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Preface

Due to the rapid development of Internet and digital technology, a mammoth
amount of digital data has been created in the world in just a few decades. The
processing and management of big data including image data have become one
of the great challenges facing humankind. Images are a dominant information
source and communication method along with text. However, the processing and
understanding of image data are far more difficult than dealing with textual data.
Tremendous efforts have been made, and a large amount of research work has been
carried out around the world in the past two decades to overcome the challenges of
efficient management of image data. A significant progress has been achieved in the
field of image data mining during this period of intensive research and experiments,
highlighted by such breakthrough technologies as wavelets, MPEG, Google image
search, convolutional neural network, machine learning, ImageNet, Matlab tool-
boxes, etc.

Given the complexity of image data mining, there is a need for a deep analysis of
and insight into the field, especially the latest development, to help researchers
understand opportunities and challenges in the field. This book timely captures and
presents cutting-edge techniques in the field of image data mining as well as
foundational know-how for understanding them. This book provides a complete
recipe for image data mining and is a treasure of techniques on image
analysis/understanding, feature extraction, machine learning, and image retrieval.
The book is built upon the author’s career-long and high-impact research in the
frontier of this exciting research field. Theories and concepts in the book are typ-
ically formulated with practical mathematical models which are realized using
algorithms, real data from actual experiments, or working examples. Students and
researchers in mathematics and the broader science disciplines will be able to use
this book to understand the actual problems/applications in this field and gain
firsthand experience of computing. Students and researchers in many areas of the
computing discipline will be able to use this book to understand how fundamental
and advanced maths are applied to solve the variety of computing problems.

Churchill, Australia Dengsheng Zhang
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About This Book

The book covers the complete know-how on image data mining including math
tools, analysis, features, learning, and presentation. It has been organized into four
parts: fundamentals, feature extraction, image classification, and image retrieval.

Part I of the book aims to equip readers with some essential tools for image
mining. Specifically, Part I provides a brief and evolutional journey from the
classical Fourier transform (Chap. 1) to Gabor filters (Chap. 2) and to contemporary
wavelet transform (Chap. 3). It prepares readers with fundamental math for some
of the advanced mining techniques discussed in the book. Apart from the theories,
this part also uses Fourier spectra, STFT spectrogram, Gabor filter spectra, and
wavelet spectra to demonstrate how key information or features in an image can be
captured by these fundamental transforms.

Parts II and III are the core of the book, which examine and analyze varieties of
state-of-the-art models, tools, algorithms/procedures, and machines for image
mining. In contrast to Part I which is mostly theoretical, these two parts focus on
dealing with real image data and real image mining. Part II demonstrates how a
variety of features can be mined or extracted from images for image representation;
it covers three chapters which focus on color (Chap. 4), texture (Chap. 5) and shape
(Chap. 6), respectively. Each chapter typically begins with simple methods or
methods at the intro level and moves on to the more advanced methods in a natural
flow. Most of the methods in Part II are demonstrated with intuitive illustrations.

If Part II is analog to raw mining, Part III is about refinery. Specifically, Part III
presents readers with four powerful learning machines to classify image data,
including Bayesian (Chap. 7), SVM (Chap. 8), ANN/CNN (Chap. 9) and DT
(Chap. 10). Each chapter in this part begins with an icebreaking and introductory
journey to give readers a big picture and an orientation to follow. It then navigates
to the more advanced topics with illustrations to key concepts and components
of the learning machine. The story of each machine learning method is typically
told with concise maths, demonstrations, applications, and implementations.

After a breathtaking and arduous journey on image mining involving feature
extraction and machine learning, readers are soothed with a recovering journey on
image retrieval in Part IV. Part IV deals with putting images in order, inspecting the
quality of a haul and organizing them for presentation or display. Indexing tech-
niques suitable for image data are first described in detail in Chap. 11 followed by
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the analysis of a number of image ranking techniques in Chap. 12. The part con-
cludes in Chap. 13 with a number of interesting image presentation techniques and
powerful image database visualization methods.

Key Features of the Book

A shortcut to AI. AI and machine learning are usually intimidating to many who
don’t have the sophisticated mathematics background. This book, however, offers
readers a surprising shortcut to AI on machine learning by introducing four major
machine learning tools with filtered and easy to understand mathematics using rich
illustrations.

A natural marriage between maths and data. Maths and data can only be
understood well when they are well matched. This book brings mathematics and
computing into a single display and tells image stories with maths by a trained
mathematician.

Visualization of image data mining. With more than 200 illustrations (multiple
illustrations in some figures), it can be said that the book is a visualization of image
data mining, making it very easy to read and understand for readers.

End of chapter summary. Every chapter of the book is equipped with an end of
chapter summary to highlight the key points and connect the dots in the chapter.

Exercises. High-quality exercises with instructions or Matlab code have been
created for most of the chapters in the book, giving readers the opportunities to test
their skills learnt from the book.

Writing for scanning. The book makes extensive use of powerful techniques
for scientific and academic writing including inverted pyramid writing, bullet lists,
plain language, keyword headings, text chunking, analogy, scannable content,
blurbs, etc. Due to writing for scanning, it makes reading the book very efficient and
a good experience.

x About This Book
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Part I
Preliminaries

A good beginning is half done.

In image analysis and understanding, no other tools are more important than
wavelet transform. Wavelet is a remarkable achievement of decades of research on
signal processing and analysis. Although many books have been written on
wavelet, they are often too focused on the theoretical part and too mathematical.
This has hindered many researchers especially novice researchers from good
understanding and application of this essential and important tool.

Wavelet theory is complex, and it is difficult to understand it without rigorous
mathematical training. Since wavelet theory is based on Fourier series and Fourier
transform, it is impossible to understand how wavelet works without understanding
how Fourier transform works. On the other hand, a good understanding of Fourier
transform will naturally lead to the understanding of wavelet theory.

In this part of the book, we present the wavelet transform theory as an evolution
from Fourier transform. We start with Fourier series and Fourier transform by
preparing readers with mathematical fundamentals and building a foundation for
understanding wavelet. More importantly, the connection between Fourier theory
and its application on signal processing is systematically shown to the readers. By
finishing the Fourier transform chapter, readers will be able to understand the
limitations of Fourier transform, and this naturally leads to Short-Time Fourier
Transform (STFT) and Gabor transform.

Once completing both Chaps. 1 and 2, readers are fully prepared to understand
wavelet transform. Wavelet transform is just a natural extension of STFT and Gabor
transform. To further strengthen readers understanding, the implementation of
wavelet transform is shown by both theoretical demonstrations and practical
examples.

This part is the foundation of the many techniques discussed in this book. By
completing this part, readers will be able to understand those powerful feature
extraction methods including the curvelet transform in Part II.
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1Fourier Transform

In essence, the world is just elements and compounds.

1.1 Introduction

Fourier transform has played a key role in image processing for many years, and it
continues to be a topic of interest in theory as well as application. The fundamental
principle behind Fourier transform is that a pattern can be treated as a signal, and as
such, it can be represented by elementary components of the signal. If we can define
elementary components to represent or approximate a pattern under analysis, we
can determine how significant an elementary component in a given pattern. The
elementary components found in the signal can be used to describe the given
pattern. Fourier transform is useful for pattern analysis and description because
different patterns can be distinguished by the transformed spectra (Fig. 1.1) [1],
while similar patterns will have similar transformed spectra even they are affected
by noise and other variations. It can be observed that the spectrum of Fig. 1.1a
clearly shows patterns of both horizontal and vertical directions, while that in
Fig. 1.1b shows patterns of random fashion. They demonstrate the power of Fourier
transform in image analysis and understanding.

1.2 Fourier Series

1.2.1 Sinusoids

To understand how Fourier transform works, it has to start with understanding how
sinusoids work. It is important to understand the relationship between frequency
and period. Figure 1.2 shows a sine wave and its harmonic waves. It shows how the
change of variable scaling or horizontal stretching affects the sine wave’s frequency
and periods.
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Sine waves Frequency Periods
sin x 1

2p 2p

sin 2x 1
p p

sin 4x 2
p

p
2

. . .
sin nx n

2p
2p
n

As can be seen, as the variable scaling factor n increases, the period of sin(nx)
becomes shorter and the frequency becomes higher. For example, the period of sin
(x) is 2p, while the periods of sin(2x) and sin(4x) are p and 1/2p, respectively.
Consequently, the frequencies of the three sine waves are 1/2p, 1/p, and 2/p,
respectively. Similarly, the period and frequency of sin(nx) are 2p/n and n/2p,
respectively.

Fig. 1.1 Fourier spectra of different images. a A scenic image at the left and its Fourier spectrum
at the right; b a tree image in the left and its Fourier spectra in the right. The brighter the pixel, the
higher magnitude of the spectrum

Fig. 1.2 Three sine waves sin(nx) with different periods and frequencies
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The sine waves expressed this way do not have an easy interpretation of the
frequency and periods, because both of them are in angular terms. Now let’s replace
n with 2pn and change the sine function from sin(nx) to sin(2pnx), see what will
happen.

Sine waves Frequency Periods
sinð2pxÞ 1 1
sinð4pxÞ 2 1

2

sinð8pxÞ 4 1
4

. . .

sinð2pnxÞ n 1
n

Now both the periods and frequencies are easier to understand. For example, the
period of sin(2px) is 1, while the periods of sin(4px) and sin(8px) are 1/2 and 1/4,
respectively. Consequently, the frequencies of the three sine waves are 1, 2, and 4,
respectively (Fig. 1.3). Therefore, the period and frequency of sin(2pnx) are 1/n and
n, respectively. This is much easier to interpret.

A more general form of sine function is expressed as sin(2pn/L), which has a
period of L/n and frequency of n/L. This is extremely helpful to analyze signals with
arbitrary periodicity and frequencies.

Sine waves Frequency Periods
sin 2px

L

� �
1
L L

sin 4px
L

� �
2
L

L
2

sin 8px
L

� �
4
L

L
4

. . .

sin 2pnx
L

� � n
L

L
n

1.2.2 Fourier Series

One of the most important and interesting discoveries in mathematics is that any
math function can be approximated with a series of sinusoids (sine and cosine
waves), called Fourier series. Now consider a signal function f(x) with period L,

f ðxÞ ¼ a0 þ
X1
n¼1

ðan cos 2pnxL
þ bn sin

2pnx
L

Þ ð1:1Þ

To determine the Fourier coefficients an and bn, we multiply both sides of the
above equation with either sin 2pnx

L

� �
or cos 2pnx

L

� �
and do the integral in [−L/2, L/2].
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It can be shown that sine and cosine waves have the following convenient
properties:

ZL=2
�L=2

cos
2p nx
L

cos
2pmx
L

dx ¼ L=2 for n ¼ m
0 for n 6¼ m

�
ð1:2Þ

ZL=2
�L=2

sin
2p nx
L

sin
2pmx
L

dx ¼ L=2 for n ¼ m
0 for n 6¼ m

�
ð1:3Þ

ZL=2
�L=2

sin
2p nx
L

cos
2pmx
L

dx ¼ 0 ð1:4Þ

ZL=2
�L=2

sin
2pnx
L

dx ¼ 0 ð1:5Þ

Fig. 1.3 Three sine waves sin(2pnx) with different periods and frequencies
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ZL=2
�L=2

cos
2pnx
L

dx ¼ 0 ð1:6Þ

To prove the above properties, we only need to demonstrate thatR
sinðnxÞ sinðmxÞdx ¼ 0 (m 6¼ n) and

R
sin nxð Þ cos mxð Þdx ¼ 0; the others are

obvious due to the symmetry of sine and cosine waves. Without loss of generality,
we just need to show

R
sin x sinð2xÞdx ¼ 0 and

R
sin x cos x dx ¼ 0.

Figure 1.4 illustrates
R
sin x sinð2xÞdx in one period. We divide the Sum of

Product (SoP) of the two functions within one period into four regions: R1–R4,
marked with different colors. It is easy to observe that the SoP magnitude of the
four regions is exactly the same; however, the signs of the four corresponding SoPs
are +, −, −, and +, respectively, resulting in the total SoP of the period as 0.
Applying this to all the other periods, it can be shown

R
sin x sinð2xÞdx ¼ 0 on the

entire x axis.
Figure 1.5 illustrates

R
sin x cos x dx in one period. Similar to the above, we

divide the Sum of Product (SoP) of the two functions in the single period into four
regions: R1–R4, marked with different colors. Again, it is easy to observe that the
SoP magnitude of the four regions are exactly the same, however, the signs of the 4
corresponding SoPs are +, −, + and −, respectively, resulting in the total SoP of the
period as 0. Applying this to all other periods, it can be shown

R
sin x cos x dx ¼ 0

on the entire x axis.
By making use of the integral identities and orthogonality of (1.2)–(1.6), the

Fourier coefficients are obtained as follows:

Fig. 1.4 Illustration of
R
sin x sinð2xÞdx ¼ 0

Fig. 1.5 Illustration of
R
sin x cos xdx ¼ 0
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a0 ¼ 1
L

ZL=2
�L=2

f ðxÞdx

an ¼ 2
L

ZL=2
�L=2

f ðxÞ cos 2pnx
L

dx

bn ¼ 2
L

ZL=2
�L=2

f ðxÞ sin 2pnx
L

dx

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð1:7Þ

n = 1, 2, …

1.2.3 Complex Fourier Series

Using the Euler formula

eix ¼ cos xþ i sin x ð1:8Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

. It is easy to work out

cosðxÞ ¼ 1
2

eix þ e�ix
� � ð1:9Þ

sinðxÞ ¼ 1
2i

eix � e�ix
� � ¼ � i

2
eix � e�ix
� � ð1:10Þ

Now, by replacing the sinusoids in the Fourier series of (1.1) with the above two
equations, we obtain the complex Fourier series:

f ðxÞ ¼ a0
2

þ
X1
n¼1

ðan cos 2pnxL
þ bn sin

2pnx
L

Þ

¼ a0
2

þ 1
2

X1
n¼1

anðei2pnxL þ e�i2pnxL Þ � i

2

X1
n¼1

bnðei2pnxL � e�i2pnxL Þ

¼ a0
2

þ 1
2

X1
n¼1

ðan � ibnÞei2pnxL þ 1
2

X1
n¼1

ðan þ ibnÞe�i2pnxL

ð1:11Þ
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which can be written as the complex Fourier series

f ðxÞ ¼
X1
n¼�1

cne
i2pnx=L ð1:12Þ

The exponential form of orthogonality is as follows:

ZL2

�L
2

e�
i2pmx
L e

i2pnx
L ¼ L for m ¼ n

0 otherwise

�
ð1:13Þ

Now by multiplying both sides of the Fourier series (1.12) with e−i2pnx/L and do
integral in [0, L], we obtain complex Fourier coefficients:

cn ¼ 1
L

ZL2

�L
2

f ðxÞ e�i2pnxL dx; n ¼ 0;�1;�2; . . . ð1:14Þ

1.3 Fourier Transform

Equation (1.14) indicates that the coefficients of the Fourier series are determined
by f(x), while (1.12) indicates that f(x) can be reconstructed from Fourier coeffi-
cients cn. Therefore, the Fourier series establish a unique correspondence between f
(x) and its Fourier coefficients. Now, consider the integral of (1.14):

Lcn ¼
ZL

2

�L
2

f ðxÞe�j2pnxL dx ð1:15Þ

where j ¼ ffiffiffiffiffiffiffi�1
p

. If we let L ! ∞, n/L becomes continuous and n/L ! u, (1.15)
becomes

FðuÞ ¼
Z1
�1

f ðxÞ expð�j2puxÞ dx ð1:16Þ

Now, by substituting (1.6) into (1.12) and replacing the sum with an integral by
using n/L ! u and 1/L ! du, (1.12) becomes

f ðxÞ ¼
Z1
�1

FðuÞ expðj2puxÞ du ð1:17Þ

1.2 Fourier Series 9
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The F(u) of (1.16) is called the forward Fourier transform or FT, and (1.17) is
called the inverse Fourier transform or FT−1.

1.4 Discrete Fourier Transform

1.4.1 DFT

Discrete Fourier Transform (DFT) is particularly useful for digital pattern analysis,
because digital patterns exist in discrete form. To define DFT from Fourier series, f
(x) is first discretized into N samples in [0, L]:

f ð0Þ; f ðDxÞ; f ð2DxÞ; . . .; f ð N � 1ð ÞDxÞ ð1:18Þ

where Δx is the sample step in spatial domain and L = NΔx, and then f(x) can be
expressed as

f ðkÞ ¼ f ðkDxÞ; k ¼ 0; 1; 2; . . .;N � 1 ð1:19Þ

Now consider the Fourier coefficients (1.14):

cn ¼ 1
L

ZL=2
�L=2

f ðxÞe�j2pnxL dx

¼ 1
L

ZL
0

f ðxÞe�j2pnxL dx

ð1:20Þ

By substituting L = NΔx, f(x) = f(k), x = kΔx, and dx = Δx into the above
equation, it yields

cn ¼ Dx
NDx

XN�1

k¼0

f ðkÞe�j2pnkDxNDx

¼ 1
N

XN�1

k¼0

f ðkÞe�j2pnkN n ¼ 0; 1; 2; . . .;N � 1

ð1:21Þ

Therefore, the DFT of f(x) is given as

FðuÞ ¼ 1
N

XN�1

x¼0

f ðxÞ expð�j2pux=NÞ u ¼ 0; 1; 2; . . .;N � 1 ð1:22Þ

10 1 Fourier Transform
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By substituting (1.22) into (1.12), the inverse DFT is obtained as

f ðxÞ ¼
XN�1

u¼0

FðuÞ expðj2pux=NÞ x ¼ 0; 1; 2; . . .;N � 1 ð1:23Þ

1.4.2 Uncertainty Principle

Assume f(x) is a signal in a time period of ΔT = [0, L], the sampling step Δu in
frequency domain and the sampling step Δx in spatial domain are related by the
following expression:

Du ¼ 1
DT

¼ 1
NDx

ð1:24Þ

Basically, (1.24) tells that the frequency sampling step is inversely proportional
to the spatial sampling step. This is known as the uncertainty principle, which
means that increasing spatial resolution (reduce Δx) reduces the frequency resolu-
tion and vice versa. In other words, higher spatial resolution and higher frequency
resolution cannot be achieved simultaneously. This is the key reason behind the
multiresolution analysis such as wavelets which will be discussed later on in
Chap. 3.

Since the Δx depends on the sampling rate fs, and the relationship between
Δx and fs is given by Δx = 1/fs, the above inequality becomes

Du� fs
N

ð1:25Þ

and the uth frequency is given by

fu ¼ u � fs
N

ð1:26Þ

It should be noted that the uth frequency computed from (1.22) is not the actual
frequency; instead, the uth frequency is the uth bin of frequency. In other words,
u is the bin number, and the actual frequency is given by (1.26): fu = u ∙ Δu, and
Δu is called the bin size of DFT. If fs = N, Δu = 1, this is often the assumption in
DFT. However, this is not always the case. When fs � N, Δu � 1, this will be
demonstrated in Sect. 2.2. Equation (1.25) is another form of the uncertainty
principle. Given a sampling rate, in order to increase the frequency resolution
(reduce Δu), it has to increase the sample or window size N, which reduces the
spatial resolution. This is called the trade-off between spatial resolution and fre-
quency resolution.

1.4 Discrete Fourier Transform 11
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It should also be noted that any window size of a DFT is relative according to
(1.25). Specifically, a window size is relative to the sampling rate or sampling
frequency. A window of N samples is smaller in a signal with faster sampling rate
than that in a signal with slower sampling rate. For example, in a signal with
44,000 Hz sampling rate, a window of 128 samples has a duration of
128/44,000 = 0.0029 s. However, in a signal with 22,000 Hz sampling rate, the
duration of a 128 samples window is 128/22,000 = 0.0058 s, which is twice the
size as that in the first signal. This indicates that a bin number (u) of a DFT
computed from windows of different sizes or different signals means different
frequencies.

The inverse relationship between frequency resolution and spatial resolution
(window size) can be demonstrated using the following example. Suppose there are
two sine waves with very small frequency difference [2]:

Sinewave one: sin 2p� 0:05xð Þ
Sinewave one: sin 2p� 0:0501xð Þ

In this case, Δu = 0.0001. If we plot the two sine waves in one graph (Fig. 1.6),
one in red and the other in blue, the two signals do not show a difference in the first
100 samples, which means a small window cannot discern the difference of the two
signals. However, if we show the two signals in a very large window (5,000
samples), at the end of the window, they are 180° out of phase. This is because the
periods of the two sine waves are 20 and 19.96, respectively. Assume a sampling
frequency of 1 Hz. For a 100 samples window, the difference between the two
signals is just 5.01 − 5 = 0.01 period, which is almost indiscernible. However, with
a 5,000 samples window, the difference between the two signals is 250.5 −
250 = 0.5 period, which is more than sufficient to distinguish the two signals. It is
more convenient to explain this case using (1.25), because the smallest frequency
difference can be detected in a 100 samples window is Δu = 1/100 = 0.01, while in

Fig. 1.6 Inverse relationship between spatial and frequency resolution. Left: the first 100 samples
of the two sine waves; right: the last 100 samples of the two sine waves

12 1 Fourier Transform

www.EBooksWorld.ir



a 5,000 samples window, Δu = 1/5,000 = 0.0002, which is able to distinguish the
two signals.

It demonstrates that a smaller window gives poor frequency resolution, while a
larger window gives higher frequency resolution. This is because the larger the
window, the more samples, and the more low frequencies can be computed.

1.4.3 Nyquist Theorem

Because frequency is measured by the number of cycles in a period of time, and the
smallest cycle consists of two samples, for a signal of size N, only N/2 frequencies
can be computed from the DFT. This is called the Nyquist theorem.

Another way to express the Nyquist theorem is that in order to
reconstruct/recover a signal appropriately (“appropriately” means recover the
“essence” or low frequency while ignoring the “nuance” or high frequency), the
sampling rate of the signal must be at least twice the highest frequency in the signal.
Figure 1.7 demonstrates this fact. The figure shows three signals of 1 s length. The
top signal is a sine wave with 1 cycle/period (frequency = 1) which can be
recovered or reconstructed appropriately by at least two samples (marked with red
dots). The middle signal is a sine wave with two cycles/periods in a second (fre-
quency = 2); it needs at least four samples to recover the signal appropriately. The

Fig. 1.7 Illustrations of
different sampling rates for
three signals of the same time
length
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bottom signal is a sine wave with 4 cycles/periods in a second (frequency = 4); it
needs at least eight samples to recover the signal appropriately, and so on so forth.

In the case of images, frequency is related to structure size, and small structures
are known to have high frequency. Because the smallest structure in an image
requires 2 pixels to discern, the highest frequency which can be captured in an
image is 1/2 pixels.

1.5 2D Fourier Transform

For a two-variable function f(x, y) defined in 0 � x, y < N, its Fourier transform
pair is given by

Fðu; vÞ ¼ 1
N

XN�1

x¼0

XN�1

y¼0

f ðx; yÞ exp½�j2pðuxþ vyÞ=N	 ð1:27Þ

for u, v = 0, 1, 2, …, N − 1, and j ¼ ffiffiffiffiffiffiffi�1
p

.

f ðx; yÞ ¼ 1
N

XN�1

u¼0

XN�1

v¼0

Fðu; vÞ exp½j2pðuxþ vyÞ=N	 ð1:28Þ

for x, y = 0, 1, 2, …, N − 1.
Although the number of F(u, v) resulted from Fourier transform is usually large,

the number of significant F(u, v) (or F(u)) (large magnitude) is usually small. This
is because the higher frequencies only represent the finest pattern details which are
not so useful in many applications. This means that a meaningful approximation of
original pattern f(x, y) (or f(x)) can be constructed from a small number of F(u, v) (or
F(u)). This forms the basis of Fourier signal processing and Fourier pattern analysis.

1.6 Properties of 2D Fourier Transform

Fourier transform has the following important properties which are useful for image
analysis.

1.6.1 Separability

The discrete Fourier transform can be expressed in the separable form

14 1 Fourier Transform
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F u; vð Þ ¼ 1ffiffiffiffi
N

p
XN�1

x¼0

1ffiffiffiffi
N

p
XN�1

y¼0

f x; yð Þ exp � j2pvy
N

� �" #
exp � j2pux

N

� �

¼ 1ffiffiffiffi
N

p
XN�1

x¼0

F x; vð Þexp � j2pux
N

� �

¼ FTx FTy f x; yð Þ½ 	� 	
ð1:29Þ

where FTx and FTy are the 1D FTs on row and column, respectively.
The advantage of the separability is that F(u, v) can be obtained in two steps by

successive applications of 1D FT which can be computed using the Fast Fourier
Transform (FFT).

1.6.2 Translation

The translation property of the Fourier transform is given by

FT ½f ðx� x0; y� y0Þ	 ¼ F u; vð Þ � exp½�j2p ux0 þ vy0ð Þ=N	 ð1:30Þ

It indicates that a shift in spatial domain results in a phase change in frequency
domain. That means the magnitude of Fourier transform is invariant to translation.
This is a desirable feature, because, in many applications, the phase information is
discarded which leaves the FT features invariant to translation.

1.6.3 Rotation

To find the relationship between a rotated function f(x, y) and its spectrum, let’s
assume the function f(x, y) is rotated by an angle h, and the function after the
rotation is f(x′, y′). Then the relationship between two corresponding points of the
two functions is as follows:

x0 ¼ x cos hþ y sin h ð1:31Þ

y0 ¼ y cos h� x sin h ð1:32Þ

x ¼ x0 cos h� y0 sin h ð1:33Þ

y ¼ x0 sin hþ y0 cos h ð1:34Þ
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By substituting (1.33) and (1.34) into (1.27), we have

F u0; v0ð Þ ¼ 1
N

XN�1

x0¼0

XN�1

y0¼0

f x0; y0ð Þ exp �j2p
ux0 cos h� uy0 sin hþ vx0 sin hþ vy0 cos h

N

� �
 �

¼ 1
N

XN�1

x0¼0

XN�1

y0¼0

f x0; y0ð Þ exp �j2px0
u cos hþ v sin h

N

� �
 �
exp �j2py0

v cos h� u sin h
N

� �
 �

¼ 1
N

XN�1

x0¼0

XN�1

y0¼0

f x0; y0ð Þexp �j2p
x0u0 þ y0v0

N

� �
 �

ð1:35Þ

where

u0 ¼ u cos hþ v sin h ð1:36Þ

v0 ¼ v cos h� u sin h ð1:37Þ

Therefore, rotating f(x, y) by an angle of h in spatial domain rotates F(u, v) by the
same angle in frequency domain.

The rotation property can be proved more conveniently by considering f(x,
y) and FT in either complex domain or polar space. A point (x, y) in complex
domain can be expressed as

z ¼ xþ jy ð1:38Þ

By using Euler’s formula, it is simple to shown that

ze�jh ¼ xþ jyð Þ � ðcos h� j sin hÞ
¼ x cos hþ jy cos h� jx sin hþ y sin h

¼ ðx cos hþ y sin hÞþ jðy cos h� x sin hÞ
¼ x0 þ jy0

ð1:39Þ

Equation (1.39) shows that a point z rotated by an angle h is equivalent to
z times e−jh. In other words, the following is true:

f x0; y0ð Þ ¼ f x; yð Þ � e�jh ð1:40Þ

Equation (1.40) is a more concise and convenient rotation formula than (1.31)
and (1.32). By substituting (1.40) into (1.27), we obtain the FT of the rotated
function f(x′, y′):
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F u0; v0ð Þ ¼ 1
N

XN�1

x¼0

XN�1

y¼0

f x0; y0ð Þ exp �j2p
uxþ vy

N

� h i

¼ 1
N

XN�1

x¼0

XN�1

y¼0

f x; yð Þe�jh exp �j2p
uxþ vy

N

� h i
¼ F u; vð Þ � e�jh

ð1:41Þ

Therefore, we obtain the same result as shown in (1.35).
If we consider both f(x, y) and F(u, v) in polar space, they can be expressed as f

(r, h) and F(q, /), respectively, where

x ¼ r cos h; y ¼ r sin h; u ¼ q cos/; v ¼ q sin/ ð1:42Þ

(r, h) is the polar coordinates in image plane and (q, /) is the polar coordinates in
frequency plane. The differentials of x and y are

dx ¼ cos h dr � r sin h dh

dy ¼ sin h dr � r cos h dh

)
ð1:43Þ

The Jacobian of (1.43) is r. Therefore, by substituting both (1.42) and (1.43) into
2D continuous FT, the 2D FT in polar space is given by the following equations:

F q;/ð Þ ¼
Z1
0

Z2p
0

f r; hð Þe�j2p rcoshqcos/þ rsinhqsin/ð Þrdrdh

¼
Z1
0

Z2p
0

f r; hð Þe�j2prqcos h�/ð Þrdrdh

ð1:44Þ

Suppose f(r, h) is rotated for an angle of h0 to f(r, h + h0). Let h′ = h + h0, then

h ¼ h0 � h0 and dq ¼ dh0 ð1:45Þ

Now, in (1.44), by substituting f(r, h) with f(r, h′) and substituting h with (1.45),
we obtain

F q;/0ð Þ ¼
Z1
0

Z2p
0

f r; h0ð Þe�j2prqcos h0� /þ h0ð Þ½ 	rdrdh0 ð1:46Þ
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Equation (1.46) means

FT ½f ðr; hþ h0Þ	 ¼ Fðr;/þ h0Þ ð1:47Þ

Again, this yields the same result as (1.35) and (1.41). Equation (1.47) also tells
that in polar domain, the rotation of an image causes a translation or shift on its FT
spectrum. This property is useful for feature normalization.

1.6.4 Scaling

For two scalars a and b, the scale property of Fourier transform is given by

FT f ax; byð Þ½ 	 ¼ 1
ab

F
u

a
;
v

b

� 
ð1:48Þ

It indicates the scaling of f(x, y) with a and b in x and y directions in spatial
domain (time domain in 1D case) causes inverse scaling of magnitude of F(u, v) in
frequency domain. That means, if you stretch f(x, y) in spatial domain, you shrink F
(u, v) in frequency domain and vice versa. This proves the uncertainty principle
from another perspective. In general terms, enlarging an object in an image gives
rise to lower frequencies in spectral domain while shrinking an object in an image
gives rise to higher frequencies in spectral domain. This property is useful in
dealing with image scaling.

1.6.5 Convolution Theorem

The convolution theorem states that the FT of a convolution between two functions
is equal to the product of two FTs. Specifically, given two function f and g, the
following are true:

FT f 
 g½ 	 ¼ FT f½ 	 � FT g½ 	 ð1:49Þ

f 
 g ¼ FT�1 FT ½f 	 � FT ½g	f g ð1:50Þ

where f 
 g means convolution. Because of the separability property of 2D FT, we
only need to prove the 1D case.
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FT f 
 g½ 	 ¼
X
n

X
m

f ðmÞg n� mð Þe�j2pnu
N

¼
X
m

f ðmÞ
X
n

g n� mð Þe�j2pnu
N

¼
X
m

f ðmÞFT g½ 	e�j2pmu
N translation propertyð Þ

¼ FT ½g	
X
n

f ðmÞe�j2pmu
N

¼ FT ½f 	 � FT ½g	

ð1:51Þ

Convolution theorem shows that convolution in spatial domain can be done by
an FT (FFT in practice) and a product. This is a useful feature because both FFT
and product are much more efficient than spatial convolution.

1.7 Techniques of Computing FT Spectrum

The magnitude image of a Fourier transform is called an FT spectrum. The intensity
of an FT spectrum has a very large dynamic range; it is impossible to display this
large range in a gray level image. For example, the dynamic range of spectral values
of the Lena image [3] is [0, 31, 744], and Fig. 1.8a shows the FT spectrum without
scaling. It can be seen that the spectral image reveals little information about the
input image. Conventional thresholding (Fig. 1.8b) and linear scaling (Fig. 1.8c)
do not work well for such a large range of values.

The common practice of displaying an FT spectrum is to do a logarithmic
transformation of the spectral values to bring down the large spectral values to well
within the display range of 255 and raise the lower spectral values in the meantime.
However, the logarithm transformed spectrum does not have sufficient contrast
between lower frequency and higher frequency spectral values as shown in
Fig. 1.8d. A more effective way to display FT spectrum is to apply a logarithm
transform on the spectral values followed by a linear scaling to map the spectral
magnitudes to [0, 255] using (1.52):

F0 u; vð Þ ¼ 255� log 1þ F u; vð Þj jð Þ
log 1þmax F u; vð Þj jð Þ½ 	 ð1:52Þ

Figure 1.8e shows the FT spectrum using (1.52). It can be seen from Fig. 1.8e
that there are three directional features in the FT spectrum: horizontal, vertical, and
diagonal. The strong horizontal feature is due to the vertical pole on the left-hand
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Fig. 1.8 FT spectra with different methods. a FT spectrum without scaling; b FT spectrum with
thresholding value 10; c FT spectrum with linear scaling; d FT spectrum with log transform; e FT
spectrum with both log and linear transform; and f FT spectrum with enhanced contrast from (e)
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side of the input image, while the vertical and diagonal features are due to the rim of
the hat and the black arch on the right-hand side of the input image.

The logarithmic transformation, however, enhances the low magnitude values,
while compressing high magnitude values into a relatively small pixel range.
Therefore, if an image contains some important high magnitude information, this
may lead to loss of information. An alternative solution to further increase the
spectral contrast is to decrease the compression rate by scaling down the spectrum
image intensity before applying the logarithmic transform. This is because the
logarithmic function has a less degree of compression at places close to the origin.
Figure 1.8f shows the FT spectrum with enhanced contrast, which is equivalent to
highlighting the low-frequency area with a spotlight.

The FT spectrum reveals key information about an image if displayed properly.
Figure 1.9 shows three different types of homogenous patterns and their FT spectra
on the right-hand side of the patterns. It can be seen that the FT spectra have
generally accurately captured the three types of texture features: regularity, ran-
domness, and directionality. This is the primary motive for the development of
short-time FT and wavelets, which attempt to capture local and changing patterns.

Fig. 1.9 FT spectra of different types of patterns. a Regular patterns and their FT spectra on the
right; b random patterns and their FT spectra on the right; and c directional patterns and their FT
spectra on the right
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1.8 Summary

In this chapter, FT, the most fundamental theory in signal and image analysis is
formally introduced and described systematically. The idea of decomposing a signal
or function into sinusoids is equivalent to breaking down compounds into elements.
This idea has been demonstrated using Fourier series and complex Fourier series.

Particularly important is the DFT and its properties including rotation, transla-
tion, separability, and convolution theorem. For example, due to the separability
property, FT on an image can be computed on rows first and then on columns,
instead of on rows and columns simultaneously; this makes FT very efficient.
Another example is that the convolution theorem turns convolution into multipli-
cation in FT domain. Again, this makes convolution very efficient. These properties
have been used frequently in the following five chapters. Another important point is
the trade-off between frequency resolution and time/spatial resolution.

FT spectrum is the visualization of FT; it is used to demonstrate what type of
patterns are in the image (e.g., random, directional, regular, etc.) and which
directions the patterns are aligned. Unfortunately, FT cannot tell where the patterns
are located in an image; this is the topic of the next two chapters.

1.9 Exercises

1. Download the stripe image from https://homepages.inf.ed.ac.uk/rbf/HIPR2/
images/stp1.gif, apply FT to it, and show the FT spectrum of this image. The
Matlab function for 2D FT is available from https://au.mathworks.com/help/
matlab/ref/fft2.html.

2. Now apply logarithm transform to the above FT spectrum and show the FT
spectrum image again. Explain the difference.

3. Apply thresholding to the above log FT spectrum with a threshold value 10 and
display the FT spectrum image again. Try different threshold values to see the
results.

4. Now multiply the FT spectrum from problem 1 by a circle with a radius of 30
pixels and set the pixels outside the circle with 0 (1 if inside the circle), apply the
inverse FT to the truncated spectrum, and show the reconstructed image.
Explain the difference between the reconstructed stripe image with the original
stripe image. Try circles with a smaller radius, e.g., 10, 5, and explain the
results.

5. Repeat Exercises 1 and 4 on different images, write a short report on your
findings of FT and FT−1, e.g., why are some images can be reconstructed well
with just a few FT coefficients while some images need a high number of FT
coefficients to be reconstructed reasonably well.
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2Windowed Fourier Transform

It’s a changing world, static is not an option.

2.1 Introduction

2D Fourier transform is a powerful tool to capture the frequency information of an
image. The frequency information tells how frequent a pattern changes. This fre-
quency of changes reflects the structural or textural features which are observed by
human beings during pattern analysis. The frequency information is crucial to
understand the content of an image.

However, Fourier spectrum is captured using the entire image as the window, it
is a global information. In other words, we know there is a frequency in the image,
but we cannot tell where the frequency is in the pattern. This is not a problem if the
pattern has a homogenous structure across the pattern. For non-homogenous pat-
terns, however, Fourier spectrum is not an effective representation, because dif-
ferent patterns can have similar Fourier spectrum. Figure 2.1 shows this
phenomenon [1], although the two images are very different, however, their FT
spectra are quite similar. This is a problem for image classification and retrieval.
Therefore, we need a better tool to let us have a closer look at the patterns inside the
images.

2.2 Short-Time Fourier Transform

The natural way to overcome this problem is to analyze the signal section by
section or window by window. This is Short-Time Fourier Transform (STFT)
which provides a way to analyze the signal in both time and frequency. In STFT, a
window function is chosen in such a way that the portion of a nonstationary signal
which is covered by the window function seems stationary. This window function is
then convoluted with the original signal so that only the part of the signal covered
by the window is selected. FT is then applied to the newly generated stationary
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signal. The window is then moved to the next slot of signal, and FT is applied
repeatedly until the whole signal is completely analyzed. For signal f(x), its STFT is
defined as

STFT s;xð Þ ¼
XN
x¼0

f xð Þ �W x� sð Þe�j2pxx ð2:1Þ

where W(x) is the window, � means convolution, s represents the spatial position of
the window, and x represents the frequency captured at time s. Similarly, the 2D
STFT is given as

STFT s1; s2;xð Þ ¼
XN
x¼0

XN
y¼0

f x; yð Þ �W x� s1; y� s2ð Þe�j2pxx ð2:2Þ

Figure 2.2 shows the different spectrum layouts of FT and STFT on a 1D signal.
The FT is applied on the entire signal which is equivalent to a single big window; it
can be seen that the frequency resolution is higher than that of STFT. STFT is
applied on four smaller windows, as can be expected the frequency resolution is
lower than that of FT; however, the spatial resolution is higher than that of FT,

Fig. 2.1 Two images and their corresponding Fourier spectra on the right

(a) FT in time-frequency plane
Time

Frequency

(b) STFT in time-frequency plane

f
0

Time

Frequency

Fig. 2.2 Time–frequency illustration for FT and STFT
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because we can now examine the signal at four different locations. Therefore, STFT
achieves a trade-off between frequency resolution and spatial resolution.

2.2.1 Spectrogram

When a signal f(x) (x 2 [0, T]) is analyzed by STFT, instead of a single FT
spectrum, it results in a series of STFT spectra. Each of the STFT spectra is a
windowed analysis of the signal f(x) in a particular time slot t 2 [0, T]. By con-
catenating the series of the STFT spectra vertically (in column) on the timeline, it
creates a spectrogram. Figure 2.3 shows a spectrogram of a short sound wave.
It can be observed that most of the energy is concentrated at the low frequencies;
however, there are a number of particular high frequencies at different times of the
sound, which are marked by the bright horizontal stripes.

Although STFT lets us do time–frequency analysis, the usually square win-
dowing causes several side effects. First, the windowing causes the loss of low
frequencies which are the most important information for signal representation.
This is because low-frequency signals have longer periods/cycles, and in order to
capture the low frequency, a signal must complete at least one full cycle within the
window. Therefore, a window can only capture frequencies up to a certain limit.

For example, given a signal with a Nyquist sampling rate of 44,800 Hz:

• A window of 128 samples is equivalent to a period of 128/44,800 = 0.00285 s.
• Therefore, the lowest frequency the window can capture is 1/0.00285 s = 350 Hz.

Fig. 2.3 The spectrogram of a sound wave
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• In other words, the lowest frequency you can analyze with a window size of 128
samples at a sample rate of 44.8 kHz is 350 Hz.

• The second frequency which can be fit into the window is a two-cycle sine wave
or a sine wave with a period of half of the window size; therefore, the second
frequency a 128 window captures is 2 � 350 = 700 Hz.

• Similarly, the third frequency a 128 window captures is 3 � 350 = 1,050 Hz, so
on so forth.

• In other words, the step size of the windowed frequency resolution (bin size Δu)
is 350 Hz for a 128 window instead of 1 Hz for an ordinary FT. This has been
shown in (1.25).

• Similarly, for a window of 64 samples, Δu = 700 Hz, while for a window of 256
samples, Δu = 175 Hz, so on so forth.

• Therefore, with STFT, we not only lose low frequencies but also lose frequency
resolution, due to using only a single sized window.

Another issue with STFT is the shape of the window. The typical rectangular
window causes severe frequency leakage, that is, a burst of high frequencies at both
sides of the window. This is undesirable for signal or image representation which
requires a compact spectrum. These issues related to STFT can be overcome to a
certain extent by using non-rectangular and overlapping windows.

2.3 Gabor Filters

2.3.1 Gabor Transform

This leads to the use of Gaussian window which attenuates high frequencies at both
sides of the window. The STFT with Gaussian window is called Gabor transform:

G s1; s2;xð Þ ¼
XN
x¼0

XN
y¼0

f x; yð Þ � g x� s1; y� s2ð Þe�j2pxx ð2:3Þ

where g(x, y) is the Gaussian function:

g x; yð Þ ¼ 1
2prxry

exp � 1
2

x2

r2x
þ y2

r2y

 !" #
ð2:4Þ

and rx, ry are the horizontal and vertical standard deviations which determine the
size of the window. The window size can be varied to achieve the optimality
between time and frequency.

Because convolution in spatial domain is equivalent to multiplication in fre-
quency domain, in practice, STFT is computed by multiplying the Fourier trans-
forms of f(x, y) and g(x, y).
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It is found that the frequency response or Fourier transform of g(x, y) is also a
Gaussian G(u, v), and the window size of G(u, v) is inversely proportional to that of
g(x, y), that is,

ru ¼ 1
2prx

ð2:5Þ

rv ¼ 1
2pry

ð2:6Þ

This relationship can be used to determine the window size in spatial domain. It
is known that lower frequencies are more important than higher frequencies for
signal analysis and representation. Therefore, in the frequency plane, lower fre-
quencies are given higher resolution than higher frequencies. This is achieved by
giving the lower frequencies narrower bandwidth while giving the higher fre-
quencies wider bandwidth. Typically, the bandwidths are arranged in octave.

2.3.2 Design of Gabor Filters

Because both Gabor function and its frequency response are Gaussians, and the
relationship of the two Gaussians is given by (2.5) and (2.6), Gabor filters are
designed on frequency domain. Because a 2D Gaussian function extends to infinity,
there is too much overlap or redundancy between two adjacent Gaussian functions.
To remove the redundancy, the 2D Gaussian functions in Gabor filters are cut at the
half height, and the top half of the function is used as the Gaussian window. For a
Gaussian function with standard deviation of r, the Full Width at Half Maximum
(FWHM) is 2

ffiffiffiffiffiffiffiffiffi
2ln2

p
r (Fig. 2.4).

Fig. 2.4 The full width at
half maximum of a Gaussian
function
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Based on the above discussions, the half-amplitude of Gabor filters tiling of the
spectrum plane is given in Fig. 2.5.

• Suppose the lowest and highest horizontal frequencies are Ul and Uh,
respectively.

• The window at Ul has the smallest width (bandwidth) rl.
• The next window at aUl has a width of a rl.
• The mth window at amUl has a width of am rl.
• The width of the window at Uh = aM−1Ul is a

M−1 rl.
• The octave is then rotated at an interval of h = p/k to tile the half frequency plane
(Fig. 2.6).

With this arrangement, the parameters of the window at are obtained as follows
[2]:

ru ¼ a� 1
aþ 1

� Ulffiffiffiffiffiffiffiffiffi
2ln2

p ð2:7Þ

v

u

Fig. 2.5 The half-amplitude
of Gabor filters in the
frequency domain using four
scales and six orientations

Ul Uh

Fig. 2.6 Bandwidth tiling in
frequency plane using
Gaussian windows
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rv ¼ tan
p
2k

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

h

2ln2
� r2u

r
ð2:8Þ

The Gabor transform lets us do a better time and frequency analysis than STFT,
due to the use of Gaussian and overlapping windows. However, because the Gabor
function is an infinite window, there is much overlap between Gabor windows. This
translates to redundancy in the extracted information from the transformed coeffi-
cients. Although the FWHM truncation reduces the redundancy, it causes missing
spectral information in frequency plane. Neither case is desirable for image analysis
and representation. To overcome this issue, orthogonal wavelets with multireso-
lution are introduced in the following section.

2.3.3 Spectra of Gabor Filters

Based on the above design, each Gabor filter is determined by two parameters: scale
(r or bandwidth) and orientation; therefore, by changing the scales and orientations,

Fig. 2.7 Spectra of Gabor filters at different scales and orientations
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various Gabor filters are generated. Figure 2.7 shows the real components of Gabor
filters at different scales and orientations. On 2D plane, each Gabor filter is
oval-shaped, and the center of the filter is given higher weight. The scale determines
the granularity, with lower scale filters capturing rough features of an image and
higher scale filters capturing fine features of an image. The orientation let the filters
capturing image profiles and edges from different angles. The combination of both
scales and orientations provides Gabor filters a powerful capability on image
analysis.

2.4 Summary

In this chapter, two windowed FT methods are introduced and discussed in detail.
Both STFT and Gabor filters allow for time/space–frequency analysis. Because of
using shifting windows, the output of STFT on a 1D signal is a 2D spectrogram
instead of a single 1D FT spectrum. It can be observed that the spectrogram reveals
a lot more frequency information than a single FT spectrum. However, due to the
use of windows, we sacrifice some frequency resolution. That means, instead of 1
frequency per bin in an FT spectrum, a bin in STFT represents a band of fre-
quencies. The bandwidth of an STFT bin depends on the window size; the narrow
the window, the wider the bin. We also lose some low frequencies due to win-
dowing. Therefore, it is important to learn the trade-off between window size and
bin size when using STFT.

Compared with STFT, Gabor filters provide a better solution in terms of the
trade-off, because Gabor filters use multiple filter size. Furthermore, the use of
Gaussian window by Gabor filters produces more desirable results than the rect-
angular window.

2.5 Exercises

1. Match each of the following signals to its corresponding spectrogram under-
neath the signals and explain why you match it that way.
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2. Contrast the similarity and difference between STFT and Gabor filters.
3. Explain the different tiling of spectrum plane between STFT and Gabor filters.
4. Use the Matlab code from the following web page to generate Gabor filters:

https://au.mathworks.com/help/images/ref/gabor.html. Try different number of
scales and orientations and explain how they are different and what kind of
image feature they capture.

5. Find a texture image, apply the Gabor filters you have generated in Exercise 4
on the texture image, and explain the spectra of the Gabor filtered images. Try
more images and report your findings.

Signal 1 Signal 2

Signal 3 Signal 4

time                                                       time

time                                             time

frequency

frequenc

frequenc

frequenc

Spectrogram 1                                       Spectrogram 2

Spectrogram 3                                       Spectrogram 4
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3Wavelet Transform

To understand the realworld zoom in zoom out.

3.1 Discrete Wavelet Transform

Gabor transform can be written as

Grxry s1; s2ð Þ ¼
XN
x¼0

XN
y¼0

f x; yð Þg�rxry x� s1; y� s2ð Þ ð3:1Þ

where * means complex conjugate and the Gabor function grx;ry x; yð Þ is given as

grxry x; yð Þ ¼ 1
2prxry

exp � 1
2

x2

r2x
þ y2

r2y

 !" #
ej2pxx ð3:2Þ

The group of Gabor functions grx;ry x; yð Þ are windowed waveform functions,
called wavelets. But the Gabor wavelets are not orthogonal, which means there is a
correlation between different Gabor wavelets. This correlation results in redundancy
in the extracted wavelet features computed from images or signals. The FWHM
approach in Sect. 2.3 causes loss of frequency. This is undesirable for image or
signal representation. The window size is also an issue similar to that of STFT. These
issues can be overcome by using orthogonal wavelets with varying window size.

The general form of a 2D orthogonal wavelet can be formulated as follows:

wa1a2b1b2 x; yð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
a1a2

p w
x� b1
a1

;
y� b2
a2

� �
ð3:3Þ

where a1, a2 are the scale parameters and b1, b2 are the position parameters. Similar
to a 2D FT, a 2D wavelet also has the property of separability:
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wa1a2b1b2 x; yð Þ ¼ 1ffiffiffiffiffi
a1

p w
x� b1
a1

� �
1ffiffiffiffiffi
a2

p w
y� b2
a2

� �
ð3:4Þ

The Discrete Wavelet Transform (DWT) on a function or image f(x, y) is given
as

Ws k; lð Þ ¼ 1
s

X
n

X
m

f m; nð Þw m� k

s

� �
w

n� l

s

� �
ð3:5Þ

where (k, l) is the position of the wavelet and s is the scale. If we compare a wavelet
with a magnifying glass, the position vector (k, l) represents the location of the
magnifying glass and the scale s represents the distance between the magnifying
glass and the image. By adjusting the position and scale, the wavelet can analyze an
image in the same way as we analyze an image using a magnifying glass.

3.2 Multiresolution Analysis

As explained in Sect. 1.4, the window size (time) and the frequency band are
inversely proportional. That is, when the window size is halved, the frequency band
captured by the window is twice higher. The frequency bandwidth is typically
arranged in octave, that is, the next bandwidth is twice the width of the previous
one. The inverse relationship between window size and frequency of a DWT can be
demonstrated using a 1D signal with a Nyquist sampling rate of 1,024 Hz. As can
be seen in the following table, as the wavelet decomposition level (scale) and the
window size increases, the bandwidth becomes narrower and narrower until it
reduces to a single point, which is equivalent to a FT frequency.

Decomposition level Window size Frequency band

1 2 512–1,023

2 4 256–511

3 8 128–255

4 16 64–127

5 32 32–63

6 64 16–31

7 128 8–15

8 256 4–7

9 512 2–3

10 1,024 1

The above table can be illustrated using a time–frequency plane. Figure 3.1
shows the time–frequency planes of both DWT and STFT side by side. The wavelet
time–frequency plane is shown on Fig. 3.1 Left. In contrast, STFT uses one win-
dow size for all frequencies as shown in Fig. 3.1 Right. Compared with STFT, a
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DWT yields very high resolution at lower frequencies while sacrifices resolution at
higher frequencies. Therefore, a DWT is a multiresolution tool.

Wavelets analyze and represent a signal with multiresolution. This is extremely
useful, because lower resolution represents a summary and higher resolution rep-
resents fine details of a signal, both are essential in signal analysis and represen-
tation. The multiresolution representation is done through repeating rounds of
scaling (low pass, L) and wavelet transform (high pass H) on a signal. The scaling
captures the low frequency information of the signal and the wavelet captures the
high frequency information of the signal. At each round of the wavelet transform, a
low-resolution signal (low frequency L) and a fine details signal (high frequency H)
are obtained, both are half the size of the original signal. Since the information in
the fine details signal is usually scarce, most of the information in the original signal
is captured by the lower resolution version, this achieves great efficiency of signal
representation. To recover the signal, the inverse wavelet transform is applied,
which is done through repeating rounds of expansion.

3.3 Fast Wavelet Transform

3.3.1 DTW Decomposition Tree

For a 2D image, the rows and columns are treated as 1D signals. Due to the
separability property of DWT, the two passes at each round of the DWT are done at
the rows and the columns separately. The 2D digital wavelet transform on an image
is illustrated in Figs. 3.2, 3.3 and 3.4.

• Horizontal transform. At the first step of level 1 decomposition, each row of the
image is scaled (weighted average) and wavelet transformed (weighted
difference).

Fig. 3.1 Different frequency tiling of spectral plane. Left: the wavelet spectrum; Right: the STFT
spectrum
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Fig. 3.2 The 2D DWT decomposition tree for a lady image

L H

(a) (b) (c)

Fig. 3.3 Illustration of 2D DWT process on a lady image. a Horizontal transform; b vertical
transform; c spectrum of level 1 2D DWT decomposition

Fig. 3.4 Two levels of 2D wavelet decomposition. a The spectrum plane of two levels of 2D
DWT; b the spectrum of two levels of 2D DWT on the lady image; c the complete decomposition
of the lady image
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– The result from the first step are two half images, one with scaling coefficients
(L) and the other with wavelet coefficients (H), both are half width of the image
row (Fig. 3.3a).

• Vertical transform. In the next, the scaling (L) and wavelet transform (H) are
applied on each column of the two half images from the previous step (Fig. 3.3b).

– The result from the second step is four quarter sized images, which are:
summary (LL, top left), vertical details (LH, bottom left), horizontal details
(HL, top right), and diagonal details (HH, bottom right) (Fig. 3.3c).

