Robert C. Martin Series -
\ el ||
L = e, gl e, WOALELRRL ||| 1T

WORKING
EFFECTIVELY
WITH

LEGACY CODE

Michael C. Feathers

Working Effectively
with Legacy Code

Robert C. Martin Series

This series is directed at software developers, team-leaders,
business analysts, and managers who want to increase their
skills and proficiency to the level of a Master Craftsman.

The series contains books that guide software professionals
in the principles, patterns, and practices of programming,
software project management, requirements gathering,
design, analysis, testing, and others.

www.EBooksWorld.ir

Working Effectively
with Legacy Code

Michael C. Feathers

N

PRENTICE
HALL
PTR

Prentice Hall Professional Technical Reference
Upper Saddle River, NJ 07458
www.phptr.com

www.EBooksWorld.ir

www,phptr.com

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

Publisher: John Wait

Editor in Chief: Don O’Hagan

Acquisitions Editor: Paul Petralia

Editorial Assistant: Michelle Vincenti

Marketing Manager: Chris Guzikowski

Publicist: Kerry Guiliano

Cover Designer: Sandra Schroeder

Managing Editor: Gina Kanouse

Senior Project Editor: Lori Lyons

Copy Editor: Krista Hansing

Indexer: Lisa Stumpf

Compositor: Karen Kennedy

Proofreader: Debbie Williams

Manufacturing Buyer: Dan Uhrig

Prentice Hall offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding in-
terests. For more information, please contact:

U. S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
1-317-428-3341
international@pearsontechgroup.com

Visit us on the web: www.phptr.com
Library of Congress Cataloging-in-Publication Data: 2004108115
Copyright © 2005 Pearson Education, Inc.
Publishing as Prentice Hall PTR
All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department

One Lake Street

Upper Saddle River, NJ 07458
Other product or company names mentioned herein are the trademarks
or registered trademarks of their respective owners.

ISBN 0-13-117705-2

Text printed in the United States on recycled paper at Phoenix Book Tech.
First printing, September 2004

www.EBooksWorld.ir

www.phptr.com

For Ann, Deborah, and Ryan,
the bright centers of my life.

— Michael

www.EBooksWorld.ir

This page intentionally left blank

www.EBooksWorld.ir

CONTENTS v

Contents

Foreword by Robert C. Martin.iitintinrennennennan. XV
Preface . ..ot XV
Introductionot e xxi
PART I: The Mechanicsof Change. 1
Chapter 1: Changing Softwarettt 3
Four Reasons to Change Softwarecccoou .. 4
Risky Changettt it et 7
Chapter 2: Working with Feedback 9
What Is Unit Testing? vov vttt eeieaeeeenn 12
Higher-Level Testing . .. vt v vttt it e 14
Test COVErINGS .« v vttt i ettt et et e et 14
The Legacy Code Change Algorithm 18
Chapter 3: Sensing and Separation.c0uitinrenn.... 21
Faking Collaborators 23
Chapter 4: The Seam Model. i, 29
A Huge Sheet of TeXt .\ vvvvnt it e i e i 29
SeamMS . o 30
Seam Types . .o oot e 33
Chapter 5: TOOIS. . . .ottt e e e e 45
Automated Refactoring Tools 45
Mock Objects .. oo e 47
Unit-Testing Harnesseso.vininnniiiniennn.. 48
General Test Harnessesovueein it iiiieeenn. 53

www.EBooksWorld.ir

CONTENTS

PART II: Changing Software 55
Chapter 6: I Don’t Have Much Time and T Have to Change It........... 57
Sprout Method i 59
SProut Class . v v vttt e e e 63
Wrap Method 67
Wrap Class . o oot e 71
Summary. . ..o e 76
Chapter 7: It Takes Forever to MakeaChange 77
Understandingutiutitmi it 77
LagTimet e e e 78
Breaking Dependenciesiiiiiiiiiiia 79
SUMMATY ..t e e ettt e e 85
Chapter 8: How Dol Add aFeature?ccviiniinnvnnn.. 87
Test-Driven Development (TDD), 88
Programming by Difference 94
SUMmMAry e 104
Chapter 9: I Can’t Get This Class into a Test Harness 105
The Case of the Irritating Parameter 106
The Case of the Hidden Dependency 113
The Case of the Construction Blob 116
The Case of the Irritating Global Dependency 118
The Case of the Horrible Include Dependencies 127
The Case of the Onion Parameterc.cuu..... 130
The Case of the Aliased Parametervvuunenn. .. 133
Chapter 10: I Can’t Run This Method in a Test Harness 137
The Case of the Hidden Method 138
The Case of the “Helpful” Language Feature 141
The Case of the Undetectable Side Effect 144
Chapter 11: I Need to Make a Change. What Methods Should T Test? ... 151
Reasoning About Effects 151
Reasoning Forward i, 157
Effect Propagationouutvrininennnnnnenenann. 163
Tools for Effect Reasoning, 165
Learning from Effect Analysis 167
Simplifying Effect Sketches o v 168

www.EBooksWorld.ir

CONTENTS

Chapter 12: I Need to Make Many Changes in One Area.............. 173
Interception Points 174
Judging Design with Pinch Points 182
Pinch Point Traps « o v v vete et et e ettt e et eeeean 184

Chapter 13: I Need to Make a Change,

but I Don’t Know What Tests to Write 185
Characterization Teststtt 186
Characterizing Classesoitiitintenrennnnnenn.. 189
Targeted Testing oot iit e ittt e e 190
A Heuristic for Writing Characterization Tests 195

Chapter 14: Dependencies on Libraries Are KillingMe 197

Chapter 15: My ApplicationIs AIAPICalls 199

Chapter 16: I Don’t Understand the Code Well Enough to Change It 209
Notes/Sketchingt e 210
Listing Markupottt 211
Scratch Refactoringo, 212
Delete Unused Codettt 213

Chapter 17: My Application Has No Structure 215
Telling the Story of the System 216
Naked CRC ... i e e e 220
Conversation SCrutinyv vttt n it ent e 224

Chapter 18: My Test Code Isinthe Way 227
Class Naming CONventionsvuvvnenrenenennenenen.. 227
Test Locationuiutitintiii e, 228

Chapter 19: My Project Is Not Object Oriented.

How Do I Make Safe Changes?. 231

AnEasy Case ...t 232
AHard Case ..o oit i e 232

Adding New Behavior 236

Taking Advantage of Object Orientation 239

It’s All Object Orientedo it 242
Chapter 20: This Class Is Too Big and I Don’t Want It to Get Any Bigger . 245
Seeing Responsibilities 249

www.EBooksWorld.ir

CONTENTS

Other Techniqueso e 265

Moving Forwardcu ittt 265

After Extract Classo ot i it e 268

Chapter 21: ’'m Changing the Same Code All Over the Place 269

First Steps .. oo 272
Chapter 22: I Need to Change a Monster Method

and I Can’t Write Tests for It 289

Varieties Of MONSTErS .+ v vttt ie it e et it e e e eaen e 290

Tackling Monsters with Automated Refactoring Support 294

The Manual Refactoring Challenge 297

SrAtegY . e 304

Chapter 23: How Do I Know That ’'m Not Breaking Anything?. 309

Hyperaware Editing 310

Single-Goal Editingo 311

Preserve SIgnaturesvvv it 312

Lean on the Compilerc.iiininriiininnnnenen.. 315

Chapter 24: We Feel Overwhelmed. It Isn’t Going to Get Any Better. 319

PART III: Dependency-Breaking Techniques 323

Chapter 25: Dependency-Breaking Techniques 325

Adapt Parameteriuiiit e 326

Break Out Method Object, 330

Definition Completionouitiiintnr it 337

Encapsulate Global References 339

Expose Static Method 345

Extract and Override Call 348

Extract and Override Factory Method 350

Extract and Override Getterot iin v eene 352

Extract Implementer00ttt 356

ExtractInterfacet 362

Introduce Instance Delegator ouuon... 369

Introduce Static Settervvtvit v 372

Link Substitutionouiitiiti .. 377

Parameterize CONStIUCLOL .« v oot vttt et et e e e e 379

Parameterize Method i 383

www.EBooksWorld.ir

CONTENTS

Primitivize Parameter i 385
Pull Up Feature « . oo vt ettt et e et e eeeans 388
Push Down Dependencycciiiiiiiinnnnnenn.. 392
Replace Function with Function Pointer 396
Replace Global Reference with Getter 399
Subclass and Override Method 401
Supersede Instance Variable 404
Template Redefinitioncvv vt in i 408
Text Redefinition, 412
Appendix: Refactoringc.vveeinni it iiinneenennennns 415
Extract Method 415
GloSSarY . . . v ot e 421
Index . ..ot 423

www.EBooksWorld.ir

This page intentionally left blank

www.EBooksWorld.ir

FOREWORD V

Foreword

“...then it began...”

In his introduction to this book, Michael Feathers uses that phrase to
describe the start of his passion for software.

“...then it began...”

Do you know that feeling? Can you point to a single moment in your life and
say: “...then it began...”? Was there a single event that changed the course of
your life and eventually led you to pick up this book and start reading this fore-
word?

I was in sixth grade when it happened to me. I was interested in science and
space and all things technical. My mother found a plastic computer in a catalog
and ordered it for me. It was called Digi-Comp I. Forty years later that little
plastic computer holds a place of honor on my bookshelf. It was the catalyst
that sparked my enduring passion for software. It gave me my first inkling of
how joyful it is to write programs that solve problems for people. It was just
three plastic S-R flip-flops and six plastic and-gates, but it was enough—it
served. Then... for me... it began...

But the joy I felt soon became tempered by the realization that software sys-
tems almost always degrade into a mess. What starts as a clean crystalline
design in the minds of the programmers rots, over time, like a piece of bad
meat. The nice little system we built last year turns into a horrible morass of
tangled functions and variables next year.

Why does this happen? Why do systems rot? Why can’t they stay clean?

Sometimes we blame our customers. Sometimes we accuse them of changing
the requirements. We comfort ourselves with the belief that if the customers had
just been happy with what they said they needed, the design would have been
fine. It’s the customer’s fault for changing the requirements on us.

Well, here’s a news flash: Requirements change. Designs that cannot tolerate
changing requirements are poor designs to begin with. It is the goal of every
competent software developer to create designs that tolerate change.

This seems to be an intractably hard problem to solve. So hard, in fact, that
nearly every system ever produced suffers from slow, debilitating rot. The rot is
so pervasive that we’ve come up with a special name for rotten programs. We
call them: Legacy Code.

www.EBooksWorld.ir

v FOREWORD

Legacy code. The phrase strikes disgust in the hearts of programmers. It con-
jures images of slogging through a murky swamp of tangled undergrowth with
leaches beneath and stinging flies above. It conjures odors of murk, slime, stag-
nancy, and offal. Although our first joy of programming may have been intense,
the misery of dealing with legacy code is often sufficient to extinguish that
flame.

Many of us have tried to discover ways to prevent code from becoming leg-
acy. We’ve written books on principles, patterns, and practices that can help
programmers keep their systems clean. But Michael Feathers had an insight that
many of the rest of us missed. Prevention is imperfect. Even the most disciplined
development team, knowing the best principles, using the best patterns, and fol-
lowing the best practices will create messes from time to time. The rot still accu-
mulates. It’s not enough to try to prevent the rot—you have to be able to
reverse it.

That’s what this book is about. It’s about reversing the rot. It’s about taking
a tangled, opaque, convoluted system and slowly, gradually, piece by piece, step
by step, turning it into a simple, nicely structured, well-designed system. It’s
about reversing entropy.

Before you get too excited, I warn you; reversing rot is not easy, and it’s not
quick. The techniques, patterns, and tools that Michael presents in this book
are effective, but they take work, time, endurance, and care. This book is not a
magic bullet. It won’t tell you how to eliminate all the accumulated rot in your
systems overnight. Rather, this book describes a set of disciplines, concepts, and
attitudes that you will carry with you for the rest of your career and that will
help you to turn systems that gradually degrade into systems that gradually
improve.

Robert C. Martin
29 June, 2004

www.EBooksWorld.ir

PREFACE v

Preface

Do you remember the first program you wrote? I remember mine. It was a little
graphics program I wrote on an early PC. I started programming later than
most of my friends. Sure, 'd seen computers when I was a kid. T remember
being really impressed by a minicomputer I once saw in an office, but for years
I never had a chance to even sit at a computer. Later, when I was a teenager,
some friends of mine bought a couple of the first TRS-80s. I was interested, but
I was actually a bit apprehensive, too. I knew that if I started to play with com-
puters, I’d get sucked into it. It just looked too cool. I don’t know why I knew
myself so well, but I held back. Later, in college, a roommate of mine had a
computer, and I bought a C compiler so that I could teach myself programming.
Then it began. I stayed up night after night trying things out, poring through
the source code of the emacs editor that came with the compiler. It was addic-
tive, it was challenging, and I loved it.

I hope you’ve had experiences like this—just the raw joy of making things
work on a computer. Nearly every programmer I ask has. That joy is part of
what got us into this work, but where is it day to day?

A few years ago, I gave my friend Erik Meade a call after I’d finished work
one night. I knew that Erik had just started a consulting gig with a new team, so
I asked him, “How are they doing?” He said, “They’re writing legacy code,
man.” That was one of the few times in my life when I was sucker-punched by
a coworker’s statement. I felt it right in my gut. Erik had given words to the pre-
cise feeling that I often get when I visit teams for the first time. They are trying
very hard, but at the end of the day, because of schedule pressure, the weight of
history, or a lack of any better code to compare their efforts to, many people
are writing legacy code.

What is legacy code? I’ve used the term without defining it. Let’s look at the
strict definition: Legacy code is code that we've gotten from someone else.
Maybe our company acquired code from another company; maybe people on
the original team moved on to other projects. Legacy code is somebody else’s
code. But in programmer-speak, the term means much more than that. The
term legacy code has taken on more shades of meaning and more weight over
time.

www.EBooksWorld.ir

PREFACE

What do you think about when you hear the term legacy code? If you are at
all like me, you think of tangled, unintelligible structure, code that you have to
change but don’t really understand. You think of sleepless nights trying to add
in features that should be easy to add, and you think of demoralization, the
sense that everyone on the team is so sick of a code base that it seems beyond
care, the sort of code that you just wish would die. Part of you feels bad for
even thinking about making it better. It seems unworthy of your efforts. That
definition of legacy code has nothing to do with who wrote it. Code can
degrade in many ways, and many of them have nothing to do with whether the
code came from another team.

In the industry, legacy code is often used as a slang term for difficult-to-change
code that we don’t understand. But over years of working with teams, helping
them get past serious code problems, I’ve arrived at a different definition.

To me, legacy code is simply code without tests. P've gotten some grief for
this definition. What do tests have to do with whether code is bad? To me, the
answer is straightforward, and it is a point that I elaborate throughout the

book:

Code without tests is bad code. It doesn’t matter how well written it is; it doesn’t mat-
ter how pretty or object-oriented or well-encapsulated it is. With tests, we can change
the behavior of our code quickly and verifiably. Without them, we really don’t know
if our code is getting better or worse.

You might think that this is severe. What about clean code? If a code base is
very clean and well structured, isn’t that enough? Well, make no mistake. I love
clean code. I love it more than most people I know, but while clean code is
good, it’s not enough. Teams take serious chances when they try to make large
changes without tests. It is like doing aerial gymnastics without a net. It
requires incredible skill and a clear understanding of what can happen at every
step. Knowing precisely what will happen if you change a couple of variables is
often like knowing whether another gymnast is going to catch your arms after
you come out of a somersault. If you are on a team with code that clear, you are
in a better position than most programmers. In my work, I’ve noticed that
teams with that degree of clarity in all of their code are rare. They seem like a
statistical anomaly. And, you know what? If they don’t have supporting tests,
their code changes still appear to be slower than those of teams that do.

Yes, teams do get better and start to write clearer code, but it takes a long
time for older code to get clearer. In many cases, it will never happen com-
pletely. Because of this, I have no problem defining legacy code as code without
tests. It is a good working definition, and it points to a solution.

I’ve been talking about tests quite a bit so far, but this book is not about test-
ing. This book is about being able to confidently make changes in any code

www.EBooksWorld.ir

PREFACE

base. In the following chapters, I describe techniques that you can use to under-
stand code, get it under test, refactor it, and add features.

One thing that you will notice as you read this book is that it is not a book
about pretty code. The examples that I use in the book are fabricated because I
work under nondisclosure agreements with clients. But in many of the exam-
ples, I’ve tried to preserve the spirit of code that I’ve seen in the field. I won’t
say that the examples are always representative. There certainly are oases of
great code out there, but, frankly, there are also pieces of code that are far
worse than anything I can use as an example in this book. Aside from client
confidentiality, I simply couldn’t put code like that in this book without boring
you to tears and burying important points in a morass of detail. As a result,
many of the examples are relatively brief. If you look at one of them and think
“No, he doesn’t understand—my methods are much larger than that and much
worse,” please look at the advice that T am giving at face value and see if it
applies, even if the example seems simpler.

The techniques here have been tested on substantially large pieces of code. It
is just a limitation of the book format that makes examples smaller. In particu-
lar, when you see ellipses (...) in a code fragment like this, you can read them as
“insert 500 lines of ugly code here”:

m_pDispatcher->register(Tistener);
m_nMargins++;

If this book is not about pretty code, it is even less about pretty design. Good
design should be a goal for all of us, but in legacy code, it is something that we
arrive at in discrete steps. In some of the chapters, I describe ways of adding
new code to existing code bases and show how to add it with good design prin-
ciples in mind. You can start to grow areas of very good high-quality code in
legacy code bases, but don’t be surprised if some of the steps you take to make
changes involve making some code slightly uglier. This work is like surgery. We
have to make incisions, and we have to move through the guts and suspend
some aesthetic judgment. Could this patient’s major organs and viscera be bet-
ter than they are? Yes. So do we just forget about his immediate problem, sew
him up again, and tell him to eat right and train for a marathon? We could, but
what we really need to do is take the patient as he is, fix what’s wrong, and
move him to a healthier state. He might never become an Olympic athlete, but
we can’t let “best” be the enemy of “better.” Code bases can become healthier
and easier to work in. When a patient feels a little better, often that is the time
when you can help him make commitments to a healthier life style. That is
what we are shooting for with legacy code. We are trying to get to the point at

www.EBooksWorld.ir

PREFACE

which we are used to ease; we expect it and actively attempt to make code
change easier. When we can sustain that sense on a team, design gets better.

The techniques I describe are ones that Ive discovered and learned with
coworkers and clients over the course of years working with clients to try to
establish control over unruly code bases. I got into this legacy code emphasis
accidentally. When I first started working with Object Mentor, the bulk of my
work involved helping teams with serious problems develop their skills and
interactions to the point that they could regularly deliver quality code. We often
used Extreme Programming practices to help teams take control of their work,
collaborate intensively, and deliver. I often feel that Extreme Programming is
less a way to develop software than it is a way to make a well-jelled work team
that just happens to deliver great software every two weeks.

From the beginning, though, there was a problem. Many of the first XP
projects were “greenfield” projects. The clients I was seeing had significantly
large code bases, and they were in trouble. They needed some way to get con-
trol of their work and start to deliver. Over time, I found that I was doing the
same things over and over again with clients. This sense culminated in some
work I was doing with a team in the financial industry. Before I’d arrived,
they’d realized that unit testing was a great thing, but the tests that they were
executing were full scenario tests that made multiple trips to a database and
exercised large chunks of code. The tests were hard to write, and the team
didn’t run them very often because they took so long to run. As I sat down with
them to break dependencies and get smaller chunks of code under test, I had a
terrible sense of déja vu. It seemed that I was doing this sort of work with every
team I met, and it was the sort of thing that no one really wanted to think
about. It was just the grunge work that you do when you want to start working
with your code in a controlled way, if you know how to do it. I decided then
that it was worth really reflecting on how we were solving these problems and
writing them down so that teams could get a leg up and start to make their code
bases easier to live in.

A note about the examples: I’'ve used examples in several different program-
ming languages. The bulk of the examples are written in Java, C++, and C. I
picked Java because it is a very common language, and I included C++ because it
presents some special challenges in a legacy environment. I picked C because it
highlights many of the problems that come up in procedural legacy code. Among
them, these languages cover much of the spectrum of concerns that arise in leg-
acy code. However, if the languages you use are not covered in the examples,
take a look at them anyway. Many of the techniques that I cover can be used in
other languages, such as Delphi, Visual Basic, COBOL, and FORTRAN.

www.EBooksWorld.ir

PREFACE

I hope that you find the techniques in this book helpful and that they allow
you to get back to what is fun about programming. Programming can be very
rewarding and enjoyable work. If you don’t feel that in your day-to-day work, I
hope that the techniques I offer you in this book help you find it and grow it on
your team.

Acknowledgments

First of all, T owe a serious debt to my wife, Ann, and my children, Deborah
and Ryan. Their love and support made this book and all of the learning that
preceded it possible. I’d also like to thank “Uncle Bob” Martin, president and
founder of Object Mentor. His rigorous pragmatic approach to development
and design, separating the critical from the inconsequential, gave me something
to latch upon about 10 years ago, back when it seemed that I was about to
drown in a wave of unrealistic advice. And thanks, Bob, for giving me the
opportunity to see more code and work with more people over the past five
years than I ever imagined possible.

I also have to thank Kent Beck, Martin Fowler, Ron Jeffries, and Ward Cun-
ningham for offering me advice at times and teaching me a great deal about
team work, design, and programming. Special thanks to all of the people who
reviewed the drafts. The official reviewers were Sven Gorts, Robert C. Martin,
Erik Meade, and Bill Wake; the unofficial reviewers were Dr. Robert Koss,
James Grenning, Lowell Lindstrom, Micah Martin, Russ Rufer and the Silicon
Valley Patterns Group, and James Newkirk.

Thanks also to reviewers of the very early drafts I placed on the Internet.
Their feedback significantly affected the direction of the book after I reorga-
nized its format. I apologize in advance to any of you I may have left out. The
early reviewers were: Darren Hobbs, Martin Lippert, Keith Nicholas, Phlip
Plumlee, C. Keith Ray, Robert Blum, Bill Burris, William Caputo, Brian Mar-
ick, Steve Freeman, David Putman, Emily Bache, Dave Astels, Russel Hill,
Christian Sepulveda, and Brian Christopher Robinson.

Thanks also to Joshua Kerievsky who gave a key early review and Jeff Langr
who helped with advice and spot reviews all through the process.

The reviewers helped me polish the draft considerably, but if there are errors
remaining, they are solely mine.

Thanks to Martin Fowler, Ralph Johnson, Bill Opdyke, Don Roberts, and
John Brant for their work in the area of refactoring. It has been inspirational.

www.EBooksWorld.ir

\ 4

PREFACE

I also owe a special debt to Jay Packlick, Jacques Morel, and Kelly Mower of
Sabre Holdings, and Graham Wright of Workshare Technology for their support
and feedback.

Special thanks also to Paul Petralia, Michelle Vincenti, Lori Lyons, Krista
Hansing, and the rest of the team at Prentice-Hall. Thank you, Paul, for all of
the help and encouragement that this first-time author needed.

Special thanks also to Gary and Joan Feathers, April Roberts, Dr. Raimund
Ege, David Lopez de Quintana, Carlos Perez, Carlos M. Rodriguez, and the late
Dr. John C. Comfort for help and encouragement over the years. I also have to
thank Brian Button for the example in Chapter 21, I'm Changing the Same
Code All Over the Place. He wrote that code in about an hour when we were
developing a refactoring course together, and it’s become my favorite piece of
teaching code.

Also, special thanks to Janik Top, whose instrumental De Futura served as
the soundtrack for my last few weeks of work on this book.

Finally, I’d like to thank everyone whom I’ve worked with over the past few
years whose insights and challenges strengthened the material in this book.

Michael Feathers
mfeathers@objectmentor.com
www.objectmentor.com
www.michaelfeathers.com

www.EBooksWorld.ir

www.objectmentor.com
www.michaelfeathers.com

Introduction

How to Use This Book

I tried several different formats before settling on the current one for this book.
Many of the different techniques and practices that are useful when working
with legacy code are hard to explain in isolation. The simplest changes often go
easier if you can find seams, make fake objects, and break dependencies using a
couple of dependency-breaking techniques. I decided that the easiest way to
make the book approachable and handy would be to organize the bulk of it
(Part 11, Changing Software) in FAQ (frequently asked questions) format.
Because specific techniques often require the use of other techniques, the FAQ
chapters are heavily interlinked. In nearly every chapter, you’ll find references,
along with page numbers, for other chapters and sections that describe particu-
lar techniques and refactorings. I apologize if this causes you to flip wildly
through the book as you attempt to find answers to your questions, but I
assumed that you’d rather do that than read the book cover to cover, trying to
understand how all the techniques operate.

In Changing Software, I’ve tried to address very common questions that
come up in legacy code work. Each of the chapters is named after a specific
problem. This does make the chapter titles rather long, but hopefully, they will
allow you to quickly find a section that helps you with the particular problems
you are having.

Changing Software is bookended by a set of introductory chapters (Part I,
The Mechanics of Change) and a catalog of refactorings, which are very useful
in legacy code work (Part III, Dependency-Breaking Techniques). Please read
the introductory chapters, particularly Chapter 4, The Seam Model. These
chapters provide the context and nomenclature for all the techniques that fol-
low. In addition, if you find a term that isn’t described in context, look for it in
the Glossary.

The refactorings in Dependency-Breaking Techniques are special in that they
are meant to be done without tests, in the service of putting tests in place. I
encourage you to read each of them so that you can see more possibilities as
you start to tame your legacy code.

XX1

www.EBooksWorld.ir

This page intentionally left blank

www.EBooksWorld.ir

Part 1

The Mechanics
of Change

www.EBooksWorld.ir

This page intentionally left blank

www.EBooksWorld.ir

Chaptel‘ 1 Changing

Software

Changing Software

Changing code is great. It’s what we do for a living. But there are ways of
changing code that make life difficult, and there are ways that make it much
easier. In the industry, we haven’t spoken about that much. The closest we’ve
gotten is the literature on refactoring. I think we can broaden the discussion a
bit and talk about how to deal with code in the thorniest of situations. To do
that, we have to dig deeper into the mechanics of change.

Four Reasons to Change Software

For simplicity’s sake, let’s look at four primary reasons to change software.
1. Adding a feature

2. Fixing a bug
3. Improving the design

4. Optimizing resource usage

Adding Features and Fixing Bugs

Adding a feature seems like the most straightforward type of change to make.
The software behaves one way, and users say that the system needs to do some-
thing else also.

Suppose that we are working on a web-based application, and a manager
tells us that she wants the company logo moved from the left side of a page to
the right side. We talk to her about it and discover it isn’t quite so simple. She
wants to move the logo, but she wants other changes, too. She’d like to make it
animated for the next release. Is this fixing a bug or adding a new feature? It
depends on your point of view. From the point of view of the customer, she is
definitely asking us to fix a problem. Maybe she saw the site and attended a

www.EBooksWorld.ir

Four Reasons
to Change

Software

CHANGING SOFTWARE

meeting with people in her department, and they decided to change the logo
placement and ask for a bit more functionality. From a developer’s point of
view, the change could be seen as a completely new feature. “If they just
stopped changing their minds, we’d be done by now.” But in some organiza-
tions the logo move is seen as just a bug fix, regardless of the fact that the team
is going to have to do a lot of fresh work.

It is tempting to say that all of this is just subjective. You see it as a bug fix,
and I see it as a feature, and that’s the end of it. Sadly, though, in many organi-
zations, bug fixes and features have to be tracked and accounted for separately
because of contracts or quality initiatives. At the people level, we can go back
and forth endlessly about whether we are adding features or fixing bugs, but it
is all just changing code and other artifacts. Unfortunately, this talk about bug-
fixing and feature addition masks something that is much more important to us
technically: behavioral change. There is a big difference between adding new
behavior and changing old behavior.

