

Chapter 7: Support Vector Machines







Chapter 7
Support Vector Machines


With most machine learning tasks, the aim is usually to classify something into a group that you can then inspect later. When it's a couple of class types that you're trying to classify, then it's a fairly trivial matter to perform the classification. When you are dealing with many types of classes, the process becomes more of a challenge. Support vector machines help you work through the challenging classifications.

This chapter looks at support vector machines: how the basic algorithm works in a binary classification sense, and then an expanded discussion on the tool.


What Is a Support Vector Machine?

A support vector machine is essentially a technique for classifying objects. It's a supervised learning method, so the usual route for getting a support vector machine set up would be to have some training data and some data to test the algorithm. With support vector machines, you have the linear classification—it's either that object, or it's that object—or non-linear. This chapter looks at both types.

There is a lot of comparison of using a support vector machine versus the artificial neural network, especially as some methods of finding minimum errors and the Sigmoid function are used in both.

It's easy to imagine a support vector machine as either a two- or three-dimensional plot with each object located within. Essentially, every object is a point in that space. If there's sufficient distance in the area, then the process of classifying is easy enough.



Where Are Support Vector Machines Used?

Support vector machines are used in a variety of classification scenarios, such as image recognition and hand-writing pattern recognition.

Image classification can be greatly improved with the use of support vector machines. Being able to classify thousands or millions of images is becoming more and more important with the use of smartphones and applications like Instagram. Support vector machines can also do text classification on normal text or web documents, for instance.

Medical science has long used support vector machines for protein classification. The National Institute of Health has even developed a support vector machine protein software library. It's a web-based tool that classifies a protein into its functional family.

Some people criticize the support vector machine because it can be difficult to understand, unless you are blessed with a very good mathematician who can guide and explain to you what is going on. In some cases you are left with a black box implementation of a support vector machine that is taking in input data and producing output data, but you have little knowledge in between.

Machine learning with support vector machines takes the concept of a perceptron (as explained in Chapter 5) a little bit further to maximize the geometric margin. It's one of the reasons why support vector machines and artificial neural networks are frequently compared in function and performance.



The Basic Classification Principles

For those who've not immersed themselves in the way classification works, this section offers an abridged version. The next section covers how the support vector machine works in terms of the classification. I'm keeping the math as simple as possible.


Binary and Multiclass Classification

Consider a basic classification problem: You want to figure out which objects are squares and which are circles. These squares and circles could represent anything you want—cats and dogs, humans and aliens, or something else. Figure 7-1 illustrates the two sets of objects.


[image: image]

Figure 7-1 Two objects to classify



This task would be considered a binary classification problem, because there are only two outcomes; it's either one object or the other. Think of it as a 0 or a 1. With some supervised learning, you could figure out pretty quickly where those classes would lie with a reasonable amount of confidence.

What about when there are more than two classes? For example, you can add triangles to the mix, as shown in Figure 7-2.


[image: image]

Figure 7-2 Three objects to classify



Binary classification isn't going to work here. You're now presented with a multiclass classification problem. Because there are more than two classes, you have to use an algorithm that can classify these classes accordingly. It's worth noting, though, that some multiclass methods use pair-wise combinations of binary classifiers to get to a prediction.



Linear Classifiers

To determine in which group an object belongs, you use a linear classifier to establish the locations of the objects and see if there's a neat dividing line—called a hyperplane—in place; there should be a group of objects clearly on one side of the line and another group of objects just as clearly on the opposite side. (That's the theory, anyway. Life is rarely like that, which is something that's covered more later in the chapter.) Assume that all your ducks are in a row…well, two separate groups.

As shown in Figure 7-3, visually it looks straightforward, but you need to compute it mathematically. Every object that you classify is called a point, and every point has a set of features.


[image: image]

Figure 7-3 Linear classification with a hyperplane



For each point in the graph, you know there is an x-axis value and there is a y-axis value. The classification point is calculated as

[image: equation]

The values for a, b, and c are the values that define the line; these values are ones that you choose, and you'll need to tweak them along the way until you get a good fit (clear separation). What you are interested in, though, is the result; you want a function that returns +1 if the result of the function is positive, signifying the point is in one category, and returns -1 when the point is in the other category. The function's resulting value (+1 or -1) must be correct for every point that you're trying to classify.

Don't forget that you have a training file with the correctly classified data so that you can judge the function's correctness; this approach is a supervised method of learning. This step has to be done to figure out where the line fits. Points that are further away from the line show more confidence that they belong to a specific class.



Confidence

You've just established that each point has a confidence based on its distance from the hyperplane line. The confidence can be translated into a probability. That gives the equation of

[image: equation]

This is for one point. What you need is the probability for every set of lines; these are then assigned to each of the objects in the training data.

[image: equation]

Probabilities are multiplied because the points have been drawn independently. You have an equation for each point that indicates how probable it is that a hyperplane is producing the correct categorization. Combining the probabilities for each point produces what is commonly defined as the “likelihood of the data”; you are looking for a number as close to 1 as possible.

Remember that probability is based on a value between 0 and 1 (for a recap, check out Chapter 4). Within a set of objects, you're looking for a set of line parameters with the highest probability that confirms the categorization is correct.



Maximizing and Minimizing to Find the Line

Using a log function that is always increasing maximizes values that are above the equation. So, you end up with a function written as

[image: equation]

To achieve minimization, you just multiply the equation by -1. It then becomes a “cost” or “loss” function. The goal is to find line parameters that minimize this function.

Linear classifiers are usually fast; they will process even large sets of objects with ease. This is a good thing when using them for document classification where the word frequencies might require measuring.




How Support Vector Machines Approach Classification

The basic explanation of linear classification is that the hyperplane creates the line that classifies one object and another. Support vector machines take that a step further.

Within the short space available, I outline how support vector machines work in both linear and non-linear form. I also show you how to use Weka to do some practical work for you.


Using Linear Classification

Look at the set of circle and square objects again. You know how a hyperplane divides the objects into either 1 or -1 on the plane.

Extending that notion further, support vector machines define the maximum margin, assuming that the hyperplane is separated in a linear fashion. You can see this in Figure 7-4 with the main hyperplane line giving the written notation of

[image: equation]


[image: image]

Figure 7-4 Support vector machines max margin hyperplane



This dot product shows the normal vector, and x is the point of the object. There is an offset of the hyperplane that goes from the origin to the normal vector.

As the objects are linearly separable, you can create another two hyperplanes—edge hyperplanes—that define the offset on either side of the main hyperplane. There are no objects within the region that spans between the main hyperplane and the edge hyperplanes.

On one side, there's the equation

[image: equation]

and on the other side there's

[image: equation]

The objects that lie on the edge hyperplanes are the support vectors. (See Figure 7-5.)


[image: image]

Figure 7-5 The support vectors on the hyperplane edges



When new objects are added to the classification, then the hyperplane and its edges might move. The key objective is to ensure a maximum margin between the +1 edge hyperplane and the -1 edge hyperplane.

If you can manage to keep a big gap between the categories, then there's an increase in confidence in your predictions. Knowing the values of the hyperplane edges gives you a feel for how well your categories are separated.

After minimizing the value w (called ||w|| in mathematical notation), you can look at optimizing w by applying the following equation:

[image: equation]

Basically, you're taking half of ||w|| squared instead of using the square root of ||w||. Based on Lagrange multipliers, to find the maxima and minima in the function, you can now look for a saddle point and discount other points that don't match zero (fit inside the saddle).






Note

For those that don't know, a saddle point is a mathematical function where you have two variables that meet at a critical point when both function values are zero. It's called a saddle point as that's the shape it produces in graphic form. You can read more about it at this URL http://wikipedia.org/wiki/Saddle_point.






You're shaping the graph into a multidimensional space and seeing where the vectors lie in order to make the category distinctions as big as possible. With standard quadratic programming, you then apply the function expressing the training vectors as a linear combination

[image: equation]

Where αi is greater than zero, the xi value is a support vector.



Using Non-Linear Classification

In an ideal world, the objects would lie on one side of the hyperplane or the other. Life, unfortunately, is rarely like that. Instead, you see objects straying from the hyperplane, as shown in Figure 7-6.


[image: image]

Figure 7-6 Objects rarely go where you want them to.



By applying the kernel function (sometimes referred to as “the kernel trick”), you can apply an algorithm to fit the hyperplane's maximum margin in a feature space. The method is very similar to the dot products discussed in the linear methods, but this replaces the dot product with a kernel function.

With a radial basis function, you have a few kernel types to choose from: the hyperbolic tangent, Gaussian radial basis function (or RBF, which is supported in Weka), and two polynomial functions—one homogenous and the other inhomogeneous.

The full scope of non-linear classification is beyond the means of the introductory nature of this book. If you want to try implementing them, then look at the radial basis functions in the LibSVM classes when you use Weka.

Now take a look at what Weka can do for you to perform support vector machine classification.




Using Support Vector Machines in Weka

Weka can classify objects using the support vector machines algorithm, but the implementation isn't complete and requires a download before you can use it. This section shows you how to set it up and run the support vector machines algorithm on some test data.


Installing LibSVM

The LibSVM library is an implementation of the support vector machines algorithm. It was written by Chih-Chung Chang and Chih-Jen Lin from the National Taiwan University. The library supports a variety of languages as well as Java including C, Python, .NET, MatLab, and R.


Weka LibSVM Installation

You can install LibSVM from Github. You can clone the binary distribution by running the following command (assuming you have git installed):

git clone https://github.com/cjlin1/libsvm.git 

The required files download into a clean directory.

You need to copy the libsvm.jar file to the same directory as your Weka installation directory (usually in the /Applications directory). You can easily drag and drop the file if desired; I work from the command line most of the time:

cp ./libsvm-3.18/java/libsvm.jar /Applications/weka-3-6-10

With the library in place, you can start Weka. If you are a Windows user just start Weka as normal, but if you run Mac OS X or Linux then you have to do it from the command line:

java -cp weka.jar:libsvm.jar weka.gui.GUIChooser

If you do not start Weka from the command line, then the classifier gives you an error to let you know that the SVM libraries were not found in the classpath.




A Classification Walkthrough

You will see the GUI Chooser application open as you would when you open Weka by starting the GUI instead of using the command line (see Figure 7-7). Choose the Explorer option.


[image: image]

Figure 7-7 GUI Chooser



I'm going to use the 100,000 rows of vehicle data that I created in Chapter 5 for the artificial neural networks; you can do the same. Find the .csv file and open it in Weka, as shown in Figure 7-8. Don't forget to change the file type from .arff to .csv.


[image: image]

Figure 7-8 Loading the .csv file




Setting the Options

Click the Classify tab and then click the Choose button to select a different classification algorithm. Within the tree of algorithms, click Functions and then select LibSVM, as shown in Figure 7-9.


[image: image]

Figure 7-9 Choosing the LibSVM classifier



There are a couple of changes to make before you set the classifier off to work. First, you want a percentage split of training data against test data. In this case, you can be fairly confident that the data is not going to be difficult to classify and it's not going to be a non-linear classification problem; you can train with 10 percent of the data (10,000 rows) and test with the 90 percent to see how it performs.

Click the Percentage Split option and change the default value of 66 percent to 10 percent, as shown in Figure 7-10.


[image: image]

Figure 7-10 Changing the percentage split



You want the results of the test data, the 90 percent to be output to the Weka console so you can see how it's performing. Click the Options button and ensure that the Output Predictions checkbox is ticked, as shown in Figure 7-11.


[image: image]

Figure 7-11 Classifer Evaluation Options dialog box



The LibSVM wrapper defaults to a radial basis function for its kernel type. Change that to the linear version you've been concentrating on by clicking on the line with all the LibSVM options. This is located next to the Choose button within the Classifer pane.

Change the kernelType drop-down menu from Radial Basis Function to Linear. Leave the other options as they are. (See Figure 7-12.)


[image: image]

Figure 7-12 Changing the kernel type





Running the Classifier

With everything set, you can run the classifier. Click the Start button, and you see the output window start to output information on the classification.

First, you have the run information, or all the options that you just set:

=== Run information ===
Scheme:weka.classifiers.functions.LibSVM -S 0 -K 0 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -seed 1
Relation:     v100k
Instances:    100000
Attributes:   4
              wheels
              chassis
              pax
              vtype
Test mode:split 10.0% train, remainder test

Next, you get some general information on the classifier model:

=== Classifier model (full training set) ===
LibSVM wrapper, original code by Yasser EL-Manzalawy (=WLSVM)
Time taken to build model: 3.08 seconds

On my machine, the classifier trained on 10,000 instances in just over three seconds, which is 3,246 rows per second.

As you've set the output for the predictions to be shown, you get that next:

=== Predictions on test split ===
inst#,    actual, predicted, error, probability distribution
     1     4:Bike     4:Bike          0      0      0     *1
     2     4:Bike     4:Bike          0      0      0     *1
     3    3:Truck    3:Truck          0      0     *1      0
     4      1:Bus      1:Bus         *1      0      0      0
     5      1:Bus      1:Bus         *1      0      0      0
     6      2:Car      2:Car          0     *1      0      0
     7     4:Bike     4:Bike          0      0      0     *1
     8    3:Truck    3:Truck          0      0     *1      0
     9    3:Truck    3:Truck          0      0     *1      0
    10      2:Car      2:Car          0     *1      0      0
    11     4:Bike     4:Bike          0      0      0     *1
    12      2:Car      2:Car          0     *1      0      0
    13    3:Truck    3:Truck          0      0     *1      0
    14    3:Truck    3:Truck          0      0     *1      0
    15     4:Bike     4:Bike          0      0      0     *1
    16      1:Bus      1:Bus         *1      0      0      0
    17      1:Bus      1:Bus         *1      0      0      0
    18      2:Car      2:Car          0     *1      0      0
    19      1:Bus      1:Bus         *1      0      0      0

Based on the training data of 10,000, you've instructed Weka to try and predict the remaining 90,000 rows of data. The output window will have all 90,000 rows there, but the main things to watch out for are the actual and predicted results.

