
PHP & MYSQL:
NOVICE TO NINJA

BY TOM BUTLER
& KEVIN YANK

BUILD YOUR OWN POWERFUL WEB APPLICATIONS

P
H

P
P

H
P

 &
 M

Y
S

Q
L:

N
O

V
IC

E
 TO

 N
IN

JA

B
U

TLE
R

&
 YA

N
K

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your website

 Make learning easy and fun

WEB DEVELOPMENT
PRINT ISBN: 978-0-9943469-8-8

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $39.95 CAD $52.95

PHP & MySQL: Novice to Ninja, 6th Edition is a hands-on guide
to learning all the tools, principles, and techniques needed
to build a professional web application using PHP & MySQL.
Comprehensively updated to cover PHP 7 and modern best
practice, this highly practical and fun book covers everything
from installing PHP and MySQL through to creating a complete
online content management system.

• Install PHP & MySQL on Windows, Mac OS X, or Linux

• Gain a thorough understanding of PHP syntax

• Master database design principles and SQL

• Write robust, maintainable, best practice code

• Build a working content management system (CMS)

• And much more!

THE EASIEST WAY TO LEARN PHP

YOUR AUTHORS

TOM
BUTLER

Tom is a web developer, a Ph.D
student researching software best
practices, and university lecturer from
the UK with an interest in
programming best practices,
separation of concerns and a “less is
more” approach to code.

KEVIN
YANK

Before joining Culture Amp in 2015,
Kevin taught a generation of web
developers during his time at
SitePoint, starting with the first edition
of the book that you now hold in your
hands. While there, he helped to
launch success stories like 99designs
and Flippa. More recently, he quizzed
web developers on HTML, CSS and
JavaScript by leading the team
behind Sit the Test, and has spoken at
tech conferences around the world.

SIXTH EDITION

ALL CODE AVAILABLE TO DOWNLOAD

SIX
TH

 E
DIT

IO
N

www.EBooksWorld.ir

PHP & MySQL: Novice to Ninja, 6th Edition
by Tom Butler and Kevin Yank

Copyright © 2017 SitePoint Pty. Ltd.

Product Manager: Simon Mackie

English Editor: Ralph Mason

Technical Editor: Bruno Škvorc

Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, without the prior written permission of the

publisher, except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information

herein. However, the information contained in this book is sold without warranty, either

express or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or

distributors will be held liable for any damages to be caused either directly or indirectly by

the instructions contained in this book, or by the software or hardware products described

herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the

names only in an editorial fashion and to the benefit of the trademark owner with no

intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: books@sitepoint.com

ISBN 978-0-9943469-8-8 (print)

ISBN 978-0-9953827-8-7 (ebook)

Printed and bound in the United States of America

i

www.EBooksWorld.ir

About Tom Butler
Tom is a web developer, a Ph.D student researching software best practices, and

university lecturer from the UK with an interest in programming best practices,

separation of concerns and a “less is more” approach to code.

About Kevin Yank
Before joining Culture Amp in 2015, Kevin taught a generation of web developers

during his time at SitePoint, starting with the first edition of the book that you

now hold in your hands. While there, he helped to launch success stories like

99designs and Flippa. More recently, he quizzed web developers on HTML, CSS

and JavaScript by leading the team behind Sit the Test, and has spoken at tech

conferences around the world. On weekends he performs improvised theatre with

Impro Melbourne, which is a lot more like building websites than you might

expect.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content

for web professionals. Visit http://www.sitepoint.com/ to access our blogs, books,

newsletters, articles, and community forums. You’ll find a stack of information on

JavaScript, PHP, Ruby, mobile development, design, and more.

ii PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://www.sitepoint.com/

Table of Contents

Preface ...xv

Who Should Read This Book ..xvi

Programming Has Changed..xvi

It Takes 10,000 Hours to Become an Expert...xvii

Resist the Temptation to Skip Ahead ...xviii

The Concorde Fallacy...xviii

You’re Not Learning PHP ..xix

Getting Braces and Semicolons in the Right Place Is the Easy Part .. xx

You Won’t Get Anything Done by Planning... xx

Conventions Used ... xxiii

Supplementary Materials..xxiv

Chapter 1 Installation ...1

Your Own Web Server ..3

Server Setup 1: Manually Installing All the Software

Components..4

Server Setup 2: Pre-packaged Installations5

Server Setup 3: Virtual Servers..6

Table of Contents iii

www.EBooksWorld.ir

Your Own Virtual Server ..8

Installation on Windows...8

Installation on macOS...8

Installation on Linux ...9

Getting Started with Vagrant ...9

Chapter 2 Introducing PHP....................................15

Basic Syntax and Statements..18

Variables, Operators, and Comments ...22

Variables ..22

Operators...23

Comments ...23

Control Structures ..24

If Statements ..25

Loops ..33

Arrays ..45

User Interaction and Forms ...52

Passing Variables in Links ...53

Passing Variables in Forms...62

GET or POST? ..66

Hiding the Seams ..66

iv PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

PHP Templates ..66

Security Concerns ..69

Many Templates, One Controller...73

Bring on the Database ...77

Chapter 3 Introducing MySQL.............................79

An Introduction to Databases...80

Using MySQL Workbench to Run SQL Queries.......................................81

Creating a Database ...87

Structured Query Language ..90

Creating a Table...93

Adding Data ...98

A Word of Warning.. 104

Viewing Stored Data.. 105

Modifying Stored Data...110

Deleting Stored Data .. 111

Let PHP Do the Typing ...112

Chapter 4 Publishing MySQL Data on the

Web ..114

Table of Contents v

www.EBooksWorld.ir

The Big Picture...114

Creating a MySQL User Account ..116

Connecting to MySQL with PHP.. 120

A Crash Course in Object-oriented Programming.............................. 126

Configuring the Connection ... 129

Sending SQL Queries with PHP.. 134

Handling SELECT Result Sets.. 139

Thinking Ahead... 149

Inserting Data into the Database .. 161

Deleting Data from the Database ... 173

Mission Accomplished ... 182

Chapter 5 Relational Database Design183

Giving Credit Where Credit Is Due .. 184

Rule of Thumb: Keep Entities Separate.. 187

SELECT with Multiple Tables .. 193

Simple Relationships ... 199

Many-to-many Relationships .. 203

One for Many, and Many for One ... 207

Chapter 6 Structured PHP Programming208

vi PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Include Files .. 209

Including HTML Content ... 210

Including PHP Code.. 212

Types of Includes... 215

Custom Functions and Function Libraries ... 216

Variable Scope ... 220

Breaking Up Your Code Into Reusable Functions 228

Using Functions to Replace Queries .. 235

Updating Jokes .. 238

Editing Jokes on the Website.. 239

Delete Function ... 243

Select Function ... 244

The Best Way... 246

Chapter 7 Improving the Insert and Update

Functions..247

Improving the Update Function .. 247

Stripping the Trailing Comma .. 252

Improving the Insert Function ... 254

Handling Dates ... 258

Displaying the Joke Date ... 265

Table of Contents vii

www.EBooksWorld.ir

Making Your Own Tools .. 268

Generic Functions .. 270

Using These Functions ... 276

Repeated Code Is the Enemy ... 280

Creating a Page for Adding and Editing................................... 282

Further Polishing .. 287

Moving Forward ... 293

Chapter 8 Objects and Classes294

Time for Class.. 295

Public vs Private ... 300

Objects ... 301

Class Variables... 302

Constructors.. 309

Type Hinting .. 313

Private Variables... 315

Using the DatabaseTable Class .. 318

Updating the Controller to Use the Class .. 322

DRY ... 326

Creating a Controller Class ... 327

Single Entry Point .. 333

viii PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Keeping it DRY.. 340

Template Variables ... 346

Be Careful With Extract .. 349

Chapter 9 Creating an Extensible

Framework..353

Search Engines.. 355

Make Things Generic ... 358

Thinking Ahead: User Registration ... 360

Dependencies .. 365

URL Rewriting ... 373

Tidying Up ... 378

Make it OOP... 378

Reusing Code on Different Websites .. 386

Generic or Project Specific? ... 387

Making EntryPoint Generic ... 389

Autoloading and Namespaces ... 396

Case Sensitivity... 398

Implement an Autoloader .. 399

Redecorating... 400

Namespaces... 403

Table of Contents ix

www.EBooksWorld.ir

Autoloading with PSR-4 ... 406

A Note on Composer ... 409

And the REST .. 410

Enforcing Dependency Structure with Interfaces.............................. 419

Your Own Framework .. 422

Chapter 10 Allowing Users to Register

Accounts ...423

Validating Email Addresses ... 433

Preventing the Same Person from Registering Twice 434

Securely Storing Passwords .. 439

Registration Complete... 442

Chapter 11 Cookies, Sessions, and Access

Control ...446

Cookies ... 447

PHP Sessions ... 454

Counting Visits with Sessions ... 457

Access Control .. 458

Logging In .. 458

x PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Protected Pages... 467

Interfaces and Return Types ... 472

Making Use of the Authentication Class 474

Login Error Message ... 476

Creating a Login Form... 478

Logging Out .. 483

Assigning Added Jokes to the Logged-in User 485

User Permissions ... 488

Mission Accomplished?.. 490

The Sky’s the Limit ... 494

Chapter 12 MySQL Administration.................496

Backing Up MySQL Databases ... 497

Database Backups Using MySQL Workbench........................... 498

Database Backups Using mysqlpump 500

Incremental Backups Using Binary Logs 502

MySQL Access Control Tips... 506

Host Name Issues .. 507

Locked Out? ... 509

Indexes ... 510

Multicolumn Indexes ... 515

Table of Contents xi

www.EBooksWorld.ir

Foreign Keys .. 518

Better Safe than Sorry .. 520

Chapter 13 Relationships521

Object Relational Mappers ... 526

Public Properties ... 528

Methods in Entity Classes.. 529

Using Entity Classes from the DatabaseTable Class 532

Joke Objects ... 540

Using the Joke Class ... 544

References .. 545

Simplifying the List Controller Action 546

Tidying Up ... 378

Caching... 550

Joke Categories... 553

List Page ... 558

Assigning Jokes to Categories.. 560

Assigning Categories to Jokes .. 574

Displaying Jokes by Category... 577

Editing Jokes ... 583

User Roles .. 587

xii PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Creating a Form to Assign Permissions .. 594

Author List ... 595

Edit Author Permissions... 596

Setting Permissions .. 599

A Different Approach... 600

A Crash Course in Binary ... 602

Be Bit-Wise .. 603

Back to PHP ... 604

Storing Bitwise Permissions in the Database........................... 607

Join Table or Bitwise .. 609

Cleaning Up ... 610

Editing Others’ Jokes ...611

Phew!.. 614

Chapter 14 Content Formatting with Regular

Expressions ...616

Regular Expressions ... 617

String Replacement with Regular Expressions 621

Emphasized Text.. 622

Paragraphs.. 628

Hyperlinks .. 631

Table of Contents xiii

www.EBooksWorld.ir

Putting It All Together .. 633

Sorting, Limiting and Offsets... 639

Sorting .. 639

Pagination with LIMIT and OFFSET 645

Pagination in Categories ... 653

Achievement Unlocked: Ninja ... 657

What Next? .. 658

Appendix A Using The Sample Code

Repository..660

Some Caveats.. 661

Appendix B Linux Troubleshooting662

xiv PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Preface

It was 1998, I was twelve, and my parents had just bought the family our first

modern PC. It wasn’t long before I had figured out how to change the code for one

of my favorite first-person shooter games—little things like making the rocket

launcher fire a hundred rockets a second instead of one, then having it fire a

hundred rockets in every direction … and promptly crashing the game. I was

hooked, and I’ve been programming ever since.

The game was multiplayer. Other people had also discovered how to change the

code, and the arms race quickly escalated. Someone would fire a hundred rockets

at me. I’d have a script ready that would instantly build a wall right in front of me

to block them all.

My opponent would spawn a dozen land mines underneath me. I’d turn off the

gravity, then jump, soaring away from the impending explosion. Everyone could

fly. It got to the point where it was no longer fun. You’d enter a game and

someone had written a script to teleport you to the other side of the map, kill you

instantly and force you to respawn, repeating the process a dozen times a second.

They’d freeze your controls too, of course.

We discovered ways to block all this, but by the end it was a stalemate. Whoever

managed to enter the game first could take complete control of it, and no matter

how good your scripts were, there was nothing you could do. It was fun while it

lasted.

That’s how I learned the basics of coding, and that the only limit is your own

imagination and creativity. During that time, I’d also taught myself HTML, and

had my own website where I shared some of my game hacking techniques and

scripts. No, the website is not still up. Yes, it was terrible, full of bad grammar

and cheesy animations (which was the style at the time, I promise!).

By 2000, I had taught myself the basics of PHP/MySQL and was running a

website for a group of fellow gamers. I wrote some crude PHP scripts for posting

news on the website, as well as polls, and even a script for handling our mini-

tournament rankings and fixtures.

Preface xv

www.EBooksWorld.ir

After that, I moved onto writing desktop applications in a horrible language

called Delphi, writing tools that aided people in modding various games. I

graduated from University in 2007 with a degree in Software Engineering, worked

for various companies as a PHP developer, and these days I’m back at the

University studying for a PhD and working as a lecturer, spreading my passion for

programming.

I’m 31 now, and I’ve been programming for more of my life than not. It’s fun, it’s

something I thoroughly enjoy doing. I’m writing this book to share my knowledge

with you and help you steer clear of some traps that are easy to fall into.

Learning to code is very enjoyable and rewarding. You can watch your program

come alive as you build it. However, it can also be an incredibly frustrating

experience. In this book, I’m going to try to use my own experience to give you a

smoother ride than I and a lot of developers have had. I can steer you in the right

direction from the start.

Before I introduce you to any code, I’m going to give you some general advice

about programming and learning to code which I give to all my students.

Who Should Read This Book

This book is aimed at intermediate and advanced web designers looking to make

the leap into server-side programming. You’ll be expected to be comfortable with

simple HTML, as I’ll make use of it without much in the way of explanation. No

knowledge of Cascading Style Sheets (CSS) or JavaScript is assumed or required,

but if you do know JavaScript, you’ll find it will make learning PHP a breeze,

since these languages are quite similar.

By the end of this book, you can expect to have a grasp of what’s involved in

building a modern PHP website, the basics of PHP, and tried and tested

techniques that are used by developers today.

Programming Has Changed

As a novice developer starting now, there’s a lot more you need to know before

you can publish a website than someone who was building a website in 2001.

xvi PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

When I started, it was a much simpler time. For example, website security wasn’t

much of a consideration. Unless you were a bank or a company taking credit card

payments, there was very little chance anyone would target your site.

These days, however, every single website is constantly bombarded by bots and

scripts specifically looking to exploit even the smallest doors you may have left

open.

The way PHP scripts are written has changed dramatically as well—certainly for

the better. It’s now much, much easier to download and use someone else’s code

in your own project. The downside to this is that you need a much broader

understanding of programming concepts before you can do anything useful.

To keep up with the competition, and with the needs of more demanding

projects, PHP and MySQL have also had to evolve. PHP is now a far more

intricate and powerful language than it was back in 2001, and MySQL is a vastly

more complex and capable database. Learning PHP and MySQL today opens up a

lot of doors that would have remained closed to the PHP and MySQL experts of

2001.

That’s the good news. The bad news is that, in the same way that a butter knife is

easier to figure out than a Swiss army knife (and less likely to cause self-injury!),

all these dazzling new features and improvements have indisputably made PHP

and MySQL more difficult for beginners to learn.

It Takes 10,000 Hours to Become an Expert

The science behind this statement is questionable, but the sentiment is correct.

Programming is a skill, and it’s incredibly difficult to master. Don’t expect to

become proficient overnight. By the end of this book, you’ll have a good

understanding of PHP, but there’s always more to learn, regardless of the level

you’re at.

Having said that, in programming a little knowledge can go a long way. You’ll be

surprised how much you can do with just a few tools at your disposal!

You’ll find that, after you’ve learned the very basics, you can achieve almost

anything you want. There’ll be very little you can’t do, even though you only

Preface xvii

www.EBooksWorld.ir

know a fraction of the programming concepts that are out there. The more

advanced concepts are about making your code more efficient, quicker and easier

to write, and much simpler to build on top of.

Resist the Temptation to Skip Ahead

This is one I reiterate time and time again for my students who miss lectures.

Programming concepts build on top of each other. For the most part, you need to

learn the earlier concepts before you can move on to the next one. If you try to

move too fast, you’ll get needlessly confused and make it more difficult for

yourself.

There aren’t many programming concepts that exist in isolation, so if you get

stuck, it’s often a result of not fully understanding an earlier concept. Don’t be

afraid to go back and give yourself a refresher on what you think you already

know from before. It’s usually quicker overall than struggling and trying to press

forward when you get stuck!

The Concorde Fallacy

In the late 1970s, the British and French governments continued to fund the

Concorde aircraft even though it was losing vast amounts of money. Their

reasoning was that they had already spent so much on the project that, if they

scrapped it, they’d lose everything they had invested so far. Of course, they

eventually lost considerably more because they kept throwing money at it. If they

had stopped sooner, they would have saved a lot of money in the long run. This

is often referred to as the “Concorde fallacy”. There are times when it’s better to

cut your losses than keep working on a failed project!

There will come a time when you’ve spent hours on something and it’s just not

working. When this happens, take a step back and try to solve the problem in a

different way. Use some of the alternative tools you have at your disposal. The

solution might not be as elegant, but once you have it working you can tweak it.

Never be afraid to scrap everything and start again. When you’re starting out,

you’ll end up writing a lot of code, trying to fit it into what you’ve done before,

xviii PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

and gradually build a monster. And you won’t really understand what the code is

doing. It will become unworkable, and you’ll get frustrated. Even making the

slightest change will be hard work, as it will most likely break something else.

When this happens, don’t be afraid to start again from scratch. I’ve lost count of

the number of times I’ve started a project from scratch after getting it partially

completed. You can usually get to the same point you got stuck at within a couple

of hours, and you have far neater code and a better understanding of it as a result!

However, I strongly recommend keeping that code as a point of reference, rather

than deleting it.

Everyone starts off writing terrible code. Ask any programmer to look at some

code they wrote when they first started and they’ll cringe, even if they only

started a few months ago.

You’re Not Learning PHP

Yes, you read that right. This book is focused entirely on PHP on MySQL, but

don’t fall into the trap of thinking you’re learning PHP. Well, you are learning

PHP, but I’m using PHP to teach you to code.

When you learn to drive, you don’t learn to drive a Ford. You learn the concepts

of driving, and you can apply them to any car you get in, even if a few of the

controls are in a different place.

Concepts you’ll learn here will apply to almost any other language you wish to

learn in the future. Sure, there are some differences, but the underlying concepts

are the same.

Once you can program proficiently in one language, you can get to a reasonable

standard in another within a few days! So don’t read this book thinking “I’m

learning PHP,” but instead think “I’m learning to code.”

It’s more important to remember the concepts than the syntax. You can always

look up the correct syntax, but understanding the underlying concepts is more

difficult. Which brings me to my next point…

Preface xix

www.EBooksWorld.ir

Getting Braces and Semicolons in the Right Place Is
the Easy Part

When you start out, you’ll constantly put brackets, braces, semicolons, dots and

pretty much everything else in the wrong place. You’ll forget to put in a single

character and your whole program won’t work.

This can be incredibly frustrating at first! But once you get the hang of it, you

soon realize that getting the syntax right is the easy part. It’s easy because it’s

strict. It’s either right or it’s wrong. It works or it doesn’t.

The hard part is actually writing the logic, breaking a problem down to its

smallest parts so you can explain it to the computer. The computer will quickly

tell you if the syntax is wrong, but there’s no way for it to tell you whether you’ve

given it the right instructions to solve the problem at hand.

You Won’t Get Anything Done by Planning

You won’t get anything done by planning. — Karl Pilkington

If you’ve done any reading about programming, you’ve probably heard that you

need to spend lots of time designing your code—that you should carefully plan

the logic of your program and how it will work before writing a single line of

code. You’ll come across books and articles that teach development

methodologies, something called “requirements engineering”, diagrams for

visually representing code, and all sorts of tips on how to plan your code out

before you write it.

I’m now going to say something that will make most programmers wince: ignore

that advice entirely and get stuck into writing code.

When I say this in lectures, my students breathe a sigh of relief. They’re there to

learn to code, and the best way to learn to code is to start writing.

The fundamental problem with this advice is that it forgets a somewhat obvious

fact: to design software, you need to know what tools are available and the

problems they solve. Otherwise, any design you come up with will be

xx PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

meaningless if you don’t know what tools are available.

Let’s assume you know nothing about building a house. You don’t know how to

use a hammer, a saw, how strong a beam needs to be to support your roof, how

deep your foundations need to be, how to plumb in the bathroom, what materials

are suitable for which part of the house, etc.

You can spend as long on the design as you like and plan things as carefully as

possible, but unless you know what your tools are capable of and their

limitations, you’ll end up with a design that doesn’t fully utilize the tools, or a

design that just isn’t possible with the tools/materials available to you. Without

knowing that you need a six-meter foundation for a three-story house, you can’t

design a three-story house.

Equally, you can’t design a computer program if you don’t know how to program!

To demonstrate my point, here’s a story from a TED talk called “Want to help

someone? Shut up and listen”, by Ernesto Strolli.

It was a project where we Italians decided to teach Zambian people

how to grow food. So we arrived there with Italian seeds in southern

Zambia in this absolutely magnificent valley going down to the

Zambezi River. And we were amazed that the local people in such a

fertile valley would not have any agriculture. But instead of asking

them how come they were not growing anything, we simply said,

”Thank God we’re here. Just in the nick of time to save the Zambian

people from starvation.”

And of course, everything in Africa grew beautifully and we had these

magnificent tomatoes. In Zambia, the tomatoes grew even larger than

they did in Italy. And we were telling the Zambians, look how easy

agriculture is. When the tomatoes were nice and ripe and red,

overnight, some 200 hippos came up from the river and they ate

everything. And we said to the Zambians, “My God, the hippos.” And

the Zambians said, “Yes, that’s why we have no agriculture here.”

Ernesto’s team knew exactly what they were doing. They carefully planned

everything out and managed to get the result they wanted. However, all that

Preface xxi

www.EBooksWorld.ir

planning and designing was wasted because of something they didn’t see coming.

Programmers don’t encounter hippos, but there are lots of obstacles you won’t be

able to anticipate, and you’ll inevitably run into them. Any time you spend

designing is wasted when the equivalent of 200 hippos come and eat your code.

You have to scrap the design and start again.

During this book, I’ll warn you about the various hippos you might encounter, but

it’s a good idea to test it for yourself. Learn by doing. Rush in. Write some code. It

almost certainly won’t work the first time, but you’ll have learned something in

the process. Try again with a different approach and you’ll come up with

something that does work.

There’s no way to design a program until you’re aware of the problems you’re

likely to encounter and the limitations of the tools available to you.

Okay, Design Isn’t All Bad

To prevent a wave of hate mail from other programmers, I’m going to conclude

this section by saying that, for professional programmers, spending time up front

designing the code before building it is vital. However, professionals are writing

code they may need to work with for years or decades to come. The code they

write needs to be written in such a way that it’s extensible and easy for others to

follow.

During this book, I’ll get you to think about the structure of your code and how to

write code that’s reusable and extensible. But you’re not here to write code that

will be used in real projects and will need to be maintained for years to come.

You’re here to learn. Go and find all those hippos. You’ll learn more from making

mistakes than you will from code that works right away.

The time you spend planning your code should be proportional to your

programming ability. If you’re just starting out, as long as you have a broad

understanding of what you want the program to do, jump in and start writing

code until it does what you want. You can get stuck and try a different approach

without feeling like you’re doing it wrong because it’s going against that design

you spent hours working on. What I said above about the Concorde fallacy

applies here as well.

xxii PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

For the first few chapters, at least, just dive in. Run your code, see if it works. Try

solving some of the problems I set before I give you the solutions. You’ll learn

more by discovering the solutions yourself than blindly typing in the code I give

you.

As your knowledge grows, you’ll have a firmer understanding of what tools are

available and the way problems need to be broken up. Once you reach that level,

you can start planning things out in more detail before writing your code.

Conventions Used

You’ll notice that we’ve used certain typographic and layout styles throughout

this book to signify different types of information. Look out for the following

items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at

➥ school.</p>

If the code is to be found in the book’s code archive, the name of the example will

appear at the top of the program listing, like this:

0-1. Layout

.footer {

background-color: #CCC;

border-top: 1px solid #333;

}

Some lines of code should be entered on one line, but we’ve had to wrap them

because of page constraints. An ➥ indicates a line break that exists for formatting

Preface xxiii

www.EBooksWorld.ir

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-design-real

➥ -user-testing/?responsive1");

Tips, Notes, and Warnings

Supplementary Materials

The book's code archive, which contains the code files used throughout the

book. Instructions on how to use the sample code are contained in Appendix

A.

https://www.sitepoint.com/community/ are SitePoint’s forums, for help on

any tricky web problems.

books@sitepoint.com is our email address, should you need to contact us to

report a problem, or for any other reason.

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

xxiv PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

https://github.com/spbooks/phpmysql6
https://github.com/spbooks/phpmysql6
https://www.sitepoint.com/community/

1Chapter

Installation

In this book, I’ll guide you as you take your first steps beyond the static world of

building web pages with the purely client-side technologies of HTML, CSS, and

JavaScript. Together, we’ll explore the world of building websites, and discover

the dizzying array of dynamic tools, concepts, and possibilities they open up.

Whatever you do, don’t look down!

Okay, maybe you should look down. After all, that’s where the rest of this book is.

But remember, you were warned!

Before you build your first dynamic website, you must gather together the tools

you’ll need for the job. Like baking a cake, you’ll need the ingredients before you

can start following the recipe. In this chapter, I’ll show you how to download and

set up the software packages required.

Installation 1

www.EBooksWorld.ir

If you’re used to building websites with HTML, CSS, and perhaps even a

smattering of JavaScript, you’re probably familiar with uploading the files that

make up your site to a certain location. It might be a web hosting service you’ve

paid for, web space provided by your Internet service provider (ISP), or maybe a

web server set up by the IT department of the company you work for. In any case,

once you copy your files to any of these destinations, a software program called a

web server is able to find and serve up copies of those files whenever they’re

requested by a web browser like Microsoft Edge, Internet Explorer, Google

Chrome, Safari, or Firefox. Common web server software programs you may have

heard of include Apache HTTP Server (Apache), NGINX and Internet Information

Services (IIS).

PHP is a server-side scripting language. You can think of it as a plugin for your

web server that enables it to do more than just send exact copies of the files

requested by web browsers. With PHP installed, your web server will be able to

run little programs (called PHP scripts) that can do tasks like retrieve up-to-the-

minute information from a database and use it to generate a web page on the fly,

before sending it to the browser that requested it. Much of this book will focus on

writing PHP scripts to do exactly that. PHP is completely free to download and

use.

For your PHP scripts to retrieve information from a database, you must first have

a database. That’s where MySQL comes in. MySQL is a relational database

management system, or RDBMS. We’ll discuss the exact role it plays and how it

works later, but briefly, it’s a software program that’s able to organize and manage

many pieces of information efficiently while keeping track of how all those pieces

of information are related to each other. MySQL also makes that information

really easy to access with server-side scripting languages such as PHP. And, like

PHP, it’s completely free for most uses.

The goal of this first chapter is to set you up with a web server equipped with

PHP and MySQL. I’ll provide step-by-step instructions that work on recent

versions of Windows, macOS and Linux, so no matter what flavor of computer

you’re using, the instructions you need should be right here.

2 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Your Own Web Server

Chances are, your current web host’s web server already has PHP and MySQL

installed—which is one of the reasons PHP and MySQL are so popular. If your

web host is so equipped, the good news is that you’ll be able to publish your first

website without having to shop for a web host that supports the right

technologies.

When developing static websites, you can simply load your HTML files directly

from your hard disk into your browser to see how they look. There’s no web

server software involved when you do this, which is fine, because web browsers

can read and understand HTML code all by themselves.

However, when it comes to dynamic websites built using PHP and MySQL, your

web browser needs some help. Web browsers are unable to understand PHP

scripts. Instead, PHP scripts contain instructions for a PHP-savvy web server to

execute in order to generate the HTML code that browsers can understand.

Even if you have an existing web host that supports PHP, you’re still going to

want to be able to run PHP scripts yourself without needing to use someone else’s

server. For this, you’ll need to set up your own web server. The word “server”

might make you think of a large, air-conditioned room filled with big computers

in racks. But don’t worry, you don’t need any fancy new hardware. Your laptop or

desktop will work just fine.

To run PHP scripts on your web host, you need to write them in your editor, open

your FTP or SSH client and upload them to the server. Only then can you see the

result in your browser by navigating to the URI of the file you created. If you

made a mistake and there’s an error, you’ll need to change the code, go back into

your FTP program, upload the file again and then reload the page. This is tedious,

and uses up precious time that you could be using to write code. By running a

server on your own PC, you’ll be able to save a file in your editor and view the

changes in your browser by simply refreshing the page—no file uploading

required. This is a real time saver, and one of the biggest (although not only!)

advantages of running a server on your PC—even if you have a perfectly good

web host already.

Installation 3

www.EBooksWorld.ir

So how do you get a web server running on your PC? There are three methods of

achieving this, each with its own advantages and disadvantages.

Server Setup 1: Manually Installing All the Software

Components

Apache is a web server, and like most software it comes with an installer that lets

you easily set it up on your PC. Without much effort, you can have it serve web

pages. However, there are hundreds of configuration options, and unless you

know what you’re doing, it can be time consuming and confusing to get it

working for developing PHP websites.

For our purposes of running PHP scripts, a web server alone is not enough. For

manual installation, you’ll also need to install PHP—which doesn’t have an

installer—and configure it. As with Apache, there are lots of options, and the

defaults are set up as if you’re running a live website. For developing code, this is

bad, as there are no errors shown. If you made a mistake, you’ll get a blank page

with no indication of what went wrong. Even a single character out of

place—such as a missing brace or semicolon—will give you a blank page, with no

indication of what caused the problem. To solve this, you’ll need to manually

configure the PHP installation and tweak the settings to show error messages and

enable other tools that make development a more pleasant task.

You’ll also need to configure Apache to talk with PHP, so that when someone

connects to the server and requests a file with a .php extension, the file is first

sent to PHP for processing.

For this book, you’ll also want MySQL, which means manually installing and

configuring that as well.

Apache, MySQL and PHP each have dozens of configuration options, and unless

you know exactly what you’re doing, they can be difficult to set up. Even if you’re

an expert, it will take at least an hour to get everything working!

Manual installation requires a significant amount of knowledge or research and is

beyond the scope of this book. Although being able to configure a server is a

useful skill, it doesn’t help you learn how to program using PHP—which is what

4 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

you’re really interested in if you’re reading this book.

This option is not for the faint hearted, and even for seasoned professionals it’s

very easy to miss some important settings. Luckily for us, we don’t need to worry

about setting up and configuring all the software individually.

Server Setup 2: Pre-packaged Installations

The problems with manual installations have been recognized by groups of

developers over the years, and to overcome them they’ve built pre-packaged

installations—a single installer that installs PHP, Apache, MySQL and other

relevant software, all pre-configured with appropriate settings for developers like

you. Some example packages are XAMPP (X, Apache, MySQL, PHP, Perl), WAMP

(Windows, Apache, MySQL, PHP) and LAMP (Linux, Apache, MySQL, PHP).

This is obviously a lot simpler than manually installing each piece of software,

and doesn’t require learning how to configure your server. It’s quick and easy and

a lot better than a manual installation, though there are still a couple of problems

you may encounter with this method:

1. Your web host is probably running Linux, but your PC probably isn’t.

Although Apache, MySQL and PHP work in Windows, Linux or macOS, there

are some big differences between the way the operating systems work. On

Windows, file names are not case-sensitive, meaning that FILE.PHP is the

same as file.php and fIlE.pHp. On your web host, this will almost certainly

not be the case! This causes frequent problems when a script working

perfectly on your Windows development server doesn’t work once it’s

uploaded, because files are being referenced in the code with the wrong case.

2. Apache and MySQL are servers, and they run in the background. Even when

you’re not developing software, they’ll be running, using up your computer’s

RAM and processing power.

3. Pre-packaged software is always slightly out of date. Although security fixes

aren’t a priority for a development computer (you shouldn’t be allowing

people to access it across the web!), it’s always useful for developers to stay on

the most recent versions of software to check for problems that might be

encountered when the software on your web host is updated. If your web host

Installation 5

www.EBooksWorld.ir

is using a newer version of PHP than your development server, this can cause

problems with features that have been changed or removed. Finally,

developers like to play with new features as they’re released. You won’t be

able to do this if you’re not using the latest versions!