• Level 2 decomposition. The above steps are repeated on the LL image for the
next round of DWT (Fig. 3.4b).

• DWT spectrum. The level 1 decomposition process can be repeated until the
summary image can no longer be decomposed further, the final spectrum of the
wavelet transform on the lady image is shown in Fig. 3.4c. It can be observed that
the DWT spectrum captures the essence of the image while discarding all the
redundant details. This is very useful for image analysis.

This process can be summarized in mathematical terms. Suppose the scaling and
wavelet functions are /, w, respectively. At each level of decomposition, the fol-
lowing 4 quarter sized images are resulted from the DWT by using (3.5):
average/summary image/(x, y), horizontal difference/details imagewH(x, y), vertical
difference/details image wV(x, y), and diagonal difference/details image wD(x, y).

/ðx; yÞ ¼ /ðxÞ/ðyÞ ! LL ð3:6Þ

wHðx; yÞ ¼ /ðxÞwðyÞ ! HL ð3:7Þ

wVðx; yÞ ¼ wðxÞ/ðyÞ ! LH ð3:8Þ

wDðx; yÞ ¼ wðxÞwðyÞ ! HH ð3:9Þ

3.3.2 1D Haar Wavelet Transform

The DWT can be demonstrated using Haar wavelet, the scaling function and
wavelet function of Haar transform are shown in Fig. 3.5. Given the unique
characteristic or shape of the Haar transform functions, the scaling and wavelet
transform of Haar wavelet become simply the average and difference (or details).

Suppose x and y are two neighboring points, the scaling coefficient and wavelet
coefficient are given by s and d, respectively:
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s ¼ ðxþ yÞ=2 and d ¼ ðx� yÞ=2 ð3:10Þ

The inverse Haar transform is then given by addition and subtraction:

x ¼ sþ d and y ¼ s� d ð3:11Þ

• Given an even length discrete signal of (a0, a1, …, a2n, a2n+1).
• It is first organized into pairs ((a0, a1), …, (a2n, a2n+1)).
• By applying the first round of Haar transform, the coefficients of the transform are
given by ((s0, s1, …, sn), (d0, d1, …, dn)).

• The second round of Haar transform can be performed on the sequence of s, and
so on so forth.

For example, suppose [11, 9, 5, 7] is a 4-point digital signal, the following
demonstrates the process of a Haar wavelet transform on the signal.

Resolution Averages Details

4 [11, 9, 5, 7]

2 [10, 6] [1, −1]

1 [8] [2]

Therefore, the Haar wavelet transform of [11, 9, 5, 7] is given by [8, 2, 1, −1].
As can be seen, after the wavelet transform, the first value captures the most
significant information while the last two values are very small. This is helpful in
signal processing and analysis, because more attention can be given to the most
significant information.

The wavelet transform can be performed more efficiently by using matrix mul-
tiplication. The following is an example of 4 � 4 Haar wavelet transform matrix.

(a) φ(t) (b) ψ(t) 

Fig. 3.5 Harr scaling function and wavelet function
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H4 ¼ 1
4

1 1 1 1
1 1 �1 �1
2 �2 0 0
0 0 2 �2

2
664

3
775 ð3:12Þ

For the above 4-point signal, using the Haar wavelet transform matrix, the
transform coefficients are given by

h4 ¼ 1
4

1 1 1 1
1 1 �1 �1
2 �2 0 0
0 0 2 �2

2
664

3
775

11
9
5
7

2
664

3
775 ¼

8
2
1
�1

2
664

3
775 ð3:13Þ

3.3.3 2D Haar Wavelet Transform

For a 2D image, this is done on both the rows and columns separately.
Suppose the following is a 4 � 4 image I:

Step 1. Horizontal scaling of image I (horizontal pairwise average, L):

Step 2. Horizontal wavelet transform of I (horizontal pairwise difference, H):

The image Ic after horizontal transform by combining the results from the above
two steps:

102 56 68 152

24 62 46 32

52 92 72 84

76 60 92 60

79 110

43 39

72 78

68 76

23 −42

−19 7

−20 −6

8 16

79 110 23 −42

43 39 −19 7

72 78 −20 −6

68 76 8 16
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Step 3. Vertical scaling of Ic (vertical pairwise average, LL, HL)

Step 4. Vertical wavelet transform of Ic (vertical pairwise difference, LH, HH)

The image after the first round of Haar wavelet transform by combining the
results from Step 3 and 4:

The second round of Haar DWT repeats the Steps 1–4 on the LL band and this
process can be continued until required levels of decomposition is achieved. Similar
to the 1D case, the first quarter of the wavelet transformed image contains the most
significant information.

3.3.4 Application of DWT on Image

Figure 3.6 demonstrates the complete process of computing the Haar wavelet
transform on the lady image using the DWT decomposition tree of Fig. 3.2. At each
next level of the decomposition, the image is halved, therefore, the DWT is very
efficient and fast.

3.4 Summary

Wavelets are an extension or an improvement to windowed FT in two aspects:
orthogonality and multiresolution. Orthogonality means that there is no redundancy
between DWT channels. Multiresolution means to analyze an image by zooming in
and zooming out, which is like studying a map with a magnifying glass. This is
achieved by adapting image resolution to wavelet size/scale.

The contrast between wavelets and windowed FT can be easily understood in
frequency plane as shown in Fig. 3.1. Basically, with DWT, we retain higher
resolution at very low-frequency band at the cost of losing resolution at
high-frequency band. This is sensible because low-frequency information is much
more important than high frequency information to human perception.

61 74.5 2 −17.5

70 77 −6 5

18 35.5 21 −24.5

2 1 −14 −11

LL 61 74.5 2 −17.5 HL

70 77 −6 5

LH 18 35.5 21 −24.5 HH

2 1 −14 −11
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The computation of 2D DWT is very efficient due to the separability property of
WT. In practice, the computation of 2D DWT follows a decomposition tree or
algorithm as shown in Fig. 3.2. Generally, there needs just a few rounds of repeat
DWT decomposition to transform an image. In terms of understanding the DWT
computation process, it is important to understand how Haar wavelet transform
works. Once the process of Haar wavelet transform is understood, one can just
replace the Haar wavelet with any other wavelet.

Horizontal transform

  H

V 

H   

V 

V
ertical transform

Fig. 3.6 Illustration of the computing process of Haar wavelet transform
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3.5 Exercises

1. Given a signal f = (5, 8, 3, −4, 7, 8, 5, 3), compute the Haar wavelet transform
of the signal and give all coefficients s and d.

2. Plot all wavelet basis functions ws for all valid scales of the signal computed in
problem 1.

3. What is the mathematical concept behind the computation of the Haar coeffi-
cients (hint: consider the relationship between Haar, FT, and STFT) and why is
it important?

4. Choose an image of your own and apply the Haar wavelet transform to the
image using the Matlab code shown in this web page: https://au.mathworks.
com/help/wavelet/ref/dwt2.html. Try different images and write a short report on
your discovery, e.g., what kind of features it has captured and why.
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Part II
Image Representation and Feature

Extraction

Sort the wheat from the chaff.

Introduction

A digital color image I = {pij} is a matrix of pixels, each pixel is a
three-dimensional color vector pij = (rij, gij, bij), representing the three color com-
ponents of the pixel. For example, an image with m � n pixels is represented as an
m � n matrix:

I ¼

p11; p12; . . .; p1n
p21; p22; . . .; p2n

. . .

pm1; pm2; . . .; pmn

2

6
6
6
4

3

7
7
7
5

¼

ðr11; g11; b11Þ; ðr12; g12; b12Þ; . . .; ðr1n; g1n; b1nÞ
ðr21; g21; b21Þ; ðr22; g22; b22Þ; . . .; ðr2n; g2n; b2nÞ

. . .

ðrm1; gm1; bm1Þ; ðrm2; gm2; bm2Þ; . . .; ðrmn; gmn; bmnÞ

2

6
6
6
4

3

7
7
7
5

(II.1)

For color processing and analysis, a color image is often represented as a
composition of three component color images or image planes: I = [Ir, Ig, Ib]:

Ir ¼
r11; r12; . . .; r1n
r21; r22; . . .; r2n

. . .
rm1; rm2; . . .; rmn

2

6
6
4

3

7
7
5 Ig ¼

g11; g12; . . .; g1n
g21; g22; . . .; g2n

. . .
gm1; gm2; . . .; gmn

2

6
6
4

3

7
7
5 Ib ¼

b11; b12; . . .; b1n
b21; b22; . . .; b2n

. . .
bm1; bm2; . . .; bmn

2

6
6
4

3

7
7
5 (II.2)

To extract texture features from a color image, it is usually converted to a gray
level image. A gray level image is basically a 3D function z = g(x, y), where (x, y) is
the pixel position and z is the intensity. By modeling an image as a mathematical
function, advanced theories on mathematical analysis, algebra, and statistics can be
employed for image analysis.
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Figure II.1 shows the 3D function for the lady image in Fig. 3.2, where the colors in
the 3D space represent the intensity of the image pixels. It is observed that a gray
level image is essentially a 3D terrain or a 3D surface in space, this modeling is
helpful because advanced geometric theories can also be employed on texture
analysis such as fractal.

Images are a powerful media; in fact, human beings learn to understand the
world visually before learning to read and write. It is widely known that a picture is
worth a thousand of words. This is because people read images much more effi-
ciently and effectively than reading the text. Indeed, people nowadays get more
information from TV, videos, and cinema than from books.

Although images are a powerful media, it is much more difficult to mine
semantic information from images than from textual documents, due to each image
has a large number of image pixels and there is no visual dictionary to represent
images. Image size on Internet nowadays ranges from several hundreds of thou-
sands of pixels to several millions of pixels and it is even bigger in private storage.
Image size is going to get bigger and bigger as the image capturing devices get
more and more powerful and the Internet speed gets faster and faster.

To make the mining task even more complicated, an image is usually corrupted
or degraded. An observed image I(x, y) is typically a degraded version of an ideal
image f(x, y). In general, the relation between f(x, y) and I(x, y) is governed by
I(x, y) = Tg [Td (f)], where Td and Tg are color and geometric degradation operators,
respectively. In practice, Td is usually modeled as a convolution while Tg is
typically modeled as a spatial transform such as affine transform or similarity
transform. Td and Tg are usually unknown. The goal is to model the unknown image

Fig. II.1 The 3D map for a 2D image
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f(x, y) through the observed image I(x, y) by the means of some a priori information
or assumption.

It is known the world is consisted of objects and each object can be described
with a small number of properties or features. For example, a human being can be
described by his/her gender, height, weight, hair, complexion, dressing, ethnicity,
etc. Similar to interpreting the world, human beings tend to group image pixels into
objects and describe them accordingly when reading an image.

The idea of image analysis or image data mining is to mine a small number of
features from the large number of image pixels, so that images can be described
effectively and similar images can be classified. Ideally, the features should be
semantic so that human beings can understand them. However, to mine semantic
features like water, sky, horse, tree, etc., is extremely difficult for machine.
Therefore, a typical image analysis mechanism starts from low-level features such
as color, shape, texture, etc. Once low-level features are extracted, higher level
features can be learned through machine learning methods which will be described
in Part III, and similar images can be retrieved through image retrieval methods
which will be described in Part IV.

In Part II, the three types of common low-level image features will be described
in detail.
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4Color Feature Extraction

Every picture tells a story, by colors.

4.1 Introduction

Arguably, color is the most important feature of an image. After all, people see this
world as colors or the world presents itself to us as colors. However, color is a
complex topic and difficult to understand. As a matter of fact, few people are good
at painting a picture or image. There are infinite number of colors in this world and
colors can be created from different types of palettes. Computers use a trichromatic
palette to mix all the colors in this world. That means each color in computers is
represented as a three-dimensional vector (c1, c2, c3). These color vectors created a
3D color space. Depending on how each of the trichromatic colors is defined,
different color spaces or color models have been created.

The most commonly used color space is the RGB color space, where each of the
colors is defined by adding three primary colors in the visible light spectrum (red,
green, and blue) with various proportions. Other commonly used color spaces
include LUV, HSV/HSL/HSI, YCrCb.

Color spaces are models for the representation of pixel values. To compare and
classify color images, however, we need to analyze and understand the color
patterns in an image. In order to understand the color patterns in an image, we
extract color features from the image and compare them with features of other
images. Color features are usually based on color statistics computed from an image
or regions of an image.

A number of color features have been proposed in the literature including color
histogram, color moments (CM), color coherence vector (CCV), color correlo-
grams, etc. MPEG-7 also standardizes a number of color features including dom-
inant color descriptor (DCD), color layout descriptor (CLD), color structure
descriptor (CSD), and scalable color descriptor (SCD).

© Springer Nature Switzerland AG 2019
D. Zhang, Fundamentals of Image Data Mining, Texts in Computer
Science, https://doi.org/10.1007/978-3-030-17989-2_4
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4.2 Color Space

To process and analyze color images, we need to understand how different color
models work, and their applications in image processing and analysis. Color is a
complex theory, there are infinite number of colors in this world and colors can be
created using a variety of ways. There needs a standard color model so that colors
can be reproduced with accuracy and colors produced in different applications by
different devices can be translated interchangeably. The first step is to find a way of
representing each color numerically and identify the space or gamut of all visible
colors.

The building of a standard color model is made possible thanks to the three
scientists: Isaac Newton, James Clerk Maxwell, and Hermann Grassmann. Newton
laid the foundation of our understanding of colors by first splitting a light source
into spectral or pure colors (rainbow colors, Fig. 4.1). This lets us to understand that
a light is a mixture of pure colors and colors are just reflectance of lights of different
wavelengths by objects. Maxwell found that by projecting and superimposing the
three red, green, and blue monochromatic pictures on the screen, other colors in the
scene such as orange, yellow, purples, etc., also showed up, suggesting other colors
can be created by mixing red, green, and blue colors. Grassmann found that colors
are additive. That means any color can be matched by a linear combination of three
other colors (primaries), provided that none of those three can be matched by a
combination of the other two; and a mixture of any two colors can be matched by
linearly adding together their primary components.

4.2.1 CIE XYZ, xyY Color Spaces

Modern color models are all based on XYZ color space created by CIE (Interna-
tional Commission on Illumination) in 1931. The CIE XYZ color space was created
using Maxwell’s tristimulus theory, which is based on the theory of trichromatic
color vision found by Young and Helmholtz [1], who discovered that human vision
consists of three types of cones, which are sensitive or responsive to three narrow

Wavelength λ (nm)

Visible light spectrum

B G R

Fig. 4.1 Visible light spectrum and the tristimulus
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bands of visible lights. Figure 4.2 shows the three color matching functions which
indicate human eyes’ response to visible colors. It can be observed that three
functions peak at around 600 nm, 550 nm, and 450 nm, respectively. It demon-
strates that human vision is most sensitive to three bands of lights, which are
perceived as red, green, and blue.

Based on this discovery, CIE uses three primary colors to match out all the
spectral colors, i.e., pure colors or colors with a single wavelength (Fig. 4.1) [2].
The three primary colors are all pure colors, they are R (700 nm), G (546.1 nm),
and B (435.8 nm), respectively, which are shown on the visible color spectrum in
Fig. 4.1. The choice of the three particular primaries was due to practical reason at
that time. The primaries G (546.1 nm) and B (435.8 nm) were chosen because they
could easily be reproduced using mercury excitation lines. The 700 nm primary
color was chosen is because the hue near that wavelength is homogenous and nearly
constant, therefore, slight inaccuracy in production of the wavelength of this
spectral primary would introduce no error at all.

The three primary stimulus are projected on a screen with relative power and are
mixed/added by various proportions to match out each of the spectral colors in the
visible color spectrum using Grassmann’s laws. Each color can now be represented
as a three-value tuple (R, G, B). The R, G, B values are then normalized using the
formulas in (4.1) to remove the intensity from the color representation. The nor-
malised r, g, b values are purely chromatic values. This creates three color matching
functions (CMF) r(k), g(k), and b(k), where k is the wavelength. The color space
created based on the three CMFs is called CIE RGB color space.

r ¼ R
RþGþB

g ¼ G
RþGþB

b ¼ B
RþGþB

9=
; ð4:1Þ

Fig. 4.2 CIEXYZ color
matching functions of human
vision
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Now if we plot the (r, g, b) coordinates of all the spectral colors in 3D space, it
forms a curve (Fig. 4.3 Left) [3]. It is easy to see from (4.1) that r + g + b = 1 or
b = 1 − r − g, which means b is a dependent function of r and g, so there is no
need to keep the information b. Therefore, by projecting the rgb curve into the 2D
rg plane, we get the horseshoe-shaped 2D rg curve which is shown as cyan color in
Fig. 4.3 Right.

This rg curve is then transformed to the CIE xy curve by aligning the g(k) with
the CIE luminosity function V(k) and removing the negative values in r(k). The
color space created based on the xy curve is called CIE XYZ color space.

The colors on the 2D xy curve are all spectral colors, to obtain nonspectral
colors, i.e., mixed colors or colors with multiple wavelengths, we draw a straight
line between any two points on the xy curve. Then each point on the straight line
represents a nonspectral color mixed by the two colors at both ends of the line
according to Grassmann’s second law. For example, by connecting the two primary
colors R (700 nm) and B (435.8 nm) on the xy curve, purple colors are created. By
this way, all possible nonspectral colors can be created. In practice, a white color or
white point is first defined, such as D65 which represents the midday Sunlight, and
lines are drawn from the white point to each of the spectral colors on the xy curve.
Then colors of different purity are created by mixing the white color with each of
the pure colors on the curve. Figure 4.4 shows the color gamut of CIE XYZ color
space or CIE xy gamut [2]. The color gamut created in this way is a hue and
saturation gamut.

g

r

b

g

r

b

Fig. 4.3 Color matching function of spectral colors. Left: rgb curve of spectral colors; Right:
projection of the rgb curve onto the 2D rg plane (cyan)
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CIE xy gamut is a chromaticity domain, it does not specify luminance or
brightness of colors. To create object colors, the luminance/brightness must be
given as the third dimension, named as Y. Therefore, CIE xyY color space is created
and is called the object color space, where x and y are chromaticity values, and Y is
the luminance value.

CIE XYZ color space is a cornerstone for modern color modeling. The signif-
icance of CIE XYZ color space can be summarized in the following:

• Provides a color gamut with all possible colors,
• Specifies each color with a three-value tuple or a 3D vector (x, y, z),
• Provides a reference for all other color models,
• It is a device-independent color space.

4.2.2 RGB Color Space

Digital images are generated using RGB colors. RGB colors are device dependent,
which means that each type of digital devices typically uses a different set of RGB
primaries to generate colors. For example, computers use a standard RGB color
model or sRGB, which is based on the following three primaries chosen from the
CIE XYZ color gamut.

Fig. 4.4 CIE xy color gamut
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Chromaticity x y Y

R 0.6400 0.3300 0.2126

G 0.3000 0.6000 0.7125

B 0.1500 0.0600 0.3290

W(hite) 0.3127 0.3290 1.0000

The three primaries of sRGB color model are shown in Fig. 4.5 [4]. The gamut
of sRGB color space is a triangle inside the CIE XYZ gamut.

The RGB color gamut can be regarded as a color palette. All possible colors
created by the RGB palette can be visualized in a 3D cube, called RGB color space
as shown in Fig. 4.6. The colors in the RGB color cube are usually quantized for
the convenience of viewing. Given the pixel values (r, g, b) from a color image, a
color c can be defined in the RGB color space and reproduced by mixing the three
primaries using c = rR + gG + bB.

It is clear that the gamut of any RGB color model is a triangle inside the CIE
XYZ color gamut, consequently, a RGB color space cannot represent all visible
colors. In case of a color out of the RGB color gamut, an approximation has to be
made. For a color C out of the RGB gamut, the approximation of C is given by the
color CA at the intersection of the RGB triangle and line CW which is the con-
nection between color C and white point W. The approximation is usually
acceptable because CA is just a desaturated color from C.

R

B

G

Fig. 4.5 The sRGB triangle
gamut shown inside the CIE
XYZ gamut

54 4 Color Feature Extraction

www.EBooksWorld.ir



RGB module is useful for color display and printing, however, it is not desirable
for image processing and analysis. This is because the three channels are dependent
on each other and there is a high correlation between the three channels, which
means, change any one of the color channels will change the other two color
channels. Furthermore, RGB color space is not perceptually uniform, meaning that
the same amount of numerical change in color values does not correspond to about
the same amount of visually perceived change. This leads to color spaces with
separation of luminance from chromaticity and color spaces with uniform color
distance.

4.2.3 HSV, HSL and HSI Color Spaces

RGB color model is efficient because it just uses three primaries to create all
required colors. However, the RGB color model is not intuitive because it does not
conform to how human beings understand and make colors. For example, artists
and painters do not use RGB mixture to make colors, instead, they use pigments to
mix with either white or black or both (gray) to make required colors. The pigments
are equivalent to pure colors or spectral colors, when they are mixed with white or
black, lighter or darker colors are created; when they are mixed with gray, colors
with different purity or saturation are created. Figure 4.7a shows how different tints,
shades, and tones of reddish colors are created by artists.

The way artists and painters making colors is the idea behind the HSV color
model. It demonstrates that a color can be specified by three components/properties:
Hue, Saturation, and Value or (H, S, V), where Hue is a pure color and
Value = Brightness. The Hue tells what color it is, it is determined by the dominant
wavelength on the visible color spectrum (Fig. 4.1). The Saturation tells how much
or how colorful is the color, the more saturated the color, the more vibrant or vivid

Magenta

Blue

Cyan

Yellow 

Red
Green

White

Fig. 4.6 RGB color space in
3D

4.2 Color Space 55

www.EBooksWorld.ir



the color is. The Value tells how bright or dark is the color, colors become dis-
appearing when they are too dark or too bright. Therefore, a color specified by the
(h, s, v) values makes a lot more sense than that given by the (r, g, b) values.
Multimedia editors and image processing software nowadays all provide intuitive
HSV color picker simply because users have better chance to make the desired
colors using HSV model than using other color models.

Figure 4.7b demonstrate the HSV color making using red colors as an example.
The first bar shows all the pure colors or hues; the second bar shows red colors with
a different purity or saturation (but with the same brightness); the third bar shows
red colors with different brightness.

To create the HSV color model, pure colors (spectral colors) are first collected
and put on a circle or a ring (Fig. 4.8 Left), colors with different saturation are
created along the radii of the circle to create a hue–saturation disk/wheel (Fig. 4.8
Right). Hue–saturation disks with different brightness are then generated and
stacked on top of each other to make a color cylinder which is the HSV color space,
shown in Fig. 4.9a. For HSV, the most saturated colors are on the top of the
cylinder and the top of the cylinder has a V value of 1. For HSL, the most saturated
colors are in the middle of the cylinder and the top of the cylinder is the white color
(L = 1), this is shown in Fig. 4.9b.

It is observed from the Value strip of Fig. 4.7b that as colors become darker or
brighter, they become less colored, consequently, as shown in Fig. 4.9a, b, colors
on the HSV and HSL cylinders become more and more redundant as they go down
the cylinders and as they go up the HSL cylinder. Therefore, the actual HSV color
space is often shown as a single cone (Fig. 4.9c) while HSL color spaces is often

Hue + white tints  

Hue + black shades

Hue + gray    tones 

Hue (pure colors)

Saturation (0 −1) 

   Value (brightness 0 −1)

(a)

(b)

Fig. 4.7 a Artists’ way of making reddish colors. b Components of HSV
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Fig. 4.8 Hue and saturation. Left: pure colors on a ring; Right: hue-saturation wheel

(a)           

(c)           

H

V

S

L

H

(d)           

(b)           

Fig. 4.9 HSV and HSL color spaces. a HSV cylinder; b HSL cylinder; c HSV cone; d HSL
double cone
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shown as a double cone (Fig. 4.9d). Because every slice of the HSV/HSL cone is
colorful, the radiuses of the cone are called chroma instead of saturation.

Digital images are represented using RGB colors. To derive HSV, HSL and HSI
color values, RGB values are normalized into 0–1. Given a (R, G, B) color, the H, S,
V values are computed using the following guidelines.

• The Hue values are organized into 0°–360° around a pure color circle, with red
color at 0°/360°, green at 120°, and blue at 240°;

• To determine the H value of a (R, G, B) color, the maximum of the three values is
used to determine the dominant hue on the pure color circle and the difference of
the other two values tells what side is the RGB color located at the dominant hue;

• The Value/Intensity/Lightness of the (R, G, B) color is determined by either the
maximum of the three RGB values or the average or in between;

• The Saturation of a color is determined by how far the color is from the pure color
circle (Hue) which has a color saturation of 1. Saturation is given in percentage,
e.g., 40%.

Let

M ¼ max R;G;Bð Þ
m ¼ min R;G;Bð Þ
C ¼ M�m

The maximum of the three RGB channels M dominants the hue and brightness
of a color. The C value, called chroma, is proportional to saturation of a color. With
these in mind, HSV values can be computed using the following formulas:

H ¼

0 if M ¼ m
60� � G�B

C þ 0�; if M ¼ Rand G�B
60� � G�B

C þ 360�; if M ¼ Rand G\B
60� � B�R

C þ 120�; if M ¼ G
60� � R�G

C þ 240�; if M ¼ B

8>>>><
>>>>:

ð4:2Þ

S ¼ 0 if M ¼ 0
C
M ¼ 1� m

M ; otherwise

�
ð4:3Þ

V ¼ M ð4:4Þ

For HSL model:
H is the same as (4.2)

L ¼ 1
2

Mþmð Þ ð4:5Þ
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S ¼
0 if M ¼ m
C
2L ; if L� 1

2
C

2�2L ; if L[ 1
2

8<
: ð4:6Þ

For HSI model:
H is the same as (4.2)

I ¼ 1
3

RþGþBð Þ ð4:7Þ

S ¼ 0 if I ¼ 0
I�m
I ¼ 1� m

I ; otherwise

�
ð4:8Þ

HSV values can also be derived using the following formulas:

H ¼ arctan
b
a

� �
ð4:9Þ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
ð4:10Þ

V ¼ max R;G;Bð Þ ð4:11Þ

where

a ¼ R� 1
2

GþBð Þ; b ¼
ffiffiffi
3

p

2
G� Bð Þ ð4:12Þ

The H and S components are invariant to lighting variations or intensity changes.
Intensity changes are only reflected in the V component, which can be corrected by
a linear scaling.

Figure 4.10 shows a color image and its H, S, V channels. In the H image, white
and black are starting and arrival points on the color wheel, they represent Red
color and Yellow color. Gray intermediate levels are corresponding to intermediate
hues on the wheel. Both the S and V channels are in the 0–1 range. For S channel,
white is pure color and black is minimum saturation. For V channel, white is very
bright and black otherwise.

It can be observed from the S and V channels that both the yellow plants at the
bottom left of the image are highly saturated and also very bright, while the red leaf
tree is highly saturated but with moderate brightness. Notice the shadow at the
bottom left of the color image has no to little effect on the H and S channels, it only
affects the V channel.
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4.2.4 CIE LUV Color Space

The CIE XYZ color space is nonuniform in terms of color differences, so is RGB
color space. Nonuniform means that the calculated difference between the two
colors is not proportional to their perceived color difference. This phenomenon is
shown as MacAdam ellipses in the CIE xy gamut in Fig. 4.11. Each ellipse shown
in the figure represents colors within the just-noticeable-difference (JND) threshold.
In other words, colors within each ellipse are perceivably the same. As can be seen,
the sizes of the ellipses in different areas of the gamut vary significantly. This
implicates that colors within certain distance may be perceived as the same color in
one area but as different colors in another area. This causes confusions for many

Fig. 4.10 A color image on the left and its H, S, V channels on the right columns

0 

x

y

Fig. 4.11 MacAdam ellipses
(magnified 10 times) on the
CIE xy gamut
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color applications including displaying, image processing, and image analysis,
which rely on computing color differences.

To overcome the nonuniform color spread problem, CIE Luv (1960) and CIE Lu′v′
(1976) color spaces have been created. Both Luv and Lu′v′ spaces are transformed
from CIE XYZ space, and the two color spaces are only different at the v component.
The idea is to stretch or squeeze the CIE xy gamut at certain directions so that the
MacAdam ellipses are made to equal size.

L� ¼ 116 Y
Yn

� �1
3�16 if Y

Yn
[ 0:008856

903:3 Y
Yn

� �
if Y

Yn
� 0:008856

8><
>: ð4:13Þ

u ¼ 4X
Xþ 15Y þ 3Z

¼ 4x
3� 2xþ 12y

ð4:14Þ

v ¼ 6Y
Xþ 15Y þ 3Z

¼ 6y
3� 2xþ 12y

ð4:15Þ

u0 ¼ u; v0 ¼ 1:5 v ð4:16Þ

where Yn is the luminance of the white point and

x ¼ X
Xþ Y þ Z

y ¼ Y
Xþ Y þ Z

�
ð4:17Þ

L* scales from 0 to 100 due to the relative luminance (Y/Yn) scales from 0 to 1.
The cubic root function of L* is nonlinear and is intended to mimic the logarithmic
response of human eyes to lightness. The transformed uv and u′v′ gamuts marked
with the MacAdam ellipses are shown in (4.12). It can be seen that the differences
between the sizes of the ellipses are considerably reduced (refer to Fig. 4.11)
(Fig. 4.12).

Fig. 4.12 CIE Luv and Lu′v′. Left: MacAdam ellipses on CIE uv gamut; Right: MacAdam
ellipses on CIE u′v′ gamut
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The nonuniformity can be further reduced by using the u*v* chromaticity:

u� ¼ 13L� u0 � u0n
	 
 ð4:18Þ

v� ¼ 13L� v0 � v0n
	 
 ð4:19Þ

where ðu0n; v0nÞ are the coordinates of the white point on the (u′, v′) gamut.
To derive LUV from RGB color space, RGB values are first transformed into

XYZ values using the following matrix, where RGB values have been normalized
to 0–1.

X
Y
Z

2
4

3
5 ¼

0:4124 0:3576 0:1804
0:2126 0:7152 0:0722
0:0193 0:1192 0:9503

2
4

3
5 R

G
B

2
4

3
5 ð4:20Þ

Although CIE LUV color spaces are close to uniform color spaces, the source
RGB primaries are assumed to be known, so that a specific transform matrix of
(4.20) can be used. This can be an issue for image applications, because the source
(device) RGB primaries are usually unknown.

4.2.5 Y′CbCr Color Space

Both HSV and LUV color spaces are based on the same idea, i.e., the separation of
luminance from chromaticity. This idea has been found ideal and desirable for most
of the color applications including image processing and feature extraction. Y′CbCr
is another such kind of color space, which is often used for image compression and
representation. The transformation from RGB space to Y′CbCr space is given by
the following equation:

Y 0

Cb
Cr

2
4

3
5 ¼

0
128
128

2
4

3
5þ 0:299 0:587 0:114

�0:169 �0:331 0:500
0:500 �0:419 �0:081

2
4

3
5 R

G
B

2
4

3
5 ð4:21Þ

where Y′ is the luminance, Cb is the blue component, and Cr is the red component.
Both RGB values and Y′CbCr values are in the range of [0, 255].

By separating the luminance Y′ from the chromaticity Cb and Cr, most of the
image information has been concentrated onto Y′. This is ideal for image com-
munication and representation, because each channel can now be treated inde-
pendently instead of treating all the three channels equally as in the RGB space. For
example, more importance can be given to Y′ as in many situations. This makes the
communication more efficient (e.g., fewer bits for color channels) and representa-
tion more compact.

Figure 4.13 shows an example of Y′CbCr channels from a flower image. It can
be seen that the Y′ channel is basically the gray level version of the original image,
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while the Cb and Cr channels are just for the color information, both Cb and Cr
channels contain very little information compared with the Y′ channel. In the TV
broadcast, the Y′ channel can be sent out independently to be compatible with the
old noncolor TVs.

4.3 Image Clustering and Segmentation

Digital images are complex data. Unlike textual documents which are made of
words from a dictionary of a small vocabulary, there is no visual dictionary or
vocabulary for images. Each image consists of thousands to millions of pixels
which represent color values, and the possibilities of the pixel colors are almost
infinite. Therefore, the first step to analyze an image is usually to group the image
pixels into a small number of regions or objects so that further analysis can be
carried out, this is called image clustering or segmentation. There are many seg-
mentation and clustering algorithms in the literature, in the next, we discuss two
widely used algorithms in image feature extraction.

4.3.1 K-Means Clustering

One of the simplest segmentation methods is the K-means clustering. K-means
clustering attempts to divide a dataset into K clusters with each data point belonging
to the cluster with the closest mean, which serves as the centroid of the cluster. The
K-means clustering algorithm is given as follows:

K-means (K) {
Input: X = {x1, x2, …, xn}, a set of data points
Output: C = {c1, c2, …, cK}, a set of clusters

1. Randomly select K cluster centers or seeds;
2. Calculate the distance between each data point and all the K cluster means

mk;
3. Assign the data point to the cluster with the nearest cluster mean;

Fig. 4.13 The flower image on the leftmost and its Y′, Cb, and Cr channels on the right
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4. Recalculate the new means for each cluster;
5. Repeat from step 2 until no data point needs to be reassigned.

}

K-means clustering algorithm aims at minimizing an objective function known
as the sum of squared error or SSE function, which is given by

J Cð Þ ¼
XK
k¼1

Jk ð4:22Þ

and Jk is the SSE of the kth cluster:

Jk ¼
Xckj j

i¼1

xi �mkk kð Þ2 ð4:23Þ

where mk is the mean of cluster ck and | ck | is the number of instances in cluster ck.
K-means is one of the most commonly used clustering algorithms in image

processing and analysis. It is especially useful for many color-based clustering such
as color quantization, which aims to group similar colors and reduce the number of
colors in an image. The key issue with a K-means clustering algorithm is the
parameter K. The performance of the clustering depends on a good guess of K,
however, there is no easy solution. This leads to other more sophisticated algo-
rithms to improve the method.

4.3.2 JSEG Segmentation

JSEG method is based on the belief or assumption that color regions and textures
agree with each other in an image, which means that a region with similar colors
also has a similar texture. Based on this idea, the method attempts to find an
agreement between the two types of features. The procedure of JSEG is summarized
as follows [5]:

• Color quantization. At first, pixel colors of the image are quantized into a
number of classes using a clustering algorithm such as K-means clustering.

• Color map. Pixels in the image are then replaced with the color class labels, such
as 1, 2, 3, …. A class map is then formed and region growing is followed on the
class map (Fig. 4.14b).

• J-image. The key to JSEG method is the computing of a J-image, which is
computed by moving a local window through each pixel and calculating the SSE
over the window (4.23). The SSE is related to the variance over a local neigh-
borhood, neighborhoods with relatively uniform colors (or little to no texture)
tend to have small J values while neighborhoods with high J values correspond to
region boundaries or edges. The window size determines the sharpness of the J-

64 4 Color Feature Extraction

www.EBooksWorld.ir



image and the size of the regions that can be detected. The J-image computed
using larger local window is more blurred than that computed using a smaller
window (Fig. 4.14c, d).

• Region growing. Based on the J-image, a region growing method is carried out
starting from areas with the lowest J values. After each region growing, the total
J values of each region k (Jk of (4.23)) and the average J values (�J) of all the Jk
are computed. The region growing is then repeated using a J-image with smaller
scale until the �J value stops decreasing (Fig. 4.14e).

Fig. 4.14 An image segmentation using JSEG. a An original color image; b result of color
quantization with 13 colors; c J-image at scale 3; d J-image at scale 2; e segmentation result at
scale 3; f segmentation result at scale 2; g final result of segmentation after merging
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• Merging. The region growing can result in over segmentation due to texture
variations (Fig. 4.14f). Therefore, a merging process is followed by merging J-
segmented regions with similar colors (Fig. 4.14g).

Due to the use of both color and texture features and a merging process, JSEG
gives a less fragmented segmentation than K-means clustering. However, the per-
formance of JSEG segmentation depends on several parameters such as the num-
bers of quantized colors, the seed selection threshold during the region growing,
and the threshold of color similarity during the region merging. The computation is
also very expensive, the segmentation of a 512 � 512 image can take about 4 min
on a PC.

4.4 Color Feature Extraction

4.4.1 Color Histogram

The simplest feature of a color image is its histogram, which describes the color
distribution within an image. To create a histogram for an image, a number of bins
(N) are first created, each bin represents a group of similar colors. Each pixel in the
image is then examined and put into a bin with similar colors to the pixel. After all
pixels in the image are checked, the pixels in each bin are counted and each bin is
represented as a value which is the number of pixels in the bin. A bar chart consists
of all the N bin values is created and it’s called a color histogram, which is a
sequence of (c, n) pairs shown in a graph, where c is the color of the bin and n is the
number of pixels in the bin. Figure 4.15 shows the three color histograms of the R,
G, B channels of the Lena image in one graph.

In terms of histogram feature extraction, there are three ways to create a his-
togram for a color image: component histogram, indexed color histogram, and
dominant color histogram.

Fig. 4.15 RGB histograms of the Lena color image. Non-RGB colors are the areas of overlap
between the R, G, B channels. Each channel is quantized into 256 colors or bins, which are on the
horizontal axis, vertical axis shows the number of pixels in each bin or color
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4.4.1.1 Component Histogram
The first way of color histogram is to split a color image into individual R, G, B
channels (Fig. 4.16 top row), each individual channel is equivalent to a gray level
image (Fig. 4.16 bottom row). A contrast with Fig. 4.13 tells that there is a lot of
redundancy or correlation between R, G, and B channels. A histogram is first
created for each individual channel. The three individual channel histograms can
then be concatenated into a single histogram. If each individual color channel is
represented by l, m, and n bins, respectively, the final histogram will have
N = l + m + n bins.

For example, for Lena image in Fig. 4.15, each R, G, B channel is represented
by 8 bits and a total of 256 colors/bins. By concatenating the three histograms, the
final histogram would have N = 3 � 256 = 768 bins. This is, however, too long for
image representation, therefore, the colors of each individual R, G, B channel is
usually quantized to reduce the number of colors.

To quantize the color channels, colors in each channel are divided into equal
intervals and each interval is used as a bin. For example, to create a 4-bin histogram
for R channel, the 256 colors in R channel are divided into the 4 intervals: (0, 63),
(64, 127), (128, 191), (191, 255). Figure 4.17 shows a 216-bin histogram by
quantizing each of the R, G, B histograms in Fig. 4.15 into 72 bins. This is less than
one-third of the length of the histogram without color quantization.

Fig. 4.16 RGB channels of a color image. Top row: R, G, B channels of the flower image;
Bottom row: corresponding gray level images of the R, G, B channels at the top row
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4.4.1.2 Indexed Color Histogram
Another way to create a color histogram is to quantize the RGB color space (instead
of each color plane) into N colors and use the N colors as bins to create a color
histogram. This is equivalent to indexed colors and the N colors are equivalent to a
global color palette, i.e., a palette representing all image colors or a palette for all
the images in the world.

To quantize the RGB color space, the R, G, B planes are divided into l, m,
n intervals, respectively, using the same way as in the first method, the RGB color
space (a big cube) is then divided into N = l � m � n small color cubes (Fig. 4.6).
Each small cube represents a group of similar colors and is used as a histogram bin.

To create a histogram for a color image using the indexed colors, each pixel in
the image is examined and put into a bin with similar colors to the pixel. A his-
togram is then created by counting the number of pixels in each of the bins.
Figure 4.18a shows the flower image with 216 quantized or indexed colors and the
216-bin histogram for the quantized color image is shown in Fig. 4.18b.

4.4.1.3 Dominant Color Histogram
A histogram created from a global palette (a single fixed palette for all images) is
usually sparse (Fig. 4.18b), this is because when a global palette is used, most of
the colors in an image are often missing from the color representation, this effect is
shown up in both the quantized image and the color histogram (Fig. 4.18a, b). In
practice, an adaptive or native palette created from the image itself can be used, a
histogram created from adaptive indexed colors is essentially a dominant color
histogram. Figure 4.18c, d shows the flower image quantized with an adaptive
palette of 216 colors and its histogram. Dominant colors can be obtained by either
using a histogram thresholding or using a K-means clustering.

A histogram is invariant to translation and rotation changes, scale invariance can
be achieved by normalizing each bin value with the total number of pixels in the
image. The key issue with a histogram is the difficulty to determine the number of
bins. If the number of bins is too small, the colors in a bin can vary so much that it
causes too many confusions during the matching. On the other hand, if the number
of bins is too large, it causes overfitting, means there are too few pixels in a bin, this
too can cause confusions during the matching. In practice, there is always a

Fig. 4.17 Concatenation of histograms of individual R, G, B channels into a single histogram
(216 bins, 72 bins for each channel)
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compromise on the number of bins. Regardless, features based on color histograms
usually have very high dimensions, e.g., 512 and 1024 dimensions are common.

Another issue with the histogram method is that a color histogram does not tell
pixels’ spatial information. Therefore, visually different images can have similar
color histograms. This is undesirable for image representation. A number of other
color feature extraction methods have been designed to address these two issues,
they are discussed in the next.

4.4.2 Color Structure Descriptor

One of the key drawback of a histogram is the absence of spatial information of
pixel colors in an image. The spatial information of pixel colors tells the patterns of
colors, or how colors are spread out inside an image. Without the spatial infor-
mation of pixel colors, perceptually different images can have the same histogram
and this can lead to incorrect image retrieval or classification. For example,
Fig. 4.19 shows two perceptually different binary images with the same size and the
same number of red pixels. The image on the left is visually structured and the red
color is perceived as a regular shape, in contrast, the image on the right is visually

Fig. 4.18 Indexed color histograms of a color image. a The flower image quantized with a global
palette of 216 indexed colors (notice the visible distortion on the sky and grass); b indexed color
histogram of (a) (216 bins); c the flower image quantized with an adaptive palette of 216 indexed
colors; d dominant color histogram of (c)
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unstructured and the red color is perceived as being cluttered. However, the two
images have exactly the same color histogram.

One solution to detect color patterns inside an image is to use a structure element
or window as the color picker instead of the pixel color picker/counter used in the
ordinary histogram computation. When the window moves throughout an image,
only the colors (e.g., white, red, gray, brown, etc.) inside the window are counted
instead of counting the pixels of each color inside the window. The histogram
created in this way is called color structure (CS) histogram. A CS histogram has a
multiplying effect on the counting of isolated or scattered colors, the larger the
structure window is used, the more the counting is multiplied. While the CS his-
togram only has a mild over-counting of grouped or clumped colors.

For example, in Fig. 4.19, both images have 41 red pixels, however, by moving
a 3 � 3 structure window throughout the images, the red color in the right image
are counted for 218 times, while the red color in the left image is only counted for
56 times. The large difference between the two figures accurately reflects the sharp
difference between the two red patterns.

To create a CS histogram for an image, the image is first converted to HSV color
space and is quantized into a smaller number of colors, e.g., 256, 128, 64, or 32
colors. A structuring element (e.g., square) is then moved throughout the image.
Bin i of the histogram records how many times the structuring element captures at
least one pixel with color i. If the window is of size 1 pixel, the CS histogram is just
an ordinary histogram. In this sense, the ordinary histogram is just a special case of
a CS histogram.

For example, the left-hand side of Fig. 4.20 shows a color image with 5 colors
and the 4 � 4 window (black) capturing three types of colors: blue, green and
brown [6]. The right-hand side shows how the CS histogram accumulates the three
colors (green, blue. and brown) captured by the window into corresponding

Fig. 4.19 Computation of color structure descriptor. Left: a color image with a 3 � 3 structure
moving through the image. The structure captures the red color 56 times; Right: a color image with
a 3 � 3 structure moving through the image. The structure captures the red color 218 times
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histogram bins (1, 2, and 4). The CS histogram is then normalized with a total
number of counts of the histogram, and the normalized CS histogram is the CSD.

It can be expected that the CSD is more robust than an ordinary histogram,
because it captures the information about local spatial structure as well as the color
distribution of an image. The spatial information makes the CS histogram sensitive
to certain color patterns to which an ordinary histogram is blind.

Furthermore, a CSD uses a window of size greater than 1 pixel, it is less
susceptible to noise. However, the performance of CSD depends on the size and
structure of the window. Scale invariance can only be achieved by varying the size
of the structure element and doing the best match between two images. Rotation
invariance can be achieved by using a circular element instead of a squared one.

4.4.3 Dominant Color Descriptor

It is understood that an image is visually interpreted based on a few dominant
colors. Those other colors are either noise or just for details, they are not important
and can be ignored. Therefore, a dominant color histogram will better describe an
image than a common histogram. The Dominant Color Descriptor (DCD) is just
based on this idea, it’s a variation of a common histogram.

To derive a DCD, a histogram h of all colors (without quantization) in an input
image I is first created. A thresholding is then applied to h to eliminate those bins
whose values are less than a threshold s. The remaining n colors are called dom-
inant colors. Each dominant color is represented as (ci, pi), i = 1, 2, …, n, where ci
is a 3D color vector and pi is the percentage of pixels in the image having color ci. A
DCD is just the n dominant colors in a sequence:

DCD ¼ ci; pið Þ; i ¼ 1; 2; . . .; nf g ð4:24Þ

Bin Count

Color1 h (1) +1

Color2 h (2) + 1

Color3 h (3)

Color5 h (5)

Color4

Color

h (4) + 1

(a) (b)

Fig. 4.20 Accumulation of color structure descriptor. a A 5-color image and a 4 � 4 structuring
element. b The accumulation of color structure histogram at a particular position of the structuring
element in the image
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The DCD significantly reduces the dimensions of a color histogram, but it still
does not address the absence of spatial information from the colors. Therefore, an
image is usually segmented into regions and a DCD is extracted from each region
of the image.

The number of selected dominant colors in a region depends on the threshold s.
However, statistics based on more than 36,000 image regions show that over 98%
of image regions can be described by no more than 4 DCDs (Fig. 4.21) [6–8].
MPEG-7 recommends 1–8 DCDs for each image region.

Figure 4.22 shows some examples of the segmented image regions and their
corresponding DCDs [6–8].

Small proportions of colors in a DCD are usually due to segmentation errors or
region boundary, they can be discarded without affecting performance. Figure 4.23
shows a few segmented regions and their corresponding DCDs after discarding
insignificant colors [6–8].

Region-based DCDs are not only compact but also reflect spatial information in
an image, they are a desirable representation for color images. However, unlike
conventional color histogram, the order of colors and the number of colors in two
DCDs are usually not the same, the matching of two DCDs needs to use
many-to-many quadratic matching (12.18).

DCDs can be easily translated into color names, which can be used to describe
color images. Human beings tend to describe the visual world using color names,
and we can only describe a few hundreds of colors. It is possible to annotate an
image with color names based on DCDs [9].

4.4.4 Color Coherence Vector

An ordinary histogram does not tell spatial information about the colors in a bin.
The color coherence vector (CCV) is a method to incorporate spatial information
into a conventional histogram. The idea is to divide each histogram bin into two
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Fig. 4.21 Statistics of DCD
numbers from 36,692 regions
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components: coherent (C) and noncoherent (N). The coherent component includes
those pixels which are spatially connected, while the noncoherent component
includes those pixels that are isolated. A CCV can be computed by using the
following procedure:

1. Create a conventional histogram H of k bins for image I using a method in
Sect. 4.4.1

2. For each of the histogram bins Bi in H

Fig. 4.23 Removal of noisy colors from segmented regions. a Three sample regions; b dominant
colors of corresponding regions above; c DCDs after discarding insignificant colors from (b)

Fig. 4.22 Segmented regions and their dominant colors underneath. The dominant colors are
shown according to their percentages in the region
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2:1. Create a binary image Ii from I by marking all pixels with color Bi as 1
(white) and others as 0 (black)

2:2. Set j = 0
2:3. For each white pixel p in Ii

2:3:1. If p’s West, North West, North, and North East are all black

2:3:1:1. Create a new region Rj

2:3:1:2. Rj = Rj + p
2:3:1:3. j = j +1

2:3:2. Otherwise, Rj = Rj + p

2:4. For each region Rj

2:4:1. Count the total number of pixels n in Rj

2:4:2. If n � s, Ci = Ci + n //s is a threshold
2:4:3. Otherwise, Ni = Ni + n

3. The normalized sequence {ðCi
Ij j ;

Ni
Ij j Þ, i = 1, 2, …, k} is the CCV

By dividing each histogram bin into coherent colors and incoherent colors, CCV
captures spatial information in an image, it usually performs better than a color
histogram. However, the dimension of a CCV is twice of that of a conventional
histogram.

4.4.5 Color Correlogram

A color correlogram is the color version of gray level co-occurrence matrix
(Sect. 5.2.2), which is used for texture feature extraction. It characterizes the dis-
tribution of color pairs in an image. A color correlogram can be viewed as a 3D
histogram, where the first two dimensions represent the colors of any pixel pair
and the third dimension is their spatial distance. Thus, in a correlogram, each bin
(i, j, k) represents the number of color pairs (i, j) at a distance k.

An input image I is first quantized into m colors {c1, c2, …, cm}. The compu-
tation of a color correlogram is then to find the probability of pixel pairs (p1, p2),
which meet the following two conditions:

(a) C(p1) = ci and C(p2) = cj
(b) |p1 – p2| = k

where C(pi) = ci means the color of pi is ci.
Mathematically, each element of a correlogram is given by
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ckci;cj Ið Þ ¼ Prf p1; p2ð ÞjC p1ð Þ ¼ ci;C p2ð Þ ¼ cj and p1 � p2j j ¼ kg ð4:25Þ

If ci = cj, (4.25) becomes an autocorrelogram which is the probability of finding
identical colors at distance k:

akc ¼ rkc;c Ið Þ ð4:26Þ

Figure 4.24 shows an example of computing a color correlogram [6]. The color
correlogram in Fig. 4.24 is calculated for k ¼ 1. Correlograms for other distance
k 2 {1, 2, …, d} can be calculated in similar way.

In total, d correlograms (matrices) can be computed from an image. If the colors
are globally quantized, i.e., colors of all images are quantized using a single global
palette, two corresponding correlograms from two images can be matched element
by element. However, if a local (adaptive) palette is used to quantize each image,
either a many-to-many matching is needed or the matching is done through
statistics computed from the correlogram matrices (Sect. 5.2.2).

Matching between two color correlograms involves matrix matching which is
expensive. In practice, however, only autocorrelograms are used because they are
sufficient to produce a good result. Autocorrelograms of each color form a d-
dimensional vector, which can be matched using a conventional distance such as L1
[10].

The performance of the color correlogram is better than the CCV, because it not
only captures the special information but also the patterns of the spatial information.

4.4.6 Color Layout Descriptor

It is well known that a spectral transform can capture the frequency of texture
changes in an image, and the frequency information is used for identifying most
important information from the image. This idea can also be used to capture the
frequency of color changes in an image. The color layout descriptor (CLD) is just
based on this idea.

1 2 4
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1 2

0 2 0 0

0 0 0 1

2 0 0 0

0 0 1 0

1 2 43
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3
3

(a)

(b)

Fig. 4.24 Computation of color correlogram. a A 4-color image; b the color correlogram of a for
horizontal distance k = 1
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The computation of CLD consists of four stages: image partitioning, color
quantization, DCT transform, and zigzag scanning.

• Image partitioning. In the first stage, an input image I is divided into an 8 � 8
grid of 64 blocks. If the size of the input image is M � N, then the size of each
block of the grid will be (M/8) � (N/8). The reason to divide all images into an
equal number of blocks is to ensure resolution or scale invariance.

• Color quantization. In the second stage, a single dominant color is computed
from each block. The DCD method in Sect. 4.4.2 can be used for the dominant
color extraction, but the simplest method is to use the average of pixel colors as
the representative color. Once the color of each block is quantized, the input
image I is converted into an 8 � 8 color image Iq.

• DCT transform. In the third stage, the RGB colors of Iq are converted to Y′CbCr
colors (4.21). Then, each of the three Y′CbCr channels of Iq is transformed by an
8 � 8 discrete cosine transform or DCT, so three sets of 64 DCT coefficients are
obtained.

• Zigzag scanning. In the final stage, three sets of 64 DCT coefficients are zigzag
scanned respectively and the first few coefficients of each set, e.g., 4–8, are
chosen. The selected coefficients are then organized into (DY′, DCb, DCr) which
is used as the CLD. The reason of only choosing the first few coefficients is
because they represent the low-frequency information of the image and they are
the most significant coefficients, the remaining coefficients are too small and can
be neglected.

CLD allows scalable representation of an image by controlling the number of
selected coefficients. MPEG-7 recommends using a total of 12 coefficients, 6 for
luminance and 3 for each chrominance, for most of the images. CLD is both
compact and scalable, however, it is not robust to rotation change.

4.4.7 Scalable Color Descriptor

As can be seen from the CLD above, a spectral transform like DCT can dramati-
cally reduce the data dimension. This idea can also be used to reduce histogram
dimension. A histogram can be regarded as a 1D time series with fluctuations in the
vertical direction. Each histogram has a unique pattern of fluctuations or changes
along the horizontal direction. This pattern can be effectively captured by using
efficient 1D wavelet transform. Because coefficients from a wavelet transform are
scalable, i.e., the number of selected coefficients depends on requirement or
applications, the result of the wavelet transform is a scalable color descriptor or
SCD. A SCD is derived using the following procedure.