You get the evaluation on the test data showing the correct and incorrect assignments:

=== Evaluation on test split ===
=== Summary ===
Correctly Classified Instances       90000              100      %
Incorrectly Classified Instances         0                0      %
Kappa statistic                          1
Mean absolute error                      0
Root mean squared error                  0
Relative absolute error                  0      %
Root relative squared error              0      %
Total Number of Instances            90000     

The confusion matrix shows the breakdown of the test data and how it was classified:

=== Confusion Matrix ===
     a     b     c     d   <-- classified as
 22486     0     0     0 |     a = Bus
     0 22502     0     0 |     b = Car
     0     0 22604     0 |     c = Truck
     0     0     0 22408 |     d = Bike



Dealing with Errors from LibSVM

There are variations of the LibSVM library around the Internet and also different ways the random number generator handles numbers on differing operating systems. If you come across an error like the following:

java.lang.NoSuchFieldException: rand
java.lang.Class.getField(Unknown Source)
weka.classifiers.functions.LibSVM.buildClassifier(LibSVM.java:1618)
weka.gui.explorer.ClassifierPanel$16.run(ClassifierPanel.java:1432)
at java.lang.Class.getField(Unknown Source)
at weka.classifiers.functions.LibSVM.buildClassifier(LibSVM.java:1618)
at weka.gui.explorer.ClassifierPanel$16.run(ClassifierPanel.java:1432)

then it's worth looking at later versions of Weka with the new package manager (version 3.7 and later).



Saving the Model

You can save the model for this classification. On the result list, you see the date and time that the LibSVM classification was run. Right-click (Alt-click if you are a Mac user) on functions.LibSVM and select Save Model. Find a safe place to save the model for future use.




Implementing LibSVM with Java

Using LibSVM within the Weka toolkit is easy to implement, but there comes a time when you'll want to use it within your own code, so you can integrate it within your own systems.


Converting .csv Data to .arff Format

.csv files don't contain the data that Weka will need. You could implement the CSVLoader class, but I prefer to know that the .arff data is ready for use. It also makes it easier for others to decode the data model if they need to.

From the command line, you can convert the data from a .csv file to .arff in one command:

java -cp /Applications/weka-3-6-10/weka.jar weka.core.converters.CSVLoader v100k.csv > v100k.arff

To ensure that the conversion has worked, you can output the first 20 lines with the head command (your output should look like the following sample):

$ head -n 20 v100k.arff
@relation v100k
@attribute wheels numeric
@attribute chassis numeric
@attribute pax numeric
@attribute vtype {Bus,Car,Truck,Bike}
@data
6,20,39,Bus
8,23,11,Bus
5,3,1,Car
4,3,4,Car
5,3,1,Car
4,18,37,Bus

With everything looking fine, you can now set your attention on the Eclipse side of the project.



Setting Up the Project and Libraries

Using the same data, create a coded example with Java using Eclipse to create the project. Create a new Java Project (select File →New →Java Project) and call it MLLibSVM, as shown in Figure 7-13.


[image: image]

Figure 7-13 Creating the new Java project



The Weka API and the LibSVM API need to be added to the project. Select File →Properties and then select Java Build Path. Click the Add External JARs button. When the File dialog box displays, locate the weka.jar and libsvm.jar files and click Open. (See Figure 7-14.)


[image: image]

Figure 7-14 Adding the required jar files



You have everything in place, so you can create a new Java class (File →New →Class) called MLLibSVMTest.java (see Figure 7-15) and put some code in place.


[image: image]

Figure 7-15 Creating a new Java class



The basic code to get a support vector machine working in Weka is a fairly easy task.

public class MLLibSVMTest {
    public MLLibSVMTest(String filepath){
        Instances data;
        try {
            data = DataSource.read(filepath);
               if (data.classIndex() == -1)
                 data.setClassIndex(data.numAttributes() - 1);
            LibSVM svm = new LibSVM();
            String[] options = weka.core.Utils.splitOptions("-K 0 -D 3");
            svm.setOptions(options);
                svm.buildClassifier(data);
        } catch (Exception e) {
            e.printStackTrace();
        }
      }
    public static void main(String[] args) {
        MLLibSVMTest mllsvm = new MLLibSVMTest("v100k.arff");
    }
}

There are a lot of option settings for the LibSVM library, but the main one I want to focus on is the kernel type. As in the Weka workbench, the default is the radial basis function: In the options, the number 2 designates this. For the linear kernel function, you change that to zero.

To run the code from Eclipse, select Run →Run. This takes the training data and makes the model. It won't do anything else just yet.

Zero Weights processed. Default weights will be used
*
optimization finished, #iter = 9
nu = 7.999320068325541E-7
obj = -0.019999999949535163, rho = 2.1200468836658968
nSV = 4, nBSV = 0
*
optimization finished, #iter = 9
nu = 5.508757892156424E-7
obj = -0.013793103448275858, rho = -1.013793103448276
nSV = 5, nBSV = 0
*
optimization finished, #iter = 3
nu = 3.801428938130698E-7
obj = -0.009478672985781991, rho = 1.2180094786729856
nSV = 2, nBSV = 0
*
optimization finished, #iter = 5
nu = 1.8774340639289764E-7
obj = -0.004705882352941176, rho = -1.6070588235294119
nSV = 4, nBSV = 0
*
optimization finished, #iter = 6
nu = 8.90259889118131E-6
obj = -0.22222222222222227, rho = 1.6666666666666679
nSV = 3, nBSV = 0
*
optimization finished, #iter = 3
nu = 1.2308677001852457E-7
obj = -0.003076923076923077, rho = 1.1107692307692307
nSV = 2, nBSV = 0
Total nSV = 14

The output looks confusing, but what it is telling you is the number of support vectors (nSV), the number of bound support vectors (nBSV), and obj is the optimum objective value of the dual support vector machine.



Training and Predicting with the Existing Data

So far, you've trained with the full 100,000 lines of data from the .arff file. I want to train with 10 percent and then predict the remaining 90 percent in the same way as the workbench walkthrough.

The Weka API lets you add the options as you would in the workbench, so where you split the data for training, you can do the same within the code.

Amend the options line and add the training split percentage like so

String[] options = weka.core.Utils.splitOptions("-K 0 -D 3");

and it now becomes

String[] options = weka.core.Utils.splitOptions("-K 0 -D 3 -split-percentage 10");

To show the predictions of the data, add a new method that iterates through the instance data:

public void showInstanceClassifications(LibSVM svm, Instances data) {
         try {
             for (int i = 0; i < data.numInstances(); i++) {
                 System.out.println("Instance " + i + " is classified as a "
                         +
             data.classAttribute().value((int)svm.classifyInstance(data.
             instance(i))));
            }
         } catch (Exception e) {
             e.printStackTrace();
         }
     }

The classifier always returns a numerical value as its result; it's up to you to turn that number into an integer and run it past the class attribute value to find out whether it's a bike, car, bus, or truck.

When you run the code again, you see the classifier generate as before with 10 percent of the training data, and then it classifies the whole data set.

Instance 99991 is classified as a Truck
Instance 99992 is classified as a Bus
Instance 99993 is classified as a Car
Instance 99994 is classified as a Truck
Instance 99995 is classified as a Car
Instance 99996 is classified as a Bus
Instance 99997 is classified as a Bike
Instance 99998 is classified as a Truck
Instance 99999 is classified as a Bike





Summary

This chapter was a whistle stop tour of support vector machines. Whole books have been written on the subject, going deep into the intricacies of the vector machine and its kernel methods.

From a developer's point of view, treat this chapter as a launch pad for further investigation. In a practical scenario, you might gloss over the heavy theory and make Weka do the heavy lifting on a sample or subset of your data.

Before you continue your journey, I think it's only fair that you reward yourself with your beverage of choice and a short rest before you continue into the next chapter on clustering data.






Machine Learning: Hands-On for Developers and Technical Professionals

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-88906-0
ISBN: 978-1-118-88939-8 (ebk)
ISBN: 978-1-118-88949-7 (ebk)

Manufactured in the United States of America 

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ  07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at booksupport.wiley.com.. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014946682

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission.  All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.





Chapter 5
Artificial Neural Networks


There's something about gathering knowledge about the human brain that makes people tick. Many people think that if we can mimic how the brain works, we'll be able to make better decisions.

In this chapter, you look at how artificial neural networks work and how they are applied in the machine learning arena.


What Is a Neural Network?

Artificial neural networks are essentially modeled on the parallel architecture of animal brains, not necessarily human ones. The network is based on a simple form of inputs and outputs.


…a computing system made up of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs.

Dr. Robert Hecht-Nielson as quoted in “Neural Network Primer: Part I” by Maureen Caudill, AI Expert, Feb. 1989



In biology terms, a neuron is a cell that can transmit and process chemical or electrical signals. The neuron is connected with other neurons to create a network; picture the notion of graph theory with nodes and edges, and then you're picturing a neural network.

Within humans, there are a huge number of neurons interconnected with each other—tens of billions of interconnected structures. Every neuron has an input (called the dendrite), a cell body, and an output (called the axon), as shown in Figure 5-1.


[image: image]

Figure 5-1 The neuron structure



Outputs connect to inputs of other neurons and the network develops. Biologically, neurons can have 10,000 different inputs, but their complexity is much greater than the artificial ones I'm talking about here.

Neurons are activated when the electrochemical signal is sent through the axon. The cell body determines the weight of the signal, and, if a threshold is passed, the firing continues through the output, along the dendrite.



Artificial Neural Network Uses

Artificial neural networks thrive on data volume and speed, so they are used within real-time or very near real-time scenarios. The following sections describe some typical use cases where artificial neural networks are used.


High-Frequency Trading

With the way artificial neural networks mimic the brain but with a much increased speed factor, they are perfect for high-speed trading. Because HFT can make decisions far faster than a human can—thousands of transactions can be done in the same time it takes a human to make one—it's obvious why the majority of stock market systems have gone to the automated trading side.

High-frequency trading is usually done on a supervised learning method; there is a lot of training data available from which to learn. The artificial neural network is looking for entropy from the incoming data.



Credit Applications

Although many examples of credit applications are performed with decision trees, they are often run with artificial neural networks. With the variety of application data available, it's a fairly straightforward task to train the model to spot good and bad credit factors.



Data Center Management

Google uses neural networks for data center management. With incoming data on loads, operating temperatures, network equipment usage, and outside air temperatures, Google can calculate efficiency of the data center and be able to adjust the settings on monitoring and cooling equipment.

Jim Gao started this exercise as a Google 20 percent project (a program in which Google employees are encouraged to use 20% of their work time on their own projects) and, over time, has trained the model to be 99.6 percent accurate. If you are interested in reading more on this check out Google's blog post on the subject at http://googleblog.blogspot.ca/2014/05/better-data-centers-through-machine.html.



Robotics

Artificial intelligence has been used in robotics for several years. Some artificial intelligence requires pattern recognition, and some requires huge amounts of sensor data to be fed into a neural network to determine what movement or action to take.

Training models in robotics takes an awful long time to create, mainly because there are potentially so many different inputs and output variables to process and learn from. For example, developers of autonomous driving vehicles need hundreds of hours of previous driving data to make a model that can handle many road conditions. (Personally, I still prefer my hands on the wheel.)



Medical Monitoring

Medical machinery can be monitored via artificial neural networks, which involves the constant updating of many variables, such as heart rate, blood pressure, and so on. Conditions that have multiple variations and trigger symptoms can be calculated and monitored, and staff can be alerted when the variables go over certain thresholds.




Breaking Down the Artificial Neural Network

One of the keys to understanding the artificial neural network is knowing that the application of the model implies you're not exactly sure of the relationship of the input and output nodes. You might have a hunch, but you don't know for sure. The simple fact of the matter is, if you did know this, then you'd be using another machine learning algorithm.

Before you jump into data and examples, have a look at the components in a neural network.


Perceptrons

The basis for a neural network is the perceptron. Its role is quite simple. It receives an input signal and then passes the value through some form of function. It outputs the result of the function. (See Figure 5-2.)


[image: image]

Figure 5-2 A simple perceptron



Perceptrons deal with numbers when a number or vector of numbers is passed to the input. It is then passed to a function that calculates the outgoing value; this is called the activation function. The node can handle any number of inputs—Figure 5-3 shows two inputs passing in to the function—and it takes the weighted sum of all the inputs.


[image: image]

Figure 5-3 Perceptron with two inputs



Assuming the input is a vector Z, you'd end up with something like this:


	Z 1 = 2

	Z 2 = 5

	Z 3 = 1

	Or (2,5,1)



The weighted sum of all the inputs is calculated as follows:

[image: equation]

In other words, “add it all up.” So for the likes of me, who is not used to too much math notation, it looks like the following:

[image: equation]

The outgoing part of the node has a set threshold. If the summed value is over the threshold, then the output, denoted by the y variable, is 1, and if it's below the threshold, then y is 0 (zero).

You end up with the following equation:

[image: equation]

The weight of the perceptron can be zero or any other value. If the weight value is zero, then it does not alter the input node value coming into the perceptron. Likewise, inputs can be positive or negative numbers. The key to the output is based on the weighted sum against the threshold.

That's the basis of a single-node perceptron. When you strip the components apart, it's quite basic in composition.



Activation Functions

The activation function is the processing that happens after the input is passed into the neuron. The result of this function determines whether the value is passed to the output axon and onto the next neuron in the network.

Commonly, the Sigmoid function (see Figure 5-4) and the hyperbolic tangent are used as activation functions to calculate the output.


[image: image]

Figure 5-4 Sigmoid function



The Sigmoid function only outputs one of two values: 0 and 1. For the programmers, the function is written as

return 1.0 / (1.0 + Math.exp(-x));

The sharpness of the curve could also be altered if required, but for most applications a straight function is fine.