Behavior is the most important thing about software. It is what users depend on.
Users like it when we add behavior (provided it is what they really wanted), but if we
change or remove behavior they depend on (introduce bugs), they stop trusting us.

In the company logo example, are we adding behavior? Yes. After the
change, the system will display a logo on the right side of the page. Are we get-
ting rid of any behavior? Yes, there won’t be a logo on the left side.

Let’s look at a harder case. Suppose that a customer wants to add a logo to
the right side of a page, but there wasn’t one on the left side to start with. Yes,
we are adding behavior, but are we removing any? Was anything rendered in
the place where the logo is about to be rendered?

Are we changing behavior, adding it, or both?

It turns out that, for us, we can draw a distinction that is more useful to us as
programmers. If we have to modify code (and HTML kind of counts as code),
we could be changing behavior. If we are only adding code and calling it, we are
often adding behavior. Let’s look at another example. Here is a method on a
Java class:

public class (DPlayer

{
public void addTrackListing(Track track) {

:

The class has a method that enables us to add track listings. Let’s add
another method that lets us replace track listings.

www.EBooksWorld.ir

Four REASONS TO CHANGE SOFTWARE

pubTic class CDPlayer
{ Four Reasons

to Change

public void addTrackListing(Track track) {
Software

}

public void replaceTrackListing(String name, Track track) {

}

When we added that method, did we add new behavior to our application or
change it? The answer is: neither. Adding a method doesn’t change behavior
unless the method is called somehow.

Let’s make another code change. Let’s put a new button on the user interface
for the CD player. The button lets users replace track listings. With that move,
we’re adding the behavior we specified in replaceTrackListing method, but we’re
also subtly changing behavior. The UI will render differently with that new but-
ton. Chances are, the Ul will take about a microsecond longer to display. It
seems nearly impossible to add behavior without changing it to some degree.

Improving Design

Design improvement is a different kind of software change. When we want to
alter software’s structure to make it more maintainable, generally we want to
keep its behavior intact also. When we drop behavior in that process, we often
call that a bug. One of the main reasons why many programmers don’t attempt
to improve design often is because it is relatively easy to lose behavior or create
bad behavior in the process of doing it.

The act of improving design without changing its behavior is called refactor-
ing. The idea behind refactoring is that we can make software more maintain-
able without changing behavior if we write tests to make sure that existing
behavior doesn’t change and take small steps to verify that all along the pro-
cess. People have been cleaning up code in systems for years, but only in the last
few years has refactoring taken off. Refactoring differs from general cleanup in
that we aren’t just doing low-risk things such as reformatting source code, or
invasive and risky things such as rewriting chunks of it. Instead, we are making
a series of small structural modifications, supported by tests to make the code
easier to change. The key thing about refactoring from a change point of view is
that there aren’t supposed to be any functional changes when you refactor
(although behavior can change somewhat because the structural changes that
you make can alter performance, for better or worse).

www.EBooksWorld.ir

Four Reasons
to Change

Software

CHANGING SOFTWARE

Optimization

Optimization is like refactoring, but when we do it, we have a different goal.
With both refactoring and optimization, we say, “We’re going to keep function-
ality exactly the same when we make changes, but we are going to change
something else.” In refactoring, the “something else” is program structure; we
want to make it easier to maintain. In optimization, the “something else” is
some resource used by the program, usually time or memory.

Putting It All Together

It might seem strange that refactoring and optimization are kind of similar.
They seem much closer to each other than adding features or fixing bugs. But is
this really true? The thing that is common between refactoring and optimiza-
tion is that we hold functionality invariant while we let something else change.

In general, three different things can change when we do work in a system:
structure, functionality, and resource usage.

Let’s look at what usually changes and what stays more or less the same
when we make four different kinds of changes (yes, often all three change, but
let’s look at what is typical):

Adding a Feature Fixing a Bug Refactoring Optimizing
Structure Changes Changes Changes —
Functionality Changes Changes — —
Resource Usage — — — Changes

Superficially, refactoring and optimization do look very similar. They hold
functionality invariant. But what happens when we account for new functional-
ity separately? When we add a feature often we are adding new functionality,
but without changing existing functionality.

Adding a Feature Fixing a Bug Refactoring Optimizing
Structure Changes Changes Changes —
New Changes — — —
Functionality
Functionality — Changes — —
Resource Usage — — — Changes

www.EBooksWorld.ir

Risky CHANGE

Adding features, refactoring, and optimizing all hold existing functionality
invariant. In fact, if we scrutinize bug fixing, yes, it does change functionality,
but the changes are often very small compared to the amount of existing func-
tionality that is not altered.

Feature addition and bug fixing are very much like refactoring and optimiza-
tion. In all four cases, we want to change some functionality, some behavior,
but we want to preserve much more (see Figure 1.1).

T T

Existing Behavior New Behavior

Figure 1.1 Preserving behavior.

That’s a nice view of what is supposed to happen when we make changes,
but what does it mean for us practically? On the positive side, it seems to tell us
what we have to concentrate on. We have to make sure that the small number
of things that we change are changed correctly. On the negative side, well, that
isn’t the only thing we have to concentrate on. We have to figure out how to
preserve the rest of the behavior. Unfortunately, preserving it involves more
than just leaving the code alone. We have to know that the behavior isn’t
changing, and that can be tough. The amount of behavior that we have to pre-
serve is usually very large, but that isn’t the big deal. The big deal is that we
often don’t know how much of that behavior is at risk when we make our
changes. If we knew, we could concentrate on that behavior and not care about
the rest. Understanding is the key thing that we need to make changes safely.

Preserving existing behavior is one of the largest challenges in software development.
Even when we are changing primary features, we often have very large areas of
behavior that we have to preserve.

Risky Change

Preserving behavior is a large challenge. When we need to make changes and
preserve behavior, it can involve considerable risk.

www.EBooksWorld.ir

Risky Change

Risky Change

CHANGING SOFTWARE

To mitigate risk, we have to ask three questions:

1. What changes do we have to make?
2. How will we know that we’ve done them correctly?
3. How will we know that we haven’t broken anything?

How much change can you afford if changes are risky?

Most teams that I’'ve worked with have tried to manage risk in a very conser-
vative way. They minimize the number of changes that they make to the code
base. Sometimes this is a team policy: “If it’s not broke, don’t fix it.” At other
times, it isn’t anything that anyone articulates. The developers are just very cau-
tious when they make changes. “What? Create another method for that? No,
I’ll just put the lines of code right here in the method, where I can see them and
the rest of the code. It involves less editing, and it’s safer.”

It’s tempting to think that we can minimize software problems by avoiding
them, but, unfortunately, it always catches up with us. When we avoid creating
new classes and methods, the existing ones grow larger and harder to under-
stand. When you make changes in any large system, you can expect to take a
little time to get familiar with the area you are working with. The difference
between good systems and bad ones is that, in the good ones, you feel pretty
calm after you’ve done that learning, and you are confident in the change you
are about to make. In poorly structured code, the move from figuring things out
to making changes feels like jumping off a cliff to avoid a tiger. You hesitate and
hesitate. “Am I ready to do it? Well, I guess I have to.”

Avoiding change has other bad consequences. When people don’t make
changes often they get rusty at it. Breaking down a big class into pieces can be
pretty involved work unless you do it a couple of times a week. When you do, it
becomes routine. You get better at figuring out what can break and what can’t,
and it is much easier to do.

The last consequence of avoiding change is fear. Unfortunately, many teams
live with incredible fear of change and it gets worse every day. Often they aren’t
aware of how much fear they have until they learn better techniques and the
fear starts to fade away.

We’ve talked about how avoiding change is a bad thing, but what is our
alternative? One alternative is to just try harder. Maybe we can hire more peo-
ple so that there is enough time for everyone to sit and analyze, to scrutinize all
of the code and make changes the “right” way. Surely more time and scrutiny
will make change safer. Or will it? After all of that scrutiny, will anyone know
that they’ve gotten it right?

www.EBooksWorld.ir

Chapter 2

Working with

Working with Feedback

Changes in a system can be made in two primary ways. I like to call them Edit
and Pray and Cover and Modify. Unfortunately, Edit and Pray is pretty much
the industry standard. When you use Edit and Pray, you carefully plan the
changes you are going to make, you make sure that you understand the code
you are going to modify, and then you start to make the changes. When you’re
done, you run the system to see if the change was enabled, and then you poke
around further to make sure that you didn’t break anything. The poking
around is essential. When you make your changes, you are hoping and praying
that you’ll get them right, and you take extra time when you are done to make
sure that you did.

Superficially, Edit and Pray seems like “working with care,” a very profes-
sional thing to do. The “care” that you take is right there at the forefront, and
you expend extra care when the changes are very invasive because much more
can go wrong. But safety isn’t solely a function of care. I don’t think any of us
would choose a surgeon who operated with a butter knife just because he
worked with care. Effective software change, like effective surgery, really
involves deeper skills. Working with care doesn’t do much for you if you don’t
use the right tools and techniques.

Cover and Modify is a different way of making changes. The idea behind it is
that it is possible to work with a safety net when we change software. The
safety net we use isn’t something that we put underneath our tables to catch us
if we fall out of our chairs. Instead, it’s kind of like a cloak that we put over
code we are working on to make sure that bad changes don’t leak out and
infect the rest of our software. Covering software means covering it with tests.
When we have a good set of tests around a piece of code, we can make changes
and find out very quickly whether the effects were good or bad. We still apply
the same care, but with the feedback we get, we are able to make changes more
carefully.

If you are not familiar with this use of tests, all of this is bound to sound a
little bit odd. Traditionally, tests are written and executed after development. A

>

9

www.EBooksWorld.ir

Working with
Feedback

WORKING WITH FEEDBACK

group of programmers writes code and a team of testers runs tests against the
code afterward to see if it meets some specification. In some very traditional
development shops, this is just the way that software is developed. The team
can get feedback, but the feedback loop is large. Work for a few weeks or
months, and then people in another group will tell you whether you’ve gotten it
right.

Testing done this way is really “testing to attempt to show correctness.”
Although that is a good goal, tests can also be used in a very different way. We
can do “testing to detect change.”

In traditional terms, this is called regression testing. We periodically run tests
that check for known good behavior to find out whether our software still
works the way that it did in the past.

When you have tests around the areas in which you are going to make
changes, they act as a software vise. You can keep most of the behavior fixed
and know that you are changing only what you intend to.

Software Vise

vise (n.). A clamping device, usually consisting of two jaws closed or opened by a
screw or lever, used in carpentry or metalworking to hold a piece in position. The
American Heritage Dictionary of the English Language, Fourth Edition

When we have tests that detect change, it is like having a vise around our code. The
behavior of the code is fixed in place. When we make changes, we can know that
we are changing only one piece of behavior at a time. In short, we’re in control of
our work.

Regression testing is a great idea. Why don’t people do it more often? There
is this little problem with regression testing. Often when people practice it, they
do it at the application interface. It doesn’t matter whether it is a web applica-
tion, a command-line application, or a GUI-based application; regression test-
ing has traditionally been seen as an application-level testing style. But this is
unfortunate. The feedback we can get from it is very useful. It pays to do it at a
finer-grained level.

Let’s do a little thought experiment. We are stepping into a large function
that contains a large amount of complicated logic. We analyze, we think, we
talk to people who know more about that piece of code than we do, and then
we make a change. We want to make sure that the change hasn’t broken any-
thing, but how can we do it? Luckily, we have a quality group that has a set of
regression tests that it can run overnight. We call and ask them to schedule a
run, and they say that, yes, they can run the tests overnight, but it is a good
thing that we called early. Other groups usually try to schedule regression runs
in the middle of the week, and if we’d waited any longer, there might not be a

www.EBooksWorld.ir

WORKING WITH FEEDBACK

timeslot and a machine available for us. We breathe a sigh of relief and then go
back to work. We have about five more changes to make like the last one. All of
them are in equally complicated areas. And we’re not alone. We know that sev-
eral other people are making changes, too.

The next morning, we get a phone call. Daiva over in testing tells us that
tests AE1021 and AE1029 failed overnight. She’s not sure whether it was our
changes, but she is calling us because she knows we’ll take care of it for her.
We’ll debug and see if the failures were because of one of our changes or some-
one else’s.

Does this sound real? Unfortunately, it is very real.

Let’s look at another scenario.

We need to make a change to a rather long, complicated function. Luckily,
we find a set of unit tests in place for it. The last people who touched the code
wrote a set of about 20 unit tests that thoroughly exercised it. We run them and
discover that they all pass. Next we look through the tests to get a sense of
what the code’s actual behavior is.

We get ready to make our change, but we realize that it is pretty hard to fig-
ure out how to change it. The code is unclear, and we’d really like to under-
stand it better before making our change. The tests won’t catch everything, so
we want to make the code very clear so that we can have more confidence in
our change. Aside from that, we don’t want ourselves or anyone else to have to
go through the work we are doing to try to understand it. What a waste of
time!

We start to refactor the code a bit. We extract some methods and move some
conditional logic. After every little change that we make, we run that little suite
of unit tests. They pass almost every time that we run them. A few minutes ago,
we made a mistake and inverted the logic on a condition, but a test failed and
we recovered in about a minute. When we are done refactoring, the code is
much clearer. We make the change we set out to make, and we are confident
that it is right. We added some tests to verify the new behavior. The next pro-
grammers who work on this piece of code will have an easier time and will have
tests that cover its functionality.

Do you want your feedback in a minute or overnight? Which scenario is
more efficient?

Unit testing is one of the most important components in legacy code work.
System-level regression tests are great, but small, localized tests are invaluable.
They can give you feedback as you develop and allow you to refactor with
much more safety.

www.EBooksWorld.ir

Working with
Feedback

What Is Unit
Testing?

WORKING WITH FEEDBACK

What Is Unit Testing?

The term unit test has a long history in software development. Common to
most conceptions of unit tests is the idea that they are tests in isolation of indi-
vidual components of software. What are components? The definition varies,
but in unit testing, we are usually concerned with the most atomic behavioral
units of a system. In procedural code, the units are often functions. In object-
oriented code, the units are classes.

Test Harnesses

In this book, I use the term test harness as a generic term for the testing code that we
write to exercise some piece of software and the code that is needed to run it. We can
use many different kinds of test harnesses to work with our code. In Chapter 5, Tools,
I discuss the xUnit testing framework and the FIT framework. Both of them can be
used to do the testing I describe in this book.

Can we ever test only one function or one class? In procedural systems, it is
often hard to test functions in isolation. Top-level functions call other func-
tions, which call other functions, all the way down to the machine level. In
object-oriented systems, it is a little easier to test classes in isolation, but the fact
is, classes don’t generally live in isolation. Think about all of the classes you’ve
ever written that don’t use other classes. They are pretty rare, aren’t they? Usu-
ally they are little data classes or data structure classes such as stacks and
queues (and even these might use other classes).

Testing in isolation is an important part of the definition of a unit test, but
why is it important? After all, many errors are possible when pieces of software
are integrated. Shouldn’t large tests that cover broad functional areas of code be
more important? Well, they are important, I won’t deny that, but there are a
few problems with large tests:

¢ Error localization—As tests get further from what they test, it is harder to
determine what a test failure means. Often it takes considerable work to
pinpoint the source of a test failure. You have to look at the test inputs,
look at the failure, and determine where along the path from inputs to out-
puts the failure occurred. Yes, we have to do that for unit tests also, but
often the work is trivial.

* Execution time—Larger tests tend to take longer to execute. This tends to
make test runs rather frustrating. Tests that take too long to run end up
not being run.

www.EBooksWorld.ir

WHAT Is UNIT TESTING?

¢ Coverage—It is hard to see the connection between a piece of code and the
values that exercise it. We can usually find out whether a piece of code is
exercised by a test using coverage tools, but when we add new code, we
might have to do considerable work to create high-level tests that exercise
the new code.

One of the most frustrating things about larger tests is that we can have error local-
ization if we run our tests more often, but it is very hard to achieve. If we run our
tests and they pass, and then we make a small change and they fail, we know pre-
cisely where the problem was triggered. It was something we did in that last small
change. We can roll back the change and try again. But if our tests are large, execu-
tion time can be too long; our tendency will be to avoid running the tests often
enough to really localize errors.

Unit tests fill in gaps that larger tests can’t. We can test pieces of code inde-
pendently; we can group tests so that we can run some under some conditions
and others under other conditions. With them we can localize errors quickly. If
we think there is an error in some particular piece of code and we can use it in a
test harness, we can usually code up a test quickly to see if the error really is
there.

Here are qualities of good unit tests:

1. They run fast.
2. They help us localize problems.

In the industry, people often go back and forth about whether particular
tests are unit tests. Is a test really a unit test if it uses another production class?
I go back to the two qualities: Does the test run fast? Can it help us localize
errors quickly? Naturally, there is a continuum. Some tests are larger, and they
use several classes together. In fact, they may seem to be little integration tests.
By themselves, they might seem to run fast, but what happens when you run
them all together? When you have a test that exercises a class along with several
of its collaborators, it tends to grow. If you haven’t taken the time to make a
class separately instantiable in a test harness, how easy will it be when you add
more code? It never gets easier. People put it off. Over time, the test might end
up taking as long as 1/10th of a second to execute.

A unit test that takes 1/10th of a second to run is a slow unit test.

Yes, I'm serious. At the time that I'm writing this, 1/10th of a second is an
eon for a unit test. Let’s do the math. If you have a project with 3,000 classes
and there are about 10 tests apiece, that is 30,000 tests. How long will it take to
run all of the tests for that project if they take 1/10th of a second apiece? Close

www.EBooksWorld.ir

What Is Unit
Testing?

Test
Coverings

WORKING WITH FEEDBACK

to an hour. That is a long time to wait for feedback. You don’t have 3,000
classes? Cut it in half. That is still a half an hour. On the other hand, what if the
tests take 1/100th of a second apiece? Now we are talking about 5 to 10 min-
utes. When they take that long, I make sure that I use a subset to work with,
but I don’t mind running them all every couple of hours.

With Moore’s Law’s help, I hope to see nearly instantaneous test feedback
for even the largest systems in my lifetime. I suspect that working in those sys-
tems will be like working in code that can bite back. It will be capable of letting
us know when it is being changed in a bad way.

Unit tests run fast. If they don’t run fast, they aren’t unit tests.

Other kinds of tests often masquerade as unit tests. A test is not a unit test if:
1. It talks to a database.
2. It communicates across a network.
3. It touches the file system.

4. You have to do special things to your environment
(such as editing configuration files) to run it.

Tests that do these things aren’t bad. Often they are worth writing, and you generally
will write them in unit test harnesses. However, it is important to be able to separate
them from true unit tests so that you can keep a set of tests that you can run fast
whenever you make changes.

Higher-Level Testing

Unit tests are great, but there is a place for higher-level tests, tests that cover
scenarios and interactions in an application. Higher-level tests can be used to
pin down behavior for a set of classes at a time. When you are able to do that,
often you can write tests for the individual classes more easily.

Test Coverings

So how do we start making changes in a legacy project? The first thing to notice
is that, given a choice, it is always safer to have tests around the changes that
we make. When we change code, we can introduce errors; after all, we’re all

www.EBooksWorld.ir

TEesT COVERINGS

human. But when we cover our code with tests before we change it, we’re more
likely to catch any mistakes that we make.

Figure 2.1 shows us a little set of classes. We want to make changes to the
getResponseText method of InvoiceUpdateResponder and the getValue method of
Invoice. Those methods are our change points. We can cover them by writing
tests for the classes they reside in.

To write and run tests we have to be able to create instances of InvoiceUpdate-
Responder and Invoice in a testing harness. Can we do that? Well, it looks like it
should be easy enough to create an Invoice; it has a constructor that doesn’t
accept any arguments. InvoiceUpdateResponder might be tricky, though. It accepts
a DBConnection, a real connection to a live database. How are we going to handle
that in a test? Do we have to set up a database with data for our tests? That’s a
lot of work. Won’t testing through the database be slow? We don’t particularly
care about the database right now anyway; we just want to cover our changes
in InvoiceUpdateResponder and Invoice. We also have a bigger problem. The con-
structor for InvoiceUpdateResponder needs an InvoicelpdateServiet as an argument.
How easy will it be to create one of those? We could change the code so that it

InvoiceUpdateServiet

execute(HttpServletRequest, -
HttpServletResponse) DBConnection
buildUpdate() + getinvoices(Criteria) : List
1
«creates»
; Invoice
- + customer : String
InvoiceUpdateResponder + date : Date
* . . .
+ InvoiceUpdateResponder(+ durationOfService : int
DBConnection, + Invoice()
InvoiceUpdateServlet, +getValue() : int
+ update()
i

+ getResponseText () : String A
)
)
)
)
]
]
)
)
)

Changing getResponseText and
getValue

Figure 2.1 Inwoice update classes.

www.EBooksWorld.ir

Test
Coverings

Test
Coverings

WORKING WITH FEEDBACK

doesn’t take that servlet anymore. If the InvoiceUpdateResponder just needs a little
bit of information from InvoiceUpdateServiet, we can pass it along instead of
passing the whole servlet in, but shouldn’t we have a test in place to make sure
that we’ve made that change correctly?

All of these problems are dependency problems. When classes depend
directly on things that are hard to use in a test, they are hard to modify and
hard to work with.

Dependency is one of the most critical problems in software development. Much leg-
acy code work involves breaking dependencies so that change can be easier.

So, how do we do it? How do we get tests in place without changing code?
The sad fact is that, in many cases, it isn’t very practical. In some cases, it might
even be impossible. In the example we just saw, we could attempt to get past
the DBConnection issue by using a real database, but what about the servlet issue?
Do we have to create a full servlet and pass it to the constructor of InvoiceUpdat-
eResponder? Can we get it into the right state? It might be possible. What would
we do if we were working in a GUI desktop application? We might not have
any programmatic interface. The logic could be tied right into the GUI classes.
What do we do then?

The Legacy Code Dilemma

When we change code, we should have tests in place. To put tests in place, we often
have to change code.

In the Invoice example we can try to test at a higher level. If it is hard to
write tests without changing a particular class, sometimes testing a class that
uses it is easier; regardless, we usually have to break dependencies between
classes someplace. In this case, we can break the dependency on InvoiceUpdate-
Servlet by passing the one thing that InvoiceUpdateResponder really needs. It needs
the collection of invoice IDs that the InvoiceUpdateServlet holds. We can also
break the dependency that InvoiceUpdateResponder has on DBConnection by intro-
ducing an interface (IDBConnection) and changing the InvoiceUpdateResponder so
that it uses the interface instead. Figure 2.2 shows the state of these classes after
the changes.

www.EBooksWorld.ir

TEesT COVERINGS

InvoiceUpdateServiet

execute(HttpServletRequest,

HttpServietResponse) «interface»
buildUpdate() IDBConnection
+ getlnvoices(Criteria) : List

i
)
)
)
]
]
)
)
)
1 :
]
InvoiceUpdateResponder !

+ InvoiceUpdateResponder(i
IDBConnection, :
InvoiceUpdateServlet, 1
List invoicelDs) DBConnection

+ update() + getinvoices(Criteria) : List

+ getResponseText () : String g ():

Figure 2.2 Inwoice update classes with dependencies broken.

Is this safe to do these refactorings without tests? It can be. These refactor-
ings are named Primitivize Parameter (385) and Extract Interface (362), respec-
tively. They are described in the dependency breaking techniques catalog at the
end of the book. When we break dependencies, we can often write tests that
make more invasive changes safer. The trick is to do these initial refactorings
very conservatively.

Being conservative is the right thing to do when we can possibly introduce
errors, but sometimes when we break dependencies to cover code, it doesn’t
turn out as nicely as what we did in the previous example. We might introduce
parameters to methods that aren’t strictly needed in production code, or we
might break apart classes in odd ways just to be able to get tests in place. When
we do that, we might end up making the code look a little poorer in that area. If
we were being less conservative, we’d just fix it immediately. We can do that,

www.EBooksWorld.ir

Test
Coverings

v WORKING WITH FEEDBACK

The Legacy
Code Change

Algorithm

but it depends upon how much risk is involved. When errors are a big deal, and
they usually are, it pays to be conservative.

When you break dependencies in legacy code, you often have to suspend your sense
of aesthetics a bit. Some dependencies break cleanly; others end up looking less than
ideal from a design point of view. They are like the incision points in surgery: There
might be a scar left in your code after your work, but everything beneath it can get
better.

If later you can cover code around the point where you broke the dependencies, you
can heal that scar, too.

The Legacy Code Change Algorithm

When you have to make a change in a legacy code base, here is an algorithm
you can use.

1. Identify change points.

2. Find test points.

3. Break dependencies.

4. Write tests.

5. Make changes and refactor.

The day-to-day goal in legacy code is to make changes, but not just any
changes. We want to make functional changes that deliver value while bringing
more of the system under test. At the end of each programming episode, we
should be able to point not only to code that provides some new feature, but
also its tests. Over time, tested areas of the code base surface like islands rising
out of the ocean. Work in these islands becomes much easier. Over time, the
islands become large landmasses. Eventually, you’ll be able to work in conti-
nents of test-covered code.

Let’s look at each of these steps and how his book will help you with them.

Identify Change Points

The places where you need to make your changes depend sensitively on your
architecture. If you don’t know your design well enough to feel that you are
making changes in the right place, take a look at Chapter 16, I Don’t Under-
stand the Code Well Enough to Change It, and Chapter 17, My Application
Has No Structure.

www.EBooksWorld.ir

THe LEcacy CopE CHANGE ALGORITHM

Find Test Points

In some cases, finding places to write tests is easy, but in legacy code it can often
be hard. Take a look at Chapter 11, I Need to Make a Change. What Methods
Should I Test?, and Chapter 12, I Need to Make Many Changes in One Area.
Do I Have to Break Dependencies for All the Classes Involved? These chapters
offer techniques that you can use to determine where you need to write your
tests for particular changes.

Break Dependencies

Dependencies are often the most obvious impediment to testing. The two ways
this problem manifests itself are difficulty instantiating objects in test harnesses
and difficulty running methods in test harnesses. Often in legacy code, you have
to break dependencies to get tests in place. Ideally, we would have tests that tell
us whether the things we do to break dependencies themselves caused prob-
lems, but often we don’t. Take a look at Chapter 23, How Do I Know That I'm
Not Breaking Anything?, to see some practices that can be used to make the
first incisions in a system safer as you start to bring it under test. When you
have done this, take a look at Chapter 9, I Can’t Get This Class into a Test Har-
ness, and Chapter 10, I Can’t Run This Method in a Test Harness, for scenarios
that show how to get past common dependency problems. These sections
heavily reference the dependency breaking techniques catalog at the back of the
book, but they don’t cover all of the techniques. Take some time to look
through the catalog for more ideas on how to break dependencies.

Dependencies also show up when we have an idea for a test but we can’t
write it easily. If you find that you can’t write tests because of dependencies in
large methods, see Chapter 22, I Need to Change a Monster Method and I
Can’t Write Tests for It. If you find that you can break dependencies, but it
takes too long to build your tests, take a look at Chapter 7, It Takes Forever to
Make a Change. That chapter describes additional dependency-breaking work
that you can do to make your average build time faster.