• RGB to HSV. An input image is first converted from RGB color space to HSV
color space.
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• Color quantization. The HSV color space is quantized into 256 colors by
dividing the H, S, and V channels into 16, 4, and 4 intervals respectively.
A 256-bin color histogram is then created for the image.

• Bin value quantization. Each bin value is then nonlinearly quantized into a 4-bit
integer to give high significance to small values.

• Harr wavelet transform. The histogram is then applied with Harr wavelet
transform. Each round of Harr wavelet is a two-pass transform, i.e., low pass and
high pass. The low pass of Harr wavelet transform takes two neighboring bins
and calculates their sum, while the high pass calculates their difference. There-
fore, after the first round, two histograms with half of the original histogram
length are obtained: a summed histogram and a differenced histogram. Repeat the
transform on the summed histogram for a number of rounds until the two his-
tograms are shortened to the desired length, e.g., 64, 32 or 16 bins.

• SCD formation. The final results from the wavelet transform are two short
histograms: a summed histogram and a differenced histogram. The two his-
tograms are concatenated to be used as the SCD. However, since the values of the
differenced histogram bins are so small that the magnitudes of the bin values are
discarded and only the signs of the bins are kept. The sign patterns are sufficient
to retain the finer details of the original histogram.

SCD is useful for applications which need short or compact histogram features,
however, it does not include spatial information as other color descriptors such as
CLD, therefore, its performance is generally lower.

4.4.8 Color Moments

It is well known in data analysis community that descriptive statistics provide a
good summary of a dataset and provide a quick understanding of the characteristics
or distribution of the dataset such as central tendency, variability, skewness, etc. An
image is just a set of color pixel data, therefore, it can also be described by the
mean, variance, skewness, etc., which are called color moments (CM).

To compute color moments, an input image I is decomposed into individual
channels, such as R, G, B channels or H, S, V channels. The moments are then
computed from each channel using the following equations:

M1 ¼ 1
N

XN
i¼1

pi ð4:27Þ

Mr ¼ 1
N

XN
i¼1

pi �M1ð Þr
 !1

r

ð4:28Þ
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where

• N is the total number of pixels in image I
• r is the order of a color moment, r = 2, 3, …
• pi is the ith pixel value in the color channel
• M1 is the first-order color moment, or the mean color of the color channel
• M2 is the second-order color moment, or the variance of the color channel
• M3 is the third-order color moment, or the skewness of the color channel

Color moments can also be computed from a color histogram h using the fol-
lowing equations:

M1 ¼
XK
k¼1

hkCk ð4:29Þ

Mr ¼
XK
k¼1

hk Ck �M1ð Þr
 !1

r

ð4:30Þ

where

• hk is the value of the kth bin of histogram h
• Ck is the color of kth bin of histogram h
• K is the number of bins of hq
• r is the order of a color moment: 2, 3, …

Typically, only the first three order color moments are computed for a color
channel or an image. If three color moments are computed for each color channel,
the moments from each of the three channels are concatenated to form a
9-dimensional feature vector which is used to describe the image.

Color moments are a very concise description of an image, however, it can be
very inaccurate, e.g., the mean or average color of an image is usually a very coarse
description of the image color. Furthermore, color moments do not tell the spatial
information of the colors. Therefore, color moments are usually calculated for
image regions.

4.5 Summary

Color is often the first feature to be considered during image processing and
analysis. A number of preprocessing or preparation are usually performed before
the actual color feature extraction such as color space conversion, noise reduction,
image scaling, clustering, and segmentation.
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A good understanding and choice of color space can make a significant differ-
ence in the performance of the extracted color features. Usually, HSV, LUV, and Y′
CbCr color spaces are preferred to RGB color space. This is because unlike RGB
color space, channels of HSV, LUV, and Y′CbCr color spaces are independent of
each other. The independence of color channels leads to less confusions in image
classification and retrieval.

Color feature extraction typically starts with color quantization, which aims to
remove insignificant colors from an image and increase the robustness of the
extracted color features.

Histogram plays a key role in color feature extraction, most of the color features
are histogram based or histogram related. These methods usually aim at either
reducing the dimensions of a histogram, e.g., SCD, CM; or incorporating spatial
information into a histogram, e.g., CCV, CSD, correlogram; or both, e.g., DCD.

A histogram itself is a scalable descriptor, because as shown in SCD, neigh-
boring bins can be merged to shorten a histogram to a desirable length. Histograms
are usually invariant to rotation and translation, they can also be normalized to scale
invariance using the total number of pixels in an image or a region.

Histograms created from color channels and indexed colors can be matched
using a simple distance measure such as Lp. However, histograms created from
dominant colors need to be matched using a many-to-many matching such as
quadratic distance. This is because colors of corresponding bins of two dominant
color histograms are different.

The computation cost of color descriptors ranges from low such as histogram,
CM, tomoderate such as DCD, SCD, CSD, to high such as correlograms, CCV, CLD.

4.6 Exercises

1. Find a gray level image, use the Matlab code from the following webpage to
generate the histogram of the image: https://au.mathworks.com/help/images/ref/
imhist.html. Explain the values on both the horizontal and vertical axes.

2. Normalize the above histogram values to between 0 and 1 to convert the his-
togram into a feature vector.

3. Apply logarithm transform to the histogram in problem 1, compare the
log-transformed histogram with the original histogram. Explain the similarity
and difference between the two histograms, tell how useful is the
log-transformed histogram in image data mining.

4. Generate histograms for similar images with different brightness, images with
different patterns, tell the pros and cons of using image histograms as image
features.

5. Find a color image, open GIMP image processing software (free software from
gimp.org), use command: Colors ! Components ! Decompose (uncheck
“Decompose to layers”) to decompose the color image into RGB, HSV, Lab and
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YCbCr channels. Write a short report to contrast the difference between the 4
color spaces and tell the applications of the 4 color spaces.

6. Google online using “JSEG (Matlab implementation) Y. Deng” and download
the Matlab code of JSEG from the Software’s site http://cs.joensuu.fi/*zhao/
Software/, find a color image and run the “script.m” file in Matlab editor (change
the path to your image file such as filename = [“..\images\flower.jpg”]). Analyze
the segmentation results. Try more images and explain how well it can be used
for color feature extraction.
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5Texture Feature Extraction

The devil is in the detail.

5.1 Introduction

Texture is a general pattern that can be attributed to almost everything in nature. For
a human, texture patterns relate to specific and spatially repetitive structure of
surfaces formed by repeating a particular element or several elements in different
spatial positions. Generally, the repetition involves local variations of scale, ori-
entation, or other geometric and optical features of the elements.

Texture is an inherent feature of an object. For example, we can easily tell if an
object surface is fine or rough, regular or natural, quiet or busy, etc. It is found that
human beings tend to recognize texture by its structure or how often it changes. As
the result, the texture methods designed in the last few decades are along two
directions: spectral methods and spatial methods. Spatial texture methods attempt to
capture the primitive patterns of objects and compute the structural features; while
spectral texture methods attempt to capture the change patterns of objects and
compute the frequency of changes. Spatial methods are generally more intuitive,
while spectral methods are generally more efficient and robust. In this chapter, we
discuss those important texture methods for image representation.

5.2 Spatial Texture Feature Extraction Methods

In spatial approach, texture features are extracted by computing the pixel statistics
or finding the local pixel structures in the original image. These methods include the
Tamura textures, co-occurrence matrix method, Markov random field
(MRF) method, and fractal dimension (FD) method. Tamura et al. are among the
earliest researchers to formally define texture features [1]. The most cited Tamura
texture features in literature consist of six perceptual characteristics of images such
as the degree of contrast, coarseness, directionality, linearity, roughness, and
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regularity. In most of the cases, only the first three Tamura features are used as the
other three features are defined based on the combinations of the first three features.
Tamura features are nice because they are high-level perceptual features and suit-
able for texture browsing. However, it is difficult to define more such types of
high-level features. Therefore, Tamura features are not enough to distinguish all the
textures in the world.

5.2.1 Tamura Textures

Tamura et al. [1] introduce six statistical features. These include coarseness, con-
trast, directionality, line-likeness, regularity, and roughness. The last three features
are defined based on the first three features. Therefore, most of the image retrieval
systems only use the first three Tamura features.

Coarseness relates to the size of the primitive elements (textons) forming the
texture, and it measures the image granularity. It is calculated as the average of the
largest window sizes needed to identify texture elements centered at different pixel
positions. Formally, it is defined as

fcrs ¼ 1
n2
Xn
x¼1

Xn
y¼1

2kI x; yð Þ ð5:1Þ

where n � n denotes the image size of I(x, y), and k is obtained as the value which
maximizes the differences of the moving averages of Ak ¼ 1

22k
Pn

x¼1

Pn
y¼1 I x; yð Þ,

taken over a 2k � 2k neighborhood along the horizontal and vertical directions. The
specific procedure is to compute the differences between the average signals for the
nonoverlapping windows of different size:

(1) At each pixel (x, y), compute six averages for the windows of size 2k � 2k,
k = 0, 1, …, 5, around the pixel.

(2) At each pixel, compute absolute differences Ek (x, y) between the pairs of
nonoverlapping averages Ak in the horizontal and vertical directions.

(3) At each pixel, find the value of k that maximizes the difference Ek (x, y) in
either direction and set the best size Sbest (x, y) = 2k.

(4) Compute the coarseness feature fcrs by averaging Sbest (x, y) over the entire
image. Textures with multiple coarseness can be computed from the histogram
of Sbest (x, y).

Contrast tells how well an object is distinguishable from other objects or
background. It measures how gray levels q vary in the image I and to what extent
their distribution is biased to black or white. The second-order r2 and normalized
fourth-order central moments µ4 of the gray level histogram (empirical probability
distribution P) are used to define the contrast feature:
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fcon ¼ r
l4
r4
� �1

4

ð5:2Þ

where l4 ¼
Pqmax

q¼0 q� mð Þ4PðqjIÞ is the kurtosis; r2 ¼Pqmax
q¼0 q� mð Þ2PðqjIÞ is the

variance, and m is the mean gray level.
Directionality tells if there exists any directional pattern in an image, like ver-

tical, horizontal, diagonal, etc. The degree of directionality is measured using the
frequency distribution of oriented local edges against their directional angles. The
edge strength e(x, y) and the directional angle a(x, y) are computed to approximate
the pixelwise x and y derivatives of the image:

eðx; yÞ ¼ Dxðx; yÞj j þ Dyðx; yÞ
�� ��� �

=2 ð5:3Þ

/ðx; yÞ ¼ arctanðDyðx; yÞ=Dxðx; yÞÞ ð5:4Þ

where Dx(x, y) and Dy(x, y) are the horizontal and vertical gray level differences
between the neighboring pixels, respectively. They are computed by using Prewitt
edge detectors

A histogram hdir(/) of quantized direction values / is constructed by counting
the numbers of the edge pixels with the corresponding directional angles and the
edge strength greater than a predefined threshold. The histogram is relatively uni-
form for images without strong orientation and exhibits peaks for highly directional
images. The directionality feature is defined as the sharpness of the histogram:

fdir ¼ 1� rnp
Xnp
p¼1

X
/2wp

/� /p

� �2
hdir /ð Þ ð5:5Þ

where np is the number of peaks, /p is the position of the pth peak, wp is the range
of the angles attributed to the pth peak (that is, the range between valleys around the
peak), r denotes a normalizing factor related to quantising levels of the angles /,
and / is the quantized directional angle.

Figure 5.1b shows the edge map of an original image in Fig. 5.1a. To compute
fdir, hdir is first computed by quantizing / and counting the number of edge pixels
with e(x, y) greater than a threshold and the edge histogram of angles is shown in
Fig. 5.1c. The angles / in the horizontal axis are in the range of −90° to +90° and

Dx Dy

−1 0 1 1 1 1

−1 0 1 0 0 0

−1 0 1 −1 −1 −1
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are quantized into 12 intervals and the quantized angles are −75°, −60°, −45°, …,
+90°. The vertical axis shows the percentage of edge pixels at different angles [2].

After computing the hdir, all peaks and valleys in hdir are detected. Figure 5.1d
shows the peaks and valleys in green and blue, respectively. Suppose, there are np
peaks in the histogram. For each peak p, let wp be the window of bins from the
previous valley to the next valley (a window contains a peak in it), and /p be the
angular position of the peak in wp. Based on the definition of fdir, the more
directional an image, the higher the directionality the image. However, fdir is not
invariant to rotation, rotation of an image causes a circular shift of the hdir his-
togram, and this can cause false peak detection. For example, the first peak in
Fig. 5.1d is actually a part of the hill defined by the last peak of the histogram.
Therefore, in practice, several rounds of circular shift are needed to find out the real
peaks of the histogram.

Tamura textures are intuitive in terms of definitions, however, the computation
processes are complex. This affects the robustness and the overall performance of
the computed features.

5.2.2 Gray Level Co-occurrence Matrices

Many statistical texture features are based on gray level co-occurrence matrices
(GLCM) or its color counterpart color correlogram. A GLCM represents how
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Fig. 5.1 An example of computing directionality
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frequent is every particular pair of gray levels in an image, separated by a certain
distance d along a certain direction a.

Formally, given an n � m image I(x, y), a cell in a GLCM is defined as

CDx;Dy i; jð Þ ¼
Xn
x¼1

Xm
y¼1

1; if I x; yð Þ ¼ i and I xþDx; yþDyð Þ ¼ j
0; otherwise

�
ð5:6Þ

For an image with 256 gray level values, a GLCM is a 256 � 256 matrix. With
the combination of Δx and Δy, a large number of GLCMs can be created. In
practice, only four GLCMs are created by capturing the following four structures:
horizontal, vertical, left lean diagonal, and right lean diagonal.

Figure 5.2 shows an example GLCM of an image I(x, y) with 8 gray level values.
In this case, the structure to be captured by the GLCM is the horizontal structure.
The arrows in the figure link the pixel pairs in the image with their corresponding
entries in the GLCM.

Fig. 5.2 Computation of a GLCM. An 8 gray levels image I(x, y) on the left and its GLCM on the
right
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A GLCM itself is a gray level image, therefore, a number of statistical features
called Haralick features can be computed from each GLCM image, such as the
homogeneity, contrast, correlation, energy, entropy, variance, etc. [3].

Suppose p(i, j) is the normalized value of a GLCM entry, it is equivalent to the
probability of a particular structural distribution in the image; Ng is the number of
gray levels in the quantized image. The three major texture features angular second
moment, contrast, and correlation are given in the following:

Angular second moment:

f1 ¼
X
i

X
j

p i; jð Þf g2 ð5:7Þ

Contrast:

f2 ¼
XNg�1

n¼0

n2
X
i

X
j

p i; jð Þj i� jj j ¼ n½ �
( )

ð5:8Þ

Correlation:

f3 ¼
P

i

P
j ijð Þp i; jð Þ � lxly

rxry
ð5:9Þ

where µx, µy, rx, and ry are the means and standard deviations of the marginal
probabilities px and py, respectively. f1 is a measure of homogeneity of the image
and f3 is a measure of gray tone linear dependencies in the image.

Because a GLCM is usually a large matrix and needs a number of GLCMs to
capture different texture structures, GLCM features are expensive to compute.

5.2.3 Markov Random Field

MRF texture methods model image pixel location as a random variable, as a result,
an image is a random field. Each type of textures is characterized by a joint
probability distribution of signals that accounts for spatial interdependence, or
interaction among the signals. The interacting pixel pairs are usually called
neighbors, and a random field texture model is characterized by geometric structure
and quantitative strength of interactions among the neighbors.

Among the many MRF texture methods, the Simultaneous Auto-Regressive
(SAR) model is the most widely used, as it uses fewer parameters. In SAR, the
intensity I(x, y) at pixel (x, y) is estimated as a linear combination of the neighboring
pixel values I(s, t) and an additive Gaussian noise e(x, y).
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I x; yð Þ ¼ l þ
X
s;tð Þ2N

h s; tð ÞI s; tð Þþ e x; yð Þ ð5:10Þ

where

• µ is the mean of the image,
• N is the neighborhood of (x, y), e.g., a 3 � 3 window,
• h(s, t) are the weights or coefficients associated with each of the neighborhood
pixels,

• and e(x, y) is a Gaussian error with zero mean and standard deviation of r.

The set of parameters h and r are the measurement of the texture, they can be
estimated using either the least square error (LSE) technique or the Maximum
Likelihood Estimation (MLE). Both LSE and MLE involve complex optimization
which is computationally expensive. A higher r value indicates finer granularity or
less coarseness; a higher h(x, y + 1) and h(x, y − 1) values indicate that the texture
is vertically oriented, so on so forth.

Rotation-Invariant SAR model (RISAR) can be created by replacing N with a
circular neighborhood. In order to make SAR more robust, Multiresolution MRF
(MRMRF) can also be created, where an image is represented by a multiresolution
Gaussian pyramid before applying the MRF model.

The number of parameters or the feature dimensions of a SAR depends on the
size of the neighborhood, e.g., a 3 � 3 neighborhood results in 9 parameters while
a 4 � 4 neighborhood results in 16 parameters. To be scale invariant, SARs with
multiple window size are needed, this makes the computation of MRF features
prohibitively expensive.

5.2.4 Fractal Dimension

The fractal dimension (FD) method [4] is based on the theory of fractal geometry
which characterizes the shapes or patterns of self-similarity. The idea of fractal is to
find the smallest structure which replicates the whole pattern. According to fractal
theory, a bounded set S in Euclidean space Rn is self-similar if S is the union of N
(r) distinct (nonoverlapping) copies of itself scaled up or down by a ratio r, and the
relationship between N(r) and r is given by

N rð Þ � C
1
r

� �d

ð5:11Þ

where d is the fractal dimension or FD.
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In image applications, FD method models a gray level image as a 3D terrain
surface, and a differential box counting is done under the surface to measure how
rough the surface is. In logarithm term, the above relationship means the number of
boxes under the surface is inversely proportional to the size of the boxes, which is
expected. d is given by the following approximation:

d ¼ lim
r ! 0

logN rð Þ
log 1

r

ð5:12Þ

or

d � logN rð Þ
log 1

r

ð5:13Þ

From (5.13), the logN(r) and log(1/r) have an approximately linear relationship,
therefore, FD can be estimated from a least square fitting of the two variables. By
fitting a straight line for the logN(r) versus log(1/r) curve, the slope of the straight
line is taken as the approximation of FD.

Since FD only models the roughness feature, other features like directionality
and contrast are missed from FD. Therefore, in [4], six FDs have to be computed
from a number of modified images derived from the original image, such as, the
original image, low gray-valued image, high gray-valued image, horizontally
smoothed image, vertically smoothed image, and the second moment of the original
image. Despite of these additional FD features, FD can be very sensitive due to the
triple approximation during the box counting, linear fitting, and image modification.

5.2.5 Discussions

Spatial texture methods are based on the ideas of capturing the elemental or
microstructures of a textured image. The definitions of the structures are based on
how humans describe a textured image, such as rough versus fine, regular versus
natural, directional versus random, etc. The advantage of these methods is that they
are intuitive and semantically meaningful. However, there are infinite types of
textural structures in the nature, and human beings can only define or describe a
small number of them. This can limit the application of spatial texture methods.

Another major issue with spatial approach is that spatial features are sensitive to
noise. Furthermore, spatial texture methods are usually complex to compute, and
they often involve complex optimization which is very expensive to compute.
These issues affect the robustness and the overall performance of spatial texture
methods.
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5.3 Spectral Texture Feature Extraction Methods

Instead of defining and describing specific structures in an image, which is difficult,
spectral texture methods attempt to capture how frequent the patterns change in a
textured image. Spectral texture methods are based on Fourier Transform (FT),
Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Gabor
filters, curvelet transform, etc.

Global power spectra computed from the DFT are not effective in texture
classification and retrieval, compared with local features computed from small
windows such as DCT. At present, the most promising features for texture retrieval
are based on multiresolution features obtained with orthogonal wavelet transforms
or Gabor filters. These features describe spatial distributions of oriented edges in the
image at multiple scales.

5.3.1 DCT-Based Texture Feature

Compared with the traditional spatial texture methods, DCT is a simple yet robust
method to capture local textures of an image. The idea is equivalent to STFT or
applying FT on a small window. However, due to the use of 1D cosine transform on
both rows and columns, the computation is very efficient.

For a color image I, it is first converted to Y′CbCr or YBR colors. The image is
then divided into a set of overlapping 8 � 8 regions or blocks, which are obtained
by a sliding window that moves by two pixels between consecutive samples. At
each location of the three YBR color channels, apply the DCT on the local 8 � 8
window. Each block is then represented by

x ¼ xY ; xB; xR
� 	 ð5:14Þ

where [xY, xB, xR] is the concatenation of the DCT vectors extracted from each of
the YBR color channels by a zigzag scanning. For efficient computation, the 192-
dimensional YBR-DCT vector is usually shortened by only retaining the first few
coefficients from each of the YBR channels. This is because of the well-known
energy compaction properties of the DCT.

To compute the texture features of the image I, a Gaussian mixture model of
eight components is computed using the EM algorithm. This produces the fol-
lowing conditional distribution for each image:

P xjIð Þ ¼
X8
k¼1

pkIGðx; lkI ; rkI Þ ð5:15Þ

where pkI is the weight and lkI and rkI are the maximum likelihood parameters of
mixture component k. The (lkI , r

k
I ) pair is then organized into a feature vector which
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is used for texture representation. For a gray level image, the DCT method just
needs to replace the three color channels with a single gray channel.

DCT computation is efficient due to the use of FFT, however, the EM is an
optimization method which incurs significant computation cost.

5.3.2 Texture Features Based on Gabor Filters

5.3.2.1 Gabor Filters
Although DCT is efficient to compute locally, the image level texture features are
complex to compute due to the use of EM algorithm. An alternative is to use Gabor
filters. Gabor filters are based on traditional filter-based image processing approach,
which computes one filtered value at each pixel as opposing to computing multiple
transformed values at each location as in the DCT. Different from traditional filters,
by combining both Gaussian and FT, Gabor filters simulate the powerful properties
of perceptual vision of mammals. Furthermore, they can be tuned to different
orientations and scales.

Gabor transform creates a filter bank consisting of Gabor filters with various
scales and orientations. For a given image I(x, y) with size P�Q, its discrete Gabor
transform is given by a convolution:

Gmnðx; yÞ ¼
XK
s¼0

XK
t¼0

Iðx� s; y� tÞg�mnðs; tÞ ð5:16Þ

where K is the filter mask size, and g�mn is the complex conjugate of gmn which is a
class of self-similar wavelets generated from dilation and rotation of the following
mother wavelet:

gðx; yÞ ¼ 1
2prxry

exp � 1
2

x2

r2x
þ y2

r2y

 !" #
� expðj2pWxÞ ð5:17Þ

where W is called the modulation frequency. The self-similar Gabor wavelets are
obtained through the generating function

gmnðx; yÞ ¼ a�mgð~x;~yÞ ð5:18Þ

where m and n specify the scale and orientation of the wavelet respectively, with
m = 0, 1, …M − 1, n = 0, 1, …, N − 1, and

~x ¼ a�mðx cos hþ y sin hÞ
~y ¼ a�mð�x sin hþ y cos hÞ



ð5:19Þ

where a > 1 and h = np/N.
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In order to decide the bank of Gabor filters, the parameters in (5.17) to (5.19)
have to be determined. The Gabor wavelets generated using (5.17) through (5.19)
are complete but not orthogonal wavelets, it implies there is redundancy in the
filters. Therefore, we may design a bank of Gabor filters so that redundancy will be
significantly reduced while image texture will be well represented by the set of
individual filter response. Due to the same functional form of Gabor wavelet
function g(x, y) and its frequency response W(u, v) (i.e., its 2-D Fourier transform):

Wðu; vÞ ¼ expf� 1
2
½ðu�WÞ2

r2u
þ v2

r2v
�g ð5:20Þ

where ru = (2prx)
−1 and rv = (2pry)

−1, an optimal representation of an image in
spatial domain can be achieved by finding an optimal representation of the image in
frequency domain. The idea of achieving so is to use the full width at half maxi-
mum (FWHM) of the Gabor spectral functions to form a complete coverage of the
frequency plane within the modulation frequency bandwidth (Sect. 2.2). Specifi-
cally, the design follows three principles [5]: (i) Uniform sampling of orientation
angles; (ii) Exponential sampling of modulation bandwidth W; (iii) Continuous
coverage of the frequency space. This strategy is illustrated in Fig. 5.3.

Let Ul and Uh be the lowest and highest frequencies of interest, such that the
coarsest scale filter and the finest scale filter are centered in the frequency domain at
distances Ul and Uh from the origin, respectively. By the above strategy of
redundancy reduction, the parameters of Gabor filters in spatial domain can be
determined as follows:

a ¼ Uh=Ulð Þ 1
M�1 ð5:21Þ

Fig. 5.3 FWHM sampling of spectral responses of Gabor filters in frequency plane
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rx;m;n ¼ ðaþ 1Þ ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p

2pamða� 1ÞUl
ð5:22Þ

ry;m;n ¼ 1

2p tan p
2N

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

h
2 ln 2 � 1

2prx;m;n

� 2r ð5:23Þ

The parameters are independent of orientations (n), in other words, the param-
eters repeat in every orientation. In practice, the following parameter values are
used:

Ul ¼ 0:05;Uh ¼ 0:4;K ¼ 60

5.3.2.2 Gabor Spectrum
Figure 5.4 shows the Gabor filtered subband images from the lady image of
Fig. 3.2. It shows how different image features are captured by Gabor filters from
different scales and orientations. It can be observed that low-frequency information
are captured at lower scales and as scale increases (in spectral domain), more fine
details can be seen.

orientation

1

1 2 3 4 5 6
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e

2

3
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Fig. 5.4 Gabor filtered subbands for the lady image
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5.3.2.3 Texture Representation
After applying Gabor filters on the image with different orientation at a different
scale, a set of magnitudes is obtained:

Eðm; nÞ ¼
XP
x¼0

XQ
y¼0

jGmnðx; yÞj;m ¼ 0; 1; . . .; M � 1; n ¼ 0; 1; . . .; N � 1 ð5:24Þ

where

• m is the scale
• n is the orientation
• M is the maximal scale
• N is the maximal orientation
• P � Q is the size of the input image

The magnitudes represent the energy map at a different scale and orientation of
the image under transform (Fig. 5.5 right) [6].

The main purpose of texture-based retrieval is to find images or regions with
similar texture. It is assumed that we are interested in images or regions that have
homogenous texture, therefore the following mean lmn and standard deviation rmn
of the magnitude of the transformed coefficients are used to represent the
homogenous texture feature of the image or region:

lmn ¼
Eðm; nÞ
P� Q

rmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x

P
y Gmnðx; yÞj j � lmnð Þ2

q
P� Q

ð5:25Þ

A feature vector f (texture representation) is created using lmn and rmn as the
feature components. Five scales and six orientations are used in common imple-
mentation and the Gabor texture feature vector is thus given by

Fig. 5.5 Computation of Gabor texture descriptor. A straw image on the left and its energy map
on the right. The higher the energy the brighter the block
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f ¼ l00; r00; l01; r01; . . .; l45; r45ð Þ ð5:26Þ

In order to remove the influence of various lighting issues of the camera, the
features lmn and rmn can be normalized to [0, 1] using the maximum of the
respective components. The similarity between two texture patterns is measured by
the city block or Euclidean distance between their Gabor feature vectors.

5.3.2.4 Rotation-Invariant Gabor Features
The above-acquired texture feature is not invariant to rotation, similar texture
images with different direction may be missed out from the retrieval or get a low
rank. A simple circular shift on the feature map can be used to solve the rotation
variant problem. Specifically, the orientation with the highest energy is detected as
the dominant direction of the image and the feature elements in the dominant
direction are moved to the first elements in f. The other elements are then circularly
shifted accordingly. For example, if the original feature vector is “abcdef ” and “c”
is at the dominant direction, then the normalized feature vector will be “cdefab” [7].

This circular shift approach is based on the theory that image rotation in spatial
domain is equivalent to circular shift in spectral domain. Assume the original image
is I(x, y), I/(x, y) is the result of I(x, y) after rotation of angle /, by using (1.40), we
have the following:

I/ðx; yÞ ¼ Iðx; yÞ � e�j/ ð5:27Þ

For notation convenience, the Gabor transform of I(x, y) and I/(x, y) at scale
s and angle h are denoted as G(I, s, h) and G(I/, s, h), respectively. Then according
to (5.16), we have

GðI; s; hÞ ¼ Iðx; yÞ � gshðx; yÞ ð5:28Þ

and by the commutability of convolution, we have

G I/; s; h
� � ¼ I/ðx; yÞ � gshðx; yÞ

¼ Iðx; yÞ � e�j/
� 	 � gshðx; yÞ

¼ Iðx; yÞ � gshðx; yÞ � e�j/
� 	 ð5:29Þ

Equation (5.29) indicates that applying a Gabor filter on a rotated image
is equivalent to applying a rotated Gabor filter on the original image. Since
gsh(x, y) � e−j/ = gs,h+/(x, y), we have

G I/; s; h
� � ¼ Iðx; yÞ � gshðx; yÞe�j/

� 	
¼ Iðx; yÞ � gs;hþ/ðx; yÞ
¼ GðI; S; hþ/Þ

ð5:30Þ
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Equation (5.30) indicates that a rotation of the input image I(x, y) by an angle /
is equivalent to a translation of the output energy G(I, s, h) by the same amount /
along the orientation axis. Figure 5.6 demonstrates this fact. It shows two texture
patterns and their feature maps, pattern (c) is a rotation of 90° of pattern (a). Form
feature map (b), it can be seen that pattern (a) has a dominant direction feature in
orientation 2 (60°), while in feature map (d), this dominant direction feature has
moved to orientation 5 (150°) and features in other directions are circularly shifted
accordingly. In other words, the spectrum (d) is the circularly shifted version of
spectrum (b) [6].

If a texture pattern has directional features, it will show dominant energy at
certain direction on the energy map. If the direction of the highest energy is cir-
cularly shifted to zero degree, the resulting f is a rotation-invariant feature. If a
texture pattern does not have dominant direction feature, the matching between
rotated patterns can be made at any direction, and the rotation normalization does
not affect the matching in this situation.

In image analysis, there is always a compromise between spatial resolution and
frequency resolution. Gabor filters achieve optimal joint localization/resolution in
both space domain and frequency domain. However, due to the truncation at half
peak magnitude, the spectral cover of Gabor filters is not complete, this results in
information loss in the spectral domain. For example, in Fig. 5.7, black holes are
left at the FWHM in Gabor transformed spectral domain. Consequently, the
high-frequency components, which are considered to be the most important in
characterizing image textures, are not completely captured. Abundant redundancy
also exists between transformed images at different scales because Gabor filters use

Fig. 5.6 Computation of
rotation-invariant Gabor
texture descriptor. a A straw
image; b energy map of (a);
c a rotated image of (a);
d energy map of (c). The
higher the energy, the brighter
the block
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overlapped window and do not involve image down sampling. These limitations
can be easily overcome by using wavelet transform.

5.3.3 Texture Features Based on Wavelet Transform

5.3.3.1 Selection and Application of Wavelets
The key idea of wavelet transform is to analyze an image using multiresolution
approach by using filters of different size, called wavelets. This is equivalent to look
at the image from different distance. The whole decomposition process provides us
with an array of DWT coefficients obtained from each subbands at each scale.
These coefficients can then be used to represent the texture features of an image.

Given a 2D image f(m, n), 0 � m � M − 1, 0 � n � N − 1, its DWT is
given by (5.31):

W j k; lð Þ ¼ 1
2 j

XN�1

n¼0

XM�1

m¼0

f m; nð Þw j
k;l m; nð Þ ð5:31Þ

where j is the scale and (k, l) is the spatial location of the wavelet and:

w j
k;l m; nð Þ ¼ w

m� 2 jk

2 j

� �
w

n� 2 jl

2 j

� �
ð5:32Þ

Different wavelets have been used to capture the texture features of an image.
Commonly used wavelets include Haar, Mexican hat, Morlet, Daubechies,
biorthogonal, symlet, Coiflet, and Meyer wavelet. Both Haar and symlet are special
members of Daubechies wavelet family. Haar wavelet has been introduced earlier
in Sect. 3.3.1. Figure 5.8 shows the 1D profiles six wavelets from some of the
wavelet families, while Fig. 5.9 provides a 3D view for 4 of the wavelets.

Loss of 
information 
in spectral 
domain

Fig. 5.7 Frequency tiling of half frequency plan by Gabor filters, the ovals are the covered
spectrum while the black holes are the lost spectrum
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Figure 5.10 shows the spectra of the Lena image from some of the common
wavelet transforms. It can be seen, that the spectra images are similar but with the
subtle difference due to the different shapes of the wavelets. Some are more efficient
due to capturing more low-frequency information while discarding more
high-frequency information.
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Fig. 5.8 Mexican hat, Morlet, Daubechies, Meyer, Symlet 4, and Coiflet wavelets
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Discrete wavelets are differentiated by their shapes, orders (vanishing moments)
and compact support. The combination of the three factors determines the result of
a wavelet transform. The choice of a wavelet usually depends on the nature of the
data and applications such as image analysis, image processing, or image com-
pression. Often it requires a number of trials to determine the optimal combination
of the three factors. Results of a wavelet transform also depend on whether the
wavelet is overlapped or not. The Maximal Overlap Discrete Wavelet Transform
(MODWT) has found popular application in image analysis.

Shape of a wavelet. The shape of a wavelet is characterized by its symmetry and
regularity. A symmetric wavelet shows no preferred direction in time/space, while
an asymmetric wavelet gives an unequal weighting to different directions. Regu-
larity is related to how many continuous derivatives a function has. Therefore,
regularity is a measure of smoothness of a wavelet. Generally, to detect an edge in
the data, a wavelet needs to be sufficiently regular. The regularity is also related to
the order, the higher the order, the smoother the wavelet.

For image analysis, however, research has shown that the shape of a wavelet
does not have a significant influence on classification results [8].

Vanishing moments. An important property of a wavelet function is the number
of vanishing moments, which characterize how a wavelet interacts with various
signals. The names for many wavelets are derived from the number of vanishing
moments. For example, db6 is the Daubechies wavelet with six vanishing moments
and sym3 is the symlet with three vanishing moments. Generally, a wavelet with
N vanishing moments is orthogonal to polynomials of degree N − 1. For example,

Fig. 5.9 Wavelets in 3D space. Top left: Daubechies 2; Top right: Symlet 4; Bottom left: Coiflet 1;
Bottom right: Mexican hat
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Daubechies 2 wavelet has two vanishing moments. When the Daubechies 2 wavelet
is used to transform a data, both the mean and any linear trend are removed from
the data. A higher number of vanishing moments implies that more moments
(quadratic, cubic, etc.) will be removed from the data, which results in fewer
significant wavelet coefficients. It also means higher order wavelets can capture or
represent more frequency bands in the data. Higher order wavelets typically have

Haar Daubechies 4

Biorthogonal Symlet 4

Coiflets Reverse Bior

Fig. 5.10 Wavelet spectra for the Lena image
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more oscillations and require wider support. A wavelet with N vanishing moments
must have a support of at least length 2N − 1.

The choice of wavelet order depends on the nature of the data, while usually, it
requires a number of empirical tests on the data. Theoretically, the order of the
wavelet should be greater than 2H + 1, where H is the Hurst exponent of a signal or
data [8, 9]. H can be determined using a similar technique of finding the fractal
dimension as described in Sect. 5.2.4.

Compact support. This value measures the effective width of the wavelet
function. A narrow wavelet function such as haar, db2, or sym2 can capture closely
spaced or finer features and are fast to compute, but a narrow wavelet tends to have
low-frequency resolution. Conversely, a wavelet with large compact support such
as the Daubechies 24 is smoother and has finer frequency resolution which is
usually more efficient for denoising.

Wavelets with large support tend to result in coefficients that do not distinguish
individual features. Research has shown that wavelets with wider compact support
provide increased sensitivity to group differences, which leads to higher classifi-
cation accuracy [8]. However, wavelet with very large compact support can
decrease the localization of prominent features and more coefficients are affected by
boundary conditions. In practice, wavelets with an optimal compact support can be
found using an empirical test.

MODWT. MODWT is highly redundant and invariant under circular shift. This
causes MODWT preserving the smooth time-varying structure in regional time
series that is otherwise lost during the application of DWT [8]. MODWT is adaptive
to any signal length and emphasizes on variance analysis, which is desirable for
feature extraction. Research shows that MODWT has superior performance than
ordinary DWT [8]. This is supported by the fact that in literature, Gabor filters are
usually preferred than ordinary DWTs.

5.3.3.2 Contrast of DWT and Other Spectral Transforms
If we give a comparison between wavelets, sinusoids (FT), STFT and Gabor filters,
we have the following contrasts:

• Orthogonality. Both wavelets and sinusoids are orthogonal (1.2–1.6), while
Gabor filters are not.

• Window. Wavelets, STFT, and Gabor filters are windowed transforms, while FT
is not.

• Window attenuation. Both wavelets and Gabor filters attenuate towards the
border of a window, while STFT does not.

• Various window size. Wavelets vary window size, while STFT and Gabor filters
do not.

• Directionality. Both wavelets and Gabor filters are directional transforms, while
FT and STFT are not.
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• Multiresolution. Wavelets are multiresolution transforms, while Gabor filters,
FT, and STFT are not.

Overall, wavelets have more advantage over FT, STFT, and Gabor filters. It can
be observed from Fig. 5.10 that different from both FT and STFT, wavelets suc-
cessfully capture the edge information of the image which is the most useful texture
feature. The next is to focus on extracting texture features from the DWT spectrum.

5.3.3.3 Multiresolution Analysis
Space (time)-frequency methods attempt to find a specific frequency at a specific
location, which is the main shortcoming of FT and STFT. However, it is not
possible to find a specific frequency at a specific location simultaneously, just like
we cannot get both a global view (zooming out) and a local view (zooming in) of a
map at the same time (we lose global view when getting too close to the map for
details and we lose details when we zoom out for a global view of the map). The
solution is to use multiresolution or multi-view to create a tradeoff between spatial
resolution and frequency resolution.

Multiresolution methods are designed to obtain a good spatial resolution but less
accurate frequency resolution at high frequencies or a good frequency resolution
but less accurate spatial resolution at low frequencies (Fig. 3.1 left). By using
multiresolution or multi-view approach, both global view and local view of an
image are obtained and a complete picture of an image is preserved, although not
simultaneously. This approach is useful when a signal or an image contains both
fine details in small areas and homogenous patches in larger areas. Usually, 2-D
images follow this type of frequency patterns. The multiresolution analysis effec-
tively overcomes the window size problem of STFT. Therefore, multiresolution
approaches are more effective in image analysis and they overcome the frequency
and location dilemma found in both FT (global view) and STFT (local view).

The coefficients at each subband of a wavelet transform are usually scarce, and
they are not suitable for direct image representation. Statistics such as those pro-
posed in the GLCM and Gabor filters can be computed from each subband of a
wavelet transform. More robust features can be computed from each subband by
using Gaussian mixture model. Since high-frequency components are more
important for texture representation, features from lower scale subbands are usually
given more weight.

Because digital wavelet transform (DWT) is done by two passes of 1D wavelet
transform on rows and columns, respectively, wavelets can only capture edge
information on horizontal, vertical, and diagonal directions. This gives Gabor filters
an edge over wavelet on texture representation and retrieval because Gabor filters
can be tuned to more directions than conventional wavelets. However, neither
wavelets nor Gabor filters can effectively capture highly anisotropic elements like
the curves from an image, and this is the rational behind the introduction of curvelet
in the next section.
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5.3.4 Texture Features Based on Curvelet Transform

5.3.4.1 Curvelet Transform
Both Gabor filters and wavelets let us do space–frequency analysis of images.
Gabor filter is an improvement to STFT by using a Gaussian window and
multi-orientations, however, it still uses a fixed window size for different fre-
quencies. This is equivalent to looking at an image for details from a fixed distance,
which is difficult. Wavelets use different window sizes for different frequencies, and
this creates a multiresolution view of an image and is equivalent to looking for
different levels of details of an image from different distance. Therefore, wavelet is
a more accurate simulation to human vision system. However, wavelet can only
capture texture features from three directions, which are not sufficient for image
analysis.

Curvelet [10] has been introduced in literature to take the advantages of both
Gabor filters and wavelet, while overcome the limitations of both. Specifically, a
curvelet is orthogonal and multiresolution like a wavelet, while it can be tuned to
multi-orientation like Gabor filters as well. In other words, a curvelet is a wavelet
tuned to multi-orientations and can capture curved or nonlinear edges in an image
instead of just linear edges. Therefore, it is a more powerful tool for image analysis.

Basically, curvelet transform extends the ridgelet transform to multiple scale
analysis. Given an image f ðx; yÞ, the continuous curvelet transform are defined as
[11, 12]

<f ða; b; hÞ ¼
ZZ

wa;b;hðx; yÞf ðx; yÞdxdy: ð5:33Þ

where a (a > 0) is the scale, b is the translation, h is the orientation, and w is the
curvelet which is defined as follows:

wa;b;hðx; yÞ ¼ a�
1
2w

x cos hþ y sin h� b

a

� �
ð5:34Þ

where h is the orientation and a is the scale of the curvelet. A curvelet is constant
along the lines: x cosh + y sinh = b and transverse to these ridges are wavelets.
Compared with wavelet definition, the location parameters ðb1; b2Þ of wavelet are
replaced by the line and orientation parameters ðb; hÞ in a curvelet. In other words,
the two transforms are related by [12]

Wavelet:wscale; point position

Curvelet:wscale; line position

In contrast, Gabor filters are Gaussian-shaped wavelets tuned to different ori-
entations and scales.
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ga;h;b1;b2ðx; yÞ ¼ a�
1
2g

x cos hþ y sin h� b1
a

;
�x sin hþ y cos h� b2

a

� �
ð5:35Þ

where the mother wavelet g(x, y) is a Gaussian envelope modulated by a sinusoid
wave. The shapes of the three types of wavelets are shown in Fig. 5.11 [11]:

It can be seen from the above figure, compared with both the wavelet and Gabor
filter, a curvelet is the most sensitive to lines and edges in an image.

Similar to Gabor filters, a mother curvelet can be tuned to different orientations
and different scales to create the curvelets (Fig. 5.12).

Curvelet takes the form of a basis element and obtains a high anisotropy.
Therefore, it captures the edge information more effectively because it is sharper
than a wavelet and a Gabor filter. Although a curvelet is linear in its edge direction,
due to its elongated and orientated design, it aligns with curved edges much better
than conventional wavelets do. The contrast between wavelet and curvelet on
capturing curved edge information is shown in Fig. 5.13 [12, 13]. It can be
observed that curvelets, at higher scales, capture the edge information more accu-
rately and tightly than wavelets.

Fig. 5.11 Comparison of curvelet, wavelet and Gabor filter. a A curvelet; b a Daubechies wavelet
and c a Gabor filter

2– j / 2

2– j

Fig. 5.12 A curvelet and curvelet tiling in spatial domain. Left: a single curvelet with width 2�j

and length 2�j=2; Right: curvelets tuned to 2 scales at different orientations
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5.3.4.2 Discrete Curvelet Transform
Given a digital image f(m, n), 0 � m � M − 1, 0 � n � N − 1, the discrete
curvelet transform is given as follows:

Cj;h k; lð Þ ¼
XN�1

n¼0

XM�1

m¼0

f m; nð Þwj;h;k;l m; nð Þ ð5:36Þ

where wj,h,k,l (m, n) is a discrete curvelet; j, h are the scale and orientation
respectively; and k, l are the spatial location parameters. The frequency response of
a curvelet is a wedge, and the curvelet tiling of frequency plane is shown in
Fig. 5.14.

Curvelets exhibit an oscillating behavior in the direction perpendicular to their
orientation in frequency domain. A few curvelets at different scales and their fre-
quency responses are shown in Fig. 5.15 [3], and the scales shown on the figure are
scales in frequency domain.

wavelets curvelets

Fig. 5.13 Edge representation using wavelets and curvelets

Spectrum at 
scale 4 and 
orientation 4 

Fig. 5.14 Curvelet tiling of frequency plane with 5 level curvelets
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Fig. 5.15 Curvelets at different scales are shown in the spatial domain (left) and in the frequency
domain (right) respectively
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Fig. 5.15 (continued)
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It can be observed that the curvelet is nondirectional at the coarsest scale.
Whereas, at highest scales, the curvelet waveform becomes so fine that it looks like
a needle shaped element. With increase in the resolution level, a curvelet becomes
finer and smaller in the spatial domain and shows more sensitivity to curved edges
which enables it to effectively capture curves in an image.

Although curvelet has an advantage of capturing nonlinear edges in an image,
the computation of curvelet transform is more complex than both the Gabor filters
and wavelet. Similar to Gabor filters, to achieve efficiency, curvelet transform is
implemented in the frequency domain. That is, both the curvelet and the input
image I are transformed into FT domain using FFT and the two FFTs are then
multiplied in the FT domain. The product is then transformed back using the
inverse fast Fourier transformed (FFT−1) to obtain the curvelet coefficients. The
process can be described as

Curvelet transformðIÞ ¼ FFT�1½FFTðcurveletÞ � FFTðIÞ� ð5:37Þ

However, due to the FFT of the curvelet is a wedge, the product of the two FFTs
needs to be wrapped back into a rectangle before it can be used for the FFT−1. This
wrapping process increases the computation cost.

5.3.4.3 Curvelet Spectra
Figure 5.16 shows some of the spectra of the curvelet transform on a flower image
at different scales (in frequency domain) and orientations [11, 13]. The size of the
spectra is adjusted for better viewing.

To contrast, the spectra of wavelet and Gabor filters are shown in Fig. 5.17.
It can be observed from the above two figures, the spectra of Gabor filters have

more redundancy than both the wavelet spectra and curvelet spectra due to the use
of overlapping windows during the transform. The spectra of Gabor filters also look
more granular than those of both the wavelets and the curvelets. The spectra of
wavelets are the most sparse and the most efficient in terms of reducing redundancy,
therefore, wavelets are the choice for compression. Curvelet spectra are in between
those of wavelet and Gabor filters. Curvelets are more sensitive to edges than Gabor
filters and capture edges from more directions than wavelet. Furthermore, curvelets
have little redundancy between different subbands. Curvelets also have a complete
covering of the spectrum plane and this has overcome the spectra leakage of Gabor
filters. However, due to there is a need to wrapping the wedge shape into a rectangle
in order to do the invert FFT in (5.37), the computation is more complex than both
Gabor filters and wavelets.

5.3.4.4 Curvelet Features
The feature extraction from curvelet transform is similar to Gabor filters. Once the
curvelet transform is applied and the coefficients are obtained at each scale and
orientation, the mean µ and standard deviation r are computed for each of the
subbands as follows:
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(a) Input image (b) subbands @ scale 3 (c) subbands @ scale 4

(d) subbands @ scale 5 (e) subband @ scale 6

Fig. 5.16 Curvelet subbands at different scales for a flower image (512 � 512). Each subband
captures curvelet coefficients of the input image from one orientation

Fig. 5.17 Spectra of wavelets and Gabor filters for the flower image in Fig. 5.16a. a Wavelet
spectra; b Gabor filters spectra
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lsh ¼
Eðs; hÞ
m� n

; rsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x

P
y ðjCshðx; yÞj � lshÞ2

q
m� n

ð5:38Þ

where s is the scale, h is the orientation, m and n are the dimensions of the
corresponding subband, and Eðs; hÞ ¼Px

P
y jCshðx; yÞj is the total spectral energy

of the subband.
Therefore, for each curvelet, two texture features are obtained. If l curvelets are

used for the transform, 2l texture features are obtained. A 2l dimension texture
feature vector is used to represent each image in the database for image retrieval. To
mitigate the dynamic range of the spectral energy, both the mean and standard
deviation features are normalized using the maximum values of the corresponding
features in the database.

Based on the curvelet subband division in Fig. 5.14, with 5 levels curvelet
decomposition, 82 (= 1 + 16 + 32 + 32 + 1) subbands of curvelet coefficients are
computed (only one subband is chosen from the last scale). However, due to the
symmetry property, curvelet at angle h produces the same coefficients as curvelet at
angle h + p. Therefore, half of the subbands at scale 2–4 are discarded. As the
result, 42 (= 1 + 8 + 16 + 16 + 1) subbands of curvelet coefficients are computed,
and a 2 � 42 = 84 dimension feature vector is generated for each image. This
dimension is higher than the feature vector from Gabor filters with the same scales
due to Gabor filters usually use fewer orientations.

Rotation-invariant curvelet features can also be created by using the circular shift
method in Gabor filters.

5.3.5 Discussions

Several texture features based on spectral transforms have been introduced in this
section, including DCT, Gabor filters, wavelets, and curvelets. Although wavelets
are orthogonal and more sensitive to edges, Gabor filters are more directional. This
makes Gabor filters a better texture method in many applications. The performance
of curvelet based texture features can be affected by the computation complexity
due to the irregular frequency response of curvelets.

Generally, spectral texture methods are much more robust than spatial texture
methods when they are applied on homogenous texture images, due to their model
simplicity and computation efficiency. However, spectral transforms are usually
done in a squared window, therefore, it is often difficult to apply spectral texture
methods in irregular image regions, especially when the region size is not big
enough. In these situations, the DCT-based texture method can be used because the
8 � 8 window is small enough to fit with most of image regions.
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5.4 Summary

This chapter introduces and discusses a number of widely used texture feature
extraction methods. Generally speaking, spectral texture methods such as texture
features extracted from Gabor filters, wavelet transform, and curvelet transform are
much more powerful and robust than spatial methods such as Tamura, GLCM,
MRF, and FD. This is because spectral methods are based on either multiresolution
or multi-scale analysis which is more robust to noise and scale changes.

However, both spectral and spatial methods have advantages and disadvantages.
Spectral texture methods generally capture edge information well while spatial
texture methods capture local structures well such as corners, shapes, etc. Spatial
texture methods are more intuitive than spectral texture methods. The use of dif-
ferent types of texture methods depends on the applications. For example, for image
classification, spectral texture methods are generally preferred; while for object
detection and image registration, spatial texture methods are better choices because
they need much more accurate matching.

5.5 Exercises

1. Find a grayscale image, use the Matlab code shown in the following web pages
to compute the mean and standard deviation of the image. Then, try them on
similar images and different images, explain the pros and cons of the two
statistics for image representation.

https://au.mathworks.com/help/images/ref/mean2.html.

https://au.mathworks.com/help/images/ref/std2.html.

2. Find a grayscale image and use the Matlab code from the following web page to
compute a GLCM of the image: https://au.mathworks.com/help/images/ref/
graycomatrix.html. Now calculate the angular moment, contrast, and correla-
tion of the GLCM using Eqs. (5.7–5.9). Try GLCM on the images you used in
Exercise 1 and compare the effectiveness of the GLCM statistics with the
ordinary statistics from Exercise 1.

3. Find a grayscale image and use the Matlab code from the following web page to
compute the spectra of Gabor filters at different scales and orientations. Now,
apply the Gabor filters on the same images you used in both Exercise 1 and 2
and compute the mean and standard deviation of the Gabor spectra. Write a
short report to compare the effectiveness of Gabor filter statistics with the
ordinary statistics and GLCM statistics.

https://au.mathworks.com/help/images/ref/imgaborfilt.html.
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6Shape Representation

The Creator has a model for every creation.

6.1 Introduction

A shape is a binary image. Mathematically, it is defined as

f x; yð Þ ¼ 1 if x; yð Þ 2 D
0 otherwise

�
ð6:1Þ

where D is the domain or area of the binary image.
Most of the objects in this world can be identified by their shapes, such as fruits,

trees, plant leaves, buildings, furniture, birds, fishes, etc. Figure 6.1 shows a few
examples of shape images, the first two are shapes with a contour while the last two
are shapes with interior content.

A shape can be defined by its boundary/contour like Fig. 6.1a, b, or by its
interior content like Fig. 6.1c, d. There are a variety of shape methods; they can be
generally grouped into either contour-based method or region-based method.
A number of perceptual shape descriptors have also been proposed to capture both
contour and region features. The design of a shape descriptor usually follows the
principles suggested by MPEG-7: good retrieval accuracy, compact features, gen-
eral application, low computation complexity, robust retrieval performance (affine
invariance and noise resistance), and hierarchically coarse to fine representation.

However, shape description is a difficult task because it is difficult to define
perceptual shape features and measure the similarity between shapes. To make the
problem more complex, the shape is often corrupted with noise, defection, arbitrary
distortion, and occlusion.
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6.2 Perceptual Shape Descriptors

There are a number of simple shape descriptors which can be computed according
to human perception, such as perimeter, area, compactness, Euler number, circu-
larity, eccentricity, major axis orientation, bending energy, convexity, etc. These
individual shape descriptors can be combined to create a more powerful descriptor
to represent a shape.

