=

ey P i

AND LINUX SYSTEM

MINISTRATION
HANDBOO

FIFTH EDITION

du.g

= - e - ——— - i
- "b\/ - — S S L=
A pr— M e - — ~—\}
’}ﬁﬁ\\fv\.f‘\ '-:_:\‘. {i“}._-"\ ::Q-—-"—"b- —— =

EVI NEMETH GARTH SNYDER*TRENT R. HEIN
BEN WHALEY + DAN MACKIN

with James Garnett, Fabrizio Branca, and Adrian Mouat

WWW.EBOOkSWOI’ldV.iI’ :

" —, __’4—\,\—/4;\/}{;:’___:""-/ w = "'""“\.. N -
— .-—-._.r—-_.df—' — — ﬁ.% < ~— \9

UNIX AND LINUX SYSTEM

ADMINISTRATION
HANDBOOK

FIFTH EDITION

This page intentionally left blank

UNIX AND LINUX SYSTEM

ADMINISTRATION
HANDBOOK

FIFTH EDITION

Evi Nemeth
Garth Snyder
Trent R. Hein
Ben Whaley

Dan Mackin

with James Garnett, Fabrizio Branca, and Adrian Mouat

vvAddison-Wesley

Boston « Columbus - Indianapolis « New York « San Francisco « Amsterdam - Cape Town
Dubai - London « Madrid « Milan « Munich - Paris - Montreal « Toronto - Delhi - Mexico City
Sao Paulo - Sydney « Hong Kong « Seoul - Singapore - Taipei « Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

Ubuntu is a registered trademark of Canonical Limited, and is used with permission.
Debian is a registered trademark of Software in the Public Interest Incorporated.

CentOS is a registered trademark of Red Hat Inc., and is used with permission.

FreeBSD is a registered trademark of The FreeBSD Foundation, and is used with permission.

The Linux Tux logo was created by Larry Ewing, lewing@isc.tamu.edu.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the web: informit.com

Library of Congress Control Number: 2017945559

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts within the Pear-
son Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-427755-4
ISBN-10: 0-13-427755-4

mailto:lewing@isc.tamu.edu
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearsoned.com/permissions/

Chapter 1

Table of Contents

Tribute to Evi
Preface

Foreword
Acknowledgments

SECTION ONE: BASIC ADMINISTRATION

Where to Start

Essential duties of a system administrator
Controlling access.ooiiiiiiiiiiia.
Adding hardware............... oo
Automatingtasks.......... oo
Overseeing backupsol
Installing and upgrading software
Monitoring.
Troubleshooting il
Maintaining local documentation
Vigilantly monitoring security
Tuning performance.l
Developing site policies.............c.cooiiiiiiiein ..
Working with vendorso
Firefighting i i

xI
xlii
xliv
xlvi

vi

UNIX and Linux System Administration Handbook

Suggested background. oo 7
Linux distributions. 8
Example systems used in thisbook oL 9
Example Linux distributions. ..., 10
Example UNIX distribution, 11
Notation and typographical conventions, 12
Units . . 13
Man pages and other on-line documentation 14
Organization of theman pages................ot 14
man: read Man PageS.ottt 15
Storage of Man Pagest 15
Other authoritative documentation. oL 16
System-specificguides........... o i 16
Package-specific documentationol 16
BOOKS .. 17
RFEC publicationsc..ouiiuiiiiit i 17
Other sources of information i 18
Keepingcurrent. 18
HowTos and reference sites.o ..., 19
Conferences.ouiu i 19
Ways to find and install software oL 19
Determining if software is already installed 21
Adding new software i 22
Building software from source code. ool 23
Installing from aweb script. i 24
Wheretohost ... 25
Specialization and adjacent disciplinesol 26
DevOPS. .. 26
Site reliability engineers............ o o 27
Security operations engineers...............o oL 27
Network administrators. 27
Database administrators ... 27
Network operations center (NOC) engineers. 27
Data center technicians o i 28
Architects o 28
Recommended reading i 28
System administration and DevOpsol 28

Essential toolsot 29

Chapter 2

Table of Contents vii

Booting and System Management Daemons 30
Boot process OVerview i 30
System firmwareo e 32
BIOSvs. UEFL. ... o 32
Legacy BIOS o 33
UEEL. . 33
Bootloaders. 35
GRUB: the GRand Unified Bootloader 35
GRUB configuration.oueenteetent i, 36
The GRUB commandline.......... 37
Linux kernel optionscouuiiiiiiiiiiiiii i 38
The FreeBSD bOOt Process.vvuvtue it 39
The BIOS path: boot0. 39
The UEFIpath. . ..o e 39
loader configurationc. ..ot 40
loader commands. i 40
System management daemonsoutiitt i 41
Responsibilities of init o 41
Implementations of inmit. i 42
Traditional dnit 43
systemd vs.theworld. 43
inits judged and assigned their proper punishments 44
systemdindetail. 44
Unitsand unitfiles......... i 45
systemctl: managesystemd it 46
Unit statuses.ot 47
Targets ... 49
Dependencies among Uunits.oouueinetnntenenen e, 50
Executionorder. i 51
A more complex unit fileexample i 52
Local services and customizations.ol 53
Service and startup control caveats, 54
systemd Logging e 56
FreeBSD init and startup scriptsouueiintintiiiiiea.. 57
Reboot and shutdown proceduresc..ooiiiiiiiiiiine... 59
Shutting down physical systems. ...t 59
Shutting down cloud systemsoouiiitiiiiiii i 59
Stratagems for a nonbooting systemc. i 60
Single-user modeo 61
Single-user mode on FreeBSD 62
Single-user mode with GRUB. oo i 62

Recovery of cloud systems.ooiuiiiiiii i 62

viii

Chapter 3

Chapter 4

UNIX and Linux System Administration Handbook

Access Control and Rootly Powers 65
Standard UNIX access controloiuiiiiiiiiiiiiinnn 66
Filesystem access control.ooueiuiiiiiiiniininen.. 66
Process ownershipot e 67

The roOt @CCOUNT . .« o\ vttt ettt 67
Setuid and setgid execution.t 68
Management of the root accountovuutiiiiiinininen.. 69
Rootaccountlogin....... ... 69

su: substitute user identity.o 70
sudo: limited su 70
Example configuration.t 71

sudo prosand cons.l 72

sudo vs. advanced access control oo 73

Typical Setupo e 74
Environment management, 74

sudo without passwordso i 75
Precedence.ttt 75

sudo without a control terminal. oL 76
Site-wide sudo configuration i 76
Disabling the rootaccount ..., 78
System accounts other thanrooto L. 78
Extensions to the standard access controlmodel........................... 79
Drawbacks of the standard model L. 80
PAM: Pluggable Authentication Modules............................. 80
Kerberos: network cryptographic authentication 81
Filesystem access control lists.cooiiiiiiiiii .. 81
Linux capabilitieso 82
Linux namespaces. 82
Modern access CONtrol.vuuuti it e 83
Separate eCOSYSteMSttt 84
Mandatory access controlottt 84
Role-based access control 85
SELinux: Security-Enhanced Linux.t 85
APPAIINOT . ..o 87
Recommended readingottt 89
Process Control 90
Components 0f @ PrOCESS. . .« . v vttt ettt 90
PID: process ID numberot 91
PPID:parentPID 91
UID and EUID: real and effectiveuser ID 92
GID and EGID: real and effective groupIDcoin... 92
NICENESS . . oottt 93

Control terminal. i 93

Table of Contents ix

The life cycle of a process.oouiiii i 93
Signals 94

kill: send signals....... i 97
Process and thread states..............o it 97

PS: IOMILOT PIOCESSES. . oottt ittt ettt e ettt ees 98
Interactive monitoring withtop........... L. 101
nice and renice: influence scheduling priority.................. 102
The /procfilesystemo 104
strace and truss: trace signals and systemcalls 105
Runaway processes. ... 107
Periodic ProCesses.ttt 109
cron: schedule commands. oL 109

The format of crontabfiles.l 110

Crontab management. 112
Othercrontabs. i i 112

Cron access CONtrol................oiiiiiiiiiiiinannann... 113

systemd timersottt e 113
Structure of systemd timers oL 114

systemd timer example 114

systemd time expressionsoiiiiiiiiiiiiiii . 116
Transient timerso i i 117
Common uses for scheduled tasks................... 118
Sendingmail 118
Cleaning up afilesystem il 118
Rotatingalogfile i 118
Running batchjobs.........o 118

Backing up and mirroring. oL 119
Chapter 5 The Filesystem 120
Pathnames 122
Filesystem mounting and unmounting. 122
Organization of thefiletree. o il 125
File types . ..ottt 126
Regularfiles......... ... i 129
Directories. ... 129
Hardlinks 129
Character and block devicefiles.............. 130
Local domain sockets. 131
Named PIPES . .. e vttt ettt 131

Symboliclinks. o 131

UNIX and Linux System Administration Handbook

File attributes. 132
The permission Dits.vvu it e 132

The setuid and setgid bits. i 133

The sticky bit 134

Is: listand inspectfiles.ooeii 134
chmod: change permissionscoiiiiiiiiiin .. 136
chown and chgrp: change ownership and group...................... 137
umask: assign default permissions. oL 138
Linuxbonusflags o 139
Access control lists 140
Acautionarynote ... 141
ACLtYPeS. ot 141
Implementation of ACLsottt 142
Linux ACL support.ooiuuii i 142
FreeBSD ACL SUppOrtcoiii i 143
POSIX ACLS . . oottt e 143
Interaction between traditional modesand ACLs................. 144

POSIX access determination., 146

POSIX ACLinheritance.c.oooiiiiiiiiiinano.... 146

NESVA ACLS ..o e 147
NFSv4 entities for which permissions can be specified............. 148

NFSv4 access determinationc..oooeiiiiinina ... 149

ACL inheritance in NFSv4. i 149

NESv4 ACLviewing..........o i 150
Interactions between ACLsand modes.......................... 151
NESVAACLSsetup ..o 151
Chapter 6 Software Installation and Management 153
Operating system installation..............o i 154
Installing from the network. i 154
Settingup PXE 155
Using kickstart, the automated installer for Red Hat and CentOS 156
Setting up a kickstart configurationfile. 156
Building a kickstart server..............o i 158
Pointing kickstart at your configfile 158
Automating installation for Debian and Ubuntu...................... 159
Netbooting with Cobbler, the open source Linux provisioning server. ... 161
Automating FreeBSD installation................... 161
Managing packageso.iiiiiiii e 162
Linux package management SyStemsouuiuiinianon... 164
rpm: manage RPM packages ool 164

dpkg: manage .deb packages.............. oo 166

Chapter 7

Table of Contents Xi

High-level Linux package management systems 166
Package repositories.ttt 167
RHN: the Red Hat Network oot 169
APT: the Advanced Package Tool................. ...t 169
Repository configuration.o i 170
An example /etc/apt/sources.listfile............ oL 171
Creation of a local repository mirror.................... ... 172
APT automation ...t 173
yum: release management for RPM................ 174

FreeBSD software managementouiuiiiiiiiniinn.. 175
The base system.ttt 175
pkg: the FreeBSD package manager.ooouvuuennnn.... 176
The ports collectionouiueiiiii i 177

Software localization and configuration o 178
Organizing your localization. il 179
Structuringupdates o 179
Limiting the fieldof play o i 180
Testingo 180

Recommended readingo i i 181

Scripting and the Shell 182

Scripting philosophy 183
Wrrite MiCroscripts ... e 183
Learnafewtoolswell.........o i i 184
Automate all thethings il 184
Don’t optimize prematurely.coiiiiiiiiiiiii 185
Pick the right scripting language oLl 186
Follow best practicesuuueeuueieen e 187

Shell basics.o 189
Commandediting. 190
Pipes and redirectionoueiiitiit i e 190
Variables and quoting. o i 192
Environment variables. oo 193
Common filter commands i 194

cut: separate linesintofields. ool 194
sort:sortlines........ i 194
uniq: print unique lines.o i 195
wc: count lines, words, and characters., 196
tee: copy input totwoplaces................ it 196
head and tail: read the beginningorend ofafile 196

grep:search teXt o.oue et e 197

xii UNIX and Linux System Administration Handbook

shscripting 198
Execution i i 198
From commands t0 SCIPLsvvuvevntti e 199
Input and OutPUL.ttt e 201
Spacesinfilenames. i 202
Command-line arguments and functions. 203
Control flow. 205
LoOPS oo 207
Arithmetic 209

Regular expressions i i 209
The matching process. ... 210
Literal characters. 210
Special characters i 210
Example regular expressions. i 211
Captures. . ..o 213
Greediness, laziness, and catastrophic backtracking................... 213

Python programming. i i 215
The passionof Python 3......... i 215
Python2or Python3?....... i 216
Python quick start............ ... i 216
Objects, strings, numbers, lists, dictionaries, tuples, and files 218
Input validation example.t 220
LO0OPS o 221

Ruby programmingco.iiiii i 223
Installation. i 223
Ruby quick starto 224
BlOCKS . . oo 225
Symbols and option hashes................ 227
Regular expressionsin Ruby........... oo 227
Rubyasafilter.......... ..o o i 229

Library and environment management for Python and Ruby............... 229
Finding and installing packages............... oL 229
Creating reproducible environments.................... 230
Multiple environments.ooueeueint i 231

virtualenv: virtual environments for Python................. ... 232
RVM: the Ruby enVironment Manager. 232

Revision control with Git.o o i 235
Asimple Gitexample i 236
Gitcaveats 239
Social codingwith Gito 239

Recommended reading i 241
Shells and shell scripting i 241
Regular expressionst 241
Python 242

Chapter 8

Chapter 9

Table of Contents

xiii

User Management

Account mechanics. i
The /etc/passwd file i
Loginname i
Encrypted password. ..ot
UID (user ID) nUmMber. . .o ov ottt i i
Default GID (group ID) number
GECOSfield ...
Home directory. ..ot
Loginshello i
The Linux /etc/shadowfile
FreeBSD's /etc/master.passwd and /etc/login.conffiles
The /etc/master.passwd file.
The /etc/login.conffile....................,
The fetc/groupfile
Manual steps for adding userscooiiiiiiiiiiii....
Editing the passwd and groupfiles.........................
Settinga passwordooiiii i

Creating the home directory and installing startup files

Setting home directory permissions and ownerships..........
Configuring roles and administrative privileges
Finishing up.o
Scripts for adding users: useradd, adduser, and newusers.
useraddonLinux................ oo
adduser on Debian and Ubuntu
adduseronFreeBSD oo
newusers on Linux: addinginbulk.............
Safe removal of a user’s accountand files
User login lockout.oooii i
Risk reduction with PAM o it
Centralized account managementc..cvvueenne....
LDAP and Active Directoryccviuiinennnennnn..
Application-level single sign-on systems.
Identity management SyStems.veuueennennnennnnn.

Cloud Computing

The cloud in context.oovvuuinii i,
Cloud platform choicescoiiiiiiiiiiii i
Public, private, and hybrid clouds
Amazon Web Services ...
Google Cloud Platformc.oooiiiiiiiiiiii .
DigitalOceanot

Xiv

Chapter 10

UNIX and Linux System Administration Handbook

Cloud service fundamentals i 276
Accesstothecloud i 277
Regions and availability zones oLl 278
Virtual private SEIVerscuuuernuenn it 279
Networking 280
StOrageo 281
Identity and authorization. i 281
Automation o 282
Serverless functions i 282

Clouds: VPS quick start by platforml 283
Amazon Web Services i 283

aws: control AWS subsystems..............o oL 284
Creatingan EC2instance................. oot 284
Viewing the consolelog.......... it 286
Stopping and terminating instances. 287
Google Cloud Platform i 288
Settingupgcloud 288
Running aninstanceon GCE 288
DigitalOcean 289

Costcontrol. i 291

Recommended Reading.o i i 293

Logging 294

Loglocations.ot 296
Filesnottomanage.oouiiuuiiniiiii i 298
How to view logs in the systemd journal 298

The systemd journal... 299
Configuring the systemd journal o... 300
Adding more filtering options for journalctl......................... 301
Coexisting with syslogo i 301

SYSlOg . e 302
Reading syslogmessagest 303
Rsyslog architecture 304
Rsyslog versionsot 304
Rsyslog configuration.ottt 305

Modules ... 306
sysklogd syntax. i 307
Legacy directives. 311
RainerScript. ... 312
Config file examples.o i 314
Basic rsyslog configuration ool 314
Network logging client............o il 315
Centrallogginghost. oo 316
Syslog message securityc.. i 317

Syslog configuration debuggingo oL 318

Chapter 11

Table of Contents XV

Kernel and boot-time logging. i 318
Management and rotation of logfiles oL 319
logrotate: cross-platform log management 319
newsyslog: log management on FreeBSD............................ 321
Management of logsatscalec.. i 321
The ELK stack ... 321
Graylog.o 322
Loggingasaservice ... 323
Logging policies i 323
Drivers and the Kernel 325
Kernel chores for system administrators.t 326
Kernel version numbering. i 327
Linux kernel versions. il 327
FreeBSD kernel versions 328
Devices and their drivers. o il 328
Device files and devicenumbers. oo oL 329
Challenges of device file management............................... 330
Manual creation of devicefiles ool 331
Modern device file management, 331
Linux device management.cooiiiiiiiiiiiniaiean... 331
Sysfs: a window into the souls of devices......................... 332
udevadm: explore devices.coouiiiiiiiiiininea 333

Rules and persistent namesc...eviiiiiiiiiiiiinn... 334
FreeBSD device management ...ttt 337
Devfs: automatic device file configuration 337

devd: higher-level device management.......................... 338

Linux kernel configuration o i 339
Tuning Linux kernel parameters.o L 339
Building a custom kernel........... o o 341

If it ain't broke, don’t fixit o ool 341

Setting up to build the Linux kernel. 341
Configuring kernel options. ool 342
Building the kernel binary. oL 343

Adding a Linux devicedriver i, 344
FreeBSD kernel configurationo it 344
Tuning FreeBSD kernel parameters................ ... 344
Building a FreeBSD kernel il 345
Loadable kernel modules o 346
Loadable kernel modules in Linux.l 346
Loadable kernel modulesin FreeBSD 348
Booting 348
Linux boot messages ... 349

FreeBSD boot messagesouiuiuiiiiiiniiiiiiiii 353

xvi

Chapter 12

Chapter 13

UNIX and Linux System Administration Handbook

Booting alternate kernelsinthe cloud........... L 355
Kernel errorso 356
Linux kernel errors. 356
FreeBSD kernel panics....... ...t .. 359
Recommended reading i 359
Printing 360
CUPSprinting. 361
Interfaces to the printing system, 361
The Print QUEUE . . .« .ttt e et 362
Multiple printers and queuesiiiiiiiiiiii 363
Printerinstances...........o i 363
Network printer browsing...........o i 363
Filterso 364
CUPS server administration. 365
Network print Server SEtupvvuuvrnt ettt 365
Printer autoconfiguration i 366
Network printer configuration 367
Printer configuration examples.o i 367
Serviceshutoff. 368
Other configurationtasks oo 368
Troubleshooting tips. 369
Print daemon restart i 369
Logfiles 369
Direct printing connectionso, 370
Network printing problems. i 370
Recommended reading i 371

SECTION TWO: NETWORKING

TCP/IP Networking 375
TCP/IP and its relationship to the Internet. 375
Who runs the Internet? i 376
Network standards and documentation 376
Networking basics ... 378
IPvA and IPV6o e 379
Packets and encapsulation. o i 381
Ethernet framing. oo 382

Maximum transfer unit i 382

Table of Contents xvii

Packet addressing 384
Hardware (MAC) addressingc.ooiiiiiiiiniian... 384

IP addressing.ovuinine i 385
Hostname “addressing” oo 385
Ports .. 385
Address types.ot 386

IP addresses: the gory details i 387
IPv4 address classesouiiuiiii i 387
IPv4 subnetting.oouinii i 388
Tricks and tools for subnet arithmetic................. 390
CIDR: Classless Inter-Domain Routing. 391
Address allocation.ot 392
Private addresses and network address translation (NAT).............. 392
IPv6addressingo 394
IPv6 address notation. 395

IPVO PrefiXes . ..oouuen ettt 396
Automatic host numberingo 397
Stateless address autoconfigurationol 397
IPv6tunneling. it 398

IPv6 information SOUrCes.oouvueineiniininnennannnn.. 398

Routing.o i 398
Routing tableso i 399
ICMP redirectsouinint e 401
IPv4 ARP and IPv6 neighbor discovery, 401
DHCP: the Dynamic Host Configuration Protocol........................ 402
DHCP SOftWareoout it e 403
DHCP behavior.oouii e 404
ISCs DHCP softwareoiuiiiiii i 404
Security IsSUeS. 406
IPforwardingt 406
ICMP redirectsouinuin i 407
Source routing. 407
Broadcast pings and other directed broadcasts 407

IP Spoofing. . ..ot 408
Host-based firewalls.......... i i 408
Virtual private networks. i 409
Basic network configuration...........o oo 410
Hostname and IP address assignment............................... 411
Network interface and IP configuration 412
Routing configuration ... 414
DNS configuration 415

System-specific network configuration.............. oL 416

xviii

UNIX and Linux System Administration Handbook

Linux networking i 417
NetworkManagerottt 417

ip: manually configureanetwork.o oLl 418
Debian and Ubuntu network configuration.......................... 419
Red Hat and CentOS network configuration 419
Linux network hardware optionscoiiiiiiiiiine.... 421
Linux TCP/IPoptions ... 422
Security-related kernel variables oo 424
FreeBSD networking 425
ifconfig: configure network interfaces.............. Ll 425
FreeBSD network hardware configuration 426
FreeBSD boot-time network configuration. 426
FreeBSD TCP/IP configuration, 427
Network troubleshooting. i 428
ping: check to seeifahostisalive o i, 429
traceroute: trace IP packets i 431
Packet sniffers 434
tcpdump: command-line packet sniffer 435
Wireshark and TShark: tcpdump on steroids. 436
Network monitoringc.. i 437
SmokePing: gather ping statistics over time.......................... 437
iPerf: track network performance il 437
Cacti: collectand graphdata................ 438
Firewallsand NATo e 440
Linux iptables: rules, chains,and tables 440
iptables ruletargets il 441

iptables firewall setupo i 442

A complete eXxamplet 442

Linux NAT and packet filtering 444

IPFilter for UNIX SyStems.ovuintintitiii i, 445
Cloud networking.o i 448
AWS’s virtual private cloud (VPC) 448
Subnets and routing tables. oo oo 449

Security groups and NACLs, 450

A sample VPC architecture 451
Creating a VPC with Terraform 452

Google Cloud Platform networking. 455
DigitalOcean networking ool 456
Recommended reading i i 457
History 457
Classicsandbibles i 458

Protocols . ..o 458

Table of Contents Xix

Chapter 14 Physical Networking 459
Ethernet: the Swiss Army knife of networking. 460
Ethernet signaling.oiiutiitiiiiii e 460
Ethernet topology.couuin it 461
Unshielded twisted-pair cabling.ot 462
Optical fiber. 464
Ethernet connection and expansioncoieiiueenne.n. 465
Hubs ..o 465
SWILChES . . oot 465
VLAN-capable switches. ..., 466

Routers........oo 467
Autonegotiation. ... 467
Power over Ethernet......... ..o i 468
Jumbo frames 468
Wireless: Ethernet fornomadso i 469
Wireless standardsoiiiii 469
Wireless Client aCCeSS .« v v v v vttt 470
Wireless infrastructureand WAPs, 470
Wireless tOpologyo vuee i 471

Small money wireless.t 472

Big money wirelessuiui i 472

WITEless SECULTLY .« o v vttt et 473
SDN: software-defined networking oL 473
Network testing and debugging it 474
Building Wiringottt 475
UTP cabling Options.ottt 475
Connections to officesvi i 475
Wiring standards. 475
Network design iSSUES v vut ettt 476
Network architecture vs. building architecture 477
Expansion 477
Congestion.t 478
Maintenance and documentation.c..ooviiiiiiiiiiie.. 478
Management issues.t e 478
Recommended vendors.ouiutiiiii 479
Cables and cONNECtOrsovuett ettt 479
Testequipment 480
Routers/switches.ot 480

Recommendedreadingoviutiiiiii 480

XX

Chapter 15

Chapter 16

UNIX and Linux System Administration Handbook

IP Routing 481
Packet forwarding: a closer look. i i 482
Routing daemons and routing protocols., 485
Distance-vector Protocolsouuevute et 486
Link-state protocolsouuutet i e 487
Costmetrics. . ..o 487
Interior and exterior protocolso 488
Protocolsonparadeoiuuiiii 488
RIP and RIPng: Routing Information Protocol 488
OSPF: Open Shortest Path First, 489
EIGRP: Enhanced Interior Gateway Routing Protocol................. 490
BGP: Border Gateway Protocol, 490
Routing protocol multicast coordinationcoouiiiiiiean... 490
Routing strategy selection criteria ...t .. 490
Routing daemonsottt e 492
routed: obsolete RIP implementation..................coovie.... 492
Quagga: mainstream routing daemon. oo, 493
XORP:routerinabox ... 494
CISCOTOULEIS . .. oottt e i 494
Recommendedreadingt 496
DNS: The Domain Name System 498
DNS architecture 499
Queries and reSPONSES . .« . v vttt ettt 499
DNS service providerso.uvvuu e vt 500
DNS for IooKUPS . .« ottt 500
resolv.conf: client resolver configuration 500
nsswitch.conf: whodoTaskforaname? 501
The DNS NAMESPACE. .« o . v vttt et et e 502
Registeringa domainname.ttt 503
Creating your own subdomains 503
How DNS WOrkso 503
Name SEIVEIS. ..ottt 504
Authoritative and caching-only servers............. 505
Recursive and nonrecursive servers.c..oooiiiiiii.... 505
Resource records. 506
Dele@ationo ..ut et 506
Cachingand efficiency. ... 508
Multiple answers and round robin DNS load balancing. 508
Debugging with query tools 509
The DNS database. 512
Parser commands inzonefiles............ ool 512
Resourcerecords i 513

The SOA 1eCOrd. .. oottt 516

Table of Contents xxi

NS FECOTAS . v vttt 518

A TeCOrdS ..t 519
AAAA TECOTdS. ..ot 519
PTRIECOIdS. ..ottt ittt e 520
MX TECOIAS .« vt vttt ettt ettt 521
CNAME 1ecordso ottt 522
SRV 1€COrdS . . o oottt 523
XTI rECOTdS. . v vttt ettt ettt e 524
SPE DKIM, and DMARC recordso vvvviie e 525
DNSSEC records. . ..o v vt it e 525

The BIND SOftWarevvtttt ettt ittt et e e 525
Components of BIND ... 525
Configurationfiles i 526

The include statementouiiiiiiiiiiiie i 527
The options statementttt e 528
The acl Statement. . ..ottt ettt 534
The (TSIG) key Statement.oueeieiiiiiiiiee e 534
The server statementouiuiiiiiiiiiee e 535
The masters statement.ouuiiiiiiiieeeeeenanannns 535
The 1ogging statement.vuuneee ettt 536
The statistics—channelsstatement...................coviiiinnnn.. 536
The zone statementttt 536
Configuring the master server forazone 537
Configuring a slave server forazone............................ 538

Setting up the root server hints. o 539

Setting up a forwardingzone ool 539

The controls statementforrndec, 540
Split DNS and the view statement, 541
BIND configuration examples ..., 543
Thelocalhost Zone.ttt 543

A small security company ...l 544
Zonefileupdating. 547
ZONEe trans ersottt 548
Dynamicupdates 549
DNS security issues 551
Access control lists in BIND, revisited, 552
Open resolVers.ottt 553
Runninginachrootedjaill 554
Secure server-to-server communication with TSIG and TKEY 554
Settingup TSIGfor BIND. ... 555

DN SSEC . .ottt 557
DNSSEC POliCY. ..ot 558
DNSSEC resource reCords.vvvrerreeeeeeeaiiiiiiieeeeeeaannn. 558
Turningon DNSSEC 560

Key pair generation 560

xxii UNIX and Linux System Administration Handbook

ZONE SIGNINGttt 562

The DNSSEC chain of trust. . ..ot 564
DNSSECkeyrollover..... ... 565
DNSSECt0O0IS . « v vttt e e 566
ldns tools, nlnetlabs.nl/projects/Idns. 566
dnssec-tools.org 566

RIPE tools, ripenet.oouueit e 567
OpenDNSSEC, 0pendnssec.orgouveuriniineneenn.n.. 567
Debugging DNSSEC. 567
BIND debugging.t 568
Loggingin BIND i 568
Channels. i e 569
Categories. 570
Logmessages. ..o 570

Sample BIND logging configuration 573
Debuglevels in BIND. ...t 573

Name server control withrndc.o i 574
Command-line querying for lame delegations. 575
Recommended readingo i 576
Books and other documentation, 577
On-line TESOUICES « « .« vttt ettt e eae e 577

The RECS .ottt e 577
Chapter 17 Single Sign-On 578
Core SSOelements.ot 579
LDAP: “lightweight” directory services.t 580
Uses for LDAP. ... i 580

The structure of LDAP data.o 581
OpenLDAP: the traditional open source LDAP server................. 582

389 Directory Server: alternative open source LDAP server 583
LDAP QUeryingc.oinuiinit i 584
Conversion of passwd and group filesto LDAP 585
Using directory services for login.o ... 586
Kerberos..... ... 586
Linux Kerberos configuration for AD integration................. 587
FreeBSD Kerberos configuration for AD integration 587

sssd: the System Security Services Daemon.......................... 589
nsswitch.conf: the name serviceswitch 590
PAM: cooking spray or authentication wonder? 590
PAM configuration.coueutiiiiiriininnenennenn.. 591
PAMexampleo 592
Alternative approaches.oiuiiiiii e 594
NIS: the Network Information Service 594
rsync: transfer filessecurelyol 594

Recommended readingt 595

Chapter 18

Table of Contents xxiii

Electronic Mail 596
Mail system architectureottt 597
Useragents. 597
SUbMISSION AZENTS. « . ..t vttt ittt e 598
Transportagents........... ... 598
Local delivery agentsouueeuuemnuentni e 599
Message StOres.o 599
ACCeSSAeNTS 599
Anatomy of amail message...... ... 600
The SMTP protocol.ot e 603
Youhadmeat EHLO ... e 604
SMTP error codes. vvueit et 604
SMTP authentication.............oiiueieininiii e, 604
Spamand malware. 605
Forgeries. 606
SPFand SenderIDt 606
DKIM .o 607
Message privacy and encryptioncooiiiiiiiiii i 607
Mail aliases. . .. oottt e 608
Getting aliases from filesl 610
Mailing to files.t e 611
Mailing to programs.eeitt it 611
Building the hashed alias database............... 612
Email configuration 612
sendmail 613
Theswitchfile ... 614
Startingsendmail 615
Mail QUeUeso e 616
sendmail configuration............ i i 617

The M4 PIEPrOCESSOL . .« v v vttt ettt ettt et eae e 617

The sendmail configuration piecescooiiiiiiine.... 618

A configuration file built from a sample .mcfile 619
Configuration primitives.couutiutiitnii e 620
Tables and databases.ot 620
Generic macros and features.coiiiiii i 621
OSTYPEIACIO v vvoii ettt et 621

DOMAIN IACTO. « ottt i et ettt 621
MAILERMACIO . ..ttt 622
FEATUREMACIO ..ot e 622
use_cw_filefeature.t 622
redirectfeature. i 623
always_add_domainfeature.............ouiiiiniiiiinnnnnnn. 623
access_dbfeature.ottt 623

virtusertable feature.ottt 624

xxiv UNIX and Linux System Administration Handbook

ldap_routingfeature......... ... 624
Masquerading features. i 625
MAIL_HUB and SMART_HOST MACIOS « ..ottt veee e eieee e eeeeennns 626
Client configurationo 626
m4 configuration options i 627
Spam-related featuresin sendmail oL 628
Relaycontrol 629
User or site blacklistingo 630
Throttles, rates, and connection limits., 631
Securityandsendmail. L o 632
OWRErSNIPS . .ottt e 633
Permissions i 634
Safer mail to files and programs........... L 634
Privacyoptions i 635
Running a chrooted sendmail (for the truly paranoid) 636
Denial of service attacks ool 636
TLS: Transport Layer Securityo iii.. 637
sendmail testing and debugging oL 638
Queuemonitoring i i 638
Logging. ... 639
EXim . oo 640
Exim installation. i 640
Eximstartup ... 642
Eximutilities 642
Exim configuration language oL 643
Exim configurationfile o i 644
Global OPHIONS. « .. e vttt et 645
OPtioNS. . ..o 645
LSS, o 646
MacCros ..o 647
Access control lists (ACLS)ooiitii i 647
Content scanningat ACLtime................. ...t 650
Authenticators.o 651
Routers. ... 652
The aCCePt TOULET . . oottt et et e e e 653
The dnsS100KUP TOULET . .ottt t ettt e e et e e e 653
The manualroute router.oiiiiiiiiiiiinannan.. 653
The redirectrouter........ ... 654
Per-user filtering through .forward files......................... 655
Transports 655
The appendfile transport.ueveee it in i 655
The sMtp transportouvevn ettt 656
Retry configuration i 656
Rewriting configuration. i il 657

Local scan functioncouiuniii it 657

Table of Contents XXV

Logging.o 657
Debuggingot 658
POSIIR. .ttt 658
Postfix architecture.ttt 659
Receivingmailo o 659
Managing mail-waiting queues. oL 660
Sendingmail 660

Security ... 661
Postfix commands and documentation. ..., 661
Postfix configuration i 661
What toputinmain.cf. 662
Basicsettings....... ... 662

Null client. ... o.ue 662

Useof postconf........ ..., 663

Lookup tablesoiiuiii i 663
Localdelivery 664

Virtual domains.ovu i 665
Virtual aliasdomains 666

Virtual mailbox domains.......... ... 667

Access CONLIOL . ..ot 667
Accesstables.o 669
Authentication of clients and encryption 670
Debuggingottt 670
Lookingatthequeueo 671
Soft-bouncing 671
Recommended readingo i 672
sendmail references. i i 672
Exim references.uuuiin i 672
Postfix referenceso.uiiutiit i 672
RECS . e 673
Chapter 19 Web Hosting 674
HTTP: the Hypertext Transfer Protocolt 674
Uniform Resource Locators (URLS)ccoviiiiiiiinnnn.. 675
Structure of an HTTP transactioncooevvueiieinennne.... 676
HTTPrequestsoouinnnnn et 677

HTTP 1eSponses ovvvii e 677

Headers and the messagebody................., 678

curl: HTTP from the commandline............... 679
TCP connection reuseooviiiii i 680
HTTPover TLS. . ..o o e 681

Virtual hosts. ..ot 681

XXVi UNIX and Linux System Administration Handbook

Web software basics ... 682
Web servers and HT TP proxy software....................c.ooo.a.. 683
Load balancers 684
Caches 686

Browsercaches i 687
Proxycacheo i 688
Reverse proxycache.......... ... i 688
Cacheproblems. i 688
Cachesoftware i 689
Content delivery networks i 689
Languagesoftheweb...... i 691
RUDY . ..o 691
Python ... i 691
JaVa L e 691
NOAe S . oot 691
PHP. . 692
GO 692
Application programming interfaces (APIs).......................... 692

Web hosting inthecloud.......... i 694
Build versusbuy 694
Platform-as-a-Service.ottt 695
Static content hosting. i 695
Serverless web applications. i i 696

Apachehttpd. 696
httpdinuse. ... 697
httpd configuration logistics. ool 698
Virtual host configuration oo 699

HTTP basic authentication.................t 701
Configuring TLS i 702
Running web applications within Apache........................ 702
Logging. ... 703

NGIN X L 704
Installing and running NGINXooo it 704
Configuring NGINX 705
Configuring TLS for NGINXo. i 708
Load balancing with NGINX ...t 708

HAPIOXy ..o 710
Health checks i 711
Serverstatistics i 712
Sticky 8eSSI0NS. ... oot 712
TLS termination 713

Recommended reading i i 714

Chapter 20

Table of Contents xXxvii

SECTION THREE: STORAGE

Storage 717
Ijustwanttoaddadisk! i 718
LiNUX 1€CIPE. . o oot ettt e 719
FreeBSD recipecoiiin e 720
Storage hardware 721
Hard disksooo 722
Hard disk reliability 723

Fajlure modes and metrics. ..., 723

Drive types. ... 724
Warranties and retirement. i i 725

Solid state disks.oii i 725
Rewritability limits............. oo i 726

Flash memory and controller types ..., 726

Page clusters and pre-erasingccoeviiiiiiiiiiinnn.. 727
SSDreliabilityo 727

Hybrid drives.ot 728
Advanced Format and 4KiB blockst 729
Storage hardware interfaces i 730
The SATA interface.t e 730
The PCI Expressinterfaceoouiiiiiiiiiiiiiinne... 730
The SASinterface ... 731
U B 732
Attachment and low-level management of drives 733
Installation verification at the hardwarelevel.............. 733
Diskdevice files.oiuu i 734
Ephemeral devicenames........... ..o, 735
Formatting and bad block management 735
ATA SECUIC @TASC. . ..ttt t ettt e 737
hdparm and camcontrol: set disk and interface parameters............ 738
Hard disk monitoring with SMART, 738

The software side of storage: peeling theonion 739
Elements of a storage system.couttittniienieneennenn 740

The Linux device mapper.o.uutine i, 742
Disk partitioning.ovut i e 742
Traditional partitioning........... ... 744
MBR partitioning 745
GPT: GUID partition tables ottt 746
Linux partitioning. o i 746

FreeBSD partitioning............ ... o i i i 747

xxviii UNIX and Linux System Administration Handbook

Logical volume managementottt 747
Linux logical volume managementoou... 748
Volume snapshotsoueit i 750
Filesystem resizing 751
FreeBSD logical volume management............................... 753
RAID: redundant arrays of inexpensive disks 753
Software vs. hardware RAID., 753
RAIDIeVels . ..o 754
Disk failure recovery 756
Drawbacks of RAID 5ot 757
mdadm: Linux software RAID.t 758
Creatinganarray................oiiiiuiiiiiiiniaie i, 758
mdadm.conf: document array configuration. 760
Simulating a failure. oo 761
FileSystems.ttt 762
Traditional filesystems: UFS, ext4,and XES 763
Filesystem terminology i 764
Filesystem polymorphism............o il 765
Filesystem formatting. i 766
fsck: check and repair filesystems. oLl 766
Filesystem mountingt 767
Setup for automaticmounting oo 768
USB drive mounting.ooiuiiiiiiiiiiiiiiiiii 770
Swapping recommendations.o i 770
Next-generation filesystems: ZFSand Btrfs, 772
Copy-on-write. 772
Errordetection 772
Performance 773
ZFS: all your storage problems solvedl 773
ZESonLinux...... ..o 774
ZFS architectureoouiuit i 774
Example: disk additiono i 775
Filesystems and propertiesooiiiiiiiiiiiiiiia... 776
Property inheritance. i 777
One filesystem per useroovuiuiiiiiiniiiiieiiinnnan. 778
Snapshotsand clones........... ... i 779
Rawvolumes 780
Storage pool management oo 781
Btrfs: “ZFSlite” for Linux 783
Btris vs. ZFS. . oo 783
Setup and storage CONVErsionouiuiiiiuininineannn... 784
Volumes and subvolumes.ol 786
Volume Snapshots.oouttt et 787

Shallow copies.ot 788

Chapter 21

Table of Contents XXixX

Data backup strategyt 788
Recommended reading i 790
The Network File System 791
Meet network file services.o 791
The competitiont 792
Issues of state.t 792
Performance CONCErnsouiiuiiniiiiinininaanane... 793
Security ... 793
The NFS approach. i 794
Protocol versions and history o oL 794
Remote procedurecallso i 795
Transport protocols 795
State 796
Filesystem eXportsc.uiuuiuiinineii i, 796
Filelocking i 797
Security CONCeInSt 798
Identity mappingin version4............ ool 799
Root access and the nobody account.................... 800
Performance considerations in version 4 801
Server-side NES 801
Linux eXports 802
FreeBSDexports. i 804
nfsd:servefiles........ 806
Client-side NES. 807
Mounting remote filesystems at boottime 810
Restricting exports to privileged ports 810
Identity mapping for NFSversion4................ol 810
nfsstat: dump NFS statistics 811
Dedicated NFS file servers.o.oiuiiuiiiii i, 812
Automaticmounting 812
INdirect MaPS. .« o v v vttt e 814
Directmaps.o e 814
MaSter MaAPS . ..o ottt 815
Executable Mmapsovuttt e 815
Automount visibility.o o 816
Replicated filesystems and automount 816
Automatic automounts (V3;allbut Linux)........................... 817
Specifics for Linuxt 817

Recommended reading i 818

XXX

Chapter 22

Chapter 23

UNIX and Linux System Administration Handbook

SMB 819
Samba: SMB server for UNIX........... ... i 820
Installing and configuring Samba.o i 821
File sharing with local authentication 822

File sharing with accounts authenticated by Active Directory........... 822
Configuring sharesttt 823
Sharing home directories. ..., 823

Sharing project directoriesccoueiiiiiiiiineninenn. 824
Mounting SMB file shareso 825
Browsing SMB file shares. i 826
Ensuring Samba security..........oouiiniii i 826
Debugging Samba. . ..ot 827
Querying Samba’s state with smbstatus, 827
Configuring Samba logging.oviiiiiiiii i 828
Managing character setscoouiiuiiiiiniiniineannn.. 829
Recommendedreadingot 829

SECTION FOUR: OPERATIONS

Configuration Management 833
Configuration managementinanutshell 834
Dangers of configuration management.c..vueeueenennen... 834
Elements of configuration management.................cocoieiuinnen... 835
Operations and parameters.ccouuteeennreeennneeennnneenn. 835
Variables. 837
Facts ... 838
Changehandlers....... i i 838
Bindings. 838
Bundles and bundle repositorieso 839
Environments i 839
Client inventory and registration 840
Popular CM systems comparedcoooiiiiiiiiiiiiiinan.. 841
Terminologyoooi 842
Businessmodels 842
Architectural options 843
Language options 845
Dependency management options.oouiiiiiiiin.n. 846
General commentson Chef. i 848
General comments on Puppet il 849
General comments on Ansibleand Salt............ 850

YAML: arantttt e 850

Chapter 24

Table of Contents XXxi

Introduction to Ansible. i 852
Ansible example 853
CHENt SEtUP . .« ve ettt 855
Clent Groups. vttt e 857
Variable assignments i 858
Dynamic and computed client groups.ol 859
Task lists. . ..o 860
state parameters. i 862
Tteration 862
Interaction with Jinja 863
Template rendering i 863
Bindings: plays and playbooks ool 864
ROLeS . .o 866
Recommendations for structuring the configuration base.............. 868
Ansible access OPHONSvvtt it 869

Introductionto Salt 871
Minion Setupottt 873
Variable value binding for minions oL 874
Minion matching i 876
Salt statesttt 877
Saltand Jinja ..o 878
State IDs and dependencies. i 880
State and execution functions. oo 882
Parametersand names........... ...t 883
State binding to minionso i 886
Highstates 886
Saltformulas 887
Environments 888
Documentation roadmapoiutiniiiiitiiii i 892

Ansible and Salt compared i 893
Deployment flexibility and scalability 893
Built-in modules and extensibility............... oo 894
Security 894
Miscellaneouso 895

Bestpractices.o 895

Recommended reading i i 899

Virtualization 900

Virtual vernacular. 901
Hypervisors. ... 901

Full virtualization i 901
Paravirtualization i i 902
Hardware-assisted virtualization 902

Paravirtualized drivers. ...ttt 902

XXXii

Chapter 25

UNIX and Linux System Administration Handbook

Modern virtualization il 903

Type 1 vs. type 2 hypervisors. 903
Livemigration.......... ... i 904
Virtual machineimages........... il 904
Containerization.......... i 904
Virtualization with LinuX. i 905
DS 906
Xen guest installation............ o i 907
KV M . 908
KVM guest installationo i 909
FreeBSDbhyve 910
VMWAre ..o 910
VirtualBoxXo 911
Packer. 911
Vagrant. o 913
Recommended reading i 914
Containers 915
Background and core concepts. ... 916
Kernel Support.oouou it e 917
Images. ... 917
Networking 918
Docker: the open source container enginecooiuen... 919
Basic architecture 919
Installation. i 921
Client Setupouiii 921

The container eXPerience.ouueeuuemunenuenneeneenneann. 922
Volumeso 926
Data volume containers. 927
Docker networks. 927
Namespaces and the bridge network............................ 928
Network overlayso i 930

Storage drivers. 930
dockerd option editingo i 930
Imagebuildingo 932
Choosingabaseimage...................oooiiiiiiiiioL 933
Building froma Dockerfile. 933
Composing a derived Dockerfile............................... 934

Registries 936

Table of Contents xxxiii

Containers in practice ...ttt 937
Logging.o 938
Securityadvice 939

Restrict access to thedaemon............... 939
UseTLS .o 940
Run processes as unprivileged users 940
Use a read-only root filesystem. 941
Limit capabilities.t 941
Secureimages i 941
Debugging and troubleshooting. oL 942

Container clustering and management...................... ... oL 942
A synopsis of container management software. 944
Kubernetes. i 944
Mesosand Marathon il 946
DOCKer SWarm.ouiti it 947
AWS EC2 Container Serviceooiiiiiiiiiiiiiiin.. 947

Recommended reading i i 948

Chapter 26 Continuous Integration and Delivery 949

CI/CD essentialsouiti it 951

Principles and practices.ouuueiiiiiii i 951
Use revision controlo 952
Build once, deployoften i 952
Automateend-to-end.......... i 952
Build every integration commito oL 952
Share responsibility.o 953
Build fast, X fast ..ot 953
Auditand verify. 953

Environments 953

Featureflags......... i 955

Pipelines.t 955
The build process.ovueie i 956
Testingo 957
Deployment.ouiuiii 959
Zero-downtime deployment techniques............................. 960

Jenkins: the open source automation SErver.c.oueeuueenne.... 961
Basic Jenkins concepts....... ... 962
Distributed builds. 963

Pipelineas code.ouuuiiuiii e 963

XXXiV

Chapter 27

UNIX and Linux System Administration Handbook

CI/CD N practice.o vttt e 964
UlsahGo, a trivial web application............... 966
Unit testing UlsahGooo i 966
Taking first steps with the Jenkins Pipeline........................... 968
Building a DigitalOceanimage 970
Provisioning a single system for testing. 972
Testing the droplet i 975
Deploying UlsahGo to a pair of droplets and a load balancer........... 976
Concluding the demonstration pipeline 977

Containers and CI/CD.ottt 978
Containers as a build environment 979
Container images as build artifacts L 979

Recommended reading i 980

Security 981

Elements of security. 983

How security is compromised.o 983
Social engineering i 983
Software vulnerabilities o 984
Distributed denial-of-service attacks (DD0S) 985
Insiderabuse 986
Network, system, or application configuration errors.................. 986

Basic security measures............. i 987
Software updates i 987
UnNNecessary SEIVICES vvt it eeenns 988
Remote eventlogging. i 989
Backups ..o 989
Viruses and WOrmso.ouiuuint i 989
ROOLKItS. ..o 990
Packet filtering. 991
Passwords and multifactor authentication 991
Vigilance. 991
Application penetration testing.c..iiiiiiiiiiiiia.. 992

Passwords and user accountso 992
Password changes......... i 993
Password vaults and password eScrow.c.oiiiiiiiiiino.... 993
Password aging i 995
Group logins and shared logins 996
Usershells 996

Rootly entries i 996

Table of Contents XXXV

Security power tools. 996
Nmap: network port SCANNErovuueenetnuteneneenneennn.. 996
Nessus: next-generation network scanner. 998
Metasploit: penetration testing software............................. 999
Lynis: on-box security auditingo ool 999
John the Ripper: finder of insecure passwords. 1000
Bro: the programmable network intrusion detection system........... 1000
Snort: the popular network intrusion detection system 1001
OSSEC: host-based intrusion detection 1002

OSSEC basic CONCEPLSvvvet it 1002
OSSEC installationoiiii i, 1003
OSSEC configuration, 1004
Fail2Ban: brute-force attack response system........................ 1004

Cryptography primer............ i 1005
Symmetric key cryptography oo 1005
Public key cryptography i 1006
Public key infrastructure........... o i 1007
Transport Layer Security o il 1009
Cryptographic hash functions 1009
Random number generation.............. i 1011
Cryptographic software selection. 1012
Theopensslcommand., 1012

Preparing keys and certificates oLl 1013
Debugging TLS serversoooiiuiiiiiiiiiiiia... 1014
PGP: Pretty Good Privacy. ... 1014
Kerberos: a unified approach to network security 1015

SSH, the Secure SHell. it 1016
OpenSSH essentialsttt 1016
Thesshclient....... i 1018
Public key authentication i 1019
Thessh-agento i 1020
Host aliases in ~/.ssh/config. 1022
Connection multiplexing. o i 1023
Port forwarding. 1023
sshd: the OpenSSH server...... 1024
Host key verification with SSHFP 1026
File transferso it 1027
Alternatives for securelogins oL 1027

Firewalls.o 1027
Packet-filtering firewalls L 1028
Filtering of services.ottt 1028
Stateful inspection firewalls. ool 1029

XXXVi

Chapter 28

UNIX and Linux System Administration Handbook

Virtual private networks (VPNS) ...t 1030
IPsectunnelsouuiiiiii i 1030
AllTneedisa VPN, right?. it 1031

Certifications and standards oL 1031
Certiflcations. et 1031
Security standards 1032

ISO 27001:2013 . . oo oot e 1032
PCIDSS .. 1033
NIST 800 s€ries.ovvutit i i 1033
The Common Criteria 1034
OWASP: the Open Web Application Security Project............. 1034
CIS: the Center for Internet Security........................... 1034

Sources of security information........... oo 1034
SecurityFocus.com, the BugTraq mailing list, and the OSS mailing list. . 1035
Schneier on Security. o i 1035
The Verizon Data Breach Investigations Report...................... 1035
The SANSInstituteo.oui i e 1035
Distribution-specific security resourceso.... 1036
Other mailing listsand websites oL 1036

When your site has beenattackedl 1037

Recommended reading i 1038

Monitoring 1040

An overview of monitoring. i 1041
Instrumentation 1042
Datatypes ... 1042
Intake and processing. 1043
Notificationsttt 1043
Dashboardsand Uls........... ... 1044

The monitoring culture it 1044

The monitoring platforms i 1045
Open source real-time platforms 1046

Nagiosand Icinga.......... ..o 1046
SeNSU. .. 1047
Open source time-series platforms 1047
Graphite. 1047
Prometheus i 1048
InfluxDB. . .o 1049
Munin. ... 1049
Open source charting platforms. 1049
Commercial monitoring platforms 1050

Hosted monitoring platforms.............o oL 1051

Chapter 29

Table of Contents XXXVii

Data collectiont 1051
StatsD: generic data submission protocol 1052
Data harvesting from command output 1054

Network monitoring 1055

Systems monitoring 1056
Commands for systems monitoring. 1057
collectd: generalized system data harvester 1057
sysdig and dtrace: execution tracers...............cooieiiiiiiie.... 1058

Application monitoring 1059
Logmonitoring..............o i 1059
Supervisor + Munin: a simple option for limited domains 1060
Commercial application monitoring tools 1060

Security monitoring.......... 1061
System integrity verification o ool 1061
Intrusion detection monitoring 1062

SNMP: the Simple Network Management Protocol 1063
SNMP organization i 1064
SNMP protocol Operationsoueueeuteninninneneaneannn. 1065
Net-SNMP: tools for servers...............ooooeiiiiiiiin... 1065

Tips and tricks for monitoring i 1068

Recommended reading o i 1069

Performance Analysis 1070

Performance tuning philosophy........... oL 1071

Ways to improve performancel 1073

Factors that affect performance o i 1074

Stolen CPU cycles.t 1075

Analysis of performance problems. oo 1076

System performance checkup............ oL 1077
Taking stock of your equipment............ oL 1077
Gathering performancedata.................. o oo 1079
Analyzing CPUUsage. ...ttt 1079
Understanding how the system manages memory 1081
Analyzing Memory Usage.o.vuuenuennaneaneienaieanen.. 1082
Analyzing disk I/O ... o 1084
fio: testing storage subsystem performance 1085
sar: collecting and reporting statistics over time..................... 1086
Choosing a Linux I/O scheduler.................... 1086
perf: profiling Linux systems indetail 1087

Help! My server just got really slow! 1088

Recommended reading i 1090

Xxxviii

Chapter 30

Chapter 31

UNIX and Linux System Administration Handbook

Data Center Basics 1091
Racks. ... 1092
Power ... 1092
Rack power requirementsovutiiiiiniiiiiini.. 1093
KVA Vs KW e 1094
Energyefficiency........ ..o 1095
Metering. 1095
COSt. oo 1096
Remote controlo 1096
Cooling and environmenteiuttnut ettt 1096
Cooling load estimation.coouiviiiiiiii .. 1097
Roof, walls, and windowsl 1097
Electronic ear.uuun ettt 1097

Light fiXtUresot 1098
OPeratorsoviiii it 1098
Totalheatload........... i 1098
Hotaislesand coldaisles il 1098
Humidity . ..o e 1100
Environmental monitoringooiuiiiiiiiiiiiii . 1100
Data center reliability tierscoiuiiiiii i 1101
Datacentersecurity ... 1102
Location. ... 1102
Perimeter........... i 1102
Facility @ccessvvntei e 1102
Rackaccess ..ot 1103
TOO0IS . .. 1103
Recommended readingoiuiiiiii i 1104
Methodology, Policy, and Politics 1105
The grand unified theory: DevOps.ovuiiiiiiiii i 1106
DevOpsis CLAMSo 1107
Culture 1107

Lean ... 1108
Automation i i 1109
Measurement. ... 1110

Sharingo i e 1110

System administration ina DevOpsworld.......................... 1110
Ticketing and task management systemsc..ooviiinnean... 1111
Common functions of ticketing systems. 1112
Ticket ownership.ot 1112
User acceptance of ticketing systems. ..o, 1113
Sample ticketing SyStemsvuvttnt i e 1114

Ticket dispatching. 1114

Table of Contents XXXiX

Local documentation maintenanceoouiuuennenenn... 1115
Infrastructureascode il 1116
Documentation standards. i 1116

Environment separation i 1118

Disaster management. i 1119
Risk assessment.ottt 1119
Recovery planningt 1120
Staffing foradisaster i 1121
Securityincidents.......... i 1122

IT policies and proceduresouueiiuiiiiiniineeneennenn. 1122
The difference between policies and procedures 1123
Policy best practicesouuiuiiuiiii i 1124
Procedures.ot 1124

Service level agreementso i 1125
Scope and descriptions of services.o 1125
Queue prioritization Policies.ovueiit i 1126
Conformance measurementsoueeueiuinnennann. 1127

Compliance: regulations and standards. 1127

Legal iSSUES ut it 1131
Privacy ... 1131
Policy enforcement. 1132
Control =liability.........o 1132
Software licenses. 1133

Organizations, conferences, and other resources. 1133

Recommended reading il 1135

Index 1136

A Brief History of System Administration 1166

Colophon 1176

About the Contributors 1178

About the Authors 1179

x|

Tribute to Evi

Every field has an avatar who defines and embodies that space. For system admin-
istration, that person is Evi Nemeth.

This is the 5 edition of a book that Evi led as an author for almost three decades.
Although Evi wasn’t able to physically join us in writing this edition, she’s with us
in spirit and, in some cases, in the form of text and examples that have endured.
We've gone to great efforts to maintain Evi’s extraordinary style, candor, technical
depth, and attention to detail.

An accomplished mathematician and cryptographer, Evi’s professional days were
spent (most recently) as a computer science professor at the University of Colorado
at Boulder. How system administration came into being, and Evi’s involvement in it,
is detailed in the last chapter of this book, A Brief History of System Administration.

Throughout her career, Evi looked forward to retiring and sailing the world. In 2001,
she did exactly that: she bought a sailboat (Wonderland) and set off on an adventure.
Across the years, Evi kept us entertained with stories of amazing islands, cool new
people, and other sailing escapades. We produced two editions of this book with
Evi anchoring as close as possible to shoreline establishments so that she could
camp on their Wi-Fi networks and upload chapter drafts.

Never one to decline an intriguing venture, Evi signed on in June 2013 as crew for
the historic schooner Nina for a sail across the Tasman Sea. The Nina disappeared
shortly thereafter in a bad storm, and we haven’t heard from Evi since. She was
living her dream.

Evi taught us much more than system administration. Even in her 70s, she ran
circles around all of us. She was always the best at building a network, configuring

Tribute to Evi xli

a server, debugging a kernel, splitting wood, frying chicken, baking a quiche, or
quaffing an occasional glass of wine. With Evi by your side, anything was achievable.

It’s impossible to encapsulate all of Evi’s wisdom here, but these tenets have stuck
with us:

« Be conservative in what you send and liberal in what you receive.!
« Beliberal in who you hire, but fire early.

« Don’t use weasel words.

« Undergraduates are the secret superpower.

« You can never use too much red ink.

« You don'’t really understand something until you've implemented it.
« It’s always time for sushi.

« Be willing to try something twice.

« Always use sudo.

We're sure some readers will write in to ask what, exactly, some of the guidance
above really means. We've left that as an exercise for the reader, as Evi would have.
You can hear her behind you now, saying “Try it yourself. See how it works”

Smooth sailing, Evi. We miss you.

1. This tenet is also known as Postel’s Law, named in honor of Jon Postel, who served as Editor of the

RFC series from 1969 until his death in 1998.

xlii

Preface

Modern technologists are masters at the art of searching Google for answers. If
another system administrator has already encountered (and possibly solved) a
problem, chances are you can find their write-up on the Internet. We applaud and
encourage this open sharing of ideas and solutions.

If great information is already available on the Internet, why write another edition
of this book? Here’s how this book helps system administrators grow:

« We offer philosophy, guidance, and context for applying technology ap-
propriately. As with the blind men and the elephant, it’s important to
understand any given problem space from a variety of angles. Valuable
perspectives include background on adjacent disciplines such as security,
compliance, DevOps, cloud computing, and software development life cycles.

o We take a hands-on approach. Our purpose is to summarize our collec-
tive perspective on system administration and to recommend approaches
that stand the test of time. This book contains numerous war stories and
a wealth of pragmatic advice.

This is not a book about how to run UNIX or Linux at home, in your ga-
rage, or on your smartphone. Instead, we describe the management of
production environments such as businesses, government offices, and
universities. These environments have requirements that are different
from (and far outstrip) those of a typical hobbyist.

« We teach you how to be a professional. Effective system administration
requires both technical and “soft” skills. It also requires a sense of humor.

Preface xliii

THE ORGANIZATION OF THIS BOOK

This book is divided into four large chunks: Basic Administration, Networking,
Storage, and Operations.

Basic Administration presents a broad overview of UNIX and Linux from a system
administrator’s perspective. The chapters in this section cover most of the facts and
techniques needed to run a stand-alone system.

The Networking section describes the protocols used on UNIX systems and the
techniques used to set up, extend, and maintain networks and Internet-facing serv-
ers. High-level network software is also covered here. Among the featured topics
are the Domain Name System, electronic mail, single sign-on, and web hosting.

The Storage section tackles the challenges of storing and managing data. This section
also covers subsystems that allow file sharing on a network, such as the Network
File System and the Windows-friendly SMB protocol.

The Operations section addresses the key topics that a system administrator faces
on a daily basis when managing production environments. These topics include
monitoring, security, performance, interactions with developers, and the politics
of running a system administration group.

OUR CONTRIBUTORS
We're delighted to welcome James Garnett, Fabrizio Branca, and Adrian Mouat as

contributing authors for this edition. These contributors’ deep knowledge of a va-
riety of areas has greatly enriched the content of this book.

CONTACT INFORMATION

Please send suggestions, comments, and bug reports to ulsah@book.admin.com.
We do answer mail, but please be patient; it is sometimes a few days before one of
us is able to respond. Because of the volume of email that this alias receives, we
regret that we are unable to answer technical questions.

To view a copy of our current bug list and other late-breaking information, visit
our web site, admin.com.

We hope you enjoy this book, and we wish you the best of luck with your adven-
tures in system administration!

Garth Snyder
Trent R. Hein
Ben Whaley
Dan Mackin

July 2017

mailto:ulsah@book.admin.com
http://admin.com

xliv

Foreword

In 1942, Winston Churchill described an early battle of WWILI: “this is not the end—
itis not even the beginning of the end—but it is, perhaps, the end of the beginning”
I was reminded of these words when I was approached to write this Foreword for

the fifth edition of UNIX and Linux System Administration Handbook. The loss at sea

of Evi Nemeth has been a great sadness for the UNIX community, but 'm pleased

to see her legacy endure in the form of this book and in her many contributions to

the field of system administration.

The way the world got its Internet was, originally, through UNIX. A remarkable
departure from the complex and proprietary operating systems of its day, UNIX
was minimalistic, tools-driven, portable, and widely used by people who wanted
to share their work with others. What we today call open source software was al-
ready pervasive—but nameless—in the early days of UNIX and the Internet. Open
source was just how the technical and academic communities did things, because
the benefits so obviously outweighed the costs.

Detailed histories of UNIX, Linux, and the Internet have been lovingly presented
elsewhere. I bring up these high-level touchpoints only to remind us all that the
modern world owes much to open source software and to the Internet, and that
the original foundation for this bounty was UNIX.

As early UNIX and Internet companies fought to hire the most brilliant people
and to deliver the most innovative features, software portability was often sacri-
ficed. Eventually, system administrators had to know a little bit about a lot of things
because no two UNIX-style operating systems (then, or now) were entirely alike. As
a working UNIX system administrator in the mid-1980s and later, I had to know not
just shell scripting and Sendmail configuration but also kernel device drivers. It was
also important to know how to fix a filesystem with an octal debugger. Fun times!

Foreword xlv

Out of that era came the first edition of this book and all the editions that followed
it. In the parlance of the times, we called the authors “Evi and crew” or perhaps “Evi
and her kids.” Because of my work on Cron and BIND, Evi spent a week or two with
me (and my family, and my workplace) every time an edition of this book was in
progress to make sure she was saying enough, saying nothing wrong, and hopefully,
saying something unique and useful about each of those programs. Frankly, being
around Evi was exhausting, especially when she was curious about something, or
on a deadline, or in my case, both. That having been said, I miss Evi terribly and I
treasure every memory and every photograph of her.

In the decades of this book’s multiple editions, much has changed. It has been fasci-
nating to watch this book evolve along with UNIX itself. Every new edition omitted

some technologies that were no longer interesting or relevant to make room for
new topics that were just becoming important to UNIX administrators, or that the

authors thought soon would be.

It’s hard to believe that we ever spent dozens of kilowatts of power on truck-sized
computers whose capabilities are now dwarfed by an Android smartphone. It's equal-
ly hard to believe that we used to run hundreds or thousands of individual server
and desktop computers with now-antiquated technologies like rdist. In those years,
various editions of this book helped people like me (and like Evi herself) cope with
heterogeneous and sometimes proprietary computers that were each real rather than
virtualized, and which each had to be maintained rather than being reinstalled (or
in Docker, rebuilt) every time something needed patching or upgrading.

We adapt, or we exit. The “Evi kids” who carry on Evi’s legacy have adapted, and
they are back in this fifth edition to tell you what you need to know about how
modern UNIX and Linux computers work and how you can make them work
the way you want them to. Evi’s loss marks the end of an era, but it’s also sobering
to consider how many aspects of system administration have passed into history
alongside her. I know dozens of smart and successful technologists who will never
dress cables in the back of an equipment rack, hear the tone of a modem, or see
an RS-232 cable. This edition is for those whose systems live in the cloud or in
virtualized data centers; those whose administrative work largely takes the form
of automation and configuration source code; those who collaborate closely with
developers, network engineers, compliance officers, and all the other worker bees
who inhabit the modern hive.

You hold in your hand the latest, best edition of a book whose birth and evolution
have precisely tracked the birth and evolution of the UNIX and Internet community.
Evi would be extremely proud of her kids, both because of this book, and because
of who they have each turned out to be. I am proud to know them.

Paul Vixie
La Honda, California
June 2017

xlvi

Acknowledgments

Many people contributed to this project, bestowing everything from technical re-
views and constructive suggestions to overall moral support. The following indi-
viduals deserve special thanks for hanging in there with us:

Jason Carolan Ned McClain Dave Roth
Randy Else Beth McElroy Peter Sankauskas
Steve Gaede Paul Nelson Deepak Singh
Asif Khan Tim O’Reilly Paul Vixie

Sam Leathers Madhuri Peri

Our editor at Pearson, Mark Taub, deserves huge thanks for his wisdom, patient
support, and gentle author herding throughout the production of this book. It’s safe
to say this edition would not have come to fruition without him.

Mary Lou Nohr has been our relentless behind-the-scenes copy editor for over 20
years. When we started work on this edition, Mary Lou was headed for well-de-
served retirement. After a lot of begging and guilt-throwing, she agreed to join us
for an encore. (Both Mary Lou Nohr and Evi Nemeth appear on the cover. Can
you find them?)

We've had a fantastic team of technical reviewers. Three dedicated souls reviewed
the entire book: Jonathan Corbet, Pat Parseghian, and Jennine Townsend. We greatly
appreciate their tenacity and tactfulness.

This edition’s awesome cartoons and cover were conceived and executed by Lisa
Haney. Her portfolio is on-line at lisahaney.com.

Last but not least, special thanks to Laszlo Nemeth for his willingness to support
the continuation of this series.

http://lisahaney.com

SECTION ONE
BASIC ADMINISTRATION

2 L
; -4/(.-’/1‘:,/14”////1,
S
A |77 7
. /
A P77 7

2 D S,

; {22 T

This page intentionally left blank

1 Where to Start

We've designed this book to occupy a specific niche in the vast ecosystem of man
pages, blogs, magazines, books, and other reference materials that address the needs
of UNIX and Linux system administrators.

First, it’s an orientation guide. It reviews the major administrative systems, identifies
the different pieces of each, and explains how they work together. In the many cases
where you must choose among various implementations of a concept, we describe
the advantages and drawbacks of the most popular options.

Second, it’s a quick-reference handbook that summarizes what you need to know
to perform common tasks on a variety of common UNIX and Linux systems. For
example, the ps command, which shows the status of running processes, supports
more than 80 command-line options on Linux systems. But a few combinations
of options satisfy the majority of a system administrator’s needs; we summarize
them on page 98.

Finally, this book focuses on the administration of enterprise servers and networks.
That is, serious, professional system administration. It’s easy to set up a single system;
harder to keep a distributed, cloud-based platform running smoothly in the face of
viral popularity, network partitions, and targeted attacks. We describe techniques

1.1

See Chapters 8,

17, and 23 for in-
formation about user
account provisioning.

See Chapter 7,
Scripting and the
Shell, for informa-
tion about scripting
and automation.

See page 788 for
some tips on per-
forming backups.

Chapter 1 Where to Start

and rules of thumb that help you recover systems from adversity, and we help you
choose solutions that scale as your empire grows in size, complexity, and heterogeneity.

We don’t claim to do all of this with perfect objectivity, but we think we've made our
biases fairly clear throughout the text. One of the interesting things about system
administration is that reasonable people can have dramatically different notions of
what constitutes the most appropriate solution. We offer our subjective opinions
to you as raw data. Decide for yourself how much to accept and how much of our
comments apply to your environment.

ESSENTIAL DUTIES OF A SYSTEM ADMINISTRATOR

The sections below summarize some of the main tasks that administrators are
expected to perform. These duties need not necessarily be carried out by a single
person, and at many sites the work is distributed among the members of a team.
However, at least one person should understand all the components and ensure
that every task is performed correctly.

Controlling access

The system administrator creates accounts for new users, removes the accounts of
inactive users, and handles all the account-related issues that come up in between
(e.g., forgotten passwords and lost key pairs). The process of actually adding and
removing accounts is typically automated by a configuration management system
or centralized directory service.

Adding hardware

Administrators who work with physical hardware (as opposed to cloud or hosted
systems) must install it and configure it to be recognized by the operating system.
Hardware support chores might range from the simple task of adding a network
interface card to configuring a specialized external storage array.

Automating tasks

Using tools to automate repetitive and time-consuming tasks increases your effi-
ciency, reduces the likelihood of errors caused by humans, and improves your ability
to respond rapidly to changing requirements. Administrators strive to reduce the
amount of manual labor needed to keep systems functioning smoothly. Familiarity
with scripting languages and automation tools is a large part of the job.

Overseeing backups

Backing up data and restoring it successfully when required are important admin-
istrative tasks. Although backups are time consuming and boring, the frequency of
real-world disasters is simply too high to allow the job to be disregarded.

See Chapter 6 for
information about

software management.

See Chapter 26

for information
about software
deployment and
continuous delivery.

See Chapter 28
for information
about monitoring.

See page 428 for an
introduction to net-
work troubleshooting.

See page 1115 for
suggestions regarding
documentation.

Essential duties of a system administrator 5

Operating systems and some individual software packages provide well-established
tools and techniques to facilitate backups. Backups must be executed on a regular
schedule and restores must be tested periodically to ensure that they are function-
ing correctly.

Installing and upgrading software

Software must be selected, installed, and configured, often on a variety of oper-
ating systems. As patches and security updates are released, they must be tested,
reviewed, and incorporated into the local environment without endangering the
stability of production systems.

The term “software delivery” refers to the process of releasing updated versions of
software—especially software developed in-house—to downstream users. “Continu-
ous delivery” takes this process to the next level by automatically releasing software
to users at a regular cadence as it is developed. Administrators help implement ro-
bust delivery processes that meet the requirements of the enterprise.

Monitoring

Working around a problem is usually faster than taking the time to document and
report it, and users internal to an organization often follow the path of least resis-
tance. External users are more likely to voice their complaints publicly than to open
a support inquiry. Administrators can help to prevent both of these outcomes by
detecting problems and fixing them before public failures occur.

Some monitoring tasks include ensuring that web services respond quickly and
correctly, collecting and analyzing log files, and keeping tabs on the availability of
server resources such as disk space. All of these are excellent opportunities for au-
tomation, and a slew of open source and commercial monitoring systems can help
sysadmins with these tasks.

Troubleshooting

Networked systems fail in unexpected and sometimes spectacular fashion. It’s the
administrator’s job to play mechanic by diagnosing problems and calling in sub-
ject-matter experts as needed. Finding the source of a problem is often more chal-
lenging than resolving it.

Maintaining local documentation

Administrators choose vendors, write scripts, deploy software, and make many oth-
er decisions that may not be immediately obvious or intuitive to others. Thorough
and accurate documentation is a blessing for team members who would otherwise
need to reverse-engineer a system to resolve problems in the middle of the night.
A lovingly crafted network diagram is more useful than many paragraphs of text
when describing a design.

See Chapter 27 for
more information
about security.

See Chapter 29 for
more information
about performance.

See the sections start-
ing on page 17 for
information about
local policy-making.

Chapter 1 Where to Start

Vigilantly monitoring security

Administrators are the first line of defense for protecting network-attached sys-
tems. The administrator must implement a security policy and set up procedures

to prevent systems from being breached. This responsibility might include only a

few basic checks for unauthorized access, or it might involve an elaborate network
of traps and auditing programs, depending on the context. System administrators

are cautious by nature and are often the primary champions of security across a

technical organization.

Tuning performance

UNIX and Linux are general purpose operating systems that are well suited to al-
most any conceivable computing task. Administrators can tailor systems for optimal
performance in accord with the needs of users, the available infrastructure, and the
services the systems provide. When a server is performing poorly, it is the admin-
istrator’s job to investigate its operation and identify areas that need improvement.

Developing site policies

For legal and compliance reasons, most sites need policies that govern the accept-
able use of computer systems, the management and retention of data, the privacy
and security of networks and systems, and other areas of regulatory interest. System
administrators often help organizations develop sensible policies that meet the letter
and intent of the law and yet still promote progress and productivity.

Working with vendors

Most sites rely on third parties to provide a variety of ancillary services and prod-
ucts related to their computing infrastructure. These providers might include
software developers, cloud infrastructure providers, hosted software-as-a-service
(SaaS) shops, help-desk support staff, consultants, contractors, security experts, and
platform or infrastructure vendors. Administrators may be tasked with selecting
vendors, assisting with contract negotiations, and implementing solutions once the
paperwork has been completed.

Fire fighting

Although helping other people with their various problems is rarely included in a
system administrator’s job description, these tasks claim a measurable portion of
most administrators’ workdays. System administrators are bombarded with prob-
lems ranging from “It worked yesterday and now it doesn’t! What did you change?”
to “I spilled coffee on my keyboard! Should I pour water on it to wash it out?”

In most cases, your response to these issues affects your perceived value as an ad-
ministrator far more than does any actual technical skill you might possess. You
can either howl at the injustice of it all, or you can delight in the fact that a single

See Chapter 7
for an introduc-
tion to scripting.

1.2

Suggested background 7

well-handled trouble ticket scores more brownie points than five hours of midnight
debugging. Your choice!

SUGGESTED BACKGROUND

We assume in this book that you have a certain amount of Linux or UNIX experi-
ence. In particular, you should have a general concept of how the system looks and
feels from a user’s perspective since we do not review that material. Several good
books can get you up to speed; see Recommended reading on page 28.

We love well-designed graphical interfaces. Unfortunately, GUI tools for system
administration on UNIX and Linux remain rudimentary in comparison with the
richness of the underlying software. In the real world, administrators must be com-
fortable using the command line.

For text editing, we strongly recommend learning vi (now seen more commonly
in its enhanced form, vim), which is standard on all systems. It is simple, powerful,
and efficient. Mastering vim is perhaps the single best productivity enhancement
available to administrators. Use the vimtutor command for an excellent, interac-
tive introduction.

Alternatively, GNU’s nano is a simple and low-impact “starter editor” that has on-
screen prompts. Use it discreetly; professional administrators may be visibly dis-
tressed if they witness a peer running nano.

Although administrators are not usually considered software developers, industry
trends are blurring the lines between these functions. Capable administrators are
usually polyglot programmers who don’t mind picking up a new language when
the need arises.

For new scripting projects, we recommend Bash (aka bash, aka sh), Ruby, or Python.
Bash is the default command shell on most UNIX and Linux systems. It is primitive
as a programming language, but it serves well as the duct tape in an administrative
tool box. Python is a clever language with a highly readable syntax, a large devel-
oper community, and libraries that facilitate many common tasks. Ruby developers
describe the language as “a joy to work with” and “beautiful to behold” Ruby and
Python are similar in many ways, and we've found them to be equally functional for
administration. The choice between them is mostly a matter of personal preference.

We also suggest that you learn expect, which is not a programming language so
much as a front end for driving interactive programs. It’s an efficient glue technol-
ogy that can replace some complex scripting and is easy to learn.

Chapter 7, Scripting and the Shell, summarizes the most important things to
know about scripting for Bash, Python, and Ruby. It also reviews regular expres-
sions (text matching patterns) and some shell idioms that are useful for sysadmins.

1.3

See Chapter 25,
Containers, for more
information about
Docker and containers.

Chapter 1 Where to Start

LINUX DISTRIBUTIONS

A Linux distribution comprises the Linux kernel, which is the core of the operating
system, and packages that make up all the commands you can run on the system.
All distributions share the same kernel lineage, but the format, type, and number
of packages differ quite a bit. Distributions also vary in their focus, support, and
popularity. There continue to be hundreds of independent Linux distributions, but
our sense is that distributions derived from the Debian and Red Hat lineages will
predominate in production environments in the years ahead.

By and large, the differences among Linux distributions are not cosmically sig-
nificant. In fact, it is something of a mystery why so many different distributions
exist, each claiming “easy installation” and “a massive software library” as its dis-
tinguishing features. It’s hard to avoid the conclusion that people just like to make
new Linux distributions.

Most major distributions include a relatively painless installation procedure, a desk-
top environment, and some form of package management. You can try them out
easily by starting up a cloud instance or a local virtual machine.

Much of the insecurity of general-purpose operating systems derives from their
complexity. Virtually all leading distributions are cluttered with scores of unused
software packages; security vulnerabilities and administrative anguish often come
along for the ride. In response, a relatively new breed of minimalist distributions
has been gaining traction. CoreOS is leading the charge against the status quo and
prefers to run all software in containers. Alpine Linux is a lightweight distribution
that is used as the basis of many public Docker images. Given this reductionist trend,
we expect the footprint of Linux to shrink over the coming years.

By adopting a distribution, you are making an investment in a particular vendor’s
way of doing things. Instead of looking only at the features of the installed software,
it’s wise to consider how your organization and that vendor are going to work with
each other. Some important questions to ask are:

o Is this distribution going to be around in five years?

o Is this distribution going to stay on top of the latest security patches?

o Does this distribution have an active community and sufficient documentation?
o IfThave problems, will the vendor talk to me, and how much will that cost?

Table 1.1 lists some of the most popular mainstream distributions.

The most viable distributions are not necessarily the most corporate. For example,
we expect Debian Linux (OK, OK, Debian GNU/Linux!) to remain viable for a long
time despite the fact that Debian is not a company, doesn't sell anything, and offers
no enterprise-level support. Debian benefits from a committed group of contributors
and from the enormous popularity of the Ubuntu distribution, which is based on it.

A comprehensive list of distributions, including many non-English distributions,
can be found at Iwn.net/Distributions or distrowatch.com.

http://lwn.net/Distributions
http://distrowatch.com

Example systems used in this book 9

Table 1.1 Most popular general-purpose Linux distributions

Distribution Web site Comments

Arch archlinux.org For those who fear not the command line
CentOS centos.org Free analog of Red Hat Enterprise
CoreOS coreos.com Containers, containers everywhere
Debian debian.org Free as in freedom, most GNUish distro
Fedora fedoraproject.org Test bed for Red Hat Linux

Kali kali.org For penetration testers

Linux Mint linuxmint.com Ubuntu-based, desktop-friendly
openSUSE opensuse.org Free analog of SUSE Linux Enterprise
openWRT openwrt.org Linux for routers and embedded devices
Oracle Linux oracle.com Oracle-supported version of RHEL
RancherQS rancher.com 20MiB, everything in containers

Red Hat Enterprise redhat.com Reliable, slow-changing, commercial
Slackware slackware.com Grizzled, long-surviving distro

SUSE Linux Enterprise suse.com Strong in Europe, multilingual

Ubuntu ubuntu.com Cleaned-up version of Debian

1.4 EXAMPLE SYSTEMS USED IN THIS BOOK

We have chosen three popular Linux distributions and one UNIX variant as our
primary examples for this book: Debian GNU/Linux, Ubuntu Linux, Red Hat En-
terprise Linux (and its dopplegénger CentOS), and FreeBSD. These systems are
representative of the overall marketplace and account collectively for a substantial
portion of installations in use at large sites today.

Information in this book generally applies to all of our example systems unless a
specific attribution is given. Details particular to one system are marked with a logo:

(; ; Debian GNU/Linux 9.0 “Stretch”

@ Ubuntu® 17.04 “Zesty Zapus”

RHEL % Red Hat® Enterprise Linux® 7.1 and CentOS® 7.1

). <4
‘ FreeBSD*® 11.0

Most of these marks belong to the vendors that release the corresponding software
and are used with the kind permission of their respective owners. However, the
vendors have not reviewed or endorsed the contents of this book.

http://www.archlinux.org
http://www.centos.org
http://www.coreos.com
http://www.debian.org
http://www.fedoraproject.org
http://www.kali.org
http://www.linuxmint.com
http://www.opensuse.org
http://www.openwrt.org
http://www.oracle.com
http://www.rancher.com
http://www.redhat.com
http://www.slackware.com
http://www.suse.com
http://www.ubuntu.com

10

ORe

RHEL

Chapter 1 Where to Start

We repeatedly attempted and failed to obtain permission from Red Hat to use their
famous red fedora logo, so you're stuck with yet another technical acronym. At least
this one is in the margins.

The paragraphs below provide a bit more detail about each of the example systems.

Example Linux distributions

Information that’s specific to Linux but not to any particular distribution is marked
with the Tux penguin logo shown at left.

Debian (pronounced deb-ian, named after the late founder Tan Murdock and his
wife Debra), is one of the oldest and most well-regarded distributions. It is a non-
commercial project with more than a thousand contributors worldwide. Debian
maintains an ideological commitment to community development and open ac-
cess, so there’s never any question about which parts of the distribution are free or
redistributable.

Debian defines three releases that are maintained simultaneously: stable, targeting
production servers; unstable, with current packages that may have bugs and secu-
rity vulnerabilities; and testing, which is somewhere in between.

Ubuntu is based on Debian and maintains Debian’s commitment to free and open
source software. The business behind Ubuntu is Canonical Ltd., founded by entre-
preneur Mark Shuttleworth.

Canonical offers a variety of editions of Ubuntu targeting the cloud, the desktop,
and bare metal. There are even releases intended for phones and tablets. Ubuntu
version numbers derive from the year and month of release, so version 16.10 is
from October, 2016. Each release also has an alliterative code name such as Vivid
Vervet or Wily Werewolf.

Two versions of Ubuntu are released annually: one in April and one in October. The
April releases in even-numbered years are long-term support (LTS) editions that
promise five years of maintenance updates. These are the releases recommended
for production use.

Red Hat has been a dominant force in the Linux world for more than two decades,
and its distributions are widely used in North America and beyond. By the numbers,
Red Hat, Inc., is the most successful open source software company in the world.

Red Hat Enterprise Linux, often shortened to RHEL, targets production environ-
ments at large enterprises that require support and consulting services to keep
their systems running smoothly. Somewhat paradoxically, RHEL is open source
but requires a license. If you're not willing to pay for the license, you're not going
to be running Red Hat.

Red Hat also sponsors Fedora, a community-based distribution that serves as an
incubator for bleeding-edge software not considered stable enough for RHEL.

@

Example systems used in this book 11

Fedora is used as the initial test bed for software and configurations that later find
their way to RHEL.

CentOS is virtually identical to Red Hat Enterprise Linux, but free of charge. The
CentOS Project (centos.org) is owned by Red Hat and employs its lead developers.
However, they operate separately from the Red Hat Enterprise Linux team. The
CentOS distribution lacks Red Hat’s branding and a few proprietary tools, but is
in other respects equivalent.

CentOS is an excellent choice for sites that want to deploy a production-oriented
distribution without paying tithes to Red Hat. A hybrid approach is also feasible:
front-line servers can run Red Hat Enterprise Linux and avail themselves of Red
Hat’s excellent support, even as nonproduction systems run CentOS. This arrange-
ment covers the important bases in terms of risk and support while also minimizing
cost and administrative complexity.

CentOS aspires to full binary and bug-for-bug compatibility with Red Hat Enter-
prise Linux. Rather than repeating “Red Hat and CentOS” ad nauseam, we generally
mention only one or the other in this book. The text applies equally to Red Hat and
CentOS unless we note otherwise.

Other popular distributions are also Red Hat descendants. Oracle sells a rebranded
and customized version of CentOS to customers of its enterprise database software.
Amazon Linux, available to Amazon Web Services users, was initially derived from
CentOS and still shares many of its conventions.

Most administrators will encounter a Red Hat-like system at some point in their
careers, and familiarity with its nuances is helpful even if it isn't the system of
choice at your site.

Example UNIX distribution

The popularity of UNIX has been waning for some time, and most of the stalwart
UNIX distributions (e.g., Solaris, HP-UX, and AIX) are no longer in common use.
The open source descendants of BSD are exceptions to this trend and continue to
enjoy a cult following, particularly among operating system experts, free software
evangelists, and security-minded administrators. In other words, some of the world’s
foremost operating system authorities rely on the various BSD distributions. Apples
macOS has a BSD heritage.

FreeBSD, first released in late 1993, is the most widely used of the BSD derivatives. It
commands a 70% market share among BSD variants according to some usage statis-
tics. Users include major Internet companies such as WhatsApp, Google, and Netflix.

Unlike Linux, FreeBSD is a complete operating system, not just a kernel. Both the
kernel and userland software are licensed under the permissive BSD License, a
fact that encourages development by and additions from the business community.

http://centos.org

12

1.5

Chapter 1 Where to Start

NOTATION AND TYPOGRAPHICAL CONVENTIONS

In this book, filenames, commands, and literal arguments to commands are shown
in boldface. Placeholders (e.g., command arguments that should not be taken lit-
erally) are in italics. For example, in the command

cp file directory

youre supposed to replace file and directory with the names of an actual file and
an actual directory.

Excerpts from configuration files and terminal sessions are shown in a code font.
Sometimes, we annotate sessions with the bash comment character # and italic
text. For example:

$ grep Bob /pub/phonelist # Look up Bob's phone number
Bob Knowles 555-2834
Bob Smith 555-2311

We use $ to denote the shell prompt for a normal, unprivileged user, and # for the
root user. When a command is specific to a distribution or family of distributions,
we prefix the prompt with the distribution name. For example:

$ sudo su - root # Become root
passwd # Change root's password
debian# dpkg -1 # List installed packages on Debian and Ubuntu

This convention is aligned with the one used by standard UNIX and Linux shells.

Outside of these specific cases, we have tried to keep special fonts and formatting
conventions to a minimum as long as we could do so without compromising intel-
ligibility. For example, we often talk about entities such as the daemon group with
no special formatting at all.