Multilayer Perceptrons

The problem with single-layer perceptrons is that they are linearly separable. The output is either one value or another.

If you think of an AND gate in logic theory, there is only one outcome if you have two inputs, as shown in Table 5-1.



Table 5-1 AND Gate Output Table




	Input
	Output



	Off and On
	Off



	On and Off
	Off



	Off and Off
	Off



	On and On
	On





The perceptron would be fashioned as shown in Figure 5-5.


[image: image]

Figure 5-5 AND gate perceptron



The network output equation would be the following:

[image: equation]

So far, I've covered the processing of one perceptron. Artificial neural networks have many interconnected neurons, each with its own input, output, and activation function.

For most machine learning functions, artificial neural networks are used for solving problems of a nonlinear fashion. Many problems cannot be solved in a purely linear fashion, so using a single-layer perceptron for this kind of problem solving was never worth considering. If you think of an XOR gate (Exclusive OR) with the input types shown in Table 5-2, you could easily think of the network shown in Figure 5-6.



Table 5-2 Exclusive OR Output Table




	Input
	Output



	Off and On
	On



	On and Off
	On



	Off and Off
	Off



	On and On
	Off






[image: image]

Figure 5-6 XOR gate network



Multilayer perceptrons have one or more layers between the input nodes and the eventual output nodes. The XOR example has a middle layer, called a hidden layer, between the input and the output (see Figure 5-7). Although you and I know what the outputs of an XOR gate would be (I've just outlined them in the table), and we could define the middle layer ourselves, a truly automated learning platform would take some time.


[image: image]

Figure 5-7 Multilayer perceptron with one hidden layer



The question is, what happens in the hidden layer? Going back to the XOR example for a moment, you can see the two input nodes with their values. These would then be fed to the hidden layer, and the input is dependent on the output of the input layer.

This is where the neural network becomes useful. You can train the network for classification and pattern recognition, but it does require training. You can train an artificial neural network by unsupervised or supervised means.

The issue is that you don't know what the weight values should be for the hidden layer. By changing the bias in the Sigmoid function, you can vary the output layer, an error function can be applied, and the aim is to get the value of the error function to a minimum value.

I described the threshold function within the perceptron previously in the chapter, but this isn't suitable for your needs. You need something that is continuous and differentiable. With the bias option implemented in the Sigmoid function, each run of the network refines the output and the error function. This leads to a better-trained network and more reliable answers.



Back Propagation

Within the multilayer perceptron is the concept of back propagation, short for the “backward propagation of errors.” Back propagation calculates the gradients and maps the correct inputs to the correct outputs.

There are two steps to back propagation: the propagation phase and the updating of the weight. This would occur for all the neurons in the network.

If you were to look at this as pseudocode—assuming an input layer, single hidden layer, and an output layer—it would look like this:

initialize weights in network (random values)
while(examples to process)
  for each example x
    prediction = neural_output(network, x)
    actual = trained-output(x)
    error is (prediction – actual) on output nodes
backwardpass:
  compute weights from hidden layer to the output layer
  compute weights from input layer to hidden layer
  update network weights
  until all classified correctly against training data
  return finalized network

Propagation happens, and the training is input through the network and generates the activations of the output. It then backward propagates the output activations and generates deltas of all the output and hidden layers of the network based on the target of the training pattern.

In the second phase, the weight update is calculated by multiplying the output delta and input activation. This gives you the gradient weight. The percentage ratio is then subtracted from the weight. The second part is done for all the weight axons in the network.

The percentage ratio is called the learning rate. The higher the ratio, the faster the learning. With a lower ratio you know the accuracy of the learning is good.






Note

I appreciate that it's difficult to grasp mathematical concepts on neural networks in a book that focuses on the practical aspects of getting machine learning up and running quickly. This overview gives a very general idea of how they work. The main concepts of input and output layers, perceptrons, and the notion of forward and backward propagation provide a good, although simple, grounding in the thought process.









Data Preparation for Artificial Neural Networks

For creating an artificial neural network, it's worth using a supervised learning method. However, this requires some thought about the data that you are going to use to train the network.

Artificial neural networks work only with numerical data values. So, if there are normalized things with text values, they need to be converted. This isn't so much an issue with the likes of gender, where the common output would be Male = 0 and Female = 1, for example. Raw text wouldn't be suitable, so it will either need to be tidied up, hashed to numeric values, or removed from the test data.

As with all data strategies, it's a case of thinking about what's important and what data you can live without.

As more variables increase in your data for classification, you will come across the phenomenon called “the curse of dimensionality.” This is when added variables increase the total volume of training data required to get reasonable results and insight. So, when you are thinking of adding another variable, make sure that you have enough training data to cover eventualities across all the other variables.

Although neural networks are pretty tolerant to noisy data, it's worth trying to ensure that there aren't large outliers that could potentially cause issue with the results. Either find and remove the wayward digits or turn them into missing values.



Artificial Neural Networks with Weka

The Weka framework supports a multilayer perceptron and trains it with the back propagation technique I just described. In this walkthrough, you create some data and then generate a neural network.


Generating a Dataset

My dataset is going to contain classifications for different types of vehicles. I'm first going to create a Java program that generates some random, but weighted, data to give us four types of vehicles: bike, car, bus, and truck.

Here's the code listing:

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Random;
public class MLPData {
    private String[] classtype = new String[] { "Bike", "Car", "Bus", "Truck" };
    public MLPData() {
        Random rand = new Random(System.nanoTime());
        try {
            BufferedWriter out = new BufferedWriter(new FileWriter(
                    "vehicledata.csv"));
    out.write("wheels,chassis,pax,vtype\n");
            for (int i = 0; i < 100; i++) {
                StringBuilder sb = new StringBuilder();
                switch (rand.nextInt(3)) {
                case 0:
                    sb.append((rand.nextInt(1) + 1) + ","); // num of wheels
                    sb.append((rand.nextInt(1) + 1) + ","); // chassis length
                    sb.append((rand.nextInt(1) + 1) + ","); // passenger number
                    sb.append(classtype[0] + "\n");
                    break;
                case 1:
                    sb.append((rand.nextInt(2) + 4) + ","); // num of wheels
                    sb.append((rand.nextInt(4) + 1) + ","); // chassis length
                    sb.append((rand.nextInt(4) + 1) + ","); // passenger number
                    sb.append(classtype[1] + "\n");
                    break;
                case 2:
                    sb.append((rand.nextInt(6) + 4) + ","); // num of wheels
                    sb.append((rand.nextInt(12) + 12) + ","); // chassis length
sb.append((rand.nextInt(30) + 10) + ","); // passenger number
                    sb.append(classtype[2] + "\n");
                    break;
                case 3:
                    sb.append("18,"); // num of wheels
                    sb.append((rand.nextInt(10) + 20) + ","); // chassis length
                    sb.append((rand.nextInt(2) + 1) + ","); // passenger number
                    sb.append(classtype[3] + "\n");
                    break;
                default:
                    break;
                }
                out.write(sb.toString());
            }
            out.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    public static void main(String[] args) {
        MLPData mlp = new MLPData();
    }
}

When run, the preceding code creates a CSV file called vehicledata.csv. Start by creating 100 rows of output:

4,2,4,Car
9,20,25,Bus
5,14,18,Bus
5,2,1,Car
9,17,25,Bus
1,1,1,Bike
4,4,2,Car
9,15,36,Bus
1,1,1,Bike
5,1,4,Car
4,2,1,Car

As discussed previously, you need to perform a fair amount of training to make the neural network accurate in its predictions.



Loading the Data into Weka

Open the Weka toolkit and select the Explorer function to display the Explorer shown in Figure 5-8.


[image: image]

Figure 5-8 Weka Explorer



You're going to import the CSV file that's been created. Make sure that the Preprocess window is selected and then click the Open File button and select the vehicledata.csv file. Don't forget to change the File Format drop-down menu from .arff to .csv, as shown in Figure 5-9.


[image: image]

Figure 5-9 Weka File dialog box



You see the data loaded with the basic representation of the relation and attribute information.



Configuring the Multilayer Perceptron

The neural network function of Weka comes with its own graphic user interface. When run, you can see the graphical representation of the neural network.

Click the Classify panel. Where the default classifier is ZeroR, click Choose and change it to MultilayerPerceptron (see Figure 5-10), which is in the Functions branch of the tree listing.


[image: image]

Figure 5-10 Changing the classifier



You see the classifier change to MultilayerPerceptron with a lot of options next to it. If you click that line, a window of options opens, as shown in Figure 5-11.


[image: image]

Figure 5-11 Options dialog box for MultilayerPerceptron



Change the GUI setting to True. This setting makes the neural network display in a graphic form; the display is also interactive, and you can change the network. If the GUI setting is set to False, then Weka generates the network for you without your intervention.

Although this version of the MultilayerPerceptron converts and handles your nominal values for you, it's still prudent to take the time to ensure that your data is prepared properly. The network autobuilds by default. If you want to create your own, then you can turn this off and craft the network by hand.

There are a few values that are worth keeping an eye on before you let the network do its training.


Learning Rate

The amount the weights are updated is defaulted at 0.3. If that seems a little heavy or too light, then you can adjust as desired.



Hidden Layers

You can define how many hidden layers the neural network will have. By default, Weka builds four (attributes and classes/2) (set to “a”), but you can also have just the attributes (“i”), the classes (“o”) and the attributes and classes complete (“t”).



Training Time

The number of epochs through which Weka iterates during training is set to 500. The higher the number, the lower the error rate will be. As you'll see in a moment, this can give varying results in the output.

When you are happy with the options, you can click OK and go back to the Classify window.




Training the Network

You have to do a few runs of neural networks to find the sweet spot where the network is coming up with good classifications. With 100 rows of data, you're not going to be solving much of any worth; regardless, it gives you an idea of how it works.

Make sure the test options are set to use the whole training set. The cross-validation is fine, but it ends up running the training through all ten folds, and that can get time consuming when you just want to test. Click Start, and the neural network window shown in Figure 5-12 displays.


[image: image]

Figure 5-12 Neural network GUI window



Click Start, and you see the epoch count rise and the error rate decrease. If you click Accept by accident, then no data will have been classified and the results will be wrong.

After the neural network has run, click the Accept button and you will be returned to the classification output screen.

The full classifier output gives the output for the hidden layer nodes. Nodes 0, 1, 2, and 3 and the four nodes on the right side of Figure 5-12 are the output connections are the output connections. The class attributes for classification are shown as bike, car, bus, or truck on the right hand side of the neural network output (refer to Figure 5-12).

Sigmoid Node 0
    Inputs    Weights
    Threshold    0.018993883149676594
    Node 4    -0.04038638643499096
    Node 5    0.0065483634965212145
    Node 6    -0.03873854654480489
Sigmoid Node 1
    Inputs    Weights
    Threshold    -0.0451840582741909
    Node 4    -0.002851224687941599
    Node 5    -0.012455737520358182
    Node 6    -0.0491382673800735
Sigmoid Node 2
    Inputs    Weights
    Threshold    -0.010479295335213488
    Node 4    0.02129170595398988
    Node 5    0.02877248387280648
    Node 6    -0.001813155428890656
Sigmoid Node 3
    Inputs    Weights
    Threshold    0.02680212410425596
    Node 4    0.006810392393573984
    Node 5    -0.04968676115705444
    Node 6    -0.015015642691489917

Nodes 4, 5, and 6 comprise the hidden layer that takes the input from the input attributes for wheels, chassis, and passenger count.

Sigmoid Node 4
    Inputs    Weights
    Threshold    0.011850776365702677
    Attrib wheels    0.0429940506718635
    Attrib chassis    -0.035625493582980464
    Attrib pax    -0.021284810000068835
Sigmoid Node 5
    Inputs    Weights
    Threshold    0.011165074786232076
    Attrib wheels    -0.018370069737576836
    Attrib chassis    -0.030938315802372954
    Attrib pax    0.01567513412449774
Sigmoid Node 6
    Inputs    Weights
    Threshold    -0.04753959806853169
    Attrib wheels    -0.00211881373779247
    Attrib chassis    0.040431974347463484
    Attrib pax    -0.017943250444400316

Each node has the input type and the weight values of the corresponding input node.

The summary shows how many instances have been correctly classified, along with other values for the error data if it has occurred.

In the last section, you can see how the classification counts added up in the Confusion Matrix.

=== Confusion Matrix ===
  a  b  c  d   <-- classified as
 33  0  0  0 |  a = Bus
  0 27  0  0 |  b = Car
  0  0 20  0 |  c = Bike
  0  0  0 20 |  d = Truck



Altering the Network

With the GUI option set to True, you can add nodes and also remove input paths to parts of the hidden layer. If you make any changes you need to retrain the neural network; the updated network will display in the GUI.


Which Bit Is Which?

Working from left to right on the GUI, you see the raw input nodes as labels in the yellow boxes. Red dots are the hidden layer nodes, and the orange dots are the output nodes. The orange labels are the classes with which the orange dot nodes are associated.



Adding Nodes

You can add a new node by clicking the GUI. The red dot appears to signify a hidden layer node. It won't be connected to anything, unless you have already selected nodes in the GUI.



Connecting Nodes

With the node selected, you can click on another node to see the connection being made.



Removing Connections

To remove a connection, select one of the connected nodes and then right-click the other connected node. The connecting line disappears.



Removing Nodes

Right-clicking a node removes it and all the connections to it. Be careful to make sure that there aren't any other selected nodes, otherwise they, and their connections, will be removed, too.




Increasing the Test Data Size

Within the for loop of the MLPData.java program you created earlier in the chapter, change the loop count from 100 rows to 100,000 rows. Go back to the Preprocess window and load the new CSV file. It might take some time to load.