6.2.1 Circularity and Compactness

Circularity represents how a shape is close to a circle, it also indicates how compact
the shape is or not. Mathematically, it is defined as the ratio of the area of a shape
(As) to the area of a circle (Ac) having the same perimeter:

C ¼ As=Ac ð6:2Þ

Assume the perimeter of the shape is p, the area of the circle with the same
perimeter p is given by

Ac ¼ p2=4p ð6:3Þ

Therefore,

C ¼ 4pAs=p
2 ð6:4Þ

By this definition, the shape with the largest circularity is a circle with circularity
of 1. Since 4p is a constant, circularity can be simply defined as

C ¼ As=p
2 ð6:5Þ

Rectangularity and ellipse variance can be defined in a similar way to
circularity.

The circularity descriptor defined in this way can cause confusions in cer-
tain situations. For example, the following two shapes would have the same

Fig. 6.1 Examples of shape images
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circularity or compactness according to the above definition, although perceptually
they look very different (Fig. 6.2).

Furthermore, the above circularity is too sensitive to noise and irregularity.
Therefore, a more robust circularity descriptor has also been defined. It is defined as
the following ratio:

C ¼ rR=lR ð6:6Þ

where lR stands for the mean of the radial distance from the centroid of the shape to
shape boundary points and rR stands for the standard deviation of the radial dis-
tance from the centroid to shape boundary points.

6.2.2 Eccentricity and Elongation

Eccentricity is defined as the ratio of the length of the longest chord of the shape to
the longest chord perpendicular to it. Eccentricity can be computed using either the
principle axes method (Fig. 6.3a) or the minimum bounding box method
(Fig. 6.3b).

Fig. 6.2 Two different shapes with same circularity

L

b  a 

(a) (b) W 

       L W

Fig. 6.3 Computation of Eccentricity. a Eccentricity with principle axes; b eccentricity with
minimum bounding box
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In the above figure, the eccentricity of the shapes is given by

E ¼ L=W ð6:7Þ

The principle axis can also be found using the Principle Component Analysis
(PCA) method. Eccentricity indicates the elongation of a shape, the larger the
eccentricity the more elongated the shape.

Elongation is defined as

El ¼ 1�W=L ð6:8Þ

0 � El � 1. A circle, a square or any symmetric shape would have the least
elongation (0), while objects like eels, poles, road, etc. would have an elongation
close to 1. Elongation, however, can fail when an elongated shape is bent. For
example, a curled eel (Fig. 6.4) would have a small or even 0 elongation although
perceptually it is still an elongated object.

6.2.3 Convexity and Solidarity

A region is convex if for any two points with the region, the entire line segment
linked by the two points are also inside the region. A convex hull of a shape is the
smallest convex region that includes the shape (Fig. 6.5).

Fig. 6.4 A curled eel with 0 elongation

Convex hullFig. 6.5 A hand shape and
its convex hull
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Convexity is then defined as the ratio of the perimeter of the convex hull of the
shape (Ph) to the perimeter of the shape (Ps).

Convexity ¼ Ph=Ps ð6:9Þ

Solidarity is defined as the ratio of the area of the shape (As) to the area of its
convex hull (Ah).

Solidarity ¼ As=Ah ð6:10Þ

The convexity and solidarity of a convex shape are always 1, convexity and
solidarity of non-convex shapes are smaller than 1.

6.2.4 Euler Number

Topology is the study of the properties which are unaffected by any deformation
(e.g., rubber-sheet distortion). It is found that when a shape is deformed, the number
of holes does not change by the deformation. Therefore, a useful topological
descriptor is the Euler number which is defined as the difference between the
number of holes H and the number of connected components C. A small Euler
number indicates more holes in a shape.

En ¼ C�H ð6:11Þ

For example, the Euler numbers of number 3, letter A and B are 1, 0, and −1,
respectively (Fig. 6.6).

A Hole Area Ratio (HAR) can also be defined in relation to Euler number:

HAR ¼ Ah=As ð6:12Þ

where Ah is the total area of holes and As is the area of the shape.

Fig. 6.6 Shapes with different Euler numbers
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6.2.5 Bending Energy

The bending energy (BE) is defined by [1]

BE ¼ 1
N

XN
t¼0

K tð Þ2

and

KðtÞ ¼ ð _xðtÞ€yðtÞ � €xðtÞ _yðtÞÞ=ð _x2ðtÞþ _y2ðtÞÞ3=2 ð6:14Þ

where K(t) is the curvature function, and N is the number of points on a contour. In
order to compute a robust bending energy, the shape boundary is usually Gaussian
smoothed before the BE calculation. It can be shown that a circle is the shape
having the minimum bending energy.

The shape descriptors described in this section are computed according to human
perception of the shape patterns. The advantage of using them is that they usually
have a semantic meaning. However, the downside of these descriptors is that they
are usually sensitive as shown in the circularity and eccentricity sections. It’s
difficult to describe a shape effectively using a single shape descriptor. Therefore,
these perceptual descriptors are usually used as filters to eliminate shapes of large
difference. They are often used together with other more powerful descriptors
described in the following sections.

6.3 Contour-Based Shape Methods

Contour shape techniques only exploit shape boundary information. There are
generally two types of very different approaches for contour shape modeling:
continuous approach (global) and discrete approach (structural) [1]. Continuous
approaches do not divide shape into subparts, and a multidimensional feature
vector derived from the integral boundary is used to describe the shape. It starts to
derive a 1D continuous function, called shape signature, from the shape boundary.
After that, variety of techniques from signal processing, time series, and statistics
can be used to extract a feature vector from the shape signature. The matching
between shapes is a straightforward process, which is usually a calculation of the
Euclidean distance or city block distance between feature vectors.

Discrete approaches break the shape boundary into segments, called primitives
using a particular criterion. The final representation is usually a string or a graph (or
tree), the similarity measure is done by string matching or graph matching.
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6.3.1 Shape Signatures

The first step of contour-based shape methods is to obtain a 1D function from the
shape boundary points, called shape signature. Many shape signatures exist,
including complex coordinates, polar coordinates, central distance, tangent angle,
cumulative angle, curvature, area, and chord length.

In general, a shape signature u(t) is any 1D function representing 2D areas or
boundaries. A shape signature captures the perceptual feature of the shape, it
uniquely describes a shape. In the following, we assume the shape boundary
coordinates (x(t), y(t)), t = 0, 1, …, N − 1, have been extracted in the preprocessing
stage, t usually means arclength. The preprocessing usually consists of a denoising
procedure or a smoothing procedure and a contour tracing procedure.

6.3.1.1 Position Function
Position function, or complex coordinates, is simply the complex number generated
from the boundary coordinates:

z tð Þ ¼ x tð Þ � xc½ � þ i y tð Þ � yc½ � ð6:15Þ

where (xc, yc) is the centroid of the shape, which is the average of the boundary
coordinates

xc ¼ 1
N

XN�1

t¼0

xðtÞ; yc ¼ 1
N

XN�1

t¼0

yðtÞ ð6:16Þ

z(t) is a complex number which captures the spoke features of a shape boundary.
z(t) is a translation invariant signature due to the subtraction of the centroid.
Rotation causes a circular shift to z(t), and scaling of shape introduces linear change
in z(t). The use of position function as shape signature involves little computation.
However, the position function needs to be further processed for matching, for
example, a centroid distance signature can be computed from z(t).

6.3.1.2 Centroid Distance
The centroid distance function is defined as the magnitude of z(t), and it is
expressed by the distance of the boundary points to the centroid (xc, yc) of the shape
[1]

r tð Þ ¼ x tð Þ�xc½ �2 þ y tð Þ � yc½ �2
� �1=2

ð6:17Þ

Same as z(t), r(t) is also invariant to translation. Rotation causes r(t) circular shift
and scaling of shape changes r(t) by a linear term. Different from z(t) however, r
(t) is a real function which can be used for matching two shapes directly. Figure 6.7
(top) shows the centroid distance signatures of a tree shape. Due to the use of the
centroid as the reference point, both z(t) and r(t) attenuate protruding features of a
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shape. As can be seen, the r(t) function can generally capture the variations of a
shape boundary well, like the eight protruding corners on the tree boundary
(marked by black dots). However, it does not capture the most prominent feature in
a shape well if it is too thin like the tail of fish or the tail of an apple in Fig. 6.7
(center and bottom).

Another problem with r(t) is that it uses the centroid as reference point. For
shapes with high irregularity or low compactness, the centroid often falls outside
the shape body. Consequently, the structure of the shape cannot be preserved by
r(t) when the shape is under distortion. For example, Fig. 6.8a and b are, respec-
tively, the r(t) functions of two sea snakes, it can be seen that the number of peaks
in Fig. 6.8b is doubled compared with that of Fig. 6.8a.

In order to overcome the reference point problem of r(t), chord length signature
(CLS) r*(t) has been proposed. The chord length function r*(t) is derived from
shape boundary without using any reference point. For each boundary point P(t), its
r*(t) is defined as the distance between P and another boundary point P′ such that
PP′ is perpendicular to the tangent vector at P and |PP′| is the shortest chord if there
are more than one P′s perpendicular to P (Fig. 6.8c). r*(t) is invariant to translation.
Rotation causes circular shift to r*(t). Scaling causes linear changes to r*(t).

r*(t) is more sensitive to noise than r(t) due to the numeric approximation in
computing the tangents at each boundary point and the angles needed to find the
chords. To reduce noise sensitivity, an average filter or a median filter can be used
to smooth the shape boundary before the signature extraction.

Fig. 6.7 Examples of centroid distance signatures. Top row: a tree shape on the left and its
centroid distance signature on the right; middle row: a ray fish on the left and its signature on the
right; bottom row: an apple shape on the left and its signature on the right
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6.3.1.3 Angular Functions
Intuitively, the tangent angles of the shape boundary indicate the change of angular
directions of the shape boundary. The change of angular directions is important to
human perception. Therefore, shape can be represented by its boundary tangent
angles

hðtÞ ¼ arctan
yðtÞ � yðt � wÞ
xðtÞ � xðt � wÞ ð6:18Þ

where w, an integer, is a jump step used in practice to smooth the boundary.
However, the tangent angle function h(t) can only assume values in a range of
length p, usually in the interval of [−p/2, p/2]. Therefore, h(t) in general contains
vertical jump/drop discontinuities at h(t) = ±p/2 (Fig. 6.9b). One solution is to use
the absolute function |h(t)| instead of h(t), as shown in Fig. 6.9c, the vertical
jump/drop discontinuities are removed from |h(t)| and the structure of the shape is
also preserved. However, the signature function still has sharp corners. Another
solution is to use a cumulative angular function u(t) which is the net amount of
angular bend between the starting position z(0) and position z(t) on the shape
boundary

(a)

(b) 

(c) P

P′

Fig. 6.8 Computation of chord length signature. a A sea snake shape on the left and its
r(t) function on the right; b another sea snake shape on the left and its r(t) function on the right;
c illustration of computing r*(t) at point P of a hammer shape
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u tð Þ ¼ h tð Þ � h 0ð Þ ð6:19aÞ

The computation of u(t) is illustrated in Fig. 6.9f. As shown in Fig. 6.9d, there
is no vertical jump/drop in u(t) at places where h(t) = ±p/2, and the two sharp
angular changes on the heart boundary has been accurately captured. Because of the
accumulation, u(t) has captured a linear trend in the function, therefore, a w(t′)
(Fig. 6.9d) can be created by normalizing t into [0, 2p] using t0 ¼ 2p

L t and taking
away a linear term t′ from u(t′) if it is obtained in counter clockwise order (or
adding t′ if it is obtained in clockwise order).

w t0ð Þ ¼ u
L

2p
t0

� �
� t0 ð6:19bÞ

where t 2 [0, L], L is the length of the shape boundary and t′ 2 [0, 2p]. The
cumulative angular signature w (t) is invariant to both translation and scaling.
Rotation causes a shift in the signature.

6.3.1.4 Curvature Signature
Curvature is an important boundary feature. It is used widely for shape represen-
tation in the literature. Curvature function is given by (6.20a, 6.20b, 6.20c):

j tð Þ ¼ dh
dt

ð6:20aÞ

¼ x0y00 � y0x00

x02 þ y02ð Þ32
ð6:20bÞ

¼
d2y
dx2

1þ dy
dx

� �2� �3=2
ð6:20cÞ

where h is defined in (6.18). A perfect circular shape would have a constant
j(t) based on the definition of (6.20a). Curvature is an important boundary feature,
however, due to h(t) is typically piecewise continuous and jumps at discontinuities,
j(t) is zero almost everywhere and jumps at where h(t) jumps. For example,
Fig. 6.10 (Top) is the j(t) of the tree shape in Fig. 6.7, while it successfully
captures the seven shape corners on the shape boundary, it is jaggy. In order to use
j(t) for shape representation, a shape boundary needs to be smoothed before cur-
vature extraction. One way to smooth the shape boundary using a Gaussian filter
(Fig. 6.10 (Bottom)).

Curvature is invariant to translation, rotation causes circular shift to the signa-
ture, and curvature signature is invariant to scaling if all shapes are normalized to
the same number of points.
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θ(0) θ(t)

φ(t)
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Fig. 6.9 Computation of angular signatures. a A heart shape; b h(t) of (a); c |h(t)| of (a); d u(t) of
(a); e w(t) of (a); f illustration of the computation of u(t)
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6.3.1.5 Area Function
It is known that the area of a triangle changes linearly under affine transformation.
Linearity is a desirable property for shape representation because normalization of
linearity is equivalent to scale normalization which is simple. Therefore, an area
signature is used in attempt to acquire a signature invariant to affine distortion [1].

When the boundary points change along the shape boundary, the area of the
triangle formed by the two boundary points and the center of gravity also changes
(Fig. 6.11a). For each boundary points, the area of the triangle with a degree angle
at vertex o is calculated (Fig. 6.11b). This forms an area function which can be
employed as shape representation.

For the triangle ΔOP1P2 formed by O, P1, and P2 in Fig. 6.11b, its area is given
by the following difference:

DOP1P2 ¼ DOP2x2 � DOP1x1 � hx1P1P2 x2

Fig. 6.10 Curvature signatures. Top: curvature signature of a tree shape from Fig. 6.7 without
smoothing; Bottom: curvature signature of the same tree shape with a Gaussian smoothing

(a) (b)

O

P1P2 P2 = (x2, y2)

P1= (x1, y1)

O x2x1

Fig. 6.11 Computation of area signature. a Triangulation of a heart shape; b illustration on the
calculation of the area of the shaded triangle
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Mathematically, the area is given by (6.21):

A tð Þ ¼ 1
2
x2y2 � 1

2
x1y1 � 1

2
x2 � x1ð Þ y2 � y1ð Þ � x2 � x1ð Þy1

¼ 1
2
x1y2 � x2y1j j

ð6:21Þ

Because the area of a triangle and the central distance inside the triangle has a
linear relationship, A(t) is similar to r(t) [1], however, due to the numerical
approximation of the area of a triangle, A(t) is usually more jaggy than r(t).
Therefore, A(t) needs to be smoothed for further feature extraction. A(t) is linear
under affine transformation.

6.3.1.6 Discussions
Shape signatures reduce shape matching in 2D space into 1D space, this reduces the
complexity of feature extraction. Shapes are usually normalized to be translation
and scale invariant before signature extraction. Translation invariance is achieved
by either using a reference point such as the centroid or using relative positions such
as in the cases of curvature, angles and chord length. Scale invariance is achieved
by first scaling all shape images to the same size, and then normalizing shape
boundaries to the same number of points. If shape signatures are used for shape
matching, a shift matching is needed to find the best matching between two shapes.
Alternatively, a signature can be quantized into a signature histogram, which is
rotation invariant and can be used for matching.

Shape signatures are generally sensitive to noise and irregularities. Therefore, a
shape boundary is typically smoothed before signature extraction to remove noise
and small irregularities. However, significant irregularities can still cause large error
in the matching, therefore, it is impractical to use shape signature for direct rep-
resentation. Further processing is necessary to improve both matching efficiency
and accuracy. The following sections describe methods on feature extraction from
shape signatures and other robust contour shape methods.

6.3.2 Shape Context

The idea of shape context is similar to the shape signature methods discussed in
Sect. 6.3.1. It also computes contour features from a shape boundary point by point.
However, instead of computing a single feature value for each boundary point in the
shape signature methods, a feature vector (histogram) is computed in shape context.
Furthermore, the computation of the feature vector of each boundary point makes
use of all the points on the boundary instead of just two points in the shape
signature methods. This makes the shape context features more robust to boundary
irregularities. The algorithm of shape context computation is summarized in the
following:
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1. Normalize a shape boundary to N points;
2. For each of the boundary points P, find the vectors between P and all the other

boundary points Pn (Fig. 6.12a);
3. Quantize both the angles h and the length r of the vectors at P;
4. Create a 2D logarithmic histogram H of r on h for each point P (Fig. 6.12b);
5. Flat the 2D histogram H into a 1D histogram h by concatenating the rows of H;
6. Concatenate h’s from all the boundary points Pn to form a histogram map which

is the shape context (Fig. 6.12c).

The logarithm of r is to raise the contribution from neighboring points of
P which would otherwise contribute too little due to significantly shorter vector
length than that of points farther away from P. The process of computing a shape
context is shown in Fig. 6.12 [2]. In Fig. 6.12a, a point P on the shape boundary
and its vectors to all the boundary points Pn are shown. Figure 6.12b shows the
logarithmic histogram of the vectors in Fig. 6.12a, c shows the shape context
map/matrix of the concatenated flatten histograms from all boundary points.

Shape context is invariant to translation due to the use of relative point position.
Scaling invariance can be achieved by normalizing all shape boundaries to N points
and normalizing the radial distances by the mean distance between all point pairs.
Rotation invariance is done by finding the minimum of all shift matching of two
shape context maps.

The matching of two shape contexts is complex. It minimizes the total cost of
matching between one context matrix and all the permutations of another context
matrix. This can affect the robustness of shape context significantly.

6.3.3 Boundary Moments

Moments can be computed to reduce the dimension of a boundary representation.
Assume shape boundary has been represented as a shape signature z(i), the rth
moment mr and central moment lr can be estimated as [1]

P

Pn

θ

lo
g

r

H
(a) (b)

(c)

Fig. 6.12 Computation of shape context. a A point P on a shape boundary and all the vectors
started from P; b the log-polar histogram H of the vectors from P, the histogram H is the context of
point P; c the shape context map of shape of (a), each row of the context map is the flattened
histogram of a point context, the number of rows is the number of sampled points
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mr ¼ 1
N

XN
i¼1

½zðiÞ�r and lr ¼
1
N

XN
i¼1

½zðiÞ � m1�r ð6:22Þ

where N is the number of boundary points. The normalized moments �mr ¼
mr=ðl2Þr=2 and �lr ¼ lr=ðl2Þr=2 are invariant to shape translation, rotation and
scaling.

Boundary moments can also be computed from the boundary histogram. Sup-
pose the amplitude of shape signature function z(i) is quantized and a histogram p
(vi) is created from the quantized z(i). Then, the rth moment is obtained by

lr ¼
XK
i¼1

ðvi � mÞrpðviÞ and m ¼
XK
i¼1

vipðviÞ ð6:23Þ

The advantage of boundary moment descriptors is that they are simple to
compute and they are more robust than a shape signature. However, only a few
low-order moments have physical meaning. In practice, the following three moment

descriptors are usually used for shape description: F1 ¼ ðl2Þ1=2=m1; F2 ¼
l3=ðl2Þ3=2; and F3 ¼ l4=ðl2Þ2, which describes the variance, skewness, and kur-
tosis of the boundary.

6.3.4 Stochastic Method

Time-series models and especially autoregressive (AR) modeling have been used
for calculating shape descriptors. A linear autoregressive model expresses a value
of a function f(x) as a linear combination of a certain number of preceding values.
Specifically, each function value in the sequence has some correlation with previous
function values and can, therefore, be predicted through a number of, say, M ob-
servations of previous function values. The autoregressive model is a simple pre-
diction of the current radius by a linear combination of M previous radii plus a
constant term and an error term:

ft ¼ aþ
Xm
j¼1

hjft�j þ
ffiffiffi
b

p
xt ð6:24Þ

where hj, j = 1, 2, …, m are the AR-model coefficients, m is the model order, it tells
how many preceding function values the model uses.

ffiffiffi
b

p
xt is the current error term

or residual, reflecting the accuracy of the prediction. a is proportional to the mean of
function values. The parameters {a, h1, …, hm, b} are estimated by using the least
square (LS) criterion. The estimated {hj} are translation, rotation, and scale
invariant. Parameters a and b are not scale invariant. But the quotient a=

ffiffiffi
b

p
, which
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reflects the signal-to-noise ratio of the boundary, is regarded as an invariant.
Therefore, the feature vector h1; . . .; hm; a=

ffiffiffi
b

p
 �
is used as the shape descriptor.

The AR descriptors can capture the cyclic patterns of shape, it works well for a
regular and smooth shape. However, AR is an optimization process, for irregular
and complex shapes, it may not have a solution. Furthermore, the choice of m is a
complicated problem and is usually decided empirically.

6.3.5 Scale Space Method

6.3.5.1 Scale Space
The problem of noise sensitivity and boundary variations in most spatial domain
shape methods inspire the use of scale space analysis. The scale space represen-
tation of a shape is created by tracking the position of inflection points in a shape
boundary or signature. This is done by repeatedly applying low-pass Gaussian
filters of variable widths r at the signature function f(x).

L x; rð Þ ¼ g x; rð Þ � f xð Þ ð6:25Þ

The inflection points that remain present in the Gaussian filtered signature
functions are expected to be “significant” object characteristics. The result is usually
an interval tree, called “fingerprint”, consisting of inflection points shown in
Fig. 6.12 [3]. As can be seen from Fig. 6.12a, as the scale r goes up, the number of
inflection points on the function f(x) decreases. However, at each point of the
function, the inflection point disappears at different scale, this feature has been
captured in the interval tree shown in Fig. 6.13b.

(a) (b)

f(x) x

σ

σ =0
σ = 1

σ = n

Fig. 6.13 Shape signature in scale space. a An original signature function f(x) at the bottom and
its successively smoothed versions on the top of it (up to scale 512), where r is the scale of the
smoothed function; b the interval tree derived from the zero-crossings of the second derivatives of
the smoothed functions at the left, each (x, r) in the interval tree corresponds to a zero-crossing
point at position x and scale r of the function at left-hand side
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6.3.5.2 Curvature Scale Space
The difficulty with scale space method is the interpretation of the interval tree.
Mokhtarian and Mackworth [4] developed a curvature scale space (CSS) descriptor
by finding the peaks of the interval tree. The computation of the CSS descriptor
consists of two procedures [5]. The first is to compute a CSS contour map or the
interval tree. The second is to extract the branch peaks from the interval tree.

Algorithm of computing CSS contour map:

1. Normalize shape to a fixed number of boundary points;
2. Create an array ZC[ ][ ] to record curvature zero-crossing points at each scale;
3. Set r = 0;
4. Compute curvatures of each position at scale r;
5. Record each curvature zero-crossing point at current scale r to ZC[r][x];
6. Set r = r + 1;
7. Smooth the boundary with a Gaussian filter g(x; r);
8. Repeat step 3–7 until no curvature zero-crossing points are found;
9. Plot ZC[r][x] onto a Cartesian space to create CSS contour map.

Algorithm of extracting CSS contour peaks:

1. Scanning from the top row of CSS contour map;
2. If a zero-crossing point is found at a location (i, j), check the above neighbor

points (i − 1, j − 1), (i − 1, j), and (i − 1, j + 1). If the three above neighbor
points are nonzero-crossing points, then the location (i, j) is a peak candidate;
find all the peak candidates in row i;

3. For each peak candidate (i, j) at row i, check its neighbor peak candidates, if a
neighbor candidate (i, k) is found over five points away, then (i, j) is a peak. If a
neighbor candidate is found within five points, there is a peak at the middle (i,
(j + k)/2);

4. Repeat step 2 and 3 for each row, until all the CSS peaks are found.

Fig. 6.14 Computation of curvature scale space. A fish shape (left), its CSS contour map (center)
and CSS peaks (right)
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Figure 6.14 shows an example of a fish shape, its CSS contour and peaks [1].
The CSS contour successfully captures the seven major corners of the shape.

The morphing of the fish shape in Fig. 6.14 during the Gaussian smoothing
process is shown in Fig. 6.15. As can be seen from Fig. 6.15, as the scale r goes
up, the shape becomes smoother and smoother until it is completely smoothed.

The matching of two CSS descriptors is complex. Assume all shapes have been
normalized into the same number of boundary points, the peaks need to be nor-
malized and circularly shifted to find the best match between two shapes. However,
due to the sensitivity of both the height and position of the highest peaks, certain
tolerance needs to be accepted during the matching of two peaks. The complex
matching can affect the performance significantly. In practice, CSS is combined
with a few robust single descriptors such as compactness, elongation, etc. [5]. But
this introduces a new issue on the weight given to each type of descriptors.

6.3.6 Fourier Descriptor

For any 1D signature function f(x) derived from Sect. 6.3.1, its discrete Fourier
transform is given by

an ¼ 1
N

XN�1

t¼0

f ðxÞ expð�j2p nx=NÞ; n ¼ 0; 1; . . .;N � 1 ð6:26Þ

This results in a set of Fourier coefficients {an}, which is a representation of the
shape. Since shapes generated through rotation, translation, and scaling (called
similarity transformation) of the same shape are similar shapes, a shape

Fig. 6.15 The evolution of shape boundary as scale r increases
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representation should be invariant to these operations. The selection of different
start point on the shape boundary to derive f(x) should not affect the representation.

The magnitudes of Fourier coefficients |an| are invariant to rotation and starting
point because rotation and starting point only affect the phases of the coefficients.
Translation invariance can be achieved by normalizing a shape to its center of
gravity or subtraction of the mean. Scale invariance is done by normalizing the
magnitudes of the coefficients by the DC component a0, which is the average
energy of the signal and is the largest coefficient:

bnj j ¼ anj j=a0; n ¼ 1; 2; . . .;N � 1 ð6:27Þ

The set of magnitudes of the normalized Fourier coefficients {|bn|, 1 < n <
N − 1} are used as the shape descriptor, denoted as FD: {FDn, 1 < n < N − 1}.

FD has several desirable features compared with other shape descriptors. First, it
is efficient to compute due to the use of fast Fourier transform or FFT. Second, it
provides a coarse to fine representation of a shape. Figure 6.16 examples show how
a shape can be reconstructed or represented to a different level of details using
different number of Fourier coefficients [1]. In practice, only a small number of
low-frequency FDs are used to describe a shape to reduce the sensitivity to noise
and irregularities.

Third, all FDs have physical meaning, they capture the different frequency
components or different level of details of a shape boundary. Fourth, the matching
of two FDs are very simple, it is done by either the city block or Euclidean distance.
Because of these desirable features, FD is one of the most robust shape descriptors
for contour based shapes. The study by Zhang et al. [5] shows that FD outperforms
CSS descriptor which has been adopted by MPEG-7.

Fig. 6.16 Reconstructed shapes of an apple shape using Fourier coefficients from a r(t); b z(t). In
both (a) and (b), from left to right, the shapes are reconstructed using 5, 10, 20, 30, and all the
Fourier coefficients, respectively
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6.3.7 Discussions

The global shape descriptors described above are basically a mathematical sum-
marization of the boundary samples. However, just like any mathematics, it is based
on ideal assumptions and constraints. Typically, these descriptors only work on
ideal applications where objects are located in isolation and the boundary of the
objects can be viewed or kept in completeness. If the objects overlap each other or
certain part of the object boundary is missing, these descriptors do not work any-
more. For example, an apple with a bite is still perceived as an apple, like the
famous Apple Inc. logo. But using the global shape descriptors, the bite on the
apple will change the mathematical summarization dramatically and cause a mis-
match. In such kind of applications, structural shape methods can be used to
analyze the structure of a shape boundary and match shapes using part of the shape
boundary. In the following, different types of structural shape methods are
described in details.

6.3.8 Syntactic Analysis

Syntactic analysis is inspired by the phenomenon that composition of a natural
scene is analog to the composition of a language, that is, sentences are built up from
phrases, phrases are built up from words and words are built up from alphabets, etc.
[6, 7]. In syntactic methods, a shape is represented with a set of predefined prim-
itives. The set of predefined primitives is called the codebook and the primitives are
called codewords. For example, given the codewords in the right of Fig. 6.17, the
hammer shape at the left can be represented as a grammatical string of S:

S ¼ a b b b c b b c b d b b ð6:28Þ

The matching between shapes can use string matching by finding the minimal
number of edit operations to convert one string into another.

a

b
b

b c

b
b

c

b
d

b

a

d c

b

b

Fig. 6.17 Syntactic analysis of a hammer shape
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A more general method is to formulate the representation as a string grammar.
Each primitive is interpreted as an alphabet of some grammar, where grammar is a
set of rules of syntax that govern the generation of sentences formed from symbols
of the alphabet. The set of sentences generated by a grammar, G is called its
language and is denoted as L(G). Here, sentences are strings of symbols (which in
turn represent patterns), and languages correspond to pattern class. After grammar
has been defined, the matching is straightforward. For a sentence representing an
unknown shape, the task is to decide in which language the shape represents a valid
sentence.

In practice, however, it is difficult to infer a pattern grammar which can generate
only the valid patterns. In addition, this method needs a priori knowledge of the
database in order to define codewords or alphabets. The knowledge, however, is
usually unavailable.

6.3.9 Polygon Decomposition

Polygon can be used to capture the overall shape of a contour and discard the minor
variations or noise along the shape boundary. In general, there are two methods to
create a polygon from a shape contour: merging and splitting, both are based on
applying a distance threshold on the cumulated distance (or errors) between the
shape boundary and the polygon line segments [8].

Merging methods add successive pixels to a line segment if each new pixel that
is added doesn’t cause the segment to deviate too much from a straight line.

In the merging method, it chooses one point as a starting point on the contour,
for each new point to be added, let a line segment go from the starting point to this
new point. Then, the total squared error of all the boundary points to the line
segment is computed. If the error exceeds some threshold, the line from the starting
point to the previous point is kept and new line segment is started. For example, in
the Fig. 6.18 [8], to find out if the boundary points between Pi and Pk should be
merged, the total distance or error of all the boundary points to the line segment
PiPk is computed. If the error is larger than the threshold, keep PiPj and add a new
line segment PjPk. The distance dj from Pj to PiPk is given as (6.29) [9]. dj is equal

Pi

Pj

dj

Pk

Fig. 6.18 Polygon approximation by merging
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to twice the area of triangle ΔPiPjPk divided by the distance between PiPk and the
area of ΔPiPjPk is given in (6.21).

dj ¼
ðxk � xiÞ yj � yi

� �� xj � xi
� �

yk � yið Þ�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk � xið Þ2 þ yk � yið Þ2

q ð6:29Þ

Splitting methods work by first drawing a line from the start point of the
boundary to the end point of the boundary. Then, the perpendicular distance from
each point along the boundary to the line is computed. If this exceeds some
threshold, the boundary is broken into two segments with equal length. The process
is repeated for each of the two new segments until no boundary segment needs to be
broken (Fig. 6.19).

Once a polygon has been approximated, each segment of the polygon is regarded
as a primitive and can be described by its length and angle in relation to the
previous segment. Other features can also be used such as length ratio and triangle
area between two adjacent segments. The polygon is then represented as a string of
primitives. The length of each primitive is normalized by the shape boundary to
achieve scale invariance.

The matching between two shapes involves shift and best match. Typically, the
matching between shapes involves two steps: feature-by-feature matching in the
first step and model-by-model matching (shape-by-shape matching) in the second
step. In the first step, given a feature(s) of a query shape, the feature(s) is searched
through the indexed database, if a particular model feature in the database is found
to be similar to the query feature(s), the list of shapes associated with the model
feature is retrieved. In the second step, the matching between the query shape and a
retrieved model is matched based on the editing distance between the two string of
primitives.

Fig. 6.19 Polygon approximation by splitting
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6.3.10 Chain Code Representation

Chain codes describe an object by a sequence of unit-size line segments with a
given orientation. In the implementation, a digital boundary of an image is
superimposed with a grid, the boundary points are approximated to the nearest grid
point, then a sampled image is obtained. From a selected starting point, a chain code
can be generated by using a four-connectivity or an eight-connectivity chain code
(Fig. 6.20).

Chain code is invariant to translation because the code values are based on
directions only. Rotation invariance can be achieved by finding the pixel in the
border sequence which results in the minimum integer number, that pixel is then
used as the starting pixel. For matching, a chain code histogram (of directions)
normalized by the chain code length is used. This not only reduces the dimensions
and sensitivity to noise but also achieves scaling invariance.

Chain code is itself a fine polygon of equal side length and can be further merged
to create a coarse polygon of different side length. In other words, chain code can be
used to create a polygon of a shape.

6.3.11 Smooth Curve Decomposition

A contour shape can also be segmented into boundary segments using curvature
threshold. The idea is to first smooth the boundary with a Gaussian filter and then
calculate the curvature at each point of the smoothed boundary. The boundary is
then segmented at points where the curvature exceeds the threshold [10]. The
boundary segments are then regarded as the primitives. An example is shown in
Fig. 6.21.

The feature for each primitive is its maximum curvature and its orientation, and
the similarity between two primitives is measured by the weighted Euclidean dis-
tance. Shapes in database are then indexed with the primitives. Shapes can then be
matched using the two steps matching used in the polygon matching.

(a) (b)

1
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7
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Fig. 6.20 Computation of
chain code. a Chain code in
eight-connectivity; b chain
code in four-connectivity
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6.3.12 Discussions

The advantage of structural approach is its capability of handling occlusion problem
in the scene and allowing partial matching. However, structural approach suffers
from ambiguity of primitives, expensive computation, and complex matching.

Both global and structural approaches are sensitive to boundary noise and
irregularity. This can be overcome by extracting features from shape interior con-
tent, or using region-based feature extraction approaches.

6.4 Region-Based Shape Feature Extraction

In region-based methods, all the pixels within a shape region are taken into account
to obtain shape features. Common region-based feature extractions methods are
based on shape moments. Other region-based methods include grid method, shape
matrix, convex hull, and media axis.

6.4.1 Geometric Moments

Mathematically, geometric moments are projections of a function onto a polynomial
basis in a similar way to the FT which is a projection onto a basis of harmonic
sinusoid functions. The geometric moment of order (p + q) of a general function
f(x, y) is given as (6.30)

(105,71) (114,120)
(132,138)

(148,141) (167,88)

(71,45) (94,141)

θ
O

Fig. 6.21 Smooth curve decomposition. Left: a horse shape and its boundary segments; right: the
calculation of the angle of a segment
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Mpq ¼
Z1

�1

Z1

�1
xpyqf ðx; yÞdxdy; p; q ¼ 0; 1; 2; . . . ð6:30Þ

Two simple properties can be derived from geometric moment:

Mass ¼ M00 ð6:31Þ

Centroid = �x ¼ M10

M00
;�y ¼ M01

M00

� 
ð6:32Þ

The central moments of order p + q of a shape image f(x, y) are given by

lpq ¼
X
x

X
y

ðx� �xÞpðy� �yÞqf ðx; yÞ p; q ¼ 0; 1; 2. . . ð6:33Þ

The normalized central moments lpq/l00 are invariant to both translation and
scaling. The following properties can be observed from geometric moments.

• (M10/M00, M01/M00) defines the center of gravity or centroid of a shape.
• M20 and M02 describe the distribution of mass of the shape with respect to the
coordinate axes. They are also called the moments of inertia.

• l10/l00 and l01/l00 are the horizontal mean and vertical mean of the shape,
respectively.

• l20/l00 and l02/l00 are the horizontal variance and vertical variance of the
shape, respectively.

• l11 is the covariance of the shape.
• l30/l00 and l03/l00 represent the horizontal skewness and vertical skewness of
the shape, respectively. The skewness measures the symmetry of a shape. The
skewness of a symmetric shape equals to zero.

• l40/l00 and l04/l00 represent the horizontal kurtosis and vertical kurtosis of the
shape, respectively. The kurtosis measures the peakedness or sharpness of the
pixel distribution inside the shape.

These are important properties to describe how pixels are distributed inside the
shape. Since both xp and yq are monomials, they amplify the moment values of
pixels farther away from the centroid, higher order moments reflect how dramatic a
shape changes in relation to its centroid.

However, geometric moments are not rotation invariant and it’s difficult to
derive moment invariants of high order. Hu [11] has derived seven moment
invariants up to order three:
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U1 ¼ g20 þ g02
U2 ¼ g20 � g02ð Þ2 þ 4 g11ð Þ2
U3 ¼ g30 � 3g12ð Þ2 þ 3g21 � g03ð Þ2
U4 ¼ g30 þ g12ð Þ2 þ g21 þ g03ð Þ2
U5 ¼ g30 � 3g12ð Þ g30 þ g12ð Þ g30 þ g12ð Þ2�3 g21 þ g03ð Þ2

h i
þ 3g21 � g03ð Þfg21 þ g03Þ 3 g30 þ g12ð Þ2� g21 þ g03ð Þ2

h i
U6 ¼ g20 � g02ð Þ g30 þ g12ð Þ2� g21 þ g03ð Þ2

h i
þ 4g11 g30 þ g12ð Þ g21 þ g03ð Þ

U7 ¼ 3g21 � g30ð Þ g30 þ g12ð Þ g30 þ g12ð Þ2�3 g21 þ g03ð Þ2
h i

þ 3g12 � g03ð Þ g21 þ g03ð Þ 3 g30 þ g12ð Þ2� g21 þ g03ð Þ2
h i

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð6:34Þ

where ηpq = lpq/(l00)
c and c = 1 + (p + q)/2 for p + q = 2, 3, ….

The geometric moment transform can be extended to generalized form by
replacing the conventional transform kernel xpyq with a more general kernel of Pp(x)
Pq(y).

6.4.2 Complex Moments

The rotation invariance issue of the geometric moments can be easily addressed by
using complex moments and polar sampling because the magnitude of a complex
function is invariant to rotation and polar sampling is also invariant to rotation. The
idea is to replace the real polynomials in the geometric moment with complex
polynomials and sample the shape in a polar coordinate system. The general form
of complex moments is defined as (6.35)

Cpq ¼ Z1

�1

Z1

�1
xþ jyð Þp x� jyð Þqf x; yð Þdxdy ð6:35Þ

where j ¼ ffiffiffiffiffiffiffi�1
p

. The orthogonal Zernike moments are derived from Zernike
polynomials:

Vnmðx; yÞ ¼ Vnmðq cos h; q sin hÞ ¼ RnmðqÞ expðjmhÞ ð6:36Þ

where

RnmðqÞ ¼
Xðn� mj jÞ=2

s¼0

ð�1Þs ðn� sÞ!
s! nþ mj j

2 � s
� �

! n� mj j
2 � s

� �
!
qn�2s ð6:37Þ

where q is the radius from (x, y) to the shape centroid, h is the angle between q and
x-axis, n and m are integers and subject to n − |m| = even, |m| � n. Zernike
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polynomials are a complete set of complex-valued function orthogonal over the unit
disk, i.e., x2 + y2 = 1. Therefore, a shape is first normalized into a unit disk to
compute Zernike moments.

For example, the first six real Zernike polynomials are given in the following:

R00ðqÞ ¼ 1; R11ðqÞ ¼ q; R20ðqÞ ¼ 2q2 � 1
R22ðqÞ ¼ q2; R31ðqÞ ¼ 3q3 � 2q; R33ðqÞ ¼ q3

The first 10 real Zernike polynomials of up to order 5 is shown in Fig. 6.22.
The complex Zernike moments of order n with repetition m are thus defined as

Anm ¼ nþ 1
p

X
x

X
y

f ðx; yÞV�
nmðx; yÞ; x2 þ y2 � 1 ð6:38Þ

or

Anm ¼ nþ 1
p

X
q

X
h

f q cos h; q sin hð ÞRnm qð Þ exp jm hð Þ; q� 1 ð6:39Þ

where * means complex conjugate. Due to the constraint of n − |m| = even and
m < n, there are [n/2] repetition of moments in each order n. As an example, the
first 36 Zernike moments of up to order 10 are given in Table 6.1. The table only
shows the moments with positive m, the moments of negative m are just the
rotational versions of the moments of positive m. It can be seen from the table, from

Fig. 6.22 The first ten real
Zernike polynomials

6.4 Region-Based Shape Feature Extraction 139

www.EBooksWorld.ir



the second order (row), there are [n/2] repetition of moments which capture dif-
ferent circular frequencies. The images of Zernike moment functions from order 1
to 10 are shown in Fig. 6.23 [12].

A simplified complex moment is used by MPEG-7, called angular radial
transformation (ART).

ARTnm ¼ 1
2p

X
q

X
h

f q cos h; q sin hð ÞVnm q; hð Þ; q� 1 ð6:40Þ

where Vnm is the ART basis function

Vnm ¼ Rn qð Þ exp jm hð Þ ð6:41Þ

Table 6.1 List of Zernike moments up to order 10

Order
(n)

Zernike moment of order
n with repetition m (Anm)

Number of moments
in each order n

Total number of
moments up to order 10

0 A0, 0 1 36

1 A1, 1 1

2 A2, 0, A2, 2 2

3 A3, 1, A3, 3 2

4 A4, 0, A4, 2, A4, 4 3

5 A5, 1, A5, 3, A5, 5 3

6 A6, 0, A6, 2, A6, 4, A6, 6 4

7 A7, 1, A7, 3, A7, 5, A7, 7 4

8 A8, 0, A8, 2, A8, 4, A8, 6, A8, 8 5

9 A9, 1, A9, 3, A9, 5, A9, 7, A9, 9 5

10 A10, 0, A10, 2, A10, 4, A10, 6,
A10, 8, A10, 10

6

Fig. 6.23 The first 36 Zernike moments from order 1 to 10
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and Rn(q) is the radial basis function

Rn qð Þ ¼ 1 if n ¼ 0
2 cos npqð Þ if n 6¼ 0

�
ð6:42Þ

The real part of the first 36 ART basis functions are shown in Fig. 6.24.
Compared with geometric moments, complex moments are invariant to rotation

and they are also more robust due to capturing the spatial information within a
shape. They have minimum information redundancy due to orthogonal basis.

However, the computation of complex moments is more expensive than geo-
metric moments. The image needs to be normalized to a unit disk. For an irregular
shape, this may either cut out part of the shape if an interior circle is used or include
irrelevant part if an exterior circle is used. Depending on how much the shape is cut
out or irrelevant part is included, the unit disk normalization can affect the accuracy.

6.4.3 Generic Fourier Descriptor

Complex moment improves the geometric moment with three advantages: rotation
invariance, spatial or frequency information, and orthogonality. These three features
can be achieved more naturally and efficiently using Fourier transform. The generic
Fourier descriptor or GFD is a method just based on this idea [13].

The idea is to first transform a shape into a rectangular polar image with sides
r and h by a polar raster sampling around the shape centroid. Next, a 2D Fourier
transform is applied on the transformed rectangular image. The normalized Fourier
coefficients are then used as the shape descriptor.

Figure 6.25 demonstrates the polar raster transform [13]. For example,
Fig. 6.25a is the original shape image in polar space, Fig. 6.25b is the polar raster
sampled image plotted into Cartesian space.

Given a shape image I = {f(x, y); 0 � x < M, 0 � y < N}. To apply the polar
Fourier transform or PFT, the shape image is converted from Cartesian space to
polar space Ip = {f(r, h); 0 � r < R, 0 � h < 2p}, R is the maximum radius of the
shape. The origin of the polar space is set to be the centroid of the shape so that the
shape is translation invariant. The centroid (xc, yc) is given by (6.43)

Fig. 6.24 Real parts of the ART basis functions
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xc ¼ 1
M

XN�1

x¼0

x; yc ¼ 1
N

XM�1

y¼0

y ð6:43Þ

and (r, h) is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þðy� ycÞ2

q
; h ¼ arctan

y� yc
x� xc

ð6:44Þ

The shape image is then polar raster sampled around the centroid and trans-
formed into a rectangular polar image. The polar image, e.g., Figure 6.25b, is a
normal rectangular image. Therefore, a 2D FT is applied on this polar rectangle
(PFT). The PFT has a similar form to the normal discrete 2D FT in Cartesian space
and is defined as

PFðq; hÞ ¼
X
r

X
i

f ðr; hiÞ exp j2p
r

R
qþ 2pi

T
h

� �� �
ð6:45Þ

where 0 � r < R and hi = i(2p/T) (0 � i < T); 0 � q < R, 0 � h < T. R and
T are the radial frequency resolution and angular frequency resolution, respectively.

In addition to the three advantages of complex moment, the PFT has another
desirable feature of capturing shape information in a smaller number of
low-frequency coefficients. This is particularly suitable for shape representation.
Figure 6.26 shows an example of PFT on two shape images with different orien-
tations. Conventional 2D FT on the two images results in two different spectra, as
they are rotated each other. It can be observed from the middle row of Fig. 6.26 that
rotation of shapes in Cartesian space results in circular shift in polar space. How-
ever, the circular shift does not change the spectra distribution on polar space, e.g.,
the bottom row of Fig. 6.26.

Since f(x, y) is a real function, the spectra is circularly symmetric, only the first
quarter of the spectra features is needed to describe the shape.

The acquired coefficients of the PFT are translation invariant due to the use of
centroid as polar space origin. Rotation invariance is achieved by ignoring the
phase information in the coefficients and only retaining the magnitudes of the

(a) (b)

r
θ

r

θ

Fig. 6.25 Polar raster transform. a An original shape image in polar space; b polar raster sampled
image of (a) plotted into Cartesian space
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coefficients. To achieve scale invariance, the first magnitude value is normalized by
the area of the circle (area) in which the polar image resides or the mass of the
shape (mass), and all the other magnitude values are normalized by the magnitude
of the first coefficient. The translation, rotation, and scale normalized PFT coeffi-
cients are used as the shape descriptor. To summarize, the shape descriptor derived
from the PFT is shown as follows:

GFD ¼ PFð0; 0Þj j
area

;
PFð0; 1Þj j
PFð0; 0Þj j ; . . .;

PFð0; nÞj j
PFð0; 0Þj j ; . . .;

PFðm; 0Þj j
PFð0; 0Þj j ; . . .;

PFðm; nÞj j
PFð0; 0Þj j

� 

ð6:46Þ

where m is the maximum number of the radial frequencies selected and n is the
maximum number of angular frequencies selected. m and n can be adjusted to
achieve hierarchical coarse to fine representation requirement. Normally, the first
coefficient, or the DC component is used as the normalization factor and is dis-
carded after normalization. However, this component is used as an additional
feature in a shape descriptor because it reflects the average energy (scale) of the
shape which is useful for shape description.

For efficient shape description, only a small number of the acquired GFD fea-
tures are selected for shape representation. The selected GFD features form a
feature vector which is used for indexing the shape.

Compared with Zernike moment descriptor (ZMD), GFD is simpler and more
efficient to compute.

Fig. 6.26 Rotation invariant GFD. Top row: two shape images with different orientations; middle
row: the polar raster sampled images of the two corresponding shapes at the top row; bottom row:
the Fourier spectra images of the two corresponding images at the middle row

6.4 Region-Based Shape Feature Extraction 143

www.EBooksWorld.ir



6.4.4 Shape Matrix

The most intuitive way to represent a shape is simply to binarize the shape within a
bounding box, the result is a binary shape matrix. To acquire the shape matrix of a
shape S, a square is centered at the center of gravity G of S (Fig. 6.27). The side
length of the square is equal to 2L, where L is the maximum distance from G to a
point M on the boundary of the shape, or L ¼ GM. All shape squares are nor-
malized with the same length L and are aligned with line L. The square is then
divided into N � N blocks bij and the shape matrix is defined as SM = [cij] where
cij is given by

cij ¼ 1 if A S\ bij
� �

[A bij
� �

=2
0

�
ð6:47Þ

where A(∙) is the area function.
It is easy to show that the shape matrix acquired this way is invariant to

translation, scale and rotation. The similarity of two shape matrices A = [aij] and
B = [bij] is given by

d A;Bð Þ ¼ 1� 1
N2

XN
i¼0

XN
j¼0

aij � bij
�� �� ð6:48Þ

In [14], a binary shape number is created by concatenating the rows of a shape
matrix into a vector.

The shape matrix acquired this way is sensitive to boundary noise because the
size and orientation of the square bounding box can easily be influenced by
the noise. In practice, there needs to be multiple guesses of longest radii, therefore,
the best matching of multiple shape matrices is needed.

Fig. 6.27 Computation of a shape matrix. A shape on the left and its shape matrix on the right
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A more robust shape matrix can be created by a using polar grid [15]. The idea is
similar to the square shape matrix, however, instead of using a square grid, a polar
grid is used. For example, the polar shape matrix of a shape is shown in Fig. 6.28.

The polar model of shape matrix is more robust than the square model because
rotation of a shape only causes a horizontal shift of the shape matrix, the matching
become simply a shift best matching. However, since the sampling density of the
polar raster is not constant at all rings, a weighed shape matrix is necessary.

6.4.5 Shape Profiles

6.4.5.1 Shape Projections
Shape profiles can be extracted from the projections of the shape. The profiles are
the projections of the shape onto x-axis and y-axis on the Cartesian coordinate
system. By vertical and horizontal projections, two 1D functions are obtained:

Pv xð Þ ¼ Pymax
ymin

f x; yð Þ

Ph yð Þ ¼ Pxmax
xmin

f x; yð Þ

9>>=
>>;

ð6:49Þ

The vertical profile Pv(x) counts the number of pixels on each column of the
shape and the horizontal profile Ph(y) counts the number of pixels on each row of
the shape (Fig. 6.29). The profiles are unique to each type of objects, they can be
used as shape signatures to describe shapes.

Polar shape profiles can also be obtained in a similar way by counting the
number of pixels at each angle and radius on polar coordinates.

Fig. 6.28 Computation of a polar raster shape matrix. Left: polar raster sampling of a shape;
Right: its polar shape matrix
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6.4.5.2 Radon Transform
Multiple shape profiles projected from different directions h can be obtained using
the Radon transform. When all these profiles are aligned on the h axis in 3D, they
create a Radon spectrum of the shape and the spectrum captures the content
information of the shape region.

A Radon transform works by creating a shape profile at each angle. Formally, it
is defined as

R q; hð Þ ¼
ZZ1

�1
f x; yð Þd x cos hþ y sin h� qð Þdxdy ð6:51Þ

where q = x cosh + y sinh is the line the shape is to be projected; h and q are the
angle of the line and distance of the line to the origin, respectively. d(x) is the Dirac
delta-function and is given by (6.51)

dðx� aÞ ¼ 0 for x 6¼ a ð6:51Þ

Z1

�1
f xð Þd x� að Þdx ¼ f að Þ ð6:52Þ

The projection of a shape image at a particular angle h is shown in Fig. 6.30.

Ph(y)

Pv(x)

Fig. 6.29 Computation of shape profiles. A binary shape image with its vertical profile
Pv(x) (top) and horizontal profile Ph(y) (right-hand side)
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The top row of Fig. 6.31 shows the projections of a hammer shape from two
different directions. It can be seen, the projection at 8° has a much higher amplitude
than that at 90° due to the projection at 8° captures the profile of the long handle.
The two profiles are shown at the bottom row of Fig. 6.31 after zooming in and
realignment with the projection angles.

In order to capture the complete information of a shape, projections from all
directions are created. If the projections from all directions are created and plotted
into an angle-magnitude plane, it creates a spectrum of the transformed shape
image. For example, the Radon transform spectrum of the hammer shape is shown
in Fig. 6.32. The bright spots on the spectrum indicate high amplitudes on the
projections. In this case, there is a single brightest spot at around 8°, it exactly
captures the handle angle of the hammer. The next brightest area is around 100°,
pointing to the hammerhead. Another Radon transform example is shown in
Fig. 6.33, where the most bright spots are at 0° and 90°, pointing to the vertical legs
and horizontal body of the dog.

A histogram or a GFD can be computed from the Radon spectrum image as a
shape descriptor to match between two shapes.

ρ

x

y

Object

Fig. 6.30 A shape profile from Radon transform
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Fig. 6.31 Shape profiles of a hammer image. Top row: A hammer shape and its Radon
transforms at 90° and 8°; Bottom row: the 90° and 8° profiles of the hammer shape after zooming
in and realignment
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6.4.6 Discussions

Global region based methods treat a shape region as a whole instead of just using
the boundary, and make effective use of all the pixel information within the region.
These methods measure pixel distribution within the shape region, which are less
likely affected by noise and variations. This makes them more robust than contour-
based methods. Methods like complex moments and GFD are more powerful region
shape descriptors than conventional moments because they not only capture the
pixel distribution within a shape but also capture the spatial details or spatial
relationship between pixels. This spatial feature gives them a significant advantage

  

Fig. 6.32 Radon transform of hammer shape. A hammer shape (left) and its Radon transform
spectrum (right)

Fig. 6.33 A dog shape and its Radon transform spectrum
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over other region-based methods, such as geometric moments, shape matrix, shape
profiles, etc.

However, similar to the global boundary-based methods, global region-based
methods cannot deal with overlapped shapes or shapes with missing parts. To
address this issue, structural methods are used. Similar to the contour structural
methods, region-based structural methods decompose a shape region into indi-
vidual parts which are then used for shape representation and description. In the
following, we discuss two of the region-based structural methods.