We use the same conventions as the manual pages for command syntax:

« Anything between square brackets (“[” and “]”) is optional.

o Anything followed by an ellipsis (“...”) can be repeated.

o Curly braces (“{” and “}”) mean that you should select one of the items
separated by vertical bars (“|”).

For example, the specification
bork [-x] { on | off } filename ...
would match any of the following commands:

bork on /etc/passwd
bork -x off /etc/passwd /etc/smartd.conf
bork off /usr/lib/tmac

1.6

Units 13

We use shell-style globbing characters for pattern matching:

« A star (*) matches zero or more characters.

o A question mark (?) matches one character.

« A tilde or “twiddle” (~) means the home directory of the current user.
« ~user means the home directory of user.

For example, we might refer to the startup script directories /etc/rc0.d, /etc/rcl.d,
and so on with the shorthand pattern /etc/rc*.d.

Text within quotation marks often has a precise technical meaning. In these cases,
we ignore the normal rules of U.S. English and put punctuation outside the quotes
so that there can be no confusion about what’s included and what’s not.

UNITS

Metric prefixes such as kilo-, mega-, and giga- are defined as powers of 10; one
megabuck is $1,000,000. However, computer types have long poached these prefixes
and used them to refer to powers of 2. For example, one “megabyte” of memory is
really 2%° or 1,048,576 bytes. The stolen units have even made their way into formal
standards such as the JEDEC Solid State Technology Association’s Standard 100B.01,
which recognizes the prefixes as denoting powers of 2 (albeit with some misgivings).

In an attempt to restore clarity, the International Electrotechnical Commission has
defined a set of numeric prefixes (kibi-, mebi-, gibi-, and so on, abbreviated Ki, Mi,
and Gi) based explicitly on powers of 2. Those units are always unambiguous, but
they are just starting to be widely used. The original kilo-series prefixes are still
used in both senses.

Context helps with decoding. RAM is always denominated in powers of 2, but net-
work bandwidth is always a power of 10. Storage space is usually quoted in pow-
er-of-10 units, but block and page sizes are in fact powers of 2.

In this book, we use IEC units for powers of 2, metric units for powers of 10, and
metric units for rough values and cases in which the exact basis is unclear, undoc-
umented, or impossible to determine. In command output and in excerpts from
configuration files, or where the delineation is not important, we leave the original
values and unit designators. We abbreviate bit as b and byte as B. Table 1.2 on the
next page shows some examples.

The abbreviation K, as in “8KB of RAMY!”, is not part of any standard. It's a comput-
erese adaptation of the metric abbreviation k, for kilo-, and originally meant 1,024
as opposed to 1,000. But since the abbreviations for the larger metric prefixes are
already upper case, the analogy doesn’t scale. Later, people became confused about
the distinction and started using K for factors of 1,000, too.

Most of the world doesn’t consider this to be an important matter and, like the use
of imperial units in the United States, metric prefixes are likely to be misused for

14

Table 1.2

1.7

Chapter 1 Where to Start

Unit decoding examples

Example Meaning

1kB file A file that contains 1,000 bytes

4KiB SSD pages SSD pages that contain 4,096 bytes

8KB of memory Not used in this book; see note on page 13

100MB file size limit ~ Nominally 108 bytes; in context, ambiguous
100MB disk partition ~ Nominally 108 bytes; in context, probably 99,999,744 bytes?

1GiB of RAM 1,073,741,824 bytes of memory
1 Gb/s Ethernet A network that transmits 1,000,000,000 bits per second
6TB hard disk A hard disk that stores about 6,000,000,000,000 bytes

a. That is, 108 rounded down to the nearest whole multiple of the disk’s 512-byte block size

the foreseeable future. Ubuntu maintains a helpful units policy, though we suspect
it has not been widely adopted even at Canonical; see wiki.ubuntu.com/UnitsPolicy
for some additional details.

MAN PAGES AND OTHER ON-LINE DOCUMENTATION

The manual pages, usually called “man pages” because they are read with the man
command, constitute the traditional “on-line” documentation. (Of course, these days
all documentation is on-line in some form or another.) Program-specific man pages
come along for the ride when you install new software packages. Even in the age
of Google, we continue to consult man pages as an authoritative resource because
they are accessible from the command line, typically include complete details on a
program’s options, and show helpful examples and related commands.

Man pages are concise descriptions of individual commands, drivers, file formats,
or library routines. They do not address more general topics such as “How do I in-
stall a new device?” or “Why is this system so damn slow?”

Organization of the man pages

FreeBSD and Linux divide the man pages into sections. Table 1.3 shows the basic
schema. Other UNIX variants sometimes define the sections slightly differently.

The exact structure of the sections isn't important for most topics because man
finds the appropriate page wherever it is stored. Just be aware of the section defi-
nitions when a topic with the same name appears in multiple sections. For exam-
ple, passwd is both a command and a configuration file, so it has entries in both
section 1 and section 5.

http://wiki.ubuntu.com/UnitsPolicy

Man pages and other on-line documentation 15

Table 1.3 Sections of the man pages

See page 193 to
learn about envi-
ronment variables.

Section Contents

User-level commands and applications
System calls and kernel error codes
Library calls

Device drivers and network protocols
Standard file formats

Games and demonstrations
Miscellaneous files and documents
System administration commands
Obscure kernel specs and interfaces

O 0O NOYULT A WN =

man: read man pages

man title formats a specific manual page and sends it to your terminal through
more, less, or whatever program is specified in your PAGER environment variable.
title is usually a command, device, filename, or name of a library routine. The sec-
tions of the manual are searched in roughly numeric order, although sections that
describe commands (sections 1 and 8) are usually searched first.

The form man section title gets you a man page from a particular section. Thus, on
most systems, man sync gets you the man page for the sync command, and man
2 sync gets you the man page for the sync system call.

man -k keyword or apropos keyword prints a list of man pages that have keyword
in their one-line synopses. For example:

$ man -k translate

objcopy (1) copy and translate object files

dcgettext (3) translate message

tr (1) - translate or delete characters

snmptranslate (1) translate SNMP OID values into useful information
tr (1p) translate characters

The keywords database can become outdated. If you add additional man pages
to your system, you may need to rebuild this file with makewhatis (Red Hat and
FreeBSD) or mandb (Ubuntu).

Storage of man pages

nroff input for man pages (i.e., the man page source code) is stored in directories
under /usr/share/man and compressed with gzip to save space. The man command
knows how to decompress them on the fly.

16

1.8

Chapter 1 Where to Start

man maintains a cache of formatted pages in /var/cache/man or /usr/share/man
if the appropriate directories are writable; however, this is a security risk. Most sys-
tems preformat the man pages once at installation time (see catman) or not at all.

The man command can search several man page repositories to find the manual
pages you request. On Linux systems, you can find out the current default search
path with the manpath command. This path (from Ubuntu) is typical:

ubuntu$ manpath
Jusr/local/man:/usr/local/share/man:/usr/share/man

If necessary, you can set your MANPATH environment variable to override the
default path:

$ export MANPATH=/home/share/localman:/usr/share/man

Some systems let you set a custom system-wide default search path for man pages,
which can be useful if you need to maintain a parallel tree of man pages such as
those generated by OpenPKG. To distribute local documentation in the form of man
pages, however, it is simpler to use your system’s standard packaging mechanism
and to put man pages in the standard man directories. See Chapter 6, Software
Installation and Management, for more details.

OTHER AUTHORITATIVE DOCUMENTATION

Man pages are just a small part of the official documentation. Most of the rest, un-
fortunately, is scattered about on the web.

System-specific guides

Major vendors have their own dedicated documentation projects. Many continue
to produce useful book-length manuals, including administration and installation
guides. These are generally available on-line and as downloadable PDF files. Table
1.4 shows where to look.

Although this documentation is helpful, it’s not the sort of thing you keep next to
your bed for light evening reading (though some vendors’ versions would make
useful sleep aids). We generally Google for answers before turning to vendor docs.

Package-specific documentation

Most of the important software packages in the UNIX and Linux world are main-
tained by individuals or by third parties such as the Internet Systems Consortium
and the Apache Software Foundation. These groups write their own documentation.
The quality runs the gamut from embarrassing to spectacular, but jewels such as
Pro Git from git-scm.com/book make the hunt worthwhile.

http://git-scm.com/book

Other authoritative documentation 17

Table 1.4 Where to find OS vendors’ proprietary documentation

(013 URL Comments

Debian debian.org/doc Admin handbook lags behind the current version
Ubuntu help.ubuntu.com User oriented, see “server guide” for LTS releases
RHEL redhat.com/docs Comprehensive docs for administrators

CentOS wiki.centos.org Includes tips, HowTos, and FAQs

FreeBSD freebsd.org/docs.html See the FreeBSD Handbook for sysadmin info

Supplemental documents include white papers (technical reports), design rationales,
and book- or pamphlet-length treatments of particular topics. These supplemental
materials are not limited to describing just one command, so they can adopt a tu-
torial or procedural approach. Many pieces of software have both a man page and
a long-form article. For example, the man page for vim tells you about the com-
mand-line arguments that vim understands, but you have to turn to an in-depth
treatment to learn how to actually edit a file.

Most software projects have user and developer mailing lists and IRC channels. This
is the first place to visit if you have questions about a specific configuration issue
or if you encounter a bug.

Books

The O’Reilly books are favorites in the technology industry. The business began
with UNIX in a Nutshell and now includes a separate volume on just about every
important UNIX and Linux subsystem and command. O’Reilly also publishes books
on network protocols, programming languages, Microsoft Windows, and other
non-UNIX tech topics. All the books are reasonably priced, timely, and focused.

Many readers turn to O’Reilly’s Safari Books Online, a subscription service that
offers unlimited electronic access to books, videos, and other learning resources.
Content from many publishers is included—not just O’Reilly—and you can choose
from an immense library of material.

RFC publications

Request for Comments documents describe the protocols and procedures used on
the Internet. Most of these are relatively detailed and technical, but some are written
as overviews. The phrase “reference implementation” applied to software usually
translates to “implemented by a trusted source according to the RFC specification.”

RFCs are absolutely authoritative, and many are quite useful for system administra-
tors. See page 376 for a more complete description of these documents. We refer
to various RFCs throughout this book.

http://www.debian.org/doc
http://www.help.ubuntu.com
http://www.redhat.com/docs
http://www.wiki.centos.org
http://www.freebsd.org/docs.html

Chapter 1 Where to Start

1.9 OTHER SOURCES OF INFORMATION

The sources discussed in the previous section are peer reviewed and written by au-
thoritative sources, but they’re hardly the last word in UNIX and Linux administra-
tion. Countless blogs, discussion forums, and news feeds are available on the Internet.

It should go without saying, but Google is a system administrator’s best friend. Un-
less you're looking up the details of a specific command or file format, Google or an
equivalent search engine should be the first resource you consult for any sysadmin
question. Make it a habit; if nothing else, you'll avoid the delay and humiliation of
having your questions in an on-line forum answered with a link to Google.! When
stuck, search the web.

Keeping current

Operating systems and the tools and techniques that support them change rapidly.
Read the sites in Table 1.5 with your morning coffee to keep abreast of industry trends.

Table 1.5 Resources for keeping up to date

Web site Description

darkreading.com Security news, trends, and discussion
devopsreactions.tumblr.com Sysadmin humor in animated GIF form

linux.com A Linux Foundation site; forum, good for new users
linuxfoundation.org Nonprofit fostering OSS, employer of Linus Torvalds
Iwn.net High-quality, timely articles on Linux and 0SS
Ixer.com Linux news aggregator

securityfocus.com Vulnerability reports and security-related mailing lists
@SwiftOnSecurity Infosec opinion from Taylor Swift (parody account)
@nixcraft Tweets about UNIX and Linux administration
everythingsysadmin.com Blog of Thomas Limoncelli, respected sysadmin®
sysadvent.blogspot.com Advent for sysadmins with articles each December
oreilly.com/topics Learning resources from O'Reilly on many topics
schneier.com Blog of Bruce Schneier, privacy and security expert

a. See also Tom'’s collection of April Fools' Day RFCs at rfc-humor.com

Social media are also useful. Twitter and reddit in particular have strong, engaged
communities with a lot to offer, though the signal-to-noise ratio can sometimes be
quite bad. On reddit, join the sysadmin, linux, linuxadmin, and netsec subreddits.

1. Or worse yet, a link to Google through Imgtfy.com

http://rfc-humor.com
http://lmgtfy.com
http://www.darkreading.com
http://www.devopsreactions.tumblr.com
http://www.linux.com
http://www.linuxfoundation.org
http://www.lwn.net
http://www.lxer.com
http://www.securityfocus.com
http://www.@SwiftOnSecurity
http://www.@nixcraft
http://www.everythingsysadmin.com
http://www.sysadvent.blogspot.com
http://www.oreilly.com/topics
http://www.schneier.com

Table 1.6

1.10

Ways to find and install software 19

HowTos and reference sites

The sites listed in Table 1.6 contain guides, tutorials, and articles about how to ac-
complish specific tasks on UNIX and Linux.

Task-specific forums and reference sites

Web site Description

wiki.archlinux.org Articles and guides for Arch Linux; many are more general
askubuntu.com Q&A for Ubuntu users and developers

digitalocean.com Tutorials on many 0SS, development, and sysadmin topics?®
kernel.org Official Linux kernel site

serverfault.com Collaboratively edited database of sysadmin questions”®

serversforhackers.com High-quality videos, forums, and articles on administration

a. See digitalocean.com/community/tutorials
b. Also see the sister site stackoverflow.com, which is dedicated to programming but useful for sysadmins

Stack Overflow and Server Fault, both listed in Table 1.6 (and both members of
the Stack Exchange group of sites), warrant a closer look. If you're having a prob-
lem, chances are that somebody else has already seen it and asked for help on one
of these sites. The reputation-based Q&A format used by the Stack Exchange sites
has proved well suited to the kinds of problems that sysadmins and programmers
encounter. It's worth creating an account and joining this large community.

Conferences

Industry conferences are a great way to network with other professionals, keep tabs
on technology trends, take training classes, gain certifications, and learn about the
latest services and products. The number of conferences pertinent to administra-
tion has exploded in recent years. Table 1.7 on the next page highlights some of
the most prominent ones.

Meetups (meetup.com) are another way to network and engage with like-minded
people. Most urban areas in the United States and around the world have a Linux
user group or DevOps meetup that sponsors speakers, discussions, and hack days.

WAYS TO FIND AND INSTALL SOFTWARE

Chapter 6, Software Installation and Management, addresses software provision-
ing in detail. But for the impatient, here’s a quick primer on how to find out what’s
installed on your system and how to obtain and install new software.

Modern operating systems divide their contents into packages that can be installed
independently of one another. The default installation includes a range of starter
packages that you can expand and contract according to your needs. When adding

http://digitalocean.com/community/tutorials
http://stackoverflow.com
http://meetup.com
http://www.wiki.archlinux.org
http://www.askubuntu.com
http://www.digitalocean.com
http://www.kernel.org
http://www.serverfault.com
http://www.serversforhackers.com

Chapter 1 Where to Start

Table 1.7 Conferences relevant to system administrators

Conference Location When Description
LISA Varies Q4 Large Installation System Administration
Monitorama Portland June Monitoring tools and techniques
OSCON Varies (US/EU) Q2 orQ3 Long-running O'Reilly OSS conference
SCALE Pasadena Jan Southern California Linux Expo
DefCon Las Vegas July Oldest and largest hacker convention
Velocity Global Varies O'Reilly conference on web operations
BSDCan Ottawa May/June Everything BSD from novices to gurus
re:lnvent Las Vegas Q4 AWS cloud computing conference
VMWorld Varies (US/EU) Q3 o0rQ4 Virtualization and cloud computing
LinuxCon Global Varies The future of Linux
RSA San Francisco QlorQ2 Enterprise cryptography and infosec
DevOpsDays Global Varies A range of topics on bridging the gap
between development and ops teams
QCon Global Varies A conference for software developers

software, don your security hat and remember that additional software creates ad-
ditional attack surface. Only install what’s necessary.

Add-on software is often provided in the form of precompiled packages as well,
although the degree to which this is a mainstream approach varies widely among
systems. Most software is developed by independent groups that release the soft-
ware in the form of source code. Package repositories then pick up the source code,
compile it appropriately for the conventions in use on the systems they serve, and
package the resulting binaries. It's usually easier to install a system-specific binary
package than to fetch and compile the original source code. However, packagers
are sometimes a release or two behind the current version.

The fact that two systems use the same package format doesn’t necessarily mean
that packages for the two systems are interchangeable. Red Hat and SUSE both use
RPM, for example, but their filesystem layouts are somewhat different. It’s best to
use packages designed for your particular system if they are available.

Our example systems provide excellent package management systems that include
tools for accessing and searching hosted software repositories. Distributors aggres-
sively maintain these repositories on behalf of the community, to facilitate patching
and software updates. Life is good.

When the packaged format is insufficient, administrators must install software the
old-fashioned way: by downloading a tar archive of the source code and manually
configuring, compiling, and installing it. Depending on the software and the oper-
ating system, this process can range from trivial to nightmarish.

See Chapter 6

for more informa-
tion about package
management.

Ways to find and install software 21

In this book, we generally assume that optional software is already installed rather
than torturing you with boilerplate instructions for installing every package. If there’s
a potential for confusion, we sometimes mention the exact names of the packages
needed to complete a particular project. For the most part, however, we don’t repeat
installation instructions since they tend to be similar from one package to the next.

Determining if software is already installed

For a variety of reasons, it can be a bit tricky to determine which package contains
the software you actually need. Rather than starting at the package level, it’s easier
to use the shell's which command to find out if a relevant binary is already in your
search path. For example, the following command reveals that the GNU C compiler
has already been installed on this machine:

ubuntu$ which gcc
Jusr/bin/gcc

If which can't find the command you're looking for, try whereis; it searches a broader
range of system directories and is independent of your shell’s search path.

Another alternative is the incredibly useful locate command, which consults a pre-
compiled index of the filesystem to locate filenames that match a particular pattern.

FreeBSD includes locate as part of the base system. In Linux, the current imple-
mentation of locate is in the mlocate package. On Red Hat and CentOS, install the
mlocate package with yum; see page 174.

locate can find any type of file; it is not specific to commands or packages. For
example, if you weren’t sure where to find the signal.h include file, you could try

freebsd$ locate signal.h
Jusr/include/machine/signal.h
Jusr/include/signal.h
Jusr/include/sys/signal.h

locate’s database is updated periodically by the updatedb command (in FreeBSD,
locate.updatedb), which runs periodically out of cron. Therefore, the results of a
locate don’t always reflect recent changes to the filesystem.

If you know the name of the package you're looking for, you can also use your sys-
tem’s packaging utilities to check directly for the package’s presence. For example,
on a Red Hat system, the following command checks for the presence (and installed
version) of the Python interpreter:

redhat$ rpm -q python
python-2.7.5-18.el17_1.1.x86_64

22

Chapter 1 Where to Start

You can also find out which package a particular file belongs to:

redhat$ rpm —qf /etc/httpd
httpd-2.4.6-31.el7.centos.x86_64

freebsd$ pkg which /usr/local/sbin/httpd
Jusr/local/sbin/httpd was installed by package apache24-2.4.12

ubuntu$ dpkg-query -S /etc/apache2
apache2: /etc/apache2

Adding new software

If you do need to install additional software, you first need to determine the canon-
ical name of the relevant software package. For example, youd need to translate “I

want to install locate” to “I need to install the mlocate package,” or translate “I need

named” to “I have to install BIND.” A variety of system-specific indexes on the web

can help with this, but Google is usually just as effective. For example, a search for
“locate command” takes you directly to several relevant discussions.

The following examples show the installation of the tcpdump command on each of
our example systems. tcpdump is a packet capture tool that lets you view the raw
packets being sent to and from the system on the network.

(z -) @ Debian and Ubuntu use APT, the Debian Advanced Package Tool:

ubuntu# sudo apt-get install tcpdump
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
tcpdump
O upgraded, 1 newly installed, O to remove and 81 not upgraded.
Need to get @ B/360 kB of archives.
After this operation, 1,179 kB of additional disk space will be used.
Selecting previously unselected package tcpdump.
(Reading database ... 63846 files and directories currently installed.)
Preparing to unpack .../tcpdump_4.6.2-4ubuntul_amd64.deb ...
Unpacking tcpdump (4.6.2-4ubuntul) ...
Processing triggers for man-db (2.7.0.2-5) ...
Setting up tcpdump (4.6.2-4ubuntul) ...

RHEL % The Red Hat and CentOS version is

redhat# sudo yum install tcpdump
Loaded plugins: fastestmirror
Determining fastest mirrors

* base: mirrors.xmission.com
epel: linux.mirrors.es.net
extras: centos.arvixe.com
updates: repos.lax.quadranet.com

* X X

http://mirrors.xmission.com
http://linux.mirrors.es.net
http://centos.arvixe.com
http://repos.lax.quadranet.com

Ways to find and install software 23

Resolving Dependencies
--> Running transaction check
---> Package tcpdump.x86_64 14:4.5.1-2.e17 will be installed
—--> Finished Dependency Resolution
tcpdump-4.5.1-2.e17.x86_64.rpm | 387 kB 00:00
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction

Installing : 14:tcpdump-4.5.1-2.e17.x86_64 1/1

Verifying : 14:tcpdump-4.5.1-2.e17.x86_64 1/1
Installed:

tcpdump.x86_64 14:4.5.1-2.el7
Complete!

' 4
‘ The package manager for FreeBSD is pkg.

freebsd# sudo pkg install -y tcpdump

Updating FreeBSD repository catalogue...

Fetching meta.txz: 100% 944 B 0.9kB/s 00:01
Fetching packagesite.txz: 100% 5 MiB 5.5MB/s 00:01
Processing entries: 100%

FreeBSD repository update completed. 24632 packages processed.
All repositories are up-to-date.

The following 2 package(s) will be affected (of O checked):

New packages to be INSTALLED:
tcpdump: 4.7.4
libsmi: 0.4.8_1

The process will require 17 MiB more space.

2 MiB to be downloaded.

Fetching tcpdump-4.7.4.txz: 100% 301 KiB 307.7kB/s 00:01
Fetching 1ibsmi-0.4.8_1.txz: 100% 2 MiB 2.0MB/s 00:01
Checking integrity... done (O conflicting)

[1/2] Installing libsmi-0.4.8_1...

[1/2] Extracting libsmi-0.4.8_1: 100%

[2/2] Installing tcpdump-4.7.4...

[2/2] Extracting tcpdump-4.7.4: 100%

Building software from source code
As an illustration, here’s how you build a version of tcpdump from the source code.
The first chore is to identify the code. Software maintainers sometimes keep an in-

dex of releases on the project’s web site that are downloadable as tarballs. For open
source projects, you're most likely to find the code in a Git repository.

24

Chapter 1 Where to Start

The tcpdump source is kept on GitHub. Clone the repository in the /tmp directo-
ry, create a branch of the tagged version you want to build, then unpack, configure,
build, and install it:

redhat$ ed /tmp

redhat$ git clone https://github.com/the-tcpdump-group/tcpdump.git
<status messages as repository is cloned>

redhat$ cd tcpdump

redhat$ git checkout tags/tcpdump-4.7.4 -b tcpdump-4.7.4
Switched to a new branch 'tcpdump-4.7.4'

redhat$./configure

checking build system type... x86_64-unknown-1linux-gnu
checking host system type... x86_64-unknown-1linux-gnu
checking for gcc... gcc

checking whether the C compiler works... yes

redhat$ make

<several pages of compilation output>
redhat$ sudo make install

<files are moved in to place>

This configure/make/make install sequence is common to most software written
in C and works on all UNIX and Linux systems. It’s always a good idea to check
the package’s INSTALL or README file for specifics. You must have the develop-
ment environment and any package-specific prerequisites installed. (In the case of
tcpdump, libpcap and its libraries are prerequisites.)

You'll often need to tweak the build configuration, so use ./configure --help to see
the options available for each particular package. Another useful configure option
is --prefix=directory, which lets you compile the software for installation somewhere
other than /usr/local, which is usually the default.

Installing from a web script

Cross-platform software bundles increasingly offer an expedited installation pro-
cess that’s driven by a shell script you download from the web with curl, fetch, or
wget.” For example, to set up a machine as a Salt client, you can run the following
commands:

$ curl -o /tmp/saltboot -sL https://bootstrap.saltstack.com
$ sudo sh /tmp/saltboot

The bootstrap script investigates the local environment, then downloads, installs,
and configures an appropriate version of the software. This type of installation is
particularly common in cases where the process itself is somewhat complex, but
the vendor is highly motivated to make things easy for users. (Another good ex-
ample is RVM; see page 232.)

. These are all simple HTTP clients that download the contents of a URL to a local file or, optionally,

print the contents to their standard output.

See Chapter 6

for more informa-
tion about package
installation.

See page 1007 for
details on HTTPS’s
chain of trust.

1.1

Where to host 25

This installation method is perfectly fine, but it raises a couple of issues that are
worth mentioning. To begin with, it leaves no proper record of the installation for
future reference. If your operating system offers a packagized version of the soft-
ware, it’s usually preferable to install the package instead of running a web installer.
Packages are easy to track, upgrade, and remove. (On the other hand, most OS-level
packages are out of date. You probably won’t end up with the most current version
of the software.)

Be very suspicious if the URL of the boot script is not secure (that is, it does not start
with https:). Unsecured HTTP is trivial to hijack, and installation URLs are of par-
ticular interest to hackers because they know you're likely to run, as root, whatever
code comes back. By contrast, HTTPS validates the identity of the server through
a cryptographic chain of trust. Not foolproof, but reliable enough.

A few vendors publicize an HT TP installation URL that automatically redirects to
an HTTPS version. This is dumb and is in fact no more secure than straight-up
HTTP. There’s nothing to prevent the initial HT TP exchange from being intercept-
ed, so you might never reach the vendor’s redirect. However, the existence of such
redirects does mean it’s worth trying your own substitution of https for http in in-
secure URLs. More often than not, it works just fine.

The shell accepts script text on its standard input, and this feature enables tidy, one-
line installation procedures such as the following:

$ curl -L https://badvendor.com | sudo sh

However, there’s a potential issue with this construction in that the root shell still
runs even if curl outputs a partial script and then fails—say, because of a transient
network glitch. The end result is unpredictable and potentially not good.

We are not aware of any documented cases of problems attributable to this cause.
Nevertheless, it is a plausible failure mode. More to the point, piping the output of
curl to a shell has entered the collective sysadmin unconscious as a prototypical
rookie blunder, so if you must do it, at least keep it on the sly.

The fix is easy: just save the script to a temporary file, then run the script in a sep-
arate step after the download successfully completes.

WHERE TO HOST

Operating systems and software can be hosted in private data centers, at co-location
facilities, on a cloud platform, or on some combination of these. Most burgeoning
startups choose the cloud. Established enterprises are likely to have existing data
centers and may run a private cloud internally.

26

1.12

See page 1106 for more
comments on DevOps.

Chapter 1 Where to Start

The most practical choice, and our recommendation for new projects, is a public
cloud provider. These facilities offer numerous advantages over data centers:

« No capital expenses and low initial operating costs

« No need to install, secure, and manage hardware

+ On-demand adjustment of storage, bandwidth, and compute capacity

« Ready-made solutions for common ancillary needs such as databases, load
balancers, queues, monitoring, and more

o Cheaper and simpler implementation of highly available/redundant systems

Early cloud systems acquired a reputation for inferior security and performance, but
these are no longer major concerns. These days, most of our administration work
is in the cloud. See Chapter 9 for a general introduction to this space.

Our preferred cloud platform is the leader in the space: Amazon Web Services (AWS).
Gartner, a leading technology research firm, found that AWS is ten times the size
of all competitors combined. AWS innovates rapidly and offers a much broader
array of services than does any other provider. It also has a reputation for excellent
customer service and supports a large and engaged community. AWS offers a free
service tier to cut your teeth on, including a year’s use of a low powered cloud server.

Google Cloud Platform (GCP) is aggressively improving and marketing its prod-
ucts. Some claim that its technology is unmatched by other providers. GCP’s growth
has been slow, in part due to Google’s reputation for dropping support for popular
offerings. However, its customer-friendly pricing terms and unique features are
appealing differentiators.

DigitalOcean is a simpler service with a stated goal of high performance. Its target
market is developers, whom it woos with a clean API, low pricing, and extremely fast
boot times. DigitalOcean is a strong proponent of open source software, and their
tutorials and guides for popular Internet technologies are some of the best available.

SPECIALIZATION AND ADJACENT DISCIPLINES

System administrators do not exist in a vacuum; a team of experts is required to
build and maintain a complex network. This section describes some of the roles
with which system administrators overlap in skills and scope. Some administrators
choose to specialize in one or more of these areas.

Your goal as a system administrator, or as a professional working in any of these
related areas, is to achieve the objectives of the organization. Avoid letting politics
or hierarchy interfere with progress. The best administrators solve problems and
share information freely with others.

DevOps

DevOps is not so much a specific function as a culture or operational philosophy.
It aims to improve the efficiency of building and delivering software, especially at

Specialization and adjacent disciplines 27

large sites that have many interrelated services and teams. Organizations with a
DevOps practice promote integration among engineering teams and may draw
little or no distinction between development and operations. Experts who work in
this area seek out inefficient processes and replace them with small shell scripts or
large and unwieldy Chef repositories.

Site reliability engineers

Site reliability engineers value uptime and correctness above all else. Monitoring
networks, deploying production software, taking pager duty, planning future expan-
sion, and debugging outages all lie within the realm of these availability crusaders.
Single points of failure are site reliability engineers’ nemeses.

Security operations engineers

Security operations engineers focus on the practical, day-to-day side of an infor-
mation security program. These folks install and operate tools that search for vul-
nerabilities and monitor for attacks on the network. They also participate in attack
simulations to gauge the effectiveness of their prevention and detection techniques.

Network administrators

Network administrators design, install, configure, and operate networks. Sites that
operate data centers are most likely to employ network administrators; thats be-
cause these facilities have a variety of physical switches, routers, firewalls, and other
devices that need management. Cloud platforms also offer a variety of networking
options, but these usually don’t require a dedicated administrator because most of
the work is handled by the provider.

Database administrators

Database administrators (sometimes known as DBAs) are experts at installing
and managing database software. They manage database schemas, perform instal-
lations and upgrades, configure clustering, tune settings for optimal performance,
and help users formulate efficient queries. DBAs are usually wizards with one or
more query languages and have experience with both relational and nonrelational
(NoSQL) databases.

Network operations center (NOC) engineers

NOC engineers monitor the real-time health of large sites and track incidents and
outages. They troubleshoot tickets from users, perform routine upgrades, and co-
ordinate actions among other teams. They can most often be found watching a wall
of monitors that show graphs and measurements.

28

1.13

Chapter 1 Where to Start

Data center technicians

Data center technicians work with hardware. They receive new equipment, track
equipment inventory and life cycles, install servers in racks, run cabling, maintain
power and air conditioning, and handle the daily operations of a data center. As a
system administrator, it’s in your best interest to befriend data center technicians
and bribe them with coffee, caffeinated soft drinks, and alcoholic beverages.

Architects

Systems architects have deep expertise in more than one area. They use their expe-
rience to design distributed systems. Their job descriptions may include defining
security zones and segmentation, eliminating single points of failure, planning for
future growth, ensuring connectivity among multiple networks and third parties,
and other site-wide decision making. Good architects are technically proficient and
generally prefer to implement and test their own designs.

RECOMMENDED READING

ABBOTT, MARTIN L., AND MICHAEL T. FISHER. The Art of Scalability: Scalable Web
Architecture, Processes, and Organizations for the Modern Enterprise (2nd Edition).
Addison-Wesley Professional, 2015.

GANCARZ, MIKE. Linux and the Unix Philosophy. Boston: Digital Press, 2003.

LiMoNCELLL, THOMAS A., AND PETER SaLus. The Complete April Fools’ Day RFCs.
Peer-to-Peer Communications LLC. 2007. Engineering humor. You can read this
collection on-line for free at rfc-humor.com.

RayMoND, Eric S. The Cathedral & The Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. Sebastopol, CA: O’Reilly Media, 2001.

Sarus, PETER H. The Daemon, the GNU & the Penguin: How Free and Open Soft-
ware is Changing the World. Reed Media Services, 2008. This fascinating history
of the open source movement by UNIX’s best-known historian is also available at
groklaw.com under the Creative Commons license. The URL for the book itself is
quite long; look for a current link at groklaw.com or try this compressed equiva-
lent: tinyurl.com/d6u7j.

SIEVER, ELLEN, STEPHEN FIGGINS, ROBERT LOVE, AND ARNOLD ROBBINS. Linux in
a Nutshell (6th Edition). Sebastopol, CA: O’Reilly Media, 2009.

System administration and DevOps

KiMm, GENE, KEVIN BEHR, AND GEORGE SPAFFORD. The Phoenix Project: A Novel
about IT, DevOps, and Helping Your Business Win. Portland, OR: IT Revolution
Press, 2014. A guide to the philosophy and mindset needed to run a modern IT
organization, written as a narrative. An instant classic.

http://rfc-humor.com
http://groklaw.com
http://groklaw.com
http://tinyurl.com/d6u7j

Recommended reading 29

Kim, GENE, JEz HUMBLE, PATRICK DEBOIS, AND JOHN WILLIS. The DevOps Hand-
book: How to Create World-Class Agility, Reliability, and Security in Technology Or-
ganizations. Portland, OR: IT Revolution Press, 2016.

LIMONCELLI, THOMAS A., CHRISTINA J. HOGAN, AND STRATA R. CHALUP. The
Practice of System and Network Administration (2nd Edition). Reading, MA: Ad-
dison-Wesley, 2008. This is a good book with particularly strong coverage of the
policy and procedural aspects of system administration. The authors maintain a
system administration blog at everythingsysadmin.com.

LiMONCELLI, THOMAS A., CHRISTINA J. HOGAN, AND STRATA R. CHALUP. The Prac-
tice of Cloud System Administration. Reading, MA: Addison-Wesley, 2014. From
the same authors as the previous title, now with a focus on distributed systems and
cloud computing.

Essential tools
BruM, RICHARD, AND CHRISTINE BRESNAHAN. Linux Command Line and Shell
Scripting Bible (3rd Edition). Wiley, 2015.

DOUGHERTY, DALE, AND ARNOLD ROBINS. Sed & Awk (2nd Edition). Sebastopol,
CA: O'Reilly Media, 1997. Classic O’'Reilly book on the powerful, indispensable
text processors sed and awk.

Kim, PETER. The Hacker Playbook 2: Practical Guide To Penetration Testing. Cre-
ateSpace Independent Publishing Platform, 2015.

NEIL, DREW. Practical Vim: Edit Text at the Speed of Thought. Pragmatic Bookshelf,
2012.

SHoTTS, WiLLIAM E. The Linux Command Line: A Complete Introduction. San Fran-
cisco, CA: No Starch Press, 2012.

SWEIGART, AL. Automate the Boring Stuff with Python: Practical Programming for
Total Beginners. San Francisco, CA: No Starch Press, 2015.

http://everythingsysadmin.com

Booting and System
Management Daemons

“Booting” is the standard term for “starting up a computer.” It’s a shortened form of
the word “bootstrapping,” which derives from the notion that the computer has to
pull itself up by its own bootstraps”

<«

The boot process consists of a few broadly defined tasks:

« Finding, loading, and running bootstrapping code

« Finding, loading, and running the OS kernel

 Running startup scripts and system daemons

« Maintaining process hygiene and managing system state transitions

The activities included in that last bullet point continue as long as the system remains
up, so the line between bootstrapping and normal operation is inherently a bit blurry.

2.1 BOOT PROCESS OVERVIEW

Startup procedures have changed a lot in recent years. The advent of modern (UEFI)
BIOSs has simplified the early stages of booting, at least from a conceptual stand-
point. In later stages, most Linux distributions now use a system manager daemon
called systemd instead of the traditional UNIX init. systemd streamlines the boot

30

Boot process overview 31

process by adding dependency management, support for concurrent startup pro-
cesses, and a comprehensive approach to logging, among other features.

Boot management has also changed as systems have migrated into the cloud. The
drift toward virtualization, cloud instances, and containerization has reduced the
need for administrators to touch physical hardware. Instead, we now have image
management, APIs, and control panels.

During bootstrapping, the kernel is loaded into memory and begins to execute. A
variety of initialization tasks are performed, and the system is then made available
to users. The general overview of this process is shown in Exhibit A.

Exhibit A Linux & UNIX boot process

Power Load kernel Instantiate kernel
On data structures
Load BIOS/UEFI Determine which Start init/systemd
from NVRAM kernel to boot asPID 1
Probe for Load boot loader Execute
hardware (e.g., GRUB) startup scripts
Select boot device Identify EFI
(disk, network, ...) m system partition Running system

Administrators have little direct, interactive control over most of the steps required
to boot a system. Instead, admins can modify bootstrap configurations by editing
config files for the system startup scripts or by changing the arguments the boot
loader passes to the kernel.

Before the system is fully booted, filesystems must be checked and mounted and
system daemons started. These procedures are managed by a series of shell scripts
(sometimes called “init scripts”) or unit files that are run in sequence by init or
parsed by systemd. The exact layout of the startup scripts and the manner in which
they are executed varies among systems. We cover the details later in this chapter.

Chapter 2 Booting and System Management Daemons

SYSTEM FIRMWARE

When a machine is powered on, the CPU is hardwired to execute boot code stored
in ROM. On virtualized systems, this “‘ROM” may be imaginary, but the concept
remains the same.

The system firmware typically knows about all the devices that live on the mother-
board, such as SATA controllers, network interfaces, USB controllers, and sensors
for power and temperature.! In addition to allowing hardware-level configuration
of these devices, the firmware lets you either expose them to the operating system
or disable and hide them.

On physical (as opposed to virtualized) hardware, most firmware offers a user in-
terface. However, it’s generally crude and a bit tricky to access. You need control of
the computer and console, and must press a particular key immediately after pow-
ering on the system. Unfortunately, the identity of the magic key varies by manufac-
turer; see if you can glimpse a cryptic line of instructions at the instant the system
first powers on.? Barring that, try Delete, Control, F6, F8, F10, or F11. For the best
chance of success, tap the key several times, then hold it down.

During normal bootstrapping, the system firmware probes for hardware and disks,
runs a simple set of health checks, and then looks for the next stage of bootstrap-
ping code. The firmware Ul lets you designate a boot device, usually by prioritizing
a list of available options (e.g., “try to boot from the DVD drive, then a USB drive,
then a hard disk”).

In most cases, the system’s disk drives populate a secondary priority list. To boot
from a particular drive, you must both set it as the highest-priority disk and make
sure that “hard disk” is enabled as a boot medium.

BIOS vs. UEFI

Traditional PC firmware was called the BIOS, for Basic Input/Output System. Over
the last decade, however, BIOS has been supplanted by a more formalized and
modern standard, the Unified Extensible Firmware Interface (UEFI). You’ll often
see UEFI referred to as “UEFI BIOS,” but for clarity, we'll reserve the term BIOS
for the legacy standard in this chapter. Most systems that implement UEFI can
fall back to a legacy BIOS implementation if the operating system they’re booting
doesn’t support UEFI.

UEFI is the current revision of an earlier standard, EFI. References to the name
EFI persist in some older documentation and even in some standard terms, such
as “EFI system partition.” In all but the most technically explicit situations, you can
treat these terms as equivalent.

1. Virtual systems pretend to have this same set of devices.

2. You might find it helpful to disable the monitor’s power management features temporarily.

Partitioning is a
way to subdivide
Pphysical disks. See
page 742 for a more
detailed discussion.

See page 746 for
more information
about GPT partitions.

System firmware 33

UEFI support is pretty much universal on new PC hardware these days, but plen-
ty of BIOS systems remain in the field. Moreover, virtualized environments often
adopt BIOS as their underlying boot mechanism, so the BIOS world isn't in danger
of extinction just yet.

As much as wed prefer to ignore BIOS and just talk about UEFTI, it’s likely that you’ll
encounter both types of systems for years to come. UEFI also builds-in several ac-
commodations to the old BIOS regime, so a working knowledge of BIOS can be
quite helpful for deciphering the UEFI documentation.

Legacy BIOS

Traditional BIOS assumes that the boot device starts with a record called the MBR
(Master Boot Record). The MBR includes both a first-stage boot loader (aka “boot
block”) and a primitive disk partitioning table. The amount of space available for
the boot loader is so small (less than 512 bytes) that it’s not able to do much other
than load and run a second-stage boot loader.

Neither the boot block nor the BIOS is sophisticated enough to read any type of
standard filesystem, so the second-stage boot loader must be kept somewhere easy
to find. In one typical scenario, the boot block reads the partitioning information
from the MBR and identifies the disk partition marked as “active”” It then reads and
executes the second-stage boot loader from the beginning of that partition. This
scheme is known as a volume boot record.

Alternatively, the second-stage boot loader can live in the dead zone that lies be-
tween the MBR and the beginning of the first disk partition. For historical reasons,
the first partition doesn’t start until the 64™ disk block, so this zone normally con-
tains at least 32KB of storage: still not a lot, but enough to store a filesystem driver.
This storage scheme is commonly used by the GRUB boot loader; see page 35.

To effect a successful boot, all components of the boot chain must be properly in-
stalled and compatible with one another. The MBR boot block is OS-agnostic, but

because it assumes a particular location for the second stage, there may be multiple

versions that can be installed. The second-stage loader is generally knowledgeable

about operating systems and filesystems (it may support several of each), and usu-
ally has configuration options of its own.

UEFI

The UEFI specification includes a modern disk partitioning scheme known as GPT
(GUID Partition Table, where GUID stands for “globally unique identifier”). UEFI
also understands FAT (File Allocation Table) filesystems, a simple but functional
layout that originated in MS-DOS. These features combine to define the concept
of an EFI System Partition (ESP). At boot time, the firmware consults the GPT
partition table to identify the ESP. It then reads the configured target application
directly from a file in the ESP and executes it.

34

Chapter 2 Booting and System Management Daemons

Because the ESP is just a generic FAT filesystem, it can be mounted, read, written,
and maintained by any operating system. No “mystery meat” boot blocks are re-
quired anywhere on the disk.’

In fact, no boot loader at all is technically required. The UEFI boot target can be a
UNIX or Linux kernel that has been configured for direct UEFI loading, thus effect-
ing a loader-less bootstrap. In practice, though, most systems still use a boot loader,
partly because that makes it easier to maintain compatibility with legacy BIOSes.

UEFI saves the pathname to load from the ESP as a configuration parameter. With
no configuration, it looks for a standard path, usually /efi/boot/bootx64.efi on
modern Intel systems. A more typical path on a configured system (this one for
Ubuntu and the GRUB boot loader) would be /efi/ubuntu/grubx64.efi. Other dis-
tributions follow a similar convention.

UEFI defines standard APIs for accessing the system’s hardware. In this respect, it’s
something of a miniature operating system in its own right. It even provides for
UEFI-level add-on device drivers, which are written in a processor-independent
language and stored in the ESP. Operating systems can use the UEFI interface, or
they can take over direct control of the hardware.

Because UEFI has a formal API, you can examine and modify UEFI variables (in-
cluding boot menu entries) on a running system. For example, efibootmgr -v shows
the following summary of the boot configuration:

$ efibootmgr -v

BootCurrent: 0004

BootOrder: 0000,0001,0002,0004,0003

Boot0@OOO* EFI DVD/CDROM PciRoot(0x0)/Pci(0x1f,0x2)/Sata(1,0,0)

Boot@OO1* EFI Hard Drive PciRoot(0x0)/Pci(0Ox1f,0x2)/Sata(0,0,0)

Boot0OO2* EFI Network PciRoot(0x0)/Pci(0x5,0x0)/MAC(001c42fb5baf,0)

Boot0OO3* EFI Internal Shell MemoryMapped(11,0x7ed5d000,0x7fOdcfff)/
FvFile(c57ad6b7-0515-40a8-9d21-551652854e37)

Boot0OO4* ubuntu HD(1,GPT,020c8d3e-fd8c-4880-9b61-
ef4cffc3d76c,0x800,0x100000) /File(\EFI\ubuntu\shimx64.efi)

efibootmgr lets you change the boot order, select the next configured boot option,
or even create and destroy boot entries. For example, to set the boot order to try
the system drive before trying the network, and to ignore other boot options, we
could use the command

$ sudo efibootmgr -0 0004,0002
Here, we're specifying the options Boot0004 and Boot@002 from the output above.

The ability to modify the UEFI configuration from user space means that the firm-
ware’s configuration information is mounted read/write—a blessing and a curse. On

. Truth be told, UEFI does maintain an MBR-compatible record at the beginning of each disk to facili-

tate interoperability with BIOS systems. BIOS systems can't see the full GPT-style partition table, but
they at least recognize the disk as having been formatted. Be careful not to run MBR-specific admin-
istrative tools on GPT disks. They may think they understand the disk layout, but they do not.

2.3

Boot loaders 35

systems (typically, those with systemd) that allow write access by default, rm -rf /
can be enough to permanently destroy the system at the firmware level; in addition
to removing files, rm also removes variables and other UEFI information accessible
through /sys.* Yikes! Don't try this at home!

BOOT LOADERS

Most bootstrapping procedures include the execution of a boot loader that is dis-
tinct from both the BIOS/UEFI code and the OS kernel. It’s also separate from the
initial boot block on a BIOS system, if you're counting steps.

The boot loader’s main job is to identify and load an appropriate operating system
kernel. Most boot loaders can also present a boot-time user interface that lets you
select which of several possible kernels or operating systems to invoke.

Another task that falls to the boot loader is the marshaling of configuration argu-
ments for the kernel. The kernel doesn’t have a command line per se, but its startup

option handling will seem eerily similar from the shell. For example, the argument

single or -s usually tells the kernel to enter single-user mode instead of completing

the normal boot process.

Such options can be hard-wired into the boot loader’s configuration if you want them
used on every boot, or they can be provided on the fly through the boot loader’s UL

In the next few sections, we discuss GRUB (the Linux world’s predominant boot
loader) and the boot loaders used with FreeBSD.

GRUB: THE GRAND UNIFIED BOOT LOADER

& GRUB, developed by the GNU Project, is the default boot loader on most Linux

distributions. The GRUB lineage has two main branches: the original GRUB, now
called GRUB Legacy, and the newer, extra-crispy GRUB 2, which is the current
standard. Make sure you know which GRUB you're dealing with, as the two ver-
sions are quite different.

GRUB 2 has been the default boot manager for Ubuntu since version 9.10, and it
recently became the default for RHEL 7. All our example Linux distributions use
it as their default. In this book we discuss only GRUB 2, and we refer to it simply
as GRUB.

FreeBSD has its own boot loader (covered in more detail starting on page 39).
However, GRUB is perfectly happy to boot FreeBSD, too. This might be an advan-
tageous configuration if you're planning to boot multiple operating systems on a
single computer. Otherwise, the FreeBSD boot loader is more than adequate.

4. See g00.gl/QMSiSG (link to Phoronix article) for some additional details.

http://goo.gl/QMSiSG

36

See page 49 for more

Chapter 2 Booting and System Management Daemons

GRUB configuration
GRUB lets you specify parameters such as the kernel to boot (specified as a GRUB

about operating modes. “menu entry”) and the operating mode to boot into.

Since this configuration information is needed at boot time, you might imagine
that it would be stored somewhere strange, such as the system’s NVRAM or the
disk blocks reserved for the boot loader. In fact, GRUB understands most of the
filesystems in common use and can usually find its way to the root filesystem on its
own. This feat lets GRUB read its configuration from a regular text file.

The config file is called grub.cfg, and it’s usually kept in /boot/grub (/boot/grub2 in
Red Hat and CentOS) along with a selection of other resources and code modules
that GRUB might need to access at boot time.> Changing the boot configuration is
a simple matter of updating the grub.cfg file.

Although you can create the grub.cfg file yourself, it's more common to generate
it with the grub-mkconfig utility, which is called grub2-mkconfig on Red Hat
and CentOS and wrapped as update-grub on Debian and Ubuntu. In fact, most
distributions assume that grub.cfg can be regenerated at will, and they do so au-
tomatically after updates. If you don’t take steps to prevent this, your handcrafted
grub.cfg file will get clobbered.

As with all things Linux, distributions configure grub-mkconfig in a variety of ways.
Most commonly, the configuration is specified in /etc/default/grub in the form of
sh variable assignments. Table 2.1 shows some of the commonly modified options.

Table 2.1 Common GRUB configuration options from /etc/default/grub

Shell variable name Contents or function

GRUB_BACKGROUND Background image®

GRUB_CMDLINE_LINUX Kernel parameters to add to menu entries for Linux®
GRUB_DEFAULT Number or title of the default menu entry

GRUB_DISABLE_RECOVERY Prevents the generation of recovery mode entries
GRUB_PRELOAD_MODULES List of GRUB modules to be loaded as early as possible
GRUB_TIMEOUT Seconds to display the boot menu before autoboot

a. The background image must be a .png, .tga, .jpg, or .jpeg file.
b. Table 2.3 on page 38 lists some of the available options.

5. If you're familiar with UNIX filesystem conventions (see Chapter 5, The Filesystem, starting on
page 120), you might wonder why /boot/grub isn’t named something more standard-looking such
as /var/lib/grub or /usr/local/etc/grub. The reason is that the filesystem drivers used at boot time are
somewhat simplified. Boot loaders can’t handle advanced features such as mount points as they tra-
verse the filesystem. Everything in /boot should be a simple file or directory.

See page 122 for more
information about
mounting filesystems.

GRUB: the GRand Unified Boot loader 37

After editing /etc/default/grub, run update-grub or grub2-mkconfig to translate
your configuration into a proper grub.cfg file. As part of the configuration-building
process, these commands inventory the system’s bootable kernels, so they can be
useful to run after you make kernel changes even if you haven't explicitly changed
the GRUB configuration.

You may need to edit the /etc/grub.d/40_custom file to change the order in which
kernels are listed in the boot menu (after you create a custom kernel, for exam-
ple), set a boot password, or change the names of boot menu items. As usual, run
update-grub or grub2-mkconfig after making changes.

As an example, here’s a 40_custom file that invokes a custom kernel on an Ubuntu
system:

#!/bin/sh
exec tail -n +3 $0

This file provides an easy way to add custom menu entries. Just type
the menu entries you want to add after this comment. Be careful not to
change the 'exec tail' line above.

menuentry 'My Awesome Kernel' {
set root="'(hd0O,msdos1)’'
linux /awesome_kernel root=UUID=XXX-XXX-XXX ro quiet
initrd /initrd.img-awesome_kernel

}

In this example, GRUB loads the kernel from /awesome_kernel. Kernel paths are
relative to the boot partition, which historically was mounted as /boot but with the
advent of UEFI now is likely an unmounted EFI System Partition. Use gpart show
and mount to examine your disk and determine the state of the boot partition.

The GRUB command line

GRUB supports a command-line interface for editing config file entries on the fly
at boot time. To enter command-line mode, type c at the GRUB boot screen.

From the command line, you can boot operating systems that aren't listed in the
grub.cfg file, display system information, and perform rudimentary filesystem
testing. Anything that can be done through grub.cfg can also be done through
the command line.

Press the <Tab> key to see a list of possible commands. Table 2.2 on the next page
shows some of the more useful ones.

38

Table 2.2

See Chapter 11
for more about ker-
nel parameters.

Table 2.3

Chapter 2 Booting and System Management Daemons

GRUB commands

Cmd Function

boot Boots the system from the specified kernel image
help Gets interactive help for a command

linux Loads a Linux kernel

reboot Reboots the system

search Searches devices by file, filesystem label, or UUID
usb Tests USB support

For detailed information about GRUB and its command-line options, refer to the
official manual at gnu.org/software/grub/manual.

Linux kernel options

Kernel startup options typically modify the values of kernel parameters, instruct
the kernel to probe for particular devices, specify the path to the init or systemd
process, or designate a particular root device. Table 2.3 shows a few examples.

Examples of kernel boot time options

Option Meaning

debug Turns on kernel debugging

init=/bin/bash Starts only the bash shell; useful for emergency recovery
root=/dev/foo Tells the kernel to use /dev/foo as the root device
single Boots to single-user mode

When specified at boot time, kernel options are not persistent. Edit the appropriate
kernel line in /etc/grub.d/40_custom or /etc/defaults/grub (the variable named
GRUB_CMDLINE_LINUX) to make the change permanent across reboots.

Security patches, bug fixes, and features are all regularly added to the Linux kernel.
Unlike other software packages, however, new kernel releases typically do not re-
place old ones. Instead, the new kernels are installed side by side with the previous
versions so that you can return to an older kernel in the event of problems.

This convention helps administrators back out of an upgrade if a kernel patch
breaks their system, although it also means that the boot menu tends to get clut-
tered with old versions of the kernel. Try choosing a different kernel if your system
won't boot after an update.

http://gnu.org/software/grub/manual

The FreeBSD boot process 39

THE FREEBSD BOOT PROCESS

"0 FreeBSD’s boot system is a lot like GRUB in that the final-stage boot loader (called

See page 122 for more
information about
mounting filesystems.

loader) uses a filesystem-based configuration file, supports menus, and offers an
interactive, command-line-like mode. loader is the final common pathway for both
the BIOS and UEFI boot paths.

The BIOS path: boot0

As with GRUB, the full loader environment is too large to fit in an MBR boot block,
so a chain of progressively more sophisticated preliminary boot loaders get loader
up and running on a BIOS system.

GRUB bundles all of these components under the umbrella name “GRUB,” but in
FreeBSD, the early boot loaders are part of a separate system called boot0 that’s
used only on BIOS systems. boot0 has options of its own, mostly because it stores
later stages of the boot chain in a volume boot record (see Legacy BIOS on page
33) rather than in front of the first disk partition.

For that reason, the MBR boot record needs a pointer to the partition it should use
to continue the boot process. Normally, all this is automatically set up for you as
part of the FreeBSD installation process, but if you should ever need to adjust the
configuration, you can do so with the boot0cfg command.

The UEFI path

On UEFI systems, FreeBSD creates an EFI system partition and installs boot code
there under the path /boot/bootx64.efi.° This is the default path that UEFI sys-
tems check at boot time (at least on modern PC platforms), so no firmware-level
configuration should be needed other than ensuring that device boot priorities
are properly set.

By default, FreeBSD doesn’t keep the EFI system partition mounted after booting.
You can inspect the partition table with gpart to identify it:

$ gpart show

=> 40 134217648 ada® GPT (646)
40 1600 1 efi (800K)
1640 127924664 2 freebsd-ufs (61G)
127926304 6291383 3 freebsd-swap (3.0G)
134217687 1 - free - (512B)

Although you can mount the ESP if you're curious to see what’s in it (use mount’s
-t msdos option), the whole filesystem is actually just a copy of an image found in
/boot/bootl.efifat on the root disk. No user-serviceable parts inside.

6. Don’t confuse the /boot directory in the EFI system partition with the /boot directory in the FreeBSD
root filesystem. They are separate and serve different purposes, although of course both are boot-
strapping related.

40

Chapter 2 Booting and System Management Daemons

If the ESP partition gets damaged or removed, you can re-create it by setting up the
partition with gpart and then copying in the filesystem image with dd:

$ sudo dd if=/boot/bootl.efifat of=/dev/adaOp1l

Once the first-stage UEFI boot loader finds a partition of type freebsd-ufs,” it loads
a UEFI version of the loader software from /boot/loader.efi. From there, booting
proceeds as under BIOS, with loader determining the kernel to load, the kernel
parameters to set, and so on.

loader configuration

loader is actually a scripting environment, and the scripting language is Forth.®
There’s a bunch of Forth code stored under /boot that controls loader’s operations,
but it’s designed to be self-contained—you needn't learn Forth.

The Forth scripts execute /boot/loader.conf to obtain the values of configuration
variables, so that’s where your customizations should go. Don’t confuse this file with
/boot/defaults/loader.conf, which contains the configuration defaults and isn’t in-
tended for modification. Fortunately, the variable assignments in loader.conf are
syntactically similar to standard sh assignments.

The man pages for loader and loader.conf give the dirt on all the boot loader op-
tions and the configuration variables that control them. Some of the more interest-
ing options include those for protecting the boot menu with a password, changing
the splash screen displayed at boot, and passing kernel options.

loader commands

loader understands a variety of interactive commands. For example, to locate and
boot an alternate kernel, youd use a sequence of commands like this:

Type “?' for a list of commands, ‘help’ for more detailed help.
0K 1s

/

d .shap

d dev

d rescue
1 home

0K unload

0K load /boot/kernel/kernel.old

/boot/kernel/kernel.old text=0xf8f898 data=0x124 ... b077]
0K boot

7. As of FreeBSD 10.1, it is now possible to use ZFS as the root partition on a UEFI system.

8. This is a remarkable and interesting fact if you're a historian of programming languages, and unim-
portant otherwise.

2.6

Nel

System management daemons 41

Here, we listed the contents of the (default) root filesystem, unloaded the default
kernel (/boot/kernel/kernel), loaded an older kernel (/boot/kernel/kernel.old),
and then continued the boot process.

See man loader for complete documentation of the available commands.

SYSTEM MANAGEMENT DAEMONS

Once the kernel has been loaded and has completed its initialization process, it cre-
ates a complement of “spontaneous” processes in user space. They’re called spon-
taneous processes because the kernel starts them autonomously—in the normal
course of events, new processes are created only at the behest of existing processes.

Most of the spontaneous processes are really part of the kernel implementation.
They don’t necessarily correspond to programs in the filesystem. They’re not con-
figurable, and they don’t require administrative attention. You can recognize them
in ps listings (see page 98) by their low PIDs and by the brackets around their
names (for example, [pagedaemon] on FreeBSD or [kdump] on Linux).

The exception to this pattern is the system management daemon. It has process ID
1 and usually runs under the name init. The system gives init a couple of special
privileges, but for the most part it’s just a user-level program like any other daemon.

Responsibilities of init
init has multiple functions, but its overarching goal is to make sure the system runs
the right complement of services and daemons at any given time.

To serve this goal, init maintains a notion of the mode in which the system should
be operating. Some commonly defined modes:’

« Single-user mode, in which only a minimal set of filesystems is mounted,
no services are running, and a root shell is started on the console

o Multiuser mode, in which all customary filesystems are mounted and all
configured network services have been started, along with a window sys-
tem and graphical login manager for the console

« Server mode, similar to multiuser mode, but with no GUI running on
the console

Every mode is associated with a defined complement of system services, and the
initialization daemon starts or stops services as needed to bring the system’s actu-
al state into line with the currently active mode. Modes can also have associated
milepost tasks that run whenever the mode begins or ends.

. Don’t take these mode names or descriptions too literally; they’re just examples of common operating

modes that most systems define in one way or another.

Chapter 2 Booting and System Management Daemons

As an example, init normally takes care of many different startup chores as a side
effect of its transition from bootstrapping to multiuser mode. These may include

o Setting the name of the computer

o Setting the time zone

o Checking disks with fsck

« Mounting filesystems

« Removing old files from the /tmp directory

« Configuring network interfaces

« Configuring packet filters

« Starting up other daemons and network services

init has very little built-in knowledge about these tasks. In simply runs a set of com-
mands or scripts that have been designated for execution in that particular context.

Implementations of init

Today, three very different flavors of system management processes are in wide-
spread use:

o An init styled after the init from AT&T’s System V UNIX, which we re-
fer to as “traditional init” This was the predominant init used on Linux
systems until the debut of systemd.

« An init variant that derives from BSD UNIX and is used on most BSD-
based systems, including FreeBSD, OpenBSD, and NetBSD. This one is
just as tried-and-true as the SysV init and has just as much claim to being
called “traditional,” but for clarity we refer to it as “BSD init.” This variant
is quite simple in comparison with SysV-style init. We discuss it separately
starting on page 57.

« A more recent contender called systemd which aims to be one-stop-shop-
ping for all daemon- and state-related issues. As a consequence, systemd
carves out a significantly larger territory than any historical version of init.
That makes it somewhat controversial, as we discuss below. Nevertheless,
all our example Linux distributions have now adopted systemd.

Although these implementations are the predominant ones today, they’re far from
being the only choices. Apple’s macOS, for example, uses a system called launchd.
Until it adopted systemd, Ubuntu used another modern init variant called Upstart.

On Linux systems, you can theoretically replace your system’s default init with
whichever variant you prefer. But in practice, init is so fundamental to the opera-
tion of the system that a lot of add-on software is likely to break. If you can’t abide
systemd, standardize on a distribution that doesn’t use it.

See Chapter 6,
Software Installation
and Management,
for more informa-
tion about package
management.

System management daemons 43

Traditional init

In the traditional init world, system modes (e.g., single-user or multiuser) are known
as “run levels” Most run levels are denoted by a single letter or digit.

Traditional init has been around since the early 80s, and grizzled folks in the anti-
systemd camp often cite the principle, “If it ain’t broke, don't fix it” That said, tra-
ditional init does have a number of notable shortcomings.

To begin with, the traditional init on its own is not really powerful enough to han-
dle the needs of a modern system. Most systems that use it actually have a standard
and fixed init configuration that never changes. That configuration points to a sec-
ond tier of shell scripts that do the actual work of changing run levels and letting
administrators make configuration changes.

The second layer of scripts maintains yet a third layer of daemon- and system-spe-
cific scripts, which are cross-linked to run-level-specific directories that indicate
what services are supposed to be running at what run level. It’s all a bit hackish
and unsightly.

More concretely, this system has no general model of dependencies among services,
so it requires that all startups and takedowns be run in a numeric order that’s main-
tained by the administrator. Later actions can’t run until everything ahead of them
has finished, so it’s impossible to execute actions in parallel, and the system takes
a long time to change states.

systemd vs. the world

Few issues in the Linux space have been more hotly debated than the migration
from traditional init to systemd. For the most part, complaints center on systemd’s
seemingly ever-increasing scope.

systemd takes all the init features formerly implemented with sticky tape, shell
script hacks, and the sweat of administrators and formalizes them into a unified
field theory of how services should be configured, accessed, and managed.

Much like a package management system, systemd defines a robust dependency
model, not only among services but also among “targets,” systemd’s term for the
operational modes that traditional init calls run levels. systemd not only manages
processes in parallel, but also manages network connections (networkd), kernel
log entries (journald), and logins (logind).

The anti-systemd camp argues that the UNIX philosophy is to keep system com-
ponents small, simple, and modular. A component as fundamental as init, they
say, should not have monolithic control over so many of the OS’s other subsystems.
systemd not only breeds complexity, but also introduces potential security weak-
nesses and muddies the distinction between the OS platform and the services that
run on top of it.

44

2.7

Chapter 2 Booting and System Management Daemons

systemd has also received criticism for imposing new standards and responsibili-
ties on the Linux kernel, for its code quality, for the purported unresponsiveness of
its developers to bug reports, for the functional design of its basic features, and for
looking at people funny. We can't fairly address these issues here, but you may find it
informative to peruse the Arguments against systemd section at without-systemd.org,
the Internet’s premier systemd hate site.

inits judged and assigned their proper punishments

The architectural objections to systemd outlined above are all reasonable points.
systemd does indeed display most of the telltale stigmata of an overengineered
software project.

In practice, however, many administrators quite like systemd, and we fall squarely
into this camp. Ignore the controversy for a bit and give systemd a chance to win
your love. Once you've become accustomed to it, you will likely find yourself ap-
preciating its many merits.

At the very least, keep in mind that the traditional init that systemd displaces was
no national treasure. If nothing else, systemd delivers some value just by eliminat-
ing a few of the unnecessary differences among Linux distributions.

The debate really doesn’t matter anymore because the systemd coup is over. The ar-
gument was effectively settled when Red Hat, Debian, and Ubuntu switched. Many
other Linux distributions are now adopting systemd, either by choice or by being
dragged along, kicking and screaming, by their upstream distributions.

Traditional init still has a role to play when a distribution either targets a small
installation footprint or doesn’t need systemd’s advanced process management
functions. There’s also a sizable population of revanchists who disdain systemd on
principle, so some Linux distributions are sure to keep traditional init alive indef-
initely as a form of protest theater.

Nevertheless, we don’t think that traditional init has enough of a future to merit a
detailed discussion in this book. For Linux, we mostly limit ourselves to systemd.
We also discuss the mercifully simple system used by FreeBSD, starting on page 57.

SYSTEMD IN DETAIL

The configuration and control of system services is an area in which Linux distri-
butions have traditionally differed the most from one another. systemd aims to
standardize this aspect of system administration, and to do so, it reaches further
into the normal operations of the system than any previous alternative.

http://without-systemd.org

See page 594 for
more information
about rsync.

systemd in detail 45

systemd is not a single daemon but a collection of programs, daemons, libraries,
technologies, and kernel components. A post on the systemd blog at Opointer.de/blog
notes that a full build of the project generates 69 different binaries. Think of it as a
scrumptious buffet at which you are forced to consume everything.

Since systemd depends heavily on features of the Linux kernel, it’s a Linux-only
proposition. You won't see it ported to BSD or to any other variant of UNIX with-
in the next five years.

Units and unit files

An entity that is managed by systemd is known generically as a unit. More spe-
cifically, a unit can be “a service, a socket, a device, a mount point, an automount
point, a swap file or partition, a startup target, a watched filesystem path, a timer
controlled and supervised by systemd, a resource management slice, a group of
externally created processes, or a wormhole into an alternate universe”® OK, we
made up the part about the alternate universe, but that still covers a lot of territory.

Within systemd, the behavior of each unit is defined and configured by a unit file.
In the case of a service, for example, the unit file specifies the location of the ex-
ecutable file for the daemon, tells systemd how to start and stop the service, and
identifies any other units that the service depends on.

We explore the syntax of unit files in more detail soon, but here’s a simple example
from an Ubuntu system as an appetizer. This unit file is rsync.service; it handles
startup of the rsync daemon that mirrors filesystems.

[Unit]
Description=fast remote file copy program daemon
ConditionPathExists=/etc/rsyncd.conf

[Service]
ExecStart=/usr/bin/rsync --daemon --no-detach

[Install]
WantedBy=multi-user.target

If you recognize this as the file format used by MS-DOS .ini files, you are well on
your way to understanding both systemd and the anguish of the systemd haters.

Unit files can live in several different places. /usr/lib/systemd/system is the main
place where packages deposit their unit files during installation; on some systems,
the path is /lib/systemd/system instead. The contents of this directory are consid-
ered stock, so you shouldn’t modify them. Your local unit files and customizations
can go in /etc/systemd/system. There’s also a unit directory in /run/systemd/system
that’s a scratch area for transient units.

systemd maintains a telescopic view of all these directories, so they’re pretty much
equivalent. If there’s any conflict, the files in /etc have the highest priority.

10. Mostly quoted from the systemd.unit man page

http://0pointer.de/blog

46

See page 235 for more
information about Git.

Chapter 2 Booting and System Management Daemons

By convention, unit files are named with a suffix that varies according to the type
of unit being configured. For example, service units have a .service suffix and tim-
ers use .timer. Within the unit file, some sections (e.g., [Unit]) apply generically
to all kinds of units, but others (e.g., [Service]) can appear only in the context of
a particular unit type.

systemctl: manage systemd

systemctl is an all-purpose command for investigating the status of systemd and
making changes to its configuration. As with Git and several other complex software
suites, systemctl’s first argument is typically a subcommand that sets the general
agenda, and subsequent arguments are specific to that particular subcommand. The
subcommands could be top-level commands in their own right, but for consistency
and clarity, they’re bundled into the systemctl omnibus.

Running systemctl without any arguments invokes the default list-units subcom-
mand, which shows all loaded and active services, sockets, targets, mounts, and
devices. To show only loaded and active services, use the --type=service qualifier:

$ systemctl list-units --type=service
UNIT LOAD ACTIVE SUB DESCRIPTION
accounts—-daemon.service loaded active running Accounts Service

wpa_supplicant.service loaded active running WPA supplicant

It’s also sometimes helpful to see all the installed unit files, regardless of whether
or not they’re active:

$ systemctl list-unit-files --type=service

UNIT FILE STATE
cron.service enabled
cryptdisks-early.service masked
cryptdisks.service masked
cups—browsed.service enabled
cups.service disabled
wpa_supplicant.service disabled
x11-common.service masked

188 unit files listed.

For subcommands that act on a particular unit (e.g., systemctl status) systemctl
can usually accept a unit name without a unit-type suffix (e.g., cups instead of
cups.service). However, the default unit type with which simple names are fleshed
out varies by subcommand.

Table 2.4 shows the most common and useful systemctl subcommands. See the
systemctl man page for a complete list.

systemd in detail

47

Table 2.4 Commonly used systemctl subcommands

Subcommand

Function

list-unit-files [pattern]
enable unit
disable unit
isolate target
start unit

stop unit
restart unit
status unit

kill pattern
reboot
daemon-reload

Shows installed units; optionally matching pattern
Enables unit to activate at boot

Prevents unit from activating at boot

Changes operating mode to target

Activates unit immediately

Deactivates unit immediately

Restarts (or starts, if not running) unitimmediately
Shows unit's status and recent log entries

Sends a signal to units matching pattern

Reboots the computer

Reloads unit files and systemd configuration

Unit statuses

In the output of systemctl list-unit-files above, we can see that cups.service is dis-
abled. We can use systemctl status to find out more details:

$ sudo systemctl status -1 cups
cups.service - CUPS Scheduler
Loaded: loaded (/lib/systemd/system/cups.service; disabled; vendor

preset: enabled)

Active: inactive (dead) since Sat 2016-12-12 00:51:40 MST; 4s ago
Docs: man:cupsd(8)
Main PID: 10081 (code=exited, status=0/SUCCESS)

Dec 12 00:44:39 ulsah systemd[1]: Started CUPS Scheduler.
Dec 12 00:44:45 ulsah systemd[1]: Started CUPS Scheduler.
Dec 12 00:51:40 ulsah systemd[1]: Stopping CUPS Scheduler...
Dec 12 00:51:40 ulsah systemd[1]: Stopped CUPS Scheduler.

Here, systemctl shows us that the service is currently inactive (dead) and tells us
when the process died. (Just a few seconds ago; we disabled it for this example.) It
also shows (in the section marked Loaded) that the service defaults to being enabled
at startup, but that it is presently disabled.

The last four lines are recent log entries. By default, the log entries are condensed
so that each entry takes only one line. This compression often makes entries un-
readable, so we included the -1 option to request full entries. It makes no difference
in this case, but it’s a useful habit to acquire.

Table 2.5 on the next page shows the statuses you'll encounter most frequently
when checking up on units.

48

Chapter 2 Booting and System Management Daemons

Table 2.5 Unit file statuses

State Meaning

bad Some kind of problem within systemd; usually a bad unit file
disabled Present, but not configured to start autonomously

enabled Installed and runnable; will start autonomously

indirect Disabled, but has peersin Also clauses that may be enabled
linked Unit file available through a symlink

masked Banished from the systemd world from a logical perspective
static Depended upon by another unit; has no install requirements

The enabled and disabled states apply only to unit files that live in one of systemd’s
system directories (that is, they are not linked in by a symbolic link) and that have
an [Install] section in their unit files. “Enabled” units should perhaps really be
thought of as “installed,” meaning that the directives in the [Install] section have
been executed and that the unit is wired up to its normal activation triggers. In
most cases, this state causes the unit to be activated automatically once the system
is bootstrapped.

Likewise, the disabled state is something of a misnomer because the only thing
that’s actually disabled is the normal activation path. You can manually activate a
unit that is disabled by running systemctl start; systemd won’t complain.

Many units have no installation procedure, so they can’t truly be said to be enabled
or disabled; they’re just available. Such units’ status is listed as static. They only
become active if activated by hand (systemctl start) or named as a dependency of
other active units.

Unit files that are 1inked were created with systemctl link. This command creates a
symbolic link from one of systemd’s system directories to a unit file that lives else-
where in the filesystem. Such unit files can be addressed by commands or named
as dependencies, but they are not full citizens of the ecosystem and have some no-
table quirks. For example, running systemctl disable on a linked unit file deletes
the link and all references to it.

Unfortunately, the exact behavior of linked unit files is not well documented. Al-
though the idea of keeping local unit files in a separate repository and linking them
into systemd has a certain appeal, it's probably not the best approach at this point.
Just make copies.

The masked status means “administratively blocked”” systemd knows about the unit,
but has been forbidden from activating it or acting on any of its configuration direc-
tives by systemctl mask. As a rule of thumb, turn off units whose status is enabled

or linked with systemctl disable and reserve systemctl mask for static units.

systemd in detail 49

Returning to our investigation of the cups service, we could use the following com-
mands to reenable and start it:

$ sudo systemctl enable cups

Synchronizing state of cups.service with SysV init with /1ib/systemd/
systemd-sysv-install...

Executing /lib/systemd/systemd-sysv-install enable cups

insserv: warning: current start runlevel(s) (empty) of script ‘cups’
overrides LSB defaults (2 3 4 5).

insserv: warning: current stop runlevel(s) (1 2 3 4 5) of script ‘cups’
overrides LSB defaults (1).

Created symlink from /etc/systemd/system/sockets.target.wants/cups.socket
to /1lib/systemd/system/cups.socket.

Created symlink from /etc/systemd/system/multi-user.target.wants/cups.
path to /lib/systemd/system/cups.path.

$ sudo systemctl start cups

Targets

Unit files can declare their relationships to other units in a variety of ways. In the
example on page 45, for example, the WantedBy clause says that if the system
has a multi-user.target unit, that unit should depend on this one (rsync.service)
when this unit is enabled.

Because units directly support dependency management, no additional machin-
ery is needed to implement the equivalent of init’s run levels. For clarity, systemd
does define a distinct class of units (of type .target) to act as well-known markers
for common operating modes. However, targets have no real superpowers beyond
the dependency management that’s available to any other unit.

Traditional init defines at least seven numeric run levels, but many of those aren’t
actually in common use. In a perhaps-ill-advised gesture toward historical conti-
nuity, systemd defines targets that are intended as direct analogs of the init run
levels (runlevel0.target, etc.). It also defines mnemonic targets for day-to-day use
such as poweroff.target and graphical.target. Table 2.6 on the next page shows
the mapping between init run levels and systemd targets.

The only targets to really be aware of are multi-user.target and graphical.target for
day-to-day use, and rescue.target for accessing single-user mode. To change the
system’s current operating mode, use the systemctl isolate command:

$ sudo systemctl isolate multi-user.target

The isolate subcommand is so-named because it activates the stated target and its
dependencies but deactivates all other units.

Under traditional init, you use the telinit command to change run levels once the
system is booted. Some distributions now define telinit as a symlink to the systemctl
command, which recognizes how it’s being invoked and behaves appropriately.

Chapter 2 Booting and System Management Daemons

Table 2.6 Mapping between init run levels and systemd targets

Run level Target Description
0 poweroff.target System halt
emergency emergency.target Bare-bones shell for system recovery
1,s,single rescue.target Single-user mode
2 multi-user.target® Multiuser mode (command line)
3 multi-user.target® Multiuser mode with networking
4 multi-user.target> Not normally used by init
5 graphical.target Multiuser mode with networking and GUI
6 reboot.target System reboot

a. By default, multi-user.target maps to runlevel3.target, multiuser mode with networking.

To see the target the system boots into by default, run the get-default subcommand:

$ systemctl get-default
graphical.target

Most Linux distributions boot to graphical.target by default, which isn’t appropri-
ate for servers that don’t need a GUI But that’s easily changed:

$ sudo systemctl set-default multi-user.target
To see all the system’s available targets, run systemctl list-units:

$ systemctl list-units —-type=target

Dependencies among units

Linux software packages generally come with their own unit files, so administra-
tors don’t need a detailed knowledge of the entire configuration language. However,
they do need a working knowledge of systemd’s dependency system to diagnose
and fix dependency problems.

To begin with, not all dependencies are explicit. systemd takes over the functions of
the old inetd and also extends this idea into the domain of the D-Bus interprocess
communication system. In other words, systemd knows which network ports or
IPC connection points a given service will be hosting, and it can listen for requests
on those channels without actually starting the service. If a client does materialize,
systemd simply starts the actual service and passes off the connection. The service
runs if it’s actually used and remains dormant otherwise.

Second, systemd makes some assumptions about the normal behavior of most kinds
of units. The exact assumptions vary by unit type. For example, systemd assumes that
the average service is an add-on that shouldn’t be running during the early phases of
system initialization. Individual units can turn off these assumptions with the line

DefaultDependencies=false

Table 2.7

systemd in detail 51

in the [Unit] section of their unit file; the default is true. See the man page for
systemd.unit-type to see the exact assumptions that apply to each type of unit (e.g.,
man systemd.service).

A third class of dependencies are those explicitly declared in the [Unit] sections of
unit files. Table 2.7 shows the available options.

Explicit dependencies in the [Unit] section of unit files

Option Meaning

Wants Units that should be coactivated if possible, but are not required
Requires Strict dependencies; failure of any prerequisite terminates this service
Requisite Like Requires, but must already be active

BindsTo Similar to Requires, but even more tightly coupled

PartOf Similar to Requires, but affects only starting and stopping
Conflicts Negative dependencies; cannot be coactive with these units

With the exception of Conflicts, all the options in Table 2.7 express the basic idea
that the unit being configured depends on some set of other units. The exact dis-
tinctions among these options are subtle and primarily of interest to service devel-
opers. The least restrictive variant, Wants, is preferred when possible.

You can extend a unit’s Wants or Requires cohorts by creating a unit-file.wants or
unit-file.requires directory in /etc/systemd/system and adding symlinks there to
other unit files. Better yet, just let systemctl do it for you. For example, the command

$ sudo systemctl add-wants multi-user.target my.local.service

adds a dependency on my.local.service to the standard multiuser target, ensuring
that the service will be started whenever the system enters multiuser mode.

In most cases, such ad hoc dependencies are automatically taken care of for you,
courtesy of the [Install] sections of unit files. This section includes WantedBy
and RequiredBy options that are read only when a unit is enabled with systemctl
enable or disabled with systemctl disable. On enablement, they make systemctl
perform the equivalent of an add-wants for every WantedBy or an add-requires
for every RequiredBy.

The [Install] clauses themselves have no effect in normal operation, so if a unit
doesn’t seem to be started when it should be, make sure that it has been properly
enabled and symlinked.

Execution order

You might reasonably guess that if unit A Requires unit B, then unit B will be started
or configured before unit A. But in fact that is not the case. In systemd, the order

52

Chapter 2 Booting and System Management Daemons

in which units are activated (or deactivated) is an entirely separate question from
that of which units to activate.

When the system transitions to a new state, systemd first traces the various sources
of dependency information outlined in the previous section to identify the units
that will be affected. It then uses Before and After clauses from the unit files to
sort the work list appropriately. To the extent that units have no Before or After
constraints, they are free to be adjusted in parallel.

Although potentially surprising, this is actually a praiseworthy design feature. One of
the major design goals of systemd was to facilitate parallelism, so it makes sense that
units do not acquire serialization dependencies unless they explicitly ask for them.

In practice, After clauses are typically used more frequently than Wants or Requires.
Target definitions (and in particular, the reverse dependencies encoded in WantedBy
and RequiredBy clauses) establish the general outlines of the services running in
each operating mode, and individual packages worry only about their immediate
and direct dependencies.

A more complex unit file example

Now for a closer look at a few of the directives used in unit files. Here’s a unit file
for the NGINX web server, nginx.service:

[Unit]
Description=The nginx HTTP and reverse proxy server
After=network.target remote-fs.target nss-lookup.target

[Service]

Type=forking

PIDFile=/run/nginx.pid
ExecStartPre=/usr/bin/rm -f /run/nginx.pid
ExecStartPre=/usr/sbin/nginx -t
ExecStart=/usr/sbin/nginx
ExecReload=/bin/kill -s HUP $MAINPID
KillMode=process

KillSignal=SIGQUIT
TimeoutStopSec=5

PrivateTmp=true

[Install]
WantedBy=multi-user.target

This service is of type forking, which means that the startup command is expected
to terminate even though the actual daemon continues running in the background.
Since systemd won't have directly started the daemon, the daemon records its PID
(process ID) in the stated PIDFile so that systemd can determine which process
is the daemon’s primary instance.

The Exec lines are commands to be run in various circumstances. ExecStartPre
commands are run before the actual service is started; the ones shown here validate

See page 94 for
more information
about signals.

systemd in detail 53

the syntax of NGINX’s configuration file and ensure that any preexisting PID file
is removed. ExecStart is the command that actually starts the service. ExecReload
tells systemd how to make the service reread its configuration file. (systemd au-
tomatically sets the environment variable MAINPID to the appropriate value.)

Termination for this service is handled through KillMode and Ki11Signal, which
tell systemd that the service daemon interprets a QUIT signal as an instruction to
clean up and exit. The line

ExecStop=/bin/kill -s HUP $MAINPID

would have essentially the same effect. If the daemon doesn’t terminate within
TimeoutStopSec seconds, systemd will force the issue by pelting it with a TERM
signal and then an uncatchable KILL signal.

The PrivateTmp setting is an attempt at increasing security. It puts the service’s
/tmp directory somewhere other than the actual /tmp, which is shared by all the
system’s processes and users.

Local services and customizations

As you can see from the previous examples, it’s relatively trivial to create a unit file
for a home-grown service. Browse the examples in /usr/lib/systemd/system and
adapt one that’s close to what you want. See the man page for systemd.service for
a complete list of configuration options for services. For options common to all
types of units, see the page for systemd.unit.

Put your new unit file in /etc/systemd/system. You can then run
$ sudo systemctl enable custom.service
to activate the dependencies listed in the service file’s [Install] section.

As a general rule, you should never edit a unit file you didn’t write. Instead, create
a configuration directory in /etc/systemd/system/unit-file.d and add one or more
configuration files there called xxx.conf. The xxx part doesn’t matter; just make
sure the file has a .conf suffix and is in the right location. override.conf is the
standard name.

.conf files have the same format as unit files, and in fact systemd smooshes them

all together with the original unit file. However, override files have priority over
the original unit file should both sources try to set the value of a particular option.

One point to keep in mind is that many systemd options are allowed to appear
more than once in a unit file. In these cases, the multiple values form a list and are
all active simultaneously. If you assign a value in your override.conf file, that val-
ue joins the list but does not replace the existing entries. This may or may not be
what you want. To remove the existing entries from a list, just assign the option an
empty value before adding your own.

54

11.

Chapter 2 Booting and System Management Daemons

Let’s look at an example. Suppose that your site keeps its NGINX configuration
file in a nonstandard place, say, /ust/local/www/nginx.conf. You need to run the
nginx daemon with a -c /usr/local/www/nginx.conf option so that it can find the
proper configuration file.

You can't just add this option to /usr/lib/systemd/system/nginx.service because
that file will be replaced whenever the NGINX package is updated or refreshed.
Instead, you can use the following command sequence:

$ sudo mkdir /etc/systemd/system/nginx.service.d

$ sudo cat > !$/override.conf!!

[Service]

ExecStart=

ExecStart=/usr/sbin/nginx -c /usr/local/www/nginx.conf
<Control-D>

$ sudo systemctl daemon-reload

$ sudo systemctl restart nginx.service

The first ExecStart= removes the current entry, and the second sets an alterna-
tive start command. systemctl daemon-reload makes systemd re-parse unit files.
However, it does not restart daemons automatically, so you'll also need an explicit
systemctl restart to make the change take effect immediately.

This command sequence is such a common idiom that systemctl now implements
it directly:
$ sudo systemctl edit nginx.service

<edit the override file in the editor>
$ sudo systemctl restart nginx.service

As shown, you must still do the restart by hand.

One last thing to know about override files is that they can’t modify the [Install]
section of a unit file. Any changes you make are silently ignored. Just add depen-
dencies directly with systemctl add-wants or systemctl add-requires.

Service and startup control caveats

systemd has many architectural implications, and adopting it is not a simple task for
the teams that build Linux distributions. Current releases are mostly Frankenstein
systems that adopt much of systemd but also retain a few links to the past. Some-
times the holdovers just haven't yet been fully converted. In other cases, various
forms of glue have been left behind to facilitate compatibility.

The > and !$ are shell metacharacters. The > redirects output to a file, and the !$ expands to the last
component of the previous command line so that you don’t have to retype it. All shells understand
this notation. See Shell basics starting on page 189 for some other handy features.

http://www/nginx.conf

See page 696 for
more information
about Apache.

—

Table 2.8

systemd in detail 55

Though systemctl can and should be used for managing services and daemons, don’t
be surprised when you run into traditional init scripts or their associated helper
commands. If you attempt to use systemctl to disable the network on a CentOS or
Red Hat system, for example, you’ll receive the following output:

$ sudo systemctl disable network
network.service is not a native service, redirecting to /sbin/chkconfig.
Executing /sbin/chkconfig network off

Traditional init scripts often continue to function on a systemd system. For exam-
ple, an init script /etc/rc.d/init.d/my-old-service might be automatically mapped
to a unit file such as my-old-service.service during system initialization or when
systemctl daemon-reload is run. Apache 2 on Ubuntu 17.04 is a case in point: at-
tempting to disable the apache2.service results in the following output:

$ sudo systemctl disable apache2

Synchronizing state of apache2.service with SysV service script with
/1ib/systemd/systemd-sysv-install.

