ArrayTypeMismatchException

v

OEBPS/Images/image01699.jpeg
0 uwpsharingCode

UWPSharingCode # X

Build

Build Events
Debug
Reference Paths
Signing

Code Analysis

igurat N/A

General

Assembly name:

Default namespace:

[uwpsharingCode]

UWPSharingCode

Assembly Information..

Package Manifest...

Targeting
Target: Universal Windows
Target version: Windows 10 (10.0; Build 10240) ~
Min version: Windows 10 (10.0; Build 10240) v

OEBPS/Images/image01820.jpeg
SCM QuoteService

:ServiceBase

:NativeMethods

ona
stop
request
for the
service

Main()

Run()

ServiceMainCallback()

StartServiceCtriDispatcher()

OnStart()

RegisterServiceCtriHandlen{Ex}()

Servic

eCommandCallback()

OnStop()

OEBPS/Images/image01583.jpeg
D WPFCledto - CodeMap2 dgn -8

D Undo | Showheted- Lyyout P | @ Sharer 3 100% - Logend [Ftes] [Scp Buid [ncude Parets

9 Operotions i

OEBPS/Images/image01704.jpeg
Document Outline v

2. booksView
@ a

4 & [Grid] > of
4 B [StackPanel] @ o
&V [Button] "Load" @ 0

&) [Button] "Add" @ o

E8 [ListBox] @ 0

OEBPS/Images/image01825.jpeg

OEBPS/Images/image01584.jpeg
O WPFCalculator - CodeMap2 dgmi*

[®)

do

Show Rt~ toyot~ 22| 1 | S | 38124 < | tegee [| [o[t s |
22 Siaring Video: Undestading compls code vt Cod

OEBPS/Images/image01705.jpeg
Document Outline v

L [UserControl]

=8
4 £ [UserControl]
| 4 [Grid) =)
4 B [StackPanel] @ o
&V [Button] @ 0
4 B [StackPanel] @ o
& [TextBox] @ o
= [TextBox] D 0

OEBPS/Images/image01826.jpeg
© Plug and Play -
© PNRP Machine Name Put
© Portable Device Enumera
° Power
© Print Spooler
O Printer Extensions and N¢
© Problem Reports and Sol
© Program Compatibility A
© Quality Windows Audio \
QuoteService
© Remote Access Auto Cor
© Remote Access Connectic
© Remote Desktop Configt
© Remote Desktop Service:
© Remote Desktop Services
© Remote Procedure Call (F
»

OEBPS/Images/image01581.jpeg
b Demosolution

|[€¥] ConsoleApp1.DNX 4.6

~ @ color

#3 ConsoleApp1.Car

5
g System.Ling;
using System. Threading. Tasks;

namespace ConsoleAppl
{

Oreferences
public class Car
{

public string color;

(3t 4

| Encapsulate fields (usages reference field)

| Encapsulate fields
“INT speeampn = 160}
return speedhph;

}

Oreferences

public class Progranf...

I =
190% B

Generate constructor ‘Caristring, string)’ 14y

| public int Go()

Preview changes

OEBPS/Images/image01702.jpeg
Add Portable Class Library

Targets:

NET Framework 4.6

Windows Universal 10.0

[Windows Phone Silverlight 8.1 ~
(] ASP.NET Core 5.0

[[] silverlight 5

[Windows Phone 8.1

Xamarin Android

S

[] Xamarin.iOS (Classic)

Xamari

Install additional targets...

© The following will be automatically targeted because they
support the same set of portable APIs: NET Framework
4.5, Windows 8, Xamarin.iOS (Classic)

=

OEBPS/Images/image01823.jpeg
Username:

I
Password: |
I

Confirm password:

[oc]

OEBPS/Images/image01582.jpeg
Name:

Sortby: Defaut

UM Closs Diagram

UM Sequence Diagram

UM Use Case Diagrr

UML Activity Diagram

UM Comporent Disgram

Layer Disgram

oG5 g o2 I B

Ditected Graph Document (dgmi)

UMLClassDiagrarm casscogram

FEHEE

Modlig

Modeling

Search Instaled Templates (Ct1+F)

»

Type: Modeing
Ablonk UML dass diogrom

OEBPS/Images/image01703.jpeg
| u
‘ - - d Contracts Layer

OEBPS/Images/image01824.jpeg
Immm—rmm‘nm - e x

OEBPS/Images/image01607.jpeg
chris THEROCKS 201510110925 36cow - | 2 & £ F X

Hierarchy Not Covered (Blocks) Not Covered (% Blocks) Covered (Blocks) Covered (% Blocks) ~

4B unitestingsamples i 12 857% 128 9143%
4 {) nitiestingsamples 12 851% 128 9143%

b # DeepThought 0 000% 2 10000%

b 45 Formuiat 0 000% 0 10000%

b * Formulat.<>c 0 000% 54 10000 %

b *3 Formulat.<>c_Disp... 0 000% 5 100.00%

b % Formulal.<>c_Disp.. 0 000% 5 10000%
b % StingSample 10 3125% 2 6875%
b * Championsloader 2 10000 % 0 000%

OEBPS/Images/image01527.jpeg
Values

B12836 | Tony Stewart

Keys

s o |

OEBPS/Images/image01526.jpeg
LinkedList<Document>

OEBPS/Images/image01525.jpeg
Value I Value I Value I Value
Next Next Next Next
Previous

Previous ’—

Previous F

Previous ’—

OEBPS/Images/image01524.jpeg
Push

Pop

OEBPS/Images/image01523.jpeg
Enqueue Dequeue

OEBPS/Images/image01522.jpeg
System Object

OEBPS/Images/image01521.jpeg
Client

|IEnumerator O

Enumerator

I[Enumerable O«

Collection

OEBPS/Images/image01520.jpeg
Reference

Reference

beatlesClone

Reference

Reference

Person

OEBPS/Images/image01519.jpeg
intArray1

intArray2

OEBPS/Images/image01608.jpeg
SungsamoleGestngbenosan - % | b R 5 | B 5 1 W

0000 2072 e, 00 serts, 1 -

s e reaittnge) s Sunmry/ Bxapton fror Messge
© 1 newsoiass nt i Noumertiutbcepton Vse cnmotbenal
0 2 newsiman - a Aurertzopton oot st s ot
0 3 newseingss 0 a e ke crvct b
© ¢ rewsieos 0 00 o
0 5 rwsiass 0 & e Siasa v I
O 6 rewsinos o0 oo AgurentOuORangnbcapts st b shortrthan
© 1 newsunoss 0 o e Sungse_“mond 0

© 9 newstngs OWOC OOC newsingss Temowed 0
© © mustnoss 0O 0 e tingsa“removed 0

+ Detnte
Cestthod)
(PexGenertedyypes Susaphies)
pubiC o GeStngDemaT210
i
e

o+

pt-orboblesdon

el i
bctsttrgsamper

OEBPS/Images/image01518.jpeg
Two-Dimensional Array Jagged Array

1 2 3 2

4 5 6 4 5 6 I 7 l 8 |
7 8 9 10 1

OEBPS/Images/image01609.jpeg
How do you want to create your coded Ul test?

© The code file for the coded Ul test has been added to your test project. To
generate code for this test, you can select from the options below.

@® Record actions, edit Ul map or add assertions
Perform tasks in your application and generate code for your actions.

) Use an existing action recording

Generate code that performs the same actions as the action recording that
is associated with the test case or shared steps.

OEBPS/Images/image01612.jpeg
Generate Code - Coded Ul Test Builder

Method Name:
(for example: MyMethod)

AddANewBook

Method Description:
Add a new book

Add and Generate

OEBPS/Images/image01613.jpeg
Add Assertions: UlltemList - Coded Ul Test Bulder
X @
I UlBooksDesktopAppWindow
4 UlBooksDesktopAppWindow1
4 UlBooksViewCustom
UlLoadButton
4 UlAddButton
UlitemList
4 UlBookViewCustom
I UlsaveButton

% 5 Add Assertion (& (5l

£+ Property Value
TechnologyName uIA ~
4 Control Specific
HelpText
Font
AcceleratorKey
AccessKey
Automationld
LabeledBy
ItemStatus
IsMultipleSelection False

4 Generic v

OEBPS/Images/image01610.jpeg
UIMap - Coded Ul Test Builder ~ ? X

H- -

OEBPS/Images/image01611.jpeg
Recorded Actions - Coded Ul Test Builder

Click 'Load" button

Click '‘Add’ button

Type ‘new book’ in first text box next to 'Save’ button
Type '{Tab}" in first text box next to ‘Save' button

Type ‘new’ in text box numbered 2 next to ‘Save’ button
Click 'Save' button

OEBPS/Images/image01616.jpeg
Select the type of data source

Data source name.