6.4.7 Convex Hull

A region R is convex if and only if any two points x1, x2 2 R, the whole line
segment x1x2 is inside the region. The convex hull of a region is the smallest convex
region H which satisfies the condition R � H. The difference H − R is called the
convex deficiency D of the region R. Methods of computing a convex hull from a
shape include morphological methods [16, 17] and polygon approximation. Shape
boundaries tend to be irregular because of digitization, noise, and variations in
segmentation; these irregularities and noise usually result in a convex deficiency
that has small, insignificant components scattered randomly throughout the
boundary. Common practice is to first smooth a boundary prior to convex hull
computation. The polygon approximation is particularly attractive because it
reduces the computation of extracting convex hull from O(n2) to O(n).

The extracting of convex hull features can be a single process which finds the
most significant convex deficiencies along the boundary. The shape can then be
represented by a string of concavities. A fuller representation of the shape may
be obtained by a recursive process which results in a concavity tree. To do this, the
convex hull of an object is first obtained and its convex deficiencies are detected,
they are level 1 convex hull and convex deficiencies. Next, the convex hulls and
deficiencies of the level 1 convex deficiencies are found. Then, the convex hulls and
deficiencies of the level 2 convex deficiencies are found. So on so forth until all the
derived convex deficiencies are convex.

Figure 6.34a illustrates the computation of convex hull and concavities [7]. The
shape is then represented as a concavity tree in Fig. 6.34b. Each concavity can be
described by its area, bridge length which is the line connecting the cut of the
concavity, maximum curvature, distance from maximum curvature point to the
bridge. The matching between shapes becomes a string matching or a graph
matching. A shape boundary needs to be smoothed to remove small irregularities
before convex hull and concavity extraction, otherwise, the concavity tree would be
very complex and sensitive. For example, if the boundary of the apple shape in
Fig. 6.34a had been smoothed, the concavity tree would only have four branches
S1–S4, which accurately represent the shape boundary.
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6.4.8 Medial Axis

Like the convex hull, region skeleton can also be employed for shape representation
and description. A skeleton may be defined as a connected set of medial lines along
the limbs of a figure [7]. For example, in the case of thick hand-drawn characters,
the skeleton may be supposed to be the path traveled by the pen. The basic idea of
the skeleton is that eliminating redundant information while retaining only the
topological information concerning the structure of the object that can help with
recognition.

Shape skeleton can be found by using Blum’s medial axis transform
(MAT) [18]. In MAT, the medial axis is the locus of centers of maximal disks or
bi-tangent circles that fit entirely within the shape as illustrated in Fig. 6.35. The
bold line in the figure is the skeleton of the hand shape. The skeleton can then be

(a) (b)

S1 

S2
S3

S4 S11
S12
S13
S14
S15

S

S

S1 S2 S3 S4

S11 S12 S13 S14 S15

Fig. 6.34 Convex hull and concavity tree of an apple shape. a The convex hull of an apple shape
and its concavities; b Concavity tree representation of the convex hull

Fig. 6.35 Computation of media axis. Left: construction of medial axis of a rectangle shape using
locus of circles; Right: the medial axis or skeleton of the hand shape
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decomposed into segments and represented as a graph according to certain criteria.
The matching between shapes becomes a graph matching problem.

The computation of medial axis in this way is a rather challenging problem. In
addition, medial axis tends to be very sensitive to boundary noise and variations.
Therefore, it is suggested that the contour of a shape be smoothed before the media
axis computation.

The medial axis can be computed from scale space. The medial axis acquired in
this way is called the core of the shape [19].

An alternative way of finding the medial axis is to use a distance transform
(calculate the distance from each shape point to the background) to convert the
binary shape into a gray-level distance map (Fig. 6.36b). A ridge detection is then
applied on the distance map followed by a linking process. The ridge points are
local extrema which can be found by scanning the distance map both horizontally
and vertically. An extrema is found at where the gradient changes from positive
(uphill) to negative (downhill). The skeleton of the shape is finally shown up after
the linking process (Fig. 6.36c).

The limbs and spine of the skeleton are then detected, features of the limbs and
spine such as length, angle, curvature are computed for indexing.

The region structural methods are useful in applications which require partial
matching due to object overlapping and missing parts. However, they suffer from
similar drawbacks to the contour base structural approaches. Apart from complex
computation and implementation, the graph matching is also a complex issue.
These issues can affect the performance of region structural methods significantly.

6.5 Summary

This chapter describes three types of shape descriptors: perceptual, contour-based,
and region-based. Perceptual shape descriptors are very intuitive and easy to
understand, however, they are not powerful enough to be used alone. Typically,
they are used as filters to eliminate large number of irrelevant shapes before other
shape descriptors are used to refine the retrieval list.

Fig. 6.36 Computation of a shape skeleton. a A horse shape image; b distance map of (a);
c skeleton of the shape
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Generally, contour shape descriptors are more sensitive to noise and variations
than region shape descriptors due to using less information to extract the features.
The sensitivity issue can be alleviated by using spectral transform such as Fourier
descriptor. Region-based methods are usually more robust because they make use
all the information within the shape region instead of just the boundary.

For image description and retrieval, MPEG-7 has set a set of principles to
evaluate the suitability of shape technique: good retrieval accuracy, compact fea-
tures, general application, low computation complexity, robust retrieval perfor-
mance, and hierarchical coarse to fine representation. Based on these principles,
methods like FD, GFD, ZMD are desirable descriptors.

However, every shape technique has its advantages and disadvantages. The
choice of shape techniques often depends on applications and data sets. For
example, for shapes with the solid interior, contour-based methods are usually
preferred, such as fish sorting, tool recognition, etc. In applications with overlapped
objects which require partial matching, structural methods are a preferred choice.

6.6 Exercises

1. Find a binary shape with connected boundary, use the boundary trace code and
area code from the following webpages to compute the circularity/compactness
of the shape. Try more shape images and explain the effectiveness of
circularity/compactness.

https://au.mathworks.com/help/images/boundary-tracing-in-images.html.
https://au.mathworks.com/help/images/ref/bwarea.html.

2. Find a binary shape image and use the following Matlab code to extract the
bounding box of the shape (change image_name to your own image name).
Then calculate the elongation of the shape.

I = imread(‘image_name’);
h = bwconvhull(I);
stats = regionprops(h, ‘BoundingBox’, ‘MajorAxisLength’, ‘MinorAxisLength’);
imshow(I);
hold on;
rectangle(‘Position’, stats.BoundingBox, ‘EdgeColor’, ‘b’);
stats

3. Find a binary image and use the following Matlab code to compute the Radon
transform of the image (replace the image I with your own image using the
imread() function shown in the above code): https://au.mathworks.com/help/
images/ref/radon.html. Examine the Radon spectrum, match the bright spots on
the spectrum and their corresponding features on the binary image.

6.5 Summary 153

www.EBooksWorld.ir

https://au.mathworks.com/help/images/boundary-tracing-in-images.html
https://au.mathworks.com/help/images/ref/bwarea.html
https://au.mathworks.com/help/images/ref/radon.html
https://au.mathworks.com/help/images/ref/radon.html


4. Use the methods shown in Exercise 1 of both Chaps. 4 and 5 to compute the
mean, standard deviation and the histogram of the Radon spectrum from
Exercise 3.

5. Find more binary shape images, compute the Radon spectra of these images,
then compute the statistics and histograms of the Radon spectra. Write a short
report on how well the features from Radon spectra describe the images and
compare them with the features computed from Exercise 1 and 2.
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Part III
Image Classification and Annotation

Dripping water penetrates the stone.

Introduction

Due to the rapid digitization and development of the Web, the world is full of
digital images. However, without proper classification, these mammoth amount of
images are not going to be much helpful; instead, it has caused a huge waste of
resources.

A vast amount of research has been done in the past decades to organize digital
images into categories so that they can be searched and retrieved conveniently.
However, despite the tremendous effort, we are still at the early stage of under-
standing images.

Basically, image classification is to organize images into different classes based
on the features of the images. Image annotation is to label images with different
semantic class names, such as trees, airplanes, lake, etc. The difference between
image classification and image annotation is that image annotation attempts to
annotate an image with multiple labels or classify an image into multiple classes.
Image annotation is done through Multiple Instance Learning (MIL). With MIL, an
image is represented with a Bag of Features (BOF), and an image is labeled as
positive if any of the instances in the bag is positive. Image classification and
annotation are closely related, because if an image is correctly classified, it can be
annotated and if an image is correctly annotated, it can be properly classified into a
class.

Given an image as in Fig. III.1, what we want is to classify it into one of the
semantic classes, such as “mountain” or “plants” or “nature”, with a probability or
likelihood.

However, what we have is usually a sequence of numeric features computed
through certain feature extraction methods described in Part II, such as a color
histogram, or a feature vector as shown in Fig. III.2.
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What we can do is to learn from experience or prior knowledge like a human
being. Suppose we know the above image is a mountain image, given an unknown
image, we can compare its features with the features of the mountain image. If there
is a good match (e.g., high probability) between the two feature vectors, we would
label or classify the unknown image also as “mountain” (Fig. III.3).

We could use this simple method to identify or retrieve all the mountain images
from the database (Fig. III.4). However, this is not going to work well, because the
single known image is not a good representation of all the mountain images in the
database. Consequently, many mountain images in the database will be misclas-
sified or not retrieved.

A much better way to identify all mountain images in a database is to collect a
large number of sample mountain images and use them to train a classifier. Once
trained, the classifier will be able to memorize these sample images and use them to
recognize unknown images.

There are generally two types of approaches on training or building a classifier,
generative versus discriminative.

Fig. III.1 An image to be classified into one of the classes

Fig. III.2 An image on the left and it is color histogram on the right
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Generative Model

The generative approach is based on an idea similar to Platonic philosophy that
there is an abstract concept or model behind every type of objects in this world,
such as trees, apples, dogs, human beings, etc. It is believed that when people try to

Fig. III.3 Matching between an unknown image with a labeled image

Fig. III.4 Use a labeled image to identify all the mountain images in a database
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recognize a specific type of objects in this world, they actually compare them with
this abstract model. Therefore, it is possible to create or work out this abstract
model for every type or class of objects. The simplest way to create this kind of
model is to collect a set of real-world samples and average them, for example, an
average apple (Fig. III.5).

However, this can only do simple classification by distinguishing apples from
non-fruit objects, while it would be difficult to distinguish apples from other fruits
such as peaches, or pears. In practice, a probabilistic distribution is learnt from the
collected samples and the distribution is used as the model representing the objects
(Fig. III.6). The variety of those probabilistic methods follow the generative
approach, including the typical Gaussian mixture model and Bayesian methods.

Discriminative Approach

In contrast to the generative approach, the discriminative approach does not believe
or is unaware of the model behind every type of objects. Instead, discriminative
methods do classification by comparing different objects based on their similarity or

learning

learnt
model

training samples

Fig. III.5 Sample apples (right) and the learnt apple model (left)

training features 

learning

model

Fig. III.6 Computation of a generative model. Sample images are represented as features (right); a
mixture distribution model is learnt from those sample features (left)
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difference, as opposed to comparing objects with a model in the generative
approach. In practice, a large number of sample training data are collected from
different classes, and an optimal hyperplane, called the classifier or a machine, is
fitted between two classes in a high-dimensional feature space (Fig. III.7). The
optimal hyperplane is found through a trial and error process by keeping testing the
similarity or difference between the training data.

Fig. III.7 A machine is fitted between two classes of data
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7Bayesian Classification

History tells the future.

7.1 Introduction

All Bayesian classification methods are based on the Bayes’ theorem which is given
below:

P AjBð Þ ¼ PðBjAÞP Að Þ
P Bð Þ ¼ PðBjAÞP Að Þ

PðBjAÞP Að ÞþPðBj�AÞP �Að Þ ð7:1Þ

where

• A and B are random events and �A is the complement of A.
• A is a hypothesis to be tested or predicted.
• B is the new data or observation, it is the new evidence to predict A.
• P(A) is called the prior probability and P(B|A) is called the likelihood, they
represent our experience or prior knowledge.

• P(B) is the observation probability or the chance to observe event B.
• P(A|B) is called the posterior probability.

The idea of Bayes’ theorem is to convert the computation of probability of P(A|B)
to P(B|A) which is easier to compute. This is extremely helpful when two random
events A and B are dependent on each other and the prediction of event A is difficult
due to lack of evidence or information; in this situation, the information about B can
be employed to help predicting A more accurately. The information about B can
usually be obtained from historical data or experience.
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This idea of predicting one event using other related events has been practiced
by human beings all the time, for example, we use symptoms to predict a disease,
use cloud to predict rain, use a man’s culture/background to predict his behavior,
use rainfall to predict harvest, etc. In the following, we use two simple examples to
get some firsthand understanding of how Bayesian theorem works in real-world
applications.

For the first example, we are planning for a sports event at a weekend in a local
club and we want to know if the weather will be fine at the weekend. We know the
weather and humidity are highly related, we can use humidity to help us predict if
the weather is fine so that the sports can go ahead. Formally, let

R ¼ Rain �R ¼ No rain H ¼ High humidity ðhumidity[ 80%Þ

Suppose we know from history (e.g., Bureau of meteorology) the following prior
information:

P Rð Þ ¼ 35% P �Rð Þ ¼ 65% P Hj�Rð Þ ¼ 30%

Suppose further we know there will be high humidity at the weekend based on
the most recent day weather, then we can predict the chance of no rain at the
weekend by the Bayes’ theorem as given below:

P �RjHð Þ ¼ PðHj�RÞP �Rð Þ
P Hð Þ ¼ PðHj�RÞP �Rð Þ

PðHj�RÞP �Rð ÞþPðHjRÞP Rð Þ
¼ 0:3� 0:65

0:3� 0:65þ 1� 0:65
¼ 0:195

0:845
� 23%

This information is useful for making a reasonable decision on if the sports event
should go ahead. Notice that without the prior information of P �Rð Þ and P Hj�Rð Þ, the
prediction and decision would have been made arbitrarily. In practice, factors such
as humidity, temperature, and atmospheric pressure are combined to obtain an even
more accurate prediction.

Another example is the application of the Bayes’ theorem on image classifica-
tion. Suppose we have detected some black and white strips (through feature
extraction) in an image, based on our experience, we believe it is likely a zebra
image. But how likely the image is a zebra, 70% of the chance, 80 or 99%? For
many other cases like financial, economic, or military situations, this likelihood is
crucial to make a right decision. It is clear we need more evidence to determine the
accurate likelihood. The answer is in statistics.

If we were able to sample all the images in the world just like a population
census in a country, we would be able to calculate the statistics and tell how many
non-zebra images would have the black and white strips. This statistic would help
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us to determine how likely the image with black and white strips is a zebra image.
Unfortunately, we are not able to do a census on all the images in the world, all we
can do is to sample part of the image population and create an image database, then
use the statistics calculated from the image database to approximate those in the
image population.

Formally, let

Z ¼ Zebra image �Z ¼ non-Zebra image BWS ¼ Black andwhite strips

Now, suppose we know the following probabilities from a training set or an
image database (our experience or prior information):

PðBWSjZÞ ¼ 1:0 P Zð Þ ¼ 0:05 PðBWSj�ZÞ ¼ 0:01

Then, given the black and white strips in an image, we can predict if there is a
zebra in the image by the Bayes’ theorem as given below:

P Z jBWSð Þ ¼ PðBWSjZÞP Zð Þ
P BWSð Þ ¼ PðBWSjZÞP Zð Þ

P BWSjZð ÞP Zð ÞþPðBWSj�ZÞP �Zð Þ
¼ 1:0� 0:05

1:0� 0:05þ 0:01� 0:95
¼ 0:05

0:0595
� 84%

Therefore, we can say there is a high chance that the image is a zebra image and
we have high confidence to classify the image into the zebra image category.

Bayes’ theorem can be extended to multiple events A1, A2, …, An as follows:

P AijBð Þ ¼ PðBjAiÞP Aið Þ
P Bð Þ ¼ PðBjAiÞP Aið Þ

PðBjA1ÞP A1ð Þþ � � � þPðBjAnÞP Anð Þ ð7:2Þ

In this case, B is related to or dependent on multiple other events Ai, and based
on what we know about the relationship or dependency between B and each Ai: P(B|
Ai), we can predict if a new observation of B is from any of the events Ai.

For example, fever (B) can be caused by many diseases or medical conditions
(Ai), such as infection, flu, pneumonia, chickenpox, measles, HIV, meningitis,
cancers, malaria, Dengue, etc. However, each disease or medical condition has
different chances of causing fever: P(B|Ai). Now, given a patient with fever, (7.2)
can be used to determine if the patient has flu: P(Ai|B). In clinical practice, however,
symptoms are typically combined to nail a disease, e.g., by combining fever with
running nose and headache, flu can be diagnosed with very high accuracy.
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7.2 Naïve Bayesian Image Classification

7.2.1 NB Formulation

The naïve Bayesian (NB) methods are based on a simple application of the above
Bayes’ theorem on numerical and high-dimensional image data.

• Given a set of N images: I = {I1, I2, …, IN}.
• And a set of n semantic classes C = {C1, C2, …, Cn} (events).
• I 2 C.
• Each image I is represented by a feature vector x = (x1, x2, …, xm) (observation).

According to Bayes’ theorem, the classification or annotation of image I to class
Ci is given by

P CijIð Þ ¼ P Cijxð Þ ¼ PðxjCiÞP Cið Þ
P xð Þ ¼ PðxjCiÞP Cið Þ

PðxjC1ÞP C1ð Þþ � � � þPðxjCnÞP Cnð Þ
ð7:3Þ

or

P CijIð Þ ¼ P Cijxð Þ ¼ PðxjCiÞP Cið ÞPn
k¼1 PðxjCkÞP Ckð Þ ð7:4Þ

Because the denominator P xð Þ ¼Pn
k¼1 PðxjCkÞ � P Ckð Þ is independent of class

Ci (i = 1, 2, …, n) and is a constant, (7.4) can be written as follows:

P CijIð Þ ¼ P Cijxð Þ ¼ 1
Z
P xjCið ÞP Cið Þ ð7:5Þ

where Z ¼Pn
k¼1 PðxjCkÞP Ckð Þ is a scaling factor. The class of image I can be

decided using the maximizing a posterior (MAP) criterion

P CjjI
� � ¼ bC ¼ arg maxi PðCijxÞ ¼ arg maxifP(xjCiÞP Cið Þ ð7:6Þ

The prior probabilities P(Ci) is usually uniform for all classes; otherwise, they
can be found by the frequency or proportion of samples belonging to class Ci

among all classes. Therefore, the classification of image I comes down to modeling
the likelihood probability of P(x|Ci).

Since image features are typically numerical and continuous, they need to be
discretized before the likelihood modeling. In practice, the following procedure is
used to compute the P(x|Ci) in (7.6).
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Training:

• A training database of images from all the n classes {C1, C2, …, Cn} are created.
• Image features from the training database are clustered into m clusters Xj using a
certain vector quantization algorithm.

• Next, a cluster centroid xj is computed for each of the clusters Xj: xj, j = 1, 2, …,
m.

• Then, the likelihood P(xj|Ci) is calculated by finding the frequency of samples in
Xj belonging to class Ci.

P xjjCj

� � ¼ No: of samples in Xjwhich are from class Ci

Total no: of samples in cluster Xj
ð7:7Þ

Classification/Annotation:

• Given a new image I with feature x.
• Match feature x to the closest cluster centroids xj’s.
• Apply the MAP of (7.6) by replacing the likelihood P(x|Ci) with (7.7) to obtain
the posterior probability P(Cj|I).

The classification and annotation of an image with Naïve Bayesian method is
illustrated in Fig. 7.1 [1, 2]. There are two major modules in an NB classifier:
training and annotation, and each of the major modules consists of three

Centroid, x1 Centroid, xm

Cluster X1 Cluster Xm

Find the 
closest 

centroids xj’s

Calculate
p(xj|c)∙p(c) MAP Label,

Training

Annotation

clustering

p( x1|c) Model building

p( xj|c)

Centroid, x2

Cluster X2 

ĉ

p( x2|c) p( xm|c) 

Input Images

x

Input image x

Features

Features

m
atching 

Fig. 7.1 Image classification with Naïve Bayesian method

7.2 Naïve Bayesian Image Classification 165

www.EBooksWorld.ir



sub-modules. The training module consists of feature extraction, clustering, and
model building, while the annotation consists of feature extraction, matching, and
decision-making using MAP.

7.2.2 NB with Independent Features

Assume x1, x2, …, xm are independent of each other, then the likelihood is given as
follows:

P xjCið Þ ¼
Ym
j¼1

PðxjjCiÞ ð7:8Þ

There are many situations where the features of a data are independent on each
other, e.g., nominal features extracted by a web crawler, such as tree, grass, sand,
water, etc. Suppose we are using a set of nominal features x = (sand, water, sky,
people) to classify a collection of images into “beach” and “non-beach” categories,
then (7.8) can be employed to modeling the likelihood in the Bayes’ theorem. Often
different types of numerical image features are combined into a more powerful
feature vector, e.g., x = (color, shape, texture), again, the likelihood probability in
the Bayes’ theorem can be computed using (7.8).

7.2.3 NB with Bag of Features

If an image I is segmented into k regions, and each region is represented as a feature
vector xj, j = 1, 2, …, k, I can be represented as a bag of features: I = {x1, x2, …,
xk}. Typically, regions in an image are independent of each other; therefore, the
conditional probability of P(I|Ci) is given by

PðIjCiÞ ¼ Pðx1; x2; . . .; xkjCiÞ ¼
Yk
j¼1

PðxjjCiÞ ð7:9Þ

7.3 Image Annotation with Word Co-occurrence

In the above naïve Bayesian classification, images are not individually labeled,
instead, they are simply classified into categories. The categories can be regarded as
implicit image annotation or collective image annotation. However, individual
images can be pre-labeled and the annotation of images can be done explicitly. Vast
amount of labeled images are available on the web, they can be employed to
annotate new images. One of the earliest works on explicit image annotation or
individual image annotation is the Word Co-occurrence model (WCC) introduced
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by Mori et al. [3]. The idea is to establish the relationship between image features
and the labels, and use the relationship as a likelihood model to label new images.
Specifically, features from pre-labeled image are clustered into clusters and a word
histogram is computed from each cluster as the likelihood model. The idea of their
method can be summarized as follows:

1. Collecting training images with pre-labeled keywords,
2. Divide each image into parts and extract features from each part,
3. Each divided part inherits all words from its original image,
4. Make clusters from all divided images using vector quantization,
5. Accumulate the frequencies of words of all partial images in each cluster, and

calculate the likelihood for every word,
6. For an unknown image, divide it into parts, extract their features, and match the

image parts with the above clusters. Combine the likelihoods of the image parts
and determine which words are most plausible.

The algorithm of the word co-occurrence model is given as follows:

• Collect and label training images. Given a training dataset of n images I = (I1,
I2, …, In) and each image Ii is pre-labeled with a set of semantic words wi:

I;wð Þ ¼ I1;w1ð Þ; I2;w2ð Þ; . . .; In;wnð Þf g

• Obtain the vocabulary of the training images. The semantic vocabulary of the
dataset consists of m words:

w ¼ w1;w2; . . .;wmð Þ

• Divide training images into blocks. Each training image is divided into small
blocks and each block inherits all the annotations from its parent image.

• Vector Quantization (VQ)

– Blocks from all the training images are clustered into v clusters represented by
the centroids c1, c2, …, cv.

– Each cluster ci is represented as a feature vector xi (each cluster is called a
visual word or VW, which is corresponding to a region in the training images):

c ¼ c1; c2; . . .; cvð Þ ¼ x1; x2; . . .; xvð Þ

• Obtain a word histogram in each cluster. Because each block has inherited a
set of words from its parent image, by counting the occurrence of words, a
histogram of words from the vocabulary can be created:
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PðwjjciÞ ¼ PðwjjxiÞ ¼ W1;W2; . . .;Wmð Þ ð7:10Þ

where Wj represents the frequency of word wj in cluster ci, P(wj jci) represents the
likelihood of word wj.

• Annotate an unknown image

– Given an unknown image Iu, it is also divided into small blocks and the blocks
of the unknown image are also clustered into clusters.

– Each unknown cluster is matched with the VWs and the nearest l VWs are
found for the unknown image.

– The matching is done by calculating the distance between each feature of the
unknown image xu and each VW xi: xu � xik k.

– The annotation of image Iu to a semantic word wj (j = 1, 2, …, k) is given by
first summing up of the histograms of matched clusters ci (i = 1, …, l) and then
selecting the top k bins as the annotations:

P w1; . . .;wkjIuð Þ ¼ top k bins
Xl
1

P wjjci
� � !

ð7:11Þ

The co-occurrence annotation method can be illustrated in Fig. 7.2 [1, 2]. There
are two key differences between Figs. 7.2 and 7.1. The first is in the training
module, while the NB builds a model of p(xi|c), the WCC builds a model of p(w|c).
The second difference in the annotation module, while the NB makes a decision
based on MAP, the WCC makes a decision based on top histogram bins which
means an image can be classified into several classes.
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Fig. 7.2 Image annotation with co-occurrence of words
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Although the co-occurrence method uses image blocks for the VQ, the blocks
can be replaced with pre-segmented image regions. This is because regardless of
blocks or regions, they are all represented with a feature vector x, and the VQ is
done based on feature vector x.

7.4 Image Annotation with Joint Probability

The word co-occurrence model is a significant development to traditional image
classification, it can be generalized into a joint probability model which is described
in the following:

• Given a training dataset of n pre-annotated images:

I;wð Þ ¼ I1;w1ð Þ; I2;w2ð Þ; . . .; In;wnð Þ

• The semantic vocabulary of the dataset consists of m words:

w ¼ w1;w2; . . .;wmð Þ

• The annotation or association of an unknown image I to a word w in the
vocabulary can be found by the joint probability of P(w, I) or P(w, x), where x is
the feature of I.

• In order to compute P(w, I), a latent variable c is introduced

PðwjIÞ ¼ P w; Ið Þ ¼ PðwjcÞ � PðcjIÞ ð7:12Þ

The computation of conditional probabilities P(w|c) and P(c|I) are given in the
following procedure:

• The training images are clustered into v clusters or VWs (the latent variables):

c ¼ c1; c2; . . .; cvð Þ ¼ x1; x2; . . .; xvð Þ

• An image to be annotated is represented as a histogram or distribution of VWs:

PðcijIÞ ¼ X1;X2; . . .;Xvð Þ ð7:13Þ

where Xi is the frequency of VW xi in image I

• Each cluster is represented as a histogram or distribution of vocabulary words:

PðwjjciÞ ¼ W1;W2; . . .;Wmð Þ ð7:14Þ

where Wj represents the frequency of word wj in cluster ci,
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• Finally, the annotation of image I to a word wj is given by

PðwjjIÞ ¼ PðwjjciÞ � PðcijIÞ ð7:15Þ

As discussed in Sect. 7.2, images can be segmented into regions and represented
as a bag of features for annotation.

• If an image I is represented as a bag of features (pre-clustered): I = {x1, x2,…, xk}
• The conditional probability of P(ci|I) in (7.15) can be computed using MAP:

P cijIð Þ ¼ arg maxcj PðcjjIÞ ¼ arg maxcj PðIjcjÞ � PðcjÞ
� � ð7:16Þ

where

PðIjcjÞ ¼ Pðx1; x2; . . .; xkjcjÞ ¼
Yk
l¼1

PðxljcjÞ ð7:17Þ

The key idea of image annotation based on the joint probability model is the
association of semantic words with visual words. This is achieved through the VQ
process. Once image features are clustered, each cluster (VW) and the semantic
words are bound together or associated, because each image feature inherits the
semantic word(s) from its parent image. This idea can be illustrated in Fig. 7.3.

Fig. 7.3 Association of semantic words with block features
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Once image features are clustered and visual words are generated, two types of
distribution can be created from each cluster: P(x|ci) and P(w|ci). P(w|ci) is the word
distribution in cluster ci, it connects the VWs to the semantic vocabulary. P(x|ci) is
the feature distribution in cluster ci, it connects each VW with each of the images in
the database (Fig. 7.4). By combining these two important information, new image
can be annotated as shown in the above sections.

7.5 Cross-Media Relevance Model

Although VQ is typical in building the likelihood models, models can also be built
“on the fly” by a set of training images which are relevant to the new observation.
The cross-media relevance model (CMRM) [4] provides an alternative method to
the VQ and is another joint probability model.

Given an image which is represented by a set of blobs: I = {x1, x2, …, xm}, the
association of I with concept c is given by the joint probability of p(c, x1, x2,…, xm)
as given below:

pðc; x1; � � � xmÞ ¼
X
J2T

pðJÞ � pðc; x1; � � � xmjJÞ

¼ pðJÞ �
X
J2T

pðcjJÞ �
Ym
i¼1

pðxijJÞ
ð7:18Þ

Fig. 7.4 Association of semantic words with region features
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where

pðcjJÞ ¼ ð1� aJÞ �#ðc; JÞ
Jj j þ aJ �#ðc; TÞ

Tj j ð7:19Þ

pðxijJÞ ¼ ð1� bJÞ �
#ðxi; JÞ

Jj j þ bJ �
#ðxi; TÞ

Tj j ð7:20Þ

where

• J is an image in the training set T,
• aJ and bJ are the interpolation parameters,
• #(c, J) is the number of times concept c appears in J,
• #(xi, J) is the number of times blob xi appears in J,
• #(c, T) is the number of times concept c appears in T, and
• #(xi, T) is the number of times blob xi appears in T.

It can be seen from (7.18), given a new observation I = {x1, x2, …, xm}, CMRM
attempts to find all the relevant images in the training set that have both concept c(p
(c|J) 6¼ 0) and feature xi(p(xi|J) 6¼ 0). A joint probability model is built by aggre-
gating all the models from the relevant images. This is equivalent to build a class
model for concept c “on the fly”. From (7.19) and (7.20), it can be seen that the
performance of this model depends on the choice of the weights aJ and bJ. In
practice, this can be a difficult decision to make.

7.6 Image Annotation with Parametric Model

One of the classic ways of model building is the parametric method using the
expectation-maximization (EM) algorithm. The idea of image annotation with
parametric model is similar to the CMRM method, that is, to build a model for each
of the individual images and aggregate the similar individual models into a class
model. However, instead of combining training and annotation into a single process
as in the CMRM method, parametric model separates training and annotation into
two different processes.

During the training, images in the training set are pre-labeled and pre-classified
into different classes. A class model is then built by aggregating individual image
models in each class. During the annotation, the model of the new image is built
and matched with the class models, and the closest classes are selected as the
annotations. The procedure of parametric method is shown in Fig. 7.5. The algo-
rithm of this method is as follows:

172 7 Bayesian Classification

www.EBooksWorld.ir



• Given a set of N training images: I1, I2,…, IN and a set of n classes C1, C2,…, Cn

• Features (e.g., block features) from each training image I are clustered within the
image.

• A Gaussian Mixture Model (GMM) is learned from the clustering using the EM
algorithm:

PðxjIÞ ¼
Xl
i¼1

piIG x; liI ;R
i
I

� � ð7:21Þ

where

• l is the number of components in the mixture model of image I,
• piI is the weight for the ith component of the mixture model,
• liI is the mean of the ith component of the mixture model, and
• Ri

I is the standard deviation of the ith component of the mixture model.
• A Gaussian mixture model for each class Ci is learnt by aggregating (e.g.,
weighted averaging) all the image models within the class:

Training images 
from concept c

GMMs from    
training images

p(x|c) 

GMM for concept c

Testing 
image

p(x|c2) 

p(x|c1) 

p(x|cn) 

p(x|c1) x
p(c1) 

p(x|c2) x
p(c2) 

p(x|cn) x
p(cn) 

Ranking Label,c

Training 

Annotation

Feature 
distribution, x

Matching

^

Fig. 7.5 Image annotation with parametric model
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PðxjCiÞ ¼
XK
k¼1

pkCi
G x; lkCi

;Rk
Ci

� �
ð7:22Þ

where

• K is the number of components in the mixture model of class Ci,
• pkCi

is the weight for the kth component of the mixture model,
• lkCi

is the mean of the kth component of the mixture model, and

• Rk
Ci

is the standard deviation of the kth component of the mixture model.

• Given a new observation image Iu = xu, the annotation of image Iu is given by the
MAP:

PðCjjxuÞ ¼ bc ¼ arg maxCi
PðCijxuÞ

¼ arg maxCi
PðxujCiÞ � PðCiÞf g ð7:23Þ

The algorithm of the parametric annotation method is illustrated in Fig. 7.5
[2, 5].

7.7 Image Classification with Gaussian Process

In Gaussian mixture, each multidimensional feature vector x = (x1, x2, …, xn) is
regarded as a data point in a Rn space, and the mixture model is built based on the
statistics of the data points in a cluster.

But a multidimensional data x = (x1, x2, …, xn) can also be regarded as a
discretized function f: X ! R and y = f(x) = {xi = f(di) | i = 1, 2, …, n}. A typical
example of such a data is a histogram feature vector. Figure 7.6 shows three nor-
malized histograms (vertical bars) from the same class in red, green, and blue,
respectively. The corresponding functions approximating the three histograms are
shown as colored curves at the top of the histograms.

If we plot all the histogram features f(xi) from a class in a single coordinate
system, we would see all the data fall within a band and form a cluster. Like in the
linear regression which attempts to fit a line to a cluster of data points, we can also
fit a curve to this cluster of data points and use this curve as the model to predict
new instances. This approach is the idea behind the Gaussian Process or GP, which
is demonstrated in Fig. 7.7 [6].

174 7 Bayesian Classification

www.EBooksWorld.ir



Now, given a set of data x1, x2, …, xN from a certain class C, and each feature
vector xi is a D-dimensional data point in space xi = (xi1, xi2, …, xiD). A matrix
X = D � N = (d1, d2, …, dD)

T can be created as shown in the following:

X ¼
x11; x21; . . .; xN1
x12; x22; . . .; xN2

. . .
x1D; x2D; . . .; xND

2
664

3
775 ¼

d1
d2
. . .
dD

2
664

3
775 ð7:24Þ

y
1 

0.5

x

Fig. 7.6 Feature vectors shown as functions. Three histograms shown as vertical color bars and
their respective functions shown as colored curves on the top

x

y

Fig. 7.7 A cluster of
multidimensional data (green)
and the approximation
function of the data shown in
pink
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where dj is a jth dimensional vector. Since the elements of each dj are samples from
(or follow) a normal distribution N li; rj

� �
, X is a Gaussian process and

X�Nðlx;KxxÞ, where lX and KXX are the mean and variance which are deter-
mined by (7.25) and (7.26), respectively.

lX ¼
lðd1Þ
lðd2Þ
. . .

l dDð Þ

2
664

3
775 ð7:25Þ

KXX ¼
k d1; d1ð Þ; k d1; d2ð Þ. . .; k d1; dDð Þ
k d2; d1ð Þ; k d2; d2ð Þ. . .; k d2; dDð Þ

. . .
k dD; d1ð Þ; k dD; d2ð Þ. . .; k dD; dDð Þ

2
664

3
775 ð7:26Þ

where k(di, dj) is a kernel function which is typically the covariance function.
To predict a new data or a new set of data X�, X and X� are concatenated and the

concatenated data is a new GP which follows the following normal distribution:

f
X�
X

� 	
�N lX�

lX

� 	
;

P
X�X� ;

P
X�XP

XX� ;
P

XX

� 	� 	
ð7:27Þ

Then, the probability of the new data X� given the observed data X is given by
(7.28)

pðX�jXÞ ¼ N lX� þKX�XK
�1
XX X� lXð Þ;KX�X� �KX�XK

�1
XXKXX�

� � ð7:28Þ

The proof of (7.28) is given in Appendix [7–9].

7.8 Summary

This chapter introduces the first image classification method: Bayesian classifica-
tion. Several important and interesting applications of Bayesian classifier are
described and demonstrated in details, including NB, word co-occurrence model,
CMRM, parametric model, and Gaussian process method. The key features of
Bayesian classifiers can be summarized as follows:

1. Generative. A Bayesian classifier is a typical generative model, it assumes the
distribution or model of likelihood probability is known. This likelihood
probability model is typically obtained through learning from known samples.

2. Intuitive. Compared with many other black-box-based classifiers such as SVM
and ANN, Bayesian classifiers are intuitive, results are easily interpreted by a
human being. The basic idea of the Bayesian method is to use our prior
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experience to forecast or predict new events. In this sense, we all make decision
using Bayesian classifiers.

3. Robust. A Bayesian classifier generates a result in probabilistic form instead of
deterministic form. Probabilistic prediction is more robust than deterministic
prediction, e.g., a 70% chance of rain forecast is more likely to be correct than a
rain/no-rain forecast.

4. Nonlinear. The boundary of a Bayesian classifier is nonlinear because the
prediction is based on the data distributions and the distribution models can be
of any shape.

However, the downside of Bayesian classifier is that there needs a large number
of data samples to have a reasonable accurate estimation of data distribution.

7.9 Exercises

1. Use the example code in the following web page to generate a Gaussian mixture
model: https://au.mathworks.com/help/stats/gmdistribution.html#mw_4758a58e-
5bc7-4eda-b261-83521d63d1ce. First, try the gmdistribution function with
the following code. Turn the graph to different angles and also to flat (2D) to
view the model in more details. Then try different mu and sigma values to create
more GMM models.

mu = [1 2;-3 -5];
sigma = cat(3,[2 .5],[1 1]); 
gm = gmdistribution(mu,sigma);
ezsurf(@(x,y)pdf(gm,[x y]),[-10 10],[-10 10]);

2. Use the example code from this link: https://au.mathworks.com/help/stats/
fitgmdist.html and try the fitgmdist function with the following code. Turn
the graph to different angles and also to flat (2D) to view the model in more
details. Now, try fitgmdist with more components and different mu and sigma
values to create more complex GMM models.

mu1 = [1 2];
sigma1 = [2 0; 0 .5]; 
mu2 = [-3 -5];
sigma2 = [1 0; 0 1];
rng('default')
r1 = mvnrnd(mu1,sigma1,1000);
r2 = mvnrnd(mu2,sigma2,1000);
X = [r1; r2];
gm = fitgmdist(X,2)
ezsurf(@(x,y)pdf(gm,[x y]),[-8 6],[-8 6])
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3. Use the code from the following web page to compute the posterior probabilities
of a GMM model which you have generated from the above exercises. Explain
the graph using the colors and color bar. Write a report on the GMM models, the
posterior probabilities and tell how they can be used for image analysis (hints:
an image or an image region is a GMM model, and a GMM model is charac-
terized or defined by its parameters e.g., mu and Sigma). https://au.mathworks.
com/help/stats/gmdistribution.posterior.html.
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8Support Vector Machine

To see better, go higher.

One of the key development in recent artificial intelligence (AI) research is the
SVM, which has attracted a large amount of research and has produced good results
in many applications. Because of the so-called “kernel trick”, it has made SVM one
of the most effective and efficient machine learning tools in the literature. In this
chapter, we attempt to do an anatomy of SVM so that readers have a good
understanding of its mechanism.

SVM is basically the combination of both a linear classifier and a k nearest
neighbors classifier (K-NN). Therefore, to understand SVM, we will first introduce
the linear classifier and the K-NN classifier.

We will only focus on two-class classification problem in this chapter. Because,
any classification problem can be converted into a one-vs-all classification, which is
a two-class classification problem.

8.1 Linear Classifier

The Bayesian methods in Chap. 7 are model based, and they can give good decision
if the models are accurate. However, since data distributions are usually unknown,
the models can only be estimated accurately if a large number of training samples
are available. This is especially true when the number of features is large, which is
common for multimedia data.

An alternative approach is to assume that there exists a functional form decision
boundary between each pair of classes, and the parameters of the decision boundary
or discriminant function can be estimated using available training samples. A linear
classifier is one of those approaches.
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Suppose the data is represented as a n dimensional feature vector x = (x1, x2, …,
xn), then a linear discriminant function is formulated as

f xð Þ ¼ w0 þw1x1 þw2x2 þ � � � þwnxn ð8:1Þ

where xi are the variables and wi are the coefficients or weights. Assume x0 = 1, f
(x) can be written as

f xð Þ ¼
Xn
j¼0

wjxj ð8:2Þ

Geometrically, f(x) = 0 is a hyperplane in n-dimensional space and f(x) = 0 is
the decision boundary between two classes. A sample data with feature vector x is
classified into one of the classes using the following criterion:

x 2 class 1 if f xð Þ[ 0
class 2 if f xð Þ\0

�

8.1.1 A Theoretical Solution

The next is to find out the parameters or the set of weights of f(x): w0, w1, w2, …,
wn, which will minimize the number of misclassified samples in a given training set.

A classical way to find the weights is to solve a set of linear equations given a set
of training samples. For an n-dimensional data, n + 1 linear equations or samples to
solve the n + 1 weights are needed. Suppose di = 1 (or di > 0) represents class 1
and di = −1 (or di < 0) represents class 2, and the n + 1 training samples are given
as (xi, di), where

xi ¼ xi1; xi2; . . .; xinð Þ; i ¼ 1; 2; . . .; nþ 1

Then, by substituting (8.2) with each of the training data xi, the set of weights wi

(i = 0, 1, …, n) can be solved using the following n + 1 linear equations:

Xn
j¼0

wjxij ¼ di; i ¼ 1; 2; . . .; nþ 1 ð8:3Þ
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Equation (8.3) can be written in matrix form

1; x11; x12; . . .; x1n
1; x21; x22; . . .; x2n

. . .. . .. . .
1; xn1; xn2; . . .; xnn
1; xnþ 1;1; xnþ 1;2; . . .; xnþ 1;n

2
66664

3
77775

w0

w1

w2

. . .
wn

2
66664

3
77775 ¼

d1
d2
. . .
dn

dnþ 1

2
66664

3
77775 ð8:4Þ

which in turn can be written as

Xwt ¼ dT

where wT and dT are the transposes of w and d, the solution of w is then given as
(8.5)

wT ¼ X�1dT ð8:5Þ

8.1.2 An Optimal Solution

The above theoretical solution is just based on n + 1 or part of the training samples,
therefore, it is not optimal. An optimal solution is usually given by minimizing the
squared errors of f(x) on the entire training data set of N data (xi, di) and

xi ¼ xi1; xi2; . . .; xinð Þ; i ¼ 1; 2; . . .;N

That is, to minimize the following total squared error:

E ¼
XN�1

i¼0

f xið Þ � dið Þ2

¼
XN�1

i¼0

Xn
j¼0

wjxij � di

 !2 ð8:6Þ

By taking the partial derivative of E on wk (k = 0, 1, 2, …, n) and letting the
partial derivative to be 0: @E

@wk
¼ 0, the following n + 1 linear equations are obtained:

XN�1

i¼0

xik
Xn
j¼0

wjxij � di

 !
¼ 0; k ¼ 0; 1; 2; . . .; n ð8:7Þ

8.1 Linear Classifier 181

www.EBooksWorld.ir



which is equivalent to the following:

Xn
j¼0

wj

XN�1

i¼0

xikxij

 !
¼
XN�1

i¼0

xikdi; k ¼ 0; 1; 2; . . .; n ð8:8Þ

By solving the above n + 1 linear equations using the same method as solving
(8.3), a set of weights (w0, w1, w2 …. wn) is obtained which results is an optimal
hyperplane. It can be observed that compared with (8.3), in an optimal solution
algorithm, xij is replaced with

PN�1
i¼0 xikxij, while di is replaced with

PN�1
i¼0 xikdi.

8.1.3 A Suboptimal Solution

Although the solution from (8.8) results in a more optimal decision boundary than
that from (8.5), the solution of (8.8) would involve processing very large matrices
which is computationally expensive and undesirable. This is because multimedia
data usually has very high-dimensional features. An alternative approach is to use
an iterative optimization algorithm to find a suboptimal solution to (8.2). Common
practice is to use an error-driven weight-adaption technique which is basically a
trial-and-error technique. The iterative optimization procedure is given in the
following:

1. Initialize the weights w0, w1, w2 … wn with some small random values
2. Take the next training sample {x, d}= {(x1, x2, …, xn), d}, d = 1 or −1
3. Compute f(x) = w0 + w1x1+ w2x2 + ��� + wnxn
4. If f(x) 6¼ d (a misclassification), update w0 ← w0 + cdk and wj ← wj + cdxj,

j = 1, 2, …, m; where k and c are both positive constants
5. Repeat Steps 2–4 on each of the remaining training samples, until all the

samples are correctly classified or the weights stop to change.

To demonstrate that the weights wi or the hyperplane f(x) are moving in the right
directions, let fnew and fold be the updated value and old value of f(x) respectively.
Because k, c and the feature value xj are all positive, after the update in step 4, all
the weights wj become larger if d = 1 and all the weights wj become smaller if
d = −1. That means, if there is a misclassification, the decision function is updated
according to the following rules:

fnew [ fold if d ¼ 1
fnew\fold if d ¼ �1

�

Therefore, in either case, the new hyperplane f(x) is moving in the right direction
with the updated weights, until the misclassified sample is located at the correct side
of the hyperplane.
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A linear classifier can only classify data which are linearly separable. However,
this idea can be extended to build a nonlinear classifier. For example, we can
convert a two-dimensional feature vector (x, y) in xy space to a five-dimensional
feature vector (u1, u2, u3, u4, u5) in a higher dimensional space, where u1;¼

ffiffiffi
2

p
x,

u2 ¼
ffiffiffi
2

p
y, u3 = x2, u4 ¼

ffiffiffi
2

p
xy, u5 = y2. This would be the polynomial kernel

(1 + x + y)2. This is the key idea behind the kernel method which will be discussed
in Sect. 8.3.

8.2 K-Nearest Neighbors Classification

K-nearest neighbors or K-NN is a simple algorithm that stores all available cases
and classifies new cases based on a decision function (e.g., a distance measure).

Given a training dataset D and a distance measure dist:

• (xi, yi), i = 1, 2, …, N
• xi is a training data in Rn

• yi is the corresponding class of the data xi, and yi 2 fcj; j ¼ 1; 2; . . .;Mg
• dist x� xið Þ ¼ x� xik k.

A new observation data x is classified into one of the classes yj using the
following algorithm:

1. Input the new data x
2. Compute the distance of x to all the training samples xi in the dataset: dist(x −

xi)
3. Sort dist(x − xi) (i = 1, 2, …, N) in ascending order and rank all the xi

accordingly: xr1, xr2, …, xrk, …, xrN
4. For the nearest neighbor (NN) classification, classify x to yr1

a. For a K-NN classification, classify x to the majority class yrp among the top
k ranked data: {xr1, xr2, …, xrk}.

Although Euclidean (L2) and city block distance (L1) are a typical choice for the
distance measure, any other distance can be used depending on the applications.
The nearest neighbor (NN or 1-NN) results in too many classes, while K-NN gives
more reliable classification results. This is because the values of k have a smoothing
effect that makes the classifier more resistant to outliers. However, the performance
of a K-NN classifier depends on the choice of k which is usually determined
empirically.

Figure 8.1 demonstrates the comparison between an NN classifier and a K-NN
classifier [1]. It can be seen from the two classification results, in the case of a NN
classifier (after merging), outlier data points create small islands within a class (e.g.,
red point within the green class) and sharp corners on the class boundaries, those
islands, and sharp corners likely lead to incorrect predictions; while the 5-NN
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classifier smooths over these outliers, which lead to better classification on the data.
However, the 5-NN classifier also causes misclassifications which are characterized
by the blue dots in red region and red dots in green region. There can also be
confusions by the tied votes among the five nearest neighbors (e.g., two neighbors
are red, the next two neighbors are blue, and the last neighbor is green).

This kind of misclassification can be overcome to a certain extent by using the
weighted K-NN. The idea is to give more weight to the neighbors with shorter
distance to the test data than to the faraway neighbors. The commonly used
weighted K-NN is the Gaussian weighted K-NN.

Unlike any other classifiers which are independent of the original training data
once trained, a K-NN classifier is memoryless. If we analog a classifier to a con-
noisseur traveling around the world to judge (classify) different kinds of antiques
for people. While other types of connoisseurs just need to take a toolkit summa-
rizing the key characteristics of the antiques, a K-NN connoisseur will have to carry
every kind of real antiques in his/her collection in order to make a new judgement.
This may sound too cumbersome, however, one of the key advantages of a K-NN
classifier is that it can classify data which are nonlinearly separable. This is the key
idea behind the kernel-based support vector machine (SVM).

8.3 Support Vector Machine

In the previous two sections, we have introduced the linear classifier and K-NN
classifier, both are key to understand SVM.

A linear classifier is simple and once trained, it is like a tool or a machine which
can be used to tell if a data belongs to one of the classes. However, the disad-
vantages of a linear classifier include

• The solution is either not optimal or computationally expensive
• It cannot classify data which are nonlinearly separable

Fig. 8.1 Comparison between NN and K-NN. a The data to be classified; b classification result
from a 1-NN classifier; c classification result from a 5-NN classifier
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A K-NN classifier is also simple and can separate data nonlinearly. However, the
disadvantages of a K-NN classifier include

• It is difficult to choose a k
• Dependence on training data.

Now that we have understood how the linear classifier and the K-NN classifier
behave, we would like to build a classifier which takes advantage of both and
overcomes their disadvantages. This is SVM.

An SVM is basically a binary linear classifier, however, with two prominent
goals to achieve:

• To maximize the margin which separates the two classes (optimal)
• To use only a few training data (or support vectors) to determine the hyperplane
which separates the two classes (efficient)

A kernel-based SVM adds another goal to

• Be able to classify data which are nonlinearly separable

As can be seen, once the three goals are achieve, we would truly build a machine
which combines the advantages of both the linear classifier and the K-NN classifier,
while overcomes their disadvantages.

To formulate SVM, we will start with the simple perceptron and the primal form
of SVM. In the next, the dual form of SVM is introduced, and finally, the kernel-
based SVM is described in details.

8.3.1 The Perceptron

A perceptron is a binary linear classifier which is one of the simplest classifiers.
Given an unknown data, the perceptron simply generates a linear prediction. The
training process is the same as the linear classifier introduced in Sect. 8.1. The only
difference is that a perceptron can do online learning, which means it can process
the training data one at a time instead of having to taking the entire training dataset.
Although it is simple, the perceptron is the key to understand both SVM and
Artificial Neural Network (ANN) later on.

Given a training dataset D:

• D = {(xi, yi), i = 1, 2, …, N}
• xi is a feature vector in n dimensional space: xi = (xi1, xi2, …, xin)
• yi is the corresponding class of the data xi, and yi 2 f�1; 1g
• xi; xj
� � ¼ xi � xj is the dot product between two vectors
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A perceptron is a binary linear classifier which is formulated as follows:

1. f(x) = hw; xi + b
2. Let w0 = b and x0 = 1, then the above can be simply written as f(x) = hw; xi
3. h(x) = sign (f(x)) = yi (f(x))
4. Take the next training data xi; yið Þ 2 D
5. if h(xi) � 0, wk+1 ← wk

6. if h(xi) < 0
then wk+1 ← wk+η yi xi, η > 0

7. Repeat from 4

8.3.2 SVM—The Primal Form

8.3.2.1 The Margin Between Two Classes
Continue from the perceptron discussion and its training data assumption.

The perceptron gives us a hyperplane to separate the two classes of data,
however, there are an infinite number of hyperplanes between two classes of data as
shown in Fig. 8.2. The one resulted from the perceptron is just one of them, and it is
nothing optimal. Although an optimal hyperplane was given in Sect. 8.1, it is
optimal only in terms of minimizing the total error, and it is still far from the
optimal hyperplane we perceive.

The optimal or the best hyperplane we perceive is the one separating the two
classes with the maximal margin as shown in Fig. 8.3. That is the hyperplane we
are going to find out.

Assume the two subspaces corresponding to the two classes of data are,
respectively,

w, xh iþ b� 1 for yi ¼ þ 1

w, xh iþ b��1 for yi ¼ �1

H1 H2 H3 

Fig. 8.2 Hyperplanes
between two classes of data
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The above two inequalities can be combined into one

yiðhw; xiþ bÞ � 1� 0 ð8:9Þ

The boundaries between the two subspaces are hyperplanes H1 and H2,
respectively,

H1 : hw; xiþ b� 1 ¼ 0 ð8:10Þ

H2 : hw; xiþ bþ 1 ¼ 0 ð8:11Þ

and the hyperplane between H1 and H2 is given as H0:

H0 : hw; xiþ b ¼ 0 ð8:12Þ

The two classes of data and the three hyperplanes separating them are shown in
Fig. 8.4.

Our purpose is not only to find H0 but also to maximize the distance between H1

and H2, which is the margin between the two classes of data. How to work out the
distance between H1 and H2? Here is how it works out.

• Remember in a 2D space, a hyperplane is just a line which is expressed as:
ax + by + c = 0. The constant c is called the intercept, and |c| is associated with
the distance from the origin to the line.

• This is also true in higher dimensional space. For example, in a 3D space, a plane
is given as Ax + By + Cz + D = 0, and |D| is associated with the distance from
the origin to the plane. So on so forth.

• Therefore, the distance between H1 and H2 is equal to the difference between the
distance of each of them to the origin.