Write Tests

I find that the tests I write in legacy code are somewhat different from the tests I
write for new code. Take a look at Chapter 13, I Need to Make a Change but I
Don’t Know What Tests to Write, to learn more about the role of tests in legacy
code work.

www.EBooksWorld.ir

The Legacy
Code Change

Algorithm

The Legacy
Code Change

Algorithm

WORKING WITH FEEDBACK

Make Changes and Refactor

I advocate using test-driven development (TDD) to add features in legacy code.
There is a description of TDD and some other feature addition techniques in
Chapter 8, How Do I Add a Feature? After making changes in legacy code, we
often are better versed with its problems, and the tests we’ve written to add fea-
tures often give us some cover to do some refactoring. Chapter 20, This Class Is
Too Big and I Don’t Want It to Get Any Bigger; Chapter 22, I Need to Change
a Monster Method and 1 Can’t Write Tests for It; and Chapter 21, I'm Chang-
ing the Same Code All Over the Place cover many of the techniques you can use
to start to move your legacy code toward better structure. Remember that the
things I describe in these chapters are “baby steps.” They don’t show you how
to make your design ideal, clean, or pattern-enriched. Plenty of books show
how to do those things, and when you have the opportunity to use those tech-
niques, I encourage you to do so. These chapters show you how to make design
better, where “better” is context dependent and often simply a few steps more
maintainable than the design was before. But don’t discount this work. Often
the simplest things, such as breaking down a large class just to make it easier to
work with, can make a significant difference in applications, despite being
somewhat mechanical.

The Rest of This Book

The rest of this book shows you how to make changes in legacy code. The next
two chapters contain some background material about three critical concepts in
legacy work: sensing, separation, and seams.

www.EBooksWorld.ir

Chapter 3

Sensing and Separation

Ideally, we wouldn’t have to do anything special to a class to start working with
it. In an ideal system, we’d be able to create objects of any class in a test harness
and start working. We’d be able to create objects, write tests for them, and then
move on to other things. If it were that easy, there wouldn’t be a need to write
about any of this, but unfortunately, it is often hard. Dependencies among
classes can make it very difficult to get particular clusters of objects under test.
We might want to create an object of one class and ask it questions, but to cre-
ate it, we need objects of another class, and those objects need objects of
another class, and so on. Eventually, you end up with nearly the whole system
in a harness. In some languages, this isn’t a very big deal. In others, most nota-
bly C++, link time alone can make rapid turnaround nearly impossible if you
don’t break dependencies.

In systems that weren’t developed concurrently with unit tests, we often have
to break dependencies to get classes into a test harness, but that isn’t the only
reason to break dependencies. Sometimes the class we want to test has effects
on other classes, and our tests need to know about them. Sometimes we can
sense those effects through the interface of the other class. At other times, we
can’t. The only choice we have is to impersonate the other class so that we can
sense the effects directly.

Generally, when we want to get tests in place, there are two reasons to break
dependencies: sensing and separation.

1. Sensing—We break dependencies to sense when we can’t access values
our code computes.

2. Separation—We break dependencies to separate when we can’t even get
a piece of code into a test harness to run.

21

www.EBooksWorld.ir

Sensing and
Separation

Sensing and
Separation

SENSING AND SEPARATION

Here is an example. We have a class named NetworkBridge in a network-man-
agement application:
public class NetworkBridge

{ public NetworkBridge(EndPoint [] endpoints) {
}
public void formRouting(String sourceID, String destID) {
}

}

NetworkBridge accepts an array of EndPoints and manages their configuration
using some local hardware. Users of NetworkBridge can use its methods to route
traffic from one endpoint to another. NetworkBridge does this work by changing
settings on the EndPoint class. Each instance of the EndPoint class opens a socket
and communicates across the network to a particular device.

That was just a short description of what NetworkBridge does. We could go
into more detail, but from a testing perspective, there are already some evident
problems. If we want to write tests for NetworkBridge, how do we do it? The class
could very well make some calls to real hardware when it is constructed. Do we
need to have the hardware available to create an instance of the class? Worse
than that, how in the world do we know what the bridge is doing to that hard-
ware or the endpoints? From our point of view, the class is a closed box.

It might not be too bad. Maybe we can write some code to sniff packets
across the network. Maybe we can get some hardware for NetworkBridge to talk
to so that at the very least it doesn’t freeze when we try to make an instance of
it. Maybe we can set up the wiring so that we can have a local cluster of end-
points and use them under test. Those solutions could work, but they are an
awful lot of work. The logic that we want to change in NetworkBridge might not
need any of those things; it’s just that we can’t get a hold of it. We can’t run an
object of that class and try it directly to see how it works.

This example illustrates both the sensing and separation problems. We can’t
sense the effect of our calls to methods on this class, and we can’t run it sepa-
rately from the rest of the application.

Which problem is tougher? Sensing or separation? There is no clear answer.
Typically, we need them both, and they are both reasons why we break depen-
dencies. One thing is clear, though: There are many ways to separate software.
In fact, there is an entire catalog of those techniques in the back of this book on
that topic, but there is one dominant technique for sensing.

www.EBooksWorld.ir

FAKING COLLABORATORS

Faking Collaborators

One of the big problems that we confront in legacy code work is dependency. If
we want to execute a piece of code by itself and see what it does, often we have
to break dependencies on other code. But it’s hardly ever that simple. Often that
other code is the only place we can easily sense the effects of our actions. If we
can put some other code in its place and test through it, we can write our tests.
In object orientation, these other pieces of code are often called fake objects.

Fake Objects

A fake object is an object that impersonates some collaborator of your class
when it is being tested. Here is an example. In a point-of-sale system, we have a
class called Sale (see Figure 3.1). It has a method called scan() that accepts a bar
code for some item that a customer wants to buy. Whenever scan() is called, the
Sale object needs to display the name of the item that was scanned, along with
its price on a cash register display.

How can we test this to see if the right text shows up on the display? Well, if
the calls to the cash register’s display API are buried deep in the Sale class, it’s
going to be hard. It might not be easy to sense the effect on the display. But if
we can find the place in the code where the display is updated, we can move to
the design shown in Figure 3.2.

Here we’ve introduced a new class, ArtR56Display. That class contains all of
the code needed to talk to the particular display device we’re using. All we have
to do is supply it with a line of text that contains what we want to display. We
can move all of the display code in Sale over to ArtR56Display and have a system
that does exactly the same thing that it did before. Does that get us anything?
Well, once we’ve done that, we can move the a design shown in Figure 3.3.

Sale

+ scan(barcode : String)

Figure 3.1 Sale.

Sale ArtR56Display
+ scan(barcode : String) + showLine(line : String)

Figure 3.2 Sale communicating with a display class.

www.EBooksWorld.ir

Faking
Collaborators

Faking
Collaborators

SENSING AND SEPARATION

The Sale class can now hold on to either an ArtR56Display or something else, a
FakeDisplay. The nice thing about having a fake display is that we can write tests
against it to find out what the Sale does.

How does this work? Well, Sale accepts a display, and a display is an object
of any class that implements the Display interface.

public interface Display

{

void showLine(String Tine);

}

Both ArtR56Display and FakeDisplay implement Display.
A Sale object can accept a display through the constructor and hold on to it
internally:

public class Sale

{
private Display display;
pubTlic Sale(Display display) {
this.display = display;
}
public void scan(String barcode) {
String itemLine = item.name()
+ " "+ item.price().asDisplayText();
display.showLine(itemLine);
}
}

«interface»
Sale Display
+ scan(barcode : String) + showLine(line : String)

ArtR56Display FakeDisplay
+ showLine(line : String) - lastLine : String

+ getLastLine() : String
+ showLine(line : String)

Figure 3.3 Sale with the display hierarchy.

www.EBooksWorld.ir

FAKING COLLABORATORS v

In the scan method, the code calls the showLine method on the display variable.
But what happens depends upon what kind of a display we gave the Sale object
when we created it. If we gave it an ArtR56Display, it attempts to display on the
real cash register hardware. If we gave it a FakeDisplay, it won’t, but we will be
able to see what would’ve been displayed. Here is a test we can use to see that:

import junit.framework.*;

pubTic class SaleTest extends TestCase
{ Faking
public void testDisplayAnItem() { Collaborators
FakeDisplay display = new FakeDisplay();
Sale sale = new Sale(display);

sale.scan("1");
assertEquals("MiTk $3.99", display.getlastLine());

The FakeDisplay class is a little peculiar. Let’s look at it:

public class FakeDisplay implements Display

{
private String lastLine = "";
public void showLine(String Tine) {
lastLine = Tine;
}
public String getlastlLine() {
return lastLine;
}
}

The showLine method accepts a line of text and assigns it to the TastLine vari-
able. The getlastLine method returns that line of text whenever it is called. This
is pretty slim behavior, but it helps us a lot. With the test we’ve written, we can
find out whether the right text will be sent to the display when the Sale class is
used.

www.EBooksWorld.ir

\ 4

Faking
Collaborators

SENSING AND SEPARATION

Fake Objects Support Real Tests

Sometimes when people see the use of fake objects, they say, “That’s not really test-
ing.” After all, this test doesn’t show us what really gets displayed on the real screen.
Suppose that some part of the cash register display software isn’t working properly;
this test would never show it. Well, that’s true, but that doesn’t mean that this isn’t a
real test. Even if we could devise a test that really showed us exactly which pixels
were set on a real cash register display, does that mean that the software would work
with all hardware? No, it doesn’t—but that doesn’t mean that that isn’t a test, either.
When we write tests, we have to divide and conquer. This test tells us how Sale
objects affect displays, that’s all. But that isn’t trivial. If we discover a bug, running
this test might help us see that the problem isn’t in Sale. If we can use information like
that to help us localize errors, we can save an incredible amount of time.

When we write tests for individual units, we end up with small, well-understood
pieces. This can make it easier to reason about our code.

The Two Sides of a Fake Object

Fake objects can be confusing when you first see them. One of the oddest things
about them is that they have two “sides,” in a way. Let’s take a look at the Fake-
Display class again, in Figure 3.4.

The showLine method is needed on FakeDisplay because FakeDisplay implements
Display. It is the only method on Display and the only one that Sale will see. The
other method, getlastline, is for the use of the test. That is why we declare dis-
play as a FakeDisplay, not a Display:

FakeDisplay
- lastLine : String

l + getLastLine() : String /
l + showLine(line : String) \

Figure 3.4 Two sides to a fake object.

The test cares
about this

The Sale object
only sees this

www.EBooksWorld.ir

FAKING COLLABORATORS v

import junit.framework.*;

pubTic class SaleTest extends TestCase

{
public void testDisplayAnItem() {
FakeDisplay display = new FakeDisplay();
Sale sale = new Sale(display);
sale.scan("1");
assertEquals("Milk $3.99", display.getlastLine());
}
}

The Sale class will see the fake display as Display, but in the test, we need
to hold on to the object as FakeDisplay. If we don’t, we won’t be able to call
getlastLine() to find out what the sale displays.

Fakes Distilled

The example I’'ve shown in this section is very simple, but it shows the central
idea behind fakes. They can be implemented in a wide variety of ways. In OO
languages, they are often implemented as simple classes like the FakeDisplay class
in the previous example. In non-OO languages, we can implement a fake by
defining an alternative function, one which records values in some global data
structure that we can access in tests. See Chapter 19, My Project is Not Object-
Oriented. How Do I Make Safe Changes?, for details.

Mock Objects

Fakes are easy to write and are a very valuable tool for sensing. If you have to
write a lot of them, you might want to consider a more advanced type of fake
called a mock object. Mock objects are fakes that perform assertions internally.
Here is an example of a test using a mock object:

import junit.framework.*;

pubTic class SaleTest extends TestCase
{
pubTlic void testDisplayAnItem() {
MockDisplay display = new MockDisplay();
display.setExpectation("showLine", "Milk $3.99");
Sale sale = new Sale(display);
sale.scan("1");
display.verify();

www.EBooksWorld.ir

Faking
Collaborators

Faking
Collaborators

SENSING AND SEPARATION

In this test, we create a mock display object. The nice thing about mocks is
that we can tell them what calls to expect, and then we tell them to check and
see if they received those calls. That is precisely what happens in this test case.
We tell the display to expect its showLine method to be called with an argument
of "Milk $3.99”. After the expectation has been set, we just go ahead and use the
object inside the test. In this case, we call the method scan(). Afterward, we call
the verify() method, which checks to see if all of the expectations have been
met. If they haven’t, it makes the test fail.

Mocks are a powerful tool, and a wide variety of mock object frameworks
are available. However, mock object frameworks are not available in all lan-
guages, and simple fake objects suffice in most situations.

www.EBooksWorld.ir

Chapter 4

The Seam Model

One of the things that nearly everyone notices when they try to write tests for
existing code is just how poorly suited code is to testing. It isn’t just particular
programs or languages. In general, programming languages just don’t seem to
support testing very well. It seems that the only ways to end up with an easily
testable program are to write tests as you develop it or spend a bit of time trying
to “design for testability.” There is a lot of hope for the former approach, but if
much of the code in the field is evidence, the latter hasn’t been very successful.

One thing that Pve noticed is that, in trying to get code under test, I've
started to think about code in a rather different way. I could just consider this
some private quirk, but Ive found that this different way of looking at code
helps me when I work in new and unfamiliar programming languages. Because
I won’t be able to cover every programming language in this book, I’ve decided
to outline this view here in the hope that it helps you as well as it helps me.

A Huge Sheet of Text

When I first started programming, I was lucky that I started late enough to have
a machine of my own and a compiler to run on that machine; many of my
friends starting programming in the punch-card days. When I decided to study
programming in school, I started working on a terminal in a lab. We could
compile our code remotely on a DEC VAX machine. There was a little account-
ing system in place. Each compile cost us money out of our account, and we
had a fixed amount of machine time each term.

At that point in my life, a program was just a listing. Every couple of hours,
I’d walk from the lab to the printer room, get a printout of my program and
scrutinize it, trying to figure out what was right or wrong. I didn’t know enough
to care much about modularity. We had to write modular code to show that we
could do it, but at that point I really cared more about whether the code was

29

www.EBooksWorld.ir

The Seam
Model

THE SEAM MODEL

going to produce the right answers. When I got around to writing object-ori-
ented code, the modularity was rather academic. I wasn’t going to be swapping
in one class for another in the course of a school assignment. When I got out in
the industry, I started to care a lot about those things, but in school, a program
was just a listing to me, a long set of functions that I had to write and under-
stand one by one.

This view of a program as a listing seems accurate, at least if we look at how
people behave in relation to programs that they write. If we knew nothing
about what programming was and we saw a room full of programmers work-
ing, we might think that they were scholars inspecting and editing large impor-
tant documents. A program can seem like a large sheet of text. Changing a little
text can cause the meaning of the whole document to change, so people make
those changes carefully to avoid mistakes.

Superficially, that is all true, but what about modularity? We are often told it
is better to write programs that are made of small reusable pieces, but how
often are small pieces reused independently? Not very often. Reuse is tough.
Even when pieces of software look independent, they often depend upon each
other in subtle ways.

Seams

When you start to try to pull out individual classes for unit testing, often you
have to break a lot of dependencies. Interestingly enough, you often have a lot
of work to do, regardless of how “good” the design is. Pulling classes out of
existing projects for testing really changes your idea of what “good” is with
regard to design. It also leads you to think of software in a completely different
way. The idea of a program as a sheet of text just doesn’t cut it anymore. How
should we look at it? Let’s take a look at an example, a function in C++.

bool CAsyncSs1Rec::Init()

{
if (m_bSs1Initialized) {
return true;

}
m_smutex.UnTock();
m_nSsTRefCount++;

m_bSs1Initialized = true;
FreeLibrary(m_hSs1D111);

m_hSs1D111=0;
FreeLibrary(m_hSs1D112);

www.EBooksWorld.ir

SEAMS v

m_hSs1D112=0;

if (!m_bFailureSent) {

m_bFailureSent=TRUE;

PostReceiveError (SOCKETCALLBACK, SSL_FAILURE);
}

CreateLibrary(m_hSs1D111, syncesel1.d11");
CreateLibrary(m_hSs1D112,”syncese12.d11");

m_hSs1D111->Init();
m_hSs1D112->Init();

return true;

It sure looks like just a sheet of text, doesn’t it? Suppose that we want to run
all of that method except for this line:

PostReceiveError (SOCKETCALLBACK, SSL_FAILURE);

How would we do that?

It’s easy, right? All we have to do is go into the code and delete that line.

Okay, let’s constrain the problem a little more. We want to avoid executing
that line of code because PostReceiveError is a global function that communi-
cates with another subsystem, and that subsystem is a pain to work with
under test. So the problem becomes, how do we execute the method without
calling PostReceiveError under test? How do we do that and still allow the call
to PostReceiveError in production?

To me, that is a question with many possible answers, and it leads to the idea
of a seam.

Here’s the definition of a seam. Let’s take a look at it and then some examples.

Seam

A seam is a place where you can alter behavior in your program without editing in
that place.

Is there a seam at the call to PostReceiveError? Yes. We can get rid of the
behavior there in a couple of ways. Here is one of the most straightforward
ones. PostReceiveError is a global function, it isn’t part of the CAsynchSsTRec class.
What happens if we add a method with the exact same signature to the CAsynch-
SsTRec class?

class CAsyncSs1Rec

{

virtual void PostReceiveError(UINT type, UINT errorcode);

b

www.EBooksWorld.ir

THE SEAM MODEL

In the implementation file, we can add a body for it like this:

void CAsyncSsIRec::PostReceiveError (UINT type, UINT errorcode)
{

::PostReceiveError(type, errorcode);

}

That change should preserve behavior. We are using this new method to dele-
gate to the global PostReceiveError function using C++’s scoping operator (::). We
have a little indirection there, but we end up calling the same global function.

Okay, now what if we subclass the CAsyncSs1Rec class and override the
PostReceiveError method?

class TestingAsyncSsTRec : public CAsyncSsIRec

{
virtual void PostReceiveError(UINT type, UINT errorcode)
{
}

b

If we do that and go back to where we are creating our CAsyncSs1Rec and cre-
ate a TestingAsyncSs1Rec instead, we’ve effectively nulled out the behavior of the
call to PostReceiveError in this code:

bool CAsyncSsTRec::Init()

if (m_bSsTInitialized) {
return true;

m_smutex.Unlock();
m_nSs1RefCount++;

m_bSs1Initialized = true;

FreeLibrary(m_hSs1D111);
m_hSs1D111=0;
FreeLibrary(m_hSs1D112);
m_hSs1D112=0;

if ('m_bFailureSent) {
m_bFailureSent=TRUE;

PostReceiveError (SOCKETCALLBACK, SSL_FAILURE);
}

CreateLibrary(m_hSs1D111,"syncesel1.d11");
CreateLibrary(m_hSs1D112,"syncese12.d11");

m_hSs1D111->Init();
m_hSs1D112->Init();

return true;

www.EBooksWorld.ir

SEAM TYPES

Now we can write tests for that code without the nasty side effect.

This seam is what I call an object seam. We were able to change the method
that is called without changing the method that calls it. Object seams are avail-
able in object-oriented languages, and they are only one of many different kinds
of seams.

Why seams? What is this concept good for?

One of the biggest challenges in getting legacy code under test is breaking
dependencies. When we are lucky, the dependencies that we have are small and
localized; but in pathological cases, they are numerous and spread out through-
out a code base. The seam view of software helps us see the opportunities that
are already in the code base. If we can replace behavior at seams, we can selec-
tively exclude dependencies in our tests. We can also run other code where
those dependencies were if we want to sense conditions in the code and write
tests against those conditions. Often this work can help us get just enough tests
in place to support more aggressive work.

Seam Types

The types of seams available to us vary among programming languages. The
best way to explore them is to look at all of the steps involved in turning the
text of a program into running code on a machine. Each identifiable step
exposes different kinds of seams.

Preprocessing Seams

In most programming environments, program text is read by a compiler. The
compiler then emits object code or bytecode instructions. Depending on the lan-
guage, there can be later processing steps, but what about earlier steps?

Only a couple of languages have a build stage before compilation. C and
C++ are the most common of them.

In C and C++, a macro preprocessor runs before the compiler. Over the
years, the macro preprocessor has been cursed and derided incessantly. With it,
we can take lines of text as innocuous looking as this:

TEST(getBalance,Account)
{

Account account;
LONGS_EQUAL(@, account.getBalance());

and have them appear like this to the compiler.

www.EBooksWorld.ir

Seam Types

Seam Types

THE SEAM MODEL

class AccountgetBalanceTest : public Test
{ public: AccountgetBalanceTest () : Test ("getBalance" "Test") {}
void run (TestResult& result_); }
AccountgetBalanceInstance;
void AccountgetBalanceTest::run (TestResult& result_)

{
Account account;

{ result_.countCheck();

Tong actualTemp = (account.getBalance());

Tong expectedTemp = (0);

if ((expectedTemp) !'= (actualTemp))
{ result_.addFailure (Failure (name_, "c:\\seamexample.cpp", 24,
StringFrom(expectedTemp),
StringFrom(actualTemp))); return; } }

}

We can also nest code in conditional compilation statements like this to sup-
port debugging and different platforms (aarrrgh!):

m_pRtg->Adj(2.0);

#ifdef DEBUG
#ifndef WINDOWS

{ FILE *fp = fopen(TGLOGNAME,"w");

if (fp) { fprintf(fp,"%s", m_pRtg->pszState); fclose(fp); }}
#endif

m_pTSRTable->p_nFlush |= GF_FLOT;
#endif

It’s not a good idea to use excessive preprocessing in production code
because it tends to decrease code clarity. The conditional compilation directives
(#ifdef, #ifndef, #if, and so on) pretty much force you to maintain several differ-
ent programs in the same source code. Macros (defined with #define) can be
used to do some very good things, but they just do simple text replacement. It is
easy to create macros that hide terribly obscure bugs.

These considerations aside, ’'m actually glad that C and C++ have a preproces-
sor because the preprocessor gives us more seams. Here is an example. In a C pro-
gram, we have dependencies on a library routine named db_update. The db_update
function talks directly to a database. Unless we can substitute in another imple-
mentation of the routine, we can’t sense the behavior of the function.

#include <DFHLItem.h>
#include <DHLSRecord.h>

www.EBooksWorld.ir

SEAM TYPES

extern int db_update(int, struct DFHLItem *);

void account_update(
int account_no, struct DHLSRecord *record, int activated)

{
if (activated) {
if (record->dateStamped && record->quantity > MAX_ITEMS) {
db_update(account_no, record->item);
} else {
db_update(account_no, record->backup_item);
}
}
db_update (MASTER_ACCOUNT, record->item);

We can use preprocessing seams to replace the calls to db_update. To do this,
we can introduce a header file called localdefs.h.

#include <DFHLItem.h>
#include <DHLSRecord.h>

extern int db_update(int, struct DFHLItem *);
#include "localdefs.h"

void account_update(
int account_no, struct DHLSRecord *record, int activated)

{
if (activated) {
if (record->dateStamped & record->quantity > MAX_ITEMS) {
db_update(account_no, record->item);
} else {
db_update(account_no, record->backup_item);
}
}
db_update (MASTER_ACCOUNT, record->item);

Within it, we can provide a definition for db_update and some variables that
will be helpful for us:

#ifdef TESTING

struct DFHLItem *Tast_item = NULL;
int last_account_no = -1;

#define db_update(account_no,item)\
{Tast_item = (item); Tast_account_no = (account_no);}

#endif

www.EBooksWorld.ir

\ 4

Seam Types

Seam Types

THE SEAM MODEL

With this replacement of db_update in place, we can write tests to verify that
db_update was called with the right parameters. We can do it because the #include
directive of the C preprocessor gives us a seam that we can use to replace text
before it is compiled.

Preprocessing seams are pretty powerful. I don’t think I’d really want a pre-
processor for Java and other more modern languages, but it is nice to have this
tool in C and C++ as compensation for some of the other testing obstacles they
present.

I didn’t mention it earlier, but there is something else that is important to
understand about seams: Every seam has an enabling point. Let’s look at the def-
inition of a seam again:

Seam

A seam is a place where you can alter behavior in your program without editing in
that place.

When you have a seam, you have a place where behavior can change. We
can’t really go to that place and change the code just to test it. The source code
should be the same in both production and test. In the previous example, we
wanted to change the behavior at the text of the db_update call. To exploit that
seam, you have to make a change someplace else. In this case, the enabling
point is a preprocessor define named TESTING. When TESTING is defined, the local-
defs.h file defines macros that replace calls to db_update in the source file.

Enabling Point

Every seam has an enabling point, a place where you can make the decision to use
one behavior or another.

Link Seams

In many language systems, compilation isn’t the last step of the build process.
The compiler produces an intermediate representation of the code, and that rep-
resentation contains calls to code in other files. Linkers combine these represen-
tations. They resolve each of the calls so that you can have a complete program
at runtime.

In languages such as C and C++, there really is a separate linker that does the
operation I just described. In Java and similar languages, the compiler does the
linking process behind the scenes. When a source file contains an import state-
ment, the compiler checks to see if the imported class really has been compiled.
If the class hasn’t been compiled, it compiles it, if necessary, and then checks to
see if all of its calls will really resolve correctly at runtime.

www.EBooksWorld.ir

SEAM TYPES v

Regardless of which scheme your language uses to resolve references, you
can usually exploit it to substitute pieces of a program. Let’s look at the Java
case. Here is a little class called FitFilter:

package fitnesse;

import fit.Parse;
import fit.Fixture;

import java.io.*;
import java.util.Date;

import java.io.*;
import java.util.*;

pubTlic class FitFilter {

public String input;

public Parse tables;

public Fixture fixture = new Fixture();
public PrintWriter output;

public static void main (String argv[]) {
new FitFiTter().run(argv);

}

public void run (String argv[]) {
args(argv);
process();
exit();

}

public void process() {
try {
tables = new Parse(input);
fixture.doTables(tables);
} catch (Exception e) {
exception(e);
}

tables.print(output);

In this file, we import fit.Parse and fit.Fixture. How do the compiler and the
JVM find those classes? In Java, you can use a classpath environment variable
to determine where the Java system looks to find those classes. You can actually
create classes with the same names, put them into a different directory, and

www.EBooksWorld.ir

Seam Types

Seam Types

THE SEAM MODEL

alter the classpath to link to a different fit.Parse and fit.Fixture. Although it
would be confusing to use this trick in production code, when you are testing, it
can be a pretty handy way of breaking dependencies.

Suppose we wanted to supply a different version of the Parse class for testing. Where
would the seam be?

The seam is the new Parse call in the process method.
Where is the enabling point?
The enabling point is the classpath.

This sort of dynamic linking can be done in many languages. In most, there
is some way to exploit link seams. But not all linking is dynamic. In many older
languages, nearly all linking is static; it happens once after compilation.

Many C and C++ build systems perform static linking to create executables.
Often the easiest way to use the link seam is to create a separate library for any
classes or functions you want to replace. When you do that, you can alter your
build scripts to link to those rather than the production ones when you are test-
ing. This can be a bit of work, but it can pay off if you have a code base that is
littered with calls to a third-party library. For instance, imagine a CAD applica-
tion that contains a lot of embedded calls to a graphics library. Here is an
example of some typical code:

void CrossPlaneFigure::rerender()
{
// draw the Tabel
drawText(m_nX, m_nY, m_pchLabel, getClipLen());
drawLine(m_nX, m_nY, m_nX + getClipLen(), m_nY);
drawLine(m_nX, m_nY, m_nX, m_nY + getDropLen());
if (!'m_bShadowBox) {
drawLine(m_nX + getClipLen(), m_nY,
m_nX + getClipLen(), m_nY + getDropLen());
drawLine(m_nX, m_nY + getDropLen(),
m_nX + getClipLen(), m_nY + getDropLen());
}

// draw the figure
for (int n = 0; n < edges.size(); n++) {

}

This code makes many direct calls to a graphics library. Unfortunately, the
only way to really verify that this code is doing what you want it to do is to

www.EBooksWorld.ir

SEAM TYPES

look at the computer screen when figures are redrawn. In complicated code,
that is pretty error prone, not to mention tedious. An alternative is to use link
seams. If all of the drawing functions are part of a particular library, you can
create stub versions that link to the rest of the application. If you are interested
in only separating out the dependency, they can be just empty functions:

void drawText(int x, int y, char *text, int textlLength)

{
}

void drawLine(int firstX, int firstY, int secondX, int secondY)
{
}

If the functions return values, you have to return something. Often a code
that indicates success or the default value of a type is a good choice:

int getStatus()

{
return FLAG_OKAY;

}

The case of a graphics library is a little atypical. One reason that it is a good
candidate for this technique is that it is almost a pure “tell” interface. You issue
calls to functions to tell them to do something, and you aren’t asking for much
information back. Asking for information is difficult because the defaults often
aren’t the right thing to return when you are trying to exercise your code.