Data source type

U = 9

Database ~ CSVFile XMLFile

Please select the type of data that will be the basis for this data source

Cancel

OEBPS/Images/image01617.jpeg
Request
0 > & hitp/flocalhost:11576/
o &

s DB

@ Passed Click here to run again Intemet Explorer 9.0 LAN Edit run settings

© b & hitp/localhost:11576/Home/About
© > & http//localhost:11576/Home/Contact
© b & http//localhost:11576/

o &

© b & http/localhost:11576/Account/Register
048 htp/flocalhost:11576/Account/Register
© D httpsocalhost11576/

@

Stat.. Total Time
2000 0193 sec
200 0009sec
2000 0127 sec
200 00765sec
2000 0130sec
200 0022sec
2000 0.068sec
302Fc 0.162sec

2000 0010sec

RequestTime Request Bytes
0022 sec
0009 sec
0013 sec
0010 sec

Response Bytes
886

535,221
20127

| Request | Response | Context | Details
POST http://localhost:11576/Account/Register

Neme
4 Headers
B Referer
B User-Agent
B Accept
B Accept-Language
B Accept-£ncoding
B Content-Type
B Host

[show raw data

Value

hitp/localhost 1576/Account/Register
Mozila/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Tident/5.0)
5

en-US enq=08 de-AT
Gzp

0.6,de-DEG=04,de:g=02

application/x-www-form-urencoded

localhost 11576

OEBPS/Images/image01614.jpeg
PxrL s [1]

i Ao 1 Conol Moo

4 & AddNewBook |14 Dladdvewsookumap
ik Bocks Desiop Ap' e b < O
Gkt urton [rers——"
ik Add button + Elumoosomiopappwindout
e new book i fst et box et 0 S buton S
Type (bl n frst et bow s o Save button Quitosdautton
Type new i tet box numbared 2 nest o Sevebution + Quadduuton
O o B Uitemlist.

2hel

Soloct rw book i frst st box net to A bution Il

Mmmummmm«mummwmw“mm‘

OEBPS/Images/image01615.jpeg
D WebApplicationsample

% -

@) http://localhost:11576/

1576/lib,

8 1
- @ http://localhost:11576/Home/About

@) http://localhost:11576/Home/Contact
i@ http/localhost: 11576/

1
http://localhost:11576/Account/Register

11576/lib

@
@)
@) http://localhost:11576/Account/Register
iy g
-

Validation Rules
J2 Response URL
J2 Response Time Goal

OEBPS/Images/image01596.jpeg
Document Outline

L [Window]

l

4 3 [Grid]

4 B [StackPanel]
@ [Button] “Load"
reeView
4 i [Grid]
[[TextBlock] "Type Name"
@ [TextBlock]
[[TextBlock] "Span”
M [TextBlock]
@ [TextBlock] “Text"
[[TextBlock]
[[TextBlock] “Tokens"
B8 [ListBox]
[[TextBlock] "Trivia"
[ListBox]

0OOOOOOOOOOOOEO

0 00 0O0OOOGOOGOOOO|O

OEBPS/Images/image01717.jpeg
B
v

V(> %

alals|elm

@8 0BIR &9

3|@|w|w (¥ A|D|P DRIV IAZ]|+]|X

2R |G |2 (0|0 V|

3
o
o)
QS
o
[=]
<
<
‘<
[
o€
4
7
]
]

B

[h]

a

[0 Segoe MDL2 Assets

2| 7|2

kd
*(B|2|OMEef a0 @GO RS =|R(D

OleDNE 32 &N B ERM® AT o=@B

B> €OQ8|0|%|x|—(0OLH =B~ NN

* |G| o mb B % (VO k| x(0[O|= - >

©
o
23
)
1
g
i}
| =
2}
©
vy
]

-
3

Font:
Characters to copy:

|U+ET00: Private Use

0 Character Map

OEBPS/Images/image01597.jpeg
b CompilerPlatform - 0 X

=)

Type Name

Text |

Tokens
Trivia

»
mEM@

OEBPS/Images/image01517.jpeg

OEBPS/Images/image01516.jpeg
Stack

Managed Heap

Reference

Person

Reference

OEBPS/Images/image01515.jpeg
Stack Managed Heap

myArray » int

int

int

int

OEBPS/Images/image01514.jpeg
Successive memory
allocations on the

stack
Pointer
returned by Element 0 of array
stackalloc

Element 1 of array

Element 2 of array

etc.

OEBPS/Images/image01513.jpeg
0x12F8C4-0x12F8C7

0x12F8C0-0x12F8C3

0x12F8BC-0x12F8BF

x=20 (=0x14)

pX=0x12F8C4

pY=012F8C4

OEBPS/Images/image01512.jpeg
In use

Free

In use

In use

Free

OEBPS/Images/image01511.jpeg
Stack Pointer

—>

HEAP

USED FREE
799996 - 799999

arabel 200032

FREE 200000 - 2000031

arabel instance

1999999

USED

OEBPS/Images/image01510.jpeg
Stack Pointer

-

HEAP

USED FREE
799996 — 799999

o 200000

FREE 199999

USED

OEBPS/Images/image01509.jpeg
Stack Pointer

_>

Location

800000

799999

799998

799997

USED

FREE

OEBPS/Images/image01508.jpeg
D Resourcessamples - 0

Build

protle | PonterPraygrouna | [CNe][oo
ane Cormemnt S

Comman: Pontaiaygrond g

Appicaton Argmens:

] touneh URL: -
[¥] Use Specific Runtime: Version Platiom Architecture

100-ctupdzel v || NETCore v e vl
Envionment Varatis Namo Vaue

OEBPS/Images/image01718.jpeg

OEBPS/Images/image01598.jpeg
Type Name MethodDeclarationSyntax

Span (179.261)
R ——
i WriteLine("Hello, World!"):
R
Hello

Leading Start 132 Length: 8:
Leading Start: 140, Length. 29:// Hello World! Sample Method

Leading Start: 169, Length: 2:

Leading Start 171, Length 8:

Trallng, Stat: 261, Length: 2

OEBPS/Images/image01719.jpeg
Main Page

OEBPS/Images/image01601.jpeg
0@ Complerplatiorm

Product Name:

Product 0:

Instal Trgets
ssets

Dopendendes

PropertyCodeRefactoring Vs

Descrption:

lcense:

Togs

Release Notes:

Getting Strte Guice:

More Info URL:

Engiih (Unted States)

N

0

OEBPS/Images/image01722.jpeg

OEBPS/Images/image01602.jpeg
0 CompilerPlatiorm

Product Name: | PropertyCodeRefactoring Vsix
Product ID: PropertyC i 2460-4d51
Hetadts Source Type =
InstallTorgets

Dependencies

Author:

Version:

Chistian Nagel

10

OEBPS/Images/image01723.jpeg
] —

OEBPS/Images/image01599.jpeg
b CompilerPlatform

Applcation Configuation: |Active (Debug) ~| Patform: Active (Any CPU)
Build
Build Events
Start Action

Resources O Start project
i ® (C:\Program Fil Studio 14.0\Comm, ...
Settings

O start browser with URL:
Reference Paths
Sarivy Start Options
Code Analyss Command fine arguments: | /raotsuffix Rosiyn
VSiX

Working directory:

[] Use remote machine:

Enable Debuggers
L] Enable native code debugging
[Enable SQL Server debugging

ble the Visual Studi

OEBPS/Images/image01720.jpeg
Main Page

OEBPS/Images/image01600.jpeg
D CompilerPlatform - PropertyCodeRefactoring.Vsix

Application

Configuration: Active (Debug) ~ | Platform: Active (Any CPU)
Buid
Build Events
Debug
Resources [v] Create VSIX Container during build
Services Deploy VSIX content to experimental instance for debugging
Settings

[] Copy VSIX content to the following location:

Reference Paths
Signing

Code Analysis

OEBPS/Images/image01721.jpeg
Loyoutsamples

OEBPS/Images/image01605.jpeg
S [z - | Search

Streaming Video: Improving quality with unit tests and fakes
RunAll | Run..~ | Playlist: All Tests
4 Failed Tests (1)

© TheAnswerToTheUltimateQuestionOfLifeTheUni... 78 ms

TheAnswerToTheUltimateQuestionOfLifeTheUniverse
Source: DeepThoughtTests.cs line 10
@ Test Failed - TheAnswerToTheUltimateQuestionOfLife

Message: Assert.AreEqual failed. Expected: <42>.
Actual:<41>.

Elapsed time: 78 ms.