Although pre-packaged installations are much better than installations, these

problems don’t make them ideal. Luckily, there’s an even better approach!

Server Setup 3: Virtual Servers

The third method of getting a server up and running is a virtual server. A virtual

server acts like a web server on a different computer. This computer can be

running any operating system, and you can connect to it from your PC as if it

were somewhere else in the world.

Virtualization software such as VMWare and VirtualBox is common. As a web

developer, you may be familiar with tools such as modern.ie, a helpful service

provided by Microsoft that lets you download virtual machines running various

versions of Windows, Microsoft Edge and Internet Explorer. If you want to see

what your website looks like in Internet Explorer 8 on Windows XP, you can

download the relevant virtual machine and run it in a Window on your Windows

10/macOS/Linux desktop without having to actually install and run Windows 7

with Internet Explorer 8 inside your existing Windows 10, Linux or MacOS

installation.

6 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://modern.ie/

1-2. indows 10 running inside Arch Linux

Software like VirtualBox allows you to run an operating system inside another

operating system. For testing Internet Explorer 8, you can run Windows 7 in a

virtual machine. However, for our purposes of running PHP scripts, this allows us

to do something a lot cooler: we can run a Linux web server with PHP, Apache

and MySQL installed on our Windows or macOS PC.

This can be used to allow you to run the exact same versions of PHP, MySQL and

Apache that are being used on your web host, on the exact same operating

system, which prevents any issues that may exist due to version differences or

differences in the operating systems being used.

One of the biggest advantages is that you can download pre-configured virtual

machines, like the Windows XP and Internet Explorer 8 virtual machine provided

by Microsoft, or a virtual machine that has PHP, Apache and MySQL installed

and configured to work together. This is like the pre-configured package but runs

on Linux as if it’s a real web server on your network.

The downside to all this is that you have to download an entire operating system

in order to run your code. That means more downloading, but in the era of 10

Mbit/s+ internet connections and terabyte hard drives, this isn’t really an issue

worth worrying about! Because this is a best-of-both-worlds approach, and has

Installation 7

www.EBooksWorld.ir

advantages over the other two methods, I’ll be showing you how to get a virtual

server up and running. It’s a lot easier than you might think!

Your Own Virtual Server

Before writing any PHP code and developing your website, you’ll need to install

several pieces of software to run a virtual server:

Git, which allows you to quickly and easily download other people’s code.

VirtualBox, the software that runs the virtual machines.

Vagrant, a tool that allows quick and easy configuration of virtual machines.

This works with VirtualBox to create your server.

Installation on Windows

Firstly, download and install the latest versions of the following software:

1. Git

2. VirtualBox

3. Vagrant

Once you’ve installed all the software, use your Start menu to open a newly

installed program called “Git Bash” and proceed to the Getting Started with

Vagrant section below. All the commands given should be typed into the Git Bash

program, not Windows Command Prompt.

Installation on macOS

Firstly, download and install the latest versions of the following software:

1. Git

2. VirtualBox

3. Vagrant

Once you’ve installed all the software, open up the Terminal program and

proceed to the Getting Started with Vagrant section below.

8 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://www.git-scm.org/
https://www.virtualbox.org/
http://www.vagrantup.com/
http://www.git-scm.org/
https://www.virtualbox.org/
http://www.vagrantup.com/

Installation on Linux

Linux makes installing software very simple. On most distributions, this can be

done via your package manager.

Debian/Ubuntu:

sudo apt-get install git dkms virtualbox virtualbox-dkms

➥ vagrant

Fedora/Red Hat:

sudo dnf install git VirtualBox vagrant vagrant-libvirt

Arch Linux:

sudo pacman -S git virtualbox vagrant

Once you’ve installed all the software, open up your favorite terminal program

and proceed with the following steps below.

Getting Started with Vagrant

Now that you have all the software installed, it’s time to download a virtual

server. From here on, the instructions are the same whether you’re using

Windows, macOS or Linux. For a full tutorial on doing this, see the SitePoint

article “Quick Tip: Get a Homestead Vagrant VM Up and Running”.

We’ll be using a pre-built virtual machine (or “box”) called Homestead Improved.

This contains PHP, MySQL and NGINX already configured for development

purposes. To download it, from your terminal prompt firstly navigate into the

directory you wish to store your website’s files in, and then run these commands:

Installation 9

www.EBooksWorld.ir

http://www.sitepoint.com/quick-tip-get-homestead-vagrant-vm-running/

git clone https://github.com/swader/homestead_improved

➥ my_project
cd my_project; mkdir -p Project/public

bin/folderfix.sh

After you’ve run the commands, several files will be created inside your project

directory. These files contain instructions for creating and configuring the virtual

server. Finally, you just need to start the server using this single command:

vagrant up

The server will start and you’ll see something like this:

Using the Command Prompt to Navigate

If you don’t know how to navigate around using the command prompt, you use the

cd command (short for change directory). Git Bash uses Unix style paths, so

C:\Users\Tom\Desktop becomes /c/Users/Tom/Desktop. If you want to store

your files inside your Documents directory, e.g. Documents/Website, you can

navigate to it using cd /c/Users/[Account Name]/Documents/Website.

If you have any spaces in the directory names, simply surround the entire path with

quotation marks, e.g. cd "/c/Users/[Account Name]/Documents/My

Website".

Running the Command in the Right Place

You must run the vagrant up command from the directory that stores the files

that were downloaded via the git clone command earlier. If you type ls, you

should see Vagrantfile listed. If you don’t see it, you’ll need to navigate to the

correct directory using the cd command.

10 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

1-3. Running vagrant up

The first time vagrant runs, it will take a few minutes to load, as it requires

downloading quite a large file. Don’t worry, it won’t take this long each time you

want to start your server. In future, all the downloading and initial configuration

is done.

Unlike using a manual NGINX/PHP/MySQL installation directly on your PC, the

server is only started when you want it to be, by running vagrant up. You can

If the vagrant up Command Hangs

If the vagrant up command hangs on the line Connection timed out.

Retrying… for more than a few minutes, it’s likely your PC isn’t configured for

virtualization, which it needs to be for running virtual machines. To fix this, you’ll

need to boot into your PC’s BIOS and enable a technology called VT-x (if you have

an Intel processor) or AMD-V (for AMD processors). To do this, refer to your

computer’s manual, or use Google to find instructions for getting into the BIOS on

your PC. This setting is sometimes called virtualization technology, VT-x, SVM or

hardware virtualization, depending on the make of your PC.

Installation 11

www.EBooksWorld.ir

stop the server at any time, by running vagrant halt, and boot it again using

vagrant up when you need it.

You can also use vagrant suspend, which is like shutting the lid on your laptop.

It pauses the virtual machine so it doesn’t need to reboot next time you run

vagrant up. Unless you’re low on disk space, suspend is preferable, as the virtual

machine will start up considerably faster.

One of the directories that was created is called Project. Open this directory and

the public directory inside it. This is where you’ll store your PHP scripts, HMTL

files, CSS files and images. Any files placed inside the public directory will be

accessible on your virtual server.

Using your favorite text editor, create a file called index.html that contains the

following code:

<!DOCTYPE html>

<html>

<body>

<h1>Hello World!</h1>

</body>

</html>

You can now view your web page on the server. The server acts like a computer

on your local network and uses the IP address 192.168.10.10. If you open your

browser and navigate to http://192.168.10.10/, you should see your Hello

World test page. If you can see the page, it means your server is running and

you’ve written your file to the right directory.

The numeric IP address may look at little strange. Usually, when you access to a

website, you connect to something like http://www.sitepoint.com/ or

http://www.google.com. However, behind the scenes all websites use an IP

address. If you type http://216.58.201.46/ into your browser, you’ll see the

Google home page.

It would be very hard to remember the IP address of every website you wanted to

visit. (I struggle with my PIN!) So we typically buy a domain name and associate

12 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

it with an IP address. When you type sitepoint.com into your web browser, the

browser looks up the corresponding IP address and actually connects to that

behind the scenes. You can think of it a bit like a phone book. Rather than

remembering someone’s phone number, you can look through a contact list and

find them by a more easily recognizable name. This process happens for every

website you visit, and every website has an IP address similar to 129.168.10.10.1

It would be possible to buy a domain name and associate it with 192.168.10.10,

but for the purpose of this book we’ll just stick to the IP address, as we won’t

need to type it often.

Linux Issues

If you’re using Linux and either the vagrant up command isn’t working or you’re

unable to connect to the web server on http://192.168.10.10/, see Appendix

B.

Text Editors

Text editors provided by your operating system, such as Notepad or TextEdit, aren’t

really suitable for editing HTML and PHP scripts. However, there are a number of

solid text editors with rich support for editing PHP scripts that you can download

for free. Here are a few that work on Windows, macOS, and Linux:

Atom

Sublime Text

Brackets

These are all very similar, and for the purposes of this book, any of them is a good

choice and will make your life as a developer a lot simpler than Notepad or

TextEdit.

1. Now, or in the near future (depending on your ISP), you might start seeing IP addresses

in the format 2001:0db8:85a3:0000:0000:8a2e:0370:7334. This is an IPv6 address,

which works in the exact same way as the notation shown in this chapter. The problem

with IP addresses in the format 0.0.0.0 (IPv4) is that there are only around 4 billion

possible addresses. That sounds like a lot, but every single website, phone or computer

connected to the Internet needs a unique IP address … and we’ve pretty much run out of

them! The new IPv6 addresses will keep us going for quite a while longer.

Installation 13

www.EBooksWorld.ir

http://atom.io/
http://www.sublimetext.com/
http://brackets.io/

In this chapter, you’ve learned how to set up a web server with Homestead

Improved, and how to host an HTML file on the server. I’ve only covered the

basics in order to quickly get to the meat and bones of this book: actually

programming in PHP. However, having a good development workflow as a PHP

developer is a skill in its own right. For more information on Homestead

Improved and PHP workflows, see Jump Start PHP Environment, by Bruno

Škvorc. For our purposes, however, the server is up and running, and you’re

ready to write your first PHP script.

14 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

https://www.sitepoint.com/premium/books/jump-start-php-environment

2Chapter

Introducing PHP

Now that you have your virtual server up and running, it’s time to write your first

PHP script. PHP is a server-side language. This concept may be a little difficult to

grasp, especially if you’ve only ever designed websites using client-side

languages like HTML, CSS, and JavaScript.

A server-side language is similar to JavaScript in that it allows you to embed little

programs (scripts) into the HTML code of a web page. When executed, these

programs give you greater control over what appears in the browser window than

HTML alone can provide. The key difference between JavaScript and PHP is the

stage of loading the web page at which these embedded programs are executed.

Client-side languages like JavaScript are read and executed by the web browser

after downloading the web page (embedded programs and all) from the web

server. In contrast, server-side languages like PHP are run by the web server,

Introducing PHP 15

www.EBooksWorld.ir

before sending the web page to the browser. Whereas client-side languages give

you control over how a page behaves once it’s displayed by the browser, server-

side languages let you generate customized pages on the fly before they’re even

sent to the browser.

Once the web server has executed the PHP code embedded in a web page, the

result takes the place of the PHP code in the page. All the browser sees is

standard HTML code when it receives the page, hence the name “server-side

language.” Let’s look at simple example of some PHP that generates a random

number between 1 and 10 and then displays it on the screen:

2-1. PHP-RandomNumber

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Random Number</title>

</head>

<body>

<p>Generating a random number between 1 and 10:

<?php

echo rand(1, 10);

?>

</p>

</body>

</html>

Most of this is plain HTML. Only the line between <?php and ?> is PHP code.

<?php marks the start of an embedded PHP script and ?> marks its end. The web

server is asked to interpret everything between these two delimiters and convert

it to regular HTML code before it sends the web page to the requesting browser. If

you right-click inside your browser and choose View Source (the text may be

different depending on the browser you’re using) you can see that the browser is

presented with the following:

16 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Random Number</title>

</head>

<body>

<p>Generating a random number between 1 and 10:

5

</p>

</body>

</html>

Notice that all signs of the PHP code have disappeared. In its place the output of

the script has appeared, and it looks just like standard HTML. This example

demonstrates several advantages of server-side scripting …

No browser compatibility issues. PHP scripts are interpreted by the web

server alone, so there’s no need to worry about whether the language features

you’re using are supported by the visitor’s browser.

Access to server-side resources. In the example above, we placed a random

number generated by the web server into the web page. If we had inserted the

number using JavaScript, the number would be generated in the browser and

someone could potentially amend the code to insert a specific number.

Granted, there are more impressive examples of the exploitation of server-side

resources, such as inserting content pulled out of a MySQL database.

Reduced load on the client. JavaScript can delay the display of a web page

significantly (especially on mobile devices!) as the browser must run the script

before it can display the web page. With server-side code, this burden is

passed to the web server, which you can make as beefy as your application

requires (and your wallet can afford).

Choice. When writing code that’s run in the browser, the browser has to

understand how to run the code given to it. All modern browsers understand

HTML, CSS and JavaScript. To write some code that’s run in the browser, you

must use one of these languages. By running code on the server that generates

HTML, you have a choice of many languages—one of which is PHP.

Introducing PHP 17

www.EBooksWorld.ir

Basic Syntax and Statements

PHP syntax will be very familiar to anyone with an understanding of JavaScript,

C, C++, C#, Objective-C, Java, Perl, or any other C-derived language. But if these

languages are unfamiliar to you, or if you’re new to programming in general,

there’s no need to worry about it.

A PHP script consists of a series of commands, or statements. Each statement is

an instruction that must be followed by the web server before it can proceed to

the next instruction. PHP statements, like those in the aforementioned languages,

are always terminated by a semicolon (;).

This is a typical PHP statement:

echo 'This is a test!';

This is an echo statement, which is used to generate content (usually HTML

code) to send to the browser. An echo statement simply takes the text it’s given

and inserts it into the page’s HTML code at the position of the PHP script where it

was contained.

In this case, we’ve supplied a string of text to be output: This is a

test!. Notice that the string of text contains HTML tags

(and), which is perfectly acceptable.

So, if we take this statement and put it into a complete web page, here’s the

resulting code:

18 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

2-2. PHP-Echo

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Test page</title>

</head>

<body>

<p><?php echo 'This is a

➥ test!'; ?></p>
</body>

</html>

If you place this file on your web server and then request it using a web browser,

your browser will receive this HTML code:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Test page</title>

</head>

<body>

<p>This is a

➥ test!</p>
</body>

</html>

The random.php example we looked at earlier contained a slightly more complex

echo statement:

echo rand(1, 10);

You’ll notice that, in the first example, PHP is given some text to print directly,

and in the second, PHP is given an instruction to follow. PHP tries to read

Introducing PHP 19

www.EBooksWorld.ir

anything that exists outside quotes as an instruction it must follow. Anything

inside quotes is treated as a string, which means PHP doesn’t process it at all but

just passes it to the command you called. So the following code will pass the

string This is a test! directly to the echo command:

echo 'This is a test!';

A string is signified using a start quote and an end quote. PHP will see the first '

as the start of the string and find the next ' and use that as the end of the string.

In contrast, the following code will first run the built-in function rand to generate

a random number and then pass the result to the echo command:

echo rand(1, 10);

You can think of built-in functions as tasks that PHP knows how to do without

you needing to spell out the details. PHP has many built-in functions that let you

do everything, from sending email to working with information stored in various

types of databases.

PHP won’t try to run anything that’s inside a string. The following code won’t

have the result you may be expecting:

echo 'rand(1, 10)';

Instead of running the inbuilt function rand, PHP will see it as a string, and

rather than printing out a random number, it will actually send the text rand(1,

10) to the browser, which probably isn’t what you wanted to do. It’s important to

understand the difference between a string and code. PHP will see any text

outside quotes as a series of commands it should follow. Anything inside quotes

is a string and is data that PHP will work with.

PHP doesn’t try to understand strings. They can contain any characters in any

order. But code—which is essentially a series of instructions—must follow a rigid

20 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

structure for a computer to understand it.

When you invoke a function in PHP—that is, ask it to do its job—you’re said to

be calling that function. Most functions return a value when they’re called; PHP

then behaves as if you’d actually just typed that returned value in your code

instead. In the echo 'rand(1, 10)'; example, our echo statement contains a call

to the rand function, which returns a random number as a string of text. The echo

statement then outputs the value returned by the function call.

Every function in PHP can have one or more arguments that allow you to make

Syntax Highlighting

Using an editor with syntax highlighting makes it easy to quickly see if something

is a string or code. Strings will be shown in a different color from code that needs to

be processed.

Quotes

PHP supports both single quotes ' and double quotes " to encase strings. For most

purposes, they’re interchangeable. PHP developers tend to favor single quotes,

because we deal with HTML code a lot, which tends to contain a lot of double

quotes. For example:

echo 'Click

➥ here';

If double quotes were used here, we’d need to tell PHP that the quote after href= is

not the end of the string by placing a \ before it (known as an escape character) and

do the same with any quotes we actually want to send to the browser as part of the

HTML:

echo "Click

➥ here";

For this reason, PHP developers use single quotes, although there are some

differences between the two quotes. For our purposes, they are effectively

interchangeable.

Introducing PHP 21

www.EBooksWorld.ir

the function behave in a slightly different way. The rand function takes two

arguments: the minimum random number and the maximum. By changing the

values that are passed to the function, you’re able to change the way it works. For

example, if you wanted a random number between 1 and 50, you could use the

code:

echo rand(1, 50);

You may wonder why we need to surround the arguments with parentheses ((1,

50)). The parentheses serve two purposes. First, they indicate that rand is a

function that you want to call. Second, they mark the beginning and end of a list

of arguments—PHP statements that you wish to provide—in order to tell the

function what you want it to do. In the case of the rand function, you need to

provide a minimum and a maximum value. Those values are separated by a

comma.

Later on, we’ll look at functions that take different kinds of arguments. We’ll also

consider functions that take no arguments at all. These functions will still need

the parentheses, even though there will be nothing to type between them.

Variables, Operators, and Comments

Variables

Variables in PHP are identical to variables in most other programming languages.

For the uninitiated, a variable can be thought of as a name given to an imaginary

box into which any value may be placed. The following statement creates a

variable called $testVariable (all variable names in PHP begin with a dollar

sign) and assigns it a value of 3:

$testVariable = 3;

PHP is a loosely typed language. This means that a single variable may contain

any type of data—be it a number, a string of text, or some other kind of

22 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

value—and may store different types of values over its lifetime. The following

statement—if you were to type it after the aforementioned statement—assigns a

new value to the existing $testVariable. Where it used to contain a number, it

now contains a string of text:

$testVariable = 'Three';

Operators

The equals sign we used in the last two statements is called the assignment

operator, as it’s used to assign values to variables. Other operators may be used to

perform various mathematical operations on values:

$testVariable = 1 + 1; // assigns a value of 2

$testVariable = 1 - 1; // assigns a value of 0

$testVariable = 2 * 2; // assigns a value of 4

$testVariable = 2 / 2; // assigns a value of 1

From these examples, you can probably tell that + is the addition operator, - is

the subtraction operator, * is the multiplication operator and / is the division

operator. These are all called arithmetic operators, because they perform

arithmetic on numbers.

Comments

Each of the arithmetic lines above ends with a comment. Comments enable you to

describe what your code is doing. They insert explanatory text into your

code—text that the PHP interpreter will ignore. Comments begin with // and they

finish at the end of the same line. If you want a comment to span several lines,

start it with /*, and end it with */. The PHP interpreter will ignore everything

between these two delimiters. I’ll be using comments throughout the rest of this

book to help explain some of the code I present.

Returning to the operators, one that sticks strings of text together is called the

string concatenation operator:

Introducing PHP 23

www.EBooksWorld.ir

$testVariable = 'Hi ' . 'there!'; // Assigns a value of 'Hi

➥ there!'

Variables may be used almost anywhere that you use a value. Consider this series

of statements:

$var1 = 'PHP'; // assigns a value of 'PHP' to $var1

$var2 = 5; // assigns a value of 5 to $var2

$var3 = $var2 + 1; // assigns a value of 6 to $var3

$var2 = $var1; // assigns a value of 'PHP' to $var2

$var4 = rand(1, 12); // assigns a value to $var4 using

➥ the rand() function
echo $var1; // outputs 'PHP'

echo $var2; // outputs 'PHP'

echo $var3; // outputs '6'

echo $var4; // outputs the random number

➥ generated above
echo $var1 . ' rules!'; // outputs 'PHP rules!'

echo '$var1 rules!'; // outputs '$var1 rules!'

echo "$var1 rules!" // outputs 'PHP rules!'

Note the last two lines in particular: if you place a variable inside single quotes, it

will print the name rather than the contents of the variable. In contrast, when

using double quotes, the variable in the string is replaced with the variable’s

contents.

Placing variables inside double quotes works in simple situations, but for most of

this book it won’t be usable, as we won’t be using such simple code. So it’s a good

idea to get used to the practice of concatenation (shown in the third from last

line).

Control Structures

The examples of PHP code we’ve seen so far have been either one-statement

scripts that output a string of text to the web page, or a series of statements that

24 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

were to be executed one after the other in order. If you’ve ever written programs

in other languages (such as JavaScript, Objective-C, Ruby, or Python), you already

know that practical programs are rarely so simple.

PHP, just like any other programming language, provides facilities that enable you

to affect the flow of control. That is, the language contains special statements that

you can use to deviate from the one-after-another execution order that has

dominated our examples so far. Such statements are called control structures.

Don’t understand? Don’t worry! A few examples will illustrate it perfectly.

If Statements

The most basic, and most often used, control structure is the if statement. The

flow of a program through an if statement can be visualized like this:

Introducing PHP 25

www.EBooksWorld.ir

2-3. The logical flow of an if statement

Here’s what an if statement looks like in PHP code:

if (condition) {

⋮ conditional code to be executed if condition is true
}

This control structure lets us tell PHP to execute a set of statements only if some

condition is met.

For example, we might want to create a game that mimics a dice roll and in

26 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

which you have to roll a six to win. The dice roll can be modeled using the

rand() function we used earlier and setting the minimum and maximum from 1

to 6:

$roll = rand(1, 6);

echo 'You rolled a ' . $roll;

To print out a message if the player rolls a six and wins, you can use an if

statement:

2-4. PHP-DiceRoll

$roll = rand(1, 6);

echo 'You rolled a ' . $roll;

if ($roll == 6) {

echo 'You win!';

}

The == used in the condition above is the equals operator, which is used to

compare two values to see whether they’re equal. A single equals = is used for

assignment and cannot be used for comparison.

The if statement uses braces { and } to surround the code you want to run when

the condition is met. You can place as many lines of code as you like between the

braces and the code will only be run when the condition is met. Any code placed

after the closing brace (}) will be run all the time:

$roll = rand(1, 6);

echo 'You rolled a ' . $roll;

if ($roll == 6) {

echo 'You win!'; // This line will only be printed if they

➥ rolled a 6

Introducing PHP 27

www.EBooksWorld.ir

}

echo 'Thanks for playing'; // This line will always be

➥ printed

If you run diceroll.php, you’ll see the random number being generated, and if

you run it until you win, you’ll see this in the browser:

You rolled a 6You win!Thanks for playing

This isn’t very pretty, but because PHP outputs HTML you can add some

paragraph tags in order to format the output:

Use the Double-Equals

Remember to type the double-equals (==). A common mistake among beginning

PHP programmers is to type a condition like this with a single equals sign:

if ($roll = 6) // Missing equals sign!

This condition is using the assignment operator (=) instead of the equal operator

(==). Consequently, instead of comparing the value of $roll to the number 6, it

will actually set the value of $roll to 6. Oops!

To make matters worse, the if statement will use this assignment operation as a

condition, which it will consider to be true, so the conditional code within the if

statement will always be executed, regardless of what the original value of $roll

happened to be.

28 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

2-5. example.css

$roll = rand(1, 6);

echo '<p>You rolled a ' . $roll . '</p>';

if ($roll == 6) {

echo '<p>You win!</p>';

}

echo '<p>Thanks for playing</p>';

If you run the updated diceroll-html.php page, you’ll see that it now prints this

in the browser:

You rolled a 6

You win!

Thanks for playing

This is much more user friendly. To make the game itself more user friendly, you

might want to display a different message to people who didn’t roll a 6 and didn’t

win. This can be done with an else statement. The else statement must follow

an if, and will be run if the condition is not met:

Introducing PHP 29

www.EBooksWorld.ir

2-6. PHP-DiceRoll-Else

$roll = rand(1, 6);

echo '<p>You rolled a ' . $roll . '</p>';

if ($roll == 6) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn\'t win, better luck next

➥ time!</p>';
}

echo '<p>Thanks for playing</p>';

With an else statement one (and only one!) of the two blocks of code is

guaranteed to run. Either the code in the if block will run if the condition is met,

or the code in the else block will run if it isn’t.

Conditions can be more complex than a single check for equality. An if

statement can contain more than one condition. For example, imagine if the game

was adjusted so that both 5 and 6 were winning numbers. The if statement could

be changed to the following:

Escaping the Quote

Because the word didn't contains a single quote, it needs to be escaped. By

preceding the single quote with a backslash (\), it tells PHP not to treat the ' in

didn't as the end of the string.

30 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

2-7. PHP-DiceRoll-Or

if ($roll == 6 || $roll == 5) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn\'t win, better luck next

➥ time!</p>';
}

The double pipe (||) operator means “or”. The condition above is now met if

either expression evaluates to true. This can be read as “If they rolled a 6 or they

rolled a 5”.

However, this can be expressed in an even better way. if statements aren’t

limited to using the equals (==) operator. They can also utilize the mathematical

greater than (>) and less than (<) operators. The if statement above could also be

done with a single expression:

2-8. PHP-DiceRoll-Greater

if ($roll > 4) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn\'t win, better luck next

➥ time!</p>';
}

$roll > 4 will evaluate to true if the value stored in the $roll variable is greater

than 4, allowing us to have 5 and 6 as winning numbers with a single condition.

If we wanted 4, 5 and 6 as winning numbers, the condition could be changed to

$roll > 3.

Like the or expression (||), there’s another expression called and that’s is only

met when both conditions evaluate to true. We could expand the game to include

two dice and require players to roll two sixes to win:

Introducing PHP 31

www.EBooksWorld.ir

2-9. PHP-DiceRoll-TwoDice

$roll1 = rand(1, 6);

$roll2 = rand(1, 6);

echo '<p>You rolled a ' . $roll1 . ' and a ' . $roll2

. '</p>';

if ($roll1 == 6 && $roll2 == 6) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn\'t win, better luck next

time!</p>';

}

echo '<p>Thanks for playing</p>';

The expression if ($roll1 == 6 && $roll2 == 6) will only evaluate to true if

$roll1 == 6 is true and $roll2 == 6. This means that the player has to roll a 6

on both dice to win the game. If we changed the and (&&) to an or (||)—that is,

if ($roll1 == 6 || $roll2 == 6)—the player would win if they rolled a 6 on

either dice.

We’ll look at more complicated conditions as the need arises. For the time being,

a general familiarity with if … else statements is sufficient.

or and and

PHP also allows the use of the or in place of || and and in place of &&. For

example:

if ($roll == 6 or $roll == 5) { … }

There are some minor differences between the way or and || work that can lead to

unexpected behavior. Generally speaking, avoiding the “spelled out” operators and

sticking to the double pipe (||) and double ampersand (&&) will help prevent

confusing bugs.

32 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Loops

Another type of control structure that’s very useful is a loop. Loops allow

repeating the same lines of code over and over. Two important kind of loops are

for loops and while loops. Let’s look at how they work.

For Loops

The for loop is used when you know up front how many times you need to run

the same code. The image below shows the flow of a for loop:

Introducing PHP 33

www.EBooksWorld.ir

2-10. The logical flow of a for loop

Here’s what it looks like in code:

for (declare counter; condition; increment counter) {

⋮ statement(s) to execute repeatedly as long as condition is
➥ true
}

The declare counterdeclare counter statement is executed once at the start of

the loop. The condition statement is checked each time through the loop before

34 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

the statements in the body are executed. The increment counter statement is

executed each time through the loop after the statements in the body.

To count to 10 using a for loop, you can use the following code:

for ($count = 1; $count <= 10; $count++) {

echo $count . ' ';

}

This looks quite scary, as there’s a lot going on, but let me break it down for you:

$count = 1;: this sets the counters initial value to 1.

$count <= 10;: this is the condition. It can be read of as “keep looping while

$count is less than or equal to 10”.

$count++: this says “add 1 to the counter each time”. It’s identical to $count

= $count + 1.

echo $count . ' ';: this prints the value of the counter followed by a space.

The condition in this example uses the operator <=. This acts similarly to the <

less than operator, but evaluates to true if the number being compared is less than

or equal to the second. Other available operators include >= (greater than or

equal) and != (not equal).

As you can see, the statements that initialize and increment the $count variable

are placed with the condition on the first line of the for loop. Although, at first

glance, the code seems a little more difficult to read, putting all the code that

deals with controlling the loop in the same place actually makes it easier to

understand once you’re used to the syntax. Many of the examples in this book

will use for loops, so you’ll have plenty of opportunities to practice reading

them.

You can change each part of the for loop to have different results. For example,

here’s how to add 3 each time you can change the for loop:

Introducing PHP 35

www.EBooksWorld.ir

2-11. PHP-For

for ($count = 1; $count <= 10; $count = $count + 3) {

echo $count . ' ';

}

This will result in the following:

1 4 7 10

for loops can be combined with other statements such as if statements to

perform specific tasks on each iteration. For example, rather than refreshing the

page on our dice game each time, we might want to roll the dice 10 times and

print the results:

2-12. PHP-DiceRoll-ManyDice

for ($count = 1; $count <= 10; $count++) {

$roll = rand(1, 6);

echo '<p>You rolled a ' . $roll . '</p>';

if ($roll == 6) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn\'t win, better

luck next time!</p>';

}

}

echo '<p>Thanks for playing</p>';

This lets us roll the dice 10 times without needing to refresh the page each time.

Using a loop is functionally identical to copy/pasting the code 10 times, and will

produce the exact same outcome as the following:

36 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$roll = rand(1, 6);

echo '<p>You rolled a ' . $roll . '</p>';

if ($roll == 6) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn't win, better luck

next time!</p>';

}

$roll = rand(1, 6);

echo '<p>You rolled a ' . $roll . '</p>';

if ($roll == 6) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn't win, better luck next

time!</p>';

}

$roll = rand(1, 6);

echo '<p>You rolled a ' . $roll . '</p>';

if ($roll == 6) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn't win, better luck next

➥ time!</p>';
}

// and so on …

The computer doesn’t care which method you use, whether you copy/paste or

use a loop. It will just run the code. However, as a developer, you’ll quickly

realize that a loop is the better choice. If you wanted to update the code to also

allow 5 as a winning number, you’d need to update the condition in 10 different

Introducing PHP 37

www.EBooksWorld.ir

places. Using a loop, you can change the code in one place and it will affect each

iteration of the loop. If you ever find yourself copy/pasting code, there’s always a

better way of achieving what you’re trying to do.

While Loops

Another often-used PHP control structure is the while loop. Where the if … else

statement allows us to choose whether or not to execute a set of statements

depending on some condition, the while loop allows us to use a condition to

determine how many times we’ll execute a set of statements repeatedly.

The following image shows how a while loop operates:

38 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

2-13. The logical flow of a while loop

Here’s what a while loop looks like in code:

while (condition) {

⋮ statement(s) to execute repeatedly as long as condition is
➥ true
}

The while loop works very similarly to an if statement. The difference arises

when the condition is true and the statement(s) are executed. Instead of

continuing the execution with the statement that follows the closing brace (}), the

Introducing PHP 39

www.EBooksWorld.ir

condition is checked again. If the condition is still true, the statement(s) are

executed a second time, and a third, and will continue to be executed as long as

the condition remains true. The first time the condition evaluates false (whether

it’s the first time it’s checked, or the 101st), the execution jumps immediately to

the statement that follows the while loop, after the closing brace.

Loops like these come in handy whenever you’re working with long lists of items,

but for now I’ll illustrate with a trivial example, counting to ten:

2-14. PHP-WhileCount

while ($count <= 10) {

echo $count . ' ';

++$count;

}

This works in exactly the same way as a for loop, and you’ll notice a lot of the

same statements in different places. This code may look a bit frightening, I know,

but let me talk you through it line by line:

$count = 1;. The first line creates a variable called $count and assigns it a

value of 1.

while ($count <= 10). The second line is the start of a while loop, the

condition being that the value of $count is less than or equal (<=) to 10.