Separation is often a reason to use a link seam. You can do sensing also; it
just requires a little more work. In the case of the graphics library we just faked,
we could introduce some additional data structures to record calls:

std: :queue<GraphicsAction> actions;

void drawLine(int firstX, int firstY, int secondX, int secondY)

{
actions.push_back (GraphicsAction(LINE_DRAW,
firstX, firstY, secondX, secondY);

With these data structures, we can sense the effects of a function in a test:

TEST(simpTleRender,Figure)
{

std::string text = "simple";
Figure figure(text, 0, 0);

figure.rerender();
LONGS_EQUAL(5, actions.size());

www.EBooksWorld.ir

Seam Types

Seam Types

THE SEAM MODEL

GraphicsAction action;
action = actions.pop_front();
LONGS_EQUAL (LABEL_DRAW, action.type);

action = actions.pop_front();
LONGS_EQUAL(Q, action.firstX);
LONGS_EQUAL(0, action.firstY);
LONGS_EQUAL(text.size(), action.secondX);

The schemes that we can use to sense effects can grow rather complicated,
but it is best to start with a very simple scheme and allow it to get only as com-
plicated as it needs to be to solve the current sensing needs.

The enabling point for a link seam is always outside the program text. Some-
times it is in a build or a deployment script. This makes the use of link seams
somewhat hard to notice.

Usage Tip

If you use link seams, make sure that the difference between test and production envi-
ronments is obvious.

Object Seams

Object seams are pretty much the most useful seams available in object-oriented
programming languages. The fundamental thing to recognize is that when we
look at a call in an object-oriented program, it does not define which method
will actually be executed. Let’s look at a Java example:

cell.Recalculate();
When we look at this code, it seems that there has to be a method named
Recalculate that will execute when we make that call. If the program is going to

run, there has to be a method with that name; but the fact is, there can be more
than one:

www.EBooksWorld.ir

SEAM TYPES v

{abstract}
Cell

+ Recalculate()

i

ValueCell FormulaCell

+ Recalculate() + Recalculate()

Figure 4.1 Cell hierarchy.

Which method will be called in this line of code?
cell.Recalculate();

Without knowing what object cell points to, we just don’t know. It could be
the Recalculate method of ValueCell or the Recalculate method of FormulaCell. It
could even be the Recalculate method of some other class that doesn’t inherit
from Cell (if that’s the case, cell was a particularly cruel name to use for that
variable!). If we can change which Recalculate is called in that line of code with-
out changing the code around it, that call is a seam.

In object-oriented languages, not all method calls are seams. Here is an
example of a call that isn’t a seam:

pubTic class CustomSpreadsheet extends Spreadsheet

{ public Spreadsheet buildMartSheet() {
ééi] cell = new FormulaCell(this, "Al", "=A2+A3");
éé]l'l .Recalculate();
}
}

In this code, we’re creating a cell and then using it in the same method. Is the
call to Recalculate an object seam? No. There is no enabling point. We can’t
change which Recalculate method is called because the choice depends on the
class of the cell. The class of the cell is decided when the object is created, and
we can’t change it without modifying the method.

What if the code looked like this?

www.EBooksWorld.ir

Seam Types

Seam Types

THE SEAM MODEL

public class CustomSpreadsheet extends Spreadsheet

{
public Spreadsheet buildMartSheet(Cell cell) {

cell.Recalculate();

Is the call to cell.Recalculate in buildMartSheet a seam now? Yes. We can cre-
ate a CustomSpreadsheet in a test and call buildMartSheet with whatever kind of
Ce1l we want to use. We’ll have ended up varying what the call to cell.Recalcu-
late does without changing the method that calls it.

Where is the enabling point?

In this example, the enabling point is the argument list of buildMartSheet.
We can decide what kind of an object to pass and change the behavior of
Recalculate any way that we want to for testing.

Okay, most object seams are pretty straightforward. Here is a tricky one. Is
there an object seam at the call to Recalculate in this version of buildMartSheet?
public class CustomSpreadsheet extends Spreadsheet

{
public Spreadsheet buildMartSheet(Cell cell) {

Ill(leéa1 culate(cell);

}

private static void Recalculate(Cell cell) {

}

The Recalculate method is a static method. Is the call to Recalculate in
buildMartSheet a seam? Yes. We don’t have to edit buildMartSheet to change
behavior at that call. If we delete the keyword static on Recalculate and make
it a protected method instead of a private method, we can subclass and over-
ride it during test:

public class CustomSpreadsheet extends Spreadsheet

{
pubTlic Spreadsheet buildMartSheet(Cell cell) {

Recalculate(cell);

www.EBooksWorld.ir

SEAM TYPES v

protected void Recalculate(Cell cell) {

}

}

public class TestingCustomSpreadsheet extends CustomSpreadsheet {
protected void Recalculate(Cell cell) {

}

Isn’t this all rather indirect? If we don’t like a dependency, why don’t we just
go into the code and change it? Sometimes that works, but in particularly nasty
legacy code, often the best approach is to do what you can to modify the code
as little as possible when you are getting tests in place. If you know the seams
that your language offers and how to use them, you can often get tests in place
more safely than you could otherwise.

The seams types I’'ve shown are the major ones. You can find them in many
programming languages. Let’s take a look at the example that led off this chap-
ter again and see what seams we can see:

Seam Types

bool CAsyncSs1Rec::Init()
{
if (m_bSs1Initialized) {
return true;
}
m_smutex.UnTock();
m_nSs1RefCount++;

m_bSs1Initialized = true;

FreeLibrary(m_hSs1D111);
m_hSs1D111=0;
FreeLibrary(m_hSs1D112);
m_hSs1D112=0;

if (!m_bFailureSent) {

m_bFailureSent=TRUE;

PostReceiveError (SOCKETCALLBACK, SSL_FAILURE);
}

CreatelLibrary(m_hSs1D111,"syncesel1.d11");
CreateLibrary(m_hSs1D112, "syncesel2.d11");

m_hSs1D111->Init();

m_hSs1D112->Init();
return true;

www.EBooksWorld.ir

Seam Types

THE SEAM MODEL

What seams are available at the PostReceiveError call? Let’s list them.

1. PostReceiveError is a global function, so we can easily use the link seam
there. We can create a library with a stub function and link to it to get
rid of the behavior. The enabling point would be our makefile or some
setting in our IDE. We’d have to alter our build so that we would link
to a testing library when we are testing and a production library when
we want to build the real system.

2. We could add a #include statement to the code and use the preprocessor
to define a macro named PostReceiveError when we are testing. So, we
have a preprocessing seam there. Where is the enabling point? We can
use a preprocessor define to turn the macro definition on or off.

3. We could also declare a virtual function for PostRecieveError like we did
at the beginning of this chapter, so we have an object seam there also.
Where is the enabling point? In this case, the enabling point is the place
where we decide to create an object. We can create either an CAsyncSs1-
Rec object or an object of some testing subclass that overrides PostRe-
cieveError.

It is actually kind of amazing that there are so many ways to replace the
behavior at this call without editing the method:

bool CAsyncSs1Rec::Init()

{
if (!'m_bFailureSent) {
m_bFailureSent=TRUE;
PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);
}
return true;
}

It is important to choose the right type of seam when you want to get pieces
of code under test. In general, object seams are the best choice in object-oriented
languages. Preprocessing seams and link seams can be useful at times but they
are not as explicit as object seams. In addition, tests that depend upon them can
be hard to maintain. I like to reserve preprocessing seams and link seams for
cases where dependencies are pervasive and there are no better alternatives.

When you get used to seeing code in terms of seams, it is easier to see how to
test things and to see how to structure new code to make testing easier.

www.EBooksWorld.ir

Chapter 5

Tools

What tools do you need when you work with legacy code? You need an editor
(or an IDE) and your build system, but you also need a testing framework. If
there are refactoring tools for your language, they can be very helpful as well.

In this chapter, I describe some of the tools that are currently available and
the role that they can play in your legacy code work.

Automated Refactoring Tools

Refactoring by hand is fine, but when you have a tool that does some refactor-
ing for you, you have a real time saver. In the 1990s, Bill Opdyke started work
on a C++ refactoring tool as part of his thesis work on refactoring. Although it
never became commercially available, to my knowledge, his work inspired
many other efforts in other languages. One of the most significant was the
Smalltalk refactoring browser developed by John Brant and Don Roberts at the
University of Illinois. The Smalltalk refactoring browser supported a very large
number of refactorings and has served as a state-of-the-art example of auto-
mated refactoring technology for a long while. Since then, there have been
many attempts to add refactoring support to various languages in wider use. At
the time of this writing, many Java refactoring tools are available; most are
integrated into IDEs, but a few are not. There are also refactoring tools for Del-
phi and some relatively new ones for C++. Tools for C# refactoring are under
active development at the time of this writing.

With all of these, tools it seems that refactoring should be much easier. It is,
in some environments. Unfortunately, the refactoring support in many of these
tools varies. Let’s remember what refactoring is again. Here is Martin Fowler’s
definition from Refactoring: Improving the Design of Existing Code (Addison-
Wesley 1999):

refactoring (n.). A change made to the internal structure of software to make it easier
to understand and cheaper to modify without changing its existing behavior.

45

www.EBooksWorld.ir

Automated
Refactoring

Tools

TooLs

A change is a refactoring only if it doesn’t change behavior. Refactoring tools
should verify that a change does not change behavior, and many of them do.
This was a cardinal rule in the Smalltalk refactoring browser, Bill Opdyke’s
work, and many of the early Java refactoring tools. At the fringes, however,
some tools don’t really check—and if they don’t check, you could be introduc-
ing subtle bugs when you refactor.

It pays to choose your refactoring tools with care. Find out what the tool
developers say about the safety of their tool. Run your own tests. When I
encounter a new refactoring tool, I often run little sanity checks. When you
attempt to extract a method and give it the name of a method that already
exists in that class, does it flag that as an error? What if it is the name of a
method in a base class—does the tool detect that? If it doesn’t, you could mis-
takenly override a method and break code.

In this book, I discuss work with and without automated refactoring sup-
port. In the examples, I mention whether I am assuming the availability of a
refactoring tool.

In all cases, I assume that the refactorings supplied by the tool preserve behav-
ior. If you discover that the ones supplied by your tool don’t preserve behavior,
don’t use the automated refactorings. Follow the advice for cases in which you
don’t have a refactoring tool—it will be safer.

Tests and Automated Refactoring

When you have a tool that does refactorings for you, it’s tempting to believe that you
don’t have to write tests for the code you are about to refactor. In some cases, this is
true. If your tool performs safe refactorings and you go from one automated refactor-
ing to another without doing any other editing, you can assume that your edits
haven’t changed behavior. However, this isn’t always the case.

Here is an example:

public class A {

private int alpha = 0;

private int getValue() {
alpha++;
return 12;

}

pubTlic void doSomething() {
int v = getValue();
int total = 0;
for (int n = 0; n < 10; n++) {

total += v;

www.EBooksWorld.ir

Mock OBJECTS

In at least two Java refactoring tools, we can use a refactoring to remove the v vari-
able from doSomething. After the refactoring, the code looks like this:
pubTic class A {

private int alpha = 0;

private int getValue() {

alpha++;
return 12;
}
public void doSomething() {
int total = 0;
for (int n = 0; n < 10; n++) {
total += getValue();
}
}

See the problem? The variable was removed, but now the value of alpha is incre-
mented 10 times rather than 1. This change clearly didn’t preserve behavior.

It is a good idea to have tests around your code before you start to use automated
refactorings. You can do some automated refactoring without tests, but you have to
know what the tool is checking and what it isn’t. When I start to use a new tool, the
first thing that I do is put its support for extracting methods through its paces. If I can
trust it well enough to use it without tests, I can get the code into a much more test-
able state.

Mock Objects

One of the big problems that we confront in legacy code work is dependency. If
we want to execute a piece of code by itself and see what it does, often we have
to break dependencies on other code. But it’s hardly ever that simple. If we
remove the other code, we need to have something in its place that supplies the
right values when we are testing so that we can exercise our piece of code thor-
oughly. In object-oriented code, these are often called mock objects.

Several mock object libraries are freely available. The web site www.mock-
objects.com is a good place to find references for most of them.

www.EBooksWorld.ir

\ 4

Mock Objects

www.mockobjects.com
www.mockobjects.com

Unit-Testing
Harnesses

TooLs

Unit-Testing Harnesses

Testing tools have a long and varied history. Not a year goes by that I don’t run
into four or five teams that have bought some expensive license-per-seat testing
tool that ends up not living up to its price. In fairness to tool vendors, testing is
a tough problem, and people are often seduced by the idea that they can test
through a GUI or web interface without having to do anything special to their
application. It can be done, but it is usually more work than anyone on a team
is prepared to admit. In addition, a user interface often isn’t the best place to
write tests. Uls are often volatile and too far from the functionality being tested.
When Ul-based tests fail, it can be hard to figure out why. Regardless, people
often spend considerable money trying to do all of their testing with those sorts
of tools.

The most effective testing tools I’ve run across have been free. The first one is
the xUnit testing framework. Originally written in Smalltalk by Kent Beck and
then ported to Java by Kent Beck and Erich Gamma, xUnit is a small, powerful
design for a unit-testing framework. Here are its key features:

e It lets programmers write tests in the language they are developing in.
e All tests run in isolation.

e Tests can be grouped into suites so that they can be run and rerun on demand.

The xUnit framework has been ported to most major languages and quite a
few small, quirky ones.

The most revolutionary thing about xUnit’s design is its simplicity and focus.
It allows us to write tests with little muss and fuss. Although it was originally
designed for unit testing, you can use it to write larger tests because xUnit really
doesn’t care how large or small a test is. If the test can be written in the lan-
guage you are using, xUnit can run it.

In this book, most of the examples are in Java and C++. In Java, JUnit is the
preferred xUnit harness, and it looks very much like most of the other xUnits.
In C++, I often use a testing harness I wrote named CppUnitLite. It looks quite
a bit different, and I describe it in this chapter also. By the way, 'm not slight-
ing the original author of CppUnit by using CppUnitLite. I was that guy a long
time ago, and I discovered only after I released CppUnit that it could be quite a
bit smaller, easier to use, and far more portable if it used some C idioms and
only a bare subset of the C++ language.

www.EBooksWorld.ir

UNIT-TESTING HARNESSES

JUnit
In JUnit, you write tests by subclassing a class named Test(Case.

import junit.framework.*;

public class FormulaTest extends TestCase {
public void testEmpty() {
assertEquals(@, new Formula("").value());

}

public void testDigit() {
assertEquals(l, new Formula("1").value());

}

Each method in a test class defines a test if it has a signature of this form:
void testXXX(), where XXX is the name you want to give the test. Each test method
can contain code and assertions. In the previous testEmpty method, there is code
to create a new Formula object and call its value method. There is also assertion
code that checks to see if that value is equal to 0. If it is, the test passes. If it
isn’t, the test fails.

In a nutshell, here is what happens when you run JUnit tests. The JUnit test
runner loads a test class like the one shown previously, and then it uses reflec-
tion to find all of the test methods. What it does next is kind of sneaky. It cre-
ates a completely separate object for each one of those test methods. From the
previous code, it creates two of them: an object whose only job is to run the
testEmpty method, and an object whose only job is to run the testDigit object. If
you are wondering what the classes of the objects are, in both cases, it is the
same: FormulaTest. Each object is configured to run exactly one of the test meth-
ods on FormulaTest. The key thing is that we have a completely separate object
for each method. There is no way that they can affect each other. Here is an
example.

public class EmployeeTest extends TestCase {
private Employee employee;

protected void setUp() {
employee = new Employee("Fred", 0, 10);
TDate cardDate = new TDate(10, 10, 2000);
employee.addTimeCard(new TimeCard(cardDate,40));
}

public void testOvertime() {
TDate newCardDate = new TDate(11, 10, 2000);
employee.addTimeCard(new TimeCard(newCardDate, 50));
assertTrue(employee.hasOvertimeFor(newCardDate));

www.EBooksWorld.ir

\ 4

Unit-Testing
Harnesses

Unit-Testing
Harnesses

TooLs

}

public void testNormalPay() {
assertEquals (400, employee.getPay());
}

In the EmployeeTest class, we have a special method named setUp. The setUp
method is defined in TestCase and is run in each test object before the test
method is run. The setUp method allows us to create a set of objects that we’ll
use in a test. That set of objects is created the same way before each test’s execu-
tion. In the object that runs testNormalPay, an employee created in setUp is
checked to see if it calculates pay correctly for one timecard, the one added in
setUp. In the object that runs testOvertime, an employee created in setUp for that
object gets an additional timecard, and there is a check to verify that the second
timecard triggers an overtime condition. The setUp method is called for each
object of the class EmployeeTest, and each of those objects gets its own set of
objects created via setUp. If you need to do anything special after a test finishes
executing, you can override another method named tearDown, defined in
TestCase. It runs after the test method for each object

When you first see an xUnit harness, it is bound to look a little strange. Why
do test-case classes have setUp and tearDown at all? Why can’t we just create the
objects we need in the constructor? Well, we could, but remember what the test
runner does with test case classes. It goes to each test case class and creates a set
of objects, one for each test method. That is a large set of objects, but it isn’t so
bad if those objects haven’t allocated what they need yet. By placing code in
setUp to create what we need just when we need it, we save quite a bit on
resources. In addition, by delaying setUp, we can also run it at a time when we
can detect and report any problems that might happen during setup.

CppUnitLite

When I did the initial port of CppUnit, I tried to keep it as close as I could to JUnit.
I figured it would be easier for people who’d seen the xUnit architecture before, so
it seemed to be the better thing to do. Almost immediately, I ran into a series of
things that were hard or impossible to implement cleanly in C++ because of differ-
ences in C++ and Java’s features. The primary issue was C++’s lack of reflection. In
Java, you can hold on to a reference to a derived class’s methods, find methods at
runtime, and so on. In C++, you have to write code to register the method you want
to access at runtime. As a result, CppUnit became a little bit harder to use and
understand. You had to write your own suite function on a test class so that the test
runner could run objects for individual methods.

www.EBooksWorld.ir

UNIT-TESTING HARNESSES

Test *EmployeeTest::suite()
{
TestSuite *suite = new TestSuite;
suite.addTest(new TestCaller<EmployeeTest>("testNormalPay",
testNormalPay));
suite.addTest(new TestCaller<EmployeeTest>("testOvertime",
testOvertime));
return suite;

Needless to say, this gets pretty tedious. It is hard to maintain momentum
writing tests when you have to declare test methods in a class header, define
them in a source file, and register them in a suite method. A variety of macro
schemes can be used to get past these issues, but I choose to start over. I ended
up with a scheme in which someone could write a test just by writing this
source file:

#include "testharness.h"

#include "employee.h"
#include <memory>

using namespace std;

TEST(testNormalPay,EmpTloyee)

{
auto_ptr<Employee> employee(new Employee("Fred", 0, 10));

LONGS_EQUALS (400, employee->getPay());

This test used a macro named LONGS_EQUAL that compares two long integers
for equality. It behaves the same way that assertEquals does in JUnit, but it’s tai-
lored for Tongs.

The TEST macro does some nasty things behind the scenes. It creates a sub-
class of a testing class and names it by pasting the two arguments together (the
name of the test and the name of the class being tested). Then it creates an
instance of that subclass that is configured to run the code in braces. The
instance is static; when the program loads, it adds itself to a static list of test
objects. Later a test runner can rip through the list and run each of the tests.

After 1 wrote this little framework, I decided not to release it because the
code in the macro wasn’t terribly clear, and I spend a lot of time convincing
people to write clearer code. A friend of mine, Mike Hill, ran into some of the
same issues before we met and created a Microsoft-specific testing framework
called TestKit that handled registration the same way. Emboldened by Mike, I
started to reduce the number of late C++ features used in my little framework,
and then I released it. (Those issues had been a big issue in CppUnit. Nearly

www.EBooksWorld.ir

Unit-Testing
Harnesses

Unit-Testing
Harnesses

TooLs

every day I received e-mail from people who couldn’t use templates or the stan-
dard library, or who had exceptions with their C++ compiler.)

Both CppUnit and CppUnitLite are adequate as testing harnesses. Tests writ-
ten using CppUnitLite are a little briefer, so I use it for the C++ examples in this

book.

NUnit

NUnit is a testing framework for the NET languages. You can write tests for
C# code, VB.NET code, or any other language that runs on the .NET platform.
NUnit is very close in operation to JUnit. The one significant difference is that it
uses attributes to mark test methods and test classes. The syntax of attributes
depends upon the .NET language the tests are written in.

Here is an NUnit test written in VB.NET:

Imports NUnit.Framework

<TestFixture()> Public Class LogOnTest
Inherits Assertion

<Test()> PubTic Sub TestRunValid()

Dim display As New MockDisplay()

Dim reader As New MockATMReader()

Dim Togon As New LogOn(display, reader)

Togon.Run()

AssertEquals("Please Enter Card", display.LastDisplayedText)

AssertEquals("MainMenu",Togon.GetNextTransaction().GetType.Name)
End Sub

End Class

<TestFixture()> and <Test()> are attributes that mark LogonTest as a test class
and TestRunValid as a test method, respectively.

Other xUnit Frameworks

There are many ports of xUnit to many different languages and platforms. In
general, they support the specification, grouping, and running of unit tests. If
you need to find an xUnit port for your platform or language, go to
www.xprogramming.com and look in the Downloads section. This site is run
by Ron Jeffries, and it is the de facto repository for all of the xUnit ports.

www.EBooksWorld.ir

www.xprogramming.com

GENERAL TEST HARNESSES

General Test Harnesses

The xUnit frameworks I described in the preceding section were designed to be
used for unit testing. They can be used to test several classes at a time, but that
sort of work is more properly the domain of FIT and Fitnesse.

Framework for Integrated Tests (FIT)

FIT is a concise and elegant testing framework that was developed by Ward
Cunningham. The idea behind FIT is simple and powerful. If you can write doc-
uments about your system and embed tables within them that describe inputs
and outputs for your system, and if those documents can be saved as HTML,
the FIT framework can run them as tests.

FIT accepts HTML, runs tests defined in HTML tables in it, and produces
HTML output. The output looks the same as the input, and all text and tables
are preserved. However, the cells in the tables are colored green to indicate val-
ues that made a test pass and red to indicate values that caused a test to fail.
You also can use options to have test summary information placed in the result-
ing HTML.

The only thing you have to do to make this work is to customize some table-
handling code so that it knows how to run chunks of your code and retrieve
results from them. Generally, this is rather easy because the framework pro-
vides code to support a number of different table types.

One of the very powerful things about FIT is its capability to foster commu-
nication between people who write software and people who need to specify
what it should do. The people who specify can write documents and embed
actual tests within them. The tests will run, but they won’t pass. Later develop-
ers can add in the features, and the tests will pass. Both users and developers
can have a common and up-to-date view of the capabilities of the system.

There is far more to FIT than I can describe here. There is more information
about FIT at http:/fit.c2.com.

Fitnesse

Fitnesse is essentially FIT hosted in a wiki. Most of it was developed by Robert
Martin and Micah Martin. I worked on a little bit of it, but I dropped out to
concentrate on this book. ’'m looking forward to getting back to work on it
soon.

www.EBooksWorld.ir

\ 4

General Test
Harnesses

http://fit.c2.com

General Test
Harnesses

TooLs

Fitnesse supports hierarchical web pages that define FIT tests. Pages of
test tables can be run individually or in suites, and a multitude of different
options make collaboration easy across a team. Fitnesse is available at
http://www.fitnesse.org. Like all of the other testing tools described in this
chapter, it is free and supported by a community of developers.

www.EBooksWorld.ir

http://www.fitnesse.org

Part 11

Changing Software

www.EBooksWorld.ir

This page intentionally left blank

www.EBooksWorld.ir

Chapter 6

I Don’t Have Much Time
and I Have to Change It

Let’s face facts: The book you are reading right now describes additional
work—work that you probably aren’t doing now and work that could make it
take longer to finish some change you are about to make in your code. You
might be wondering whether it’s worth doing these things right now.

The truth is, the work that you do to break dependencies and write tests for
your changes is going to take some time, but in most cases, you are going to end
up saving time—and a lot of frustration. When? Well, it depends on the project.
In some cases, you might write tests for some code that you need to change, and
it takes you two hours to do that. The change that you make afterward might
take 15 minutes. When you look back on the experience, you might say, “I just
wasted two hours—was it worth it?” It depends. You don’t know how long
that work might have taken you if you hadn’t written the tests. You also don’t
know how much time it would’ve taken you to debug if you made a mistake,
time you could have saved if you had tests in place. I'm not only talking about
the amount of time you would save if the tests caught the error, but also the
amount of time tests save you when you are trying to find an error. With tests
around the code, nailing down functional problems is often easier.

Let’s assume the worst case. The change was simple, but we got the code
around the change under test anyway; we make all of our changes correctly.
Were the tests worth it? We don’t know when we’ll get back to that area of the
code and make another change. In the best case, you go back into the code the
next iteration, and you start to recoup your investment quickly. In the worst
case, it’s years before anyone goes back and modifies that code. But, chances
are, we’ll read it periodically, if only to find out whether we need to make a
change there or someplace else. Would it be easier to understand if the classes
were smaller and there were unit tests? Chances are, it would. But this is just
the worst case. How often does it happen? Typically, changes cluster in systems.

57

www.EBooksWorld.ir

| Don’t Have
Much Time and

| Have to
Change It

| Don’t Have
Much Time

and | Have to
Change It

I DoN’T Have MucH TiME AND I HavE To CHANGE IT

If you are changing it today, chances are, you’ll have a change close by pretty
soon.

When I work with teams, I often start by asking them to take part in an
experiment. For an iteration, we try to make no change to the code without
having tests that cover the change. If anyone thinks that they can’t write a test,
they have to call a quick meeting in which they ask the group whether it is pos-
sible to write the test. The beginnings of those iterations are terrible. People feel
that they aren’t getting all the work done that they need to. But slowly, they
start to discover that they are revisiting better code. Their changes are getting
easier, and they know in their gut that this is what it takes to move forward in a
better way. It takes time for a team to get over that hump, but if there is one
thing that I could instantaneously do for every team in the world, it would be to
give them that shared experience, that experience that you can see in their faces:
“Boy, we aren’t going back to that again.”

If you haven’t had that experience yet, you need to.

Ultimately, this is going to make your work go faster, and that’s important in
nearly every development organization. But frankly, as a programmer, ’'m just
happy that it makes work much less frustrating.

When you get over the hump, life isn’t completely rosy, but it is better. When
you know the value of testing and you’ve felt the difference, the only thing that
you have to deal with is the cold, mercenary decision of what to do in each par-
ticular case.

It Happens Someplace Every Day

You boss comes in. He says, “Clients are clamoring for this feature. Can we get it
done today?”

“I don’t know.”
You look around. Are there tests in place? No.
You ask, “How bad do you need it?”

You know that you can make the changes inline in all 10 places where you need to
change things, and it will be done by 5:00. This is an emergency right? We’re going to
fix this tomorrow, aren’t we?

Remember, code is your house, and you have to live in it.