4 StackTrace: -

OEBPS/Images/image01726.jpeg

OEBPS/Images/image01606.jpeg
&3 Streaming Video: Improving quality with unit tests and fakes
RunAll | Run.. = | Playlist: All Tests ~
4 Not Run Tests (1)

Run Selected Tests
Debug Selected Tests
Analyze Code Coverage for Selected Tests
Profile Test
Group By
Add to Playlist
@ Copy
& SelectAl
Open Test

Que

ionOfLifeTheUnil

Seuece: DeepThoughtTests.cs line 10

Ctd+C
Cul+A
F12

OEBPS/Images/image01727.jpeg
FE=aa 5

Search Live Visual Tree (Alt+) R
2 [RootScrollViewer] (10)
2 © [ScrollContentPresenter] 9)
4 H [Border] 8)
2 & [Frame] [©)
24 [F [ContentPresenter] (6)
4 © [DelayLoadingSample] & (5)
2 [Grid] B)
b & [Button] B 3)
© [FullWindowMediaRoot]
© [PopupRoot]
4 »

OEBPS/Images/image01603.jpeg
Test [MSTest v]
Get Additional Extensions

Test Project: |<New Test Project> V]

Name Format for Test Project: | [Project]Tests |

Namespace: INamespacel Tests]

Output File: <New Test File>]

Name Format for Test Class: | [Closs]Tests]

Name Format for Test Method: | [Method]Test]

Code for Test Method: [Assert failure: |

OEBPS/Images/image01724.jpeg
First Name

OEBPS/Images/image01604.jpeg
S [t= ~ | Search

&3 Streaming Video: Improving quality with unit tests and fakes
RunAll | Run.. > | Playlist: All Tests ~
4 Passed Tests (1)

JltimateQuestionOfLi i
20S Source: €

line 10

@ Test Passed - TheAnswerToTheUltimateQuestionOftifeTh
Elapsed time: 5 ms

OEBPS/Images/image01725.jpeg

OEBPS/Text/nav.xhtml

 Guide

 		Table of Contents

 		Cover

 Table of contents

 		Introduction

 		The Significance of .NET Core

 		The Significance of C#

 		What’s New in C# 6

 		What’s New with the Universal Windows Platform

 		What You Need to Write and Run C# Code

 		What This Book Covers

 		Conventions

 		Source Code

 		Errata

 		p2p.wrox.com

 		Part I: The C# Language

 		Chapter 1: .NET Application Architectures

 		Choosing Your Technologies

 		Reviewing .NET History

 		.NET 2015

 		Hello, World

 		Compiling with .NET 4.6

 		Compiling with .NET Core CLI

 		Application Types and Technologies

 		Developer Tools

 		Summary

 		Chapter 2: Core C#

 		Fundamentals of C#

 		Creating Hello, World! with Visual Studio

 		Working with Variables

 		Using Predefined Data Types

 		Controlling Program Flow

 		Working with Enumerations

 		Getting Organized with Namespaces

 		Understanding the Main Method

 		Using Comments

 		Understanding C# Preprocessor Directives

 		C# Programming Guidelines

 		Summary

 		Chapter 3: Objects and Types

 		Creating and Using Classes

 		Classes and Structs

 		Classes

 		Anonymous Types

 		Structs

 		Passing Parameters by Value and by Reference

 		Nullable Types

 		Enumerations

 		Partial Classes

 		Extension Methods

 		The Object Class

 		Summary

 		Chapter 4: Inheritance

 		Inheritance

 		Types of Inheritance

 		Implementation Inheritance

 		Modifiers

 		Interfaces

 		is and as Operators

 		Summary

 		Chapter 5: Managed and Unmanaged Resources

 		Resources

 		Memory Management Under the Hood

 		Strong and Weak References

 		Working with Unmanaged Resources

 		Unsafe Code

 		Platform Invoke

 		Summary

 		Chapter 6: Generics

 		Generics Overview

 		Creating Generic Classes

 		Generics Features

 		Generic Interfaces

 		Generic Structs

 		Generic Methods

 		Summary

 		Chapter 7: Arrays and Tuples

 		Multiple Objects of the Same and Different Types

 		Simple Arrays

 		Multidimensional Arrays

 		Jagged Arrays

 		Array Class

 		Arrays as Parameters

 		Enumerators

 		Tuples

 		Structural Comparison

 		Summary

 		Chapter 8: Operators and Casts

 		Operators and Casts

 		Operators

 		Type Safety

 		Comparing Objects for Equality

 		Operator Overloading

 		Implementing Custom Index Operators

 		User-Defined Casts

 		Summary

 		Chapter 9: Delegates, Lambdas, and Events

 		Referencing Methods

 		Delegates

 		Lambda Expressions

 		Events

 		Summary

 		Chapter 10: Strings and Regular Expressions

 		Examining System.String

 		String Formats

 		Regular Expressions

 		Summary

 		Chapter 11: Collections

 		Overview

 		Collection Interfaces and Types

 		Lists

 		Queues

 		Stacks

 		Linked Lists

 		Sorted List

 		Dictionaries

 		Sets

 		Performance

 		Summary

 		Chapter 12: Special Collections

 		Overview

 		Working with Bits

 		Observable Collections

 		Immutable Collections

 		Concurrent Collections

 		Summary

 		Chapter 13: Language Integrated Query

 		LINQ Overview

 		Standard Query Operators

 		Parallel LINQ

 		Expression Trees

 		LINQ Providers

 		Summary

 		Chapter 14: Errors and Exceptions

 		Introduction

 		Exception Classes

 		Catching Exceptions

 		User-Defined Exception Classes

 		Caller Information

 		Summary

 		Chapter 15: Asynchronous Programming

 		Why Asynchronous Programming Is Important

 		Asynchronous Patterns

 		Foundation of Asynchronous Programming

 		Error Handling

 		Cancellation

 		Summary

 		Chapter 16: Reflection, Metadata, and Dynamic Programming

 		Inspecting Code at RunTime and Dynamic Programming

 		Custom Attributes

 		Using Reflection

 		Using Dynamic Language Extensions for Reflection

 		The Dynamic Type

 		Dynamic Language Runtime

 		Hosting the DLR ScriptRuntime

 		DynamicObject and ExpandoObject

 		Summary

 		Part II: .NET Core and Windows Runtime

 		Chapter 17: Visual Studio 2015

 		Working with Visual Studio 2015

 		Creating a Project

 		Exploring and Coding a Project

 		Building a Project

 		Debugging Your Code

 		Refactoring Tools

 		Architecture Tools

 		Analyzing Applications

 		Summary

 		Chapter 18: .NET Compiler Platform

 		Introduction

 		Compiler Pipeline

 		Syntax Analysis

 		Semantics Analysis

 		Code Transformation

 		Visual Studio Code Refactoring

 		Summary

 		Chapter 19: Testing

 		Overview

 		Unit Testing with MSTest

 		Unit Testing with xUnit

 		UI Testing

 		Web Testing

 		Summary

 		Chapter 20: Diagnostics and Application Insights

 		Diagnostics Overview

 		Tracing with EventSource

 		Creating Custom Listeners

 		Working with Application Insights

 		Summary

 		Chapter 21: Tasks and Parallel Programming

 		Overview

 		Parallel Class

 		Tasks

 		Cancellation Framework

 		Data Flow

 		Summary

 		Chapter 22: Task Synchronization

 		Overview

 		Threading Issues

 		The lock Statement and Thread Safety

 		Interlocked

 		Monitor

 		SpinLock

 		WaitHandle

 		Mutex

 		Semaphore

 		Events

 		Barrier

 		ReaderWriterLockSlim

 		Timers

 		Summary

 		Chapter 23: Files and Streams

 		Introduction

 		Managing the File System

 		Enumerating Files

 		Working with Streams

 		Using Readers and Writers

 		Compressing Files

 		Watching File Changes

 		Working with Memory Mapped Files

 		Communicating with Pipes

 		Using Files and Streams with the Windows Runtime

 		Summary

 		Chapter 24: Security

 		Introduction

 		Verifying User Information

 		Encrypting Data

 		Access Control to Resources

 		Distributing Code Using Certificates

 		Summary

 		Chapter 25: Networking

 		Networking

 		The HttpClient Class

 		Working with the WebListener Class

 		Working with Utility Classes

 		Using TCP

 		Using UDP

 		Using Sockets

 		Summary

 		Chapter 26: Composition

 		Introduction

 		Architecture of the Composition Library

 		Defining Contracts

 		Exporting Parts

 		Importing Parts

 		Summary

 		Chapter 27: XML and JSON

 		Data Formats

 		Reading and Writing Streamed XML

 		Using the DOM in .NET

 		Using XPathNavigator

 		Serializing Objects in XML

 		LINQ to XML

 		JSON

 		Summary

 		Chapter 28: Localization

 		Global Markets

 		Namespace System.Globalization

 		Resources

 		Localization with WPF

 		Localization with ASP.NET Core

 		Localization with the Universal Windows Platform

 		Creating Custom Cultures

 		Summary

 		Part III: Windows Apps

 		Chapter 29: Core XAML

 		Uses of XAML

 		XAML Foundation

 		Dependency Properties

 		Routed Events

 		Attached Properties

 		Markup Extensions

 		Summary

 		Chapter 30: Styling XAML Apps

 		Styling

 		Shapes

 		Geometry

 		Transformation

 		Brushes

 		Styles and Resources

 		Templates

 		Animations

 		Visual State Manager

 		Summary

 		Chapter 31: Patterns with XAML Apps

 		Why MVVM?