{. The opening brace marks the beginning of the block of conditional code for

the while loop. This conditional code is often called the body of the loop, and

is executed over and over again, as long as the condition holds true.

echo $count . ' ';. This line simply outputs the value of $count, followed

by a space.

++$count;. The fourth line adds one to the value of $count. ++$count is a

shortcut for $count = $count + 1. $count++ will also work here! The

position of the ++ can be important, but in this case it doesn’t matter. If the ++

is before the variable name, the counter is incremented before the value is

read. When $count is zero, the code echo ++$count; will print 1, whereas

40 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

echo $count++; will print 0. Be careful when using ++, as putting it in the

wrong place can cause bugs.

}. The closing brace marks the end of the while loop’s body.

So here’s what happens when this code is executed. The first time the condition

is checked, the value of $count is 1, so the condition is definitely true. The value

of $count (1) is output, and $count is given a new value of 2. The condition is

still true the second time it’s checked, so the value (2) is output and a new value

(3) is assigned. This process continues, outputting the values 3, 4, 5, 6, 7, 8, 9, and

10. Finally, $count is given a value of 11, and the condition is found to be false,

which ends the loop.

The net result of the code is shown in the following image:

2-15. The net result of the while loop code

While loops aren’t generally used for simple counters like this, which is normally

the job of the for loop. Although you can create a counter with a while loop,

usually they’re used to keep running code until something happens. For example,

we might want to keep rolling the dice until we get a six. There’s no way to know

how many dice rolls will be needed when we write the code: it could take one

roll or hundreds to get a six. So you can place the dice roll in a while loop:

Introducing PHP 41

www.EBooksWorld.ir

2-16. PHP-DiceRoll-While

$roll = 0;

while ($roll != 6) {

$roll = rand(1, 6);

echo '<p>You rolled a ' . $roll . '</p>';

if ($roll == 6) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn\'t win, better luck

next time!</p>';

}

}

This will keep rolling the dice until a 6 is rolled. Each time you run the code it

will take a different number of rolls before you win.

The while statement uses the condition $roll != 6. In order for the while loop

to be run the first time, the $roll variable must be set to a value for the initial

comparison. That’s the purpose of the $roll = 0; line above the while loop. By

setting the value to zero initially, when the while loop runs the first time, while

($roll != 6) will evaluate to true (because $roll is equal to zero, not 6!) and

the loop will start. Without this line, you’d get an error, because the $roll

variable hadn’t been set to anything before it was used.

There’s a variant of the while loop called do … while, which is useful in these

kinds of cases. It allows you to run some code without a condition and then run it

again if the code isn’t set. This takes the following structure:

do {

statement(s) to execute and then repeat if the condition is

➥ true
}

while (condition);

42 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

For the dice roll example above, this allows you to ignore the first line:

2-17. PHP-DiceRoll-DoWhile

do {

$roll = rand(1, 6);

echo '<p>You rolled a ' . $roll . '</p>';

if ($roll == 6) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn\'t win, better luck next

➥ time!</p>';
}

}

while ($roll != 6);

This time, because the condition is at the bottom, by the time the while statement

is run, the $roll variable has been given a value, so you don’t need to give it an

initial value of zero to force the loop to run the first time.

Introducing PHP 43

www.EBooksWorld.ir

PSR-2

PHP doesn't mind how you format your code and whitespace is ignored. You could

express the previous example as:

do {

$roll = rand(

1,

6);

echo '

You rolled a ' .

$roll . '

';

if (

$roll == 6

)

{

echo '

You win!

';

}

else

{

echo '

Sorry, you didn\'t win, better luck next

time!

';

}

}

while ($roll != 6);

The script will execute in the exact same way. Different programmers have different

preferred styles, such as using tabs or spaces for indentation, or placing the opening

brace on the same line as the statement or after it. Throughout this book I'll be using

a convention known as PSR-2 but use whatever style you feel most comfortable

with.

44 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

Arrays

An array is a special kind of variable that contains multiple values. If you think

of a variable as a box that contains a value, an array can be thought of as a box

with compartments where each compartment is able to store an individual value.

To create an array in PHP, use square brackets [and] containing the values you

want to store, separated by commas:

$myArray = ['one', 2, '3'];

This code creates an array called $myArray that contains three values: 'one', 2,

and '3'. Just like an ordinary variable, each space in an array can contain any

type of value. In this case, the first and third spaces contain strings, while the

second contains a number.

To access a value stored in an array, you need to know its index. Typically, arrays

use numbers as indices to point to the values they contain, starting with zero.

That is, the first value (or element) of an array has index 0, the second has index

1, the third has index 2, and so on. Therefore, the index of the nth element of an

array is n–1. Once you know the index of the value you’re interested in, you can

retrieve that value by placing that index in square brackets after the array variable

name:

The array Keyword

Arrays in PHP can also be defined using the array keyword. The following code is

equivalent to the square bracket notation above:

$myArray = array('one', 2, 3);

The square bracket notation was introduced in PHP 5.4 and is preferred by PHP

developers, as it’s less to type, and square brackets are more easily visible among

round brackets in control structures like if statements and while loops. /p>

Introducing PHP 45

www.EBooksWorld.ir

echo $myArray[0]; // outputs 'one'

echo $myArray[1]; // outputs '2'

echo $myArray[2]; // outputs '3'

Each value stored in an array is called an element. You can use a key in square

brackets to add new elements, or assign new values to existing array elements:

$myArray[1] = 'two'; // assign a new value

$myArray[3] = 'four'; // create a new element

You can also add elements to the end of an array using the assignment operator as

usual, but leaving empty the square brackets that follow the variable name:

$myArray[] = 'five';

echo $myArray[4]; // outputs 'five'

Array elements can be used like any other variable, and in a lot of cases choosing

to use an array or multiple variables will depend on the programmer’s preference.

However, arrays can be used to solve problems that normal variables can’t!

Remember the dice game from the last section? It would be more user-friendly if

it showed the English word rather than the numeral for the result. For example,

instead of “You rolled a 3” or “You rolled a 6”, it might be nicer to read

“You rolled a three” or “You rolled a six”.

To do this, we need some way of converting from a numeral to the English word

for that number. This is possible with a series of if statements:

46 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

2-18. PHP-DiceRoll-English-If

$roll = rand(1, 6);

if ($roll == 1) {

$english = 'one';

}

else if ($roll == 2) {

$english = 'two';

}

else if ($roll == 3) {

$english = 'three';

}

else if ($roll == 4) {

$english = 'four';

}

else if ($roll == 5) {

$english = 'five';

}

else if ($roll == 6) {

$english = 'six';

}

echo '<p>You rolled a ' . $english . '</p>';

if ($roll == 6) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn\'t win, better luck next

➥ time!</p>';
}

This solution works, but it’s very inefficient, as you need to write an if statement

for each possible dice roll. Instead, you can use an array to store each roll value:

$english = [

1 => 'one',

2 => 'two',

Introducing PHP 47

www.EBooksWorld.ir

3 => 'three',

4 => 'four',

5 => 'five',

6 => 'six'

];

The => notation allows you to define both the keys and the values when creating

the array. This is equivalent to:

$english = [];

$english[1] = 'one';

$english[2] = 'two';

$english[3] = 'three';

$english[4] = 'four';

$english[5] = 'five';

$english[6] = 'six';

Although these are equivalent, the code required to use the shorthand notation is

a lot quicker to type, is arguably easier to read, and easier to understand.

Now that the array is created, it’s possible to read each English word from it:

echo $english[3]; //Prints "three"

echo $english[5]; //Prints "five"

In PHP, a number like 3 it can be replaced with a variable that contains that value.

This is also possible with array keys. For example:

$var1 = 3;

$var2 = 5;

echo $english[$var1]; //Prints "three"

echo $english[$var2]; //Prints "five"

48 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Knowing this, we can piece it all together and adjust the dice game to display the

English word of the dice roll by reading the relevant value from the array using

the $roll variable:

2-19. PHP-DiceRoll-English-Array

$english = [

1 => 'one',

2 => 'two',

3 => 'three',

4 => 'four',

5 => 'five',

6 => 'six'

];

$roll = rand(1, 6);

echo '<p>You rolled a ' . $english[$roll]

. '</p>';

if ($roll == 6) {

echo '<p>You win!</p>';

}

else {

echo '<p>Sorry, you didn\'t win, better luck

next time!</p>';

}

As you can see, this is a lot cleaner and tidier than a long list of if statements.

There are two big advantages here:

1. If you wanted to represent a 10-sided dice, it’s a lot easier to add to the array

than add an extra if statement for each number.

2. The array is reusable. For the version with two dice, you can just reuse the

$english array rather than repeating all the if statements for each dice roll:

Introducing PHP 49

www.EBooksWorld.ir

2-20. PHP-DiceRoll-English-If-TwoDice

$roll1 = rand(1, 6);

$roll2 = rand(1, 6);

if ($roll1 == 1) {

$english = 'one';

}

else if ($roll1 == 2) {

$english = 'two';

}

else if ($roll1 == 3) {

$english = 'three';

}

else if ($roll1 == 4) {

$english = 'four';

}

else if ($roll1 == 5) {

$english = 'five';

}

else if ($roll1 == 6) {

$english = 'six';

}

if ($roll2 == 1) {

$englishRoll2 = 'one';

}

else if ($roll2 == 2) {

$englishRoll2 = 'two';

}

else if ($roll2 == 3) {

$englishRoll2 = 'three';

}

else if ($roll2 == 4) {

$englishRoll2 = 'four';

}

else if ($roll2 == 5) {

$englishRoll2 = 'five';

}

else if ($roll2 == 6) {

$englishRoll2 = 'six';

50 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

}

echo '<p>You rolled a ' . $english . ' and a '

. $englishRoll2 . '</p>';

Instead, the array can be used for both rolls:

2-21. PHP-DiceRoll-English-Array-TwoDice

$english = [

1 => 'one',

2 => 'two',

3 => 'three',

4 => 'four',

5 => 'five',

6 => 'six'

];

$roll1 = rand(1, 6);

$roll2 = rand(1, 6);

echo '<p>You rolled a ' . $english[$roll1] . ' and

a ' . $english[$roll2] . '</p>';

While numbers are the most common choice for array indices, there’s another

possibility. You can also use strings as indices to create what’s called an

associative array. It’s called this because it associates values with meaningful

indices. In this example, we associate a date (in the form of a string) with each of

three names:

$birthdays['Kevin'] = '1978-04-12';

$birthdays['Stephanie'] = '1980-05-16';

$birthdays['David'] = '1983-09-09';

Like the numerical indexes, you can use the shorthand notation for associative

arrays as well:

Introducing PHP 51

www.EBooksWorld.ir

$birthdays = [

'Kevin' => '1978-04-12',

'Stephanie' => '1980-05-16',

'David' => '1983-09-09'

];

Now, if we want to know Kevin’s birthday, we look it up using the name as the

index:

echo 'Kevin\'s birthday is: ' . $birthdays['Kevin'];

This type of array is especially important when it comes to user interaction in

PHP, as we’ll see in the next section. I’ll demonstrate other uses of arrays

throughout this book.

User Interaction and Forms

For most database-driven websites these days, you need to do more than

dynamically generate pages based on database data. You also need to provide

some degree of interactivity, even if it’s just a search box.

Veterans of JavaScript tend to think of interactivity in terms of event listeners,

which let you react directly to the actions of the user—for example, the

movement of the cursor over a link on the page. Server-side scripting languages

such as PHP have a more limited scope when it comes to support for user

interaction. As PHP code is only activated when a request is made to the server,

user interaction occurs solely in a back-and-forth fashion: the user sends requests

to the server, and the server replies with dynamically generated pages.1

Escaping Quotes

Because Kevin's contains an apostrophe (single quote) and PHP would see this as

the end of the string, it must be escaped with a \ so that PHP treats it as part of the

string, rather than marking the end.

52 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The key to creating interactivity with PHP is to understand the techniques we can

employ to send information about a user’s interaction, along with a request for a

new web page. As it turns out, PHP makes this quite easy.

Passing Variables in Links

The simplest way to send information along with a page request is to use the URL

query string. If you’ve ever noticed a URL containing a question mark that follows

the filename, you’ve seen this technique in use. For example, if you search for

“SitePoint” on Google, it will take you to a search result page with a URL like

this:

http://www.google.com/search?hl=en&q=SitePoint

See the question mark in the URL? The text that follows the question mark

contains your search query (SitePoint). That information is being sent along

with the request for http://www.google.com/search.

Let’s code up an easy example of our own. Create a regular HTML file called

name.html (no .php filename extension is required, since there won’t be any PHP

code in this file) and insert this link:

Hi, I’m

➥ Kevin!

This is a link to a file called name.php, but as well as linking to the file, you’re

also passing a variable along with the page request. The variable is passed as part

of the query string, which is the portion of the URL that follows the question

mark. The variable is called name, and its value is Kevin. So, you’ve created a link

1. To some extent, the rise of Ajax techniques in the JavaScript world in recent years has

changed this. It’s now possible for JavaScript code—responding to a user action such as

mouse movement—to send a request to the web server, invoking a PHP script. For the

purposes of this book, however, we’ll stick to non-Ajax applications. If you’d like to learn

all about Ajax, check out JavaScript: Novice to Ninja by Darren Jones:

http://www.sitepoint.com/books/jsninja2/.

Introducing PHP 53

www.EBooksWorld.ir

that loads name.php, and informs the PHP code contained in that file that name

equals Kevin.

To really understand the effect of this link, we need to look at name.php. Create it

as a new HTML file, but this time, note the .php filename extension: this tells the

web server that it can expect to interpret some PHP code in the file. In the body of

this new web page, type the following:

2-22. PHP-GET

$name = $_GET['name'];

echo 'Welcome to our website, ' . $name . '!';

?>

Now, put these two files (name.html and name.php) in the Project folder, and

load the first file in your browser (the URL should be http://192.168.10.10/

name.html). Click the link in that first page to request the PHP script. The

resulting page should say “Welcome to our website, Kevin!”, as shown in the

following image:

2-23. The welcome message, seen in the browser

Let’s take a closer look at the code that made this possible. This is the most

important line:

$name = $_GET['name'];

54 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Using what you learned from the Arrays section above, you may be able to figure

out what this line does. It assigns the value stored in the 'name' element of the

array called $_GET to a new variable called $name. But where does the $_GET array

come from?

It turns out that $_GET is one of a number of variables that PHP automatically

creates when it receives a request from a browser. PHP creates $_GET as an array

variable that contains any values passed in the URL query string. $_GET is an

associative array, so the value of the name variable passed in the query string can

be accessed as $_GET['name']. Your name.php script assigns this value to an

ordinary PHP variable ($name), then displays it as part of a text string using an

echo statement:

echo 'Welcome to our website, ' . $name . '!';

The value of the $name variable is inserted into the output string using the string

concatenation operator (.) that we looked at in the Variables, Operators, and

Comments section.

But watch out! There’s a security hole lurking in this code! Although PHP is an

easy programming language to learn, it turns out it’s also especially easy to

introduce security issues into websites using PHP if you’re unaware of what

precautions to take. Before we go any further with the language, I want to make

sure you’re able to spot and fix this particular security issue, since it’s probably

the most common one on the Web today.

The security issue here stems from the fact that the name.php script is generating

a page containing content that’s under the control of the user—in this case, the

$name variable. Although the $name variable will normally receive its value from

the URL query string in the link on the name.html page, a malicious user could

edit the URL to send a different value for the name variable.

To see how this would work, click the link in name.html again. When you see the

resulting page (with the welcome message containing the name “Kevin”), take a

look at the URL in the address bar of your browser. It should look similar to this:

Introducing PHP 55

www.EBooksWorld.ir

http://192.168.10.10/name.php?name=Kevin

Edit the URL to insert a tag before the name and a tag following the

name:

http://192.168.10.10/name.php?name=Kevin

Hit Enter to load this new URL, and note that the name in the page is now bold,

as shown in the following image:2

2-24. The name shown in bold

See what’s happening here? The user can type any HTML code into the URL, and

your PHP script includes it in the code of the generated page without question. If

the code is as innocuous as a tag, there’s no problem, but a malicious user

could include sophisticated JavaScript code that performs some low action like

stealing the user’s password. All the attacker would have to do is publish the

modified link on some other site under the attacker’s control, and then entice one

of your users to click it. The attacker could even embed the link in an email and

send it to your users. If one of your users clicked the link, the attacker’s code

would be included in your page and the trap would be sprung!

2. You might notice that some browsers will automatically convert the < and > characters

into URL escape sequences (%3C and %3E respectively), but either way, PHP will receive

the same value.

56 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

I hate to scare you with this talk of malicious hackers attacking your users by

turning your own PHP code against you, particularly when you’re only just

learning the language. The fact is that PHP’s biggest weakness as a language is

how easy it is to introduce security issues like this. Some might say that much of

the energy you spend learning to write PHP to a professional standard is spent on

avoiding security issues. The sooner you’re exposed to these issues, however, the

sooner you become accustomed to avoiding them, and the less of a stumbling

block they’ll be for you in future.

So, how can we generate a page containing the user’s name without opening it up

to abuse by attackers? The solution is to treat the value supplied for the $name

variable as plain text to be displayed on your page, rather than as HTML to be

included in the page’s code. This is a subtle distinction, so let me show you what

I mean.

Open up your name.php file again and edit the PHP code it contains so that it

looks like this:

2-25. PHP-GET-Sanitized

<?php

$name = $_GET['name'];

echo 'Welcome to our website, ' .

htmlspecialchars($name, ENT_QUOTES, 'UTF-8') . '!';

?>

There’s a lot going on in this code, so let me break it down for you. The first line

is the same as it was previously, assigning to $name the value of the 'name'

element from the $_GET array. But the echo statement that follows it is drastically

different. Whereas previously we simply dumped the $name variable, naked, into

the echo statement, this version of the code uses the built-in PHP function

htmlspecialchars to perform a critical conversion.

Remember, the security hole occurs because, in name.php, HTML code in the

$name variable is dumped directly into the code of the generated page, and can

therefore do anything that HTML code can do. What htmlspecialchars does is

convert “special HTML characters” like < and > into HTML character entities like

< and >, which prevents them from being interpreted as HTML code by the

Introducing PHP 57

www.EBooksWorld.ir

browser. I’ll demonstrate this for you in a moment.

First, let’s take a closer look at this new code. The call to the htmlspecialchars

function is the first example in this book of a PHP function that takes more than

one argument. Here’s the function call all by itself:

htmlspecialchars($name, ENT_QUOTES, 'UTF-8')

The first argument is the $name variable (the text to be converted). The second

argument is the PHP constant.3

3. A PHP constant is like a variable whose value you’re unable to change. Unlike variables,

constants don’t start with a dollar sign. PHP comes with a number of built-in constants

like ENT_QUOTES that are used to control built-in functions like

htmlspecialchars./span> ENT_QUOTES, which tells htmlspecialchars to convert

single and double quotes in addition to other special characters. The third parameter is the

string 'UTF-8', which tells PHP what character encoding to use to interpret the text you

give it.

58 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Open up name.html in your browser and click the link that now points to your

updated name.php. Once again, you’ll see the message “Welcome to our website,

Kevin!” As you did before, modify the URL to include and tags

surrounding the name:

http://192.168.10.10/name.php?name=Kevin

When you hit Enter this time, instead of the name turning bold in the page, you

Text Encoding

You may have discerned that all the example HTML pages in this book contain the

following meta tag near the top:

<meta charset="utf-8">

This tag tells the browser receiving this page that the HTML code of the page is

encoded as UTF-8 text.4

UTF-8 is one of many standards for representing text as a series of ones and zeros in

computer memory, called character encodings. If you’re curious to learn all about

character encodings, check out http://www.sitepoint.com/article/guide-web-

character-encoding/.

In a few pages, we’ll reach the section on “Passing Variables in Forms”. By

encoding your pages as UTF-8, your users can submit text containing thousands of

foreign characters that your site would otherwise be unable to handle.

Unfortunately, many of PHP’s built-in functions, such as htmlspecialchars,

assume you’re using the much simpler ISO-8859-1 (or Latin-1) character encoding

by default. Therefore, you need to let them know you’re using UTF-8 when

utilizing these functions.

If you can, you should also tell your text editor to save your HTML and PHP files as

UTF-8 encoded text. This is only required if you want to type advanced characters

(such as curly quotes or dashes) or foreign characters (like “é”) into your HTML or

PHP code. The code in this book plays it safe and uses HTML entity references (for

example, ’ for a curly right quote), which will work regardless.

4.

Introducing PHP 59

www.EBooksWorld.ir

should see the actual text that you typed as shown in the following image:

2-26. It sure is ugly, but it’s secure!

If you view the source code of the page, you can confirm that the

htmlspecialchars function did its job and converted the < and > characters into

the < and > entity references respectively. This prevents malicious users

from injecting unwanted code into your site. If they try anything like that, the

code is harmlessly displayed as plain text on the page.

We’ll make extensive use of the htmlspecialchars function throughout this book

to guard against this sort of security hole. No need to worry too much if you’re

having trouble grasping the details of how to use it just at the minute. Before

long, you’ll find its use becomes second nature. For now, let’s look at some more

advanced ways of passing values to PHP scripts when we request them.

Passing a single variable in the query string was nice, but it turns out you can

pass more than one value if you want to! Let’s look at a slightly more complex

version of the previous example. Open up your name.html file again, and change

the link to point to name.php with this more complicated query string:

<a

➥ href="name.php?firstname=Kevin&lastname=Yank">
Hi, I’m Kevin Yank!

This time, our link passes two variables: firstname and lastname. The variables

are separated in the query string by an ampersand (&, which should be written as

& in HTML—yes, even in a link URL! … although, if you do wrongly use &,

60 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

browsers will mostly fix it for you). You can pass even more variables by

separating each name=value pair from the next with an ampersand.

As before, we can use the two variable values in our name.php file:

2-27. PHP-GET-TwoVars

$firstName = $_GET['firstname'];

$lastName = $_GET['lastname'];

echo 'Welcome to our website, ' .

htmlspecialchars($firstName, ENT_QUOTES, 'UTF-8') . ' ' .

htmlspecialchars($lastName, ENT_QUOTES, 'UTF-8') . '!';

?>

The echo statement is becoming quite sizable now, but it should still make sense

to you. Using a series of string concatenations (.), it outputs “Welcome to our

website,” followed by the value of $firstName (made safe for display using

htmlspecialchars), a space, the value of $lastName (again, treated with

htmlspecialchars), and finally an exclamation mark.

The result looks like this:

2-28. The echoed welcome

This is all well and good, but we’re still yet to achieve our goal of true user

interaction, where the user can enter arbitrary information and have it processed

by PHP. To continue with our example of a personalized welcome message, we’d

like to invite the user to type their name and have it appear in the resulting page.

Introducing PHP 61

www.EBooksWorld.ir

To enable the user to type in a value, we’ll need to use an HTML form.

Passing Variables in Forms

Rip the link out of name.html and replace it with this HTML code to create the

form:

2-29. PHP-GET-Form

<form action="name.php" method="get">

<label for="firstname">First name:</label>

<input type="text" name="firstname" id="firstname">

<label for="lastname">Last name:</label>

<input type="text" name="lastname" id="lastname">

<input type="submit" value="GO">

</form>

This is how the browser displays the form produced from this code:

62 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

2-30. The form as it appears in a browser

This form has the exact same effect as the second link we looked at in the

“Passing Variables in Links” section above (with

firstname=Kevin&lastname=Yank in the query string), except that you can

now enter whichever names you like. When you click the submit button (labeled

GO), the browser will load name.php and add the variables and their values to the

query string for you automatically. It retrieves the names of the variables from the

name attributes of the type="text" inputs, and obtains the values from the text

Adding Some CSS

I’ve added some CSS to the form (available in form.css in the sample code) to

make it look a little prettier. The CSS I’ve used is very generic, and can be used to

display any form in the format label-input-line break. I’ll be including this CSS file

on any page that contains a form.

Since this is a book about PHP and MySQL, however, I won’t go into detail about

how the CSS works. Check out SitePoint’s The CSS3 Anthology for advice on

styling your forms with CSS.

Introducing PHP 63

www.EBooksWorld.ir

http://www.sitepoint.com/books/cssant4/

typed into the text fields by the user.

The method attribute of the form tag is used to tell the browser how to send the

variables and their values along with the request. A value of get (as used in

name.html above) causes them to be passed via the query string (and appear in

PHP’s $_GET array), but there is an alternative. It can be undesirable—or even

technically unfeasible—to have the values appear in the query string. What if we

included a textarea element in the form, to let the user enter a large amount of

text? A URL whose query string contained several paragraphs of text would be

ridiculously long, and would possibly exceed the maximum length for a URL in

today’s browsers. The alternative is for the browser to pass the information

invisibly, behind the scenes.

Edit your name.html file once more. Modify the form method by setting it to post:

<form action="name.php" method="post">

<label for="firstname">First name:</label>

<input type="text" name="firstname" id="firstname">

<label for="lastname">Last name:</label>

<input type="text" name="lastname" id="lastname">

<input type="submit" value="GO">

</form>

This new value for the method attribute instructs the browser to send the form

variables invisibly as part of the page request, rather than embedding them in the

query string of the URL.

As we’re no longer sending the variables as part of the query string, they stop

appearing in PHP’s $_GET array. Instead, they’re placed in another array reserved

especially for “posted” form variables: $_POST. We must therefore modify

name.php to retrieve the values from this new array:

64 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

2-31. PHP-POST-Form

<?php

$firstname = $_POST['firstname'];

$lastname = $_POST['lastname'];

echo 'Welcome to our website, ' .

htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .

htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';

?>

Here’s what the resulting page looks like once this new form is submitted:

2-32. The resulting page once the form is submitted

The form is functionally identical to the previous one. The only difference is that

the URL of the page that’s loaded when the user clicks the GO button will be

without a query string. On the one hand, this lets you include large values (or

sensitive values such as passwords and credit card numbers) in the data that’s

submitted by the form without them appearing in the query string. On the other

hand, if the user bookmarks the page that results from the form’s submission, that

bookmark will be useless, as it lacks the submitted values. This, incidentally, is

the main reason why search engines use the query string to submit search terms.

If you bookmark a search results page on Google, you can use that bookmark to

perform the same search again later, because the search terms are contained in the

URL.

Introducing PHP 65

www.EBooksWorld.ir

GET or POST?

As a rule of thumb, you should only use GET forms if, when the form is

submitted, nothing on the server changes—such as when you’re requesting a list

of search results. Because the search terms are in the URL, the user can bookmark

the search results page and get back to it without having to type in the search

term again. But if, after submitting the form, a file is deleted, or a database is

updated, or a record is inserted, you should use POST. The primary reason for

this is that if a user bookmarks the page (or presses back in their browser) it won’t

trigger the form submission again and potentially create a duplicate record.

That covers the basics of using forms to produce rudimentary user interaction

with PHP. We’ll look at more advanced issues and techniques in later examples.

Hiding the Seams

You’re now armed with a working knowledge of the basic syntax of the PHP

programming language. You understand that you can take any HTML web page,

rename it with a .php file name extension, and inject PHP code into it to generate

page content on the fly. Not bad for a day’s work!

Before we go any further, however, I want to stop and cast a critical eye over the

examples we’ve discussed so far. Assuming your objective is to create database-

driven websites that hold up to professional standards, there are a few unsightly

blemishes we need to clean up.

The techniques in the rest of this chapter will help advance your programming

skills beyond the beginner level, giving them a certain professional polish. I’ll

rely on these techniques throughout the rest of this book to ensure that, no matter

how simple the example, you can feel confident in the quality of the product

you’re delivering.

PHP Templates

In the simple examples we’ve seen so far, inserting PHP code directly into your

HTML pages has been a reasonable approach. As the amount of PHP code that

goes into generating your average page grows, however, maintaining this mixture

66 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

of HTML and PHP code can become unmanageable.

Particularly if you work in a team of not-so-savvy web designers, PHP-wise,

having large blocks of cryptic PHP code intermingled with the HTML is a recipe

for disaster. It’s far too easy for designers to accidentally modify the PHP code,

causing errors they’ll be unable to fix.

A much more robust approach is to separate out the bulk of your PHP code so

that it resides in its own file, leaving the HTML largely unpolluted by PHP code.

The key to doing this is the PHP include statement. With an include statement,

you can insert the contents of another file into your PHP code at the point of the

statement. To show you how this works, let’s rebuild the “count to ten” for loop

example we looked at earlier.

Start by creating a new file, count.php, in this directory. Open the file for editing

and type in this code:

<?php

$output = '';

for ($count = 1; $count <= 10; $count++) {

$output .= $count . ' ';

}

include 'count.html.php';

Yes, that’s the complete code for this file. It contains no HTML code whatsoever.

The for loop should be familiar to you by now, but let me point out the

interesting parts of this code:

Instead of echoing out the numbers 1 to 10, this script will add these numbers

to a variable named $output. At the start of this script, therefore, we set this

variable to contain an empty string.

The line $output .= $count . ' '; adds each number (followed by a space)

to the end of the $output variable. The .= operator you see here is a shorthand

way of adding a value to the end of an existing string variable, by combining

the assignment and string concatenation operators into one. The longhand

Introducing PHP 67

www.EBooksWorld.ir

version of this line is $output = $output . $count . ' ';, but the .=

operator saves you some typing.

The include statement instructs PHP to execute the contents of the

count.html.php file at this location.5 You can think of the include statement

as a kind of copy and paste. You would get the same result by opening up

count.html.php, copying the contents and pasting them into count.php,

overwriting the include line.

Finally, you might have noticed that the file doesn’t end with a ?> to match

the opening <?php. You can put it in if you really want to, but it’s unnecessary.

If a PHP file ends with PHP code, there’s no need to indicate where that code

ends; the end of the file does it for you. The big brains of the PHP world

generally prefer to leave it off the end of files like this one that contain only

PHP code.

Since the final line of this file includes the count.html.php file, you should

create this next:

2-33. PHP-Count-Template

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Counting to Ten</title>

</head>

<body>

<p>

<?php echo $output; ?>

</p>

</body>

</html>

This file is almost entirely plain HTML, except for the one line that outputs the

5. Outside of this book, you’ll often see includes coded with parentheses surrounding the

filename, as if include were a function like date or htmlspecialchars, which is far

from the case. These parentheses, when used, only serve to complicate the filename

expression, and are therefore avoided in this book. The same goes for echo, another

popular one-liner.

68 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

value of the $output variable. This is the same $output variable that was created

by the index.php file.

What we’ve created here is a PHP template: an HTML page with only very small

snippets of PHP code that insert dynamically generated values into an otherwise

static HTML page. Rather than embedding the complex PHP code that generates

those values in the page, we put the code to generate the values in a separate PHP

script—index.php in this case.

Using PHP templates like this enables you to hand over your templates to HTML-

savvy designers without worrying about what they might do to your PHP code. It

also lets you focus on your PHP code without being distracted by the surrounding

HTML code.

I like to name my PHP template files so that they end with .html.php. As far as

your web server is concerned, though, these are still .php files; the .html.php

suffix serves as a useful reminder that these files contain both HTML and PHP

code.

Security Concerns

One problem with separating out the HTML and PHP code into different files is

that someone could potentially run the .html.php code without having had it

included from a corresponding PHP file. This isn’t a big problem, but anyone

could visit count.html.php directly. If you type http://192.168.10.10/

count.html.php into your web browser, instead of seeing the count from one to

ten, you'll see an error message: Notice: Undefined variable: output in

/home/vagrant/Code/Project/public/count.html.php on line 9.

It’s better not to let people run code in a manner you’re not expecting. Depending

on what the page is doing, this might let them bypass security checks you have in

place and view content they shouldn’t have access to. For example, consider the

following code:

if ($_POST['password'] == 'secret') {

include 'protected.html.php';

}

Introducing PHP 69

www.EBooksWorld.ir

Looking at this code, it appears that you need to submit a form and type secret

in the password box to see the protected content in protected.html.php.

However, if someone can navigate directly to protected.html.php and see the

contents of the page, it makes the security check redundant. There are other

potential security issues introduced by making all your files accessible via a URL.

Avoiding security problems like these is easy. You can actually include files from

a directory other than the public directory.

You may have wondered earlier why we created a Project directory and then

wrote all our files to the public directory inside Project. Well, this issue of

security is the reason why. None of the files outside the public directory are

accessible via a URL (by someone typing the file name into their web browser).