The hardest thing about trying to decide whether to write tests when you are
under pressure is the fact that you just might not know how long it is going to
take to add the feature. In legacy code, it is particularly hard to come up with
estimates that are meaningful. There are some techniques that can help. Take a

www.EBooksWorld.ir

SPROUT METHOD

look at Chapter 16, I Don’t Understand the Code Well Enough to Change It,
for details. When you don’t really know how long it is going to take to add a
feature and you suspect that it will be longer than the amount of time you have,
it is tempting to just hack the feature in the quickest way that you can. Then if
you have enough time, you can go back and do some testing and refactoring.
The hard part is actually going back and doing that testing and refactoring.
Before people get over the hump, they often avoid that work. It can be a morale
problem. Take a look at Chapter 24, We Feel Overwhelmed. It Isn’t Going to
Get Any Better, for some constructive ways to move forward.

So far, what I’ve described sounds like a real dilemma: Pay now or pay more
later. Either write tests as you make your changes or live with the fact that it is
going to get tougher over time. It can be that tough, but sometimes it isn’t.

If you have to make a change to a class right now, try instantiating the class
in a test harness. If you can’t, take a look at Chapter 9, I Can’t Get This Class
into a Test Harness, or Chapter 10, I Can’t Run This Method in a Test Harness,
first. Getting the code you are changing into a test harness might be easier than
you think. If you look at those sections and you decide that you really can’t
afford to break dependencies and get tests in place now, scrutinize the changes
that you need to make. Can you make them by writing fresh code? In many
cases, you can. The rest of this chapter contains descriptions of several tech-
niques we can use to do this.

Read about these techniques and consider them, but remember that these
techniques have to be used carefully. When you use them, you are adding tested
code into your system, but unless you cover the code that calls it, you aren’t
testing its use. Use caution.

Sprout Method

When you need to add a feature to a system and it can be formulated com-
pletely as new code, write the code in a new method. Call it from the places
where the new functionality needs to be. You might not be able to get those call
points under test easily, but at the very least, you can write tests for the new
code. Here is an example.

public class TransactionGate
{
public void postEntries(List entries) {
for (Iterator it = entries.iterator(); it.hasNext();) {
Entry entry = (Entry)it.next();
entry.postDate();

www.EBooksWorld.ir

Sprout Method

Sprout Method

I DoN’T Have MucH TiME AND I HavE To CHANGE IT

}

transactionBundle.getlistManager().add(entries);

We need to add code to verify that none of the new entries are already in
transactionBundle before we post their dates and add them. Looking at the code,
it seems that this has to happen at the beginning of the method, before the loop.
But, actually, it could happen inside the loop. We could change the code to this:

pubTlic class TransactionGate
{
public void postEntries(List entries) {
List entriesToAdd = new LinkedList();
for (Iterator it = entries.iterator(); it.hasNext();) {
Entry entry = (Entry)it.next();
if (!transactionBundle.getListManager().hasEntry(entry) {
entry.postDate();
entriesToAdd.add(entry);
}
}

transactionBundle.getListManager().add(entriesToAdd);

This seems like a simple change, but it was pretty invasive. How do we know
we got it right? There isn’t any separation between the new code we’ve added
and the old code. Worse, we’re making the code a little muddier. We’re mingling
two operations here: date posting and duplicate entry detection. This method is
rather small, but already it is a little less clear, and we’ve also introduced a tem-
porary variable. Temporaries aren’t necessarily bad, but sometimes they attract
new code. If the next change that we have to make involves work with all non-
duplicated entries before they are added, well, there is only one place in the
code that a variable like that exists: right in this method. It will be tempting to
just put that code in the method also. Could we have done this in a different
way?

Yes. We can treat duplicate entry removal as a completely separate opera-
tion. We can use test-driven development (88) to create a new method named
uniqueEntries:

pubTlic class TransactionGate

{

List uniqueEntries(List entries) {
List result = new ArraylList();

www.EBooksWorld.ir

SPROUT METHOD v

for (Iterator it = entries.iterator(); it.hasNext();) {
Entry entry = (Entry)it.next(Q;
if (!transactionBundle.getListManager().hasEntry(entry) {
result.add(entry);
}
}

return result;

It would be easy to write tests that would drive us toward code like that for

this method. When we have the method, we can go back to the original code
and add the call.

public class TransactionGate

{

public void postEntries(List entries) {
List entriesToAdd = uniqueEntries(entries);
for (Iterator it = entriesToAdd.iterator(); it.hasNext();) {
Entry entry = (Entry)it.next();
entry.postDate();
1 Sprout Method
transactionBundle.getlistManager().add(entriesToAdd);

We still have a new temporary variable here, but the code is much less clut-
tered. If we need to add more code that works with the nonduplicated entries,
we can make a method for that code also and call it from here. If we end up
with yet more code that needs to work with them, we can introduce a class
and shift all of those new methods over to it. The net effect is that we end up
keeping this method small and we end up with shorter, easier-to-understand
methods overall.

That was an example of Sprout Method. Here are the steps that you actually
take:

1. Identify where you need to make your code change.

2. If the change can be formulated as a single sequence of statements in one
place in a method, write down a call for a new method that will do the
work involved and then comment it out. (I like to do this before I even
write the method so that I can get a sense of what the method call will
look like in context.)

www.EBooksWorld.ir

Sprout Method

I DoN’T Have MucH TiME AND I HavE To CHANGE IT

3. Determine what local variables you need from the source method, and
make them arguments to the call.

4. Determine whether the sprouted method will need to return values to
source method. If so, change the call so that its return value is assigned
to a variable.

5. Develop the sprout method using test-driven development (88).
6. Remove the comment in the source method to enable the call.

I recommend using Sprout Method whenever you can see the code that you
are adding as a distinct piece of work or you can’t get tests around a method
yet. It is far preferable to adding code inline.

Sometimes when you want to use Sprout Method, the dependencies in your
class are so bad that you can’t create an instance of it without faking a lot of
constructor arguments. One alternative is to use Pass Null (111). When that
won’t work, consider making the sprout a public static method. You might
have to pass in instance variables of the source class as arguments, but it will
allow you to make your change. It might seem weird to make a static for this
purpose, but it can be useful in legacy code. I tend to look at static methods on
classes as a staging area. Often after you have several statics and you notice that
they share some of the same variables, you are able to see that you can make a
new class and move the statics over to the new class as instance methods. When
they really deserve to be instance methods on the current class, they can be
moved back into the class when you finally get it under test.

Advantages and Disadvantages

Sprout Method has some advantages and disadvantages. Let’s look at the disad-
vantages first. What are the downsides of Sprout Method? For one thing, when
you use it, in effect you essentially are saying that you are giving up on the
source method and its class for the moment. You aren’t going to get it under
test, and you aren’t going to make it better—you are just going to add some
new functionality in a new method. Giving up on a method or a class is the
practical choice sometimes, but it still is kind of sad. It leaves your code in
limbo. The source method might contain a lot of complicated code and a single
sprout of a new method. Sometimes it isn’t clear why only that work is happen-
ing someplace else, and it leaves the source method in an odd state. But at least
that points to some additional work that you can do when you get the source
class under test later.

Although there are some disadvantages, there are a couple of key advan-
tages. When you use Sprout Method, you are clearly separating new code from

www.EBooksWorld.ir

SprouT CLASS

old code. Even if you can’t get the old code under test immediately, you can at
least see your changes separately and have a clean interface between the new
code and the old code. You see all of the variables affected, and this can make it
easier to determine whether the code is right in context.

Sprout Class

Sprout Method is a powerful technique, but in some tangled dependency situa-
tions, it isn’t powerful enough.

Consider the case in which you have to make changes to a class, but there is
just no way that you are going to be able to create objects of that class in a test
harness in a reasonable amount of time, so there is no way to sprout a method
and write tests for it on that class. Maybe you have a large set of creational
dependencies, things that make it hard to instantiate your class. Or you could
have many hidden dependencies. To get rid of them, you’d need to do a lot of
invasive refactoring to separate them out well enough to compile the class in a
test harness.

In these cases, you can create another class to hold your changes and use it
from the source class. Let’s look at a simplified example.

Here is an ancient method on a C++ class called QuarterlyReportGenerator:

std::string QuarterlyReportGenerator::generate()
{
std::vector<Result> results = database.queryResults(
beginDate, endDate);
std::string pageText;

pageText += "<html><head><title>"
"Quarterly Report"
"</title></head><body><table>";
if (results.size() != 0) {
for (std::vector<Result>::iterator it = results.begin();
it != results.end();
+it) {
pageText += "<tr>";
pageText += "<td>" + it->department + "</td>";
pageText += "<td>" + it->manager + "</td>";
char buffer [128];
sprintf(buffer, "<td>$%d</td>", it->netProfit / 100);
pageText += std::string(buffer);
sprintf(buffer, "<td>$%d</td>", it->operatingExpense / 100);
pageText += std::string(buffer);
pageText += "</tr>";

www.EBooksWorld.ir

Sprout Class

v I DoN’T Have MucH TiME AND I HavE To CHANGE IT

Sprout Class

} else {
pageText += "No results for this period";
}
pageText += "</table>";
pageText += "</body>";
pageText += "</html>";

return pageText;

Let’s suppose that the change that we need to make to the code is to add a
header row for the HTML table it’s producing. The header row should look
something like this:

"<tr><td>Department</td><td>Manager</td><td>Profit</td><td>Expenses</td></tr>"

Furthermore, let’s suppose that this is a huge class and that it would take
about a day to get the class in a test harness, and this is time that we just can’t
afford right now.

We could formulate the change as a little class called QuarterTyReportTable-
HeaderProducer and develop it using test-driven development (88).

using namespace std;

class QuarterlyReportTableHeaderProducer

{
pubTic:
string makeHeader();
b
string QuarterTyReportTableProducer: :makeHeader ()
{
return "<tr><td>Department</td><td>Manager</td>"
"<td>Profit</td><td>Expenses</td>";
}

When we have it, we can create an instance and call it directly in
QuarterTyReportGenerator: :generate():

QuarterlyReportTableHeaderProducer producer;
pageText += producer.makeHeader();

I’m sure that at this point you’re looking at this and saying, “He can’t be
serious. It’s ridiculous to create a class for this change! It’s just a tiny little class
that doesn’t give you any benefit in the design. It introduces a completely new
concept that just clutters the code.” Well, at this point, that is true. The only

www.EBooksWorld.ir

SprouT CLASS

reason we’re doing it is to get out of a bad dependency situation, but let’s take a
closer look.

What if we’d named the class QuarterlyReportTableHeaderGenerator and gave it
this sort of an interface?

class QuarterlyReportTableHeaderGenerator

{
pubTic:

string generate();
b

Now the class is part of a concept that we’re familiar with. QuarterTyReportTa-
bleHeaderGenerator is a generator, just like QuarterlyReportGenerator. They both
have generate() methods that return strings. We can document that commonal-
ity in the code by creating an interface class and having them both inherit from
1t:

class HTMLGenerator

{

pubTic:
virtual ~HTMLGenerator() = 0;
virtual string generate() = 0;

b

class QuarterlyReportTableHeaderGenerator : public HTMLGenerator

{
public:

virtual string generate();
b

class QuarterlyReportGenerator : public HTMLGenerator

{
pubTic:

virtual string generate();

b

As we do more work, we might be able to get QuarterlyReportGenerator under
test and change its implementation so that it does most of its work using gener-
ator classes.

In this case, we were able to quickly fold the class into the set of concepts
that we already had in the application. In many other cases, we can’t, but that
doesn’t mean that we should hold back. Some sprouted classes never fold back
into the main concepts in the application. Instead, they become new ones. You

www.EBooksWorld.ir

Sprout Class

Sprout Class

I DoN’T Have MucH TiME AND I HavE To CHANGE IT

might sprout a class and think that it is rather insignificant to your design until
you do something similar someplace else and see the similarity. Sometimes you
are able to factor out duplicated code in the new classes, and often you have to
rename them, but don’t expect it all to happen at once.

The way that you look at a sprouted class when you first create it and the
way that you look at it after a few months are often significantly different. The
fact that you have this odd new class in your system gives you plenty to think
about. When you need to make a change close to it, you might start to think
about whether the change is part of the new concept or whether the concept
needs to change a little. This is all part of the ongoing process of design.

Essentially two cases lead us to Sprout Class. In one case, your changes lead
you toward adding an entirely new responsibility to one of your classes. For
instance, in tax-preparation software, certain deductions might not be possi-
ble at certain times of the year. You can see how to add a date check to the
TaxCalculator class, but isn’t checking that off to the side of TaxCalculator’s
main responsibility: calculating tax? Maybe it should be a new class. The
other case is the one we led off this chapter with. We have a small bit of func-
tionality that we could place into an existing class, but we can’t get the class
into a test harness. If we could get it to at least compile into a harness, we
could attempt to use Sprout Method, but sometimes we’re not even that lucky.

The thing to recognize about these two cases is that even though the motiva-
tion is different, when you look at the results, there isn’t really a hard line
between them. Whether a piece of functionality is strong enough to be a new
responsibility is a judgment call. Moreover, because the code changes over time,
the decision to sprout a class often looks better in retrospect.

Here are the steps for Sprout Class:

1. Identify where you need to make your code change.

2. If the change can be formulated as a single sequence of statements in one
place in a method, think of a good name for a class that could do that
work. Afterward, write code that would create an object of that class in
that place, and call a method in it that will do the work that you need to
do; then comment those lines out.

3. Determine what local variables you need from the source method, and
make them arguments to the classes’ constructor.

4. Determine whether the sprouted class will need to return values to the
source method. If so, provide a method in the class that will supply those
values, and add a call in the source method to receive those values.

5. Develop the sprout class test first (see test-driven development (88)).

www.EBooksWorld.ir

WRrAP METHOD

6. Remove the comment in the source method to enable the object creation
and calls.

Advantages and Disadvantages

The key advantage of Sprout Class is that it allows you to move forward with
your work with more confidence than you could have if you were making inva-
sive changes. In C++, Sprout Class has the added advantage that you don’t have
to modify any existing header files to get your change in place. You can include
the header for the new class in the implementation file for the source class. In
addition, the fact that you are adding a new header file to your project is a good
thing. Over time, you’ll put declarations into the new header file that could
have ended up in the header of the source class. This decreases the compilation
load on the source class. At least you’ll know that you aren’t making a bad situ-
ation worse. At some time later, you might be able to revisit the source class and
put it under test.

The key disadvantage of Sprout Class is conceptual complexity. As program-
mers learn new code bases, they develop a sense of how the key classes work
together. When you use Sprout Class, you start to gut the abstractions and do
the bulk of the work in other classes. At times, this is entirely the right thing to
do. At other times, you move toward it only because your back is against the
wall. Things that ideally would have stayed in that one class end up in sprouts
just to make safe change possible.

Wrap Method

Adding behavior to existing methods is easy to do, but often it isn’t the right
thing to do. When you first create a method, it usually does just one thing for a
client. Any additional code that you add later is sort of suspicious. Chances are,
you’re adding it just because it has to execute at the same time as the code
you’re adding it to. Back in the early days of programming, this was named
temporal coupling, and it is a pretty nasty thing when you do it excessively.
When you group things together just because they have to happen at the same
time, the relationship between them isn’t very strong. Later you might find that
you have to do one of those things without the other, but at that point they
might have grown together. Without a seam, separating them can be hard work.

When you need to add behavior, you can do it in a not-so-tangled way. One
of the techniques that you can use is Sprout Method, but there is another that is
very useful at times. I call it Wrap Method. Here is a simple example.

www.EBooksWorld.ir

Wrap Method

v I DoN’T Have MucH TiME AND I HavE To CHANGE IT

public class Employee

{

pubTic void pay() {

Money amount = new Money();

for (Iterator it = timecards.iterator(); it.hasNext();) {
Timecard card = (Timecard)it.next();
if (payPeriod.contains(date)) {

amount.add(card.getHours() * payRate);

}

}

payDispatcher.pay(this, date, amount);

In this method, we are adding up daily timecards for an employee and then
sending his payment information to a PayDispatcher. Let’s suppose that a new
requirement comes along. Every time that we pay an employee, we have to
update a file with the employee’s name so that it can be sent off to some report-
ing software. The easiest place to put the code is in the pay method. After all, it
has to happen at the same time, right? What if we do this instead?

public class Employee
Wrap Method {
private void dispatchPayment() {
Money amount = new Money();
for (Iterator it = timecards.iterator(); it.hasNext();) {
Timecard card = (Timecard)it.next();
if (payPeriod.contains(date)) {
amount.add(card.getHours() * payRate);
}

}
payDispatcher.pay(this, date, amount);

public void pay() {
TogPayment();
dispatchPayment();

private void logPayment() {

In the code, I’ve renamed pay() as dispatchPayment() and made it private.
Next, I created a new pay method that calls it. Our new pay() method logs a
payment and then dispatches payment. Clients who used to call pay() don’t
have to know or care about the change. They just make their call, and every-
thing works out okay.

www.EBooksWorld.ir

WRrAP METHOD

This is one form of Wrap Method. We create a method with the name of the
original method and have it delegate to our old code. We use this when we want
to add behavior to existing calls of the original method. If every time a client
calls pay() we want logging to occur, this technique can be very useful.

There is another form of Wrap Method that we can use when we just want
to add a new method, a method that no one calls yet. In the previous example,
if we wanted logging to be explicit, we could add a makeLoggedPayment method to
EmpTloyee like this:

pubTic class Employee

{
pubTlic void makeLoggedPayment() {
TogPayment();
pay(;
public void pay() {
}
private void logPayment() {
}
}

Now users have the option of paying in either way. It was described by Kent
Beck in Smalltalk Patterns: Best Practices (Pearson Education, 1996).

Wrap Method is a great way to introduce seams while adding new features.
There are only a couple of downsides. The first is that the new feature that you
add can’t be intertwined with the logic of the old feature. It has to be something
that you do either before or after the old feature. Wait, did I say that is bad?
Actually, it isn’t. Do it when you can. The second (and more real) downside is
that you have to make up a new name for the old code that you had in the
method. In this case, I named the code in the pay() method dispatchPayment().
That is a bit of a stretch, and, frankly, I don’t like the way the code ended up in
this example. The dispatchPayment() method is really doing more than dispatch-
ing; it calculates pay also. If T had tests in place, chances are, I’d extract the first
part of dispatchPayment() into its own method named calculatePay() and make
the pay() method read like this:

www.EBooksWorld.ir

Wrap Method

\ 4

Wrap Method

I DoN’T Have MucH TiME AND I HavE To CHANGE IT

public void pay() {
TogPayment();
Money amount = calculatePay();
dispatchPayment (amount);

}

That seems to separate all of the responsibilities well.
Here are the steps for the first version of the Wrap Method:

1. Identify a method you need to change.

2. If the change can be formulated as a single sequence of statements in
one place, rename the method and then create a new method with the
same name and signature as the old method. Remember to Preserve
Signatures (312) as you do this.

3. Place a call to the old method in the new method

4. Develop a method for the new feature, test first (see test-driven devel-
opment (88)), and call it from the new method

In the second version, when we don’t care to use the same name as the old
method, the steps look like this:

1. Identify a method you need to change.

2. If the change can be formulated as a single sequence of statements in one
place, develop a new method for it using test-driven development (88).

3. Create another method that calls the new method and the old method.

Advantages and Disadvantages

Wrap Method is a good way of getting new, tested functionality into an applica-
tion when we can’t easily write tests for the calling code. Sprout Method and
Sprout Class add code to existing methods and make them longer by at least
one line, but Wrap Method does not increase the size of existing methods.

Another advantage of Wrap Method is that it explicitly makes the new func-
tionality independent of existing functionality. When you wrap, you are not
intertwining code for one purpose with code for another.

The primary disadvantage of Wrap Method is that it can lead to poor names.
In the previous example, we renamed the pay method dispatchPay() just because
we needed a different name for code in the original method. If our code isn’t
terribly brittle or complex, or if we have a refactoring tool that does Extract
Method (415) safely, we can do some further extractions and end up with better
names. However, in many cases, we are wrapping because we don’t have any
tests, the code is brittle and those tools aren’t available.

www.EBooksWorld.ir

WRrAP CLASS

Wrap Class

The class-level companion to Wrap Method is Wrap Class. Wrap Class uses
pretty much the same concept. If we need to add behavior in a system, we can
add it to an existing method, but we can also add it to something else that uses
that method. In Wrap Class, that something else is another class.

Let’s take a look at the code from the Employee class again.

class Employee
{
public void pay() {
Money amount = new Money();
for (Iterator it = timecards.iterator(); it.hasNext();) {
Timecard card = (Timecard)it.next();
if (payPeriod.contains(date)) {
amount.add(card.getHours() * payRate);
}
}
payDispatcher.pay(this, date, amount);

We want to log the fact that we are paying a particular employee. One thing
that we can do is make another class that has a pay method. Objects of that
class can hold on to an employee, do the logging work in the pay() method, and
then delegate to the employee so that it can perform payment. Often the easiest
way to do this, if you can’t instantiate the original class in a test harness, is to
use Extract Implementer (356) or Extract Interface (362) on it and have the
wrapper implement that interface.

In the following code we’ve used Extract Implementer to turn the Employee
class into an interface. Now a new class, LoggingEmployee, implements that class.
We can pass any Employee to a LoggingEmployee so that it will log as well as pay.

class LoggingEmpToyee extends Employee

{

public LoggingEmployee(Employee €) {
employee = e;

}

pubTic void pay() {
TogPayment();
employee.pay();

}

private void TogPayment() {

www.EBooksWorld.ir

v

Wrap Class

v I DoN’T Have MucH TiME AND I HavE To CHANGE IT

This technique is called the decorator pattern. We create objects of a class
that wraps another class and pass them around. The class that wraps should
have the same interface as the class it is wrapping so that clients don’t know
that they are working with a wrapper. In the example, LoggingEmployee is a deco-
rator for Employee. It needs to have a pay() method and any other methods on
Employee that are used by the client.

The Decorator Pattern

Decorator allows you to build up complex behaviors by composing objects at runtime.
For example, in an industrial process-control system, we might have a class called
ToolController with methods such as raise(), Tower(), step(), on(), and off(). If we
need to have additional things happen whenever we raise() or Tower() (things such as
audible alarms to tell people to get out of the way), we could put that functionality
right in those methods in the ToolController class. Chances are, though, that wouldn’t
be the end to the enhancements. Eventually, we might need to log the number of times
we turn the controller on and off. We might also need to notify other controllers that
are close by when we step so that they can avoid stepping at the same time. The list of
things that we can do along with our five simple operations (raise, lower, step, on and
off) is endless, and it won’t do to just create subclasses for each combination of things.
The number of combinations of those behaviors could be endless.

Wrap Class

The decorator pattern is an ideal fit for this sort of problem. When you use decorator,
you create an abstract class that defines the set of operations you need to support.
Then you create a subclass that inherits from that abstract class, accepts an instance
of the class in its constructor, and provides a body for each of those methods. Here is
that class for the ToolController problem:

abstract class ToolControllerDecorator extends ToolController
{
protected ToolController controller;
public ToolControllerDecorator(ToolController controller) {
this.controller = controller;

public void raise() { controller.raise(); }
pubTlic void Tower() { controller.lower(); }
public void step() { controller.step(); }
pubTlic void on() { controller.on(); }
public void off() { controller.off(); }

www.EBooksWorld.ir

WRrAP CLASS v

This class might not look very useful, but it is. You can subclass it and override any or
all of the methods to add additional behavior. For example, if we need to notify other
controllers when we step, we could have a StepNotifyingController that looks like
this:

public class StepNotifyingController extends ToolControllerDecorator
{
private List notifyees;
public StepNotifyingController(ToolController controller
List notifyees) {
super(controller);
this.notifyees = notifyees;
}
public void step() {
// notify all notifyees here

controller.step();

}
The really neat thing is that we can nest the subclasses of ToolControllerDecorator:

ToolController controller = new StepNotifyingController(
new AlarmingController
(new ACMEController()), notifyees);

When we perform an operation such as step() on the controller, it notifies all notify-
ees, issues an alarm, and actually performs the stepping action. That latter part,
actually performing the step action, happens in ACMEController, which is a concrete sub-
class of ToolController, not ToolControllerDecorator. It doesn’t pass the buck to anyone
else; it just does each of the tool controller actions. When you are using the decorator
pattern, you need to have at least one of these “basic” classes that you wrap around.

Decorator is a nice pattern, but it is good to use it sparingly. Navigating through code
that contains decorators that decorate other decorators is a lot like peeling away the
layers of an onion. It is necessary work, but it does make your eyes water.

This is a fine way of adding functionality when you have many existing call-
ers for a method like pay(). However, there is another way of wrapping that is
not so decorator-ish. Let’s look at a case where we need to log calls to pay() in
only one place. Instead of wrapping in the functionality as a decorator, we can
put it in another class that accepts an employee, does payment, and then logs
information about it.

Here is a little class that does this:

class LoggingPayDispatcher
{

private Employee e;

www.EBooksWorld.ir

Wrap Class

v I DoN’T Have MucH TiME AND I HavE To CHANGE IT

pubTic LoggingPayDispatcher(Employee e) {
this.e = e;

}

pubTlic void pay() {
employee.pay();
TogPayment();

}

private void logPayment() {

}

Now we can create LogPayDispatcher in the one place where we need to log
payments.

The key to Wrap Class is that you are able to add new behavior into a sys-
tem without adding it to an existing class. When there are many calls to the
code you want to wrap, it often pays to move toward a decorator-ish wrapper.
When you use the decorator pattern, you can transparently add new behavior
to a set of existing calls like pay() all at once. On the other hand, if the new
behavior only has to happen in a couple of places, creating a wrapper that isn’t
decorator-ish can be very useful. Over time, you should pay attention to the
responsibilities of the wrapper and see if the wrapper can become another high-
level concept in your system.

Here are the steps for Wrap Class:

Wrap Class

1. Identify a method where you need to make a change.

2. If the change can be formulated as a single sequence of statements in one
place, create a class that accepts the class you are going to wrap as a con-
structor argument. If you have trouble creating a class that wraps the
original class in a test harness, you might have to use Extract Imple-
menter (356) or Extract Interface (362) on the wrapped class so that you
can instantiate your wrapper.

3. Create a method on that class, using test-driven development (88), that
does the new work. Write another method that calls the new method
and the old method on the wrapped class.

4. Instantiate the wrapper class in your code in the place where you need to
enable the new behavior.

The difference between Sprout Method and Wrap Method is pretty trivial.
You are using Sprout Method when you choose to write a new method and call

www.EBooksWorld.ir

WRrAP CLASS

it from an existing method. You are using Wrap Method when you choose to
rename a method and replace it with a new one that does the new work and
calls the old one. I usually use Sprout Method when the code I have in the exist-
ing method communicates a clear algorithm to the reader. I move toward Wrap
Method when 1 think that the new feature I’'m adding is as important as the
work that was there before. In that case, after ve wrapped, I often end up with
a new high-level algorithm, something like this:

pubTic void pay() {
TogPayment();
Money amount = calculatePay();
dispatchPayment (amount) ;

}

Choosing to use Wrap Class is a whole other issue. There is a higher thresh-
old for this pattern. Generally two cases tip me toward using Wrap Class:

1. The behavior that I want to add is completely independent, and I don’t
want to pollute the existing class with behavior that is low level or unre-
lated.

2. The class has grown so large that I really can’t stand to make it worse. In
a case like this, I wrap just to put a stake in the ground and provide a
roadmap for later changes.

The second case is pretty hard to do and get used to. If you have a very large
class that has, say, 10 or 15 different responsibilities, it might seem a little odd
to wrap it just to add some trivial functionality. In fact, if you can’t present a
compelling case to your coworkers, you might get beat up in the parking lot or,
worse, ignored for the rest of your workdays, so let me help you make that
case.