 		Defining the MVVM Pattern

 		Sharing Code

 		Sample Solution

 		Models

 		View Models

 		Views

 		Messaging Using Events

 		IoC Container

 		Using a Framework

 		Summary

 		Chapter 32: Windows Apps: User Interfaces

 		Overview

 		Navigation

 		Layout

 		Commands

 		Compiled Data Binding

 		Controls

 		Summary

 		Chapter 33: Advanced Windows Apps

 		Overview

 		App Lifetime

 		Application Execution States

 		Navigation State

 		Sharing Data

 		App Services

 		Camera

 		Geolocation and MapControl

 		Sensors

 		Summary

 		Chapter 34: Windows Desktop Applications with WPF

 		Introduction

 		Controls

 		Layout

 		Triggers

 		Menu and Ribbon Controls

 		Commanding

 		Data Binding

 		TreeView

 		DataGrid

 		Summary

 		Chapter 35: Creating Documents with WPF

 		Introduction

 		Text Elements

 		Flow Documents

 		Fixed Documents

 		XPS Documents

 		Printing

 		Summary

 		Chapter 36: Deploying Windows Apps

 		Deployment as Part of the Application Life Cycle

 		Planning for Deployment

 		Traditional Deployment

 		ClickOnce

 		UWP Apps

 		Summary

 		Part IV: Web Applications and Services

 		Chapter 37: ADO.NET

 		ADO.NET Overview

 		Using Database Connections

 		Commands

 		Asynchronous Data Access

 		Transactions

 		Summary

 		Chapter 38: Entity Framework Core

 		History of Entity Framework

 		Introducing Entity Framework

 		Using Dependency Injection

 		Creating a Model

 		Working with Object State

 		Conflict Handling

 		Using Transactions

 		Summary

 		Chapter 39: Windows Services

 		What Is a Windows Service?

 		Windows Services Architecture

 		Creating a Windows Service Program

 		Monitoring and Controlling Windows Services

 		Troubleshooting and Event Logging

 		Summary

 		Chapter 40: ASP.NET Core

 		ASP.NET Core 1.0

 		Web Technologies

 		ASP.NET Web Project

 		Startup

 		Adding Static Content

 		Request and Response

 		Dependency Injection

 		Routing Using Map

 		Using Middleware

 		Session State

 		Configuring ASP.NET

 		Summary

 		Chapter 41: ASP.NET MVC

 		Setting Up Services for ASP.NET MVC 6

 		Defining Routes

 		Creating Controllers

 		Creating Views

 		Submitting Data from the Client

 		Working with HTML Helpers

 		Getting to Know Tag Helpers

 		Implementing Action Filters

 		Creating a Data-Driven Application

 		Implementing Authentication and Authorization

 		Summary

 		Chapter 42: ASP.NET Web API

 		Overview

 		Creating Services

 		Creating an Async Service

 		Creating a .NET Client

 		Writing to the Database

 		Creating Metadata

 		Creating and Using OData Services

 		Summary

 		Chapter 43: WebHooks and SignalR

 		Overview

 		Architecture of SignalR

 		A Simple Chat Using SignalR

 		Grouping Connections

 		Architecture of WebHooks

 		Creating Dropbox and GitHub Receivers

 		Summary

 		Chapter 44: Windows Communication Foundation

 		WCF Overview

 		Creating a Simple Service and Client

 		Contracts

 		Service Behaviors

 		Binding

 		Hosting

 		Clients

 		Duplex Communication

 		Routing

 		Summary

 		Chapter 45: Deploying Websites and Services

 		Deploying Web Applications

 		Preparing for Deployment

 		Deploying to Internet Information Server

 		Deploying to Microsoft Azure

 		Deploying to Docker

 		Summary

 		Advert

 		EULA

OEBPS/Images/image01619.jpeg
I,"ﬂ o T B

test P

Location(Azure datacenter)

Run Setings) Cloud based Load Test with Visual Studio Team ©) On promiso Load Test
Semnati - Create a performance lab in the cloud in minutes « Use your existing on-premises performance
Load Pattern i

il Generate high userload from any Arure datacenter

Test Mix Get ree user minutes every month Learn more st i ety
Browser Mix

VSTS Accou.. ipa/jeninnevaienveussda o
© Connected to Visua Studio Teom Servces
Your selection will be applied to the file: Local.testsettings

Finish Cancel

OEBPS/Images/image01620.jpeg
[i Edit load pattem settings for a load test scenario

Welcome

Select a load pattern for vour simulated load:
Location(Azure datacenter)

O Constant Load:

User Count: 25+ users
@ Step load:
Test Mix Model °
Test Mix Start user count: 1057 users
Browser Mix =
Step duration: 107" seconds
Step user count: 0% users/step

Maximum user count: | 200~ users

< Previous

Finish Cancel

OEBPS/Images/image01618.jpeg
Web Test Run Setting

Changes to these settings affect the current run only and are not
saved.

(® Fixed run count

1 =

Browser type:

Internet Explorer 9.0

[] Simulate think times

[[] Use request URL's directory as the default path for cookies.

Sance

OEBPS/Images/image01623.jpeg
LH Laudhnhisting ™)

S oomr 5
 bocencies | bt o) il
| = = == =

s v | ==

W Sttt

e o oot |
Wnio Gy oottt pr
Wtriew ol e e
Wi teratsyorrmttenrs o okt et ot ot et
W e rcmigbsot |
woxsmtrsoucargozsin || Wortenbtmnohommsoye |
[—————

eSS Pea S ot ot o e

OEBPS/Images/image01624.jpeg
[otsolp et i o a0 SO M T

OEBPS/Images/image01621.jpeg
Evant View bl (1)
~ | B 35631568~ | Masfek: 10000
- | Jest s

e Stat] 0000
Brocess Fiter
EventTypes bier,
Windows KemelEventirace

Wrox

Found 2 ecords. 2 total vents

OEBPS/Images/image01622.jpeg
This dialog give displays options for collecting ETW

profile data. The only requ

field the C
1 you wish to analyze on another machine use the Zip option when collecting data. S

R
FerviewDoract
0 00 - Verk 1
st
() Advanced Optins

Mark

Cancel

OEBPS/Images/image01627.jpeg
VinAppinsights MainPage

Page Views

Toas 030257M

rr—

1

1
A

- oavizass

OEBPS/Images/image01625.jpeg
Q &

Microsoft Azure

Alresouces

Recent

Web Apps

S databses

P p—

Goud senvices

subscrptions

Aopication nsights

05 disks (dassi)

Logic Apps

SendGrid Accounts

S servers

App Senvice plans

Developer Services > Appliction sights

3 Developer Services

& varerp

Team Project

Applicaton Insights

New Relic APM

SendGrid Email Delvery.

Sendind o

s

ORCINZE & 80 W

Application Insights

vy, peromrce, i srangemert.

Sharp

MCT 2015

OEBPS/Images/image01626.jpeg
Your application’s performance, availability and usage information at your fingertips.

e Application Insights

tion you'd like to use for Application Insights.

Confirm the account and subscs

I Microsoft account -
christiannagel@live.com

MCT 2015

Send telemetry to: ProCSharpWinAppSample (Existing resource)
to Application ProCs

Don't have an Azure account? Create a new one.

Leam more | Privacy statement

Add Cancel

OEBPS/Images/cover01493.jpeg
Professional

C# 6 and
.NET Core 1.0

Christian Nagel

OEBPS/Images/image01840.jpeg
A Programming Books, Fr X

<« (¢)

+

Find Wrox Titles.
Browss by Topic:
A

asenEr
gagee
Dasame
ey
Sonern
e

[r—

g o Ve COA/
domass

AC OFTegsis

pageearss

wox ogoo

Son 70 toquss

Cortot

protoce
e

e

e

e

'48043 KB ranslerred

e

Vethod

Most Popular Tities

Pressionai Moroso Pofessiona ASP NET
wos

craton Servees

Descrpton

Cortonttype
tetham

wwplcatonnc

avplcaton/in

[rr—

em——

imsgerg

Recoved
108

i

e

225k

ek

9

Prtessiora Team
Esudaton Serve 2013

Hexdors | fody Prameers Cooes Timings
e
- 2TOSTEGR2EFFORF-1UDAIIEEDRFED

tentioeded: 182 5, boad: 2.38)

OEBPS/Images/image01841.jpeg
e | localhost O~ G| localhost
Heading 1

OEBPS/Images/image01838.jpeg
D¢ WebSampleApp

Schema: http://json.schemastore.org/bower
Bl{
"name": "ASP.NET",
"private": true,

= "dependencies": {|

b

150% ~| < Ochanges|Oau

>

OEBPS/Images/image01839.jpeg
0 WebsampleApp.