The include command can be tweaked to include files from another directory. In

our case, that directory is going to the Project directory, which contains the files

we’ve been working on so far.

So the question is, when the include file is in a different directory, how does a

PHP script find it? The most obvious method is to specify the location of the

include file as an absolute path. Here’s how this would look on a Windows server:

<?php include 'C:/Program Files/Apache Software

➥ Foundation/Apache2.2/protected.html.php'; ?>

And here’s how it would look using the Homestead Improved box:

<?php include

➥ '/home/vagrant/Code/Project/protected.html.php'; ?>

While this method will work, it’s undesirable because it ties your site’s code to

your web server configuration. Ideally, you should be able to drop your PHP-

based website onto any PHP-enabled web server and just watch it run. This is

particularly important because many developers will build a site on one server,

70 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

then deploy it publicly on a different server. That’s impractical if your code refers

to drives and directories that are specific to one particular server. Even if you do

have the luxury of working on a single server, you’ll be kicking yourself if you

ever need to move your website to another drive/directory on that server.

A better method is to use a relative path. That is, the location of a file relative to

the current file. When you use include 'count.html.php' this is actually a

relative path, count.html.php is being included from the same directory as the

script that was executed.

To include a file from the directory above, you can use the following code:

include '../count.html.php';

../ tells PHP to look for the file in the directory above the directory of the current

script. It will look for count.html.php in the Project directory instead of the

public directory.

Go ahead and move count.html.php up a level into the Project directory and

amend count.php to reference the new location:

2-34. PHP-Count-Template-Secured

<?php

$output = '';

for ($count = 1; $count <= 10; $count++) {

$output .= $count . ' ';

}

include '../count.html.php';

If you run the code above, it will work. But there’s a potential problem when you

include files in this way. Relative paths are relative to the script that was run, not

to each file.

That is, if you open up Project/count.html.php and add the line include

'count2.html.php'; you would expect count2.html.php to be included from

Introducing PHP 71

www.EBooksWorld.ir

the Project directory. However, the path is relative to something called the

current working directory, which, when you run a PHP script, is initially set to

the directory that script is stored in. So running include 'count2.html.php';

from count.html.php will actually try to load count2.html.php from the public

directory!

The current working directory is set at the start of the script and applies to all the

include statements, regardless of what file they are in. To make things even more

confusing, it’s possible to change the current working directory using the chdir()

function.

Because of this, we can’t rely on this:

include '../count.html.php';

It will work, but if the directory is changed, or count.php itself is an include file,

it may not have the result we’re expecting.

To overcome this, we do actually need to use relative paths. Luckily, PHP

provides a constant called __DIR__ (that’s two underscores, before and after the

word DIR) which will always contain the path that contains the current file.

For example, you could create a file called dir.php inside the public directory

with the following code:

echo __DIR__;

This will display /home/vagrant/Code/Project/public, which is the full path to

the directory containing dir.php. To read count.html.php from the directory

above public, it’s possible to combine the /../ operator and the __DIR__

constant:

include __DIR__ . '/../count.html.php';

72 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

This will now include the file /home/vagrant/Code/Project/

public/../count.html. That is, PHP will look in the public directory, then go

up one level into Project and include count.html.php.

This approach will work on any server, because __DIR__ will differ depending on

where the file is stored, and it doesn’t depend on the changing current working

directory. I’ll be using this approach for including files throughout this book.

From now on, we’ll only write files to the public directory that we actually want

users to be able to access directly from their web browser. The public directory

will contain any PHP scripts the user needs to access directly along with any

images, JavaScript and CSS files required by the browser. Any files only

referenced by an include statement will be placed outside the public directory

so users can’t access them directly.

As the book goes on, I’m going to introduce you to several different types of

include files. To keep things organized, it’s sensible to store different types of

include file in different directories. We’ll store template files (with a .html.php

extension) inside a directory called templates inside the Project folder. We can

then reference them in an include statement using include __DIR__ .

'../templates/file.html.php';.

Many Templates, One Controller

What’s nice about using include statements to load your PHP template files is

that you can have multiple include statements in a single PHP script, as well as

have it display different templates under various circumstances!

A PHP script that responds to a browser request by selecting one of several PHP

templates to fill in and send back is commonly called a controller. A controller

contains the logic that controls which template is sent to the browser.

Let’s revisit one more example from earlier in this chapter: the welcome form that

prompts a visitor for a first and last name.

We’ll start with the PHP template for the form. For this, we can just reuse the

name.html file we created earlier. Create a directory templates inside Project if

you haven’t already, and save a copy of name.html called form.html.php into this

Introducing PHP 73

www.EBooksWorld.ir

directory. The only code you need to change in this file is the action attribute of

the form tag:

2-35. PHP-Form-Controller

<html>

<head>

<title>Enter your name</title>

<link rel="stylesheet" href="form.css" />

<meta charset="utf-8">

</head>

<body>

<form action="" method="post">

<label for="firstname">First name:</label>

<input type="text" name="firstname" id="firstname">

<label for="lastname">Last name:</label>

<input type="text" name="lastname" id="lastname">

<input type="submit" value="GO">

</form>

</body>

</html>

As you can see, we’re leaving theaction attribute blank. This tells the browser to

submit the form back to the same URL it received it from—in this case, the URL

of the controller that included this template file.

Let’s take a look at the controller for this example. Create an index.php inside the

public directory containing the following code:

<?php

if (!isset($_POST['firstname'])) {

include __DIR__ . '/../templates/form.html.php';

} else {

$firstName = $_POST['firstname'];

$lastName = $_POST['lastname'];

if ($firstName == 'Kevin' && $lastName == 'Yank') {

74 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$output = 'Welcome, oh glorious leader!';

} else {

$output = 'Welcome to our website, ' .

htmlspecialchars($firstName, ENT_QUOTES, 'UTF-8') . ' ' .

htmlspecialchars($lastName, ENT_QUOTES, 'UTF-8') . '!';

}

include __DIR__ . '/../templates/welcome.html.php';

}

This code should look quite familiar at first glance. It’s a lot like the name.php

script we wrote earlier. Let me explain the differences:

The controller’s first task is to decide whether the current request is a

submission of the form in form.html.php or not. You can do this by checking

if the request contains a firstname variable. If it does, PHP will have stored

the value in $_POST['firstname'].

isset is a built-in PHP function that will tell you if a particular variable (or

array element) has been assigned a value or not. If $_POST['firstname'] has a

value, isset($_POST['firstname']) will be true. If $_POST['firstname'] is

unset, isset($_POST['firstname']) will be false.

For the sake of readability, I like to put the code that sends the form in my

controller first. We need this if statement to check if $_POST['firstname'] is

not set. To do this, we use the not operator (!). By putting this operator before

the name of a function, you reverse the value that function returns—from true

to false, or from false to true.

Thus, if the request does not contain a firstname variable, then

!isset($_POST['firstname']) will return true, and the body of the if

statement will be executed.

If the request is not a form submission, the controller includes the

form.html.php file to display the form.

If the request is a form submission, the body of the else statement is executed

instead.

Introducing PHP 75

www.EBooksWorld.ir

This code pulls the firstname and lastname variables out of the $_POST array,

and then generates the appropriate welcome message for the name submitted.

Instead of echoing the welcome message, the controller stores the welcome

message in a variable named $output.

After generating the appropriate welcome message, the controller includes the

welcome.html.php template, which will display that welcome message.

All that’s left is to write the welcome.html.php into the templates directory. Here

it is:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Form Example</title>

</head>

<body>

<p>

<?php echo $output; ?>

</p>

</body>

</html>

That’s it! Fire up your browser and point it at http://192.168.10.10/index.php.

You’ll be prompted for your name, and when you submit the form, you’ll see the

appropriate welcome message. The URL should stay the same throughout this

process.

You’ll have noticed I asked you to name the file index.php instead of name.php or

similar. The reason I used index.php is because it has a special meaning.

index.php is known as a directory index. If you don’t specify a filename when

you visit the URL in your browser, the server will look for a file named index.php

and display that. Try typing just http://192.169.10.10 into your browser and

you’ll see the index page.

76 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

One of the benefits of maintaining the same URL throughout this process of

prompting the user for a name and displaying the welcome message is that the

user can bookmark the page at any time during this process and gain a sensible

result. Whether it’s the form page or the welcome message that’s bookmarked,

when the user returns, the form will be present once again. In the previous

version of this example, where the welcome message had its own URL, returning

to that URL without submitting the form would have generated a broken welcome

message (“Welcome to our website, !”), or a PHP error message if, like Homestead

Improved, the server is running with error reporting enabled.

Bring on the Database

In this chapter, we’ve seen the PHP server-side scripting language in action as

we’ve explored all the basic language features: statements, variables, operators,

comments, and control structures. The sample applications we’ve seen have been

reasonably simple, but we’ve still taken the time to ensure they have attractive

URLs, and that the HTML templates for the pages they generate are uncluttered

by the PHP code that controls them.

As you may have begun to suspect, the real power of PHP is in its hundreds (even

thousands) of built-in functions that let you access data in a MySQL database,

send email, dynamically generate images, and even create Adobe Acrobat PDF

files on the fly.

In Chapter 3, we’ll delve into the MySQL functions built into PHP, and then

create a database of jokes. Then in Chapter 4, we’ll see how to publish the joke

database we created to the Web. These tasks will set the scene for the ultimate

Web Server Configuration

Web servers can have different configurations and specify a different file to be the

directory index. However, on most web servers index.php will work without any

further configuration.

Remembering the User’s Name

In Chapter 11, I’ll show you how to remember the user’s name between visits.

Introducing PHP 77

www.EBooksWorld.ir

src/docs/html/chap11

goal of this book: to create a complete content management system for your

website in PHP and MySQL.

78 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

3Chapter

Introducing MySQL

In Chapter 1, we booted the Homestead Improved virtual machine. The virtual

machine contains all the software we need, including a MySQL server.

As I explained in that chapter, PHP is a server-side scripting language that lets

you insert instructions into your web pages that your web server software will

execute before it sends those pages to browsers that request them. We’ve looked

at a few basic examples including generating random numbers and using forms to

capture input from a user.

Now, that’s all well and good, but it really gets interesting when a database is

added to the mix. In this chapter, we’ll learn what a database is, and how to work

with your own MySQL databases using Structured Query Language (SQL).

Introducing MySQL 79

www.EBooksWorld.ir

src/docs/html/chap1

An Introduction to Databases

A database server (in our case, MySQL) is a program that can store large amounts

of information in an organized format that’s easily accessible through

programming languages like PHP. For example, you could tell PHP to look in the

database for a list of jokes that you’d like to appear on your website.

In this example, the jokes would be stored entirely in the database. The advantage

of this approach is twofold. First, instead of writing an HTML page for each joke,

you could write a single PHP script that was designed to fetch any joke from the

database and display it by generating an HTML page for it on the fly. Second,

adding a joke to your website would be a simple matter of inserting the joke into

the database. The PHP code would take care of the rest, automatically displaying

the new joke along with the others when it fetched the list from the database.

Let’s run with this example as we look at how data is stored in a database. A

database is composed of one or more tables, each of which contains a list of

items, or things. For our joke database, we’d probably start with a table called

joke that would contain a list of jokes. Each table in a database has one or more

columns, or fields. Each column holds a certain piece of information about each

item in the table. In our example, our joke table might have one column for the

text of the jokes, and another for the dates on which the jokes were added to the

database. Each joke stored in this way would be said to be a row or entry in the

table. These rows and columns form a table that looks like this:

3-1. A typical database table containing a list of jokes

80 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Notice that, in addition to columns for the joke text (joketext) and the date of

the joke (jokedate), there’s included a column named id. As a matter of good

design, a database table should always provide a means by which each row can

be identified uniquely. Since it’s possible that two identical jokes could be

entered on the same date, we can’t rely on the joketext and jokedate columns

to tell all the jokes apart. The function of the id column, therefore, is to assign a

unique number to each joke, so that we have an easy way to refer to them and to

keep track of which joke is which. We’ll take a closer look at database design

issues like this in Chapter 5.

To review, the table in the figure above is a three-column table with two rows (or

entries). Each row in the table contains three fields, one for each column in the

table: the joke’s ID, its text, and the date of the joke. With this basic terminology

under your belt, you’re ready to dive into using MySQL.

Using MySQL Workbench to Run SQL Queries

Just as a web server is designed to respond to requests from a client (a web

browser), the MySQL database server responds to requests from client programs.

Later in this book, we’ll write our own MySQL client programs in the form of

PHP scripts, but for now we can use a client program written by the same people

who write MySQL: MySQL Workbench. You can download MySQL Workbench

for free.

There are many different MySQL clients available to use, and earlier editions of

this book used phpMyAdmin, a web-based MySQL client that has many of the

same features. However, it’s not as easy to use as MySQL Workbench, and can

often be very slow.

Once you’ve downloaded and installed MySQL Workbench, open it up, and you

should see a screen that looks like this:

Introducing MySQL 81

www.EBooksWorld.ir

src/docs/html/chap5
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/

3-2. If you can see this, you have MySQL Workbench running

Before you can add any data to your database, you need to connect to it. MySQL

is a server running in the Vagrant box you downloaded in Chapter 1, and you can

connect to it using a MySQL client such as MySQL Workbench.

Connecting to the database requires three pieces of information:

a server address

a username

a password

For the Homestead Improved Vagrant box, the information is:

Server: 192.168.10.10

Username: homestead

Password: secret

You’ll notice that the server IP is identical to the IP you’ve been connecting to in

82 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

your web browser to view your PHP scripts. The virtual machine is running both

the web server and the database server, so you only need to remember a single IP

address.

To connect to a database in MySQL Workbench, press the plus button next to the

label "MySQL Connections" in the centre of the window. (Admittedly, it isn’t very

clearly labeled, and its purpose isn’s very clear, but never mind!)

3-3. Add a connection

When you press the plus button, you’ll see a new window that looks like this:

Introducing MySQL 83

www.EBooksWorld.ir

3-4. Add a connection

Enter the server address and username. You’ll also need to give your connection a

name. I’ve called it “Homestead”, but you can call it whatever you like. This is

just a name that it’s listed as for future reference in MySQL Workbench.

Once you’ve entered the username and server, you can try connecting to the

database by pressing the “Test Connection” button at the bottom of the window.

You should get a password prompt box that looks like this:

84 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

3-5. Password prompt

If you don’t, follow these steps:

1. Double check that your Vagrant box is running. (If you’ve rebooted your PC

since setting it up, you may need to run vagrant up again in the project’s

folder to get it running!)

2. Make sure the username and server address are correct.

Enter the password secret into the box and tick the box that says “Save

password”. By checking the box, you won’t have to enter the password each time

you connect. Then press OK .

If the password was entered correctly, you’ll see a message telling you the

connection was successful. Press OK in the “Set up new connection” window

and you’ll see a box appear in the main MySQL window with some of the

information you entered:

Case Sensitivity

Usernames and passwords are case-sensitive, so make sure you type them both in

lowercase!

Introducing MySQL 85

www.EBooksWorld.ir

3-6. The main MySQL window showing information that was entered

Now that the connection is set up, it will be there each time you open MySQL

workbench, you won’t need to add the connection each time.

You’re finally ready to actually connect to the database. To do this, simply

double-click on the newly created box representing your connection and you’ll be

presented with a different screen:

86 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

3-7. Initial screen

This looks a little daunting at first, as there are a lot of different buttons and

panels all representing different things. Down the left-hand side is a menu with

lots of different options. The only one you need to worry about is the bottom

section titled “Schemas”.

Schema is just a fancy word for “database”. MySQL is a database server. In

practical terms, this means that it can host lots of different databases, similarly to

how a web server can host lots of different websites.

Creating a Database

Before you can add any information to a database, you need to create one. There

are already two entries in the Schemas panel, homestead and sys. These come

with Homestead, and although you could use them, for our purposes it would be

better to create a database with a more suitable name.

Introducing MySQL 87

www.EBooksWorld.ir

To create a database, right-click in the Schemas panel and select “Create schema”.

This gives you a window with several options, but you only need to enter one:

the schema name.

3-8. Creating a schema

I chose to name the database ijdb, for Internet Joke Database1, because that fits

with the example I gave at the beginning of this chapter: a website that displays a

database of jokes. Feel free to give the database any name you like, though.

(You’ll need to type it out frequently as you progress through this book, so don’t

pick anything too complicated!)

1. With a tip of the hat to the Internet Movie Database.

88 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Once you’ve typed a name, you can safely leave the other options at their default

values and press Apply. When you do this, MySQL Workbench will ask you to

confirm your action. (Get used to these dialogs. MySQL Workbench insists on

confirmation for almost everything you do!) Press Apply again on this screen:

3-9. Confirming the schema creation

Once you’ve pressed Apply, you’ll need to press Finish on the next screen. This

is one of the annoying things about MySQL Workbench: it forces you to confirm

and then Finish every action. However, it’s better than the alternative, as we’ll see

shortly!

In the screenshot above, you’ll see a white panel with the words CREATE SCHEMA

ijdb. This is an SQL Query, and you’ll see a lot more of these throughout this

book. You could have typed out this command yourself and run it, avoiding the

GUI and saving yourself going through MySQL Workbench’s confirmation

dialogs. And for a command as simple as CREATE SCHEMA ijdb, the GUI is

probably overkill. However, as you’ll see shortly, not all of the commands are this

Introducing MySQL 89

www.EBooksWorld.ir

simple, and it’s a lot easier to use MySQL Workbench’s GUI for some of the more

complex queries.

If you want to be able to delete databases (and this is probably a good ability to

have, given the amount of experimentation I’m going to encourage you to do in

this book), MySQL Workbench makes this easy. In the Schemas panel in the main

window, right-click on the schema you want to delete and select DROP Schema.

MySQL uses the word DROP for deleting things. (Somewhat inconsistently, Delete

is also used for some things!)

Structured Query Language

Like the CREATE SCHEMA command we just saw, the commands we’ll use to direct

MySQL throughout the rest of this book are part of a standard called Structured

Query Language, or SQL (pronounced as either “sequel” or “ess-cue-ell”—take

your pick). Commands in SQL are also referred to as queries; I’ll use these two

terms interchangeably.

SQL is the standard language for interacting with most databases, so, even if you

move from MySQL to a database like Microsoft SQL Server in the future, you’ll

find that the majority of commands are identical. It’s important that you

understand the distinction between SQL and MySQL. MySQL is the database

server software that you’re using. SQL is the language that you use to interact

with that database.

Most of these commands can be generated by MySQL Workbench, and that’s what

we’ll use to create the structure of our database. However, you’ll need to learn

some commands, as you’ll be executing them from your PHP scripts rather than

MySQL Workbench!

Dive Deeper Into SQL

In this book, I’ll teach you the essentials of SQL that every PHP developer needs to

know. If you decide to make a career out of building database-driven websites, it

pays to know some of the more advanced details of SQL, especially when it comes

to making your sites run as quickly and smoothly as possible. To dive deeper into

SQL, I highly recommend the book Simply SQL, by Rudy Limeback.

90 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://www.sitepoint.com/books/sql1/

Once your database has been created, it will appear in the Schemas list on the

left-hand side:

Case Sensitivity and Convention

Most MySQL commands are not case-sensitive, which means you can type

CREATE DATABASE, create database, or even CrEaTe DaTaBaSe, and it will

know what you mean. Database names and table names, however, are case-sensitive

when the MySQL server is running on an operating system with a case-sensitive file

system (such as Linux or macOS, depending on your system configuration).

Additionally, table, column, and other names must be spelled exactly the same

when they’re used more than once in the same query.

For consistency, this book will respect the accepted convention of typing database

commands in all capitals, and database entities (databases, tables, columns, and so

on) in all lowercase.

This also makes it easier for people (like you!) to read the queries. MySQL doesn’t

care, but you’ll be able to identify a command quickly and easily because it’s in

capitals, and a reference to a table, column or database because it’s in lowercase.

Introducing MySQL 91

www.EBooksWorld.ir

3-10. The Internet Joke Database schema

Now that you have a database, you need to tell MySQL Workbench that you want

to use it. To do this, simply double-click the newly created schema and its name

will go bold. You can only have one schema selected at a time, and you need to

tell MySQL Workbench which you’d like to use:

92 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

3-11. The ijdb schema selected

You’re now ready to use your database. Since a database is empty until you add

tables to it, our first order of business is to create a table that will hold your jokes.

(Now might be a good time to think of some!)

Creating a Table

If you expand your newly created ijdb schema by pressing the arrow next to the

name, you’ll see a few entries:

Introducing MySQL 93

www.EBooksWorld.ir

3-12. The ijdb schema expanded

The only one we’re concerned with for the purposes of this book is the Tables

entry. Because your schema has just been created, it doesn’t have any tables.

A table describes the format of your data. You’ll need to know the structure of the

data you’d like to store. Before creating a table, you need to think about exactly

what you want to store. For the jokes example, we want to store these pieces of

information:

the text of the joke

the date it was added

Along with the text and date, we’ll also need some way to identify each joke. To

do this, we’ll give each joke a unique ID.

Each piece of information is placed in a field in the table, and each field has a

type. Types can be used to store data in different formats like numbers, text and

dates.

There are three main kinds of types that you’ll encounter:

numbers, for storing numeric values

text, for storing strings

dates/times for storing timestamps

94 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

There are lots of column types in MySQL, but you only really need an

understanding of three for most purposes!

To create a table using MySQL Workbench, expand the database in the Schemas

list, then right-click on the Tables entry and select Create Table.

The middle panel of the window will change to show you something like this:

3-13. MySQL Workbench’s New Table window

Every table is given a name to identify it and a series of columns. Firstly, enter

the table’s name as “joke” and add the following columns in the column list:

id, which will act as a unique identifier for each joke so we can retrieve it

later

joketext, which will store the text of the joke

jokedate, which will store the date the joke was added

Introducing MySQL 95

www.EBooksWorld.ir

3-14. Creating the joke table

You’ll notice there’s a second column called Datatype. Each column in a database

table must be assigned a type. The three types we will need are:

INT, meaning “integer” for the numeric jokeid

TEXT, to store some text for the joke

DATE, to store the date the joke was published

This helps to keep your data organized, and allows you to compare the values

within a column in powerful ways, as we’ll see later.

If we were to stop setting up the table at this point, you could start adding records

to the table (and I’ll show you how to do that very shortly!). However, you would

have to provide all three pieces of information: the joke ID, the joke text and the

joke date. This means that, to add the next joke, you’d need to keep track of how

many were in there in order to assign the next ID.

This sounds like extra work, but fortunately MySQL Workbench provides a

convenient way of avoiding it. Along with the name of the column and data type

it stores, you’ll notice there’s a series of checkboxes for each field in the table.

There are three we’re interested in here for our ID field:

96 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

PK. This means “primary key”. Ticking this box specifies that this column is to

act as a unique identifier for the entries in the table, so all values in this

column must be unique, ensuring that no two jokes will share the same ID.

NN. This stands for “Not Null”, and means that when a record is added, a value

must be placed in the field. For our ID column, ticking this box tells MySQL

not to accept jokes that don’t have an ID.

AI. This is the clever bit that will save us work. No, “AI” is not “Artificial

Intelligence”, some kind of computer-brain doing our work for us. In this case,

it stands for “Auto Increment”, and by checking this box (and it’s only

allowed on INT fields!), whenever a record (in our case, a joke) is added to the

table, it will automatically be assigned the next available ID. This is a real

time saver and a feature worth remembering.

Your table should now look like this:

3-15. The joke table complete

Press the Apply button and the joke table will be created. You’ll see the following

query appear in the window:

CREATE TABLE `ijdb`.`joke` (

`id` INT NOT NULL AUTO_INCREMENT,

`joketext` TEXT NULL,

Introducing MySQL 97

www.EBooksWorld.ir

`jokedate` DATE NULL,

PRIMARY KEY (`id`));

You’ll notice a lot of the same information has been repeated that we entered into

the GUI. The GUI just generates this code for us, which is a much quicker and

easier way of creating tables than remembering all of the syntax and vocabulary

needed to write the query yourself.

As a developer, you don’t need to create tables often. You will need to interact

with them, though—adding and removing records and retrieving them from the

database—so it’s worth spending time learning how to write queries to do this.

But for creating tables, it’s usually a lot quicker and easier to use the MySQL

Workbench GUI, because once a table has been created, you won’t need to write

another create table statement.

We need to look at just one more task: deleting a table. This task is frighteningly

easy, so be careful! If you delete a table, you can’t get it back.

In the Schemas list, right-click on the table you you want to delete and select

Drop Table. Don’t run this command with your joke table, unless you actually do

want to be rid of it. If you really want to try it, be prepared to re-create your joke

table from scratch. When you delete a table, the table is removed permanently,

along with any data stored inside it. There is no way to recover the data after the

table has been dropped, so be very careful when using this command!

Adding Data

Now that the table has been created, it’s time to add some data to it. Although this

can be done using MySQL Workbench’s GUI, this time we’re going to write the

query ourselves. Eventually, we’ll need to be able to write our own database

queries directly from PHP, so it’s good to get some practice writing them.

To run a query, you need to open up a query window. The simplest way to do this

is to expand your database in the Schema list. Expand the Tables entry, and you’ll

see the joke table that you just created. Right-click on the table and click on the

topmost option “Select Rows - Limit 1000”.

98 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

This will give you a slightly different screen that’s split into two panels:

3-16. A new query panel

The top half is a text box into which you can type commands to ask your

database server questions or make it perform tasks. The bottom half is the result

of that query. You’ll see there’s already a query in the top panel:

SELECT * FROM `ijdb`.`joke`;

We’ll come back to what this means shortly. Along with this query in the top

panel, there’s a list of rows in the bottom panel—or rather there would be, if there

were anything in the table! Because the table was just created, it’s currently

empty. Before you can view the contents of the table, you need to add some

records.

All that’s left is to put some jokes into the database. The command that inserts

data into a database is called, appropriately enough, INSERT. This command can

take two basic forms:

Introducing MySQL 99

www.EBooksWorld.ir

INSERT INTO tableName SET

column1Name = column1Value,

column2Name = column2Value,

…

INSERT INTO tableName

(column1Name, column2Name, …)

VALUES (column1Value, column2Value, …)

So, to add a joke to our table, we can use either of these commands:

INSERT INTO joke SET

joketext = "A programmer was found dead in the shower. The

➥ instructions read: lather, rinse, repeat.",
jokedate = "2017-06-01"

INSERT INTO joke

(joketext, jokedate) VALUES (

"A programmer was found dead in the shower. The instructions

➥ read: lather, rinse, repeat.",
"2017-06-01")

Note that the order of the column/value pairs isn’t important, but pairing the

right values with the right columns, position-wise, is. If the first column

mentioned in the first set of parentheses is joketext, then the first entry in the

VALUES list must be the text that’s going to be placed in the joketext column. The

second column name in the first parentheses gets its values from the same

position in the VALUES list. Otherwise, the order of the columns isn’t important.

Go ahead and swap the order of the column and value pairs and try the query.

As you typed the query, you’ll have noticed that we used double quotes (") to

mark where the text of the joke started and ended. A piece of text enclosed in

quotes this way is called a text string, and this is how you represent most data

100 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

values in SQL. For instance, the dates are typed as text strings, too, in the form

"YYYY-MM-DD".

If you prefer, you can type text strings surrounded with single quotes (') instead

of double quotes:

INSERT INTO joke SET

joketext = '',

jokedate = '2017-06-01'

You might be wondering what happens when there are quotes used within the

joke’s text. Well, if the text contains single quotes, you would surround it with

double quotes. Conversely, if the text contains double quotes, surround it with

single quotes.

If the text you want to include in your query contains both single and double

quotes, you’ll have to escape the conflicting characters within your text string.

You escape a character in SQL by adding a backslash (\) immediately before it.

This tells MySQL to ignore any “special meaning” this character might have. In

the case of single or double quotes, it tells MySQL not to interpret the character

as the end of the text string.

To make this as clear as possible, here’s an example of an INSERT command for a

joke containing single quotes, even though single quotes have been used to mark

the string:

INSERT INTO joke

(joketext, jokedate) VALUES (

'!false - it\'s funny because it\'s true',

"2017-06-01")

As you can see, I’ve marked the start and end of the text string for the joke text

using single quotes. I’ve therefore had to escape the two single quotes (the

apostrophes) within the string by putting backslashes before them. MySQL would

see these backslashes and know to treat the single quotes as characters within the

string, rather than end-of-string markers.

Introducing MySQL 101

www.EBooksWorld.ir

If you’re especially clever, you might now be wondering how to include actual

backslashes in SQL text strings. The answer is to type a double-backslash (\\),

which MySQL will treat as a single backslash in the string of text.

Write your insert query into the top text box in MySQL Workbench and press the

yellow lightning bolt icon above it to execute the query.

3-17. Executing a query using MySQL Workbench

When the query executes, a panel will appear at the bottom of the screen telling

you if the query was executed successfully:

102 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

3-18. "Checking a query has executed successfully

If you get an error and the query isn’t successful, take a look at the error message

and it should give you a hint where to look. Double-check your syntax, and check

your quotes and parentheses are in the right place.

Add both the jokes (and any others you can think of!) to the database using

INSERT queries. Now that you know how to add entries to a table, let’s see how

we can view those entries.

Displaying the Bottom Panel on Low-Res Screens

If you have a lower screen resolution than it’s expecting, MySQL Workbench hides

the bottom panel. To display it, hover your mouse just below the scroll bar at the

bottom of the window and you’ll get a resize cursor. You can then drag the panel

into view.

Introducing MySQL 103

www.EBooksWorld.ir

A Word of Warning

You’ll have noticed something slightly peculiar about the queries that have been

generated by MySQL Workbench. Instead of a query that looks like this:

SELECT * FROM joke

The query generated will be:

SELECT * FROM `joke`

With those strange quotes around joke. Those aren’t actually quotes, or even

apostrophes like we’ve been using to designate strings. They’re backticks.

This is a safety precaution. There are lots of words in SQL that have meaning to

the language. You’ve seen a few already: SELECT, FROM and INSERT, but there are

hundreds of others, known as reserved words. Imagine if you called your table

SELECT. The query you would need to run would look like this:

SELECT * FROM SELECT

Unfortunately, this can cause MySQL to get a little confused. It may see SELECT as

a command rather than as a table name. What’s worse, date is one of these words,

and it’s not improbable that you might think to create a column in one of your

tables called date. What would you expect to happen when the following query

runs?

INSERT INTO joke

(joketext, date) VALUES (

'!false - it\'s funny because it\'s true',

"2012-04-01")

104 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Because the word date already has meaning in SQL, it may not be seen as a

column name but as part of the query, like VALUES or INTO.

MySQL is usually good at guessing whether you’re referring to a table/column

name or a command it needs to follow, but there are times when it isn’t able to

make that distinction. To avoid this kind of confusion, it’s good practice to

surround all table and column names with backticks. The backticks tell MySQL

to treat the string as a name rather than an instruction. It’s good to get into the

habit of doing this from the very start, as it avoids issues later on that often aren’t

immediately obvious.

From now on, I’ll surround all table, schema and column names with backticks.

This will also help you—as a programmer—to distinguish between commands

and column names. For instance, the INSERT query above would be written like

this:

INSERT INTO `joke`

(`joketext`, `date`) VALUES (

'!false - it\'s funny because it\'s true',

"2012-04-01")

Viewing Stored Data

The command that we use to view data stored in database tables is SELECT. You

saw an example SELECT query generated for you by MySQL Workbench earlier.

The SELECT query is the most complicated command in SQL. The reason for this

complexity is that the chief strength of a database is its flexibility in data

retrieval. At this early point in our experience with databases, we need only focus

on fairly simple lists of results, so let’s consider the simpler forms of the SELECT

Where’s the Darned Backtick Key?

On many English keyboard layouts, the backtick key is the one to the immediate

left of the numeric 1 key and below Esc. On Macs, it’s often located to the left of

the Z key. Its location may differ on non-English keyboards and/or on various

devices such as laptops and tablets.

Introducing MySQL 105

www.EBooksWorld.ir

command here.

This command will list everything that’s stored in the joke table:

SELECT * FROM `joke`

This command says “select everything from joke”, with the * meaning “all

columns”. By default, a SELECT query will return every record in the table. If you

try this command, your results will resemble this:

3-19. MySQL Workbench results

Notice that there are some values in the id column, even though you didn’t

specify them in the INSERT queries you ran earlier. MySQL has automatically

assigned an ID to the joke. This is because you checked the “AI” (Auto Increment)

checkbox when you created the table. If you hadn’t checked the box, you’d have

needed to specify the ID for each joke you inserted.