The biggest obstacle to improvement in large code bases is the existing code.
“Duh,” you might say. But I'm not talking about how hard it is to work in dif-
ficult code; Pm talking about what that code leads you to believe. If you spend
most of your day wading through ugly code, it’s very easy to believe that it will
always be ugly and that any little thing that you do to make it better is simply
not worth it. You might think, “What does it matter whether I make this little
piece nicer if 90 percent of the time Ill still being working with murky slime?
Sure, I can make this piece better, but what will that do for me this afternoon?
Tomorrow?” Well, if you look at it that way, I'd have to agree with you. Not
much. But if you consistently do these little improvements, your system will
start to look significantly different over the course of a couple of months. At
some point, you’ll come to work in the morning expecting to sink your hands
into some slime and discover, “Huh, this code looks pretty good. It looks like

www.EBooksWorld.ir

Wrap Class

Summary

I DoN’T Have MucH TiME AND I HavE To CHANGE IT

someone was in here refactoring recently.” At that point, when you feel the dif-
ference between good code and bad code in your gut, you are a changed person.
You might even find yourself wanting to refactor far in excess of what you need
to get the job done, just to make your life easier. It probably sounds silly to you
if you haven’t experienced it, but I’ve seen it happen to teams over and over
again. The hard part is the initial set of steps because sometimes they look silly.
“What? Wrap a class just to add this little feature? It looks worse than it did
before. It’s more complicated.” Yes, it is, for now. But when you really start to
break out those 10 or 15 responsibilities in that wrapped class, it will look far
more appropriate.

Summary

In this chapter, I outlined a set of techniques you can use to make changes with-
out getting existing classes under test. From a design point of view, it is hard to
know what to think about them. In many cases, they allow us to put some dis-
tance between distinct new responsibilities and old ones. In other words, we
start to move toward better design. But in other cases, we know that the only
reason we’ve created a class is because we wanted to write new code with tests
and we weren’t prepared to take the time to get the existing class under test.
This is a very real situation. When people do this in projects, you start to see
new classes and methods sprouting around the carcasses of the old big classes.
But then an interesting thing happens. After a while, people get tired of side-
stepping the old carcasses, and they start to get them under test. Part of this is
familiarity. If you have to look at this big, untested class repeatedly to figure out
where to sprout from it, you get to know it better. It gets less scary. The other
part of it is sheer tiredness. You get tired of looking at the trash in your living
room, and you want to take it out. Chapter 9, I Can’t Get This Class into a Test
Harness, and Chapter 20, This Class Is Too Big and I Don’t Want It to Get Any
Bigger, are good places to start.

www.EBooksWorld.ir

Chapter 7

It Takes Forever to
Make a Change

How long does it take to make changes? The answer varies widely. On projects
with terribly unclear code, many changes take a long time. We have to hunt
through the code, understand all of the ramifications of a change, and then
make the change. In clearer areas of the code, this can be very quick, but in
really tangled areas, it can take a very long time. Some teams have it far worse
than others. For them, even the simplest code changes take a long time to
implement. People on those teams can find out what feature they need to add,
visualize exactly where to make the change, go into the code and make the
change in five minutes, and still not be able to release their change for several
hours.
Let’s look at the reasons and some of the possible solutions.

Understanding

As the amount of code in a project grows, it gradually surpasses understanding.
The amount of time it takes to figure out what to change just keeps increasing.

Part of this is unavoidable. When we add code to a system, we can add it to
existing classes, methods, or functions, or we can add new ones. In either case,
it is going to take a while to figure out how to make a change if we are unfamil-
iar with the context.

However, there is one key difference between a well-maintained system and a
legacy system. In a well-maintained system, it might take a while to figure out
how to make a change, but once you do, the change is usually easy and you feel
much more comfortable with the system. In a legacy system, it can take a long
time to figure out what to do, and the change is difficult also. You might also
feel like you haven’t learned much beyond the narrow understanding you had

77

www.EBooksWorld.ir

It Takes
Forever to

\EUCE:]
Change

Lag Time

IT TAaKES FOREVER TO MAKE A CHANGE

to acquire to make the change. In the worst cases, it seems like no amount of
time will be enough to understand everything you need to do to make a change,
and you have to walk blindly into the code and start, hoping that you’ll be able
to tackle all the problems that you encounter.

Systems that are broken up into small, well-named, understandable pieces
enable faster work. If understanding is a big issue on your project, take a look
at Chapter 16, I Don’t Understand the Code Well Enough to Change It, and
Chapter 17, My Application Has No Structure, to get some ideas about how to
proceed.

Lag Time

Changes often take a long time for another very common reason: lag time. Lag
time is the amount of time that passes between a change that you make and the
moment that you get real feedback about the change. At the time of this writ-
ing, the Mars rover Spirit is crawling across the surface of Mars taking pictures.
It takes about seven minutes for signals to get from Earth to Mars. Luckily,
Spirit has some onboard guidance software that helps it move around on its
own. Imagine what it would be like to drive it manually from Earth. You oper-
ate the controls and find out 14 minutes later how far the rover moved. Then
you decide what you want to do next, do it, and wait another 14 minutes to
find out what happened. It seems ridiculously inefficient, right? Yet, when you
think about it, that is exactly the way most of us work right now when we
develop software. We make some changes, start a build, and then find out what
happened later. Unfortunately, we don’t have software that knows how to navi-
gate around obstacles in the build, things such as test failures. What we try to
do instead is bundle a bunch of changes and make them all at once so that we
don’t have to build too often. If our changes are good, we move along, albeit as
slow as the Mars rover. If we hit an obstacle, we go even slower.

The sad thing about this way of working is that, in most languages, it is com-
pletely unnecessary. It’s a complete waste of time. In most mainstream lan-
guages, you can always break dependencies in a way that lets you recompile
and run tests against whatever code you are working on in less than 10 seconds.
If a team is really motivated, its members can get it down to less than five sec-
onds, in most cases. What it comes down to is this: You should be able to com-
pile every class or module in your system separately from the others and in its
own test harness. When you have that, you can get very rapid feedback, and
that just helps development go faster.

www.EBooksWorld.ir

BREAKING DEPENDENCIES

The human mind has some interesting qualities. If we have to perform a
short task (5-10 seconds long) and we can only take a step once every minute,
we usually do it and then pause. If we have to do some work to figure out what
to do at the next step, we start to plan. After we plan, our minds wander until
we can do the next step. If we compress the time betwen steps down from a
minute to a few seconds, the quality of the mental work becomes different. We
can use feedback to try out approaches quickly. Our work becomes more like
driving than like waiting at a bus stop. Our concentration is more intense
because we aren’t constantly waiting for the next chance to do something. Most
important, the amount of time that it takes us to notice and correct mistakes is
much smaller.

What keeps us from being able to work this way all the time? Some people can.
People who program in interpreted languages can often get near-instantaneous
feedback when they work. For the rest of us, who work in compiled languages, the
main impediment is dependency, the need to compile something that we don’t care
about just because we want to compile something else.

Breaking Dependencies

Dependencies can be problematic, but, fortunately, we can break them. In
object-oriented code, often the first step is to attempt to instantiate the classes
that we need in a test harness. In the easiest cases, we can do this just by import-
ing or including the declaration of the classes we depend upon. In harder cases,
try the techniques in Chapter 9, I Can’t Get This Class into a Test Harness.
When you are able to create an object of a class in a test harness, you might have
other dependencies to break if you want to test individual methods. In those
cases, see Chapter 10, I Can’t Run This Method in a Test Harness.

When you have a class that you need to change in a test harness, generally,
you can take advantage of very fast edit-compile-link-test times. Usually, the
execution cost for most methods is relatively low compared to the costs of the
methods that they call, particularly if the calls are calls to external resources
such as the database, hardware, or the communications infrastructure. The
times when this doesn’t happen are usually cases in which the methods are very
calculation-intensive. The techniques I’ve outlined in Chapter 22, I Need to
Change a Monster Method and I Can’t Write a Test for It, can help.

In many cases, change can be this straightforward, but often people working
in legacy code are stopped dead in their tracks by the first step: attempting to
get a class into a test harness. This can be a very large effort in some systems.
Some classes are very huge; others have so many dependencies that they seem to

www.EBooksWorld.ir

Breaking
Dependencies

Breaking
Dependencies

IT TAaKES FOREVER TO MAKE A CHANGE

overwhelm the functionality that you want to work on entirely. In cases like
these, it pays to see if you can cut out a larger chunk of the code and put it
under test. See Chapter 12, I Need to Make Many Changes in One Area. Do [
Have to Break Dependencies for All the Classes Involved? That chapter con-
tains a set of techniques that you can use to find pinch points (180), places
where test writing is easier.

In the rest of this chapter, I describe how you can go about changing the way
that your code is organized to make builds easier.

Build Dependencies

In an object-oriented system, if you have a cluster of classes that you want to
build more quickly, the first thing that you have to figure out is which depen-
dencies will get in the way. Generally, that is rather easy: You just attempt to
use the classes in a test harness. Nearly every problem that you run into will be
the result of some dependency that you should break. After the classes run in a
test harness, there are still some dependencies that can affect compile time. It
pays to look at everything that depends upon what you’ve been able to instanti-
ate. Those things will have to recompile when you rebuild the system. How can
you minimize this?

The way to handle this is to extract interfaces for the classes in your cluster
that are used by classes outside the cluster. In many IDEs, you can extract an
interface by selecting a class and making a menu selection that shows you a list
of all of the methods in the class and allows you to choose which ones you want
to be part of the new interface. Afterward, the tools allow you to provide the
name of the new interface. They also give you the option of letting it replace
references to the class with references to the interface everywhere it can in the
code base. It’s an incredibly useful feature. In C++, Extract Implementer (356)
is a little easier than Extract Interface (362). You don’t have to change the
names of references all over the place, but you do have to change the places that
create instances of the old class (see Extract Implementer (356) for details).

When we have these clusters of classes under test, we have the option of
changing the physical structure of our project to make builds easier. We do this
by moving the clusters off to a new package or library. Builds do become more
complex when we do this, but here is the key: As we break dependencies and
section off classes into new packages or libraries, the overall cost of a rebuild of
the entire system grows, but the average time for a build can decrease.

www.EBooksWorld.ir

BREAKING DEPENDENCIES v

Let’s look at an example. Figure 7.1 shows a small set of collaborating
classes, all in the same package.

AddOpportunityFormHandler AddOpportunity
XMLGenerator

+ AddOpportunityFormHandler(ConsultantSchedulerDB)

«creates»
ConsultantSchedulerDB Opportunityltem

Figure 7.1 Opportunity handling classes.

We want to make some changes to the AddOpportunityFormHandler class, but it
would be nice if we could make our build faster, too. The first step is to try to
instantiate an AddOpportunityFormHandler. Unfortunately, all of the classes it
depends upon are concrete. AddOpportunityFormHandler needs a ConsultantSched-
ulerDB and an AddOpportunityXMLGenerator. It could very well be the case that both
of those classes depend on other classes that aren’t in the diagram.

If we attempt to instantiate an AddOpportunityFormHandler, who knows how
many classes we’ll end up using? We can get past this by starting to break
dependencies. The first dependency we encounter is ConsultantSchedulerDB. We
need to create one to pass to the AddOpportunityFormHandler constructor. It would
be awkward to use that class because it connects to the database, and we don’t
want to do that during testing. However, we could use Extract Implementer
(356) and break the dependency as shown in Figure 7.2.

www.EBooksWorld.ir

Breaking
Dependencies

\ 4

Breaking
Dependencies

IT TAaKES FOREVER TO MAKE A CHANGE

AddOpportunityFormHandler AddOpportunity
+ AddOpportunityFormHandler(ConsultantSchedulerDB) XMLGenerator

«interface»
ConsultantSchedulerDB

Q

«creates»
ConsultantSchedulerDBImpl Opportunityltem

Figure 7.2 Extracting an implementer on ConsultantSchedulerDB.

Now that ConsultantSchedulerDB is an interface, we can create an AddOpportuni-
tyFormHandTer using a fake object that implements the ConsultantSchedulerDB inter-
face. Interestingly, by breaking that dependency, we’ve made our build faster
under some conditions. The next time that we make a modification to Consult-
antSchedulerDBImp1, AddOpportunityFormHandler doesn’t have to recompile. Why?
Well, it doesn’t directly depend on the code in ConsultantSchedulerDBImpl any-
more. We can make as many changes as we want to the ConsultantSchedulerD-
BImpl file, but unless we do something that forces us to change the
ConsultantSchedulerDB interface, we won’t have to rebuild the AddOpportunityForm-
Handler class.

If we want, we can isolate ourselves from forced recompilation even further,
as shown in Figure 7.3. Here is another design for the system that we arrive at
by using Extract Implementer (356) on the OpportunityItem class.

www.EBooksWorld.ir

BREAKING DEPENDENCIES

AddOpportunityFormHandler > AddOpportunity
+ AddOpportunityFormHandler(ConsultantSchedulerDB) XMLGenerator
«interface» «interface»

ConsultantSchedulerDB Opportunityltem

))

))

))

))

1 1

«creates»

ConsultantSchedulerDBImpl Opportunityltemimpl

Figure 7.3 Extracting an implementer on OpportunityItem.

Now AddOpportunityFormHandler doesn’t depend on the original code in
OpportunityItem at all. In a way, we’ve put a “compilation firewall” in the
code. We can make as many changes as we want to ConsultantSchedulerDBImpl
and OpportunityItemImpl, but that won’t force AddOpportunityFormHandler to

recompile, and it won’t force any users of AddOpportunityFormHandler to recom- Breaking
Dependencies

pile. If we wanted to make this very explicit in the package structure of the
application, we could break up our design into the separate packages shown
in Figure 7.4.

1 1
OpportunityProcessing DatabaseGateway
+ AddOpportunityFormHandler + ConsultantSchedulerDB
- AddOpportunityXMLGenerator + Opportunityltem

A

)

)

)

]

] .

Databaselmplementation

+ ConsultantSchedulerDBImpl
+ OpportunityltemImpl

Figure 7.4 Refactored package structure.

www.EBooksWorld.ir

Breaking
Dependencies

IT TAaKES FOREVER TO MAKE A CHANGE

Now we have a package, OpportunityProcessing, that really has no dependen-
cies on the database implementation. Whatever tests we write and place in the
package should compile quickly, and the package itself doesn’t have to recom-
pile when we change code in the database implementation classes.

The Dependency Inversion Principle

When your code depends on an interface, that dependency is usually very
minor and unobtrusive. Your code doesn’t have to change unless the inter-
face changes, and interfaces typically change far less often than the code
behind them. When you have an interface, you can edit classes that imple-
ment that interface or add new classes that implement the interface, all with-
out impacting code that uses the interface.

For this reason, it is better to depend on interfaces or abstract classes than
it is to depend on concrete classes. When you depend on less volatile things,
you minimize the chance that particular changes will trigger massive
recompilation.

So far, we’ve done a few things to prevent AddOpportunityFormHandler from
being recompiled when we modify classes it depends upon. That does make
builds faster, but it is only half of the issue. We can also make builds faster for
code that depends on AddOpportunityFormHandler. Let’s look at the package design
again, in Figure 7.5.

1 1
OpportunityProcessing DatabaseGateway
+ AddOpportunityFormHandler + ConsultantSchedulerDB
+ AddOpportunityFormHandlerTest + Opportunityltem
- AddOpportunityXMLGenerator
- AddOpportunityXMLGeneratorTest

T —

1

Databaselmplementation

+ ConsultantSchedulerDBImpl

+ ConsultantSchedulerDBImplTest
+ Opportunityltemimpl

+ OpportunityltemImplTest

Figure 7.5 Package structure.

www.EBooksWorld.ir

SUMMARY

AddOpportunityFormHandler is the only public production (non-test) class in
OpportunityProcessing. Any classes in other packages that depend on it have
to recompile when we change it. We can break that dependency also by using
Extract Interface (362) or Extract Implementer (356) on AddOpportunityForm
Handler. Then, classes in other packages can depend on the interfaces. When
we do that, we’ve effectively shielded all of the users of this package from
recompilation when we make most changes.

We can break dependencies and allocate classes across different packages to
make build time faster, and doing it is very worthwhile. When you can rebuild
and run your tests very quickly, you can get greater feedback as you develop. In
most cases, that means fewer errors and less aggravation. But it isn’t free. There
is some conceptual overhead in having more interfaces and packages. Is that a
fair price to pay compared to the alternative? Yes. At times, it can take a little
longer to find things when you have more packages and interfaces, but when
you do, you can work with them very easily.

When you introduce more interfaces and packages into your design to break
dependencies, the amount of time it takes to rebuild the entire system goes
up slightly. There are more files to compile. But the average time for a make,
a build based on what needs to be recompiled, can go down dramatically.

When you start to optimize your average build time, you end up with areas
of code that are very easy to work with. It might be a bit of a pain to get a small
set of classes compiling separately and under test, but the important thing to
remember is that you have to do it only once for that set of classes; afterward,
you get to reap the benefits forever.

Summary

The techniques I’ve shown in this chapter can be used to speed up build time for
small clusters of classes, but this is only a small portion of what you can do
using interfaces and packages to manage dependencies. Robert C. Martin’s
book Agile Software Development: Principles, Patterns, and Practices (Pearson
Education, 2002) presents more techniques along these lines that every soft-
ware developer should know.

www.EBooksWorld.ir

Summary

This page intentionally left blank

www.EBooksWorld.ir

Chapter 8

How Do I Add a Feature?

This has to be the most abstract and problem-domain-specific question in the
book. I almost didn’t add it because of that. But the fact is, regardless of our
design approach or the particular constraints we face, there are some tech-
niques that we can use to make the job easier.

Let’s talk about context. In legacy code, one of the most important consider-
ations is that we don’t have tests around much of our code. Worse, getting them
in place can be difficult. People on many teams are tempted to fall back on the
techniques in Chapter 6, I Don’t Have Much Time and I Have to Change It,
because of this. We can use the techniques described there (sprouting and wrap-
ping) to add to code without tests, but there are some hazards aside from the
obvious ones. For one thing, when we sprout or wrap, we don’t significantly
modify the existing code, so it isn’t going to get any better for a while. Duplica-
tion is another hazard. If the code that we add duplicates code that exists in the
untested areas, it might just lie there and fester. Worse, we might not realize that
we are going to have duplication until we get far along making our changes. The
last hazards are fear and resignation: fear that we can’t change a particular piece
of code and make it easier to work with, and resignation because whole areas of
the code just aren’t getting any better. Fear gets in the way of good decision mak-
ing. The sprouts and wraps left in the code are little reminders of it.

In general, it’s better to confront the beast than hide from it. If we can get
code under test, we can use the techniques in this chapter to move forward in a
good way. If you need to find ways to get tests in place, look at Chapter 13, I
Need to Make a Change, but I Don’t Know What Tests to Write. If dependen-
cies are getting in your way, look at Chapter 9, I Can’t Get This Class into a
Test Harness, and Chapter 10, I Can’t Run This Method in a Test Harness.

Once we have tests in place, we are in a better position to add new features.
We have a solid foundation.

87

www.EBooksWorld.ir

How Do | Add
a Feature?

Test-Driven
Development

(TDD)

How Do I Abp A FEATURE?

Test-Driven Development (TDD)

The most powerful feature-addition technique I know of is test-driven develop-
ment (TDD). In a nutshell, it works like this: We imagine a method that will
help us solve some part of a problem, and then we write a failing test case for it.
The method doesn’t exist yet, but if we can write a test for it, we’ve solidified
our understanding of what the code we are about to write should do.
Test-driven development uses a little algorithm that goes like this:

1. Write a failing test case.
2. Get it to compile.

3. Make it pass.

4. Remove duplication.

5. Repeat.

Here is an example. We’re working on a financial application, and we need a
class that is going to use some high-powered mathematics to verify whether cer-
tain commodities should be traded. We need a Java class that calculates some-
thing called the first statistical moment about a point. We don’t have a method
that does that yet, but we do know that we can write a test case for the method.
We know the math, so we know that the answer should be -0.5 for the data we
code in the test.

Write a Failing Test Case

Here is a test case for the functionality we need.

public void testFirstMoment() {
InstrumentCalculator calculator = new InstrumentCalculator();
calculator.addETement(1.0);
calculator.addETement(2.0);

assertEquals(-0.5, calculator.firstMomentAbout(2.0), TOLERANCE);

Get It to Compile

The test we just wrote is nice, but it doesn’t compile. We don’t have a method
named firstMomentAbout on InstrumentCalculator. But we add it as an empty
method. We want the test to fail, so we have it return the double value NaN
(which definitely is not the expected value of -0.5).

www.EBooksWorld.ir

TEsT-DRIVEN DEVELOPMENT (TDD)

public class InstrumentCalculator

{
double firstMomentAbout(double point) {
return Double.NaN;

}

Make It Pass

With that test in place, we write the code that makes it pass.

public double firstMomentAbout(double point) {
double numerator = 0.0;
for (Iterator it = elements.iterator(); it.hasNext();) {
double element = ((Double)(it.next())).doubleValue();
numerator += element - point;

}

return numerator / elements.size();

This is an abnormally large amount of code to write in response to a test in TDD.
Typically, steps are much smaller, although they can be this large if you are certain of
the algorithm you need to use.

Remove Duplication

Do we have any duplication here? Not really. We can go on to the next case.

Write a Failing Test Case

The code we just wrote makes the test pass, but it definitely won’t be good for
all cases. In the return statement, we could accidentally divide by 0. What
should we do in that case? What do we return when we have no elements? In
this case, we want to throw an exception. The results will be meaningless for us
unless we have data in our elements list.

This next test is special. It fails if an InvalidBasisException isn’t thrown, and it
passes if no exceptions are thrown or any other exception is thrown. When we
run it, it fails because an ArithmeticException is thrown when we divide by 0 in
firstMomentAbout.
pubTic void testFirstMoment() {

try {

new InstrumentCalculator().firstMomentAbout(0.0);
fail("expected InvalidBasisException");

www.EBooksWorld.ir

Test-Driven
Development

(TDD)

v How Do I App A FEATURE?

catch (InvalidBasisException e) {

}

Get It to Compile

To do this, we have to alter the declaration of firstMomentAbout so that it throws
an InvalidBasisException.

public double firstMomentAbout(double point)
throws InvalidBasisException {

double numerator = 0.0;

for (Iterator it = elements.iterator(); it.hasNext();) {
double element = ((DoubTe)(it.next())).doubleValue();
numerator += element - point;

}

return numerator / elements.size();

}

But that doesn’t compile. The compiler errors tell us that we have to actually
throw the exception if it is listed in the declaration, so we go ahead and write
the code.

public double firstMomentAbout(double point)
throws InvalidBasisException {

if (element.size() == 0)
throw new InvalidBasisException("no elements");

double numerator = 0.0;
for (Iterator it = elements.iterator(); it.hasNext();) {
double element = ((DoubTe)(it.next())).doubleValue();

Test-Driven

Development 8
(TDD) numerator += element - point;
}
return numerator / elements.size();
}
Make It Pass

Now our tests pass.

Remove Duplication

There isn’t any duplication in this case.

www.EBooksWorld.ir

TEsT-DRIVEN DEVELOPMENT (TDD)

Write a Failing Test Case

The next piece of code that we have to write is a method that calculates the sec-
ond statistical moment about a point. Actually, it is just a variation of the first.
Here is a test that moves us toward writing that code. In this case, the expected
value is 0.5 rather than -0.5. We write a new test for a method that doesn’t exist
yet: secondMomentAbout.
public void testSecondMoment() throws Exception {

InstrumentCalculator calculator = new InstrumentCalculator();

calculator.addETement(1.0);
calculator.addETement(2.0);

assertEquals(0.5, calculator.secondMomentAbout(2.0), TOLERANCE);

Get It to Compile

To get it to compile, we have to add a definition for secondMomentAbout. We can
use the same trick we used for the firstMomentAbout method, but it turns out that
the code for the second moment is only a slight variation of the code for the
first moment.

This line in firstMoment:

numerator += element - point;
has to become this in the case of the second moment:
numerator += Math.pow(element - point, 2.0);

And there is a general pattern for this sort of thing. The nth statistic moment
is calculated using this expression:

numerator += Math.pow(element - point, N);

The code in firstMomentAbout works because element - point is the same as
Math.pow(element - point, 1.0).

At this point, we have a couple of choices. We can notice the generality and
write a general method that accepts an “about” point and a value for N. Then
we can replace every use of firstMomentAbout(double) with a call to that general
method. We can do that, but it would burden the callers with the need to supply
an N value, and we don’t want to allow clients to supply an arbitrary value for N.
It seems like we are getting lost in thought here. We should put this on hold and
finish what we’ve started so far. Our only job right now is to make it compile.
We can generalize later if we find that we still want to.

To make it compile, we can make a copy of the firstMomentAbout method and
rename it so that it is now called secondMomentAbout:

www.EBooksWorld.ir

Test-Driven
Development

(TDD)

v How Do I Abp A FEATURE?

public double secondMomentAbout(double point)
throws InvalidBasisException {

if (elements.size() == 0)
throw new InvalidBasisException("no elements");

double numerator = 0.0;

for (Iterator it = elements.iterator(); it.hasNext();) {
double element = ((DoubTe)(it.next())).doubleValue();
numerator += element - point;

}

return numerator / elements.size();
}
Make It Pass

This code fails the test. When it fails, we can go back and make it pass by
changing the code to this:

public double secondMomentAbout(double point)
throws InvalidBasisException {

if (elements.size() == 0)
throw new InvalidBasisException("no elements");

double numerator = 0.0;

for (Iterator it = elements.iterator(); it.hasNext();) {
double element = ((DoubTe)(it.next())).doubleValue();
numerator += Math.pow(element - point, 2.0);

}

return numerator / elements.size();

Test-Driven }

e Spment You might be shocked by the cut/copy/paste we just did, but we’re going to

remove duplication in a second. This code that we are writing is fresh code. But
the trick of just copying the code that we need and modifying it in a new
method is pretty powerful in the context of legacy code. Often when we want
to add features to particularly awful code, it’s easier to understand our modifi-
cations if we put them in some new place and can see them side by side with the
old code. We can remove duplication later to fold the new code into the class in
a nicer way, or we can just get rid of the modification and try it in a different
way, knowing that we still have the old code to look at and learn from.

(TDD)

www.EBooksWorld.ir

TEsT-DRIVEN DEVELOPMENT (TDD)

Remove Duplication

Now that we have both tests passing, we have to do the next step: remove
duplication. How do we do it?
One way to do it is to extract the entire body of secondMomentAbout, call it
nthMomentAbout and give it a parameter, N:
pubTic double secondMomentAbout(double point)
throws InvalidBasisException {

return nthMomentAbout(point, 2.0);
}

private double nthMomentAbout(double point, double n)
throws InvalidBasisException {

if (elements.size() == 0)
throw new InvalidBasisException(“no elements);

double numerator = 0.0;

for (Iterator it = elements.iterator(); it.hasNext();) {
double element = ((Double)(it.next())).doubleValue();
numerator += Math.pow(element - point, n);

}

return numerator / elements.size();

If we run our tests now, we’ll see that they pass. We can go back to first-
MomentAbout and replace its body with a call to nthMomentAbout:
pubTic double firstMomentAbout(double point)

throws InvalidBasisException {
return nthMomentAbout(point, 1.0);

This final step, removing duplication, is very important. We can quickly
and brutally add features to code by doing things such as copy whole blocks
of code, but if we don’t remove the duplication afterward, we are just causing
trouble and making a maintenance burden. On the other hand, if we have
tests in place, we are able to remove duplication easily. We definitely saw this
here, but the only reason we had tests is because we used TDD from the start.
In legacy code, the tests that we write around existing code when we use TDD
are very important. When we have them in place, we have a free hand to write

www.EBooksWorld.ir

Test-Driven
Development

(TDD)

v How Do I App A FEATURE?