Manage Bower Packages: 'src\WebSampleApp' Project
Browse Installed Update Available

Jauery-val X ¥ Include Prerelease

e | € jouery-validation

[st | (1140 -

jauery-validation-unobtrusive
Add-on to JQuery Vaidation to enable unobtrusive va.
Options
9] Save changes to bowerjson

‘ jquery-validation. password
Description
Form valdation made easy

16 Zaefferer <joem.zaefferer@gmailcom>

Downloads: 0
Project URL: hitp//jqueryvalidation.ora/

OEBPS/Images/image01844.jpeg
| — S
e | http//localhost:500 2 v & || localhost
textl: hello

OEBPS/Images/image01845.jpeg
= O X
e | | http://localhost:500 2 v G| localhost

* one
* two
* three

OEBPS/Images/image01842.jpeg
localhost

<script>alert("hacker");</script>

OEBPS/Images/image01843.jpeg
= O
Gol http://localhost:500 2 ~ & || localhost

[hellq] x| Submit |

OEBPS/Images/image01846.jpeg
I localhost:500 2 ~ & || localhost

From Middleware

OEBPS/Images/image01847.jpeg
O WebSampleApp.

Buid
Profie web | [hews Delle
Launen Commang v
Command: e -
oLl TECI——
Ptiom Aeosturo

Tovciupsae | Netramow v b+

Envronment Varibis: Namo Vale

[m— o —]

« I

OEBPS/Images/image01848.jpeg
Request
Controller

Response

OEBPS/Images/image01829.jpeg
General Details

Service started successfully.

Log Neme: Application

Source: Servicel Logged: 1/3/2016 5:50:11 PM
Event ID: [Tesk Category: None

Levek: Information Keywords: Classic

User: N/A Computer TheRocks

OpCode:

More Information: Event Log Online Help

Close

OEBPS/Images/image01830.jpeg
Sclecta template:
N % Tempiates

& =]
Empty. Web Forms Mve
. .
e S e i
Ao 201 Agp A bl Aase Nl
(Preview) App Service

ASPNET 5 Templates

3 ‘Web API

=]

Web API

&

Single Poge
Application

An empty project template for creating an ASP.NET 5
application. This template does not have any content in
it

Learn more

Change Authentication

Authentication: No Authentication

‘Add folders and core references for:

Web Forms [| MVC [| Web API

Add unt tests

Test project name: | WebSampleApp Tests

& Microsoft Azure
(® [Hostin the doud

(WebApp]

[Toc] [Canat]

OEBPS/Images/image01828.jpeg
X
Problem Reports and Solutions Control Pa 4
Program Compatibility Assistant Service

Quality Windows Audio Video Experience

QuoteService

Remote Access Auto Connection Manager

QuoteService

Running

Win32 Service Process

teServi
Remote Access Connection Manager | QuoteService
Remote Desktop Configuration Start | Stop I
Remote Desktop Services
Remote Desktop Services | de Port F
Remote Procedure Call (RPQ) . Refresh l | Exit I
3 e A 5

OEBPS/Images/image01833.jpeg
localhost

Hello World!

OEBPS/Images/image01834.jpeg
€ 5> 0 | e

1

Developer settings

2] Use Microsoft compatbity ists

[Allow localhost loopback (this might put your device at
risk)

Experimental features

Put on your safery gogles. These features are experimental
and might lead to some unexected browser behaviour.

stying
1 U a ol stacing contetforfixd posiin elements

7] mprove performance by using independent
composition for preserve-34 content

] Enable S5 fier property
] Visbly Render Control Characters
Saroling

] Apply scroll properties to documentElement instead of
body element

OEBPS/Images/image01831.jpeg
& o-s0B #=R

Search Solution Explorer (Ctrl+) P~

+&] Solution "WebSampleApp' (1 project)
4 &l Solution Items
+& globaljson
4 @l src
> & Properties
b =B References
b @ wwwroot
7 Dependencies
> +&J projectjson
+N Project_Readme.html
+C* Startup.cs

Solution Explorer | Team Explorer Class View

OEBPS/Images/image01832.jpeg
D WebSampleApp - WebSampleApp

Application
Buid

ot s pess] o

Launch 15 Expross

] Lounch URL

[] Use SpeciicRuntime: Version Platforn Architecturo
10061 upostel NET Framowork 0

Envrorment Vanaties Name. Vao

Hosting Environment Development

Romove

Wieb Server Sattings

AppURL: | htip/Aocainost 10879/

[] Enable SSL

OEBPS/Images/image01837.jpeg
Task Runner Expl
¢, WebSampleApp
4 § Gulpfilejs
4 Tasks
clean
clean:css
clean;js
min
min:css

minjs

& Bindings | cleanjs X

1 Before Build (0)

I After Build (0)

4 Clean (3)

4§ Gulpfilejs

clean
clean:css
cleanjs

b Project Open (0)

v

OEBPS/Images/image01835.jpeg
D WebSampleApp - package json

Schema: http://json.schemastore.org/package

=<
"version": "1.0.0",
“name": "ASP.NET",
8
L

"private": true,
"devDependencies”: {
X

100% ~ < Ochany

OEBPS/Images/image01836.jpeg
ﬂ WebSampleApp -

<global> - @ gup

572
This file in the main NS W o WRE e DL Caiky el ie e 0y RLaaian,
(litk here to learn more. .microsoft. nkId=518007

var gulp = require('gulp');

=igulp.task(‘default’, function () {
/1 place code for your default task here
»s

100% ~| < Ochar

OEBPS/Images/image01741.jpeg
O sharingSamples. -

Applcation Visual Assots Capabittes Decaations. Contant URts Paciaging

Usetis poge to dd dedarations nd specify thei properties

Available Declarations: Description:
Seletone. - [ad

(Only onenstance of this declraton s alwed per 9.

Properties:
Share descrpton:
Dt formats
Spocie the data frmtssupported by th aps o example: Tt "R

“Bitmap”, HIML

cagelem”
(il R

Duta formatText

Dot =] 1

OEBPS/Images/image01862.jpeg
Change Authentication X

For applications that store user profiles in a SQL Server database. Users can register;
or sign in using their existing account for Facebook. Twitter, Google, Microsoft, or

© No Authentication another provider.

@ Individual User Accounts Leam moxe

© Work And School Accounts.

Windows Authentication

[Cox] [Cameer]

OEBPS/Images/image01742.jpeg
(© SharingTarget

Share Target Page

Title

[sharing sampte |

Description

[sampie for sharing data]

OEBPS/Images/image01863.jpeg
I Register - MenuPlanner X+ = (@ 9

Register.

Create a new account.

Email
Password
Confirm password

Register

©2015 - MenuPlanner

OEBPS/Images/image01739.jpeg
Share

Sharing Sample v

Sample for sharing data

SharingTarget
Mail
. OneNote
f Facebook

Messaging

. Twitter

Look for an app in the Store

OEBPS/Images/image01860.jpeg
Model class: | Menu (MenuPlanner Models) v

Data context dass: | MenuCardsContext (MenuPlanner.Models) v

[¥] Use async controller actions
Views:

[¥] Generate views

[¥] Reference script libraries

[¥] Use a layout page:

(Leave empty if it is set in a Razor _viewstart file)

Controller name: | MenusAdminController |

OEBPS/Images/image01740.jpeg
(GLYE! =

Format Insert Options IEI Discard B> Send

A E_—q'y| Heading 1 | | € Undo

From: christian.nagel@cninnovation.com

To: | Cc&Bee

Sharing Sample

Title Publisher
Professional C# 6 and .NET 5 Core Wrox Press
Professional C# 5.0 and NET 4.5.1 Wrox Press

Sent from Mail for Windows 10

OEBPS/Images/image01861.jpeg
View name: Create
Template: Createl ¥
Model class: Menu (MenuPlanner.Models)

Data context class: | MenuCardsContext (MenuPlanner.Models)
Options:
[[] Create as a partial view

Reference script libraries

Use a layout page:

\ L]

(Leave empty if itis set in a Razor _viewstart file)

OEBPS/Images/image01745.jpeg
Let Windows Camera access your location?

To change this later, go to the Settings app.

OEBPS/Images/image01866.jpeg
(201 ET-L-EL B ntip focalnost 5000/swaggenivi/swagger json | api Explore
Book Chapters
A sample for Professional C# 6
BookChapters show/Hide | List Operations | Expand Operations
Values Show/Hide | List Operations | Expand Operations

[BASE URL: /, API VERSION: v1]

OEBPS/Images/image01746.jpeg

OEBPS/Images/image01867.jpeg
1 swagger [5000/swaggeri1/swagger.json

Explore

Book Chapters

A sample for Professional C# 6

BookChapters

Il :p/eookchapters
=8 /epieookchapters

Parameters

Parameter Value

List Operations | Expand Cperations

Data Type
cheptar ¥ Model Vol chiens
Bookchapter{
1 ing, aptionsh.
G Number ricger, optonal,
Thle (. opiorat,
Parameter content ype: [applcationison ¥ pages neger oprona)
+
Response Messages
HTTP Status Code Reason Response Model Headers.
200 oK

OEBPS/Images/image01743.jpeg
b SharingSamples

Application
Build
Build Events.

Reference Paths
Signing
Code Andlysis

Configuration: Active (Debug)

Start action

Platform: Active (xB6)

[Do not launch. but debug my code when it starts

7] Alow o i oopback]
Start options

Torget device: Local Machine v

Remote machine: Find.