Executing: /lib/systemd/systemd-sysv-install disable apache2

The end result is what you wanted, but it goes through a rather circuitous route.

Red Hat, and by extension CentOS, still run the /etc/rc.d/rc.local script at boot
time if you configure it to be executable.'? In theory, you can use this script to hack
in site-specific tweaks or post-boot tasks if desired. (At this point, though, you
should really skip the hacks and do things systemd’s way by creating an appropri-
ate set of unit files.)

Some Red Hat and CentOS boot chores continue to use config files found in the
/etc/sysconfig directory. Table 2.8 summarizes these.

Files and subdirectories of Red Hat’s /etc/sysconfig directory

File or directory Contents

console/ A directory that historically allowed for custom keymapping
crond Arguments to pass to the crond daemon
init Configuration for handling messages from startup scripts

iptables-config Loads additional iptables modules such as NAT helpers
network-scripts/ Accessory scripts and network config files

nfs Optional RPC and NFS arguments
ntpd Command-line options for ntpd
selinux Symlink to /etc/selinux/config®

a. Sets arguments for SELinux or allows you to disable it altogether; see page 85.

12. A quick sudo chmod +x /etc/rc.d/rc.Jocal will ensure that the file is executable.

Chapter 2 Booting and System Management Daemons

A couple of the items in Table 2.8 merit additional comment:

« The network-scripts directory contains additional material related to net-
work configuration. The only things you might need to change here are
the files named ifcfg-interface. For example, network-scripts/ifcfg-eth0
contains the configuration parameters for the interface eth0. It sets the
interface’s IP address and networking options. See page 419 for more
information about configuring network interfaces.

« The iptables-config file doesn’t actually allow you to modify the iptables
(firewall) rules themselves. It just provides a way to load additional mod-
ules such as those for network address translation (NAT) if you're going
to be forwarding packets or using the system as a router. See page 440
for more information about configuring iptables.

systemd logging

Capturing the log messages produced by the kernel has always been something of
a challenge. It became even more important with the advent of virtual and cloud-
based systems, since it isn’t possible to simply stand in front of these systems’ con-
soles and watch what happens. Frequently, crucial diagnostic information was lost
to the ether.

systemd alleviates this problem with a universal logging framework that includes all
kernel and service messages from early boot to final shutdown. This facility, called
the journal, is managed by the journald daemon.

System messages captured by journald are stored in the /run directory. rsyslog
can process these messages and store them in traditional log files or forward them
to a remote syslog server. You can also access the logs directly with the journalctl
command.

Without arguments, journalctl displays all log entries (oldest first):

$ journalctl

-- Logs begin at Fri 2016-02-26 15:01:25 UTC, end at Fri 2016-02-26
15:05:16 UTC. --

Feb 26 15:01:25 ubuntu systemd-journal[285]: Runtime journal is using
4.6M (max allowed 37.0M, t

Feb 26 15:01:25 ubuntu systemd-journal[285]: Runtime journal is using
4.6M (max allowed 37.0M, t

Feb 26 15:01:25 ubuntu kernel: Initializing cgroup subsys cpuset

Feb 26 15:01:25 ubuntu kernel: Initializing cgroup subsys cpu

Feb 26 15:01:25 ubuntu kernel: Linux version 3.19.0-43-generic (buildd@
lcy01-02) (gcc version 4.

Feb 26 15:01:25 ubuntu kernel: Command line: BOOT_IMAGE=/boot/vmlinuz-
3.19.0-43-generic root=UUI

Feb 26 15:01:25 ubuntu kernel: KERNEL supported cpus:

Feb 26 15:01:25 ubuntu kernel: Intel GenuineIntel

FreeBSD init and startup scripts 57

You can configure journald to retain messages from prior boots. To do this, edit
/etc/systemd/journald.conf and configure the Storage attribute:

[Journal]
Storage=persistent

Once you've configured journald, you can obtain a list of prior boots with

$ journalctl --list-boots

-1 a73415fadeOe4e7f4beab0913883d180dc Fri 2016-02-26 15:01:25 UTC
Fri 2016-02-26 15:05:16 UTC

0 0c563fa3830047ecaa2d2b053d4e661d Fri 2016-02-26 15:11:03 UTC Fri
2016-02-26 15:12:28 UTC

You can then access messages from a prior boot by referring to its index or by nam-
ing its long-form ID:

$ journalctl -b -1
$ journalctl -b a73415fadeOe4e7f4bea60913883d180dc

To restrict the logs to those associated with a specific unit, use the -u flag:

$ journalctl -u ntp

-- Logs begin at Fri 2016-02-26 15:11:03 UTC, end at Fri 2016-02-26
15:26:07 UTC. --

Feb 26 15:11:07 ub-test-1 systemd[1]: Stopped LSB: Start NTP daemon.

Feb 26 15:11:08 ub-test-1 systemd[1]: Starting LSB: Start NTP daemon...

Feb 26 15:11:08 ub-test-1 ntp[761]: * Starting NTP server ntpd

System logging is covered in more detail in Chapter 10, Logging.

2.8 FREEBSD INIT AND STARTUP SCRIPTS

See Chapter 7 for FreeBSD uses a BSD-style init, which does not support the concept of run levels.
more information To bring the system to its fully booted state, FreeBSD’s init just runs /etc/rc. This
about shell scripting.

program is a shell script, but it should not be directly modified. Instead, the rc
system implements a couple of standardized ways for administrators and software
packages to extend the startup system and make configuration changes.

/etc/rc is primarily a wrapper that runs other startup scripts, most of which live in
/usr/local/etc/rc.d. and /etc/rc.d. Before it runs any of those scripts, however, rc
executes three files that hold configuration information for the system:

« /etc/defaults/config
« /etc/rc.conf
« /etc/rc.conf.local

These files are themselves scripts, but they typically contain only definitions for the
values of shell variables. The startup scripts then check these variables to determine

58

13.

14.

Chapter 2 Booting and System Management Daemons

how to behave. (/etc/rc uses some shell magic to ensure that the variables defined
in these files are visible everywhere.)

/etc/defaults/rc.conf lists all the configuration parameters and their default settings.
Never edit this file, lest the startup script bogeyman hunt you down and overwrite
your changes the next time the system is updated. Instead, just override the default
values by setting them again in /etc/rc.conf or /etc/rc.conf.local. The rc.conf man
page has an extensive list of the variables you can specify.

In theory, the rc.conf files can also specify other directories in which to look for
startup scripts by your setting the value of the local_startup variable. The default
value is /usr/local/etc/rc.d, and we recommend leaving it that way."

As you can see from peeking at /etc/rc.d, there are many different startup scripts,
more than 150 on a standard installation. /etc/rc runs these scripts in the order
calculated by the rcorder command, which reads the scripts and looks for depen-
dency information that’s been encoded in a standard way.

FreeBSD’s startup scripts for garden-variety services are fairly straightforward. For
example, the top of the sshd startup script is as follows:

#!/bin/sh

PROVIDE: sshd

REQUIRE: LOGIN FILESYSTEMS
KEYWORD: shutdown

. /etc/rc.subr

name="sshd"
rcvar="sshd_enable"
command="/usr/sbin/${name}"

The rcvar variable contains the name of a variable that’s expected to be defined
in one of the rc.conf scripts, in this case, sshd_enable. If you want sshd (the real
daemon, not the startup script; both are named sshd) to run automatically at boot
time, put the line

sshd_enable="YES"

into /etc/rc.conf. If this variable is set to "NO" or commented out, the sshd script
will not start the daemon or check to see whether it should be stopped when the
system is shut down.

The service command provides a real-time interface into FreeBSD’s rc.d system."
To stop the sshd service manually, for example, you could run the command

$ sudo service sshd stop

For local customizations, you have the option of either creating standard rc.d-style scripts that go in
/usr/local/etc/rc.d or editing the system-wide /etc/rc.local script. The former is preferred.

The version of service that FreeBSD uses derives from the Linux service command, which manipu-
lates traditional init services.

2.9

Reboot and shutdown procedures 59

Note that this technique works only if the service is enabled in the /etc/rc.conf
files. If it is not, use the subcommand onestop, onestart, or onerestart, depend-
ing on what you want to do. (service is generally forgiving and will remind you if
need be, however.)

REBOOT AND SHUTDOWN PROCEDURES

Historically, UNIX and Linux machines were touchy about how they were shut down.
Modern systems have become less sensitive, especially when a robust filesystem
is used, but it’s always a good idea to shut down a machine nicely when possible.

Consumer operating systems of yesteryear trained many sysadmins to reboot the
system as the first step in debugging any problem. It was an adaptive habit back
then, but these days it more commonly wastes time and interrupts service. Focus
on identifying the root cause of problems, and you’ll probably find yourself re-
booting less often.

That said, it's a good idea to reboot after modifying a startup script or making sig-
nificant configuration changes. This check ensures that the system can boot success-
fully. If you've introduced a problem but don’t discover it until several weeks later,
you're unlikely to remember the details of your most recent changes.

Shutting down physical systems

The halt command performs the essential duties required for shutting down the sys-
tem. halt logs the shutdown, kills nonessential processes, flushes cached filesystem
blocks to disk, and then halts the kernel. On most systems, halt -p powers down
the system as a final flourish.

reboot is essentially identical to halt, but it causes the machine to reboot instead
of halting.

The shutdown command is a layer over halt and reboot that provides for sched-
uled shutdowns and ominous warnings to logged-in users. It dates back to the
days of time-sharing systems and is now largely obsolete. shutdown does nothing
of technical value beyond halt or reboot, so feel free to ignore it if you don’t have
multiuser systems.

Shutting down cloud systems

You can halt or restart a cloud system either from within the server (with halt or
reboot, as described in the previous section) or from the cloud provider’s web con-
sole (or its equivalent APT).

Generally speaking, powering down from the cloud console is akin to turning off the
power. It’s better if the virtual server manages its own shutdown, but feel free to kill
avirtual server from the console if it becomes unresponsive. What else can you do?

60

2.10

Chapter 2 Booting and System Management Daemons

Either way, make sure you understand what a shutdown means from the perspec-
tive of the cloud provider. It would be a shame to destroy your system when all you
meant to do was reboot it.

In the AWS universe, the Stop and Reboot operations do what youd expect. “Ter-
minate” decommissions the instance and removes it from your inventory. If the
underlying storage device is set to “delete on termination,” not only will your in-
stance be destroyed, but the data on the root disk will also be lost. That’s perfectly
fine, as long as it’s what you expect. You can enable “termination protection” if you
consider this a bad thing.

STRATAGEMS FOR A NONBOOTING SYSTEM

A variety of problems can prevent a system from booting, ranging from faulty de-
vices to kernel upgrades gone wrong. There are three basic approaches to this sit-
uation, listed here in rough order of desirability:

« Don’t debug; just restore the system to a known-good state.

« Bring the system up just enough to run a shell, and debug interactively.

« Boot a separate system image, mount the sick system’s filesystems, and
investigate from there.

The first option is the one most commonly used in the cloud, but it can be helpful
on physical servers, too, as long as you have access to a recent image of the entire
boot disk. If your site does backups by filesystem, a whole-system restore may be
more trouble than it's worth. We discuss the whole-system restore option in Recov-
ery of cloud systems, which starts on page 62.

The remaining two approaches focus on giving you a way to access the system,
identify the underlying issue, and make whatever fix is needed. Booting the ailing
system to a shell is by far the preferable option, but problems that occur very early
in the boot sequence may stymie this approach.

The “boot to a shell” mode is known generically as single-user mode or rescue mode.
Systems that use systemd have an even more primitive option available in the form
of emergency mode; it's conceptually similar to single-user mode, but does an ab-
solute minimum of preparation before starting a shell.

Because single-user, rescue, and emergency modes don’t configure the network
or start network-related services, you'll generally need physical access to the con-
sole to make use of them. As a result, single-user mode normally isn’t available for
cloud-hosted systems. We review some options for reviving broken cloud images
starting on page 62.

See Chapter 3, for
more information
about the root account.

See Chapter 5 for
more information
about filesystems
and mounting.

e B

Stratagems for a nonbooting system 61

Single-user mode

In single-user mode, also known as rescue.target on systems that use systemd, only
a minimal set of processes, daemons, and services are started. The root filesystem
is mounted (as is /usr, in most cases), but the network remains uninitialized.

At boot time, you request single-user mode by passing an argument to the kernel,
usually single or -s. You can do this through the boot loader’s command-line inter-
face. In some cases, it may be set up for you automatically as a boot menu option.

If the system is already running, you can bring it down to single-user mode with a
shutdown (FreeBSD), telinit (traditional init), or systemctl (systemd) command.

Sane systems prompt for the root password before starting the single-user root
shell. Unfortunately, this means that it’s virtually impossible to reset a forgotten
root password through single-user mode. If you need to reset the password, you'll
have to access the disk by way of separate boot media.

From the single-user shell, you can execute commands in much the same way as
when logged in on a fully booted system. However, sometimes only the root parti-
tion is mounted; you must mount other filesystems manually to use programs that
don’t live in /bin, /sbin, or /etc.

You can often find pointers to the available filesystems by looking in /etc/fstab. Un-
der Linux, you can run fdisk -1 (lowercase L option) to see a list of the local system’s

disk partitions. The analogous procedure on FreeBSD is to run camcontrol devlist

to identify disk devices and then run fdisk -s device for each disk.

In many single-user environments, the filesystem root directory starts off being
mounted read-only. If /etc is part of the root filesystem (the usual case), it will be
impossible to edit many important configuration files. To fix this problem, you’ll
have to begin your single-user session by remounting / in read/write mode. Under
Linux, the command

mount -o rw,remount /

usually does the trick. On FreeBSD systems, the remount option is implicit when
you repeat an existing mount, but you'll need to explicitly specify the source de-
vice. For example,

mount -o rw /dev/gpt/rootfs /

Single-user mode in Red Hat and CentOS is a bit more aggressive than normal. By
the time you reach the shell prompt, these systems have tried to mount all local
filesystems. Although this default is usually helpful, it can be problematic if you
have a sick filesystem. In that case, you can boot to emergency mode by adding
systemd.unit=emergency.target to the kernel arguments from within the boot
loader (usually GRUB). In this mode, no local filesystems are mounted and only a
few essential services are started.

62
@
See Chapter 9 for a

broader introduction
to cloud computing.

Chapter 2 Booting and System Management Daemons

The fsck command is run during a normal boot to check and repair filesystems.
Depending on what filesystem you're using for the root, you may need to run fsck
manually when you bring the system up in single-user or emergency mode. See
page 766 for more details about fsck.

Single-user mode is just a waypoint on the normal booting path, so you can terminate
the single-user shell with exit or <Control-D> to continue with booting. You can
also type <Control-D> at the password prompt to bypass single-user mode entirely.

Single-user mode on FreeBSD
FreeBSD includes a single-user option in its boot menu:

1. Boot Multi User [Enter]
2. Boot Single User

3. Escape to loader prompt
4. Reboot

Options
5. Kernel: default/kernel (1 of 2)
6. Configure Boot Options...

One nice feature of FreeBSD’s single-user mode is that it asks you what program
to use as the shell. Just press <Enter> for /bin/sh.

If you choose option 3, “Escape to loader prompt,” you’ll drop into a boot-level
command-line environment implemented by FreeBSD’s final-common-stage boot
loader, loader.

Single-user mode with GRUB

On systems that use systemd, you can boot into rescue mode by appending
systemd.unit=rescue.target to the end of the existing Linux kernel line. At the

GRUB splash screen, highlight your desired kernel and press the “¢” key to edit its
boot options. Similarly, for emergency mode, use systemd.unit=emergency.target.

Here’s an example of a typical configuration:

linux16 /vmlinuz-3.10.0-229.el17.x86_64 root=/dev/mapper/rhel_rhel-root
ro crashkernel=auto rd.lvm.lv=rhel_rhel/swap rd.lvm.lv=rhel_rhel/root
rhgb quiet LANG=en_US.UTF-8 systemd.unit=rescue.target

Type <Control-X> to start the system after you've made your changes.

Recovery of cloud systems

It’s inherent in the nature of cloud systems that you can't hook up a monitor or USB
stick when boot problems occur. Cloud providers do what they can to facilitate
problem solving, but basic limitations remain.

Stratagems for a nonbooting system 63

Backups are important for all systems, but cloud servers are particularly easy to
snapshot. Providers charge extra for backups, but theyre inexpensive. Be liberal
with your snapshots and you’ll always have a reasonable system image to fall back
on at short notice.

From a philosophical perspective, youre probably doing something wrong if your
cloud servers require boot-time debugging. Pets and physical servers receive vet-
erinary care when they’re sick, but cattle get euthanized. Your cloud servers are
cattle; replace them with known-good copies when they misbehave. Embracing
this approach helps you not only avoid critical failures but also facilitates scaling
and system migration.

That said, you will inevitably need to attempt to recover cloud systems or drives, so
we briefly discuss that process below.

Within AWS, single-user and emergency modes are unavailable. However, EC2
filesystems can be attached to other virtual servers if they’re backed by Elastic Block
Storage (EBS) devices. This is the default for most EC2 instances, so it’s likely that
you can use this method if you need to. Conceptually, it’s similar to booting from a
USB drive so that you can poke around on a physical system’s boot disk.

Here’s what to do:

1. Launch a new instance in the same availability zone as the instance you're
having issues with. Ideally, this recovery instance should be launched
from the same base image and should use the same instance type as the
sick system.

2. Stop the problem instance. (But be careful not to “terminate” it; that
operation deletes the boot disk image.)

3. With the AWS web console or CLI, detach the volume from the problem
system and attach the volume to the recovery instance.

4. Log in to the recovery system. Create a mount point and mount the vol-
ume, then do whatever’s necessary to fix the issue. Then unmount the
volume. (Won’t unmount? Make sure you're not cded there.)

5. Inthe AWS console, detach the volume from the recovery instance and
reattach it to the problem instance. Start the problem instance and hope
for the best.

DigitalOcean droplets offer a VNC-enabled console that you can access through
the web, although the web app’s behavior is a bit wonky on some browsers. Dig-
italOcean does not afford a way to detach storage devices and migrate them to a

64

Chapter 2 Booting and System Management Daemons

recovery system the way Amazon does. Instead, most system images let you boot
from an alternate recovery kernel.®

To access the recovery kernel, first power off the droplet and then mount the re-
covery kernel and reboot. If all went well, the virtual terminal will give you access

to a single-user-like mode. More detailed instructions for this process are available

at digitalocean.com.

Boot issues within a Google Compute Engine instance should first be investigated
by examination of the instance’s serial port information:

$ gcloud compute instances get-serial-port-output instance
The same information is available through GCP web console.

A disk-shuffling process similar to that described above for the Amazon cloud is
also available on Google Compute Engine. You use the CLI to remove the disk from
the defunct instance and boot a new instance that mounts the disk as an add-on
filesystem. You can then run filesystem checks, modify boot parameters, and select
anew kernel if necessary. This process is nicely detailed in Google’s documentation
at cloud.google.com/compute/docs/troubleshooting.

15. The recovery kernel is not available on all modern distributions. If youre running a recent release

and the recovery tab tells you that “The kernel for this Droplet is managed internally and cannot be
changed from the control panel” you'll need to open a support ticket with DigitalOcean to have them
associate your instance with a recovery ISO, allowing you to continue your recovery efforts.

http://digitalocean.com
http://cloud.google.com/compute/docs/troubleshooting

Access Control and
Rootly Powers

This chapter is about “access control,” as opposed to “security;’ by which we mean
that it focuses on the mechanical details of how the kernel and its delegates make
security-related decisions. Chapter 27, Security, addresses the more general ques-
tion of how to set up a system or network to minimize the chance of unwelcome
access by intruders.

Access control is an area of active research, and it has long been one of the major
challenges of operating system design. Over the last decade, UNIX and Linux have
seen a Cambrian explosion of new options in this domain. A primary driver of this
surge has been the advent of kernel APIs that allow third party modules to aug-
ment or replace the traditional UNIX access control system. This modular approach
creates a variety of new frontiers; access control is now just as open to change and
experimentation as any other aspect of UNIX.

Nevertheless, the traditional system remains the UNIX and Linux standard, and
it's adequate for the majority of installations. Even for administrators who want
to venture into the new frontier, a thorough grounding in the basics is essential.

65

66

See page 130 for
more information
about device files.

See page 254 for
more information
about groups.

3.1

—_

Chapter 3 Access Control and Rootly Powers

STANDARD UNIX ACCESS CONTROL

The standard UNIX access control model has remained largely unchanged for de-
cades. With a few enhancements, it continues to be the default for general-purpose
OS distributions. The scheme follows a few basic rules:

o Access control decisions depend on which user is attempting to perform an
operation, or in some cases, on that user’s membership in a UNIX group.

o Objects (e.g., files and processes) have owners. Owners have broad (but
not necessarily unrestricted) control over their objects.

« You own the objects you create.
o The special user account called “root” can act as the owner of any object.
o Only root can perform certain sensitive administrative operations.'

Certain system calls (e.g., settimeofday) are restricted to root; the implementation
simply checks the identity of the current user and rejects the operation if the user
is not root. Other system calls (e.g., kill) implement different calculations that in-
volve both ownership matching and special provisions for root. Finally, filesystems
have their own access control systems, which they implement in cooperation with
the kernel’s VES layer. These are generally more elaborate than the access controls
found elsewhere in the kernel. For example, filesystems are much more likely to
make use of UNIX groups for access control.

Complicating this picture is that the kernel and the filesystem are intimately in-
tertwined. For example, you control and communicate with most devices through
files that represent them in /dev. Since device files are filesystem objects, they are
subject to filesystem access control semantics. The kernel uses that fact as its pri-
mary form of access control for devices.

Filesystem access control

In the standard model, every file has both an owner and a group, sometimes referred
to as the “group owner” The owner can set the permissions of the file. In particular,
the owner can set them so restrictively that no one else can access it. We talk more
about file permissions in Chapter 5, The Filesystem (see page 132).

Although the owner of a file is always a single person, many people can be group
owners of the file, as long as they are all part of a single group. Groups are tradi-
tionally defined in the /etc/group file, but these days group information is often
stored in a network database system such as LDAP; see Chapter 17, Single Sign-
On, for details.

. Keep in mind that we are here describing the original design of the access control system. These days,

not all of these statements remain literally true. For example, a Linux process that bears appropriate
capabilities (see page 82) can now perform some operations that were previously restricted to root.

See Chapter 8 for
more information
about the passwd
and group files.

See Chapter 21 for
more about NFS.

Standard UNIX access control 67

The owner of a file gets to specify what the group owners can do with it. This scheme
allows files to be shared among members of the same project.

You can determine the ownerships of a file with Is -1:

$ 1s -1 ~garth/todo
—-PW-p-—--— 1 garth staff 1259 May 29 19:55 /Users/garth/todo

This file is owned by user garth and group staff. The letters and dashes in the first
column symbolize the permissions on the file; see page 134 for details on how to
decode this information. In this case, the codes mean that garth can read or write
the file and that members of the staft group can read it.

Both the kernel and the filesystem track owners and groups as numbers rather than
as text names. In the most basic case, user identification numbers (UIDs for short)
are mapped to usernames in the /etc/passwd file, and group identification num-
bers (GIDs) are mapped to group names in /etc/group. (See Chapter 17, Single
Sign-On, for information about the more sophisticated options.)

The text names that correspond to UIDs and GIDs are defined only for the con-
venience of the system’s human users. When commands such as Is should display
ownership information in a human-readable format, they must look up each name
in the appropriate file or database.

Process ownership

The owner of a process can send the process signals (see page 94) and can also

reduce (degrade) the process’s scheduling priority. Processes actually have multi-
ple identities associated with them: a real, effective, and saved UID; a real, effective,
and saved GID; and under Linux, a “filesystem UID” that is used only to determine

file access permissions. Broadly speaking, the real numbers are used for accounting

(now largely vestigial), and the effective numbers are used for the determination of
access permissions. The real and effective numbers are normally the same.

The saved UID and GID are parking spots for IDs that are not currently in use but
that remain available for the process to invoke. The saved IDs allow a program to
repeatedly enter and leave a privileged mode of operation; this precaution reduces
the risk of unintended misbehavior.

The filesystem UID is generally explained as an implementation detail of NFS, the
Network File System. It is usually the same as the effective UID.

The root account
The root account is UNIX’s omnipotent administrative user. It’s also known as the
superuser account, although the actual username is “root”.

The defining characteristic of the root account is its UID of 0. Nothing prevents you
from changing the username on this account or from creating additional accounts

68

Chapter 3 Access Control and Rootly Powers

whose UIDs are 0; however, these are both bad ideas.? Such changes have a ten-
dency to create inadvertent breaches of system security. They also create confusion
when other people have to deal with the strange way you’ve configured your system.

Traditional UNIX allows the superuser (that is, any process for which the effective
UID is 0) to perform any valid operation on any file or process.’

Some examples of restricted operations are

o Creating device files

o Setting the system clock

« Raising resource usage limits and process priorities

o Setting the system’s hostname

« Configuring network interfaces

« Opening privileged network ports (those numbered below 1,024)
« Shutting down the system

An example of superuser powers is the ability of a process owned by root to change
its UID and GID. The login program and its GUI equivalents are a case in point; the
process that prompts you for your password when you log in to the system initially
runs as root. If the password and username that you enter are legitimate, the login
program changes its UID and GID to your UID and GID and starts up your shell
or GUI environment. Once a root process has changed its ownerships to become
a normal user process, it can't recover its former privileged state.

Setuid and setgid execution

Traditional UNIX access control is complemented by an identity substitution system
that’s implemented by the kernel and the filesystem in collaboration. This scheme
allows specially marked executable files to run with elevated permissions, usually
those of root. It lets developers and administrators set up structured ways for un-
privileged users to perform privileged operations.

When the kernel runs an executable file that has its “setuid” or “setgid” permission
bits set, it changes the effective UID or GID of the resulting process to the UID or
GID of the file containing the program image rather than the UID and GID of the
user that ran the command. The user’s privileges are thus promoted for the execu-
tion of that specific command only.

For example, users must be able to change their passwords. But since passwords are
(traditionally) stored in the protected /etc/master.passwd or /etc/shadow file, us-
ers need a setuid passwd command to mediate their access. The passwd command

. Jennine Townsend, one of our stalwart technical reviewers, commented, “Such bad ideas that I fear

even mentioning them might encourage someone!”

. “Valid” is the operative word here. Certain operations (such as executing a file on which the execute

permission bit is not set) are forbidden even to the superuser.

See page 767 for
more information
about filesystem
mount options.

3.2

Management of the root account 69

checks to see who's running it and customizes its behavior accordingly: users can
change only their own passwords, but root can change any password.

Programs that run setuid, especially ones that run setuid to root, are prone to secu-
rity problems. The setuid commands distributed with the system are theoretically
secure; however, security holes have been discovered in the past and will undoubt-
edly be discovered in the future.

The surest way to minimize the number of setuid problems is to minimize the
number of setuid programs. Think twice before installing software that needs to
run setuid, and avoid using the setuid facility in your own home-grown software.
Never use setuid execution on programs that were not explicitly written with se-
tuid execution in mind.

You can disable setuid and setgid execution on individual filesystems by specifying
the nosuid option to mount. It’s a good idea to use this option on filesystems that
contain users’ home directories or that are mounted from less trustworthy admin-
istrative domains.

MANAGEMENT OF THE ROOT ACCOUNT

Root access is required for system administration, and it’s also a pivot point for sys-
tem security. Proper husbandry of the root account is a crucial skill.

Root account login

Since root is just another user, most systems let you log in directly to the root account.
However, this turns out to be a bad idea, which is why Ubuntu forbids it by default.

To begin with, root logins leave no record of what operations were performed as
root. That’s bad enough when you realize that you broke something last night at
3:00 a.m. and can’t remember what you changed; it’s even worse when an access
was unauthorized and you are trying to figure out what an intruder has done to
your system. Another disadvantage is that the log-in-as-root scenario leaves no re-
cord of who was actually doing the work. If several people have access to the root
account, you won't be able to tell who used it and when.

For these reasons, most systems allow root logins to be disabled on terminals,
through window systems, and across the network—everywhere but on the system
console. We suggest that you use these features. See PAM: cooking spray or authen-
tication wonder? starting on page 590 to see how to implement this policy on your
particular system.

If root does have a password (that is, the root account is not disabled; see page
78), that password must be of high quality. See page 992 for some additional
comments regarding password selection.

70

Chapter 3 Access Control and Rootly Powers

su: substitute user identity

A marginally better way to access the root account is to use the su command. If
invoked without arguments, su prompts for the root password and then starts up
aroot shell. Root privileges remain in effect until you terminate the shell by typing
<Control-D> or the exit command. su doesn’t record the commands executed as
root, but it does create a log entry that states who became root and when.

The su command can also substitute identities other than root. Sometimes, the only
way to reproduce or debug a user’s problem is to su to their account so that you
reproduce the environment in which the problem occurs.

If you know someone’s password, you can access that person’s account directly by
executing su - username. As with an su to root, you are prompted for the password
for username. The - (dash) option makes su spawn the shell in login mode.

The exact implications of login mode vary by shell, but login mode normally changes
the number or identity of the files that the shell reads when it starts up. For example,
bash reads ~/.bash_profile in login mode and ~/.bashrc in nonlogin mode. When
diagnosing other users’ problems, it helps to reproduce their login environments
as closely as possible by running in login mode.

On some systems, the root password allows an su or login to any account. On oth-
ers, you must first su explicitly to root before suing to another account; root can
su to any account without entering a password.

Get in the habit of typing the full pathname to su (e.g., /bin/su or /usr/bin/su) rath-
er than relying on the shell to find the command for you. This precaution gives you
some protection against arbitrary programs called su that might have been sneaked
into your search path with the intention of harvesting passwords.*

On most systems, you must be a member of the group “wheel” to use su.

We consider su to have been largely superseded by sudo, described in the next
section. su is best reserved for emergencies. It’s also helpful for fixing situations in
which sudo has been broken or misconfigured.

sudo: limited su

Without one of the advanced access control systems outlined starting on page 83,
it’s hard to enable someone to do one task (backups, for example) without giving
that person free run of the system. And if the root account is used by several ad-
ministrators, you really have only a vague idea of who's using it or what they’ve done.

The most widely used solution to these problems is a program called sudo that is
currently maintained by Todd Miller. It runs on all our example systems and is

. For the same reason, do not include “ (the current directory) in your shell’s search path (which you

can see by typing echo $PATH). Although convenient, including “” makes it easy to inadvertently
run “special” versions of system commands that an intruder has left lying around as a trap. Naturally,
this advice goes double for root.

See Chapter 10
for more informa-
tion about syslog.

Management of the root account 71

also available in source code form from sudo.ws. We recommend it as the primary
method of access to the root account.

sudo takes as its argument a command line to be executed as root (or as another
restricted user). sudo consults the file /etc/sudoers (/usr/local/etc/sudoers on
FreeBSD), which lists the people who are authorized to use sudo and the commands
they are allowed to run on each host. If the proposed command is permitted, sudo
prompts for the user’s own password and executes the command.

Additional sudo commands can be executed without the “doer” having to type a
password until a five-minute period (configurable) has elapsed with no further
sudo activity. This timeout serves as a modest protection against users with sudo
privileges who leave terminals unattended.

sudo keeps a log of the command lines that were executed, the hosts on which they
were run, the people who ran them, the directories from which they were run, and
the times at which they were invoked. This information can be logged by syslog or
placed in the file of your choice. We recommend using syslog to forward the log
entries to a secure central host.

A log entry for randy’s executing sudo /bin/cat /etc/sudoers might look like this:

Dec 7 10:57:19 tigger sudo: randy: TTY=ttypO ; PWD=/tigger/users/randy;
USER=root ; COMMAND=/bin/cat /etc/sudoers

Example configuration

The sudoers file is designed so that a single version can be used on many different
hosts at once. Here’s a typical example:

Define aliases for machines in CS & Physics departments
Host_Alias CS = tigger, anchor, piper, moet, sigi
Host_Alias PHYSICS = eprince, pprince, icarus

Define collections of commands

Cmnd_Alias DUMP = /sbin/dump, /sbin/restore
Cmnd_Alias WATCHDOG = /usr/local/bin/watchdog
Cmnd_Alias SHELLS = /bin/sh, /bin/dash, /bin/bash

Permissions
mark, ed PHYSICS = ALL

herb CS = /Jusr/sbin/tcpdump : PHYSICS = (operator) DUMP
lynda ALL = (ALL) ALL, !SHELLS
%wheel ALL, !'PHYSICS = NOPASSWD: WATCHDOG

The first two sets of lines define groups of hosts and commands that are referred
to in the permission specifications later in the file. The lists could be included lit-
erally in the specifications, but aliases make the sudoers file easier to read and un-
derstand; they also make the file easier to update in the future. It’s also possible to
define aliases for sets of users and for sets of users as whom commands may be run.

72

Chapter 3 Access Control and Rootly Powers

Each permission specification line includes information about

o The users to whom the line applies

« The hosts on which the line should be heeded

o The commands that the specified users can run

« The users as whom the commands can be executed

The first permission line applies to the users mark and ed on the machines in the
PHYSICS group (eprince, pprince, and icarus). The built-in command alias ALL al-
lows them to run any command. Since no list of users is specified in parentheses,
sudo will run commands as root.

The second permission line allows herb to run tcpdump on CS machines and
dump-related commands on PHYSICS machines. However, the dump commands
can be run only as operator, not as root. The actual command line that herb would
type would be something like

ubuntu$ sudo -u operator /usr/sbin/dump Ou /dev/sdal

The user lynda can run commands as any user on any machine, except that she
can’t run several common shells. Does this mean that lynda really can’t get a root
shell? Of course not:

ubuntu$ cp -p /bin/sh /tmp/sh
ubuntu$ sudo /tmp/sh

Generally speaking, any attempt to allow “all commands except ...” is doomed to
fajlure, at least in a technical sense. However, it might still be worthwhile to set up
the sudoers file this way as a reminder that root shells are strongly discouraged.

The final line allows users in group wheel to run the local watchdog command as
root on all machines except eprince, pprince, and icarus. Furthermore, no password
is required to run the command.

Note that commands in the sudoers file are specified with full pathnames to prevent
people from executing their own programs and scripts as root. Though no exam-
ples are shown above, it is possible to specify the arguments that are permissible
for each command as well.

To manually modify the sudoers file, use the visudo command, which checks to be
sure no one else is editing the file, invokes an editor on it (vi, or whichever editor
you specify in your EDITOR environment variable), and then verifies the syntax
of the edited file before installing it. This last step is particularly important because
an invalid sudoers file might prevent you from sudoing again to fix it.

sudo pros and cons

The use of sudo has the following advantages:

o Accountability is much improved because of command logging.
o Users can do specific chores without having unlimited root privileges.

See page 1000 for more
information about
password cracking.

Management of the root account 73

« The real root password can be known to only one or two people.’

« Using sudo is faster than using su or logging in as root.

« Privileges can be revoked without the need to change the root password.
o A canonical list of all users with root privileges is maintained.

« The chance of a root shell being left unattended is lessened.

« A single file can control access for an entire network.

sudo has a couple of disadvantages as well. The worst of these is that any breach in
the security of a sudoer’s personal account can be equivalent to breaching the root
account itself. You can’t do much to counter this threat other than caution your
sudoers to protect their own accounts as they would the root account. You can also
run a password cracker regularly on sudoers’ passwords to ensure that they are
making good password selections. All the comments on password selection from
page 992 apply here as well.

sudo’s command logging can easily be subverted by tricks such as shell escapes
from within an allowed program, or by sudo sh and sudo su. (Such commands do
show up in the logs, so you'll at least know they’ve been run.)

sudo vs. advanced access control

If you think of sudo as a way of subdividing the privileges of the root account, it
is superior in some ways to many of the drop-in access control systems outlined
starting on page 83:

« You decide exactly how privileges will be subdivided. Your division can be
coarser or finer than the privileges defined for you by an off-the-shelf system.

« Simple configurations—the most common—are simple to set up, main-
tain, and understand.

« sudo runs on all UNIX and Linux systems. You do need not worry about
managing different solutions on different platforms.

« You can share a single configuration file throughout your site.
« You get consistent, high-quality logging for free.

Because the system is vulnerable to catastrophic compromise if the root account
is penetrated, a major drawback of sudo-based access control is that the potential
attack surface expands to include the accounts of all administrators.

sudo works well as a tool for well-intentioned administrators who need general
access to root privileges. It’s also great for allowing non-administrators to perform
a few specific operations. Despite a configuration syntax that suggests otherwise, it
is unfortunately not a safe way to define limited domains of autonomy or to place
certain operations out of bounds.

5. Or even zero people, if you have the right kind of password vault system in place.

74

Chapter 3 Access Control and Rootly Powers

Don't even attempt these configurations. If you need this functionality, you are
much better off enabling one of the drop-in access control systems described start-
ing on page 83.

Typical setup

sudo’s configuration system has accumulated a lot of features over the years. It has
also expanded to accommodate a variety of unusual situations and edge cases. As
aresult, the current documentation conveys an impression of complexity that isn’t
necessarily warranted.

Since it’s important that sudo be reliable and secure, it’s natural to wonder if you
might be exposing your systems to additional risk if you don’t make use of sudo’s
advanced features and set exactly the right values for all options. The answer is no.
90% of sudoers files look something like this:

User_Alias ADMINS = alice, bob, charles
ADMINS ALL = (ALL) ALL

This is a perfectly respectable configuration, and in many cases there’s no need to
complicate it further. We've mentioned a few extras you can play with in the sections
below, but they’re all problem-solving tools that are helpful for specific situations.
Nothing more is required for general robustness.

Environment management

Many commands consult the values of environment variables and modify their
behavior depending on what they find. In the case of commands run as root, this
mechanism can be both a useful convenience and a potential route of attack.

For example, several commands run the program specified in your EDITOR envi-
ronment variable to spawn a text editor. If this variable points to a hacker’s mali-
cious program instead of an editor, it’s likely that you’ll eventually end up running
that program as root.®

To minimize this risk, sudo’s default behavior is to pass only a minimal, sanitized
environment to the commands that it runs. If your site needs additional environ-
ment variables to be passed, you can whitelist them by adding them to the sudoers
file’s env_keep list. For example, the lines

Defaults env_keep += "SSH_AUTH_SOCK"
Defaults env_keep += "DISPLAY XAUTHORIZATION XAUTHORITY"

preserve several environment variables used by X Windows and by SSH key forwarding.

. Just to be clear, the scenario in this case is that your account has been compromised, but the attacker

does not know your actual password and so cannot run sudo directly. Unfortunately, this is a com-
mon situation—all it takes is a terminal window left momentarily unattended.

See Chapter 23 for
more information
about Ansible.

See page 591 for more
information about
PAM configuration.

Management of the root account 75

It’s possible to set different env_keep lists for different users or groups, but the config-
uration rapidly becomes complicated. We suggest sticking to a single, universal list
and being relatively conservative with the exceptions you enshrine in the sudoers file.

If you need to preserve an environment variable that isn’t listed in the sudoers file,
you can set it explicitly on the sudo command line. For example, the command

$ sudo EDITOR=emacs vipw

edits the system password file with emacs. This feature has some potential restric-
tions, but they’re waived for users who can run ALL commands.

sudo without passwords

It’s distressingly common to see sudo set up to allow command execution as root
without the need to enter a password. Just for reference, that configuration is achieved
with the NOPASSWD keyword in the sudoers file. For example:

ansible ALL = (ALL) NOPASSWD: ALL # Don't do this

Sometimes this is done out of laziness, but more typically, the underlying need is to
allow some type of unattended sudo execution. The most common cases are when
performing remote configuration through a system such as Ansible, or when run-
ning commands out of cron.

Needless to say, this configuration is dangerous, so avoid it if you can. At the very
least, restrict passwordless execution to a specific set of commands if you can.

Another option that works well in the context of remote execution is to replace
manually entered passwords with authentication through ssh-agent and forwarded
SSH keys. You can configure this method of authentication through PAM on the
server where sudo will actually run.

Most systems don't include the PAM module that implements SSH-based authentica-
tion by default, but it is readily available. Look for a pam_ssh_agent_auth package.

SSH key forwarding has its own set of security concerns, but it’s certainly an im-
provement over no authentication at all.

Precedence

A given invocation of sudo might potentially be addressed by several entries in the
sudoers file. For example, consider the following configuration:

User_Alias ADMINS = alice, bob, charles
User_Alias MYSQL_ADMINS = alice, bob
%wheel ALL = (ALL) ALL

MYSQL_ADMINS ALL = (mysql) NOPASSWD: ALL
ADMINS ALL = (ALL) NOPASSWD: /usr/sbin/logrotate

76

Chapter 3 Access Control and Rootly Powers

Here, administrators can run the logrotate command as any user without supply-
ing a password. MySQL administrators can run any command as mysql without a
password. Anyone in the wheel group can run any command under any UID, but
must authenticate with a password first.

If user alice is in the wheel group, she is potentially covered by each of the last three
lines. How do you know which one will determine sudo’s behavior?

The rule is that sudo always obeys the last matching line, with matching being
determined by the entire 4-tuple of user, host, target user, and command. Each of
those elements must match the configuration line, or the line is simply ignored.

Therefore, NOPASSWD exceptions must follow their more general counterparts, as
shown above. If the order of the last three lines were reversed, poor alice would have
to type a password no matter what sudo command she attempted to run.

sudo without a control terminal

In addition to raising the issue of passwordless authentication, unattended execution
of sudo (e.g., from cron) often occurs without a normal control terminal. There’s
nothing inherently wrong with that, but it’s an odd situation that sudo can check
for and reject if the requiretty option is turned on in the sudoers file.

This option is not the default from sudo’s perspective, but some OS distributions
include it in their default sudoers files, so it's worth checking for and removing.
Look for a line of the form

Defaults requiretty
and invert its value:
Defaults 'requiretty

The requiretty option does offer a small amount of symbolic protection against
certain attack scenarios. However, it’s easy to work around and so offers little real
security benefit. In our opinion, requiretty should be disabled as a matter of course
because it is a common source of problems.

Site-wide sudo configuration

Because the sudoers file includes the current host as a matching criterion for con-
figuration lines, you can use one master sudoers file throughout an administrative
domain (that is, a region of your site in which hostnames and user accounts are
guaranteed to be name-equivalent). This approach makes the initial sudoers setup
a bit more complicated, but it’s a great idea, for multiple reasons. You should do it.

The main advantage of this approach is that there’s no mystery about who has what
permissions on what hosts. Everything is recorded in one authoritative file. When
an administrator leaves your organization, for example, there’s no need to track

Management of the root account 77

down all the hosts on which that user might have had sudo permissions. When
changes are needed, you simply modify the master sudoers file and redistribute it.

A natural corollary of this approach is that sudo permissions might be better ex-
pressed in terms of user accounts rather than UNIX groups. For example,

%wheel ALL = ALL

has some intuitive appeal, but it defers the enumeration of privileged users to each
local machine. You can't look at this line and determine who's covered by it with-
out an excursion to the machine in question. Since the idea is to keep all relevant
information in one place, it’s best to avoid this type of grouping option when shar-
ing a sudoers file on a network. Of course, if your group memberships are tightly
coordinated site-wide, it’s fine to use groups.

Distribution of the sudoers file is best achieved through a broader system of config-
uration management, as described in Chapter 23. But if you havent yet reached
that level of organization, you can easily roll your own. Be careful, though: install-
ing a bogus sudoers file is a quick route to disaster. This is also a good file to keep
an eye on with a file integrity monitoring solution of some kind; see page 1061.

In the absence of a configuration management system, it’s best to use a “pull” script
that runs out of cron on each host. Use scp to copy the current sudoers file from
a known central repository, then validate it with visudo -c -f newsudoers before
installation to verify that the format is acceptable to the local sudo. scp checks the
remote server’s host key for you, ensuring that the sudoers file is coming from the
host you intended and not from a spoofed server.

Hostname specifications can be a bit subtle when sharing the sudoers file. By de-
fault, sudo uses the output of the hostname command as the text to be matched.
Depending on the conventions in use at your site, this name may or may not in-
clude a domain portion (e.g., anchor vs. anchor.cs.colorado.edu). In either case,
the hostnames specified in the sudoers file must match the hostnames as they are
returned on each host. (You can turn on the fqdn option in the sudoers file to at-
tempt to normalize local hostnames to their fully qualified forms.)

Hostname matching gets even stickier in the cloud, where instance names of-
ten default to algorithmically generated patterns. sudo understands simple pat-
tern-matching characters (globbing) in hostnames, so consider adopting a naming

scheme that incorporates some indication of each host’s security classification from

sudo’s perspective.

Alternatively, you can use your cloud provider’s virtual networking features to seg-
regate hosts by IP address, and then match on IP addresses instead of hostnames
from within the sudoers file.

http://anchor.cs.colorado.edu

78

See page 250 for
more information
about shadow and
master.passwd.

Chapter 3 Access Control and Rootly Powers

Disabling the root account

If your site standardizes on the use of sudo, you’ll have surprisingly little use for
actual root passwords. Most of your administrative team will never have occasion
to use them.

That fact raises the question of whether a root password is necessary at all. If you
decide that it isn’t, you can disable root logins entirely by setting root’s encrypted
password to * or to some other fixed, arbitrary string. On Linux, passwd -1 “locks”
an account by prepending a ! to the encrypted password, with equivalent results.

The * and the ! are just conventions; no software checks for them explicitly. Their
effect derives from their not being valid password hashes. As a result, attempts to
verify root’s password simply fail.

The main effect of locking the root account is that root cannot log in, even on the

console. Neither can any user successfully run su, because that requires a root pass-
word check as well. However, the root account continues to exist, and all the software

that usually runs as root continues to do so. In particular, sudo works normally.

The main advantage of disabling the root account is that you needn’t record and
manage root’s password. You're also eliminating the possibility of the root password
being compromised, but that’s more a pleasant side effect than a compelling rea-
son to go passwordless. Rarely used passwords are already at low risk of violation.

It’s particularly helpful to have a real root password on physical computers (as op-
posed to cloud or virtual instances; see Chapters 9 and 24). Real computers
are apt to require rescuing when hardware or configuration problems interfere
with sudo or the boot process. In these cases, it’s nice to have the traditional root
account avaijlable as an emergency fallback.

Ubuntu ships with the root account locked, and all administrative access is funneled
through sudo or a GUI equivalent. If you prefer, it’s fine to set a root password on
Ubuntu and then unlock the account with sudo passwd -u root.

System accounts other than root

Root is generally the only user that has special status in the eyes of the kernel, but
several other pseudo-users are defined by most systems. You can identify these
sham accounts by their low UIDs, usually less than 100. Most often, UIDs under
10 are system accounts, and UIDs between 10 and 100 are pseudo-users associated
with specific pieces of software.

It’s customary to replace the encrypted password field of these special users in the
shadow or master.passwd file with a star so that their accounts cannot be logged
in to. Their shells should be set to /bin/false or /bin/nologin as well, to protect
against remote login exploits that use password alternatives such as SSH key files.

As with user accounts, most systems define a variety of system-related groups that
have similarly low GIDs.

See page 800 for more
information about
the nobody account.

3.3

Extensions to the standard access control model 79

Files and processes that are part of the operating system but that need not be owned
by root are sometimes assigned to the users bin or daemon. The theory was that
this convention would help avoid the security hazards associated with ownership
by root. It’s not a compelling argument, however, and current systems often just
use the root account instead.

The main advantage of defining pseudo-accounts and pseudo-groups is that they
can be used more safely than the root account to provide access to defined groups
of resources. For example, databases often implement elaborate access control sys-
tems of their own. From the perspective of the kernel, they run as a pseudo-user
such as “mysql” that owns all database-related resources.

The Network File System (NFS) uses an account called “nobody” to represent root
users on other systems. For remote roots to be stripped of their rootly powers, the
remote UID 0 has to be mapped to something other than the local UID 0. The
nobody account acts as a generic alter ego for these remote roots. In NFSv4, the
nobody account can be applied to remote users that correspond to no valid local
account as well.

Since the nobody account is supposed to represent a generic and relatively pow-
erless user, it shouldn’t own any files. If nobody does own files, remote roots can
take control of them.

EXTENSIONS TO THE STANDARD ACCESS CONTROL MODEL

The preceding sections outline the major concepts of the traditional access control
model. Even though this model can be summarized in a couple of pages, it has stood
the test of time because it’s simple, predictable, and capable of handling the require-
ments of the average site. All UNIX and Linux variants continue to support this
model, and it remains the default approach and the one that’s most widely used today.

As actually implemented and shipped on modern operating systems, the model
includes a number of important refinements. Three layers of software contribute
to the current status quo:

o The standard model as described to this point
« Extensions that generalize and fine-tune this basic model
o Kernel extensions that implement alternative approaches

These categories are not architectural layers so much as historical artifacts. Early
UNIX derivatives all used the standard model, but its deficiencies were widely rec-
ognized even then. Over time, the community began to develop workarounds for
a few of the more pressing issues. In the interest of maintaining compatibility and
encouraging widespread adoption, changes were usually structured as refinements
of the traditional system. Some of these tweaks (e.g., PAM) are now considered
UNIX standards.

80

See page 250 for

more information
about the shadow and
master.passwd files.

Chapter 3 Access Control and Rootly Powers

Over the last decade, great strides have been made toward modularization of ac-
cess control systems. This evolution enables even more radical changes to access
control. We've reviewed some of the more common pluggable options for Linux
and FreeBSD, starting on page 83.

For now, we look at some of the more prosaic extensions that are bundled with
most systems. First, we consider the problems those extensions attempt to address.

Drawbacks of the standard model

Despite its elegance, the standard model has some obvious shortcomings.

« To begin with, the root account represents a potential single point of fail-
ure. If it's compromised, the integrity of the entire system is violated, and
there is essentially no limit to the damage an attacker can inflict.

« The only way to subdivide the privileges of the root account is to write
setuid programs. Unfortunately, as the steady flow of security-related soft-
ware updates demonstrates, it's difficult to write secure software. Every
setuid program is a potential target.

o The standard model has little to say about security on a network. No com-
puter to which an unprivileged user has physical access can be trusted to
accurately represent the ownerships of the processes it’s running. Who's
to say that someone hasn’t reformatted the disk and installed their own
operating system, with UIDs of their choosing?

« In the standard model, group definition is a privileged operation. For
example, there’s no way for a generic user to express the intent that only
alice and bob should have access to a particular file.

« Because many access control rules are embedded in the code of individual
commands and daemons (the classic example being the passwd program),
you cannot redefine the system’s behavior without modifying the source
code and recompiling. In the real world, that’s impractical and error prone.

o The standard model also has little or no support for auditing or logging.
You can see which UNIX groups a user belongs to, but you can’t neces-
sarily determine what those group memberships permit a user to do. In
addition, there’s no real way to track the use of elevated privileges or to
see what operations they have performed.

PAM: Pluggable Authentication Modules

User accounts are traditionally secured by passwords stored (in encrypted form)
in the /etc/shadow or /etc/master.passwd file or an equivalent network database.
Many programs may need to validate accounts, including login, sudo, su, and any
program that accepts logins on a GUI workstation.

Extensions to the standard access control model 81

These programs really shouldnt have hard-coded expectations about how passwords
are to be encrypted or verified. Ideally, they shouldn’t even assume that passwords
are in use at all. What if you want to use biometric identification, a network iden-
tity system, or some kind of two-factor authentication? Pluggable Authentication
Modules to the rescue!

PAM is a wrapper for a variety of method-specific authentication libraries. Admin-
istrators specify the authentication methods they want the system to use, along with
the appropriate contexts for each one. Programs that require user authentication
simply call the PAM system rather than implement their own forms of authentication.
PAM in turn calls the authentication library specified by the system administrator.

Strictly speaking, PAM is an authentication technology, not an access control tech-
nology. That is, instead of addressing the question “Does user X have permission
to perform operation Y?”, it helps answer the precursor question, “How do I know
this is really user X?”

PAM is an important component of the access control chain on most systems, and
PAM configuration is a common administrative task. You can find more details on
PAM in the Single Sign-On chapter starting on page 590.

Kerberos: network cryptographic authentication

Like PAM, Kerberos deals with authentication rather than access control per se. But
whereas PAM is an authentication framework, Kerberos is a specific authentication
method. At sites that use Kerberos, PAM and Kerberos generally work together, PAM
being the wrapper and Kerberos the actual implementation.

Kerberos uses a trusted third party (a server) to perform authentication for an entire
network. You don’t authenticate yourself to the machine you are using, but provide
your credentials to the Kerberos service. Kerberos then issues cryptographic cre-
dentials that you can present to other services as evidence of your identity.

Kerberos is a mature technology that has been in widespread use for decades. It’s
the standard authentication system used by Windows, and is part of Microsoft’s
Active Directory system. Read more about Kerberos starting on page 586.

Filesystem access control lists

Since filesystem access control is so central to UNIX and Linux, it was an early tar-
get for elaboration. The most common addition has been support for access control
lists (ACLSs), a generalization of the traditional user/group/other permission model
that permits permissions to be set for multiple users and groups at once.

ACLs are part of the filesystem implementation, so they have to be explicitly sup-
ported by whatever filesystem you are using. However, all major UNIX and Linux
filesystems now support ACLs in one form or another.

82

See Chapter 21, The
Network File System,
for more informa-
tion about NFS.

1)

Chapter 3 Access Control and Rootly Powers

ACL support generally comes in one of two forms: an early POSIX draft standard
that never quite made its way to formal adoption but was widely implemented
anyway, and the system standardized by NFSv4, which adapts Microsoft Windows
ACLs. Both ACL standards are described in more detail in the filesystem chapter,
starting on page 140.

Linux capabilities

Capability systems divide the powers of the root account into a handful (~30) of
separate permissions.

The Linux version of capabilities derives from the defunct POSIX 1003.1e draft,
which totters on despite never having been formally approved as a standard. In ad-
dition to bearing this zombie stigma, Linux capabilities raise the hackles of theorists

because of nonconformance to the academic conception of a capability system. No

matter; they’re here, and Linux calls them capabilities, so we will too.

Capabilities can be inherited from a parent process. They can also be enabled or
disabled by attributes set on an executable file, in a process reminiscent of setuid
execution. Processes can renounce capabilities that they don’t plan to use.

The traditional powers of root are simply the union of all possible capabilities, so
there’s a fairly direct mapping between the traditional model and the capability
model. The capability model is just more granular.

As an example, the Linux capability called CAP_NET_BIND_SERVICE controls
a process’s ability to bind to privileged network ports (those numbered under
1,024). Some daemons that traditionally run as root need only this one particular
superpower. In the capability world, such a daemon can theoretically run as an
unprivileged user and pick up the port-binding capability from its executable file.
As long as the daemon does not explicitly check to be sure that it’s running as root,
it needn’t even be capability aware.

Is all this actually done in the real world? Well, no. As it happens, capabilities have
evolved to become more an enabling technology than a user-facing system. They’re
widely employed by higher-level systems such as AppArmor (see page 87) and
Docker (see Chapter 25) but are rarely used on their own.

For administrators, it’s helpful to review the capabilities(7) man page just to get a
sense of what’s included in each of the capability buckets.

Linux namespaces

Linux can segregate processes into hierarchical partitions (“namespaces”) from which
they see only a subset of the system’s files, network ports, and processes. Among
other effects, this scheme acts as a form of preemptive access control. Instead of
having to base access control decisions on potentially subtle criteria, the kernel
simply denies the existence of objects that are not visible from inside a given box.

34

Modern access control 83

Inside a partition, normal access control rules apply, and in most cases jailed pro-
cesses are not even aware that they have been confined. Because confinement is ir-
reversible, processes can run as root within a partition without fear that they might
endanger other parts of the system.

This clever trick is one of the foundations of software containerization and its best-
known implementation, Docker. The full system is a lot more sophisticated and
includes extensions such as copy-on-write filesystem access. We have quite a bit
more to say about containers in Chapter 25.

As a form of access control, namespacing is a relatively coarse approach. The con-
struction of properly configured nests for processes to live in is also somewhat tricky.
Currently, this technology is applied primarily to add-on services as opposed to
intrinsic components of the operating system.

MODERN ACCESS CONTROL

Given the world’s wide range of computing environments and the mixed success
of efforts to advance the standard model, kernel maintainers have been reluctant
to act as mediators in the larger debate over access control. In the Linux world, the
situation came to a head in 2001, when the U.S. National Security Agency pro-
posed to integrate its Security-Enhanced Linux (SELinux) system into the kernel
as a standard facility.

For several reasons, the kernel maintainers resisted this merge. Instead of adopting
SELinux or another, alternative system, they developed the Linux Security Modules
API, a kernel-level interface that allows access control systems to integrate them-
selves as loadable kernel modules.

LSM-based systems have no effect unless users load them and turn them on. This
fact lowers the barriers for inclusion in the standard kernel, and Linux now ships
with SELinux and four other systems (AppArmor, Smack, TOMOYO, and Yama)
ready to go.

Developments on the BSD side have roughly paralleled those of Linux, thanks
largely to Robert Watson’s work on TrustedBSD. This code has been included in
FreeBSD since version 5. It also provides the application sandboxing technology
used in Apple’s macOS and iOS.

When multiple access control modules are active simultaneously, an operation
must be approved by all of them to be permitted. Unfortunately, the LSM system
requires explicit cooperation among active modules, and none of the current mod-
ules include this feature. For now, Linux systems are effectively limited to a choice
of one LSM add-on module.

84

Chapter 3 Access Control and Rootly Powers

Separate ecosystems

Access control is inherently a kernel-level concern. With the exception of filesystem
access control lists (see page 140), there is essentially no standardization among sys-
tems with regard to alternative access control mechanisms. As a result, every kernel
has its own array of available implementations, and none of them are cross-platform.

Because Linux distributions share a common kernel lineage, all Linux distributions
are theoretically compatible with all the various Linux security offerings. But in
practical terms, they’re not: these systems all need user-level support in the form
of additional commands, modifications to user-level components, and securement
profiles for daemons and services. Ergo, every distribution has only one or two ac-
cess control mechanisms that it actively supports (if that).

Mandatory access control

The standard UNIX model is considered a form of “discretionary access control”
because it allows the owners of access-controlled entities to set the permissions on

them. For example, you might allow other users to view the contents of your home

directory, or you might write a setuid program that lets other people send signals

to your processes.

Discretionary access control provides no particular guarantee of security for us-
er-level data. The downside of letting users set permissions is that users can set
permissions; there’s no telling what they might do with their own files. And even
with the best intentions and training, users can make mistakes.

Mandatory access control (aka MAC) systems let administrators write access control
policies that override or supplement the discretionary permissions of the traditional
model. For example, you might establish the rule that users’ home directories are
accessible only by their owners. It then doesn’t matter if a user makes a private copy
of a sensitive document and is careless with the document’s permissions; nobody
else can see into that user’s home directory anyway.

MAC capabilities are an enabling technology for implementing security models such
as the Department of Defense’s “multilevel security” system. In this model, security
policies control access according to the perceived sensitivity of the resources being
controlled. Users are assigned a security classification from a structured hierarchy.
They can read and write items at the same classification level or lower but cannot ac-
cess items at a higher classification. For example, a user with “secret” access can read
and write “secret” objects but cannot read objects that are classified as “top secret”

Unless you're handling sensitive data for a government entity, it is unlikely that you
will ever encounter or need to deploy such comprehensive “foreign” security mod-
els. More commonly, MAC is used to protect individual services, and it otherwise
stays out of users’ way.

A well-implemented MAC policy relies on the principle of least privilege (allow-
ing access only when necessary), much as a properly designed firewall allows only

N

Modern access control 85

specifically recognized services and clients to pass. MAC can prevent software with
code execution vulnerabilities (e.g., buffer overflows) from compromising the sys-
tem by limiting the scope of the breach to the few specific resources required by
that software.

MAC has unfortunately become something of a buzzword synonymous with “ad-
vanced access control” Even FreeBSD’s generic security API is called the MAC in-
terface, despite the fact that some plug-ins offer no actual MAC features.

Available MAC systems range from wholesale replacements for the standard model
to lightweight extensions that address specific domains and use cases. The common
thread among MAC implementations is that they generally add centralized, admin-
istrator-written (or vendor-supplied) policies into the access control system along
with the usual mix of file permissions, access controls lists, and process attributes.

Regardless of scope, MAC represents a potentially significant departure from the
standard system, and it’s one that programs expecting to deal with the standard
UNIX security model may find surprising. Before committing to a full-scale MAC
deployment, make sure you understand the module’s logging conventions and know
how to identify and troubleshoot MAC-related problems.

Role-based access control

Another feature commonly name-checked by access control systems is role-based
access control (aka RBAC), a theoretical model formalized in 1992 by David Ferraiolo
and Rick Kuhn. The basic idea is to add a layer of indirection to access control cal-
culations. Permissions, instead of being assigned directly to users, are assigned to
intermediate constructs known as “roles,” and roles in turn are assigned to users.
To make an access control decision, the system enumerates the roles of the cur-
rent user and checks to see if any of those roles have the appropriate permissions.

Roles are similar in concept to UNIX groups, but they’re more general because they
can be used outside the context of the filesystem. Roles can also have a hierarchical
relationship to one another, a fact that greatly simplifies administration. For exam-
ple, you might define a “senior administrator” role that has all the permissions of
an “administrator” plus the additional permissions X, Y, and Z.

Many UNIX variants, including Solaris, HP-UX, and AIX, include some form of
built-in RBAC system. Linux and FreeBSD have no distinct, native RBAC facility.
However, it is built into several of the more comprehensive MAC options.

SELinux: Security-Enhanced Linux

SELinux is one of the oldest Linux MAC implementations and is a product of the
U.S. National Security Agency. Depending on one’s perspective, that might be a
source of either comfort or suspicion.”

If your tastes incline toward suspicion, it's worth noting that as part of the Linux kernel distribution,
the SELinux code base is open to inspection.

86

e (B

Chapter 3 Access Control and Rootly Powers

SELinux takes a maximalist approach, and it implements pretty much every flavor
of MAC and RBAC one might envision. Although it has gained footholds in a few
distributions, it is notoriously difficult to administer and troubleshoot. This un-
attributed quote from a former version of the SELinux Wikipedia page vents the
frustration felt by many sysadmins:

Intriguingly, although the stated raison détre of SELinux is to facilitate
the creation of individualized access control policies specifically attuned to
organizational data custodianship practices and rules, the supportive soft-
ware tools are so sparse and unfriendly that the vendors survive chiefly on
‘consulting] which typically takes the form of incremental modifications to
boilerplate security policies.

Despite its administrative complexity, SELinux adoption has been slowly growing,
particularly in environments such as government, finance, and health care that
enforce strong and specific security requirements. It’s also a standard part of the
Android platform.

Our general opinion regarding SELinux is that it’s capable of delivering more
harm than benefit. Unfortunately, that harm can manifest not only as wasted time
and aggravation for system administrators, but also, ironically, as security lapses.
Complex models are hard to reason about, and SELinux isn't really a level playing
field; hackers that focus on it understand the system far more thoroughly than the
average sysadmin.

In particular, SELinux policy development is a complicated endeavor. To protect a

new daemon, for example, a policy must carefully enumerate all the files, directo-
ries, and other objects to which the process needs access. For complicated software

like sendmail or httpd, this task can be quite complex. At least one company offers

a three-day class on policy development.

Fortunately, many general policies are available on-line, and most SELinux-enabled

distributions come with reasonable defaults. These can easily be installed and con-
figured for your particular environment. A full-blown policy editor that aims to

ease policy application can be found at seedit.sourceforge.net.

SELinux is well supported by both Red Hat (and hence, CentOS) and Fedora. Red
Hat enables it by default.

Debian and SUSE Linux also have some available support for SELinux, but you
must install additional packages, and the system is less aggressive in its default
configuration.

Ubuntu inherits some SELinux support from Debian, but over the last few releases,
Ubuntu’s focus has been on AppArmor (see page 87). Some vestigial SELinux-re-
lated packages are still available, but they are generally not up to date.

http://seedit.sourceforge.net

e B

Modern access control 87

/etc/selinux/config is the top-level control for SELinux. The interesting lines are

SELINUX=enforcing
SELINUXTYPE=targeted

The first line has three possible values: enforcing, permissive, or disabled. The
enforcing setting ensures that the loaded policy is applied and prohibits violations.
permissive allows violations to occur but logs them through syslog, which is valu-
able for debugging and policy development. disabled turns off SELinux entirely.

SELINUXTYPE refers to the name of the policy database to be applied. This is essen-
tially the name of a subdirectory within /etc/selinux. Only one policy can be active
at a time, and the available policy sets vary by system.

Red Hat’s default policy is targeted, which defines additional security for a few dae-
mons that Red Hat has explicitly protected but leaves the rest of the system alone.
There used to be a separate policy called strict that applied MAC to the entire sys-
tem, but that policy has now been merged into targeted. Remove the unconfined
and unconfineduser modules with semodule -d to achieve full-system MAC.

Red Hat also defines an m1s policy that implements DoD-style multilevel security.
You must install it separately with yum install selinux-policy-mls.

If you're interested in developing your own SELinux policies, check out the audit2allow
utility. It builds policy definitions from logs of violations. The idea is to permissively
protect a subsystem so that its violations are logged but not enforced. You can then
put the subsystem through its paces and build a policy that allows everything the
subsystem actually did. Unfortunately, it's hard to guarantee complete coverage of
all code paths with this sort of ad hoc approach, so the autogenerated profiles are
unlikely to be perfect.

AppArmor

AppArmor is a product of Canonical, Ltd., releasers of the Ubuntu distribution.
It’s supported by Debian and Ubuntu, but has also been adopted as a standard by
SUSE distributions. Ubuntu and SUSE enable it on default installs, although the
complement of protected services is not extensive.

AppArmor implements a form of MAC and is intended as a supplement to the tra-
ditional UNIX access control system. Although any configuration is possible, Ap-
pArmor is not designed to be a user-facing system. Its main goal is service secure-
ment; that is, limiting the damage that individual programs can do if they should
be compromised or run amok.

Protected programs continue to be subject to all the limitations imposed by the
standard model, but in addition, the kernel filters their activities through a des-
ignated and task-specific AppArmor profile. By default, AppArmor denies all re-
quests, so the profile must explicitly name everything the process is allowed to do.

88

Chapter 3 Access Control and Rootly Powers

Programs without profiles, such as user shells, have no special restrictions and run
as if AppArmor were not installed.

This service securement role is essentially the same configuration that’s implemented
by SELinux in Red Hat’s targeted environment. However, AppArmor is designed
more specifically for service securement, so it sidesteps some of the more puzzling
nuances of SELinux.

AppArmor profiles are stored in /etc/apparmor.d, and they’re relatively readable
even without detailed knowledge of the system. For example, here’s the profile for
the cups-browsed daemon, part of the printing system on Ubuntu:

#include <tunables/global>
Jusr/sbin/cups-browsed {

#include <abstractions/base>
#include <abstractions/nameservice>
#include <abstractions/cups-client>
#include <abstractions/dbus>
#include <abstractions/p11-kit>

/etc/cups/cups-browsed.conf r,
/etc/cups/lpoptions r,
/{var/,}run/cups/certs/* r,
/var/cache/cups/* rw,
[tmp/** rw,

Site-specific additions and overrides. See local/README.
#include <local/usr.sbin.cups—browsed>

}

Most of this code is modular boilerplate. For example, this daemon needs to per-
form hostname lookups, so the profile interpolates abstractions/nameservice,
which gives access to name resolution libraries, /etc/nsswitch.conf, /etc/hosts, the
network ports used with LDAP, and so on.

The profiling information that’s specific to this daemon consists (in this case) of a
list of files the daemon can access, along with the permissions allowed on each file.
The pattern matching syntax is a bit idiosyncratic: ** can match multiple pathname
components, and {var/,} matches whether var/ appears at that location or not.

Even this simple profile is quite complex under the hood. With all the #include
instructions expanded, the profile is nearly 750 lines long. (And we chose this ex-
ample for its brevity. Yikes!)

AppArmor refers to files and programs by pathname, which makes profiles read-
able and independent of any particular filesystem implementation. This approach
is something of a compromise, however. For example, AppArmor doesn’t recognize
hard links as pointing to the same underlying entity.

3.5

Recommended reading 89

RECOMMENDED READING

FERRAIOLO, DAVID E, D. RIcHARD KUHN, AND RAMASWAMY CHANDRAMOULL Role-
Based Access Control (2nd Edition). Boston, MA: Artech House, 2007.

HaINEs, RICHARD. The SELinux Notebook (4th Edition). 2014. This compendium
of SELinux-related information is the closest thing to official documentation. It’s
available for download from freecomputerbooks.com.

VERMEULEN, SVEN. SELinux Cookbook. Birmingham, UK: Packt Publishing, 2014.
This book includes a variety of practical tips for dealing with SELinux. It covers
both service securement and user-facing security models.

http://freecomputerbooks.com

20

4.1

Process Control

ZOMBIE PROCESS

SSURZA

Cavaaay
\\ 1‘\\‘1“@
AV

A process represents a running program. It’s the abstraction through which memory,
processor time, and I/O resources can be managed and monitored.

It is an axiom of the UNIX philosophy that as much work as possible be done with-
in the context of processes rather than being handled specially by the kernel. Sys-
tem and user processes follow the same rules, so you can use a single set of tools
to control them both.

COMPONENTS OF A PROCESS

A process consists of an address space and a set of data structures within the ker-
nel. The address space is a set of memory pages that the kernel has marked for the
process’s use.! These pages contain the code and libraries that the process is execut-
ing, the process’s variables, its stacks, and various extra information needed by the
kernel while the process is running. The process’s virtual address space is laid out
randomly in physical memory and tracked by the kernel’s page tables.

1. Pages are the units in which memory is managed. They are usually 4KiB or 8KiB in size.

Components of a process 91

The kernel’s internal data structures record various pieces of information about
each process. Here are some of the more important of these:

« The process’s address space map

« The current status of the process (sleeping, stopped, runnable, etc.)

« The execution priority of the process

« Information about the resources the process has used (CPU, memory, etc.)
« Information about the files and network ports the process has opened

« The process’s signal mask (a record of which signals are blocked)

o The owner of the process

A “thread” is an execution context within a process. Every process has at least one
thread, but some processes have many. Each thread has its own stack and CPU
context but operates within the address space of its enclosing process.

Modern computer hardware includes multiple CPUs and multiple cores per CPU.
A process’s threads can run simultaneously on different cores. Multithreaded appli-
cations such as BIND and Apache benefit quite a bit from this architecture because
it lets them farm out requests to individual threads.

Many of the parameters associated with a process directly affect its execution: the
amount of processor time it gets, the files it can access, and so on. In the following
sections, we discuss the meaning and significance of the parameters that are most
interesting from a system administrator’s point of view. These attributes are com-
mon to all versions of UNIX and Linux.

PID: process ID number

The kernel assigns a unique ID number to every process. Most commands and
system calls that manipulate processes require you to specify a PID to identify the
target of the operation. PIDs are assigned in order as processes are created.

Linux now defines the concept of process “namespaces,” which further restrict
processes’ ability to see and affect each other. Container implementations use this
feature to keep processes segregated. One side effect is that a process might appear
to have different PIDs depending on the namespace of the observer. It’s kind of
like Einsteinian relativity for process IDs. Refer to Chapter 25, Containers, for
more information.

PPID: parent PID

Neither UNIX nor Linux has a system call that initiates a new process running a
particular program. Instead, it's done in two separate steps. First, an existing process
must clone itself to create a new process. The clone can then exchange the program
it’s running for a different one.

92

See page 248 for
more information
about UIDs.

See page 68 for more
information about
setuid execution.

a

See page 249 for
more information
about groups.

Chapter 4 Process Control

When a process is cloned, the original process is referred to as the parent, and the
copy is called the child. The PPID attribute of a process is the PID of the parent
from which it was cloned.?

The parent PID is a useful piece of information when you’re confronted with an
unrecognized (and possibly misbehaving) process. Tracing the process back to its
origin (whether that is a shell or some other program) may give you a better idea
of its purpose and significance.

UID and EUID: real and effective user ID

A process’s UID is the user identification number of the person who created it, or
more accurately, it is a copy of the UID value of the parent process. Usually, only
the creator (aka, the owner) and the superuser can manipulate a process.

The EUID is the “effective” user ID, an extra UID that determines what resources
and files a process has permission to access at any given moment. For most processes,
the UID and EUID are the same, the usual exception being programs that are setuid.

Why have both a UID and an EUID? Simply because it’s useful to maintain a distinc-
tion between identity and permission, and because a setuid program might not wish
to operate with expanded permissions all the time. On most systems, the effective
UID can be set and reset to enable or restrict the additional permissions it grants.

Most systems also keep track of a “saved UID,” which is a copy of the process’s
EUID at the point at which the process first begins to execute. Unless the process
takes steps to obliterate this saved UID, it remains available for use as the real or
effective UID. A conservatively written setuid program can therefore renounce its
special privileges for the majority of its execution and access them only at the points
where extra privileges are needed.

Linux also defines a nonstandard FSUID process parameter that controls the deter-
mination of filesystem permissions. It is infrequently used outside the kernel and
is not portable to other UNIX systems.

GID and EGID: real and effective group ID

The GID is the group identification number of a process. The EGID is related to
the GID in the same way that the EUID is related to the UID in that it can be “up-
graded” by the execution of a setgid program. As with the saved UID, the kernel
maintains a saved GID for each process.

The GID attribute of a process is largely vestigial. For purposes of access determi-
nation, a process can be a member of many groups at once. The complete group
list is stored separately from the distinguished GID and EGID. Determinations of
access permissions normally take into account the EGID and the supplemental
group list, but not the GID itself.

. At least initially. If the original parent dies, init or systemd (process 1) becomes the new parent. See

page 94.

See page 190 for more
information about
the standard commu-

nication channels.

4.2

w

The life cycle of a process 93

The only time at which the GID is actually significant is when a process creates
new files. Depending on how the filesystem permissions have been set, new files
might default to adopting the GID of the creating process. See page 134 for details.

Niceness

A process’s scheduling priority determines how much CPU time it receives. The
kernel computes priorities with a dynamic algorithm that takes into account the
amount of CPU time that a process has recently consumed and the length of time
it has been waiting to run. The kernel also pays attention to an administratively set
value that’s usually called the “nice value” or “niceness,” so called because it specifies
how nice you are planning to be to other users of the system. We discuss niceness
in detail on page 102.

Control terminal

Most nondaemon processes have an associated control terminal. The control ter-
minal determines the default linkages for the standard input, standard output, and
standard error channels. It also distributes signals to processes in response to key-
board events such as <Control-C>; see the discussion starting on page 94.

Of course, actual terminals are rare outside of computer museums these days. Nev-
ertheless, they live on in the form of pseudo-terminals, which are still widely used
throughout UNIX and Linux systems. When you start a command from the shell,
for example, your terminal window typically becomes the process’s control terminal.

THE LIFE CYCLE OF A PROCESS

To create a new process, a process copies itself with the fork system call.’ fork cre-
ates a copy of the original process, and that copy is largely identical to the parent.
The new process has a distinct PID and has its own accounting information.

fork has the unique property of returning two different values. From the child’s
point of view, it returns zero. The parent receives the PID of the newly created child.
Since the two processes are otherwise identical, they must both examine the return
value to figure out which role they are supposed to play.

After a fork, the child process often uses one of the exec family of routines to begin
the execution of a new program. These calls change the program that the process
is executing and reset the memory segments to a predefined initial state. The vari-
ous forms of exec differ only in the ways in which they specify the command-line
arguments and environment to be given to the new program.

When the system boots, the kernel autonomously creates and installs several pro-
cesses. The most notable of these is init or systemd, which is always process num-

. Technically, Linux systems use clone, a superset of fork that handles threads and includes additional

features. fork remains in the kernel for backward compatibility but calls clone behind the scenes.

94

A core dump is a

copy of a process’s
memory image, which
is sometimes useful
for debugging.

Chapter 4 Process Control

ber 1. This process executes the system’s startup scripts, although the exact manner
in which this is done differs slightly between UNIX and Linux. All processes other
than the ones the kernel creates are descendants of this primordial process. See
Chapter 2, Booting and System Management Daemons, for more information
about booting and the various flavors of init daemon.

init (or systemd) also plays another important role in process management. When a
process completes, it calls a routine named _exit to notify the kernel that it is ready
to die. It supplies an exit code (an integer) that tells why it’s exiting. By convention,
zero indicates a normal or “successful” termination.

Before a dead process can be allowed to disappear completely, the kernel requires
that its death be acknowledged by the process’s parent, which the parent does with
a call to wait. The parent receives a copy of the child’s exit code (or if the child did
not exit voluntarily, an indication of why it was killed) and can also obtain a sum-
mary of the child’s resource use if it wishes.

This scheme works fine if parents outlive their children and are conscientious about
calling wait so that dead processes can be disposed of. If a parent dies before its
children, however, the kernel recognizes that no wait is forthcoming. The kernel
adjusts the orphan processes to make them children of init or systemd, which po-
litely performs the wait needed to get rid of them when they die.

Signals

Signals are process-level interrupt requests. About thirty different kinds are defined,
and they’re used in a variety of ways:

o They can be sent among processes as a means of communication.

« They can be sent by the terminal driver to kill, interrupt, or suspend pro-
cesses when keys such as <Control-C> and <Control-Z> are pressed.*

« They can be sent by an administrator (with kill) to achieve various ends.

« They can be sent by the kernel when a process commits an infraction such
as division by zero.

« They can be sent by the kernel to notify a process of an “interesting” con-
dition such as the death of a child process or the availability of data on
an I/O channel.

When a signal is received, one of two things can happen. If the receiving process
has designated a handler routine for that particular signal, the handler is called with
information about the context in which the signal was delivered. Otherwise, the
kernel takes some default action on behalf of the process. The default action varies
from signal to signal. Many signals terminate the process; some also generate core
dumps (if core dumps have not been disabled).

. The functions of <Control-Z> and <Control-C> can be reassigned to other keys with the stty com-

mand, but this is rare in practice. In this chapter we refer to them by their conventional bindings.

Table 4.1

The life cycle of a process 95

Specifying a handler routine for a signal is referred to as catching the signal. When
the handler completes, execution restarts from the point at which the signal was
received.

To prevent signals from arriving, programs can request that they be either ignored
or blocked. A signal that is ignored is simply discarded and has no effect on the
process. A blocked signal is queued for delivery, but the kernel doesn’t require the
process to act on it until the signal has been explicitly unblocked. The handler for
a newly unblocked signal is called only once, even if the signal was received several
times while reception was blocked.

Table 4.1 lists some signals that administrators should be familiar with. The up-
percase convention for the names derives from C language tradition. You might
also see signal names written with a SIG prefix (e.g., SSIGHUP) for similar reasons.

Signals every administrator should know*

Can Can Dump
#° Name Description Default catch? block? core?
1 HUP Hangup Terminate Yes Yes No
2 INT Interrupt Terminate Yes Yes No
3 QUIT Quit Terminate Yes Yes Yes
9 KILL Kill Terminate No No No
10 BUS Bus error Terminate Yes Yes Yes
11 SEGV Segmentation fault Terminate Yes Yes Yes
15 TERM Software termination ~ Terminate Yes Yes No
17 STOP Stop Stop No No No
18 TSTP Keyboard stop Stop Yes Yes No
19 CONT Continue after stop Ignore Yes No No
28 WINCH Window changed Ignore Yes Yes No
30 USR1 User-defined #1 Terminate Yes Yes No
31 USR2 User-defined #2 Terminate Yes Yes No

a. Alist of signal names and numbers is also available from the bash built-in command kill -1.
b. May vary on some systems. See /usr/include/signal.h or man signal for more information.

Other signals, not shown in Table 4.1, mostly report obscure errors such as “illegal
instruction.” The default handling for such signals is to terminate with a core dump.
Catching and blocking are generally allowed because some programs are smart
enough to try to clean up whatever problem caused the error before continuing.

The BUS and SEGV signals are also error signals. We've included them in the table
because they’re so common: when a program crashes, it’s usually one of these two
signals that finally brings it down. By themselves, the signals are of no specific diag-
nostic value. Both of them indicate an attempt to use or access memory improperly.

96

Chapter 4 Process Control

The signals named KILL and STOP cannot be caught, blocked, or ignored. The
KILL signal destroys the receiving process, and STOP suspends its execution un-
til a CONT signal is received. CONT can be caught or ignored, but not blocked.

TSTP is a “soft” version of STOP that might be best described as a request to stop.
It’s the signal generated by the terminal driver when <Control-Z> is typed on the
keyboard. Programs that catch this signal usually clean up their state, then send
themselves a STOP signal to complete the stop operation. Alternatively, programs
can ignore TSTP to prevent themselves from being stopped from the keyboard.

The signals KILL, INT, TERM, HUP, and QUIT all sound as if they mean approx-
imately the same thing, but their uses are actually quite different. It's unfortunate
that such vague terminology was selected for them. Here’s a decoding guide:

 KILL is unblockable and terminates a process at the kernel level. A pro-
cess can never actually receive or handle this signal.

INT is sent by the terminal driver when the user presses <Control-C>. It’s
a request to terminate the current operation. Simple programs should quit
(if they catch the signal) or simply allow themselves to be killed, which
is the default if the signal is not caught. Programs that have interactive
command lines (such as shells) should stop what they’re doing, clean up,
and wait for user input again.

« TERM is a request to terminate execution completely. It’s expected that
the receiving process will clean up its state and exit.

o HUP has two common interpretations. First, it’s understood as a reset
request by many daemons. If a daemon is capable of rereading its con-
figuration file and adjusting to changes without restarting, a HUP can
generally trigger this behavior.

Second, HUP signals are sometimes generated by the terminal driver in
an attempt to “clean up” (i.e., kill) the processes attached to a particular
terminal. This behavior is largely a holdover from the days of wired ter-
minals and modem connections, hence the name “hangup”

Shells in the C shell family (tcsh et al.) usually make background pro-
cesses immune to HUP signals so that they can continue to run after the

user logs out. Users of Bourne-ish shells (ksh, bash, etc.) can emulate this

behavior with the nohup command.

« QUIT is similar to TERM, except that it defaults to producing a core dump
if not caught. A few programs cannibalize this signal and interpret it to
mean something else.

The signals USRI and USR2 have no set meaning. They’re available for programs
to use in whatever way theyd like. For example, the Apache web server interprets
a HUP signal as a request for an immediate restart. A USRI signal initiates a more
graceful transition in which existing client conversations are allowed to finish.

wu

The life cycle of a process 97

kill: send signals

As its name implies, the kill command is most often used to terminate a process.
kill can send any signal, but by default it sends a TERM. kill can be used by normal
users on their own processes or by root on any process. The syntax is

kill [-signal] pid

where signal is the number or symbolic name of the signal to be sent (as shown in
Table 4.1) and pid is the process identification number of the target process.

A Kkill without a signal number does not guarantee that the process will die, because
the TERM signal can be caught, blocked, or ignored. The command

$ kill -9 pid

“guarantees” that the process will die because signal 9, KILL, cannot be caught. Use
kill -9 only if a polite request fails. We put quotes around “guarantees” because
processes can on occasion become so wedged that even KILL does not affect them,
usually because of some degenerate I/O vapor lock such as waiting for a volume
that has disappeared. Rebooting is usually the only way to get rid of these processes.

killall kills processes by name. For example, the following command kills all Apache
web server processes:

$ sudo killall httpd

The pkill command searches for processes by name (or other attributes, such as
EUID) and sends the specified signal. For example, the following command sends
a TERM signal to all processes running as the user ben:

$ sudo pkill -u ben

Process and thread states

As you saw in the previous section, a process can be suspended with a STOP signal
and returned to active duty with a CONT signal. The state of being suspended or
runnable applies to the process as a whole and is inherited by all the process’s threads.

Even when nominally runnable, threads must often wait for the kernel to complete
some background work for them before they can continue execution. For example,
when a thread reads data from a file, the kernel must request the appropriate disk
blocks and then arrange for their contents to be delivered into the requesting pro-
cess’s address space. During this time, the requesting thread enters a short-term
sleep state in which it is ineligible to execute. Other threads in the same process
can continue to run, however.

You’'ll sometimes see entire processes described as “sleeping” (for example, in ps
output—see the next section). Since sleeping is a thread-level attribute, this con-
vention is a bit deceptive. A process is generally reported as “sleeping” when all its

. Individual threads can in fact be managed similarly. However, those facilities are primarily of interest

to developers; system administrators needn’t concern themselves.

98

See page 809 for
more information
about hard-mounting
NES filesystems.

4.3

a

Chapter 4 Process Control

threads are asleep. Of course, the distinction is moot in the case of single-threaded
processes, which remain the most common case.

Interactive shells and system daemons spend most of their time sleeping, waiting
for terminal input or network connections. Since a sleeping thread is effectively
blocked until its request has been satisfied, its process generally receives no CPU
time unless it receives a signal or a response to one of its I/O requests.

Some operations can cause processes or threads to enter an uninterruptible sleep
state. This state is usually transient and is not observed in ps output (denoted by a
D in the STAT column; see Table 4.2 on page 100). However, a few degenerate situ-
ations can cause it to persist. The most common cause involves server problems on
an NFS filesystem mounted with the hard option. Since processes in the uninter-
ruptible sleep state cannot be roused even to service a signal, they cannot be killed.
To get rid of them, you must fix the underlying problem or reboot.