Programming
by Difference

whatever code we need to add a feature, and we know that we’ll be able to
fold it into the rest of the code without making things worse.

TDD and Legacy Code

One of the most valuable things about TDD is that it lets us concentrate on one thing
at a time. We are either writing code or refactoring; we are never doing both at once.

That separation is particularly valuable in legacy code because it lets us write new
code independently of new code.

After we have written some new code, we can refactor to remove any duplication
between it and the old code.

For legacy code, we can extend the TDD algorithm this way:
0. Get the class you want to change under test.
1. Write a failing test case.
2. Get it to compile.
3. Make it pass. (Try not to change existing code as you do this.)
4. Remove duplication.

5. Repeat.

Programming by Difference

Test-driven development isn’t tied to object orientation. In fact, the example in
the previous section is really just a piece of procedural code wrapped up in a
class. In OO, we have another option. We can use inheritance to introduce fea-
tures without modifying a class directly. After we’ve added the feature, we can
figure out exactly how we really want the feature integrated.

The key technique for doing this is something called programming by differ-
ence. It is a rather old technique that was discussed and used quite a bit in the
1980s, but it fell out of favor in the 1990s when many people in the OO com-
munity noticed that inheritance can be rather problematic if it is overused. But
just because we use inheritance initially doesn’t mean that we have to keep it in
place. With the help of the tests, we can move easily to other structures if the
inheritance becomes problematic.

Here’s an example that shows how it works. We have a tested Java class
called MaiTForwarder that is part of a Java program that manages mailing lists. It
has a method named getFromAddress. This is what it looks like:

www.EBooksWorld.ir

PROGRAMMING BY DIFFERENCE

private InternetAddress getFromAddress(Message message)
throws MessagingException {

Address [] from = message.getFrom ();
if (from != null && from.length > 0)

return new InternetAddress (from [0].toString ());
return new InternetAddress (getDefaultFrom());

The purpose of this method is to strip out the “from” address of a received
mail message and return it so that it can be used as the “from” address of the
message that is forwarded to list recipients.

It’s used in only one place, these lines in a method named forwardMessage:

MimeMessage forward = new MimeMessage (session);
forward.setFrom (getFromAddress (message));

Now, what do we need to do if we have a new requirement? What if we need
to support mailing lists that are anonymous? Members of these lists can post,
but the “from” address of their messages should be set to a particular e-mail
address based upon the value of domain (an instance variable of the Message-
Fowarder class). Here is a failing test case for that change (when the test executes,
the expectedMessage variable is set to the message that the MessageFowarder for-
wards):
public void testAnonymous () throws Exception {

MessageForwarder forwarder = new MessageForwarder();

forwarder.forwardMessage (makeFakeMessage());

assertEquals ("anon-members@" + forwarder.getDomain(),
expectedVessage.getFrom ()[0].toString());

Do we have to modify MessageForwarder to add this functionality? Not
really—we could just subclass MessageForwarder and make a class called Anon-
ymousMessageForwarder. We can use it in the test instead.
pubTlic void testAnonymous () throws Exception {

MessageForwarder forwarder = new AnonymousMessageForwarder();

forwarder. forwardMessage (makeFakeMessage());

assertEquals ("anon-members@" + forwarder.getDomain(),
expectedMessage.getFrom ()[0].toString());

Then we subclass (see Figure 8.1).

www.EBooksWorld.ir

Programming
by Difference

Programming
by Difference

How Do I Abp A FEATURE?

MessageForwarder

+ MessageForwarder()

+ processMessage(Message)
- forwardMessage(Message)

getFromAddress(Message)

AnonymousMessageForwarder

getFromAddress(Message)

Figure 8.1 Subclassing MessageForwarder.

Here we’ve made the getFromAddress method protected in MessageForwarder
rather than private. Then we overrode it in AnonymousMessageForwarder. In that
class, it looks like this:
protected InternetAddress getFromAddress(Message message)

throws MessagingException {

String anonymousAddress = "anon-" + TistAddress;
return new InternetAddress(anonymousAddress);

What does that get us? Well, we’ve solved the problem, but we’ve added a
new class to our system for some very simple behavior. Does it make sense to
subclass a whole message-forwarding class just to change its “from” address?
Not in the long term, but the thing that is nice is that it allows us to pass our
test quickly. And when we have that test passing, we can use it to make sure
that we preserve this new behavior when we decide that we want to change the
design.
public void testAnonymous () throws Exception {

MessageForwarder forwarder = new AnonymousMessageForwarder();

forwarder. forwardMessage (makeFakeMessage());

assertkquals ("anon-members@" + forwarder.getDomain(),
expectedVessage.getFrom ()[0].toString());

That almost seemed too easy. What’s the catch? Well, here it is: If we use this
technique repeatedly and we don’t pay attention to some key aspects of our
design, it starts to degrade rapidly. To see what can happen, let’s consider
another change. We want to forward messages to the mailing list recipients, but

www.EBooksWorld.ir

PROGRAMMING BY DIFFERENCE

we also want to send them via blind carbon copy (bcc) to some other people
who can’t be on the official mailing list. We can call them off-list recipients.

It looks easy enough; we could subclass MessageForwarder again and override
its process method so that it sends messages to that destination, as in Figure 8.2.

That could work fine except for one thing. What if we need a MessageFor-
warder that does both things: send all messages to off-list recipients and do
all forwarding anonymously?

This is one of the big problems with using inheritance extensively. If we put
features into distinct subclasses, we can only have one of those features at a
time.

How can we get out of this bind? One way is to stop before adding the off-
list recipients feature and refactor so that it can go in cleanly. Luckily, we have
that test in place that we wrote earlier. We can use it to verify that we preserve
behavior as we move to another scheme.

For the anonymous forwarding feature, there is a way that we could’ve
implemented it without subclassing. We could have chosen to make anonymous
forwarding a configuration option. One way of doing this is to change the con-
structor of the class so that it accepts a collection of properties:

Properties configuration = new Properties();

configuration.setProperty("anonymous", "true");
MessageForwarder forwarder = new MessageForwarder(configuration);

Can we make our test pass when we do that? Let’s look at the test again:

pubTlic void testAnonymous () throws Exception {
MessageForwarder forwarder = new AnonymousMessageForwarder();
forwarder. forwardMessage (makeFakeMessage());

MessageForwarder

+ MessageForwarder()

+ processMessage(Message)
- forwardMessage(Message)

getFromAddress(Message)

1

OffListMessageForwarder AnonymousMessageForwarder

+ processMessage(Message) # getFromAddress(Message)

Figure 8.2 Subclassing for two differences.

www.EBooksWorld.ir

Programming
by Difference

Programming
by Difference

How Do I Abp A FEATURE?

assertEquals ("anon-members@" + forwarder.getDomain(),
expectedVessage.getFrom ()[0].toString());

Currently, this test passes. AnonymousMessageForwarder overrides the getFrom
method from MessageForwarder. What if we alter the getFrom method in MessageFor-
warder like this?

private InternetAddress getFromAddress(Message message)
throws MessagingException {

String fromAddress = getDefaultFrom();
if (configuration.getProperty("anonymous").equals("true")) {
fromAddress = "anon-members@" + domain;

}
else {
Address [] from = message.getFrom ();
if (from != null & from.length > 0) {
fromAddress = from [0].toString ();
}
}

return new InternetAddress (fromAddress);

Now we have a getFrom method in MessageFowarder that should be able to han-
dle the anonymous case and the regular case. We can verify this by commenting
out the override of getFrom in AnonymousMessageForwarder and seeing if the tests
pass:

pubTic class AnonymousMessageForwarder extends MessageForwarder

{
protected InternetAddress getFromAddress(Message message)
throws MessagingException {
String anonymousAddress = "anon-" + TistAddress;
return new InternetAddress(anonymousAddress);
}
*/
}

Sure enough, they do.

We don’t need the AnonymousMessageForwarder class any longer, so we can delete
it. Then we have to find each place that we create an AnonymousMessageForwarder
and replace its constructor call with a call to the constructor that accepts a
properties collection.

We can use the properties collection to add the new feature also. We can
have a property that enables the off-list recipient feature.

www.EBooksWorld.ir

PROGRAMMING BY DIFFERENCE v

Are we done? Not really. We’ve made the getFrom method on Message-
Forwarder a little messy, but because we have tests, we can very quickly
do an extract method to clean it up a little. Right now it looks like this:

private InternetAddress getFromAddress(Message message)
throws MessagingException {

String fromAddress = getDefaultFrom();
if (configuration.getProperty("anonymous").equals("true")) {
fromAddress = "anon-members@" + domain;
}
else {
Address [] from = message.getFrom ();
if (from != null && from.length > 0)
fromAddress = from [0].toString ();
}

return new InternetAddress (fromAddress);

After some refactoring, it looks like this:

private InternetAddress getFromAddress(Message message)
throws MessagingException {

String fromAddress = getDefaultFrom();
if (configuration.getProperty("anonymous").equals("true")) {
from = getAnonymousFrom();

}
else {

from = getFrom(Message);
}

return new InternetAddress (from);

} Programming
by Difference

That’s a little cleaner but the anonymous mailing and off-list recipient fea-
tures are folded into the MessageForwarder now. Is this bad in light of the Single
Responsibility Principle (246)? It can be. It depends on how large the code
related to a responsibility gets and how tangled it is with the rest of the code.
In this case, determining whether the list is anonymous isn’t that big of a deal.
The property approach allows us to move on in a nice way. What can we do
when there are many properties and the code of the MessageForwarder starts to
get littered with conditional statements? One thing we can do is start to use a
class rather than a properties collection. What if we created a class called
Mailing-Configuration and let it hold the properties collection? (See Figure 8.3.)

www.EBooksWorld.ir

Programming
by Difference

How Do I Abp A FEATURE?

MessageForwarder

+ MessageForwarder()

+ processMessage(Message)
- forwardMessage(Message) + getProperty(String) : String

getFromAddress(Message) + addProperty(String name, String value)

MailingConfiguration

Figure 8.3 Delegating to MailingConfiguration.

Looks nice, but isn’t this overkill? It looks like the MailingConfiguration just
does the same things that a properties collection does.

What if we decided to move getFromAddress to the MailingConfiguration class?
The MailingConfiguration class could accept a message and decide what “from”
address to return. If the configuration is set up for anonymity, it would return
the anonymous mailing “from” address. If it isn’t, it could take the first address
from the message and return it. Our design would be as it appears in Figure 8.4.
Notice that we don’t have to have method to get and set properties any longer.
MaiTingConfiguration now supports higher-level functionality.

MessageForwarder

+ MessageForwarder()
+ processM ge(M ge)
- forwardMessage(Message) + getFromAddress(Message)

MailingConfiguration

Figure 8.4 Moving behavior to MailingConfiguration.

We could also start to add other methods to MailingConfiguration. For
instance, if we want to implement that off-list recipients feature, we can add a
method named buildRecipientlist on the MailingConfiguration and let the
MessageForwarder use it, as shown in Figure 8.5.

MessageForwarder

+ MessageForwarder()

+ processMessage(Message)
- forwardMessage(Message) + getFromAddress(Message)

+ buildRecipientList(List recipients) : List

MailingConfiguration

Figure 8.5 Moving more behavior to MailingConfiguration.

www.EBooksWorld.ir

PROGRAMMING BY DIFFERENCE

With these changes, the name of the class isn’t as nice as it was. A configura-
tion is usually a rather passive thing. This class actively builds and modifies
data for MessageFowarders at their request. If there isn’t another class with the
same name in the system already, the name MailingList might be a good fit.
MessageForwarders ask mailing lists to calculate from addresses and build recipi-
ent lists. We can say that it is the responsibility of a mailing list to determine
how messages are altered. Figure 8.6 shows our design after the renaming.

MessageForwarder

+ MessageForwarder()

+ processMessage(Message)
- forwardMessage(Message) + getFromAddress(Message)

+ buildRecipientList(List recipients) : List

MailingList

Figure 8.6 MailingConfiguration renamed as Mailinglist.

There are many powerful refactorings, but Rename Class is the most powerful. It
changes the way people see code and lets them notice possibilities that they might not
have considered before.

Programming by Difference is a useful technique. It allows us to make
changes quickly, and we can use tests to move to a cleaner design. But to do it
well, we have to look out for a couple of “gotchas.” One of them is Liskov
substitution principle (LSP) violation.

The Liskov Substitution Principle Sl
by Difference

There are some subtle errors that we can cause when we use inheritance.
Consider the following code:

public class Rectangle

{

public Rectangle(int x, int y, int width, int height) { .. }
public void setWidth(int width) { ... }
pubTlic void setHeight(int height) { ... }
pubTlic int getArea() { ... }
}

We have a Rectangle class. Can we create a subclass named Square?

(continues)

www.EBooksWorld.ir

\ 4

Programming
by Difference

How Do I App A FEATURE?

public class Square extends Rectangle

{
public Square(int x, int y, int width) { ... }

}

Square inherits the setWidth and setHeight methods of Rectangle. What should the area
be when we execute this code?

Rectangle r = new Square();
r.setWidth(3);
r.setHeight(4);

If the area is 12, the Square really isn’t a square is it? We could override setWidth and
setHeight so that they can keep the Square “square”. We could have setWidth and
setHeight both modify the width variable in squares, but that could lead to some
counterintuitive results. Anyone who expects that all rectangles will have an area of
12 when their width is set to 3 and their height is set to 4 is in for a surprise. They’d
get 16 instead.

This is a classic example of a Liskov Substitution Principle (LSP) violation. Objects of
subclasses should be substitutable for objects of their superclasses throughout our
code. If they aren’t we could have silent errors in our code.

The LSP implies that clients of a class should be able to use objects of a sub-
class without having to know that they are objects of a subclass. There aren’t
any mechanical ways to completely avoid LSP violations. Whether a class is
LSP conformant depends upon the clients that it has and what they expect.
However, some rules of thumb help:

1. Whenever possible, avoid overriding concrete methods.

2.If you do, see if you can call the method you are overriding in the
overriding method.

Wait, we didn’t do those things in the MessageForwarder. In fact, we did the
opposite. We overrode a concrete method in a subclass (AnonymousMessage-
Forwarder). What’s the big deal?

Here’s the issue: When we override concrete methods as we did when we
overrode the getFromAddress of MessageForwarder in AnonymousMessageForwarder, we
could be changing the meaning of some of the code that uses MessageFowarders. If
there are references to MessageForwarder scattered throughout our application and
we set one of them to an AnonymousMessageForwarder, people who are using it might
think that it is a simple MessageFowarder and that it gets the “from” address from
the message it’s processing and uses it when it processes messages. Would it

www.EBooksWorld.ir

PROGRAMMING BY DIFFERENCE

matter to people who use this class whether it does that or uses another special
address as the “from” address? That depends on the application. In general,
code gets confusing when we override concrete methods too often. Someone can
notice a MessageForwarder reference in code, take a look at the MessageFowarder
class, and think that the code it has for getFromAddress is executed. They might
have no idea that the reference is pointing to an AnonymousMessageForwarder and
that its getFromAddress method is the one that is used. If we really wanted to keep
the inheritance around, we could have made MessageForwarder abstract, given it
an abstract method for getFromAddress, and let the subclasses provide concrete
bodies. Figure 8.7 shows what the design would look like after these changes.

I call this sort of hierarchy a normalized hierarchy. In a normalized hierar-
chy, no class has more than one implementation of a method. In other words,
none of the classes has a method that overrides a concrete method it inherited
from a superclass. When you ask the question “How does this class do X?” you
can answer it by going to class X and looking. Either the method is there or it is
abstract and implemented in one of the subclasses. In a normalized hierarchy
you don’t have to worry about subclasses overriding behavior they inherited
from their superclasses.

{abstract}
MessageForwarder

+ MessageForwarder()

+ processMessage(Message)

- forwardMessage(Message)

getFromAddress(Message) {abstract}

AddressPreservingForwarder AnonymousForwarder

getFromAddress(Message) # getFromAddress(Message)

Figure 8.7 Normalized hierarchy.

www.EBooksWorld.ir

Programming
by Difference

Summary

How Do I App A FEATURE?

Is it worth doing this all of the time? A few concrete overrides every once in
a while don’t hurt, as long as it doesn’t cause a Liskov substitution principle
violation. However, it’s good to think about how far classes are from normal-
ized form every once in a while and at times to move toward it when we pre-
pare to separate out responsibilities.

Programming by Difference lets us introduce variations quickly in systems.
When we do, we can use our tests to pin down the new behavior and move to
more appropriate structures when we need to. Tests can make the move very
rapid.

Summary

You can use the techniques in this chapter to add features to any code that
you can get under test. The literature on test-driven development has grown
in recent years. In particular, I recommend Kent Beck’s book Test-Driven
Development by Example (Addison-Wesley, 2002), and Dave Astel’s Test-
Driven Development: A Practical Guide (Prentice Hall Professional Technical
Reference, 2003).

www.EBooksWorld.ir

Chapter 9

I Can’t Get This Class

into a Test Harness

This is the hard one. If it were always easy to instantiate a class in a test har-
ness, this book would be a lot shorter. Unfortunately, it’s often hard to do.
Here are the four most common problems we encounter:

1. Objects of the class can’t be created easily.

2. The test harness won’t easily build with the class in it.

3. The constructor we need to use has bad side effects.

4. Significant work happens in the constructor, and we need to sense it.

In this chapter, we go through a series of examples that highlight these prob-
lems in different languages. There is more than one way to tackle each of these
problems. However, reading through these examples is a great way of becoming
familiar with the arsenal of dependency breaking techniques and learning how
to trade them off and apply them in particular situations.

105

www.EBooksWorld.ir

| Can’t Get This
Class into a

Test Harness

The Case of the
Irritating

Parameter

I CaN’T GET THis CLasS INTO A TEST HARNESS

The Case of the Irritating Parameter

When I need to make a change in a legacy system, I usually start out buoyantly
optimistic. I don’t know why I do. I try to be a realist as much as I can, but the
optimism is always there. “Hey,” I say to myself (or a partner), “this sounds
like it will be easy. We just have to make the Floogle flumoux a bit, and then we’ll
be done.” It all sounds so easy in words until we get to the Floogle class (what-
ever that is) and look at it a bit. “Okay, so we need to add a method here, and
change this other method, and, of course we’ll need to get it in a testing har-
ness.” At this point, I start to doubt a little. “Gee, it looks like the simplest con-
structor on this class accepts three parameters. But,” I say optimistically,
“maybe it won’t be too hard to construct it.”

Let’s take a look at an example and see whether my optimism is appropriate
or just a defense mechanism.

In the code for a billing system, we have an untested Java class named
CreditValidator.

pubTic class CreditValidator

{
public CreditValidator(RGHConnection connection,
CreditMaster master,
String validatorID) {
}
Certificate validateCustomer(Customer customer)
throws InvalidCredit {
}
}

One of the many responsibilities of this class is to tell us whether customers
have valid credit. If they do, we get back a certificate that tells us how much
credit they have. If they don’t, the class throws an exception.

Our mission, should we choose to accept it, it is to add a new method to this
class. The method will be named getValidationPercent, and its job will be to tell us
the percentage of successful validateCustomer calls we’ve made over the life of the
validator.

How do we get started?

When we need to create an object in a test harness, often the best approach is
to just try to do it. We could do a lot of analysis to find out why it would or

www.EBooksWorld.ir

THE CASE OF THE IRRITATING PARAMETER

would not be easy or hard, but it is just as easy to create a JUnit test class, type
this into it, and compile the code:
public void testCreate() {

CreditValidator validator = new CreditValidator();
}

The best way to see if you will have trouble instantiating a class in a test harness is to
just try to do it. Write a test case and attempt to create an object in it. The compiler
will tell you what you need to make it really work.

This test is a construction test. Construction tests do look a little weird.
When I write one, I usually don’t put an assertion in it. I just try to create the
object. Later, when I’m finally able to construct an object in the test harness, I
usually get rid of the test or rename it so that I can use it to test something more
substantial.

Back to our example:

We haven’t added any of the arguments to the constructor yet, so the com-
piler complains. It tells us that there is no default constructor for CreditValidator.
Hunting through the code, we discover that we need an RGHConnection, a Credit-
Master, and a password. Each of these classes has only one constructor. This is
what they look like:

pubTic class RGHConnection

{
pubTlic RGHConnection(int port, String Name, string passwd)
throws IOException {
}
}
public class CreditMaster
{
public CreditMaster(String filename, hoolean isLocal) {
}
}

When an RGHConnection is constructed, it connects with a server. The connec-
tion uses that server to get all of the reports it needs to validate a customer’s
credit.

The other class, CreditMaster, gives us some policy information that we use in
our credit decisions. On construction, a CreditMaster loads the information from
a file and holds it in memory for us.

So, it does seem pretty easy to get this class in a testing harness, right? Not so
fast. We can write the test, but can we live with it?

www.EBooksWorld.ir

The Case of the
Irritating

Parameter

The Case of the
Irritating

Parameter

I CaN’T GET THis CLasS INTO A TEST HARNESS

public void testCreate() throws Exception {
RGHConnection connection = new RGHConnection(DEFAULT_PORT,
"admin", "rii8iigs");
CreditMaster master = new CreditMaster("crm2.mas", true);
CreditValidator validator = new CreditValidator(
connection, master, "a");

It turns out that establishing RCHConnections to the server in a test is not a good
idea. It takes a long time, and the server isn’t always up. On the other hand, the
CreditMaster is not really a problem. When we create a CreditMaster, it loads its file
quickly. In addition, the file is read-only, so we don’t have to worry about our
tests corrupting it.

The thing that is really getting in our way when we want to create the valida-
tor is the RGHConnection. It is an irritating parameter. If we can create some sort of
a fake RGHConnection object and make CreditValidator believe that it’s talking to a
real one, we can avoid all sorts of connection trouble. Let’s take a look at the
methods that RGHConnection provides (see Figure 9.1).

It looks like RGHConnection has a set of methods that deal with the mechanics
of forming a connection: connect, disconnect, and retry, as well as more business-
specific methods such as RFDIReportFor and ACTIOReportFor. When we write our
new method on CreditValidator, we are going to have to call RFDIReportFor to get
all of the information that we need. Normally, all of that information comes
from the server, but because we want to avoid using a real connection, we’ll
have to find some way to supply it ourselves.

In this case, the best way to make a fake object is to use Extract Interface
(362) on the RGHConnection class. If you have a tool with refactoring support,
chances are good that it supports Extract Interface. If you don’t have a tool that
supports Extract Interface, remember that it is easy enough to do by hand.

RGHConnection

+ RGHConnection(port, name, passward)

+ connect()

+ disconnect()

+ RFDIReportFor(id : int) : RFDIReport

+ ACTIOReportFor(customerlD : int) ACTIOReport
- retry()

- formPacket() : RFPacket

Figure 9.1 RGHConnection.

www.EBooksWorld.ir

THE CASE OF THE IRRITATING PARAMETER

After we do Extract Interface (362), we end up with a structure like the one
shown in Figure 9.2.

We can start to write tests by creating a little fake class that provides the
reports that we need:

pubTlic class FakeConnection implements IRGHConnection

{

public RFDIReport report;

public void connect() {}

public void disconnect() {}

public RFDIReport RFDIReportFor(int id) { return report; }

public ACTIOReport ACTIOReportFor(int customerID) { return null; }
}

With that class, we can start to write tests like this:

void testNoSuccess() throws Exception {
CreditMaster master = new CreditMaster("crm2.mas", true);
IRCHConnection connection = new FakeConnection();
CreditValidator validator = new CreditValidator(
connection, master, "a");
connection.report = new RFDIReport(...);

Certificate result = validator.validateCustomer(new Customer(...));

assertEquals(Certificate.VALID, result.getStatus());

«interface»
IRGHConnection

+ connect()

+ disconnect()

+ RGDIReportFor(id : int) : RFDIReport
+ACTIOReportFor(customerlID : int) : ACTIOReport

B

RGHConnection

+ RGHConnection(port, name, passward)
+connect()

+disconnect()

+RFDIReportFor(id : int) : RFDIReport
+ACTIOReportFor(customerID : int) ACTIOReport

- retry()
- formPacket() : RFPacket

Figure 9.2 RGHConnection after extracting an interface

www.EBooksWorld.ir

The Case of the
Irritating

Parameter

The Case of the
Irritating

Parameter

I CaN’T GET THis Crass INTO A TEST HARNESS

The FakeConnection class is a little weird. How often do we ever write methods
that don’t have any bodies or that just return null to callers? Worse, it has a
public variable that anyone can set whenever they want to. It seems like the
class violates all of the rules. Well, it doesn’t really. The rules are different for
classes that we use to make testing possible. The code in FakeConnection isn’t pro-
duction code. It won’t ever run in our full working application—just in the test
harness.

Now that we can create a validator, we can write our getValidationPercent
method. Here is a test for it.
void testAl1Passed100Percent() throws Exception {

CreditMaster master = new CreditMaster("crm2.mas", true);

IRGHConnection connection = new FakeConnection("admin", "rii8ii9s");

CreditValidator validator = new CreditValidator(
connection, master, "a");

connection.report = new RFDIReport(...);
Certificate result = validator.validateCustomer(new Customer(...));
assertEquals(100.0, validator.getValidationPercent(), THRESHOLD);

Test Code vs. Production Code

Test code doesn’t have to live up to the same standards as production code. In gen-
eral, I don’t mind breaking encapsulation by making variables public if it makes it
easier to write tests. However, test code should be clean. It should be easy to under-
stand and change.

Take a look at the testNoSuccess and testAl1Passed100Percent tests in the example. Do
they have any duplicate code? Yes. The first three lines are duplicated. They should be
extracted and placed in a common place, the setUp() method for this test class.

The test checks to see if the validation percent is roughly 100.0 when we get
a single valid credit certificate.

The test works fine, but as we write the code for getValidationPercent, we
notice something interesting. It turns out that getValidationPercent isn’t going to
use the CreditMaster at all, so why are we making one and passing it into the
CreditValidator? Maybe we don’t need to. We could create the CreditValidator like
this in our test:

CreditValidator validator = new CreditValidator(connection, null, "a");

Are you still there?

The way people react to lines of code like that often says a lot about the kind
of system they work on. If you looked at it and said, “Oh, fine, so he’s passing a
null into the constructor—we do that all the time in our system,” chances are,

www.EBooksWorld.ir

THE CASE OF THE IRRITATING PARAMETER

you’ve got a pretty nasty system on your hands. You probably have checks for
null all over the place and a lot of conditional code that you use to figure out
what you have and what you can do with it. On the other hand, if you looked
at it and said, “What is wrong with this guy?! Passing null around in a system?
Doesn’t he know anything at all?”, well, for those of you in the latter group (at
least those who are still reading and haven’t slammed the book shut in the
bookstore), I just have this to say: Remember, we’re only doing this in the tests.
The worst that can happen is that some code will attempt to use the variable. In
that case, the Java runtime will throw an exception. Because the harness catches
all exceptions thrown in tests, we’ll find out pretty quickly whether the parame-
ter is being used at all.

Pass Null

When you are writing tests and an object requires a parameter that is hard to con-
struct, consider just passing null instead. If the parameter is used in the course of your
test execution, the code will throw an exception and the test harness will catch the
exception. If you need behavior that really requires an object, you can construct it
and pass it as a parameter at that point.

Pass Null is a very handy technique in some languages. It works well in Java and C#
and in just about every language that throws an exception when null references are
used at runtime. This implies that it really isn’t a great idea to do this in C and C++
unless you know that the runtime will detect null pointer errors. If it doesn’t, you’ll
just end up with tests that will crash mysteriously, if you are lucky. If you are unlucky,
your tests will just be silently and hopelessly wrong. They will corrupt memory as
they run, and youw’ll never know.