Authentication Mode: Windows v

] uninstal deleted
Debugger type

Application process: Managed Only v

OEBPS/Images/image01864.jpeg
Selact a template:

&
Empty.

]

ASENE! 4.0 temprates

-~ =

WebForms MVC

Azure APIApp Azure Mobile Azure Mobile
(Preview) App (Preview) Service

AASP.NET 5 Templates
3 i
& =
Empty Web
Application

Web API

Single Page
Application

A project template for creating RESTIul HTTP services.
that can reach a broad range of dlients including
browsers and mobile devices.

Loarm m

Add folders and core references for:

[WebForms || MVC [| Web APl

7] Add unt tests

Test project name:

BooksServiceSemple Tests

5 Microsoft Azure
@ [Hostin the coud

Web App. ~

OEBPS/Images/image01744.jpeg
Capabities Dedarations Content URIs
Multipi instances of this declraton are alowed in each app.

Name: comChimnovation BooksCache

Serverame:

App setings
Beatable:
Eneypoint BooksCadreSenvieBooksCocheisk
Sort page:

Resourca group:

OEBPS/Images/image01865.jpeg
D BooksServiceSample - BooksServiceSample*

- 0
ppiclics onfiguration: |NJAS B Platform: NAS v
=

e = 2
- e
e =
Application Arguments:
e
] Launch URL:
ST e e
ey
L [r——

HostingEnvicrment. Development

Romove

OEBPS/Images/image01747.jpeg
Lichtensteg - Lugeck:: Lugeck

EnfGisse o, (e sutside

Locaton
Geo Position

Ready

St
oy

G Landmarks Visivle
G susiness Landmares
] pedestian Features

| rows o [mattc Fow

ot h A
"

D s ? GipgerstieBe
" \mamills
i

‘Warnina: ManServiceToken not soecified.

OEBPS/Images/image01748.jpeg
[usiness Landrmars

[pedestrian Fetures
RO et Fow

OEBPS/Images/image01869.jpeg
Sort by: Defaut [Seorch installd Templates Ctrie)) 9

EEE—
e a o B

LT sinn pustentCornecon Cas 2 Vol Co

A diass for implemening a Signalk hub.

OEBPS/Images/image01628.jpeg
Totnlof ot b Aoplcatn fenion
- —
uiousiyaies

= —
A
s —
-

OIS WIIM Wipieshs . SptemException S Exceptn..

Exception Properties

Toranors 105124

Enttme .
Eapoatpe © Sptemtagton

L o e
Doerre© a3

s regon o u

Contoet © foo

Exception Message
e w—

Call Stack

9] shomrmty ot

Sysembxception
Wit 1530 OnrerCtec sencr, RovtedEsnchrs)

Related Items

2 Al tmaty for thi e session 1.

OEBPS/Images/image01749.jpeg
Warnina: MaoServiceToken not soecified.

Map Loading Status
Loaded

] tanmarks isle

] susiness Landmares
[pedestrian Fetures
] matic iow

OEBPS/Images/image01870.jpeg
[2 1
o‘ & http/localhost:45269/Ch O ~ & | @ Chat Client Sample x

Enter your name
Message

* Christian: Hello, SignalR!

OEBPS/Images/image01868.jpeg
Client

SignalR

Hub Client

Client

OEBPS/Images/image01730.jpeg

OEBPS/Images/image01851.jpeg
B Layout Using Sections - X = + Make a Web Note

& > O | localhost18770/viewsDe e = @A O

ASP.NET MVC Sample App

* Layout Sample
+ Layout using Scctions

Navigation defined from the view

* Navl
* Nav2

Layout Using Sections

Main content here

X

Sample code for Professional C#
© 2015 - My ASP.NET Application

OEBPS/Images/image01731.jpeg
ControlsSamples

OEBPS/Images/image01852.jpeg
B Use a Partial View - My, X = =

SE 2Ol

ASP.NET MVC Sample App

+ Layout Sample
+ Layout using Sections

Use a Partial View

this is the main view

Live Events

4/3/2016 Formula 1 G.P. Australia, Melbourne
4/10/2016 Formula 1 G.P. China, Shanghai

4/24/2016 Formula 1 G.P. Bahrain, Sakhir
5/1/2016 Formula 1 G.P. Russia, Socchi

Sample code for Professional C#
© 2015 - My ASP.NET Application

OEBPS/Images/image01728.jpeg
Fo=-aes s
Search Live Visual Tree (Alt+6)
4 ¢ [RootScrollViewer] (15) &
4 ¢ [ScrollContentPresenter] (14)
2 X [Border] (13)
4 @ [Frame] (12)
4 ¥ [ContentPresenter] (1)
4 © [DelayLoadingSample (10)
4 i [Grid] @ ©
4 deferGrid [Grid] (4)
[®] [Rectangle] &)
O [Rectangle]
O [Rectangle] B

O [Rectangle] B

b @ [Button] B (64
>

OEBPS/Images/image01849.jpeg
8 PassingAModel X S

& = © ‘\0calhost;18770/Vu \;‘(‘

« Schweinsbraten mit Knodel und Sauerkraut
« Erdipfelgulasch mit Tofu und Gebick
« Tiroler Bauerngrost'l mit Spiegelei und Krautsalat

OEBPS/Images/image01729.jpeg
ControlsSamples

G X

Open

OEBPS/Images/image01850.jpeg
B Layout Sample - My ASF X+

& = © | *

ASP.NET MVC Sample App

+ Layout Sample
 Layout using Sections

LayoutSample

This content is merged with the layout page

Sample code for Professional C#
© 2015 - My ASP.NET Application

OEBPS/Images/image01734.jpeg
Aus|

Jack Brabham, Australia
Alan Jones, Australia
Niki Lauda, Austria

Jochen Rindt, Austria

OEBPS/Images/image01855.jpeg
B3 - My ASPNET Applicatic. X | +

& > O | toathosts

bmitData/CreateMenu2 % |

ASP.NET MVC Sample App

menu created: Cheddar Broccoli Casserole, Price: 9.7, category: Vegetarian

N

Sample code for Professional C#
© 2015 - My ASP.NET Application

OEBPS/Images/image01735.jpeg

OEBPS/Images/image01856.jpeg
B HelperWithMenu- My £ X | +

&« > 0 ‘Iocalhcsﬂs??ﬂ/Hept ;“(‘

ASP.NET MVC Sample App

HelperWithMenu

I

Text

Price

ba —]
Date

Category

Main

H

o

@

X

Sample code for Professional C#
©2015 - My ASP.NET Application

OEBPS/Images/image01732.jpeg

OEBPS/Images/image01853.jpeg
B3 View Components Samp X +

& > O ‘ localhost: 18770/ vie Did

ASP.NET MVC Sample App

* Layout Sample
« Layout using Sections

View Components Sample

Formula 1 Calendar

« Sunday, April 10,2016
Formula | G.P. China, Shanghai

+ Sunday, April 24, 2016
Formula | G P. Bahrain, Sakhir

Sample code for Professional C#
© 2015 - My ASP.NET Application

OEBPS/Images/image01733.jpeg

OEBPS/Images/image01854.jpeg
B Create Menu - My ASPN X

D) |Iocalhost18770/5u *I = @

ASP.NET MVC Sample App

Create Menu

Menu
1d:

Sample code for Professional C#
©2015 - My ASP.NET Application

OEBPS/Images/image01736.jpeg
A &> ThisPC > Pictures v U | Search Pictures

Organise * New folder

* Quickaccess |+

i Desktop

% Downloads {]
2 Documents (]

= Pictures

7 Source

& NewChapters

4 BookSubset

J completed

J figures -

File nome: | ST

Save as type: Stroke File

Camera Roll Images house strokes.

sample1.strokes

A Hide Folders

OEBPS/Images/image01857.jpeg
B inputHelper - MyASPN X+

& > O | tochostis

InputHelper

ASP.NET MVC Sample App

Input Helper
revruary > o

Menu ppore 14 2011

rice

Da(:l April 15 2012
May 16 2013

Samp.

©20) June 17 2014
August 19 2016
September 20 2017
October 21 2018
November 22 2019

v X

OEBPS/Images/image01737.jpeg
ApplicationLifetimeSample

Main Page

Page 1

Page 2

L

OEBPS/Images/image01858.jpeg
8 oty x| L

& > O | rochostisr/magHeipersFormtelper DXl = 2 & -

ASP.NET MVC Sample App

Form Helper

Menu

‘Schweinsbraten mit Kno
Price
12

Date.