In the wild, you might occasionally see “zcombie” processes that have finished ex-
ecution but that have not yet had their status collected by their parent process (or
by init or systemd). If you see zombies hanging around, check their PPIDs with
ps to find out where they’re coming from.

PS: MONITOR PROCESSES

The ps command is the system administrator’s main tool for monitoring process-
es. Although versions of ps differ in their arguments and display, they all deliver
essentially the same information. Part of the enormous variation among versions
of ps can be traced back to differences in the development history of UNIX. How-
ever, ps is also a command that vendors tend to customize for other reasons. It’s
closely tied to the kernel’s handling of processes, so it tends to reflect all a vendor’s
underlying kernel changes.

ps can show the PID, UID, priority, and control terminal of processes. It also informs
you how much memory a process is using, how much CPU time it has consumed,
and what its current status is (running, stopped, sleeping, etc.). Zombies show up
in a ps listing as <exiting> or <defunct>.

Implementations of ps have become hopelessly complex over the years. Several
vendors have abandoned the attempt to define meaningful displays and made their
pses completely configurable. With a little customization work, almost any desired
output can be produced.

As a case in point, the ps used by Linux is a highly polymorphous version that under-
stands option sets from multiple historical lineages. Almost uniquely among UNIX

ps: monitor processes 929

commands, Linux’s ps accepts command-line flags with or without dashes but might
assign different interpretations to those forms. For example, ps -a is not the same as ps a.

Do not be alarmed by all this complexity: it’s there mainly for developers, not for
system administrators. Although you will use ps frequently, you only need to know
a few specific incantations.

You can obtain a useful overview of all the processes running on the system with
ps aux. The a option says show all processes, and x says show even processes that
don’t have a control terminal; u selects the “user oriented” output format. Here’s
an example of ps aux output on a machine running Red Hat:

redhat$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT TIME COMMAND
root 1 0.1 0.2 3356 560 ? S 0:00 init [5]

root 2 0] 0] 0] 0 ? SN 0:00 [ksoftirqd/0]
root 3 0 0 0 0 ? S< 0:00 [events/0]

root 4 0 0 0 0 ? S< 0:00 [khelper]

root 5 0 0 0 0 ? S< 0:00 [kacpid]

root 18 0 0 0 0 ? S< 0:00 [kblockd/0]

root 28 0 0 0 0 ? S 0:00 [pdflush]

root 196 0 0 0 0 ?2 S 0:00 [kjournald]

root 1050 0 0.1 2652 448 ? S<s 0:00 udevd

root 1472 0 0.3 3048 1008 ? S<s 0:00 /sbin/dhclient -1
root 1646 0 0.3 3012 1012 ? S<s 0:00 /sbin/dhclient -1
root 1733 0] 0 0 0 ? S 0:00 [kjournald]

root 2124 0 0.3 3004 1008 ? Ss 0:00 /sbin/dhclient -1
root 2182 0 0.2 2264 59 ? Ss 0:00 rsyslog -m 0
root 2186 O 0.1 2952 484 ? Ss 0:00 klogd -x

root 2519 0.0 0.0 17036 380 ? Ss 0:00 /usr/sbin/atd
root 2384 0O 0.6 4080 1660 ? Ss 0:00 /usr/sbin/sshd
root 2419 0 1.1 7776 3004 ? Ss 0:00 sendmail: accept

Command names in brackets are not really commands at all but rather kernel
threads scheduled as processes. The meaning of each field is shown in Table 4.2
on the next page.

Another useful set of arguments is lax, which gives more technical information. The
a and x options are as above (show every process), and 1 selects the “long” output
format. ps lax might be slightly faster to run than ps aux because it doesn’t have
to translate every UID to a username—efliciency can be important if the system
is already bogged down.

100 Chapter 4

Process Control

Table 4.2 Explanation of ps aux output

Field

Contents

USER
PID
%CPU
%MEM
VSZ
RSS
TTY
STAT

TIME

Username of the process’s owner
Process ID
Percentage of the CPU this process is using
Percentage of real memory this process is using
Virtual size of the process

Resident set size (number of pages in memory)

Control terminal ID

Current process status:
R =Runnable

D =In uninterruptible sleep

S =Sleeping (< 20 sec) T =Traced or stopped
Z =Zombie

Additional flags:
W = Process is swapped out
< =Process has higher than normal priority
N = Process has lower than normal priority
L =Some pages are locked in core

s =Process is a session leader

CPU time the process has consumed

COMMAND Command name and arguments?

a. Programs can modify this information, so it's not necessarily an accurate representa-
tion of the actual command line.

Shown here in an abbreviated example, ps lax includes fields such as the parent
process ID (PPID), niceness (NI), and the type of resource on which the process

is waiting (WCHAN, short for “wait channel”).

redhat$ ps lax

F UID
4 0
1 0
1 0
1 0
5 0
5 32
5 29
1 0
1 0
5 0
1 0
5 0

PID

PPID PRI

0

N e S N S BN =N

16
34

5

5
16
15
18
16
21
17
15
16

NI
0
19
-10
-10
0

[ocNoNoNoNoNoNO)

VSZ
3356
0

0

0
2952
2824
2100
5668
3268
4080
2780
7776

RSS
560
0

0

0
484
580
760
1084
556
1660
828
3004

WCHAN
select
ksofti
worker
worker
syslog

select
select
select
select
select

STAT TIME
S 0:00
SN 0:00
S< 0:00
S< 0:00
Ss 0:00
Ss 0:00
Ss 0:00
Ss 0:00
Ss 0:00
Ss 0:00
Ss 0:00
Ss 0:00

COMMAND
init [5]
[ksoftirqd/0O
[events/0]
[khelper]
klogd -x
portmap
rpc.statd
rpc.idmapd
acpid

sshd

xinetd -sta
sendmail: a

4.4

Interactive monitoring with top 101

Commands with long argument lists may have the command-line output cut off.
Add w to the list of flags to display more columns in the output. Add w twice for
unlimited column width, handy for those processes that have exceptionally long
command-line arguments, such as some java applications.

Administrators frequently need to identify the PID of a process. You can find the
PID by grepping the output of ps:

$ ps aux | grep sshd
root 6811 0.0 0.0 78056 1340 ? Ss 16:04 0:00 /usr/sbin/sshd
bwhaley 13961 0.0 0.0 110408 868 pts/1 S+ 20:37 0:00 grep /usr/sbin/sshd

Note that the ps output includes the grep command itself, since the grep was ac-
tive in the process list at the time ps was running. You can remove this line from
the output with grep -v:

$ ps aux | grep -v grep | grep sshd
root 6811 0.0 0.0 78056 1340 ? Ss 16:04 0:00 /usr/sbin/sshd

You can also determine the PID of a process with the pidof command:

$ pidof /usr/sbin/sshd
6811

Or with the pgrep utility:

$ pgrep sshd
6811

pidof and pgrep show all processes that match the passed string. We often find a
simple grep to offer the most flexibility, though it can be a bit more verbose.

INTERACTIVE MONITORING WITH TOP

Commands like ps show you a snapshot of the system as it was at the time. Often,
that limited sample is insufficient to convey the big picture of what’s really going
on. top is a sort of real-time version of ps that gives a regularly updated, interactive
summary of processes and their resource usage. For example:

redhat$ top

top - 20:07:43 up 1:59, 3 users, load average: 0.45, 0.16, 0.09

Tasks: 251 total, 1 running, 250 sleeping, 0O stopped, 0O zombie
%Cpu(s): 0.7 us, 1.2 sy, 0.0 ni, 98.0 id, 0.0 wa, 0.0 hi, 0.2 si, 0.0 st
KiB Mem : 1013672 total, 128304 free, 547176 used, 338192 buff/cache
KiB Swap: 2097148 total, 2089188 free, 7960 used. 242556 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2731 root 20 193316 34848 15184 S 1.7 3.4 0:30.39 Xorg

0
25721 wulsah 20 @ 619412 27216 17636 S 1.0 2.7 0:03.67 konsole
25296 ulsah 20 0 260724 6068 3268 S 0.7 0.6 0:17.78 prlcc
747 root 20 0 4372 604 504 S 0.3 0.1 0:02.68 rngd
846 root 20 0O 141744 384 192 S 0.3 0.0 0:01.74 prltoolsd

102

Learn how to interpret
the CPU, memory,

and load details
in Chapter 29.

4.5

(=)}

7.

Chapter 4 Process Control

1647 root 20 O 177436 3656 2632 S 0.3 0.4 0:04.47 cupsd

10246 ulsah 20 0 130156 1936 1256 R 0.3 0.2 0:00.10 top
1 root 20 0 59620 5472 3348 S 0.0 0.5 0:02.09 systemd
2 root 20 O 0 0 0S 0.0 0.0 0:00.02 kthreadd
3 root 20 O 0 0 0S 0.0 0.0 0:00.03 ksoftirqd/0
5 root 0 -20 0 0 0S 0.0 0.0 0:00.00 kworker/0:+
7 root rt 0O 0 0 0S 0.0 0.0 0:00.20 migration/0
8 root 20 O 0 0 0S 0.0 0.0 0:00.00 rcu_bh
9 root 20 0 0 0 0SS 0.0 0.0 0:00.00 rcuob/0

By default, the display updates every 1-2 seconds, depending on the system. The
most CPU-consumptive processes appear at the top. top also accepts input from
the keyboard to send signals and renice processes (see the next section). You can
then observe how your actions affect the overall condition of the machine.

The summary information in the first few lines of top output is one of the first
places to look at to analyze the health of the system. It shows a condensed view of
the system load, memory usage, number of processes, and a breakdown of how
the CPU is being used.

On multicore systems, CPU usage is an average of all the cores in the system. Under
Linux, press 1 (numeral one) while top is open to switch to a display of the indi-
vidual cores. On FreeBSD, run top -P to achieve the same effect.®

Root can run top with the -q option to goose it up to the highest possible priority.
This option can be useful when you are trying to track down a process that has al-
ready brought the system to its knees.

We also like htop, an open source, cross-platform, interactive process viewer that
offers more features and has a nicer interface than that of top. It is not yet available
as a package for our example systems, but you can download a binary or source
version from the developer’s web site at hisham.hm/htop.

NICE AND RENICE: INFLUENCE SCHEDULING PRIORITY

The “niceness” of a process is a numeric hint to the kernel about how the process
should be treated in relation to other processes contending for the CPU.” The strange
name is derived from the fact that it determines how nice you are going to be to other
users of the system. A high niceness means a low priority for your process: you are
going to be nice. A low or negative value means high priority: you are not very nice.

It’'s highly unusual to set priorities by hand these days. On the puny systems where
UNIX originated, performance was significantly affected by which process was on the

. On FreeBSD systems, you can set the TOP environment variable to pass additional arguments to

top. We recommend -H to show all threads for multithreaded processes rather than just a summary,
plus -P to display all CPU cores. Add export TOP="~HP" to your shell initialization file to make these
changes persistent between shell sessions.

nice manages only CPU scheduling priority. To set I/O priority, use ionice.

nice and renice: influence scheduling priority 103

CPU. Today, with more than adequate CPU power on every desktop, the scheduler
does a good job of managing most workloads. The addition of scheduling classes
gives developers additional control when fast response is essential.

The range of allowable niceness values varies among systems. In Linux the range is
-20 to +19, and in FreeBSD it’s -20 to +20.

Unless the user takes special action, a newly created process inherits the niceness
of its parent process. The owner of the process can increase its niceness but cannot
lower it, even to return the process to the default niceness. This restriction prevents
processes running at low priority from bearing high-priority children. However,
the superuser can set nice values arbitrarily.

I/O performance has not kept up with increasingly fast CPUs. Even with today’s
high-performance SSDs, disk bandwidth remains the primary bottleneck on most
systems. Unfortunately, a process’s niceness has no effect on the kernel’s manage-
ment of its memory or I/O; high-nice processes can still monopolize a dispropor-
tionate share of these resources.

A process’s niceness can be set at the time of creation with the nice command and
adjusted later with the renice command. nice takes a command line as an argument,
and renice takes a PID or (sometimes) a username.

Some examples:

$ nice -n 5 ~/bin/longtask // Lowers priority (raise nice) by 5
$ sudo renice -5 8829 // Sets niceness to -5
$ sudo renice 5 -u boggs // Sets niceness of boggs’s procs to 5

Unfortunately, there is little agreement among systems about how the desired prior-
ities should be specified; in fact, even nice and renice from the same system usually
don't agree. To complicate things, a version of nice is built into the C shell and some
other common shells (but not bash). If you don’t type the full path to nice, you'll get
the shell’s version rather than the operating system’s. To sidestep this ambiguity, we
suggest using the fully qualified path to the system’s version, found at /usr/bin/nice.

Table 4.3 summarizes the variations. A prio is an absolute niceness, while an incr
is relative to the niceness of the shell from which nice or renice is run. Only the
shell nice understands plus signs (in fact, it requires them); leave them out in all
other circumstances.

Table 4.3 How to express priorities for nice and renice

System Range OS nice csh nice renice

Linux -20to 19 -nincr +incror -incr prio or -n prio
FreeBSD -20t020 -nincr +incror -incr incror -n incr

104

Chapter 4 Process Control

THE /PROC FILESYSTEM

The Linux versions of ps and top read their process status information from the
/proc directory, a pseudo-filesystem in which the kernel exposes a variety of inter-
esting information about the system’s state.

Despite the name /proc (and the name of the underlying filesystem type, “proc”),
the information is not limited to process information—a variety of status infor-
mation and statistics generated by the kernel are represented here. You can even
modify some parameters by writing to the appropriate /proc file. See page 339
for some examples.

Although a lot of the information is easiest to access through front-end commands
such as vmstat and ps, some of the more obscure nuggets must be read directly
from /proc. It's worth poking around in this directory to familiarize yourself with
everything that’s there. man proc has a comprehensive explanation of its contents.

Because the kernel creates the contents of /proc files on the fly (as they are read),
most appear to be empty, 0-byte files when listed with Is -1. You’ll have to cat or less
the contents to see what they actually contain. But be cautious—a few files contain
or link to binary data that can confuse your terminal emulator if viewed directly.

Process-specific information is divided into subdirectories named by PID. For ex-
ample, /proc/1 is always the directory that contains information about init. Table
4.4 lists the most useful per-process files.

Table 4.4 Process information files in Linux /proc (numbered subdirectories)

File Contents

cgroup The control groups to which the process belongs

cmd Command or program the process is executing

cmdline® Complete command line of the process (null-separated)

cwd Symbolic link to the process’s current directory

environ The process’s environment variables (null-separated)

exe Symbolic link to the file being executed

fd Subdirectory containing links for each open file descriptor
fdinfo Subdirectory containing further info for each open file descriptor
maps Memory mapping information (shared segments, libraries, etc)
ns Subdirectory with links to each namespace used by the process.
root Symbolic link to the process’s root directory (set with chroot)
stat General process status information (best decoded with ps)
statm Memory usage information

a. Might be unavailable if the process is swapped out of memory

4.7

Q

o]

Nel

strace and truss: trace signals and system calls 105

The individual components contained within the cmdline and environ files are
separated by null characters rather than newlines. You can filter their contents
through tr "\000" "\n" to make them more readable.

The fd subdirectory represents open files in the form of symbolic links. File descrip-
tors that are connected to pipes or network sockets don't have an associated filename.
The kernel supplies a generic description as the link target instead.

The maps file can be useful for determining what libraries a program is linked to
or depends on.

FreeBSD includes a similar-but-different implementation of /proc. However, its use
has been deprecated because of neglect in the code base and a history of security
issues. It’s still available for compatibility but is not mounted by default. To mount
it, use the command?

freebsd$ sudo mount -t procfs proc /proc

The filesystem layout is similar—but not identical—to the Linux version of procfs.
The information for a process includes its status, a symbolic link to the file being
executed, details about the process’s virtual memory, and other low-level informa-
tion. See also man procfs.

STRACE AND TRUSS: TRACE SIGNALS AND SYSTEM CALLS

It’s often difficult to figure out what a process is actually doing. The first step is gen-
erally to make an educated guess based on indirect data collected from the filesys-
tem, logs, and tools such as ps.

If those sources of information prove insufficient, you can snoop on the process at a
lower level with the strace (Linux; usually an optional package) or truss (FreeBSD)
command. These commands display every system call that a process makes and
every signal it receives. You can attach strace or truss to a running process, snoop
for a while, and then detach from the process without disturbing it.’

Although system calls occur at a relatively low level of abstraction, you can usually
tell quite a bit about a process’s activity from the call trace. For example, the fol-
lowing log was produced by strace run against an active copy of top (which was
running as PID 5810):

redhat$ sudo strace —p 5810

gettimeofday({1116193814, 213881}, {300, 0}) =0
open("/proc", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY) = 7
fstat64(7, {st_mode=S_IFDIR|0555, st_size=0, ...}) =0
fentl64(7, F_SETFD, FD_CLOEXEC) =0

. To automatically mount the /proc filesystem at boot time, append the line proc /proc procfs rw 0 @

to /etc/fstab.

. Well, usually. strace can interrupt system calls. The monitored process must then be prepared to re-

start them. This is a standard rule of UNIX software hygiene, but it’s not always observed.

106

Chapter 4 Process Control

getdents64(7, /* 36 entries */, 1024)
getdents64(7, /* 39 entries */, 1024)
stat64("/proc/1", {st_mode=S_IFDIR|0555, st_size=0, ...}) =0

I n
= e
© o
= =
o o

open("/proc/1/stat", O_RDONLY) =8
read(8, "1 (init) SO 0 0 0 -1 4194560 73"..., 1023) = 191
close(8) =0

Not only does strace show you the name of every system call made by the process,
but it also decodes the arguments and shows the result code that the kernel returns.

In the example above, top starts by checking the current time. It then opens and
stats the /proc directory and reads the directory’s contents, thereby obtaining a list
of running processes. top goes on to stat the directory representing the init process
and then opens /proc/1/stat to read init’s status information.

System call output can often reveal errors that are not reported by the process it-
self. For example, filesystem permission errors or socket conflicts are usually quite
obvious in the output of strace or truss. Look for system calls that return error in-
dications, and check for nonzero values.

strace is packed with goodies, most of which are documented in the man page.
For example, the -f flag follows forked processes. This feature is useful for tracing
daemons (such as httpd) that spawn many children. The -e trace=file option dis-
plays only file-related operations. This feature is especially handy for discovering
the location of evasive configuration files.

Here’s a similar example from FreeBSD that uses truss. In this case, we trace how
cp copies a file:

freebsd$ truss cp /etc/passwd /tmp/pw

lstat("/etc/passwd",{ mode=-rw-r--r-- ,inode=13576,s1ze=2380,
blksize=4096 }) = 0 (Ox0)

umask(0x1ff) = 18 (0x12)
umask(0x12) = 511 (Ox1ff)
fstatat(AT_FDCWD," /etc/passwd",{ mode=-rw-r--r-- ,inode=13576,
size=2380,blksize=4096 },0x0) =0 (0x0)
stat("/tmp/pw",0x7fffffffe440) ERR#2 'No such file or directory'
openat(AT_FDCWD," /etc/passwd",0_RDONLY,00) = 3 (0x3)
openat(AT_FDCWD," /tmp/pw",0_WRONLY|O_CREAT,0100644) = 4 (0x4)
mmap (0x0,2380,PROT_READ,MAP_SHARED, 3,0x0) = 34366304256
(0x800643000)
write(4,"# $FreeBSD: releng/11.0/etc/mast"...,2380) = 2380 (0x94c)
close(4) =0 (0x0)
close(3) =0 (0x0)

After allocating memory and opening library dependencies (not shown), cp uses
the Istat system call to check the current status of the /etc/passwd file. It then runs

Runaway processes 107

stat on the path of the prospective copy, /tmp/pw. That file does not yet exist, so
the stat fails and truss decodes the error for you as “No such file or directory”

cp then invokes the openat system call (with the O_RDONLY option) to read the
contents of /etc/passwd, followed by an openat of /tmp/pw with O_WRONLY to
create the new destination file. It then maps the contents of /etc/passwd into mem-
ory (with mmap) and writes out the data with write. Finally, cp cleans up after itself
by closing both file handles.

System call tracing is a powerful debugging tool for administrators. Turn to these
tools after more traditional routes such as examining log files and configuring a
process for verbose output have been exhausted. Do not be intimidated by the dense
output; it’s usually sufficient to focus on the human-readable portions.

4.8 RUNAWAY PROCESSES

“Runaway” processes are those that soak up significantly more of the system’s CPU,
disk, or network resources than their usual role or behavior would lead you to ex-
pect. Sometimes, such programs have their own bugs that have led to degenerate
behavior. In other cases, they fail to deal appropriately with upstream failures and
get stuck in maladaptive loops. For example, a process might reattempt the same
failing operation over and over again, flooring the CPU. In yet another category of
cases, there is no bug per se, but the software is simply inefficient in its implemen-
tation and greedy with the system’s resources.

All these situations merit investigation by a system administrator, not only because
the runaway process is most likely malfunctioning but also because it typically in-
terferes with the operation of other processes that are running on the system.

The line between pathological behavior and normal behavior under heavy work-
load is vague. Often, the first step in diagnosis is to figure out which of these phe-
nomena you are actually observing. Generally, system processes should always
behave reasonably, so obvious misbehavior on the part of one of these processes is
automatically suspicious. User processes such as web servers and databases might
simply be overloaded.

You can identify processes that are using excessive CPU time by looking at the out-
put of ps or top. Also check the system load averages as reported by the uptime
command. Traditionally, these values quantify the average number of processes
that have been runnable over the previous 1-, 5-, and, 15-minute intervals. Under
Linux, the load average also takes account of busyness caused by disk traffic and
other forms of I/O.

For CPU bound systems, the load averages should be less than the total number of
CPU cores available on your system. If they are not, the system is overloaded. Un-
der Linux, check total CPU utilization with top or ps to determine whether high

108

10.

Chapter 4 Process Control

load averages relate to CPU load or to I/O. If CPU utilization is near 100%, that is
probably the bottleneck.

Processes that use excessive memory relative to the system’s physical RAM can
cause serious performance problems. You can check the memory size of process-
es by running top. The VIRT column shows the total amount of virtual memory
allocated by each process, and the RES column shows the portion of that memory
currently mapped to specific memory pages (the “resident set”).

Both of these numbers can include shared resources such as libraries and thus are
potentially misleading. A more direct measure of process-specific memory con-
sumption is found in the DATA column, which is not shown by default. To add this
column to top’s display, type the f key once top is running and select DATA from
the list by pressing the space bar. The DATA value indicates the amount of memo-
ry in each process’s data and stack segments, so it’s relatively specific to individual
processes (modulo shared memory segments). Look for growth over time as well as
absolute size. On FreeBSD, SIZE is the equivalent column and is shown by default.

Make a concerted effort to understand what’s going on before you terminate a
seemingly runaway process. The best route to debugging the issue and preventing
a recurrence is to have a live example you can investigate. Once you kill a misbe-
having process, most of the available evidence disappears.

Keep the possibility of hacking in mind as well. Malicious software is typically not
tested for correctness in a variety of environments, so it’s more likely than average
to enter some kind of degenerate state. If you suspect misfeasance, obtain a sys-
tem call trace with strace or truss to get a sense of what the process is doing (e.g.,
cracking passwords) and where its data is stored.

Runaway processes that produce output can fill up an entire filesystem, causing
numerous problems. When a filesystem fills up, lots of messages will be logged to
the console and attempts to write to the filesystem will produce error messages.

The first thing to do in this situation is to determine which filesystem is full and
which file is filling it up. The df -h command shows filesystem disk use in hu-
man-readable units. Look for a filesystem that’s 100% or more full.'® Use the du -h
command on the identified filesystem to determine which directory is using the
most space. Rinse and repeat with du until the large files are discovered.

df and du report disk usage in subtly different manners. df reports the disk space
used by a mounted filesystem according to disk block totals in the filesystem’s meta-
data. du sums the sizes of all files in a given directory. If a file is unlinked (delet-
ed) from the filesystem but is still referenced by some running process, df reports
the space but du does not. This disparity persists until the open file descriptor is
closed or the file is truncated. If you can’t determine which process is using a file,

Most filesystem implementations reserve a portion (about 5%) of the storage space for “breathing
room,” but processes running as root can encroach on this space, resulting in a reported usage that is
greater than 100%.

4.9

e £

See Chapter 10
for more informa-
tion about syslog.

Periodic processes 109

try running the fuser and Isof commands (covered in detail on page 124) to get
more information.

PERIODIC PROCESSES

It's often useful to have a script or command executed without any human inter-
vention. Common use cases include scheduled backups, database maintenance
activities, or the execution of nightly batch jobs. As is typical of UNIX and Linux,
there’s more than one way to achieve this goal.

cron: schedule commands

The cron daemon is the traditional tool for running commands on a predetermined
schedule. It starts when the system boots and runs as long as the system is up. There
are multiple implementations of cron, but fortunately for administrators, the syntax
and functionality of the various versions is nearly identical.

For reasons that are unclear, cron has been renamed crond on Red Hat. But it is
still the same cron we all know and love.

cron reads configuration files containing lists of command lines and times at which
they are to be invoked. The command lines are executed by sh, so almost anything
you can do by hand from the shell can also be done with cron. If you prefer, you
can even configure cron to use a different shell.

A cron configuration file is called a “crontab,” short for “cron table” Crontabs
for individual users are stored under /var/spool/cron (Linux) or /var/cron/tabs
(FreeBSD). There is at most one crontab file per user. Crontab files are plain text
files named with the login names of the users to whom they belong. cron uses these
filenames (and the file ownership) to figure out which UID to use when running
the commands contained in each file. The crontab command transfers crontab files
to and from this directory.

cron tries to minimize the time it spends reparsing configuration files and making
time calculations. The crontab command helps maintain cron’s efficiency by noti-
tying cron when crontab files change. Ergo, you shouldn’t edit crontab files directly,
because this approach might result in cron not noticing your changes. If you do
get into a situation where cron doesn't seem to acknowledge a modified crontab, a
HUP signal sent to the cron process forces it to reload on most systems.

cron normally does its work silently, but most versions can keep a log file (usually
/var/log/cron) that lists the commands that were executed and the times at which
they ran. Glance at the cron log file if you're having problems with a cron job and
can't figure out why.

110

Table 4.5

Chapter 4 Process Control

The format of crontab files

All the crontab files on a system share a similar format. Comments are introduced
with a pound sign (#) in the first column of a line. Each non-comment line contains
six fields and represents one command:

minute hour dom month weekday command

The first five fields tell cron when to run the command. They’re separated by
whitespace, but within the command field, whitespace is passed along to the shell.
The fields in the time specification are interpreted as shown in Table 4.5. An entry
in a crontab is colloquially known as a “cron job”

Crontab time specifications

Field Description Range
minute Minute of the hour ~ 0to0 59
hour Hour of the day 0to23
dom Day of the month 1to 31
month Month of the year 1t012
weekday Day of the week 0to 6 (0 = Sunday)

Each of the time-related fields can contain

o A star, which matches everything

o A single integer, which matches exactly

 Two integers separated by a dash, matching a range of values

o A range followed by a slash and a step value, e.g., 1-10/2

o A comma-separated list of integers or ranges, matching any value

For example, the time specification
45 10 * * 1-5

means “10:45 a.m., Monday through Friday” A hint: never use stars in every field
unless you want the command to be run every minute, which is useful only in test-
ing scenarios. One minute is the finest granularity available to cron jobs.

Time ranges in crontabs can include a step value. For example, the series
0,3,6,9,12,15,18 can be written more concisely as 0-18/3. You can also use
three-letter text mnemonics for the names of months and days, but not in combi-
nation with ranges. As far as we know, this feature works only with English names.

There is a potential ambiguity to watch out for with the weekday and dom fields.
Every day is both a day of the week and a day of the month. If both weekday and
dom are specified, a day need satisfy only one of the two conditions to be selected.

Periodic processes 111

For example,
0,30 * 13 * 5

means “every half-hour on Friday, and every half-hour on the 13™ of the month,”
not “every half-hour on Friday the 13%”

The command is the sh command line to be executed. It can be any valid shell com-
mand and should not be quoted. The command is considered to continue to the
end of the line and can contain blanks or tabs.

Percent signs (%) indicate newlines within the command field. Only the text up to
the first percent sign is included in the actual command. The remaining lines are
given to the command as standard input. Use a backslash (1) as an escape character
in commands that have a meaningful percent sign, for example, date +\%s.

Although sh is involved in executing the command, the shell does not act as a login
shell and does not read the contents of ~/.profile or ~/.bash_profile. As a result,
the command’s environment variables might be set up somewhat differently from
what you expect. If a command seems to work fine when executed from the shell
but fails when introduced into a crontab file, the environment is the likely culprit.
If need be, you can always wrap your command with a script that sets up the ap-
propriate environment variables.

We also suggest using the fully qualified path to the command, ensuring that the
job will work properly even if the PATH is not set as expected. For example, the
following command logs the date and uptime to a file in the user’s home directory
every minute:

* * x x x echo $(/bin/date) - $(/usr/bin/uptime) >> ~/uptime.log
Alternatively, you can set environment variables explicitly at the top of the crontab:

PATH=/bin:/usr/bin
¥ % % % % gcho $(date) - $(uptime) >> ~/uptime.log

Here are a few more examples of valid crontab entries:

*¥/10 * * * 1, 3,5 echo ruok | /usr/bin/nc localhost 2181 |
mail -s "TCP port 2181 status" ben@admin.com

This line emails the results of a connectivity check on port 2181 every 10 minutes
on Mondays, Wednesdays, and Fridays. Since cron executes command by way of
sh, special shell characters like pipes and redirects function as expected.

0 4 * * Sun (/usr/bin/mysqglcheck -u maintenance —--optimize
--all-databases)

This entry runs the mysqlcheck maintenance program on Sundays at 4:00 a.m.
Since the output is not saved to a file or otherwise discarded, it will be emailed to
the owner of the crontab.

mailto:ben@admin.com

112

Chapter 4 Process Control

20 1 * * * find /tmp -mtime +7 -type f -exec rm -f { } ';'

This command runs at 1:20 each morning. It removes all files in the /tmp directory
that have not been modified in 7 days. The '; ' at the end of the line marks the end
of the subcommand arguments to find.

cron does not try to compensate for commands that are missed while the system
is down. However, it is smart about time adjustments such as shifts into and out
of daylight saving time.

If your cron job is a script, be sure to make it executable (with chmod +x) or cron
won't be able to execute it. Alternatively, set the cron command to invoke a shell
on your script directly (e.g., bash -c ~/bin/myscript.sh).

Crontab management

crontab filename installs filename as your crontab, replacing any previous version.

crontab -e checks out a copy of your crontab, invokes your editor on it (as specified

by the EDITOR environment variable), and then resubmits it to the crontab direc-

tory. crontab -1lists the contents of your crontab to standard output, and crontab
-r removes it, leaving you with no crontab file at all.

Root can supply a username argument to edit or view other users’ crontabs. For
example, crontab -r jsmith erases the crontab belonging to the user jsmith, and
crontab -e jsmith edits it. Linux allows both a username and a filename argument
in the same command, so the username must be prefixed with -u to disambiguate
(e.g., crontab -u jsmith crontab.new).

Without command-line arguments, most versions of crontab try to read a crontab
from standard input. If you enter this mode by accident, don't try to exit with
<Control-D>; doing so erases your entire crontab. Use <Control-C> instead. FreeBSD
requires you to supply a dash as the filename argument to make crontab pay atten-
tion to its standard input. Smart.

Many sites have experienced subtle but recurrent network glitches that occur be-
cause administrators have configured cron to run the same command on hundreds
of machines at exactly the same time, causing delays or excessive load. Clock syn-
chronization with NTP exacerbates the problem. This issue is easy to fix with a
random delay script.

cron logs its activities through syslog using the facility “cron,” with most messag-
es submitted at level “info” Default syslog configurations generally send cron log
data to its own file.

Other crontabs

In addition to looking for user-specific crontabs, cron also obeys system crontab
entries found in /etc/crontab and in the /etc/cron.d directory. These files have a
slightly different format from the per-user crontab files: they allow commands to

See Chapter 2, for
an introduction to
systemd and units.

Periodic processes 113

be run as an arbitrary user. An extra username field comes before the command
name. The username field is not present in garden-variety crontab files because the
crontab’s filename supplies this same information.

In general, /etc/crontab is a file for system administrators to maintain by hand,
whereas /etc/cron.d is a sort of depot into which software packages can install any
crontab entries they might need. Files in /etc/cron.d are by convention named after
the packages that install them, but cron doesn’t care about or enforce this convention.

Linux distributions also pre-install crontab entries that run the scripts in a set of
well-known directories, thereby providing another way for software packages to
install periodic jobs without any editing of a crontab file. For example, scripts in
/etc/cron.hourly, /etc/cron.daily, and /etc/cron.weekly are run hourly, daily, and
weekly, respectively.

cron access control

Two config files specify which users may submit crontab files. For Linux, the files
are /etc/cron.{allow,deny}, and on FreeBSD they are /var/cron/{allow,deny}. Many
security standards require that crontabs be available only to service accounts or to
users with a legitimate business need. The allow and deny files facilitate compli-
ance with these requirements.

If the cron.allow file exists, then it contains a list of all users that may submit
crontabs, one per line. No unlisted person can invoke the crontab command. If the
cron.allow file doesn’t exist, then the cron.deny file is checked. It, too, is just a list of
users, but the meaning is reversed: everyone except the listed users is allowed access.

If neither the cron.allow file nor the cron.deny file exists, systems default (appar-
ently at random, there being no dominant convention) either to allowing all users
to submit crontabs or to limiting crontab access to root. In practice, a starter con-
figuration is typically included in the default OS installation, so the question of how
crontab might behave without configuration files is moot. Most default configura-
tions allow all users to access cron by default.

It's important to note that on most systems, access control is implemented by crontab,
not by cron. If a user is able to sneak a crontab file into the appropriate directory
by other means, cron will blindly execute the commands it contains. Therefore it
is vital to maintain root ownership of /var/spool/cron and /var/cron/tabs. OS dis-
tributions always set the permissions correctly by default.

systemd timers

In accordance with its mission to duplicate the functions of all other Linux sub-
systems, systemd includes the concept of timers, which activate a given systemd
service on a predefined schedule. Timers are more powerful than crontab entries,
but they are also more complicated to set up and manage. Some Linux distributions

114

Table 4.6

Chapter 4 Process Control

(e.g., CoreOS) have abandoned cron entirely in favor of systemd timers, but our
example systems all continue to include cron and to run it by default.

We have no useful advice regarding the choice between systemd timers and crontab
entries. Use whichever you prefer for any given task. Unfortunately, you do not really
have the option to standardize on one system or the other, because software pack-
ages add their jobs to a random system of their own choice. You'll always have to
check both systems when you are trying to figure out how a particular job gets run.

Structure of systemd timers

A systemd timer comprises two files:

« A timer unit that describes the schedule and the unit to activate
o A service unit that specifies the details of what to run

In contrast to crontab entries, systemd timers can be described both in absolute
calendar terms (“Wednesdays at 10:00 a.m””) and in terms that are relative to other
events (“30 seconds after system boot”). The options combine to allow powerful
expressions that don’t suffer the same constraints as cron jobs. Table 4.6 describes
the time expression options.

systemd timer types

Type Time basis

OnActiveSec Relative to the time at which the timer itself is activated
OnBootSec Relative to system boot time

OnStartupSec Relative to the time at which systemd was started
OnUnitActiveSec Relative to the time the specified unit was last active
OnUnitInactiveSec Relative to the time the specified unit was last inactive
OnCalendar A specific day and time

As their names suggest, values for these timer options are given in seconds. For
example, OnActiveSec=30 is 30 seconds after the timer activates. The value can
actually be any valid systemd time expression, as discussed in more detail starting
on page 116.

systemd timer example

Red Hat and CentOS include a preconfigured systemd timer that cleans up the sys-
teny’s temporary files once a day. Below, we take a more detailed look at an exam-
ple. First, we enumerate all the defined timers with the systemctl command. (We

rotated the output table below to make it readable. Normally, each timer produces

one long line of output.)

Periodic processes 115

redhat$ systemctl list-timers

NEXT Sun 2017-06-18 10:24:33 UTC
LEFT 18h left
LAST Sat 2017-06-17 00:45:29 UTC
PASSED 15h ago
UNIT systemd-tmpfiles-clean.timer

ACTIVATES systemd-tmpfiles-clean.service

The output lists both the name of the timer unit and the name of the service unit it
activates. Since this is a default system timer, the unit file lives in the standard sys-
temd unit directory, /usr/lib/systemd/system. Here’s the timer unit file:

redhat$ cat /usr/lib/systemd/system/systemd-tmpfiles-clean.timer
[Unit]

Description=Daily Cleanup of Temporary Directories

[Timer]

OnBootSec=15min

OnUnitActiveSec=1d

The timer first activates 15 minutes after boot and then fires once a day thereafter.
Note that some kind of trigger for the initial activation (here, OnBootSec) is always
necessary. There is no single specification that achieves an “every X minutes” ef-
fect on its own.

Astute observers will notice that the timer does not actually specify which unit to
run. By default, systemd looks for a service unit that has the same name as the timer.
You can specify a target unit explicitly with the Unit option.

In this case, the associated service unit holds no surprises:

redhat$ cat /usr/lib/systemd/system/systemd-tmpfiles-clean.service

[Unit]

Description=Cleanup of Temporary Directories

DefaultDependencies=no

Conflicts=shutdown.target

After=systemd-readahead-collect.service systemd-readahead-replay.service
local-fs.target time-sync.target

Before=shutdown.target

[Service]

Type=simple
ExecStart=/usr/bin/systemd-tmpfiles —-clean
I0SchedulingClass=idle

You can run the target service directly (that is, independently of the timer) with
systemctl start systemd-tmpfiles-clean, just like any other service. This fact greatly
facilitates the debugging of scheduled tasks, which can be a source of much admin-
istrative anguish when you are using cron.

116

Chapter 4 Process Control

To create your own timer, drop .timer and .service files in /etc/systemd/system. If
you want the timer to run at boot, add

[Install]
WantedBy=multi-user.target

to the end of the timer’s unit file. Don't forget to enable the timer at boot time with
systemctl enable. (You can also start the timer immediately with systemctl start.)

A timer’s AccuracySec option delays its activation by a random amount of time
within the specified time window. This feature is handy when a timer runs on a
large group of networked machines and you want to avoid having all the timers
fire at exactly the same moment. (Recall that with cron, you need to use a random
delay script to achieve this feat.)

AccuracySec defaults to 60 seconds. If you want your timer to execute at exactly the
scheduled time, use AccuracySec=1ns. (A nanosecond is probably close enough.
Note that you won't actually obtain nanosecond accuracy.)

systemd time expressions

Timers allow for flexible specification of dates, times, and intervals. The systemd.time
man page is the authoritative reference for the specification grammar.

You can use interval-valued expressions instead of seconds for relative timings
such as those used as the values of OnActiveSec and OnBootSec. For example, the
following forms are all valid:

OnBootSec=2h 1m
OnStartupSec=1week 2days 3hours
OnActiveSec=1hr20m30sec10msec

Spaces are optional in time expressions. The minimum granularity is nanoseconds,
but if your timer fires too frequently (more than once every two seconds) systemd
temporarily disables it.

In addition to triggering at periodic intervals, timers can be scheduled to activate
at specific times by including the OnCalendar option. This feature offers the closest
match to the syntax of a traditional cron job, but its syntax is more expressive and
flexible. Table 4.7 shows some examples of time specifications that could be used
as the value of OnCalendar.

In time expressions, stars are placeholders that match any plausible value. As in
crontab files, slashes introduce an increment value. The exact syntax is a bit dif-
ferent from that used in crontabs, however: crontabs want the incremented object
to be a range (e.g., 9-17/2, “every two hours between 9:00 a.m. and 5:00 p.m”),
but systemd time expressions take only a start value (e.g., 9/2, “every two hours
starting at 9:00 a.m.”).

Periodic processes 117

Table 4.7 systemd time and date encoding examples

Time specification Meaning

2017-07-04 July 4th, 2017 at 00:00:00 (midnight)

Fri-Mon *-7-4 July 4th each year, but only if it falls on Fri-Mon
Mon-Wed *-*-% 12:00:00 Mondays, Tuesdays, and Wednesdays at noon
Mon 17:00:00 Mondays at 5:00 p.m.

weekly Mondays at 00:00:00 (midnight)

monthly The 1%t day of the month at 00:00:00 (midnight)
*x:0/10 Every 10 minutes, starting at the 0" minute
¥-%-% 11/12:10:0 At 11:10 and 23:10 every day

Transient timers

You can use the systemd-run command to schedule the execution of a command ac-
cording to any of the normal systemd timer types, but without creating task-specific
timer and service unit files. For example, to pull a Git repository every ten minutes:

$ systemd-run --on-calendar '*:0/10"' /bin/sh -c "cd /app && git pull"
Running timer as unit run-8823.timer.
Will run service as unit run-8823.service.

systemd returns a transient unit identifier that you can list with systemctl. (Once
again, we futzed with the output format below...)

$ systemctl list-timers run-8823.timer

NEXT Sat 2017-06-17 20:40:07 UTC
LEFT 9min left

LAST Sat 2017-06-17 20:30:07 UTC
PASSED 18s ago

$ systemctl list-units run-8823.timer
UNIT run-8823.timer

LOAD loaded

ACTIVE active

SUB waiting

DESCRIPTION /bin/sh —c "cd /app && git pull"
To cancel and remove a transient timer, just stop it by running systemctl stop:
$ sudo systemctl stop run-8823.timer

systemd-run functions by creating timer and unit files for you in subdirectories
of /run/systemd/system. However, transient timers do not persist after a reboot.
To make them permanent, you can fish them out of /run, tweak them as necessary,
and install them in /etc/systemd/system. Be sure to stop the transient timer before
starting or enabling the permanent version.

118

Chapter 4 Process Control

Common uses for scheduled tasks

In this section, we look at a couple of common chores that are often automated
through cron or systemd.

Sending mail

The following crontab entry implements a simple email reminder. You can use an
entry like this to automatically email the output of a daily report or the results of a
command execution. (Lines have been folded to fit the page. In reality, this is one
long line.)

30 4 25 * * Jusr/bin/mail -s "Time to do the TPS reports"
ben@admin.com%TPS reports are due at the end of the month! Get
busy!%%Sincerely, %cron%

Note the use of the % character both to separate the command from the input text
and to mark line endings within the input. This entry sends email at 4:30 a.m. on
the 25" day of each month.

Cleaning up a filesystem

When a program crashes, the kernel may write out a file (usually named core.pid,
core, or program.core) that contains an image of the program’ address space. Core
files are useful for developers, but for administrators they are usually a waste of space.
Users often don't know about core files, so they tend not to disable their creation
or delete them on their own. You can use a cron job to clean up these core files or
other vestiges left behind by misbehaving and crashed processes.

Rotating a log file

Systems vary in the quality of their default log file management, and you will prob-
ably need to adjust the defaults to conform to your local policies. To “rotate” a log
file means to divide it into segments by size or by date, keeping several older ver-
sions of the log available at all times. Since log rotation is a recurrent and regularly
occurring event, it’s an ideal task to be scheduled. See Management and rotation of
log files on page 319, for more details.

Running batch jobs

Some long-running calculations are best run as batch jobs. For example, messages
can accumulate in a queue or database. You can use a cron job to process all the
queued messages at once as an ETL (extract, transform, and load) to another loca-
tion, such as a data warehouse.

Some databases benefit from routine maintenance. For example, the open source
distributed database Cassandra has a repair function that keeps the nodes in a clus-
ter in sync. These maintenance tasks are good candidates for execution through
cron or systemd.

Periodic processes 119

Backing up and mirroring

You can use a scheduled task to automatically back up a directory to a remote sys-
tem. We suggest running a full backup once a week, with incremental differences
each night. Run backups late at night when the load on the system is likely to be low.

Mirrors are byte-for-byte copies of filesystems or directories that are hosted on
another system. They can be used as a form of backup or as a way to make files
available at more than one location. Web sites and software repositories are often
mirrored to offer better redundancy and to offer faster access for users that are
physically distant from the primary site. Use periodic execution of the rsync com-
mand to maintain mirrors and keep them up to date.

5 The Filesystem

Quick: which of the following would you expect to find in a “filesystem”?

» Processes

« Audio devices

« Kernel data structures and tuning parameters
o Interprocess communication channels

If the system is UNIX or Linux, the answer is “all the above, and more!” And yes,
you might find some files in there, too.!

The basic purpose of a filesystem is to represent and organize the system’s storage
resources. However, programmers have been eager to avoid reinventing the wheel
when it comes to managing other types of objects. It has often proved convenient
to map these objects into the filesystem namespace. This unification has some ad-
vantages (consistent programming interface, easy access from the shell) and some
disadvantages (filesystem implementations suggestive of Frankenstein’s monster),
but like it or not, this is the UNIX (and hence, the Linux) way.

1. It’s perhaps more accurate to say that these entities are represented within the filesystem. In most cas-
es, the filesystem is used as a rendezvous point to connect clients with the drivers they are seeking.

120

See the sections

starting on page
762 for more in-
formation about

specific filesystems.

1

Introduction to The Filesystem 121

The filesystem can be thought of as comprising four main components:

« A namespace - a way to name things and organize them in a hierarchy
o An API* - a set of system calls for navigating and manipulating objects
o Security models - schemes for protecting, hiding, and sharing things

« An implementation - software to tie the logical model to the hardware

Modern kernels define an abstract interface that accommodates many different
back-end filesystems. Some portions of the file tree are handled by traditional disk-
based implementations. Others are fielded by separate drivers within the kernel. For
example, network filesystems are handled by a driver that forwards the requested
operations to a server on another computer.

Unfortunately, the architectural boundaries are not clearly drawn, and quite a few
special cases exist. For example, “device files” define a way for programs to com-
municate with drivers inside the kernel. Device files are not really data files, but
they’re handled through the filesystem and their characteristics are stored on disk.

Another complicating factor is that the kernel supports more than one type of disk-
based filesystem. The predominant standards are the ext4, XFS, and UFS filesystems,
along with Oracle’s ZFS and Btrfs. However, many others are available, including,
Veritas’s VXFS and JFS from IBM.

“Foreign” filesystems are also widely supported, including the FAT and NTES filesystems
used by Microsoft Windows and the ISO 9660 filesystem used on older CD-ROMs.

The filesystem is a rich topic that we approach from several different angles. This
chapter tells where to find things on your system and describes the characteristics
of files, the meanings of permission bits, and the use of some basic commands that
view and set attributes. Chapter 20, Storage, is where you'll find the more tech-
nical filesystem topics such as disk partitioning.

Chapter 21, The Network File System, describes NFS, a file sharing system that is
commonly used for remote file access between UNIX and Linux systems. Chapter
22, SMB, describes an analogous system from the Windows world.

With so many different filesystem implementations available, it may seem strange
that this chapter reads as if there were only a single filesystem. We can be vague
about the underlying code because most modern filesystems either try to imple-
ment the traditional filesystem functionality in a faster and more reliable manner,
or they add extra features as a layer on top of the standard filesystem semantics.
Some filesystems do both. For better or worse, too much existing software depends
on the model described in this chapter for that model to be discarded.

An AP], or application programming interface, is the generic term for the set of routines that a li-
brary, operating system, or software package permits programmers to call.

122

5.1

5.2

Chapter 5 The Filesystem

PATHNAMES

The filesystem is presented as a single unified hierarchy that starts at the directory
/ and continues downward through an arbitrary number of subdirectories. / is also
called the root directory. This single-hierarchy system differs from the one used by
Windows, which retains the concept of partition-specific namespaces.

Graphical user interfaces often refer to directories as “folders,” even on Linux sys-
tems. Folders and directories are exactly the same thing; “folder” is just linguistic
leakage from the worlds of Windows and macOS. Nevertheless, it's worth noting
that the word “folder” tends to raise the hackles of some techies. Don't use it in
technical contexts unless you're prepared to receive funny looks.

The list of directories that must be traversed to locate a particular file plus that file’s
filename form a pathname. Pathnames can be either absolute (e.g., /tmp/foo) or
relative (e.g., book4/filesystem). Relative pathnames are interpreted starting at the
current directory. You might be accustomed to thinking of the current directory as
a feature of the shell, but every process has one.

The terms filename, pathname, and path are more or less interchangeable—or at
least, we use them interchangeably in this book. Filename and path can be used
for both absolute and relative paths; pathname usually suggests an absolute path.

The filesystem can be arbitrarily deep. However, each component of a pathname (that
is, each directory) must have a name no more than 255 characters long. There’s also a
limit on the total path length you can pass into the kernel as a system call argument
(4,095 bytes on Linux, 1,024 bytes on BSD). To access a file with a pathname longer
than this, you must cd to an intermediate directory and use a relative pathname.

FILESYSTEM MOUNTING AND UNMOUNTING

The filesystem is composed of smaller chunks—also called filesystems—each of
which consists of one directory and its subdirectories and files. It's normally appar-
ent from context which type of “filesystem” is being discussed, but for clarity in the
following discussion, we use the term “file tree” to refer to the overall layout and
reserve the word “filesystem” for the branches attached to the tree.

Some filesystems live on disk partitions or on logical volumes backed by physical
disks, but as mentioned earlier, filesystems can be anything that obeys the proper
APIL: a network file server, a kernel component, a memory-based disk emulator, etc.
Most kernels have a nifty “loop” filesystem that lets you mount individual files as
if they were distinct devices. It’s useful for mounting DVD-ROM images stored on
disk or for developing filesystem images without having to worry about reparti-
tioning. Linux systems can even treat existing portions of the file tree as filesystems.
This trick lets you duplicate, move, or hide portions of the file tree.

Filesystem mounting and unmounting 123

In most situations, filesystems are attached to the tree with the mount command.?
mount maps a directory within the existing file tree, called the mount point, to the
root of the newly attached filesystem. The previous contents of the mount point
become temporarily inaccessible as long as another filesystem is mounted there.
Mount points are usually empty directories, however.

For example,
$ sudo mount /dev/sda4 [users

installs the filesystem stored on the disk partition represented by /dev/sda4 under
the path /users. You could then use Is /users to see that filesystem’s contents.

On some systems, mount is a just a wrapper that calls filesystem-specific commands
such as mount.ntfs or mount_smbfs. You're free to call these helper commands
directly if you need to; they sometimes offer additional options that the mount
wrapper does not understand. On the other hand, the generic mount command
suffices for day-to-day use.

You can run the mount command without any arguments to see all the filesystems
that are currently mounted. On Linux systems, there might be 30 or more, most of
which represent various interfaces to the kernel.

The /etc/fstab file lists filesystems that are normally mounted on the system. The
information in this file allows filesystems to be automatically checked (with fsck)
and mounted (with mount) at boot time, with options you specify. The fstab file
also serves as documentation for the layout of the filesystems on disk and enables
short commands such as mount /usr. See page 768 for a discussion of fstab.

You detach filesystems with the umount command. umount complains if you try
to unmount a filesystem that’s in use. The filesystem to be detached must not have
open files or processes whose current directories are located there, and if the filesys-
tem contains executable programs, none of them can be running.

& Linux has a “lazy” unmount option (umount -1) that removes a filesystem from the

naming hierarchy but does not truly unmount it until all existing file references

have been closed. It's debatable whether this is a useful option. To begin with, there’s

no guarantee that existing references will ever close on their own. In addition, the

“semi-unmounted” state can present inconsistent filesystem semantics to the pro-

grams that are using it; they can read and write through existing file handles but
cannot open new files or perform other filesystem operations.

umount -f force-unmounts a busy filesystem and is supported on all our example
systems. However, it’s almost always a bad idea to use it on non-NFS mounts, and
it may not work on certain types of filesystems (e.g., those that keep journals, such
as XFS or ext4).

3. We say “in most situations” because ZFS adopts a rather different approach to mounting and un-
mounting, not to mention many other aspects of filesystem administration. See page 773 for details.

124

Chapter 5 The Filesystem

Instead of reaching for umount -f when a filesystem you're trying to unmount turns
out to be busy, run the fuser command to find out which processes hold references
to that filesystem. fuser -c mountpoint prints the PID of every process that’s using a
file or directory on that filesystem, plus a series of letter codes that show the nature
of the activity. For example,

freebsd$ fuser —c /usr/home
Jusr/home: 15897c 87787c 67124x 11201x 11199x 11198x 972x

The exact letter codes vary from system to system. In this example from a FreeBSD
system, ¢ indicates that a process has its current working directory on the filesystem
and x indicates a program being executed. However, the details are usually unim-
portant—the PIDs are what you want.

To investigate the offending processes, just run ps with the list of PIDs returned
by fuser. For example,

nutrient:~$% ps up '"87787 11201"

USER PID %CPU %MEM STARTED TIME COMMAND

fnd 11201 0.0 0.2 14Jull6 2:32.49 ruby: slave_audiochannelbackend
fnd 87787 0.0 0.0 ThuB@7PM 0:00.93 -bash (bash)

Here, the quotation marks force the shell to pass the list of PIDs to ps as a single
argument.

On Linux systems, you can avoid the need to launder PIDs through ps by running
fuser with the -v flag. This option produces a more readable display that includes
the command name.

$ fuser -cv fusr
USER PID ACCESS COMMAND

/usr root 444 cee.m atd
root 499 cee.m sshd
root 520 ee..m 1pd

The letter codes in the ACCESS column are the same ones used in fuser’s nonver-
bose output.

A more elaborate alternative to fuser is the Isof utility. Isof is a more complex and
sophisticated program than fuser, and its output is correspondingly verbose. Isof
comes installed by default on all our example Linux systems and is available as a
package on FreeBSD.

Under Linux, scripts in search of specific information about processes’ use of filesys-
tems can also read the files in /proc directly. However, Isof -F, which formats Isof’s
output for easy parsing, is an easier and more portable solution. Use additional
command-line flags to request just the information you need.

53

See Chapter 11 for
more information
about configur-
ing the kernel.

See page 742 for some
reasons why partition-
ing might be desirable
and some rules of
thumb to guide it.

Organization of the file tree 125

ORGANIZATION OF THE FILE TREE

UNIX systems have never been well organized. Various incompatible naming con-
ventions are used simultaneously, and different types of files are scattered random-
ly around the namespace. In many cases, files are divided by function and not by
how likely they are to change, making it difficult to upgrade the operating system.
The /etc directory, for example, contains some files that are never customized and
some that are entirely local. How do you know which files to preserve during an
upgrade? Well, you just have to know...or trust the installation software to make
the right decisions.

As alogically minded sysadmin, you may be tempted to improve the default orga-
nization. Unfortunately, the file tree has many hidden dependencies, so such efforts
usually end up creating problems. Just let everything stay where the OS installation
and the system packages put it. When offered a choice of locations, always accept
the default unless you have a specific and compelling reason to do otherwise.

The root filesystem includes at least the root directory and a minimal set of files and
subdirectories. The file that contains the OS kernel usually lives under /boot, but
its exact name and location can vary. Under BSD and some other UNIX systems,
the kernel is not really a single file so much as a set of components.

Also part of the root filesystem are /etc for critical system and configuration files,
/sbin and /bin for important utilities, and sometimes /tmp for temporary files.
The /dev directory was traditionally part of the root filesystem, but these days it's a
virtual filesystem that’s mounted separately. (See page 331 for more information
about this topic.)

Some systems keep shared library files and a few other oddments, such as the C
preprocessor, in the /lib or /lib64 directory. Others have moved these items into
/usr/lib, sometimes leaving /lib as a symbolic link.

The directories /usr and /var are also of great importance. /usr is where most stan-
dard-but-not-system-critical programs are kept, along with various other booty
such as on-line manuals and most libraries. FreeBSD stores quite a bit of local
configuration under /usr/local. /var houses spool directories, log files, accounting
information, and various other items that grow or change rapidly and that vary on
each host. Both /usr and /var must be available to enable the system to come up
all the way to multiuser mode.

In the past, it was standard practice to partition the system disk and to put some
parts of the file tree on their own partitions, most commonly /usr, /var, and /tmp.
That’s not uncommon even now, but the secular trend is toward having one big root
filesystem. Large hard disks and increasingly sophisticated filesystem implementa-
tions have reduced the value of partitioning.

126

54

Chapter 5 The Filesystem

In cases where partitioning is used, it’s most frequently an attempt to prevent one
part of the file tree from consuming all available space and bringing the entire
system to a halt. Accordingly, /var (which contains log files that are apt to grow in
times of trouble), /tmp, and user home directories are some of the most common
candidates for having their own partitions. Dedicated filesystems can also store
bulky items such as source code libraries and databases.

Table 5.1 lists some of the more important standard directories. (Alternate rows
have been shaded to improve readability.)

On most systems, a hier man page outlines some general guidelines for the layout
of the filesystem. Don't expect the actual system to conform to the master plan in
every respect, however.

& For Linux systems, the Filesystem Hierarchy Standard attempts to codify, rational-

ize, and explain the standard directories.* It’s an excellent resource to consult when
you confront an unusual situation and need to figure out where to put something.
Despite its status as a “standard,” it's more a reflection of real-world practice than
a prescriptive document. It also hasn’t undergone much updating recently, so it
doesn’t describe the exact filesystem layout found on current distributions.

FILE TYPES

Most filesystem implementations define seven types of files. Even when developers
add something new and wonderful to the file tree (such as the process information
under /proc), it must still be made to look like one of these seven types:

o Regular files

« Directories

« Character device files
« Block device files
 Local domain sockets
» Named pipes (FIFOs)
« Symbolic links

You can determine the type of an existing file with the file command. Not only does
file know about the standard types of files, but it also knows a thing or two about
common formats used within regular files.

$ file /usr/include

Jusr/include: directory

$ file /bin/sh

/bin/sh: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD),
dynamically linked, interpreter /libexec/ld-elf.so.1, for FreeBSD 11.0
(1100122), FreeBSD-style, stripped

All that hoo-hah about /bin/sh means “it’s an executable command.”

4. See wiki.linuxfoundation.org/en/FHS.

http://wiki.linuxfoundation.org/en/FHS

File types

127

Table 5.1 Standard directories and their contents

Pathname Contents

/bin Core operating system commands

/boot Boot loader, kernel, and files needed by the kernel

/compat On FreeBSD, files and libraries for Linux binary compatibility

/dev Device entries for disks, printers, pseudo-terminals, etc.

/etc Critical startup and configuration files

/home Default home directories for users

/lib Libraries, shared libraries, and commands used by /bin and /sbin

/media Mount points for filesystems on removable media

/mnt Temporary mount points, mounts for removable media

/opt Optional software packages (rarely used, for compatibility)

/proc Information about all running processes

/root Home directory of the superuser (sometimes just /)

/run Rendezvous points for running programs (PIDs, sockets, etc.)

/sbin Core operating system commands®

/srv Files held for distribution through web or other servers

Isys A plethora of different kernel interfaces (Linux)

/tmp Temporary files that may disappear between reboots

/usr Hierarchy of secondary files and commands
/usr/bin Most commands and executable files
/usr/include Header files for compiling C programs
/usr/lib Libraries; also, support files for standard programs
/usr/local Local software or configuration data; mirrors /usr
/usr/sbin Less essential commands for administration and repair
/usr/share Items that might be common to multiple systems
/usr/share/man On-line manual pages
usr/src Source code for nonlocal software (not widely used)
/usr/tmp More temporary space (preserved between reboots)

/var System-specific data and a few configuration files
/var/adm Varies: logs, setup records, strange administrative bits
/var/log System log files
/var/run Same function as /run; now often a symlink
/var/spool Spooling (that is, storage) directories for printers, mail, etc.
/var/tmp More temporary space (preserved between reboots)

a. The distinguishing characteristic of /sbin was originally that its contents were statically linked and so
had fewer dependencies on other parts of the system. These days, all binaries are dynamically linked
and there is no real difference between /bin and /sbin.

Another option for investigating files is Is -1d. The -1 flag shows detailed informa-
tion, and the -d flag forces Is to show the information for a directory rather than
showing the directory’s contents.

128

Table 5.2

Chapter 5 The Filesystem

The first character of the Is output encodes the type. For example, the circled d in
the following output demonstrates that /usr/include is a directory:

$ 1s =1d /usr/include
@wxr—xr‘—x 27 root root 4096 Jul 15 20:57 /usr/include

Table 5.2 shows the codes Is uses to represent the various types of files.

File-type encoding used by Is

File type Symbol Created by Removed by
Regular file - editors, cp, etc. rm

Directory d mkdir rmdir, rm -r
Character device file c mknod rm

Block device file b mknod rm

Local domain socket s socket system call rm

Named pipe p mknod rm

Symbolic link 1 In-s rm

As Table 5.2 shows, rm is the universal tool for deleting files. But how would you
delete a file named, say, -f? It’s a legitimate filename under most filesystems, but
rm -f doesn’t work because rm interprets the -f as a flag. The answer is either to
refer to the file by a pathname that doesn’t start with a dash (such as ./-f) or to use
rm’s -- argument to tell it that everything that follows is a filename and not an op-
tion (i.e.,, rm -- -f).

Filenames that contain control or Unicode characters present a similar problem
since reproducing these names from the keyboard can be difficult or impossible. In
this situation, you can use shell globbing (pattern matching) to identify the files to
delete. When you use pattern matching, it’s a good idea to get in the habit of using
rm’s -i option to make rm confirm the deletion of each file. This feature protects
you against deleting any “good” files that your pattern inadvertently matches. To
delete the file named foo<Control-D>bar in the following example, you could use

$1s
foo?bar foose kde-root

$ rm -1 foo*
rm: remove 'foo\004bar'? y
rm: remove 'foose'? n

Note that Is shows the control character as a question mark, which can be a bit de-
ceptive. If you don’t remember that ? is a shell pattern-matching character and try
to rm foo?bar, you might potentially remove more than one file (although not in
this example). -i is your friend!

File types 129

Is -b shows control characters as octal numbers, which can be helpful if you need
to identify them specifically. <Control-A> is 1 (\001 in octal), <Control-B> is 2,
and so on, in alphabetical order. man ascii and the Wikipedia page for ASCII both
include a nice table of control characters and their octal equivalents.

To delete the most horribly named files, you might need to resort to rm -i *.

Another option for removing files with squirrelly names is to use an alternative in-
terface to the filesystem such as emacs’s dired mode or a visual tool such as Nautilus.

Regular files

Regular files consist of a series of bytes; filesystems impose no structure on their
contents. Text files, data files, executable programs, and shared libraries are all stored
as regular files. Both sequential access and random access are allowed.

Directories

A directory contains named references to other files. You can create directories with
mkdir and delete them with rmdir if they are empty. You can recursively delete
nonempty directories—including all their contents—with rm -r.

« »

The special entries “.” and “..” refer to the directory itself and to its parent directory;
they cannot be removed. Since the root directory has no real parent directory, the
path “/..” is equivalent to the path “/.” (and both are equivalent to /).

Hard links

A file’s name is stored within its parent directory, not with the file itself. In fact,
more than one directory (or more than one entry in a single directory) can refer
to a file at one time, and the references can have different names. Such an arrange-
ment creates the illusion that a file exists in more than one place at the same time.

These additional references (“links,” or “hard links” to distinguish them from sym-
bolic links, discussed below) are synonymous with the original file; as far as the
filesystem is concerned, all links to the file are equivalent. The filesystem maintains
a count of the number of links that point to each file and does not release the file’s
data blocks until its last link has been deleted. Hard links cannot cross filesystem
boundaries.

You create hard links with In and remove them with rm. It’s easy to remember the
syntax of In if you keep in mind that it mirrors the syntax of cp. The command cp
oldfile newfile creates a copy of oldfile called newfile, and In oldfile newfile makes
the name newfile an additional reference to oldfile.

In most filesystem implementations, it is technically possible to make hard links to
directories as well as to flat files. However, directory links often lead to degenerate
conditions such as filesystem loops and directories that don’t have a single, unam-
biguous parent. In most cases, a symbolic link (see page 131) is a better option.

130

See Chapter 11
for more informa-
tion about devices
and drivers.

Chapter 5 The Filesystem

You can use Is -1 to see how many links to a given file exist. See the Is example out-
put on page 134 for some additional details. Also note the comments regarding
Is -i on page 135, as this option is particularly helpful for identifying hard links.

Hard links are not a distinct type of file. Instead of defining a separate “thing” called
a hard link, the filesystem simply allows more than one directory entry to point to
the same file. In addition to the file’s contents, the underlying attributes of the file
(such as ownerships and permissions) are also shared.

Character and block device files

Device files let programs communicate with the system’s hardware and peripherals.
The kernel includes (or loads) driver software for each of the system’s devices. This
software takes care of the messy details of managing each device so that the kernel
itself can remain relatively abstract and hardware-independent.

Device drivers present a standard communication interface that looks like a regular
file. When the filesystem is given a request that refers to a character or block device
file, it simply passes the request to the appropriate device driver. It's important to
distinguish device files from device drivers, however. The files are just rendezvous
points that communicate with drivers. They are not drivers themselves.

The distinction between character and block devices is subtle and not worth re-
viewing in detail. In the past, a few types of hardware were represented by both
block and character device files, but that configuration is rare today. As a matter of
practice, FreeBSD has done away with block devices entirely, though their spectral
presence can still be glimpsed in man pages and header files.

Device files are characterized by two numbers, called the major and minor device
numbers. The major device number tells the kernel which driver the file refers to,
and the minor device number typically tells the driver which physical unit to ad-
dress. For example, major device number 4 on a Linux system denotes the serial
driver. The first serial port (/dev/tty0) would have major device number 4 and
minor device number 0.

Drivers can interpret the minor device numbers that are passed to them in whatever
way they please. For example, tape drivers use the minor device number to deter-
mine whether the tape should be rewound when the device file is closed.

In the distant past, /dev was a generic directory and the device files within it were
created with mknod and removed with rm. Unfortunately, this crude system was
ill-equipped to deal with the endless sea of drivers and device types that have ap-
peared over the last few decades. It also facilitated all sorts of potential configura-
tion mismatches: device files that referred to no actual device, devices inaccessible
because they had no device files, and so on.

These days, the /dev directory is normally mounted as a special filesystem type, and
its contents are automatically maintained by the kernel in concert with a user-lev-
el daemon. There are a couple of different versions of this same basic system. See

See Chapter 10
for more informa-
tion about syslog.

File types 131

Chapter 11, Drivers and the Kernel, for more information about each system’s
approach to this task.

Local domain sockets

Sockets are connections between processes that allow them to communicate hygien-
ically. UNIX defines several kinds of sockets, most of which involve the network.

Local domain sockets are accessible only from the local host and are referred to
through a filesystem object rather than a network port. They are sometimes known
as “UNIX domain sockets” Syslog and the X Window System are examples of stan-
dard facilities that use local domain sockets, but there are many more, including
many databases and app servers.

Local domain sockets are created with the socket system call and removed with the
rm command or the unlink system call once they have no more users.

Named pipes

Like local domain sockets, named pipes allow communication between two pro-
cesses running on the same host. They’re also known as “FIFO files” (As in financial
accounting, FIFO is short for the phrase “first in, first out”). You can create named
pipes with mknod and remove them with rm.

Named pipes and local domain sockets serve similar purposes, and the fact that
both exist is essentially a historical artifact. Most likely, neither of them would exist
if UNIX and Linux were designed today; network sockets would stand in for both.

Symbolic links

A symbolic or “soft” link points to a file by name. When the kernel comes upon a
symbolic link in the course of looking up a pathname, it redirects its attention to
the pathname stored as the contents of the link. The difference between hard links
and symbolic links is that a hard link is a direct reference, whereas a symbolic link
is a reference by name. Symbolic links are distinct from the files they point to.

You create symbolic links with In -s and remove them with rm. Since symbolic
links can contain arbitrary paths, they can refer to files on other filesystems or to
nonexistent files. A series of symbolic links can also form a loop.

A symbolic link can contain either an absolute or a relative path. For example,
$ sudo 1n -s archived/secure /var/data/secure

links /var/data/secure to /var/data/archived/secure with a relative path. It creates
the symbolic link /var/data/secure with a target of archived/secure, as demon-
strated by this output from Is:

$ 1s -1 /var/data/secure
Irwxrwxrwx 1 root root 18 Aug 3 12:54 /var/data/secure -> archived/secure

132

5.5

Chapter 5 The Filesystem

The entire /var/data directory could then be moved elsewhere without causing the
symbolic link to stop working.

The file permissions that Is shows for a symbolic link, 1rwxrwxrwx, are dummy val-
ues. Permission to create, remove, or follow the link is controlled by the containing
directory, whereas read, write, and execute permission on the link target are granted
by the target’s own permissions. Therefore, symbolic links do not need (and do not
have) any permission information of their own.

A common mistake is to think that the first argument to In -s is interpreted relative to
the current working directory. However, that argument is not actually resolved as a
filename by In: it’s simply a literal string that becomes the target of the symbolic link.

FILE ATTRIBUTES

Under the traditional UNIX and Linux filesystem model, every file has a set of nine
permission bits that control who can read, write, and execute the contents of the
file. Together with three other bits that primarily affect the operation of executable
programs, these bits constitute the file’s “mode”

The twelve mode bits are stored along with four bits of file-type information. The
four file-type bits are set when the file is first created and cannot be changed, but
the file’s owner and the superuser can modify the twelve mode bits with the chmod
(change mode) command. Use Is -1 (or Is -1d for a directory) to inspect the values
of these bits. See page 134 for an example.

The permission bits

Nine permission bits determine what operations can be performed on a file and by
whom. Traditional UNIX does not allow permissions to be set per user (although
all systems now support access control lists of one sort or another; see page 140).
Instead, three sets of permissions define access for the owner of the file, the group
owners of the file, and everyone else (in that order).> Each set has three bits: a read
bit, a write bit, and an execute bit (also in that order).

It's convenient to discuss file permissions in terms of octal (base 8) numbers because
each digit of an octal number represents three bits and each group of permission
bits consists of three bits. The topmost three bits (with octal values of 400, 200, and
100) control access for the owner. The second three (40, 20, and 10) control access
for the group. The last three (4, 2, and 1) control access for everyone else (“the
world”). In each triplet, the high bit is the read bit, the middle bit is the write bit,
and the low bit is the execute bit.

. If you think of the owner as “the user” and everyone else as “other,” you can remember the order of

the permission sets by thinking of the name Hugo. u, g, and o are also the letter codes used by the
mnemonic version of chmod.

(=)

File attributes 133

Although a user might fit into two of the three permission categories, only the most
specific permissions apply. For example, the owner of a file always has access deter-
mined by the owner permission bits and never by the group permission bits. It is
possible for the “other” and “group” categories to have more access than the owner,
although this configuration would be highly unusual.

On a regular file, the read bit allows the file to be opened and read. The write bit al-
lows the contents of the file to be modified or truncated; however, the ability to delete
or rename (or delete and then re-create!) the file is controlled by the permissions
on its parent directory, where the name-to-dataspace mapping is actually stored.

The execute bit allows the file to be executed. Two types of executable files exist:
binaries, which the CPU runs directly, and scripts, which must be interpreted by
a shell or some other program. By convention, scripts begin with a line similar to

#!/usr/bin/perl

that specifies an appropriate interpreter. Nonbinary executable files that do not
specify an interpreter are assumed to be sh scripts.®

For a directory, the execute bit (often called the “search” or “scan” bit in this context)
allows the directory to be entered or passed through as a pathname is evaluated,
but not to have its contents listed. The combination of read and execute bits allows
the contents of the directory to be listed. The combination of write and execute bits
allows files to be created, deleted, and renamed within the directory.

A variety of extensions such as access control lists (see page 140), SELinux (see
page 85), and “bonus” permission bits defined by individual filesystems (see page
139) complicate or override the traditional 9-bit permission model. If you're hav-
ing trouble explaining the system’s observed behavior, check to see whether one of
these factors might be interfering.

The setuid and setgid bits

The bits with octal values 4000 and 2000 are the setuid and setgid bits. When set on
executable files, these bits allow programs to access files and processes that would
otherwise be off-limits to the user that runs them. The setuid/setgid mechanism
for executables is described on page 68.

When set on a directory, the setgid bit causes newly created files within the direc-
tory to take on the group ownership of the directory rather than the default group
of the user that created the file. This convention makes it easier to share a directory
of files among several users, as long as they belong to a common group. This inter-

. The kernel understands the #! (“shebang”) syntax and acts on it directly. However, if the interpreter is

not specified completely and correctly, the kernel will refuse to execute the file. The shell then makes
a second attempt to execute the script by calling /bin/sh, which is usually a link to the Almquist shell
or to bash; see page 198. Sven Mascheck maintains an excruciatingly detailed page about the history,
implementation, and cross-platform behavior of the shebang at goo.gl/J7izhL.

http://goo.gl/J7izhL

134

Chapter 5 The Filesystem

pretation of the setgid bit is unrelated to its meaning when set on an executable file,
but no ambiguity can exist as to which meaning is appropriate.

The sticky bit

The bit with octal value 1000 is called the sticky bit. It was of historical importance
as a modifier for executable files on early UNIX systems. However, that meaning
of the sticky bit is now obsolete and modern systems silently ignore the sticky bit
when it’s set on regular files.

If the sticky bit is set on a directory, the filesystem won't allow you to delete or re-
name a file unless you are the owner of the directory, the owner of the file, or the
superuser. Having write permission on the directory is not enough. This convention
helps make directories like /tmp a little more private and secure.

Is: list and inspect files

The filesystem maintains about forty separate pieces of information for each file, but
most of them are useful only to the filesystem itself. As a system administrator, you
will be concerned mostly with the link count, owner, group, mode, size, last access
time, last modification time, and type. You can inspect all these with Is -1 (or Is -1d
for a directory; without the -d flag, Is lists the directory’s contents).

An attribute change time is also maintained for each file. The conventional name for
this time (the “ctime,” short for “change time”) leads some people to believe that it
is the file’s creation time. Unfortunately, it is not; it just records the time at which
the attributes of the file (owner, mode, etc.) were last changed (as opposed to the
time at which the file’s contents were modified).

Consider the following example:

$ 1s -1 fusr/bin/gzip
-rwxr-xr-x 4 root wheel 37432 Nov 11 2016 /usr/bin/gzip

The first field specifies the file’s type and mode. The first character is a dash, so the
file is a regular file. (See Table 5.2 on page 128 for other codes.)

The next nine characters in this field are the three sets of permission bits. The order
is owner-group-other, and the order of bits within each set is read-write-execute.
Although these bits have only binary values, Is shows them symbolically with the
letters r, w, and x for read, write, and execute. In this case, the owner has all per-
missions on the file and everyone else has read and execute permission.

If the setuid bit had been set, the x representing the owner’s execute permission
would have been replaced with an s, and if the setgid bit had been set, the x for the
group would also have been replaced with an s. The last character of the permissions
(execute permission for “other”) is shown as t if the sticky bit of the file is turned on.
If either the setuid/setgid bit or the sticky bit is set but the corresponding execute
bit is not, these bits are shown as S or T.

File attributes 135

The next field in the listing is the file’s link count. In this case it is 4, indicating that
/usr/bin/gzip is just one of four names for this file (the others on this system are
gunzip, gzcat, and zcat, all in /usr/bin). Each time a hard link is made to a file,
the file’s link count is incremented by 1. Symbolic links do not affect the link count.

All directories have at least two hard links: the link from the parent directory and
the link from the special file called . inside the directory itself.

The next two fields in the Is output are the owner and group owner of the file. In
this example, the file’s owner is root, and the file belongs to the group named wheel.
The filesystem actually stores these as the user and group ID numbers rather than
as names. If the text versions (names) can’t be determined, Is shows the fields as
numbers. This might happen if the user or group that owns the file has been deleted
from the /etc/passwd or /etc/group file. It could also suggest a problem with your
LDAP database (if you use one); see Chapter 17.

The next field is the size of the file in bytes. This file is 37,432 bytes long. Next comes
the date of last modification: November 11, 2016. The last field in the listing is the
name of the file, /usr/bin/gzip.

Is output is slightly different for a device file. For example:

$ 1s -1 /dev/tty0
crw--w----. 1 root tty 4, 0 Aug 3 15:12 /dev/tty0

Most fields are the same, but instead of a size in bytes, Is shows the major and mi-
nor device numbers. /dev/tty0 is the first virtual console on this (Red Hat) system
and is controlled by device driver 4 (the terminal driver). The dot at the end of the
mode indicates the absence of an access control list (ACL, discussed starting on
page 140). Some systems show this by default and some don't.

One Is option that’s useful for scoping out hard links is -i, which tells Is to show
each file’s “inode number” Briefly, the inode number is an integer associated with
the contents of a file. Inodes are the “things” that are pointed to by directory entries;
entries that are hard links to the same file have the same inode number. To figure
out a complex web of links, you need both Is -1i, to show link counts and inode
numbers, and find, to search for matches.”

Some other Is options that are important to know are -a to show all entries in a

directory (even files whose names start with a dot), -t to sort files by modification

time (or -tr to sort in reverse chronological order), -F to show the names of files in

a way that distinguishes directories and executable files, -R to list recursively, and
-h to show file sizes in human-readable form (e.g., 8K or 53M).

Most versions of Is now default to color-coding files if your terminal program sup-
ports this (most do). Is specifies colors according to a limited and abstract palette
(“red,” “blue;” etc.), and it’s up to the terminal program to map these requests to
specific colors. You may need to tweak both Is (the LSCCOLORS or LS_COLORS

7. Try find mountpoint -xdev -inum inode -print.

136

Chapter 5 The Filesystem

environment variable) and the terminal emulator to achieve colors that are readable
and unobtrusive. Alternatively, you can just remove the default configuration for
colorization (usually /etc/profile.d/colorls*) to eliminate colors entirely.

chmod: change permissions

The chmod command changes the permissions on a file. Only the owner of the file
and the superuser can change a file’s permissions. To use the command on early
UNIX systems, you had to learn a bit of octal notation, but current versions accept
both octal notation and a mnemonic syntax. The octal syntax is generally more con-
venient for administrators, but it can only be used to specify an absolute value for the
permission bits. The mnemonic syntax can modify some bits but leave others alone.

The first argument to chmod is a specification of the permissions to be assigned,
and the second and subsequent arguments are names of files on which permissions
should be changed. In the octal case, the first octal digit of the specification is for the
owner, the second is for the group, and the third is for everyone else. If you want to
turn on the setuid, setgid, or sticky bits, you use four octal digits rather than three,
with the three special bits forming the first digit.

Table 5.3 illustrates the eight possible combinations for each set of three bits, where
r, w, and x stand for read, write, and execute.

Table 5.3 Permission encoding for chmod

Octal Binary Perms Octal Binary Perms

0 000 — 4 100 P--
1 001 --X 5 101 r-x
2 010 -w- 6 110 rw-
3 011 -WX 7 111 rwx

For example, chmod 711 myprog gives all permissions to the user (owner) and
execute-only permission to everyone else.?

For the mnemonic syntax, you combine a set of targets (u, g, or o for user, group,
other, or a for all three) with an operator (+, -, = to add, remove, or set) and a set
of permissions. The chmod man page gives the details, but the syntax is probably
best learned by example. Table 5.4 exemplifies some mnemonic operations.

The hard part about using the mnemonic syntax is remembering whether o stands for
“owner” or “other”; “other” is correct. Just remember u and g by analogy to UID and
GID; only one possibility is left. Or remember the order of letters in the name Hugo.

8. If myprog were a shell script, it would need both read and execute permission turned on. For the
script to be run by an interpreter, it must be opened and read like a text file. Binary files are executed
directly by the kernel and therefore do not need read permission turned on.

File attributes 137

Table 5.4 Examples of chmod’s mnemonic syntax

Spec Meaning

u+w Adds write permission for the owner of the file

ug=rw,0=r Gives r/w permission to owner and group, and read permission to others
a-x Removes execute permission for all categories (owner/group/other)
ug=srx,0= Makes setuid/setgid and gives r/x permission to only owner and group
g=u Makes the group permissions be the same as the owner permissions

On Linux systems, you can also specify the modes to be assigned by copying them
from an existing file. For example, chmod --reference=filea fileb makes fileb’s
mode the same as filea’s.

With the -R option, chmod recursively updates the file permissions within a di-
rectory. However, this feat is trickier than it looks because the enclosed files and
directories may not share the same attributes; for example, some might be execut-
able files; others, text files. Mnemonic syntax is particularly useful with -R because
it preserves bits whose values you don’t set explicitly. For example,

$ chmod -R g+w mydir

adds group write permission to mydir and all its contents without messing up the
execute bits of directories and programs.

If you want to adjust execute bits, be wary of chmod -R. It’s blind to the fact that
the execute bit has a different interpretation on a directory than it does on a flat
file. Therefore, chmod -R a-x probably won’t do what you intend. Use find to select
only the regular files:

$ find mydir -type f —exec chmod a-x {3} ';'

chown and chgrp: change ownership and group

The chown command changes a file’s ownership, and the chgrp command changes
its group ownership. The syntax of chown and chgrp mirrors that of chmod, except
that the first argument is the new owner or group, respectively.

To change a file’s group, you must either be the superuser or be the owner of the
file and belong to the group you’re changing to. Older systems in the SysV lineage
allowed users to give away their own files with chown, but that’s unusual these days;
chown is now a privileged operation.

Like chmod, chown and chgrp offer the recursive -R flag to change the settings of
a directory and all the files underneath it. For example, the sequence

$ sudo chown -R matt ~matt/restore
$ sudo chgrp -R staff ~matt/restore

138

Table 5.5

Chapter 5 The Filesystem

could reset the owner and group of files restored from a backup for the user matt.
Don't try to chown dot files with a command such as

$ sudo chown -R matt ~matt/.*

since the pattern matches ~matt/.. and therefore ends up changing the ownerships
of the parent directory and probably the home directories of other users.

chown can change both the owner and group of a file at once with the syntax
chown user:group file ...
For example,

$ sudo chown -R matt:staff ~matt/restore

You can actually omit either user or group, which makes the chgrp command su-
perfluous. If you include the colon but name no specific group, the Linux version
of chown uses the user’s default group.

Some systems accept the notation user.group as being equivalent to user:group. This
is just a nod to historical variation among systems; it means the same thing.

umask: assign default permissions

You can use the built-in shell command umask to influence the default permissions
given to the files you create. Every process has its own umask attribute; the shell’s
built-in umask command sets the shell's own umask, which is then inherited by
commands that you run.

The umask is specified as a three-digit octal value that represents the permissions
to take away. When a file is created, its permissions are set to whatever the creating
program requests minus whatever the umask forbids. Thus, the individual digits
of the umask allow the permissions shown in Table 5.5.

Permission encoding for umask

Octal Binary Perms Octal Binary Perms

0 000 rwx 4 100 -WX
1 001 rw- 5 101 -w-
2 010 r-x 6 110 --X
3 011 r-- 7 111 -—

For example, umask 027 allows all permissions for the owner but forbids write
permission to the group and allows no permissions for anyone else. The default
umask value is often 022, which denies write permission to the group and world
but allows read permission.

See Chapter 8 for
more information
about startup files.

Table 5.6

File attributes 139

In the standard access control model, you cannot force users to have a particular
umask value because they can always reset it to whatever they want. However, you
can put a suitable default in the sample startup files that you give to new users. If
you require more control over the permissions on user-created files, you'll need
to graduate to a mandatory access control system such as SELinux; see page 84.

Linux bonus flags

Linux defines a set of supplemental flags that can be set on files to request special
handling. For example, the a flag makes a file append-only, and the i flag makes it
immutable and undeletable.

Flags have binary values, so they are either present or absent for a given file. The
underlying filesystem implementation must support the corresponding feature, so
not all flags can be used on all filesystem types. In addition, some flags are experi-
mental, unimplemented, or read-only.

Linux uses the commands Isattr and chattr to view and change file attributes. Table
5.6 lists some of the more mainstream flags.

Linux file attribute flags

Flag FS? Meaning

A XBE Never update access time (st_atime; for performance)
a XBE Allow writing only in append mode®

C B Disable copy-on-write updates

C B Compress contents

D BE Force directory updates to be written synchronously

d XBE Do not back up; backup utilities should ignore this file

i XBE Make file immutable and undeletable®

j E Keep a journal for data changes as well as metadata

S XBE Force changes to be written synchronously (no buffering)
X B Avoid data compression if it is the default

a. X=XFS, B =Btrfs, E = ext3 and ext4
b. Can be set only by root

As might be expected from such a random grab bag of features, the value of these
flags to administrators varies. The main thing to remember is that if a particular
file seems to be behaving strangely, check it with Isattr to see if it has one or more
flags enabled.

Waiving maintenance of last-access times (the A flag) can boost performance in
some situations. However, its value depends on the filesystem implementation
and access pattern; you'll have to do your own benchmarking. In addition, mod-

140

See Chapter 23 for

more information

about configuration

management.

5.6

Chapter 5 The Filesystem

ern kernels now default to mounting filesystems with the relatime option, which
minimizes updates to st_atime and makes the A flag largely obsolete.

The immutable and append-only flags (i and a) were largely conceived as ways to
make the system more resistant to tampering by hackers or hostile code. Unfortu-
nately, they can confuse software and protect only against hackers that don’t know
enough to use chattr -ia. Real-world experience has shown that these flags are more
often used by hackers than against them.