If you were doing serious work on such a database, you might be tempted to stop

and read all the hilarious jokes in the database at this point. To save yourself the

106 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

distraction, you might want to tell MySQL to omit the joketext column. The

command for doing this is as follows:

SELECT `id`, `jokedate` FROM joke

This time, instead of telling it to “select everything,” we told it precisely which

columns we wanted to see. The result should look like this:

3-20. You can select only what you need

What if we’d like to see some of the joke text? As well as being able to name

specific columns that we want the SELECT command to show us, we can use

functions to modify each column’s display. One function, called LEFT, enables us

to tell MySQL to display a column’s contents up to a specified number of

characters. For example, let’s say we wanted to see only the first 20 characters of

the joketext column. Here’s the command we’d use:

Introducing MySQL 107

www.EBooksWorld.ir

SELECT `id`, LEFT(`joketext`, 20), `jokedate` FROM `joke`

3-21. The LEFT function trims the text to a specified length

See how that worked? Another useful function is COUNT, which lets us count the

number of results returned. If, for example, you wanted to find out how many

jokes were stored in your table, you could use the following command:

SELECT COUNT(`id`) FROM `joke`

As you can see in the image below, you have just two jokes in your table:

108 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

3-22. The COUNT function counts the rows

So far, the examples we’ve looked at have fetched all the entries in the table.

However, you can limit your results to only those database entries that have the

specific attributes you want. You set these restrictions by adding what’s called a

WHERE clause to the SELECT command. Consider this example:

SELECT COUNT(*) FROM `joke` WHERE `jokedate` >=

➥ "2017-01-01"

This query will count the number of jokes that have dates greater than or equal to

January 1, 2017. In the case of dates, “greater than or equal to” means “on or

after”. Another variation on this theme lets you search for entries that contain a

certain piece of text. Check out this query:

Using * Instead

You can use COUNT(*) for the same result, but this is slower, as all the columns

will be selected from the table. By using the primary key, only one column needs to

be retrieved.

Introducing MySQL 109

www.EBooksWorld.ir

SELECT `joketext` FROM `joke` WHERE `joketext` LIKE

➥ "%programmer%"

This query displays the full text of all jokes containing the text “programmer” in

their joketext column. The LIKE keyword tells MySQL that the named column

must match the given pattern.2 In this case, the pattern we’ve used is

"%programer%". The % signs (called wildcards) indicate that the text

“programmer” may be preceded and/or followed by any string of text.

Conditions may also be combined in the WHERE clause to further restrict results.

For example, to display knock-knock jokes from April 2017 only, you could use

the following query:

SELECT `joketext` FROM `joke` WHERE

`joketext` LIKE "%knock%" AND

`jokedate` >= "2017-04-01" AND

`jokedate` < "2017-05-01"

Enter a few more jokes into the table. (For example, “Why did the programmer

quit his job? He didn’t get arrays.”) Then experiment with SELECT queries (For

ideas, see Chapter 4.)

You can do a lot with the SELECT command, so I’d encourage you to become quite

familiar with it. We’ll look at some of its more advanced features later, when we

need them.

Modifying Stored Data

Having entered data into a database table, you might find that you’d like to

change it. Whether you’re correcting a spelling mistake, or changing the date

attached to a joke, such alterations are made using the UPDATE command. This

command contains elements of the SELECT and INSERT commands, since the

2. In case you were curious, LIKE is case-insensitive, so this pattern will also match a joke

that contains “Programmer”, or even “FuNkYProGRammeR”.

110 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

command both picks out entries for modification and sets column values. The

general form of the UPDATE command is as follows:

UPDATE `tableName` SET

`colName` = newValue, …

WHERE conditions

So, for example, if we wanted to change the date on the joke we entered earlier,

we’d use the following command:

UPDATE `joke` SET `jokedate` = "2018-04-01" WHERE id = "1"

Here’s where that id column comes in handy, enabling you to easily single out a

joke for changes. The WHERE clause used here works just as it did in the SELECT

command. This next command, for example, changes the date of all entries that

contain the word “programmer”:

UPDATE `joke` SET `jokedate` = "2018-04-01"

WHERE `joketext` LIKE "%programmer%"

Deleting Stored Data

Deleting entries in SQL is dangerously easy, which you’ve probably noticed is a

WHERE is Optional

Believe it or not, the WHERE clause in the UPDATE command is optional.

Consequently, you should be very careful when typing this command! If you leave

the WHERE clause out, the UPDATE command will then apply to all entries in the

table.

The following command will set the date for all the records in the table!

UPDATE `joke` SET `jokedate` = "2018-04-01"

Introducing MySQL 111

www.EBooksWorld.ir

recurring theme. Here’s the command syntax:

DELETE FROM `tableName` WHERE conditions

To delete all programmer jokes from your table, you’d use the following query:

DELETE FROM `joke` WHERE `joketext` LIKE "%programmer%"

Let PHP Do the Typing

There’s a lot more to the MySQL database server software and SQL than the

handful of basic commands I’ve presented here, but these commands are by far

the most commonly used and useful!

At this stage, you might be thinking that databases seem a little cumbersome. SQL

can be tricky to type, as its commands tend to be long and verbose compared with

those of other computer languages. You’re probably dreading the thought of

typing in a complete library of jokes in the form of INSERT commands.

Don’t sweat it! As we proceed through this book, you’ll be surprised at how few

SQL queries you actually type by hand. Generally, you’ll be writing PHP scripts

that type your SQL for you. For example, if you want to be able to insert a bunch

of jokes into your database, you’ll typically create a PHP script for adding jokes

Again, WHERE is Optional

As with UPDATE, the WHERE clause in the DELETE command is optional.

Consequently, you should be very careful when using it. If you leave the WHERE

clause out, the DELETE command will then apply to all entries in the table.

The following command will empty the joke table in one fell swoop:

DELETE FROM `joke`

Scary, huh?

112 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

that includes the necessary INSERT query, with a placeholder for the joke text.

You can then run that PHP script whenever you have jokes to add. The PHP

script prompts you to enter your joke, then issues the appropriate INSERT query to

your MySQL server.

For now, however, it’s important to gain a good feel for typing SQL by hand. It

will give you a strong sense of the inner workings of MySQL databases, and will

make you appreciate all the more the work that PHP will save you!

To date, we’ve only worked with a single table, but to realize the true power of a

relational database, you’ll need to learn how to use multiple tables together to

represent potentially complex relationships between the items stored in your

database. I’ll cover all this and more in Chapter 5, in which I’ll discuss database

design principles and show off some more advanced examples.

In the meantime, we’ve accomplished our objective, and you can comfortably

interact with MySQL using the MySQL Workbench query window. In Chapter 4,

the fun continues as we delve into the PHP language, and use it to create several

dynamically generated web pages.

If you like, you can practice with MySQL a little before you move on, by creating

a decent-sized joke table (for our purposes, five should be enough). This library of

jokes will come in handy later.

Introducing MySQL 113

www.EBooksWorld.ir

4Chapter

Publishing MySQL Data on the Web

This is it—the stuff you signed up for! In this chapter, you’ll learn how to take

information stored in a MySQL database and display it on a web page for all to

see.

So far, you’ve written your first PHP code and learned the basics of MySQL, a

relational database engine, and PHP, a server-side scripting language.

Now you’re ready to learn how to use these tools together to create a website

where users can view data from the database and even add their own.

The Big Picture

Before we leap forward, it’s worth taking a step back for a clear picture of our

114 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

ultimate goal. We have two powerful tools at our disposal: the PHP scripting

language and the MySQL database engine. It’s important to understand how these

will fit together.

The purpose of using MySQL for our website is to allow the content to be pulled

dynamically from the database to create web pages for viewing in a regular

browser. So, at one end of the system you have a visitor to your site using a web

browser to request a page. That browser expects to receive a standard HTML

document in return. At the other end you have the content of your site, which sits

in one or more tables in a MySQL database that only understands how to respond

to SQL queries (commands).

4-1. Relationships between the web server, browser, PHP and MySQL

As shown in the image above, the PHP scripting language is the go-between that

speaks both languages. It processes the page request and fetches the data from the

MySQL database (using SQL queries just like those you used to create a table of

jokes in Chapter 3. It then spits it out dynamically as the nicely formatted HTML

page that the browser expects.

Just so it’s clear and fresh in your mind, this is what happens when there’s a

visitor to a page on your website:

1. The visitor’s web browser requests the web page from your web server.

2. The web server software (typically Apache or NGINX) recognizes that the

Publishing MySQL Data on the Web 115

www.EBooksWorld.ir

requested file is a PHP script, so the server fires up the PHP interpreter to

execute the code contained in the file.

3. Certain PHP commands (which will be the focus of this chapter) connect to

the MySQL database and request the content that belongs in the web page.

4. The MySQL database responds by sending the requested content to the PHP

script.

5. The PHP script stores the content into one or more PHP variables, then uses

echo statements to output the content as part of the web page.

6. The PHP interpreter finishes up by handing a copy of the HTML it has created

to the web server.

7. The web server sends the HTML to the web browser as it would a plain HTML

file, except that instead of coming directly from an HTML file, the page is the

output provided by the PHP interpreter. The browser has no way of knowing

this, however. As far as the browser is concerned, it’s requesting and receiving

a web page like any other.

Creating a MySQL User Account

In order for PHP to connect to your MySQL database server, it will need to use a

username and password. So far, all that your joke database contains is a number

of pithy bon mots, but before long it may contain sensitive information like email

addresses and other private details about the users of your website. For this

reason, MySQL is designed to be very secure, giving you tight control over what

connections it will accept and what those connections are allowed to do.

The Homestead Improved box already contains a MySQL user in Chapter 3,

which you’ve already used to log in to the MySQL server.

You could connect to the database from your PHP script using the same username

(homestead) and password (secret), but it’s useful to create a new

account—because if you have a web server, you may want to use it to host more

than one website. By giving each website its own user account, you’ll have more

control over who has access to the data for any given site. If you’re working with

116 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://www.sitepoint.com/quick-tip-get-homestead-vagrant-vm-running/

other developers, you can give them access to the sites they’re working on, but no

more.

You should create a new user account with only the specific privileges it needs to

work on the ijdb database that your website depends upon. Let’s do that now:

1. To create a user, open up MySQL Workbench and connect to your server.

In the panel on the left-hand side of the window, there’s an option labeled

Users and Privileges.

4-2. User management

After clicking on the link, you’re able to add a user. There’s already a few

listed in the middle panel, including the homestead user you used to log

in.

To add a new user, click the Add Account button near the bottom of the

window. This will enable the fields that were visible on the right-hand

side. You’ll notice there are four tabs, offering quite a few options. Luckily,

you can leave almost all of them with their defaults values.

Publishing MySQL Data on the Web 117

www.EBooksWorld.ir

The main thing you need to add are the username and password you want

to use to log in. Fill in the first form using the following information,

leaving everything else at its defaults:

Login name | ijdbuser

---------- | ---------- |

If you prefer, you can just name the user ijdb. It’s common to give an

account restricted to accessing a single database the name of that database.

I’ve chosen to name it ijdbuser in this book to help clarify the distinction

between the name of the database (ijdb) and the user account that’s

allowed to access it (ijdbuser).

Limit to Hosts Matching | localhost

---------- | ---------- |

This option allows you to add extra security by only allowing connections

from a specific location, instead of allowing anyone to connect to your

database from anywhere on the internet. By entering localhost into this

box, you’ll only be able to connect from the computer running MySQL.

Even if someone did manage to get hold of your database username and

password, they wouldn’t be able to log in without access to the server it’s

running from.

Password | mypassword

---------- | ---------- |

This is just the password I’m going to use in this book. You should

probably have your own unique password, and remember it for later use in

the PHP scripts you’re going to write.

Confirm Password | mypassword

---------- | ---------- |

Enter your password again, just to verify that you typed it correctly the first

time.

118 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Press Apply, and your new user will appear in the central panel. Click on

the user and then select the Schema Privileges. By default, a user doesn’t

have access to read or write to any schemas. All they’ll be able to do is log

in. In order to allow your new user to access the jokes database, you need

to click Add Entry, which opens a new window. Select Selected Schema

and choose the ijdb schema from this list. This will give your new user

access to the ijdb schema and no others. If someone did manage to gain

access to the database with the ijdbuser account, they wouldn’t be able to

see data from any other website that you might have running on the server.

When you click OK, you’ll see a lot of checkboxes. Some of these are SQL

commands you saw in the last chapter. Give your user full access by

clicking Select All and finally press Apply again.

Your user is now set up, and you’ll see the privileges in the box above the

checkboxes:

4-3. Users and privileges

Publishing MySQL Data on the Web 119

www.EBooksWorld.ir

Now that the user ijdbuser has been created, we can use it to connect to the

database. It’s possible to set up a connection in MySQL Workbench with this user,

but since the permissions are limited, it’s better to keep MySQL Workbench using

the homestead account. Instead, we’re going to use the new user when connecting

from a PHP script.

Connecting to MySQL with PHP

Before you can retrieve content from your MySQL database for inclusion in a web

page, you must know how to establish a connection to MySQL from inside a PHP

script. So far, you’ve used an application called MySQL Workbench to connect to

your database. Just as the MySQL Workbench can connect directly to a running

MySQL server, so too can your own PHP scripts.

There are three methods of connecting to a MySQL Server from PHP:

the MySQL library

the MySQLi library

the PDO library

These all essentially do the same job, connecting to the database and sending

queries to it, but they use different code to achieve it.

The MySQL library is the oldest method of connecting to the database and was

introduced in PHP 2.0. The features it contains are minimal, and it was

superseded by MySQLi as of PHP 5.0 (released in 2004).

To connect and query the database using the old MySQL library, functions such

as mysql_connect() and mysql_query() are used. These functions have been

deprecated—meaning they should be avoided—since PHP 5.5, and have been

removed from PHP entirely since PHP 7.0.

Although most developers saw the reason for the change as soon as PHP 5.0 was

released, there are still hundreds of articles and code examples on the Web using

these now non-existent mysql_* functions—despite the fact that MySQLi has

effectively been the preferred library for over ten years.

If you come across a code example that contains the line mysql_connect(), check

120 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

the date of the article. It’s probably from the early 2000s, and in programming,

you should never trust anything that old. Things change all the time—which is

why this book is on its 6th edition!

In PHP 5.0, the MySQLi library, standing for “MySQL Improved”, was released to

address some of the limitations in the original MySQL library. You can identify

the use of MySQLi, because the code will use functions such as

mysqli_connect() and mysqli_query().

Shortly after the release of the MySQLi library in PHP 5.0, PHP 5.1 was released,

with a significant number of changes that helped shape the way we write PHP

today (mostly to do with object-oriented programming, which you’ll see plenty of

later in this book). One of the major changes in PHP 5.1 was that it introduced a

third library, PDO (PHP Data Objects) for connecting to MySQL databases.

There are a few differences between PDO and MySQLi, but the main one is that

you can use the PDO library to connect to almost any database server—such as an

Oracle server, or a Microsoft SQL Server. For developers, the biggest advantage of

this generic approach is that once you’ve learned how to use the library to

interact with a MySQL database, it’s very simple to interact with another database

server.

Arguably, it’s simpler to write code for PDO, and there are some nuances that can

make PDO code more readable—named parameters in prepared statements being

the main benefit. (Don’t worry, I’ll explain what that means later on.)

For these reasons, most recent PHP projects use the PDO library, and it’s the

library I’m going to show you how to use in this book. For more information on

the differences, take a look at the SitePoint article “Re-introducing PDO – the

Right Way to Access Databases in PHP”.

After that little history lesson, you’re probably eager to get back to writing code.

Here’s how you use PDO to establish a connection to a MySQL server:

new PDO('mysql:host=hostname;dbname=database', 'username',

'password')

Publishing MySQL Data on the Web 121

www.EBooksWorld.ir

https://www.sitepoint.com/re-introducing-pdo-the-right-way-to-access-databases-in-php/
https://www.sitepoint.com/re-introducing-pdo-the-right-way-to-access-databases-in-php/

For now, think of new PDO as a built-in function, just like the rand function we

used in Chapter 2. If you’re thinking “Hey, functions can’t have spaces in their

names!”, you’re smarter than the average bear, and I’ll explain exactly what’s

going on here in a moment. In any case, it takes three arguments:

1. a string specifying the type of database (mysql:), the hostname of the server

(host=hostname;), and the name of the database (dbname=database)

2. the MySQL username you want PHP to use

3. the MySQL password for that username

You may remember from Chapter 2 that PHP functions usually return a value

when they’re called. This new PDO “function” returns a value called a PDO object

that identifies the connection that’s been established. Since we intend to make

use of the connection, we should hold onto this value by storing it in a variable.

Here’s how that looks, with the necessary values filled in to connect to your

database:

$pdo = new PDO('mysql:host=localhost;dbname=ijdb',

'ijdbuser',

'mypassword');

As described, the exact values of the three function parameters may differ for

your MySQL server. At the very least, you’ll need to substitute in the password

you set for your ijdbuser user (assuming you used a password other than

mypassword, the one I chose). What’s important to see here is that the value

returned by new PDO is stored in a variable named $pdo.

The MySQL server is a completely separate piece of software from the web server.

Therefore, we must consider the possibility that the server may be unavailable or

inaccessible due to a network outage, or because the username/password

combination you provided is rejected by the server, or because you just forgot to

start your MySQL server! In such cases, new PDO won’t run, and will throw a PHP

exception.

If you’re wondering what it means to “throw a PHP exception,” brace yourself!

122 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

You’re about to discover some more features of the PHP language.

A PHP exception is what happens when you tell PHP to perform a task and it’s

unable to do it. PHP will try to do what it’s told, but will fail; and in order to tell

you about the failure, it will throw an exception at you. An exception is little

more than PHP just crashing with a specific error message. When an exception is

thrown, PHP stops. No lines of code after the error will be executed.

As a responsible developer, it’s your job to catch that exception and do something

about it so the program can continue.

To catch an exception, you should surround the code that might throw an

exception with a try … catch statement:

try {

⋮ do something risky
}

catch (ExceptionType $e) {

⋮ handle the exception
}

You can think of a try … catch statement like an if … else statement, except

that the second block of code is what happens if the first block of code fails to

run.

Confused yet? I know I’m throwing (no pun intended) a lot of new concepts at

you, but it will make more sense if I put it all together and show you what we

have:

Uncaught Exceptions

If you don’t catch an exception, PHP will stop running your PHP script and display

a spectacularly ugly error message. That error message will even reveal the code of

your script that threw the error. In this case, that code contains your MySQL

username and password, so it’s especially important to avoid the error message

being seen by users!

Publishing MySQL Data on the Web 123

www.EBooksWorld.ir

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb',

'idjbuser', ’mypassword’);

$output = 'Database connection established.';

}

catch (PDOException $e) {

$output = 'Unable to connect to the database server.';

}

include __DIR__ . '/../templates/output.html.php';

As you can see, this code is a try … catch statement. In the try block at the top,

we attempt to connect to the database using new PDO. If this succeeds, we store

the resulting PDO object in $pdo so that we can work with our new database

connection. If the connection is successful, the $output variable is set to a

message that will be displayed later.

Importantly, inside a try … catch statement, any code after an exception has

been thrown will not get executed. In this case, if connecting to the database

throws an exception (maybe the password is wrong or the server isn’t

responding), the $output variable will never get set to “Database connection

established”.

If our database connection attempt fails, PHP will throw a PDOException, which

is the type of exception that new PDO throws. Our catch block, therefore, says that

it will catch a PDOException (and store it in a variable named $e). Inside that

block, we set the variable $output to contain a message about what went wrong.

However, this error message isn’t particularly useful. All it tells us is that PDO

could not connect to the database server. It would be better to have some

information about why that was—for example, because the username and

password were invalid.

The $e variable contains details about the exception that occurred, including an

error message describing the problem. We can add this to the output variable

using concatenation:

124 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb',

'idjbuser', 'mypassword');

$output = 'Database connection established.';

}

catch (PDOException $e) {

$output = 'Unable to connect to the database server: ' . $e;

}

include __DIR__ . '/../templates/output.html.php';

Like an if … else statement, one of the two branches of a try … catch

statement is guaranteed to run. Either the code in the try block will execute

successfully or the code in the catch block will run. Regardless of whether the

database connection was successful, there will be a message in the $output

variable—either the error message, or the message saying the connection was

successful.

Finally, regardless of whether the try block was successful, or the catch block

runs, the template output.html.php is included. This is a generic template that

just displays some text to the page:

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>Script Output</title>

</head>

<body>

<?php echo $output; ?>

</body>

The $e Variable

The $e variable isn’t actually a string, but an object. We’ll come onto what that

means shortly. For now, though, all you need to know is that it’s possible to treat

the $e variable as a string and use it to print a more descriptive error message.

Publishing MySQL Data on the Web 125

www.EBooksWorld.ir

</html>

The complete code can be found in Example: PHPMySQL-Connect.

When the template is included, it will display either the error message or the

“Database connection established” message.

I hope the aforementioned code is now making some sense to you. Feel free to go

back to the start of this section and read it all again if you’re lost, as there were

some tricky concepts in there. Once you have a firm grip on the code, however,

you’ll probably realize that I’ve still left one mystery unexplained: PDOs. Just

what exactly is new PDO, and when I said it returns a “PDO object”, just what

exactly is an object?

A Crash Course in Object-oriented Programming

You may have noticed the word “object” beginning to creep into my vocabulary

in the previous section. PDO is the PHP Data Objects extension, and new PDO

returns a PDO object. In this section, I’d like to explain what objects are all about.

Schemas

All downloaded sample code includes a schema called ijdb_sample and a user

called ijdb_sample, so that you’re able to run it regardless of what you called

your schema and user. A file containing the database is provided as

database.sql, which you can import.

If you use the web-based sample code viewer provided, the idbj_sample database

will be created as you load a sample, but any changes to this schema will be lost

when you view another sample. (You can mess things up, and switching to another

sample and back will reset it, but if you want to keep any changes you make, make

them in the schema which you created.)

If you want to load the sample data into your schema using MySQL Workbench,

import database.sql from the project directory by selecting Data Import/

Restore, select Import from self-contained file, browse to database.sql and

select your schema name in default target schema. If you have created any tables

with the same name, they’ll be overwritten and all records lost.

126 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Perhaps you’ve come across the term object-oriented programming (OOP) in your

own explorations of PHP or of programming in general. OOP is an advanced style

of programming that’s especially suited to building really complex programs with

a lot of parts. Most programming languages in active use today support OOP.

Some of them even require you to work in an OOP style. PHP is a little more

easygoing about it, and leaves it up to the developer to decide whether or not to

write their scripts in the OOP style.

So far, we’ve written our PHP code in a simpler style called procedural

programming, and we’ll continue to do so for now, with a more detailed look at

objects later on. Procedural style is well suited to the relatively simple projects

we’ll tackle at the moment. However, almost all complex projects you’ll come

across use OOP, and I’ll cover it in more detail later in this book.

That said, the PDO extension that we’ll use to connect to and work with a MySQL

database is designed in the object-oriented programming style. What this means

is that, rather than simply calling a function to connect to MySQL and then

calling other functions that use that connection, we must first create a PDO object

that will represent our database connection, and then use the features of that

object to work with the database.

Creating an object is a lot like calling a function. In fact, you’ve already seen how

to do it:

$pdo = new PDO('mysql:host=localhost;dbname=ijdb',

'ijdbuser', 'mypassword');

The new keyword tells PHP that you want to create a new object. You then leave a

space and specify a class name, which tells PHP what type of object you want to

create. A class is a set of instructions that PHP will follow to create an object. You

can think of a class as being a recipe, such as for a cake, and an object being the

actual cake that’s produced from following the recipe. Different classes can

produce different objects, just as different recipes can produce different dishes.

Just as PHP comes with a bunch of built-in functions that you can call, PHP

comes with a library of classes that you can create objects from. new PDO,

therefore, tells PHP to create a new PDO object—that is, a new object of the built-

Publishing MySQL Data on the Web 127

www.EBooksWorld.ir

in PDO class.

In PHP, an object is a value, just like a string, number, or array. You can store an

object in a variable or pass it to a function as an argument—all the same stuff you

can do with other PHP values. Objects, however, have some useful additional

features.

First of all, an object behaves a lot like an array, in that it acts as a container for

other values. As we saw in Chapter 2, you can access a value inside an array by

specifying its index (for example, $birthdays['Kevin']). When it comes to

objects, the concepts are similar but the names and code are different. Rather than

accessing the value stored in an array index, we say that we’re accessing a

property of the object. Instead of using square brackets to specify the name of the

property we want to access, we use arrow notation (->)—for instance,

$myObject->someProperty:

$myObject = new SomeClass(); // create an object

$myObject->someProperty = 123; // set a property's value

echo $myObject->someProperty; // get a property's value

Whereas arrays are normally used to store a list of similar values (such as an array

of birthdays), objects are used to store a list of related values (for example, the

properties of a database connection). Still, if that’s all objects did, there wouldn’t

be much point to them: we might just as well use an array to store these values,

right? Of course, objects do more.

In addition to storing a collection of properties and their values, objects can

contain a group of functions designed to bring us more useful features. A function

stored in an object is called a method (one of the more confusing names in the

programming world, if you ask me). A method is just a function inside a class.

More confusingly, when we get onto writing our own classes, methods are

defined using the function keyword! Even experienced developers often wrongly

use function and method interchangeably.

To call a method, we again use arrow notation—$myObject->someMethod():

128 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$myObject = new SomeClass(); // create an object

$myObject->someMethod(); // call a method

Just like standalone functions, methods can take arguments and return values.

At this stage, this is probably all sounding a little complicated and pointless, but

trust me: pulling together collections of variables (properties) and functions

(methods) into little bundles called objects results in much tidier and easier-to-

read code for certain tasks—working with a database being just one of them. One

day, you may even want to develop custom classes that you can use to create

objects of your own devising.

For now, however, we’ll stick with the classes that come included with PHP. Let’s

keep working with the PDO object we’ve created, and see what we can do by

calling one of its methods.

Configuring the Connection

So far, I’ve shown you how to create a PDO object to establish a connection with

your MySQL database, and how to display a meaningful error message when

something goes wrong:

<?php

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb',

'ijdbuser', 'mypassword');

$output = 'Database connection established.';

} catch (PDOException $e) {

$output = 'Unable to connect to the database server: ' . $e;

}

include __DIR__ . '/../templates/output.html.php';

Assuming the connection succeeds, though, you need to configure it before use.

You can configure your connection by calling some methods of your new PDO

object.

Publishing MySQL Data on the Web 129

www.EBooksWorld.ir

Our first task is to configure how our PDO object handles errors. You’ve already

learned how to use a try … catch statement to handle any problems PHP might

run into when connecting to your database. However, by default, PDO switches to

a “silent failure” mode after establishing a successful connection1.

This “silent failure” mode makes it more difficult for us to find out when

something goes wrong and handle it gracefully. Most of the time, we’d just see a

blank page with no indication that anything was wrong (other than the

information we’re expecting to see on the page not appearing).

We’d like our PDO object to throw a PDOException any time it fails to do what we

ask. We can configure it do to so by calling the PDO object’s setAttribute

method:

$pdo->setAttribute(PDO::ATTR_ERRMODE,

➥ PDO::ERRMODE_EXCEPTION);

The two values we’re passing as arguments are constants, just like the

ENT_QUOTES constant that you learned to pass to the htmlspecialchars function

in Chapter Chapter 2. Don’t be thrown by the PDO:: at the start of their names;

that just indicates that these constants are part of the PDO class that we’re using,

rather than constants built into the PHP language itself. Essentially, what we’re

saying with this line is that we want to set the PDO attribute that controls the

error mode (PDO::ATTR_ERRMODE) to the mode that throws exceptions

(PDO::ERRMODE_EXCEPTION).

Next, we need to configure the character encoding of our database connection. As

I mentioned briefly in Chapter 2, you should use UTF-8 encoded text in your

websites to maximize the range of characters users have at their disposal when

filling in forms on your site. By default, when PHP connects to MySQL, it uses

the simpler ISO-8859-1 (or Latin-1) encoding instead of UTF-8. If we left it as is,

we wouldn’t easily be able to insert Chinese, Arabic or most non-English

characters.

1. You can read about the details of PDO’s error-handling modes in http://php.net/manual/

en/pdo.error-handling.php

130 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Even if you’re 100% sure that your website will only be used by English speakers,

there are other problems caused by not setting the character set. If your web page

is not set to UTF-8 you’ll run into problems when people write certain characters

such as curly quotes ” into a text box, because they’ll appear in the database as a

different character.

Therefore, we now need to set our new PDO object to use the UTF-8 encoding.

We can instruct PHP to use UTF-8 when querying the database by appending

;charset=utf8 to the connection string. There are no downsides to doing this,

provided your PHP script is also being sent to the browser as utf8 (which is the

default in recent PHP versions).

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

The complete code we use to connect to MySQL and then configure that

connection, therefore, is this:

Other Ways to Set the Charset

If you go searching, you’ll find different ways to set the charset, and earlier editions

of this book instructed you to use this code:

$pdo->exec('SET NAMES "utf8"');

This is because until PHP 5.3.6, the charset option was not correctly applied by

PHP. Since this is fixed in any PHP version you’re actually going to be using, setting

the charset as part of the connection string is the preferred option.

Publishing MySQL Data on the Web 131

www.EBooksWorld.ir

4-4. MySQL-Connect-Complete

<?php

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$output = 'Database connection established.';

} catch (PDOException $e) {

$output = 'Unable to connect to the database server: ' . $e;

}

include __DIR__ . '/../templates/output.html.php';

Fire up this example in your browser. (If you’ve placed your database code in

index.php inside the public directory and the output.html.php file in the

templates directory, the URL for the page will be http://192.168.10.10/.)

If your server is up and running, and everything is working properly, you should

see a message indicating success like this:

4-5. A successful connection

If PHP is unable to connect to your MySQL server, or if the username and

password you provided are incorrect, you’ll instead see a similar screen to that

shown below. To make sure your error-handling code is working properly, you

132 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

might want to misspell your password intentionally to test it out.

4-6. A connection failure

Thanks to our catch block, the error message from the database has been

included on the page:

catch (PDOException $e) {

$output = 'Unable to connect to the database server: ' . $e;

}

Remember I said that $e is actually an object? Some objects can be converted to a

string. That is, if they’re included in an echo statement, the object will provide a

string. Not all objects support this behavior (in fact, most don’t!). The

PDOException class also has a getMessage() method that contains the error

message. If you’d like to be more explicit, you can change the catch block to this:

catch (PDOException $e) {

$output = 'Unable to connect to the database server: ' .

$e->getMessage();

}

There are some other methods—including getFile() and getLine()—for

returning the file name and line number that the exception was thrown on. You

can generate a very detailed error message like this:

catch (PDOException $e) {

$output = 'Unable to connect to the database server: ' .

$e->getMessage() . ' in ' .

$e->getFile() . ':' . $e->getLine();

}

Publishing MySQL Data on the Web 133

www.EBooksWorld.ir

This is incredibly useful if you have a large website with dozens of include files.

The error message will tell you exactly which file to look in and which line the

error occurred on.

If you’re curious, try inserting some other mistakes in your database connection

code (for example, a misspelled database name) and observe the detailed error

messages that result. When you’re done, and your database connection is working

correctly, go back to the simple error message. This way your visitors won’t be

bombarded with technical gobbledygook if a genuine problem emerges with your

database server.

With a connection established and a database selected, you’re ready to begin

using the data stored in the database.

Sending SQL Queries with PHP

In Chapter 3 we connected to the MySQL database server using MySQL

Workbench, which allowed us to type SQL queries (commands) and view the

results of those queries immediately. The PDO object offers a similar

mechanism—the exec method:

$pdo->exec($query)

What Happens After the Script Has Finished?

You might be wondering what happens to the connection with the MySQL server

after the script has finished executing. If you really want to, you can force PHP to

disconnect from the server by discarding the PDO object that represents your

connection. You do this by setting the variable containing the object to null:

$pdo = null; // disconnect from the database server

That said, PHP will automatically close any open database connections when it

finishes running your script, so you can usually just let PHP clean up after you.

134 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Here, $query is a string containing whatever SQL query you want to execute.

As you know, if there’s a problem executing the query (for instance, if you made a

typing mistake in your SQL query), this method will throw a PDOException for

you to catch.

Consider the following example, which attempts to produce the joke table we

created in Chapter 3:

4-7. MySQL-Create

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'CREATE TABLE joke (

id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

joketext TEXT,

jokedate DATE NOT NULL

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB';

$pdo->exec($sql);

$output = 'Joke table successfully created.';

}

catch (PDOException $e) {

$output = 'Database error:' . $e->getMessage() . ' in ' .