When I work in Java, I often start with a test like this in the beginning and
fill in the parameters as I need them.
pubTlic void testCreate() {

CreditValidator validator = new CreditValidator(null, null, "a");
}

The important thing to remember is this: Don’t pass null in production code
unless you have no other choice. I know that some libraries out there expect
you to, but when you write fresh code there are better alternatives. If you are
tempted to use null in production code, find the places where you are returning

www.EBooksWorld.ir

The Case of the
Irritating

Parameter

v I CaN’T GET THis Crass INTO A TEST HARNESS

nulls and passing nulls, and consider a different protocol. Consider using the
Null Object Pattern instead.

Null Object Pattern

The Null Object Pattern is a way of avoiding the use of null in programs. For exam-
ple, if we have a method that is going to return an employee given an ID, what should
we return if there is no employee with that ID?

for(Iterator it = idList.iterator(); it.hasNext();) {
EmployeeID id = (EmployeeID)it.next();
Employee e = finder.getEmployeeForID(id);
e.pay();

}

We have a couple of choices. We could just decide to throw an exception so that we
don’t have to return anything, but that would force clients to deal with the error
explicitly. We could also return null, but then clients would have to check for null
explicitly.

There is a third alternative. Does the previous code really care whether there is an
employee to pay? Does it have to? What if we had a class called NuTlT1Employee? An
instance of Nul1Employee has no name and no address, and when you tell it to pay, it
just does nothing.

Null objects can be useful in contexts like this; they can shield clients from explicit
error checking. As nice as null objects are, you have to be cautious when you use
them. For instance, here is a very bad way of counting the number of paid employees:

int employeesPaid = 0;
for(Iterator it = idList.iterator(); it.hasNext();) {
EmployeeID id = (EmployeeID)it.next();
Employee e = finder.getEmployeeForID(id);
e.payQ;
mployeesPaid++; // bug!
}

The Case of the
Irritating

If any of the returned employees are null employees, the count will be wrong.

HCLIE s Null objects are useful specifically when a client doesn’t have to care whether an

operation is successful. In many cases, we can finesse our design so that this is the
case.

Pass Null and Extract Interface (362) are two ways of approaching irritating
parameters. But another alternative can be used at times. If the problematic
dependency in a parameter isn’t hard-coded into its constructor, we can use
Subclass and Override Method (401) to get rid of the dependency. That could
be possible in this case. If the constructor of RGHConnection uses its connect method
to form a connection, we could break the dependency by overriding connect() in

www.EBooksWorld.ir

THE CaSE oF THE HIDDEN DEPENDENCY v

a testing subclass. Subclass and Override Method (401) can be a very useful
way of breaking dependencies, but we have to be sure that we aren’t altering
the behavior we want to test when we use it.

The Case of the Hidden Dependency

Some classes are deceptive. We look at them, we find a constructor that we
want to use, and we try to call it. Then, bang! We run into an obstacle. One of
the most common obstacles is hidden dependency; the constructor uses some
resource that we just can’t access nicely in our test harness. We run into this
situation in this next example, a poorly designed C++ class that manages a
mailing list:

class mailing_list_dispatcher

{
pubTic:
mailing_Tist_dispatcher ();
virtual ~mailing_list_dispatcher;
void send_message(const std::string& message);
void add_recipient(const mail_txm_id id,
const mail_address& address);
private:
mail_service *service;
int status;
b

Here is part of the constructor of the class. It allocates a mail_service object
using new in the constructor initializer list. That is poor style, and it gets worse.
The constructor does a lot of detailed work with the mail_service. It also uses a

magic number, 12—what does 12 mean? The Case of the
Hidden
mailing_Tist_dispatcher::mailing_Tist_dispatcher() Dependency

. service(new mail_service), status(MAIL_OKAY)
{
const int client_type = 12;
service->connect();
if (service->get_status() == MS_AVAILABLE) {
service->register(this, client_type, MARK_MESSAGES_OFF);
service->set_param(client_type, ML_NOBOUNCE | ML_REPEATOFF);
}
else
status = MAIL_OFFLINE;

www.EBooksWorld.ir

The Case of the
Hidden

Dependency

I CaN’T GET THis CLasS INTO A TEST HARNESS

We can create an instance of this class in a test, but it’s probably not going to
do us much good. First of all, we’ll have to link to the mail libraries and config-
ure the mail system to handle registrations. And if we use the send_message func-
tion in our tests, we’ll really be sending mail to people. It will be hard to test
that functionality in an automated way unless we set up a special mailbox and
connect to it repeatedly, waiting for a mail message to arrive. That could be
great as an overall system test, but if all we want to do now is add some new
tested functionality to the class, that could be overkill. How can we create a
simple object to add some new functionality?

The fundamental problem here is that the dependency on mail_service is hid-
den in the mailing_list_dispatcher constructor. If there was some way to replace
the mail_service object with a fake, we could sense through the fake and get
some feedback as we change the class.

One of the techniques we can use is Parameterize Constructor (379). With
this technique, we externalize a dependency that we have in a constructor by
passing it into the constructor.

This is what the constructor code looks like after Parameterize Constructor
(379):

mailing_Tist_dispatcher::mailing_list_dispatcher(mail_service *service)
: status(MAIL_OKAY)

{
const int client_type = 12;
service->connect();
if (service->get_status() == MS_AVAILABLE) {
service->register(this, client_type, MARK_MESSAGES_OFF);
service->set_param(client_type, ML_NOBOUNCE | ML_REPEATOFF);
}
else
status = MAIL_OFFLINE;
}

The only difference, really, is that the mail_service object is created outside the
class and passed in. That might not seem like much of an improvement, but it
does give us incredible leverage. We can use Extract Interface (362) to make an
interface for mail_service. One implementer of the interface can be the produc-
tion class that really sends mail. Another can be a fake class that senses the
things that we do to it under test and lets us make sure that they happened.

Parameterize Constructor (379) is a very convenient way to externalize
constructor dependencies, but people don’t think of it very often. One of the
stumbling blocks is that people often assume that all clients of the class will
have to be changed to pass the new parameter, but that isn’t true. We can
handle it like this. First we extract the body of the constructor into a new

www.EBooksWorld.ir

THE CaSE oF THE HIDDEN DEPENDENCY

method that we can call initialize. Unlike most method extractions, this one is
pretty safe to attempt without tests because we can Preserve Signatures (312) as
we do it.

void mailing_Tist_dispatcher::initialize(mail_service *service)

{
status = MAIL_OKAY;
const int client_type = 12;
service.connect();
if (service->get_status() == MS_AVAILABLE) {
service->register(this, client_type, MARK_MESSAGES_OFF);
service->set_param(client_type, ML_NOBOUNCE | ML_REPEATOFF);
}
else
status = MAIL_OFFLINE;
}
mailing_Tist_dispatcher::mailing_list_dispatcher(mail_service *service)
{
initialize(service);
}

Now we can supply a constructor that has the original signature. Tests can
call the constructor parameterized by mail_service, and clients can call this one.
They don’t need to know that anything has changed.
mailing_Tist_dispatcher::mailing_Tist_dispatcher()

{

initialize(new mail_service);

}

This refactoring is even easier in languages such as C# and Java because we
can call constructors from other constructors in those languages.
For instance, if we were doing something similar in C#, the resultant code

would look like this:

pubTic class MailinglListDispatcher

{
public MailingListDispatcher()
1 this(new MailService())
{1
public MailinglListDispatcher(MailService service) {
}
}

Dependencies hidden in constructors can be tackled with many techniques.
Often we can use Extract and Override Getter (352), Extract and Ouverride

www.EBooksWorld.ir

The Case of the
Hidden

Dependency

The Case of the
Construction

Blob

I CaN’T GET THis CLasS INTO A TEST HARNESS

Factory Method (350), and Supersede Instance Variable (404), but I like to use
Parameterize Constructor (379) as often as I can. When an object is created in a
constructor and it doesn’t have any construction dependencies itself,
Parameterize Constructor is a very easy technique to apply.

The Case of the Construction Blob

Parameterize Constructor (379) is one of the easiest techniques that we can use
to break hidden dependencies in a constructor, and it is the one that I often turn
to first. Unfortunately, it isn’t always the best choice. If a constructor constructs
a large number of objects internally or accesses a large number of globals, we
could end up with a very large parameter list. In worse situations, a constructor
creates a few objects and then uses them to create other objects, like this:

class WatercolorPane

{
public:
WatercolorPane(Form *border, WashBrush *brush, Pattern *backdrop)
{
anteriorPanel = new Panel(border);
anteriorPanel->setBorderColor(brush->getForeColor());
backgroundPanel = new Panel(border, backdrop);
cursor = new FocusWidget(brush, backgroundPanel);
}
}

If we want to sense through the cursor, we are in trouble. The cursor object
is embedded in a blob of object creation. We can try to move all of the code
used to create the cursor outside of the class. Then a client can create the cursor
and pass it as an argument. But that isn’t very safe if we don’t have tests in
place, and it could be a big burden on clients on this class.

If we have a refactoring tool that safely extracts methods, we can use Extract
and Override Factory Method (350) on code in a constructor, but that doesn’t
work in all languages. In Java and C#, we can do it, but C++ doesn’t allow calls
to virtual functions in constructors to resolve to virtual functions defined in
derived classes. And in general, it isn’t a good idea. Functions in derived classes
often assume that they can use variables from their base class. Until the
constructor of the base class is completely finished, there is a chance that an
overridden function that it calls can access an uninitialized variable.

www.EBooksWorld.ir

Tue CASE oF THE CONSTRUCTION BLOB

Another option is Supersede Instance Variable (404). We write a setter on
the class that allows us to swap in another instance after we construct the
object.

class WatercolorPane

{
pubTic:
WatercolorPane(Form *border, WashBrush *brush, Pattern *backdrop)
{
anteriorPanel = new Panel(border);
anteriorPanel->setBorderColor(brush->getForeColor());
backgroundPanel = new Panel(border, backdrop);
cursor = new FocusWidget(brush, backgroundPanel);
}
void supersedeCursor(FocusWidget *newCursor)
{
delete cursor;
cursor = newCursor;
}
}

In C++, we have to be very careful with this refactoring. When we replace an
object, we have to get rid of the old one. Often that means that we have to use
the delete operator to call its destructor and destroy its memory. When we do
that, we have to understand what the destructor does and whether it destroys
anything that is passed to the object’s constructor. If we are not careful about
how we clean up memory, we can introduce some subtle bugs.

In most other languages, Supersede Instance Variable (404) is pretty straight-
forward. Here is the result recoded in Java. We don’t have to do anything spe-
cial to get rid of the object that cursor was referring to; the garbage collector will
get rid of it eventually. But we should be very careful not to use the superseding
method in production code. If the objects that we are superseding manage other
resources, we can cause some serious resource problems.
void supersedeCursor(FocusWidget newCursor) {

cursor = newCursor;

}

Now that we have a superseding method, we can attempt to create a FocusWidget
outside the class and then pass it into the object after construction. Because we
need to sense, we can use Extract Interface (362) or Extract Implementer (356)
on the FocusWidget class and create a fake object to pass in. It will certainly be easier
to create than the FocusWidget that is created in the constructor.

www.EBooksWorld.ir

The Case of the
Construction

Blob

The Case of the
Irritating Global

Dependency

I CaN’T GET THis CLasS INTO A TEST HARNESS

TEST(renderBorder, WatercolorPane)

{
%éétingFocusWidget *widget = new TestingFocusWidget;
WatercolorPane pane(form, border, backdrop);
pane.supersedeCursor(widget) ;
LONGS_EQUAL(@, pane.getComponentCount());

}

I don’t like to use Supersede Instance Variable (404) unless I can’t avoid it.
The potential for resource-management problems is too great. However, I do
use it in C++ at times. Often I'd like to use Extract and Owerride Factory
Method (350), and we can’t do that in C++ constructors. For that reason, I use
Supersede Instance Variable (404) occasionally.

The Case of the Irritating Global Dependency

For years in the software industry, people have bemoaned the fact that there
aren’t more reusable components on the market. It’s getting better over time;
there are plenty of commercial and open-source frameworks, but in general,
many of them are not really things that we use; they are things that use our
code. Frameworks often manage the lifecycle of an application, and we write
code to fill in the holes. We can see this in all sorts of frameworks, from
ASP.NET to Java Struts. Even the xUnit frameworks behave this way. We write
test classes; xUnit calls them and displays their results.

Frameworks solve many problems, and they do give us a boost when we
start projects, but this isn’t the kind of reuse that people really expected early
on in software development. Old-style reuse happens when we find some class
or set of classes that we want to use in our application and we just do it. We
just add them to a project and use them. It would be nice to be able to do this
routinely, but frankly, I think we are kidding ourselves even thinking about that
sort of reuse if we can’t pull a random class out of an average application and
compile it independently in a test harness without doing a lot of work (grumble,
grumble).

Many different kinds of dependency can make it hard to create and use
classes in a testing framework, but one of the hardest to deal with is global vari-
able usage. In simple cases, we can use Parameterize Constructor (379), Param-
eterize Method (383), and Extract and Override Call (348) to get past these
dependencies, but sometimes dependencies on globals are so extensive that it is

www.EBooksWorld.ir

THE CASE OF THE IRRITATING GLOBAL DEPENDENCY

easier to deal with the problem at the source. We run into this situation in this
next example, a class in a Java application that records building permits for a
governmental agency. Here is one of the primary classes:

public class Facility

{

private Permit basePermit;

public Facility(int facilityCode, String owner, PermitNotice notice)
throws PermitViolation {

Permit associatedPermit =
PermitRepository.getInstance().findAssociatedPermit(notice);

if (associatedPermit.isValid() && !notice.isValid()) {
basePermit = associatedPermit;

}

else if (Inotice.isValid()) {
Permit permit = new Permit(notice);
permit.validate();
basePermit = permit;

}
else
throw new PermitViolation(permit);

We want to create a Facility in a test harness, so we start by trying to create
an object in the test harness:
pubTlic void testCreate() {

PermitNotice notice = new PermitNotice(d, "a");
Facility facility = new Facility(Facility.RESIDENCE, "b", notice);

The test compiles okay, but when we start to write additional tests, we notice
a problem. The constructor uses a class named PermitRepository, and it needs to
be initialized with a particular set of permits to set up our tests properly.
Sneaky, sneaky. Here is the offending statement in the constructor:

Permit associatedPermit =
PermitRepository.getInstance().findAssociatedPermit(notice);

We could get past this by parameterizing the constructor, but in this
application, this isn’t an isolated case. There are 10 other classes that have
roughly the same line of code. It sits in constructors, regular methods, and
static methods. We can imagine spending a lot of time confronting this
problem in the code base.

www.EBooksWorld.ir

The Case of the
Irritating Global

Dependency

The Case of the
Irritating Global

Dependency

I CaN’T GET THis CLasS INTO A TEST HARNESS

If you’ve studied design patterns, you probably recognize this as an example
of the Singleton Design Pattern (372). The getInstance method of PermitRepository
is a static method whose job is to return the only instance of PermitRepository that
can exist in our application. The field that holds that instance is static also, and
it lives in the PermitRepository class.

In Java, the singleton pattern is one of the mechanisms people use to make
global variables. In general, global variables are a bad idea for a couple of rea-
sons. One of them is opacity. When we look at a piece of code, it is nice to be
able to know what it can affect. For instance, in Java, when we want to under-
stand how this piece of code can affect things, we have to look only a couple
places:

Account example = new Account();

example.deposit(1);
int balance = example.getBalance();

We know that an account object can affect things that we pass into the
Account constructor, but we aren’t passing anything in. Account objects can also
affect objects that we pass as parameters to methods, but in this case, we aren’t
passing anything in that can be changed—it’s just an int. Here we are assigning
the return value of getBalance to a variable, and that is really the only value that
should be affected by this set of statements.

When we use global variables, this situation is turned upside down. We can
look at the use of a class such as Account and not have a clue whether it is access-
ing or modifying variables declared someplace else in the program. Needless to
say, this can make it harder to understand programs.

The tough part in a testing situation is that we have to figure which globals
are being used by a class and set them up with the proper state for a test. And
we have to do that before each test if the setup is different. It’s pretty tedious;
I’ve done it on dozens of systems to get them under test, and it doesn’t get any
more enjoyable.

Back to our regularly scheduled example:

PermitRepository is a singleton. Because it is, it is particularly hard to fake. The
whole idea of the singleton pattern is to make it impossible to create more than
one instance of a singleton in an application. That might be fine in production
code, but, when testing, each test in a suite of tests should be a mini-applica-
tion, in a way: It should be totally isolated from the other tests. So, to run code
containing singletons in a test harness, we have to relax the singleton property.
Here’s how we do it.

www.EBooksWorld.ir

THE CASE OF THE IRRITATING GLOBAL DEPENDENCY

The first step is to add a new static method to the singleton class. The
method allows us to replace the static instance in the singleton. We’ll call it
setTestingInstance.

pubTic class PermitRepository

{

private static PermitRepository instance = null;
private PermitRepository() {}

public static void setTestingInstance(PermitRepository newInstance)

{

instance = newInstance;

}

public static PermitRepository getInstance()
{
if (instance == null) {
instance = new PermitRepository();
}

return instance;
}

public Permit findAssociatedPermit(PermitNotice notice) {

}

Now that we have that setter, we can create a testing instance of a
PermitRepository and set it. We’d like to write code like this in our test setup:

pubTic void setlUp() {
PermitRepository repository = new PermitRepository();

// add permits to the repository here

PermitRepository.setTestingInstance(repository);

www.EBooksWorld.ir

The Case of the
Irritating Global

Dependency

I CaN’T GET THis Crass INTO A TEST HARNESS

Introduce Static Setter (372) isn’t the only way of handling this situation. Here is
another approach. We can add a resetForTesting() method to the singleton that looks
like this:

public class PermitRepository

{

public void resetForTesting() {
instance = null;

}
}

If we call this method in our test setUp (and it’s a good idea to call it in tearDown also),
we can create fresh singletons for every test. The singleton will reintialize itself for
every test. This scheme works well when the public methods on the singleton allow
you to set up the singleton’s state every way you need to during testing. If the single-
ton doesn’t have those public methods or uses some external resources that affect its
state, Introduce Static Setter (372) is the better choice. You can subclass the singleton,
override methods to break dependencies, and add public methods to the subclass to
set up state properly.

Will that work? Not yet. When people use the Singleton Design Pattern
(372), they often make the constructor of the singleton class private, and with
good reason. That is the clearest way to make sure that no one outside the class
can make another instance of the singleton.

At this point, we have a conflict between two design goals. We want to make
sure that we have only one instance of a PermitRepository in a system, and we
want a system in which the classes are testable independently. Can we have
both?

Let’s backtrack for a minute. Why do we want only one instance of a class in
a system? The answer varies depending on the system, but here are some of the

The Case of the most common answers:
Irritating Global

1. We are modeling the real world, and there is only one of these things in
the real world. Some hardware-control systems are like this. People
make a class for each circuit board they need to control; they figure that
if there is just one of each, it should be a singleton. The same holds true
for databases. There is only one collection of permits in our agency, so
the thing that provides access to it should be a singleton.

Dependency

2. If two of these things are created, we could have a serious problem. This
often happens, again, in the hardware control domain. Imagine acciden-
tally creating two nuclear control rod controllers and having two differ-
ent parts of a program operating the same control rods without knowing
about each other.

www.EBooksWorld.ir

THE CASE OF THE IRRITATING GLOBAL DEPENDENCY

3. If someone creates two of these things, we’ll be using too many
resources. This happens often. The resources can be physical things such
as disk space or memory consumption, or they can be abstract things
such as the number of software licenses.

Those are the primary reasons why people want to enforce a single instance,
but they aren’t the primary reasons why people use singletons. Often people
create singletons because they want to have a global variable. They feel that it
would be too painful to pass the variable around to the places where it is
needed.

If we have a singleton for the latter reason, there really isn’t any reason to
keep the singleton property. We can make the constructor protected, public, or
package scope and still have a decent, testable system. In the other cases, it is
still worth exploring that alternative. We can introduce other protection if we
need to. We could add a check to our build system in which we search through
all the source files to make sure that setTestingInstance is not called by non-test-
ing code. We can do the same thing with runtime checks. If setTestingInstance is
called at runtime, we can issue an alarm or suspend the system and wait for
operator intervention. The truth is, it wasn’t possible to enforce singleton-ness
in many pre-OO languages, and people did manage to make many safe systems.
In the end, it comes down to responsible design and coding.

If breaking the singleton property isn’t a serious problem, we can rely on a
team rule. For instance, everyone on the team should understand that we have
one instance of the database in the application and that we shouldn’t have
another.

To relax the singleton property on PermitRepository, we can make the construc-
tor public. And that will work fine for us as long as the public methods on
PermitRepository allow us to do everything that we need to set up a repository for
our tests. For example, if PermitRepository has a method named addPermit that
allows us to fill it up with whatever permits we need for our tests, it might be
enough to just allow ourselves to make repositories and use them in our tests.
At other times, we might not have the access we need, or, worse, the singleton
might be doing things that we would not want to have happen in a test harness,
such as talk to a database in the background. In these cases, we can Subclass
and Override Method (401) and make derived classes that make testing easier.

Here is an example in our permit system. In addition to the method and vari-
ables that make PermitRepository a singleton, we have the following method:
public class PermitRepository

{

public Permit findAssociatedPermit(PermitNotice notice) {

www.EBooksWorld.ir

The Case of the
Irritating Global

Dependency

The Case of the
Irritating Global

Dependency

I CaN’T GET THis Crass INTO A TEST HARNESS

// open permit database
// select using values in notice
// verify we have only one matching permit, if not report error

// return the matching permit

If we want to avoid talking to the database, we can subclass PermitRepository

like this:

public class TestingPermitRepository extends PermitRepository

{
private Map permits = new HashMap();
public void addAssociatedPermit(PermitNotice notice, permit) {
permits.put(notice, permit);
}
public Permit findAssociatedPermit(PermitNotice notice) {
return (Permit)permits.get(notice);
}
}

When we do this, we can preserve part of the singleton property. Because we
are using a subclass of PermitRepository, we can make the constructor of
PermitRepository protected rather than public. That will prevent the creation of
more than one PermitRepository, although it does allow us to create subclasses.

public class PermitRepository

{

private static PermitRepository instance = null;
protected PermitRepository() {}

public static void setTestingInstance(PermitRepository newInstance)
{

instance = newInstance;

}

public static PermitRepository getInstance()

{
if (instance == null) {
instance = new PermitRepository();

}

www.EBooksWorld.ir

THE CASE OF THE IRRITATING GLOBAL DEPENDENCY

return instance;

}

public Permit findAssociatedPermit(PermitNotice notice)

{
}

In many cases, we can use Subclass and Override Method (401) like this to
get a fake singleton in place. At other times, the dependencies are so extensive
that it is easier to use Extract Interface (362) on the singleton and change all of
the references in the application so that they use the interface name. This can be
a lot of work, but we can Lean on the Compiler (315) to make the change. This
is what the PermitRepository class will look like after the extraction:

pubTic class PermitRepository implements IPermitRepository
{

private static IPermitRepository instance = null;
protected PermitRepository() {}

public static void setTestingInstance(IPermitRepository newInstance)

{

instance = newInstance;

}

public static IPermitRepository getInstance()
{
if (instance == null) {
instance = new PermitRepository();
}
return instance;

}

public Permit findAssociatedPermit(PermitNotice notice) The Case of the
{ Irritating Global

Dependency

}

www.EBooksWorld.ir

The Case of the
Irritating Global

Dependency

I CaN’T GET THis CLasS INTO A TEST HARNESS

The IPermitRepository interface will have signatures for all of the public non-
static methods on PermitRepository.

public interface IPermitRepository

{

Permit findAssociatedPermit(PermitNotice notice);

If you are using a language that has a refactoring tool, you might be able to
perform this interface extraction automatically. If you are using a language
without one, it might be easier to use Extract Implementer (356) instead.

The name for this whole refactoring is Introduce Static Setter (372). This is a
technique that we can use to get tests in place despite extensive global depen-
dencies. Unfortunately, it doesn’t do much to get past the global dependencies.
If you choose to tackle that problem, you can do so by using Parameterize
Method (383) and Parameterize Constructor (379). With those refactorings,
you trade a global reference for either a temporary variable in a method or a
field in an object. The downside to Parameterize Method (383) is that you can
end up with many additional methods that distract people when they try to
understand the classes. The downside to Parameterize Constructor (379) is that
each object that currently uses the global ends up with an additional field. The
field will have to be passed to its constructor, so the class that creates the object
needs to have access to the instance also. If too many objects need this addi-
tional field, it can substantially impact the amount of memory used by the
application, but often that indicates other design problems.

Let’s look at the worst case. We have an application with several hundred
classes that creates thousands of objects at runtime, and each of them needs
access to the database. Without even looking at the application, the first ques-
tion that comes to my mind is, why? If the system does anything more than
access a database, it can be factored so that some classes do those other things
and others store and retrieve data. When we make a concerted effort to sepa-
rate responsibilities in an application, dependencies become localized; we might
not need a reference to a database in every object. Some objects are populated
using data retrieved from the database. Others perform calculation on data sup-
plied through their constructors.

As an exercise, pick a global variable in a large application and search for it.
In most cases, variables that are global are globally accessible, but they really
aren’t globally used. They are used in a relatively small number of places. Imag-
ine how we could get that object to the objects that need it if it couldn’t be a glo-
bal variable. How would we refactor the application? Are there responsibilities
that we can separate out of sets of classes to decrease the scope of the global?

www.EBooksWorld.ir

THE CASE OF THE HORRIBLE INCLUDE DEPENDENCIES

If you find a global variable that really is being used every place, it means
there isn’t any layering in your code. Take a look at Chapter 15, My Applica-
tion Is All API Calls, and Chapter 17, My Application Has No Structure.

The Case of the Horrible Include Dependencies

C++ was my first OO language, and I have to admit that I felt very proud of
myself for learning many of its details and complexities. It became dominant in
the industry because it was an utterly pragmatic solution to many vexing prob-
lems at the time. Machines are too slow? Okay, here is a language in which
everything is optional. You can get all of the efficiency of raw C if you use only
the C features. Can’t get your team to use an OO language? Okay, here is a C++
compiler; you can write in the C subset of C++ and learn OO as you go.

Although C++ became very popular for a while, it eventually fell behind Java
and some of the newer languages in popularity. There was leverage in maintain-
ing backward compatibility with C, but there was much more leverage in mak-
ing languages easier to work with. Repeatedly, C++ teams have learned that the
language defaults are not ideal for maintenance, and they have to go beyond
them a bit to keep a system nimble and easy to change.

One part of C++’s C legacy that is especially problematic is its way of letting
one part of a program know about another part. In Java and C#, if a class in
one file needs to use a class in another file, we use an import or using statement
to make its definition available. The compiler looks for that class and checks to
see if it has been compiled already. If it hasn’t, it compiles it. If it has been com-
piled, the compiler reads a brief snippet of information from the compiled file,
getting only as much information as it needs to make sure that all of the meth-
ods the original class needs are on that class.

C++ compilers generally don’t have this optimization. In C++, if a class needs
to know about another class, the declaration of the class (in another file) is tex-
tually included in the file that needs to use it. This can be a much slower pro-
cess. The compiler has to reparse the declaration and build up an internal
representation every time it sees that declaration. Worse, the include mechanism
is prone to abuse. A file can include a file that includes a file, and so on. On
projects in which people haven’t avoided this, it’s not uncommon to find small
files that end up transitively including tens of thousands of lines of code. People
wonder why their builds take so long, but because the includes are spread
around the system, it is hard to point at any one particular file and understand
why it is taking so long to compile.

www.EBooksWorld.ir

The Case of the
Horrible Include

Dependencies

The Case of the
Horrible Include

Dependencies

I CaN’T GET THis Crass INTO A TEST HARNESS

It might seem li