HFig. 8.3 The optimal
hyperplane H between two
classes of data
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Specifically, based on the theory of geometry, the distance of a point (x0, y0, z0)
to a plane in 3D space: Ax + By + Cz + D = 0 is given as follows:

Ax0 þBy0 þCz0 þDj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þB2 þC2

p ð8:13Þ

Because this is also true for higher dimensional space, accordingly, the distance
from H0 to the origin (0, 0, …, 0) in n-dimensional space is given as

bj j
wj jj j ð8:14Þ

where ||w|| is the magnitude or length of vector w, and the distance from H1 and H2

to the origin (0, 0, …, 0) in n-dimensional space is given by the following two
respectively:

bþ 1j j
wj jj j and

b� 1j j
wj jj j ð8:15Þ

Therefore, by calculating the difference between the two terms of (8.15), the
margin between the two hyperplanes H1 and H2 is obtained as

2
wj jj j ð8:16Þ

The data points which lie on H1 and H2 are called support vectors (marked by
circles in Fig. 8.3), which are both necessary and sufficient to define the boundary
hyperplanes.

Origin

| |

Fig. 8.4 Two classes of data
and the hyperplanes
separating them
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8.3.2.2 Margin Maximization
Therefore, based on (8.16), to maximize the distance between the two subspaces is
equivalent to the following optimization problem:

Minimize : f ðwÞ ¼ 1
2

wk k2¼ 1
2
hw;wi ð8:17Þ

Subject to : giðw; bÞ ¼ yi hw; xiiþ bð Þ � 1� 0; i ¼ 1; 2; . . .;N ð8:18Þ

The above is a constrained optimization problem, and there are a few important
facts to be pointed out [2]:

• b is one of the weights to be found because if we let x0 = 1, then w0 = b
• Equation (8.17) is a paraboloid in n-dimensional space
• A paraboloid has a single global minimum at the bottom
• Equation (8.18) is a hyperplane in n-dimensional space
• The solution to this constrained optimization problem is at the tangent point of
the paraboloid and the hyperplane

• At the tangent point, the normal vectors or gradient vectors of both the paraboloid
and the hyperplane are parallel

• That is, rf ¼ airgi, (i = 1, 2, …, N), where r is the gradient and ai is a
constant.

Based on the above analysis, the optimization problem of (8.17) and (8.18) is
equivalent to combining them into the following Lagrange function and solve
rL = 0 or ∂w, b L = 0:

L w; b; aið Þ ¼ f ðwÞ �
X
i

aigi w; bð Þ ð8:19Þ

L w; b; aið Þ ¼ 1
2
jwj2 �

X
i

ai yi hw; xiiþ bð Þ � 1½ �

¼ 1
2
w � w�

X
i

aiyi w � xi þ bð Þþ
X

i
ai

ð8:20Þ

8.3.2.3 The Primal Form of SVM
From (8.20), we can obtain the primal form of the SVM:

Minimize : L w; b; aið Þ ¼ 1
2w � w�P

i
aiyi w � xi þ bð Þþ P

i
ai

Subject to : ai � 0; i ¼ 1; 2; . . .;N
ð8:21Þ
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8.3.3 The Dual Form of SVM

Although the primal form (8.21) let us to find the weights w and a hyperplane
which separates the two classes of data with the maximum margin, the optimization
is too expensive. Because we have to optimize two sets of parameters at the same
time: w and ai, this is very undesirable. Next, we want to make it more efficient.

Since (8.21) is a quadratic function, based on mathematics, at the global minima
of the quadratic function, the gradient or the partial derivatives of L(w, b, ai) are 0.
Therefore, we have

rLðw; b; aiÞ ¼ rf ðwÞ � r
X
i

aigiðw; bÞ
" #

¼ 0 ð8:22Þ

Now let

@L

@w
¼ 0 and

@L

b
¼ 0

This leads to

w ¼
X
i

aiyixi and
X

i
aiyi ¼ 0 ð8:23Þ

Substituting the primal form (8.21) with (8.23) leads to the following dual form
of the SVM:

Maximize : LD ¼P
i
ai� 1

2

P
ij
aiajyiyjhxi; xji

Subject to : ai � 0 and
P
i
aiyi ¼ 0

ð8:24Þ

To see why it has changed from minimization in the primal form to maxi-
mization in the dual form, let us have a good look at (8.24). The value of LD is
determined by the following three cases [2]:

• If the two features xi, xj are completely dissimilar (xi, xj are from different classes
and are very different), their dot product hxi; xji = 0, that means, features from
different classes are far away from the boundaries between two classes don’t
contribute to LD

• If the two features xi, xj are completely alike and from the same class, hxi; xji � 1
and yi yj = 1. Therefore, ai aj yi yj hxi; xji would be positive and this would
decrease the LD. That means, LD downgrades similar features in the same class
but far away from the boundaries between two classes

• If the two features xi, xj are completely alike but from the different class,
hxi; xji � 1 but yi yj = –1. Therefore, ai aj yi yj hxi; xji would be negative, this
would increase LD or maximize it. That means, LD is maximized with similar
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features from different classes or LD is maximized with features on the opposite
boundaries of two classes

To summarize the above analysis, by maximizing LD, the dual form SVM

1. Emphasizes the feature vectors on the opposite boundaries between two classes
2. Ignores or suppresses those feature vectors far away from the boundaries

between two classes.

This is exactly what we want because in terms of finding the hyperplanes sep-
arating the two classes with maximum margin, only those vectors on or close to the
boundaries between the two classes matter most. Those feature vectors are called
support vectors and the classifier defined by support vectors is called a support
vector machine.

8.3.3.1 The Dual Form Perceptron
Because LD is determined by the small number of support vectors on the boundaries
between the two classes, not surprisingly, most of the ai would be zero. Once ai,
i = 1, 2, …, N are solved, the weights for the hyperplane separating the two classes
of data with the maximum margin are given as follows:

w ¼
X
i

ai yi xi ð8:25Þ

Therefore, the weight of the SVM hyperplane is just a linear combination of the
training data, and this is consistent with the weight updating methods used in the
linear and perceptron classifiers introduced earlier.

A set of ai can be estimated using the dual form perceptron:

1. f ðxÞ ¼ hw; xiþ b

¼
X

i
aiyihxi; xiþ b

2. Take the next training data (xj, yj)2 D
3. if yj (Ri ai yihxi; xji + b) � 0

then ai+1 ← ai
4. if yj (Ri ai yihxi; xji + b) < 0

then ai+1 ← ai + η, η > 0
5. Repeat from step 2
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8.3.4 Kernel-Based SVM

8.3.4.1 The Dual Form SVM Versus NN Classifier
With the dual form SVM (8.24), we have successfully reduced the primal form
optimization problem to optimizing just one set of parameters: ai, i = 1, 2, …,
N. This is much more efficient than (8.21). However, this is just a small part of the
story about SVM, the more important part of the story is the transform of SVM
optimization from testing hw; xii to testing hxi; xji. This is explained in the
following:

• An n-dimensional data x is a feature vector in space, and geometrically, the dot
product is defined as follows:

hxi; xji ¼ xik k xj
�� �� cos h ð8:26Þ

where h is the angle between the two feature vectors xi and xj
• In practice, the magnitudes of all feature vectors are normalized to unit or 1 so
that they can be fairly matched

• Therefore, the dot production of two feature vector is just cosh
• Because all feature values are positive, h is between 0° and 90°

• For two feature vectors at the same direction or h = 0° (identical), the dot product
is 1: cosh = 1

• For two feature vectors at vertical angle or h = 90° (completely different), the dot
product is 0: cosh = 0

• For two feature vectors at an angle 0° < h < 90° (between similar to different), the
dot product is between (0, 1): 0 < cosh < 1

• Therefore, the dot product cosh actually measures the similarity between the two
feature vectors, or, the dot product is just the cosine distance between the two
feature vectors

Equipped with this key finding, now let us go back to (8.24):

Maximize LD ¼
X
i

ai � 1
2

X
ij

ai aj yi yjhxi; xji

It is equivalent to

Minimize
X
ij

ai aj yi yjhxi; xji ð8:27Þ

Because hxi; xji is just the distance between xi,and xj, by recalling what has been
discussed in the K-NN section, we can see that (8.27) is just the weighted nearest
neighbors classification.
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Now, if we look at the dual form perceptron at the end of Sect. 8.3.3, the
connection between SVM and K-NN is even clearer. The dual form classifier is
given as (8.28)

f ðxÞ ¼
X
i

aiyi hxi; xiþ b ð8:28Þ

The classification of each training data xj is done by testing

yi
X
i

aiyihxi; xjiþ b

 !
� 0; j ¼ 1; 2; . . .;N ð8:29Þ

Again, this is just a weighted nearest neighbors classifier.
This is a significant development, because, by using the dual form, we not only

make the SVM more efficient but also make it a nonlinear classifier.

8.3.4.2 Kernel Definition
These are some of the key points obtained from the above:

• The dot product is a kind of distance
• The dual form SVM is a kind of weighted nearest neighbors classifier
• The weighted nearest neighbors classifier is a nonlinear classifier

Now that we understand how an important role the dot product plays in the dual
form SVM, we can extend this idea to any function behaves like a dot product.

It turns out the dot product of data points can be generalized as kernelling. Any
function K(x) which has the following property can be regarded as a kernel

K x1; x2ð Þ ¼ hU x1ð Þ;U x2ð Þi ð8:30Þ

where U(x) is a function transforming feature vector x in one space Rm to another
higher dimensional space Rn (n > m). From the definition, a kernel behaves like a
dot product, it takes two feature vectors as input and maps the two vectors to a
scalar or a real value. The difference of a kernel from a dot product is that a kernel
do the dot product at a higher dimensional space, called the Hilbert space. We will
explain the benefit of doing this.

Not surprisingly, with this definition, the dot product itself is a kernel because

Kðx; yÞ ¼ hx; yi ¼ hUðxÞ;UðyÞi ð8:31Þ

where U(x) = x.
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Given a kernel, the kernel-based SVM can now be written as

f ðxÞ ¼
X
i

aiyiKhxi; xiþ b ð8:32Þ

The questions now are:

1. Are there any other kernel functions than the dot product?
2. How useful is a kernel?

The answer to the first question is yes, there are many such kinds of kernel
functions. Common kernel functions used in multimedia data classification include
the following:

1. Quadratic Kernel

Kðx; yÞ ¼ hx; yi2 and ½1þhx; yi�2 ð8:33Þ

2. Polynomial Kernel

Kðx; zÞ ¼ \x; y[ d and ½1þ\x; y[ �d; d[ 2 ð8:34Þ

3. Radial Basis Function (RBF) Kernel

Kðx; yÞ ¼ e�c x�yj jj j2 ; c[ 0 ð8:35Þ

To demonstrate these functions having the kernel property of (8.30), let us
assume x and y are in R2 and x = (x1, x2), y = (y1, y2).

For hx; yi2:

hx; yi2 ¼ x1; x2ð Þ � v1; y2ð Þ½ �2¼ x1y1 þ x2v2ð Þ2
¼ x21y

2
1 þ x22y

2
2 þ 2x1x2y1y2

¼ hðx21;
ffiffiffi
2

p
x1x2; x

2
2Þ; ðy21;

ffiffiffi
2

p
y1y2; y

2
2Þi

ð8:36Þ

or ¼ hðx21; x1x2; x2x1; x22Þ; ðy21; y1y2; y2y1; y22Þi
¼ hUðxÞ;UðyÞi ð8:37Þ

where U xð Þ ¼ x21;
ffiffiffi
2

p
x1x2; x22

� �
or ðx21; x1x2; x2x1; x22Þ is a function which maps a 2D

feature vector to a 3D or 4D feature vector. Therefore, hx; yi2 is a kernel, and so
is hx; yid when d > 2.
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For (1þ x � y)2, we have:

1þ x � yð Þ2 ¼ 1þ x1; x2ð Þ � y1; y2ð Þ½ �2

¼ 1þ x1y1 þ x2y2ð Þ2
¼ 1þ 2x1y1 þ 2x2y2 þ 2x1x2y1y2 þ x21y

2
1 þ x22y

2
2

¼ hð1;
ffiffiffi
2

p
x1;

ffiffiffi
2

p
x2; x

2
1;

ffiffiffi
2

p
x1x2; x

2
2Þ; ð1;

ffiffiffi
2

p
y1;

ffiffiffi
2

p
y2; y

2
1;

ffiffiffi
2

p
y1y2; y

2
2Þi

¼ hUðxÞ;UðyÞi
ð8:38Þ

where UðxÞ ¼ 1;
ffiffiffi
2

p
x1;

ffiffiffi
2

p
x2; x21;

ffiffiffi
2

p
x1x2; x22

� �
is a function mapping a 2D feature

vector to a 6 dimensional feature vector. Therefore, (1þ x � y)2 is also a kernel, so is
(1þ x � y)d for d > 2.

In general, a quadratic kernel hx; yi2 transforms an n dimensional vector x = (x1,
x2, …, xn) to vector in n(n + 1)/2-dimensional space:

U : x ! ðx21; x22; . . .; x2n; x1x2; x1x3; . . .; x1xn; x2x3; . . .; x2xn; . . .; xn�1xnÞ ð8:39Þ

For RBF e�c x�zj jj j2 , again assume x and z are in 2D, since

x� zk k2 ¼ x1 � z1ð Þ2 þ x2 � z2
� �2

¼ x21 þ z21 � 2x1z1 þ x22 þ z22 � 2x2z2

Without loss of generality, let c = ½, then we have

e�c x�zj jj j2 ¼ e�
1
2 x21 þ z21�2x1z1 þ x22 þ z22�2x2z2ð Þ

¼ e�
1
2 x21 þ x22ð Þe�1

2 z21 þ z22ð Þe x1z1 þ x2z2ð Þ

¼ e�
1
2 xj jj j2e�

1
2 zj jj j2ehx;zi

¼ Cehx;zi

¼ C
X1
n¼0

hx; zin
n!

Taylor expansion of exð Þ

¼ C
X1
n¼0

Kpoly nð Þ x; zð Þ
n!

ð8:40Þ

where C ¼ e�
1
2 xj jj j2e�

1
2 zj jj j2 is a constant because feature vector are normalized to unit

length, and Kpoly nð Þ x; zð Þ is a polynomial kernel [3]. Therefore, the RBF is a kernel
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because the sum of kernels is also kernel (see the following). Equation (8.40) shows
that the RBF maps a vector into a space with infinite dimensions.

8.3.4.3 Building New Kernels
It can be shown that the following rules are true:

1. The sum of two kernels is also a kernel

Kðx; yÞ ¼ K1ðx; yÞþK2ðx; yÞ ð8:41Þ
2. A scalar times a kernel is also a kernel

Kðx; yÞ ¼ aK1ðx; yÞ ð8:42Þ
3. The product of two kernels is also a kernel

Kðx; yÞ ¼ K1ðx; yÞ � K2ðx; yÞ ð8:43Þ

Therefore, by using these rules and existing kernels, we may build more kernels
for different applications.

8.3.4.4 The Kernel Trick
Now that we have defined the kernels and understood their behaviors, the next is to
answer the second question we mentioned earlier. That is, why kernels or why we
transform a feature vector to a higher dimensional space? It appears the dual form
SVM is good enough because it not only gives us a SVM but also let us do
nonlinear classification. So what is the benefit of using kernels?

There are two reasons to use a kernel instead of just the dot product.

• One is to transform nonlinear data in lower dimensional space to linear data in
higher dimensional space so that they can be separated linearly using the SVM.

• The other is to have more and better choices of distance measurement than the dot
product, so as to improve the performance of an SVM.

To demonstrate how a kernel can transform nonlinear data into linear data, we
will use the quadratic kernels as examples.

Consider the following 1D binary data (red and green dots) which is a nonlinear
data because it cannot be separated by a point or a line.

x
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Now map each of the samples using the following function:

U : x ! x; x2
	 
 ð8:44Þ

U is a quadratic mapping, it transforms a 1D line into a 2D parabola:

x

x

By transforming the 1D data into a 2D space, now the data in 2D space can be
separated using a line (blue) or linearly separable. This is exactly the first reason for
using kernel. This phenomenon can also be demonstrated using a 2D nonlinear data
(Fig. 8.5) [4]. By using the following mapping function to map the 2D data on the
left of Fig. 8.5 to a paraboloid in 3D space, the data can now be separated using a
2D plane and is linearly separable:

U : x1; x2ð Þ ! ðx21;
ffiffiffi
2

p
x1x2; x

2
2Þ ð8:45Þ

Because the dot product is kind of distance measure, therefore, all kernels
behave like a distance measure. Just like a good distance measure is crucial to a
classifier, the choice of a good kernel can affect a classifier significantly. This is the
reason why a kernel-based SVM is always better than an SVM just using the simple
dot product.

(a) (b)

Fig. 8.5 Mapping of nonlinear data to linear data in higher dimensional space. a An original
nonlinear data in 2D space; b transformed data in 3D space using a quadratic mapping function u
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Although the use of kernel gives us the advantage to do nonlinear classification,
the explicit mapping from a lower dimensional space to a higher dimensional space
is undesirable and can be expensive in terms of computation, given the fact that a
feature vector usually has high dimension. Furthermore, data representation using
very high dimension in Hilbert space is inefficient too.

Fortunately, the mapping does not need to be done explicitly. So long it is a
kernel, it implicitly maps a data to one in another space which is linearly separable.
Put the other way, a kernel is just a dot product (implicit) regardless the space where
the dot product is done, and according to (8.32), a kernel SVM is just a weighted
nearest neighbors classifier by which a data can always be separated nonlinearly.
Therefore, all we need to do for a kernel SVM is just to replace the dot product with
a kernel. This is called the kernel trick.

To further improve the efficiency, in practice, an N � N kernel (or Gram) matrix
is precomputed for a dataset of N elements before the actual learning, so that there is
no need to recompute the dot products at every iteration of the optimization.
A kernel matrix K has the following properties:

• K is a positive definite matrix
• Kði; jÞ ¼ K xi; xj

� � ¼ hU xið Þ;U xj
� �i (implicit dot product in higher dimension

space)
• K is symmetric, or K(i, j) = K(j, i)
• K(i, j) measures the similarity between ith and jth training samples in feature
space

K = 

K(x1, x1) K(x1, x2) K(x1, x3) ……. K(x1, xN) 

K(x2, x1) K(x2, x2) K(x2, x3) ……. K(x2, xN) 

K(x3, x1) K(x3, x2) K(x3, x3) ……. K(x3, xN) 

……. ……. ……. ……. …….

K(xN, x1) K(xN, x2) K(xN, x3) ……. K(xN, xN) 

8.3.5 The Pyramid Match Kernel

A well-designed kernel is crucial to an SVM classifier. Conventional kernel design
is independent of the feature itself. However, the selection of a kernel for a
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particular type of features is difficult because there is no natural connection between
a feature and a kernel. Consequently, the selection of kernel for an SVM classifier is
often arbitrary or empirical at best. The Pyramid Match Kernel or PMK [5] is a
method to design a kernel which matches the specific type of image features.

The idea is to extract a pyramid histogram feature at different level of resolutions
and build a kernel using a weighted sum of histogram intersections. The idea of the
PMK is described in details in the following:

• Start with image X itself as level 0 and the total number of levels is L.
• Divide image into grids at different levels of resolutions. The grid at level l has a
total of 2l x 2l = 4l cells, with 2l cells along each dimension.

• A histogram is computed for each block at each level of resolutions.
• Histograms at each level l are given a different weight.
• The weighted histograms from all levels are concatenated as the pyramid his-
togram of the image.

• A kernel of weighted histogram intersection is built for the SVM.

K X; Yð Þ ¼
XL
l¼1

alk
l Xm; Ymð Þ ð8:46Þ

where Xm and Ym are two weighted pyramid histograms and k is the histogram
intersection.

• The idea is illustrated in Fig. 8.6 [5].

Let Xl and Yl stand for the histograms of X and Y at level l, then the number of
matches at this level is given by the histogram intersection

kl ¼
X4l
i¼1

min½Xl ið Þ; Yl ið Þ� ð8:47Þ

where l = 0, 1, 2,…, L. kl at lower levels represent global features while kl at higher
levels represent local features. Since global features can cause more confusion than
local features, global features should be given less weights than local features.
Therefore, the weight given to level l is set to 1/2L−l, which is inversely proportional
to the block width at that level. Since the total weights must sum to 1, the combined
matching result between two images is given in (8.48).

K X; Yð Þ ¼ 1
2L

k0 þ
XL
l¼1

1
2L�lþ 1

kl ð8:48Þ
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The next is to prove (8.48) is a kernel. Because a linear combination of kernels is
also a kernel, we just need to prove each histogram intersection kl is a kernel.

Let Xm and Ym be the histograms of two images or image blocks X and Y. Each
image has N pixels. We can then represent Xm and Ym as two N x m dimensional
binary vectors [6].

x1 x2 xm

Xm = (1, 1, …, 1, 0, 0,…, 0; 1, 1, …, 1, 0, 0, …, 0; …; 1, 1, …, 1, 0, 0, …, 0)

N – x1 N – x2 N – xm

ð8:49Þ

y1                              y2                                      ym

Ym = (1, 1, …, 1, 0, 0,…, 0; 1, 1, …, 1, 0, 0, …, 0; …; 1, 1, …, 1, 0, 0, …, 0)

N – y1                         N – y2                                 N – ym

ð8:50Þ

With the above representation, the histogram intersection of Xm and Ym is given
as the dot product of the two histograms:

k Xm; Ymð Þ ¼ Xm � Ym ð8:51Þ

Therefore, kl is a kernel and as a result, K(X, Y) in (8.48) is also a kernel.

Fig. 8.6 Computation of pyramid match kernel. An image is divided into three levels of grids. At
each level of the grid, a histogram is computed for each block of the grid. Histograms at each level
are given a weight and the weighted histograms are then concatenated as a feature vector
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A histogram is a statistical feature, it captures the feature distribution in an image
or an image block. Histogram intersection tells how much area two distributions
share, the more area they share, the more similar the two distributions are. Fig-
ure 8.7 shows an example of histogram intersection. The shared region is about
33% of the two histograms, therefore, the similarity between the two histograms is
about 33%.

8.3.6 Discussions

Kernel-based support vector machine is essentially a training-based nearest
neighbor classifier. The use of dot product transforms the support vector machine
into a nonlinear nearest neighbor classifier. Traditional nearest neighbor has two
limitations, the determining of k and it does not support training. However, if the
training set is sufficiently large, both limitations can be overcome. First, the k can be
determined empirically. The second limitation can be overcome by determining the
class boundary with a piecewise linear approximation. For example, the class
boundary of the following data can be approximated by 5 hyperplanes, which can
then be used to classify new data (Fig. 8.8).

Although the piecewise linear boundary given by the K-NN is not optimal as the
boundary provided by the kernel-based SVM, in terms of classification, the
effectiveness of the two classifiers can be comparable. However, it would not be as
efficient as SVM.

Fig. 8.7 Histogram
intersection of two normal
distributions

8.3 Support Vector Machine 201

www.EBooksWorld.ir



8.4 Fusion of SVMs

8.4.1 Fusion of Binary SVMs

An SVM is essentially a binary classifier. However, automatic image classification
and annotation needs a multi-class classifier. The most common approach is to train
a separate SVM for each concept c and each SVM generates a decision value dc(x).
During the testing phase, the decisions from all classifiers are fused to obtain the
final class label of a test image. Figure 8.9 demonstrates this two level fusion
process [7, 8]. The first level consists of multiple binary classifiers and the second
level fuses the decisions from the first level classifiers.

Fig. 8.8 Approximation of
class boundary using
piecewise hyperplanes

SVM for 
class, c1

SVM for 
class, c2

SVM for 
class, cn

for Image x

Classification by 
individual SVM

Fusion decisions from 
multiple SVMs

class ĉ

Input Images

x

Fig. 8.9 A fusion of binary SVM classifiers
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8.4.2 Multilevel Fusion of SVMs

The above approach can be regarded as a base level fusion, it works well for a small
number of concepts. The quality of classification degrades with the increase of the
number of concepts due to the increase of the noise and class imbalance in the
training data. To be more robust, multiple sets of base level fusion of SVMs can be
merged to make a more powerful fusion as shown in Fig. 8.10 [7, 8]. Each set of
SVMs in level 1 and level 2 is similar to the base level fusion shown in 8.9 and
independently classifies an input image, the final decision is fused from the deci-
sions of all the individual sets at level 3.

The key advantage of using multiple sets of SVMs is to learn a more accurate
and robust classifier using different types of SVMs, such as classification SVMs,
regression SVMs, SVMs with/without soft margins, etc.

8.4.3 Fusion of SVMs with Different Features

Fusion of classifiers can also be done with combination of different types of fea-
tures. For example, both global and local features can be used to train two different
sets of SVMs at level 1 as shown in Fig. 8.11 [7, 8]. The results from the two sets of
SVMs are then fused in two steps. First, decisions of each concept made by each set

Classifier set 1

Classifier set m

Level  1 Level  2

Decision 
fusion from 
all m sets

Class 
label

Level  3

Decision 
fusion 

SVM for 
class, c1

SVM for 
class, c2

SVM for 
class, cn

Decision 
fusion 

SVM for 
class, c1

SVM for 
class, c2

SVM for 
class, cn

(decision1)

(decisionm)

Input Images

x

Fig. 8.10 A 3 levels fusion of SVMs
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of SVM are fused at level 2. Next, the final decision is made using a maximization
at level 3.

Although the fusion methods discussed in this section are shown as fusion of
SVMs, they can also be applied to fusion of different types of classifiers such as
Bayesian, ANN, DT, etc.

8.5 Summary

SVM is basically a supervised linear classifier which divides a dataset into two
classes with a hyperplane in data space. However, different from an ordinary linear
classifier, it offers an optimal hyperplane which separates two classes of data with
maximum margin between them. The data points make the hyperplane are called
the support vectors. SVM works by repeat guessing with candidate hyperplanes
until the optimal hyperplane is found.

The biggest progress of SVM is the kernel-based SVM which achieves non-
linearity without the use of networking like ANN. Nonlinearity of SVM is achieved
through transforming data into higher space so that they can be separated linearly.
Due to the kernel trick, this transformation is even unnecessary so long as the
distance is a kernel. This makes SVM is very efficient compared with ANN.

However, SVM is essentially a binary classifier or non-probabilistic classifier.
This makes it less robust than other probabilistic classifiers such as Bayesian
classifiers and DT. In addition, a multi-class SVM needs to be achieved through
fusion or assembly.

Decision fusion 
for class, c1

Class 
label

Global 
representation

Local 
representation

SVM for 
class, c1

SVM for 
class, c2

SVM for 
class, cn

SVM for 
class, c1

SVM for 
class, c2

SVM for 
class, cn

Decision fusion 
for class, c2

Decision fusion 
for class, cn

Level  1 Level  2 Level  3

Final decision 
fusion

Input Images

x

Fig. 8.11 A 3 levels class-by-class fusion of SVMs with both global and local features
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9Artificial Neural Network

Law of nature is The Way.

9.1 Introduction

When comes to learning and classifications, no other tool is more efficient and
powerful than human brains. Therefore, there is sufficient motivation to design a
machine learning tool which simulates human brains. This is further encouraged by
the recent research findings on human brain from both cognitive science and
biology. It is believed that a human brain is consisting of 10s of billions of neurons
interconnected into a sophisticated network. The neurons in a brain are organized
into functional units or regions, such as regions for visual, auditory, motion, rea-
soning, speech, etc. An individual neuron is shown in Fig. 9.1.

It is found that a neuron receives inputs from its dendrites, processes them in the
cell body, and transmits the output signal to other neurons through its axon. The
inputs the neuron received can be either excitatory or inhibitory. When there are
more excitatory inputs than inhibitory inputs, the neuron is activated and a signal is
transmitted out through the axon; otherwise, no signal is generated.

Then, neurons in many regions of a human brain are further organized into
layers to create a layered network. Neurons from one layer usually receive inputs
from neurons in an adjacent layer. Connections between layers are mostly in one
direction, moving from low-level layer sensors like eyes or ears to higher coordi-
nation and reasoning layer [1].

With these understandings of human brains and neurons, it is possible to design
artificial neurons and an artificial neural network or ANN.
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9.2 Artificial Neurons

The design of an artificial neural network starts with the modeling of artificial
neurons. From the above understandings, a neuron is basically a unit which receives
inputs and generates an output. Specifically, a biological neuron consists of three
components: the inputs (dendrites), an activation or processing unit (cell body) and
an output (axon). Electronically, these three components can be respectively rep-
resented as a set of inputs xi, a weighted sum of the inputs R, and a threshold of the
weighted sum. The alignment of an electronic neuron and a biological neuron is
shown in Fig. 9.2.

The weighted sum and the thresholding are usually merged into a single acti-
vation unit and the axon is replaced with an output signal. Therefore, the simplified
artificial neuron is shown in Fig. 9.3.

It turns out that an artificial neuron is just a binary linear classifier. Given an
input x = (x1, x2, …, xn), a weighted sum R is calculated and compared with a
threshold T:

Fig. 9.1 A neuron of human brain

Fig. 9.2 The alignment of an artificial neuron with a biologic neuron
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R ¼ w1x1þw2x2þ � � � þwnxn [ T ð9:1Þ

If R > T, the neuron is activated and an output signal y is sent out. In other
words, the activation of the neuron or output y is based on the following rule:

y ¼ 1 R[ T
0 R\T

�
ð9:2Þ

It is more convenient to combine both R and T and rewrite (9.1) as follows:

D ¼ R�T ¼ w1x1þw2x2þ � � � þwnxn�T
¼ �T þw1x1þw2x2þ � � � þwnxn

ð9:3Þ

For notation purpose, let w0 x0 = –T which represents a constant and x0 = 1,
then (9.3) becomes

D ¼ w0x0þw1x1þw2x2þ � � � þwnxn ð9:4Þ

And (9.2) becomes

y ¼ 1 D[ 0
0 D\0

�
ð9:5Þ

We can use this artificial neuron to do many simple linear classifications. One of
them is to simulate the logic gates, such as the AND, OR, NAND, NOR, etc.

9.2.1 An AND Neuron

Let us start with the AND gate, the AND function is given in Table 9.1.
Now, if we set the activation or threshold value as T = 1.5 (or any value between

1 and 2), only input (1, 1) will be activated, this is exactly what we want. Therefore,
the classifier for the AND function is given as follows:

w1

wn

w2

Σ > T ?

x1

x2

x3
w3

Activation 

Input

Output y

xn

Fig. 9.3 The modeling of an
artificial neuron
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y ¼ �1:5þ x1þ x2 ð9:6Þ

In space, the classifier of (9.6) is represented by the following hyperplane which
is a line in this case:

�1:5þ x1þ x2 ¼ 0 ð9:7Þ

The AND data and the linear classifier is shown in Fig. 9.4. The neuron which
implements the AND function is shown in Fig. 9.5 [1].

9.2.2 An OR Neuron

Similarly, the classifier of an OR function and the neuron that implements the OR
function are shown in Figs. 9.6 and 9.7, respectively.

An artificial neuron is called a node in an artificial neural network and is usually
represented by a circle.

Table 9.1 AND gate Input Output Sum

x1 x2
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 2

2x

0             0 –1.5 + x1 + x2 = 0

x10 1 

0 

1 0 1

Fig. 9.4 The data of AND
can be separated by a single
line –1.5 + x1 + x2 = 0

1 ●

x1● y

x2●

Fig. 9.5 The neuron which
implements the AND function
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9.3 Perceptron

The neuron we designed above can do binary and linear classification; however,
both the weights and the threshold are predetermined by a human designer. A bi-
ological neuron of a human brain, on the other hand, can learn from new instances
and memorize. It would be desirable that an artificial neuron can also learn and
memorize. This is done by feeding the neuron with a set of known data or
pre-labeled data and learn the weights by using certain criterion or algorithm such
as minimizing the total error.

From (9.4), the decision function of a neuron is given as follows:

Y ¼ w0þw1x1þw2x2þ � � � þwnxn ð9:8Þ

To train the neuron:

• A training set S = {(xq, yq), q = 1, 2, …, N} is collected,
• where yq is the desired output of qth sample feature vector xq = (xq1, xq2,…, xqn).
• The training is then to minimize the squared error or MSE:

E ¼ E w1;w2; . . .;wnð Þ ¼ 1
2

XN
q¼1

Yq � yq
� �2 ð9:9Þ

• where Yq = w0 + w1 xq1 + w2 xq2 + ��� + wn xqn.

x2

         0             1

x10 1

0

1 1 1

– 0.5 + x1 + x2 = 0

Fig. 9.6 The data of OR can
be separated by a single line
−0.5 + x1 + x2 = 0

1 ●

x1● y

x2●

1

1

-0.5

Fig. 9.7 The neuron which
implements the OR function
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The minimization follows the steepest descent direction which is given by the
gradient vector of

� @E

@w0
;� @E

@w1
;� @E

@w2
; . . .;� @E

@wn

� �
ð9:10Þ

If a sample is misclassified and the actual output Y is different from the correct
output y, we would want to change the weights so that E is minimized. Therefore,
the steepest descent algorithm to minimize E is given by the following algorithm:

1. Choose an initial weight set of w0, w1, w2, …, wn and a positive constant c.
2. For i = 0, 1, 2, …, n, compute the partial derivatives of @E=@wi and let wi = wi

– c(@E=@wi).
3. Repeat step 2 until w0, w1, w2, …, wn stop to change.

By combining (9.9) and (9.10), the partial derivatives @E=@wi in the above
algorithm is given by

@E

@wi
¼ Yq � yq
� �

xqi; i ¼ 0; 1; 2; . . .; n ð9:11Þ

Therefore, the MSE learning algorithm of a perceptron is given as follows:

1. Choose an initial weight set of w0, w1, w2, …, wn and a positive constant c.
2. For each of samples q = 1, 2, …, N, compute Yq ¼

Pn
i¼0 wixqi.

3. Let wi = wi – c(Yq – yq)xqi for i = 0, 1, 2, …, n.
4. Repeat steps 2 and 3 until w0, w1, w2, …, wn stop to change.

9.4 Nonlinear Neural Network

The perceptron is essentially a two-layer neural network with an input layer and an
output layer, it can be trained to classify any linear data which can be separated by a
hyperplane. However, for nonlinear data such as XOR (Fig. 9.8) and other data
with convex data regions (Fig. 9.9), they cannot be separated by a single hyper-
plane in space, and consequently they cannot be classified by a perceptron.

Although a convex data region in space (a region is convex if any two data
points can be connected by a line segment inside the region) cannot be separated by
a single hyperplane, its boundary can be approximated by the intersection of a finite
number of hyperplanes. For example, the XOR data in Fig. 9.8 can be separated by
the following two half planes in 2D space:

�0:5þ x1þ x2 [ 0 and �1:5þ x1þ x2\0 ð9:12Þ
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The two neurons represent the two half planes in (9.12) which are given by

�0:5þ x1þ x2 [ 0 and 1:5�x1�x2 [ 0 ð9:13Þ

Now, by AND(ing) (Fig. 9.5) the two neurons of (9.13), a neural network with a
middle layer or hidden layer is created which can separate the XOR outputs. The
neural network with hidden layer is shown in Fig. 9.10 [1].

This idea of three-layer neural network can be easily extended to classify any
generic convex nonlinear data like the one shown in Fig. 9.9. All we need now is
more nodes in the second layer or middle layer (Fig. 9.11). Usually, a small number
of nodes in the middle layer are sufficient to separate a convex region; however,
more middle layer nodes produce a smoother region boundary.

By extending the above idea of classifying convex nonlinear data using neural
network with a hidden layer, it is also possible to classify non-convex data using
neural network. This is because a non-convex region can always be approximated
by the union of a finite number of convex regions.

x2

         0             1

x10 1

0

1 1 0 

Fig. 9.8 Outputs of an XOR
cannot be separated by a
single line in 2D space

x    x   x x   x   x   x

x ◦ ◦ ◦          x
x ◦ ◦ ◦ ◦         x

x    x   x x   x   x   x

Fig. 9.9 The convex data
region in the center cannot be
separated by a single line in
2D space
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Therefore, it is possible to create a number of convex nodes in the third layer
using the method discussed above and combine those convex nodes in the third
layer using a logic OR in the fourth layer.

For example, the non-convex data region (black dots) in Fig. 9.12 can be
approximated by three convex data regions, which can then be classified using a
four-layer neural network shown in Fig. 9.13.

This indicates that any nonlinear data can be classified by a four-layer neural
network.

1   ●                     1●

x1 ●

x2 ●

1

1

-1.51.5 -0.5

-1

-1

1

1

Fig. 9.10 A three-layer neural network to implement XOR. The two linear classifiers at the
hidden layer are ANDed at the third layer

AND

1   ●                          1 ●

x1 ● y1

x2 ● y2 y 

xn ● yM

w2M

wnM

wn1

w01

Fig. 9.11 A three-layer neural network with a hidden layer which can classify generic convex
nonlinear data

Fig. 9.12 A non-convex
data region (black dots) is
approximated by three convex
regions
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9.5 Activation and Inhibition

It should be noted that the activation or threshold function is crucial to a neural
network, because it is shown that any neural network without thresholding is
equivalent to a two-layer network which cannot separate nonlinear data. However,
the binary threshold function is not desirable because it is not continuous. This
non-continuity can cause the network to take a very long time to converge or even
not converge. This is because the gradients from the MSE are differential values and
are small, so the changes in the weights are also small. As the result, the small
changes to the weights are usually not enough to pass the threshold or generate an
output signal.

9.5.1 Sigmoid Activation

It is desirable to have a continuous activation function which changes continuously
from 0 to 1 instead of jumping from 0 to 1. Among the many proposed continuous
activation functions, the most widely used is the sigmoid function. The S-shaped
sigmoid function is defined as (9.14) and the shape of the function is shown in
Fig. 9.14.

OR

1   ●            1 ●

x1 ● y11 y21

x2 ● y12 y22 y 

xn ● y1M y2N

w M

wnM

wn1

w

Fig. 9.13 A four-layer neural network which can classify any nonlinear data

Fig. 9.14 Sigmoid function
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The R(s) function guarantees an output signal while preserving the thresholding
functionality of an activation function.

RðsÞ ¼ 1
1þ e�s

ð9:14Þ

The R(s) function has the following important properties:

1. lims!�1 RðsÞ ¼ 0
2. lims!1 RðsÞ ¼ 1
3. R(0) = ½

4.
dR

ds
¼ Rð1� RÞ ð9:15Þ

This final property has a convenient use in the following backpropagation
algorithm. R(1 − R) is close to 0 at both ends of region (0, 1).

9.5.2 Shunting Inhibition

It is known that a biological neuron can be either excitatory or inhibitory. An
inhibitory signal prevents impulse from arising in the receiving neuron. This
inhibitory phenomenon can be represented mathematically as reducing the excita-
tory potential by division. This is called shunting inhibitory or SI. The idea is to
learn a dual set of weights Dj and divided the original output of a neuron with the
dual output adjusted by a decay factor. An SI neuron is illustrated in Fig. 9.15 [2].

w1

w2
Σ 

x0
x1

x2

wnxn

w0 g

D1

D2
Σ 

x0
x1

x2

Dnxn

D0 f

+
d

z

Fig. 9.15 A shunting inhibitory neuron
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Mathematically, the output from an SI neuron is given by (9.16) [2].

z ¼ gðPn
j¼1 wjxjþ bÞ

dþ f ðPn
j¼1 Djxjþ aÞ ð9:16Þ

where

• z is the output of the shunting neuron,
• xj is the jth input,
• Cj and Dj are the connection weights of the jth input,
• a = w0x0 and b = D0x0 are biases,
• d is the passive decay rate,
• f and g are activation functions,
• n is the number of inputs from the previous layer,
• dþ f ðPn

j¼1 Djxjþ aÞ[ 0:

An ANN designed with SI neurons is called an SIANN. The key to an SI neural
network is to use different activation functions f and g in a layer so that only the
strongest neurons are activated. Experiments show that when f and g are hyperbolic
tangent function and exponential function, respectively, the network has better
convergence.

9.6 The Backpropagation Neural Network

9.6.1 The BP Network and Error Function

One of humans’ great learning skills is learning from mistakes or errors, this is
because the mistakes/errors provide important feedback to improve the original
learning process. Unfortunately, the conventional ANN described above does not
provide this function. However, this function can be simulated in a neural network
by using the backpropagation algorithm. The idea is to add another process so that
the outputs in the final layer are used as feedback to the previous layer to update the
weights, and repeat this feedback until the input layer.

Therefore, a backpropagation neural network or a BP-ANN consists of two
major processes: (1) a conventional feedforward process which computes outputs at
each layer starting from the input layer; (2) a backpropagation process where the
weights are updated at each layer starting from the output layer, an attempt to
improve the classification accuracy.

In order to formulate the backpropagation algorithm, the following notations are
defined:
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• k denotes the kth layer of a network: k = 0, 1, 2, …, K. Layer 0 is the input and
layer K is the output.

• Mk denotes the number of nodes at layer k, k = 1, 2, …, K.
• x = (x1, x2, …, xn) stands for a training sample data.
• wk

ij stands for the weight of connection between node i at layer k − 1 and node j at
layer k, k = 1, 2, …, K.

• netkj ¼
PMk�1

i¼0 wk
ijy

k�1
i stands for the output or the weighted sum of jth node of

layer k, j = 0, 1, 2, …, Mk, k = 1, 2, …, K.
• ykj ¼ Rðnetkj Þ stands for the activated or thresholded output from the jth node of
layer k, j = 0, 1, 2, …, Mk, k = 1, 2, …, K.

The notations are shown in the following backpropagation neural network.
The BP-ANN uses the same MSE and steepest gradient descent optimization as

in the conventional ANN described earlier from (9.9) to (9.11). Assume tj is the true
output of node j at the final layer, and then the total squared error of the BP network
in Fig. 9.16 is given by (9.17).

E ¼ 1
2

XMK

j¼1
yKj � tj
� �2

ð9:17Þ

The backpropagation algorithm starts from estimating and updating the weights
of the final layer K, and then propagates the same estimating and updating pro-
cedure back to layer K − 1, K − 2, …, until layer 1.

Layer 0 Layer 1 Layer 2 Layer K
1 ● 1  ●

x1 ●

x2 ●

xn ●

Fig. 9.16 A K-layer backpropagation neural network
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9.6.2 Layer K Weight Estimation and Updating

• The weights of layer K are given by wK
ij , i = 1, 2, …, MK−1; j = 1, 2, …, MK.

• To estimate wK
ij , we compute the partial derivatives @E

@wK
ij
.

• We will make use of the fourth property of R(s) in (9.15) for the following
computations.

• Remember every ykj is a R(s) function: ykj ¼ Rðnetkj Þ.
• Figure 9.17 shows the connection with weight wK

ij (red line) in a BP network.

Therefore, the computation of @E
@wK

ij
is simple, because among the MK terms in

(9.17), only the jth term ðyKj � tjÞ2 is related to wK
ij , while all the other terms are

irrelevant because they are not connected to node i in layer K − 1. Therefore, we
have the following:

Layer 0 Layer 1 Layer K-1 Layer K
1  ● 1  ●

x1 

xi ●

xj●

xn ●

…
…

..

Fig. 9.17 Illustration of a connection between node i in layer K − 1 and node j in layer K in a K-
layer BP neural network
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@E

@wK
ij

¼ @E

@yKj

@yKj
@wK

ij

¼ yKj � tj
� � @yKj

@wK
ij

¼ yKj � tj
� � @yKj

@netKj

@netKj
@wK

ij

¼ yKj � tj
� �

yKj 1� yKj

� �
yK�1i

¼ dKj y
K�1
i

ð9:18Þ

where

dKj ¼ yKj 1� yKj

� �
yKj � tj
� �

ð9:19Þ

Therefore, the weights of layer K are updated according to (9.19) as given
below:

wK
ij  wK

ij � c
@E

@wK
ij

¼ wK
ij � cdKj y

K�1
i ð9:20Þ

where c is a positive constant. dKj is equivalent to a network sensor, it measures if
the signal of a connection should be raised or suppressed. This can be explained by
(9.19) and (9.20):

• wK
ij is increased (raised) if dKj \0 (when yKj \tj);

• wK
ij is decreased (suppressed) if dKj [ 0 (when yKj [ tj);

• wK
ij changes little if dKj is close to 0 (when yKj is close to tj, 0 or 1), indicating

converging;
• wK

ij changes most significantly if yKj is very different from tj.

9.6.3 Layer K − 1 Weight Estimation and Updating

• The weights of layer K − 1 are given by wK�1
mi , m = 1, 2, …, MK-2; i = 1, 2, …,

MK−1.
• To estimate wK�1

mi , we compute the partial derivatives @E
@wK�1

mi
.

• The computation of partial derivative @E
@wK�1

mi
at layer K − 1 is more complicated

than layer K.
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• This is because wK�1
mi connects to node i (at layer K − 1), which is then connected

to all nodes at layer K.
• The connections which are relevant to wK�1

mi are shown in Fig. 9.18 (red lines).
• Therefore, each of the MK terms in (9.17) is now related to the computation of

@E
@wK�1

mi
.

Therefore, by using ykj ¼ Rðnetkj Þ and dR sð Þ=ds ¼ R sð Þ 1� R sð Þ½ �, the compu-

tation of @E
@wK�1

mi
is given below by the sum of chaining derivatives:

@E

@wK�1
mi

¼ 1
2

XMK

j¼1

@ yKj � tj
� �2

yKj

@yKj
@netKj

@netKj
@yK�1i

@yK�1i

@netK�1i

@netK�1i

@wK�1
mi

0
B@

1
CA

¼
XMK

j¼1
yKj � tj
� �

yKj 1� yKj

� �
wK
ij

" #
yK�1i 1� yK�1i

� �
yK�2i

)ð9:19Þ½yK�1i 1� yK�1i

� �XMK

j¼1
dKj w

K
ij �yK�2i

¼ dK�1i yK�2i

ð9:21Þ

Layer 0 Layer K-2 Layer K-1 Layer K
1  ● 1  ●

x1 

xi ●

xj●

xn ●

Fig. 9.18 Illustration of all connections relevant to wK�1
mi in a K-layer BP neural network.

Relevant connections are shown in red lines
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where

dK�1i ¼ yK�1i 1� yK�1i

� �XMK

j¼1
dKj w

K
ij ð9:22Þ

By repeating (9.21), it can be shown that for any hidden layer k, dki is given by
(9.23).

dki ¼ yki 1� yki
� � XMkþ 1

j¼1
dkþ 1
j wkþ 1

ij ð9:23Þ

Equation (9.23) indicates that a network sensor at layer k depends on the combined
network sensors at next layer k + 1. In other words, during the back propagation,
the weighted sum of network sensors at layer k + 1 has been propagated (through
dR(s)/ds) to each network sensor at previous layer k. This kind of propagation is
similar to the feedforward process where the weighted sum of network values (or
signals) at layer k is propagated (through R(s)) to each connection at next layer k + 1.

The difference between the two rounds of propagation is that different propa-
gation functions are used. In the feedforward process, the propagation function is
just the activation function R(s) itself, while in the backpropagation process, the
propagation function is the gradient of the activation function: dR(s)/ds.

9.6.4 The BP Algorithm

Now that we have computed the gradients or partial derivatives of the error function
E, the BP algorithm is designed as following [1]:

1. Initialize all the weights wk
ij (for all i, j, k) on the network and the constant c with

some small random values.
2. Input a new training data: x = (x1, x2, …, xn) from a set of N training data.
3. Feedforward step. Compute the outputs at each layer starting from the input

layer:

ykj ¼ R
XMk�1

i¼0
wk
ijy

k�1
i

 !
j ¼ 1; 2; . . .;Mk; k ¼ 1; 2; . . .;K:

4. Backpropagation step. Compute the network sensors at each layer starting from
the output layer:

dKj ¼ yKj 1� yKj

� �
yKj � tj
� �

for layerKð Þ
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and dki ¼ yki 1� yki
� � XMkþ 1

j¼1
dkþ 1
j wkþ 1

ij for k ¼ K � 1;K � 2; . . .; 2; 1ð Þ:

5. Update weights on the network by wk
ij  wk

ij � cdkj y
k�1
i for all i, j, k.

6. Repeat steps 2 and 5 until all the weights wk
ij stop to change or stop to change

significantly.

Because the BP algorithm is a steepest gradient descent algorithm, choosing the
initial values forwk

ij and the constant c is crucial to the performance of a network. If the

initial values ofwk
ij are too far from the global minima, the algorithmmay converge to

a local minimum. Consequently, the result of class boundaries is not accurate. If the
initial value of the constant c is either too small or too big, the converging progress can
be very slow. In practice, several rounds of guessing the initial values of both the
weights and c may be required to achieve a desirable performance.

9.7 Convolutional Neural Network

An ordinary ANN does not take raw data as input; instead, it takes features as input
and classifies the data into classes based on their features. The features are com-
puted through a separated feature extraction process (handcrafted) and are given as
an n-dimensional feature vector. The reason behind this separation of feature
extraction and classification is that the data dimension is usually very larger, typ-
ically from tens of thousands to millions. Direct connection of raw data to an ANN
would make the network too complex and too expensive to compute with tradi-
tional computing power. Besides, the various data dimension is also a design issue
for such a combined ANN.

Nowadays, with the rapid increase of computation power, it is possible to
combine both the feature extraction and classification processes into a single neural
network. The idea is to integrate a feature extraction network in front of an ordinary
ANN. Because the feature extraction is typically done through the convolution of
local filters upon an image, an ANN with feature extraction functionality is called a
convolutional neural network or CNN for short.

9.7.1 CNN Architecture

The architecture of a CNN can be best demonstrated using the LeNet [3] in
Fig. 9.19. Basically, a CNN consists of a convolution network in front and a fully
connected MLP (multilayer perceptron, an ordinary ANN) at the backend.

Because each hidden unit in the convolutional network is only connected to a
local neighborhood (e.g., a clock) in the input image instead of every pixel, it is also
called a locally connected network. In contrast, in an ordinary ANN, each element
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of an input data is connected to each hidden unit in the network, so it is called fully
connected network.

The convolutional network is a repeat process of convolution and pooling as
shown in Fig. 9.19 [3]. Depending on the dimension of the input data, the repeti-
tions can occur for a number of rounds. In the following, we describe the CNN
architecture in detail.

9.7.2 Input Layer

• The input data are a set of training images x1, x2, …, xn.
• Each image x is a C-dimensional volume M � M � C, where M is the height and
width of the image and C is the number of channels.

• For the convenience of formulation, the height and width of the images are
assumed to be the same.

• Typically, the input is a RGB color image x = x [i, j, k] and C = 3.
• For a gray-level image, C = 1.

9.7.3 Convolution Layer 1 (C1)

In a CNN, the convolution is a high-dimensional volume convolution.

• Specifically, the convolution is done by shifting a high-dimensional volume filter
W: N � N � S across the image as shown in Fig. 9.20a, where N is the height and
width of the windowed filter and S is the number of channels of the filter.

• S can be either the same as the number of image channels C or different.
• It can be shown that a high-dimensional volume filter consists of S number of 2D
filters w with size of N � N.

• In practice, the convolution is done by convoluting each channel of the
high-dimensional volume filter with each channel of the input image.

• Each of these 2D filters w is meant to capture a particular type of edges, shapes,
or textures from the input image.

Input layer            (C1) n1 feature maps         (S1) n1 feature maps    (C2) n2 feature maps (S2) n2

Convolution Pooling Convolution Pooling Fully connected MLP

maps

Fig. 9.19 Architecture of a CNN
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• Figure 9.20b demonstrates how a volume convolution is done by a series of
2D convolution.

• In Fig. 9.20b, the input data is an image x with four channels A, B, C, and D.
• There are two high-dimensional volume filters w0 and w1 on the right-hand side,
each of the volume filters consists of four channels a, b, c, and d, which are
shown at the bottom left of Fig. 9.20 [3].

• The convolution between x and w0 (x * w0) is done by convoluting each of the
filter channels a, b, c, and d across each of the corresponding image channels A,
B, C, and D.

• The convolution of image x with filter w1: x * w1 is done the same way.

Input image volume

filter 1

Feature
map 1

Feature
map 2

Feature
map n

filter 2

w0

w0w1

w1

A
B

C
D

b
c

d

a

a

b

c

d

Input image x and its channels         Filters wi & filtered images

(a)

(b)

Fig. 9.20 Volume convolution. a Demonstration of volume filter and high-dimensional
convolution; b demonstration of high-dimensional convolution x * w0 which can be done using
a series of 2D convolutions. Each of the filter channels a, b, c, and d is convoluted with each of the
corresponding image channels A, B, C, and D
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• Therefore, understanding 2D convolution is the key to understand
high-dimensional volume convolution.

9.7.3.1 2D Convolution

• A 2D convolution is done by sliding an N � N window w across the image x row
by row and column by column, assuming the window slides one pixel per time
and there is no padding for the moment.

• The 2D convolution of x * w is given by (9.24) and an example of a 2D
convolution is shown in Fig. 9.21 [4].

Xmn ¼ x � wð Þmn¼
XN�1
j¼0

XN�1
i¼0

w i; j½ � � x m� i; n� j½ � ð9:24Þ

9.7.3.2 Stride and Padding

• The dimensions of the convoluted image depend on two parameters: stride and
padding.