$e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/output.html.php';

Note once again that we use the same try … catch statement technique to handle

possible errors produced by the query. It would be possible to use multiple try

… catch blocks to display different error messages, one for the connection and

Publishing MySQL Data on the Web 135

www.EBooksWorld.ir

one for the query, but this can result in a considerable amount of extra code.

Instead, I’ve opted to use the same try statement to contain both the connection

and the query. The try … catch block will stop executing code once an error

occurs, so if an error occurs during the database connection, the

$pdo->exec($run) line will never run, ensuring that if a query is sent to the

database a connection must have been established.

This approach gives us a little less control over the error message that is

displayed, but saves typing a try … catch statement for each database operation.

Later in this book, we’ll break these up into different blocks, but for now, keep all

the database operations in the same try block.

This example also uses the getMessage method to retrieve a detailed error

message from the MySQL server. The following image shows the error that’s

displayed when, for example, the joke table already exists:

4-8. The CREATE TABLE query fails because the table already exists

For DELETE, INSERT, and UPDATE queries (which serve to modify stored data), the

exec method returns the number of table rows (entries) that were affected by the

query. Consider the following SQL command, which we used in Chapter 3 to set

136 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

the dates of all jokes that contained the word “chicken”:

4-9. MySQL-Update

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'UPDATE joke SET jokedate="2012-04-01"

WHERE joketext LIKE "%programmer%"';

$affectedRows = $pdo->exec($sql);

$output = 'Updated ' . $affectedRows .' rows.';

}

catch (PDOException $e) {

$output = 'Database error: ' . $e->getMessage() . '

in ' .$e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/output.html.php';

By storing the value returned from the exec method in $affectedRows, we can

use the variable in the $output variable for printing in the template.

The image below shows the output of this example, assuming there’s only one

“programmer” joke in your database.

Publishing MySQL Data on the Web 137

www.EBooksWorld.ir

4-10. The number of database records updated is displayed

If you refresh the page to run the same query again, you should see the message

change as shown in the following image. It indicates that no rows were updated,

since the new date being applied to the jokes is the same as the existing date:

4-11. MySQL lets you know when you’re wasting its time

SELECT queries are treated a little differently, as they can retrieve a lot of data, and

PHP provides ways to handle that information.

138 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Handling SELECT Result Sets

For most SQL queries, the exec method works just fine. The query does

something to your database, and you get the number of affected rows (if any) from

the method’s return value. SELECT queries, however, require something a little

fancier than exec. You’ll recall that SELECT queries are used to view stored data in

the database. Instead of only affecting the database, SELECT queries have

results—and we need a method to return them.

The query method looks just like exec in that it accepts an SQL query as an

argument to be sent to the database server. What it returns, however, is a

PDOStatement object, which represents a result set containing a list of all the

rows (entries) returned from the query.

<?php

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'SELECT `joketext` FROM `joke`';

$result = $pdo->query($sql);

} catch (PDOException $e) {

$output = 'Unable to connect to the database server: '

. $e->getMessage() . ' in ' .

$e->getFile() . ':' . $e->getLine();

}

Provided that no error was encountered in processing the query, this code will

store a result set (in the form of a PDOStatement object) into the variable $result.

This result set contains the text of all the jokes stored in the joke table. As there’s

no practical limit on the number of jokes in the database, the result set can be

quite big.

I mentioned back in Chapter 2 that the while loop is a useful control structure

Publishing MySQL Data on the Web 139

www.EBooksWorld.ir

when we need to loop but don’t know how many times. We can’t use a for loop

because we don’t know how many records the query returned. Indeed, you could

use a while loop here to process the rows in the result set one at a time:

while ($row = $result->fetch()) {

⋮ process the row
}

The condition for the while loop is probably different from the conditions you’re

used to, so let me explain how it works. Consider the condition as a statement all

by itself:

$row = $result->fetch();

The fetch method of the PDOStatement object returns the next row in the result

set as an array (we discussed arrays in Chapter 2). When there are no more rows

in the result set, fetch returns false instead.2

Now, the above statement assigns a value to the $row variable, but, at the same

time, the statement as a whole takes on that same value. This is what lets you use

the statement as a condition in the while loop. Since a while loop will keep

looping until its condition evaluates to false, this loop will occur as many times

as there are rows in the result set, with $row taking on the value of the next row

each time the loop executes. All that’s left to figure out is how to retrieve the

values out of the $row variable each time the loop runs.

Rows of a result set returned by fetch are represented as associative arrays, with

the indices named after the table columns in the result set. If $row is a row in our

result set, $row['joketext'] is the value in the joketext column of that row.

Our goal in this code is to store away the text of all the jokes so that we can

2. This is one case where asking a PDO object to do something it cannot do (as fetch

cannot return the next row when there are no rows left in the result set) will not throw a

PDOException. If it did, we’d be unable to use the fetch method in a while loop

condition the way we do here.

140 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

display them in a PHP template. The best way to do this is to store each joke as a

new item in an array, $jokes:

while ($row = $result->fetch()) {

$jokes[] = $row['joketext'];

}

With the jokes pulled out of the database, we can now pass them along to a PHP

template jokes.html.php.

To summarize, here’s the code of the controller for this example so far:

<?php

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'SELECT `joketext` FROM `joke`';

$result = $pdo->query($sql);

while ($row = $result->fetch()) {

$jokes[] = $row['joketext'];

}

} catch (PDOException $e) {

$output = 'Unable to connect to the database server: ' .

$e->getMessage() . ' in ' .

$e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/jokes.html.php';

The $jokes variable is an array that stores a list of jokes. If you wrote out the

contents of the array in PHP it would look something like this:

Publishing MySQL Data on the Web 141

www.EBooksWorld.ir

$jokes = [];

$jokes[0] = 'A programmer was found dead in the shower. The

➥ instructions read: lather, rinse, repeat.';
$jokes[1] = '!false - it\'s funny because it\'s true';

$jokes[2] = 'A programmer\'s wife tells him to go to the

➥ store and "get a gallon of milk, and if they have eggs, get a
➥ dozen." He returns with 13 gallons of milk.';

However, the data has been retrieved from the database rather than being typed

out manually in the code.

You’ll have noticed that there are two different variables being set, $jokes and

$error, depending on whether the try block executed successfully.

In the jokes.html.php template, we need to display the contents of the $jokes

array or the error message contained in the $error variable.

To check whether a variable has been assigned a value, we can use the isset

function that we used earlier for checking if a form has been submitted. The

template can include an if statement to determine whether to display the error or

the list of jokes.

if (isset($error)) {

?>

<p>

<?php

echo $error;

?>

</p>

}

else {

: display the jokes

}

There’s nothing new here, but to display the jokes, we need to display the

contents of the $jokes array. Unlike other variables we’ve used up to this point,

142 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

the $jokes array contains more than just a single value.

The most common way to process an array in PHP is to use a loop. We’ve already

seen while loops and for loops. The foreach loop is particularly helpful for

processing arrays:

foreach (array as $item) {

⋮ process each $item
}

Instead of a condition, the parentheses at the top of a foreach loop contain an

array, followed by the keyword as, and then the name of a new variable that will

be used to store each item of the array in turn. The body of the loop is then

executed once for each item in the array. Each time that item is stored in the

specified variable, so that the code can access it directly.

It’s common to use a foreach loop in a PHP template to display each item of an

array in turn. Here’s how this might look for our $jokes array:

<?php

foreach ($jokes as $joke) {

?>

⋮ HTML code to output each $joke
<?php

}

?>

With this blend of PHP code to describe the loop and HTML code to display it,

the code looks rather untidy. Because of this, it’s common to use an alternative

way of writing the foreach loop when it’s used in a template:

foreach (array as $item):

⋮ process each $item
endforeach;

Publishing MySQL Data on the Web 143

www.EBooksWorld.ir

The two pieces of code are functionally identical, but the latter looks more

friendly when mixed with HTML code. Here’s how this form of the code looks in

a template:

<?php foreach ($jokes as $joke): ?>

⋮ HTML code to output each $joke
<?php endforeach; ?>

The same thing can be done with the if statement, making it nicer to look at

inside HTML templates by avoiding the braces:

<?php if (isset($error)): ?>

<p>

<?php echo $error; ?>

</p>

<?php else: ?>

: display the jokes

<?php endif; ?>

With these new tools in hand, we can write our template to display the list of

jokes:

144 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

4-12. MySQL-ListJokes

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>List of jokes</title>

</head>

<body>

<?php if (isset($error)): ?>

<p>

<?php echo $error; ?>

</p>

<?php else: ?>

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?php echo htmlspecialchars($joke,

ENT_QUOTES, 'UTF-8') ?>

</p>

</blockquote>

<?php endforeach; ?>

<?php endif; ?>

</body>

</html>

Either the $error text is displayed on the page or each joke is displayed in a

paragraph (<p>) contained within a block quote (<blockquote>), since we’re

effectively quoting the author of each joke in this page.

Because jokes might conceivably contain characters that could be interpreted as

HTML code (for example, <, >, or &), we must use htmlspecialchars to ensure

they’re translated into HTML character entities (that is, <, >, and &) so

that they’ll be displayed correctly.

The following image shows what this page looks like once you’ve added a couple

of jokes to the database.

Publishing MySQL Data on the Web 145

www.EBooksWorld.ir

4-13. A list of jokes from the database

Another neat tool PHP offers is a shorthand way to call the echo

command—which, as you’ve already seen, we need to use frequently. Our echo

statements look like this:

Using foreach

Remember how we used a while loop in our controller to fetch the rows out of the

PDOStatement result set one at a time?

while ($row = $result->fetch()) {

$jokes[] = $row['joketext'];

}

It turns out PDOStatement objects are designed to behave just like arrays when

you pass them to a foreach loop. You can therefore slightly simplify your database

processing code using a foreach loop instead of a while loop:

foreach ($result as $row) {

$jokes[] = $row['joketext'];

}

I’ll be using this tidier foreach form in the rest of this book.

146 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

<?php echo $variable; ?>

Instead, you can use this:

<?=$variable?>

This does exactly the same thing. <?= means echo and gives you a slightly shorter

way to print variables. There’s a limitation to this, though: if you use <?=, you can

only print; you can’t include if statements, for statements, etc., although you

can use concatenation, and it can be followed by a function call.

Here’s an updated template using the shorthand echo:

Publishing MySQL Data on the Web 147

www.EBooksWorld.ir

4-14. MySQL-ListJokes-Shorthand

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>List of jokes</title>

</head>

<body>

<?php if (isset($error)): ?>

<p>

<?=$error?>

</p>

<?php else: ?>

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke, ENT_QUOTES, 'UTF-8')?>

</p>

</blockquote>

<?php endforeach; ?>

<?php endif; ?>

</body>

</html>

I’ll be using the shorthand notation when it’s applicable from this point on.

Using the Shorthand

In versions of PHP prior to 5.4, this shorthand notation required a fairly uncommon

PHP setting to be enabled, so it was discouraged for compatibility reasons. Using

the shorthand notation may have caused your code to stop working when moving

from a server that had it enabled to one that didn’t.

As of PHP 5.4 (so any version you’re realistically going to encounter these days),

the shorthand echo works regardless of PHP settings, so you can safely use it

without worrying that it might not work on all servers.

148 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Thinking Ahead

In the example we just looked at, we created a template, jokes.html.php, which

contains all the HTML required to display the page. However, as our website

grows, we’ll add more pages. We’ll certainly want a page for people to be able to

add jokes to the website, and we’ll also need a home page with some introductory

text, a page with the owner’s contact details, and, as the site grows, perhaps even

a page where people can log in to the website.

I’m jumping ahead a quite a bit here, but it’s always worth considering how a

project will grow. If we apply the approach we just used for jokes.html.php to

the rest of the templates—addjoke.html.php, home.html.php,

contact.html.php, login.html.php and so on—we’ll end up with a lot of

repeated code.

Every template will look something like this:

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>IJDB - Internet Joke Database</title>

</head>

<body>

<?php if (isset($error)): ?>

<p>

<?=$error?>

</p>

<?php else: ?>

: do whatever is required for this page: show text,

: show a form, list records from the database, etc.

<?php endif; ?>

</body>

</html>

As a programmer, repeating code is one of the worst things you can do. In fact,

programmers often refer to the DRY principle, which stands for “Don’t repeat

Publishing MySQL Data on the Web 149

www.EBooksWorld.ir

yourself”. If you find yourself repeating sections of code, there is almost certainly

a better solution.

All the best programmers are lazy, and repeating code means repeating work.

Using this copy/paste approach for templates makes the website very difficult to

maintain. Let’s imagine there’s a footer and a navigation section that we want to

appear on each page. Our templates would now look like this:

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>IJDB - Internet Joke Database</title>

</head>

<body>

<nav>

<a

➥ href="index.php">Home
Jokes

➥ List

</nav>

<main>

<?php if (isset($error)): ?>

<p>

<?=$error?>

</p>

<?php else: ?>

: do whatever is required for this page: show text,

: show a form, list jokes, etc.

<?php endif; ?>

</main>

<footer>

© IJDB 2017

</footer>

</body>

150 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

</html>

We’ll run into a problem in 2018! If the templates for all the pages on the

website—for example, jokes.html.php addjoke.html.php, home.html.php,

contact.html.php andlogin.html.php—contain code in the structure above, to

update the year in the copyright notice to “2018” you’d need to open each of the

templates and change the date.

We could be clever and have the date dynamically read from the server’s clock

(echo date('Y'); if you’re curious!) to avoid this issue, but what if we wanted to

add a <script> tag that was included on every page? Or add a new link to the

menu? We’d still need to open every template file and change it!

Changing five or six templates may be slightly annoying, but it’s not going to pose

much of a problem. However, what if the website grows to dozens or hundreds of

pages? Each time you wanted to add a link to the menu you’d have to open every

single template and change it.

This problem could be solved with a series of include statements. For example:

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>IJDB - Internet Joke Database</title>

</head>

<body>

<nav>

<?php include 'nav.html.php'; ?>

</nav>

<main>

<?php if (isset($error)): ?>

<p>

<?=$error?>

</p>

<?php else: ?>

Publishing MySQL Data on the Web 151

www.EBooksWorld.ir

: do whatever is required for this page: show text,

: show a form, list jokes, etc.

<?php endif; ?>

</main>

<footer>

<?php include 'footer.html.php'; ?>

</footer>

</body>

</html>

But this method requires clairvoyance: we need to anticipate exactly what

changes might need to be made in the future and use relevant include statements

in the places we foresee changes will happen.

In the example above, for example, it’s easy to add new menu entries by adding

them to nav.html.php, but adding a <script> tag to every page, or even

something as trivial as adding a CSS class to the nav element, still means opening

every template to make the change.

There’s no way to accurately predict all the changes that might be needed over

the lifetime of the website, so instead the approach I showed you at the beginning

of this chapter is actually better:

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<link rel="stylesheet" href="jokes.css">

<title><?=$title?></title>

</head>

<body>

<header>

<h1>Internet Joke Database</h1>

</header>

<nav>

152 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

<a

➥ href="index.php">Home
Jokes

➥ List

</nav>

<main>

<?=$output?>

</main>

<footer>

© IJDB 2017

</footer>

</body>

</html>

If we always include this template, which we’ll call layout.html.php, it’s

possible to set the $output variable to some HTML code and have it appear on the

page with the navigation and footer.

I’ve also snuck in a $title variable so each controller can define a value that

appears between the <title> and </title> tag along with some CSS (available as

jokes.css in the sample code) to make the page a little prettier.

Publishing MySQL Data on the Web 153

www.EBooksWorld.ir

4-15. IJDB - Now with CSS styles

Any controller can now use include __DIR__ . '/../templates/

layout.html.php'; and provide values for $output and $title.

Our jokes.php using layout.html.php looks like this:

154 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

4-16. MySQL-ListJokes-Layout-1

<?php

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'SELECT `joketext` FROM `joke`';

$result = $pdo->query($sql);

while ($row = $result->fetch()) {

$jokes[] = $row['joketext'];

}

$title = 'Joke list';

$output = '';

foreach ($jokes as $joke) {

$output .= '<blockquote>';

$output .= '<p>';

$output .= $joke;

$output .= '</p>';

$output .= '</blockquote>';

}

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . '

in ' .$e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

But wait! What’s going on with $output in the try block? The $output variable

actually contains some HTML code: the loop builds a string containing the HTML

code for the jokes list.

Publishing MySQL Data on the Web 155

www.EBooksWorld.ir

In principle, this is what we want to happen: the $output variable contains the

HTML code that’s going to be inserted between the navigation and the footer in

layout.html.php, but I think you’ll agree the code is incredibly ugly.

I already showed you how to avoid mixing HTML and PHP code via the include

statement. Like we did earlier, it would be good to move the HTML for displaying

the jokes to its own file, but this time, only the HTML code that is unique to the

joke list page.

jokes.html.php in the templates directory should contain this code:

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke, ENT_QUOTES, 'UTF-8')?>

</p>

</blockquote>

<?php endforeach; ?>

Importantly, this is only the code for displaying the jokes. It doesn’t contain the

navigation, footer, <head> tag or anything we want repeated on every page; it’s

only the HTML code that’s unique to the joke list page.

To use this template, you might try the following:

while ($row = $result->fetch()) {

$jokes[] = $row['joketext'];

}

$title = 'Joke list';

include 'jokes.html.php';

}

Or if you’re very clever:

156 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

while ($row = $result->fetch()) {

$jokes[] = $row['joketext'];

}

$title = 'Joke list';

$output = include 'jokes.html.php';

}

With this approach, your logic would be entirely sound. We need to include the

jokes.html.php. Unfortunately, the include statement just executes the code

from the included file at the point it’s called. If you run the code above, the

output will actually be something like this:

<blockquote>

<p>

A programmer was found dead in the shower. The instructions

➥ read: lather, rinse, repeat.
</p>

</blockquote>

<blockquote>

<p>

!false - it's funny because it's true

</p>

</blockquote>

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>Joke List</title>

</head>

<body>

…

Because jokes.html.php is included first, it’s sent to the browser first. What we

need to do is load jokes.html.php, but instead of sending the output straight to

the browser, we need to capture it and store it in the $output variable so that it

Publishing MySQL Data on the Web 157

www.EBooksWorld.ir

can be used later by layout.html.php.

The include statement doesn’t return a value, so $output = include

'jokes.html.php'; does not have the desired effect, and PHP doesn’t have an

alternative statement to do that. However, that doesn’t mean that it’s not possible.

PHP does have a useful feature called “output buffering”. It might sound

complicated, but the concept is actually very simple: when you use echo to print

something, or include to include a file that contains HTML, usually it’s sent

directly to the browser. By making use of output buffering, instead of having the

output being sent straight to the browser, the HTML code is stored on the server

in a “buffer”, which is basically just a string containing everything that’s been

printed so far.

Even better, PHP lets you turn on the buffer and read its contents at any time.

There are two functions we need:

ob_start(), which starts the output buffer. After calling this function,

anything printed via echo or HTML printed via include will be stored in a

buffer rather than sent to the browser.

ob_get_clean(), which returns the contents of the buffer and clears it.

As you’ve probably guessed, “ob” in the function names stands for “output

buffer”.

To capture the contents of an included file, we just need to make use of these two

functions:

while ($row = $result->fetch()) {

$jokes[] = $row['joketext'];

}

$title = 'Joke list';

// Start the buffer

ob_start();

158 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

// Include the template. The PHP code will be executed,

// but the resulting HTML will be stored in the buffer

// rather than sent to the browser.

include __DIR__ . '/../templates/jokes.html.php';

// Read the contents of the output buffer and store them

// in the $output variable for use in layout.html.php

$output = ob_get_clean();

}

When this code runs, the $output variable will contain the HTML that was

generated in the jokes.html.php template.

We’ll use this approach from now on. Each page will be made up of two

templates:

layout.html.php, which contains all of the common HTML needed by every

page

a unique template that contains only the HTML code that’s unique to that

particular page

The complete jokes.php looks like this:

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'SELECT `joketext` FROM `joke`';

$result = $pdo->query($sql);

while ($row = $result->fetch()) {

$jokes[] = $row['joketext'];

}

Publishing MySQL Data on the Web 159

www.EBooksWorld.ir

$title = 'Joke list';

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

}

catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

Let’s make the “Home” link work by adding an index.php. We could put

anything on this page: the latest jokes, the best joke of the month or whatever we

like. For now, though, we’ll keep it simple and just have a message that says

“Welcome to the Internet Joke Database”.

Create a file called home.html.php in the templates folder:

<h2>Internet Joke Database</h2>

<p>Welcome to the Internet Joke Database</p>

Our index.php is considerably simpler than jokes.html.php. It doesn’t get any

information from the database, so it doesn’t need a database connection and we

don’t need a try … catch statement, so we’ll just load the two templates and set

the $title and $output variables:

160 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

4-17. MySQL-ListJokes-Layout-3

<?php

$title = 'Internet Joke Database';

ob_start();

include __DIR__ . '/../templates/home.html.php';

$output = ob_get_clean();

include __DIR__ . '/../templates/layout.html.php';

Test that both pages work in your browser. You should have a list of jokes visible

when you visit http://192.168.10.10/jokes.php and the welcome message on

http://192.168.10.10. Both pages should contain the navigation and the footer.

Try amending layout.html.php. The changes you make will appear on both

pages. If the site had dozens of pages, changes to the layout would affect every

page.

Inserting Data into the Database

In this section, I’ll demonstrate how to use the tools at your disposal to enable

site visitors to add their own jokes to the database.

If you want to let your site visitors enter new jokes, you’ll obviously need a form.

Here’s a template for a form that will fit the bill:

<form action="" method="post">

Only Connect to the Database Where Necessary

It’s good practice to only connect to the database if you need to. Databases are the

most common performance bottleneck on most websites, so making as few

connections as possible is preferred.

Publishing MySQL Data on the Web 161

www.EBooksWorld.ir

<label for="joketext">Type your joke here:

</label>

<textarea id="joketext" name="joketext"

rows="3" cols="40">

</textarea>

<input type="submit" name="submit" value="Add">

</form>

Save this as addjoke.html.php in the templates directory.

The most important part of the <form> element is the action attribute. The

action attribute tells the browser where to send the data once the form is

submitted. This can be the name of a file, such as "addjoke.php".

However, if you leave the attribute empty by setting it to "", the data provided by

the user will be sent back to the page you’re currently viewing. If the browser’s

URL shows the page as addjoke.php, that’s were the data will be sent when the

user presses the submit button.

Let’s tie this form into the preceding example, which displayed the list of jokes in

the database. Open up layout.html.php and add a link to Add a new Joke which

goes to addjoke.php:

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<link rel="stylesheet" href="jokes.css">

<title><?=$title?></title>

</head>

<body>

<nav>

<header>

<h1>Internet Joke Database</h1>

</header>

<a

➥ href="index.php">Home

162 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Jokes

➥ List
Add a new

➥ Joke

</nav>

<main>

<?=$output?>

</main>

<footer>

© IJDB 2017

</footer>

</body>

</html>

While you have layout.html.php open, include the form.css stylesheet from

Chapter 2 as I have above. Now, any form displayed inside the layout will have

the styles we used before.

When this form is submitted, the request will include a variable, joketext, that

contains the text of the joke as typed into the text area. This variable will then

appear in the $_POST array created by PHP.

Let’s create addjoke.php in the public directory. The basic logic for this

controller is:

If no joketext POST variable is set, display a form.

Otherwise, insert the supplied joke into the database.

Create this skeleton addjoke.php:

<?php

if (isset($_POST['joketext'])) {

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

Publishing MySQL Data on the Web 163

www.EBooksWorld.ir

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

} else {

$title = 'Add a new joke';

ob_start();

include __DIR__ . '/../templates/addjoke.html.php';

$output = ob_get_clean();

}

include __DIR__ . '/../templates/layout.html.php';

This opening if statement checks if the $_POST array contains a variable called

joketext. If it’s set, the form has been submitted; otherwise, the form from

addjoke.html.php is loaded into the $output variable for displaying in the

browser.

If you do open addjoke.php in your browser at this point, you’ll see the form, but

typing in a joke and pressing submit won’t work, because we haven’t yet done

anything with the data contained in $_POST['joketext'].

To insert the submitted joke into the database, we must execute an INSERT query

using the value stored in $_POST['joketext'] to fill in the joketext column of

the joke table. This might lead you to write some code like this:

$sql = 'INSERT INTO `joke` SET

`joketext` ="' . $_POST['joketext'] . '",

`jokedate` ="2017-02-04"';

$pdo->exec($sql);

164 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

There is a serious problem with this code, however: the contents of

$_POST['joketext'] are entirely under the control of the user who submitted the

form. If a malicious user were to type some nasty SQL code into the form, this

script would feed it to your MySQL server without question. This type of attack is

called an SQL injection attack, and in the early days of PHP it was one of the

most common security holes that hackers found and exploited in PHP-based

websites.

If the user types How many programmers does it take to screw in a

lightbulb? None, it's a hardware problem. into the text box, the query sent

to the database will be:

INSERT INTO `joke` SET

`joketext` ="How many programmers does it take to screw

in a lightbulb? None, it's a hardware problem.",

`jokedate` ="2017-02-04

But what if the user types in the joke: A programmer's wife tells him to go

to the store and "get a gallon of milk, and if they have eggs, get a

dozen." He returns with 13 gallons of milk.

In this case, the query sent to the database will be:

INSERT INTO `joke` SET

`joketext`="A programmer's wife tells him to go to the store

and "get a gallon of milk, and if they have eggs, get

a dozen."

He returns with 13 gallons of milk.",

`jokedate`="2017-02-04

Because the joke contains a quote character, MySQL will return an error, as it will

see the quote before get as the end of the string.

To make this a valid query, we need to escape all quotes in the text so that the

query sent to the database becomes:

Publishing MySQL Data on the Web 165

www.EBooksWorld.ir

INSERT INTO `joke` SET

`joketext`="A programmer's wife tells him to go to the store

and \"get a gallon of milk, and if they have eggs, get a

➥ dozen.\"
He returns with 13 gallons of milk.",

`jokedate`="2017-02-04

Data not being inserted if it contains a quote is an annoying problem for users.

They’ll lose whatever they typed in. But malicious users are able to abuse this. In

older versions of PHP, it was possible to run multiple queries from PHP by

separating them with a semicolon (;).

Imagine if the user typed this into the box:

"; DELETE FROM `joke`; --

This would send the following queries to the database:

INSERT INTO `joke` SET

`joketext`="";

DELETE FROM `joke`;

--`jokedate`="2017-02-04

-- is a single line comment in MySQL, so the last line would be ignored, and the

INSERT query would run, followed by the DELETE query the user had typed into

the box. In fact, the user could type any query they like into the box and it will be

run on the database!

In the early days of PHP, these attacks were so feared that the team behind PHP

added some built-in protections against SQL injections to the language. Firstly,

they disabled the ability to send multiple queries at once. Secondly, they added

something called magic quotes. This protective feature of PHP automatically

analyzed all values submitted by the browser and inserted backslashes (\) in front

166 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

of any “dangerous” characters like apostrophes—which can cause problems if

they’re included in an SQL query inadvertently.

The problem with the magic quotes feature is that it causes as many problems as

it prevents. First of all, the characters that it detects and the method it uses to

sanitize them (prefixing them with a backslash) are only valid in some

circumstances. Depending on the character encoding of your site and the

database server you’re using, these measures may be completely ineffective.

Second, when a submitted value is used for some purpose other than creating an

SQL query, those backslashes can be really bothersome. I mentioned this briefly

in Chapter 2 when, in the welcome message example, the magic quotes feature

would insert a spurious backslash into the user’s last name if it contained an

apostrophe.

In short, the magic quotes feature was a bad idea, so much so that it’s been

removed from PHP since version 5.4. However, due to PHP’s age and the amount

of code out there, you might come across some references to it, so it’s worth

having a basic understanding of what it was supposed to do.

Once magic quotes was identified as a bad idea, the advice from PHP developers

was to turn it off. However, this meant that there were some web servers with it

turned off and others with it turned on. This was a headache for developers: they

either had to instruct everyone who was ever going to use their code to turn it

off—which wasn’t possible on some shared servers—or write extra code to

account for it.

Most developers chose the latter, and you may come across some code like this:

if (get_magic_quotes_gpc()) {

// code here

}

If you see an if statement like this in legacy code you’ve been given to work

with, you can safely delete the entire block, as no code inside the if statement

will ever be executed on recent PHP versions.

Publishing MySQL Data on the Web 167

www.EBooksWorld.ir

If you do see code like this, it means the original developer understood the

problems with magic quotes and was doing their best to prevent it. As of PHP 5.4

(which you should never come across, as it’s no longer supported)

get_magic_quotes_gpc() will always return false and the code will never be

executed.

All you really need to know about magic quotes is that it was a bad solution to

the problem at hand. Of course, without magic quotes, you need to find a

different solution to the problem. Luckily, the PDO class can do all the hard work

for you using something called prepared statements.

A prepared statement is a special kind of SQL query that you’ve sent to your

database server ahead of time, giving the server a chance to prepare it for

execution—but not actually execute it. Think of it like writing a .php script. The

code is there, but doesn’t actually get run until you visit the page in your web

browser. The SQL code in prepared statements can contain placeholders that

you’ll supply the values for later, when the query is to be executed. When filling

in these placeholders, PDO is smart enough to guard against “dangerous”

characters automatically.

Here’s how to prepare an INSERT query and then execute it safely with

$_POST['joketext'] as the text of the joke:

$sql = 'INSERT INTO `joke` SET

`joketext` = :joketext,

`jokedate` = "today's date"';

$stmt = $pdo->prepare($sql);

$stmt->bindValue(':joketext', $_POST['joketext']);

$stmt->execute();

Let’s break this down one statement at a time. First, we write our SQL query as a

PHP string and store it in a variable ($sql) as usual. What’s unusual about this

INSERT query, however, is that no value is specified for the joketext column.

Instead, it contains a placeholder for this value (:joketext). Don’t worry about

the jokedate field just now—we’ll circle back to it in a moment.

168 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Next, we call the prepare method of our PDO object ($pdo), passing it our SQL

query as an argument. This sends the query to the MySQL server, asking it to

prepare to run the query. MySQL can’t run it yet—there’s no value for the

joketext column. The prepare method returns a PDOStatement object (yes, the

same kind of object that gives us the results from a SELECT query), which we store

in $stmt.

Now that MySQL has prepared our statement for execution, we can send it the

missing value(s) by calling the bindValue method of our PDOStatement object

($stmt). We call this method once for each value to be supplied (in this case, we

only need to supply one value—the joke text), passing as arguments the

placeholder that we want to fill in (':joketext') and the value we want to fill it

with ($_POST['joketext']). Because MySQL knows we’re sending it a discrete

value, rather than SQL code that needs to be parsed, there’s no risk of characters

in the value being interpreted as SQL code. Using prepared statements, SQL

injection vulnerabilities simply aren’t possible!

Finally, we call the PDOStatement object’s execute method to tell MySQL to

execute the query with the value(s) we’ve supplied.3

One interesting thing you’ll notice about this code is that we never placed quotes

around the joke text. :joketext exists inside the query without any quotes, and

when we called bindValue we passed it the plain joke text from the $_POST array.

When using prepared statements, you don’t need quotes because the database (in

our case, MySQL) is smart enough to know that the text is a string and it will be

treated as such when the query is executed.

The lingering question in this code is how to assign today’s date to the jokedate

field. We could write some fancy PHP code to generate today’s date in the

YYYY-MM-DD format that MySQL requires, but it turns out that MySQL itself has a

function to do this: CURDATE:

$sql = 'INSERT INTO `joke` SET

`joketext` = :joketext,

`jokedate` = CURDATE()';

3. Yes, this PDOStatement method is called execute, unlike the similar method of PDO

objects, which is called exec. PHP has many strengths, but consistency isn’t one of them.

Publishing MySQL Data on the Web 169

www.EBooksWorld.ir

$stmt = $pdo->prepare($sql);

$stmt->bindValue(':joketext', $_POST['joketext']);

$stmt->execute();

The MySQL CURDATE function is used here to assign the current date as the value

of the jokedate column. MySQL actually has dozens of these functions, but I’ll

introduce them only as required.

Now that we have our query, we can complete the if statement we started earlier

to handle submissions of the “Add Joke” form:

if (isset($_POST['joketext'])) {

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'INSERT INTO `joke` SET

`joketext` = :joketext,

`jokedate` = CURDATE()';

$stmt = $pdo->prepare($sql);

$stmt->bindValue(':joketext', $_POST['joketext']);

$stmt->execute();

}

catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

}

170 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

But wait! This if statement has one more trick up its sleeve. Once we’ve added

the new joke to the database, instead of displaying the PHP template as

previously, we want to redirect the user’s browser back to the list of jokes. That

way they’re able to see the newly added joke among them. That’s what the two

lines at the end of the if statement above do.