We have seen several cases in which admins have used the i (immutable) flag to
prevent changes that would otherwise be imposed by a configuration management
system such as Ansible or Salt. Needless to say, this hack creates confusion once
the details have been forgotten and no one can figure out why configuration man-
agement isn’t working. Never do this—just think of the shame your mother would
feel if she knew what youd been up to. Fix the issue within the configuration man-
agement system like Mom would want.

The “no backup” flag (d) is potentially of interest to administrators, but since it’s an
advisory flag, make sure that your backup system honors it.

Flags that affect journaling and write synchrony (D, j, and S) exist primarily to
support databases. They are not of general use for administrators. All these options
can reduce filesystem performance significantly. In addition, tampering with write
synchrony has been known to confuse fsck on ext* filesystems.

ACCESS CONTROL LISTS

The traditional 9-bit owner/group/other access control system is powerful enough
to accommodate the vast majority of administrative needs. Although the system
has clear limitations, it's very much in keeping with the UNIX traditions (some
might say, “former traditions”) of simplicity and predictability.

Access control lists, aka ACLs, are a more powerful but also more complicated way
of regulating access to files. Each file or directory can have an associated ACL that
lists the permission rules to be applied to it. Each of the rules within an ACL is
called an access control entry or ACE.

An access control entry identifies the user or group to which it applies and spec-
ifies a set of permissions to be applied to those entities. ACLs have no set length
and can include permission specifications for multiple users or groups. Most OSes
limit the length of an individual ACL, but the limit is high enough (usually at least
32 entries) that it rarely comes into play.

The more sophisticated ACL systems let administrators specify partial sets of per-
missions or negative permissions. Most also have inheritance features that allow
access specifications to propagate to newly created filesystem entities.

See Chapter 21
for more informa-
tion about NFS.

Access control lists 141

A cautionary note

ACLs are widely supported and occupy our attention for the rest of this chapter.
However, neither of these facts should be interpreted as an encouragement to em-
brace them. ACLs have a niche, but it lies outside the mainstream of UNIX and
Linux administration.

ACLs exist primarily to facilitate Windows compatibility and to serve the needs of
the small segment of enterprises that actually require ACL-level flexibility. They
are not the shiny next generation of access control and are not intended to supplant
the traditional model.

ACLs complexity creates several potential problems. Not only are ACLs tedious to
use, but they can also cause unexpected interactions with ACL-unaware backup
systems, network file service peers, and even simple programs such as text editors.

ACLs also tend to become increasingly unmaintainable as the number of entries
grows. Real-world ACLs frequently include vestigial entries and entries that serve
only to compensate for issues caused by previous entries. It’s possible to refactor
and simplify these complex ACLs, but that’s risky and time consuming, so it rarely
gets done.

In the past, copies of this chapter that we've sent out to professional administrators
for review have often come back with notes such as, “This part looks fine, but I can’t
really say, because I've never used ACLs”

ACL types

Two types of ACLs have emerged as the predominant standards for UNIX and Li-
nux: POSIX ACLs and NFSv4 ACLs.

The POSIX version dates back to specification work done in the mid-1990s. Un-
fortunately, no actual standard was ever issued, and initial implementations varied
widely. These days, we are in much better shape. Systems have largely converged
on a common framing for POSIX ACLs and a common command set, getfacl and
setfacl, for manipulating them.

To a first approximation, the POSIX ACL model simply extends the traditional UNIX
rwx permission system to accommodate permissions for multiple groups and users.

As POSIX ACLs were coming into focus, it became increasingly common for UNIX
and Linux to share filesystems with Windows, which has its own set of ACL con-
ventions. Here the plot thickens, because Windows makes a variety of distinctions
that are not found in either the traditional UNIX model or its POSIX ACL equiva-
lent. Windows ACLs are semantically more complex, too; for example, they allow
negative permissions (“deny” entries) and have a complicated inheritance scheme.

The architects of version 4 of NFS—a common file-sharing protocol—wanted to
incorporate ACLs as a first-class entity. Because of the UNIX/Windows split and the
inconsistencies among UNIX ACL implementations, it was clear that the systems

142

See Chapter 22
for more informa-
tion about SMB.

Chapter 5 The Filesystem

on the ends of an NFSv4 connection might often be of different types. Each system
might understand NFSv4 ACLs, POSIX ACLs, Windows ACLs, or no ACLs at all.
The NFSv4 standard would have to be interoperable with all these various worlds
without causing too many surprises or security problems.

Given this constraint, it's perhaps not surprising that NFSv4 ACLs are essentially a
union of all preexisting systems. They are a strict superset of POSIX ACLs, so any
POSIX ACL can be represented as an NFSv4 ACL without loss of information. At
the same time, NFSv4 ACLs accommodate all the permission bits found on Win-
dows systems, and they have most of Windows’ semantic features as well.

Implementation of ACLs

In theory, responsibility for maintaining and enforcing ACLs could be assigned to
several different components of the operating system. ACLs could be implemented
by the kernel on behalf of all the systemss filesystems, by individual filesystems, or
perhaps by higher-level software such as NFS and SMB servers.

In practice, ACL support is both OS-dependent and filesystem-dependent. A filesys-
tem that supports ACLs on one system might not support them on another, or it
might feature a somewhat different implementation managed by different commands.

File service daemons map their host’s native ACL scheme (or schemes) to and from
the conventions appropriate to the filing protocol: NFSv4 ACLs for NFS, and Win-
dows ACLs for SMB. The details of that mapping depend on the implementation
of the file server. Usually, the rules are complicated and somewhat tunable with
configuration options.

Because ACL implementations are filesystem-specific and because systems support
multiple filesystem implementations, some systems end up supporting multiple
types of ACLs. Even a given filesystem might offer several ACL options, as seen in
the various ports of ZFS. If multiple ACL systems are available, the commands to
manipulate them might be the same or different; it depends on the system. Wel-
come to sysadmin hell.

Linux ACL support

Linux has standardized on POSIX-style ACLs. NFSv4 ACLs are not supported at
the filesystem level, though of course Linux systems can mount and share NFSv4
filesystems over the network.

An advantage of this standardization is that nearly all Linux filesystems now include
POSIX ACL support, including XFS, Btrfs, and the ext* family. Even ZFS, whose
native ACL system is NFSv4-ish, has been ported to Linux with POSIX ACLs. The
standard getfacl and setfacl commands can be used everywhere, without regard to
the underlying filesystem type. (You may, however, need to ensure that the correct
mount option has been used to mount the filesystem. Filesystems generally support
an acl option, a noacl option, or both, depending on their defaults.)

Table 5.7

Access control lists 143

Linux does have a command suite (nfs4_getfacl, nfs4_setfacl, and nfs4_editfacl)
for grooming the NFSv4 ACLs of files mounted from NFS servers. However, these
commands cannot be used on locally stored files. Moreover, they are rarely included
in distributions’ default software inventory; you’ll have to install them separately.

FreeBSD ACL support

FreeBSD supports both POSIX ACLs and NFSv4 ACLs. Its native getfacl and setfacl
commands have been extended to include NFSv4-style ACL wrangling. NSFv4 ACL
support is a relatively recent (as of 2017) development.

At the filesystem level, both UES and ZFS support NFSv4-style ACLs, and UFS sup-
ports POSIX ACLs as well. The potential point of confusion here is ZFS, which is
NFSv4-only on BSD (and on Solaris, its system of origin) and POSIX-only on Linux.

For UFS, use one of the mount options acls or nfsv4acls to specify which world
you want to live in. These options are mutually exclusive.

POSIX ACLs

POSIX ACLs are a mostly straightforward extension of the standard 9-bit UNIX
permission model. Read, write, and execute permission are the only capabilities
that the ACL system deals with. Embellishments such as the setuid and sticky bits
are handled exclusively through the traditional mode bits.

ACLs allow the rwx bits to be set independently for any combination of users and
groups. Table 5.7 shows what the individual entries in an ACL can look like.

Entries that can appear in POSIX ACLs

Format Example Sets permissions for
user::perms user::rw- The file's owner
user:username:perms user:trent:rw- A specific user
group::perms group::r-x The group that owns the file
group:groupname:perms group:staff:rw- A specific group
other::perms other::——- All others

mask::perms mask: : rwx All but owner and other?

a. Masks are somewhat tricky and are explained later in this section.

Users and groups can be identified by name or by UID/GID. The exact number of
entries that an ACL can contain varies with the filesystem implementation but is
usually at least 32. That’s probably about the practical limit for manageability, anyway.

144

Chapter 5 The Filesystem

Interaction between traditional modes and ACLs

Files with ACLs retain their original mode bits, but consistency is automatically
enforced and the two sets of permissions can never conflict. The following exam-
ple demonstrates that the ACL entries automatically update in response to changes

made with the standard chmod command:

$ touch example

$ 1s -1 example
-rw-rw-r-- 1 garth garth 0 Jun 14 15:57 example
$ getfacl example

file: example

owner: garth

group: garth
user::rw-
group::rw—
other::r--

$ chmod 640 example
$ 1s -1 example

—-PW-p————- 1 garth garth 0 Jun 14 15:57 example
$ getfacl ——omit-header example®

user::rw-

group::r—-

other::---

This enforced consistency allows older software with no awareness of ACLs to play
reasonably well in the ACL world. However, there’s a twist. Even though the group::
ACL entry in the example above appears to be tracking the middle set of traditional
mode bits, that will not always be the case.

To understand why, suppose that a legacy program clears the write bits within all
three permission sets of the traditional mode (e.g., chmod ugo-w file). The inten-
tion is clearly to make the file unwritable by anyone. But what if the resulting ACL
were to look like this?

user:ir—-—
group::r--
group:staff:irw-
other::r--

From the perspective of legacy programs, the file appears to be unmodifiable, yet
it is actually writable by anyone in group staff. Not good. To reduce the chance of
ambiguity and misunderstandings, the following rules are enforced:

o Theuser:: and other: : ACL entries are by definition identical to the “own-
er” and “other” permission bits from the traditional mode. Changing the
mode changes the corresponding ACL entries, and vice versa.

. This example is from Linux. The FreeBSD version of getfacl uses -q instead of --omit-header to sup-

press the comment-like lines in the output.

Access control lists 145

« Inall cases, the effective access permission afforded to the file’s owner and
to users not mentioned in another way are those specified in the user::
and other:: ACL entries, respectively.

o If a file has no explicitly defined ACL or has an ACL that consists of only
one user::, one group::, and one other:: entry, these ACL entries are
identical to the three sets of traditional permission bits. This is the case
illustrated in the getfacl example above. (Such an ACL is termed “mini-
mal” and need not actually be implemented as a logically separate ACL.)

« In more complex ACLs, the traditional group permission bits correspond
to a special ACL entry called mask rather than the group:: ACL entry.
The mask limits the access that the ACL can confer on all named users,
all named groups, and the default group.

In other words, the mask specifies an upper bound on the access that the ACL can
assign to individual groups and users. It is conceptually similar to the umask, except
that the ACL mask is always in effect and that it specifies the allowed permissions
rather than the permissions to be denied. ACL entries for named users, named
groups, and the default group can include permission bits that are not present in
the mask, but filesystems simply ignore them.

As aresult, the traditional mode bits can never understate the access allowed by the
ACL as a whole. Furthermore, clearing a bit from the group portion of the traditional
mode clears the corresponding bit in the ACL mask and thereby forbids this per-
mission to everyone but the file’s owner and those who fall in the category of “other”

When the ACL shown in the previous example is expanded to include entries for a
specific user and group, setfacl automatically supplies an appropriate mask:

$ 1s -1 example

—-PW-p-—--— 1 garth garth 0 Jun 14 15:57 example
$ setfacl -m user::r,user:trent:rw,group:admin:rw example

$ 1s -1 example

-r——-rw----+ 1 garth garth 0 Jun 14 15:57 example
$ getfacl ——omit-header example

user::r—-

user:trent:rw-

group::r—-—

group:admin:rw-

mask::rw-

other::—--

The -m option to setfacl means “modify”: it adds entries that are not already present
and adjusts those that are already there. Note that setfacl automatically generates a
mask that allows all the permissions granted in the ACL to take effect. If you want
to set the mask by hand, include it in the ACL entry list given to setfacl or use the
-n option to prevent setfacl from regenerating it.

146

Chapter 5 The Filesystem

Note that after the setfacl command, Is -1 shows a + sign at the end of the file’s
mode to denote that it now has a real ACL associated with it. The first Is -1 shows
no + because at that point the ACL is “minimal”

If you use the traditional chmod command to manipulate an ACL-bearing file, be
aware that your settings for the “group” permissions affect only the mask. To con-
tinue the previous example:

$ chmod 770 example

$ 1s -1 example

-rwxrwx---+ 1 garth staff © Jun 14 15:57 example
$ getfacl —-omit-header example

user::rwx

user:trent:rw-

group::r—-

group:admin:rw-

mask: :rwx

other::---

The 1s output in this case is misleading. Despite the apparently generous group
permissions, no one actually has permission to execute the file by reason of group
membership. To grant such permission, you must edit the ACL itself.

To remove an ACL entirely and revert to the standard UNIX permission system,
use setfacl -bn. (Strictly speaking, the -n flag is needed only on FreeBSD. Without
it, FreeBSD’s setfacl leaves you with a vestigial mask entry that will screw up later
group-mode changes. However, you can include the -n on Linux without creating
problems.)

POSIX access determination

When a process attempts to access a file, its effective UID is compared to the UID
that owns the file. If they are the same, access is determined by the ACLs user::
permissions. Otherwise, if a matching user-specific ACL entry exists, permissions
are determined by that entry in combination with the ACL mask.

If no user-specific entry is available, the filesystem tries to locate a valid group-related
entry that authorizes the requested access; these entries are processed in conjunction
with the ACL mask. If no matching entry can be found, the other:: entry prevails.

POSIX ACL inheritance

In addition to the ACL entry types listed in Table 5.7 on page 143, the ACLs for
directories can include default entries that are propagated to the ACLs of newly
created files and subdirectories created within them. Subdirectories receive these
entries both in the form of active ACL entries and in the form of copies of the de-
fault entries. Therefore, the original default entries may eventually propagate down
through several layers of the directory hierarchy.

@

Access control lists 147

Once default entries have been copied to new subdirectories, there is no ongoing
connection between the parent and child ACLs. If the parent’s default entries change,
those changes are not reflected in the ACLs of existing subdirectories.

You can set default ACL entries with setfacl -dm. Alternatively, you can include de-
fault entries within a regular access control entry list by prefixing them with default:.

If a directory has any default entries, it must include a full set of defaults for user::,
group::, other::, and mask::. setfacl will fill in any default entries you don’t spec-
ify by copying them from the current permissions ACL, generating a summary
mask as usual.

NFSv4 ACLs

In this section, we discuss the characteristics of NFSv4 ACLs and briefly review the
command syntax used to set and inspect them on FreeBSD. They aren’t supported
on Linux (other than by NFS service daemons).

From a structural perspective, NFSv4 ACLs are similar to Windows ACLs. The
main difference between them lies in the specification of the entity to which an
access control entry refers.

In both systems, the ACL stores this entity as a string. For Windows ACLs, the
string typically contains a Windows security identifier (SID), whereas for NFSv4,
the string is typically of the form user:username or group:groupname. It can also
be one of the special tokens owner@, group@, or everyone@. These latter entries are
the most common because they correspond to the mode bits found on every file.

Systems such as Samba that share files between UNIX and Windows systems must
provide some way of mapping between Windows and NFSv4 identities.

The NFSv4 and Windows permission models are more granular than the traditional
UNIX read-write-execute model. In the case of NFSv4, the main refinements are
as follows:

« NFSv4 distinguishes permission to create files within a directory from
permission to create subdirectories.

o NFSv4 has a separate “append” permission bit.

o NFSv4 has separate read and write permissions for data, file attributes,
extended attributes, and ACLs.

« NFSv4 controls a user’s ability to change the ownership of a file through
the standard ACL system. In traditional UNIX, the ability to change the
ownership of files is usually reserved for root.

Table 5.8 on the next page shows the various permissions that can be assigned in
the NFSv4 system. It also shows the one-letter codes used to represent them and
the more verbose canonical names.

148 Chapter 5 The Filesystem

Table 5.8 NFSv4 file permissions

Code Verbose name Permission
r read_data Read data (file) or list directory contents (directory)
w write_data Write data (file) or create file (directory)
X execute Execute as a program
p append_data Append data (file) or create subdirectory (directory)
D delete_child Delete child within a directory
d delete Delete
a read_attributes Read nonextended attributes
A write_attributes Write nonextended attributes
R read_xattr Read named (“extended”) attributes
W write_xattr Write named (“extended”) attributes
c read_acl Read access control list
C write_acl Write access control list
0 write_owner Change ownership
S synchronize Allow requests for synchronous I/0 (usually ignored)

Although the NFSv4 permission model is fairly detailed, the individual permissions
should mostly be self-explanatory. (The “synchronize” permission allows a client to
specify that its modifications to a file should be synchronous—that is, calls to write
should not return until the data has actually been saved on disk.)

An extended attribute is a named chunk of data that is stored along with a file; most
modern filesystems support such attributes. At this point, the predominant use of
extended attributes is to store ACLs themselves. However, the NFSv4 permission
model treats ACLs separately from other extended attributes.

In FreeBSD’s implementation, a file’s owner always has read_acl, write_acl,
read_attributes, and write_attributes permissions, even if the file's ACL itself
specifies otherwise.

NFSv4 entities for which permissions can be specified

In addition to the garden-variety user:username and group:groupname specifiers,
NESv4 defines several special entities that may be assigned permissions in an ACL.
Most important among these are owner@, group@, and everyone@, which correspond
to the traditional categories in the 9-bit permission model.

NFSv4 has several differences from POSIX. For one thing, it has no default entity,
used in POSIX to control ACL inheritance. Instead, any individual access control
entry (ACE) can be flagged as inheritable (see ACL inheritance in NFSv4, below).
NFSv4 also does not use a mask to reconcile the permissions specified in a file’s
mode with its ACL. The mode is required to be consistent with the settings spec-

Access control lists 149

ified for owner@, group@, and everyone@, and filesystems that implement NFSv4
ACLs must preserve this consistency when either the mode or the ACL is updated.

NFSv4 access determination

The NFSv4 system differs from POSIX in that an ACE specifies only a partial set
of permissions. Each ACE is either an “allow” ACE or a “deny” ACE; it acts more
like a mask than an authoritative specification of all possible permissions. Multiple
ACEs can apply to any given situation.

When deciding whether to allow a particular operation, the filesystem reads the
ACL in order, processing ACEs until either all requested permissions have been
granted or some requested permission has been denied. Only ACEs whose entity
strings are compatible with the current user’s identity are considered.

This iterative evaluation process means that owner@, group@, and everyone@ are
not exact analogs of the corresponding traditional mode bits. An ACL can contain
multiple copies of these elements, and their precedence is determined by their or-
der of appearance in the ACL rather than by convention. In particular, everyone@
really does apply to everyone, not just users who aren’t addressed more specifically.

It’s possible for the filesystem to reach the end of an ACL without having obtained
a definitive answer to a permission query. The NFSv4 standard considers the result
to be undefined, but real-world implementations deny access, both because this is
the convention used by Windows and because it’s the only option that makes sense.

ACL inheritance in NFSv4

Like POSIX ACLs, NFSv4 ACLs allow newly created objects to inherit access con-
trol entries from their enclosing directory. However, the NFSv4 system is a bit more
powerful and a lot more confusing. Here are the important points:

« You can flag any ACE as inheritable. Inheritance for newly created sub-
directories (dir_inherit or d) and inheritance for newly created files
(file_inherit or f) are flagged separately.

« You can apply different access control entries to new files and new direc-
tories by creating separate access control entries on the parent directory
and flagging them appropriately. You can also apply a single ACE to all
new child entities (of whatever type) by turning on both the d and f flags.

« From the perspective of access determination, access control entries have
the same effect on the parent (source) directory whether or not they are
inheritable. If you want an entry to apply to children but not to the parent
directory itself, turn on the ACE’s inherit_only (i) flag.

« New subdirectories normally inherit two copies of each ACE: one with the
inheritance flags turned off, which applies to the subdirectory itself; and
one with the inherit_only flag turned on, which sets up the new subdi-

150 Chapter 5 The Filesystem

rectory to propagate its inherited ACEs. You can suppress the creation of
this second ACE by turning on the no_propagate (n) flag on the parent
directory’s copy of the ACE. The end result is that the ACE propagates
only to immediate children of the original directory.

« Don't confuse the propagation of access control entries with true inheri-
tance. Your setting an inheritance-related flag on an ACE simply means
that the ACE will be copied to new entities. It does not create any ongoing
relationship between the parent and its children. If you later change the
ACE entries on the parent directory, the children are not updated.

Table 5.9 summarizes these various inheritance flags.

Table 5.9 NFSv4 ACE inheritance flags

Code Verbose name Meaning

f file_inherit Propagate this ACE to newly created files.

d dir_inherit Propagate this ACE to newly created subdirectories.

i inherit_only Propagate, but don’t apply to the current directory.

n no_propagate Propagate to new subdirectories, but turn off inheritance.

NFSv4 ACL viewing

FreeBSD has extended the standard setfacl and getfacl commands used with POSIX
ACLs to handle NFSv4 ACLs as well. For example, here’s the ACL for a newly cre-
ated directory:

freebsd$ mkdir example
freebsd$ 1s -1d example
drwxr-xr-x 2 garth staff 2 Aug 16 18:52 example/

$ getfacl —q example

owner@:rwxp--aARWcCos:———-—- :allow
group@:r-x---a-R-c-—-s:—-————- :allow
everyone@:r-x---a-R-c--s:—-————- tallow

The -v flag requests verbose permission names:

freebsd$ getfacl -qv example
We indented these out- owner@:read_data/write_data/execute/append_data/read_attributes/
put lines and wrapped write_attributes/read_xattr/write_xattr/read_acl/write_acl/
them at slashes to write_owner/synchronize::allow
clarify structure. group@:read_data/execute/read_attributes/read_xattr/read_acl/
synchronize::allow
everyone@:read_data/execute/read_attributes/read_xattr/read_acl/
synchronize::allow

Access control lists 151

This newly created directory seems to have a complex ACL, but in fact this is just the
9-bit mode translated into ACLese. It is not necessary for the filesystem to store an
actual ACL, because the ACL and the mode are equivalent. (As with POSIX ACLS,
such lists are termed “minimal” or “trivial”) If the directory had an actual ACL, Is
would show the mode bits with a + on the end (i.e., drwxr-xr—x+) to mark its presence.

Each clause represents one access control entry. The format is
entity:permissions:inheritance_flags:type

The entity can be the keywords owner@, group@, or everyone@, or a form such as
user:username or group:groupname. Both the permissions and the inheritance_flags
are slash-separated lists of options in the verbose output and Is-style bitmaps in
short output. The type of an ACE is either allow or deny.

The use of a colon as a subdivider within the entity field makes it tricky for scripts
to parse getfacl output no matter which output format you use. If you need to pro-
cess ACLs programmatically, it’s best to do so through a modular API rather than
by parsing command output.

Interactions between ACLs and modes

The mode and the ACL must remain consistent, so whenever you adjust one of
these entities, the other automatically updates to conform to it. It’s easy for the sys-
tem to determine the appropriate mode for a given ACL. However, emulating the

traditional behavior of the mode with a series of access control entries is trickier,
especially in the context of an existing ACL. The system must often generate mul-
tiple and seemingly inconsistent sets of entries for owner@, group@, and everyone@

that depend on evaluation order for their aggregate effect.

As a rule, it’s best to avoid tampering with a file’s or directory’s mode once you've
applied an ACL.

NFSv4 ACL setup

Because the permission system enforces consistency between a file's mode and
its ACL, all files have at least a trivial ACL. Ergo, ACL changes are always updates.

You make ACL changes with the setfacl command, much as you do under the POSIX
ACL regime. The main difference is that order of access control entries is significant
for an NFSv4 ACL, so you might need to insert new entries at a particular point
within the existing ACL. You can do that with the -a flag:

setfacl —a position entries file ...

Here, position is the index of the existing access control entry (numbered starting at
zero) in front of which the new entries should be inserted. For example, the command

$ setfacl -a 0 user:ben:full_set::deny ben_keep_out

152

Chapter 5 The Filesystem

installs an access control entry on the file ben_keep_out that denies all permis-
sions to the user ben. The notation full_set is a shorthand notation that includes all
possible permissions. (Written out, those would currently be rwxpDdaARWcCos;
compare with Table 5.8 on page 148.)

Because the new access control entry is inserted at position zero, it’s the first one
consulted and takes precedence over later entries. Ben will be denied access to the
file even if, for example, the everyone@ permissions grant access to other users.

You can also use long names such as write_data to identify permissions. Separate
multiple long names with slashes. You cannot mix single-letter codes and long
names in a single command.

As with POSIX ACLs, you can use the -m flag to add new entries to the end of the
existing ACL.

As for complex changes to existing ACLs, you can best achieve them by dumping
the ACL to a text file, editing the access control entries in a text editor, and then
reloading the entire ACL. For example:

$ getfacl -q file > /tmp/file.acl
$ vi /tmp/file.acl # Make any required changes
$ setfacl -b -M /tmp/file.acl file

setfacl’s -b option removes the existing ACL before adding the access control en-
tries listed in file.acl. Its inclusion lets you delete entries simply by removing them
from the text file.

Software Installation and
Management

The installation, configuration, and management of software is a large part of most
sysadmins’ jobs. Administrators respond to installation and configuration requests
from users, apply updates to fix security problems, and supervise transitions to new
software releases that may offer both new features and incompatibilities. Generally,
administrators perform all the following tasks:

« Automating mass installations of operating systems

+ Maintaining custom OS configurations

« Keeping systems and applications patched and up to date
« Tracking software licenses

Managing add-on software packages

The process of configuring an off-the-shelf distribution or software package to
conform to your needs (and to your local conventions for security, file placement,
and network topology) is often referred to as “localization” This chapter explores
some techniques and software that help reduce the pain of software installation and
make these tasks scale more gracefully. We also discuss the installation procedure
for each of our example operating systems, including some options for automated
deployment that use common (platform-specific) tools.

153

154

6.1

Table 6.1

Chapter 6 Software Installation and Management

OPERATING SYSTEM INSTALLATION

Linux distributions and FreeBSD have straightforward procedures for basic instal-
lation. For physical hosts, installation typically involves booting from external USB
storage or optical media, answering a few basic questions, optionally configuring
disk partitions, and then telling the installer which software packages to install.
Most systems, including all our example distributions, include a “live” option on
the installation media that lets you run the operating system without actually in-
stalling it on a local disk.

Installing the base operating system from local media is fairly trivial thanks to the
GUI applications that shepherd you through the process. Table 6.1 lists pointers to
detailed installation instructions for each of our example systems.

Installation documentation

System Documentation source

Red Hat redhat.com/docs/manuals/enterprise

CentOS wiki.centos.org/Manuals/ReleaseNotes/CentOS7
Debian debian.org/releases/stable/installmanual

Ubuntu help.ubuntu.com/Its/serverguide/installation.html
FreeBSD freebsd.org/doc/handbook/bsdinstall.html

Installing from the network

If you have to install an operating system on more than one computer, you will
quickly reach the limits of interactive installation. It’s time consuming, error prone,
and boring to repeat the standard installation process on hundreds of systems. You
can minimize human errors with a localization checklist, but even this measure
does not remove all potential sources of variation.

To alleviate some of these problems, you can use network installation options to
simplify deployments. Network installations are appropriate for sites with more
than ten or so systems. The most common methods use DHCP and TFTP to boot
the system sans physical media. They then retrieve the OS installation files from a
network server with HTTP, NFS, or FTP.

You can set up completely hands-free installations through PXE, the Preboot
eXecution Environment. This scheme is a standard from Intel that lets systems
boot from a network interface. It works especially well in virtualized environments.

PXE acts like a miniature OS that sits in a ROM on your network card. It exposes its
network capabilities through a standardized API for the system BIOS to use. This
cooperation makes it possible for a single boot loader to netboot any PXE-enabled
PC without having to supply special drivers for each network card.

http://Hatredhat.com/docs/manuals/enterprise
http://CentOSwiki.centos.org/Manuals/ReleaseNotes/CentOS7
http://Debiandebian.org/releases/stable/installmanual
http://Ubuntuhelp.ubuntu.com/lts/serverguide/installation.html
http://FreeBSDfreebsd.org/doc/handbook/bsdinstall.html

See page 402 for
more information
about DHCP.

Exhibit A

Operating system installation 155

The external (network) portion of the PXE protocol is straightforward and is similar
to the netboot procedures used on other architectures. A host broadcasts a DHCP
“discover” request with the PXE flag turned on, and a DHCP server or proxy re-
sponds with a DHCP packet that includes PXE options (the name of a boot server
and boot file). The client downloads its boot file over TFTP (or, optionally, multi-
cast TFTP) and then executes it. The PXE boot procedure is depicted in Exhibit A.

PXE boot and installation process

DHCP request (includes PXE options)

) DHCP response (points to TFTP boot server)

Request boot image via TFTP

v

Serve boot image and configuration

Netboot Netboot
client Request installation image via HTTP/NFS/other server

A

Serve installation files

<&
<

The DHCP, TFTP, and file servers can all be located on different hosts. The TFTP-pro-
vided boot file includes a menu with pointers to the available OS boot images,
which can then be retrieved from the file server with HT'TP, FTP, NFS, or some
other network protocol.

PXE booting is most commonly used in conjunction with unattended installation
tools such as Red Hat’s kickstart or Debian’s preseeding system, as discussed in the
upcoming sections. You can also use PXE to boot diskless systems such as thin clients.

Cobbler, discussed on page 161, includes some glue that makes netbooting much
easier. However, you will still need a working knowledge of the tools that underlie
Cobbler, beginning with PXE.

Setting up PXE

The most widely used PXE boot system is H. Peter Anvin's PXELINUX, which
is part of his SYSLINUX suite of boot loaders for every occasion. Check it out at
syslinux.org. Another option is iPXE (ipxe.org), which supports additional boot-
strapping modes, including support for wireless networks.

PXELINUX supplies a boot file that you install in the TFTP server’s tftpboot di-
rectory. To boot from the network, a PC downloads the PXE boot loader and its
configuration from the TFTP server. The configuration file lists one or more op-
tions for operating systems to boot. The system can boot through to a specific OS
installation without any user intervention, or it can display a custom boot menu.

http://syslinux.org
http://ipxe.org

156

See page 403 for more
information about
DHCP server software.

e (B

Chapter 6 Software Installation and Management

PXELINUX uses the PXE API for its downloads and is therefore hardware inde-
pendent all the way through the boot process. Despite the name, PXELINUX is not
limited to booting Linux. You can deploy PXELINUX to install FreeBSD and other
operating systems, including Windows.

On the DHCP side, ISC’s (the Internet Systems Consortium’s) DHCP server is your
best bet for serving PXE information. Alternatively, try Dnsmasq (goo.gl/FNk7a),
a lightweight server with DNS, DHCP, and netboot support. Or simply use Cob-
bler, discussed below.

Using kickstart, the automated installer for Red Hat and CentOS

Kickstart is a Red Hat-developed tool for performing automated installations. It is
really just a scripting interface to the standard Red Hat installer software, Anacon-
da, and depends both on the base distribution and on RPM packages. Kickstart is
flexible and quite smart about autodetecting the system’s hardware, so it works well
for bare-metal and virtual machines alike. Kickstart installs can be performed from
optical media, the local hard drive, NFS, FTP, or HTTP.

Setting up a kickstart configuration file

Kickstarts behavior is controlled by a single configuration file, generally called
ks.cfg. The format of this file is straightforward. If you're visually inclined, Red
Hat’s handy GUI tool system-config-kickstart lets you point and click your way
to ks.cfg nirvana.

A kickstart config file consists of three ordered parts. The first part is the command
section, which specifies options such as language, keyboard, and time zone. This
section also specifies the source of the distribution with the url option. In the fol-
lowing example, it’s a host called installserver.

Here’s an example of a complete command section:

text

lang en_US # lang is used during the installation...
langsupport en_US # ...and langsupport at run time
keyboard us # Use an American keyboard

timezone --utc America/EST # —-utc means hardware clock is on GMT
mouse

rootpw —-iscrypted 6NaC1$X5jR1IREY9DGNTCXjHpO75/

reboot # Reboot after installation. Always wise.
bootloader --location=mbr # Install default boot loader in the MBR
install # Install a new system, don't upgrade
url —--url http://installserver/redhat

clearpart --all --initlabel # Clear all existing partitions

part / --fstype ext3 --size 4096

part swap --size 1024

part /var --fstype ext3 -size 1 --grow
network --bootproto dhcp

http://goo.gl/FNk7a

Operating system installation 157

auth --useshadow --enablemd5

firewall --disabled

xconfig --defaultdesktop=GNOME --startxonboot --resolution 1280x1024
--depth 24

Kickstart uses graphical mode by default, which defeats the goal of unattended in-
stallation. The text keyword at the top of the example fixes this.

The rootpw option sets the new machine’s root password. The default is to spec-
ify the password in cleartext, which presents a serious security problem. Always
use the --iscrypted flag to specify a hashed password. To encrypt a password for
use with kickstart, use openssl passwd -1. Still, this option leaves all your systems
with the same root password. Consider running a postboot process to change the
password at build time.

The clearpart and part directives specify a list of disk partitions and their sizes.
You can include the --grow option to expand one of the partitions to fill any re-
maining space on the disk. This feature makes it easy to accommodate systems that
have different sizes of hard disk. Advanced partitioning options, such as the use of
LVM, are supported by kickstart but not by the system-config-kickstart tool. Re-
fer to Red Hat’s on-line documentation for a complete list of disk layout options.

The second section is a list of packages to install. It begins with a %packages direc-
tive. The list can contain individual packages, collections such as @ GNOME, or the
notation @ Everything to include the whole shebang. When selecting individual
packages, specify only the package name, not the version or the .rpm extension.
Here’s an example:

%packages

@ Networked Workstation
@ X Window System

@ GNOME
mylocalpackage

In the third section of the kickstart configuration file, you can specify arbitrary
shell commands for kickstart to execute. There are two possible sets of commands:
one introduced with %pre that runs before installation, and one introduced with
%post that runs afterward. Both sections have some restrictions on the ability of
the system to resolve hostnames, so it’s safest to use IP addresses if you want to
access the network. In addition, the postinstall commands are run in a chrooted
environment, so they cannot access the installation media.

The ks.cfg file is quite easy to generate programmatically. One option is to use the
pykickstart Python library, which can read and write kickstart configurations.

For example, suppose you wanted to install different sets of packages on servers and
clients and that you also have two separate physical locations that require slightly
different customizations. You could use pykickstart to write a script that transforms
a master set of parameters into a set of four separate configuration files, one for
servers and one for clients in each office.

158

See page 155 for
more information
about PXE.

Chapter 6 Software Installation and Management

Changing the complement of packages would then be just a matter of changing
the master configuration file rather than of changing every possible configuration
file. There may even be cases in which you need to generate individualized config-
uration files for specific hosts. In this situation, you would certainly want the final
ks.cfg files to be automatically generated.

Building a kickstart server

Kickstart expects its installation files, called the installation tree, to be laid out
as they are on the distribution media, with packages stored in a directory called
RedHat/RPMS on the server. If you're installing over the network via FTP, NFS,
or HTTP, you can either copy the contents of the distribution (leaving the tree in-
tact), or you can simply use the distribution’s ISO images. You can also add your
own packages to this directory. There are, however, a couple of issues to be aware of.

First, if you tell kickstart to install all packages (with an @ Everything in the pack-
ages section of your ks.cfg), it installs add-on packages in alphabetical order once
all the base packages have been laid down. If your package depends on other pack-
ages that are not in the base set, you might want to call your package something
like zzmypackage.rpm to make sure that it’s installed last.

If you don’t want to install all packages, either list your supplemental packages indi-
vidually in the %packages section of the ks.cfg file or add your packages to one or
more of the collection lists. Collection lists are specified by entries such as @ GNOME
and stand for a predefined set of packages whose members are enumerated in the
file RedHat/base/comps on the server. The collections are the lines that begin with
0 or 1; the number specifies whether the collection is selected by default.

In general, it’s not a good idea to tamper with the standard collections. Leave them
as Red Hat defined them and explicitly name all your supplemental packages in
the ks.cfg file.

Pointing kickstart at your config file

Once you've created a config file, you have a couple of ways to get kickstart to use
it. The officially sanctioned method is to boot from external media (USB or DVD)
and ask for a kickstart installation by specifying linux inst.ks at the initial boot:
prompt. PXE boot is also an option.

If you don't specify additional arguments, the system determines its network address
with DHCP. It then obtains the DHCP boot server and boot file options, attempts
to mount the boot server with NFS, and uses the value of the boot file option as its
kickstart configuration file. If no boot file has been specified, the system looks for
a file called /Kkickstart/host_ip_address-kickstart.

C®

Operating system installation 159

Alternatively, you can tell kickstart to get its configuration file in some other way
by supplying a path as an argument to the inst.ks option.! There are several possi-
bilities. For example, the instruction

boot: linux inst.ks=http:server:/path
tells kickstart to use HTTP to download the file instead of NFS.

To eliminate the use of boot media entirely, you'll need to graduate to PXE. See
page 154 for more information about that.

Automating installation for Debian and Ubuntu

Debian and Ubuntu can use the debian-installer for “preseeding,” the reccommended
method for automated installation. As with Red Hat’s kickstart, a preconfiguration
file answers questions asked by the installer.

All the interactive parts of the Debian installer use the debconf utility to decide
which questions to ask and what default answers to use. By giving debconf a data-
base of preformulated answers, you fully automate the installer. You can either
generate the database by hand (it’s a text file), or you can perform an interactive
installation on an example system and then dump out your debconf answers with
the following commands:

$ sudo debconf-get-selections —-installer > preseed.cfg
$ sudo debconf-get-selections >> preseed.cfg

Make the config file available on the net and then pass it to the kernel at installation
time with the following kernel argument:

preseed/url=http://host/path/to/preseed

The syntax of the preseed file, usually called preseed.cfg, is simple and is remi-
niscent of Red Hat’s ks.cfg. The sample below has been shortened for simplicity.

-1 debian-installer/locale string en_US

-1 console-setup/ask_detect boolean false

-1 console-setup/layoutcode string us

-1 netcfg/choose_interface select auto

-1 netcfg/get_hosthname string unassigned-hostname
-1 netcfg/get_domain string unassigned-domain

QO O a9 a9 a Qa

d-1i partman-auto/disk string /dev/sda
d-1i partman-auto/method string lvm
d-1i partman-auto/choose_recipe select atomic

d-1i passwd/user-fullname string Daffy Duck

d-1 passwd/username string dduck

d-i passwd/user-password-crypted password 6/mkq9/$G//i6tN.
x6670.951VSM/

1. Prior to RHEL 7, the option was ks. Both are understood for now, but future versions may drop ks.

160

Chapter 6 Software Installation and Management

d-1i user-setup/encrypt-home boolean false

tasksel tasksel/first multiselect ubuntu-desktop

d-1 grub-installer/only_debian boolean true

d-1 grub-installer/with_other_os boolean true

d-1 finish-install/reboot_in_progress note

xserver—xorg xserver-xorg/autodetect_monitor boolean true

Several options in this list simply disable dialogs that would normally require user
interaction. For example, the console-setup/ask_detect clause disables manual
keymap selection.

This configuration tries to identify a network interface that’s actually connected
to a network (choose_interface select auto) and obtains network information
through DHCP. The system hostname and domain values are presumed to be fur-
nished by DHCP and are not overridden.

Preseeded installations cannot use existing partitions; they must either use exist-
ing free space or repartition the entire disk. The partman* lines in the code above
are evidence that the partman-auto package is being used for disk partitioning.
You must specify a disk to install to unless the system has only one. In this case,
/dev/sda is used.

Several partitioning recipes are available.

o atomic puts all the system’s files in one partition.
« home creates a separate partition for /home.
o multi creates separate partitions for /home, /usr, /var, and /tmp.

You can create users with the passwd series of directives. As with kickstart config-
uration, we strongly recommend the use of encrypted (hashed) password values.
Preseed files are often stored on HTTP servers and are apt to be discovered by cu-
rious users. (Of course, a hashed password is still subject to brute force attack. Use
a long, complex password.)

The task selection (tasksel) option chooses the type of Ubuntu system to install.
Available values include standard, ubuntu-desktop, dns-server, lamp-server,
kubuntu-desktop, edubuntu-desktop, and xubuntu-desktop.

The sample preseed file shown above comes from the Ubuntu installation docu-
mentation found at help.ubuntu.com. This guide contains full documentation for
the syntax and usage of the preseed file.

Although Ubuntu does not descend from the Red Hat lineage, it has grafted com-
patibility with kickstart control files onto its own underlying installer. Ubuntu also
includes the system-config-kickstart tool for creating these files. However, the kick-
start functionality in Ubuntu’s installer is missing a number of important features
that are supported by Red Hat’s Anaconda, such as LVM and firewall configuration.
We recommend sticking with the Debian installer unless you have a good reason
to choose kickstart (e.g., to maintain compatibility with your Red Hat systems).

http://help.ubuntu.com

Operating system installation 161

Netbooting with Cobbler, the open source Linux provisioning server

By far the easiest way to bring netbooting services to your network is with Cobbler, a
project originally written by Michael DeHaan, prolific open source developer. Cobbler
enhances kickstart to remove some of its most tedious and repetitive administra-
tive elements. It bundles all the important netboot features, including DHCP, DN,
and TFTP, and helps you manage the OS images used to build physical and virtual
machines. Cobbler includes command-line and web interfaces for administration.

Templates are perhaps Cobbler’s most interesting and useful feature. You'll fre-
quently need different kickstart and preseed settings for different host profiles. For
example, you might have web servers in two data centers that, apart from network
settings, require the same configuration. You can use Cobbler “snippets” to share
sections of the configuration between the two types of hosts.

A snippet is just a collection of shell commands. For example, this snippet adds a
public key to the authorized SSH keys for the root user:

mkdir -p --mode=700 /root/.ssh

cat >> /root/.ssh/authorized_keys << EOF

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDKErzVdarNkL4bzAZotSzU/
... Rooy2R6TCzc1Bt/oqUK1R1kuV

EOF

chmod 600 /root/.ssh/authorized_keys

You save the snippet to Cobbler’s snippet directory, then refer to it in a kickstart
template. For example, if you saved the snippet above as root_pubkey_snippet,
you could refer to it in a template as follows.

%post
SNIPPET::root_pubkey_snippet
$kickstart_done

Use Cobbler templates to customize disk partitions, conditionally install packages,
customize time zones, add custom package repositories, and perform any other
kind of localization requirement.

Cobbler can also create new virtual machines under a variety of hypervisors. It can
integrate with a configuration management system to provision machines once
they boot.

Cobbler packages are available in the standard repositories for our sample Linux
distributions. You can also obtain packages and documentation from the Cobbler
GitHub project at cobbler.github.io.

Automating FreeBSD installation

The FreeBSD bsdinstall utility is a text-based installer that kicks off when you boot
a computer from a FreeBSD installation CD or DVD. Its automation facilities are
rudimentary compared to Red Hat’s kickstart or Debian’s preseed, and the docu-
mentation is limited. The best source of information is the bsdinstall man page.

http://cobbler.github.io

162

6.2

Chapter 6 Software Installation and Management

Creating a customized, unattended installation image is a tedious affair that in-
volves the following steps.

1. Download the latest installation ISO (CD image) from ftp.freebsd.org.
2. Unpack the ISO image to a local directory.

3. Make any desired edits in the cloned directory.

4

. Create a new ISO image from your customized layout and burn it to
media, or create a PXE boot image for netbooting.

FreeBSD’s version of tar understands ISO format in addition to many other formats,
so you can simply extract the CD image files to a scratch directory. Create a sub-
directory before extracting, because the ISO file unpacks to the current directory.

freebsd$ sudo mkdir FreeBSD
freebsd$ sudo tar xpCf FreeBSD FreeBSD-11.0.iso

Once you've extracted the contents of the image, you can customize them to re-
flect your desired installation settings. For example, you could add custom DNS
resolvers by editing FreeBSD/etc/resolv.conf to include your own name servers.

bsdinstall normally requires users to select settings such as the type of terminal
in use, the keyboard mapping, and the desired style of disk partitioning. You can
bypass the interactive questions by putting a file called installerconfig in the etc
directory of the system image.

This file’s format is described in the bsdinstall man page. It has two sections:

o The preamble, which sets certain installation settings
o A shell script which executes after installation completes

We refer you to the man page rather than regurgitate its contents here. Among
other settings, it contains options for installing directly to a ZFS root and to other
custom partitioning schemes.

Once your customizations are complete, you can create a new ISO file with the
mkisofs command. Create a PXE image or burn the ISO to optical media for an
unattended installation.

The mfsBSD project (mfsbsd.vx.sk) is a set of scripts that generate a PXE-friendly
ISO image. The basic FreeBSD 11 image weighs in at a lean 47MiB. See the source
scripts at github.com/mmatuska/mfsbsd.

MANAGING PACKAGES

UNIX and Linux software assets (source code, build files, documentation, and con-
figuration templates) were traditionally distributed as compressed archives, usual-
ly gzipped tarballs (.tar.gz or .tgz files). This was OK for developers but inconve-
nient for end users and administrators. These source archives had to be manually

http://ftp.freebsd.org
http://github.com/mmatuska/mfsbsd

Managing packages 163

compiled and built for each system on each release of the software, a tedious and
error prone process.

Packaging systems emerged to simplify and facilitate the job of software manage-
ment. Packages include all the files needed to run a piece of software, including
precompiled binaries, dependency information, and configuration file templates
that can be customized by administrators. Perhaps most importantly, packaging
systems try to make the installation process as atomic as possible. If an error oc-
curs during installation, a package can be backed out or reapplied. New versions
of software can be installed with a simple package update.

Package installers are typically aware of configuration files and will not normally
overwrite local customizations made by a system administrator. They either back up
existing config files that they change or supply example config files under a different
name. If you find that a newly installed package breaks something on your system,
you can, theoretically, back it out to restore your system to its original state. Of course,
theory != practice, so don’t try this on a production system without testing it first.

Packaging systems define a dependency model that allows package maintainers to
ensure that the libraries and support infrastructure on which their applications de-
pend are properly installed. Unfortunately, the dependency graphs are sometimes
imperfect. Unlucky administrators can find themselves in package dependency hell,
a state where it's impossible to update a package because of version incompatibilities
among its dependencies. Fortunately, recent versions of packaging software seem
to be less susceptible to this effect.

Packages can run scripts at various points during the installation, so they can do
much more than just disgorge new files. Packages frequently add new users and
groups, run sanity checks, and customize settings according to the environment.

Confusingly, package versions do not always correspond directly to the versions
of the software that they install. For example, consider the following RPM package
for docker-engine:

$ rpm -qa | grep -i docker
docker-engine-1.13.0-1.el7.centos.x86_64
$ docker version | grep Version

Version: 1.13.1

The package itself claims version 1.13.0, but the docker binary reports version 1.13.1.
In this case, the distribution maintainers backported changes and incremented the
minor package version. Be aware that the package version string is not necessarily
an accurate indication of the software version that is actually installed.

You can create packages to facilitate the distribution of your own localizations or
software. For example, you can create a package that, when installed, reads local-
ization information for a machine (or gets it from a central database) and uses that
information to set up local configuration files.

164

6.3

-

Chapter 6 Software Installation and Management

You can also bundle local applications as packages (complete with dependencies)
or create packages for third party applications that aren’t normally distributed in
package format. You can version your packages and use the dependency mecha-
nism to upgrade machines automatically when a new version of your localization
package is released. We refer you to fpm, the Effing Package Manager, which is the
easiest way to get started building packages for multiple platforms. You can find it
at github.com/jordansissel/fpm.

You can also use the dependency mechanism to create groups of packages. For
example, you can create a package that installs nothing of its own but depends on
many other packages. Installing the package with dependencies turned on results
in all the packages being installed in a single step.

LINUX PACKAGE MANAGEMENT SYSTEMS

Two package formats are in common use on Linux systems. Red Hat, CentOS,
SUSE, Amazon Linux, and several other distributions use RPM, a recursive acronym
that expands to “RPM Package Manager.” Debian and Ubuntu use the separate but
equally popular .deb format. The two formats are functionally similar.

Both the RPM and .deb packaging systems now function as dual-layer soup-to-
nuts configuration management tools. At the lowest level are the tools that install,
uninstall, and query packages: rpm for RPM and dpkg for .deb.

On top of these commands are systems that know how to find and download
packages from the Internet, analyze interpackage dependencies, and upgrade all
the packages on a system. yum, the Yellowdog Updater, Modified, works with the
RPM system. APT, the Advanced Package Tool, originated in the .deb universe but
works well with both .deb and RPM packages.

On the next couple of pages, we review the low-level commands rpm and dpkg. In
the section High-level Linux package management systems starting on page 166,
we discuss the comprehensive update systems APT and yum, which build on these
low-level facilities. Your day-to-day administration activities will usually involve
the high-level tools, but you'll occasionally need to wade into the deep end of the
pool with rpm and dpkg.

rpm: manage RPM packages

The rpm command installs, verifies, and queries the status of packages. It formerly
built them as well, but this function has now been relegated to a separate command
called rpmbuild. rpm options have complex interactions and can be used together
only in certain combinations. It’s most useful to think of rpm as if it were several
different commands that happen to share the same name.

The mode you tell rpm to enter (such as -i or -q) specifies which of rpm’s multiple
personalities you are hoping to access. rpm --help lists all the options broken down

http://github.com/jordansissel/fpm

Linux package management systems 165

by mode, but it's worth your time to read the man page in some detail if you will
frequently be dealing with RPM packages.

The bread-and-butter options are -i (install), -U (upgrade), -e (erase), and -q (que-
ry). The -q option is a bit tricky; you must supply an additional command-line flag
to pose a specific question. For example, the command rpm -qa lists all the pack-
ages installed on the system.

Let’s look at an example. We need to install a new version of OpenSSH because of
a recent security fix. Once we've downloaded the package, we'll run rpm -U to re-
place the older version with the newer.

redhat$ sudo rpm -U openssh-6.6.1p1-33.e17_2.x86_64.rpm
error: failed dependencies:

openssh = 6.6.1p1-23 is needed by openssh-clients-6.6.1p1-23
openssh = 6.6.1p1-23 is needed by openssh-server-6.6.1p1-23

Doh! Perhaps it’s not so simple after all. Here we see that the currently installed
version of OpenSSH, 6.6.1p1-23, is required by several other packages. rpm won’t
let us upgrade OpenSSH to 6.6.1p1-33 because the change might affect the oper-
ation of these other packages. This type of conflict happens all the time, and it’s a
major motivation for the development of systems like APT and yum. In real life
we wouldn’t attempt to untangle the dependencies by hand, but let’s continue with
rpm alone for the purpose of this example.

We could force the upgrade with the --force option, but that’s usually a bad idea. The
dependency information is there to save time and trouble, not just to get in the way.
There’s nothing like a broken SSH on a remote system to ruin a sysadmin’s morning.

Instead, we'll grab updated versions of the dependent packages as well. If we were
smart, we could have determined that other packages depended on OpenSSH be-
fore we even attempted the upgrade:

redhat$ rpm -q --whatrequires openssh
openssh-server-6.6.1p1-23.el7_2.x86_64
openssh-clients-6.6.1p1-23.el7_2.x86_64

Suppose that we've obtained updated copies of all the packages. We could install them
one at a time, but rpm is smart enough to handle them all at once. If multiple RPMs
are listed on the command line, rpm sorts them by dependency before installation.

redhat$ sudo rpm -U openssh-#

redhat$ rpm -q openssh
openssh-6.6.1p1-33.el17_3

Cool! Looks like it succeeded. Note that rpm understands which package we are
talking about even though we didn’t specify the package’s full name or version. (Un-
fortunately, rpm does not restart sshd after the installation. Youd need to manually
restart it to complete the upgrade.)

166

C®

6.4

Chapter 6 Software Installation and Management

dpkg: manage .deb packages

Just as RPM packages have the all-in-one rpm command, Debian packages have
the dpkg command. Useful options include --install, --remove, and -1 to list the
packages that have been installed on the system. A dpkg --install of a package that’s
already on the system removes the previous version before installing.

Running dpkg -1 | grep package is a convenient way to determine if a particular
package is installed. For example, to search for an HTTP server, try

ubuntu$ dpkg -1 | grep -i http
ii lighttpd 1.4.35-4+deb8ul amd64 fast webserver with minimal
memory footprint

This search found the lighttpd software, an excellent, open source, lightweight web
server. The leading i1 indicates that the software is installed.

Suppose that the Ubuntu security team recently released a fix to nvi to patch a po-
tential security problem. After grabbing the patch, we run dpkg to install it. As you
can see, it's much chattier than rpm and tells us exactly what it’s doing.

ubuntu$ sudo dpkg —-install ./nvi_1.81.6-12_amd64.deb

(Reading database ... 24368 files and directories currently installed.)

Preparing to replace nvi 1.79-14 (using ./nvi_1.81.6-12_amd64.deb) ...

Unpacking replacement nvi ...

Setting up nvi (1.81.6-12) ...

Checking available versions of ex, updating links in /etc/alternatives ...

(You may modify the symlinks there yourself if desired - see 'man 1n'.)

Leaving ex (/usr/bin/ex) pointing to /usr/bin/nex.

Leaving ex.1.gz (/usr/share/man/mani/ex.1.gz) pointing to /usr/share/
man/mani/nex.1.gz.

We can now use dpkg -1 to verify that the installation worked. The -1 flag accepts
an optional prefix pattern to match, so we can just search for nvi.

ubuntu$ dpkg -1 nvi
Name Version Description
ii nvi 1.81.6-12 4.4BSD re-implementation of vi.

Our installation seems to have gone smoothly.

HIGH-LEVEL LINUX PACKAGE MANAGEMENT SYSTEMS
Metapackage management systems such as APT and yum share several goals:
o To simplify the task of locating and downloading packages

o To automate the process of updating or upgrading systems
o To facilitate the management of interpackage dependencies

RHEL

High-level Linux package management systems 167

Clearly, these systems include more than just client-side commands. They all re-
quire that distribution maintainers organize their offerings in an agreed-on way so
that the software can be accessed and reasoned about by clients.

Since no single supplier can encompass the entire “world of Linux software,” the
systems all allow for the existence of multiple software repositories. Repositories
can be local to your network, so these systems make a dandy foundation for creat-
ing your own internal software distribution system.

The Red Hat Network is closely tied to Red Hat Enterprise Linux. It's a commer-
cial service that costs money and offers more in terms of attractive GUIs, site-wide
system management, and automation ability than do APT and yum. It is a shiny,
hosted version of Red Hat’s expensive and proprietary Satellite Server. The client
side can reference yum and APT repositories, and this ability has allowed distribu-
tions such as CentOS to adapt the client GUI for nonproprietary use.

APT is better documented than the Red Hat Network, is significantly more por-
table, and is free. It's also more flexible in terms of what you can do with it. APT
originated in the world of Debian and dpkg, but it has been extended to encompass
RPMs, and versions that work with all our example distributions are available. It's the
closest thing we have at this point to a universal standard for software distribution.

yum is an RPM-specific analog of APT. It’s included by default on Red Hat Enter-
prise Linux and CentOS, although it runs on any RPM-based system, provided that
you can point it toward appropriately formatted repositories.

We like APT and consider it a solid choice if you run Debian or Ubuntu and want
to set up your own automated package distribution network. See the section APT:
the Advanced Package Tool on page 169 for more information.

Package repositories

Linux distributors maintain software repositories that work hand-in-hand with their
chosen package management systems. The default configuration for the package
management system usually points to one or more well-known web or FTP servers
that are under the distributor’s control.

However, it isn’'t immediately obvious what such repositories should contain. Should
they include only the sets of packages blessed as formal, major releases? Formal
releases plus current security updates? Up-to-date versions of all the packages that
existed in the formal releases? Useful third party software not officially support-
ed by the distributor? Source code? Binaries for multiple hardware architectures?
When you run apt upgrade or yum upgrade to bring the system up to date, what
exactly should that mean?

168

Chapter 6 Software Installation and Management

In general, package management systems must answer all these questions and must
make it easy for sites to select the cross-sections they want to include in their soft-
ware “world” The following concepts help structure this process.

« A “release” is a self-consistent snapshot of the package universe. Before
the Internet era, named OS releases were more or less immutable and
were associated with one specific time; security patches were made avail-
able separately. These days, a release is a more nebulous concept. Releases
evolve over time as packages are updated. Some releases, such as Red Hat
Enterprise Linux, are specifically designed to evolve slowly; by default,
only security updates are incorporated. Other releases, such as beta ver-
sions, change frequently and dramatically. But in all cases, the release is
the baseline, the target, the “thing I want to update my system to look like”

o A “component” is a subset of the software within a release. Distributions
partition themselves differently, but one common distinction is that be-
tween core software blessed by the distributor and extra software made
available by the broader community. Another distinction that’s common
in the Linux world is the one between the free, open source portions of
a release and the parts that are tainted by some kind of restrictive licens-
ing agreement.

Of particular note from an administrative standpoint are minimally active
components that include only security fixes. Some releases allow you to
combine a security component with an immutable baseline component
to create a relatively stable version of the distribution, even though the
mainline distribution may evolve much faster.

o An “architecture” represents a class of hardware. The expectation is that
machines within an architecture class are similar enough that they can
all run the same binaries. Architectures are instances of releases, for ex-
ample, “Ubuntu Xenial Xerus for x86_64. Since components are subdi-
visions of releases, there’s a corresponding architecture-specific instance
for each of them as well.

« Individual packages are the elements that make up components, and there-
fore, indirectly, releases. Packages are usually architecture-specific and are
versioned independently of the main release and of other packages. The
correspondence between packages and releases is implicit in the way the
network repository is set up.

The existence of components that aren’t maintained by the distributor (e.g., Ubun-
tu’s “universe” and “multiverse”) raises the question of how these components relate
to the core OS release. Can they really be said to be “a component” of the specific
release, or are they some other kind of animal entirely?

From a package management perspective, the answer is clear: extras are a true com-
ponent. They are associated with a specific release, and they evolve in tandem with

RHEL

High-level Linux package management systems 169

it. The separation of control is interesting from an administrative standpoint, but
it doesn’t affect the package distribution systems, except that multiple repositories
might need to be manually added by the administrator.

RHN: the Red Hat Network

With Red Hat having gracefully departed from the consumer Linux business, the
Red Hat Network has become the system management platform for Red Hat En-
terprise Linux. You purchase the right to access the Red Hat Network by subscrib-
ing. At its simplest, you can use the Red Hat Network as a glorified web portal and
mailing list. Used in this way, the Red Hat Network is not much different from the
patch notification mailing lists that have been run by various UNIX vendors for
years. But more features are available if youre willing to pay for them. For current
pricing and features, see rhn.redhat.com.

The Red Hat Network presents a web-based interface for downloading new pack-
ages as well as a command-line alternative. Once you register, your machines get
all the patches and bug fixes that they need without your ever having to intervene.

The downside of automatic registration is that Red Hat decides what updates you
need. You might consider how much you really trust Red Hat (and the software
maintainers whose products they package) not to screw things up.

A reasonable compromise might be to sign up one machine in your organization
for automatic updates. You can take snapshots from that machine at periodic in-
tervals to test as possible candidates for internal releases.

APT: the Advanced Package Tool

APT is one of the most mature package management systems. It’s possible to up-
grade an entire system full of software with a single apt command or even (as with
the Red Hat Network) to have your boxes continuously keep themselves up to date
without human intervention.

The first rule of using APT on Ubuntu systems (and indeed all management of
Debian packages) is to ignore the existence of dselect, which acts as a front end for
the Debian package system. It’s not a bad idea, but the user interface is poor and
can be intimidating to the novice user. Some documentation will try to steer you
toward dselect, but stay strong and stick with apt.

If you are using APT to manage a stock Ubuntu installation from a standard re-
pository mirror, the easiest way to see the available packages is to visit the master
list at packages.ubuntu.com. The web site includes a nice search interface. If you
set up your own APT server (see page 172), then of course you will know what
packages you have made available and you can list them in whatever way you want.

Distributions commonly include dummy packages that exist only to claim other
packages as prerequisites. apt downloads and upgrades prerequisite packages as
needed, so the dummy packages make it easy to install or upgrade several packages

http://rhn.redhat.com
http://packages.ubuntu.com

170

Chapter 6 Software Installation and Management

as a block. For example, installing the gnome-desktop-environment package ob-
tains and installs all the packages necessary to run the GNOME UL

APT includes a suite of low-level commands like apt-get and apt-cache that are
wrapped for most purposes by an omnibus apt command. The wrapper is a lat-
er addition to the system, so you’ll still see occasional references to the low-level
commands on the web and in documentation. To a first approximation, commands
that look similar are in fact the same command. There’s no difference between apt
install and apt-get install, for example.

Once you have set up your /etc/apt/sources.list file (described in detail below) and
know the name of a package that you want, the only remaining task is to run apt
update to refresh apt’s cache of package information. After that, just run apt install
package-name as a privileged user to install the package. The same command up-
dates a package that has already been installed.

Suppose you want to install a new version of the sudo package that fixes a security
bug. First, it’s always wise to do an apt update:

debian$ sudo apt update
Get:1 http://http.us.debian.org stable/main Packages [824kB]
Get:2 http://non-us.debian.org stable/non-US/main Release [102B]

Now you can actually fetch the package. Note the use of sudo to fetch the new sudo
package—apt can even upgrade packages that are in use!

debian$ sudo apt install sudo

Reading Package Lists... Done

Building Dependency Tree... Done

1 packages upgraded, O newly installed, O to remove and 191 not upgraded.
Need to get OB/122kB of archives. After unpacking 131kB will be used.

(Reading database ... 24359 files and directories currently installed.)
Preparing to replace sudo 1.6.2p2-2 (using .../sudo_1.8.10p3-1+deb8u3_
amd64.deb) ...

Unpacking replacement sudo ...
Setting up sudo (1.8.10p3-1+deb8u3) ...
Installing new version of config file /etc/pam.d/sudo ...

Repository configuration

Configuring APT is straightforward; pretty much everything you need to know
can be found in Ubuntu’s community documentation on package management:

help.ubuntu.com/community/ AptGet/Howto

The most important configuration file is /etc/apt/sources.list, which tells APT
where to get its packages. Each line specifies the following:

o A type of package, currently deb or deb-src for Debian-style packages or
rpm or rpm-src for RPMs

http://help.ubuntu.com/community/AptGet/Howto

High-level Linux package management systems 171

o A URL that points to a file, HT'TP server, or FTP server from which to
fetch packages

« A “distribution” (really, a release name) that lets you deliver multiple ver-
sions of packages?

« A potential list of components (categories of packages within a release)

Unless you want to set up your own APT repository or cache, the default config-
uration generally works fine. Source packages are downloaded from the entries
beginning with deb-src.

On Ubuntu systems, you'll almost certainly want to include the “universe” com-
ponent, which accesses the larger world of Linux open source software. The “mul-
tiverse” packages include non-open-source content, such as some VMware tools
and components.

As long as you're editing the sources.list file, you may want to retarget the indi-
vidual entries to point to your closest mirror. A full list of Ubuntu mirrors can be
found at launchpad.net/ubuntu/+archivemirrors. This is a dynamic (and long) list
of mirrors that changes regularly, so be sure to keep an eye on it between releases.

Make sure that security.ubuntu.com is listed as a source so that you have access to
the latest security patches.

An example /etc/apt/sources.list file

The following example uses archive.ubuntu.com as a package source for the “main”
components of Ubuntu (those that are fully supported by the Ubuntu team). In ad-
dition, this sources.list file includes unsupported but open source “universe” pack-
ages, and non-free, unsupported packages in the “multiverse” component. There is
also a repository for updates or bug-fixed packages in each component. Finally, the
last six lines are for security updates.

General format: type uri distribution [components]

deb http://archive.ubuntu.com/ubuntu xenial main restricted

deb-src http://archive.ubuntu.com/ubuntu xenial main restricted

deb http://archive.ubuntu.com/ubuntu xenial-updates main restricted
deb-src http://archive.ubuntu.com/ubuntu xenial-updates main restricted
deb http://archive.ubuntu.com/ubuntu xenial universe

deb-src http://archive.ubuntu.com/ubuntu xenial universe

deb http://archive.ubuntu.com/ubuntu xenial-updates universe

deb-src http://archive.ubuntu.com/ubuntu xenial-updates universe

deb http://archive.ubuntu.com/ubuntu xenial multiverse

deb-src http://archive.ubuntu.com/ubuntu xenial multiverse

deb http://archive.ubuntu.com/ubuntu xenial-updates multiverse
deb-src http://archive.ubuntu.com/ubuntu xenial-updates multiverse
deb http://archive.ubuntu.com/ubuntu xenial-backports main restricted

2. Distributors use the “distribution” field to identify major releases, but you can use it however you
want for internal distribution systems.

http://launchpad.net/ubuntu/
http://security.ubuntu.com
http://archive.ubuntu.com

172 Chapter 6 Software Installation and Management

universe multiverse
deb-src http://archive.ubuntu.com/ubuntu xenial-backports main restricted
universe multiverse
deb http://security.ubuntu.com/ubuntu xenial-security main restricted
deb-src http://security.ubuntu.com/ubuntu xenial-security main restricted
deb http://security.ubuntu.com/ubuntu xenial-security universe
deb-src http://security.ubuntu.com/ubuntu xenial-security universe
deb http://security.ubuntu.com/ubuntu xenial-security multiverse
deb-src http://security.ubuntu.com/ubuntu xenial-security multiverse

The distribution and components fields help APT navigate the filesystem hierarchy
of the Ubuntu repository, which has a standardized layout. The root distribution is
the working title given to each release, such as trusty, xenial, or yakkety. The avail-
able components are typically called main, universe, multiverse, and restricted.
Add the universe and multiverse repositories only if you are comfortable having
unsupported (and license-restricted, in the case of multiverse) software in your
environment.

After you update the sources.list file, run apt-get update to force APT to react to
your changes.

Creation of a local repository mirror

If you plan to use apt on a large number of machines, you will probably want to
cache packages locally. Downloading a copy of each package for every machine is
not a sensible use of external bandwidth. A mirror of the repository is easy to con-
figure and convenient for local administration. Just make sure to keep it updated
with the latest security patches.

The best tool for the job is the handy apt-mirror package, which is available from
apt-mirror.github.io. You can also install the package from the universe component
with sudo apt install apt-mirror.

Once installed, apt-mirror drops a file called mirror.list in /etc/apt. It's a shadow
version of sources.list, but it's used only as a source for mirroring operations. By
default, mirror.list conveniently contains all the repositories for the running ver-
sion of Ubuntu.

To actually mirror the repositories in mirror.list, just run apt-mirror as root:

ubuntu$ sudo apt-mirror

Downloading 162 index files using 20 threads...

Begin time: Sun Feb 5 22:34:58 2017

[20]... [19]... [18]... [17]... [16]... [15]... [14]...

By default, apt-mirror puts its repository copies in /var/spool/apt-mirror. Feel
free to change this by uncommenting the set base_path directive in mirror.list,
but be aware that you must then create mirror, skel, and var subdirectories under
the new mirror root.

http://apt-mirror.github.io

High-level Linux package management systems 173

apt-mirror takes a long time to run on its first pass because it is mirroring many
gigabytes of data (currently ~40GB per Ubuntu release). Subsequent executions are
faster and should be run automatically out of cron. You can run the clean.sh script
from the var subdirectory of your mirror to clean out obsolete files.

To start using your mirror, share the base directory through HTTP, using a web
server of your choice. We like to use symbolic links to the web root. For instance:

1n -s /var/spool/apt-mirror/us.archive.ubuntu.com/ubuntu /var/www/ubuntu

To make clients use your local mirror, edit their sources.list files just as if you were
selecting a nonlocal mirror.

APT automation

Use cron to schedule regular apt runs. Even if you don't install packages automat-
ically, you may want to run apt update regularly to keep your package summaries
up to date.

apt upgrade downloads and installs new versions of any packages that are currently
installed on the local machine. Note that apt upgrade is defined slightly different-
ly from the low-level command apt-get upgrade, but apt upgrade is usually what
you want. (It's equivalent to apt-get dist-upgrade --with-new-pkgs.) apt upgrade
might want to delete some packages that it views as irreconcilably incompatible
with the upgraded system, so be prepared for potential surprises.

If you really want to play with fire, have machines perform the upgrade in an un-
attended fashion by including the -y option to apt upgrade. It answers any confir-
mation questions that apt might ask with an enthusiastic “Yes!” Be aware that some
updates, such as kernel packages, might not take effect until after a system reboot.

It’s probably not a good idea to perform automated upgrades directly from a dis-
tribution’s mirror. However, in concert with your own APT servers, packages, and
release control system, this is a perfect way to keep clients in sync. A one-liner like
the following keeps a box up to date with its APT server.

apt update && apt upgrade -y

Use this command in a cron job if you want it to run on a regular schedule. You
can also refer to it from a system startup script to make the machine update at boot
time. See page 109 for more information about cron; see Chapter 2, Booting
and System Management Daemons, for more information about startup scripts.

If you run updates out of cron on many machines, it’s a good idea to use time ran-
domization to make sure that everyone doesn’t try to update at once.

If you don’t quite trust your source of packages, consider automatically downloading
all changed packages without installing them. Use apt’s --download-only option
to request this behavior, then review the packages by hand and install the ones you
want to update. Downloaded packages are put in /var/cache/apt, and over time this

http://ln-s/var/spool/apt-mirror/us.archive.ubuntu.com/ubuntu/var/www/ubuntu

174

Chapter 6 Software Installation and Management

directory can grow to be quite large. Clean out the unused files from this directory
with apt-get autoclean.

yum: release management for RPM

yum, the Yellowdog Updater, Modified, is a metapackage manager based on RPM.
It may be a bit unfair to call yum an APT clone, but it’s thematically and implemen-
tationally similar, although cleaner and slower in practice.

On the server-side, the yam-arch command compiles a database of header infor-
mation from a large set of packages (often an entire release). The header database is
then shared along with the packages through HTTP. Clients use the yum command
to fetch and install packages; yum figures out dependency constraints and does
whatever additional work is needed to complete the installation of the requested
packages. If a requested package depends on other packages, yum downloads and
installs those packages as well.

The similarities between apt and yum extend to the command-line options they
understand. For example, yum install foo downloads and installs the most recent
version of the foo package (and its dependencies, if necessary). There is at least one
treacherous difference, though: apt update refreshes apt’s package information
cache, but yum update updates every package on the system (it’s analogous to apt
upgrade). To add to the confusion, yum upgrade is the same as yum update but
with obsolescence processing enabled.

yum does not match on partial package names unless you include globbing charac-
ters (such as * and ?) to explicitly request this behavior. For example, yum update
'lib*' refreshes all packages whose name starts with “lib”. Remember to quote the
globbing characters so the shell doesn't interfere with them.

Unlike apt, yum defaults to validating its package information cache against the
contents of the network repository every time you run it. Use the -C option to pre-
vent the validation and yum makecache to update the local cache (it takes awhile
to run). Unfortunately, the -C option doesn’t do much to improve yum’s sluggish
performance.

yum’s configuration file is /etc/yum.conf. It includes general options and pointers
to package repositories. Multiple repositories can be active at once, and each re-
pository can be associated with multiple URLs.

A replacement for yum called DNF (for Dandified Yum) is under active develop-
ment. It’s already the default package manager for Fedora and will eventually replace
yum completely. DNF sports better dependency resolution and an improved AP,
among other features. Visit dnf.baseurl.org to learn more.

http://dnf.baseurl.org

@
Q

FreeBSD software management 175

FREEBSD SOFTWARE MANAGEMENT

FreeBSD has had packaging facilities for several releases, but it’s only now transi-
tioning to a completely package-centric distribution model in which most elements
of the core OS are defined as packages. FreeBSD’s recent releases have segregated
software into three general categories:

o A “base system,” which includes a bundled set of core software and utilities
o A set of binary packages managed with the pkg command

o A separate “ports” system which downloads source code, applies FreeBSD-
specific patches, then builds and installs it

As of FreeBSD 11, the lines between these territories have become even more mud-
dled. The base system has been packagized, but the old scheme for managing the
base system as one unit is still in place, too. Many software packages can be installed
either as binary packages or as ports, with essentially similar results but different
implications for future updates. However, cross-coverage is not complete; some
things can only be installed as a port or as a package.

Part of the project definition for FreeBSD 12 is to shift the system more decisively
toward universal package management. The base system and ports may both con-
tinue to exist in some form (it’s currently too early to tell exactly how things will
work out), but the future direction is clear.

Accordingly, try to manage add-on software with pkg to the extent possible. Avoid
ports unless the software you want has no packagized version or you need to cus-
tomize compile-time options.

Another peculiar remnant of the big-iron UNIX era is FreeBSD’s insistence that add-
on packages are “local,” even though they are compiled by FreeBSD and released
as part of an official package repository. Packages install binaries under /usr/local,
and most configuration files end up in /usr/local/etc rather than /etc.

The base system

The base system is updated as a single unit and is functionally distinct from any
add-on packages (at least in theory). The base system is maintained in a Subver-
sion repository. You can browse the source tree, including all the source branches,
at svnweb.freebsd.org.

Several development branches are defined:

« The CURRENT branch is meant only for active development purposes.
It is the first to receive new features and fixes but is not widely tested by
the user community.

http://svnweb.freebsd.org

176

Chapter 6 Software Installation and Management

o The STABLE branch is regularly updated with improvements intended
for the next major release. It includes new features but maintains pack-
age compatibility and undergoes some testing. It may introduce bugs or
breaking changes and is recommended only for the adventurous.

» The RELEASE branch is forked from STABLE when a release target is
achieved. It remains mostly static. The only updates to RELEASE are se-
curity fixes and fixes for serious bugs. Official ISO images derive from the
RELEASE branch, and that branch is the only one recommended for use
on production systems.

View your system’s current branch with uname -r.

$ uname -r
11.0-RELEASE

Run the freebsd-update command to keep your system updated with the latest
packages. Fetching updates and installing them are separate operations, but you
can combine the two into a single command line:

$ sudo freebsd-update fetch install

This command retrieves and installs the latest base binaries. It's available only for the
RELEASE branch; binaries are not built for the STABLE and CURRENT branches.
You can use the same tool to upgrade between releases of the system. For example:

$ sudo freebsd-update -r 11.1-RELEASE upgrade

pkg: the FreeBSD package manager

pkg is intuitive and fast. It’s the easiest way to install software that isn’t already in-
cluded in the base system. Use pkg help for a quick reference on the available sub-
commands, or pkg help command to display the man page for a particular subcom-
mand. Table 6.2 lists some of the most frequently used subcommands.

When you install packages with pkg install, pkg consults the local package catalog, then
downloads the requested package from the repository at pkg.FreeBSD.org. Once the
package is installed, it’s registered in a SQLite database kept in /var/db/pkg/local.sqlite.
Take care not to delete this file lest your system lose track of which packages have
been installed. Create backups of the database with the pkg backup subcommand.

pkg version, a subcommand for comparing package versions, has an idiosyncratic
syntax. It uses the =, <, and > characters to show packages that are current, older
than the latest available version, or newer than the current version. Use the follow-
ing command to list packages that have updates:

freebsd$ pkg version -vIL=
dri-11.2.2,2

gbm-11.2.2

harfbuzz-1.4.1
1ibEGL-11.2.2

needs updating (index has 13.0.4,2)
needs updating (index has 13.0.4)
needs updating (index has 1.4.2)
needs updating (index has 13.0.4_1)

VANV ANNEVANEEVAN

http://FreeBSD.org

FreeBSD software management 177

Table 6.2 Example pkg subcommands

Command What it does

pkg install -y package Installs without asking any “are you sure?” questions
pkg backup Makes a backup of the local package database

pkg info Lists all installed packages

pkg info package Shows extended information for a package

pkg search -i package Searches package repository (case insensitive)

pkg audit -F Shows packages with known security vulnerabilities
pkg which file Shows which package owns the named file

pkg autoremove Removes unused packages

pkg delete package Uninstalls a package (same as remove)

pkg clean -ay Removes cached packages from /var/cache/pkg
pkg update Updates local copy of the package catalog

pkg upgrade Upgrades packages to the latest version

This command compares all installed packages to the index (-I), looking for those
that are not (-L) the current version (=), and printing verbose information (-v).

pkg search is faster than Google for finding packages. For example, pkg search
dns finds all packages with “dns” in their names. The search term is a regular ex-
pression, so you can search for something like pkg search Aapache. See pkg help
search for details.

The ports collection

FreeBSD ports are a collection of all the software that FreeBSD can build from source.
After the ports tree is initialized, you’ll find all the available software in categorized
subdirectories of /usr/ports. To initialize the ports tree, use the portsnap utility:

freebsd$ portsnap fetch extract
To update the ports tree in one command, use portsnap fetch update.

It takes some time to download the ports metadata. The download includes point-
ers to the source code for all the ports, plus any associated patches for FreeBSD
compatibility. When installation of the metadata is complete, you can search for
software, then build and install anything you need.

For example, the zsh shell is not included in the FreeBSD base. Use the whereis
utility to search for zsh, then build and install from the ports tree:

freebsd$ whereis zsh

bash: /usr/ports/shells/zsh
freebsd$ cd /usr/ports/shells/zsh
freebsd$ make install clean

178

6.6

Chapter 6 Software Installation and Management

To remove software installed through the ports system, run make deinstall from
the appropriate directory.

There’s more than one way to update ports, but we prefer the portmaster utility.
First install portmaster from the ports collection:

freebsd$ cd /usr/ports/ports-mgmt/portmaster
freebsd$ make install clean

Run portmaster -L to see all the ports having updates available, and update them
all at once with portmaster -a.

You can also install ports through the portmaster. In fact, it’s somewhat more con-
venient than the typical make-based process because you don’t need to leave your
current directory. To install zsh:

freebsd$ portmaster shells/zsh

If you need to free up some disk space, clean up the ports’ working directories with
portmaster -c.

SOFTWARE LOCALIZATION AND CONFIGURATION

Adapting systems to your local (or cloud) environment is one of the prime battle-
grounds of system administration. Addressing localization issues in a structured and
reproducible way helps avoid the creation of snowflake systems that are impossible
to recover after a major incident.

We have more to say in this book about these issues. In particular, Chapter 23,
Configuration Management, and Chapter 26, Continuous Integration and Deliv-
ery, discuss tools that structure these tasks. Configuration management systems are
your go-to tools for installing and configuring software in a reproducible manner.
They are the master key to sane localization.

Implementation issues aside, how do you know if your local environment is prop-
erly designed? Here are a few points to consider:

« Nonadministrators should not have root privileges. Any need for root
privileges in the course of normal operations is suspicious and probably
indicates that something is fishy with your local configuration.

« Systems should facilitate work and not get in users’ way. Users do not
wreck the system intentionally. Design internal security so that it guards
against unintentional errors and the widespread dissemination of admin-
istrative privileges.

« Misbehaving users are learning opportunities. Interview them before you
chastise them for not following proper procedures. Users frequently re-
spond to inefficient administrative procedures by working around them,
so always consider the possibility that noncompliance is an indication of
architectural problems.

Software localization and configuration 179

« Be customer-centered. Talk to users and ask them which tasks they find dif-
ficult in your current configuration. Find ways to make these tasks simpler.

« Your personal preferences are yours. Let your users have their own. Offer
choices wherever possible.

« When administrative decisions affect users’ experience of the system, be
aware of the reasons for your decisions. Let your reasons be known.

« Keep your local documentation up to date and easily accessible. See page
1115 for more information on this topic.

Organizing your localization

If your site has a thousand computers and each computer has its own configura-
tion, you will spend a major portion of your working time figuring out why one
box has a particular problem and another doesn’t. Clearly, the solution is to make
every computer the same...right? But real-world constraints and the varying needs
of users typically make this solution impossible.

There’s a big difference in administrability between multiple configurations and
countless configurations. The trick is to split your setup into manageable bits. Some
parts of the localization apply to all managed hosts, others apply to only a few, and
still others are specific to individual boxes. Even with the convenience of configu-
ration management tools, try not to allow too much drift among systems.

However you design your localization system, make sure that all original data is kept
in a revision control system. This precaution lets you keep track of which changes
have been thoroughly tested and are ready for deployment. In addition, it lets you
identify the originator of any problematic changes. The more people involved in
the process, the more important this last consideration becomes.

Structuring updates

In addition to performing initial installations, you will also need to continually roll
out updates. This remains one of the most important security tasks. Keep in mind,
though, that different hosts have different needs for concurrency; stability, and uptime.

Do not roll out new software releases en masse. Instead, stage rollouts according to
a gradual plan that accommodates other groups” needs and allows time for problems
to be discovered while their potential to cause damage is still limited. This some-
times referred to as a “canary” release process, named for the fabled “canary in the
coal mine”” In addition, never update critical servers until you have some confidence
in the changes you are contemplating. Avoid rolling out changes on Fridays unless
you're prepared for a long weekend in front of the terminal.

It's usually advantageous to separate the base OS release from the localization release.
Depending on the stability needs of your environment, you might choose to use
minor local releases only for bug fixing. However, we have found that adding new

180

See page 1111 for more
information about
trouble tracking.

Chapter 6 Software Installation and Management

features in small doses yields a smoother operation than queuing up changes into
“horse pill” releases that risk a major disruption of service. This principle is closely
related to the idea of continuous integration and deployment; see Chapter 26.

Limiting the field of play

It’s often a good idea to specify a maximum number of “releases” you are willing to
have in play at any given time. Some administrators see no reason to fix software
that isn’t broken. They point out that gratuitously upgrading systems costs time
and money and that “cutting edge” all too often means “bleeding edge” Those who
put these principles into practice must be willing to collect an extensive catalog of
active releases.

By contrast, the “lean and mean” crowd point to the inherent complexity of releases
and the difficulty of comprehending (let alone managing) a random collection of
releases dating years into the past. Their trump cards are security patches, which
must typically be applied universally and on a strict schedule. Patching outdated
versions of the operating system is often infeasible, so administrators are faced
with the choice of skipping updates on some computers or crash-upgrading these
machines to a newer internal release. Not good.

Neither of these perspectives is provably correct, but we tend to side with those
who favor a limited number of releases. Better to perform your upgrades on your
own schedule rather than one dictated by an external emergency.

Testing

It's important to test changes before unleashing them on the world. At a minimum,
this means that you need to test your own local configuration changes. However,
you should really test the software that your vendor releases as well. A major UNIX
vendor once released a patch that performed an rm -rf /. Imagine installing this
patch throughout your organization without testing it first.

Testing is an especially pertinent issue if you use a service that offers an automatic
patching capability, such as most of the packaging systems discussed in this chap-
ter. Never connect mission-critical systems directly to a vendor-sponsored update
service. Instead, point most of your systems to an internal mirror that you control,
and test updates on noncritical systems first.

If you foresee that an update might cause user-visible problems or changes, notify
users well in advance and give them a chance to communicate with you if they have
concerns regarding your intended changes or timing. Make sure that users have an
easy way to report bugs.

If your organization is geographically distributed, make sure that other offices help
with testing. International participation is particularly valuable in multilingual en-
vironments. If no one in the U.S. office speaks Japanese, for example, you had better
get the Tokyo office to test anything that might affect Unicode support. A surprising

6.7

Recommended reading 181

number of system parameters vary with location. Does the new version of software
you're installing break UTF-8 encoding, rendering text illegible for some languages?

RECOMMENDED READING

INTEL CORPORATION AND SYSTEMSOFT. Preboot Execution Environment (PXE)
Specification, v2.1. 1999. pix.net/software/pxeboot/archive/pxespec.pdf

LawsoN, NoLAN. What it feels like to be an open-source maintainer. wp.me/p1t8Ca-1ry
PXELinux Questions. syslinux.zytor.com/wiki/index.php/PXELINUX

RODIN, Josip. Debian New Maintainers’ Guide. debian.org/doc/maint-guide
This document contains good information about .deb packages. See also Chapter 7
of the Debian FAQ and Chapter 2 of the Debian reference manual.

http://pix.net/software/pxeboot/archive/pxespec.pdf
http://syslinux.zytor.com/wiki/index.php/PXELINUX
http://debian.org/doc/maint-guide

182

Scripting and the Shell

S
)
S g
N

J

sl

A scalable approach to system management requires that administrative changes be
structured, reproducible, and replicable across multiple computers. In the real world,
that means those changes should be mediated by software rather than performed
by administrators working from checklists—or worse, from memory.

Scripts standardize administrative chores and free up admins’ time for more im-
portant and more interesting tasks. Scripts also serve as a kind of low-rent docu-
mentation in that they record the steps needed to complete a particular task.

Sysadmins’ main alternative to scripting is to use the configuration management
systems described in Chapter 23. These systems offer a structured approach to
administration that scales well to the cloud and to networks of machines. However,
they are more complex, more formal, and less flexible than plain-vanilla scripting.
In practice, most administrators use a combination of scripting and configuration
management. Each approach has its strengths, and they work well together.

This chapter takes a quick look at sh, Python, and Ruby as languages for scripting.
We cover some basic tips for using the shell and also discuss regular expressions
as a general technology.