[1/1872016

Catego:
[This category is 100 long | The field Category must be a string with a maximum length of 10.
(Submit |

Sample code for Professional C#
©2015 - My ASP.NET Application

OEBPS/Images/image01738.jpeg
- Process: [13480] ApplicationLifetimeSampl ~ Lifecycle Events ~ [

[€#] ApplicationLifetimeSan Resume

| Suspend and shutdown
|
¥

(No Background Tasks

Mopond B3 b4 A Ve A f |

3 references | O changes | O authors. O changes

OEBPS/Images/image01859.jpeg
B3 - My ASPNET Applicatio x 5

& > O | search orenter webaddress

ASP.NET MVC Sample App

1d Text Price Date Category
1 i mit Knddel und 8.5 10/5/2016 12:00:00 AM Main
2 Erdipfelgulasch mit Tofu und Gebick 8.5 10/6/2016 12:00:00 AM Vegetarian

3 Tiroler Bauerngrést'l mit Spiegelei und Krautsalat 8.5 10/7/2016 12:00:00 AM Vegetarian

Sample code for Professional C#
©2015 - My ASP.NET Application

OEBPS/Images/image01642.jpeg
8 7CP Client

localhost | | GET value

Sessionld | 78449b2a-01da-433b-aff3-ffae1 19ffBaa

Status oK
o da-433b-aff3-ffae119ffBac-OF da-433b-aff3-ffae1 19ffBaa
o 1da-433b-aff3- Z da-433b-aff3-ff
E da-433b-aff % da-433b-aff3-fae119ffazra2

OEBPS/Images/image01763.jpeg
® 7 Property Trigger

| Click me!

OEBPS/Images/image01884.jpeg
Do || |
p—" 1
tine | | 1
— |
— 1

OEBPS/Images/image01643.jpeg
Host Uses
Application

Container

Maps imports Finds parts

Connects

OEBPS/Images/image01764.jpeg
C# 5 All-in-One for Dummies

OEBPS/Images/image01885.jpeg
‘Add Service Reference
To see a list of available services on a specific server, enter a service URL and click Go. To browse for

available services, lick Discover.

Address:
|ttpy/tocalhost:8733/Design_Time_Add fonServi 1/ 6o | | piscover |+
Services: Qperanons

4@ ‘e eservations|

*9 IRoomService | © ReserveRoom
1 service(s) found at address
P 733/Design_Time_J i i ice1/mex.
Namespace:
RoomReservationService

Adyanced...

OEBPS/Images/image01640.jpeg
B3 Sampl Weblistener X

D R e — 20 -
Hello from the server
Header Info
g bl ppliaton it a1
‘Accept Encod
Accept de-ATiq=0.6,de DE:q-0.4deiq=02
Connection:
Host: throks 8082
0; Wi x64) 1/537.36 (KHTMLike Gecko)
Chrome 202311138 s.;wssvs.smsuu 10240
Request Object Information
QueryString: 2sample=text
ContentLength:
Houdan: Micsoft e v SrverHisderColocion
Method:

eewibtahad:Faoe
Body: System 10 Stream+NullStream
PathBase: /samples.

Path: /Hel

IsLocal: True

OEBPS/Images/image01761.jpeg
8 Dock Panel - . X
Menu

Remaining Part

Left Side

Status

OEBPS/Images/image01882.jpeg
530 hto //localhost 8733/ Design_Time_Addn
= *$ IRcomSenvice (BasicHtipBindng_IRo|

@
© ReserveRoomAsync) b e
20
) System Strg
7272015 1042 A Syem DateTine
0 System 32
) System. Srg
772772015 10:42 AM System DateTime
) Syen Sung
Ll ry
Vaue Tyve

Service added successfully.

OEBPS/Images/image01641.jpeg
V1.0

OEBPS/Images/image01762.jpeg
%7 Grid

Firstname:

Lastname:

OEBPS/Images/image01883.jpeg
WCF Service RoomRes

Cortract Wrox ProCSharm WCF Cortracts. IRooms
ErdpontCoriguraton
IsSystemEncpoint False
Kind
Ltenlis
= 3 LitenUnMlode Exphct
Delete Endpoint
Create a New Service. e

OEBPS/Images/image01646.jpeg
Calc

ulate

OEBPS/Images/image01767.jpeg
@i/ ® = |BooksDemoApp

B vore | Ribbon Controls

Button Text Box
Checkbox Split Button
Combol ~ Combo2 Green

Sample

OEBPS/Images/image01647.jpeg

OEBPS/Images/image01644.jpeg
& system.Composition.Convention.dil

System.Composition.Hosting.dll ¢

4 = - ¥
Bl System.Composition.Runtime.dil B System.Composition. AttributedModel.dil

OEBPS/Images/image01765.jpeg
{87 Books Demo App.

OEBPS/Images/image01886.jpeg
[Room Reservatior

Room: ISpiererg]

Begin time: |7/1/2016 100000 AM |

Endtime: [7/3/2016 60000 PM |
Contact: | Dietrich Mateschitz |

Event: |Formula 1 ‘

[_ Reseefoom |

OEBPS/Images/image01645.jpeg

OEBPS/Images/image01766.jpeg
Quick Access toolbar

Ribbon tabs

Application menu

Books 2émo App. 1

Homé Ribbon Controls

L.],ﬂ” ®

Book Book Book
List Grid

Ribbon groups

OEBPS/Images/image01887.jpeg
File Edit View Activty Help

Look For SearchIn: None - Leve: Al - Filter Now Clear

Find What: - Lookin Al Acttes - Fnd

Aty Proa Memage Gaph Group By - (None) Create Custom Fiter Actity

[Level TheadID Process Na.. Time

Tranter 6 RoomReser.. 1/5/201618:44.09.
Stant 6 FoomReser.. 1/5/2016 184403
Suspend 5 Roonssr. 152016184405
Trrsler © RoonReser. S2016 184409
Resume. 6 RoomReser.. 1/5/201618:44.09.
Sop. 6 RoomReser.. 1/5/2016 184414,

Name Vae
Actvty Name

Feated ctity Nave. Processng meseage 1
e 20160105 1844092624
Level

Souce System ServiceMode!
Frocess RoonResenvasontiost
Trveas 5

Actvities: 13 Traces: 58

OEBPS/Images/image01888.jpeg
-

OEBPS/Images/image01528.jpeg
Stage 1

Read Filenames

Stage 2

Load Content

Stage 3

Process Content

OEBPS/Images/image01649.jpeg
ICalculator import successful ICalculatorExtension imports successful

OEBPS/Images/image01770.jpeg
Clipboard
Book

Title

Publisher

Isbn

Resize

OEBPS/Images/image01891.jpeg
Select a template:

pr—
BOS il o
oy weoroms (RO o

&

Azure API App Azure Mobile Azure Mobile
(Preview) App Service

ASPNET 5 Templates.

Empty Web API

A project template for creating ASP.NET MVC
applications. ASPNET MVC allows you to buid
S s s

re. ASP.NET MVC includes many festures thet
SR e i development for ceating
applcations that use the latest standards.

Learn more

Change Authentcat

Authentication: Individual User Accounts

Add folders and core references for:

[Web forms (v MVC (] Web API

[] Add unit tests

Tost project name: | WebDotnetFramevork Tosts

® Microsoft Azure
@ D tostinthe dovd

Web App. B

[T

OEBPS/Images/image01529.jpeg
Stage 4

Transfer Content

Stage 5

Add Color

Stage 6

Display Content

OEBPS/Images/image01650.jpeg
A e

Fuel Temperature
Economy Conversion

Temperature Conversion X Fuel Economy]
7 8 9
Celsius v [3
4 H 6
1 2 3 Fahvenheit v l268
I
[Calculate

[Calaulate]

ICalculator import successful ICalculatorExtension imports successful

OEBPS/Images/image01771.jpeg
i1 1 & - 8ooks Demopp

S +ome | Rivbon Contros

=%

Paste

Clipboard

&
Book
Grid

lelessiona| C#50and NET45.1

Wi
Publisher ’ s Press

)78-0-47(-
bn ’9 8-0-470-50225-9

OEBPS/Images/image01892.jpeg
LRl | i //localhost A Register - My ASPNET Appl.

Register.

Create a new account.
Email
christian@christiannagel.com

Password

Confirm password

Register

©2015 - My ASP.NET Application

OEBPS/Images/image01768.jpeg
Target

Dependency Object

Source

CLR Object

Dependency
Property

Binding

Property

OEBPS/Images/image01889.jpeg
Client E— Router —— ServiceA

HTTP Protocol|5| net.tcp Protocol‘51

OEBPS/Images/image01648.jpeg
Calculator

OEBPS/Images/image01769.jpeg
Opsidest

[‘ShowBook
She ol

sbn

OEBPS/Images/image01890.jpeg
Service A-F

Client > Router Service G-N

Service 0-Z

OEBPS/Images/image01631.jpeg
Windows App Timer

OEBPS/Images/image01752.jpeg
[Gatloht] umioance at2
[GetlahRepen s 1228 0

(oM mgnenc ont 805807871 st 10515442

| G Compss Repor | magnetic ot 1805007563757 el ot 6262412071

[Gethccsrometer. . coouomnoiessese . osraconmessia -
Gt hcctrometrReport . coro00mnnerasas . -os7anenezsTo2e -

Getindinometer | puccegros: 35839 ol degrees: 2294285 yaw e

| Getindinameerepo | e 2558295 ol e 2254288 yow .