Now, go back to the Classify window and rerun the neural network. When the GUI window opens, you see the network looks the same as before in terms of the hidden layers. Where you had 500 epochs running against the 100 rows of data, you now have the same epoch number against all 100,000 rows of training data.

Click Start and the training begins. You'll notice a difference in response time from the GUI as it trains all 100,000 rows. The main thing to look at is the errors per epoch; the number keeps reducing to the point where you get minute changes per 100 to 200 epochs. By the time the training has finished, you will have a very accurate training model.

All this comes at a price of memory, though. My training set took more than two minutes:

Time taken to build model: 124.52 seconds

Two minutes isn't a huge amount of time in the grand scheme of things, but as I previously mentioned in regard to gathering data for neural networks, adding more variables gives the curse of dimensionality.

The more rows you can use for training, the better the prediction results will be. There is a point in time to figure out when there's too much training data against the errors per epoch. It takes some practice (and everyone's data is different, so there's no hard or fast rule), and it's a case of experiment, measure, and try again.




Implementing a Neural Network in Java

With the Weka API, you can build a neural network with the same multilayer perceptron that Weka uses within the GUI.


Create the Project

Select File →New →Java Project and call it MLPProcessor, as shown in Figure 5-13.


[image: image]

Figure 5-13 Eclipse New Project dialog box



You need to tell Eclipse where the Weka API is; it's called weka.jar. On Mac OS X machines, Weka is usually installed within the Applications directory. The location on Windows machines varies depending on the specific operating system and Weka installation. In most cases it will be /Program Files (x86)/Weka-3-6/weka.jar.

With the WekaCluster project selected, select File →Properties and look for the Java Build Path. Then click the Libraries tab. Add the external jar file by clicking Add External JARs, then in the file dialog box find the weka.jar file, as shown in Figure 5-14.


[image: image]

Figure 5-14 Adding external jars



The last thing to do is create a new class called MLPProcessor.java (using File →New → Class), as shown in Figure 5-15.


[image: image]

Figure 5-15 Creating a new class file





The Code

The actual Java is straightforward. You're going to do the following:


	Open the training data .arff file.

	Create a MultilayerPerceptron and set the same options as the Weka GUI example.

	Build the classifier.

	Load in some test data.

	Run an evaluation test with the test data against the trained data.



You need to create a small test data file to test against the model. In a text file called testdata.arff enter the following:

@relation vehicledata
@attribute wheels numeric
@attribute chassis numeric
@attribute pax numeric
@attribute vtype {Bus,Car,Truck,Bike}
@data
18,25,2,Truck
8,21,24,Bus
18,27,2,Truck
1,1,1,Bike
7,23,21,Bus
18,20,1,Truck
8,16,30,Bus
18,28,2,Truck
7,18,36,Bus
8,21,27,Bus
5,2,4,Car
18,28,1,Truck
5,1,1,Car
1,1,1,Bike
18,27,1,Truck
5,1,1,Car
6,15,38,Bus
7,21,38,Bus
18,20,2,Truck
1,1,1,Bike
18,28,2,Truck
18,24,2,Truck
18,20,1,Truck
1,1,1,Bike
5,17,18,Bus
18,27,1,Truck
4,4,3,Car
18,21,1,Truck
5,2,3,Car
4,3,3,Car
18,23,1,Truck
5,20,30,Bus
5,3,3,Car
18,28,1,Truck
5,3,1,Car
9,13,19,Bus
1,1,1,Bike
18,26,2,Truck

After you've created the test file, use the following code:

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import weka.classifiers.Evaluation;
import weka.classifiers.functions.MultilayerPerceptron;
import weka.core.Instances;
import weka.core.Utils;
public class MLPProcessor {
    public MLPProcessor() {
        try {
            FileReader fr = new FileReader("vehicledata.arff");
            Instances training = new Instances(fr);
            training.setClassIndex(training.numAttributes() -1);
            MultilayerPerceptron mlp = new MultilayerPerceptron();
            mlp.setOptions(Utils.splitOptions("-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H 4"));
            mlp.buildClassifier(training);
            FileReader tr = new FileReader("testdata.arff");
            Instances testdata = new Instances(tr);
            testdata.setClassIndex(testdata.numAttributes() -1);
            Evaluation eval = new Evaluation(training);
            eval.evaluateModel(mlp, testdata);
System.out.println(eval.toSummaryString("\nResults\n*******\n", false));
            tr.close();
            fr.close();
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        } catch (IOException e) {
            e.printStackTrace();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    public static void main(String[] args) {
        MLPProcessor mlp = new MLPProcessor();
    }
}

The actual neural network is taken care of within three lines of code. Create the MultilayerPerceptron, set which class you want to determine, and then build the classifier. The rest of the code is loading the training and test data in.



Converting from CSV to Arff

CSV files don't contain the data that Weka needs. You could implement the CSVLoader class, but I prefer to know that the .arff data is ready for use. It also makes it easier for others to decode the data model if they need to.

From the command line, you can convert the data from a .csv file to .arff in one command.

java -cp /Applications/weka-3-6-10/weka.jar weka.core.converters.CSVLoader vehicledata.csv > vehicledata.arff

If you inspect the .arff file, you see the attribute information set up for you.

@relation vehicledata
@attribute wheels numeric
@attribute chassis numeric
@attribute pax numeric
@attribute vtype {Bus,Car,Truck,Bike}
@data
6,20,39,Bus
8,23,11,Bus
5,3,1,Car
4,3,4,Car
5,3,1,Car
4,18,37,Bus
18,23,2,Truck



Running the Neural Network

The code listing doesn't include any output messages while it's running, with the exception of the output of the evaluation. I say this because the training data could have 100,000 rows in it, and it's going take a few minutes to run.

Run the class with Run→Run from Eclipse, and it starts to generate the model. After a while, you see the output from the evaluation.

Results
======
Correctly Classified Instances          38              100      %
Incorrectly Classified Instances         0                0      %
Kappa statistic                          1
Mean absolute error                      0.0003
Root mean squared error                  0.0004
Relative absolute error                  0.0795 %
Root relative squared error              0.0949 %
Total Number of Instances               38 

Instances can be easily classified by using the multilayer perceptron classifyInstance() method, which takes in a single Instance class and outputs a numeric representation of the result. This result corresponds to your output class in the .arff training file.




Summary

Perhaps it's my English nature, but I find it slightly ironic that I could spend so few pages on a subject so massive. It's about the brain, neurons, and all that kind of stuff!

Seriously though, this chapter should have given you a basic grounding on how neural networks work, including a couple of examples in Weka and Java.

The key to a successful neural network project comes down to the data preparation. Too little preparation and the network won't predict right; too much and you hit memory issues. It's about finding the right set of data, the right quantity, and the right training method.






Chapter 12
Machine Learning with R


When you're in a room of data scientists, statisticians, and math types, you'll hear one letter crop up again and again: the letter R. R is a programming language, and it's basically command-line driven. If you used the Spark shell in Chapter 11, then you're already familiar with the shell concept; R is the same. In addition to being used in the command-line shell, R can be written in code form and run.

Why am I telling you all this? Well, on top of the programming skills that get mentioned, you might also be asked, “Do you do R?” After this chapter, you'll hopefully have a starting point to reply, “Yes!”


Installing R

The R language comes ready to use for a number of operating systems. The download page at http://www.r-project.org has a number of mirror sites, so pick a mirror that's closest to you. From the mirror, choose the download for your operating system.


Mac OSX

The current version of R (3.1.1 at time of writing) comes in two separate download types: one for users running Snow Leopard and the other for Mavericks. The latter is built on XCode5 compiler binaries. Download the file and open it to install. It installs the R binaries to the /Applications folder.



Windows

The .exe download for Windows provides binaries for running on 32- or 64-bit machines. The base package download will provide you with everything you need to get started.



Linux

Binary downloads are available for Debian, Ubuntu, Red Hat, and SUSE Linux distributions. If you want to save some time (and effort) and you're running Debian or Ubuntu, then you can use apt-get to install the r-base and r-base-dev packages. Ensure that the repository package base is up-to-date first. For users of the RedHat family of distributions use the command sudo yum install R.




Your First Run

When you run R, you're presented with the basic R shell, as shown in Figure 12-1. This is the main place where the work is done. It's sparse, but it does the job fine.


[image: image]

Figure 12-1 The R Shell



If at any time you want help on a topic, you can use the help command. For example, if you want to know about Standard Deviation, just type help(sd), and R opens a new window with the information (see Figure 12-2).


[image: image]

Figure 12-2 R's help system



You can quit the shell by either clicking the light switch on the top right of the program window (refer to Figure 12-1) or by typing quit() on the command line.

For basic needs, the R shell is fine and does the job well. For an actual development environment, you have to install some more software such as R-Studio.



Installing R-Studio

The R-Studio project (see Figure 12-3) is a commercial integrated development environment (IDE) for R. It comes in an open source community edition that is free to use. To download R-Studio IDE, visit http://www.rstudio.com/products/rstudio/download and select your operating system type. Make sure that the R base binary is installed as described in the preceding section before you download R-Studio.


[image: image]

Figure 12-3 R-Studio





The R Basics

To run through the R basics, I'm going to use the standard R development environment. The command-line prompt is a simple greater than sign (>).

You can perform calculations on the command line, so adding numbers together is a trivial process, like so:

> 1+2
[1] 3
>

To get proper use from R, though, you need to think a little more programmatically.


Variables and Vectors

R supports variables as you would expect. To assign them, you can either use the equal sign (=) or the less than sign and a hyphen together (<-):

> myage = 21
> myageagain <- 21
> myage
[1] 21
> myageagain
[1] 21
>

Variables can also store string variables and other data types. The one you'll use most are numeric values.

Lists of data are held in arrays, called vectors in R, and are defined with the c() function.

> lotterynums <- c(2,7,20,35,36,42)
> lotterynums
[1]  2  7 20 35 36 42

Vectors can also hold strings. Using the length() function tells you how many elements are in the array.

> kc <- c("Robert", "Adrian", "Tony", "Bill", "Pat", "Trey")
> kc
[1] "Robert" "Adrian" "Tony"   "Bill"   "Pat"    "Trey"
> length(kc)
[1] 6
>

To show specific values in the array, you can use the variable name and the element you want to show.

> kc[5]
[1] "Pat"



Matrices

Now that you know how vector lists of numbers work, you can convert them into a matrix. To define a matrix, you take the data and then define how many rows and columns you require.

> mymatrix <- matrix(c(1,2,3,4,5,6,7,8,9,10), nrow=2, ncol=5, byrow=TRUE)
> mymatrix
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    2    3    4    5
[2,]    6    7    8    9   10
>

You can then retrieve data based on the row and column position.

> # by row, col
> mymatrix[2,4]
[1] 9
> # entire row
> mymatrix[2,]
[1]  6  7  8  9 10
> # entire col
> mymatrix[,4]
[1] 4 9
>

Instead of numeric row and column names, you can define text label names to make things more readable.

> dimnames(mymatrix) <- list(c("row1","row2"),c("c1","c2","c3","c4","c5"))
> mymatrix
     c1 c2 c3 c4 c5
row1  1  2  3  4  5
row2  6  7  8  9 10
>

You can reference data by row and column by using the row and column names you've just defined.

> mymatrix["row2", "c5"]
[1] 10



Lists

A list is a vector containing other objects. This can be a mixture of objects (numeric, Boolean, and strings, for example) or other vectors within the list.

> nums <- c(1,2,3,4,5)
> strings <- c("hello", "world", "again")
> bools <- (TRUE, FALSE)
Error: unexpected ',' in "bools <- (TRUE,"
> bools <- c(TRUE, FALSE)
> mylist <- list(bools, strings, nums)
> mylist
[[1]]
[1]  TRUE FALSE
[[2]]
[1] "hello" "world" "again"
[[3]]
[1] 1 2 3 4 5

To retrieve the strings on their own, you can slice the list accordingly with the [] notation.


> mylist[2]
[[1]]
[1] "hello" "world" "again"

To reference a member of the listed object directly, you have to use a double squared bracket. You can modify the member within the list as well.

> mylist[[2]][1]
[1] "hello"
> mylist[[2]][1] <- "goodbye"
> mylist
[[1]]
[1]  TRUE FALSE
[[2]]
[1] "goodbye" "world"   "again"
[[3]]
[1] 1 2 3 4 5
>




Data Frames

Data frames are basically lists of vectors. The column count is the same in the vectors. R comes with some predefined data frames to play with. Using the head() function, you can see the top few lines of the data frame. This saves the entire contents of the frame being shown in the command line.

> data(USArrests)
> head(USArrests)
           Murder Assault UrbanPop Rape
Alabama      13.2     236       58 21.2
Alaska       10.0     263       48 44.5
Arizona       8.1     294       80 31.0
Arkansas      8.8     190       50 19.5
California    9.0     276       91 40.6
Colorado      7.9     204       78 38.7

You can reference data with the row and column positioning like you did with the matrices.

> USArrests["New York",]
         Murder Assault UrbanPop Rape
New York   11.1     254       86 26.1
> USArrests["New York", "Assault"]
[1] 254



Installing Packages

R comes with a comprehensive selection of packages that are available to download. You can see the Comprehensive R Archive Network (usually referred to as “CRAN”) packages that are available on the R website at www.r-project.org/. They are a broad spectrum of statistics, data-processing, and other tools.

To install the packages, you use the install.packages() function from the R command line. It takes care of everything for you.

For example, to install the tools for Approximate Bayesian Computation (ABC), you install the “abc” package:

>install.packages("abc")

Some packages might require dependencies to be installed first, so it's prudent to use the dependencies flag to ensure they are installed, too.