7.1

Scripting philosophy 183

SCRIPTING PHILOSOPHY

This chapter includes a variety of scripting tidbits and language particulars. That
information is useful, but more important than any of those details is the broader
question of how to incorporate scripting (or more generally, automation) into your
mental model of system administration.

Write microscripts

New sysadmins often wait to learn scripting until they’re confronted with a par-
ticularly complex or tedious chore. For example, maybe it’s necessary to automate
a particular type of backup so that it’s done regularly and so that the backup data
is stored in two different data centers. Or perhaps there’s a cloud server configura-
tion that would be helpful to create, initialize, and deploy with a single command.

These are perfectly legitimate scripting projects, but they can leave the impression
that scripting is an elephant gun to be unboxed only when big game is on the hori-
zon. After all, that first 100-line script probably took several days to write and de-
bug. You can’t be spending days on every little task...can you?

Actually, you achieve most efficiencies by saving a few keystrokes here and a few
commands there. Marquee-level scripts that are part of your site’s formal proce-
dures are just the visible portion of a much larger iceberg. Below the waterline lie
many smaller forms of automation that are equally useful for sysadmins. As a gen-
eral rule, approach every chore with the question, “How can I avoid having to deal
with this issue again in the future?”

Most admins keep a selection of short scripts for personal use (aka scriptlets) in their
~/bin directories. Use these quick-and-dirty scripts to address the pain points you
encounter in day-to-day work. They are usually short enough to read at a glance,
so they don’t need documentation beyond a simple usage message. Keep them up-
dated as your needs change.

For shell scripts, you also have the option of defining functions that live inside your
shell configuration files (e.g., .bash_profile) rather than in freestanding script files.
Shell functions work similarly to stand-alone scripts, but they are independent of
your search path and automatically travel with you wherever you take your shell
environment.

Just as a quick illustration, here’s a simple Bash function that backs up files accord-
ing to a standardized naming convention:

function backup () {
newname=$1.‘date +%Y-%m-%d.%H%M.bak";
mv $1 $newname;
echo "Backed up $1 to $newname.";
cp -p $newname $1;

184

Chapter 7 Scripting and the Shell

Despite the function-like syntax, you use it just like a script or any other command:

$ backup afile
Backed up afile to afile.2017-02-05.1454.bak.

The main disadvantage of shell functions is that they’re stored in memory and have
to be reparsed every time you start a new shell. But on modern hardware, these
costs are negligible.

At a smaller scale still are aliases, which are really just an extra-short variety of
scriptlet. These can be defined either with shell functions or with your shell’s built-
in aliasing feature (usually called alias). Most commonly, they set default argu-
ments for individual commands. For example,

alias 1s='ls -Fh'

makes the Is command punctuate the names of directories and executables and
requests human-readable file sizes for long listings (e.g., 2.4M).

Learn a few tools well

System administrators encounter a lot of software. They can’t be experts at every-
thing, so they usually become skilled at skimming documentation, running exper-
iments, and learning just enough about new software packages to configure them
for the local environment. Laziness is a virtue.

That said, some topics are valuable to study in detail because they amplify your
power and effectiveness. In particular, you should know a shell, a text editor, and
a scripting language thoroughly.! Read the manuals from front to back, then regu-
larly read books and blogs. There’s always more to learn.

Enabling technologies like these reward up-front study for a couple of reasons. As
tools, they are fairly abstract; it’s hard to envision all the things they’re capable of
doing without reading about the details. You can’t use features you're not aware of.

Another reason these tools reward exploration is that they’re “made of meat”; most
features are potentially valuable to most administrators. Compare that with the
average server daemon, where your main challenge is often to identify the 80% of
features that are irrelevant to your situation.

A shell or editor is a tool you use constantly. Every incremental improvement in your
proficiency with these tools translates not only into increased productivity but also
into greater enjoyment of the work. No one likes to waste time on repetitive details.

Automate all the things

Shell scripts aren’t system administrators’ only opportunity to benefit from automa-
tion. There’s a whole world of programmable systems out there—just keep an eye

1. Not to spoil the rest of this chapter, but these should probably be Bash, vim, and Python.

Scripting philosophy 185

out for them. Exploit these facilities aggressively and use them to impedance-match
your tools to your workflow.

For example, we created this book in Adobe InDesign, which is ostensibly a GUI
application. However, it’s also scriptable in JavaScript, so we created a library of
InDesign scripts to implement and enforce many of our conventions.

Such opportunities are everywhere:

« Microsoft Office apps are programmable in Visual Basic or C#. If your work
involves analysis or reporting, make those TPS reports write themselves.

» Most Adobe applications are scriptable.

« If your responsibilities include database wrangling, you can automate
many routine tasks with SQL stored procedures. Some databases even
support additional languages; for example, PostgreSQL speaks Python.

« PowerShell is the mainstream scripting tool for Microsoft Windows sys-
tems. Third party add-ons like AutoHotKey go a long way toward facili-
tating the automation of Windows apps.

« On macOS systems, some applications can be controlled through Apple-
Script. At the system level, use the Automator app, the Services system,
and folder actions to automate various chores and to connect traditional
scripting languages to the GUL

Within the world of system administration specifically, a few subsystems have their
own approaches to automation. Many others play well with general-purpose auto-
mation systems such as Ansible, Salt, Chef, and Puppet, described in Chapter 23,
Configuration Management. For everything else, there’s general-purpose scripting.

Don’t optimize prematurely

There’s no real distinction between “scripting” and “programming” Language de-
velopers sometimes take offense when their babies are lumped into the “scripting”
category, not just because the label suggests a certain lack of completeness, but also
because some scripting languages of the past have earned reputations for poor design.

We still like the term “scripting,” though; it evokes the use of software as a kind of
universal glue that binds various commands, libraries, and configuration files into
a more functional whole.

Administrative scripts should emphasize programmer efficiency and code clarity
rather than computational efficiency. This is not an excuse to be sloppy, but simply
a recognition that it rarely matters whether a script runs in half a second or two
seconds. Optimization can have an amazingly low return on investment, even for
scripts that run regularly out of cron.

186

Chapter 7 Scripting and the Shell

Pick the right scripting language

For along time, the standard language for administrative scripts was the one defined
by the sh shell. Shell scripts are typically used for light tasks such as automating a
sequence of commands or assembling several filters to process data.

The shell is always available, so shell scripts are relatively portable and have few de-
pendencies other than the commands they invoke. Whether or not you choose the
shell, the shell might choose you: most environments include a hefty complement
of existing sh scripts, and administrators frequently need to read, understand, and
tweak those scripts.

As a programming language, sh is somewhat inelegant. The syntax is idiosyncratic,
and the shell lacks the advanced text processing features of modern languages—
features that are often of particular use to system administrators.

Perl, designed in the late 1980s, was a major step forward for script-writing ad-
ministrators. Its permissive syntax, extensive library of user-written modules, and
built-in support of regular expressions made it an administrative favorite for many
years. Perl permits (and some would say, encourages) a certain “get it done and
damn the torpedoes” style of coding. Opinions differ on whether that’s an advan-
tage or a drawback.

These days, Perl is known as Perl 5 to distinguish it from the redesigned and incom-
patible Perl 6, which has finally reached general release after 15 years of gestation.
Unfortunately, Perl 5 is showing its age in comparison with newer languages, and
use of Perl 6 isn’t yet widespread enough for us to recommend it as a safe choice. It
might be that the world has moved on from Perl entirely. We suggest avoiding Perl
for new work at this point.

JavaScript and PHP are best known as languages for web development, but they can
be arm-twisted into service as general-purpose scripting tools, too. Unfortunately,
both languages have design flaws that limit their appeal, and they lack many of the
third party libraries that system administrators rely on.

If you come from the web development world, you might be tempted to apply your
existing PHP or JavaScript skills to system administration. We recommend against
this. Code is code, but living in the same ecosystem as other sysadmins brings a
variety of long-term benefits. (At the very least, avoiding PHP means you won’t
have to endure the ridicule of your local sysadmin Meetup.)

Python and Ruby are modern, general-purpose programming languages that are
both well suited for administrative work. These languages incorporate a couple
of decades” worth of language design advancements relative to the shell, and their
text processing facilities are so powerful that sh can only weep and cower in shame.

The main drawback to both Python and Ruby is that their environments can be a
bit fussy to set up, especially when you start to use third party libraries that have
compiled components written in C. The shell skirts this particular issue by having
no module structure and no third party libraries.

Table 7.1

Scripting philosophy 187

In the absence of outside constraints, Python is the most broadly useful scripting
language for system administrators. It’s well designed, widely used, and widely sup-
ported by other packages. Table 7.1 shows some general notes on other languages.

Scripting language cheat sheet

Language Designer When to use it

Bourne shell Stephen Bourne Simple series of commands, portable scripts

bash Brian Fox Like Bourne shell; nicer but less portable
Cshell Bill Joy Never for scripting; see footnote on page 189
JavaScript Brendan Eich Web development, app scripting

Perl Larry Wall Quick hacks, one-liners, text processing

PHP Rasmus Lerdorf You've been bad and deserve punishment
Python Guido van Rossum General-purpose scripting, data wrangling
Ruby “Matz” Matsumoto General-purpose scripting, web

Follow best practices

Although the code fragments in this chapter contain few comments and seldom
print usage messages, that’s only because we've skeletonized each example to make
specific points. Real scripts should behave better. There are whole books on best
practices for coding, but here are a few basic guidelines:

o When run with inappropriate arguments, scripts should print a usage
message and exit. For extra credit, implement --help this way, too.

« Validate inputs and sanity-check derived values. Before doing an rm -rf
on a calculated path, for example, you might have the script double-check
that the path conforms to the pattern you expect.

« Return a meaningful exit code: zero for success and nonzero for failure.
You needn’t necessarily give every failure mode a unique exit code, how-
ever; consider what callers will actually want to know.

o Use appropriate naming conventions for variables, scripts, and routines.
Conform to the conventions of the language, the rest of your site’s code
base, and most importantly, the other variables and functions defined in

the current project. Use mixed case or underscores to make long names
readable.?

o Assign variable names that reflect the values they store, but keep them
short. number_of_lines_of_input is way too long; try n_lines.

2. The naming of the scripts themselves is important, too. In this context, dashes are more common
than underscores for simulating spaces, as in system-config-printer.

188

Chapter 7 Scripting and the Shell

« Consider developing a style guide so you and your colleagues can write
code according to the same conventions. A guide makes it easier for you
to read other people’s code and for them to read yours.?

Start every script with a comment block that tells what the script does and
what parameters it takes. Include your name and the date. If the script
requires nonstandard tools, libraries, or modules to be installed on the
system, list those as well.

« Comment at the level you yourself will find helpful when you return to
the script after a month or two. Some useful points to comment on are
the following: choices of algorithm, web references used, reasons for not
doing things in a more obvious way, unusual paths through the code, any-
thing that was a problem during development.

Don't clutter code with useless comments; assume intelligence and lan-
guage proficiency on the part of the reader.

« It's OK to run scripts as root, but avoid making them setuid; it’s tricky to
make setuid scripts completely secure. Use sudo to implement appropri-
ate access control policies instead.

« Don't script what you don’t understand. Administrators often view scripts
as authoritative documentation of how a particular procedure should be
handled. Don’t set a misleading example by distributing half-baked scripts.

o Feel free to adapt code from existing scripts for your own needs. But don’t
engage in “copy, paste, and pray” programming when you don’t under-
stand the code. Take the time to figure it out. This time is never wasted.

« With bash, use -x to echo commands before they are executed and -n to
check commands for syntax without executing them.

« Remember that in Python, you are in debug mode unless you explicitly
turn it off with a -0 argument on the command line. You can test the spe-
cial __debug__ variable before printing diagnostic output.

Tom Christiansen suggests the following five golden rules for producing useful
error messages:

o Error messages should go to STDERR, not STDOUT (see page 190).
« Include the name of the program that’s issuing the error.

« State what function or operation failed.

o Ifa system call fails, include the perror string.

« Exit with some code other than 0.

3. On the other hand, style guide construction can absorb a contentious team’s attention for weeks.
Don't fight over the style guide; cover the areas of agreement and avoid long negotiations over the
placement of braces and commas. The main thing is to make sure everyone’s on board with a consis-
tent set of naming conventions.

7.2

@
Q

wu

Shell basics 189

SHELL BASICS

UNIX has always offered users a choice of shells, but some version of the Bourne
shell, sh, has been standard on every UNIX and Linux system. The code for the
original Bourne shell never made it out of AT&T licensing limbo, so these days
sh is most commonly manifested in the form of the Almquist shell (known as ash,
dash, or simply sh) or the “Bourne-again” shell, bash.

The Almquist shell is a reimplementation of the original Bourne shell without extra
frills. By modern standards, it’s barely usable as a login shell. It exists only to run
sh scripts efficiently.

bash focuses on interactive usability. Over the years, it has absorbed most of the
useful features pioneered by other shells. It still runs scripts designed for the orig-
inal Bourne shell, but it's not particularly tuned for scripting. Some systems (e.g.,
the Debian lineage) include both bash and dash. Others rely on bash for both
scripting and interactive use.

The Bourne shell has various other offshoots, notably ksh (the Korn shell) and ksh’s
souped-up cousin zsh. zsh features broad compatibility with sh, ksh, and bash, as
well as many interesting features of its own, including spelling correction and en-
hanced globbing. It’s not used as any system’s default shell (as far as we are aware),
but it does have something of a cult following.

Historically, BSD-derived systems favored the C shell, csh, as an interactive shell.
It's now most commonly seen in an enhanced version called tcsh. Despite the for-
merly widespread use of csh as a login shell, it is not recommended for use as a
scripting language.*

tcsh is a fine and widely available shell, but it’s not an sh derivative. Shells are com-
plex; unless you're a shell connoisseur, there’s not much value in learning one shell
for scripting and a second one—with different features and syntax—for daily use.
Stick to a modern version of sh and let it do double duty.

Among the sh options, bash is pretty much the universal standard these days. To
move effortlessly among different systems, standardize your personal environment
on bash.

FreeBSD retains tcsh as root’s default and does not ship bash as part of the base
system. But that’s easily fixed: run sudo pkg install bash to install bash, and use
chsh to change your shell or the shell of another user. You can set bash as the de-
fault for new users by running adduser -C.

Before taking up the details of shell scripting, we should review some of the basic
features and syntax of the shell.

For a detailed explanation of why this is so, see Tom Christiansen’ classic rant, “Csh Programming
Considered Harmful.” It's widely reproduced on the web. One copy is harmful.cat-v.org/software/csh.

. Changing the default might seem presumptuous, but standard FreeBSD relegates new users to the

Almaquist sh. There’s nowhere to go but up.

http://harmful.cat-v.org/software/csh

190

Chapter 7 Scripting and the Shell

The material in this section applies to the major interactive shells in the sh lineage
(including bash and ksh, but not csh or tcsh), regardless of the exact platform you
are using. Try out the forms youre not familiar with and experiment!

Command editing

We've watched too many people edit command lines with the arrow keys. You
wouldn’t do that in your text editor, right?

If you like emacs, all the basic emacs commands are available to you when you're
editing history. <Control-E> goes to the end of the line and <Control-A> to the
beginning. <Control-P> steps backward through recently executed commands and
recalls them for editing. <Control-R> searches incrementally through your history
to find old commands.

If you like vi/vim, put your shell’s command-line editing into vi mode like this:
$ set —ovi

As in vi, editing is modal; however, you start in input mode. Press <Esc> to leave
input mode and “i” to reenter it. In edit mode, “w” takes you forward a word, “fX”
finds the next X in the line, and so on. You can walk through past command history

entries with <Esc> k. Want emacs editing mode back again?

$ set -0 emacs

Pipes and redirection

Every process has at least three communication channels available to it: standard
input (STDIN), standard output (STDOUT), and standard error (STDERR). Pro-
cesses initially inherit these channels from their parents, so they don’t necessarily
know where they lead. They might connect to a terminal window, a file, a network
connection, or a channel belonging to another process, to name a few possibilities.

UNIX and Linux have a unified I/O model in which each channel is named with a
small integer called a file descriptor. The exact number assigned to a channel is not
usually significant, but STDIN, STDOUT, and STDERR are guaranteed to corre-
spond to file descriptors 0, 1, and 2, so it’s safe to refer to these channels by number.
In the context of an interactive terminal window, STDIN normally reads from the
keyboard and both STDOUT and STDERR write their output to the screen.

Many traditional UNIX commands accept their input from STDIN and write their
output to STDOUT. They write error messages to STDERR. This convention lets
you string commands together like building blocks to create composite pipelines.

The shell interprets the symbols <, >, and >> as instructions to reroute a command’s
input or output to or from a file. A < symbol connects the command’s STDIN to
the contents of an existing file. The > and >> symbols redirect STDOUT; > replac-
es the file’s existing contents, and >> appends to them. For example, the command

Shell basics 191

$ grep bash /etc/passwd > /tmp/bash-users

copies lines containing the word “bash” from /etc/passwd to /tmp/bash-users, cre-
ating the file if necessary. The command below sorts the contents of that file and
prints them to the terminal.

$ sort < /tmp/bash-users®
root:x:0:0:roo0t:/root:/bin/bash

To redirect both STDOUT and STDERR to the same place, use the >& symbol. To
redirect STDERR only, use 2>.

The find command illustrates why you might want separate handling for STDOUT
and STDERR because it tends to produce output on both channels, especially when
run as an unprivileged user. For example, a command such as

$ find / —name core

usually results in so many “permission denied” error messages that genuine hits
get lost in the clutter. To discard all the error messages, use

$ find / —name core 2> /dev/null

In this version, only real matches (where the user has read permission on the par-
ent directory) come to the terminal window. To save the list of matching paths to
a file, use

$ find / -name core > /tmp/corefiles 2> /dev/null

This command line sends matching paths to /tmp/corefiles, discards errors, and
sends nothing to the terminal window.

To connect the STDOUT of one command to the STDIN of another, use the | sym-
bol, commonly known as a pipe. For example:

$ find / —name core 2> /dev/null | less

The first command runs the same find operation as the previous example, but sends
the list of discovered files to the less pager rather than to a file. Another example:

$ ps —-ef | grep httpd

This one runs ps to generate a list of processes and pipes it to the grep command,
which selects lines that contain the word httpd. The output of grep is not redirected,
so the matching lines come to the terminal window.

$ cut -d: -f7 < /etc/passwd | sort -u

Here, the cut command picks out the path to each user’s shell from /etc/passwd. The
list of shells is then sent through sort -u to produce a sorted list of unique values.

. Truth be told, the sort command accepts filenames, so the < symbol is optional in this context. It’s
used here for illustration.

192

Chapter 7 Scripting and the Shell

To execute a second command only if its precursor completes successfully, you can
separate the commands with an && symbol. For example,

$ mkdir foo && cd foo

attempts to create a directory called foo, and if the directory was successfully created,
executes cd. Here, the success of the mkdir command is defined as its yielding an
exit code of zero, so the use of a symbol that suggests “logical AND” for this purpose
might be confusing if youre accustomed to short-circuit evaluation in other pro-
gramming languages. Don’t think about it too much; just accept it as a shell idiom.

Conversely, the || symbol executes the following command only if the preceding
command fails (that is, it produces a nonzero exit status). For example,

$ cd foo || echo "No such directory"

In a script, you can use a backslash to break a command onto multiple lines. This
feature can help to distinguish error-handling code from the rest of a command
pipeline:
cp —-preserve —-recursive /etc/* /spare/backup \
|| echo "Did NOT make backup"

For the opposite effect—multiple commands combined onto one line—you can use
a semicolon as a statement separator:

$ mkdir foo; cd foo; touch afile

Variables and quoting

Variable names are unmarked in assignments but prefixed with a dollar sign when
their values are referenced. For example:

$ etcdir="/etc"'
$ echo $etcdir
/etc

Omit spaces around the = symbol; otherwise, the shell mistakes your variable
name for a command name and treats the rest of the line as a series of arguments
to that command.

When referencing a variable, you can surround its name with curly braces to clarify
to the parser and to human readers where the variable name stops and other text
begins; for example, ${etcdir} instead of just $etcdir. The braces are not normally
required, but they can be useful when you want to expand variables inside dou-
ble-quoted strings. Often, you’ll want the contents of a variable to be followed by
literal letters or punctuation. For example,

$ echo "Saved ${rev}th version of mdadm.conf."
Saved 8th version of mdadm.conf.

There’s no standard convention for the naming of shell variables, but all-caps names
typically suggest environment variables or variables read from global configuration

Shell basics 193

files. More often than not, local variables are all-lowercase with components sepa-
rated by underscores. Variable names are case sensitive.

The shell treats strings enclosed in single and double quotes similarly, except that
double-quoted strings are subject to globbing (the expansion of filename-matching
metacharacters such as * and ?) and variable expansion. For example:

$ mylang="Pennsylvania Dutch"
$ echo "I speak ${mylang}."

I speak Pennsylvania Dutch.

$ echo 'I speak ${mylang}.'

I speak ${mylang}.

Backquotes, also known as backticks, are treated similarly to double quotes, but they
have the additional effect of executing the contents of the string as a shell command
and replacing the string with the command’s output. For example,

$ echo "There are ‘wc -1 < /etc/passwd" lines in the passwd file."
There are 28 lines in the passwd file.

Environment variables

When a UNIX process starts up, it receives a list of command-line arguments and
also a set of “environment variables” Most shells show you the current environment
in response to the printenv command:

$ printenv
EDITOR=vi
USER=garth
ENV=/home/garth/.bashrc
LSCOLORS=exfxgxgxdxgxgxbxbxcxcx
PWD=/mega/Documents/Projects/Code/spl
HOME=/home/garth

. <total of about 50>

By convention, environment variables have all-caps names, but that is not techni-
cally required.

Programs that you run can consult these variables and change their behavior ac-
cordingly. For example, vipw checks the EDITOR environment variable to deter-
mine which text editor to run for you.

Environment variables are automatically imported into sh’s variable namespace, so
they can be set and read with the standard syntax. Use export varname to promote
a shell variable to an environment variable. You can also combine this syntax with
a value assignment, as seen here:

$ export EDITOR=nano
$ vipw
<starts the nano editor>

194

Chapter 7 Scripting and the Shell

Despite being called “environment” variables, these values don't exist in some ab-
stract, ethereal place outside of space and time. The shell passes a snapshot of the
current values to any program you run, but no ongoing connection exists. Moreover,
every shell or program—and every terminal window—has its own distinct copy of
the environment that can be separately modified.

Commands for environment variables that you want to set up at login time should
be included in your ~/.profile or ~/.bash_profile file. Other environment variables,
such as PWD for the current working directory, are automatically maintained by
the shell.

Common filter commands

Any well-behaved command that reads STDIN and writes STDOUT can be used
as a filter (that is, a component of a pipeline) to process data. In this section we
briefly review some of the more widely used filter commands (including some used
in passing above), but the list is practically endless. Filter commands are so team
oriented that it's sometimes hard to show their use in isolation.

Most filter commands accept one or more filenames on the command line. Only if
you do not specify a file do they read their standard input.

cut: separate lines into fields

The cut command prints selected portions of its input lines. It most commonly ex-
tracts delimited fields, as in the example on page 196, but it can return segments
defined by column boundaries as well. The default delimiter is <Tab>, but you can
change delimiters with the -d option. The -f options specifies which fields to in-
clude in the output.

For an example of the use of cut, see the section on uniq, below.

sort: sort lines

sort sorts its input lines. Simple, right? Well, maybe not—there are a few potential
subtleties regarding the exact parts of each line that are sorted (the “keys”) and the
collation order to be imposed. Table 7.2 shows a few of the more common options,
but check the man page for others.

The commands below illustrate the difference between numeric and dictionary
sorting, which is the default. Both commands use the -t: and -k3,3 options to sort
the /etc/group file by its third colon-separated field, the group ID. The first sorts
numerically and the second alphabetically.

Shell basics 195

Table 7.2 sort options

Opt

Meaning

Ignore leading whitespace

Sort case-insensitively

Sort“human readable” numbers (e.g., 2MB)
Specify the columns that form the sort key
Compare fields as integer numbers

Reverse sort order

Set field separator (the default is whitespace)
Output only unique records

$ sort -t: -k3,3 -n /etc/group’
root:x:0:

bin:x:1:daemon

daemon:x:2:

$ sort -t: -k3,3 /etc/group
root:x:0:

bin:x:1:daemon
users:x:100:

Also useful is the -h option, which implements a numeric sort that understands
suffixes such as M for mega and G for giga. For example, the following command
correctly sorts the sizes of directories under /usr while maintaining the legibility

of the output:
$ du -sh fusr/* | sort -h
16K Jusr/locale
128K Jusr/local
648K Jjusr/games
15M Jusr/sbin
20M Jusr/include
117M jusr/src
126M Jusr/bin
845M Jusr/share
1.76G Jusr/lib

uniq: print unique lines

uniq is similar in spirit to sort -u, but it has some useful options that sort does not
emulate: - to count the number of instances of each line, -d to show only duplicated

7. sort accepts the key specification -k3 (rather than -k3,3), but it probably doesn’t do what you expect.
Without the terminating field number, the sort key continues to the end of the line.

196

Chapter 7 Scripting and the Shell

lines, and -u to show only nonduplicated lines. The input must be presorted, usu-
ally by being run through sort.

For example, the command below shows that 20 users have /bin/bash as their login
shell and that 12 have /bin/false. (The latter are either pseudo-users or users whose
accounts have been disabled.)

$ cut -d: -f7 /etc/passwd | sort | uniq -c
20 /bin/bash
12 /bin/false

wc: count lines, words, and characters

Counting the number of lines, words, and characters in a file is another common
operation, and the wc (word count) command is a convenient way of doing this.
Run without options, it displays all three counts:

$ we /etc/passwd
32 77 2003 /etc/passwd

In the context of scripting, it is more common to supply a -1, -w, or -c option to
make wc’s output consist of a single number. This form is most commonly seen
inside backquotes so that the result can be saved or acted on.

tee: copy input to two places

A command pipeline is typically linear, but it’s often helpful to tap into the data
stream and send a copy to a file or to the terminal window. You can do this with
the tee command, which sends its standard input both to standard out and to a
file that you specify on the command line. Think of it as a tee fixture in plumbing.

The device /dev/tty is a synonym for the current terminal window. For example,
$ find / -name core | tee /dev/tty | wc -1

prints both the pathnames of files named core and a count of the number of core
files that were found.

A common idiom is to terminate a pipeline that will take a long time to run with a
tee command. That way, output goes both to a file and to the terminal window for
inspection. You can preview the initial results to make sure everything is working
as you expected, then leave while the command runs, knowing that the results will
be saved.

head and tail: read the beginning or end of a file

Reviewing lines from the beginning or end of a file is a common administrative
operation. These commands display ten lines of content by default, but you can use
the -n numlines option to specify more or fewer.

Shell basics 197

For interactive use, head is more or less obsoleted by the less command, which
paginates files for display. But head still finds plenty of use within scripts.

tail also has a nifty -f option that’s particularly useful for sysadmins. Instead of
exiting immediately after printing the requested number of lines, tail -f waits for
new lines to be added to the end of the file and prints them as they appear—great
for monitoring log files. Be aware, however, that the program writing the file might
be buffering its own output. Even if lines are being added at regular intervals from
a logical perspective, they might only become visible in chunks of 1KiB or 4KiB.?

head and tail accept multiple filenames on the command line. Even tail -f allows
multiple files, and this feature can be quite handy; when new output appears, tail
prints the name of the file in which it appeared.

Type <Control-C> to stop monitoring.

grep: search text

grep searches its input text and prints the lines that match a given pattern. Its name
derives from the g/regular-expression/p command in the ed editor, which came with
the earliest versions of UNIX (and is still present on current systems).

“Regular expressions” are text-matching patterns written in a standard and
well-characterized pattern-matching language. They’re a universal standard used
by most programs that do pattern matching, although there are minor variations
among implementations. The odd name stems from regular expressions” origins
in theory-of-computation studies. We discuss regular expression syntax in more
detail starting on page 209.

Like most filters, grep has many options, including -c to print a count of matching
lines, -i to ignore case when matching, and -v to print nonmatching (rather than
matching) lines. Another useful option is -1 (lower case L), which makes grep print
only the names of matching files rather than printing each line that matches. For
example, the command

$ sudo grep -1 mdadm /var/log/*
/var/log/auth.log
/var/log/syslog.0

shows that log entries from mdadm have appeared in two different log files.

grep is traditionally a fairly basic regular expression engine, but some versions per-
mit the selection of other dialects. For example, grep -P on Linux selects Perl-style
expressions, though the man page warns darkly that they are “highly experimental”
If you need full power, just use Ruby, Python, or Perl.

8. See Units on page 13 for an introduction to these units.

198

7.3

Chapter 7 Scripting and the Shell

If you filter the output of tail -f with grep, add the --line-buffered option to make
sure you see each matching line as soon as it becomes available:

$ tail -f /var/log/messages | grep —-line-buffered ZFS
May 8 00:44:00 nutrient ZFS: vdev state changed, pool_
guid=10151087465118396807 vdev_guid=7163376375690181882

SH SCRIPTING

sh is great for simple scripts that automate things youd otherwise be typing on the
command line. Your command-line skills carry over to sh scripting, and vice ver-
sa, which helps you extract maximum value from the learning time you invest in
sh derivatives. But once an sh script gets above 50 lines or when you need features
that sh doesn’t have, it’s time to move on to Python or Ruby.

For scripting, there’s some value in limiting yourself to the dialect understood by the
original Bourne shell, which is both an IEEE and a POSIX standard. sh-compatible
shells often supplement this baseline with additional language features. It’s fine to
use these extensions if you do so deliberately and are willing to require a specific
interpreter. But more commonly, scripters end up using these extensions inadver-
tently and are then surprised when their scripts don’t run on other systems.

In particular, don’t assume that the system’s version of sh is always bash, or even
that bash is available. Ubuntu replaced bash with dash as the default script inter-
preter in 2006, and as part of that conversion process they compiled a handy list
of bashisms to watch out for. You can find it at wiki.ubuntu.com/DashAsBinSh.

Execution

sh comments start with a sharp (#) and continue to the end of the line. As on the
command line, you can break a single logical line onto multiple physical lines by
escaping the newline with a backslash. You can also put more than one statement
on a line by separating the statements with semicolons.

An sh script can consist of nothing but a series of command lines. For example, the
following helloworld script simply does an echo.

#!/bin/sh
echo "Hello, world!"

The first line is known as the “shebang” statement and declares the text file to be a
script for interpretation by /bin/sh (which might itself be a link to dash or bash).
The kernel looks for this syntax when deciding how to execute the file. From the per-
spective of the shell spawned to execute the script, the shebang line is just a comment.

In theory, you would need to adjust the shebang line if your system’s sh was in a
different location. However, so many existing scripts assume /bin/sh that systems
are compelled to support it, if only through a link.

http://wiki.ubuntu.com/DashAsBinSh

See page 132 for
more information
about permission bits.

10.

11.

sh scripting 199

If you need your script to run under bash or another interpreter that might not have
the same command path on every system, you can use /usr/bin/env to search your
PATH environment variable for a particular command.’ For example,

#!/usr/bin/env ruby

is a common idiom for starting Ruby scripts. Like /bin/sh, /usr/bin/env is such a
widely-relied-on path that all systems are obliged to support it.

To prepare a script for running, just turn on its execute bit (see page 136).

$ chmod +x helloworld
$./helloworld®®
Hello, world!

You can also invoke the shell as an interpreter directly:

$ sh helloworld
Hello, world!

$ source helloworld
Hello, world!

The first command runs helloworld in a new instance of sh, and the second makes
your existing login shell read and execute the contents of the file. The latter option is
useful when the script sets up environment variables or makes other customizations
that apply only to the current shell. It's commonly used in scripting to incorporate
the contents of a configuration file written as a series of variable assignments."

If you come from the Windows world, you might be accustomed to a file’s exten-
sion indicating what type of file it is and whether it can be executed. In UNIX and
Linux, the file permission bits determine whether a file can be executed, and if so,
by whom. If you wish, you can give your shell scripts a .sh suffix to remind you
what they are, but you’ll then have to type out the .sh when you run the command,
since UNIX doesn’t treat extensions specially.

From commands to scripts

Before we jump into sh’s scripting features, a note about methodology. Most people
write sh scripts the same way they write Python or Ruby scripts: with a text editor.
However, it's more productive to think of your regular shell command prompt as
an interactive script development environment.

. Path searching has security implications, particularly when running scripts under sudo. See page

74 for more information about sudo’s handling of environment variables.

If your shell understands the command helloworld without the ./ prefix, that means the current di-
rectory (.) is in your search path. This is bad because it gives other users the opportunity to lay traps
for you in the hope that you’ll try to execute certain commands while cd’ed to a directory on which
they have write access.

The “dot” command is a synonym for source, e.g., . helloworld.

200

Chapter 7 Scripting and the Shell

For example, suppose you have log files named with the suffixes .log and .LOG
scattered throughout a directory hierarchy and that you want to change them all
to the uppercase form. First, find all the files:

$ find . —name '*log'
.do-not-touch/important.log
admin.com-log/

foo.log

genius/spew.log
leather_flog

Oops, it looks like you need to include the dot in the pattern and to leave out di-
rectories as well. Do a <Control-P> to recall the command and then modify it:

$ find . —type f —name '*.log"
.do-not-touch/important.log
foo.log

genius/spew.log

OK, this looks better. That .do-not-touch directory looks dangerous, though; you
probably shouldn’t mess around in there:

$ find . -type f —name "'*.log' | grep -v .do-not-touch
foo.log
genius/spew.log

All right, that’s the exact list of files that need renaming. Try generating some new
names:

$ find . -type f —name "*.log"' | grep -v .do-not-touch | while read fname
> do

> echo mv $fname ‘echo $fname | sed s/.log/.LOG/®

> done

mv foo.log f00.LOG

mv genius/spew.log genius/spew.LOG

Yup, those are the commands to run to perform the renaming. So how to do it for
real? You could recall the command and edit out the echo, which would make
sh execute the mv commands instead of just printing them. However, piping the
commands to a separate instance of sh is less error prone and requires less editing
of the previous command.

When you do a <Control-P>, you'll find that bash has thoughtfully collapsed your
mini-script into a single line. To this condensed command line, simply add a pipe
that sends the output to sh -x.

http://admin.com-log/foo.log
http://admin.com-log/foo.log

sh scripting 201

$ find . -type f —name "*.1log' | grep -v .do-not-touch | while read fname;
do echo mv $fname ‘echo $fname | sed s/.1log/.LOG/'; done | sh -x

+ mv foo.log fo00.LOG

+ mv genius/spew.log genius/spew.LOG

The -x option to sh prints each command before executing it.

That completes the actual renaming, but save the script for future reuse. bash’s
built-in command fc is a lot like <Control-P>, but instead of returning the last
command to the command line, it transfers the command to your editor of choice.
Add a shebang line and usage comment, write the file to a plausible location (~/bin
or /usr/local/bin, perhaps), make the file executable, and you have a script.

To summarize this approach:

1. Develop the script (or script component) as a pipeline, one step at a time,
entirely on the command line. Use bash for this process even though the
eventual interpreter might be dash or another sh variant.

2. Send output to standard output and check to be sure it looks right.

3. At each step, use the shell’s command history to recall pipelines and the
shell’s editing features to tweak them.

4. Until the output looks right, you haven't actually done anything, so there’s
nothing to undo if the command is incorrect.

5. Once the output is correct, execute the actual commands and verify that
they worked as you intended.

6. Use fc to capture your work, then clean it up and save it.

In the example above, the command lines were printed and then piped to a subshell
for execution. This technique isn’t universally applicable, but it’s often helpful. Al-
ternatively, you can capture output by redirecting it to a file. No matter what, wait
until you see the right stuff in the preview before doing anything that’s potentially
destructive.

Input and output

The echo command is crude but easy. For more control over your output, use printf.
It is a bit less convenient because you must explicitly put newlines where you want
them (use “\n”), but it gives you the option to use tabs and enhanced number for-
matting in your the output. Compare the output from the following two commands:

$ echo "\taa\tbb\tcc\n"

\taa\tbb\tcc\n

$ printf '"\taa\tbb\tcc\n"
aa bb cc

202

Chapter 7 Scripting and the Shell

Some systems have OS-level printf and echo commands, usually in /usr/bin and
/bin, respectively. Although the commands and the shell built-ins are similar, they
may diverge subtly in their specifics, especially in the case of printf. Either adhere
to sh’s syntax or call the external printf with a full pathname.

You can use the read command to prompt for input. Here’s an example:
#1/bin/sh

echo -n "Enter your name: "
read user_name

if [-n "$user_name"]; then
echo "Hello $user_name!"
exit 0
else
echo "Greetings, nameless one!"
exit 1
fi

The -n in the echo command suppresses the usual newline, but you could also have
used printf here. We cover the if statement’s syntax shortly, but its effect should
be obvious here. The -n in the if statement evaluates to true if its string argument
is not null. Here’s what the script looks like when run:

$ sh readexample
Enter your name: Ron
Hello Ron!

Spaces in filenames

The naming of files and directories is essentially unrestricted, except that names

are limited in length and must not contain slash characters or nulls. In particular,
spaces are permitted. Unfortunately, UNIX has a long tradition of separating com-
mand-line arguments at whitespace, so legacy software tends to break when spaces

appear within filenames.

Spaces in filenames were once found primarily on filesystems shared with Macs
and PCs, but they have now metastasized into UNIX culture and are found in some
standard software packages as well. There are no two ways about it: administrative
scripts must be prepared to deal with spaces in filenames (not to mention apostro-
phes, asterisks, and various other menacing punctuation marks).

In the shell and in scripts, spaceful filenames can be quoted to keep their pieces
together. For example, the command

$ less "My spacey file"

preserves My spacey file as a single argument to less. You can also escape individ-
ual spaces with a backslash:

$ less My\ spacey)\ file

sh scripting 203

The filename completion feature of most shells (usually bound to the <Tab> key)
normally adds the backslashes for you.

When you are writing scripts, a useful weapon to know about is find’s -print0 op-
tion. In combination with xargs -0, this option makes the find/xargs combination
work correctly regardless of the whitespace contained within filenames. For exam-
ple, the command

$ find /home -type f -size +1M —print0@ | xargs -0 1s -1

prints a long Is listing of every file beneath /home that’s over one megabyte in size.

Command-line arguments and functions

Command-line arguments to a script become variables whose names are num-
bers. $1 is the first command-line argument, $2 is the second, and so on. $0 is the
name by which the script was invoked. That could be a strange construction such
as ../bin/example.sh, so it doesn’t necessarily have the same value each time the
script is run.

The variable $# contains the number of command-line arguments that were supplied,
and the variable $* contains all the arguments at once. Neither of these variables
includes or counts $0. Here’s an example of the use of arguments:

#1/bin/sh

show_usage() {
echo "Usage: $0 source_dir dest_dir" 1>&2
exit 1

}

Main program starts here

if [$# -ne 2]; then
show_usage
else # There are two arguments
if [-d $1 1; then
source_dir=$1
else
echo 'Invalid source directory' 1>&2
show_usage
fi
if [-d $2 1; then
dest_dir=$2
else
echo 'Invalid destination directory' 1>&2
show_usage
fi
fi
printf "Source directory is ${source_dir}\n"
printf "Destination directory is ${dest_dir}\n"

204

Chapter 7 Scripting and the Shell

If you call a script without arguments or with inappropriate arguments, the script
should print a short usage message to remind you how to use it. The example script
above accepts two arguments, validates that the arguments are both directories, and
prints their names. If the arguments are invalid, the script prints a usage message
and exits with a nonzero return code. If the caller of the script checks the return
code, it will know that this script failed to execute correctly.

We created a separate show_usage function to print the usage message. If the script
were later updated to accept additional arguments, the usage message would have
to be changed in only one place. The 1>&2 notation on lines that print error mes-
sages makes the output go to STDERR.

$ mkdir aaa bbb

$ sh showusage aaa bbb

Source directory is aaa

Destination directory is bbb

$ sh showusage foo bar

Invalid source directory

Usage: showusage source_dir dest_dir

Arguments to sh functions are treated like command-line arguments. The first argu-
ment becomes $1, and so on. As you can see above, $0 remains the name of the script.

To make the example more robust, we could make the show_usage routine accept an
error code as an argument. That would allow a more definitive code to be returned
for each different type of failure. The next code excerpt shows how that might look.

show_usage() {
echo "Usage: $0 source_dir dest_dir" 1>&2
if [$# -eq O]; then
exit 99 # Exit with arbitrary nonzero return code
else
exit $1
fi
}

In this version of the routine, the argument is optional. Within a function, $#
tells you how many arguments were passed in. The script exits with code 99 if no
more-specific code is designated. But a specific value, for example,

show_usage 5

makes the script exit with that code after printing the usage message. (The shell
variable $? contains the exit status of the last command executed, whether used
inside a script or at the command line.)

The analogy between functions and commands is strong in sh. You can define use-
ful functions in your ~/.bash_profile file (~/.profile for vanilla sh) and then use
them on the command line as if they were commands. For example, if your site
has standardized on network port 7988 for the SSH protocol (a form of “security
through obscurity”), you might define

sh scripting 205

ssh() {
Jusr/bin/ssh -p 7988 $*
}

in your ~/.bash_profile to make sure ssh is always run with the option -p 7988.

Like many shells, bash has an aliasing mechanism that can reproduce this limited
example even more concisely, but functions are more general and more powerful.

Control flow

We've seen several if-then and if-then-else forms in this chapter already; they do
pretty much what youd expect. The terminator for an if statement is fi. To chain
your if clauses, you can use the elif keyword to mean “else if” For example:

if [$base -eq 1] && [$dm -eq 1]; then

installDMBase

elif [$base -ne 1] && [$dm -eq 1]; then
installBase

elif [$base -eq 1] && [$dm -ne 1]; then
installDM

else

echo '==> Installing nothing'
fi
Both the peculiar [] syntax for comparisons and the command-line-optionlike
names of the integer comparison operators (e.g., —eq) are inherited from the orig-
inal Bourne shell’s channeling of /bin/test. The brackets are actually a shorthand
way of invoking test and are not a syntactic requirement of the if statement.'

Table 7.3 shows the sh comparison operators for numbers and strings. sh uses tex-
tual operators for numbers and symbolic operators for strings.

Table 7.3 Elementary sh comparison operators

String Numeric Trueif

X=y X -eqy xisequaltoy

Xx!l=y x-ney xisnotequaltoy

x <y x-lty xis less thany

n/a x -ley xis less than orequal toy
x>y x-gty X is greater than y

n/a X —ge y xisgreater than or equal toy
-n X n/a x is not null

-z X n/a xis null

a. Must be backslash-escaped or double bracketed to prevent in-
terpretation as an input or output redirection character.

12. In reality, these operations are now built into the shell and do not actually run /bin/test.

206

Table 7.4

Chapter 7 Scripting and the Shell

sh shines in its options for evaluating the properties of files (once again, courtesy
of its /bin/test legacy). Table 7.4 shows a few of sh’s many file testing and file com-
parison operators.

sh file evaluation operators

Operator Trueif
~dfile file exists and is a directory
—efile file exists
—f file file exists and is a regular file
-rfile User has read permission on file
-sfile file exists and is not empty
-w file User has write permission on file

file1 -nt file2 file1 is newer than file2
file1 -ot file2 file1 is older than file2

Although the elif form is useful, a case selection is often a better choice for clarity.
Its syntax is shown below in a sample routine that centralizes logging for a script.
Of particular note are the closing parenthesis after each condition and the two
semicolons that follow the statement block to be executed when a condition is met
(except for the last condition). The case statement ends with esac.

The log level is set in the global variable LOG_LEVEL. The choices
are, from most to least severe, Error, Warning, Info, and Debug.

logMsg() {
message_level=$1
message_itself=$2
if [$message_level —1le $LOG_LEVEL]; then
case $message_level in
0) message_level_text="Error" ;;
1) message_level_text="Warning" ;;
2) message_level_text="Info" ;;
3) message_level_text="Debug" ;;
*) message_level_text="0ther"
esac
echo "${message_level_text}: $message_itself"
fi
}

This routine illustrates the common “log level” paradigm used by many administra-
tive applications. The code of the script generates messages at many different levels

of detail, but only the ones that pass a globally set threshold, $L0G_LEVEL, are ac-
tually logged or acted on. To clarify the importance of each message, the message

text is preceded by a label that denotes its associated log level.

13.

sh scripting 207

Loops

sh’s for...in construct makes it easy to take some action for a group of values or
files, especially when combined with filename globbing (the expansion of simple
pattern-matching characters such as * and ? to form filenames or lists of filenames).
The *.sh pattern in the for loop below returns a list of matching filenames in the
current directory. The for statement then iterates through that list, assigning each
filename in turn to the variable script.

#!/bin/sh
suffix=BACKUP--‘date +%Y-%m=-%d-%H%M"

for script in *.sh; do
newname="$script.$suffix"
echo "Copying $script to $newname..."
cp -p $script $newname

done

The output looks like this:

$ sh forexample
Copying rhel.sh to rhel.sh.BACKUP--2017-01-28-2228...
Copying sles.sh to sles.sh.BACKUP--2017-01-28-2228...

The filename expansion is not magic in this context; it works exactly as it does on
the command line. Which is to say, the expansion happens first and the line is then
processed by the interpreter in its expanded form." You could just as well have en-
tered the filenames statically, as in the line

for script in rhel.sh sles.sh; do

In fact, any whitespace-separated list of things, including the contents of a variable,
works as a target of for...in. You can also omit the list entirely (along with the in
keyword), in which case the loop implicitly iterates over the script’s command-line
arguments (if at the top level) or the arguments passed to a function:

#!/bin/sh

for file; do
newname="${file}.backup"
echo "Copying $file to $newname..."
cp -p $file $newname

done

bash, but not vanilla sh, also has the more familiar for loop from traditional program-
ming languages in which you specify starting, increment, and termination clauses.

More accurately, the filename expansion is a little bit magical in that it does maintain a notion of the
atomicity of each filename. Filenames that contain spaces go through the for loop in a single pass.

208

14.

Chapter 7 Scripting and the Shell

For example:

bash-specific

for ((1=0 ; 1 < $CPU_COUNT ; i++)); do
CPU_LIST="$CPU_LIST $i"

done

The next example illustrates sh’s while loop, which is useful for processing com-
mand-line arguments and for reading the lines of a file.

#!/bin/sh

exec 0<$1
counter=1
while read line; do
echo "$counter: $line"
counter=$((counter + 1))
done

Here’s what the output looks like:

$ sh whileexample /etc/passwd

1: root:x:0:0:Superuser:/root:/bin/bash
2: bin:x:1:1:bin:/bin:/bin/bash

3: daemon:x:2:2:Daemon:/sbin:/bin/bash

This scriptlet has a couple of interesting features. The exec statement redefines the
script’s standard input to come from whatever file is named by the first command-line
argument.' The file must exist or the script generates an error.

The read statement within the while clause is a shell built-in, but it acts like an
external command. You can put external commands in a while clause as well; in
that form, the while loop terminates when the external command returns a non-
zero exit status.

The $((counter + 1)) expression is an odd duck, indeed. The $((...)) notation forc-
es numeric evaluation. It also makes optional the use of $ to mark variable names.
The expression is replaced with the result of the arithmetic calculation.

The $((...)) shenanigans work in the context of double quotes, too. In bash, which
supports C’s ++ postincrement operator, the body of the loop can be collapsed
down to one line.

while read line; do
echo "$((counter++)): $line"
done

Depending on the invocation, exec can also have the more familiar meaning “stop this script and
transfer control to another script or expression.” It’s yet another shell oddity that both functions are
accessed through the same statement.

74

Regular expressions 209

Arithmetic

All sh varijables are string valued, so sh does not distinguish between the number 1
and the character string “1” in assignments. The difference lies in how the variables
are used. The following code illustrates the distinction:

#!/bin/sh
a=1
b=$((2))
c=%a+$b
d=$%$((a + b))

echo "$a + $b = $c \t(plus sign as string literal)"
echo "$a + $b = $d \t(plus sign as arithmetic addition)"

This script produces the output

1+ 2 =142 (plus signh as string literal)
1+2=3 (plus sign as arithmetic addition)

Note that the plus sign in the assignment to $c does not act as a concatenation op-
erator for strings. It’s just a literal character. That line is equivalent to

c="$a+3$b"

To force numeric evaluation, you enclose an expression in $((...)), as shown with
the assignment to $d above. But even this precaution does not result in $d receiving
a numeric value; the result of the calculation is the string “3”

sh has the usual assortment of arithmetic, logical, and relational operators; see the
man page for details.

REGULAR EXPRESSIONS

As we mentioned on page 197, regular expressions are standardized patterns that
parse and manipulate text. For example, the regular expression

I sent you a che(que|ck) for the gr[ae]y-colou?red alumini?um.
matches sentences that use either American or British spelling conventions.

Regular expressions are supported by most modern languages, though some take
them more to heart than others. They’re also used by UNIX commands such as grep
and vi. They are so common that the name is usually shortened to “regex.” Entire
books have been written about how to harness their power."

The filename matching and expansion performed by the shell when it interprets
command lines such as wc -1*.pl is not a form of regular expression matching. It’s
a different system called “shell globbing,” and it uses a different and simpler syntax.

15. You can find citations for two of them at the end of this chapter.

210

Chapter 7 Scripting and the Shell

Regular expressions are not themselves a scripting language, but they’re so useful
that they merit featured coverage in any discussion of scripting; hence, this section.

The matching process

Code that evaluates a regular expression attempts to match a single given text string
to a single given pattern. The “text string” to match can be very long and can contain
embedded newlines. It's sometimes convenient to use a regex to match the contents
of an entire file or document.

For the matcher to declare success, the entire search pattern must match a contigu-
ous section of the search text. However, the pattern can match at any position. After
a successful match, the evaluator returns the text of the match along with a list of
matches for any specially delimited subsections of the pattern.

Literal characters

In general, characters in a regular expression match themselves. So the pattern

I am the walrus

matches the string “T am the walrus” and that string only. Since it can match any-
where in the search text, the pattern can be successfully matched to the string

I am the egg man. I am the walrus. Koo koo ka-choo!

However, the actual match is limited to the “T am the walrus” portion. Matching
is case sensitive.

Special characters

Table 7.5 shows the meanings of some common special symbols that can appear in
regular expressions. These are just the basics—there are many more.

Many special constructs, such as + and |, affect the matching of the “thing” to
their left or right. In general, a “thing” is a single character, a subpattern enclosed
in parentheses, or a character class enclosed in square brackets. For the | charac-
ter, however, thingness extends indefinitely to both left and right. If you want to
limit the scope of the vertical bar, enclose the bar and both things in their own set
of parentheses. For example,

I am the (walrus|egg man)\.

matches either “I am the walrus” or “I am the egg man”. This example also demon-
strates escaping of special characters (here, the dot). The pattern

(I am the (walrus|egg man)\. ?){1,2}
matches any of the following:

o T'am the walrus.
 T'am the egg man.

Table 7.5

Regular expressions 211

Special characters in regular expressions (common ones)

Symbol What it matches or does

. Matches any character
[chars] Matches any character from a given set
[Achars] Matches any character not in a given set

A Matches the beginning of a line
$ Matches the end of a line
\w Matches any “word” character (same as [A-Za-z0-9_])
\s Matches any whitespace character (same as [\f\t\n\r])?
\d Matches any digit (same as [0-9])
| Matches either the element to its left or the one to its right
(expr) Limits scope, groups elements, allows matches to be captured
? Allows zero or one match of the preceding element
* Allows zero, one, or many matches of the preceding element
+ Allows one or more matches of the preceding element
{n} Matches exactly n instances of the preceding element

{min, } Matches at least min instances (note the comma)
{ minmax } Matches any number of instances from min to max

a. That is, a space, a form feed, a tab, a newline, or a return

« Tam the walrus. I am the egg man.

« Tam the egg man. I am the walrus.

« Tam the egg man. I am the egg man.
o I'am the walrus. I am the walrus.

It also matches “T am the walrus. I am the egg man. I am the walrus”, even though
the number of repetitions is explicitly capped at two. That’s because the pattern
need not match the entire search text. Here, the regex matches two sentences and
terminates, declaring success. It doesn’t care that another repetition is available.

It is a common error to confuse the regular expression metacharacter * (the zero-
or-more quantifier) with the shell’s * globbing character. The regex version of the
star needs something to modify; otherwise, it won't do what you expect. Use . * if
any sequence of characters (including no characters at all) is an acceptable match.

Example regular expressions

In the United States, postal (“zip”) codes have either five digits or five digits fol-
lowed by a dash and four more digits. To match a regular zip code, you must match
a five-digit number. The following regular expression fits the bill:

A\d{5}%

212

Chapter 7 Scripting and the Shell

The A and $ match the beginning and end of the search text but do not actually cor-
respond to characters in the text; they are “zero-width assertions” These characters
ensure that only texts consisting of exactly five digits match the regular expression—
the regex will not match five digits within a larger string. The \d escape matches a
digit, and the quantifier {5} says that there must be exactly five one-digit matches.

To accommodate either a five-digit zip code or an extended zip+4, add an optional
dash and four additional digits:

MA{5}(-\d{4})?$

The parentheses group the dash and extra digits together so that they are consid-
ered one optional unit. For example, the regex won’t match a five-digit zip code
followed by a dash. If the dash is present, the four-digit extension must be present
as well or there is no match.

A classic demonstration of regex matching is the following expression,
M[ou]'?am+[ae]r ([AEae]l[- 1)?[GKQIh?[aeul+([dtz][dhz]?){1,2}af[iy]

which matches most of the variant spellings of the name of former Libyan head of
state Moammar Gadhafi, including

e Muammar al-Kaddafi (BBC)
o Moammar Gadhafi (Associated Press)
e Muammar al-Qadhafi (Al-Jazeera)

e Muammar Al-Qadhafi (U.S. Department of State)
Do you see how each of these would match the pattern? '

This regular expression also illustrates how quickly the limits of legibility can be
reached. Most regex systems support an x option that ignores literal whitespace in
the pattern and enables comments, allowing the pattern to be spaced out and split
over multiple lines. You can then use whitespace to separate logical groups and clar-
ify relationships, just as you would in a procedural language. For example, here’s a
more readable version of that same Moammar Gadhafi regex:

M [ou] '? a m+ [ae] r # First name: Mu'ammar, Moamar, etc.

\s # Whitespace; can't use a literal space here
(# Group for optional last name prefix
[AEae] 1 # Al, E1, al, or el
[-\s] # Followed by either a dash or whitespace
)?
[GKQ] h? [aeul+ # Initial syllable of last name: Kha, Qua, etc.
(# Group for consonants at start of 2nd syllable
[dtz] [dhz]? # dd, dh, etc.
){1,2} # Group might occur twice, as in Quadhdhafi
af [iy] # Final afi or afy

16. Note that this regular expression is designed to be liberal in what it matches. Many patterns that ar-

en't legitimate spellings also match: for example, “Moammer el Qhuuuzzthaf”.

Regular expressions 213

This helps a bit, but it’s still pretty easy to torture later readers of your code. So be
kind: if you can, use hierarchical matching and multiple small matches instead of
trying to cover every possible situation in one large regular expression.

Captures

When a match succeeds, every set of parentheses becomes a “capture group” that
records the actual text that it matched. The exact manner in which these pieces are
made available to you depends on the implementation and context. In most cases,
you can access the results as a list, array, or sequence of numbered variables.

Since parentheses can nest, how do you know which match is which? Easy: the
matches arrive in the same order as the opening parentheses. There are as many
captures as there are opening parentheses, regardless of the role (or lack of role)
that each parenthesized group played in the actual matching. When a parenthe-
sized group is not used (e.g., Mu(') ?ammar when matched against “Muammar”),
its corresponding capture is empty.

If a group is matched more than once, the contents of only the last match are re-
turned. For example, with the pattern

(I am the (walrus|egg man)\. ?){1,2}
matching the text

I am the egg man. I am the walrus.
there are two results, one for each set of parentheses:

I am the walrus.
walrus

Both capture groups actually matched twice. However, only the last text to match
each set of parentheses is actually captured.

Greediness, laziness, and catastrophic backtracking

Regular expressions match from left to right. Each component of the pattern matches
the longest possible string before yielding to the next component, a characteristic
known as greediness.

If the regex evaluator reaches a state from which a match cannot be completed, it
unwinds a bit of the candidate match and makes one of the greedy atoms give up
some of its text. For example, consider the regex a*aa being matched against the
input text “aaaaaa”

At first, the regex evaluator assigns the entire input to the a* portion of the regex
because the a* is greedy. When there are no more a’s to match, the evaluator goes
on to try to match the next part of the regex. But oops, it’s an a, and there is no
more input text that can match an a; time to backtrack. The a* has to give up one
of the as it has matched.

214

17.

Chapter 7 Scripting and the Shell

Now the evaluator can match a*a, but it still cannot match the last a in the pattern.
So it backtracks again and takes away a second a from the a*. Now the second and
third a’s in the pattern both have a’s to pair with, and the match is complete.

This simple example illustrates some important general points. First, greedy match-
ing plus backtracking makes it expensive to match apparently simple patterns such
as <img.*></tr> when processing entire files.”” The . * portion starts by matching
everything from the first <img to the end of the input, and only through repeated
backtracking does it contract to fit the local tags.

Furthermore, the ></tr> that this pattern binds to is the last possible valid match in
the input, which is probably not what you want. More likely, you meant to match an
 tag followed immediately by a </tr> tag. A better way to write this pattern is
<img[A>1*>\s*</tr>, which allows the initial wild card match to expand only to
the end of the current tag, because it cannot cross a right-angle-bracket boundary.

You can also use lazy (as opposed to greedy) wild card operators: * ? instead of *,
and +°? instead of +. These versions match as few characters of the input as they
can. If that fails, they match more. In many situations, these operators are more
efficient and closer to what you want than the greedy versions.

Note, however, that they can produce matches different from those of the greedy
operators; the difference is more than just one of implementation. In our HTML
example, the lazy pattern would be <img.* ?></tr>. But even here, the . *? could
eventually grow to include unwanted >’s because the next tag after an might
not be a </tr>. Again, probably not what you want.

Patterns with multiple wild card sections can cause exponential behavior in the
regex evaluator, especially if portions of the text can match several of the wild card
expressions and especially if the search text does not match the pattern. This situ-
ation is not as unusual as it might sound, especially when pattern matching with
HTML. Often, you'll want to match certain tags followed by other tags, possibly
separated by even more tags, a recipe that might require the regex evaluator to try
many possible combinations.

Regex guru Jan Goyvaerts calls this phenomenon “catastrophic backtracking” and
writes about it in his blog; see regular-expressions.info/catastrophic.html for details
and some good solutions.

A couple of take-home points from all this:

« If you can do pattern matching line-by-line rather than file-at-a-time,
there is much less risk of poor performance.

Although this section shows HTML excerpts as examples of text to be matched, regular expressions
are not really the right tool for this job. Our external reviewers were uniformly aghast. Ruby and
Python both have excellent add-ons that parse HTML documents the proper way. You can then ac-
cess the portions you're interested in with XPath or CSS selectors. See the Wikipedia page for XPath
and the respective languages’ module repositories for details.

http://regular-expressions.info/catastrophic.html

7.5

18.

Python programming 215

« Even though regex notation makes greedy operators the default, they
probably shouldn’t be. Use lazy operators.

« All uses of . * are inherently suspicious and should be scrutinized.

PYTHON PROGRAMMING

Python and Ruby are interpreted languages with a pronounced object-oriented
inflection. Both are widely used as general-purpose scripting languages and have
extensive libraries of third party modules. We discuss Ruby in more detail starting
on page 223.

Python offers a straightforward syntax that’s usually pretty easy to follow, even when
reading other people’s code.

We recommend that all sysadmins become fluent in Python. It's the modern era’s
go-to language for both system administration and general-purpose scripting. It’s
also widely supported as a glue language for use within other systems (e.g., the
PostgreSQL database and Apple’s Xcode development environment). It interfaces
cleanly with REST APIs and has well-developed libraries for machine learning, data
analysis, and numeric computation.

The passion of Python 3

Python was already well on its way to becoming the world’s default scripting lan-
guage when Python 3 was released in 2008. For this release, the developers chose
to forgo backward compatibility with Python 2 so that a group of modest but fun-
damental changes and corrections could be made to the language, particularly in
the area of internationalized text processing.'®

Unfortunately, the rollout of Python 3 proved to be something of a debacle. The
language updates are entirely sensible, but they’re not must-haves for the aver-
age Python programmer with an existing code base to maintain. For a long time,
scripters avoided Python 3 because their favorite libraries didn’t support it, and li-
brary authors didn’t support Python 3 because their clients were still using Python 2.

Even in the best of circumstances, it’s difficult to push a large and interdependent
user community past this sort of discontinuity. In the case of Python 3, early en-
trenchments persisted for the better part of a decade. However, as of 2017, that
situation finally seems to be changing.

Compatibility libraries that allow the same Python code to run under either ver-
sion of the language have helped ease the transition, to some extent. But even now,
Python 3 remains less common in the wild than Python 2.

The exact list of changes in Python 3 isn’t relevant to this brief discussion, but you can find a summa-
ry at docs.python.org/3.0/whatsnew/3.0.html.

docs.python.org/3.0/whatsnew/3.0.html.

216

e (B

Chapter 7 Scripting and the Shell

As of this writing, py3readiness.org reports that only 17 of the top 360 Python
libraries remain incompatible with Python 3. But the long tail of unported soft-
ware is more sobering: only a tad more than 25% of the libraries warehoused at
pypi.python.org (the Python Package Index, aka PyPI) run under Python 3. Of
course, many of these projects are older and no longer maintained, but 25% is still
a concerningly low number.

Python 2 or Python 3?

The world’s solution to the slowly unfolding Python transition has been to treat
Pythons 2 and 3 as separate languages. You needn’t consecrate your systems to one
or the other; you can run both simultaneously without conflict.

All our example systems ship Python 2 by default, usually as /usr/bin/python2
with a symbolic link from /usr/bin/python. Python 3 can typically be installed as
a separate package; the binary is called python3.

Although the Fedora project is working to make Python 3 its system default, Red
Hat and CentOS are far behind and do not even define a prebuilt package for
Python 3. However, you can pick one up from Fedora’s EPEL (Extra Packages for
Enterprise Linux) repository. See the FAQ at fedoraproject.org/wiki/EPEL for in-
structions on accessing this repository. It’s easy to set up, but the exact commands
are version-dependent.

For new scripting work or for those new to Python altogether, it makes sense to jump
directly to Python 3. That’s the syntax we show in this chapter, though in fact it’s only
the print lines that vary between Python 2 and Python 3 in our simple examples.

For existing software, use whichever version of Python the software prefers. If your
choice is more complicated than simply new vs. old code, consult the Python wiki
at wiki.python.org/moin/Python2orPython3 for an excellent collection of issues,
solutions, and recommendations.

Python quick start

For a more thorough introduction to Python than we can give here, Mark Pilgrim’s
Dive Into Python 3 is a great place to start. It’s available for reading or for download
(without charge) at diveintopython3.net, or as a printed book from Apress. A com-
plete citation can be found on page 242.

To start, here’s a quick “Hello, world!” script:

#!/usr/bin/python3
print("Hello, world!"™)

19. See caniusepython3.com for up-to-date statistics.

http://py3readiness.org
http://pypi.python.org
http://fedoraproject.org/wiki/EPEL
http://wiki.python.org/moin/Python2orPython3
http://diveintopython3.net
http://caniusepython3.com

Python programming 217

To get it running, set the execute bit or invoke the python3 interpreter directly:

$ chmod +x helloworld
$./helloworld
Hello, world!

Python’s most notable break with tradition is that indentation is logically signifi-
cant. Python does not use braces, brackets, or begin and end to delineate blocks.
Statements at the same level of indentation automatically form blocks. The exact
indentation style (spaces or tabs, depth of indentation) does not matter.

Python blocking is best shown by example. Consider this simple if-then-else statement:
import sys
a = sys.argv[1]

if a == "1":

print('a is one')

print('This is still the then clause of the if statement.')
else:

print('a is', a)

print('This is still the else clause of the if statement.')
print('This is after the if statement.')

The first line imports the sys module, which contains the argv array. The two paths
through the if statement both have two lines, each indented to the same level. (Co-
lons at the end of a line are normally a clue that the line introduces and is associ-
ated with an indented block that follows it.) The final print statement lies outside
the context of the if statement.

$ python3 blockexample 1

a is one

This is still the then clause of the if statement.
This is after the if statement.

$ python3 blockexample 2

aise

This is still the else clause of the if statement.
This is after the if statement.

Python’s indentation convention is less flexibile for the formatting of code, but it
does reduce clutter in the form of braces and semicolons. It's an adjustment for those
accustomed to traditional delimiters, but most people ultimately find that they like it.

Python’s print function accepts an arbitrary number of arguments. It inserts a
space between each pair of arguments and automatically supplies a newline. You
can suppress or modify these characters by adding end= or sep= options to the end
of the argument list.

218

20.

Chapter 7 Scripting and the Shell

For example, the line

print("one", "two", "three", sep="-", end="!\n")
produces the output

one-two-three!

Comments are introduced with a sharp (#) and last until the end of the line, just
as in sh, Perl, and Ruby.

You can split long lines by backslashing the end of line breaks. When you do this,
the indentation of only the first line is significant. You can indent the continuation
lines however you like. Lines with unbalanced parentheses, square brackets, or
curly braces automatically signal continuation even in the absence of backslashes,
but you can include the backslashes if doing so clarifies the structure of the code.

Some cut-and-paste operations convert tabs to spaces, and unless you know what
you're looking for, this can drive you nuts. The golden rule is never to mix tabs and
spaces; use one or the other for indentation. A lot of software makes the traditional
assumption that tabs fall at 8-space intervals, which is too much indentation for
readable code. Most in the Python community seem to prefer spaces and 4-char-
acter indentation.

However you decide to attack the indentation problem, most editors have options
that can help save your sanity, either by outlawing tabs in favor of spaces or by dis-
playing spaces and tabs differently. As a last resort, you can translate tabs to spaces
with the expand command.

Objects, strings, numbers, lists, dictionaries, tuples, and files

All data types in Python are objects, and this gives them more power and flexibility
than they have in most languages.

In Python, lists are enclosed in square brackets and indexed from zero. They are
essentially similar to arrays, but can hold objects of any type.?

Python also has “tuples,” which are essentially immutable lists. Tuples are faster
than lists and are helpful for representing constant data. The syntax for tuples is
the same as for lists, except that the delimiters are parentheses instead of square
brackets. Because (thing) looks like a simple algebraic expression, tuples that con-
tain only a single element need a marker comma to disambiguate them: (thing,).

Here’s some basic variable and data type wrangling in Python:
name = 'Gwen'
rating = 10

characters = ['SpongeBob', 'Patrick', 'Squidward']
elements = ('lithium', 'carbon', 'boron')

A homogeneous and more efficient array type is implemented in the array module, but for most pur-
poses, stick with lists.

Python programming 219

print("name:\t%s\nrating:\t%d" % (name, rating))
print("characters:\t%s" % characters)
print("hero:\t%s" % characters[0])
print("elements:\t%s" % (elements,))

This example produces the following output:

$ python3 objects

name: Gwen

rating: 10

characters: ['SpongeBob', 'Patrick', 'Squidward']
hero: SpongeBob

elements: ('lithium', 'carbon', 'boron')

Note that the default string conversion for list and tuple types represents them as
they would be found in source code.

Variables in Python are not syntactically marked or declared by type, but the objects
to which they refer do have an underlying type. In most cases, Python does not
automatically convert types for you, but individual functions or operators may do
so. For example, you cannot concatenate a string and a number (with the + opera-
tor) without explicitly converting the number to its string representation. However,
formatting operators and statements coerce everything to string form.

Every object has a string representation, as can be seen in the output above. Dictio-
naries, lists, and tuples compose their string representations recursively by stringi-
tying their constituent elements and combining these strings with the appropriate
punctuation.

The string formatting operator % is a lot like the sprintf function from C, but it can
be used anywhere a string can appear. It’s a binary operator that takes the string
on its left and the values to be inserted on its right. If more than one value is to be
inserted, the values must be presented as a tuple.

A Python dictionary (also known as a hash or an associative array) represents a
set of key/value pairs. You can think of a hash as an array whose subscripts (keys)
are arbitrary values; they do not have to be numbers. But in practice, numbers and
strings are common keys.

Dictionary literals are enclosed in curly braces, with each key/value pair being sepa-
rated by a colon. In use, dictionaries work much like lists, except that the subscripts
(keys) can be objects other than integers.

ordinal = { 1 : 'first', 2 : 'second', 3 : 'third' }
print("The ordinal dictionary contains", ordinal)
print("The ordinal of 1 is", ordinal[1])

$ python3 dictionary
The ordinal array contains {1: 'first', 2: 'second', 3: 'third'}
The ordinal of 1 is first

220

Chapter 7 Scripting and the Shell

Python handles open files as objects with associated methods. True to its name, the
readline method reads a single line, so the example below reads and prints two
lines from the /etc/passwd file.

f = open('/etc/passwd', 'r'")
print(f.readline(), end="")
print(f.readline(), end="")
f.close()

$ python3 fileio
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

The newlines at the end of the print calls are suppressed with end="" because each
line already includes a newline character from the original file. Python does not
automatically strip these.

Input validation example

Our scriptlet below shows a general scheme for input validation in Python. It also
demonstrates the definition of functions and the use of command-line arguments,
along with a couple of other Pythonisms.

import sys
import os

def show_usage(message, code = 1):
print(message)
print("%s: source_dir dest_dir" % sys.argv[0])
sys.exit(code)

if len(sys.argv) != 3:

show_usage("2 args required; you supplied %d" % (len(sys.argv) - 1))
elif not os.path.isdir(sys.argv[1]):

show_usage("Invalid source directory")
elif not os.path.isdir(sys.argv[2]):

show_usage("Invalid destination directory")

source, dest = sys.argv[1:3]

print("Source directory is", source)
print("Destination directory is", dest)

In addition to importing the sys module, we also import the os module to gain
access to the 0s.path.isdir routine. Note that import doesn’t shortcut your access
to any symbols defined by modules; you must use fully qualified names that start
with the module name.

The definition of the show_usage routine supplies a default value for the exit code
in case the caller does not specify this argument explicitly. Since all data types are
objects, function arguments are effectively passed by reference.

Python programming 221

The sys.argy list contains the script name in the first position, so its length is one
greater than the number of command-line arguments that were actually supplied.
The form sys.argv[1:3] is a list slice. Curiously, slices do not include the element
at the far end of the specified range, so this slice includes only sys.argv[1] and
sys.argv[2]. You could simply say sys.argv[1:] to include the second and sub-
sequent arguments.

Like sh, Python has a dedicated “else if” condition; the keyword is elif. There is
no explicit case or switch statement.

The parallel assignment of the source and dest variables is a bit different from some
languages in that the variables themselves are not in a list. Python allows parallel
assignments in either form.

Python uses the same comparison operators for numeric and string values. The
“not equal” comparison operator is ! =, but there is no unary ! operator; use not for
this. The Boolean operators and and or are also spelled out.

Loops
The fragment below uses a for...in construct to iterate through the range 1 to 10.

for counter in range(1, 10):
print(counter, end=" ")
print() # Add final newline

As with the array slice in the previous example, the right endpoint of the range is
not actually included. The output includes only the numbers 1 through 9:

123456789

This is Python’s only type of for loop, but it’s a powerhouse. Python’s for has several
features that distinguish it from for in other languages:

o Nothing is special about numeric ranges. Any object can support Python’s
iteration model, and most common objects do. You can iterate through a
string (by character), alist, a file (by character, line, or block), a list slice, etc.

o Iterators can yield multiple values, and you can have multiple loop vari-
ables. The assignment at the top of each iteration acts just like Python’s
regular multiple assignments. This feature is particularly nice for iterating
through dictionaries.

 Both for and while loops can have else clauses at the end. The else clause
is executed only if the loop terminates normally, as opposed to exiting
through a break statement. This feature may initially seem counterintui-
tive, but it handles certain use cases quite elegantly.

The example script below accepts a regular expression on the command line and
matches it against a list of Snow White’s dwarves and the colors of their dwarf suits.

222

Chapter 7 Scripting and the Shell

The first match is printed, with the portions that match the regex surrounded by
underscores.

import sys
import re

suits = {
'Bashful':'yellow', 'Sneezy':'brown', 'Doc':'orange', 'Grumpy':'red',
'Dopey':'green', '"Happy':'blue', 'Sleepy':'taupe'’

}

pattern = re.compile("(%s)" % sys.argv[1])

for dwarf, color in suits.items():
if pattern.search(dwarf) or pattern.search(color):
print("%s's dwarf suit is %s." %
(pattern.sub(r"_\1_", dwarf), pattern.sub(r"_\1_", color)))
break
else:
print("No dwarves or dwarf suits matched the pattern.")

Here’s some sample output:

$ python3 dwarfsearch '[aeiou]{2}"'
S1_ee_py's dwarf suit is t_au_pe.

$ python3 dwarfsearch 'ga|gu'
No dwarves or dwarf suits matched the pattern.

The assignment to suits demonstrates Python’s syntax for encoding literal dictio-
naries. The suits.items() method is an iterator for key/value pairs—note that we’re
extracting both a dwarf name and a suit color on each iteration. If you wanted to
iterate through only the keys, you could just say for dwarf in suits.

Python implements regular expression handling through its re module. No regex
features are built into the language itself, so regex-wrangling with Python is a bit
clunkier than with, say, Perl. Here, the regex pattern is initially compiled from the
first command-line argument surrounded by parentheses (to form a capture group).
Strings are then tested and modified with the search and sub methods of the regex
object. You can also call re.search et al. directly as functions, supplying the regex
to use as the first argument.

The \1 in the substitution string is a back-reference to the contents of the first
capture group. The strange-looking r prefix that precedes the substitution string
(r"_\1_") suppresses the normal substitution of escape sequences in string con-
stants (r stands for “raw”). Without this, the replacement pattern would consist of
two underscores surrounding a character with numeric code 1.

One thing to note about dictionaries is that they have no defined iteration order. If
you run the dwarf search a second time, you may well receive a different answer:

$ python3 dwarfsearch '[aeiou]{2}"'
Dopey's dwarf suit is gr_ee_n.

7.6

See Chapter 23 for
more information

about Chef and Puppet.
See page 232 for
more about RVM.

21.

Ruby programming 223

RuBY PROGRAMMING

Ruby, designed and maintained by Japanese developer Yukihiro “Matz” Matsumoto,
shares many features with Python, including a pervasive “everything’s an object”
approach. Although initially released in the mid-1990s, Ruby did not gain promi-
nence until a decade later with the release of the Rails web development platform.

Ruby is still closely associated with the web in many people’s minds, but there’s
nothing web-specific about the language itself. It works well for general-purpose
scripting. However, Python is probably a better choice for a primary scripting lan-
guage, if only because of its wider popularity.

Although Ruby is roughly equivalent to Python in many ways, it is philosophically
more permissive. Ruby classes remain open for modification by other software, for
example, and the Rubyist community attaches little or no shame to extensions that
modify the standard library.

Ruby appeals to those with a taste for syntactic sugar, features that don’t really change
the basic language but that permit code to be expressed more concisely and clearly.
In the Rails environment, for example, the line

due_date = 7.days.from_now

creates a Time object without referencing the names of any time-related classes or
doing any explicit date-and-time arithmetic. Rails defines days as an extension to
Fixnum, the Ruby class that represents integers. This method returns a Duration
object that acts like a number; used as a value, it’s equivalent to 604,800, the number

of seconds in seven days. Inspected in the debugger, it describes itself as “7 days.”*!

Ruby makes it easy for developers to create “domain-specific languages” (aka DSLs),
mini-languages that are in fact Ruby but that read like specialized configuration
systems. Ruby DSLs are used to configure both Chef and Puppet, for example.

Installation

Some systems have Ruby installed by default and some do not. However, it’s always
available as a package, often in several versions.

To date (version 2.3), Ruby has maintained relatively good compatibility with old
code. In the absence of specific warnings, it's generally best to install the most re-
cent version.

Unfortunately, most systems’ packages lag several releases behind the Ruby trunk.
If your package library doesn't include the current release (check ruby-lang.org to
determine what that is), install the freshest version through RVM; don't try to do
it yourself.

This form of polymorphism is common to both Ruby and Python. It’s often called “duck typing”; if an
object walks like a duck and quacks like a duck, you needn’t worry about whether it’s actually a duck.

http://ruby-lang.org

224

22.

Chapter 7 Scripting and the Shell

Ruby quick start
Since Ruby is so similar to Python, here a perhaps-eerily-familiar look at some
Ruby snippets modeled on those from the Python section earlier in this chapter.
#!/usr/bin/env ruby
print "Hello, world!\n\n"

name = 'Gwen'

rating = 10

characters = ['SpongeBob', 'Patrick', 'Squidward']
elements = { 3 => 'lithium', 7 => 'carbon', 5 => 'boron' }

print "Name:\t", name, "\nRating:\t", rating, "\n"
print "Characters:\t#{characters}\n"
print "Elements:\t#{elements}\n\n"

element_names = elements.values.sort!.map(&:upcase).join(', ")
print "Element names:\t", element_names, "\n\n"

elements.each do |key, value]|
print "Atomic number #{key} is #{value}.\n"
end

The output is as follows:

Hello, world!

Name: Gwen

Rating: 10

Characters: ["SpongeBob", "Patrick", "Squidward"]
Elements: {3=>"1lithium", 7=>"carbon", 5=>"boron"}

Element names: BORON, CARBON, LITHIUM

Atomic number 3 is lithium.
Atomic number 7 is carbon.
Atomic number 5 is boron.

Like Python, Ruby uses brackets to delimit arrays and curly braces to delimit dic-
tionary literals. (Ruby calls them “hashes”) The => operator separates each hash
key from its corresponding value, and the key/value pairs are separated from each
other by commas. Ruby does not have tuples.

Ruby’s print is a function (or more accurately, a global method), just like that of
Python 3. However, if you want newlines, you must specify them explicitly.?? In
addition, the parentheses normally seen around the arguments of function calls
are optional in Ruby. Developers don’t normally include them unless they help to
clarify or disambiguate the code. (Note that some of these calls to print do include
multiple arguments separated by commas.)

There’s also a puts function that adds newlines for you, but it's perhaps a bit too smart. If you try to
add an extra newline of your own, puts won't insert its own newline.

23.

24.

Ruby programming 225

In several cases, we've used #{} brackets to interpolate the values of variables into
double-quoted strings. Such brackets can contain arbitrary Ruby code; whatever
value the code produces is automatically converted to string type and inserted into
the outer string. You can also concatenate strings with the + operator, but interpo-
lation is typically more efficient.

The line that calculates element_names illustrates several more Ruby tropes:
element_names = elements.values.sort!.map(&:upcase).join(', ")

This is a series of method calls, each of which operates on the result returned by the
previous method, much like a series of pipes in the shell. For example, elements’
values method produces an array of strings, which sort! then orders alphabetically.”
This array’s map method calls the upcase method on each element, then reassem-
bles all the results back into a new array. Finally, join concatenates the elements of
that array, interspersed with commas, to produce a string.

Blocks

In the code on page 224, the text between do and end is a block, also commonly
known in other languages as a lambda function, a closure, or an anonymous function:*

elements.each do |key, value]
print "Atomic number #{key} is #{value}.\n"
end

This particular block takes two arguments, which it calls key and value. It prints
the values of both.

each looks like it might be a language feature, but it’s just a method defined by hashes.
each accepts the block as an argument and calls it once for each key/value pair the
hash contains. This type of iteration function used in combination with a block is
highly characteristic of Ruby code. each is the standard name for generic iterators,
but many classes define more specific versions such as each_line or each_character.

Ruby has a second syntax for blocks that uses curly braces instead of do...end as
delimiters. It means exactly the same thing, but it looks more at home as part of
an expression. For example,

characters.map {|c| c.reverse} # ["boBegnopS", "kcirtaP", "drawdiugS"]

This form is functionally identical to characters.map(&:reverse), but instead of
just telling map what method to call, we included an explicit block that calls the
reverse method.

The bang at the end of sort! warns you that there’s something to be wary of when using this meth-
od. It isn't significant to Ruby; it’s just part of the method’s name. In this case, the issue of note is that
sort! sorts the array in place. There’s also a sort method (without the !) that returns the elements in a
new, sorted array.

Ruby actually has three entities of this general type, known as blocks, procs, and lambdas. The differ-
ences among them are subtle and not important for this overview.

226

Chapter 7 Scripting and the Shell

The value of a block is the value of the last expression it evaluates before complet-
ing. Conveniently, pretty much everything in Ruby is an expression (meaning “a
piece of code that can be evaluated to produce a value”), including control struc-
tures such as case (analogous to what most languages call switch) and if-else.
The values of these expressions mirror the value produced by whichever case or
branch was activated.

Blocks have many uses other than iteration. They let a single function perform both
setup and takedown procedures on behalf of another section of code, so they often
represent multi-step operations such as database transactions or filesystem operations.

For example, the following code opens the /etc/passwd file and prints out the line
that defines the root account:

open '/etc/passwd', 'r' do |file]
file.each_line do |line|
print line if line.start_with? 'root:'
end
end

The open function opens the file and passes its IO object to the outer block. Once
the block has finished running, open automatically closes the file. There’s no need
for a separate close operation (although it does exist if you want to use it), and the
file is closed no matter how the outer block terminates.

The postfix if construct used here might be familiar to those who have used Perl. It's
a nice way to express simple conditionals without obscuring the primary action. Here,
it’s clear at a glance that the inner block is a loop that prints out some of the lines.

In case the structure of that print line is not clear, here it is again with the optional
parentheses included. The if has the lowest precedence, and it has a single meth-
od call on either side:

print(line) if line.start_with?('root:')

As with the sort! method we saw on page 225, the question mark is just a naming
convention for methods that return Boolean values.

The syntax for defining a named function is slightly different from that for a block:

def show_usage(msg = nil)
STDERR.puts msg if msg
STDERR.puts "Usage: #{%$0} filename ..."
exit 1

end

The parentheses are still optional, but in practice, they are always shown in this con-
text unless the function takes no arguments. Here, the msg argument defaults to nil.

The global variable $0 is magic and contains the name by which the current program
was invoked. (Traditionally, this would be the first argument of the argv array. But
the Ruby convention is that ARGV contains only actual command-line arguments.)

Ruby programming 227

As in C, you can treat non-Boolean values as if they were Booleans, as illustrated
here in the form of if msg. The Ruby mapping for this conversion is a bit unusual,
though: everything except nil and false counts as true. In particular, 0 is true. (In
practice, this usually ends up being what you want.)

Symbols and option hashes

Ruby makes extensive use of an uncommon data type called a symbol, denoted with
a colon, e.g., :example. You can think of symbols as immutable strings. They’re
commonly used as labels or as well-known hash keys. Internally, Ruby implements
them as numbers, so they’re fast to hash and compare.

Symbols are so commonly used as hash keys that Ruby 2.0 defined an alternative
syntax for hash literals to reduce the amount of punctuation clutter. The standard-
form hash

h = { :animal => 'cat', :vegetable => 'carrot', :mineral => 'zeolite' }
can be written in Ruby 2.0 style as
h = { animal: 'cat', vegetable: 'carrot', mineral: 'zeolite' }

Outside of this hash literal context, symbols retain their : prefixes wherever they
appear in the code. For example, here’s how to get specific values back out of a hash:

healthy_snack = h[:vegetable] # 'carrot'

Ruby has an idiosyncratic but powerful convention for handling options in function
calls. If a called function requests this behavior, Ruby collects trailing function-call
arguments that resemble hash pairs into a new hash. It then passes that hash to the
function as an argument. For example, in the Rails expression

file_field_tag :upload, accept: 'application/pdf', id: 'commentpdf'

the file_field_tag receives only two arguments: the :upload symbol, and a hash
containing the keys :accept and :id. Because hashes have no inherent order, it
doesn’t matter in what order the options appear.

This type of flexible argument processing is a Ruby standard in other ways, too.
Ruby libraries, including the standard library, generally do their best to accept the
broadest possible range of inputs. Scalars, arrays, and hashes are often equally valid
arguments, and many functions can be called with or without blocks.

Regular expressions in Ruby

Unlike Python, Ruby has a little bit of language-side sugar to help you deal with
regular expressions. Ruby supports the traditional /.../ notation for regular ex-
pression literals, and the contents can include #{} escape sequences, much like
double-quoted strings.

228

Chapter 7 Scripting and the Shell

Ruby also defines the =~ operator (and its negation, !~) to test for a match between
a string and a regular expression. It evaluates either to the index of the first match
or to nil if there is no match.