In order to achieve the desired result, your first instinct might be to allow the

controller to simply fetch the list of jokes from the database after adding the new

joke and displaying the list using the jokes.html.php template as usual. The

problem with doing this is that the list of jokes, from the browser’s perspective,

would be the result of having submitted the “Add Joke” form. If the user were

then to refresh the page, the browser would resubmit that form, causing another

copy of the new joke to be added to the database! This is rarely the desired

behavior.

Instead, we want the browser to treat the updated list of jokes as a normal web

page that’s able to be reloaded without resubmitting the form. The way to do this

is to answer the browser’s form submission with an HTTP redirect4—a special

response that tells the browser to navigate to a different page.

The PHP header function provides the means of sending special server responses

like this one, by letting you insert specific headers into the response sent to the

browser. In order to signal a redirect, you must send a Location header with the

URL of the page to which you wish to direct the browser:

header('Location: URL');

In this case, we want to send the browser to jokes.php. Here are the two lines

that redirect the browser back to our controller after adding the new joke to the

database:

header('Location: jokes.php');

4. HTTP stands for HyperText Transfer Protocol, and is the language that describes the

request/response communications that are exchanged between the visitor’s web browser

and your web server.

Publishing MySQL Data on the Web 171

www.EBooksWorld.ir

Here’s the complete code of the addjoke.php controller:

4-18. MySQL-AddJoke

<?php

if (isset($_POST['joketext'])) {

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'INSERT INTO `joke` SET

`joketext` = :joketext,

`jokedate` = CURDATE()';

$stmt = $pdo->prepare($sql);

$stmt->bindValue(':joketext', $_POST['joketext']);

$stmt->execute();

header('location: jokes.php');

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

} else {

$title = 'Add a new joke';

ob_start();

include __DIR__ . '/../templates/addjoke.html.php';

$output = ob_get_clean();

}

include __DIR__ . '/../templates/layout.html.php';

172 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

As you review this to ensure it all makes sense to you, note that the code that

connects to the database by creating a new PDO object must come before any of the

code that runs database queries. But a database connection isn’t required for

displaying the “Add Joke” form. The connection is only made when the form has

been submitted.

Load this up and add a new joke or two to the database via your browser.

There you have it: you’re able to view existing jokes in—and add new jokes

to—your MySQL database.

Deleting Data from the Database

In this section, we’ll make one final enhancement to our joke database site. Next

to each joke on the jokes page (jokes.php), we’ll place a button labeled Delete.

When clicked, it will remove that joke from the database and display the updated

joke list.

If you like a challenge, you might want to take a stab at writing this feature

yourself before you read on to see my solution. Although we’re implementing a

brand new feature, we’ll mainly be using the same tools as employed in the

previous examples in this chapter. Here are a few hints to start you off:

You’ll need a new controller (deletejoke.php).

The SQL DELETE command will be required, which I introduced in Chapter 3

To delete a particular joke in your controller, you’ll need to identify it

uniquely. The id column in the joke table was created to serve this purpose.

You’re going to have to pass the ID of the joke to be deleted with the request to

delete a joke. The easiest way to do this is to use a hidden form field.

At the very least, take a few moments to think about how you’d approach this.

When you’re ready to see the solution, read on!

To begin with, we need to modify the SELECT query that fetches the list of jokes

from the database. In addition to the joketext column, we must also fetch the id

column so that we can identify each joke uniquely:

Publishing MySQL Data on the Web 173

www.EBooksWorld.ir

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'SELECT `id`, `joketext` FROM `joke`';

$result = $pdo->query($sql);

// …

We also have to modify the while loop that stores the database results into the

$jokes array. Instead of simply storing the text of each joke as an item in the

array, we store both the ID and text of each joke. One way to do this is to make

each item in the $jokes array an array in its own right:

while ($row = $result->fetch()) {

$jokes[] = ['id' => $row['id'], 'joketext' =>

$row['joketext']];

}

Once this loop runs its course, we’ll have the $jokes array, each item of which is

an associative array with two items: the ID of the joke and its text. For each joke

($jokes[n]), we can therefore retrieve its ID ($jokes[n]['id']) and its text

($jokes[n]['text']).

Our next step is to update the jokes.html.php template to retrieve each joke’s

Using a foreach Loop Instead

If you’ve already switched to using a foreach loop to process your database result

rows, that will work just fine too:

foreach ($result as $row) {

$jokes[] = array('id' => $row['id'], 'joketext' =>

$row['joketext']);

}

174 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

text from this new array structure, as well as provide a Delete button for each

joke:

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke['joketext'],

ENT_QUOTES, 'UTF-8')?>

<form action="deletejoke.php" method="post">

<input type="hidden" name="id"

➥ value="<?=$joke['id']?>">
<input type="submit" value="Delete">

</form>

</p>

</blockquote>

<?php endforeach; ?>

Here are the highlights of this updated code:

Each joke will be displayed with a form, which, if submitted, will delete that

joke. We signal this to a new controller, deletejoke.php, using the form’s

action attribute.

Since each joke in the $jokes array is now represented by a two-item array

instead of a simple string, we must update this line to retrieve the text of the

joke. We do this using $joke['text'] instead of just $joke.

When we submit the form to delete this joke, we send along the ID of the joke

to be deleted. To do this, we need a form field containing the joke’s ID, but

we’d prefer to keep this field hidden from the user; that’s why we use a

hidden form field (input type="hidden"). The name of this field is id, and its

value is the ID of the joke to be deleted ($joke['id']).

Unlike the text of the joke, the ID is not a user-submitted value, so there’s no

need to worry about making it HTML-safe with htmlspecialchars. We can

rest assured it will be a number, since it’s automatically generated by MySQL

for the id column when the joke is added to the database.

Publishing MySQL Data on the Web 175

www.EBooksWorld.ir

The submit button (input type="submit") submits the form when clicked. Its

value attribute gives it a label of Delete.

Finally, we close the form for this joke.

Add the following CSS to jokes.css to make the buttons appear to the right of

the jokes and draw a line between them:

blockquote {display: table; margin-bottom: 1em;

➥ border-bottom: 1px solid #ccc; padding: 0.5em;}
blockquote p {display: table-cell; width: 90%;

➥ vertical-align: top;}
blockquote form {display: table-cell; width: 10%;}

The following image shows what the joke list looks like with the Delete buttons

added:

Why Aren’t the Form and Input Tags Outside the Blockquote?

If you know your HTML, you’re probably thinking the form and input tags belong

outside of the blockquote element, since they aren’t a part of the quoted text (the

joke).

Strictly speaking, that’s true: the form and its inputs should really be either before

or after the blockquote. Unfortunately, making that tag structure display clearly

requires a little CSS code that’s really beyond the scope of this book.

Rather than teach you CSS layout techniques in a book about PHP and MySQL, I’ve

decided to go with this imperfect markup. If you plan to use this code in the real

world, you should invest some time into learning CSS (or at least secure the

services of a CSS guru). That way, you can take complete control of your HTML

markup without worrying about the CSS required to make it look nice.

176 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

4-19. Each button can delete its respective joke

But wait! Before we move on to making the Delete button work, let’s briefly step

back and take a careful look at this line:

$jokes[] = ['id' => $row['id'], 'joketext' =>

$row['joketext']];

Here we’re looping over the PDOStatement object, which gives us a $row variable

containing the keys id and joketext along with corresponding values, and we’re

using that to build another array with the same keys and values.

You may have already realized this is terribly inefficient. We could achieve the

same thing using this code:

while ($row = $result->fetch()) {

$jokes[] = $row;

}

But as we know, this can also be achieved with a foreach loop:

Publishing MySQL Data on the Web 177

www.EBooksWorld.ir

foreach ($result as $row) {

$jokes[] = $row;

}

In this instance, we’re using foreach to iterate over the records from the database

and build an array. We’re then looping over the array with another foreach loop

in the template. We could just write:

$jokes = $result;

Now, when $jokes is iterated over in the template, it’s not an array but a

PDOStatement object. However, that has no effect on the output and saves us

some code. In fact, we can omit the $result variable altogether and load the

PDOStatement object directly into the $jokes variable. The complete jokes.php

controller now looks like this:

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'SELECT `joketext`, `id` FROM joke';

$jokes = $pdo->query($sql);

$title = 'Joke list';

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

}

catch (PDOException $e) {

$title = 'An error has occurred';

178 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

Now we don’t even have a while loop iterating over the records in the controller,

but just iterate over the records directly in the template, saving some code and

making the page execute slightly faster, as it now only loops over the records

once.

Back to our new Delete button: all that remains to make this new feature work is

to add a relevant deletejoke.php to issue a DELETE query to the database:

try {

$pdo = new

➥ PDO('mysql:host=localhost;dbname=ijdb;charset=utf8',
'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'DELETE FROM `joke` WHERE `id` = :id';

$stmt = $pdo->prepare($sql);

$stmt->bindValue(':id', $_POST['id']);

$stmt->execute();

header('location: jokes.php');

}

catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Unable to connect to the database server: ' .

➥ $e->getMessage() . ' in '
. $e->getFile() . ':' . $e->getLine();

}

Publishing MySQL Data on the Web 179

www.EBooksWorld.ir

include __DIR__ . '/../templates/layout.html.php';

The complete code for the updated jokes.php and deletejoke.php is available

as MySQL-DeleteJoke.

This chunk of code works exactly like the one we added to process the “Add

Joke” code earlier in the chapter. We start by preparing a DELETE query with a

placeholder for the joke ID that we wish to delete.5 We then bind the submitted

value of $_POST['id'] to that placeholder and execute the query. Once that query

is achieved, we use the PHP header function to ask the browser to send a new

request to view the updated list of jokes.

5. You might think that a prepared statement is unnecessary in this instance to protect our

database from SQL injection attacks, since the joke ID is provided by a hidden form field

invisible to the user. In fact, all form fields—even hidden ones—are ultimately under the

user’s control. There are widely distributed browser add-ons, for example, that will make

hidden form fields visible and available for editing by the user. Remember: any value

submitted by the browser is ultimately suspect when it comes to protecting your site’s

security.

180 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Don’t Use Hyperlinks to Perform Actions

If you tackled this example yourself, your first instinct might have been to provide a

Delete hyperlink for each joke, instead of going to the trouble of writing an entire

HTML form containing a Delete button for each joke on the page. Indeed, the code

for such a link would be much simpler:

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke['joketext'],

ENT_QUOTES, 'UTF-8')?>

<a href="deletejoke.php&

id=<?=$joke['id']?>">Delete

</p>

</blockquote>

<?php endforeach; ?>

In short, hyperlinks should never be used to perform actions (such as deleting a

joke); they must only be used to provide a link to some related content. The same

goes for forms with method="get", which should only be used to perform queries

of existing data. Actions must only ever be performed as a result of a form with

method="post" being submitted.

The reason why is that forms with method="post" are treated differently by

browsers and related software. If you were to submit a form with method="post"

and then click the Refresh button in your browser, for example, the browser would

ask if you’re certain you wish to resubmit the form. Browsers have no similar

protection against resubmission when it comes to links and forms with

method="get".

Similarly, web accelerator software (and some modern browsers) will automatically

follow hyperlinks present on a page in the background, so that the target pages will

be available for immediate display if the user clicks one of those links. Search

engines will also follow all the links on your site in order to work out when to

show your site’s pages in search results.

If your site deleted a joke as a result of a hyperlink being followed, you could find

your jokes being deleted automatically.

Publishing MySQL Data on the Web 181

www.EBooksWorld.ir

Mission Accomplished

In this chapter, you learned all about PHP Data Objects (PDO), a collection of

built-in PHP classes (PDO, PDOException, and PDOStatement) that allow you to

interface with a MySQL database server by creating objects and then calling the

methods they provide. While you were at it, you also picked up the basics of

object-oriented programming (OOP), no mean feat for a PHP beginner!

Using PDO objects, you built your first database-driven website, which published

the ijdb database online and allowed visitors to add and delete jokes.

In a way, you could say this chapter achieved the stated mission of this book: to

teach you how to build a database-driven website. Of course, the example in this

chapter contained only the bare essentials. In the rest of the book, I’ll show you

how to flesh out the skeleton you learned to build in this chapter.

In the next chapter, we return to the SQL Query window in MySQL Workbench.

We’ll learn how to use relational database principles and advanced SQL queries

to represent more complex types of information, and give our visitors credit for

the jokes they add!

182 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

5Chapter

Relational Database Design

Since Chapter 3, we’ve worked with a very simple database of jokes, composed of

a single table named (appropriately enough) joke. While this database has served

us well as an introduction to MySQL databases, there’s more to relational

database design than can be understood from this simple example. In this

chapter, we’ll expand on this database and learn a few new features of MySQL, in

an effort to realize and appreciate the real power that relational databases have to

offer.

Be forewarned that I’ll cover several topics only in an informal, non-rigorous sort

of way. As any computer science major will tell you, database design is a serious

area of research, with tested and mathematically provable principles that, while

useful, are beyond the scope of this text.

For more complete coverage of database design concepts and SQL in general, pick

Relational Database Design 183

www.EBooksWorld.ir

up a copy of Simply SQL. If you’re really into learning the hard principles behind

relational databases, Database in Depth (Sebastopol: O’Reilly, 2005) is a

worthwhile read

Giving Credit Where Credit Is Due

To start off, let’s recall the structure of our joke table. It contains three columns:

id, joketext, and jokedate. Together, these columns allow us to identify jokes

(id), and keep track of their text (joketext) and the date they were entered

(jokedate). For your reference, here’s the SQL code that creates this table and

inserts a couple of entries:1

Code to create a simple joke table

CREATE TABLE `joke` (

`id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

`joketext` TEXT,

`jokedate` DATE NOT NULL

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

Adding jokes to the table

INSERT INTO `joke` SET

`joketext` = 'Why was the empty array stuck outside? It

➥ didn\'t have any keys',
`jokedate` = '2017-04-01';

INSERT INTO `joke`

(`joketext`, `jokedate`) VALUES (

'!false - It\'s funny because it\'s true',

"2017-04-01"

);

1. If you ever need to re-create your database from scratch, you can use MySQL Workbench

to drop all the tables and then go to Data Import/Restore and select the database.sql

from the sample code. Note that the database.sql file will change depending on which

sample you’re viewing. In this way, you can use the .sql files in this book’s code archive

as database snapshots to load up whenever you need them.

184 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://www.sitepoint.com/books/sql1/
http://oreilly.com/catalog/9780596100124/

Now, let’s say we wanted to track another piece of information about our jokes:

the names of the people who submitted them. It would be natural to add a new

column to our joke table for this. The SQL ALTER TABLE command (which we’ve

yet to see) lets us do exactly that.

As I demonstrated earlier, you can either type out these queries yourself or have a

tool such as MySQL Workbench do it for you. When you use the GUI of MySQL

Workbench to interact with the database, it generates the queries for you. It even

shows them to you before applying them to the database. If you’re not quite sure

how to write a query, you can always get MySQL Workbench to generate it for

you and then amend it to suit your needs.

SQL Queries fall into two categories:

Data definition language (DDL) queries. These are the queries that describe

how the data will be stored. These are the CREATE TABLE and CREATE

DATABASE queries that I showed you in Chapter 3 along with the

aforementioned ALTER TABLE query.

Data manipulation language (DML) queries. These are the queries that you

use to manipulate the data in the database. You’ve seen some of these already:

INSERT, UPDATE, DELETE and SELECT.

It’s worthwhile for a PHP developer to learn the syntax and different variations of

the DML queries, as they regularly need to be typed out in PHP scripts. It’s also

useful to know what’s going on behind the scenes. That said, it’s not going to be

detrimental to your progress as a developer to have MySQL Workbench generate

your DDL queries rather than typing them out yourself. Having the queries

generated for you can be a time saver, as it gives you a lot less syntax learn, and

the DDL query format can be considerably more difficult to follow than most of

the DML queries.

To add a new column to a database table, open up MySQL Workbench,, connect

to your database, double-click on the schema we created in Chapter 3 called ijdb,

and expand the tables entry. You’ll see the joke table.

Relational Database Design 185

www.EBooksWorld.ir

To add a new column, right click on the table name and select “Alter Table”. This

will bring up the familiar table editing screen. From here you can add columns in

the same way you did in Chapter 3.

Add a new column called authorname, which is going to store the name of the

joke’s author along with each joke. Set the type to VARCHAR(255). The type

declared is a variable-length character string of up to 255 characters,

VARCHAR(255)—plenty of space for even very esoteric names. Let’s also add a

column for the authors’ email addresses, set the column name to authoremail

and the type to VARCHAR(255).

Once you press Apply, you’ll see a confirmation dialog appear with the following

DDL queries:

ALTER TABLE `joke` ADD COLUMN `authorname` VARCHAR(255)

ALTER TABLE `joke` ADD COLUMN `authoremail` VARCHAR(255)

You could have typed these in yourself, but the GUI in MySQL Workbench

provides some useful error checks, and it will always generate valid queries.

Just to make sure the two columns were added properly, right-click on the table

name in the Schemas panel and select “Select Rows - Limit 1000”. You should

see the two extra columns listed. Of course, at the moment, none of your jokes

have values for either of these fields.

This should give you a table of results like the one below:

May Need to Boot the Server

If you’ve logged out or rebooted your PC since the last chapter, you’ll need to boot

your server as you did in Chapter 1 using the vagrant up command.

186 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

5-1. Our joke table now contains five columns

Looks good, right? Obviously, to accommodate this expanded table structure,

we’d need to make changes to the HTML and PHP form code we wrote in Chapter

4 that allowed us to add new jokes to the database. Using UPDATE queries, we

could now add author details to all the jokes in the table. But before we spend too

much time on such changes, we should stop and consider whether this new table

design was the right choice here. In this case, it turns out it wasn’t.

Rule of Thumb: Keep Entities Separate

As your knowledge of database-driven websites continues to grow, you may

decide that a personal joke list is too limited. In fact, you might receive more

submitted jokes than you have original jokes of your own. Let’s say you decide to

launch a website where people from all over the world can share jokes with each

other. Adding the author’s name and email address to each joke certainly makes a

lot of sense, but the method we used above leads to potential problems:

What if a frequent contributor to your site named Joan Smith changed her

email address? She might begin to submit new jokes using the new address,

but her old address would still be attached to the jokes she’d submitted in the

past. Looking at your database, you might simply think there were two people

named Joan Smith who had submitted jokes. She might inform you of the

change of address, and you may try to update all the old jokes with the new

address, but if you missed just one joke, your database would still contain

incorrect information. Database design experts refer to this sort of problem as

an update anomaly.

It would be natural for you to rely on your database to provide a list of all the

people who’ve ever submitted jokes to your site. In fact, you could easily

obtain a mailing list using the following query:

Relational Database Design 187

www.EBooksWorld.ir

SELECT DISTINCT `authorname`, `authoremail`

FROM `joke`

The word DISTINCT in the above query stops MySQL from outputting duplicate

result rows. For example, if Joan Smith submits 20 jokes to your site, using the

DISTINCT option would cause her name to only appear once in the list instead of

20 times.

Then, if for some reason, you decided to remove all the jokes that a particular

author had submitted to your site, you’d remove any record of this person from

the database in the process, and you’d no longer be able to email him or her with

information about your site! Database design experts call this a delete anomaly.

As your mailing list might be a major source of income for your site, it’s unwise

to go throwing away an author’s email address just because you disliked the jokes

that person submitted.

You have no guarantee that Joan Smith will enter her name the same way each

time. Consider the variations: Joan Smith, J. Smith, Smith, Joan—you catch

my drift. This makes keeping track of a particular author exceedingly difficult,

especially if Joan Smith also has several email addresses she likes to use.

These problems—and more—can be dealt with very easily using established

database design principles. Instead of storing the information for the authors in

the same table as the jokes, let’s create an entirely new table for our list of

authors. Just as we have an id column in our joke table to identify each joke with

a unique number, we’ll use an identically named column in our new table to

identify our authors. We can then use those author IDs in our joke table to

associate authors with their jokes. The complete database layout will look like

this:

188 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

5-2. The relationship between the joke and author tables

These tables show that there are three jokes and two authors. The authorid

column of the joke table establishes a relationship between the two tables,

indicating that Kevin Yank submitted jokes 1 and 2 and Joan Smith submitted

joke 3. Notice that since each author now only appears once in the database, and

independently of the jokes submitted, we’ve avoided all the potential problems

just outlined.

What’s really important to note about this database design is that we’re storing

information about two types of things (jokes and authors), so it’s most appropriate

to have two tables. This is a rule of thumb that you should always keep in mind

when designing a database: each type of entity (or “thing”) about which you want

to be able to store information should be given its own table.

Relational Database Design 189

www.EBooksWorld.ir

To set up the aforementioned database from scratch is fairly simple (involving

just two CREATE TABLE queries), but since we’d like to make these changes in a

nondestructive manner (that is, without losing any of our precious jokes), we’ll

use MySQL Workbench to remove the authorname and authoremail columns

from the joke table. To do this, right-click on the joke table in the Schema list

and select “Alter Table”. Once again, it will give you an editable grid containing

all the columns in the table. To delete the two columns, right-click on the column

name and select Delete Selected. You’ll need to do this for both columns. Once

you click Apply, you’ll see MySQL Workbench has generated this query for you:

ALTER TABLE `ijdb`.`joke`

DROP COLUMN `authoremail`,

DROP COLUMN `authorname`;

This is a DDL ALTER TABLE query for removing columns. As with all of these DDL

queries, you could have typed this into the query panel manually and executed it,

but we’ve used the GUI to avoid having to remember all the different commands.

Now, we need to create a new table to store the authors. To do this, follow the

same procedure you used to create the joke table: right-click on the Tables entry

in the Schemas panel and select “Create Table”.

Set the table name to author and add the following fields:

1. id, and check the PK, AI and NN boxes

2. name, VARCHAR(255)

3. email, VARCHAR(255)

Click Apply, and MySQL Workbench will generate a CREATE TABLE query similar

to this:

CREATE TABLE `author` (

`id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

`name` VARCHAR(255),

`email` VARCHAR(255)

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

190 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Finally, we add the authorid column to our joke table. Edit the joke table and

add a column called authorid with the type INT.

If you prefer, here are the CREATE TABLE commands that will create the two tables

from scratch:

Code to create a simple joke table that stores an author

➥ ID

CREATE TABLE `joke` (

`id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

`joketext` TEXT,

`jokedate` DATE NOT NULL,

`authorid` INT

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

Code to create a simple author table

CREATE TABLE `author` (

`id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

`name` VARCHAR(255),

`email` VARCHAR(255)

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

All that’s left to do is add some authors to the new table, and assign authors to all

the existing jokes in the database by filling in the authorid column.2 Go ahead

and do this now if you like, as it will give you some practice with INSERT and

UPDATE queries. If you’re rebuilding the database from scratch, however, here’s a

series of INSERT queries that will do the trick:

Adding authors to the database

We specify the IDs so they’re known when we add the jokes

➥ below.

2. For now, you’ll have to do this manually. But rest assured, in Chapter 9 we’ll see how

PHP can insert entries with the correct IDs automatically, reflecting the relationships

between them.

Relational Database Design 191

www.EBooksWorld.ir

INSERT INTO `author` SET

`id` = 1,

`name` = 'Kevin Yank',

`email` = 'thatguy@kevinyank.com';

INSERT INTO `author` (`id`, `name`, `email`)

VALUES (2, 'Tom Butler', 'tom@r.je');

Adding jokes to the database

INSERT INTO `joke` SET

`joketext` = 'How many programmers does it take to screw in

➥ a lightbulb? None, it\'s a hardware problem.',
`jokedate` = '2017-04-01',

`authorid` = 1;

INSERT INTO `joke` (`joketext`, `jokedate`, `authorid`)

VALUES (

'Why did the programmer quit his job? He didn\'t get

➥ arrays',
'2017-04-01',

1

);

INSERT INTO `joke` (`joketext`, `jokedate`, `authorid`)

VALUES (

'Why was the empty array stuck outside? It didn\'t have any

➥ keys',
'2017-04-01',

2

);

Both Kinds of INSERT

I’ve used this opportunity to refresh your memory about both kinds of INSERT

query syntax. They both do exactly the same job and have the same result, so it’s up

to you which you use, and boils down mainly to personal preference rather than

any practical reason.

192 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

SELECT with Multiple Tables

With your data now separated into two tables, it may seem that you’re

complicating the process of data retrieval. Consider, for example, our original

goal: to display a list of jokes with the name and email address of the author next

to each joke. In the single-table solution, you could gain all the information

needed to produce such a list using a single SELECT query in your PHP code:

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdb', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'SELECT `id`, `joketext` FROM `joke`';

$jokes = $pdo->query($sql);

$title = 'Joke list';

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

}

catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

With our new database layout, this would, at first, no longer seem possible. As

the author details of each joke are no longer stored in the joke table, you might

Relational Database Design 193

www.EBooksWorld.ir

think that you’d have to fetch those details separately for each joke you wanted to

display. The code required would involve a call to the PDO query method for

each and every joke to be displayed. This would be messy and involve a

considerable amount of extra code.

Taking all this into account, it would seem that the “old way” was the better

solution, despite its weaknesses. Fortunately, relational databases like MySQL are

designed to make it easy to work with data stored in multiple tables! Using a new

form of the SELECT statement, called a join, you can have the best of both worlds.

Joins allow you to treat related data in multiple tables as if they were stored in a

single table. Here’s what the syntax of a simple join looks like:

SELECT columns

FROM `table1`

INNER JOIN `table2`

ON condition(s) for data to be related

In your case, the columns we’re interested in are id and joketext in the joke

table, and name and email in the author table. The condition for an entry in the

joke table to be related to an entry in the author table is that the value of the

authorid column in the joke table is equal to the value of the id column in the

author table.

Let’s look at an example of a join. The first two queries show you what’s

contained in the two tables; they’re unnecessary to perform the join. The third

query is where the action’s at:

SELECT `id`, LEFT(`joketext`, 20), `authorid` FROM `joke`

This query should now give the following results:

194 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

5-3. Results of the joke table query

SELECT * FROM `author`

And this query, as you’d expect, will show all the authors:

5-4. "All of the authors from the authors table

It’s possible to query data from both tables by using the SQL JOIN statement:

SELECT `joke`.`id`, LEFT(`joketext`, 20), `name`, `email`

FROM `joke` INNER JOIN `author`

ON `authorid` = `author`.`id`

This will display all the data from both tables:

5-5. The results of your first join

See? The results of the third SELECT—a join—group the values stored in the two

Relational Database Design 195

www.EBooksWorld.ir

tables into a single table of results, with related data correctly appearing together.

Even though the data is stored in two tables, you can still access all the

information you need to produce the joke list on your web page with a single

database query. Note in the query that, since there are columns named id in both

tables, you must specify the name of the table when you refer to either id

column. The joke table’s ID is referred to as joke.id, while the author table’s ID

column is author.id. If the table name is unspecified, MySQL won’t know which

id you’re referring to, and will produce the following error:

Error Code: 1052. Column 'id' in field list is ambiguous

Now that you know how to access the data stored in your two tables efficiently,

you can rewrite the code for your joke list to take advantage of joins:

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdb', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

$sql = 'SELECT `joke`.`id`, `joketext`, `name`, `email`

FROM `joke` INNER JOIN `author`

ON `authorid` = `author`.`id`';

$jokes = $pdo->query($sql);

$title = 'Joke list';

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

}

catch (PDOException $e) {

$title = 'An error has occurred';

196 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

You can then update your template jokes.html.php to display the author

information for each joke:

<?php foreach($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke['joketext'],

ENT_QUOTES, 'UTF-8')?>

(by <a href="mailto:<?php

echo htmlspecialchars($joke['email'], ENT_QUOTES,

'UTF-8'); ?>"><?php

echo htmlspecialchars($joke['name'], ENT_QUOTES,

'UTF-8'); ?>)

<form action="deletejoke.php" method="post">

<input type="hidden" name="id"

value="<?=$joke['id']?>">

<input type="submit" value="Delete">

</form>

</p>

</blockquote>

<?php endforeach; ?>

If you run this script, you’ll see the following result:

Relational Database Design 197

www.EBooksWorld.ir

5-6. Jokes with authors

The more you work with databases, the more you’ll come to realize the power of

combining data from separate tables into a single table of results. Consider, for

example, the following query, which displays a list of all jokes written by Tom

Butler:

SELECT `joketext`

FROM `joke` INNER JOIN `author`

ON `authorid` = `author`.`id`

WHERE `name` = "Tom Butler"

The results that are output from this query, shown below, come only from the

joke table, but the query uses a join to let it search for jokes based on a value

stored in the author table. There will be plenty more examples of clever queries

like this throughout the book, but this example alone illustrates that the practical

applications of joins are many and varied, and, in almost all cases, can save you a

lot of work!

198 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

5-7. Tom Butler’s jokes

Simple Relationships

The type of database layout for a given situation is usually dictated by the form of

relationship that exists between the data that it needs to store. In this section, I’ll

examine the typical relationship types, and explain how best to represent them in

a relational database.

In the case of a simple one-to-one relationship, a single table is all you’ll need.

An example of a one-to-one relationship is the email address of each author in

our joke database. Since there will be one email address for each author, and one

author for each email address, there’s no reason to split the addresses into a

separate table.3

A many-to-one relationship is a little more complicated, but you’ve already seen

3. There are exceptions to this rule. For example, if a single table grows very large with

lots of columns, some of which are rarely used in SELECT queries, it can make sense to

split those columns out into their own table. This can improve the performance of queries

on the now-smaller table.

Relational Database Design 199

www.EBooksWorld.ir

one of these as well. Each joke in our database is associated with just one author,

but many jokes may have been written by that one author. This joke–author

relationship is many-to-one. I’ve already covered the problems that result from

storing the information associated with a joke’s author in the same table as the

joke itself. In brief, it can result in many copies of the same data, which are

difficult to keep synchronized and waste space. If we split the data into two

tables and use an ID column to link them together (making joins possible as

shown before), all these problems disappear.

A one-to-many relationship is simply a many-to-one relationship seen from the

opposite direction. As the joke–author relationship is many-to-one, the

author–joke relationship is one-to-many (there is potentially one author for many

jokes). This is easy to see in theory, but when you’re coming at a problem from

the opposite direction, it’s less obvious. In the case of jokes and authors, we

started with a library of jokes (the many) and then wanted to assign an author to

each of them (the one). Let’s now look at a hypothetical design problem where we

start with the one and want to add the many.

Say we wanted to allow each of the authors in our database (the one) to have

multiple email addresses (the many). When an inexperienced person in database

design approaches a one-to-many relationship like this one, often the first thought

is to try to store multiple values in a single database field like so:

5-8. A table field overloaded with multiple values

200 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

This would work, but to retrieve a single email address from the database, we’d

need to break up the string by searching for commas (or whatever special

character you chose to use as a separator). It’s a not-so-simple, potentially time-

consuming operation. Try to imagine the PHP code necessary to remove one

particular email address from a specific author! In addition, you’d need to allow

for much longer values in the email column, which could result in wasted disk

space, because the majority of authors would have just one email address.

Now take a step back, and realize that this one-to-many relationship is just the

same as the many-to-one relationship we faced between jokes and authors. The

solution, therefore, is also the same: split the new entities (in this case, email

addresses) into their own table. The resulting database structure would be:

Relational Database Design 201

www.EBooksWorld.ir

202 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

5-9. The authorid field associates each row of email with one row of author

Using a join with this structure, we can easily list the email addresses associated

with a particular author:

SELECT `email`

FROM `author` INNER JOIN `email`

ON `authorid` = `author`.`id`

WHERE `name` = "Kevin Yank"

Many-to-many Relationships

Okay, you now have a steadily growing database of jokes published on your

website. It’s growing so quickly, in fact, that the number of jokes has become

unmanageable! Your site visitors are faced with a mammoth page that contains

hundreds of jokes without any structure whatsoever. We need to make a change.

You decide to place your jokes into the following categories: knock-knock jokes,

crossing-the-road jokes, lawyer jokes, light bulb jokes, and political jokes.

Remembering our rule of thumb from earlier, you identify joke categories as a

new entity, and create a table for them, either through MySQL Workbench or by

issuing a CREATE TABLE query.