>
also installing the dependencies 'SparseM', 'quantreg', 'locfit'
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/SparseM_1.03.tgz'
Content type 'application/x-gzip' length 825491 bytes (806 Kb)
opened URL
==================================================
downloaded 806 Kb
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/quantreg_5.05.tgz'
Content type 'application/x-gzip' length 1846783 bytes (1.8 Mb)
opened URL
==================================================
downloaded 1.8 Mb
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/locfit_1.5-9.1.tgz'
Content type 'application/x-gzip' length 597404 bytes (583 Kb)
opened URL
==================================================
downloaded 583 Kb
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/abc_2.0.tgz'
Content type 'application/x-gzip' length 5303210 bytes (5.1 Mb)
opened URL
==================================================
downloaded 5.1 Mb
The downloaded binary packages are in
/var/folders/b5/fz_57qk522nd6vqk2pd4lytr0000gn/T//RtmpOqHaEV/downloaded_packages

To use the library after it's installed, you call it with the library() function. It initializes and gives notice of the dependencies it has also loaded.

> library(abc)
Loading required package: nnet
Loading required package: quantreg
Loading required package: SparseM
Attaching package: 'SparseM'
The following object is masked from 'package:base':
    backsolve
Loading required package: MASS
Loading required package: locfit
locfit 1.5-9.1 2013-03-22



Loading in Data

With the basic notions of variables, lists, and vectors in place, it's time to look at getting some data loaded into R.


CSV Files

The read.csv function reads a .csv file and loads it into a data frame.

> trans <- read.csv('vdata.csv', header=TRUE, sep=',')
> head(trans)
  wheels chassis pax vtype
1      4       2   4   Car
2      9      20  25   Bus
3      5      14  18   Bus
4      5       2   1   Car
5      9      17  25   Bus
6      1       1   1  Bike
>

If your .csv file has the column names in the first line, then use header=TRUE; otherwise, set it to FALSE. The separator is defined with the sep keyword, and you define whatever delimiter you want. If you have missing values, then it's wise to use the fill flag as well to ensure that your data will have the correct number of elements in each row.



MySQL Queries

Installing the RMySQL package gives you access to MySQL databases. You can pull queries into R so they can be processed.

>install.packages("RMySQL", dependencies=TRUE)

If you are working on a Windows-based system then the library requires building for the source files. Two environment variables are required for the library to compile:

> Sys.setenv(PKG_CPPFLAGS = "-I/path/to/mysql/include/dir")
> Sys.setenv(PKG_LIBS = "-L/path/to/library/dir -lmysqlclient")
> install.packages("RMySQL", type = "source")

As with Java code, you need to define a connection to the database before you can query it.

>con <- dbConnect(MySQL(), user="myuser", password="mypass", dbname="mydb", host="localhost")

From there, after you have a connection, you can see what tables are in the database.

>dbListTables(con)

You then query a table. The data from the query is returned as a data frame.

>dta <- dbGetQuery(con, "SELECT * FROM mytable")

There are a number of other databases supported in R, including SQLite3, Postgresql, and Oracle.



Creating Random Sample Data

Perhaps you don't have any data to load or you just want to have a random sample of numbers to play with. Using the sample function, you can create a handy vector of numbers.

> sam <- sample.int(1000, 20, replace=TRUE)
> sam
 [1]  32 192 783 654 250 261 150 687 619 332 549 225 545 175 508 782 237 748 334 804




Plotting Data

R supports basic plots of your data. They can take a little amount of getting use to with regard to the syntax, so the following sections provide a short primer.


Bar Charts

How many bar charts did you draw at school? I drew far more than I care to remember, but R makes it easy for me now. (See Figure 12-4.)

> sam <- sample.int(1000, 20, replace=TRUE)
> sam
 [1]  32 192 783 654 250 261 150 687 619 332 549 225 545 175 508 782 237 748 334 804
> barplot(sam, main="My first plot", horiz=TRUE)


[image: image]

Figure 12-4 Horizontal bar chart



If you remove the horiz option, you get the bars travelling in a vertical direction, as shown in Figure 12-5.

> barplot(sam, main="My first plot")


[image: image]

Figure 12-5 Vertical bar chart





Pie Charts

The pie charts in R are basic (see Figure 12-6), but they get the job done. It's just a case of giving the pie chart values and labels. You can easily expand on this if necessary.

> pie(sam, main="First Pie Chart", labels=sam)


[image: image]

Figure 12-6 Simple pie chart





Dot Plots

The dot plot function (see Figure 12-7) is a simple case of specifying a vector. You can also group the dot plot into specific sections if required.

> dotchart(sam, main="My Dot Chart", labels="Value", xlab="Frequency")


[image: image]

Figure 12-7 Simple dot plot





Line Charts

With two vectors of numbers, you can create a line chart, as shown in Figure 12-8.

> sam1 <- sample.int(10, 12, replace=TRUE)
> sam1
 [1]  5 10  4  8  2  2  2  4  2  5  2  6
> sam2 <- sam1
> plot(sam1, sam2)
> lines(sam1, sam2, type="l")


[image: image]

Figure 12-8 Simple line chart







Simple Statistics

R is about statistics; that's what it's built for. Unlike Java, Scala, or Python, R's syntax is a little unforgiving, but after a few sessions it becomes more natural.

Try creating a simple vector of numbers, and then you can work through some functions. Start with the basics.

> s <- sample(100, 12, replace=TRUE)
> # get a basic summary of the vector: lowest value, 1st quartile, median, mean, 3rd quartile and maximum value
> summary(s)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
   1.00    9.25   28.50   37.58   58.25   97.00
> # just get the minimum
> min(s)
[1] 1
> # get the maximum value
> max(s)
[1] 97
> # get the average
> mean(s)
[1] 37.58333
> # get the median
> median(s)
> # get the standard deviation
> sd(s)
[1] 31.57807
> # use the table function to see the frequency of the data
> table(s)
s
 1  5  7 10 22 25 32 55 57 62 78 97
 1  1  1  1  1  1  1  1  1  1  1  1

Obviously, you can reassign these function results as new variables or vectors. This gives you the basic outline of how the summaries work.



Simple Linear Regression

This section gives an example of simple linear regression in R. It will give you a good idea of how things are put together. Here's the story: You have profit made based on the number of seconds that the sales team is on a call. If you know the profit made, can you calculate how long the call took?


Creating the Data

First, create two separate vectors: one for the number of seconds in the call (secondsCall) and another for the amount of profit that was made (dollarProfit).

> # setup the data
> secondsCall <- c(23,28,39,48,64,75,88,96,97,109,118,149,150,156,165)
> dollarProfit <- c(1,2,3,3,4,4,5,6,6,7,8,8,9,10,10)



The Initial Graph

You can create a simple plot for those values (see Figure 12-9) by using the plot command.

> # create a simple plot
> plot(secondsCall, dollarProfit)


[image: image]

Figure 12-9 Seconds/dollar plot





Regression with the Linear Model

Within R, there is a command that will do the linear model for you: lm. You can define the model and save it as a variable. The order of variables is dependent (secondsCall), followed by a tilde symbol (˜), and finally the independent variables (dollarProfit).

> # define the linear model
> model <- lm(secondsCall ˜ dollarProfit)
> model
Call:
lm(formula = secondsCall ˜ dollarProfit)
Coefficients:
 (Intercept)  dollarProfit
      0.6226       16.2286
>

So, you now know the intercept (0.6226) and the dollar profit amount of 16.22. You can expand on the model information using the summary command.

> # expend the summary of the model
> summary(model)
Call:
lm(formula = secondsCall ˜ dollarProfit)
Residuals:
    Min      1Q  Median      3Q     Max
-12.451  -5.151  -1.308   4.734  18.549
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)    0.6226     4.8981   0.127    0.901
dollarProfit  16.2286     0.7681  21.129  1.9e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.306 on 13 degrees of freedom
Multiple R-squared:  0.9717, Adjusted R-squared:  0.9695
F-statistic: 446.4 on 1 and 13 DF,  p-value: 1.898e-11

So, you have a basic model that gives you a regression equation of secondsCall = 0.6226 + 16.2268 * profit amount. To put the regression line on the plot, use the abline function.

> abline(model)



Making a Prediction

Assume that someone made a $5 profit, and you want to know the duration of the call based on the model you've just created. Using the predict command, you can make the prediction.

> # make a basic prediction of someone making $5.
> predict(model, newdata=data.frame(dollarProfit=5))
       1
81.76568
>

The prediction is that the person was on a call for 81 seconds. You can extend that by adding different interval types, which will give you the upper and lower prediction amounts based on the model.

> predict(model, newdata=data.frame(dollarProfit=5), interval="pred")
       fit      lwr      upr
1 81.76568 63.19372 100.3376
> predict(model, newdata=data.frame(dollarProfit=5), interval="confidence")
       fit      lwr      upr
1 81.76568 76.97553 86.55583




Basic Sentiment Analysis

Chapter 9, where you ingested tweet data and showed the positive and negative scoring, covers basic sentiment analysis. The same is achievable in R with some basic coding. The text to rate could be anything from simple sentences typed in to reading in a Twitter stream or a file.


Functions to Load in Word Lists

You need two sets of text files: one with the positive words and one with the negative words. You can write two quick functions to load the text files and save them to two separate lists.

LoadPosWordSet<-function(){
 iu.pos = scan("positive-words.txt", what='character', comment.char=";")
 pos.words = c(iu.pos)
 return(pos.words)
}

Then you do the same for the negative word list:

LoadNegWordSet<-function(){
 iu.neg = scan("negative-words.txt", what='character', comment.char=";")
 neg.words = c(iu.neg)
 return(neg.words)
}



Writing a Function to Score Sentiment

You have a function that takes in a sentence and two word lists (positive and negative sentiment words). So now you can test it.

GetScore<-function(sentence, pos.words, neg.words) {
 sentence = gsub('[[:punct:]]', '', sentence)
 sentence = gsub('[[:cntrl:]]', '', sentence)
 sentence = gsub('\\d+', '', sentence)
 sentence = tolower(sentence)
 word.list = str_split(sentence, '\\s+')
 words = unlist(word.list)
 pos.matches = match(words, pos.words)
 neg.matches = match(words, neg.words)
 pos.matches = !is.na(pos.matches)
 neg.matches = !is.na(neg.matches)
 score = sum(pos.matches) - sum(neg.matches)
 return(score)
}

The first thing that happens is the sentence is cleaned up with punctuation, control characters, and numbers removed. That should give you just a sentence of words; you then convert it into all lowercase letters.

You split the sentence into a list of words and find out how many times the words match in the positive word list. You also do the same with the negative word list.

With a positive score and negative score, you take the negative away from the positive to get the final score.

You can save the functions as an R source file. You can either create it in a text editor or use the R-Studio editor to create the source file. For the purpose of this example, I save it all in a file called sentiment.r.



Testing the Function

To test the sentiment code, you first need to load the code and the required library into R:

>install.packages("stringr")
>library(stringr)
>source('sentiment.r')
> pos.words <- LoadPosWordSet()
Read 2006 items
> neg.words <- LoadNegWordSet()
Read 4783 items

So, you have 2,006 positive words and 4,783 negative words loaded. By using the GetScore method, you can get a score now on some text, and you can make up some to test. For example, here's a positive one:

> testscore<-GetScore("This concert is the best thing I've been to!", pos.words, neg.words)
> testscore
[1] 1

As you can see the sentiment analysis gave a score of +1, so it's positive. Try a negative sentence:

> testscore2<-GetScore("That's bad real bad, horrible", pos.words, neg.words)
> testscore2
[1] -3

With a negative string, you get a score of -3. With this basic function, you could process a list of sentences and create a bar graph of the scoring.




Apriori Association Rules

With a set of transactions, you can run a basic Apriori algorithm. The R base system requires a package called arules to be installed before use.


Installing the ARules Package

Before you get started you have to install the arules package:

> install.packages("arules", dependencies=TRUE)
also installing the dependencies 'colorspace', 'TSP', 'gclus', 'scatterplot3d', 'vcd', 'seriation', 'igraph', 'pmml', 'XML', 'arulesViz', 'testthat'
The downloaded binary packages are in /var/folders/b5/fz_57qk522nd6vqk2pd4lytr0000gn/T//Rtmpgp3zNQ/downloaded_packages
> library(arules)
Loading required package: Matrix
Attaching package: 'arules'
The following objects are masked from 'package:base':
%in%, write
>



The Training Data

I have prepared a basic .csv file with the basket ID and one item per line. You can see that there are repeating basket IDs to show that the basket contains multiple items. I've called my file transactions.csv.

1001,Fries
1001,Coffee
1001,Milk
1002,Coffee
1002,Fries
1003,Coffee
1003,Coke
1003,Eraser
1004,Coffee
1004,Fries
1004,Cookies
1005,Milk
1006,Coffee
1006,Milk
1007,Coffee
1007,Fries
1008,Fries
1008,Coke



Importing the Transaction Data

With the read.transactions method, you load the .csv data into a transactions object. It works in a similar way to the read.csv function you saw at the start of the chapter.

I'm setting the rm.duplicates flag to FALSE, because I don't want basket items to be removed.

> transactions <- read.transactions(file="transactions.csv", rm.duplicates=FALSE, format="single", sep=",", cols=c(1,2))
> transactions
transactions in sparse format with
 8 transactions (rows) and
 6 items (columns)
>

As you can see, the transaction object knows there are eight transactions with six items. You can see the relative frequency of items graphically by using the itemFrequencyPlot function, which generates a graph like the one in Figure 12-10.