EEEEE xovozo
| GotGyromearieport . 1ssmmpeesaos v -1 19993002551 2 -+ 300000

[GetOnmenaion. custemion: 0300494y -003564195 2 005811448 w0

| GetGrentaionRepot | queron xo3064y -0s3seesz-opserie o

OEBPS/Images/image01873.jpeg
Nams ‘Christian

Sroup Authors

Message

Message to all devs

Developers-Christian: Message to all devs
Authors-Christian: Message to all authors
Developers-Christian: Message to all devs

OEBPS/Images/image01632.jpeg

OEBPS/Images/image01753.jpeg
SlingMarbleSample

OEBPS/Images/image01874.jpeg
Dropbox

GitHub

WordPress

Your Web Site

Dropbox
Receiver

GitHub

Receiver Handlers

Receiver
Controller

WordPress
Receiver

OEBPS/Images/image01629.jpeg
Custom Event Properties

Event time 10/14/2015 2:39:03 PM

Event name OnAction

Device Id Rt96DYW/fdr TAWFO 7bA=

=

Custom Data

data Hello World to Application Insights
Related Items

2 All telemetry for this user session 2

* Al telemetry 5 minutes before and after this event 2

OEBPS/Images/image01750.jpeg
~lange G
Geopositon

OEBPS/Images/image01871.jpeg
DOM Exploer T ok -
" aa = Y- Comentiye
avery-1.113js L
aveysionalk 22035 WP e
e — R
negotisteZchenprotocol=1 Seconnectonata=XS.. KTTP G
comectionsport-mebSocketstcentrotocal-15. KTTP GE
sanTansonrt=webSockesacientrotoccl=158c.. KITP G

ow il - F12

eders | Body Parametss_ Cookies
W 101 Swiching Proo
“ Request Headers

(0OMCortentioaded: 292 ms. cad: 04 ms)

@1

OEBPS/Images/image01630.jpeg
Assertion Failed: Abort=Quit. Retry=Debug, Ignore=Continue

0 Race condition occurred after 1121 loops
at Threadinglssues StateObject.ChangeState(Int32 loop) in
AUsers\C}

nglssues\SampleTask.csine 18
at Threadinglssues.SampleTask RaceCondition(Object o) in
CAUsers\Ch

Tosk.csline 45
at
Threadinglssues Program.<>c_DisplayClass2 0.<RaceConditions>b_0(

Benic
ngissues\Program.csiline 43
at System. Threading Tasks.TaskInnerinvoke)
at System.Threading Tasks.Task.Execute)
at ‘Threading Tasks. jonContentC:

at System. i
‘executionContex, ContextCallback callback, Object state, Boolean

at Syste
‘executionContex, ContextCallback callback, Objectstate, Boolean
‘2t System Threading.Tasks
cunentTaskSlot)
at System. Threading Tasks. Task ExecuteEntry(Boolean
bPreventDoubleExecution)
at
System.Threading Tasks Task Syst
xecuteWorkitemQ

at System. Threading ThreadPooWorkQueue Dispatch)
at System. Threading. ThreadPoolWaitCallback PerformWaitCallback)

Abort Betry

OEBPS/Images/image01751.jpeg
s = §
- o =
<=7 ==

[Landmarks Visivle
] susiness Landmares
[pedestrian Fetures
] matc iow

OEBPS/Images/image01872.jpeg
IMatthias

Message ||

Matthias: Hello, Stephanie!

OEBPS/Images/image01635.jpeg
D FilesandstreamsSamples

00000000 5C 8F C2 F5
0000010 00 00 20 00

5 42 2A 0o 6 @6 B1 68 DE 3A \...(.He"..

28 BC
06 73 61 6D 70 6C 65 .sample

OEBPS/Images/image01756.jpeg
87 Expander Sample -] X

Short information
@ Addmonal Informahon

More information here!

OEBPS/Images/image01877.jpeg
[wettook g+

© o | e o K

[————
U ProfessionalCSharp / ProfessionalCSharps
oo Qe t [P s SWK s

optons Westcns Manage wehook

Cotarston 8 tears

OUmathe 1 wsar o ¥

gt Sotinge

OEBPS/Images/image01636.jpeg
Alice

OEBPS/Images/image01757.jpeg
B ' Decorations Sample - a X

Label with a border

Label with a viewbox

‘

Granny Smith

OEBPS/Images/image01633.jpeg
Simple Editor - Open file
4 ¥ > OneDrive > Documents
Organize = New folder
Bosaies BNt
7 Downloads
W Music &
e Pictures
B Videos
& Windows (C)
. soxc0)

v O Search Documents rd
o
Date modified Type Size
/26/2015 417 PM File folder
626/2015 418 P Text Document e
v et fles () v

OEBPS/Images/image01754.jpeg
J0

innovation

CN innovation - Training mit Christian Nagel

Workshops fr G, Windams Stre Agps, Windows Aure, W, ASPNET WVC, Web
S htnd Workahops wie o i sngethe s buchan B
omnen sber uch Thamen gars Fesbal ussmmangesel we

Akion s Buchungen de cfnen Tramingsuber C inxaio bekommt jeder

Offene Traiings in when

“Selr gute Beispele, welche sehr ke

Sehr anschoulich prisentier/erkiiet haben’

Toke off to T 2015
Srogrammaren mt e
Programmed Unversl 008 with XAML and Co

Using the MU Satem with XML Osskto snd Unveres

rgramming Habie Apps win Xamarin e

Abvanced Windowsstoe Aops (C#)

Progrommeran von Wdows Desktsp poikatieran m W
Programmieren ven NET feurdations

Enticken von Mlitveaded NET Losngen

ottt mt dem ADONET ety Fromanork
Pregrammiaren it WIS

Typesorot rogremming

OEBPS/Images/image01875.jpeg
Select a template:

'ASP.NET 4.6 Templates
;
I [
Empty Web Forms M
. -
o S = R i
Azure APl App Azure Mobile Azure Mobile
(Preview) App. Service
ASPNET 5 Templates
" .
g B E

Empty Web APl Web

=)
Single Page
Application

A project template for creating ASP.NET MVC.
applications. ASPNET MVC allows you to build
applications using the Model-View-Controller

applcations that use the latest standards.

Leam more

Authentication: Individual User Accounts

‘Add folders and core references for:
[JWebForms v/ MVC [7] Web APl

] Add unit tests

Test project name: |Sea5WebHooksReceiverSample Tests

5 Microsoft Azure
@ [Hostin the doud

[weorp -]

OEBPS/Images/image01634.jpeg
v

FileSteam ——————»¥

’—’ i

B MemoryStream 'Buﬁeredstream

TextReader

——

4 StringReader i StreamWriter

1

Stream " Textwiter
1T

S(reamwmer Stnngwmer

1

M BinaryReader il BinaryWriter

OEBPS/Images/image01755.jpeg
8 Expander Sample - - x

Short information
@ Addmona nformatlon

OEBPS/Images/image01876.jpeg
© Oeveopens-Dropbex X o
< O | @ oopbox i) dspboncomsvciperir

Create a new app on the Dropbox Platform

1. Choose an API

Dropbox Business API

Dropbox APt @ 55

orepoox tawnmore

2. Choose the type of access you need
T —
O Ao oo - ccess o3 s fode st spechalforyour

© 8 ropbox - Access 3 s 3 s s gt

3.Name your app
[——

2 agre 10 Dopbor 1 Terms s Condtons

OEBPS/Images/image01637.jpeg
Resource

Security D

OEBPS/Images/image01638.jpeg
Hetpclent

Sendasync

Delegatingtandler

Sendasync

DelegatingHandler

SendAsync

HttpClientHandier

Sendasync

OEBPS/Images/image01759.jpeg
- o X
&7 Wrap Panel

[Buton | [Buton || Button |[Button |[Buton |

[Buton |[Buton | [Button |

OEBPS/Images/image01880.jpeg
RoomReservation
Service 1

RoomReservation l

Data 3
\ RoomReservation

Contracts 3

OEBPS/Images/image01639.jpeg
O NetworkingSamples.

(1290100 1290 IR | @

[CE—

o - (]«

ne®

OEBPS/Images/image01760.jpeg
Enter here:

OEBPS/Images/image01881.jpeg
&% WCF Service Host o X
File Help
Services

Service

Status
Wrox ProCSham. WCF Service RoomR

Rl

To

above.

Ready

OEBPS/Images/image01878.jpeg
D WebHooksSample

githubqueue [Queue] & X

“before": “6425033a73266100234784c29(5990ca2Bafc13",
“after” "b4b191207f587177b90afb0182018605b32b8b54",

1 of 1 messages. More nformation on queue message count.

OEBPS/Images/image01758.jpeg
B Stack Panel

Label

TextBox
[] CheckBox
[[] CheckBox
ListBoxitem One

ListBoxitem Two

Button

OEBPS/Images/image01879.jpeg
Client Code

Proxy

Service

Dispatcher

Channel