"Hermann Hesse" =~ /H[aeiou]/ #=>0

To access the components of a match, explicitly invoke the regular expression’s
match method. It returns either nil (if no match) or an object that can be accessed
as an array of components.

if m = /(AH\w*)\s/.match("Heinrich Hoffmeyer headed this heist")
puts m[0O] # 'Heinrich'
end

Here’s a look at a Ruby version of the dwarf-suit example from page 222:

suits = {
Bashful: 'yellow', Sneezy: 'brown', Doc: 'orange', Grumpy: 'red',
Dopey: 'green', Happy: 'blue', Sleepy: 'taupe'

}

abort "Usage: #{$0} pattern" unless ARGV.size ==
pat = /(#{ARGV[0]})/

matches = suits.lazy.select {|dwarf, color| pat =~ dwarf || pat =~ color}

if matches.any?
dwarf, color = matches.first
print "%s\'s dwarf suit is %s.\n" %
[dwarf.to_s.sub(pat, '_\1_"'), color.sub(pat, "_\1_")]
else
print "No dwarves or dwarf suits matched the pattern.\n"
end

The select method on a collection creates a new collection that includes only the
elements for which the supplied block evaluates to true. In this case, matches is a
new hash that includes only pairs for which either the key or the value matches the
search pattern. Since we made the starting hash lazy, the filtering won’t actually
occur until we try to extract values from the result. In fact, this code checks only
as many pairs as are needed to find a match.

Did you notice that the =~ pattern-matching operator was used on the symbols
that represent the dwarves’ names? It works because =~ is smart enough to con-
vert the symbols to strings before matching. Unfortunately, we have to perform the
conversion explicitly (with the to_s method) when applying the substitution pat-
tern; sub is only defined on strings, so we need a real, live string on which to call it.

Note also the parallel assignment of dwarf and color. matches.first returns a
two-element array, which Ruby automatically unpacks.

7.7

Library and environment management for Python and Ruby 229

The % operator for strings works similarly to the same operator in Python,; it’s the
Ruby version of sprintf. Here there are two components to fill in, so we pass in the
values as a two-element array.

Ruby as a filter

You can use Ruby without a script by putting isolated expressions on the command
line. This is an easy way to do quick text transformations (though truth be told, Perl
is still much better at this role).

Use the -p and -e command-line options to loop through STDIN, run a simple
expression on each line (represented as the variable $_), and print the result. For
example, the following command translates /etc/passwd to upper case:

$ ruby -pe '$_.tr!("a-z", "A-Z")' /etc/passwd
NOBODY:*:-2:-2:UNPRIVILEGED USER:/VAR/EMPTY:/USR/BIN/FALSE
ROOT:*:0:0:SYSTEM ADMINISTRATOR:/VAR/ROOT:/BIN/SH

ruby -a turns on autosplit mode, which separates input lines into fields that are
stored in the array named $F. Whitespace is the default field separator, but you can
set another separator pattern with the -F option.

Autosplit is handy to use in conjunction with -p or its nonautoprinting variant, -n.
The command below uses ruby -ane to produce a version of the passwd file that
includes only usernames and shells.

$ ruby -F: -ane 'print $F[0], ":", $F[-1]" /etc/passwd
nobody:/usr/bin/false
root:/bin/sh

The truly intrepid can use -i in conjunction with -pe to edit files in place; Ruby reads
in the files, presents their lines for editing, and saves the results out to the original
files. You can supply a pattern to -i that tells Ruby how to back up the original ver-
sion of each file. For example, -i.bak backs up passwd as passwd.bak. Beware—if
you don’t supply a backup pattern, you don't get backups at all. Note that there’s no
space between the -i and the suffix.

LIBRARY AND ENVIRONMENT MANAGEMENT FOR PYTHON AND RUBY

Languages have many of the same packaging and version control issues that oper-
ating systems do, and they often resolve them in analogous ways. Python and Ruby
are similar in this area, so we discuss them together in this section.

Finding and installing packages

The most basic requirement is some kind of easy and standardized way to discov-
er, obtain, install, update, and distribute add-on software. Both Ruby and Python

230

Chapter 7 Scripting and the Shell

have centralized warehouses for this purpose, Ruby’s at rubygems.org and Python’s
at pypi.python.org.

In the Ruby world, packages are called “gems,” and the command that wrangles
them is called gem as well. gem search regex shows the available gems with match-
ing names, and gem install gem-name downloads and installs a gem. You can use
the --user-install option to install a private copy instead of modifying the system’s
complement of gems.

The Python equivalent is called pip (or pip2 or pip3, depending on which Python
versions are installed). Not all systems include pip by default. Those that don’t typ-
ically make it available as a separate (OS-level) package. As with gem, pip search
and pip install are the mainstay commands. A --user option installs packages into
your home directory.

Both gem and pip understand dependencies among packages, at least at a basic
level. When you install a package, youre implicitly asking for all the packages it
depends on to be installed as well (if they are not already present).

In a basic Ruby or Python environment, only a single version of a package can be
installed at once. If you reinstall or upgrade a package, the old version is removed.

You often have the choice to install a gem or pip package through the standard
language mechanism (gem or pip) or through an OS-level package that’s stocked
in your vendor’s standard repository. OS packages are more likely to be installed
and run without issues, but they are less likely to be up to date. Neither option is
clearly superior.

Creating reproducible environments

Programs, libraries, and languages develop complex webs of dependencies as they
evolve together over time. A production-level server might depend on tens or hun-
dreds of these components, each of which has its own expectations about the in-
stallation environment. How do you identify which combination of library versions
will create a harmonious environment? How do you make sure the configuration
you tested in the development lab is the same one that gets deployed to the cloud?
More basically, how do you make sure that managing all these parts isn't a big hassle?

Both Python and Ruby have a standardized way for packages to express their de-
pendencies. In both systems, package developers create a text file at the root of
the project that lists its dependencies. For Ruby, the file is called Gemfile, and for
Python, requirements.txt. Both formats support flexible version specifications for
dependencies, so it’s possible for packages to declare that they’re compatible with
“any release of simplejson version 3 or higher” or “Rails 3, but not Rails 4” It’s also
possible to specify an exact version requirement for any dependency.

Both file formats allow a source to be specified for each package, so dependencies
need not be distributed through the language’s standard package warehouse. All
common sources are supported, from web URLs to local files to GitHub repositories.

http://rubygems.org
http://pypi.python.org

Library and environment management for Python and Ruby 231

You install a batch of Python dependencies with pip install -r requirements.txt.
Although pip does a fine job of resolving individual version specifications, it’s un-
fortunately not able to solve complex dependency relationships among packages on
its own. Developers sometimes have to tweak the order in which packages are men-
tioned in the requirements.txt file to achieve a satisfactory result. It’s also possible,
though uncommon, for new package releases to disturb the version equilibrium.

pip freeze prints out Python’s current package inventory in requirements.txt for-
mat, specifying an exact version for each package. This feature can be helpful for
replicating the current environment on a production server.

In the Ruby world, gem install -g Gemfile is a fairly direct analog of pip -r. In most
circumstances, though, it’s better to use the Bundler gem to manage dependencies.
Run gem install bundler to install it (if it's not already on the system), then run
bundle install from the root directory of the project you're setting up.®

Bundler has several nice tricks up its sleeve:

« It does true recursive dependency management, so if there’s a set of gems
that are mutually compatible and that satisfy all constraints, Bundler can
find it without help.

« It automatically records the results of version calculations in a file called
Gemfile.lock. Maintaining this context information lets Bundler handle
updates to the Gemlfile conservatively and efficiently. Bundler modifies only
the packages it needs to when migrating to a new version of the Gemfile.

« Because Gemfile.lock is sticky in this way, running bundle install on a
deployment server automatically reproduces the package environment
found in the development environment.*

« In deployment mode (bundle install --deployment), Bundler installs
missing gems into the local project directory, helping isolate the project
from any future changes to the system’s package complement. You can
then use bundle exec to run specific commands within this hybrid gem
environment.”’

Multiple environments

pip and bundle handle dependency management for individual Python and Ruby
programs, but what if two programs on the same server have conflicting require-
ments? Ideally, every program in a production environment would have its own
library environment that was independent of the system and of all other programs.

25. Ruby gems can include shell-level commands. They don’t typically have man pages, though; run

bundle help for details, or see bundler.io for complete documentation.

26. Or at least, that’s the default behavior. Its easy to specify different requirements for development and

deployment environments in the Gemfile if you need to.

27. Some software packages, such as Rails, are Bundler-aware and will use the locally installed packages

even without a bundle exec command.

http://bundler.io

232

28.

o]

Chapter 7 Scripting and the Shell

virtualenv: virtual environments for Python

Python’s virtualenv package creates virtual environments that live within their own
directories.”® After installing the package, just run the virtualenv command with a
pathname to set up a new environment:

$ virtualenv myproject
New python executable in /home/ulsah/myproject/bin/python
Installing setuptools, pip, wheel...done.

Each virtual environment has a bin/ directory that includes binaries for Python
and PIP. When you run one of those binaries, youre automatically placed in the
corresponding virtual environment. Install packages into the environment as usual
by running the virtual environment’s copy of pip.

To start a virtualized Python program from cron or from a system startup script,
explicitly specify the path to the proper copy of python. (Alternatively, put the path
in the script’s shebang line.)

When working interactively in the shell, you can source a virtual environment’s
bin/activate script to set the virtual environment’s versions of python and pip as
the defaults. The script rearranges your shell's PATH variable. Use deactivate to
leave the virtual environment.

Virtual environments are tied to specific versions of Python. At the time a virtual
environment is created, you can set the associated Python binary with virtualenv’s
--python option. The Python binary must already be installed and functioning.

RVM: the Ruby enVironment Manager

Things are similar in the Ruby world, but somewhat more configurable and more
complicated. You saw on page 231 that Bundler can cache local copies of Ruby
gems on behalf of a specific application. This is a reasonable approach when mov-
ing projects into production, but it isn’t so great for interactive use. It also assumes
that you want to use the system’s installed version of Ruby.

Those who want a more general solution should investigate RVM, a complex and
rather unsightly environment virtualizer that uses a bit of shell hackery. To be fair,
RVM is an extremely polished example of the “unsightly hack” genus. In practice,
it works smoothly.

RVM manages both Ruby versions and multiple gem collections, and it lets you
switch among all these on the fly. For example, the command

$ rvm ruby-2.3.0@ulsah

As with other Python-related commands, there are numeric-suffixed versions of the virtualenv com-
mand that go with particular Python versions.

29.

Library and environment management for Python and Ruby 233

activates Ruby version 2.3.0 and the gemset called ulsah. References to ruby or gem
now resolve to the specified versions. This magic also works for programs installed
by gems, such as bundle and rails. Best of all, gem management is unchanged; just
use gem or bundle as you normally would, and any newly installed gems automat-
ically end up in the right place.

RVM’s installation procedure involves fetching a Bash script from the web and ex-
ecuting it locally. Currently, the commands are

$ curl —o /tmp/install -sSL https://get.rvm.io
$ sudo bash /tmp/install stable

but check rvm.io for the current version and a cryptographic signature.” Be sure to
install with sudo as shown here; if you don’t, RVM sets up a private environment in
your home directory. (That works fine, but nothing on a production system should
refer to your home directory.) You’ll also need to add authorized RVM users to the
rvm UNIX group.

After the initial RVM installation, don’t use sudo when installing gems or changing
RVM configurations. RVM controls access through membership in the rvm group.

Under the covers, RVM does its magic by manipulating the shell’s environment
variables and search path. Ergo, it has to be invited into your environment like a
vampire by running some shell startup code at login time. When you install RVM
at the system level, RVM drops an rvm.sh scriptlet with the proper commands
into /etc/profile.d. Some shells automatically run this stub. Those that don't just
need an explicit source command, which you can add to your shell’s startup files:

source /etc/profile.d/rvm.sh

RVM doesn’t modify the system’s original Ruby installation in any way. In partic-
ular, scripts that start with a

#!/usr/bin/ruby

shebang continue to run under the system’s default Ruby and to see only system-in-
stalled gems. The following variant is more liberal:

#!/usr/bin/env ruby
It locates the ruby command according to the RVM context of the user that runs it.

rvm install installs new versions of Ruby. This RVM feature makes it quite painless

to install different versions of Ruby, and it should generally be used in preference

to your OS’s native Ruby packages, which are seldom up to date. rvm install down-
loads binaries if they are available. If not, it installs the necessary OS packages and

then builds Ruby from source code.

Also see page 24 for some comments on why our example commands don’t exactly match RVM’s
recommendations.

http://rvm.io

234 Chapter 7 Scripting and the Shell

Here’s how we might set up for deployment a Rails application known to be com-
patible with Ruby 2.2.1:

$ rvm install ruby-2.2.1

Searching for binary rubies, this might take some time.

No binary rubies available for: ubuntu/15.10/x86_64/ruby-2.2.1.

Continuing with compilation. Please read 'rvm help mount' to get more
information on binary rubies.

Checking requirements for ubuntu.

Installing required packages: gawk, libreadline6-dev, zliblg-dev,
libncurses5-dev, automake, libtool, bison, libffi-dev......covvvunnn.

Requirements installation successful.

Installing Ruby from source to: /usr/local/rvm/rubies/ruby-2.2.1, this
may take a while depending on your cpu(s)...

If you installed RVM as described above, the Ruby system is installed underneath
/usr/local/rvm and is accessible to all accounts on the system.

Use rvm list known to find out which versions of Ruby RVM knows how to down-
load and build. Rubies shown by rvm list have already been installed and are avail-
able for use.

$ cd myproject.rails

$ rvm ruby-2.2.1@myproject —--create —-default —-ruby-version
ruby-2.2.1 - #gemset created /usr/local/rvm/gems/ruby-2.2.1@myproject
ruby-2.2.1 - #generating myproject wrappers..........

$ gem install bundler

Fetching: bundler-1.11.2.gem (100%)

Successfully installed bundler-1.11.2

1 gem installed

$ bundle

Fetching gem metadata from https://rubygems.org/...........
Fetching version metadata from https://rubygems.org/...
Fetching dependency metadata from https://rubygems.org/..
Resolving dependencies......

The ruby-2.2.1@myproject line specifies both a Ruby version and a gemset. The
--create flag creates the gemset if it doesn’t already exist. --default makes this com-
bination your RVM default, and --ruby-version writes the names of the Ruby in-
terpreter and gemset to .ruby-version and .ruby-gemset in the current directory.

If the .*-version files exist, RVM automatically reads and honors them when deal-
ing with scripts in that directory. This feature allows each project to specify its
own requirements and frees you from the need to remember what goes with what.

To run a package in its requested environment (as documented by .ruby-version
and .ruby-gemset), run the command

rvm in /path/to/dir do startup-cmd startup-arg ...

See page 1106 for
more information
about DevOps.

7.8

30.

Revision control with Git 235

This is a handy syntax to use when running jobs out of startup scripts or cron. It
doesn’t depend on the current user having set up RVM or on the current user’s
RVM configuration.

Alternatively, you can specify an explicit environment for the command, as in
rvm ruby-2.2.1@myproject do startup-cmd startup-arg ...

Yet a third option is to run a ruby binary from within a wrapper maintained by
RVM for this purpose. For example, running

Jusr/local/rvm/wrappers/ruby-2.2.1@myproject/ruby ...

automatically transports you into the Ruby 2.2.1 world with the myproject gemset.

REVISION CONTROL WITH GIT

Mistakes are a fact of life. It's important to keep track of configuration and code
changes so that when these changes cause problems, you can easily revert to a
known-good state. Revision control systems are software tools that track, archive,
and grant access to multiple revisions of files.

Revision control systems address several problems. First, they define an organized
way to trace the history of modifications to a file such that changes can be under-
stood in context and so that earlier versions can be recovered. Second, they extend
the concept of versioning beyond the level of individual files. Related groups of
files can be versioned together, taking into account their interdependencies. Fi-
nally, revision control systems coordinate the activities of multiple editors so that
race conditions cannot cause anyone’s changes to be permanently lost* and so that
incompatible changes from multiple editors do not become active simultaneously.

By far the most popular system in use today is Git, created by the one and only Li-
nus Torvalds. Linus created Git to manage the Linux kernel source code because of
his frustration with the version control systems that existed at the time. It is now as
ubiquitous and influential as Linux. It’s difficult to tell which of Linus’s inventions
has had a greater impact on the world.

Most modern software is developed with help from Git, and as result, adminis-
trators encounter it daily. You can find, download, and contribute to open source
projects on GitHub, GitLab, and other social development sites. You can also use
Git to track changes to scripts, configuration management code, templates, and any
other text files that need to be tracked over time. We use Git to track the contents
of this book. It’s well suited to collaboration and sharing, making it an essential tool
for sites that embrace DevOps.

For example, suppose that sysadmins Alice and Bob both edit the same file and that each makes some
changes. Alice saves first. When Bob saves his copy of the file, it overwrites Alice’s version. If Alice
has quit from the editor, her changes are completely gone and unrecoverable.

236

Chapter 7 Scripting and the Shell

Git’s shtick is that it has no distinguished central repository. To access a repository,
you clone it (including its entire history) and carry it around with you like a her-
mit crab lugging its shell. Your commits to the repository are local operations, so
they’re fast and you don’t have to worry about communicating with a central server.
Git uses an intelligent compression system to reduce the cost of storing the entire
history, and in most cases this system is quite effective.

Git is great for developers because they can pile their source code onto a laptop
and work without being connected to a network while still reaping all the benefits
of revision control. When the time comes to integrate multiple developers’ work,
their changes can be integrated from one copy of the repository to another in any
fashion that suits the organization’s workflow. It’s always possible to unwind two
copies of a repository back to their common ancestor state, no matter how many
changes and iterations have occurred after the split.

Git’s use of a local repository is a big leap forward in revision control—or perhaps
more accurately, it’s a big leap backward, but in a good way. Early revision control
systems such as RCS and CVS used local repositories but were unable to handle
collaboration, change merging, and independent development. Now we’ve come
full circle to a point where putting files under revision control is once again a fast,
simple, local operation. At the same time, all Git’s advanced collaboration features
are available for use in situations that require them.

Git has hundreds of features and can be quite puzzling in advanced use. However,
most Git users get by with only a handful of simple commands. Special situations
are best handled by searching Google for a description of what you want to do (e.g.,

“git undo last commit”). The top result is invariably a Stack Overflow discussion
that addresses your exact situation. Above all, don’t panic. Even if it looks like you
screwed up the repository and deleted your last few hours of work, Git very likely
has a copy stashed away. You just need the reflog fairy to go and fetch it.

Before you start using Git, set your name and email address:

$ git config ——global user.name "John Q. Ulsah"
$ git config ——global user.email "ulsah@admin.com"

These commands create the ini-formatted Git config file ~/.gitconfig if it doesn't
already exist. Later git commands look in this file for configuration settings. Git
power users make extensive customizations here to match their desired workflow.

A simple Git example

We've contrived for you a simple example repository for maintaining some shell
scripts. In practice, you can use Git to track configuration management code, infra-
structure templates, ad hoc scripts, text documents, static web sites, and anything
else you need to work on over time.

mailto:"ulsah@admin.com"

Revision control with Git 237

The following commands create a new Git repository and populate its baseline:

$ pwd

/home/bwhaley

$ mkdir scripts && cd scripts

$ git init

Initialized empty Git repository in /home/bwhaley/scripts/.git/
$ cat > super-script.sh << EOF

> #!/bin/sh

> echo "Hello, world"

> EOF

$ chmod +x super-script.sh

$ git add .

$ git commit -m "Initial commit"

[master (root-commit) 9a4d90c] super-script.sh
1 file changed, O insertions(+), O deletions(-)
create mode 100755 super-script.sh

In the sequence above, git init creates the repository’s infrastructure by creating a
.git directory in /home/bwhaley/scripts. Once you set up an initial “hello, world”
script, the command git add . copies it to Git’s “index,” which is a staging area for
the upcoming commit.

>

The index is a not just a list of files to commit; it’s a bona fide file tree that's every bit
as real as the current working directory and the contents of the repository. Files in
the index have contents, and depending on what commands you run, those contents
may end up being different from both the repository and the working directory. git
add really just means “cp from the working directory to the index”

git commit enters the contents of the index into the repository. Every commit needs
a log message. The -m flag lets you include the message on the command line. If
you leave it out, git starts up an editor for you.

Now make a change and check it into the repository.

$ vi super-script.sh

$ git commit super-script.sh -m "Made the script more super"
[master 67514f1] Made the script more super

1 file changed, 1 insertions(+), O deletions(-)

Naming the modified files on the git commit command line bypasses Git’s normal
use of the index and creates a revision that includes only changes to the named
files. The existing index remains unchanged, and Git ignores any other files that
may have been modified.

If a change involves multiple files, you have a couple of options. If you know exactly
which files were changed, you can always list them on the command line as shown
above. If you're lazy, you can run git commit -a to make Git add all modified files to
the index before doing the commit. This last option has a couple of pitfalls, however.

238

Chapter 7 Scripting and the Shell

First, there may be modified files that you don’t want to include in the commit. For
example, if super-script.sh had a config file and you had modified that config file for
debugging, you might not want to commit the modified file back to the repository.

The second issue is that git commit -a picks up only changes to files that are cur-
rently under revision control. It does not pick up new files that you may have cre-
ated in the working directory.

For an overview of Git’s state, you can run git status. This command informs you
of new files, modified files, and staged files all at once. For example, suppose that
you added more-scripts/another-script.sh. Git might show the following:

$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: super-script.sh

Untracked files:
(use "git add <file>..." to include in what will be committed)

more-scripts/
tmpfile

no changes added to commit (use "git add" and/or "git commit -a")

another-script.sh is not listed by name because Git doesn’t yet see beneath the
more-scripts directory that contains it. You can see that super-script.sh has been
modified, and you can also see a spurious tmpfile that probably shouldn't be in-
cluded in the repository. You can run git diff super-script.sh to see the changes
made to the script. git helpfully suggests commands for the next operations you
may want to perform.

Suppose you want to track the changes to super-script.sh separately from your
new another-script.sh.

$ git commit super-script.sh —-m "The most super change yet"
Created commit 6f7853c: The most super change yet
1 files changed, 1 insertions(+), O deletions(-)

To eradicate tmpfile from Git’s universe, create or edit a .gitignore file and put
the filename inside it. This makes Git ignore the tmpfile now and forever. Patterns
work, too.

$ echo tmpfile >> .gitignore

Revision control with Git 239

Finally, commit all the outstanding changes:

$ git add .

$ sudo git commit -m "Ignore tmpfile; Add another-script.sh to the repo"
Created commit 32978e6: Ignore tmpfile; add another-script.sh to the repo
2 files changed, 2 insertions(+), O deletions(-)

create mode 100644 .gitignore

create mode 100755 more-scripts/another-script.sh

Note that the .gitignore file itself becomes part of the managed set of files, which is
usually what you want. It’s fine to re-add files that are already under management,
so gitadd . is an easy way to say “I want to make the new repository image look like
the working directory minus anything listed in .gitignore” You couldn’t just do a git
commit -a in this situation because that would pick up neither another-script.sh
nor .gitignore; these files are new to Git and so must be explicitly added.

Git caveats

In an effort to fool you into thinking that it manages files’ permissions as well as
their contents, Git shows you file modes when adding new files to the repository.
It’s lying; Git does not track modes, owners, or modification times.

Git does track the executable bit. If you commit a script with the executable bit set,
any future clones will also be executable. But don’t expect Git to track ownership
or read-only status. A corollary is that you can’t count on using Git to recover com-
plex file hierarchies in situations where ownerships and permissions are important.

Another corollary is that you should never include plain text passwords or other
secrets in a Git repository. Not only are they open to inspection by anyone with
access to the repository, but they may also be inadvertently unpacked in a form
that’s accessible to the world.

Social coding with Git

The emergence and rapid growth of social development sites such as GitHub and
GitLab is one of the most important trends in recent computing history. Millions
of open source software projects are built and managed transparently by huge com-
munities of developers who use every conceivable language. Software has never
been easier to create and distribute.

GitHub and GitLab are, in essence, hosted Git repositories with a lot of added fea-
tures that relate to communication and workflow. Anyone can create a repository.
Repositories are accessible both through the git command and on the web. The web
Ul is friendly and offers features to support collaboration and integration.

240

Chapter 7 Scripting and the Shell

The social coding experience can be somewhat intimidating for neophytes, but in
fact it isn’t complicated once some basic terms and methodology are understood.

« “master” is the default name assigned to the first branch in a new repository.
Most software projects use this default as their main line of development,
although some may not have a master branch at all. The master branch is
usually managed to contain current but functional code; bleeding-edge
development happens elsewhere. The latest commit is known as the tip
or head of the master branch.

« On GitHub, a fork is a snapshot of a repository at a specific point in time.
Forks happen when a user doesn’t have permission to modify the main
repository but wants to make changes, either for future integration with
the primary project or to create an entirely separate development path.

o A pull request is a request to merge changes from one branch or fork to
another. They’re read by the maintainers of the target project and can be
accepted to incorporate code from other users and developers. Every pull
request is also a discussion thread, so both principals and kibitzers can
comment on prospective code updates.

« A committer or maintainer is an individual who has write access to a
repository. For large open source projects, this highly coveted status is
given only to trusted developers who have a long history of contributions.

You'll often land in a GitHub or GitLab repository when trying to locate or update
a piece of software. Make sure you're looking at the trunk repository and not some
random person’s fork. Looked for a “forked from” indication and follow it.

Be cautious when evaluating new software from these sites. Below are a few ques-
tions to ponder before rolling out a random piece of new software at your site:

« How many contributors have participated in development?

« Does the commit history indicate recent, regular development?

« What is the license, and is it compatible with your organization’s needs?
« What language is the software written in, and do you know how to manage it?
o Is the documentation complete enough for effective use of the software?

Most projects have a particular branching strategy that they rely on to track changes
to the software. Some maintainers insist on rigorous enforcement of their chosen
strategy, and others are more lenient. One of the most widely used is the Git Flow
model developed by Vincent Driessen; see goo.gl/GDaF for details. Before con-
tributing to a project, familiarize yourself with its development practices to help
out the maintainers.

Above all, remember that open source developers are often unpaid. They appreciate
your patience and courtesy when engaging through code contributions or opening
support issues.

http://goo.gl/GDaF

79

Recommended reading 241

RECOMMENDED READING

BrROOKS, FREDERICK P, JR. The Mythical Man-Month: Essays on Software Engineer-
ing. Reading, MA: Addison-Wesley, 1995.

CHACON, SCOTT, AND STRAUB, BEN. Pro Git, 2nd edition. 2014. git-scm.com/book/en/v2
The complete Pro Git book, released for free under a Creative Commons license.

Shells and shell scripting

RoBBINS, ARNOLD, AND NELSON H. E. BEEBE. Classic Shell Scripting. Sebastopol, CA:
O'Reilly Media, 2005. This book addresses the traditional (and portable) Bourne
shell dialect. It also includes quite a bit of good info on sed and awk.

POWERS, SHELLEY, JERRY PEEK, TiM O’REILLY, AND MIKE LOUKIDES. Unix Power
Tools, (3rd Edition), Sebastopol, CA: O’Reilly Media, 2002. This classic UNIX book
covers a lot of ground, including sh scripting and various feats of command-line-fu.
Some sections are not aging gracefully, but the shell-related material remains relevant.

SOBELL, MARK G. A Practical Guide to Linux Commands, Editors, and Shell Pro-
gramming. Upper Saddle River, NJ: Prentice Hall, 2012. This book is notable for its
inclusion of tcsh as well as bash.

SHOTTS, WILLIAM E., JR. The Linux Command Line: A Complete Introduction. San
Francisco, CA: No Starch Press, 2012. This book is specific to bash, but it’s a nice
combination of interactive and programming material, with some extras thrown
in. Most of the material is relevant to UNIX as well as Linux.

BruM, RICHARD, AND CHRISTINE BRESNAHAN. Linux Command Line and Shell
Scripting Bible (3rd Edition). Indianapolis, IN: John Wiley & Sons, Inc. 2015. This
book focuses a bit more specifically on the shell than does the Shotts book, though
it’s also bash-specific.

CoOPER, MENDEL. Advanced Bash-Scripting Guide. www.tldp.org/LDP/abs/html.
A free and very good on-line book. Despite the title, it’s safe and appropriate for
those new to bash as well. Includes lots of good example scripts.

Regular expressions
FRIEDL, JEFFREY. Mastering Regular Expressions (3rd Edition), Sebastopol, CA:
O'Reilly Media, 2006.

GOYVAERTS, JAN, AND STEVEN LEVITHAN. Regular Expressions Cookbook. Sebasto-
pol, CA: O’Reilly Media, 2012.

GOYVAERTS, JAN. regular-expressions.info. A detailed on-line source of information
about regular expressions in all their various dialects.

KrumiNs, PETERIS. Perl One-Liners: 130 Programs That Get Things Done. San Fran-
cisco, CA: No Starch Press, 2013.

http://git-scm.com/book/en/v2
http://www.tldp.org/LDP/abs/html
http://regular-expressions.info

242

Chapter 7 Scripting and the Shell

Python

SWEIGART, AL. Automate the Boring Stuff with Python: Practical Programming for
Total Beginners. San Francisco, CA: No Starch Press, 2015. This is an approachable
introductory text for Python 3 and programming generally. Examples include com-
mon administrative tasks.

P1LGRIM, MARK. Dive Into Python. Berkeley, CA: Apress, 2004. This classic book
on Python 2 is also available for free on the web at diveintopython.net.

P1LGRrIM, MARK. Dive Into Python 3. Berkeley, CA: Apress, 2009. Dive Into Python
updated for Python 3. Also available to read free on the web at diveintopython3.net.

Ramarno, LuciaNo. Fluent Python. Sebastopol, CA: O’Reilly Media, 2015. Ad-
vanced, idiomatic Python 3.

BEAZLEY, DAVID, AND BRIAN K. JONES. Python Cookbook (3rd Edition), Sebastopol,
CA: O’Reilly Media, 2013. Covers Python 3.

GIFT, NoAH, AND JEREMY M. JONES. Python for Unix and Linux System Adminis-
trators, Sebastopol, CA: O’'Reilly Media, 2008.

Ruby

FLANAGAN, DAVID, AND YUKIHIRO MATSUMOTO. The Ruby Programming Language.
Sebastopol, CA: O'Reilly Media, 2008. This classic, concise, and well-written summa-
ry of Ruby comes straight from the horse’s mouth. It’s relatively matter-of-fact and
does not cover Ruby 2.0 and beyond; however, the language differences are minor.

Brack, Davip A. The Well-Grounded Rubyist (2nd Edition). Shelter Island, NY:
Manning Publications, 2014. Don't let the title scare you off if you don’t have prior
Ruby experience; this is a good, all-around introduction to Ruby 2.1.

THOMAS, DAVE. Programming Ruby 1.9 & 2.0: The Pragmatic Programmer’s Guide
(4th Edition). Pragmatic Bookshelf, 2013. Classic and frequently updated.

Furron, HAL. The Ruby Way: Solutions and Techniques in Ruby Programming (3rd
Edition). Upper Saddle River, NJ: Addison-Wesley, 2015. Another classic and up-
to-date guide to Ruby, with a philosophical bent.

http://diveintopython.net
http://diveintopython3.net

8 User Management

w - URBRARLE N I s tay vy,

¢
H
s

Modern computing environments span physical hardware, cloud systems, and virtual
hosts. Along with the flexibility of this hybrid infrastructure comes an increasing
need for centralized and structured account management. System administrators
must understand both the traditional account model used by UNIX and Linux and
the ways in which this model has been extended to integrate with directory services
such as LDAP and Microsoft’s Active Directory.

Account hygiene is a key determinant of system security. Infrequently used accounts
are prime targets for attackers, as are accounts with easily guessed passwords. Even
if you use your system’s automated tools to add and remove users, it’s important to
understand the changes the tools are making. For this reason, we start our discus-
sion of account management with the flat files you would modify to add users to a
stand-alone machine. In later sections, we examine the higher-level user manage-
ment commands that come with our example operating systems and the configu-
ration files that control their behavior.

Most systems also have simple GUI tools for adding and removing users, but these
tools don't usually support advanced features such as a batch mode or advanced
localization. The GUI tools are simple enough that we don’t think it’s helpful to
review their operation in detail, so in this chapter we stick to the command line.

243

244

8.1

See page 590 for more
details regarding the
nsswitch.conf file.

Chapter 8 User Management

This chapter focuses fairly narrowly on adding and removing users. Many topics
associated with user management actually live in other chapters and are referenced
here only indirectly. For example,

« Pluggable authentication modules (PAM) for password encryption and
the enforcement of strong passwords are covered in Chapter 17, Single
Sign-On. See the material starting on page 590.

o Password vaults for managing passwords are described in Chapter 27,
Security (see page 993).

« Directory services such as OpenLDAP and Active Directory are outlined
in Chapter 17, Single Sign-On, starting on page 580.

« Policy and regulatory issues are major topics of Chapter 31, Methodol-
ogy, Policy, and Politics.

ACCOUNT MECHANICS

A user is really nothing more than a number. Specifically, an unsigned 32-bit integer
known as the user ID or UID. Almost everything related to user account manage-
ment revolves around this number.

The system defines an API (through standard C library routines) that maps UID
numbers back and forth into more complete sets of information about users. For
example, getpwuid() accepts a UID as an argument and returns a corresponding
record that includes information such as the associated login name and home di-
rectory. Likewise, getpwnam() looks up this same information by login name.

Traditionally, these library calls obtained their information directly from a text file,
/etc/passwd. As time went on, they began to support additional sources of informa-
tion such as network information databases (e.g., LDAP) and read-protected files
in which encrypted passwords could be stored more securely.

These layers of abstraction (which are often configured in the nsswitch.conf file)
enable higher-level processes to function without direct knowledge of the underlying
account management method in use. For example, when you log in as “dotty”, the
logging-in process (window server, login, getty, or whatever) does a getpwnamy()
on dotty and then validates the password you supply against the encrypted passwd
record returned by the library, regardless of its actual origin.

We start with the /etc/passwd file approach, which is still supported everywhere.
The other options emulate this model in spirit if not in form.

8.2

See page 590 for more
information about the
nsswitch.conf file.

The /etc/passwd file 245

THE /ETC/PASSWD FILE

/etc/passwd is a list of users recognized by the system. It can be extended or re-
placed by one or more directory services, so it’s complete and authoritative only
on stand-alone systems.

Historically, each user’s encrypted password was also stored in the /etc/passwd file,
which is world-readable. However, the onset of more powerful processors made it
increasingly feasible to crack these exposed passwords. In response, UNIX and Li-
nux moved the passwords to a separate file (/etc/master.passwd on FreeBSD and
/etc/shadow on Linux) that is not world-readable. These days, the passwd file itself
contains only a pro-forma entry to mark the former location of the password field
(x on Linux and * on FreeBSD).

The system consults /etc/passwd at login time to determine a user’s UID and home
directory, among other things. Each line in the file represents one user and contains
seven fields separated by colons:

o Login name

« Encrypted password placeholder (see page 246)

o UID (user ID) number

o Default GID (group ID) number

« Optional “GECOS” information: full name, office, extension, home phone
o Home directory

o Login shell

For example, the following lines are all valid /etc/passwd entries:

root:x:0:0:The System, ,x6096,:/:/bin/sh
jl:!:100:0:Jim Lane,ECOT8-3,,:/staff/jl:/bin/sh
dotty:x:101:20:: /home/dotty:/bin/tcsh

If user accounts are shared through a directory service such as LDAP, you might
see special entries in the passwd file that begin with + or -. These entries tell the
system how to integrate the directory service’s data with the contents of the passwd
file. This integration can also be set up in the /etc/nsswitch.conf file.

The following sections discuss the /etc/passwd fields in more detail.

Login name

Login names (also known as usernames) must be unique and, depending on the
operating system, may have character set restrictions. All UNIX and Linux flavors
currently limit logins to 32 characters.

Login names can never contain colons or newlines, because these characters are
used as field separators and entry separators in the passwd file, respectively. De-
pending on the system, other character restrictions may also be in place. Ubuntu
is perhaps the most lax, as it allows logins starting with—or consisting entirely

246

@

Chapter 8 User Management

of—numbers and other special characters.' For reasons too numerous to list, we
recommend sticking with alphanumeric characters for logins, using lower case, and
starting login names with a letter.

Login names are case sensitive. We are not aware of any problems caused by mixed-
case login names, but lowercase names are traditional and also easier to type. Con-
fusion could ensue if the login names john and John were different people.

Login names should be easy to remember, so random sequences of letters do not
make good login names. Since login names are often used as email addresses, it’s
useful to establish a standard way of forming them. It should be possible for users
to make educated guesses about each other’s login names. First names, last names,
initials, or some combination of these make reasonable naming schemes. Keep in
mind that some email systems treat addresses as being case insensitive, which is yet
another good reason to standardize on lowercase login names.?

Any fixed scheme for choosing login names eventually results in duplicate names,
so you sometimes have to make exceptions. Choose a standard way of dealing with
conflicts, such as adding a number to the end.

It's common for large sites to implement a full-name email addressing scheme (e.g.,
John.Q.Public@mysite.com) that hides login names from the outside world. This is
a good idea, but it doesn’t obviate any of the naming advice given above. If for no
other reason than the sanity of administrators, it’s best if login names have a clear
and predictable correspondence to users’ actual names.

Finally, a user should have the same login name on every machine. This rule is
mostly for convenience, both yours and the user’s.

Encrypted password

Historically, systems encrypted users’ passwords with DES. As computing power
increased, those passwords became trivial to crack. Systems then moved to hidden
passwords and to MD5-based cryptography. Now that significant weaknesses have
been discovered in MD5, salted SHA-512-based password hashes have become the
current standard. See the Guide to Cryptography document at owasp.org for up-
to-date guidance.

Our example systems support a variety of encryption algorithms, but they all de-
fault to SHA-512. You shouldn’t need to update the algorithm choice unless you are
upgrading systems from much older releases.

On FreeBSD, the default algorithm can be modified through the /etc/login.conf file.

. For some unfortunate reason, the permissible character set even includes Unicode emoticons. That

makes us ®.

. RFC5321 requires that the local portion of an address (that is, the part before the @ sign) be treated

as case sensitive. The remainder of the address is handled according to the standards of DNS, which
is case insensitive. Unfortunately, this distinction is subtle, and it is not universally implemented. Re-
member also that many legacy email systems predate the authority of the IETF.

mailto:Q.Public@mysite.com
http://owasp.org

C®
et (2

Table 8.1

See page 992 for
more comments on
password selection.

The /etc/passwd file 247

On Debian and Ubuntu, the default was formerly managed through /etc/login.defs,
but this practice has since been obsoleted by Pluggable Authentication Modules
(PAM). Default password policies, including the hashing algorithm to use, can be
found in /etc/pam.d/common-passwd.

On Red Hat and CentOS, the password algorithm can still be set in /etc/login.defs
or through the authconfig command, as shown here:

$ sudo authconfig ——passalgo=sha512 --update

Changing the password algorithm does not update existing passwords, so users
must manually update their passwords before the new algorithm can take effect.
To invalidate a user’s password and force an update, use

$ chage -d @ username

Password quality is another important issue. In theory, longer passwords are more
secure, as are passwords that include a range of different character types (e.g., up-
percase letters, punctuation marks, and numbers).

Most systems let you impose password construction standards on your users, but
keep in mind that users can be adept at skirting these requirements if they find
them excessive or burdensome. Table 8.1 shows the default standards used by our
example systems.

Password quality standards

System Default requirements Where set

Red Hat 8+ characters, complexity enforced /etc/login.defs
CentOS /etc/security/pwquality.conf
/etc/pam.d/system-auth

Debian 6+ characters, complexity enforced /etc/login.defs
Ubuntu /etc/pam.d/common-password

FreeBSD No constraints /etc/login.conf

Password quality requirements are a matter of debate, but we recommend that you
prioritize length over complexity.* Twelve characters is the minimal length for a
future-proof password; note that this is significantly longer than any system’s de-
fault. Your site may also have organization-wide standards for password quality. If
it does, defer to those settings.

If you choose to bypass your system’s tools for adding users and instead modify
/etc/passwd by hand (by running the vipw command—see page 256) to create a
new account, put a * (FreeBSD) or an x (Linux) in the encrypted password field.

3. See xkcd.com/comics/password_strength.png for more commentary on this concept.

http://xkcd.com/comics/password_strength.png

248

See page 67 for
a description of
the root account.

Chapter 8 User Management

This measure prevents unauthorized use of the account until you or the user has
set a real password.

Encrypted passwords are of constant length (86 characters for SHA-512, 34 char-
acters for MD5, and 13 characters for DES) regardless of the length of the unen-
crypted password. Passwords are encrypted in combination with a random “salt”
so that a given password can correspond to many different encrypted forms. If two
users happen to select the same password, this fact usually cannot be discovered
by inspection of the encrypted passwords.

MD5-encrypted password fields in the shadow password file always start with 1
or $md5$. Blowfish passwords start with 2, SHA-256 passwords with 5, and
SHA-512 passwords with 68.

UID (user ID) number

By definition, root has UID 0. Most systems also define pseudo-users such as bin and
daemon to be the owners of commands or configuration files. It’s customary to put
such fake logins at the beginning of the /etc/passwd file and to give them low UIDs
and a fake shell (e.g., /bin/false) to prevent anyone from logging in as those users.

To allow plenty of room for nonhuman users you might want to add in the future,
we recommend that you assign UIDs to real users starting at 1000 or higher. (The
desired range for new UIDs can be specified in the configuration files for useradd.)
By default, our Linux reference systems start UIDs at 1000 and go up from there.
FreeBSD starts the first user at UID 1001 and then adds one for each additional user.

Do not recycle UIDs, even when users leave your organization and you delete their
accounts. This precaution prevents confusion if files are later restored from backups,
where users may be identified by UID rather than by login name.

UIDs should be kept unique across your entire organization. That is, a particular
UID should refer to the same login name and the same person on every machine
that person is authorized to use. Failure to maintain distinct UIDs can result in se-
curity problems with systems such as NFS and can also result in confusion when a
user moves from one workgroup to another.

It can be hard to maintain unique UIDs when groups of machines are administered
by different people or organizations. The problems are both technical and political.
The best solution is to have a central database or directory server that contains a
record for each user and enforces uniqueness.

A simpler scheme is to assign each group within an organization its own range of
UIDs and to let each group manage its own range. This solution keeps the UID
spaces separate but does not address the parallel issue of unique login names. Re-
gardless of your scheme, consistency of approach is the primary goal. If consistency
isn't feasible, UID uniqueness is the second-best target.

See page 133 for more
information about
setgid directories.

See page 580 for
more information
about LDAP.

The /etc/passwd file 249

The Lightweight Directory Access Protocol (LDAP) is a popular system for manag-
ing and distributing account information and works well for large sites. It is briefly
outlined in this chapter starting on page 267 and is covered more thoroughly in
Chapter 17, Single Sign-On, starting on page 580.

Default GID (group ID) number

Like a UID, a group ID number is a 32-bit integer. GID 0 is reserved for the group
called root, system, or wheel. As with UIDs, the system uses several predefined
groups for its own housekeeping. Alas, there is no consistency among vendors. For
example, the group “bin” has GID 1 on Red Hat and CentOS, GID 2 on Ubuntu
and Debian, and GID 7 on FreeBSD.

In ancient times, when computing power was expensive, groups were used for ac-
counting purposes so that the right department could be charged for your seconds
of CPU time, minutes of login time, and kilobytes of disk used. Today, groups are
used primarily to share access to files.

The /etc/group file defines the groups, with the GID field in /etc/passwd providing
a default (or “effective”) GID at login time. The default GID is not treated specially
when access is determined; it is relevant only to the creation of new files and di-
rectories. New files are normally owned by your effective group; to share files with
others in a project group, you must manually change the files’ group owner.

To facilitate collaboration, you can set the setgid bit (02000) on a directory or mount
filesystems with the grpid option. Both of these measures make newly created files
default to the group of their parent directory.

GECOS field

The GECOS field is sometimes used to record personal information about each user.
The field is a relic from a much earlier time when some early UNIX systems used
General Electric Comprehensive Operating Systems for various services. It has no
well-defined syntax. Although you can use any formatting conventions you like,
conventionally, comma-separated GECOS entries are placed in the following order:

o Full name (often the only field used)
o Office number and building

« Office telephone extension

o Home phone number

The chfn command lets users change their own GECOS information. chfn is useful
for keeping things like phone numbers up to date, but it can be misused. For exam-
ple, a user can change the information to be obscene or incorrect. Some systems
can be configured to restrict which fields chfn can modify; most college campus-
es disable it entirely. On most systems, chfn understands only the passwd file, so
if you use LDAP or some other directory service for login information, chfn may
not work at all.

250

See page 189 for
more information
about shells.

8.3

Chapter 8 User Management

Home directory

A user’s home directory is his or her default directory at login time. Home direc-
tories are where login shells look for account-specific customizations such as shell
aliases and environment variables, as well as SSH keys, server fingerprints, and
other program state.

Be aware that if home directories are mounted over a network filesystem, they may
be unavailable in the event of server or network problems. If the home directory
is missing at login time, the system might print a message such as “no home di-
rectory” and put the user in /.* Alternatively, it might disallow the login entirely,
depending on the system configuration. Home directories are covered in more
detail on page 257.

Login shell

The login shell is normally a command interpreter, but it can be any program. A
Bourne-shell compatible sh is the default for FreeBSD, and bash (the GNU “Bourne
again” shell) is the default for Linux.

Some systems permit users to change their shell with the chsh command, but as
with chfn, this command might not work if you are using LDAP or some other
directory service to manage login information. If you use the /etc/passwd file, a
sysadmin can always change a user’s shell by editing the passwd file with vipw.

THE LINUX /ETC/SHADOW FILE

On Linux, the shadow password file is readable only by the superuser and serves to
keep encrypted passwords safe from prying eyes and password cracking programs.
It also includes some additional account information that wasn’t provided for in
the original /etc/passwd format. These days, shadow passwords are the default on
all systems.

The shadow file is not a superset of the passwd file, and the passwd file is not gen-
erated from it. You must maintain both files or use tools such as useradd that main-
tain both files on your behalf. Like /etc/passwd, /etc/shadow contains one line for
each user. Each line contains nine fields, separated by colons:

» Login name

o Encrypted password

o Date of last password change

o Minimum number of days between password changes

o Maximum number of days between password changes

o Number of days in advance to warn users about password expiration

. This message appears when you log in on the console or on a terminal, but not when you log in

through a display manager such as xdm, gdm, or kdm. Not only will you not see the message, but
you will generally be logged out immediately because of the display manager’s inability to write to the
proper directory (e.g., ~/.gnome).

The Linux /etc/shadow file 251

« Days after password expiration that account is disabled
o Account expiration date
« A field reserved for future use which is currently always empty

Only the values for the username and password are required. Absolute date fields
in /etc/shadow are specified in terms of days (not seconds) since Jan 1, 1970, which
is not a standard way of reckoning time on UNIX or Linux systems.?

A typical shadow entry looks like this:

millert:6iTEFbMTM$CXmxPwErbEefORUBVf1zv8EgXQdaZgle0dSuXyvt4sFzi6G41
IqavLilTQgniAHM3Czw/LoaGzoFzaMm.Yw01/:16971:0:180:14:::

Here is a more complete description of each field:

« Thelogin name is the same as in /etc/passwd. This field connects a user’s
passwd and shadow entries.

o The encrypted password is identical in concept and execution to the one
previously stored in /etc/passwd.

o The last change field records the time at which the user’s password was
last changed. This field is filled in by the passwd command.

o The fourth field sets the number of days that must elapse between pass-
word changes. The idea is to force authentic changes by preventing users
from immediately reverting to a familiar password after a required change.
However, this feature can be somewhat dangerous in the aftermath of a
security intrusion. We suggest setting this field to 0.

o The fifth field sets the maximum number of days allowed between pass-
word changes. This feature allows the administrator to enforce password
aging; see page 995 for more information. Under Linux, the actual en-
forced maximum number of days is the sum of this field and the seventh
(grace period) field.

o The sixth field sets the number of days before password expiration when
login should begin to warn the user of the impending expiration.

o The eighth field specifies the day (in days since Jan 1, 1970) on which the
user’s account will expire. The user cannot log in after this date until the
field has been reset by an administrator. If the field is left blank, the ac-
count never expires.

You can use usermod to set the expiration field. It accepts dates in the
format yyyy-mm-dd.

o The ninth field is reserved for future use.®

5. To convert between the date in seconds and in days run: expr ‘date+%s" / 86400

6. Or, at this rate, may never be used...

252

Y
@

Chapter 8 User Management

Let’s look again at our example shadow line:

millert:6iTEFOMTM$CXmxPwErbEefORUBvf1zv8EgXQdaZg2e0d5uXyvt4sFzi6G41l
IqavLilTQgniAHM3Czw/LoaGzoFzaMm.Yw01/:17336:0:180:14:::

In this example, the user millert last changed his password on June 19, 2017. The
password must be changed again within 180 days, and millert will receive warnings
that the password needs to be changed for the last two weeks of this period. The
account does not have an expiration date.

Use the pweconv utility to reconcile the contents of the shadow file and those of
the passwd file, picking up any new additions and deleting users that are no longer
listed in passwd.

FREEBSD'S /ETC/MASTER.PASSWD AND /ETC/LOGIN.CONF FILES

The adoption of PAM and the availability of similar user management commands
on FreeBSD and Linux have made account administration relatively consistent
across platforms, at least at the topmost layer. However, a few differences do exist
in the underlying implementation.

The /etc/master.passwd file

On FreeBSD, the “real” password file is /etc/master.passwd, which is readable only
by root. The /etc/passwd file exists for backward compatibility and does not contain
any passwords (instead, it has * characters as placeholders).

To edit the password file, run the vipw command. This command invokes your
editor on a copy of /etc/master.passwd, then installs the new version and regener-
ates the /etc/passwd file to reflect any changes. (vipw is standard on all UNIX and
Linux systems, but it’s particularly important to use on FreeBSD because the dual
password files need to stay synchronized. See page 256.)

In addition to containing all the fields of the passwd file, the master.passwd file
contains three bonus fields. Unfortunately, they’re squeezed in between the default
GID field and the GECOS field, so the file formats are not directly compatible. The
extra three fields are

« Login class
« Password change time
» Expiration time

The login class (if one is specified) refers to an entry in the /etc/login.conf file. The
class determines resource consumption limits and controls a variety of other set-
tings. See the next section for specifics.

The password change time field implements password aging. It contains the time in
seconds since the UNIX epoch after which the user will be forced to change his or her
password. You can leave this field blank, indicating that the password never expires.

FreeBSD’s /etc/master.passwd and /etc/login.conf files 253

The account expiration time gives the time and date (in seconds, as for password
expiration) at which the user’s account will expire. The user cannot log in after this
date unless the field is reset by an administrator. If this field is left blank, the ac-
count will not expire.

The /etc/login.conf file

FreeBSD’s /etc/login.conf file sets account-related parameters for users and groups
of users. Its format consists of colon-delimited key/value pairs and Boolean flags.

When a user logs in, the login class field of /etc/master.passwd determines which
entry in /etc/login.conf to apply. If the user’s master.passwd entry does not specify
alogin class, the default class is used.

A login.conf entry can set any of the following:

 Resource limits (maximum process size, maximum file size, number of
open files, etc.)

« Session accounting limits (when logins are allowed, and for how long)

« Default environment variables

o Default paths (PATH, MANPATH, etc.)

« Location of the “message of the day” file

o Host and TTY-based access control

« Default umask

« Account controls (mostly superseded by the PAM module pam_passwdgqc)

The following example overrides several of the default values. It's intended for as-
signment to system administrators.

sysadmin:\
:ignorenologin:\
:requirehome@:\
:maxproc=unlimited:\
:openfiles=unlimited:\
:tc=default:

Users in the sysadmin login class are allowed to log in even when /var/run/nologin
exists, and they need not have a working home directory (this option permits logins
when NFS is not working). Sysadmin users can start any number of processes and
open any number of files.” The last line pulls in the contents of the default entry.

Although FreeBSD has reasonable defaults, you might be interested in updating the
/etc/login.conf file to set idle timeout and password expiration warnings. For ex-
ample, to set the idle timeout to 15 minutes and enable warnings seven days before
passwords expire, you would add the following clauses to the definition of default:

swarnpassword=7d:\
:idletime=15m:\

. There is still a technical limit on the total number of processes and open files that the kernel can sup-
port, but no artificial limit is imposed.

254

8.5

Chapter 8 User Management

When you modify the /etc/login.conf file, you must also run the following com-
mand to compile your changes into the hashed version of the file that the system
actually refers to in daily operation:

$ cap_mkdb /etc/login.conf

THE /ETC/GROUP FILE

The /etc/group file contains the names of UNIX groups and a list of each group’s
members. Here’s a portion of the group file from a FreeBSD system:

wheel:*:0:root
sys:*:3:root,bin
operator:*:5:root
bin:*:7:root
ftp:*:14:dan
staff:*:20:dan,ben,trent
nobody:*:65534:1pd

Each line represents one group and contains four fields:

o Group name

o Encrypted password or a placeholder

« GID number

o List of members, separated by commas (be careful not to add spaces)

Asin /etc/passwd, fields are separated by colons. Group names should be limited to
eight characters for compatibility, although many systems do not actually require this.

It’s possible to set a group password that allows arbitrary users to enter the group
with the newgrp command. However, this feature is rarely used. The group pass-
word can be set with gpasswd, which under Linux stores the encrypted password
in the /etc/gshadow file.

As with usernames and UlIDs, group names and GIDs should be kept consistent
among machines that share files through a network filesystem. Consistency can be
hard to maintain in a heterogeneous environment because different operating sys-
tems use different GIDs for standard system groups.

If a user defaults to a particular group in /etc/passwd but does not appear to be
in that group according to /etc/group, /etc/passwd wins the argument. The group
memberships granted at login time are the union of those found in the passwd
and group files.

Some older systems limit the number of groups a user can belong to. There is no
real limit on current Linux and FreeBSD kernels.

Much as with UIDs, we recommend minimizing the potential for GID collisions
by starting local groups at GID 1000 or higher.

See page 70 for

more information

about sudo.

¢

1)

Q

8.6

Manual steps for adding users 255

The UNIX tradition was originally to add new users to a group that represented
their general category such as “students” or “finance” However, this convention in-
creases the likelihood that users will be able to read one another’s files because of
slipshod permission settings, even if that is not really the intention of the files’ owner.

To avoid this problem, system utilities such as useradd and adduser now default to
putting each user in his or her own personal group (that is, a group named after the
user and which includes only that user). This convention is much easier to maintain
if personal groups’ GIDs match their corresponding users’ UIDs.

To let users share files by way of the group mechanism, create separate groups for
that purpose. The idea behind personal groups is not to discourage the use of groups
per se—it’s simply to establish a more restrictive default group for each user so that
files are not inadvertently shared. You can also limit access to newly created files
and directories by setting your user’s default umask in a default startup file such as
/etc/profile or /etc/bashrc (see page 258).

Group membership can also serve as a marker for other contexts or privileges. For
example, rather than entering the username of each system administrator into the
sudoers file, you can configure sudo so that everyone in the “admin” group auto-
matically has sudo privileges.

Linux supplies the groupadd, groupmod, and groupdel commands to create,
modify, and delete groups.

FreeBSD uses the pw command to perform all these functions. To add the user “dan”
to the group “staff” and then verify that the change was properly implemented, you
would run the following commands:

$ sudo pw groupmod staff -m dan
$ pw groupshow staff
staff:*:20:dan,evi,garth,trent,ben

MANUAL STEPS FOR ADDING USERS

Before you create an account for a new user at a corporate, government, or ed-
ucational site, it's important that the user sign and date a copy of your local user
agreement and policy statement. (What?! You don't have a user agreement and
policy statement? See page 1132 for more information about why you need one
and what to put in it.)

Users have no particular reason to want to sign a policy agreement, so it’s to your
advantage to secure their signatures while you still have some leverage. We find that
it takes extra effort to secure a signed agreement after an account has been released.
If your process allows for it, have the paperwork precede the creation of the account.

Mechanically, the process of adding a new user consists of several steps required
by the system and a few more that establish a useful environment for the new user
and incorporate the user into your local administrative system.

256

@

Chapter 8 User Management

Required:

« Edit the passwd and shadow files (or the master.passwd file on FreeBSD)
to define the user’s account.

« Add the user to the /etc/group file (not really necessary, but nice).

« Set an initial password.

« Create, chown, and chmod the user’s home directory.

« Configure roles and permissions (if you use RBAC; see page 259).

For the user:
« Copy default startup files to the user’s home directory.
For you:

« Have the new user sign your policy agreement.
« Verify that the account is set up correctly.
« Document the user’s contact information and account status.

This list cries out for a script or tool, and fortunately, each of our example systems
includes at least a partial off-the-shelf solution in the form of an adduser or useradd
command. We take a look at these tools starting on page 260.

Editing the passwd and group files

Manual maintenance of the passwd and group files is error prone and ineflicient, so
we recommend the slightly higher-level tools such as useradd, adduser, usermod,
pw, and chsh as daily drivers.

If you do have to make manual changes, use the vipw command to edit the passwd
and shadow files (or on FreeBSD, the master.passwd file). Although it sounds
vi-centrig, it actually invokes your favorite editor as defined in the EDITOR envi-
ronment variable.®* More importantly, it locks the files so that editing sessions (or
your editing and a user’s password change) cannot collide.

After you run vipw, our Linux reference systems remind you to edit the shadow
file after you have edited the passwd file. Use vipw -s to do so.

Under FreeBSD, vipw edits the master.passwd file instead of /etc/passwd. After
installing your changes, vipw runs pwd_mkdb to generate the derived passwd
file and two hashed versions of master.passwd (one that contains the encrypted
passwords and is readable only by root, and another that lacks the passwords and
is world-readable).

For example, running vipw and adding the following line would define an account
called whitney:

whitney:*:1003:1003::0:0:Whitney Sather, AMATH 3-27, x7919,:
/home/staff/whitney:/bin/sh

. When you first run vipw (or vigr), Ubuntu and Debian ask you to select one of vim.basic, vim.tiny,

nano, and ed. If you change your mind after the fact, run select-editor.

See page 992 for
tips on selecting
good passwords.

@
Q

@
Q

Manual steps for adding users 257

Note the star in the encrypted password field. This prevents use of the account until
a real password is set with the passwd command (see the next section).

Next, edit /etc/group by running vigr. Add a line for the new personal group if
your site uses them, and add the user’s login name to each of the groups in which
the user should have membership.

As with vipw, using vigr ensures that the changes made to the /etc/group file are
sane and atomic. After an edit session, vigr should prompt you to run vigr -s to
edit the group shadow (gshadow) file as well. Unless you want to set a password
for the group—which is unusual—you can skip this step.

On FreeBSD, use pw groupmod to make changes to the /etc/group file.

Setting a password

Set a password for a new user with
$ sudo passwd newusername
You'll be prompted for the actual password.

Some automated systems for adding new users do not require you to set an initial
password. Instead, they force the user to set a password on first login. Although
this feature is convenient, it’s a giant security hole: anyone who can guess new login
names (or look them up in /etc/passwd) can swoop down and hijack accounts be-
fore the intended users have had a chance to log in.

Among many other functions, FreeBSD’s pw command can also generate and set
random user passwords:

$ sudo pw usermod raphael -w random
Password for 'raphael' is: 1n3tcYuls

We're generally not fans of random passwords for ongoing use. However, they are
a good option for transitional passwords that are only intended to last until the
account is actually used.

Creating the home directory and installing startup files

useradd and adduser create new users home directories for you, but you'll likely
want to double-check the permissions and startup files for new accounts.

There’s nothing magical about home directories. If you neglected to include a home
directory when setting up a new user, you can create it with a simple mkdir. You
need to set ownerships and permissions on the new directory as well, but this is
most efficiently done after you've installed any local startup files.

Startup files traditionally begin with a dot and end with the letters rc, short for
“run command,” a relic of the CTSS operating system. The initial dot causes Is to
hide these “uninteresting” files from directory listings unless the -a option is used.

258 Chapter 8 User Management

We recommend that you include default startup files for each shell that is popular
on your systems so that users continue to have a reasonable default environment
even if they change shells. Table 8.2 lists a variety of common startup files.

Table 8.2 Common startup files and their uses

Target Filename Typical uses

allshells .login_conf Sets user-specific login defaults (FreeBSD)

sh .profile Sets search path, terminal type, and environment
bash® .bashrc Sets the terminal type (if needed)

Sets biff and mesg switches
.bash_profile Sets up environment variables
Sets command aliases
Sets the search path
Sets the umask value to control permissions
Sets CDPATH for filename searches
Sets the PS1 (prompt) and HISTCONTROL variables

csh/tesh .login Read by “login”instances of csh
.cshrc Read by all instances of csh

vi/vim .vimrc/.viminfo Sets vi/vim editor options

emacs Sets emacs editor options and key bindings

git Sets user, editor, color, and alias options for Git

GNOME .gconf GNOME user configuration via gconf
.gconfpath Path for additional user configuration via gconf

KDE kde/ Directory of configuration files

a. bash also reads .profile or /etc/profile in emulation of sh. The .bash_profile file is read by login
shells, and the .bashrc file is read by interactive, non-login shells.

Sample startup files are traditionally kept in /etc/skel. If you customize your sys-
tems’ startup file examples, /usr/local/etc/skel is a reasonable place to put the
modified copies.

The entries in Table 8.2 for the GNOME and KDE window environments are re-
ally just the beginning. In particular, take a look at gconf, which is the tool that
stores application preferences for GNOME programs in a manner analogous to

the Windows registry.
See page 138 for Make sure that the default shell files you give to new users set a reasonable default
details on umask. value for umask; we suggest 077, 027, or 022, depending on the friendliness and

size of your site. If you do not assign new users to individual groups, we recom-

See Chapter 31 for
more information
about SOX and GLBA

Manual steps for adding users 259

mend umask 077, which gives the owner full access but the group and the rest of
the world no access.

Depending on the user’s shell, /etc may contain system-wide startup files that
are processed before the user’s own startup files. For example, bash and sh read
/etc/profile before processing ~/.profile and ~/.bash_profile. These files are a good
place in which to put site-wide defaults, but bear in mind that users can override
your settings in their own startup files. For details on other shells, see the man page
for the shell in question.

By convention, Linux also keeps fragments of startup files in the /etc/profile.d di-
rectory. Although the directory name derives from sh conventions, /etc/profile.d
can actually include fragments for several different shells. The specific shells being
targeted are distinguished by filename suffixes (*.sh, *.csh, etc.). There’s no magic
profile.d support built into the shells themselves; the fragments are simply execut-
ed by the default startup script in /etc (e.g., /etc/profile in the case of sh or bash).

Separating the default startup files into fragments facilitates modularity and al-
lows software packages to include their own shell-level defaults. For example, the
colorls.* fragments coach shells on how to properly color the output of Is so as to
make it unreadable on dark backgrounds.

Setting home directory permissions and ownerships

Once you've created a user’s home directory and copied in a reasonable default en-
vironment, turn the directory over to the user and make sure that the permissions
on it are appropriate. The command

$ sudo chown -R newuser:newgroup ~newuser
sets ownerships properly. Note that you cannot use
$ sudo chown newuser:newgroup ~newuser/.*

to chown the dot files because newuser would then own not only his or her own files

but also the parent directory “.” as well. This is a common and dangerous mistake.

Configuring roles and administrative privileges

Role-based access control (RBAC) allows system privileges to be tailored for indi-
vidual users and is available on many of our example systems. RBAC is not a tra-
ditional part of the UNIX or Linux access control model, but if your site uses it,
role configuration must be a part of the process of adding users. RBAC is covered
in detail starting on page 85 in the Access Control and Rootly Powers chapter.

Legislation such as the Sarbanes-Oxley Act, the Health Insurance Portability and
Accountability Act (HIPAA), and the Gramm-Leach-Bliley Act in the United States
has complicated many aspects of system administration in the corporate arena,
including user management. Roles might be your only viable option for fulfilling
some of the SOX, HIPAA, and GLBA requirements.

260

See page 1132 for more
information about
written user contracts.

8.7

Chapter 8 User Management

Finishing up
To verify that a new account has been properly configured, first log out, then log
in as the new user and execute the following commands:

$ pwd # To verify the home directory
$ 1s -1a # To check owner/group of startup files

You need to notify new users of their login names and initial passwords. Many sites
send this information by email, but that’s generally not a secure choice. Better options
are to do it in person, over the phone, or through a text message. (If you are adding
500 new freshmen to the campus’s CS-1 machines, punt the notification problem to
the instructor!) If you must distribute account passwords by email, make sure the
passwords expire in a couple of days if they are not used and changed.

If your site requires users to sign a written policy agreement or appropriate use
policy, be sure this step has been completed before you release a new account.
This check prevents oversights and strengthens the legal basis of any sanctions you
might later need to impose. This is also the time to point users toward additional
documentation on local customs.

Remind new users to change their passwords immediately. You can enforce this
by setting the password to expire within a short time. Another option is to have a
script check up on new users and be sure their encrypted passwords have changed.’

In environments where you know users personally, it’s relatively easy to keep track
of who's using a system and why. But if you manage a large and dynamic user base,
you need a more formal way to keep track of accounts. Maintaining a database of
contact information and account statuses helps you figure out, once the act of creating
the account has faded from memory, who people are and why they have an account.

SCRIPTS FOR ADDING USERS: USERADD, ADDUSER, AND NEWUSERS

Our example systems all come with a useradd or adduser script that implements
the basic procedure outlined above. However, these scripts are configurable, and
you will probably want to customize them to fit your environment. Unfortunately,
each system has its own idea of what you should customize, where you should im-
plement the customizations, and what the default behavior should be. Accordingly,
we cover these details in vendor-specific sections.

Table 8.3 is a handy summary of commands and configuration files related to man-
aging users.

. Because the same password can have many encrypted representations, this method verifies only that

the user has reset the password, not that it has actually been changed to a different password.

Scripts for adding users: useradd, adduser, and newusers 261

Table 8.3 Commands and configuration files for user management

System Commands Configuration files
All Linux useradd, usermod, userdel /etc/login.defs
/etc/default/useradd
Debian/Ubuntu® adduser, deluser /etc/adduser.conf
/etc/deluser.conf
FreeBSD adduser, rmuser /etc/login.conf

a. This suite wraps the standard Linux version and includes a few more features.

useradd on Linux

Most Linux distributions include a basic useradd suite that draws its configuration
parameters from both /etc/login.defs and /etc/default/useradd.

The login.defs file addresses issues such as password aging, choice of encryption
algorithms, location of mail spool files, and the preferred ranges of UIDs and GIDs.
You maintain the login.defs file by hand. The comments do a good job of explain-
ing the various parameters.

Parameters stored in the /etc/default/useradd file include the location of home
directories and the default shell for new users. You set these defaults through the
useradd command itself. useradd -D prints the current values, and -D in com-
bination with various other flags sets the values of specific options. For example,

$ sudo useradd -D -s /bin/bash
sets bash as the default shell.

Typical defaults are to put new users in individual groups, to use SHA-512 encryp-
tion for passwords, and to populate new users’ home directories with startup files
from /etc/skel.

The basic form of the useradd command accepts the name of the new account on
the command line:

$ sudo useradd hilbert

This command creates an entry similar to this one in /etc/passwd, along with a
corresponding entry in the shadow file:

hilbert:x:1005:20::/home/hilbert:/bin/sh

useradd disables the new account by default. You must assign a real password to
make the account usable.

262

el

Chapter 8 User Management

A more realistic example is shown below. We specify that hilbert’s primary group
should be “hilbert” and that he should also be added to the “faculty” group. We
override the default home directory location and shell and ask useradd to create
the home directory if it does not already exist:

$ sudo useradd -c "David Hilbert" -d /home/math/hilbert -g hilbert
-G faculty -m -s /bin/tcsh hilbert

This command creates the following passwd entry:
hilbert:x:1005:30:David Hilbert:/home/math/hilbert:/bin/tcsh

The assigned UID is one higher than the highest UID on the system, and the cor-
responding shadow entry is

hilbert:!:14322:0:99999:7:0::

The password placeholder character(s) in the passwd and shadow file vary depend-
ing on the operating system. useradd also adds hilbert to the appropriate groups
in /etc/group, creates the directory /home/math/hilbert with proper ownerships,
and populates it from the /etc/skel directory.

adduser on Debian and Ubuntu

In addition to the useradd family of commands, the Debian lineage also supplies
somewhat higher-level wrappers for these commands in the form of adduser and
deluser. These add-on commands are configured in /etc/adduser.conf, where you
can specify options such as these:

« Rules for locating home directories: by group, by username, etc.
« Permission settings for new home directories

o UID and GID ranges for system users and general users

 An option to create individual groups for each user

o Disk quotas (Boolean only, unfortunately)

» Regex-based matching of user names and group names

Other typical useradd parameters, such as rules for passwords, are set as parameters
to the PAM module that does regular password authentication. (See page 590 for a
discussion of PAM, aka Pluggable Authentication Modules.) adduser and deluser
have twin cousins addgroup and delgroup.

adduser on FreeBSD

FreeBSD comes with adduser and rmuser shell scripts that you can either use as
supplied or modify to fit your needs. The scripts are built on top of the facilities
provided by the pw command.

adduser can be used interactively if you prefer. By default, it creates user and group
entries and a home directory. You can point the script at a file containing a list of
accounts to create with the -f flag, or enter in each user interactively.

Scripts for adding users: useradd, adduser, and newusers 263

For example, the process for creating a new user “raphael” looks like this:

$ sudo adduser

Username: raphael

Full name: Raphael Dobbins

Uid (Leave empty for default): <return>

Login group [raphael]: <return>

Login group is raphael. Invite raphael into other groups? []: <return>
Login class [default]: <return>

Shell (sh csh tcsh bash rbash nologin) [sh]: bash

Home directory [/home/raphael]: <return>

Home directory permissions (Leave empty for default): <return>
Use password-based authentication? [yes]: <return>

Use an empty password? (yes/no) [no]: <return>

Use a random password? (yes/no) [nho]: yes

Lock out the account after creation? [no]: <return>

Username : raphael

Password ¢ <random>

Full Name : Raphael Dobbins
Uid : 1004

Class

Groups : raphael

Home : /home/raphael

Home Mode

Shell : /usr/local/bin/bash
Locked : no

0K? (yes/no): yes

adduser: INFO: Successfully added (raphael) to the user database.
adduser: INFO: Password for (raphael) is: RSCAds5fyQvx0t

Add another user? (yes/no): no

Goodbye!

newusers on Linux: adding in bulk

Linux’s newusers command creates multiple accounts at one time from the con-
tents of a text file. It’s pretty gimpy, but it can be handy when you need to add a lot
of users at once, such as when creating class-specific accounts. newusers expects
an input file of lines just like the /etc/passwd file, except that the password field
contains the initial password in clear text. Oops... better protect that file.

newusers honors the password aging parameters set in the /etc/login.defs file, but
it does not copy in the default startup files as does useradd. The only startup file
it copies in is .xauth.

At a university, what's really needed is a batch adduser script that can use a list of
students from enrollment or registration data to generate the input for newusers,
with usernames formed according to local rules and guaranteed to be locally unique,
with strong passwords randomly generated, and with UIDs and GIDs increasing

264

8.8

Chapter 8 User Management

for each user. You're probably better off writing your own wrapper for useradd in
Python than trying to get newusers to do what you need.

SAFE REMOVAL OF A USER’S ACCOUNT AND FILES

When a user leaves your organization, that user’s login account and files must
be removed from the system. If possible, don't do that chore by hand; instead, let
userdel or rmuser handle it. These tools ensure the removal of all references to
the login name that were added by you or your useradd program. Once you've
removed the remnants, use the following checklist to verify that all residual user
data has been removed:

« Remove the user from any local user databases or phone lists.

« Remove the user from the mail aliases database, or add a forwarding address.
« Remove the user’s crontab file and any pending at jobs or print jobs.

« Kill any of the user’s processes that are still running.

o Remove the user from the passwd, shadow, group, and gshadow files.

« Remove the user’s home directory.

« Remove the user’s mail spool (if mail is stored locally).

« Clean up entries on shared calendars, room reservation systems, etc.

« Delete or transfer ownership of any mailing lists run by the deleted user.

Before you remove someone’s home directory, be sure to relocate any files that are
needed by other users. You usually can’t be sure which files those might be, so it’s
always a good idea to make an extra backup of the user’s home directory before
deleting it.

Once you have removed all traces of a user, you may want to verify that the user’s
old UID no longer owns files on the system. To find the paths of orphaned files,
you can use the find command with the -nouser argument. Because find has a way
of “escaping” onto network servers if youre not careful, it’s usually best to check
filesystems individually with -xdev:

$ sudo find filesystem -xdev -nouser

If your organization assigns individual workstations to users, it's generally simplest
and most efficient to re-image the entire system from a master template before
turning the system over to a new user. Before you do the reinstallation, however,
it’s a good idea to back up any local files on the system’s hard disk in case they are
needed in the future.'

Although all our example systems come with commands that automate the pro-
cess of removing user presence, they probably do not do as thorough a job as you
might like unless you have religiously extended them as you expanded the number
of places in which user-related information is stored.

10. Think license keys!

C®

s B

8.9

User login lockout 265

Debian and Ubuntu’s deluser is a Perl script that calls the usual userdel; it undoes
all the things adduser does. It runs the script /usr/local/sbin/deluser.local, if it
exists, to facilitate easy localization. The configuration file /etc/deluser.conf lets
you set options such as these:

o Whether to remove the user’s home directory and mail spool

o Whether to back up the user’s files, and where to put the backup
o Whether to remove all files on the system owned by the user

o Whether to delete a group if it now has no members

Red Hat supports a userdel.local script but no pre- and post-execution scripts to
automate sequence-sensitive operations such as backing up an about-to-be-re-
moved user’s files.

FreeBSD’s rmuser script does a good job of removing instances of the user’s files
and processes, a task that other vendors’ userdel programs do not even attempt.

USER LOGIN LOCKOUT

On occasion, a user’s login must be temporarily disabled. A straightforward way
to do this is to put a star or some other character in front of the user’s encrypted
password in the /etc/shadow or /etc/master.passwd file. This measure prevents
most types of password-regulated access because the password no longer decrypts
to anything sensible.

FreeBSD lets you lock accounts with the pw command. A simple
$ sudo pw lock someuser

puts the string *LOCKED* at the start of the password hash, making the account
unusable. Unlock the account by running

$ sudo pw unlock someuser

On all our Linux distributions, the usermod -L user and usermod -U user com-
mands define an easy way to lock and unlock passwords. They are just shortcuts for
the password twiddling described above: the -L puts an ! in front of the encrypted
password in the /etc/shadow file, and the -U removes it.

Unfortunately, modifying a user’s password simply makes logins fail. It does not
notify the user of the account suspension or explain why the account no longer
works. In addition, commands such as ssh that do not necessarily check the system
password may continue to function.

An alternative way to disable logins is to replace the user’s shell with a program that
prints an explanatory message and supplies instructions for rectifying the situation.
The program then exits, terminating the login session.

This approach has both advantages and disadvantages. Any forms of access that
check the password but do not pay attention to the shell will not be disabled. To

266

8.10

8.1

Chapter 8 User Management

facilitate the “disabled shell” trick, many daemons that afford nonlogin access to the
system (e.g., ftpd) check to see if a user’s login shell is listed in /etc/shells and deny
access if it is not. This is the behavior you want. Unfortunately, it’s not universal,
so you may have to do some fairly comprehensive testing if you decide to use shell
modification as a way of disabling accounts.

Another issue is that your carefully written explanation of the suspended account
might never be seen if the user tries to log in through a window system or through
a terminal emulator that does not leave output visible after a logout.

RisK REDUCTION WITH PAM

Pluggable Authentication Modules (PAM) is covered in the Single Sign-On chapter
starting on page 590. PAM centralizes the management of the system’s authenti-
cation facilities through standard library routines. That way, programs like login,
sudo, passwd, and su need not supply their own tricky authentication code. An
organization can easily expand its authentication methods beyond passwords to
options such as Kerberos, one-time passwords, ID dongles, or fingerprint readers.
PAM reduces the risk inherent in writing secured software, allows administrators
to set site-wide security policies, and defines an easy way to add new authentica-
tion methods to the system.

Adding and removing users doesn't involve tweaking the PAM configuration, but the
tools involved operate under PAM’s rules and constraints. In addition, many of the
PAM configuration parameters are similar to those used by useradd or usermod.
If you change a parameter as described in this chapter and useradd doesn't seem
to be paying attention to it, check to be sure the system’s PAM configuration isn’t
overriding your new value.

CENTRALIZED ACCOUNT MANAGEMENT

Some form of centralized account management is essential for medium-to-large
enterprises of all types, be they corporate, academic, or governmental. Users need
the convenience and security of a single login name, UID, and password across the
site. Administrators need a centralized system that allows changes (such as account
revocations) to be instantly propagated everywhere.

Such centralization can be achieved in a variety of ways, most of which (including
Microsoft’s Active Directory system) involve LDAP, the Lightweight Directory Ac-
cess Protocol, in some capacity. Options range from bare-bones LDAP installations
based on open source software to elaborate commercial identity management sys-
tems that come with a hefty price tag.

See the section starting
on page 580 for more
information about
LDAP and LDAP
implementations.

Centralized account management 267

LDAP and Active Directory

LDAP is a generalized, database-like repository that can store user management
data as well as other types of data. It uses a hierarchical client/server model that
supports multiple servers as well as multiple simultaneous clients. One of LDAP’s
big advantages as a site-wide repository for login data is that it can enforce unique
UIDs and GIDs across systems. It also plays well with Windows, although the re-
verse is only marginally true.

Microsoft’s Active Directory uses LDAP and Kerberos and can manage many kinds
of data, including user information. It’s a bit egotistical and wants to be the boss if
it is interacting with UNIX or Linux LDAP repositories. If you need a single au-
thentication system for a site that includes Windows desktops as well as UNIX and
Linux systems, it is probably easiest to let Active Directory be in control and to use
your UNIX LDAP databases as secondary servers.

See Chapter 17, Single Sign-On, for more information on integrating UNIX or
Linux with LDAP, Kerberos, and Active Directory.

Application-level single sign-on systems

Application-level single sign-on systems balance user convenience with security.
The idea is that a user can sign on once (to a login prompt, web page, or Windows
box) and be authenticated at that time. The user then obtains authentication cre-
dentials (usually implicitly, so that no active management is required) which can
be used to access other applications. The user only has to remember one login and
password sequence instead of many.

This scheme allows credentials to be more complex since the user does not need to
remember or even deal with them. That theoretically increases security. However,
the impact of a compromised account is greater because one login gives an attack-
er access to multiple applications. These systems make your walking away from a
desktop machine while still logged in a significant vulnerability. In addition, the
authentication server becomes a critical bottleneck. If it's down, all useful work
grinds to a halt across the enterprise.

Although application-level SSO is a simple idea, it implies a lot of back-end com-
plexity because the various applications and machines that a user might want to
access must understand the authentication process and SSO credentials.

Several open source SSO systems exist:

» JOSSO, an open source SSO server written in Java
o CAS, the Central Authentication Service, from Yale (also Java)
o Shibboleth, an open source SSO distributed under the Apache 2 license

A host of commercial systems are also available, most of them integrated with iden-
tity management suites, which are covered in the next section.

268

Chapter 8 User Management

Identity management systems

“Identity management” (sometimes referred to as IAM, for “identity and access man-
agement”) is a common buzzword in user management. In plain language, it means
identifying the users of your systems, authenticating their identities, and granting
privileges according to those authenticated identities. The standardization efforts
in this realm are led by the World Wide Web Consortium and by The Open Group.

Commercial identity management systems combine several key UNIX concepts
into a warm and fuzzy GUI replete with marketing jargon. Fundamental to all such
systems is a database of user authentication and authorization data, often stored in
LDAP format. Control is achieved with concepts such as UNIX groups, and lim-
ited administrative privileges are enforced through tools such as sudo. Most such
systems have been designed with an eye toward regulations that mandate account-
ability, tracking, and audit trails.

There are many commercial systems in this space: Oracle’s Identity Management,
Courion, Avatier Identity Management Suite (AIMS), VMware Identity Manager,
and SailPoint’s IdentityIQ, to name a few. In evaluating identity management sys-
tems, look for capabilities in the following areas:

Oversight:

 Implement a secure web interface for management that’s accessible both
inside and outside the enterprise.

o Support an interface through which hiring managers can request that ac-
counts be provisioned according to role.

» Coordinate with a personnel database to automatically remove access for
employees who are terminated or laid off.

Account management:
« Generate globally unique user IDs.

o Create, change, and delete user accounts across the enterprise, on all types
of hardware and operating systems.

o Support a workflow engine; for example, tiered approvals before a user is
given certain privileges.

» Make it easy to display all users who have a certain set of privileges. Ditto
for the privileges granted to a particular user.

« Support role-based access control, including user account provisioning by
role. Allow exceptions to role-based provisioning, including a workflow
for the approval of exceptions.

» Configure logging of all changes and administrative actions. Similarly,
configure reports generated from logging data (by user, by day, etc.).

Centralized account management 269

Ease of use:

o Let users change (and reset) their own passwords, with enforcement of
rules for picking strong passwords.

« Enable users to change their passwords globally in one operation.

Consider also how the system is implemented at the point where authorizations
and authentications actually take place. Does the system require a custom agent to
be installed everywhere, or does it conform itself to the underlying systems?

9 Cloud Computing

Cloud computing is the practice of leasing computer resources from a pool of
shared capacity. Users of cloud services provision resources on demand and pay a
metered rate for whatever they consume. Businesses that embrace the cloud enjoy
faster time to market, greater flexibility, and lower capital and operating expenses
than businesses that run traditional data centers.

The cloud is the realization of “utility computing,” first conceived by the late com-
puter scientist John McCarthy, who described the idea in a talk at MIT in 1961.
Many technological advances since McCarthy’s prescient remarks have helped to
bring the idea to fruition. To name just a few:

« Virtualization software reliably allocates CPU, memory, storage, and net-
work resources on demand.

« Robust layers of security isolate users and virtual machines from each
other, even as they share underlying hardware.

« Standardized hardware components enable the construction of data cen-
ters with vast power, storage, and cooling capacities.

« A reliable global network connects everything.

270

Table 9.1

9.1

The cloud in context 271

Cloud providers capitalize on these innovations and many others. They offer myr-
iad services ranging from hosted private servers to fully managed applications.
The leading cloud vendors are competitive, highly profitable, and growing rapidly.

This chapter introduces the motivations for moving to the cloud, fills in some back-
ground on a few major cloud providers, introduces some of the most important
cloud services, and offers tips for controlling costs. As an even briefer introduction,
the section Clouds: VPS quick start by platform starting on page 283, shows how
to create cloud servers from the command line.

Several other chapters in this book include sections that relate to the management
of cloud servers. Table 9.1 lists some pointers.

Cloud topics covered elsewhere in this book

Page Heading

62 Recovery of cloud systems (bootstrapping-related issues for the cloud)
448 Cloud networking (TCP/IP networking for cloud platforms)
694 Web hosting in the cloud
911 Packer (using Packer to build OS images for the cloud)
942 Container clustering and management (especially the section on AWS ECS)
964 CI/CDin practice (a CI/CD pipeline example that uses cloud services)
1060 Commercial application monitoring tools (monitoring tools for the cloud)

In addition, Chapter 23, Configuration Management, is broadly applicable to the
management of cloud systems.

THE CLOUD IN CONTEXT

The transition from servers in private data centers to the now-ubiquitous cloud has
been rapid and dramatic. Let’s take a look at the reasons for this stampede.

Cloud providers create technically advanced infrastructure that most businesses
cannot hope to match. They locate their data centers in areas with inexpensive
electric power and copious networking cross-connects. They design custom server
chassis that maximize energy efficiency and minimize maintenance. They use pur-
pose-built network infrastructure with custom hardware and software fine-tuned
to their internal networks. They automate aggressively to allow rapid expansion
and reduce the likelihood of human error.

Because of all this engineering effort (not to mention the normal economies of scale),
the cost of running distributed computing services is much lower for a cloud pro-
vider than for a typical business with a small data center. Cost savings are reflected
both in the price of cloud services and in the providers’ profits.

272

See page 1106 for
more information
about DevOps.

Chapter 9 Cloud Computing

Layered on top of this hardware foundation are management features that simplify
and facilitate the configuration of infrastructure. Cloud providers offer both APIs
and user-facing tools that control the provisioning and releasing of resources. As
a result, the entire life cycle of a system—or group of systems distributed on a vir-
tual network—can be automated. This concept goes by the name “infrastructure
as code,” and it contrasts starkly with the manual server procurement and provi-
sioning processes of times past.

Elasticity is another major driver of cloud adoption. Because cloud systems can be
programmatically requested and released, any business that has cyclic demand can
optimize operating costs by adding more resources during periods of peak usage
and removing extra capacity when it is no longer needed. The built-in autoscaling
features available on some cloud platforms streamline this process.

Cloud providers have a global presence. With some planning and engineering ef-
fort, businesses can reach new markets by releasing services in multiple geographic
areas. In addition, disaster recovery is easier to implement in the cloud because
redundant systems can be run in separate physical locations.

All these characteristics pair well with the DevOps approach to system adminis-
tration, which emphasizes agility and repeatability. In the cloud, you’re no longer
restricted by slow procurement or provisioning processes, and nearly everything
can be automated.

Still, a certain mental leap is required when you don’t control your own hardware.
One industry metaphor captures the sentiment neatly: servers should be treated
as cattle, not as pets. A pet is named, loved, and cared for. When the pet is sick, it’s
taken to a veterinarian and nursed back to health. Conversely, cattle are commod-
ities that are herded, traded, and managed in large quantities. Sick cattle are shot.