> itemFrequencyPlot(transactions)


[image: image]

Figure 12-10 Transaction frequencies





Running the Apriori Algorithm

The function to run the algorithm is done in one line. You supply the transaction objects and a set of parameters. When you run the algorithm, you're presented with the resulting output. So, with a support of 0.5 and a confidence of 0.8 (the system is 80% confident), you get one association rule:

> minedbasketrules <- apriori(transactions, parameter=list(sup=0.5, conf=0.8, target="rules"))
parameter specification:
 confidence minval smax arem  aval originalSupport support minlen maxlen target   ext
        0.8    0.1    1 none FALSE            TRUE     0.5      1     10  rules FALSE
algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE
apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09)        (c) 1996-2004   Christian Borgelt
set item appearances …[0 item(s)] done [0.00s].
set transactions …[6 item(s), 8 transaction(s)] done [0.00s].
sorting and recoding items … [2 item(s)] done [0.00s].
creating transaction tree … done [0.00s].
checking subsets of size 1 2 done [0.00s].
writing … [1 rule(s)] done [0.00s].
creating S4 object  … done [0.00s].
>



Inspecting the Results

Have a look at the one rule and see what it is. You use the inspect command to look at the result:

> inspect(minedbasketrules)
  lhs        rhs      support confidence     lift
1 {Fries} => {Coffee}     0.5        0.8 1.066667
>

There's an 80 percent chance that if someone buys fries, they'll also buy a coffee. If you had thousands or tens of thousands of transactions, then you would raise the confidence level and also be able to see more rules appearing.




Accessing R from Java

Like the power of the Weka workbench can be accessed from a Java program, so too can R code. With the rJava bridge, you can run R within Java code and Java within R code.


Installing the rJava Package

Originally the rJava package was split along with the JRI package; installing them was a technical process at the time. Fortunately, that has all been replaced with a single binary that covers both packages.

> install.packages("rJava")
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/rJava_0.9-6.tgz'
Content type 'application/x-gzip' length 600621 bytes (586 Kb)
opened URL
==================================================
downloaded 586 Kb
The downloaded binary packages are in
/var/folders/b5/fz_57qk522nd6vqk2pd4lytr0000gn/T//Rtmpgp3zNQ/downloaded_packages
>

The rJava package uses JNI to talk to Java libraries. From the point of view of working within R, things might seem a little cumbersome, but they do work fine.



Your First Java Code in R

Open your R console or R-Studio. Assuming you've installed the package as described earlier in this chapter, you can do the following:

> library(rJava)
> .jinit()
> stringobj <- .jnew("java/lang/String", "This is a string as a Java object, in R!")
> stringobj
[1] "Java-Object{This is a string as a Java object, in R!}"

After the library is loaded, you need to initialize the rJava system with the .jinit() method. You then create a new variable in R that is going to contain a Java string object. The .jnew() method creates a new String object and populates the string. Notice that you have to put the full Java package name in with a slashed notation and not the dotted one.

If you want to find the location of the word “Java” in the string, you use Java's indexOf method. You can call it with rJava by executing the following:

[1] "Java-Object{This is a string as a Java object, in R!}"
> .jcall(stringobj, "I", "indexOf", "Java")
[1] 22

The command looks involved. The first parameter is the existing object you previously created. The next is the return type from method; because the indexOf method returns an integer, you use the “I” in the calling method. Next is the method name—“indexOf”—and last is the thing you're looking for, “Java”. You see the result on the line underneath.

For the full package information for the rJava interface, have a look at the method list at http://rforge.net/doc/packages/rJava/00Index.html.



Calling R from Java Programs

The interface for calling R from Java is called JRI. The files required to do this are all in the library that was installed from R. There are two components that your Java project requires: the jar file (called JRI.jar) and the native library file (the name changes depending on the operating system you are using—on Mac OS X, it's called libjri.jnilib).

Jason-Bells-MacBook-Pro:jri Jason$ pwd
/Library/Frameworks/R.framework/Resources/library/rJava/jri
Jason-Bells-MacBook-Pro:jri Jason$ ls -l
total 256
-rw-r--r--  1 Jason  admin  31384 24 Apr 16:02 JRI.jar
-rw-r--r--  1 Jason  admin  10272 24 Apr 16:02 JRIEngine.jar
-rw-r--r--  1 Jason  admin  32354 24 Apr 16:02 REngine.jar
drwxr-xr-x  8 Jason  admin    272 24 Apr 16:02 examples
-rwxr-xr-x  1 Jason  admin  47500 24 Apr 16:02 libjri.jnilib
-rwxr-xr-x  1 Jason  admin    833 24 Apr 16:02 run
Jason-Bells-MacBook-Pro:jri Jason$ 

You'll set up a basic Eclipse project and then you can see how the parts fit together. I developed the example on the Mac OS X operating system, but the variations on the other operating systems, such as Windows or Linux, are not that different.



Setting Up an Eclipse Project

Create a Java project and call it JRITest. Go to the properties, click the Java Build Path, and add an external jar file. Now look for the JRI.jar file, which is normally located in the /Library/Frameworks/R.framework/Resources/library/rJava/jri folder. (See Figure 12-11.)


[image: image]

Figure 12-11 Adding the JRI.jar file to the project



To make sure the R engine is working within Java, you're going to create a small test file to initialize the engine, load the built-in iris dataset, and iterate through an evaluation.



Creating the Java/R Class

To create a new class, select File →New →Class and call the new file TestR.java.

import java.util.Enumeration;
import org.rosuda.JRI.REXP;
import org.rosuda.JRI.RVector;
import org.rosuda.JRI.Rengine;
public class TestR {
    public static void main(String[] args) {
        Rengine rEngine = new Rengine(new String[] { "--vanilla" }, false, null);
        System.out.println("Waiting for R to create the engine.");
        if (!rEngine.waitForR()) {
            System.out.println("Cannot load R engine.");
            return;
        }
        rEngine.eval("data(iris)", false);
        REXP exp = rEngine.eval("iris");
        RVector vector = exp.asVector();
        System.out.println("Outputting data:");
        for (Enumeration e = vector.getNames().elements(); e.hasMoreElements();) {
            System.out.println(e.nextElement());
        }
      }
}

The first thing that happens within the main method is to start up an R engine. Nothing works until this step is complete.

Next, you pass an R command to load the iris data using the REngine.eval function. Last, you initialize an R vector within Java, convert the iris data to a vector, and then iterate the output.



Running the Example

If you attempt to run the class now, you will get an error from Eclipse, because the R runtime library isn't linked to the project. You get the following error if the library isn't linked:

Cannot find JRI native library!
Please make sure that the JRI native library is in a directory listed in java.library.path.
java.lang.UnsatisfiedLinkError: no jri in java.library.path
    at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1764)
    at java.lang.Runtime.loadLibrary0(Runtime.java:823)
    at java.lang.System.loadLibrary(System.java:1044)
    at org.rosuda.JRI.Rengine.<clinit>(Rengine.java:19)
    at TestR.main(TestR.java:10)

To set that up, you need to look at the run configurations for the project. Select Run →Run Configurations and then click the TestR class. On the Arguments tab, you need to add a –D flag to the virtual machine arguments, as shown in Figure 12-12.


[image: image]

Figure 12-12 Adding the JRI library path



If you get an error about the R_HOME path not being set, then reopen the run configuration and click the Environments tab, as shown in Figure 12-13. If you use windows locate the R.dll file on your system and add it to your Path.


[image: image]

Figure 12-13 Adding the environment R_HOME path



Click Run and try again. This time you should see the correct output.

Waiting for R to create the engine.
Outputting names:
Sepal.Length
Sepal.Width
Petal.Length
Petal.Width
Species



Extending Your R Implementations

The code you've just walked through gives you the basic framework for getting R functions and commands working from a Java program. The R examples you've seen in this chapter could be easily converted to a Java program using this method if you want. If you have an R expert on your team, then it might be prudent to have that person write the R functions first and then port them to Java.




R and Hadoop

If you are of a delicate nature, then you might want to look away from this section. It is possible to run R jobs with Hadoop. When you look back at the date when the likes of R and Weka were first developed, the notion of the MapReduce paradigm existed, but it was not on the top of the list of most data crunchers.

Over time, though, the volumes of data have increased dramatically. What hasn't progressed as much are the older tools. With large volumes of data, the memory implications make R difficult to use on a day-to-day basis. For small work, it's fine; when used for larger, more memory-intensive work, things might eventually break.


The RHadoop Project

Revolution Analytics developed the RHadoop libraries, which enable you to use Hadoop to scale R jobs. This gives you full MapReduce capabilities on one or more Hadoop nodes.

The RHadoop project requires you to have Hadoop 1.0.2 or later (Cloudera CDH3). R installs on each node that you are intending to use with a copy of the rmr2 package installed as well.

Before you can download and install the rmr2 package you are required to have the following R packages installed:


	Rcpp

	RJSONIO (>=0.8-2)

	Bitops

	Digest

	Functional

	reshape2

	stringr

	plyr

	caTools (>=1.16)



To install the rmr2 package, you have to manually download it from Revolution Analytics' Github repository (https://github.com/RevolutionAnalytics/rmr2) and run the following command from a terminal shell:

$ R CMD INSTALL rmr2_<the_version_number>.tar.gz . rmr2

The rmr2 package is not available on the CRAN package manager at present.

Finally the environment variable for HADOOP_HOME needs to be set and the location of the streaming jar file set for HADOOP_STREAMING.



A Sample Map Reduce Job in RHadoop

I'm going to break down a basic word count job in R using the RHadoop packages. I'm assuming you've already copied some text data into the Hadoop Distributed File System (HDFS).


The Map Phase

The first thing you do is load the rmr2 library package into memory. The map splits the incoming lines by a space character, which gives you a list of words. You're emitting a value of 1 for each word.

library(rmr2)
map <- function(x,inputLines) {
  words.list <- strsplit(inputLines, '\\s')
  words <- unlist(words.list)
  return( keyval(words, 1) )
}



The Reduce Phase

The reduce phase is a function that takes a word and its counts and reduces them to a word and a sum of the counts, This is then passed back to the calling function.

## reduce function
reduce <- function(word, counts) {
  keyval(word, sum(counts))
}



Setting Up the WordCount Job

You create a function to take in the input and output detail to the job and set up the basic map and reduce functions—the ones we've just created.

wordcount <- function (inputObject, outputObject=NULL) {
  mapreduce(input= inputObject, output= outputObject, input.format="text", map=map, reduce=reduce)
}



Running the Job

The first thing you do is delete any references to the existing output data in HDFS. Hadoop fails if the output directory already exists.

Next, create your job with the input and output paths and then set a variable object to the output of the wordcount function you created earlier:

system("hadoop fs -rmr wordcount/outputdata")
hdfs.root <- 'wordcount'
hdfs.data <- file.path(hdfs.root, 'inputdata')
hdfs.out <- file.path(hdfs.root, 'outputdata')
out <- wordcount(hdfs.data, hdfs.out)



Checking the Results

You extract the output data from HDFS and then create a dataframe that reads in the results. Two column names are created for the top of the output: inputWord and frequency.

results <- from.dfs(out)
## check top 30 frequent words
results.df <- as.data.frame(results, stringsAsFactors=F)
colnames(results.df) <- c('inputWord', 'frequency')
head(results.df[order(results.df$count, decreasing=T), ], 10) 






Note

Although I've concentrated on the RHadoop library, it's not the only one that exists. It's also worth checking out the RHIPE software libraries for R published by the Department of Statistics at Purdue University. You can find the website with all the details at www.datadr.org/install.html.









Connecting to Social Media with R

I know—another mention of the Twitter application program interface (API). This sort of data is important and not just for sentiment analysis. The majority of news, social graphs, and conversations happen on these platforms, and it's increasingly important to keep on top of developments. This goes for R, too; being able to connect to Twitter is important.

In the previous examples you used Twitter's development account to create the authorization keys for the application. You're essentially forcing your application to use these pre-existing keys. That works fine, but you have to approach things a little differently for the twitteR library.

Make a note of the consumer key and secret as you'll need those, but there are couple of other things you need to confirm.

First of all, make sure there's no callback URL. You confirm this on the Settings tab of your application. Make sure the Allow This Application to Be Used to Sign In to Twitter check box is set to true as well. Don't forget to update the settings for them to take effect. Refresh the page until you see the settings are correct.

Now that the Twitter side of things is set up you can look at some R code to help you log in to Twitter.

You need to open a text editor and use the following code:

library(twitteR)
cred <- OAuthFactory$new(consumerKey="xxxxxxxxxxxxx",
 consumerSecret="xxxxxxxxxxxx",
 requestURL="http://api.twitter.com/oauth/request_token",
 accessURL="http://api.twitter.com/oauth/access_token",
 authURL="http://api.twitter.com/oauth/authorize")
download.file(url="http://curl.haxx.se/ca/cacert.pem", destfile="cacert.pem")
cred$handshake(cainfo="cacert.pem")

Replace the consumer key and secret values with the ones you have for your application. Save the file as twitterconnect.r and then quit the text editor.

Back in the R command line, you load the source file, and it runs as soon as it's loaded.

>source(twitterconnect.r')

You see the twitteR library load the dependencies and then attempt to connect to Twitter:

> source("twitterconnect.r")
Loading required package: ROAuth
Loading required package: RCurl
Loading required package: bitops
Loading required package: digest
Loading required package: rjson
trying URL 'http://curl.haxx.se/ca/cacert.pem'
Content type 'text/plain' length 251338 bytes (245 Kb)
opened URL
==================================================
downloaded 245 Kb
To enable the connection, please direct your web browser to:
http://api.twitter.com/oauth/authorize?oauth_token=cv88UGfPrAJnraJPqdGjeg5QJEUMk185jOUncJhDk
When complete, record the PIN given to you and provide it here:

The main thing to look out for is the connecting URL with the oauth_token key. Copy the whole URL and paste it into a browser. You go to the Twitter site where you're asked to authorize your application request. When you accept this you'd normally return to the application, but because you've disabled that feature, you get a personal identification number (PIN) instead.

Back at the R command line, the program you have written is currently waiting for input—the PIN—so type that in the R window.