• The stride determines the number of pixels the filter window shifts per time and
the padding determines if and what the input image should be padded when the
filter window is at the image boundary, e.g., 0 padding.

• If the stride value is 1 and the padding is yes, the dimensions of the convoluted
image are the same as the input image.

• In Fig. 9.21, the stride is 1 and there is no padding, and therefore the convoluted
image loses two pixels at both ends of each row and column.

9.7.3.3 Bias

• In a CNN, the values in a filter w are regarded as the weights for the connections
between the filter and the network.

x w x

1 2 2 2 1 1 1
1 1 2 2 2 1 1
1 1 1 2 2 2 1
1 1 1 2 2 1 1
1 1 2 2 1 1 1
1 2 2 1 1 1 1
2 2 1 1 1 1 1

*
1 0 1
0 1 0
1 0 1

=

6 9 8 9 6
6 7 9 8 8
6 7 8 9 6
6 8 8 6 6
8 8 6 6 5

Fig. 9.21 2D convolution. An image x is convoluted with a filter window w and the result of the
convolution is given by x * w at the right-hand side
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• These weights are to be learned during the training of the network.
• Therefore, a bias b is added to compensate for the estimation error.

X0mn ¼ x � wð Þmnþ b ¼ bþ
XN�1
j¼0

XN�1
i¼0

w i; j½ � � x m� i; n� j½ � ð9:25Þ

9.7.3.4 Volume Convolution in Layer C1

• Each of the S channels of the volume filter is first convoluted with each corre-
sponding channel of the input image x.

• The S filtered channels are then combined to create a 2D feature map or image
fmn.

fmn ¼
XS
k¼1

x � w :; :; k½ �ð Þmnþ b

¼ bþ
XS
k¼1

XN�1
j¼0

XN�1
i¼0

w i; j; k½ � � x m� i; n� j; k½ �
ð9:26Þ

9.7.3.5 Depth of the Feature Map Volume

• Multiple volume filters are used in a convolution layer to create a volume of
feature maps.

• Each of the volume filters captures a particular type of image features.
• The number of volume filters R is called the depth of the feature map volume.
• The rth feature map is given by (9.27), r = 0, 1, …, R − 1.

f rmn ¼ bþ
XS
k¼1

XN�1
j¼0

XN�1
i¼0

wr i; j; k½ � � x m� i; n� j; k½ � ð9:27Þ

• Figure 9.22 shows how two volume filters w0 and w1 are used in layer C1 to
create the two feature maps (light red) at the rightmost hand side [5].

• In the figure, the input image x is a color image with R, G, and B channels, each
of the two volume filters also has three channels. The figure demonstrates the
convolution of the three channels (green) of the first filter with a block (yellow) in
image x. The convolutional output of the yellow block of image x is shown as the
pink pixel in the first output image on the rightmost hand side of the figure.

• Although the input x is a 7 � 7 image, due to the stride value of the convolution
is 2, the filtered output is just a 3 � 3 image. Therefore, in order to output a
filtered image with the same size as the input image, we not only need to set the
stride value as 1 but also need to pad the image with half the filter size.
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9.7.3.6 ReLU Activation

• The output from a volume filter or the feature map is essentially the weighted sum
of the input layer.

• As in an ordinary neural network, it needs to pass an activation function.
• It has been found that in a convolution layer, the max(0, x) function is more
effective than a sigmoid function for the activation.

• max(0, x) is basically a rectified linear function because it simply rectifies or
refracts the negative half of y = x to 0.

• Therefore, it is often called a rectifier and a node activated by the rectifier is also
called a rectified linear unit or ReLU.

Input volume (7x7x3)

x[:, :, 1]

x[:, :, 2]

x[:, :, 3]

2 1 3 1 2 0 1 
1 0 3 1 3 0 2 
1 2 0 3 1 3 1 
1 0 2 1 3 0 2 
0 2 1 3 0 2 1 
1 3 1 2 0 2 0 
3 1 2 0 2 0 1 

0 1 1 1 0 1 0 
1 0 1 1 1 0 1 
0 1 0 0 1 1 0 
1 0 1 1 0 1 1 
0 1 0 1 1 0 0 
1 1 1 0 1 1 0 
1 0 1 1 0 1 1 

1 2 2 2 1 1 1 
1 1 2 2 2 1 1 
1 1 1 2 2 2 1 
1 1 1 2 2 1 1 
1 1 2 2 1 1 1 
1 2 2 1 1 1 1 
2 2 1 1 1 1 1 

Filter w0 (3x3x3)

w0 [:, :, 1]
1 -1 0 
0 -1 -1 
1 0 0 

w0 [:, :, 2]
0 0 0 
1 0 0 
1 1 0 

w0 [:, :, 3]
1 0 -1 
0 -1 0 
-1 0 1 

Bias 

b0 = 3 

Filter w1 (3x3x3)

w1[:, :, 1]
1 1 1 
0 0 0 
-1 -1 -1 

w1[:, :, 2]
1 0 -1 
1 0 -1 
1 0 -1 

 w1[:, :, 3]
1 0 1 
0 1 0 
1 0 1 

Bias 

b1 = -2

Output volume (3x3x2)

o[:, :, 1]
2 2 5 
3 -6 0 
4 3 -3 

o[:, :, 2]
6 8 3 
3 7 7 
3 4 4 

Fig. 9.22 An input image is convoluted with two volume filters w0 and w1. The two result feature
maps are at the rightmost hand side (light red). The stride value is 2 and there is no padding
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• So, we have

ReLUðxÞ ¼ max 0; xð Þ ð9:28Þ

• The output from node r of layer C1 is finally given as (9.29)

yrmn ¼ ReLU f rmn
� � ð9:29Þ

• The ReLU activation is usually implemented as a separate layer after the con-
volution layer.

9.7.3.7 Batch Normalization
In a CNN, learning rate or convergence speed is a major issue. Due to the con-
volution, the range of output values of the filters in each layer varies widely. In
other words, the convolution has changed the original distribution of the input data,
breaking the independent and identically distributed or i.i.d. assumption on input
data. Worse still, each layer has to adapt to distribution drift from lower layers in
order to revise its own weights. This makes the learning very inefficient and con-
vergence very slow, especially for layers with sigmoid or tanh activation. This
phenomenon is called the internal covariance shift or the change of data distri-
bution from the input data distribution. In order to overcome this undesirable effect,
a batch normalization procedure is introduced before the activation layer in an
attempt to keep the mean and variance of the input data fixed, so that layers learn
themselves more or less independent with each other. The basic idea is to normalize
the input data of all layers in the network to have 0 mean and unit variance. In
practice, the normalization is done to the input data or data to be activated
dimension by dimension and batch by batch. Let us take a particular activation x (a
single dimension of the input data), for example, there are m values from a
mini-batch: B = {x1, x2, …, xm}. The algorithm of the batch normalization of x is
given as following [6]:

Input: Values of x from a mini-batch B = {x1, x2, …, xm}
Parameters to be learned: c, b

Output: Batch normalized values {yi = BNc,b(xi)}

lB  1
m

Pm
i¼1

xi ==mini�batchmean

r2B  1
m

Pm
i¼1
ðxi � lBÞ2 ==mini�batch variance

x̂i  xi�lBffiffiffiffiffiffiffiffiffi
r2B þ e
p ==sample normalisation

BNc;b xið Þ ¼ yi  cx̂i ==batch normalisation
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For convolution layers, the normalization is done by jointly normalizing all the
activations in a mini-batch over all locations. Specifically, the pair of parameters c
and b is learnt per feature map instead of per activation [6].

By batch normalization, the values of input features to each layer are normalized
into the same range, this reduces the oscillations of gradient descent when it
approaches the minimum point and consequently makes it to converge faster.
Another benefit of batch normalization is that it adds minor noise to each layer due
to each training sample is mixed with other samples in a mini-batch, and this
reduces the effect of overfitting. In practice, lower dropout rate is needed for a
network with batch normalization.

9.7.4 Pooling or Subsampling Layer 1 (S1)

The feature maps’ output from layer C1 usually has the same dimension as the input
image. Their dimensions are too high to be connected to an ANN. Besides, the
feature maps represent the finest details of the input image, these features are not as
reliable. Therefore, it is tempting to downsample the feature maps so that features at
a coarser level can be extracted. This is done by passing each feature map through a
2 � 2 subsampling function. Several types of subsampling functions can be used,
such as max(), average(), L2 norm, or spectral transform such as DWT and DCT.

For example, if the max function is used, the subsampling is called a max-
pooling. Figure 9.23 demonstrates a max-pooling which reduces a 4 � 4 feature
map to a 2 � 2 feature map.

9.7.5 Convolution Layer 2 (C2)

The outputs from the pooling layer 1 (S1) are subsampled feature maps from layer
C1. New features can be computed from those feature maps by doing another round
of convolution using new volume filters. The convolution procedure is the same as

2 3 9 5

5 1 6 7

  2 1 4 3

0 1 0 1

2 x 2 max-pooling
  5  9 

 2  4 

Fig. 9.23 Illustration of a max-pooling. The maximum value of each quarter block of the left
image is computed as the output value of the max-pooling image at the right-hand side
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that in layer C1 except each volume filter in layer C2 uses different combinations of
feature maps from layer S1.

For example, in Fig. 9.24, the two volume filters w0 and w1 are convoluted with
different channels or feature maps output from layer S1. While filter w0 is convo-
luted with feature maps A–D, filter w1 is convoluted with feature maps C–F.

If the depth of S1 is R, the total number of combinations of R channels is given
as follows:

XR
k¼1

R
k

� �
¼ 2R � 1 ð9:30Þ

where k is the number of channels in a filter in layer C2.
The convolution and pooling can be repeated for a number of rounds depending

on the size of the input data. The feature maps from the final pooling layer are
flattened to create a 1D feature vector, this feature vector is fed into the fully
connected ANN at the backend of a CNN.

9.7.6 Hyperparameters

The performance of a CNN depends on the selection of the following hyperpa-
rameters. These parameters may be data dependent and need to be determined
empirically.

• Filter size. The window size of the volume filter.
• Stride. The number of pixels per shift by the filter window at each layer.
• Padding. Whether padding will be used at the boundary of an input image and a
feature map. What type of padding will be used, e.g., zero padding or wrap
around padding.

• Depths. The number of channels or filters at each convolution layer.

Feature maps from S1                      Convolution and feature maps of C2 

A
B

C

E
F

b
c

d

w0

w0
w1

w1D

a

Fig. 9.24 Volume convolution in layer C2. Volume filter w0 is convoluted with feature maps A–
D while volume filter w1 is convoluted with feature maps C–F
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• Dropout-rates. The percentage of neurons to be dropped out from each of the
hidden layers at each iteration to prevent overfitting and cope with missing data.

• Epochs. The number of times the training algorithm will iterate over the entire
training set before terminating.

• Pooling size and function. The size of a pooling function and the type of pooling
function such as max(), average(), L2 norm, etc.

• Activation function. The function used to generate a threshold output at each
layer, such as ReLU(), sigmoid, tanh(), etc.

• The number of neurons in the fully connected layer of the ANN.

9.8 Implementation of CNN

To demonstrate a CNN in action, we show a high-performance CNN implemen-
tation by Oxford’s Visual Geometry Group or VGGNet [7]. It has won the runner
up of the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[Image-Net.org]. ImageNet is the largest hand-annotated visual dataset, and it holds
image recognition competitions every year among researchers around the world.
Compared with other high-performance CNN models, VGGNet is known for its
simplicity because it is a series network.

9.8.1 CNN Architecture

The architecture of VGGNet is shown in the following list which is obtained by
using Matlab code: net = vgg16; net.Layers. The 16 core layers are highlighted
using bold font and are organized into five blocks: conv1—conv5. Therefore, it is
often referred to as VGG16. It is a typical stacked convolution + pooling layers
followed by fully connected ANN. The purpose of the softmax layer is to convert
any vector of real numbers into a vector of probabilities, which correspond to the
likelihoods that an input image is a member of a particular class.

01 ‘input’ Image Input 224 � 224 � 3 images with ‘zerocenter’
normalization

02 ‘conv1_1’ Convolution 64 3 � 3 � 3 convolutions with stride [1 1]
and padding [1 1 1 1]

03 ‘relu1_1’ ReLU ReLU

04 ‘conv1_2’ Convolution 64 3 � 3 � 64 convolutions with stride [1 1]
and padding [1 1 1 1]

05 ‘relu1_2’ ReLU ReLU

06 ‘pool1’ Max Pooling 2 � 2 max pooling with stride [2 2] and padding
[0 0 0 0]

07 ‘conv2_1’ Convolution 128 3 � 3 � 64 convolutions with stride [1 1]
and padding [1 1 1 1]
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08 ‘relu2_1’ ReLU ReLU

09 ‘conv2_2’ Convolution 128 3 � 3 � 128 convolutions with stride [1 1]
and padding [1 1 1 1]

10 ‘relu2_2’ ReLU ReLU

11 ‘pool2’ Max Pooling 2 � 2 max pooling with stride [2 2] and padding
[0 0 0 0]

12 ‘conv3_1’ Convolution 256 3 � 3 � 128 convolutions with stride [1 1]
and padding [1 1 1 1]

13 ‘relu3_1’ ReLU ReLU

14 ‘conv3_2’ Convolution 256 3 � 3 � 256 convolutions with stride [1 1]
and padding [1 1 1 1]

15 ‘relu3_2’ ReLU ReLU

16 ‘conv3_3’ Convolution 256 3 � 3 � 256 convolutions with stride [1 1]
and padding [1 1 1 1]

17 ‘relu3_3’ ReLU ReLU

18 ‘pool3’ Max Pooling 2 � 2 max pooling with stride [2 2] and padding
[0 0 0 0]

19 ‘conv4_1’ Convolution 512 3 � 3 � 256 convolutions with stride [1 1]
and padding [1 1 1 1]

20 ‘relu4_1’ ReLU ReLU

21 ‘conv4_2’ Convolution 512 3 � 3 � 512 convolutions with stride [1 1]
and padding [1 1 1 1]

22 ‘relu4_2’ ReLU ReLU

23 ‘conv4_3’ Convolution 512 3 � 3 � 512 convolutions with stride [1 1]
and padding [1 1 1 1]

24 ‘relu4_3’ ReLU ReLU

25 ‘pool4’ Max Pooling 2 � 2 max pooling with stride [2 2] and padding
[0 0 0 0]

26 ‘conv5_1’ Convolution 512 3 � 3 � 512 convolutions with stride [1 1]
and padding [1 1 1 1]

27 ‘relu5_1’ ReLU ReLU

28 ‘conv5_2’ Convolution 512 3 � 3 � 512 convolutions with stride [1 1]
and padding [1 1 1 1]

29 ‘relu5_2’ ReLU ReLU

30 ‘conv5_3’ Convolution 512 3 � 3 � 512 convolutions with stride [1 1]
and padding [1 1 1 1]

31 ‘relu5_3’ ReLU ReLU

32 ‘pool5’ Max Pooling 2 � 2 max pooling with stride [2 2] and padding
[0 0 0 0]

33 ‘fc6’ Fully Connected 4096 fully connected layer

34 ‘relu6’ ReLU ReLU

35 ‘drop6’ Dropout 50% dropout

36 ‘fc7’ Fully Connected 4096 fully connected layer

37 ‘relu7’ ReLU ReLU
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VGGNet shows that the depth of the network is a critical component for good
performance. The number of filters (depth) increases from 64 to 512 as it goes
deeper into the network. The consecutive use of 3 � 3 convolutions has the effect of
causing more nonlinearity as more than one ReLU functions have been applied at
each stage of convolutions.

Another advantage of using consecutive convolutions is the increasing size of
the receptive field. This is because two consecutive 3 � 3 convolutions have the
effective receptive field of a single 5 � 5 convolution, while three-stacked 3 � 3
convolutions have the receptive field of a single 7 � 7 one [7].

9.8.2 Filters of the Convolution Layers

To validate a CNN, it is valuable to inspect and examine the internal structure of the
network. Figure 9.25 shows the first 64 pretrained filters from 6 layers of VGG16
net. It can be observed that the filters typically capture the blobs, edges, regularity,
directionality, and other features of an image. Filters in early layers (layers 2 and 7)
typically focus on pixels, blobs, and edges, as the network goes deeper, the filters
become coarser, where low-level features are organized into shapes and parts of
objects.

9.8.3 Filters of the Fully Connected Layers

If the convolution layers try to capture the texture and shape features from images,
the fully connected layers attempt to organize the features into objects. Figure 9.26a
and b shows the first 10 channels of layers “fc6” (layer 33) and “fc7” (layer 36),
respectively. This phenomenon of learning objects is more obvious in the final fully
connected layer where the class names are known (using Matlab code: net.Layers
(end).Classes). Figure 9.26c shows 20 channels from “fc8” (layer 39) with class
names as following: goldfish, tiger shark, hammerhead shark, ostrich, great gray
owl, African crocodile, mud turtle, academic gown computer keyboard, cowboy
boot, accordion, cowboy hat, crane (machine), crash helmet, ambulance, analog
clock, balloon, dining table, dumbbell, and acoustic guitar.

It can be observed from Fig. 9.26c that the signature patterns and shapes of these
objects are well captured. More interestingly, the filters have learnt multiple copies
of the same object to adapt to changes.

38 ‘drop7’ Dropout 50% dropout

39 ‘fc8’ Fully Connected 1000 fully connected layer

40 ‘prob’ Softmax softmax

41 ‘output’ Classification crossentropyex with ‘tench’ and 999 other classes
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(c) Filters of layer 12                                               (d) Filters of layer 19

(e) Filters of layer 26 (e) Filters of layer 30 

(a) Filters of layer 2                                               (b) Filters of layer 7  

Fig. 9.25 Pretrained filters of 6 of the 13 VGG16 convolution layers
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(c) Layer ‘fc8’

(a) Layer ‘fc6’

(b) Layer ‘fc7’

Fig. 9.26 Filters of the fully
connected layers
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9.8.4 Feature Maps of Convolution Layers

To further understand the implementation of a CNN, it is more revealing to examine
the convolution process by using a real input image. A CNN is basically a com-
bination of two components: convolution layers and fully connected layers. The
convolution layers are responsible for feature extraction and the fully connected
layers are responsible for the classification. The convolution component is the main
powerhouse of a CNN model. Given an input image, the different filters in the
convolution layers detect features such as edges, blobs, and regions, which repre-
sent eyes, ears, legs, feather, leaves, water, sand, windows, wheels, etc. The CNN
does not know if they are eyes, ears, legs, etc., it learns to detect them as features by
memorizing a lot of them in the input images. The fully connected layers learn how
to use these features to classify the images into different classes.

One important thing to note is that due to the nature of consecutive convolution
and pooling, the features leant from the CNN is evolutional or hierarchical. In other
words, the CNN is a learning process from fine features to coarse features. The
convolution layers learn such fine to coarse features by building on top of each
other. The first layers detect edges, the next layers combine them to detect shapes,
and the following layers merge shape information to infer objects such as eyes, ears,
legs, etc. Figure 9.27 demonstrates this evolutional process by showing the first 64
feature maps from each of the five blocks of the lady image in Fig. 3.2: conv1_2,
conv2_2, conv3_3, conv4_3, and conv5_1. It can be observed that the prominent
features (hat, face) in the image are well captured by the filters. It is interesting to
find that each filter captures different aspects of the image such as the surface and
outline of the hat, the face, eyes, cloth, hand, background, etc. It can also be seen
from the figure that the features from the first block of layers (conv1_1) are sparse
and show the fine details/edges of the image, and as the network goes deeper, the
features become coarser and coarser due to pooling, until the final block of layers
where only the most prominent features (e.g., eyes, mouth) in the input image
survive.

Figure 9.28 uses heat maps of the channels from each of the blocks to
demonstrate how the prominent features of a face image have been tracked by the
network. It can be seen that the eyes of the face are well tracked by the network and
as the network goes deeper, the face pattern becomes coarser and coarser until it is
completely blurred.

Although conventional feature extraction methods can also extract similar kind
of coarse features for classification, a CNN model can combine many types of such
kind of coarse features to form a set of more powerful features which lead to more
accurate classification.

Overfitting is a common problem on image classification because usually there
are too few training samples, resulting in a model with poor generalization
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(a) conv1_2 (b) conv2_2 

(c) conv3_3 (d) conv4_3 

(e) conv5_1 

Fig. 9.27 Feature maps from different convolution layers of VGG16
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performance. One solution to overfitting is to use data augmentation. Data aug-
mentation is a method to generate more training data from the current training set. It
is an artificial way to boost the size of the training set, reducing overfitting.

Data augmentation is typically done by data transformations and processing,
such as rotation, shifting, resizing, adding noise, contrast change, etc. It should be
noted that data augmentation is only performed on the training data, not on the
validation or test set.

9.8.5 Matlab Implementation

Matlab’s Deep Learning Toolbox™ has a number of built-in networks which are
pretrained on ImageNet, including ResNet-50, AlexNet, GoogleNet, VGG-16, and
VGG-19. The following is a code scheme of using VGG-16 for image classification
[8]. The code provides a step-by-step implementation of a CNN. Training images
need to be first categorized and organized into subfolders, and the name of each
subfolder represents the label of the image category, e.g., bird, people, tiger, etc.

conv1_1              conv2_2               

conv3_3                                conv4_3           

conv5_1 conv5_3 

Fig. 9.28 Channels from each of the five blocks of VGG16 net
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% Load the Pretrained VGG-16 network 

net = vgg16();

net.Layers; %inspect the network architecture

% Extract and Display Feature Maps 
% Extract the filters for convolutional layer 1: conv1_1
filter1 = net.Layers(2).Weights;
filter1 = mat2gray(filter1);
filter1 = imresize(filter1,5);
figure
montage(filter1)
title('First convolutional layer filters') 

% Prepare Training and Testing Image Sets 
% Loading images into an imageDataStore Object, e.g., rootFolder=c:\myImages, 

subFolder=cnnImages, myFolder='c:\myImages\cnnImages'

myFolder = fullfile('rootFolder', 'subFolder');

categories = {'cat1', 'cat2',…, 'catn'};

imstore = imageDatastore(fullfile(myFolder, categories), 'LabelSource', 

'foldernames');

% Split the dataset into training set (30%) and testing set (70%)
[trainingSet, testingSet] = splitEachLabel(imstore, 0.3, 'randomize');

% Normalise Dataset images to required size and RGB format
imSize = net.Layers(1).InputSize;
normTrainingSet = augmentedImageDatastore(imSize, trainingSet, 
'ColorPreprocessing', 'gray2rgb');
normTestingSet = augmentedImageDatastore(imSize, testingSet, 
'ColorPreprocessing', 'gray2rgb'); 

% Extract features from the last fully connected layer
fcFeature = 'fc8'; 
trainingFeatures = activations(net, normTrainingSet, fcFeature, ...

'MiniBatchSize', 32, 'OutputAs', 'columns');

% Train a Multiclass SVM Classifier Using the Extracted Features 
% Get training labels from the trainingSet
trainingLabels = trainingSet.Labels;
classifier = fitcecoc(trainingFeatures, trainingLabels, ...
'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn', 'columns');

% Test the SVM Classifier on New Images 
newImage = imread(fullfile('rootFolder', 'subFolder', 'imageName'));

% Normalise the new images. 
normImage = augmentedImageDatastore(imSize, newImage, 'ColorPreprocessing', 
'gray2rgb');

% Extract image features using the CNN
imFeatures = activations(net, normImage, fcFeature, 'OutputAs', 'columns');

% Make a prediction using the classifier
label = predict(classifier, imFeatures, 'ObservationsIn', 'columns') 
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9.9 Summary

ANN is a powerful nonlinear classifier by layering a number of linear classifiers.
However, the usage of ANN in the past has been hindered by two aspects. First, it
does not appear to have the transparency as in other machine learning tools such as
the Bayesian classifier, DT, and SVM. It is often regarded as a black-box-type
classifier. Second, it suffers from high computation curse due to the complex
optimization which involves the combination of multiple layers and a large number
of nodes. However, these issues have been overcome since the introduction of CNN
and more powerful computing hardware and software. Furthermore, CNN has also
extended the traditional ANN from network and computing (fully connected layers)
to including sensors (the convolution layers). This means that CNN is a simulation
of a complete human visual system. The downside of a CNN though is the high
number of parameters which needs to be determined empirically.

The introduction of CNN is a significant development to ANN and machine
learning as a whole. This is because the convolution layers can be independent of
the ANN and they can be connected to any other machine learning tools such as the
Bayesian classifier, DT, SVM, etc. With the Matlab Deep Learning toolbox and
other powerful tools, the internal structure and learning process of a CNN can now
be studied at the same transparent level as other machine learning tools. Because of
the transparency, the computation and learning processes can now be controlled
using a step-by-step approach. Due to the development of CNN, ImageNet, and the
ever increasing computation power, the future of image data mining has become
much brighter.
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10Image Annotation with Decision Tree

We may be different, but we all share a common ancestor.

10.1 Introduction

The machine learning methods we discussed so far are typically black box type of
classifiers, in the sense that the decisions they make are not transparent to users. In
other words, these models are neither interpretable nor comprehensible to users.
Another issue with these methods is that their decision-making process is one path
or non-conditional process, which means that there are no alternatives when the
original decision was not appropriate.

Human beings, however, tend to make decisions in a step-by-step and hierar-
chical way. For example, when we look at an image with complex patterns, we tend
to first organize the different patterns into groups using the most prominent attribute
or feature, then go further to identify the objects we are interested, and analyze them
in detail using other types of attributes or features. This kind of hierarchical and
step-by-step analysis is repeated until we are satisfied.

In machine learning, this kind of intuitive, hierarchical, and step-by-step analysis
can be modeled using a decision tree or DT. DT is a “divide-and-conquer”
approach to learn classification from a set of training samples. A DT is built from a
training dataset by recursively dividing the dataset into several subsets based on the
possible values of a selected attribute. The procedure starts at the root node and
continues until all the instances of a subset have the same class label or there is no
other attribute left to divide them.

A DT is typically built upside down with its root at the top. Figure 10.1 shows
an example of a DT on image classification [1, 2]. On the DT, an internal node
(with outgoing branches) is labeled with an input feature or a selected attribute. The
branches coming from a node are labeled with each of the possible values of the
selected attribute. Each leaf node (without outgoing branch) of the tree is labeled
with a class or a probability distribution over the classes.

© Springer Nature Switzerland AG 2019
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The following is a list of terminologies associated with a DT:

1. Root Node. It represents the entire dataset and it is to be divided into two or
more homogeneous sets.

2. Internal Node/Decision Node. It is a node which can be split into two or more
sub-nodes.

3. Leaf Node/Terminal Node. It is a node which cannot be split into sub-nodes.
4. Branch/Sub-tree. An edge coming out of a node is called a branch and the

section under a branch is called a sub-tree.
5. Parent and Child Node. A node which is divided into sub-nodes is called parent

node and a node under a parent node is called a child node.
6. Splitting. It is a process of dividing a node into two or more sub-nodes.
7. Pruning. It is a process of removing unwanted sub-nodes and branches. It is the

opposite process of splitting.

Depending on the type of attribute values, a DT can be either a classification tree
or a regression tree. A classification tree takes a discrete set of attribute values and
the predicted outcomes are the class labels to which the data belong, while a
regression tree takes continuous attribute values and the predicted outcomes are real
numbers.

Quinlan [3] first formulated a DT algorithm called ID3 (Iterative Dichotomiser
3) which only accepts discrete features. ID3 is later extended to C4.5 [4] which
accepts both discrete and continuous features. In the following, we describe the
characteristics of different types of DTs.
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Fig. 10.1 A DT for image classification
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10.2 ID3

The ID3 algorithm begins with a training dataset T and an attribute set A as the root
node. It then checks every unused attribute of the attribute set A and calculates the
entropy info(T) (or information gain IG(T)) of that attribute. It then selects the
attribute which has the smallest entropy (or largest IG) value. The set T is then split
into subsets by the selected attribute. The above procedure is repeated on each
subset until there is no unused attribute or the subset is homogeneous (all instances
in the subset are from the same class). ID3 only accepts data with discrete or
nominal values. The algorithm of the ID3 can be summarized as follows:

ID3 (T, A) {

1. Create a root node Root
2. If all instances in Root belong to the same class C or A is empty

2:1. Stop and return Root with label = C

3. Else

3:1. Select an attribute Ai with possible values A1
i ;A

2
i ; . . .;A

n
i

3:2. Partition T into subsets T1, T2, …, Tn according to the values of Ai

3:3. For each Tj

3:3:1. Add a new branch under Root to connect Tj with Root
3:3:1. If Tj is homogeneous

3:3:1:1. Then, below this new branch add a leaf node with label = Ai
j

3:3:1. Else, below this new branch add the sub-tree ID3 (Tj, A − {Ai})

}

This algorithm, in fact, is a general DT algorithm. Central to a DT algorithm is
step 3.1, which requires an attribute selection criterion or a splitting criterion. This
splitting criterion determines how the tree looks like and the performance of a DT
as well.

10.2.1 ID3 Splitting Criterion

Because the split criterion is critical to the success of a DT, variety of criteria have
been proposed. The rule is to select an attribute which reduces the maximum
amount of uncertainty in data, because the higher the uncertainty in data is, the
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more difficult it is to predict the class of an instance. Intuitively, this is equivalent to
selecting the most useful or most telling attribute to make a decision. Information
gain is a statistical measurement of reducing the uncertainty in data. Therefore, in
ID3, the attribute which gives the highest information gain is selected as the test
attribute.

Information gain of an attribute measures how much information we can save or
gain if it is selected to split the training set. Mathematically, it is measured as the
difference between information needed to classify an instance before and after the
attribute splits the training dataset.

Information before the splitting:

• Given a training set T ¼ f x1; y1ð Þ; x2; y2ð Þ; . . .; ðxN ; yNÞg, where xi is the data or
sample, yi is the class label for xi, and yi 2 C1;C2; . . .;Cmf g.

• Instances in T are characterized with the set of attributes A ¼ A1;A2; . . .;Anf g.
• Each attribute Ai has possible values A1

i ;A
2
i ; . . .;A

ni
i .

• The probability that an instance of T belongs to class Cj is given as

Pj ¼
Cj

�� ��
Tk k ð10:1Þ

where Cj

�� �� is the number of instances in Cj.

To classify an instance in T, the information needed (or the entropy) is given as,

infoðTÞ ¼ �
Xj¼m

j¼1

Pj � logPj ð10:2Þ

The negative sign before the sum is to make the information a positive value;
this is because Pj � 1 and log Pj � 0. Generally, entropy refers to disorder or
uncertainty in a dataset; a smaller info(T) means a more predictable class. This is
consistent with our understanding of information. An event with higher chance of
occurrence carries little to zero information such as sunrise/sunset, while an event
with less chance of occurrence carries more information such as rain/sunshine. In
English language, frequent words such as “a”, “the”, and “this” carry almost zero
information, while rare words such as “Delphi”, “nirvana”, and “dialectics” carry a
lot of information. In terms of a dataset, a data source (or a class) with higher
probability value carries less information than a data source with lower probability
value. Therefore, a DT learning algorithm attempts to split T into subsets so that the
expected information needed is minimized after a split.

Information after the splitting:

Suppose, an attribute Ai has ni nominal values such as A1
i ;A

2
i ; . . .;A

ni
i . If attribute Ai

is selected at the current node, it splits the training set T into T1
i ; T

2
i ; . . .; T

ni
i . After

the splitting, the expected information is calculated as
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EðAiÞ ¼
Xj¼ni

j¼1

T j
i

�� ��
Tk k � infoðT j

i Þ ð10:3Þ

The information gain is the difference between info(T) and E(Ai):

IGðAiÞ ¼ info Tð Þ � EðAiÞ ð10:4Þ

The attribute which gives the highest IG is chosen for splitting the training set.
Because info(T) in (10.2) is the same for all attributes, the attribute Ai which gives
the highest gain has lowest expected information E(Ai). Therefore, the attribute
which leads to the least expected information is selected.

10.3 C4.5

C4.5 build a DT from a training dataset in the same way as ID3, except C4.5 has
made a number of improvements to ID3:

• Use gain ratio (GR) instead of IG to build a better DT.
• Accept both continuous and discrete attributes. For continuous attributes, C4.5
creates a threshold and then splits the list into those whose attribute value is
above the threshold and those that are less than or equal to it.

• Handle incomplete data points. C4.5 allows attribute values to be marked as “?”
for missing data.

• Apply different weights to the attributes.
• Overcome over-fitting problem by a bottom-up pruning. C4.5 goes back through
the tree once it has been created and removes branches that are deemed unnec-
essary by replacing them with leaf nodes.

10.3.1 C4.5 Splitting Criterion

In ID3, IG is used as splitting criterion. However, the disadvantage of using IG as
splitting criterion in ID3 is that it favors the highly branching attributes, that is, the
attributes which have a large number of possible values. Let us think about the
extreme case where the instance ID is used as an attribute. Say, it is denoted as AID,
and it has a distinct value for each instance. If AID is used to split the dataset T, each
subsequent subset will have only one instance. According to (10.3), E(AID) is zero
because each subset has zero entropy (information). Therefore, IG(AID) will be the
highest and AID will be selected. However, such a selection tells nothing about the
nature of the decision and leads to no classification at all. To reduce the effect of
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high branching factor on information gain, a modified measure called gain ratio
(GR) or normalized IG is proposed by Quinlan in C4.5. The gain ratio is defined as
IG normalized by split information [4]

GR Aið Þ ¼ IG Aið Þ
splitInfo Aið Þ ð10:5Þ

where splitInfo(Ai) is calculated based on the proportion of each subset resulted
from the split using attribute Ai, regardless of the class information inside each
subset. Specifically, it is defined as

splitInfoðAiÞ ¼ �
Xj¼ni

j¼1

T j
i

�� ��
Tk k � log

T j
i

�� ��
Tk k

 ! !
ð10:6Þ

It can be observed that the higher the number of attribute values of Ai, the larger
the magnitude of splitInfo(Ai) and the lower its gain ratio. Therefore, using gain
ratio, the high branching behavior is penalized.

10.4 CART

In machine learning, a DT can be either classification tree or a regression tree. For
a classification tree, the predicted outcome is a class such as tree, tiger, water, etc.,
while for a regression tree, the predicted outcome is a real number, such as stock
price, queueing time, etc.

CART stands for Classification And Regression Tree; it is an umbrella term used
to cover both classification DT and regression DT. It was first introduced by
Breiman et al. in 1984 [5]. A CART tree is a binary DT that is constructed by
splitting a node into two child nodes repeatedly, beginning with the root node that
contains the entire training data. The splits are done using the twoing criteria and
the obtained tree is pruned by cost–complexity technique. CART can handle both
numeric and nominal attributes, and it can also handle outliers.

10.4.1 Classification Tree Splitting Criterion

A CART uses splitting criteria called the twoing criteria for a classification tree,
which is defined as (10.7)

DiðtÞ ¼ PLPR

4

Xm
j¼1

p jjtLð Þ � p jjtRð Þj j
 !2

ð10:7Þ
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where

• t is the node to be split,
• Δi(t) indicates the impurity of node t,
• PL is the proportion of data split into the left node tL and similar for PR,
• PL ¼ tLj jj j= tj jj j and PR ¼ tRj jj j= tj jj j, where t is the parent node of tL and tR, ||t|| is
the total number of data in node t,

• p(j|tL) is the proportion of data belonging to class j at the left node tL, and
• m is the number of classes in the training set.

The twoing criteria measure the difference between the two split nodes, and a
split is achieved by maximizing the difference or Δi(t).

Gini impurity can also be used to define a splitting criterion for a classification
tree. First, the Gini index (GI) or GIs are computed for both the left split node tL and
right split node tR, which are given in (10.8) and (10.9), respectively.

GI tLð Þ ¼ 1�
Xm
j¼1

½p jjtLð Þ�2 ð10:8Þ

GI tRð Þ ¼ 1�
Xm
j¼1

½p jjtRð Þ�2 ð10:9Þ

It can be observed from (10.8) and (10.9) that

• A GI is maximum or GI = (1 − 1/m) when records in a node are equally dis-
tributed among all classes, indicating maximum uncertainty.

• A GI is minimum or GI = 0 when all records in a node belong to one class,
indicating minimum uncertainty.

A split is achieved by minimizing the Gini impurity which is defined as (10.10)

iG tð Þ ¼ tLj jj j � GI tLð Þþ tRj jj j � GI tRð Þ½ �= tj jj j ð10:10Þ

The Gini impurity splitting algorithm works faster than twoing splitting algo-
rithm; however, the twoing splitting criterion builds a more balanced DT and offers a
superior performance on complex classification such as multi-class and noisy data.

10.4.2 Regression Tree Splitting Criterion

A regression tree is also called a prediction tree. Instead of identifying the class
label for a training or unknown data, a regression tree predicts the likely target value
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of the data. For regression tree, the splitting criterion is typically given by the mean
squared error (MSE). Given a training set T = {(x1, y1), (x2, y2), …, (xN, yN)},
where xi is the data or sample and yi is the target value for data xi. The splitting is
determined by the two nodes which give the smallest MSE:

MSE ¼ 1
NL

XNL

i¼1

yi � ŷLð Þ2 þ 1
NR

XNR

j¼1

yj � ŷR
� �2 ð10:11Þ

where

• NL and NR are the total number of samples falling into the left split node and the
right split node, respectively,

• ŷL and ŷR are the prediction values for the left and right split nodes, respectively,
• ŷL is typically given as the result of a regression from the data falling into the left
node: ŷL ¼ f̂L xið Þ ¼ bT � xi þ b:

A regression tree is basically a piecewise linear approximation of a dataset in
space. Figure 10.2 demonstrates a contrast between a global linear regression and a
regression tree approximation on one variable dataset. In the figure, the green line
shows an approximation from a global linear regression, while the red lines rep-
resent a regression tree approximation of the same data. It can be observed that the
regression tree gives a much closer approximation than the global linear regression
model.

10.4.3 Application of Regression Tree

The prediction value ŷL in (10.11) can also be estimated by the mean of the left

node ŷL ¼ 1
NL

PNL

i¼1
yi (similar for ŷR). The tree built in this way provides a piecewise

constant approximation of the data. The mean prediction model is a much faster
method to build a regression tree.

Figure 10.3 shows a mean prediction tree for predicting median house price of
California based on the two variables: latitude and longitude. The actual data map
and the tree partitions are shown in Fig. 10.4. It can be seen that the finer partitions
are concentrated at the darker areas.
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Linear regression 
Regression tree

Fig. 10.2 Contrast between linear regression and regression tree

Fig. 10.3 A regression tree for predicting median house price (′000) in California from the
geographic coordinates of Fig. 10.4. Legend: La = latitude, Lo = longitude, y = yes, n = no
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10.5 DT for Image Classification

Images are complex data. A typical image usually has multiple regions/objects and
has multiple interpretations. Therefore, the first step is to segment an image into
individual regions and represent each region with an n-dimensional feature vector:
x = (x1, x2, …, xn). For color images, each image region is represented with a color
feature vector xC and a texture feature vector xT. Because certain types of image
regions can be best described by both color and texture, the third feature is also
created by combining both color and texture into a single feature vector xCT.

10.5.1 Feature Discretization

The three types of features xC, xT, and xCT are all continuous features; in order to
classify these regions using a classification DT, the features need to be quantized

Fig. 10.4 Data map of actual median house prices in California and the tree partition of the data
map, the darker the color, the higher the house value
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into discrete values using a vector quantization (VQ) technique. The idea of a VQ
technique is to cluster similar image regions into clusters which are then assigned
with nominal values such as 0, 1, 2, …, K. These nominal values correspond to
class labels such as sky, water, grass, firework, tiger, etc., which are used for DT
classification. Common VQ algorithm is the LBG algorithm [6] which is given as
follows:

LBG (T, K, e) {
Input: T ¼ fxi 2 Rn; i ¼ 1; 2; . . .;Ng
Output: C ¼ fcj 2 Rn; j ¼ 1; 2; . . .;Kg

1. Initiate a codebook C ¼ fcj 2 Rn; j ¼ 1; 2; . . .;Kg
2. Set D0 = 0 and k = 0
3. Classify the N training vectors into K clusters Tq q ¼ 1; 2; . . .;Kð Þ and classify xi

to Tq if the distance d xi�cq
� �

\d xi�cj
� �

for all j 6¼ q
4. Update cluster centroids cj by cj ¼ 1

Tjj j
P

xi2Tj xi j ¼ 1; 2; . . .;Kð Þ
5. Set k ← k + 1 and compute the distortion Dk ¼

PK
j¼1

P
xi2Tj d xi � cj

� �
6. If Dk�1�Dkð Þ=Dk [ e (a small positive number), repeat steps 3–5
7. Return the codebook C ¼ fcj 2 Rn; j ¼ 1; 2; . . .;Kg

}

By applying the LBG VQ algorithm on xC, xT, and xCT, three codebooks or
visual dictionaries Vi i ¼ 1; 2; 3ð Þ are created:

Vi ¼ vi1; v
i
2; . . .; v

i
ni

n o
; i ¼ 1; 2; 3 ð10:12Þ

where vij represents a code word of Vi and ni is the total number of code words in Vi.
For each image region R in the training dataset, it is represented as three discrete

attribute values as follows:

R ¼ ind1; ind2; ind3ð Þ ð10:13Þ

and

indi ¼ argmin
j

ðdistðvi; vijÞÞ ð10:14Þ

where

• dist(vi, vji) is the distance between feature vi and code word vj
i,

• vi is one of the feature vectors (xC, xT or xCT) of R,
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• vji is the jth value of attribute Vi, and
• indi is an index value of attribute Vi and it is an integer between 0 and ni.

Therefore, each image region in the training set is now associated with three
discrete attributes Ai ¼ Vi i ¼ 1; 2; 3ð Þ which are ready for building a DT.

10.5.2 Building the DT

With a training set of image regions T and a set of visual attributes A, an image
classification DT can be built using the following algorithm [1]:

1. If all training regions of T belong to the same class C,

1:1. The tree is a leaf node with the outcome C.
1:2. Stop.

2. If the regions of T belong to more than one class but there is no attribute to
separate them,

2:1. The tree is a leaf node. The outcome is determined as follows.

2:1:1. If there is a single majority class in T, the outcome is that class.
2:1:2. Else, the outcome is the majority class of the parent node.

2:2. Stop.

3. If the regions of T belong to more than one class and there are one or more
attributes to separate them

3:1. Create an internal node.
3:2. Calculate the IG or gain ratio for each attribute.
3:3. Select the attribute Ai with the highest gain ratio: Ai ¼ fvi1; vi2; vi3; . . .; vinig
3:4. Use Ai as the test attribute for the internal node.
3:5. Split the training set T into subsets: T0

i , T
1
i , T

2
i , T

3
i , …, Tni

i , where image
regions in T j

i have attribute value v j
i .

3:6. Remove attribute Ai from the attribute list.
3:7 Repeat from Step 1 for each T j

i .

A DT generated from the above algorithm can have nodes with isolated or noisy
samples. A common practice is to include a pre-pruning procedure after each
splitting to remove those nodes with noisy samples. The following pre-pruning
procedure can be included as step 3.7 in the above algorithm, and name the original
step 3.7 as 3.8.
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3:7 Pre-pruning [7]:

3:7:1 Calculate the probabilityP0
i for every class in subsetT

j
i (j = 0, 1, 2,…, ni) as

P0
i ¼

pj
�� ���� ��
pij jj j ð10:15Þ

where pi and pj are the number of instances of class Ci in T and T j
i ;

respectively.

3:7:2 Remove those samples from subset T j
i whose class probability P0

i is less
than a threshold k.

3:7:3 Remove T j
i if it is an empty subset after sample removal.

Figure 10.5 shows a DT learnt from a dataset of 570 image regions which have
been quantized into 19 classes (30 images/class), and the pre-pruning threshold is
k = 0.1 [8]. The meanings of the leave labels are as follows: A = Grass, B =
Forest, C = Sky, D = Sea, E = Flower, F = Sunset, G = Beach, H = Firework,
I = Tiger, J = Fur, K = Eagle, L = Building, M = Snow, N = Rock, O = Bear,
P = Night, Q = Crowd, R = Butterfly, S = Mountain, and U = Unknown.

A DT generated from the above algorithm can still be very complex and
imbalanced. A post-pruning procedure is usually applied after the initial tree has
been generated; this can be added as step 4 in the above DT algorithm. The
post-pruning is a procedure to remove those isolated branches and merge them with
neighboring nodes.

1. Post-pruning [7]:

a. If for more than one value of the attribute Ai, the outcome class labels are
identical, i.e., Ci, then all the leaf nodes corresponding to these attribute
values are merged as a single leaf node labeled with class Ci.

b. If the outcomes for all the possible values of attribute Ai are identical, i.e., Ci,
then the sub-tree rooted at Ai is replaced with a single leaf node with Ci as an
outcome.

Figure 10.6 shows the DT from Fig. 10.5 after post-pruning; it is a much simpler
and more robust DT [7, 8].

10.5.3 Image Classification and Annotation with DT

Once the DT is generated from a training dataset, a set of rules or a DT model can
be formulated from the DT by traversing the tree from the root to each of the leaf
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Fig. 10.5 A DT for image classification without post-pruning, CT = color and texture
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nodes. This DT model is to be used as an image classifier. The following is the DT
model formulated from the DT shown in Fig. 10.6.

IF CT is 1 (or 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17) THEN

 { 

Region is Forest (or Sky, Sea, Flower, Sunset, Beach, Firework, Fur, Eagle, Building, 

Snow, Bear, Butterfly, Crowd, Mountain respectively)

 } 

ELSE IF CT is 0 AND

 { 

IF color is 13 THEN Region is Rock

ELSE Region is Grass

 } 

ELSE IF CT is 8 AND

 { 

IF color is 8 AND

IF texture is 7 THEN Region is Firework

ELSE Region is Tiger

ELSE Region is Tiger

 } 

ELSE IF CT is 13 AND

 { 

IF texture is 4 THEN Region is Flower

ELSE IF texture is 11 THEN Region is Tiger

ELSE Region is Rock

 } 

ELSE IF CT is 15 AND

 {  

IF texture is 9 THEN Region is Fur

ELSE IF TEXTURE IS 15 AND

IF color is 10 THEN Region is Eagle

ELSE Region is Night

ELSE Region is Night

 } 

 END 

Given a new or unknown image, it is also segmented into regions using the same
algorithm as that used by the training dataset. Each region is then represented as
three discrete attribute values: R = (ind1, ind2, ind3), using the learnt visual dic-
tionaries. Each of the regions R is then analyzed using the DT model as shown in
the above and is classified into a class.
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As can be observed, a DT model is completely transparent and comprehensible
to a human user. A classifier working in this way can be easily modified and
fine-tuned to adapt to the data. The other advantage of the DT model is that issues
can be found and corrected at learning stage without much difficulty.

10.6 Summary

DT is a powerful image classification tool. Due to its hierarchical nature and
piecewise approximation of data, it offers a middle ground between generative and
discriminative approaches. Compared with other classification tools, DT has a
number of advantages.

• DT is a tool known for its simplicity, transparency, and comprehensibility.
• DT can handle both numeric and categorical attributes.
• DT can handle both noisy and missing data.
• DT offers an intuitive and step-by-step analysis based on selected attributes.
• DT does not require complex computation.
• DT generates rules which are easy to interpret.

A DT may grow too complex and imbalanced due to noise, fragmentation, and
missing data. Therefore, a pruning mechanism is essential to a DT algorithm.
Common practice is to apply a post-pruning technique after the tree has been
generated. However, many misplaced instances would have a better chance to be

Fig. 10.6 The DT from Fig. 10.5 after pruning
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classified into more appropriate nodes if a pre-pruning is applied during the tree
building. A well-designed pruning scheme can improve the DT performance
significantly.

According to the Ockham’s Razor principle, the simplest rule that is consistent
with all observations is the best. In terms of DT, it means that the smallest decision
tree that correctly classifies all the training examples is the best.
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Part IV
Image Retrieval and Presentation

Quality over quantity.

Image Retrieval (IR) is a set of techniques to retrieve images from a very large image
database to meet a user’s expectation, e.g., find a group of “computer” images on the
Web. The database is either classified or not. Even if an image database is classified,
to retrieve similar images from the database is still a challenging task. This is due to
two reasons. First, the database is typically very large, a commercial image database
typically numbers from millions to hundreds of millions of images. Second, the
classification is not perfect given current classification technology. In fact, the
classification accuracy is usually quite low especially for a very large database with
vast varieties of images.

IR is an intensive research area, research on IR mostly focuses on four major
topics: feature extraction, image indexing, image ranking, and image presentation.
The first topic has been comprehensively covered in Part II; in this part of the book,
we focus on the remaining three topics.

Image indexing is to organize the image database into data structure such as a list
or a tree to facilitate fast search. Image ranking is a technique to assess the similarity
between database images, so that given a query image, images which are similar to
the query can be identified and retrieved. Image presentation is a method of pre-
senting similar images to the user so that browsing the retrieved images is the most
convenient and efficient.
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11Image Indexing

Order is our favourite, but the truth is beyond order.

11.1 Numerical Indexing

11.1.1 List Indexing

In numerical indexing, each image I in the database has been represented as a k-
dimensional feature vector: x = (x1, x2, …, xk). The simplest way of a numerical
indexing is to create a list of (image_id, x) as shown in the following:

I1; x1ð Þ ¼ ½I1; ðx11; x12; . . .; x1kÞ�
I2; x2ð Þ ¼ ½I2; ðx21; x22; . . .; x2kÞ�

..

.

IN ; xNð Þ ¼ ½IN ; ðxN1; xN2; . . .; xNkÞ�

where N is the total number of images in the database.
A list is simple and useful for a small image database, however, it’s impossible

to use it for a very large commercial image database, because it would take a long
time to search the entire list of millions even billions of images. Therefore, a more
efficient data structure is needed to index large image databases. One of the simplest
yet efficient data structure is the k-d tree indexing.

11.1.2 Tree Indexing

The simplest k-d tree is a binary tree. A binary k-d tree is an algorithm of repeatedly
splitting the database into two subsets by cyclically dividing the k dimensions of the
data. Given N number of k-dimensional feature vectors: x1, x2, …, xN, a k-d tree
first divides the N data into two sets or branches of approximately equal size

© Springer Nature Switzerland AG 2019
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according to the values of the first dimension of the N feature vectors. Next, each of
the left and right branches are further divided into two subbranches of approxi-
mately equal size according to the values of the second dimension of the feature
vectors. This division process continues until the kth dimension when the next
division returns to the first dimension. The cycle goes on until no node is divisible
any more.

Figure 11.1 shows an example of a k-d tree for a 2D dataset. Given a 2D dataset
of 10 data: (56, 2), (36, 91), (52, 76), (2, 19), (11, 31), (61, 81), (85, 72), (71, 71),
(51, 52), (26, 41), the binary k-d tree for this dataset is shown in Fig. 11.1. The
labels on the left-hand side of the tree are the splitting criteria or the dimensions to
be split.

A k-d tree reduces the search cost of a list of N data from an average O(N/2) to an
average of O(ln N). For example, for a database of 10,000 images, the average
search cost of a k-d tree is integer [ln (10,000)] � 14, which is way smaller than
5,000, which would be needed for an exhaustive search of a data list. For very large
image database, more efficient data structures can be used such as n-ary k-d tree,
quad-tree, octree, R-tree, cluster tree, etc.

11.2 Inverted File Indexing

The data structures described above are for numerical data. If images in a very large
database have been labeled with nominal or discrete values, they are equivalent to
structured textual documents as shown in Fig. 11.2 [1]. Therefore, labeled images
can be indexed using the same technique used for textual document indexing. In
this section, we first review the inverted file for textual documents indexing and
then introduce the inverted file for image indexing.

(52, 76)

(26, 41) (71, 71)

(11, 31) (36, 91) (56, 2) (61, 81)

(2, 19) (51, 52) (85, 72)

x

y 

x

y 

Fig. 11.1 A k-d tree for a 2D dataset of 10 data
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11.2.1 Inverted File for Textual Documents Indexing

In textual document indexing, a technique called inverted file is used. An inverted
file is a (terms, docs) table instead of an ordinary (docs, terms) table. The reason of
using an inverted file for document indexing is that a large amount of documents
(millions/billions, e.g., web pages) can be indexed using a much shorter list of
dictionary words (thousands). This makes the search for a large amount of docu-
ments very efficient.

The ith entry in an inverted file is a vector: (termi, doc1, doc2, …, docn), where
every document docj has termi. Because a term carries a different amount of
information in each of the documents, termi is given a different weight twj for each
docj. Therefore, an inverted file can be shown in Table 11.1.

Since the documents are typically sorted in descending order of importance
according to term weights (twj), the term weights can be omitted after sorting.
Therefore, an actual inverted file is as simple as Table 11.2.