A cloud server is just one member of a herd, and to treat it otherwise is to ignore
a basic fact of cloud computing: cloud systems are ephemeral, and they can fail at
any time. Plan for that failure and you’ll be more successful at running a resilient
infrastructure.

Despite all its advantages, the cloud is not a panacea for quickly reducing costs
or improving performance. Directly migrating an existing enterprise application
from a data center to a cloud provider (a so-called “lift and shift”) is unlikely to be
successful without careful planning. Operational processes for the cloud are dif-
ferent, and they entail training and testing. Furthermore, most enterprise software
is designed for static environments, but individual systems in the cloud should be
treated as short-lived and unreliable. A system is said to be cloud native if it is re-
liable even in the face of unanticipated events.

Cloud platform choices 273

9.2 CLOUD PLATFORM CHOICES

Multiple factors influence a site’s choice of cloud provider. Cost, past experience,
compatibility with existing technology, security, or compliance requirements, and
internal politics are all likely to play a role. The selection process can also be swayed
by reputation, provider size, features, and of course, marketing.

Fortunately, there are a lot of cloud providers out there. We've chosen to focus on
just three of the major public cloud providers: Amazon Web Services (AWS), Goo-
gle Cloud Platform (GCP), and DigitalOcean (DO). In this section we mention a
few additional options for you to consider. Table 9.2 enumerates the major players
in this space.

Table 9.2 The most widely used cloud platforms

Provider Notable qualities

Amazon Web Servrces 900lb gorllla Rapld innovation. Can be expensrve Complex

DrgrtaIOcean Srmple and relrable Lovable API Good for development

Google Cloud Platform Technlcally sophrstlcated and improving qurckly Emphasrzes
performance Comprehensrve blg data services.

IBM Softlayer More Irke hostlng than cloud Has a global prlvate network

Microsoft Azure A drstant second in size. Has a hrstory ofoutages Possrbly
worth consrderatlon for Mlcrosoft shops

OpenStack Modular DIY open source platform for burldrng prrvate
cIouds AWS- compatrble APIs.

Rackspace PUblIC and pr|vate cIouds running OpenStack Offers
managed services for AWS and Azure Fanatlcal support

VMware vCloud Air Buzzword Iaden service for publrc prrvate and hybrid
clouds. Uses VMware technology. Probably doomed.

Public, private, and hybrid clouds

In a public cloud, the vendor controls all the physical hardware and affords access
to systems over the Internet. This setup relieves users of the burden of installing
and maintaining hardware, but at the expense of less control over the features and
characteristics of the platform. AWS, GCP, and DO are all public cloud providers.

274

Chapter 9 Cloud Computing

Private cloud platforms are similar, but are hosted within an organization’s own
data center or managed by a vendor on behalf of a single customer. Servers in a pri-
vate cloud are single-tenant, not shared with other customers as in a public cloud.

Private clouds offer flexibility and programmatic control, just as public clouds do.
They appeal to organizations that already have significant capital invested in hard-
ware and engineers, especially those that value full control of their environment.

OpenStack is the leading open source system used to create private clouds. It re-
ceives financial and engineering support from enterprises such as AT&T, IBM, and
Intel. Rackspace itself is one of the largest contributors to OpenStack.

A combination of public and private clouds is called a hybrid cloud. Hybrids can
be useful when an enterprise is first migrating from local servers to a public cloud,
for adding temporary capacity to handle peak loads, and for a variety of other or-
ganization-specific scenarios. Administrators beware: operating two distinct cloud
presences in tandem increases complexity more than proportionally.

VMware’s vSphere Air cloud, based on vSphere virtualization technology, is a seam-
less hybrid cloud for customers that already use VMware virtualization in their
on-premises data center. Those users can move applications to and from vCloud
Air infrastructure quite transparently.

The term “public cloud” is a bit unfortunate, connoting as it does the security and
hygiene standards of a public toilet. In fact, customers of public clouds are isolated
from each other by multiple layers of hardware and software virtualization. A pri-
vate cloud offers little or no practical security benefit over a public cloud.

In addition, operating a private cloud is an intricate and expensive prospect that
should not be undertaken lightly. Only the largest and most committed organi-
zations have the engineering resources and wallet needed to implement a robust,
secure private cloud. And once implemented, a private cloud’s features usually fall
short of those offered by commercial public clouds.

For most organizations, we recommend the public cloud over the private or hybrid
options. Public clouds offer the highest value and easiest administration. For the
remainder of this book, our cloud coverage is limited to public options The next
few sections present a quick overview of each of our example platforms.

Amazon Web Services

AWS offers scores of services, ranging from virtual servers (EC2) to managed da-
tabases and data warehouses (RDS and Redshift) to serverless functions that exe-
cute in response to events (Lambda). AWS releases hundreds of updates and new
features each year. It has the largest and most active community of users. AWS is
by far the largest cloud computing business.

From the standpoint of most users, AWS has essentially unlimited capacity. How-
ever, new accounts come with limits that control how much compute power you

[

Cloud platform choices 275

can requisition. These restrictions protect both Amazon and you, since costs can
quickly spiral out of control if services aren’t properly managed. To increase your
limits, you complete a form on the AWS support site. The service limit documen-
tation itemizes the constraints associated with each service.

The on-line AWS documentation located at aws.amazon.com/documentation is
authoritative, comprehensive, and well organized. It should be the first place you
look when researching a particular service. The white papers that discuss security,
migration paths, and architecture are invaluable for those interested in construct-
ing robust cloud environments.

Google Cloud Platform

If AWS is the reigning champion of the cloud, Google is the would-be usurper. It
competes for customers through nefarious tricks such as lowering prices and di-
rectly addressing customers’ AWS pain points.

The demand for engineers is so fierce that Google has been known to poach em-
ployees from AWS. In they past, they’ve hosted parties in conjunction with the AWS
re:Invent conference in Las Vegas in an attempt to lure both talent and users. As
the cloud wars unfold, customers ultimately benefit from this competition in the
form of lower costs and improved features.

Google runs the most advanced global network in the world, a strength that benefits
its cloud platform. Google data centers are technological marvels that feature many
innovations to improve energy efficiency and reduce operational costs." Google is
relatively transparent about its operations, and their open source contributions
help advance the cloud industry.

Despite its technical savvy, in some ways Google is a follower in the public cloud,
not a leader. When it launched in 2011 or 2012,> GCP was already late to the game.
Its services have many of the same features (and often the same names) as their
AWS equivalents. If you're familiar with AWS, you’ll find the GCP web interface
to be somewhat different on the surface. However, the functionality underneath
is strikingly similar.

We anticipate that GCP will gain market share in the years to come as it improves
its products and builds customer trust. It has hired some of the brightest minds in
the industry, and they’re bound to develop some innovative technologies. As con-
sumers, we all stand to benefit.

DigitalOcean

DigitalOcean is a different breed of public cloud. Whereas AWS and GCP compete
to serve the large enterprises and growth-focused startups, DigitalOcean courts

. See google.com/about/datacenters for photos and facts about how Google’s data centers operate.

. Google had released other cloud products as early as 2008, including App Engine, the first platform-

as-a-service product. But Google’s strategy and the GCP brand were not apparent until 2012.

http://aws.amazon.com/documentation
http://google.com/about/datacenters

276

9.3

Chapter 9 Cloud Computing

small customers with simpler needs. Minimalism is the name of the game. We like
DigitalOcean for experiments and proof-of-concept projects.

DigitalOcean offers data centers in North America, Europe, and Asia. There are
several centers in each of these regions, but they are not directly connected and so
cannot be considered availability zones (see page 278). As a result, it’s considerably
more difficult to build global, highly available production services on DigitalOcean
than on AWS or Google.

DigitalOcean servers are called droplets. They are simple to provision from the com-
mand line or web console, and they boot quickly. DigitalOcean supplies images for
all our example operating systems except Red Hat. It also has a handful of images for
popular open source applications such as Cassandra, Drupal, Django, and GitLab.

DigitalOcean also has load balancer and block storage services. In Chapter 26,
Continuous Integration and Delivery, we include an example of provisioning a Dig-
italOcean load balancer with two droplets using HashiCorp’s Terraform infrastruc-
ture provisioning tool.

CLOUD SERVICE FUNDAMENTALS

Cloud services are loosely grouped into three categories:

o Infrastructure-as-a-Service (IaaS), in which users request raw compute,
memory, network, and storage resources. These are typically delivered in
the form of virtual private servers, aka VPSs. Under IaaS, users are re-
sponsible for managing everything above the hardware: operating systems,
networking, storage systems, and their own software.

o Platform-as-a-Service (Paa$), in which developers submit their custom
applications packaged in a format specified by the vendor. The vendor
then runs the code on the user’s behalf. In this model, users are respon-
sible for their own code, while the vendor manages the OS and network.

« Software-as-a-Service (SaaS), the broadest category, in which the vendor
hosts and manages software and users pay some form of subscription fee
for access. Users maintain neither the operating system nor the applica-
tion. Almost any hosted web application (think WordPress) falls into the
Saa$ category.

Table 9.3 shows how each of these abstract models breaks down in terms of the
layers involved in a complete deployment.

Of these options, IaaS$ is the most pertinent to system administration. In addition
to defining virtual computers, IaaS providers virtualize the hardware elements that
are typically connected to them, such as disks (now described more generally as
“block storage devices”) and networks. Virtual servers can inhabit virtual networks

Cloud service fundamentals 277

Table 9.3 Which layers are you responsible for managing?

Layer Local® laaS PaaS SaaS

v
v
v

Application

Databases

Application runtime

Operating system

Virtual network, storage, and servers
Virtualization platform

Physical servers

Storage systems

Physical network

Power, space, and cooling

SR~

SRSXSXSXSKSKKL«KXN

a. Local: local servers and network
laas: Infrastructure-as-a-Service (virtual servers)
PaaS: Platform-as-a-Service (e.g., Google App Engine)
Saas: Software-as-a-Service (e.g., most web-based services)

for which you specify the topology, routes, addressing, and other characteristics.
In most cases, these networks are private to your organization.

Taa$ can also include other core services such as such as databases, queues, key/value
stores, and compute clusters. These features combine to create a complete replace-
ment for (and in many cases, an improvement over) the traditional data center.

PaaS$ is an area of great promise that is not yet fully realized. Current offerings such
as AWS Elastic Beanstalk, Google App Engine, and Heroku come with environmen-
tal constraints or nuances that render them impractical (or incomplete) for use in
busy production environments. Time and again we've seen business outgrow these
services. However, new services in this area are receiving a lot of attention. We an-
ticipate dramatic improvements in the coming years.

Cloud providers differ widely in terms of their exact features and implementation
details, but conceptually, many services are quite similar. The following sections
describe cloud services generally, but because AWS is the front-runner in this space,
we sometimes adopt its nomenclature and conventions as defaults.

Access to the cloud

Most cloud providers’ primary interface is some kind of web-based GUI. New sys-
tem administrators should use this web console to create an account and to con-
figure their first few resources.

Cloud providers also define APIs that access the same underlying functionality as
that of the web console. In most cases, they also have a standard command-line
wrapper, portable to most systems, for those APIs.

278

W

Chapter 9 Cloud Computing

Even veteran administrators make frequent use of web GUIs. However, it’s also im-
portant to get friendly with the command-line tools because they lend themselves
more readily to automation and repeatability. Use scripts to avoid the tedious and
sluggish process of requesting everything through a browser.

Cloud vendors also maintain software development kits (SDKs) for many popu-
lar languages to help developers use their APIs. Third party tools use the SDKs to
simplify or automate specific sets of tasks. You'll no doubt encounter these SDKs
if you write your own tools.

You normally use SSH with public key authentication to access UNIX and Linux
systems running in the cloud. See SSH, the Secure SHell starting on page 1016 for
more information about the effective use of SSH.

Some cloud providers let you access a console session through a web browser, which
can be especially helpful if you mistakenly lock yourself out with a firewall rule or
broken SSH configuration. It’s not a representation of the system’s actual console,
though, so you can’t use this feature to debug bootstrapping or BIOS issues.

Regions and availability zones

Cloud providers maintain data centers around the world. A few standard terms
describe geography-related features.

A “region” is a location in which a cloud provider maintains data centers. In most
cases, regions are named after the territory of intended service even though the
data centers themselves are more concentrated. For example, Amazon’s us-east-1
region is served by data centers in north Virginia.?

Some providers also have “availability zones” (or simply “zones”) which are col-
lections of data centers within a region. Zones within a region are peered through
high-bandwidth, low-latency, redundant circuits, so inter-zone communication
is fast, though not necessarily cheap. Anecdotally, we've experienced inter-zone
latency of less than 1ms.

Zones are typically designed to be independent of one another in terms of power
and cooling, and they’re geographically dispersed so that a natural disaster that af-
fects one zone has a low probability of affecting others in the same region.

Regions and zones are fundamental to building highly available network services.
Depending on availability requirements, you can deploy in multiple zones and
regions to minimize the impact of a failure within a data center or geographic
area. Availability zone outages can occur, but are rare; regional outages are rarer
still. Most services from cloud vendors are aware of zones and use them to achieve
built-in redundancy.

. It takes about 5ms for a fiber optic signal to travel 1,000km, so regions the size of the U.S. east coast

are fine from a performance standpoint. The network connectivity available to a data center is more
important than its exact location.

Cloud service fundamentals 279

Exhibit A Servers distributed among multiple regions and zones

Regions connect through the
Internet or through private

circuits; fees apply either way. * Intra-zone traffic

is free.

v

U.S. west region

N2

Inter-zone communication is
private but incurs a cost per GB.

U.S. east region

Multiregion deployments are more complex because of the physical distances be-
tween regions and the associated higher latency. Some cloud vendors have faster
and more reliable inter-region networks than others. If your site serves users around
the world, the quality of your cloud vendor’s network is paramount.

Choose regions according to geographic proximity to your user base. For scenari-
os in which the developers and users are in different geographic regions, consider
running your development systems close to the developers and production systems
closer to the users.

For sites that deliver services to a global user base, running in multiple regions can
substantially improve performance for end users. Requests can be routed to each
client’s regional servers by exploitation of geographic DNS resolution, which de-
termines clients’ locations by their source IP addresses.

Most cloud platforms have regions for North America, South America, Europe, and
the Asia Pacific countries. Only AWS and Azure have a direct presence in China.
Some platforms, notably AWS and vCloud, have regions compatible with strict U.S.
federal ITAR requirements.

Virtual private servers

The flagship service of the cloud is the virtual private server, a virtual machine
that runs on the provider’s hardware. Virtual private servers are sometimes called
instances. You can create as many instances as you need, running your preferred
operating system and applications, then shut the instances down when they’re no
longer needed. You pay only for what you use, and there’s typically no up-front cost.

280

See page 1030 for
more information
about VPN,

See page 392 for
more information
about RFC1918
private addresses.

Chapter 9 Cloud Computing

Because instances are virtual machines, their CPU power, memory, disk size, and
network settings can be customized when the instance is created and even adjusted
after the fact. Public cloud platforms define preset configurations called instance
types. They range from single-CPU nodes with 512MiB of memory to large sys-
tems with many CPU cores and multiple TiB of memory. Some instance types are
balanced for general use, and others are specialized for CPU-, memory-, disk-, or
network-intensive applications. Instance configurations are one area in which cloud
vendors compete vigorously to match market needs.

Instances are created from “images,” the saved state of an operating system that
contains (at minimum) a root filesystem and a boot loader. An image might also
include disk volumes for additional filesystems and other custom settings. You can
easily create custom images with your own software and settings.

All our example operating systems are widely used, so cloud platforms typically
supply official images for them.* Many third party software vendors also maintain
cloud images that have their software preinstalled to facilitate adoption by custom-
ers. It’s also easy to create your own custom images. Learn more about how to create
virtual machine images in Packer starting on page 911.

Networking

Cloud providers let you create virtual networks with custom topologies that isolate
your systems from each other and from the Internet. On platforms that offer this
feature, you can set the address ranges of your networks, define subnets, configure
routes, set firewall rules, and construct VPNs to connect to external networks. Ex-
pect some network-related operational overhead and maintenance when building
larger, more complex cloud deployments.

You can make your servers accessible to the Internet by leasing publicly routable ad-
dresses from your provider—all providers have a large pool of such addresses from
which users can draw. Alternatively, servers can be given only a private RFC1918
address within the address space you selected for your network, rendering them
publicly inaccessible.

Systems without public addresses are not directly accessible from the Internet, even
for administrative attention. You can access such hosts through a jump server or
bastion host that is open to the Internet, or through a VPN that connects to your
cloud network. For security, the smaller the external-facing footprint of your vir-
tual empire, the better.

Although this all sounds promising, you have even less control over virtual net-
works than you do over traditional networks, and you're subject to the whims and
vagaries of the feature set made available by your chosen provider. It’s particularly
maddening when new features launch but can’t interact with your private network.
(We're looking at you, Amazon!)

4. Currently, you must build your own FreeBSD image if you use Google Compute Engine.

wu

Cloud service fundamentals 281

Skip to page 448 for the details on TCP/IP networking in the cloud.

Storage

Data storage is a major part of cloud computing. Cloud providers have the largest
and most advanced storage systems on the planet, so you'll be hard pressed to match
their capacity and capabilities in a private data center. The cloud vendors bill by
the amount of data you store. They are highly motivated to give you as many ways
as possible to ingest your data.’

Here are a few of the most important ways to store data in the cloud:

« “Object stores” contain collections of discrete objects (files, essentially)
in a flat namespace. Object stores can accommodate a virtually unlimit-
ed amount of data with exceptionally high reliability but relatively slow
performance. They are designed for a read-mostly access pattern. Files in
an object store are accessed over the network through HTTPS. Examples
include AWS S3 and Google Cloud Storage.

o Block storage devices are virtualized hard disks. They can be requisitioned
at your choice of capacities and attached to a virtual server, much like
SAN volumes on a traditional network. You can move volumes among
nodes and customize their I/O profiles. Examples include AWS EBS and
Google persistent disks.

o Ephemeral storage is local disk space on a VPS that is created from disk
drives on the host server. These are normally fast and capacious, but the
data is lost when you delete the VPS. Therefore, ephemeral storage is best
used for temporary files. Examples include instance store volumes on AWS
and local SSDs on GCP.

In addition to these raw storage services, cloud providers usually offer a variety
of freestanding database services that you can access over the network. Relation-
al databases such as MySQL, PostgreSQL, and Oracle run as services on the AWS
Relational Database Service. They offer built-in multizone redundancy and en-
cryption for data at rest.

Distributed analytics databases such as AWS Redshift and GCP BigQuery offer in-
credible ROI; both are worth a second look before you build your own expensive
data warehouse. Cloud vendors also offer the usual assortment of in-memory and
NoSQL databases such as Redis and memcached.

Identity and authorization

Administrators, developers, and other technical staff all need to manage cloud ser-
vices. Ideally, access controls should conform to the principle of least privilege: each

. Case in point: AWS offers on-site visits from the AWS Snowmobile, a 45-foot long shipping container

towed by a semi truck than can transfer 100 PiB from your data center to the cloud.

282

Chapter 9 Cloud Computing

principal can access only the entities that are relevant to it, and nothing more. De-
pending on the context, such access control specifications can become quite elaborate.

AWS is exceptionally strong in this area. Their service, called Identity and Access
Management (IAM), defines not only users and groups but also roles for systems. A
server can be assigned policies, for example, to allow its software to start and stop
other servers, store and retrieve data in an object store, or interact with queues—
all with automatic key rotation. IAM also has an API for key management to help
you store secrets safely.

Other cloud platforms have fewer authorization features. Unsurprisingly, Azure’s
service is based on Microsoft’s Active Directory. It pairs well with sites that have
an existing directory to integrate with. Google’s access control service, also called
IAM, is relatively coarse-grained and incomplete in comparison with Amazon’s.

Automation

The APIs and CLI tools created by cloud vendors are the basic building blocks of
custom automation, but theyre often clumsy and impractical for orchestrating
larger collections of resources. For example, what if you need to create a new net-
work, launch several VPS instances, provision a database, configure a firewall, and
finally, connect all these components? Written in terms of a raw cloud API, that
would make for a complex script.

AWS CloudFormation was the first service to address this problem. It accepts a
template in JSON or YAML format that describes the desired resources and their
associated configuration details. You submit the template to CloudFormation, which
checks it for errors, sorts out dependencies among resources, and creates or updates
the cloud configuration according to your specifications.

CloudFormation templates are powerful but error prone in human hands because
of their strict syntax requirements. A complete template is unbearably verbose and
a challenge for humans to even read. Instead of writing these templates by hand,
we prefer to automatically render them with a Python library called Troposphere
from Mark Peek (see github.com/cloudtools/troposphere).

Third party services also target this problem. Terraform, from the open source
company HashiCorp, is a cloud-agnostic tool for constructing and changing infra-
structure. As with CloudFormation, you describe resources in a custom template
and then let Terraform make the proper API calls to implement your configura-
tion. You can then check your configuration file into version control and manage
the infrastructure over time.

Serverless functions

One of the most innovative features in the cloud since its emergence are the cloud
function services, sometimes called functions-as-a-service, also referred to as “server-
less” features. Cloud functions are a model of code execution that do not require

http://github.com/cloudtools/troposphere

9.4

Clouds: VPS quick start by platform 283

any long-lived infrastructure. Functions execute in response to an event, such as
the arrival of a new HT TP request or an object being uploaded to a storage location.

For example, consider a traditional web server. HT TP requests are forwarded by the
networking stack of the operating system to a web server, which routes them appro-
priately. When the response completes, the web server continues to wait for requests.

Contrast this with the serverless model. An HTTP request arrives, and it triggers
the cloud function to handle the response. When complete, the cloud function ter-
minates. The owner pays for the period of time that the function executes. There
is no server to maintain and no operating system to manage.

AWS introduced Lambda, their cloud function service, at a conference in 2014.
Google followed shortly with a Cloud Functions service. Several cloud function
implementations exist for projects like OpenStack, Mesos, and Kubernetes.

Serverless functions hold great promise for the industry. A massive ecosystem of
tools is emerging to support simpler and more powerful use of the cloud. We've
found many uses for these short-lived, serverless functions in our day-to-day ad-
ministrative duties. We anticipate rapid advances in this area in the coming years.

CLouDs: VPS QUICK START BY PLATFORM

The cloud is an excellent sandbox in which to learn UNIX and Linux. This short
section helps you get up and running with virtual servers on AWS, GCP, or Dig-
italOcean. As system administrators, we rely extensively on the command line (as
opposed to web GUIs) for interacting with the cloud, so we illustrate the use of
those tools here.

Amazon Web Services

To use AWS, first set up an account at aws.amazon.com. Once you create the ac-
count, immediately follow the guidance in the AWS Trusted Advisor to configure
your account according to the suggested best practices. You can then navigate to
the individual service consoles for EC2, VPC, etc.

Each AWS service has a dedicated user interface. When you log in to the web console,
you'll see the list of services at the top. Within Amazon, each service is managed
by an independent team, and the UT unfortunately reflects this fact. Although this
decoupling has helped AWS services grow, it does lead to a somewhat fragmented
user experience. Some interfaces are more refined and intuitive than others.

To protect your account, enable multifactor authentication (MFA) for the root user,
then create a privileged IAM user for day-to-day use. We also generally configure an
alias so that users can access the web console without entering an account number.
This option is found on the landing page for IAM.

http://aws.amazon.com

284

See page 229 for more
information about pip.

Chapter 9 Cloud Computing

In the next section we introduce the official aws CLI tool written in Python. New
users might also benefit from Amazon’s Lightsail quick start service, which aims
to start an EC2 instance with minimum fuss.

aws: control AWS subsystems

aws is a unified command-line interface to AWS services. It manages instances,
provisions storage, edits DNS records, and performs most of the other tasks shown
in the web console. The tool relies on the exceptional Boto library, a Python SDK
for the AWS API], and it runs on any system with a working Python interpreter.
Install it with pip:

$ pip install awscli

To use aws, first authenticate it to the AWS API by using a pair of random strings
called the “access key ID” and the “secret access key.” You generate these credentials
in the IAM web console and then copy-and-paste them locally.

Running aws configure prompts you to set your API credentials and default region:

$ aws configure

AWS Access Key ID: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [us-east-17]: <return>

Default output format [None]: <return>

These settings are saved to ~/.aws/config. As long as you're setting up your envi-
ronment, we also recommend that you configure the bash shell’s autocompletion
feature so that subcommands are easier to discover. See the AWS CLI docs for
more information.

The first argument to aws names the specific service you want to manipulate; for
example, ec2 for actions that control the Elastic Compute Cloud. You can add the
keyword help at the end of any command to see instructions. For example, aws help,
aws ec2 help, and aws ec2 describe-instances help all produce useful man pages.

Creating an EC2 instance

Use aws ec2 run-instances to create and launch EC2 instances. Although you can
create multiple instances with a single command (by using the --count option),
the instances must all share the same configuration. Here’s a minimal example of
a complete command:

$ aws ec2 run-instances --image-id ami-d440a6e7
--instance-type t2.nano --associate-public-ip-address
--key-name admin-key

output shown on page 285

Clouds: VPS quick start by platform 285

This example specifies the following configuration details:

o The base system image is an Amazon-supplied version of CentOS 7 named
ami-d440a6e7. (AWS calls their images AMIs, for Amazon Machine Imag-
es.) Like other AWS objects, the image names are unfortunately not mne-
monic; you must look up IDs in the EC2 web console or on the command
line (aws ec2 describe-images) to decode them.

« The instance type is t2.nano, which is currently the smallest instance type.
It has one CPU core and 512MiB of RAM. Details about the available in-
stance types can be found in the EC2 web console.

o A preconfigured key pair is also assigned to control SSH access. You can
generate a key pair with the ssh-keygen command (see page 1019), then
upload the public key to the AWS EC2 console.

The output of that aws ec2 run-instances command is shown below. It's JSON, so
it’s easily consumed by other software. For example, after launching an instance, a
script could extract the instance’s IP address and configure DNS, update an inven-
tory system, or coordinate the launch of multiple servers.

$ aws ec2 run-instances ... # Same command as above
{

"OwnerId": "188238000000",

"ReservationId": "r-83a02346",

"Instances": [

"PrivateIpAddress": "10.0.0.27",

"InstanceId": "i-c4f60303",

"ImageId": "ami-d440a6e7",

"PrivateDnsName": "ip-10-0-0-27.us-west-2.compute.internal”,

"KeyName": "admin-key",
"SecurityGroups": [
{

"GroupName": "default",
"GroupId": "sg-9eb477fb"
}
1,
"SubnetId": "subnet-ef67938a",
"InstanceType": "t2.nano",

}

By default, EC2 instances in VPC subnets do not have public IP addresses attached,
rendering them accessible only from other systems within the same VPC. To reach
instances directly from the Internet, use the --associate-public-ip-address option, as
shown in our example command. You can discover the assigned IP address after the
fact with aws ec2 describe-instances or by finding the instance in the web console.

286

See Chapter 8

for more informa-
tion about user
management.

Chapter 9 Cloud Computing

Firewalls in EC2 are known as “security groups.” Because we didn't specify a security
group here, AWS assumes the “default” group, which allows no access. To connect
to the instance, adjust the security group to permit SSH from your IP address. In
real-world scenarios, security group structure should be carefully planned during
network design. We discuss security groups in Security groups and NACLs starting
on page 450.

aws configure sets a default region, so you need not specify a region for the instance
unless you want something other than the default. The AMI, key pair, and subnet
are all region-specific, and aws complains if they don't exist in the region you specify.
(In this particular case, the AMI, key pair, and subnet are from the us-east-1 region.)

Take note of the Instanceld field in the output, which is a unique identifier for the
new instance. You can use aws ec2 describe-instances --instance-id id to show
details about an existing instance, or just use aws ec2 describe-instances to dump
all instances in the default region.

Once the instance is running and the default security group has been adjusted to pass
traffic on TCP port 22, you can use SSH to log in. Most AMIs are configured with
a nonroot account that has sudo privileges. For Ubuntu the username is ubuntu;
for CentOS, centos. FreeBSD and Amazon Linux both use ec2-user. The documen-
tation for your chosen AMI should specify the username if it’s not one of these.

Properly configured images allow only public keys for SSH authentication, not
passwords. Once you've logged in with the SSH private key, you’ll have full sudo
access with no password required. We recommend disabling the default user after
the first boot and creating personal, named accounts.

Viewing the console log

Debugging low-level problems such as startup issues and disk errors can be chal-
lenging without access to the instance’s console. EC2 lets you retrieve the console
output of an instance, which can be useful if the instance is in an error state or
appears to be hung. You can do this through the web interface or with aws ec2
get-console-output, as shown:

$ aws ec2 get-console-output --instance-id i-c4f60303
{

"InstanceId": "i-c4f60303",

"Timestamp": "2015-12-21T00:01:45.000Z",

"Qutput": "[0.000000] Initializing cgroup subsys cpuset\r\n[
0.000000] Initializing cgroup subsys cpu\r\n[0.000000]
Initializing cgroup subsys cpuacct\r\n[0.000000] Linux version
4.1.7-15.23.amzn1.x86_64 (mockbuild@gobi-build-60006)

(gcc version 4.8.3 20140911 (Red Hat 4.8.3-9)) #1 SMP Mon Sep
14 23:20:33 UTC 2015\r\n

Clouds: VPS quick start by platform 287

The full log is of course much longer than this snippet. In the JSON dump, the con-
tents of the log are unhelpfully concatenated as a single line. For better readability,
clean it up with sed:

$ aws ec2 get-console-output —--instance-id i-c4f60303 | sed

's/A\r\\n/\\n/g'
{
"InstanceId": "i-c4f60303",
"Timestamp": "2015-12-21T00:01:45.000Z",
"Output": "[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Initializing cgroup subsys cpuacct
[0.000000] Linux version 4.1.7-15.23.amzn1.x86_64
(mockbuild@gobi-build-60006) (gcc version 4.8.3 20140911
(Red Hat 4.8.3-9)) #1 SMP Mon Sep 14 23:20:33 UTC 2015
}

This log output comes directly from the Linux boot process. The example above
shows a few lines from the moment the instance was first initialized. In most cases,
you’'ll find the most interesting information near the end of the log.

Stopping and terminating instances

When you're finished with an instance, you can “stop” it to shut the instance down
but retain it for later use, or “terminate” it to delete the instance entirely. By default,
termination also releases the instance’s root disk into the ether. Once terminated,
an instance can never be resurrected, even by AWS.

$ aws ec2 stop-instances --instance-id i-c4f60303

{
"StoppingInstances": [
{
"InstanceId": "i-c4f60303",
"CurrentState": {
"Code": 64,
"Name": "stopping"
b
"PreviousState": {
"Code": 16,
"Name": "running"
}
}
1
}

Note that virtual machines don’t change state instantly; it takes a minute for the ham-
sters to reset. Hence the presence of transitional states such as “starting” and “stop-
ping”” Be sure to account for them in any instance-wrangling scripts you might write.

288

Chapter 9 Cloud Computing

Google Cloud Platform

To get started with GCP, establish an account at cloud.google.com. If you already
have a Google identity, you can sign up using the same account.

GCP services operate within a compartment known as a project. Each project has
separate users, billing details, and API credentials, so you can achieve complete
separation between disparate applications or areas of business. Once you create
your account, create a project and enable individual GCP services according to
your needs. Google Compute Engine, the VPS service, is one of the first services
you might want to enable.

Setting up gcloud

gcloud, a Python application, is the CLI tool for GCP. It's a component of the Goo-
gle Cloud SDK, which contains a variety of libraries and tools for interfacing with
GCP. To install it, follow the installation instructions at cloud.google.com/sdk.

Your first action should be to set up your environment by running gcloud init. This
command starts a small, local web server and then opens a browser link to display
the Google UI for authentication. After you authenticate yourself through the web
browser, gcloud asks you (back in the shell) to select a project profile, a default zone,
and other defaults. The settings are saved under ~/.config/gcloud/.

Run gcloud help for general information or gcloud -h for a quick usage summary.
Per-subcommand help is also available; for example, gcloud help compute shows
a man page for the Compute Engine service.

Running an instance on GCE

Unlike aws commands, which return immediately, gcloud compute operates syn-
chronously. When you run the create command to provision a new instance, for
example, gcloud makes the necessary API call, then waits until the instance is
actually up and running before it returns. This convention avoids the need to poll
for the state of an instance after you create it.°

To create an instance, first obtain the name or alias of the image you want to boot:

$ gcloud compute images list ——regexp 'debian,*!

NAME PROJECT ALIAS DEPRECATED STATUS
debian-7-wheezy-v20160119 debian-cloud debian-7 READY
debian-8-jessie-v20160119 debian-cloud debian-8 READY

Then create and boot the instance, specifying its name and the image you want:

$ gcloud compute instances create ulsah —-image debian-8

waits for instance to launch...

NAME ZONE MACHINE_TYPE INTERNAL_IP EXTERNAL_IP STATUS
ulsah us-centrall-f nl-standard-1 10.100.0.4 104.197.65.218 RUNNING

6. See aws ec2 wait for information on polling for events or states within AWS EC2.

http://cloud.google.com
http://cloud.google.com/sdk

See page 229 for
more details on set-
ting up Ruby gems.

See page 1016 for
more about SSH.

Clouds: VPS quick start by platform 289

The output normally has a column that shows whether the instance is “preemptible,”
but in this case it was blank and we removed it to make the output fit on the page.
Preemptible instances are less expensive than standard instances, but they can run
for only 24 hours and can be terminated at any time if Google needs the resources
for another purpose. They’re meant for long-lived operations that can tolerate in-
terruptions, such as batch processing jobs.

>«

Preemptible instances are similar in concept to EC2’s “spot instances” in that you
pay a discounted rate for otherwise-spare capacity. However, we've found Google’s
preemptible instances to be more sensible and simpler to manage than AWS’s spot
instances. Long-lived standard instances remain the most appropriate choice for
most tasks, however.

gcloud initializes the instance with a public and private IP address. You can use
the public IP with SSH, but gcloud has a helpful wrapper to simplify SSH logins:

$ gcloud compute ssh ulsah
Last login: Mon Jan 25 03:33:48 2016
ulsah:n$

Cha-ching!

DigitalOcean

With advertised boot times of 55 seconds, DigitalOcean’s virtual servers (“drop-
lets”) are the fastest route to a root shell. The entry level cost is $5 per month, so
they won't break the bank, either.

Once you create an account, you can manage your droplets through DigitalOcean’s
web site. However, we find it more convenient to use tugboat, a command-line tool
written in Ruby that uses DigitalOcean’s published API. Assuming that you have
Ruby and its library manager, gem, installed on your local system, just run gem
install tugboat to install tugboat.

A couple of one-time setup steps are required. First, generate a pair of cryptographic
keys that you can use to control access to your droplets:

$ ssh-keygen -t rsa -b 2048 -f ~/.ssh/id_rsa_do

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase): <return>

Enter same passphrase again: <return>

Your identification has been saved in /Users/ben/.ssh/id_rsa_do.
Your public key has been saved in /Users/ben/.ssh/id_rsa_do.pub.

Copy the contents of the public key file and paste them into DigitalOcean’s web
console (currently under Settings > Security). As part of that process, assign a short
name to the public key.

Next, connect tugboat to DigitalOcean’s API by entering an access token that you
obtain from the web site. tugboat saves the token for future use in ~/.tugboat.

290

Chapter 9 Cloud Computing

$ tugboat authorize

Note: You can get your Access Token from https://cloud.digitalocean.com/
settings/tokens/new

Enter your access token: e9dffla9a7ffdd8faf3...f37b015b3d459¢c2795b64

Enter your SSH key path (defaults to ~/.ssh/id_rsa): ~/.ssh/id_rsa_do

Enter your SSH user (optional, defaults to root):

Enter your SSH port number (optional, defaults to 22):

Enter your default region (optional, defaults to nycl): sfol

Authentication with DigitalOcean was successful.

To create and start a droplet, first identify the name of the system image you want
to use as a baseline. For example:

$ tugboat images | grep -i ubuntu

16.04.1 x64 (slug: , id: 21669205, distro: Ubuntu)

16.04.1 x64 (slug: , id: 22601368, distro: Ubuntu)

16.04.2 x64 (slug: ubuntu-16-04-x64, id: 23754420, distro: Ubuntu)
16.04.2 x32 (slug: ubuntu-16-04-x32, id: 23754441, distro: Ubuntu)

You also need DigitalOcean’s numeric ID for the SSH key you pasted into the web
console:

$ tugboat keys

SSH Keys:

Name: id_rsa_do, (id: 1587367), fingerprint:
bc:32:3f:4d:7d:b0:34:ac:2e:3f:01:fl:el:ea:2e:da

This output shows that the numeric ID for the key named id_rsa_do is 1587367.
Create and start a droplet like this:

$ tugboat create —i ubuntu-16-04-x64 -k 1587367 ulsah-ubuntu
queueing creation of droplet 'ulsah-ubuntu'...Droplet created!

Here, the argument to -k is the SSH key ID, and the last argument is a short name
for the droplet that you can assign as you wish.

Once the droplet has had time to boot, you can log in with tugboat ssh:

$ tugboat ssh ulsah-ubuntu

Droplet fuzzy name provided. Finding droplet ID...done, 23754420
(ubuntu-16-04-x64)

Executing SSH on Droplet (ubuntu-16-04-x64)...

This droplet has a private IP, checking if you asked to use the Private IP...

You didn't! Using public IP for ssh...

Attempting SSH: root@45.55.1.165

Welcome to Ubuntu 16.04 ((GNU/Linux 4.4.0-28-generic x86_64)

root@ulsah-ubuntu:~i#

You can create as many droplets as you need, but keep in mind that you’ll be billed
for each one, even if it’s powered down. To inactivate a droplet, power it down, use

https://cloud.digitalocean.com/settings/tokens/new
https://cloud.digitalocean.com/settings/tokens/new

9.5

Cost control 291

tugboat snapshot droplet-name snapshot-name to memorialize the state of the sys-
tem, and run tugboat destroy droplet-name to decommission the droplet. You can
later recreate the droplet by using the snapshot as a source image.

COST CONTROL

Cloud newcomers often naively anticipate that large-scale systems will be dramati-
cally cheaper to run in the cloud than in a data center. This expectation might stem
from the inverse sticker shock engendered by cloud platforms’ low, low price per
instance-hour. Or perhaps the idea is implanted by the siren songs of cloud mar-
keters, whose case studies always show massive savings.

Regardless of their source, it’s our duty to stamp out hope and optimism wherever
they are found. In our experience, new cloud customers are often surprised when
costs climb quickly.

Cloud tariffs generally consist of several components:

« The compute resources of virtual private servers, load balancers, and ev-
erything else that consumes CPU cycles to run your services. Pricing is
per hour of use.

« Internet data transfer (both ingress and egress), as well as traffic among
zones and regions. Pricing is per GiB or TiB transferred.

« Storage of all types: block storage volumes, object storage, disk snapshots,
and in some cases, I/O to and from the various persistence stores. Pricing
is per GiB or TiB stored per month.

For compute resources, the pay-as-you-go model, also known as “on-demand pric-
ing,” is the most expensive. On AWS and DigitalOcean, the minimum billing incre-
ment is one hour, and on GCP it’s a minute. Prices range from fractions of a cent
per hour (DigitalOcean’s smallest droplet type with 512MiB and one CPU core, or
AWS t2.nano instances) to several dollars per hour (an i2.8xlarge instance on AWS
with 32 cores, 104GiB RAM, and 8 x 800GB local SSDs).

You can realize substantial savings on virtual servers by paying up front for longer
terms. On AWS, this is called “reserved instance pricing” Unfortunately, it’s unbear-
ably cumbersome and time-consuming to determine precisely what to purchase.
Reserved EC2 instances are tied to a specific instance family. If you decide later that
you need something different, your investment is lost. On the upside, if you reserve
an instance, you are guaranteed that it will be available for your use. With on-de-
mand instances, your desired type might not even be available when you go to pro-
vision it, depending on current capacity and demand. AWS continues to tweak its
pricing structure, so with luck the current system might be simplified in the future.

For number crunching workloads that can tolerate interruptions, AWS offers spot
pricing. The spot market is an auction. If your bid exceeds the current spot price,

292

See page 689 for
more information
about CDNs.

~

Chapter 9 Cloud Computing

you'll be granted use of the instance type you requested until the price exceeds
your maximum bid, at which point your instance is terminated. The prices can be
deeply discounted compared to the EC2 on-demand and reserved prices, but the
use cases are limited.

Google Compute Engine pricing is refreshingly simple by comparison. Discounts
are automatically applied for sustained use, and you never pay up front. You pay the
full base price for the first week of the month, and the incremental price drops each
week by 20% of the base rate, to a maximum discount of 60%. The net discount on
a full month of use is 30%. That’s roughly comparable to the discount on a one-year
reserved EC2 instance, but you can change instances at any time.”

Network traffic can be even more difficult to predict reliably. The culprits commonly
found to be responsible for high data-transfer costs include

« Web sites that ingest and serve large media files (videos, images, PDFs,
and other large documents) directly from the cloud, rather than oftload-
ing them to a CDN

« Inter-zone or inter-region traffic for database clusters that replicate for fault
tolerance; for example, software such as Cassandra, MongoDB, and Riak

o MapReduce or data warehouse clusters that span multiple zones

« Disk images and volume snapshots transferred between zones or regions
for backup (or by some other automated process)

In situations where replication among multiple zones is important for availability,
you'll save on transfer expenses by limiting clusters to two zones rather than using
three or more. Some software offers tweaks such as compression that can reduce
the amount of replicated data.

One substantial source of expense on AWS is provisioned IOPS for EBS volumes.
Pricing for EBS is per GiB-month and IOPS-month. The price of a 200GiB EBS
volume with 5,000 IOPS is a few hundred dollars per month. A cluster of these just
might break the bank.

The best defense against high bills is to measure, monitor, and avoid overprovision-
ing. Use autoscaling features to remove capacity when it isn’t needed, lowering costs
at times of low demand. Use more, smaller instances for more fine-grained control.
Watch usage patterns carefully before spending a bundle on reserved instances or
high-bandwidth volumes. The cloud is flexible, and you can make changes to your
infrastructure as needed.

As environments grow, identifying where money is being spent can be a challenge.
Larger cloud accounts might benefit from third party services that analyze use and

. For the persnickety and the thrifty: because the discount scheme is linked to your billing cycle, the

timing of transitions makes a difference. You can switch instance types at the start or end of a cycle
with no penalty. The worst case is to switch halfway through a billing cycle, which incurs a penalty of
about 20% of an instance’s monthly base rate.

9.6

Recommended Reading 293

offer tracking and reporting features. The two that we've used are Cloudability and
CloudHealth. Both tap in to the billing features of AWS to break down reports by
user-defined tag, service, or geographic location.

RECOMMENDED READING

WITTIG, ANDREAS, AND MICHAEL WITTIG. Amazon Web Services In Action. Man-
ning Publications, 2015.

GoOGLE. cloudplatform.googleblog.com. The official blog for the Google Cloud
Platform.

BARR, JEFF, AND OTHERS AT AMAZON WEB SERVICES. aws.amazon.com/blogs/aws.
The official blog of Amazon Web Services.

DiGrtaLOcEAN. digitalocean.com/company/blog. Technical and product blog
from DigitalOcean.

VoGeLs, WERNER. All Things Distributed. allthingsdistributed.com. The blog of
Werner Vogels, CTO at Amazon.

WARDLEY, SIMON. Bits or pieces? blog.gardeviance.org. The blog of researcher and
cloud trendsetter Simon Wardley. Analysis of cloud industry trends along with
occasional rants.

Bias, RANDY. cloudscaling.com/blog. Randy Bias is a director at OpenStack and
has insightful info on the private cloud industry and its future.

CANTRILL, BRYAN. The Observation Deck. dtrace.org/blogs/bmec. Interesting views
and technical thoughts on general computing from the CTO of Joyent, a niche but
interesting cloud platform.

AMAZON. youtube.com/AmazonWebServices. Conference talks and other video
content from AWS.

http://cloudplatform.googleblog.com
http://aws.amazon.com/blogs/aws
http://digitalocean.com/company/blog
http://allthingsdistributed.com
http://blog.gardeviance.org
http://cloudscaling.com/blog
http://dtrace.org/blogs/bmc
http://youtube.com/AmazonWebServices

1

294

System daemons, the kernel, and custom applications all emit operational data that
is logged and eventually ends up on your finite-sized disks. This data has a limited
useful life and may need to be summarized, filtered, searched, analyzed, compressed,
and archived before it is eventually discarded. Access and audit logs may need to
be managed closely according to regulatory retention rules or site security policies.

A log message is usually a line of text with a few properties attached, including a time
stamp, the type and severity of the event, and a process name and ID (PID). The
message itself can range from an innocuous note about a new process starting up to
a critical error condition or stack trace. It's the responsibility of system administra-
tors to glean useful, actionable information from this ongoing torrent of messages.

This task is known generically as log management, and it can be divided into a few
major subtasks:

« Collecting logs from a variety of sources

« Providing a structured interface for querying, analyzing, filtering, and
monitoring messages

« Managing the retention and expiration of messages so that information is
kept as long as it is potentially useful or legally required, but not indefinitely

—

Introduction to Logging 295

UNIX has historically managed logs through an integrated but somewhat rudi-
mentary system, known as syslog, that presents applications with a standardized
interface for submitting log messages. Syslog sorts messages and saves them to files
or forwards them to another host over the network. Unfortunately, syslog tackles
only the first of the logging chores listed above (message collection), and its stock
configuration differs widely among operating systems.

Perhaps because of syslog’s shortcomings, many applications, network daemons,
startup scripts, and other logging vigilantes bypass syslog entirely and write to their
own ad hoc log files. This lawlessness has resulted in a complement of logs that
varies significantly among flavors of UNIX and even among Linux distributions.

Linux’s systemd journal represents a second attempt to bring sanity to the logging
madness. The journal collects messages, stores them in an indexed and compressed
binary format, and furnishes a command-line interface for viewing and filtering
logs. The journal can stand alone, or it can coexist with the syslog daemon with
varying degrees of integration, depending on the configuration.

A variety of third party tools (both proprietary and open source) address the more
complex problem of curating messages that originate from a large network of sys-
tems. These tools feature such aids as graphical interfaces, query languages, data
visualization, alerting, and automated anomaly detection. They can scale to han-
dle message volumes on the order of terabytes per day. You can subscribe to these
products as a cloud service or host them yourself on a private network.

Exhibit A on the next page depicts the architecture of a site that uses all the log
management services mentioned above. Administrators and other interested par-
ties can run a GUT against the centralized log cluster to review log messages from
systems across the network. Administrators can also log in to individual nodes
and access messages through the systemd journal or the plain text files written by
syslog. If this diagram raises more questions than answers for you, you're reading
the right chapter.

When debugging problems and errors, experienced administrators turn to the logs
sooner rather than later. Log files often contain important hints that point toward
the source of vexing configuration errors, software bugs, and security issues. Logs
are the first place you should look when a daemon crashes or refuses to start, or
when a chronic error plagues a system that is trying to boot.

The importance of having a well-defined, site-wide logging strategy has grown
along with the adoption of formal IT standards such as PCI DSS, COBIT, and ISO
27001, as well as with the maturing of regulations for individual industries. Today,
these external standards may require you to maintain a centralized, hardened, en-
terprise-wide repository for log activity, with time stamps validated by NTP and
with a strictly defined retention schedule.! However, even sites without regulatory
or compliance requirements can benefit from centralized logging.

. Of course, accurate system time is essential even without the presence of regulations. We strongly rec-

ommend enabling NTP on all your systems.

296

Chapter 10 Logging

Exhibit A Logging architecture for a site with centralized logging

10.1

Log sources

systemd-journal }—»‘ syslog }—

Apache httpd 1
SSH
NTP
cron
others...

Binary journal Plain text files

Log sources

Apache httpd
SSH
NTP
cron
others...

Centralized log cluster

Plain text files

This chapter covers the native log management software used on Linux and FreeBSD,
including syslog, the systemd journal, and logrotate. We also introduce some addi-
tional tools for centralizing and analyzing logs across the network. The chapter closes

with some general advice for setting up a sensible site-wide log management policy.

LOG LOCATIONS

UNIX is often criticized for being inconsistent, and indeed it is. Just take a look at
a directory of log files and you're sure to find some with names like maillog, some
like cron.log, and some that use various distribution- and daemon-specific naming
conventions. By default, most of these files are found in /var/log, but some renegade
applications write their log files elsewhere on the filesystem.

Table 10.1 compiles information about some of the more common log files on our
example systems. The table lists the following:

« The log files to archive, summarize, or truncate

« The program that creates each

« An indication of how each filename is specified

« The frequency of cleanup that we consider reasonable
o The systems (among our examples) that use the log file
o A description of the file’s contents

Table 10.1

Log locations 297

Filenames in Table 10.1 are relative to /var/log unless otherwise noted. Syslog
maintains many of the listed files, but others are written directly by applications.

Log files on parade

5
v £
2§ %

File Program = & & Contents
apache2/* httpd F D D ApacheHTTP serverlogs (v2)
apt* APT F M D Aptitude package installations
auth.log sudo, etc. S M DF Authorizations
boot.log rc scripts F M R Outputfrom system startup scripts
cloud-init.log cloud-init F - - Outputfrom cloud init scripts
cron, cron/log cron S W RF cronexecutions and errors
daemon.log various S W D* Alldaemon facility messages
debug* various S D FED* Debugging output
dmesg kernel H - all Dump of kernel message buffer
dpkg.log dpkg F M D Package management log
faillog© login H W D* Failed login attempts
httpd/* httpd F D R ApacheHTTP serverlogs
kern.log kernel S W D Allkernfacility messages
lastlog login H - R Lastlogintime per user (binary)
mail* mail-related S W RF All mail facility messages
messages various S W R Themain system log file
samba/* smbd, etc. F W Samba (Windows/SMB file sharing)
secure sshd, etc.’ S M R Private authorization messages
syslog* various S W D Themainsystem log file
wtmp login H M RD Loginrecords (binary)
xen/* Xen F 1m RD Xen virtual machine information
Xorg.n.log Xorg F W R XWindows server errors
yum.log yum F M R Package management log

a. Where: F = Configuration file, H = Hardwired, S = Syslog

Frequency: D = Daily, M = Monthly, NNm = Size-based (in MB, e.g., Tm), W = Weekly

Systems: D = Debian and Ubuntu (D* = Debian only), R = Red Hat and CentOS, F = FreeBSD
b. passwd, sshd, login, and shutdown also write to the authorization log.
¢. Binary file that must be read with the faillog utility

Log files are generally owned by root, although conventions for the ownership and
mode of log files vary. In some cases, a less privileged process such as httpd may
require write access to the log, in which case the ownership and mode should be set
appropriately. You might need to use sudo to view log files that have tight permissions.

298

See page 742 for
an introduction to
disk partitioning.

See the sections start-
ing on page 44 for
more information
about systemd and
systemd units.

Chapter 10 Logging

Log files can grow quickly, especially the ones for busy services such as web, data-
base, and DNS servers. An out-of-control log file can fill up the disk and bring the
system to its knees. For this reason, it’s often helpful to define /var/log as a separate
disk partition or filesystem. (Note that this advice is just as relevant to cloud-based
instances and private virtual machines as it is to physical servers.)

Files not to manage

Most logs are text files to which lines are written as interesting events occur. But a
few of the logs listed in Table 10.1 have a rather different context.

wtmp (sometimes wtmpx) contains a record of users’ logins and logouts as well
as entries that record when the system was rebooted or shut down. It’s a fairly ge-
neric log file in that new entries are simply added to the end of the file. However,
the wtmp file is maintained in a binary format. Use the last command to decode
the information.

lastlog contains information similar to that in wtmp, but it records only the time
of last login for each user. It is a sparse, binary file that’s indexed by UID. It will stay
smaller if your UIDs are assigned in some kind of numeric sequence, although this
is certainly nothing to lose sleep over in the real world. lastlog doesn’t need to be
rotated because its size stays constant unless new users log in.

Finally, some applications (notably, databases) create binary transaction logs. Don’t
attempt to manage these files. Don’t attempt to view them, either, or you'll be treat-
ed to a broken terminal window.

How to view logs in the systemd journal

For Linux distributions running systemd, the quickest and easiest way to view logs
is to use the journalctl command, which prints messages from the systemd journal.
You can view all messages in the journal, or pass the -u flag to view the logs for a
specific service unit. You can also filter on other constraints such as time window,
process ID, or even the path to a specific executable.

For example, the following output shows journal logs from the SSH daemon:

$ journalctl -u ssh

-- Logs begin at Sat 2016-08-27 23:18:17 UTC, end at Sat 2016-08-27
23:33:20 UTC. --

Aug 27 23:18:24 uxenial sshd[2230]: Server listening on 0.0.0.0 port 22.

Aug 27 23:18:24 uxenial sshd[22307: Server listening on :: port 22.

Aug 27 23:18:24 uxenial systemd[1]: Starting Secure Shell server...

Aug 27 23:18:24 uxenial systemd[1]: Started OpenBSD Secure Shell server.

Aug 27 23:18:28 uxenial sshd[2326]: Accepted publickey for bwhaley from
10.0.2.2 port 60341 ssh2: RSA SHA256:aaRfGd1Ountn758+UCpxL7gkSwcs
zkAYe /wukrdBATc

10.2

The systemd journal 299

Aug 27 23:18:28 uxenial sshd[2326]: pam_unix(sshd:session): session
opened for user bwhaley by (uid=0)

Aug 27 23:18:34 uxenial sshd[2480]: Did not receive identification string
from 10.0.2.2

Use journalctl -f to print new messages as they arrive. This is the systemd equivalent
of the much-beloved tail -f for following plain text files as they are being appended to.

The next section covers the systemd-journald daemon and its configuration.

THE SYSTEMD JOURNAL

In accordance with its mission to replace all other Linux subsystems, systemd in-
cludes a logging daemon called systemd-journald. It duplicates most of syslog’s
functions but can also run peacefully in tandem with syslog, depending on how you
or the system have configured it. If you're leery of switching to systemd because
syslog has always “just worked” for you, spend some time to get to know systemd.
After a little practice, you may be pleasantly surprised.

Unlike syslog, which typically saves log messages to plain text files, the systemd
journal stores messages in a binary format. All message attributes are indexed auto-
matically, which makes the log easier and faster to search. As discussed above, you
can use the journalctl command to review messages stored in the journal.

The journal collects and indexes messages from several sources:

« The /dev/log socket, to harvest messages from software that submits mes-
sages according to syslog conventions

« The device file /dev/kmsg, to collect messages from the Linux kernel.
The systemd journal daemon replaces the traditional klogd process that
previously listened on this channel and formerly forwarded the kernel
messages to syslog.

o The UNIX socket /run/systemd/journal/stdout, to service software that
writes log messages to standard output

« The UNIX socket /run/systemd/journal/socket, to service software that
submits messages through the systemd journal API

« Audit messages from the kernel’s auditd daemon

Intrepid administrators can use the systemd-journal-remote utility (and its rela-
tives, systemd-journal-gateway and systemd-journal-upload,) to stream serialized
journal messages over the network to a remote journal. Unfortunately, this feature
does not come preinstalled on vanilla distributions. As of this writing, packages are
available for Debian and Ubuntu but not for Red Hat or CentOS. We expect this
lapse to be rectified soon; in the meantime, we recommend sticking with syslog if
you need to forward log messages among systems.

300

Chapter 10 Logging

Configuring the systemd journal

The default journal configuration file is /etc/systemd/journald.conf; however, this
file is not intended to be edited directly. Instead, add your customized configurations
to the /etc/systemd/journald.conf.d directory. Any files placed there with a .conf
extension are automatically incorporated into the configuration. To set your own
options, create a new .conf file in this directory and include the options you want.

The default journald.conf includes a commented-out version of every possible op-
tion, along with each option’s default value, so you can see at a glance which options

are available. They include the maximum size of journal, the retention period for
messages, and various rate-limiting settings.

The Storage option controls whether to save the journal to disk. The possible val-
ues are somewhat confusing:

« volatile stores the journal in memory only.

« persistent saves the journal in /var/log/journal/, creating the directory
if it doesn’t already exist.

« auto saves the journal in /var/log/journal/ but does not create the direc-
tory. This is the default value.

« none discards all log data.

Most Linux distributions (including all our examples) default to the value auto and
do not come with a /var/log/journal directory. Hence, the journal is not saved be-
tween reboots by default, which is unfortunate.

You can modify this behavior either by creating the /var/log/journal directory or
by updating the journal to use persistent storage and restarting systemd-journald:

mkdir /etc/systemd/journald.conf.d/

cat << END > /etc/systemd/journald.conf.d/storage.conf
[Journal]

Storage=persistent

END

systemctl restart systemd-journald

This series of commands creates the custom configuration directory journald.conf.d,
creates a configuration file to set the Storage option to persistent, and restarts the
journal so that the new settings take effect. systemd-journald will now create the
directory and retain the journal. We recommend this change for all systems; its a
real handicap to lose all log data every time the system reboots.

One of the niftiest journal options is Seal, which enables Forward Secure Sealing
(FSS) to increase the integrity of log messages. With FSS enabled, messages submit-
ted to the journal cannot be altered without access to a cryptographic key pair. You
generate the key pair itself by running journalctl --setup-keys. Refer to the man
pages for journald.conf and journalctl for the full scoop on this option.

The systemd journal 301

Adding more filtering options for journalctl

We showed a quick example of a basic journalctl log search on page 298. In this
section, we show some additional ways to use journalctl to filter messages and
gather information about the journal.

To allow normal users to read from the journal without needing sudo permissions,
add them to the systemd-journal UNIX group.

The --disk-usage option shows the size of the journal on disk:

journalctl --disk-usage
Journals take up 4.0M on disk.

The --list-boots option shows a sequential list of system boots with numerical iden-
tifiers. The most recent boot is always 0. The dates at the end of the line show the
time stamps of the first and last messages generated during that boot.

journalctl --list-boots
-1 ce@... Sun 2016-11-13 18:54:42 UTC-Mon 2016-11-14 00:09:31
0 844... Mon 2016-11-14 00:09:38 UTC—Mon 2016-11-14 00:12:56

You can use the -b option to restrict the log display to a particular boot session. For
example, to view logs generated by SSH during the current session:

journalctl -b 0 -u ssh

To show all the messages from yesterday at midnight until now:

journalctl --since=yesterday —-until=now

To show the most recent 100 journal entries from a specific binary:

journalctl -n 100 /usr/sbin/sshd

You can use journalctl --help as a quick reference for these arguments.

Coexisting with syslog

Both syslog and the systemd journal are active by default on each of our example
Linux systems. Both packages collect and store log messages. Why would you want
both of them running, and how does that even work?

Unfortunately, the journal is missing many of the features that are available in syslog.
As the discussion starting on page 304 demonstrates, rsyslog can receive messages
from a variety of input plug-ins and forward them to a diverse set of outputs according
to filters and rules, none of which is possible when the systemd journal is used. The
systemd universe does include a remote streaming tool, systemd-journal-remote,
but it’s relatively new and untested in comparison with syslog. Administrators may
also find it convenient to keep certain log files in plain text, as syslog does, instead
of in the journal’s binary format.

302

10.3

Ll

Chapter 10 Logging

We anticipate that over time, new features in the journal will usurp syslog’s respon-
sibilities. But for now, Linux distributions still need to run both systems to achieve
full functionality.

The mechanics of the interaction between the systemd journal and syslog are
somewhat convoluted. To begin with, systemd-journald takes over responsibility
for collecting log messages from /dev/log, the logging socket that was historically
controlled by syslog.? For syslog to get in on the logging action, it must now access
the message stream through systemd. Syslog can retrieve log messages from the
journal in two ways:

« The systemd journal can forward messages to another socket (typically
/run/systemd/journal/syslog), from which the syslog daemon can read
them. In this mode of operation, systemd-journald simulates the original
message submitters and conforms to the standard syslog APIL. Therefore,
only the basic message parameters are forwarded; some systemd-specific
metadata is lost.

« Alternatively, syslog can consume messages directly from the journal API,
in the same manner as the journalctl command. This method requires
explicit support for cooperation on the part of syslogd, but it'’s a more
complete form of integration that preserves the metadata for each message.’

Debian and Ubuntu default to the former method, but Red Hat and CentOS use the
latter. To determine which type of integration has been configured on your system,
inspect the ForwardToSyslog option in /etc/systemd/journald.conf. If its value is
yes, socket-forwarding is in use.

SYSLOG

Syslog, originally written by Eric Allman, is a comprehensive logging system and
IETF-standard logging protocol.* It has two important functions: to liberate pro-
grammers from the tedious mechanics of writing log files, and to give administra-
tors control of logging. Before syslog, every program was free to make up its own
logging policy. System administrators had no consistent control over what infor-
mation was kept or where it was stored.

Syslog is flexible. It lets administrators sort messages by source (“facility”) and im-
portance (“severity level”) and route them to a variety of destinations: log files, us-
ers’ terminals, or even other machines. It can accept messages from a wide variety
of sources, examine the attributes of the messages, and even modify their contents.
Its ability to centralize the logging for a network is one of its most valuable features.

More specifically, the journal links /dev/log to /run/systemd/journal/dev-log.
See man systemd.journal-fields for a rundown of the available metadata.

RFC5424 is the latest version of the syslog specification, but the previous version, RFC3164, may bet-
ter reflect the real-world installed base.

@

Syslog 303

On Linux systems, the original syslog daemon (syslogd) has been replaced with a
newer implementation called rsyslog (rsyslogd). Rsyslog is an open source project
that extends the capabilities of the original syslog but maintains backward API com-
patibility. It is the most reasonable choice for administrators working on modern
UNIX and Linux systems and is the only version of syslog we cover in this chapter.

Rsyslog is available for FreeBSD, and we recommend that you adopt it in preference
to the standard FreeBSD syslog unless you have simple needs. For instructions on
converting a FreeBSD system to use rsyslog, see wiki.rsyslog.com/index.php/FreeBSD.
If you decide to stick with FreeBSD’s traditional syslog, jump to page 307 for con-
figuration information.

Reading syslog messages

You can read plaintext messages from syslog with normal UNIX and Linux text
processing tools such as grep, less, cat, and awk. The snippet below shows typical
events in /var/log/syslog from a Debian host:

jessie# cat /var/log/syslog

Jul 16 19:43:01 jessie networking[244]: bound to 10.0.2.15 -- renewal in
42093 seconds.

Jul 16 19:43:01 jessie rpcbind[397]: Starting rpcbind daemon....

Jul 16 19:43:01 jessie nfs—-common[412]: Starting NFS common utilities:
statd idmapd.

Jul 16 19:43:01 jessie cron[436]: (CRON) INFO (pidfile fd = 3)

Jul 16 19:43:01 jessie cron[436]: (CRON) INFO (Running @reboot jobs)

Jul 16 19:43:01 jessie acpid: starting up with netlink and the input layer

Jul 16 19:43:01 jessie docker[486]: time="2016-07-
16T19:43:01.972678480Z" level=info msg="Daemon has completed
initialization"

Jul 16 19:43:01 jessie docker[486]: time="2016-07-
16T19:43:01.972896608Z" level=info msg="Docker daemon"
commit=c3959b1 execdriver=native-0.2 graphdriver=aufs
version=1.10.2

Jul 16 19:43:01 jessie docker[486]: time="2016-07-
16T19:43:01.9795056447" level=info msg="API listen on /var/run/
docker.sock"

The example contains entries from several different daemons and subsystems: net-
working, NFS, cron, Docker, and the power management daemon, acpid. Each
message contains the following space-separated fields:

o Time stamp

« System’s hostname, in this case jessie

o Name of the process and its PID in square brackets
« Message payload

Some daemons encode the payload to add metadata about the message. In the output
above, the docker process includes its own time stamp, a log level, and information

http://wiki.rsyslog.com/index.php/FreeBSD

304

See page 94 for
more information
about signals.

Chapter 10 Logging

about the configuration of the daemon itself. This additional information is entirely
up to the sending process to generate and format.

Rsyslog architecture

Think about log messages as a stream of events and rsyslog as an event-stream pro-
cessing engine. Log message “events” are submitted as inputs, processed by filters,
and forwarded to output destinations. In rsyslog, each of these stages is configurable
and modular. By default, rsyslog is configured in /etc/rsyslog.conf.

The rsyslogd process typically starts at boot and runs continuously. Programs that
are syslog aware write log entries to the special file /dev/log, a UNIX domain sock-
et. In a stock configuration for systems without systemd, rsyslogd reads messages
from this socket directly, consults its configuration file for guidance on how to route
them, and dispatches each message to an appropriate destination. It’s also possible
(and common) to configure rsyslogd to listen for messages on a network socket.

If you modify /etc/rsyslog.conf or any of its included files, you must restart the

rsyslogd daemon to make your changes take effect. A TERM signal makes the dae-
mon exit. A HUP signal causes rsyslogd to close all open log files, which is useful

for rotating (renaming and restarting) logs.

By longstanding convention, rsyslogd writes its process ID to /var/run/syslogd.pid,
s0 it’s easy to send signals to rsyslogd from a script.” For example, the following
command sends a hangup signal:

$ sudo kill -HUP ‘/bin/cat /var/run/syslogd.pid"®

Trying to compress or rotate a log file that rsyslogd has open for writing is not healthy
and has unpredictable results, so be sure to send a HUP signal before you do this.
Refer to page 319 for information on sane log rotation with the logrotate utility.

Rsyslog versions

Red Hat and CentOS use rsyslog version 7, but Debian and Ubuntu have updated
to version 8. FreeBSD users installing from ports can choose either version 7 or
version 8. As you might expect, the rsyslog project recommends using the most
recent version, and we defer to their advice. That said, it won't make or break your
logging experience if your operating system of choice is a version behind the latest
and greatest.

Rsyslog 8 is a major rewrite of the core engine, and although a lot has changed
under the hood for module developers, the user-facing aspects remain mostly un-
changed. With a few exceptions, the configurations in the following sections are
valid for both versions.

5. On modern Linux systems, /var/run is a symbolic link to /run.

Syslog 305

Rsyslog configuration

rsyslogd’s behavior is controlled by the settings in /etc/rsyslog.conf. All our example
Linux distributions include a simple configuration with sensible defaults that suit
most sites. Blank lines and lines beginning with a # are ignored. Lines in an rsyslog
configuration are processed in order from beginning to end, and order is significant.

At the top of the configuration file are global properties that configure the dae-
mon itself. These lines specify which input modules to load, the default format of
messages, ownerships and permissions of files, the working directory in which to
maintain rsyslog’s state, and other settings. The following example configuration
is adapted from the default rsyslog.conf on Debian Jessie:

Support local system logging
$ModLoad imuxsock

Support kernel logging
$ModLoad imklog

Write messages in the traditional time stamp format
$ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

New log files are owned by root:adm
$FileOwner root
$FileGroup adm

Default permissions for new files and directories
$FileCreateMode 0640

$DirCreateMode 0755

$Umask 0022

Location in which to store rsyslog working files
$WorkDirectory /var/spool/rsyslog

Most distributions use the $IncludeConfig legacy directive to include additional
files from a configuration directory, typically /etc/rsyslog.d/*.conf. Because order
is important, distributions organize files by preceding file names with numbers. For
example, the default Ubuntu configuration includes the following files:

20-ufw.conf
21-cloudinit.conf
50-default.conf

rsyslogd interpolates these files into /etc/rsyslog.conf in lexicographic order to
form its final configuration.

Filters, sometimes called “selectors,” constitute the bulk of an rsyslog configuration.
They define how rsyslog sorts and processes messages. Filters are formed from ex-
pressions that select specific message criteria and actions that route selected mes-
sages to a desired destination.

306

Chapter 10 Logging

Rsyslog understands three configuration syntaxes:

« Lines that use the format of the original syslog configuration file. This
format is now known as “sysklogd format,” after the kernel logging dae-
mon sysklogd. It's simple and effective but has some limitations. Use it
to construct simple filters.

o Legacy rsyslog directives, which always begin with a $ sign. The syntax
comes from ancient versions of rsyslog and really ought to be obsolete.
However, not all options have been converted to the newer syntax, and
so this syntax remains authoritative for certain features.

RainerScript, named for Rainer Gerhards, the lead author of rsyslog. This
is a scripting syntax that supports expressions and functions. You can use
it to configure most—but not all—aspects of rsyslog.

Many real-world configurations include a mix of all three formats, sometimes to
confusing effect. Although it has been around since 2008, RainerScript remains
slightly less common than the others. Fortunately, none of the dialects are partic-
ularly complex. In addition, many sites will have no need to do major surgery on
the vanilla configurations included with their stock distributions.

To migrate from a traditional syslog configuration, simply start with your existing
syslog.conf file and add options for the rsyslog features you want to activate.

Modules

Rsyslog modules extend the capabilities of the core processing engine. All inputs
(sources) and outputs (destinations) are configured through modules, and mod-
ules can even parse and mutate messages. Although most modules were written by
Rainer Gerhards, some were contributed by third parties. If youre a C programmer,
you can write your own.

Module names follow a predictable prefix pattern. Those beginning with im are
input modules; om* are output modules, mm* are message modifiers, and so on.
Most modules have additional configuration options that customize their behavior.
The rsyslog module documentation is the complete reference.

The following list briefly describes some of the more common (or interesting) input
and output modules, along with a few nuggets of exotica:

« imjournal integrates with the systemd journal, as described in Coexisting
with syslog starting on page 301.

imuxsock reads messages from a UNIX domain socket. This is the default
when systemd is not present.

« imklog understands how to read kernel messages on Linux and BSD.

See page 1008 for
more informa-
tion about TLS.

Syslog 307

« imfile converts a plain text file to syslog message format. It’s useful for
importing log files generated by software that doesn’t have native syslog
support. Two modes exist: polling mode, which checks the file for updates
at a configurable interval, and notification mode (inotify), which uses the
Linux filesystem event interface. This module is smart enough to resume
where it left off whenever rsyslogd is restarted.

o imtep and imudp accept network messages over TCP and UDP, respec-
tively. They allow you to centralize logging on a network. In combination
with rsyslog’s network stream drivers, the TCP module can also accept
mutually authenticated syslog messages through TLS. For Linux sites with
extremely high volume, see also the imptcp module.

o If the immark module is present, rsyslog produces time stamp messages
at regular intervals. These time stamps can help you figure out that your
machine crashed between 3:00 and 3:20 a.m., not just “sometime last
night” This information is also a big help when you are debugging prob-
lems that seem to occur regularly. Use the MarkMessagePeriod option to
configure the mark interval.

« omfile writes messages to a file. This is the most commonly used output
module, and the only one configured in a default installation.

« omfwd forwards messages to a remote syslog server over TCP or UDP.
This is the module you're looking for if your site needs centralized logging.

« omkafka is a producer implementation for the Apache Kafka data streaming
engine. Users at high-volume sites may benefit from being able to process
messages that have many potential consumers.

o Similarly to omkafka, omelasticsearch writes directly to an Elasticsearch
cluster. See page 321 for more information about the ELK log manage-
ment stack, which includes Elasticsearch as one of its components.

« ommysgl sends messages to a MySQL database. The rsyslog source dis-
tribution includes an example schema. Combine this module with the
$MainMsgQueueSize legacy directive for better reliability.

Modules can be loaded and configured through either the legacy or RainerScript
configuration formats. We show some examples in the format-specific sections below.

sysklogd syntax

The sysklogd syntax is the traditional syslog configuration format. If you encounter
a standard syslogd, such as the version installed on stock FreeBSD, this is likely all
you'll need to understand. (But note that the configuration file for the traditional
syslogd is /etc/syslog.conf, not /etc/rsyslog.conf.)

308

Chapter 10 Logging

This format is primarily intended for routing messages of a particular type to a de-
sired destination file or network address. The basic format is

selector action

The selector is separated from the action by one or more spaces or tabs. For exam-
ple, the line

auth. * /var/log/auth.log
causes messages related to authentication to be saved in /var/log/auth.log.

Selectors identify the source program (“facility”) that is sending a log message and
the message’s priority level (“severity”) with the syntax

facility.severity

Both facility names and severity levels must be chosen from a short list of defined
values; programs can’t make up their own. Facilities are defined for the kernel, for
common groups of utilities, and for locally written programs. Everything else is
classified under the generic facility “user”

Selectors can contain the special keywords * and none, meaning all or nothing, re-
spectively. A selector can include multiple facilities separated by commas. Multiple
selectors can be combined with semicolons.

In general, selectors are ORed together: a message matching any selector is subject
to the line’s action. However, a selector with a level of none excludes the listed facil-
ities regardless of what other selectors on the same line might say.

Here are some examples of ways to format and combine selectors:

Apply action to everything from facility.level
facility.level action

Everything from facilityl.level and facility2.level
facilityl, facility2.level action

Only facilityl.levell and facility2.level?
facilityl.levell; facility2.level2 action

All facilities with severity level
*.level action

All facilities except badfacility
*.level;badfacility.none action

Table 10.2 lists the valid facility names. They are defined in syslog.h in the stan-
dard library.

Table 10.2

Table 10.3

Syslog 309

Syslog facility names

Facility Programs that use it

* All facilities except “mark”

auth Security- and authorization-related commands
authpriv Sensitive/private authorization messages

cron The cron daemon

daemon System daemons

ftp The FTP daemon, ftpd (obsolete)

kern The kernel

local0-7 Eight flavors of local message

lpr The line printer spooling system

mail sendmail, postfix, and other mail-related software
mark Time stamps generated at regular intervals
news The Usenet news system (obsolete)

syslog syslogd internal messages

user User processes (the default if not specified)

Don't take the distinction between auth and authpriv too seriously. All authoriza-
tion-related messages are sensitive, and none should be world-readable. sudo logs
use authpriv.

Table 10.3 lists the valid severity levels in order of descending importance.

Syslog severity levels (descending severity)

Level Approximate meaning

emerg Panic situations; system is unusable

alert Urgent situations; immediate action required
crit Critical conditions
err Other error conditions

warning Warning messages

notice Things that might merit investigation
info Informational messages

debug For debugging only

The severity level of a message specifies its importance. The distinctions between
the various levels are sometimes fuzzy. There’s a clear difference between notice and
warning and between warning and err, but the exact shade of meaning expressed
by alert as opposed to crit is a matter of conjecture.

310

Chapter 10 Logging

Levels indicate the minimum importance that a message must have to be logged. For
example, a message from SSH at level warning would match the selector auth.warning
as well as the selectors auth.info, auth.notice, auth.debug, *.warning, *.notice,
*.info, and *.debug. If the configuration directs auth.info messages to a particular
file, auth.warning messages will go there also.

The format also allows the characters = and ! to be prefixed to priority levels to in-
dicate “this priority only” and “except this priority and higher,” respectively. Table
10.4 shows examples.

Table 10.4 Examples of priority level qualifiers

Selector Meaning

auth.info Auth-related messages of info priority and higher
auth.=info Only messages at info priority
auth.infojauth.!err Only priorities info, notice, and warning

auth.debug;auth.!=warning All priorities except warning

The action field tells what to do with each message. Table 10.5 lists the options.

Table 10.5 Common actions

Action Meaning

filename Appends the message to a file on the local machine
@hostname Forwards the message to the rsyslogd on hostname
@ipaddress Forwards the message to jpaddress on UDP port 514
@@ipaddress Forwards the message to ipaddress on TCP port 514

| fifoname Writes the message to the named pipe fifoname*
userl,user2,... Writes the message to the screens of users if they are logged in
* Writes the message to all users who are currently logged in

~ Discards the message
Aprogram;template Formats the message according to the template specification
and sends it to program as the first argument®

a. See man mkfifo for more information.
b. See man 5 rsyslog.conf for further details on templates.

If a filename (or fifoname) action is specified, the name should be an absolute path.
If you specify a nonexistent filename, rsyslogd will create the file when a message
is first directed to it. The ownership and permissions of the file are specified in the
global configuration directives as shown on page 305.

http://auth.info
http://*.info
http://auth.info
http://auth.info
http://auth.info;auth

Syslog 311

Here are a few configuration examples that use the traditional syntax:

Kernel messages to kern.log
kern. * —-/var/log/kern.log

Cron messages to cron.log
cron. ¥ /var/log/cron.log

Auth messages to auth.log
auth,authpriv. * /var/log/auth.log

All other messages to syslog
*,%sauth,authpriv,cron,kern.none —-/var/log/syslog

You can preface a filename action with a dash to indicate that the filesystem should
not be synced after each log entry is written. syncing helps preserve as much log-
ging information as possible in the event of a crash, but for busy log files it can be
devastating in terms of I/O performance. We recommend including the dashes (and
thereby inhibiting syncing) as a matter of course. Remove the dashes only tempo-
rarily when investigating a problem that is causing kernel panics.

Legacy directives

Although rsyslog calls these “legacy” options, they remain in widespread use, and
you will find them in the majority of rsyslog configurations. Legacy directives can
configure all aspects of rsyslog, including global daemon options, modules, filter-
ing, and rules.

In practice, however, these directives are most commonly used to configure mod-
ules and the rsyslogd daemon itself. Even the rsyslog documentation warns against
using the legacy format for message-processing rules, claiming that it is “extremely
hard to get right” Stick with the sysklogd or RainerScript formats for actually fil-
tering and processing messages.

Daemon options and modules are straightforward. For example, the options below
enable logging over UDP and TCP on the standard syslog port (514). They also
permit keep-alive packets to be sent to clients to keep TCP connections open; this
option reduces the cost of reconstructing connections that have timed out.

$ModLoad imudp
$UDPServerRun 514
$ModLoad imtcp
$InputTCPServerRun 514
$InputTCPServerKeepAlive on

To put these options into effect, you could add the lines to a new file to be included
in the main configuration such as /etc/rsyslog.d/10-network-inputs.conf. Then
restart rsyslogd. Any options that modify a module’s behavior must appear after
the module has been loaded.

Table 10.6 on the next page describes a few of the more common legacy directives.

312 Chapter 10 Logging

Table 10.6 Rsyslog legacy configuration options

Option Purpose

$MainMsgQueueSize Size of memory buffer between received and sent messages®
$MaxMessageSize Defaults to 8kB; must precede loading of any input modules
$LocalHostName Overrides the local hostname

$WorkDirectory Specifies where to save rsyslog working files

$ModLoad Loads a module

$MaxOpenFiles Modifies the defaults system nofile limit for rsyslogd
$IncludeConfig Includes additional configuration files

$UMASK Sets the umask for new files created by rsyslogd

a. This option is useful for slow outputs such as database inserts.

RainerScript

The RainerScript syntax is an event-stream-processing language with filtering and
control-flow capabilities. In theory, you can also set basic rsyslogd options through
RainerScript. But since some legacy options still don’t have RainerScript equivalents,
why confuse things by using multiple option syntaxes?

RainerScript is more expressive and human-readable than rsyslogd’s legacy direc-
tives, but it has an unusual syntax that’s unlike any other configuration system we've
seen. In practice, it feels somewhat cumbersome. Nonetheless, we recommend it for
filtering and rule development if you need those features. In this section we discuss
only a subset of its functionality.

Of our example distributions, only Ubuntu uses RainerScript in its default con-
figuration files. However, you can use RainerScript format on any system running
rsyslog version 7 or newer.

You can set global daemon parameters by using the global() configuration object.
For example:

global(
workDirectory="/var/spool/rsyslog"
maxMessageSize="8192"

)

Most legacy directives have identically named RainerScript counterparts, such as
workDirectory and maxMessageSize in the lines above. The equivalent legacy syn-
tax for this configuration would be:

$WorkDirectory /var/spool/rsyslog
$MaxMessageSize 8192

Syslog 313

You can also load modules and set their operating parameters through RainerScript.
For example, to load the UDP and TCP modules and apply the same configuration
demonstrated on page 311, youd use the following RainerScript:

module(load="1imudp")
input(type="imudp" port="514")
module(load="imtcp" KeepAlive="on")
input(type="imtcp" port="514")

In RainerScript, modules have both “module parameters” and “input parameters.”
A module is loaded only once, and a module parameter (e.g., the KeepAlive option
in the imtcp module above) applies to the module globally. By contrast, input pa-
rameters can be applied to the same module multiple times. For example, we could
instruct rsyslog to listen on both TCP ports 514 and 1514:

module(load="imtcp" KeepAlive="on")
input(type="1imtcp" port="514")
input(type="imtcp" port="1514")

Most of the benefits of RainerScript relate to its filtering capabilities. You can use
expressions to select messages that match a certain set of characteristics, then ap-
ply a particular action to the matching messages. For example, the following lines
route authentication-related messages to /var/log/auth.log:

if $syslogfacility-text == 'auth' then {
action(type="omfile" file="/var/log/auth.log")
}

In this example, $syslogfacility-text is a message property—that is, a part of the
message’s metadata. Properties are prefixed by a dollar sign to indicate to rsyslog
that they are variables. In this case, the action is to use the omfile output module
to write matching messages to auth.log.

Table 10.7 lists some of the most frequently used properties.

Table 10.7 Commonly used rsyslog message properties

Property Meaning

$msg The text of the message, without metadata
$rawmsg The full message as received, including metadata
$hostname The hostname from the message

$syslogfacility Syslog facility in numerical form; see RFC3164
$syslogfacility-text Syslog facility in text form

$syslogseverity Syslog severity in numeric form; see RFC3164
$syslogseverity—-text Syslog severity in text form

$timegenerated Time at which the message was received by rsyslogd

$timereported Time stamp from the message itself

314

Chapter 10 Logging

A given filter can include multiple filters and multiple actions. The following frag-
ment targets kernel messages of critical severity. It logs the messages to a file and
sends email to alert an administrator of the problem.

module(load="ommail")

if $syslogseverity-text == 'crit' and $syslogfacility-text == 'kern' then {

action(type="omfile" file="/var/log/kern-crit.log")
action(type="ommail"

server="smtp.admin.com"

port="25"

mailfrom="rsyslog@admin.com"

mailto="ben@admin.com"

subject.text="Critical kernel error"

action.execonlyonceeveryinterval="3600"

}

Here, we've specified that we don’t want more than one email message generated
per hour (3,600 seconds).

Filter expressions support regular expressions, functions, and other sophisticated
techniques. Refer to the RainerScript documentation for complete details.

Config file examples

In this section we show three sample configurations for rsyslog. The first is a basic
but complete configuration that writes log messages to files. The second example
is a logging client that forwards syslog messages and httpd access and error logs to
a central log server. The final example is the corresponding log server that accepts
log messages from a variety of logging clients.

These examples rely heavily on RainerScript because it’s the suggested syntax for
the latest versions of rsyslog. A few of the options are valid only in rsyslog version
8 and include Linux-specific settings such as inotify.

Basic rsyslog configuration

The following file can serve as a generic RainerScript rsyslog.conf for any Linux
system:

module(load="imuxsock") # Local system logging
module(load="1imklog") # Kernel logging
module(load="immark" interval="3600") # Hourly mark messages

http://"smtp.admin.com"
mailto:"rsyslog@admin.com"
mailto:"ben@admin.com"

Syslog 315

Set global rsyslogd parameters
global(
workDirectory = " /var/spool/rsyslog"
maxMessageSize = "8192"

)

The output file module does not need to be explicitly loaded,
but we can load it ourselves to override default parameter values.

module(load="builtin:omfile"
Use traditional timestamp format
template="RSYSLOG_TraditionalFileFormat"

Set the default permissions for all log files.
fileOwner="root"

fileGroup="adm"

dirOwner="root"

dirGroup="adm"

fileCreateMode="0640"

dirCreateMode="0755"

)

Include files from /etc/rsyslog.d; there's no RainerScript equivalent
$IncludeConfig /etc/rsyslog.d/*.conf

This example begins with a few default log collection options for rsyslogd. The de-
fault file permissions of 0640 for new log files is more restrictive than the omfile
default of 0644.

Network logging client

This logging client forwards system logs and the Apache access and error logs to a
remote server over TCP.

Send all syslog messages to the server; this is sysklogd syntax
*, % @@logs.admin.com

imfile reads messages from a file

inotify is more efficient than polling

It's the default, but noted here for illustration
module(load="imfile" mode="inotify")

Import Apache logs through the imfile module
input(type="imfile"
Tag="apache-access"
File="/var/log/apache2/access.log"
Severity="info"

mailto:@logs.admin.com

316

See Chapter 23 for
more about configu-
ration management.

Chapter 10 Logging

input(type="imfile"
Tag="apache-error"
File="/var/log/apache2/error.log"
Severity="1info"

)

Send Apache logs to the central log host
if $programname contains 'apache' then {
action(type="omfwd"
Target="1ogs.admin.com"
Port="514"
Protocol="tcp"

}

Apache httpd does not write messages to syslog by default, so the access and error
logs are read from text files with imfile.’ The messages are tagged for later use in
a filter expression.

At the end of the file, the if statement is a filter expression that searches for Apache
messages and forwards those to logs.admin.com, the central log server. Logs are
sent over TCP, which although more reliable than UDP still can potentially drop
messages. You can use RELP (the Reliable Event Logging Protocol), a nonstandard
output module, to guarantee log delivery.

In a real-world scenario, you might render the Apache-related portion of this con-
figuration to /etc/rsyslog.d/55-apache.conf as part of the configuration manage-
ment setup for the server.

Central logging host

The configuration of the corresponding central log server is straightforward: listen
for incoming logs on TCP port 514, filter by log type, and write to files in the site-
wide l