As soon as the PIN is entered you're returned to the R prompt. You need to register the oauth with the twitteR library, which you do with the following command:

>registerTwitterOAuth(cred)

The R command line responds with TRUE when the credentials are registered. After that's done you can run a quick test:

searchTwitter("#bigdata")

You start to see results come through to the command line:

[[1]]
[1] "eriksmits: #BigData could generate millions of new jobs http://t.co/w1FGdxjBI9 via @FortuneMagazine, is a Java Hadoop developer key for creating value?"
[[2]]
[1] "MobileBIAus: RT @BI_Television: RT @DavidAFrankel: Big Data Collides with Market Research http://t.co/M36yXMWJbg #bigdata #analytics"
[[3]]
[1] "alibaba_aus: @PracticalEcomm discusses how the use of #BigData can combat #ecommerce fraud http://t.co/fmd9m0wWeH"
[[4]]
[1] "alankayvr: RT @ventanaresearch: It's not too late! Join us in S.F. for the 2013 Technology Leadership Summit - sessions on #BigData #Cloud & more http. . ."
[[5]]
[1] "DelrayMom: MT @Loyalty360: White Paper 6 #Tips for turning #BigData into key #insights, http://t.co/yuNRWxzXfZ, @SAS, #mktg #data #contentmarketing"

It's worth saving the credentials so you don't have to keep re-authorizing the access tokens via Twitter. You can save them to a file:

>save(cred,file="credentials.RData")

The next time you want to use the Twitter credentials again, you can do it in two lines:

>load("credentials.RData")
>registerTwitterOAuth(cred)




Summary

R is a complex piece of software, but it's well-loved by data scientists (new and old ones alike) and also it's become the de facto statistics software for the open source generation.

There are hundreds of well-developed and documented libraries for R within the CRAN package library.

Development does come at a cost; it can be memory intensive for large and complex jobs. It doesn't handle huge amounts of data well, but this is improved by the work done by Revolution Analytics and Purdue University bringing Hadoop processing power to the R engine.

If you still prefer the comfort of your “normal” programming language, such as Java, then use the JRI/RJava combinations; they work very well. Think about real-time analytics to your Java web servlets, for example—very powerful indeed.

Regardless of whether you're processing social media feeds, evaluating e-commerce shopping baskets, or reading sensor data from temperature gauges, look at R as an alternative for processing the data.






Chapter 3
Working with Decision Trees


Do not be deceived by the decision tree; at first glance it might look like a simple concept, but within the simplicity lies the power. This chapter shows you how decision trees work. The examples use Weka to create a working decision tree that will also create the Java code for you.


The Basics of Decision Trees

The aim with any decision tree is to create a workable model that will predict the value of a target variable based on the set of input variables. This section explains where decision trees are used along with some of the advantages and limitations of decision trees. In this section you also find out how a decision tree is calculated manually so you can see the math involved.


Uses for Decision Trees

Think about how you select different options within an automated telephone call. The options are essentially decisions that are being made for you to get to the desired department. These decision trees are used effectively in many industry areas.

Financial institutions use decision trees. One of the fundamental use cases is in option pricing, where a binary-like decision tree is used to predict the price of an option in either a bull or bear market.

Marketers use decision trees to establish customers by type and predict whether a customer will buy a specific type of product.

In the medical field, decision tree models have been designed to diagnose blood infections or even predict heart attack outcomes in chest pain patients. Variables in the decision tree include diagnosis, treatment, and patient data.

The gaming industry now uses multiple decision trees in movement recognition and facial recognition. The Microsoft Kinect platform uses this method to track body movement. The Kinect team used one million images and trained three trees. Within one day, and using a 1,000-core cluster, the decision trees were classifying specific body parts across the screen.



Advantages of Decision Trees

There are some good reasons to use decision trees. For one thing, they are easy to read. After a model is generated, it's easy to report back to others regarding how the tree works. Also, with decision trees you can handle numerical or categorized information. Later, this chapter demonstrates how to manually work through an algorithm with category values; the example walkthrough uses numerical data.

In terms of data preparation, there's little to do. As long as the data is formalized in something like comma separated variables, then you can create a working model. This also makes it easy to validate the model using various tests. With decision trees you use white-box testing—meaning the internal workings can be observed but not changed; you can view the steps that are being used when the tree is being modeled.

Decision trees perform well with reasonable amounts of computing power. If you have a large set of data, then decision tree learning will handle it well.



Limitations of Decision Trees

With every set of advantages there's usually a set of disadvantages sitting in the background. One of the main issues of decision trees is that they can create overly complex models, depending on the data presented in the training set. To avoid the machine learning algorithm's over-fitting the data, it's sometimes worth reviewing the training data and pruning the values to categories, which will produce a more refined and better-tuned model.

Some of the decision tree concepts can be hard to learn because the model cannot express them easily. This shortcoming sometimes results in a larger-than-normal model. You might be required to change the model or look at different methods of machine learning.



Different Algorithm Types

Over the years, there have been various algorithms developed for decision tree analysis. Some of the more common ones are listed here.


ID3

The ID3 (Iterative Dichotomiser 3) algorithm was invented by Ross Quinlan to create trees from datasets. By calculating the entropy for every attribute in the dataset, this could be split into subsets based on the minimum entropy value. After the set had a decision tree node created, all that was required was to recursively go through the remaining attributes in the set.

ID3 uses the method of information gain—the measure of difference in entropy before and after an attribute is split—to decide on the root node (the node with the highest information gain).

ID3 suffered from over-fitting on training data, and the algorithm was better suited to smaller trees than large ones. The ID3 algorithm is used less these days in favor of the C4.5 algorithm, which is outlined next.



C4.5

Quinlan came back for an encore with the C4.5 algorithm. It's also based on the information gain method, but it enables the trees to be used for classification. This is a widely used algorithm in that many users run in Weka with the open source Java version of C4.5, the J48 algorithm.

There are notable improvements in C4.5 over the original ID3 algorithm. With the ability to work on continuous attributes, the C4.5 method will calculate a threshold point for the split to occur. For example, with a list of values like the following:

85,80,83,70,68,65,64,72,69,75,75,72,81,71

C4.5 will work out a split point for the attribute (a) and give a simple decision criterion of:

a <= 80 or a > 80

C4.5 has the ability to work despite missing attribute values. The missing values are marked with a question mark (?). The gain and entropy calculations are simply skipped when there is no data available.

Trees created with C4.5 are pruned after creation; the algorithm will revisit the nodes and decide if a node is contributing to the result in the tree. If it isn't, then it's replaced with a leaf node.



CHAID

The CHAID (Chi-squared Automatic Interaction Detection) technique was developed by Gordon V. Kass in 1980. The main use of it was within marketing, but it was also used within medical and psychiatric research.



MARS

For numerical data, it might be worth investigating the MARS (multivariate adaptive regression splines) algorithm. You might see this as an open source alternative called “Earth,” as MARS is trademarked by Salford Systems.




How Decision Trees Work

Every tree is comprised of nodes. Each node is associated with one of the input variables. The edges coming from that node are the total possible values of that node. A leaf represents the value based on the values given from the input variable in the path running from the root node to the leaf. Because a picture paints a thousand words, see Figure 3-1 for an example.


[image: image]

Figure 3-1 A decision tree



Decision trees always start with a root node and end on a leaf. Notice that the trees don't converge at any point; they split their way out as the nodes are processed.

Figure 3-1 shows a decision tree that classifies a loan decision. The root node is “Age” and has two branches that come from it, whether the customer is younger than 55 years old or older.

The age of the client determines what happens next. If the person is younger than 55, then the tree prompts you to find out if he or she is a student. If the client is older than 55 then you are prompted to check his or her credit rating.

With this type of machine learning, you are using supervised learning to deduce the optimal method to make a prediction; what I mean by “supervised learning” is that you give the classifier data with the outcomes. The real question is, “What's the best node to start with as the root node?” The next section examines how that calculation is done.


Building a Decision Tree

Decision trees are built around the basic concept of this algorithm.


	Check the model for the base cases.

	Iterate through all the attributes (attr).

	Get the normalized information gain from splitting on attr.

	Let best_attr be the attribute with the highest information gain.

	Create a decision node that splits on the best_attr attribute.

	Work on the sublists that are obtained by splitting on best_attr and add those nodes as child nodes.



That's the basic outline of what happens when you build a decision tree. Depending on the algorithm type, like the ones previously mentioned, there might be subtle differences in the way things are done.



Manually Walking Through an Example

If you are interested in the basic mechanics of how the algorithm works and want to follow along, this section walks through the basics of calculating entropy and information gain. If you want to get to the hands-on part of the chapter, then you can skip this section.

The method of using information gain based on pre- and post-attribute entropy is the key method used within the ID3 and C4.5 algorithms. As these are the commonly used algorithms, this section concentrates on that basic method of finding out how the decision tree is built.

With machine learning–based decision trees, you can get the algorithm to do all the work for you. It will figure out which is the best node to use as the root node. This requires finding out the purity of each node. Consider Table 3-1, which includes only true/false values, of some user purchases through an e-commerce store.



Table 3-1 Users' Purchase History




	
	Has credit account?
	Read reviews
	Previous customer?
	Did purchase?



	User A
	N
	Y
	Y
	Y



	User B
	Y
	Y
	Y
	Y



	User C
	N
	N
	Y
	N



	User D
	Y
	N
	N
	Y



	User E
	Y
	Y
	Y
	Y





There are four nodes in the table:


	Does the customer have an account?

	Did the customer read previous product reviews?

	Is the customer a returning customer?

	Did the customer purchase the product?



At the start of calculating the decision tree there is no awareness of the node that will give the best result. You're looking for the node that can best predict the outcome. This requires some calculation. Enter entropy.



Calculating Entropy

Entropy is a measure of uncertainty and is measured in bits and comes as a number between zero and 1 (entropy bits are not the same bits as used in computing terminology). Basically, you are looking for the unpredictability in a random variable.

You need to calculate the gain for the positive and negative cases. I've written a quick Java program to do the calculating:

package chapter3;
public class InformationGain {
    private double calcLog2(double value) {
        if(value <= 0.) {
            return 0.;
        }
        return Math.log10(value) / Math.log10(2.);
    }
    public double calcGain(double positive, double negative) {
        double sum = positive + negative;
        double gain = positive * calcLog2(positive/sum)/sum + negative * calcLog2(negative/sum)/sum;
        return -gain;
    }
    public static void main(String[] args) {
        InformationGain ig = new InformationGain();
        System.out.println(ig.calcGain(2, 3));
    }
}

Looking back at the table of customers with credit accounts there are three with and two without. So calculating the gain with these variables you get the following result:

[image: equation]

log2() refers to the calculation in the calcLog2() method in the code snippet. If you don't want to type or compile the code listing, then try copying and pasting the gain equation into www.wolframalpha.com and you'll see the answer there. The outcomes of the variables in the reads reviews attribute linking back to the accounts attribute are the following:

[image: equation]

You can now calculate the entropy with the split based on the first attribute:

[image: equation]

The net gain is finally calculated:

[image: equation]

So, you have two gains: one before the split (0.97) and one after the split (0.96).

You're nearly done on this attribute. You just have to calculate the information gain.



Information Gain

When you know the gain before and after the split in the attribute, you can calculate the information gain. With the attribute to see if the customer has a credit account, your calculation will be the following:

[image: equation]

So, the information gain on the has credit account attribute is 0.01.



Rinse and Repeat

The previous two sections covered the calculation of information gain for one attribute, Has Credit Account. You need to work on the other two attributes to find their information gain.

Reads Reviews:Gain(3,2) = 0.97Net Gain = 0.4Information Gain = 0.57Previous Customer:Gain(4,1) = 0.72Net Gain = 0.486Information Gain = 0.234

With the values of information gain for all the attributes, you can now make a decision on which node to start with in the tree.




	Attribute
	Information Gain



	Has Credit Account
	0.01



	Reads Reviews
	0.57



	Is Previous Customer
	0.234





Now things are becoming clearer; the Reads Reviews attribute has the highest information gain and therefore should be the root node in the tree, then comes the Is Previous Customer node followed by Has Credit Account.

The order of information gain determines where the node will appear in the decision tree model. The node with the highest gain becomes the root node.

That's enough of the basic theory of how decision trees work. The best way to learn is to get something working, which is described in the next section.





Decision Trees in Weka

In this section, you'll use the Weka data-mining tool to work through some training data of the optimum sales of Lady Gaga's CDs depending on specific factors within the store. I explain the factors in question as you walk though that data.


The Requirement

The requirement is to create a model that will be able to predict a customer sale on Lady Gaga CDs depending on the CDs' placement within the store. You've been given some data by the record store about where the product was placed, whether it was at eye level or not, and whether the customer actually purchased the CD or put it back on the shelf.

The client wants to be able to run other sets of data through the model to determine how sales of a product will fare.

Working through this methodically, you need to do the following:


	Run through the training data supplied and turn it into a definition file for Weka.

	Use the Weka workbench to build the decision tree for you and plot an output graph.

	Export some generated Java code with the new decision tree classifier.

	Test the code against some test data.

	Think about future iterations of the classifier.



It feels like there's a lot to do, but after you get into the routine, it's quite simple to do with the tools at hand. First look at the training data.



Training Data

Before anything else happens, you need some training data. The client has given you some in a .csv file, but it would be nice to formalize this. This is what you received:

Placement,prominence, pricing, eye_level, customer_purchase
end_rack,85,85,FALSE,yes
end_rack,80,90,TRUE,yes
cd_spec,83,86,FALSE,no
std_rack,70,96,FALSE,no
std_rack,68,80,FALSE,no
std_rack,65,70,TRUE,yes
cd_spec,64,65,TRUE,yes
end_rack,72,95,FALSE,yes
end_rack,69,70,FALSE,yes
std_rack,75,80,FALSE,no
end_rack,75,70,TRUE,no
cd_spec,72,90,TRUE,no
cd_spec,81,75,FALSE,yes
std_rack,71,91,TRUE,yes

Weka saves the file as a .arff file to set up the attributes and let you give it some data from which to train. The .arff file is a text file that outlines the data model you are going to use:

@relation ladygaga
@attribute placement {end_rack, cd_spec, std_rack}
@attribute prominence numeric
@attribute pricing numeric
@attribute eye_level {TRUE, FALSE}
@attribute customer_purchase {yes, no}
@data
end_rack,85,85,FALSE,yes
end_rack,80,90,TRUE,yes
cd_spec,83,86,FALSE,no
std_rack,70,96,FALSE,no
std_rack,68,80,FALSE,no
std_rack,65,70,TRUE,yes
cd_spec,64,65,TRUE,yes
end_rack,72,95,FALSE,yes
end_rack,69,70,FALSE,no
std_rack,75,80,FALSE,no
end_rack,75,70,TRUE,no
cd_spec,72,90,TRUE,no
cd_spec,81,75,FALSE,yes
std_rack,71,91,TRUE,yes

The data file has a few elements to it, so let's look through it one section at a time.