Sky

Bush

Grass

Horse

House

Grass

Grass

Grass

Fig. 11.2 An image with labeled regions

Table 11.1 A conceptual inverted file for textual document indexing

Term ID Terms Documents (weighted)

1 Apple (doc11, tw11), (doc12, tw12), (doc13, tw13), …

2 Computer (doc21, tw21), (doc22, tw22), (doc23, tw23), …

3 Tree (doc31, tw31), (doc32, tw32), (doc33, tw33), …

… … …

n Zebra (docn1, twn1), (docn2, twn2), (docn3, twn3), …
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The term weight (tw) of a term t in a document d is determined by two factors:
the term frequency of t in document d and the inverse document frequency of t in
the entire database D. Specifically, tw is defined as follows:

tw t; dð Þ ¼ tf t; dð Þ � idf t;Dð Þ ð11:1Þ

where tf stands for term frequency and idf stands for inverse document frequency.
The tf and idf are given in (11.2) and (11.3), respectively.

tf t; dð Þ ¼ f t; dð ÞP
ti2d f ti; dð Þ ð11:2Þ

idf t;Dð Þ ¼ log
Dk k

df tð Þ
� �

ð11:3Þ

where

• f(t, d) is the number of occurrence of term t in document d;
• df(t) stands for the document frequency of t, it is the number of documents in
D which have term t;

• ||D|| is the total number of documents in D.

Recent research shows that the location where a term appears in a document is
also a factor in determining the term weight, e.g., a term t in the title or head section
of a web document is given a much higher score because the information of a term
in a title or a head is much more important than that in the body text.

11.2.2 Inverted File for Image Indexing

The inverted file indexing method can also be applied to image indexing. Once the
regions in an image database have been labeled with semantic concepts, images in
the database are essentially translated into textual documents. Therefore, images
can now be indexed and retrieved the same way as textual documents. Specifically,
images in the database are indexed using an inverted file structure, where each
index is a vector of the form: (term, image1, image2, …).

Table 11.2 An inverted file
after sorting

Term ID Terms Documents (ranked)

1 Apple doc11, doc12, doc13, …, doc1n, …

2 Computer doc21, doc22, doc23, …, doc2n, …

3 Tree doc31, doc32, doc33, …, doc3n, …

… … …

n Zebra docn1, docn2, docn3, …, docnn, …
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Since each term of an image is associated with a number of image regions, the
term weight of an image term is determined by three factors: area, position, and
spatial relationship [1, 2]. As a result, three corresponding weights have been
defined respectively: aw, pw, and rw.

11.2.2.1 Determine the Area Weight aw

Let

• aw(t) be the area weight of term t in image I,
• R(t) be the area of a region which is labeled with term t in image I.

Then, aw(t) is defined as the sum of all R(t) in image I normalized by the area of
the image. aw(t) is equivalent to the term frequency in the textual document
indexing. Mathematically,

aw tð Þ ¼
P

R2I R tð Þ
Ik k ð11:4Þ

For example, in Fig. 11.3 [2], the 4 pink and reddish regions in the center of the
image are all labeled as a term of “flower” by a classifier, therefore, the weight of
the term “flower” is determined by the total area of the 4 regions, which is the area
of the single flower in the image.

11.2.2.2 Determine the Position Weight pw
It is known that each type of objects usually has its natural position in an image,
e.g., sky is naturally located at the top, grass is naturally located at the bottom,
animals are naturally located at the center, etc. Based on this observation, a position
weight can be defined for each term of an image document.

Fig. 11.3 A flower in the
center with 4 segmented
regions

11.2 Inverted File Indexing 267

www.EBooksWorld.ir



Let

• R(t) be one of the regions in image I associated with term t;
• dR be the distance between the centroid of the region R(t) and the center of R(t)’s
natural position in image I;

• dmax be the maximum distance between the center of R(t)’s natural position and
the boundary of image I.
Then, the position weight of term t is defined as

pw tð Þ ¼
X

R tð Þ2I
2� 1� dR

dmax

� �
ð11:5Þ

Figure 11.4 shows three examples of computing dR and dmax [1, 2].

11.2.2.3 Determine the Relationship Weight rw
It is found that many types of objects usually go together in images such as bird and
sky, computer and desk, beach and water, mammals and grass, flowers and tree, car
and road, clock and wall, window and building, etc. The co-occurrence relationship
can be used to determine the weight on a term in an image. For example, if both a
“bird” term and a “sky” term are detected in an image, the weight of the “bird” term
is doubled; if a “kangaroo” term appears together with a “tree” term and a “grass”
term, the weight of the “kangaroo” term is tripled, so on so forth.

Let r(t) be a term which co-occurs with term t in the image I, then the rela-
tionship weight rw is given as

rw tð Þ ¼
X

r tð Þ2I
r tð Þ ð11:6Þ

Now that we have defined the three factor weights of a term t in image I, the final
term weight is defined as follows (11.7):

tw tð Þ ¼ aw tð Þ � pw tð Þ � rw tð Þ ð11:7Þ

dmax dR 

dmax 
dmax 

dR

dR

(a) (b) (c)

Fig. 11.4 Calculation of d and dmax for a animal, b sky and c grass regions

268 11 Image Indexing

www.EBooksWorld.ir



11.2.2.4 Inverted File for Image Indexing
Since each term in the dictionary has been given a weight in each of the images in
the database, images in the database can be indexed using an inverted file the same
way as in the textual document indexing. An example of an inverted file for image
indexing is shown in Table 11.3.

After sorting the images at each row in descending order of importance
according to the term weights, the above-inverted file is simplified as Table 11.4.
The key difference between Tables 11.4 and 11.2 is that the terms in Table 11.4 are
extracted from content features and by machine instead of interpretations by
humans. Compared with textual documents, it’s more difficult to determine the
weight of a term in an image. We will show how the inverted file is used in image
retrieval in Sect. 13.5.

11.3 Summary

Image indexing is about to put images in an image database into a data structure or
order so that images in the database can be retrieved similar to retrieving alphabetic
data from a Relational Database Management System (RDBMS). There are gen-
erally two types of approaches: numerical indexing and inverted file indexing.

If images are represented in numerical features, they can be indexed either using
a list which is the simplest or using a tree structure. The list indexing is suitable for
a small image database, while for a very large image database, the tree structure
facilitates fast searching.

Table 11.3 A conceptual inverted file for image document indexing

Term ID Terms Images (weighted)

1 Apple (im11, tw11), (im12, tw12), (im13, tw13), …

2 Computer (im21, tw21), (im22, tw22), (im23, tw23), …

3 Tree (im31, tw31), (im32, tw32), (im33, tw33), …

… … …

n Zebra (imn1, twn1), (imn2, twn2), (imn3, twn3), …

Table 11.4 The simplified
inverted file from Table 11.3
after sorting

Term ID Terms Documents (ranked)

1 Apple im11, im12, im13, …, im1n, …

2 Computer im21, im22, im23, …, im2n, …

3 Tree im31, im32, im33, …, im3n, …

… … …

n Zebra imn1, imn2, imn3, …, imnn, …
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If images in a database have been semantically labeled using either machine
learning or manual annotation, they can be indexed using an inverted file similar to
textual documents indexing. The image database is then translated to an RDBMS.
However, the difficulty lies in the determination of term weight. The chapter
demonstrates a method of determining term weight using regional features of an
image.

For large image databases, both numerical and inverted file indexing are nec-
essary. As shown in Chap. 13, numerical indexing is typically used for query by
example while inverted file indexing is used for query by keywords.
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12Image Ranking

All that glitters is not gold.

12.1 Introduction

The image feature extracted is usually an N-dimensional feature vector which can
be regarded as a point in RN space. Once images are indexed into the database using
the extracted feature vectors, the retrieval of images is essentially the determination
of similarity between a query image and the target images in database, which in turn
is the determination of distance between the feature vectors in RN space. The
desirable distance measure should reflect human perception. That is to say,
perceptually similar images should have smaller distance between them while
perceptually different images should have larger distance between them.

Therefore, given a query, the higher the retrieval accuracy, the better the distance
measure. For online retrieval, computation efficiency is also a factor to be con-
sidered when choosing a distance measure.

Variety of distance measures have been used in image retrieval; they include city
block distance, Euclidean distance, cosine distance, histogram intersection distance,
v2 statistics distance, quadratic distance, and Mahalanobis distance [1]. In this
chapter, commonly used similarity measures will be described and examined.
A number of widely used performance measurements will also be discussed.

12.2 Similarity Measures

12.2.1 Distance Metric

A similarity measure d(x, y) between two feature vectors x and y is normally
defined as a metric distance. d(x, y) is a metric distance if for any of two data points
x and y in space; it satisfies the following properties:
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(1) d(x, y) � 0 (non-negativity)
(2) d(x, y) = 0 if and only if x = y (identity)
(3) d(x, y) = d(y, x) (symmetry)
(4) d(x, z) � d(x, y) + d(y, z) (triangle inequality).

12.2.2 Minkowski-Form Distance

The Minkowski-form distance is often called the Lp norm or Lp distance. Given a
N-dimensional feature vector of a query image x = (x1, x2,… xn) and a target image
in database y = (y1, y2, …, yn), the Lp distance is defined as

Lp x; yð Þ ¼
Xn
i¼1

xi � yið Þp
 !1

p

ð12:1Þ

When p = 1, L1 is called the city block distance or Manhattan distance:

L1 x; yð Þ ¼
Xn
i¼1

xi � yij j ð12:2Þ

When p = 2, L2 is called the Euclidean distance:

L2 x; yð Þ ¼
Xn
i¼1

xi � yið Þ2 ð12:3Þ

When p ! ∞, L∞ is called the Chebyshev distance:

L1 x; yð Þ ¼ max
1� i� n

xi � yij jf g ð12:4Þ

By varying the p values, various Minkowski distances can be created. However,
among the many Minkowski-form distances, L2 is the most widely used similarity
measures. This is because L2 is the most consistent with human perception of image
similarity. The agreement between distance and perception is demonstrated in
Fig. 12.1, where the unit circles of Minkowski distance with different p values are
shown. Points on each of the unit circles all have the same distance to the origin
under the corresponding p values. As can be seen, the L2 unit circle agrees most
with human perception among the three p values.

L2 tends to emphasize or amplify the dimensions with high values due to the use
of quadratic function. This can cause undesirable results because the distance value
is often determined by a few dominant feature dimensions which are often due to
local distortion or noise. This in turn can result in rejecting true positives which are
perceptually similar images to the query but have local distortion or noise, e.g., a
bite out apple would be rejected from the retrieval list using an intact apple as the
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query. Consequently, L2 distance can expect lower recall compared with L1 distance
although it can return a top retrieval list with higher precision.

One solution to overcome the lower recall issues of L2 distance is to apply a
logarithm transform to the feature values to suppress the very high feature values
and raise the lower feature values, so that all feature values have balanced contri-
butions to the final distance value. Figure 12.2 (top) shows an example histogram
from the flower image in Fig. 4.14, notice the histogram feature is dominated by the
bins at the end of the histogram. The log-transformed histogram feature vector is
shown at the bottom of the figure; it can be seen that while the difference between
the feature dimensions has been reduced significantly, the top profile of the his-
togram has been kept.

12.2.3 Mass-Based Distance

Minkowski-form distance-based similarity measures are basically a matching of
two images feature by feature. However, due to image features usually have very
high dimensions and features are imperfect, this kind of detailed feature by feature
matching can result in undesirable outcomes in many situations. For example,
different images can have the same feature vector as shown in Fig. 12.3, and similar
images can also have almost completely different feature vectors as shown in
Fig. 12.4. In both cases, the Lp-based similarity measure would give a totally
incorrect matching result.

The issue demonstrates Lp-based similarity measures that are not robust. This
drawback can be overcome by incorporating neighboring data in the
decision-making process.

To address the sensitivity issue of Lp, a mass-based similarity measure mp has
been proposed [2]. The idea of mp is to use neighborhood data to make a similarity
decision collectively instead of making a similarity decision just based on two
instances alone. Specifically, mp uses the neighborhood data mass at each subspace
of Rd to replace the difference at each dimension in the Minkowski-form distance.

(a) (b) (c)

Fig. 12.1 Unit circles of Minkowski distance with different p values. a p = 1
2; b p = 1; c p = 2
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Fig. 12.3 The three images have the same histogram

Fig. 12.2 Top: a histogram feature vector; Bottom: the log-transformed histogram feature vector
from the top histogram
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The idea of mp is based on a distance–density model described by Krumhausl [3]
and a psychological discovery that two instances in a sparse region are perceptually
more similar than they are in a dense region.

Given two data points in Rn: x and y, mp works by defining a region R x; yð Þ
between the two instances (including the two instances) and finding the data mass
of the region. Data mass is the number of data instances from dataset that falls in
this region. R x; yð Þ is a d-dimensional region, and the ith dimension of R x; yð Þ is
given as Ri(x, y), i = 1, 2, …, n. The data mass of each Ri(x, y) depends on the
distribution of the data in Rn space.

Specifically, the mass-based similarity measure mp is defined as (12.5) [4]

mp x; yð Þ ¼ 1
n

Xn
i¼1

Ri x; yð Þj j
N

� �p
 !1=p

ð12:5Þ

where

• Ri x; yð Þj j is the data mass in region of Ri x; yð Þ,
• N is the total number of instances in the dataset,
• Ri x; yð Þ ¼ min xi; yið Þ � r;max xi; yið Þþ r½ �, and
• r is a small number and r� 0.

Fig. 12.4 The two images with different brightness have almost completely different histograms
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Figure 12.5 [4] illustrates a data distribution in 2D space and the calculation of
data mass between two data points x and y. For convenience of calculation, r is set
as 0. With this data distribution, the data mass in R1(x, y) = [x1, y1] is R1 x; yð Þj j ¼
63 while the data mass in R2(x, y) = [x2, y2] is R2 x; yð Þj j = 40.

Lp is essentially a fine similarity measure between two instances and is sensitive
due to the use of feature by feature matching between two instances. It can result in
completely incorrect match in cases shown in Figs. 12.2 and 12.3. On the other
hand, mp is essentially a coarse similarity measure between two instances, because
it is computed using collective info from neighborhood data mass. Therefore, mp

can be inaccurate in situations when the features of the two instances are close.
To overcome the limitations of both the Lp and mp, a hybrid similarity measure

called hp can be used, which is defined in (12.6)

hp x; yð Þ ¼
Xn
i¼1

xi � yij j � Ri x; yð Þj jð Þp
 !1

p

ð12:6Þ

hp is a compromise, it overcomes the sensitivity drawback of Lp while preserves its
accuracy. To prevent hp from being disproportionally determined by a few domi-
nant dimensional features, a log transform on mp is applied before computing hp.
The modified hp is given as (12.7)

h
0
p x; yð Þ ¼

Xn
i¼1

xi � yij j � log Ri x; yð Þj jð Þ½ �p
 !1

p

ð12:7Þ

Fig. 12.5 Illustration of mp dimension calculation between two data points x and y
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12.2.4 Cosine Distance

The cosine distance computes the distance between two vectors in terms of
direction, irrespective of vector lengths. The distance is computed based on the rule
of dot product:

x� y ¼ xj j � yj j � cos h ð12:8Þ

where h is the angle between vector x and y, and |x| and |y| are the magnitudes of
x and y, respectively. The cosine distance is then defined as

cos x; yð Þ ¼ 1� x � y
xj j � yj j ¼

Pn
i¼1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 x
2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p ð12:9Þ

If both xi and yi have been normalized to probability values between 0 and 1, cos
(x, y) becomes

cos x; yð Þ ¼ 1�
Xn
i¼1

xiyi ð12:10Þ

The key feature of the cosine distance is that it is invariant to scale change in
contrast to Minkowski distance. Figure 12.6 shows the comparison between the
cosine distance and the two Minkowski-form distances in two-dimensional space. It
can be observed that both L2 and L1 respond to scale changes, while cosine distance
does not. For example, in Fig. 12.6b, cos(x, y) = cos(x1, y), while L1(x, y) 6¼ L1
(x1, y) and L2(x, y) 6¼ L2(x1, y). The scale invariance can be useful in situations where
directional features are more important than magnitudes. For example, if cosine
distance is used, two similar colors will keep their similarity after scaling of the color
components.

Fig. 12.6 Comparison between the cosine distance and Lp distance. a L2(x, y) = L2; b cos(x,
y) = cosh; c L1(x, y) = d11 + d12
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12.2.5 v2 Statistics

In v2 test, both x and y are treated as random variables, the v2 statistics is then used
to test if the two variables are correlated/independent each other, and how much
they are correlated. Formally, v2 statistics is defined as (12.10)

v2 x; yð Þ ¼
Xn
i¼1

xi � mið Þ2
mi

ð12:11Þ

where mi = (xi + yi)/2, which is regarded as the expected value for dimension i.
A low v2 value means that both x and y are from the same probability distribution
and there is a high correlation between the two feature vectors, which indicates the
images represented by the two feature vectors are similar. An advantage of using v2

statistics is that it can overcome the mismatch between two histograms from images
with very different lighting conditions as shown in Fig. 12.4.

12.2.6 Histogram Intersection

A histogram is a distribution function with a particular shape of area. The histogram
intersection is to test how much area two distributions x and y share, the more area
they share, the more similar the two distributions are (Fig. 12.7). Mathematically,
a histogram intersection is defined as

HI x; yð Þ ¼
Pn

i¼1 min xi; yið Þ
min xj j; yj jð Þ ð12:12Þ

Fig. 12.7 Histogram intersection of two histograms shown as gray area
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If both xi and yi have been normalized to probability values between 0 and 1, HI
is simplified as (12.13)

HI x; yð Þ ¼
Xn
i¼1

min xi; yið Þ ð12:13Þ

For two identical histograms, their HI value is the maximum 1 and for two
similar histograms, their HI value is a high. For two different histograms such as the
two histograms shown in Fig. 12.4, their HI value is close to zero. The HI distance
is defined as

dHI x; yð Þ ¼ 1�
Xn
i¼1

min xi; yið Þ ð12:14Þ

dHI also has the same histogram mismatching issue as the Lp distance.

12.2.7 Quadratic Distance

The distances or measures we have introduced so far all make two implicit
assumptions: (a) the two feature vectors to be measured x and y have equal number
of dimensions; and (b) the dimensions of x and y are independent. However, there
are applications and situations where these two conditions are not met. For
example, the dominant color descriptors described in Chap. 4 typically have
different number of dimensions, and colors of neighboring histogram bins are
correlated with each other. The quadratic distance measure is one of the methods to
address the unequal number of dimensions between two feature vectors and capture
the cross dimension information in a feature vector.

The quadratic-form distance between two n-dimensional feature vectors x and
y is given by

dq x; yð Þ ¼ x� yð ÞTA x� yð Þ� �1
2 ð12:15Þ

where

• T means transpose,
• A = [aij] is an n � n matrix,
• aij is the similarity coefficient between dimensions i and j,
• aij = 1 − dij/dmax,
• dij = |xi − yj|, and
• dmax ¼ max1� i;j� n dij.
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For numerical calculations, (12.15) is expanded as (12.16)

dq ¼
Xn
i¼1

Xn
j¼1

aijxixj þ
Xn
i¼1

Xn
j¼1

aijyiyj � 2
Xn
i¼1

Xn
j¼1

aijxiyj

 !1
2

ð12:16Þ

The aij is the similarity coefficient between xi and yj; it is a weight on a
cross-dimensional element of the two feature vectors, the higher the correlation
between the two cross dimensions, the more the weight is given on that element.

For two feature vectors x and y with different dimensions n and m, respectively,
the quadratic distance between x and y is given as (12.17)

dq ¼
Xn
i¼1

Xn
j¼1

aijxixj þ
Xm
i¼1

Xm
j¼1

aijyiyj � 2
Xn
i¼1

Xm
j¼1

aijxiyj

 !1
2

ð12:17Þ

If the dimensions of both the two feature vectors x and y are independent each
other, e.g., after certain decorrelation operations, the quadratic distance between
x and y is given as (12.18)

dq ¼
Xn
i¼1

x2i þ
Xm
j¼1

y2j � 2
Xn
i¼1

Xm
j¼1

aijxiyj

 !1
2

¼
Xn
i¼1

Xm
j¼1

aij xi � yj
� �2 !1

2

ð12:18Þ

Equation (12.18) is a weighted Euclidean distance; one can expect that dq is a more
desirable similarity measure than both L2 and dHI; however, the determination of the
weights is an issue.

12.2.8 Mahalanobis Distance

The Mahalanobis distance is a special case of the quadratic-form distance (12.15)
in which the transform matrix is determined by the covariance matrix obtained
from a training set of feature vectors, that is, A = R−1. In order to apply the
Mahalanobis distance, a feature vector x is regarded as a multivariate random
variable x = (x1, x2, …, xn) from certain probability distribution. Then, the corre-
lation matrix is given by R where

• R = [rij]
• rij = E{xixj} which is the mean of the random variable xixj.
• The covariance matrix R is given by R = [r2ij].

• where r2ij ¼ rij � E xif gE xj
	 


.
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The Mahalanobis distance between two feature vectors x and y is given as

dm x; yð Þ ¼ ½ x� yð ÞR�1 x� yð Þ�12 ð12:19Þ

In the special case where xi are statistically independent but have unequal
variances, R is a diagonal matrix as follows:

R ¼
r21 0

r22
. .
.

0 r2n

2
6664

3
7775 ð12:20Þ

In this case, the Mahalanobis distance is reduced to a simpler form:

dm x; yð Þ ¼
Xn
i¼1

xi � yið Þ2
r2i

 !1
2

ð12:21Þ

Equation (12.21) is another weighted Euclidean distance. It gives more weight to
dimensions with smaller variance and less weight to dimensions with larger vari-
ance. dm can be regarded as a standard Euclidean distance. The Euclidean distance
is just a special case of Mahalanobis distance when the covariance matrix R is the
identity matrix.

12.3 Performance Measures

After image ranking, we need a measure to tell how good is the ranking by a
similarity measure we have discussed above. Specifically, we need to assess how
many relevant images have been retrieved on the top list and how many relevant
images have missed from the top list. The information from the top list of retrieval
lets us tell how well a similarity measure performs. A performance measure is
usually based on statistics of a subjective test which is a test of identifying relevant
images to the query and how relevant they are to the query. Different performance
measures often use different subjective tests, resulting in different definitions of
retrieval performance. In this section, several commonly used performance mea-
sures are described and discussed.

12.3.1 Recall and Precision Pair (RPP)

RPP is one of the most widely used retrieval performance measurements in liter-
ature. In RPP, for each query image, images in a dataset are divided into two
categories: relevant images (1) and irrelevant images (0), based on their similarity
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to the query. The similarity is determined by a subjective test on a group of
subjects. In the subjective test, each subject selects items relevant to the query from
the dataset. An item selected by more than a number of subjects as a relevant image
is given a label of “1”; otherwise, it is regarded as an irrelevant image and is given a
label of “0”.

Now given a query image I and a retrieval list returned by a similarity measure,
the precision (P) and recall (R) statistics are then computed based on the “0” and
“1” images presented on the top retrieval list:

P ¼ r

n1
¼ number of relevantretrieved images

number of retrieved images

¼ relevant imagesf g\ retrieved imagesf gj j
retrieved imagesf gj j

ð12:22Þ

R ¼ r

n2
¼ number of relevant retrieved images

number of relevant images inDB

¼ relevant imagesf g\ retrieved imagesf gj j
relevant imagesf gj j

ð12:23Þ

P can be interpreted as the probability that a retrieved image is relevant, while R can
be interpreted as the probability that a relevant image is returned by a retrieval.

The RPP is often given in the following form:

P ¼ t

tþ fp
ð12:24Þ

R ¼ t

tþ fn
ð12:25Þ

where t, fp, and fn stand for “True Positive” (a hit), “False Positive” (a mismatch),
and “False Negative” (a miss), respectively.

Precision measures the retrieval accuracy while recall measures the retrieval
robustness; both are important for a similarity measure. Precision and recall are
inversely related, i.e., precision normally degenerates as recall increases. Trans-
lating into actual image retrieval result, this inverse relationship means that the
shorter the retrieval list (low recall), the higher the accuracy and vice versa.

The RPP based on a single query does not provide a complete picture of the
performance of a similarity measure; usually, a number of queries are tested and the
P values at each of the R values are averaged. The average (R, P) values are then
plotted on a graph to get an approximate performance of a similarity measure.

Figure 12.8 shows an RPP curve from an averaged retrieval result. It can be
observed from the figure that, as the recall increases (longer retrieval list), the
precision goes down rather sharply in this case.
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The RPP curve gives a good picture of a similarity measure’s performance.
A good similarity measure will have an RPP curve with two characteristics: (a) a
high start (how high depends on applications), e.g., 70%+; and (b) a gentle
drop. However, it is often difficult to achieve both the two goals; a retrieval method
usually either targets high precision on the top list of a retrieval result or targets
higher recall depending on applications. Therefore, the P values at the lower recall
values are much more important than those at higher recalls. For example, in
Fig. 12.8, the P values before the 30% of recall are all above 70%, which indicates
a good retrieval result although the full RPP curve does not look good.

Although RPP is intuitive, there are several drawbacks to this performance
measure.

• Need a ground truth. In order to compute the R value, we need to know the total
number of relevant images in a database which is essentially a ground truth. This
limits the application of the RPP to databases with small scale.

• Unrealistic relevance values. The binary relevance value given to each of the
images in the database is not realistic, because image similarity is probabilistic
and between 0 and 1.

• Missing ranking information. All relevant images on the retrieval list are given
the same relevance value; ranking information is not considered in defining the
relevance values. However, a similar image at rank 1 is more relevant than a
similar image at rank 10.

• A pair of conflict values. It is often awkward to tell the performance of a
retrieval using two values which do not agree with each other. For example, if we
have a retrieval which gives P = 90% and R = 10%, it is difficult to tell how well
is the retrieval result. Therefore, we need a measure to reconcile the P and R pair.

A number of other performance measures have been designed to address the
above issues.
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Fig. 12.8 An RPP curve from an actual image retrieval
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12.3.2 F-Measure

A performance measure which reconciles the precision (P) and recall (R) into one is
called the F-measure. It is defined as harmonic mean of P and R, which turns out to
be the square of the geometric mean of P and R divided by the arithmetic mean of
P and R.

F ¼ P � R
PþR
2

¼ 2 � P � R
PþR

ð12:26Þ

It can be shown that the following is true:

F ¼ aPþ 1� að ÞR ð12:27Þ

where a ¼ tþ fp
2tþ fp þ fn

. Therefore, F turns out to be a weighted sum of P and R. The

weight a can be adjusted to suit a specific data or application.
Figure 12.9 shows the F curve against the same P-R curve from Fig. 12.8. It can

be observed that the F score has a low start and reaches the maximum value at the
point where the P score is the closest to the R score. Before the peak point,
precision is more important; after the peak point, recall is more important. There-
fore, the peak point is the optimal tradeoff between P and R. Overall, the higher the
F score, the better tradeoff between P and R. Therefore, for two similarity measures
or retrieval results, the one gives a higher F score is usually better.

The advantage of using F-measure is that a single value can be used to tell the
difference between two similarity measures or two retrieval results. However, it is
not as intuitive as the RPP and it is not easy to interpret an F score. It appears we
could have used an AUC or area under (the RPP) curve, as an alternative to
F-measure. The AUC would be not only a single value but also as intuitive as the
RPP. However, the AUC would not be able to differentiate an RPP with high start
but sharp drop (a sliding RPP) and an RPP with low start but relatively flat (a steady
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Fig. 12.9 The RPP curve and F curve from an actual image retrieval
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RPP). The former RPP is usually more preferable than the later one, even though
the former is not a good RPP either. Therefore, the AUC would not be as effective
as the F-measure. For example, Fig. 12.10 shows a sliding RPP and a steady RPP
with the same AUC. However, the maximum/optimal F score of the slide RPP is at
middle of the RPP curve, while the maximum/optimal F score of the steady RPP is
at the very end of the RPP curve, which is undesirable, because it is unlikely that a
user would wait until all the relevant images are shown up.

12.3.3 Percentage of Weighted Hits (PWH)

The PWH can be regarded as a weighted recall. The subjective test is the same as in
RPP, that is, each subject select items relevant to the query from the dataset.
However, instead of measuring recall based on binary relevance value as in RPP,
PWH assigns a weighted relevance value wi to each item in the dataset. The sum of
the weights wi is equivalent to the number of subjects selecting item i as relevant or
similar to the query. Therefore, PWH is defined as

PWH ¼
Pn

i¼1 wiPN
i¼1 wi

ð12:26Þ

where n is the number of items retrieved and N is the total number of items in the
database. It is easy to see that the R measure in RPP is a special case of PWH when
wi takes the value of 0 and 1. Similar to the R measure, PWH needs to identify
every item in the database as relevant or not relevant to the query, and this need for
ground truth of the database limits its usage.

12.3.4 Percentage of Similarity Ranking (PSR)

PSR is a performance measure of detecting the agreement between an algorithm
ranking and a human ranking [5]. In this method, each subject assigns a similarity
rank to each item i in the dataset based on the item’s similarity to the query j.
For each query j, the final result of the subject test is a matrix {Qj(i, k)}, where
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Fig. 12.10 The F curves for two different RPP curves with the same AUC
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• Qj(i, k) is the number of subjects ranking item i at kth position.
• �pjðiÞ and �rjðiÞ are the mean and variance of each row of {Qj(i, k)}.
• �pjðiÞ represents the average ranking of the ith image to query j.
• �rjðiÞ represents the degree of agreement among the subjects on ranking item i.

Given a query j, if a retrieval algorithm returns an item i at rank Pj(i), the
percentage similarity ranking Sj(i) is defined as

SjðiÞ ¼
XPjðiÞþ rjðiÞ

2

k¼PjðiÞ�rjðiÞ
2

Qjði; kÞ ð12:27Þ

A plot of Sj(i) as a function of item i shows the retrieval performance of the
retrieval algorithm. A high Sj(i) curve indicates a high retrieval accuracy of the
algorithm. An average PSR value can also be computed as the overall performance
of the retrieval algorithm.

The PSR takes into account the number and agreement of human ranking.
However, if for a query, the percentage of humans giving a particular item at
particular ranking is high (high degree of agreement on ranking the item), then the
variance for the ranking would be small. This would result in unusually low PSR if
the retrieval algorithm’s ranking differs from the subject mean ranking. On the other
hand, if the variance of a ranking is large, then the PSR would be unusually high
even if the ranking by the retrieval algorithm differs substantially from the subject
mean ranking.

12.3.5 Bullseye Accuracy

A simple Bullseye performance measure (BEP) is called Precision at K or P@K,
which is defined as the ratio of the “number of relevant images on the top K re-
trieval” to K. This ratio is called a Bullseye score. The higher the Bullseye score, the
better the retrieval. P@K is a very convenient and useful performance measure
because it does not need the ground truth of the database. P@K measure is widely
used in applications where the data is massive and the accuracy of the top retrievals
is the most important. For example, in online web search, users only care about the
relevance of the top pages returned by a search engine.

The K can be determined based on the actual data or application. If the total
number of relevant images in the database is known to be N, K is typically
determined as N or 2N. In practice, Bullseye scores are obtained from a number of
queries and an average Bullseye score is obtained as the overall performance value
for a retrieval algorithm.

The Bullseye score can also be defined as the Average rank (AR). In AR, instead
of precisions, the ranks of relevant images on the top K retrieval list are averaged.
The lower the AR, the better the retrieval result.
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12.4 Summary

Once images are stored and indexed, similarity measure and performance measure
work together to rank images similar to a query. To draw an analogy, image
retrieval is like gold mining. A similarity measure is analogous to a refinery pro-
cedure in gold mining and the performance measure is equivalent to a laboratory
test which determines if a refinery procedure produces sufficient yield of pure gold.

Design of similarity measures can be divided into three categories: (a) Geomet-
ric-based methods such as Lp, cosine distance; (b) Statistical methods such as v2
statistics, histogram intersection dHI, and Mahalanobis distance dm; and (c) Hybrid
methods such as hp, mp, quadratic distance dq. Zhang and Lu [1] has made an
evaluation of the commonly used similarity measures using the MPEG-7 shape
image databases; it has been found that the city block distance, Euclidean distance,
and v2 statistics are among the top performance similarity measures. The possible
reason to explain this finding is that the three distances are all simple. The more
complex the similarity measure is, the more unpredictable the result.

The design of performance measures is based on three types of criteria:
(a) Accuracy, such as P and P@K; (b) Robustness, such as R and PWH; and
(c) Both accuracy and robustness, such as RPP, F, PSR, and AR. Each of these
performance measures can be varied by how the relevance value is determined and
how the ranking information is used. Overall, the RPP and P@K are the most
intuitive and have the least complexity.

Although we have only demonstrated how to use these performance measures to
evaluate the performance of the similarity measures introduced in this chapter, they
can also be used to evaluate the performance of different image features described
in Part II in the same way.
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13Image Presentation

The best usually is also the simplest.

13.1 Introduction

Image presentation is about how present the database images or retrieved images to
the user in the most effective and efficient way. Given a query from a user, the list of
images retrieved from the database can number from thousands to millions. Due to
the limitation of both image features and image ranking, the retrieval list is usually
scattered with irrelevant images. How to organize the retrieved images and present
as many relevant images as possible in a very limit space is a great challenge in IR.
Image presentation is part of the research on user interface and data visualization. It
is a mixture of tech and arts. Many interesting image presentation methods have
been developed, and they include simple browsing, category browsing, content
browsing, hierarchical organization, sophisticated approaches involving user
interaction, etc. In this chapter, we discuss a number of most common approaches
on image presentation.

13.2 Caption Browsing

If images in the database have been labeled with captions, the simplest way to find
relevant images is through caption browsing. This is typically used in
personal/family photo albums stored in PCs and photo galleries on web pages,
which are usually labeled, dated, and grouped by photo takers.

Caption browsing can also be used in image retrieval. If a retrieval list is not
long, this method can be used to scan through the images on the list in order to find
the most relevant images. Figure 13.1 shows a caption browsing given by MS
Windows File Explorer.
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Fig. 13.1 Browsing images using image captions by Windows File Explorer

The advantage of using caption browsing is that it is effortless and it suits for
universal users. Furthermore, users can search images based on image captions or
date information. For small image databases or a short image retrieval list, caption
browsing is the best option. A major issue with caption browsing is that the caption
labels are subjective, and they are often confusing and even misleading.

13.3 Category Browsing

Category browsing is a typical approach for organizing image databases which are
much larger than personal or family photo albums. Suppose images have been
classified or annotated using the methods described in Part III; images can be
organized into categories just like books are organized in library. Indeed, this is
exactly how images are traditionally indexed in library and archives. Under each
category, users can further filter the images using a simple browsing. Figure 13.2
shows an example of category browsing used by MS Windows File Explorer.

The advantage of category browsing is that very large collections of images can
be broadly organized into categories every efficiently; there is no need to label
individual images. This is particularly useful given there is massive amount of
digital images on the Internet and most of the images are either unlabeled or
mislabeled. However, images in categories of very large image collections are
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usually too diverse both perceptually and semantically. A common approach is to
subdivide each of the categories into subcategories and a more efficient hierarchical
category browsing is designed.

13.3.1 Category Browsing on the Web

More effective and efficient category browsing methods have been designed for the
web where each category is initiated with one or more representative images.
Figure 13.3 shows an example website using category browsing. It can be seen that
the Web category browsing is more effective and efficient than a desktop file
explorer, because it not only visualizes each category with one or multiple iconic
images but also provides a convenient searching mechanism. Furthermore, a web
browsing system also provides a user with key information about the image col-
lection and categories, such as the number of categories, number of images, types of
images, source of images, instructions on retrieving the images, how to use the
images, etc. More examples of category browsing on the web can be found online
by Googling for “image categories.”

13.3.2 Hierarchical Category Browsing

Categories of the same concept can be merged to organize the image database into a
hierarchical or tree structure. On the other hand, if there are too many images in a
category, it can be subdivided into subcategories. The subjective labeling issue in
image categorization can be overcome using a thesaurus such as the WordNet [1].

The design of a hierarchical category browsing system can be done either before
the collection of images or during the collection of images. Due to the lack of

Fig. 13.2 Category browsing using MS Windows File Explorer
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media house—image categories
Search                                   a      
Popular categories

Earth            Sculptures         Warships         Buildings

All the pictures and image you need for your media designs.

More than one millions of top quality images are on offer.

Search our categories to find your favoriƟes  

All categories

Fig. 13.3 A website of category browsing
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standard image taxonomy, image categories are typically defined during the col-
lection of images or defined “on the run”. In this case, images should be put into as
many categories as possible, so that higher level of categories can be created by
merging similar subcategories using a thesaurus. Images can be most efficiently
retrieved using a standard hierarchy like the one used to classify animals or plants.

Figure 13.4 shows an example of hierarchical organization of image categories;
each top-level category is demonstrated with a number of iconic images to give an

Acacia Box hedge Echium Fuchsias Grevillea Hebe Heath Hydrangea Iris Jasmine …… More >>
Lily Maple Pandorea Polygala Rose Tulip Yacca

Browse Our Categories
Plants 

Alps Altai Andes Great dividing range Himalayas Kunlun Mount Rushmore Rocky mountains …… More >>
Tai Shan Tian Shan Yellow Mountain Ural

Mountains

Bathroom Bedroom Bookshelf Carpet Chairs Curtains Dining room Kitchen Living room …… More >>
LighƟng Lounge Study Sofa Tables

Furnishing

Life Style

Diving Bush walking Gym Model Photographing Shopping Snorkelling Sports PainƟng …… More >>

More Categories

Search Category Browse categories Log in Sign up

Fig. 13.4 Hierarchical organization of image categories on a website
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idea on what is inside the category. It can be seen that it is a more effective and
efficient presentation of image categories than that in Fig. 13.3, because more
image categories can be shown to users on one web page.

13.4 Content Browsing

Images in the database or on a retrieval list can also be organized based on
numerical image features instead of semantic labels as shown in the above sections.
Numerical image features are also called low-level image features, perceptual
features, or content features. Therefore, image retrieval based on numerical image
features is called content-based image retrieval or CBIR for short. The idea of
content browsing is to convert and group retrieved images as thumbnails based on
their perceptual similarities such as color, texture, or shape. The organization of the
thumbnails is then presented as an image map to guide a user to navigate to the
most relevant images. This is very useful because people usually judge image
similarity based on perception, and perceptual features are usually less subjective
than semantic labeling which can vary widely from person to person. Figure 13.5
shows an example of content browsing.

Content browsing is a study of image data visualization. Key issues in content
browsing include the following:

Fig. 13.5 Image presentation based on content browsing
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• Features of images. What image feature(s) to use? Typically, images to be
presented are grouped based on color, texture, shape, or combination of them, and
it depends on the nature of the image data and application.

• Similarity measure. What similarity measure to use? Different similarity mea-
sures can lead to different perceptual experiences on the content browsing.

• Size of thumbnails. Should they be equal size or different sizes depending on
relevance?

• Overlap of thumbnails. Should thumbnails be overlapped and how much?
• Structure and layout of thumbnails. Should they be organized in row and
column, spiral, or graph?

• Space of presentation. Whether images are presented in 2D space or 3D space
such as a cylinder or a sphere.

• Interaction. What type of interaction to use and how a user can interact with the
thumbnails?

These factors are determined by research on how the physical world can be most
effectively presented to human vision system.

13.4.1 Content Browsing in 3D Space

The limited space of a 2D screen can be extended using a 3D cylinder (Fig. 13.6)
[2], or a sphere (Fig. 13.7) to present more thumbnails in an image map [3]. Images
can also be presented on a curved wall as shown in Fig. 13.8 to extend the visual
space.

13.4.2 Content Browsing with Focus

Content browsing with equal size thumbnails provides a global view of the visu-
alized image data. Alternatively, a local view of the image map provides a content
browsing with focus. For example, in Fig. 13.9, images on the top of the retrieval
list are given focus and presented in the center of the screen with larger size
according to their similarity to the query image, and they are then arranged in a
clockwise spiral order [4].

13.4.3 Force-Directed Content Browsing

Conventional content browsing does not have overlap between images and the
distance between neighboring images is uniform. In a force-directed content
browsing, images in a category or a retrieval list are regarded as planets in space
and the distance between images is regarded as a force between them. If two images
are similar enough, the force is strong enough to attract them together. The result of
a force-directed visualization is an overlapped image map as shown in Fig. 13.10a.
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Figure 13.10b shows the force-directed image map in diminishing perspective.
A bi-force-directed content browsing can be visualized using a 3D image map as
shown in Fig. 13.10c. In the 3D image map, there are two types of forces

Fig. 13.6 Content browsing using a cylindrical image map

Fig. 13.7 Content browsing
using a spherical image map

296 13 Image Presentation

www.EBooksWorld.ir



representing two types of similarity between images, e.g., the horizontal force
represents the color similarity and the vertical force represents the texture similarity.
A close-up section of the 3D image map is shown in Fig. 13.10d.

Interactivity over an image map can also include keywords. For example,
keywords can be used as a mouse-over feature of the image map. A keyword map
and an image map can be created separately and put side by side, and the two maps
are linked to provide a user with a joint content browsing [4].

13.5 Query by Example

When come to find a required image, one of the most challenging issues for a user
is how to initiate the search, which includes how to start, where to start and how to
formulate a search. One of the simplest ways to start a search is a query by example
(QBE), or search based on an example image from the user. In QBE, similar images
in the database are retrieved based on the content features of the query image. The

Fig. 13.8 Content browsing using a curved wall image map
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justification for QBE is that often the requirement for an image cannot be described
by words and a user has a sample image which is similar to what they actually want
to find. The sample image can be used as equivalent keywords for a query. QBE is a
useful functionality; because most of the images in the world are unlabeled, these
images can be retrieved based on content features. Therefore, QBE is an essential
part of an IR system.

An example of QBE is Google’s “Search by image” as shown in Fig. 13.11 [5].
In the figure, the sample image was first translated to the keywords “Sydney opera
house” which are then used as the query for the actual image retrieval. Due to the
translation, Google’s search by an example image can be regarded as a semi-QBE,
because labels of images in the database may not be obtained from image content.
This works well when a query image is properly translated; however, when a query
image is incorrectly translated, it results in completely wrong retrievals. For
example, Fig. 13.12 shows three example queries which are translated to “dark-
ness”, “comics”, and “computer”, respectively. As a result, the retrievals of the
three queries are completely incorrect. Furthermore, when the hand image query is
presented using two different copies, they are translated as “Naya Rivera” and

Fig. 13.9 Content browsing with focus and spiral structure
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“Point Cabrillo Light,” respectively, which would not occur if content features are
used for direct matching. This demonstrates that a CBIR-based QBE is a necessary
component for an image retrieval system.

Although QBE is useful and convenient in many situations, it can be challenging
to find an example image for a user. One of the ways to find example images is to
use query by keywords or QBK which will be introduced in the following section.

Fig. 13.10 Force-directed content browsing
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Fig. 13.10 (continued)
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13.6 Query by Keywords

People describe the visual world using textual language such as a blue sky, green
trees, red flowers, a cheerful street, violent protests, etc. One of the natural ways to
search images is to use query by keywords or QBK. In a QBK system, images in
database are all labeled with keywords and indexed using inverted files; the search
for images is just the same as search for textural documents. Unfortunately, most of
the images in the world are either unlabeled or mislabeled. In a typical QBK
system, image labels are obtained from image content through automatic image
classification/annotation. A typical QBK system is shown in Fig. 13.13 [6, 7].
Image labels can also be obtained by analyzing textual description of images in web
pages on the Internet.

Fig. 13.11 A QBE example from Google

Fig. 13.12 Query images for Google’s “Search by image”
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Fig. 13.13 A content-based QBK system

One of the most widely used QBK systems is Google’s image search as shown
in Fig. 13.14a [5]. The key features of Google’s image search are summarized as
follows:

• Simplicity. The textual input is the simplest and most intuitive query interface. It
is a universal user interface.

• Caption browsing. Retrieved images are presented as caption browsing which is
simple and intuitive.

• Category browsing. The categories at the top of the browsing area provide users
with category browsing (Fig. 13.14b).

• Content browsing. QBE is included as an option for the QBK interface, shown
as a camera icon at the query field (Fig. 13.14a). Some of the category browsings
are also based on content features such as colors.

• Interactivity. An enlarged version of an image is shown as focus when a user
clicks any of the images in the browsing area; the enlarged image is also linked to
the image source (Fig. 13.15).

• Hierarchical structure. When a user clicks an image in the browsing area, it also
shows the category of images similar to the clicked image at the right-hand side
(Fig. 13.15). This kind of interaction can also be regarded as a QBK-supported
QBE.

At this moment, Google’s image search is predominantly done by QBK due to
the limited capability of CBIR techniques. However, it is often a challenge for a
user to formulate an image query using keywords only. In many cases, a query for
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Fig. 13.14 A QBK example from Google. a An example from Google’s Image search;
b category browsing from Google’s Image search

an image can only be described by a visual form or QBE. As CBIR techniques
become more mature, it is expected that both QBE and QBK will play equal roles in
image search.

An effective relevance feedback or RF mechanism is an essential feature of an
image retrieval system. This is because an initial retrieval result is likely inaccurate;
the RF provides a user a chance to interfere and refine the retrieval result. RF works

Fig. 13.15 A hierarchical QBK in Google. An enlarged image at the black strip and its relevant
category at the right-hand side of the enlarged image
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by letting a user to select a number of relevant images from a retrieval list; the IR
system then uses these relevant images as a collective query (instead of a single
query) to refine or update the retrieval list so that it meets the user’s expectation. RF
is particularly useful for mass scale image search such as Google, because the
chance of identifying relevant images from the top of a retrieval list is high.

13.7 Summary

In this chapter, different image presentation techniques have been discussed. Once
images in an image database have been classified, indexed, and ranked, the next
step is how to present the images to users. We have introduced a number of
common methods of image presentation including caption browsing, category
browsing, content browsing, QBE, QBK, etc. Each of them has its applications and
limitation. As image databases become larger and larger, an image retrieval system
needs to integrate all of these individual image presentation techniques so that
images can be found both effectively and efficiently.

An example of such kind of integrated image retrieval system has been shown
using Google image search application. It is shown that Google image search has
integrated caption browsing, category browsing, hierarchical category browsing,
QBE, and QBK into a single IR system. The success of Google’s search engine
shows that in terms of design a retrieval system, the simplest is the best. The chapter
also demonstrates that powerful image visualization techniques such as a Google
earth like image map can be utilized to enhance user experience on an IR system.
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Appendix: Deriving the Conditional
Probability of a Gaussian Process

Given a set of data x1, x2,…, xN from a certain class C, and each feature vector xi is
a data point in RD: xi = (xi1, xi2, …, xiD). A matrix X = D � N = (d1, d2, …, dD)

T

can be created as following:

X ¼
x11; x21; . . .; xN1
x12; x22; . . .; xN2

. . .
x1D; x2D; . . .; xND

2
664

3
775 ¼

d1
d2
. . .
dD

2
664

3
775 ðA:1Þ

X is a Gaussian process and X follows a multivariate normal distribution:
X * N (l, R), where l and R are the mean and variance of X which are
determined by (A.2) and (A.3), respectively.

l ¼
l1
l2
. . .
lD

2
664

3
775 ðA:2Þ

R ¼
cov d1; d1ð Þ; cov d1; d2ð Þ; . . .; cov d1; dDð Þ
cov d2; d1ð Þ; cov d2; d2ð Þ; . . .; cov d2; dDð Þ

. . .
cov dD; d1ð Þ; cov dD; d2ð Þ; . . .; cov dD; dDð Þ

2
664

3
775 ðA:3Þ

where cov(di, dj) is either a covariance or a variance:

cov di; dj
� � ¼ E di � uið Þ dj � uj

� �Th i
¼ E didTj

h i
� uiuTj ðA:4Þ

var dið Þ ¼ cov di; dið Þ ðA:5Þ
and E is the expected value.
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To predict a new data or a new set of data X�, X and X� are concatenated and the
concatenated data is a new GP which follows the following normal distribution:

X�
X

� �
�N lX�

lX

� �
;

RX�X� ; RX�X
RXX� ; RXX

� �� �
ðA:6Þ

Then, the probability of the new data X� given the observed data X is given by
(A.7):

p X�jXð Þ ¼ N lX� þRX�XR
�1
XX X� lXð Þ;RX�X� � RX�XR

�1
XXRXX�

� � ðA:7Þ

To prove (A.7), let’s first formulate (A.6) into a general case of two multivariate
normal distributions. Suppose X1 and X2 are the two partitions of X:

X ¼ X1

X2

� �
ðA:8Þ

where X * N (l, R), X1 * N (l1, R11) and X2 * N (l2, R22).
Then, the following are the partitions of l and R, respectively:

l ¼ l1
l2

� �
ðA:9Þ

R ¼ R11 R12

R21 R22

� �
ðA:10Þ

where R and Rij are all the covariance matrices. Based on (A.4) and (A.5), it can be
shown that the following properties of vector variance (var) and covariance (cov)
are true [7, Chap. 7]:

ð1Þ var AXþ bð Þ ¼ A varðXÞAT ðA:11Þ

ð2Þ var X1 þX2ð Þ ¼ var X1ð Þþ var X2ð Þþ cov X1;X2ð Þþ cov X2;X1ð Þ ðA:12Þ

ð3Þ cov AX1 þ b;X2ð Þ ¼ A cov X1;X2ð Þ ðA:13Þ

ð4Þ cov AX1 þBX2;X2ð Þ ¼ A cov X1;X2ð ÞþB var X2ð Þ ðA:14Þ

ð5Þ cov X1;X2ð Þ ¼ cov X2;X1ð Þ ðA:15Þ
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To compute the parameters of p(X1|X2), we need to create an auxiliary random
variable Z which is both the linear combination of X1 and X2 and independent of
X2 [8, Chap. 7]:

Z ¼ X1 þAX2 ðA:16Þ
Then, the matrix A can be found by letting cov(Z, X2) = 0:

cov Z;X2ð Þ ¼ cov X1 þAX2;X2ð Þ
¼ cov X1;X2ð ÞþAvar X2ð Þ
¼ R12 þAR22 ¼ 0

ðA:17Þ

which leads to

A ¼ �R12R
�1
22 ðA:18Þ

and

EðZÞ ¼ E X1ð ÞþE AX2ð Þ ¼ l1 þAl2 ðA:19Þ
Therefore, we have

E X1jX2ð Þ ¼ E Z� AX2jX2ð Þ
¼ E ZjX2ð Þ�E AX2jX2ð Þ
¼ EðZÞ�AX2

¼ l1 þA l2�X2ð Þ
¼ l1 þR12R

�1
22 X2�l2ð Þ

ðA:20Þ

where E(AX2|X2) = AX2 is due to both A and X2 are constants. E(X1|X2) is the
mean of p(X1|X2).

By using (A.12) and (A.17), we have the following:

var X1jX2ð Þ ¼ var Z� AX2jX2ð Þ
¼ var ZjX2ð Þþ var AX2jX2ð Þ þ cov Z;�AX2ð Þ þ cov �AX2;Zð Þ
¼ var ZjX2ð ÞþAvar X2jX2ð Þ � Acov Z;X2ð Þ � Acov X2;Zð Þ
¼ var ZjX2ð Þ
¼ varðZÞ

ðA:21Þ
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Therefore, by combining (A.11)−(A.15), (A.18) and (A.21), we have:

var X1jX2ð Þ ¼ var Zð Þ
¼ var X1 þAX2ð Þ
¼ var X1ð ÞþAvar X2ð ÞAT þAcov X1;X2ð ÞþAcov X2;X1ð Þ
¼ R11 þR12R

�1
22 R22R

�1
22 R12 � 2R12R

�1
22 R21

¼ R11 � R12R
�1
22 R21

ðA:22Þ

To summarize the above, we have obtained both the mean and variance of
p(X1|X2):

E X1jX2ð Þ ¼ l1 þR12R
�1
22 X2�l2ð Þ

var X1jX2ð Þ ¼ R11 � R12R
�1
22 R21

By substituting X1 and X2 with X� and X respectively, (A.6) is proved.
An alternative proof of (A.7) is to use Bayesian theorem by working out the joint

probability p(X1, X2) and the marginal probability p(X1) [9, Chap. 7].

p X1;X2ð Þ ¼ 1

ð2pÞD=2 Rj j1=2
exp � 1

2
X1 � l1ð ÞT ; X2 � l2ð ÞT� 	 R11 R12

R21 R22

� ��1 X1 � l1
X1 � l1

� �( )

¼ 1

ð2pÞm2 R11j j12
exp � 1

2
X1 � l1ð ÞTR�1

11 X1 � l1ð Þ

 �

� 1

2pð Þn=2 Aj j1=2
exp � 1

2
X2 � bð ÞTA�1 X2 � bð Þ


 �

¼ N X1; l1;R11ð Þ � N X2; b;Að Þ
¼ p X1ð Þ � p X2ð Þ

ðA:23Þ
where m + n = D and

A ¼ R22 � R21R
�1
11 R12 ðA:24Þ

b ¼ l2 þR21R
�1
11 X2�l2ð Þ ðA:25Þ
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Therefore, the conditional probability of p(X2|X2) is given as follows:

p X2jX1ð Þ ¼ p X1;X2ð Þ
p X1ð Þ

¼ N X2; b;Að Þ
ðA:26Þ

By substituting X1 and X2 with X and X* respectively, (A.7) is also proved.
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