Relation

The @relation tag is the name of the dataset you are using. In this instance it's Lady Gaga's CDs, so I've called it ladygaga.



Attributes

Next, you have the attributes that are used within your data model. There are five attributes in this set that are the top line of raw CSV data that you received from the client.


	Placement: What type of stand the CD is displayed on: an end rack, special offer bucket, or a standard rack?

	Prominence: What percentage of the CDs on display are Lady Gaga CDs?

	Pricing: What percentage of the full price was the CD at the time of purchase? Very rarely is a CD sold at full price, unless it is an old, back catalog title.

	Eye Level: Was the product displayed at eye level position? The majority of sales will happen when a product is displayed at eye level.

	Customer Purchase: What was the outcome? Did the customer purchase?



The Prominence and Pricing attributes are both numeric values. The other three are given the nominal values that are to be expected when the algorithm is being run. Placement has three: end_rack, cd_spec, or std_rack. The Eye Level attribute is either true or false, and the Customer Purchase attribute has two nominal values of either yes or no to show that the customer bought the product.



Data

Finally, you have the data. It's comma separated in the order of the attributes (Placement, Prominence, Pricing, Eye Level, and Customer Purchase). In this sample, you know the outcomes—whether a customer purchased or not; this model is about using regression to get your predictions in tune for new data coming in.

You can find all the code for this chapter on the book's companion website at www.wiley.com/go/machinelearning.




Using Weka to Create a Decision Tree

Now that you have your data model in place, you can get started. When you open the Weka program you are presented with a small opening screen (see Figure 3-2) with four buttons: Explorer, Experimenter, KnowledgeFlow, and Simple CLI. Click the Explorer button.


[image: image]

Figure 3-2 The Weka GUI Chooser



When the Explorer opens, you will be confronted with another window with a number of sections and an array of buttons (see Figure 3-3). Don't worry if it all looks confusing right now; this walkthrough takes you through it step by step.


[image: image]

Figure 3-3 The basic Explorer window



Click the Open File button and select the data file called ladygaga.arff. Weka parses the data model and preprocesses the data. Within no time you're already getting information based on the preprocessing of the data model and the data.

The Select Attribute pane on the right side of the Explorer window in Figure 3-4 shows the three distinct nominal values of the customer_purchase attribute. Weka has also noticed that you have 14 instance rows and the five attributes.


[image: image]

Figure 3-4 The preprocess pane with data



After preprocessing comes classification. Click the Classify button in the top row of buttons. You're going to use the C4.5 classification algorithm; within Weka this is called the J48 algorithm. In the Classifier pane (see Figure 3-5), click the Choose button and select the J48 option under the Trees menu heading. The selection pane closes automatically, and you see that the name of the classifier has changed from the default ZeroR to J48 –C 0.25 –M 2. (See Figure 3-5.)


[image: image]

Figure 3-5 Selecting the classifier



The option flags used in the default J48 classifier are setting the pruning confidence (the –C flag) and the minimum number of instances (-M).

To run the classifier, click the Start button and watch the Classifier output window (see Figure 3-6). You see the information on the run appear. The run information tells you about the scheme used and gives a run-down on the model on which Weka has worked.


[image: image]

Figure 3-6 Classifier with output



Interesting data starts to emerge. The J48 pruned tree gives results on, in this case, the placement, as it has the highest information gain:

J48 pruned tree
------------------
placement = end_rack: yes (5.0/1.0)
placement = cd_spec
|   pricing <= 80: yes (2.0)
|   pricing > 80: no (2.0)
placement = std_rack
|   eye_level = TRUE: yes (2.0)
|   eye_level = FALSE: no (3.0)
Number of Leaves  :       5
Size of the tree :  8
Time taken to build model: 0 seconds 

It appears that placing product on the end rack is good for sales. For the special offer rack, it seems that pricing plays a part; if the product is too cheap customers walk away. On the standard racks, the placement of the product is a factor for sales; it sells if it's at eye level.

Finally you want to plot the visualization of the tree for the management team to look at because pictures speak louder than words. On the Results List pane on the bottom left of the Explorer window you can see the time and algorithm that was run. Right-click (use Alt + click if you are using an OSX machine) and select the Visualize Tree option to see the tree in its visual representation, as shown in Figure 3-7.


[image: image]

Figure 3-7 J48 visualization



It's usually at this point where everyone pats each other on the back and says, “Job well done,” but you're not finished yet. You don't want to have to run the Weka Explorer every time you have data to run. What you want is some code that you can reuse.



Creating Java Code from the Classification

As mentioned in Chapter 2, there is no one tool that really fits all. Weka is excellent, but you want code that you can safely run in an existing codebase. Perhaps you want to hook your newly created classification to a Hadoop job, if the incoming volume of data was sufficient to do so.

With the existing classifier, click the More Options button and a new window opens with the options for the current evaluator. (See Figure 3-8.)


[image: image]

Figure 3-8 Evaluation options pane



The last option is to output to source code. By default, the class name will be WekaClassifier. It won't save your Java code, but it will output in the Classifier output window.

Start the classifier again, and in the output window you see the Java code at the end of the output information:

package weka.classifiers;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.classifiers.Classifier;
public class WekaWrapper
  extends Classifier {
  /**
   * Returns only the toString() method.
   *
   * @return a string describing the classifier
   */
  public String globalInfo() {
    return toString();
  }
  /**
   * Returns the capabilities of this classifier.
   *
   * @return the capabilities
   */
  public Capabilities getCapabilities() {
    weka.core.Capabilities result = new weka.core.Capabilities(this);
    result.enable(weka.core.Capabilities.Capability.NOMINAL_ATTRIBUTES);
    result.enable(weka.core.Capabilities.Capability.NUMERIC_ATTRIBUTES);
    result.enable(weka.core.Capabilities.Capability.DATE_ATTRIBUTES);
    result.enable(weka.core.Capabilities.Capability.MISSING_VALUES);
    result.enable(weka.core.Capabilities.Capability.NOMINAL_CLASS);
    result.enable(weka.core.Capabilities.Capability.MISSING_CLASS_VALUES);
    result.setMinimumNumberInstances(0);
    return result;
  }
  /**
   * only checks the data against its capabilities.
   *
   * @param i the training data
   */
  public void buildClassifier(Instances i) throws Exception {
    // can classifier handle the data?
    getCapabilities().testWithFail(i);
  }
  /**
   * Classifies the given instance.
   *
   * @param i the instance to classify
   * @return the classification result
   */
  public double classifyInstance(Instance i) throws Exception {
    Object[] s = new Object[i.numAttributes()];
    for (int j = 0; j < s.length; j++) {
      if (!i.isMissing(j)) {
        if (i.attribute(j).isNominal())
          s[j] = new String(i.stringValue(j));
        else if (i.attribute(j).isNumeric())
          s[j] = new Double(i.value(j));
      }
    }
    // set class value to missing
    s[i.classIndex()] = null;
    return WekaClassifier.classify(s);
  }
  /**
   * Returns the revision string.
   *
   * @return        the revision
   */
  public String getRevision() {
    return RevisionUtils.extract("1.0");
  }
  /**
   * Returns only the classnames and what classifier it is based on.
   *
   * @return a short description
   */
  public String toString() {
    return "Auto-generated classifier wrapper, based on weka.classifiers.trees.J48 (generated with Weka 3.6.10).\n" + this.getClass().getName() + "/WekaClassifier";
  }
  /**
   * Runs the classfier from commandline.
   *
   * @param args the commandline arguments
   */
  public static void main(String args[]) {
    runClassifier(new WekaWrapper(), args);
  }
}
class WekaClassifier {
  public static double classify(Object[] i)
    throws Exception {
    double p = Double.NaN;
    p = WekaClassifier.N32ec89882(i);
    return p;
  }
  static double N32ec89882(Object []i) {
    double p = Double.NaN;
    if (i[0] == null) {
      p = 0;
    } else if (i[0].equals("end_rack")) {
      p = 0;
    } else if (i[0].equals("cd_spec")) {
    p = WekaClassifier.N473959d63(i);
    } else if (i[0].equals("std_rack")) {
    p = WekaClassifier.N63915224(i);
    }
    return p;
  }
  static double N473959d63(Object []i) {
    double p = Double.NaN;
    if (i[2] == null) {
      p = 0;
    } else if (((Double) i[2]).doubleValue() <= 80.0) {
      p = 0;
    } else if (((Double) i[2]).doubleValue() > 80.0) {
      p = 1;
    }
    return p;
  }
  static double N63915224(Object []i) {
    double p = Double.NaN;
    if (i[3] == null) {
      p = 0;
    } else if (i[3].equals("TRUE")) {
      p = 0;
    } else if (i[3].equals("FALSE")) {
      p = 1;
    }
    return p;
  }
} 

Open your text editor of choice and then copy and paste the Java code. Save the file as WekaClassifier.java (or the name of the class you specified in the options pane).

In the source code, there are actually two classes. A wrapper class that Weka generates and a main method from which to run. The core of the classifier is in the second class, WekaClassifier. This is basically a set of if/then statements based on the classified tree.



Testing the Classifier Code

Make a copy of the .arff file to test your coded classifier. Where the outcomes are yes or no, replace them with question marks (?). This means you want the classifier to work out the answer for you:

end_rack,85,85,FALSE,?
end_rack,80,90,TRUE,?
cd_spec,83,86,FALSE,?
std_rack,70,96,FALSE,?
std_rack,68,80,FALSE,?
std_rack,65,70,TRUE,?
cd_spec,64,65,TRUE,?
end_rack,72,95,FALSE,?
end_rack,69,70,FALSE,?
std_rack,75,80,FALSE,?
end_rack,75,70,TRUE,?
cd_spec,72,90,TRUE,?
cd_spec,81,75,FALSE,?
std_rack,71,91,TRUE,?

You need to write a new class to load in your test data and run each instance against the coded classifier:

package chapter3;
import java.io.BufferedReader;
import java.io.FileReader;
import weka.core.Instances;
public class TestClassifier {
    public static void main(String[] args) {
        WekaWrapper ww = new WekaWrapper();
        try {
            Instances unlabeled = new Instances(new BufferedReader(
                    new FileReader("lg2.arff")));
            unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
            for (int i = 0; i < unlabeled.numInstances(); i++) {
                double clsLabel =    ww.classifyInstance(unlabeled.instance(i));
                System.out.println(clsLabel + " -> " + unlabeled.classAttribute().value((int) clsLabel));
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

The instances are loaded in and then the for loop iterates and uses the generated classifyInstance() method to get the scoring from the classifier. In this example, you're looking for the decision of whether a sale will happen or not.

Because the classifyInstance() returns the value as a double data type, you reference that against the class attribute array position. In this case, the customer_purchase attribute has only two elements “yes” and “no.” The first element in the array (0) points to “yes,” and the second element (1) points to “no.”

Running this example generates the following output:

0.0 -> yes
0.0 -> yes
1.0 -> no
1.0 -> no
1.0 -> no
0.0 -> yes
0.0 -> yes
0.0 -> yes
0.0 -> yes
1.0 -> no
0.0 -> yes
1.0 -> no
0.0 -> yes
0.0 -> yes

You could develop this basic code further to pull the required information from a database via Java Database Connectivity (JDBC) and then store the results again. You could even dump the results into a text file by making a copy of the instances first and updating them in the for loop.

Instances unlabeled = new Instances(new BufferedReader(
                    new FileReader("lg2.arff")));
unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
Instances trained = new Instances(unlabeled);
for (int i = 0; i < unlabeled.numInstances(); i++) {
    double clsLabel = ww.classifyInstance(unlabeled.instance(i));
    trained.instance(i).setClassValue(clsLabel);
    System.out.println(clsLabel + " -> " +     unlabeled.classAttribute().value((int) clsLabel));
}

The changes required are labeled in bold. This would be useful if you were to output the changes of the instances to a text file, for example.

In terms of the actual work, you're done. You can deliver some solid code.



Thinking about Future Iterations

This chapter covers a lot of ground in a short space of time: putting an .arff file together to creating a classifier, and generating the Java code with Weka and testing it with more unclassified data.

The test data you had was small, which is fine for getting everything working. In the real world, though, you'd be processing much more data. The question is this: How much data should you retain for training? As a guide, I use 10 percent of the total data as a starting point and work from there. It's also worth thinking about the seasonality of data, especially if you are working in retail. Creating models for certain seasonal periods can boost the information gain in your training sets.

Time waits for no one and the same applies here. Data changes; trends change; and so do management decisions and so on. It's important to keep the classifier up to date by means of running new test data and seeing if the model can improve.




Summary

You've seen how decision trees work and the different algorithm types that are available. At a hands-on level, you've worked on a full project to create a working classifier based on the C4.5 (J48, which is the Java open source implementation as used in Weka) algorithm to predict customer purchasing behavior on products determined by placement, prominence, and pricing. Although many people perceive decision trees as simple, do not underestimate their uses. They are easy to understand and don't need a huge amount of preparation. They are often useful regardless of whether you have category or numerical data.