CREATE TABLE `category` (

`id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

`name` VARCHAR(255)

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

This table will store a name and an ID for each category in exactly the same way

the joke table had an authorid column to attribute each joke to an author. We

could add a categoryid table to the joke table to associate each joke with a

category. It would even be possible to query all the jokes form a particular

category using this:

Relational Database Design 203

www.EBooksWorld.ir

SELECT `joketext`, `jokedate` FROM `joke` WHERE `categoryId`

➥ = 2

Now you come to the daunting task of assigning categories to your jokes. It occurs

to you that a political joke might also be a crossing-the-road joke, and a knock-

knock joke might also be a lawyer joke. A single joke might belong to many

categories, and each category will contain many jokes. This is a many-to-many

relationship.

Once again, many inexperienced developers begin to think of ways to store

several values in a single column, because the obvious solution is to add a

category column to the joke table and use it to list the IDs of those categories to

which each joke belongs. A second rule of thumb would be useful here: if you

need to store multiple values in a single field, your design is probably flawed.

The correct way to represent a many-to-many relationship is by using a lookup

table. This is a table that contains no actual data, but lists pairs of entries that are

related. The image below shows what the database design would look like for our

joke categories:

5-10. Lookup table

The jokecategory table associates joke IDs (jokeid) with category IDs

(categoryid). In this example, we can see that the joke that starts with “How

204 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

many lawyers …” belongs to both the lawyers and light bulb categories.

A lookup table is created in much the same way as is any other table. The

difference lies in the choice of the primary key. Every table we’ve created so far

has had a column named id that was designated to be the PRIMARY KEY when the

table was created. Designating a column as a primary key tells MySQL to forbid

two entries in that column from having the same value. It also speeds up join

operations based on that column.

In the case of a lookup table, there’s no single column that we want to force to

have unique values. Each joke ID may appear more than once, as a joke may

belong to more than one category, and each category ID may appear more than

once, as a category may contain many jokes. What we want to prevent is the same

pair of values appearing in the table twice. And, since the sole purpose of this

table is to facilitate joins, the speed benefits offered by a primary key would come

in very handy. For this reason, we usually create lookup tables with a

multicolumn primary key as follows:

CREATE TABLE `jokecategory` (

`jokeid` INT NOT NULL,

`categoryid` INT NOT NULL,

PRIMARY KEY (`jokeid`, `categoryid`)

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

The same can be done in MySQL Workbench by checking the PK checkbox for

both columns. This creates a table in which the jokeid and categoryid columns

together form the primary key. This enforces the uniqueness that’s appropriate to

a lookup table, preventing a particular joke from being assigned to a specific

category more than once, and speeds up joins that make use of this table.4

Now that your lookup table is in place and contains category assignments, you

can use joins to create several interesting and practical queries. This query lists

all jokes in the knock-knock category:

4. If you like, you can use the CREATE TABLE and INSERT commands to create the

jokecategory table from scratch (and others, including the jokes within the tables) to

follow along.

Relational Database Design 205

www.EBooksWorld.ir

SELECT `joketext`

FROM `joke`

INNER JOIN `jokecategory`

ON `joke`.`id` = `jokeid`

INNER JOIN `category`

ON `categoryid` = `category`.`id`

WHERE name = "knock-knock"

As you can see, this query uses two joins. First, it takes the joke table and joins it

to the jokecategory table. Then it takes that joined data and joins it to the

category table. As your database structure becomes more complex, multijoin

queries like this one become common.

The following query lists the categories that contain jokes beginning with “How

many lawyers …”:

SELECT `name`

FROM `joke`

INNER JOIN `jokecategory`

ON `joke`.`id` = `jokeid`

INNER JOIN `category`

ON `categoryid` = `category`.`id`

WHERE `joketext` LIKE "How many lawyers%"

And this query—which also makes use of our author table to join together the

contents of four tables—lists the names of all authors who have written knock-

knock jokes:

SELECT `author`.`name`

FROM `joke`

INNER JOIN `author`

ON `authorid` = `author`.`id`

INNER JOIN `jokecategory`

ON `joke`.`id` = `jokeid`

INNER JOIN `category`

ON `categoryid` = `category`.`id`

206 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

WHERE `category`.`name` = "knock-knock"

This is starting to get complicated! Although JOINs can be used, later on in the

book we’ll see some different approaches that can help reduce this

complexity—though sometimes at the expense of efficiency.

We won’t add categories to the website just yet, but you now at least have a basic

understanding of how the database could be structured to do so.

One for Many, and Many for One

In this chapter, I’ve explained the fundamentals of good database design, and

covered how MySQL and, for that matter, all relational database management

systems provide support for the representation of different types of relationships

between entities. From your initial understanding of one-to-one relationships,

you should now have expanded your knowledge to include many-to-one, one-to-

many, and many-to-many relationships.

In the process, you’ve learned about some common SQL commands—in

particular, how to use a SELECT query to join data spread across multiple tables

into a single set of results.

With the increased expressiveness that multiple database tables bring, you’re now

equipped to extend the simple “joke list” site you assembled in Chapter 4 to

include authors and categories, and that’s exactly what Chapter 9 will be all

about. Before you tackle this project, however, you should take some time to add

to your PHP skills. Just as you spent this chapter learning some of the finer points

of MySQL database design, Chapter 6 will teach you some of the subtleties of

PHP programming—which will make the job of building a more complete joke

database site much more fun.

Relational Database Design 207

www.EBooksWorld.ir

6Chapter

Structured PHP Programming

Before we plow headlong into the next enhancements of our joke database, let’s

spend a little time honing your “PHP-fu.” Specifically, I want to show you a few

techniques to better structure your code.

Structured coding techniques are useful in all but the simplest of PHP projects.

Already in Chapter 2, you’ve learned how to split your PHP code into multiple

files: a controller and a set of associated templates. This lets you keep the server-

side logic of your site separate from the HTML code used to display the dynamic

content generated by that logic. In order to do this, you learned how to use the

PHP include command.

The PHP language offers many such facilities to help you add structure to your

code. The most powerful of these is undoubtedly its support for object-oriented

programming (OOP), which we touched on briefly in Chapter 4. But there’s no

208 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

need to learn all the complexities of OOP to build complex (and well-structured)

applications with PHP. Thankfully, there are also opportunities for structuring

your code through the more basic features of PHP.

In this chapter, I’ll explore some methods of keeping your PHP code manageable

and maintainable. As projects grow in size, so does the code. When you want to

make a change to something, you’ll need to find the point in the code you want to

change. This can be tricky, and sometimes requires editing code in more than one

place.

Programmers are lazy, and we don’t want to have to make the same change in

multiple locations. By placing code in one place, and using it with the include

statement, it allows us to avoid repetition. If you ever find yourself copying and

pasting code, you’re almost certainly better off moving that repeated code into its

own file and using it in both locations with an include statement.

The computer doesn’t care how you structure your code and will blindly follow

any instructions you give it. Programmers structure the code, reduce repetition

and break code into small chunks purely to make our own job easier. Code is a lot

simpler to manage when broken up into small tasks. Trying to find an error in a

1000-line PHP script that does a dozen different things is a lot more difficult than

finding the same error in a 30-line file that only performs a single task.

Include Files

Even very simple PHP-based websites often need the same piece of code in

several places. You’ve already learned to use the PHP include command to load

PHP templates from inside your controllers. It turns out you can use the same

feature to save yourself from having to write the same code again and again, just

like you did with layout.html.php: you wrote some HTML code and re-used it

for every page.

Include files (also known just as includes) also contain snippets of PHP code that

you can load into your other PHP scripts instead of having to retype them.

Structured PHP Programming 209

www.EBooksWorld.ir

Including HTML Content

The concept of include files came long before PHP. If you’re an old codger like me

(which, in the Web world, means you’re over 30), you may have experimented

with server-side includes (SSIs). A feature of just about every web server out

there, SSIs let you put commonly used snippets of HTML (and JavaScript, and

CSS) into include files that you can then use in multiple pages.

In PHP, include files most commonly contain either pure PHP code or, in the case

of PHP templates, a mixture of HTML and PHP code. But you don’t have to put

PHP code in your include files. If you like, an include file can contain strictly

static HTML. This is most useful for sharing common design elements across

your site, such as a copyright notice at the bottom of every page:

<footer>

The contents of this web page are copyright © 2017

Example LLC. All Rights Reserved.

</footer>

This file is a template partial—an include file to be used by PHP templates. To

distinguish this type of file from others in your project, I recommend giving it a

name ending with .html.php, to differentiate from non-template pages. This

naming convention is common in projects that use templates in this way.

You can then use this partial in any of your PHP templates:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>A Sample Page</title>

</head>

<body>

<main>

This page uses a static include to display a standard

copyright notice below.

</main>

210 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

<?php include 'footer.html.php'; ?>

</body>

</html>

Finally, here’s the controller that loads this template:

<?php

include 'samplepage.tpl.php';

?>

6-1. The completed page

The screenshot above shows what the page looks like in the browser.

Now all you need to do to update your copyright notice is to edit

footer.html.php. No more time-consuming, error-prone find-and-replace

operations!

Of course, if you really want to make your life easier, you can just let PHP do the

work for you:

<p id="footer">

The contents of this web page are copyright ©

1998–<?php echo date('Y'); ?> Example LLC.

All Rights Reserved.

</p>

Structured PHP Programming 211

www.EBooksWorld.ir

Including PHP Code

On most websites with a database, almost every controller script must establish a

database connection as its first order of business, and finally include the

layout.html.php file. Our controllers all follow this pattern:

<?php

try {

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

// do something unique for this page

// setting the $title and $output variables

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Unable to connect to the database server: '

. $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

At some 12 lines long, it’s only a slightly cumbersome chunk of code, but having

to repeat it in every controller script can quickly become annoying. Many new

PHP developers will often omit essential error checking to save typing (for

example, by leaving out the try … catch statement in this code), which can

result in a lot of lost time looking for the cause when an error does occur. Others

will make heavy use of the clipboard to copy pieces of code like this from

existing scripts for use in new ones. Some even use features of their text editor

software to store useful pieces of code as snippets for frequent use.

But what happens when the database password or some other detail of the code

212 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

changes? Suddenly you’re on a treasure hunt to find every occurrence of the code

in your site to make the necessary change—a task that can be especially

frustrating if you’ve used several variations of the code that you need to track

down and update.

Files can help in this situation. Instead of repeating the code fragment in every

file that needs it, write it just once in a separate file—known as the include file.

That file can then be included in any other PHP files that need to use it.

Let’s apply this technique to create the database connection in our joke list

example to see how it works in detail.

Include files are just like normal PHP files, but typically they contain snippets of

code that are only useful within the context of a larger script. As such, as with

templates, we don’t want people to be able to navigate directly to these files by

typing the filename into their browser, as they only contain small snippets that

won’t produce any meaningful output on their own.

We’ll solve problem the same way we did with templates: by creating a directory

outside the public directory, so that any files placed in this new directory can

only be accessed by other PHP scripts. We’ll call this directory includes, and use

it to store our code snippets.

Inside the new includes directory, create a file called DatabaseConnection.php1

and place the database connection code inside it:

<?php

$pdo = new PDO('mysql:host=localhost;dbname=ijdb;

charset=utf8', 'ijdbuser', 'mypassword');

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

1. In previous versions of this book, the database connection was placed in a file named

db.inc.php, which at the time was the convention: all include files were named with a

.inc.php extension. This convention has lost popularity, and include files are generally

created using camelCase. This is in part due to both the PSR-0 standard and heavy use of

object-oriented programming in modern websites.

Structured PHP Programming 213

www.EBooksWorld.ir

Now you can put this DatabaseConnection.php file to use in your controllers.

Amend each of your controllers—addjoke.php, deletejoke.php and

jokes.php—to include the new file.

The updated jokes.php looks like this:

6-2. Structure-Include

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

$sql = 'SELECT `joke`.`id`, `joketext`, `name`, `email`

FROM `joke` INNER JOIN `author`

ON `authorid` = `author`.`id`';

$jokes = $pdo->query($sql);

$title = 'Joke list';

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

Make the same change to addjoke.php and delete.php so they use an include

statement rather than repeating the database connection code.

As you can see, wherever our controller needs a database connection, we can

obtain it simply by including the DatabaseConnection.php file with an include

214 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

statement. And because the code to do this is a simple one-liner, we can make our

code more readable by using a separate include statement just before each SQL

query in our controller.

When PHP encounters an include statement, it puts the current script on hold

and runs the specified PHP script. When it’s finished, it returns to the original

script and picks up where it left off.

Include files are the simplest way to structure PHP code. Because of their

simplicity, they’re also the most widely used method. Even very simple web

applications can benefit greatly from using include files.

You’ve already seen how you can create a variable such as $title in the

controller and that it’s available in included files such as layout.html.php. Here,

you can see the inverse is also true. The $pdo variable is created in

DatabaseConnection.php, but can be used in the controller.

An include statement can be thought of as an automated copy-and-paste. When

PHP encounters the line include __DIR__ . '/../includes/

DatabaseConnection.php'; it effectively reads the code from the file and copies/

pastes it into the current code at the position of the include statement.

After you’ve amended all your controllers to have an include statement, if the

database password gets updated, you only need to edit DatabaseConnection.php,

rather than having to update the password in each of your controllers. Aren’t you

glad we made this change now instead of later when we’ve got more controllers?

Types of Includes

The include statement we’ve used so far is actually only one of four statements

that can be used to include another PHP file in a currently running script:

include

require

include_once

require_once

The only difference between them is what happens when the specified file is

Structured PHP Programming 215

www.EBooksWorld.ir

unable to be included (that is, if it doesn’t exist, or if the web server doesn’t have

permission to read it). With include, a warning is displayed and the script

continues to run. With require, an error is displayed and the script stops.2

In general, you should use require whenever your application simply wouldn’t

work without the required code being successfully loaded. I do recommend using

include whenever possible, however. Even if the DatabaseConnection.php file

for your site is unable to load, for example, you might still want to let the script

for your front page continue to load. None of the content from the database will

display, but the user might be able to use the Contact Us link at the bottom of the

page to let you know about the problem!

include_once and require_once work just like include and require,

respectively—but if the specified file has already been included at least once for

the current page request (using any of the four statements described here), the

statement will be ignored. This is handy for include files performing a task that

only needs to be done once, like connecting to the database.

include_once and require_once are also useful for loading function libraries, as

we’ll see in the following section.

Custom Functions and Function Libraries

By this point, you’re probably quite comfortable with the idea of functions. A

function is PHP code that you can invoke at will, where you’d usually provide

one or more arguments for it to use, and often receive a return value as a result.

You can use PHP’s vast library of functions to do just about anything a PHP script

could ever be asked to do, from retrieving the current date (date) to generating

graphics on the fly (using imagecreatetruecolor).

But what you may be unaware of is that you can create functions of your own!

Custom functions, once defined, work just like PHP’s built-in functions, and they

2. In production environments, warnings and errors are usually disabled in php.ini. In

such environments, a failed include has no visible effect (aside from the lack of content

that would normally have been generated by the include file), while a failed require

causes the page to stop at the point of failure. When a failed require occurs before any

content is sent to the browser, the unlucky user will see nothing but a blank page!

216 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://www.php.net/imagecreatetruecolor
http://www.php.net/imagecreatetruecolor

can do anything a normal PHP script can do.

Let’s start with a really simple example. Say you had a PHP script that needed to

calculate the area of a rectangle given its width (3) and height (5). Thinking back

to your basic geometry classes in school, you should recall that the area of a

rectangle is its width multiplied by its height:

$area = 3 * 5;

But it would be nicer to have a function called area that simply calculated the

area of a rectangle given its dimensions:

$area = area(3, 5);

As it happens, PHP has no built-in area function, but clever PHP programmers

like you and me can just roll up our sleeves and write the function ourselves:

<?php

function area($width, $height)

{

return $width * $height;

}

This include file defines a single custom function: area. The <?php marker is

probably the only line that looks familiar to you in this code. What we have here

is a function declaration. Let me break it down for you one line at a time:

function area($width, $height)

The keyword function tells PHP that we wish to declare a new function for use

in the current script. Then, we supply the function with a name (in this case,

area). Function names operate under the same rules as variable names—they

must start with a letter or an underscore (_), and may contain letters, numbers,

Structured PHP Programming 217

www.EBooksWorld.ir

and underscores—except, of course, that there’s no dollar sign prefix. Instead,

function names are always followed by a set of parentheses (()), which may or

may not be empty.

The parentheses that follow a function name enclose the list of arguments that

the function will accept. You should already be familiar with this from your

experience with PHP’s built-in functions. For example, when you use rand to

generate a random number, you can provide it with a minimum and maximum

number within the parentheses.

When declaring a custom function, instead of giving a list of values for the

arguments, you give a list of variable names. In this example, we list two

variables: $width and $height. When the function is called, it will therefore

expect to be given two arguments. The value of the first argument will be

assigned to $width, while the value of the second will be assigned to $height.

Those variables can then be used to perform the calculation within the function.

{

Speaking of calculations, the rest of the function declaration is the code that

performs the calculation, or does whatever else the function is supposed to do.

That code must be enclosed in a set of braces ({ … }), so here’s the opening brace.

return $width * $height;

You can think of the code within those braces as a miniature PHP script. This

function is a simple one, because it contains just a single statement: a return

statement.

A return statement can be used in the code of a function to jump back into the

main script immediately. When the PHP interpreter hits a return statement, it

immediately stops running the code of this function and goes back to where the

function was called. It’s sort of an ejection seat for functions!

In addition to breaking out of the function, the return statement lets you specify

218 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

a value for the function to return to the code that called it. In this case, the value

we’re returning is $width * $height—the result of multiplying the first

parameter by the second.

}

The closing brace marks the end of the function declaration.

Writing a function on its own does nothing. No code inside the function is run

until the function is called. Like the rand function we used at the start of this

book, it just sits there waiting to be called.

You can think of writing a function like installing an app on your computer or

phone. You need it there to use it, but once installed, it’s dormant and available

for use, but won’t actually do anything until you run it.

In order to run the function, we must first include the file containing the function

declaration:

include_once __DIR__ .

'/../includes/area-function.inc.php';

$area = area(3, 5);

include 'output.html.php';

Technically, you could write the function declaration within the controller script

itself, but by putting it in an include file, you can reuse the function in other

scripts much more easily. It’s tidier, too. To use the function in the include file, a

PHP script need only include it with include_once (or require_once if the

function is critical to the script).

Avoid using include or require to load include files that contain functions. As

explained in the “Types of Includes” section earlier in this chapter, that would

risk defining the functions in the library more than once and covering the user’s

screen with PHP warnings.

Structured PHP Programming 219

www.EBooksWorld.ir

It’s standard practice (but not required) to include your function libraries at the

top of the script, so that you can quickly see which include files containing

functions are used by any particular script.

What we have here are the beginnings of a function library—an include file that

contains declarations for a group of related functions. If you wanted to, you could

rename the include file to geometry.inc.php, add a whole bunch of functions to

it, and perform various geometrical calculations.

Variable Scope

One big difference between custom functions and include files is the concept of

variable scope. Any variable that exists in the main script will also be available

and can be changed in the include file. While this is useful sometimes, more

often it’s a pain in the neck. Unintentionally overwriting one of the main script’s

variables in an include file is a common cause of error—and one that can take a

long time to track down and fix! To avoid such problems, you need to remember

the variable names in the script that you’re working on, as well as any that exist

in the include files your script uses.

Functions protect you from such problems. Variables created inside a function

(including any argument variables) exist only within that function, and disappear

when the function has run its course. In addition, variables created outside the

function are completely inaccessible inside it. The only variables a function has

access to are the ones provided to it as arguments.

In programmer-speak, the scope of these variables is the function; they’re said to

have function scope. In contrast, variables created in the main script outside of

any function are unavailable inside functions. The scope of these variables is the

main script, and they’re said to have global scope.

Okay, but beyond the fancy names, what does this really mean for us? It means

that you can have a variable called, say, $width in your main script, and another

variable called $width in your function, and PHP will treat these as two entirely

separate variables! Perhaps more usefully, you can have two different functions

each using the same variable names, and they’ll have no effect on each other,

because their variables are kept separate by their scope.

220 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

On some occasions, you may actually want to use a global-scope variable (global

variable for short) inside one of your functions. For example, the

DatabaseConnection.php file creates a database connection for use by your script

and stores it in the global variable $pdo. You might then want to use this variable

in a function that needed to access the database.

Let’s create a function that queries the database and returns to us the number of

jokes that are currently held in the joke table. Disregarding variable scope, here’s

how you might expect such a function to work:

include_once __DIR__ .

'/../includes/DatabaseConnection.php';

function totalJokes() {

$query = $pdo->prepare('SELECT COUNT(*) FROM `joke`');

$query->execute();

$row = $query->fetch();

return $row[0];

}

echo totalJokes();

The problem here is that the global variable $pdo is unavailable within the scope

of the function. If you attempt to call this function as it is, you’ll receive the

errors shown in the following image:

Careful Where You Place Your Files

Note that the first line of this controller script uses a shared copy of the

DatabaseConnection.php file in the includes directory. Make sure you’ve

placed a copy of this file in the includes directory; otherwise, PHP will complain

that it’s unable to find the DatabaseConnection.php file.

The file DatabaseConnection.php creates the variable $pdo, which we’re

referencing inside the function.

Structured PHP Programming 221

www.EBooksWorld.ir

6-3. The totaljokes function cannot access $pdo

The reason for this error is scope. The $pdo variable was created outside the

function, so is not available for use inside it.

Although there is a way to make the same $pdo variable available in the

function3, it’s a very bad idea. If, for example, the function changed the $pdo by

accident to a string—$pdo = 'select * from joke';—the $pdo variable would

now be a string everywhere else in the PHP script. Global variables are a very bad

idea and lead to problems that are very difficult to track down and fix. You

should avoid global variables at any cost.

To avoid this, you can use $pdo as an argument and pass in the required variables

to your function:

function totalJokes($pdo) {

$query = $pdo->prepare('SELECT COUNT(*) FROM `joke`');

$query->execute();

$row = $query->fetch();

3. See http://php.net/manual/en/reserved.variables.globals.php. Seriously, don’t do this!

222 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

return $row[0];

}

And then, when the function is called, you pass in the $pdo object created in

DatabaseConnection.php:

include_once __DIR__ .

'/../includes/DatabaseConnection.php';

echo totalJokes($pdo);

This makes the $pdo variable available in the totalJokes function by passing it

in as an argument. It’s worth taking a moment to understand exactly what’s

happening here. The $pdo variable is created in global scope by

DatabaseConnection.php and then passed in to the function totalJokes. The

object stored in the global $pdo variable is then copied to the local variable called

$pdo inside the function. The $pdo variable needs to be passed in as an argument,

because functions only have access to data they are given; they cannot access

variables from the global scope.

Importantly, if there’s a mistake in the function and the $pdo variable is

overwritten with a string, it will only be a string inside the function, not

throughout the rest of the script.

What this means is that there are actually two different variables called $pdo. We

could rename the $pdo variable inside the function to $database and the script

would still work:

function totalJokes($database) {

$query = $database->prepare('SELECT COUNT(*)

FROM `joke`');

$query->execute();

$row = $query->fetch();

Structured PHP Programming 223

www.EBooksWorld.ir

return $row[0];

}

Here, the $database variable stores the same PDO connection that is stored in the

$pdo variable in global scope. Even though the function would still be called

using totalJokes($pdo), the content of the $pdo variable outside the function

call is copied to the $database variable inside the function. Despite having

different names, they reference the same database connection.

If you want to get technical, this process is called dependency injection, but all

you need to know is that in practical terms, it’s a method for making a single

variable available in multiple locations.

It’s a good idea to move functions into their own file. Place the totalJokes

function inside a file called DatabaseFunctions.php in the includes directory,

and you can then use the function like this:

6-4. Structure-TotalJokes

// Include the file that creates the $pdo variable and

➥ connects to the database
include_once __DIR__ .

'/../includes/DatabaseConnection.php';

// Include the file that provides the `totalJokes` function

include_once __DIR__ .

'/../includes/DatabaseConnection.php';

// Call the function

echo totalJokes($pdo);

Save this as showtotaljokes.php in the public directory and navigate to it in

your browser. You should see a page that’s mostly empty but displays the total

number of jokes in your database.

You may have realized that if the program is broken up into functions like this,

you’d need to pass the $pdo variable into each function you wanted to use. As

224 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

you’ve probably suspected, this isn’t the most efficient way of achieving this goal,

as we’ll see later on when we get to objects and classes.

Let’s use our new function inside the website. At the top of the list of jokes we

can print “[number] jokes have been submitted to the Internet Joke Database”.

Open up jokes.php and change it to the following:

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

$sql = 'SELECT `joke`.`id`, `joketext`, `name`, `email`

FROM `joke` INNER JOIN `author`

ON `authorid` = `author`.`id`';

$jokes = $pdo->query($sql);

$title = 'Joke list';

$totalJokes = totalJokes($pdo);

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage()

. ' in ' .$e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

This creates a $totalJokes variable that can be used in jokes.html.php:

Structured PHP Programming 225

www.EBooksWorld.ir

6-5. Structure-TotalJokeList

<p><?=$totalJokes?> jokes have been submitted to

➥ the Internet Joke Database.</p>

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke['joketext'], ENT_QUOTES,

'UTF-8')?>

(by <a href="mailto:<?php

echo htmlspecialchars(

$joke['email'],

ENT_QUOTES,

'UTF-8'

); ?>"><?php

echo htmlspecialchars(

$joke['name'],

ENT_QUOTES,

'UTF-8'

); ?>)

<form action="deletejoke.php" method="post">

<input type="hidden" name="id"

value="<?=$joke['id']?>">

<input type="submit" value="Delete">

</form>

</p>

</blockquote>

<?php endforeach; ?>

You may be wondering what happens if the query inside the totalJokes function

contains an error. We could put a try … catch statement inside the function, but

because the function has been called inside the existing try … catch statement,

we don’t need to.

Exceptions bubble up. In practical terms, this means that, even if an exception is

thrown inside a function, it will still be caught by a surrounding try … catch

226 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

statement.

It’s better to avoid handling errors inside functions. Imagine we have a try …

catch statement inside the function like so:

function totalJokes($database) {

try {

$query = $database->prepare('SELECT COUNT(*)

FROM `joke`');

$query->execute();

$row = $query->fetch();

return $row[0];

}

catch {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage()

. ' in ' . $e->getFile() . ':'

. $e->getLine();

include __DIR__ . '/../templates/layout.html.php';

die();

}

}

Not only do we have repeated code, but now regardless of where the totalJokes

function is called from, the error will be handled in the same way. By keeping it

out of the function, different error handling can be used in different places that

the totalJokes function is used. For example, it’s possible that we would want to

use the website to generate a list of jokes as a PDF or an Excel file rather than as

an HTML document. If this were the case, we certainly wouldn’t want an error

message displayed as HTML.

By just letting the error happen, we can handle the error in different ways under

different circumstances.

Structured PHP Programming 227

www.EBooksWorld.ir

Breaking Up Your Code Into Reusable Functions

Now that you’re familiar with declaring your own functions, you can start writing

functions to perform each task. For example, instead of writing out a SELECT

query each time you want to read a specific joke from the database, you could

write a reusable function to do that for you:

function getJoke($pdo, $id) {

$query = $pdo->prepare('SELECT FROM `joke`

WHERE `id` = :id');

$query->bindValue(':id', $id);

$query->execute();

return $query->fetch();

}

This works in the same way as the totalJokes function from earlier. The only

difference is that there’s a second argument, $id, which is going to store the ID of

the joke to be looked up.

This allows us to look up a joke very quickly by its ID:

include __DIR__ . '/../includes/DatabaseConnection.php';

$joke1 = getJoke($pdo, 1);

echo $joke1['joketext'];

$joke2 = getJoke($pdo, 2);

echo $joke2['joketext'];

You’ve probably already noticed a lot of similarity between the getJoke function

and the totalJokes function. Both functions perform a prepare and execute,

then fetch a given record.

Whenever you spot repeated code, it’s usually a good idea to take the repeated

228 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

code and place it in its own function. I mentioned earlier in the book that this is

commonly referred to as the DRY (don’t repeat yourself) principle. If you find

yourself copying and pasting blocks of code, it’s a good sign that the code belongs

inside its own function.

Here’s one of our functions:

function totalJokes($pdo) {

$query = $pdo->prepare('SELECT COUNT(*) FROM `joke`');

$query->execute();

$row = $query->fetch();

return $row[0];

}

Here’s the other:

function getJoke($pdo, $id) {

$query = $pdo->prepare('SELECT FROM `joke`

WHERE `id` = :id');

$query->bindValue(':id', $id);

$query->execute();

return $query->fetch();

}

You can see that these are doing very similar jobs. These lines are identical or

almost the same in both functions:

$query = $pdo->prepare('…');

$query->execute();

return $query->fetch();

Here’s the code for executing a specific query. This code could easily be moved to

its own function:

Structured PHP Programming 229

www.EBooksWorld.ir

function query($pdo, $sql) {

$query = $pdo->prepare($sql);

$query->execute();

return $query;

}

The interesting part here is the line $query = $pdo->prepare($sql);. Instead of

writing the query that’s going to be executed as a string, we’ll use a variable—the

$sql argument.

This allows the totalJokes function to be simplified:

function totalJokes($pdo) {

$query = query($pdo, 'SELECT COUNT(*) FROM `joke`');

$row = $query->fetch();

return $row[0];

}

Something quite clever is happening here. The totalJokes function is calling the

query function. In fact, you can call any function from any other function,

allowing you to break up tasks into smaller and smaller reusable chunks.

It’s now possible to do the same with the getJoke function, removing the

repetition by using the new query function:

function getJoke($pdo, $id) {

$query = query($pdo, 'SELECT * FROM `joke` WHERE `id` =

➥ :id');
return $query->fetch();

}

But wait! This isn’t quite going to work as we intend. The original getJoke

function contained this line:

230 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$query->bindValue(':id', $id);

This binds the id SQL parameter to the variable $id, so the :id parameter is

correctly set in the query SELECT FROM joke WHERE id = :id. The query

function doesn’t do this yet, so it must be altered somehow to bind parameters. It

would be possible to write the query function like this:

function query($pdo, $sql, $id) {

$query = $pdo->prepare($sql);

$query->bindValue(':id', $id);

$query->execute();

return $query;

}

Then we could call it using this:

function getJoke($pdo, $id) {

$query = query($pdo, 'SELECT * FROM `joke`

WHERE `id` = :id', $id);

return $query->fetch();

}

However, this is very inflexible; it will only work with queries that have an :id

parameter. Instead, the query function should be able to take any number of

parameters (including zero for the totalJokes function!). Luckily, there’s a

simple way of doing this. Remember back in Chapter 2 I showed you how to

create arrays? Here, we can create an array of parameters that need to be bound,

and pass them as an argument to the query function.

function getJoke($pdo, $id) {

// Create the array of $parameters for use in the query

➥ function
$parameters = [':id' => $id];

Structured PHP Programming 231

www.EBooksWorld.ir

// call the query function and provide the $parameters array

$query = query($pdo, 'SELECT * FROM `joke`

WHERE `id` = :id', $parameters);

return $query->fetch();

}

I’ve created a variable called $parameters to store the query parameters, and

passed the entire array to the query function. Being able to pass arrays into

functions is a nice trick when you don’t always know how many arguments there

will be.

Obviously the query function will need to be amended to use the new

parameters:

function query($pdo, $sql, $parameters) {

$query = $pdo->prepare($sql);

foreach ($parameters as $name => $value) {

$query->bindValue($name, $value);

}

$query->execute();

return $query;

}

The clever part here is the foreach loop:

foreach ($parameters as $name => $value) {

$query->bindValue($name, $value);

}

This loops over each of the supplied parameters, and binds them to the query.

232 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

One problem this is going to cause is that the totalJokes function doesn’t send a

list of parameters because there are none. The query doesn’t need a WHERE

statement or any parameters to be replaced:

function totalJokes($pdo) {

$query = query($pdo, 'SELECT COUNT(*) FROM `joke`');

$row = $query->fetch();

return $row[0];

}

Because the query function is expecting three arguments and only two are being

sent, this will cause an error. One way of avoiding this is to re-write the

totalJokes function to send an empty array of parameters to the query function:

function totalJokes($pdo) {

// Create an empty array for sending to the query function

$parameters = [];

// Call the query function and pass it the

// empty $parameters array

$query = query($pdo, 'SELECT COUNT(*)

FROM `joke`', $parameters);

$row = $query->fetch();

return $row[0];

}

However, PHP has a nice, built-in way of handling this. Whenever you declare an

argument, you can give it a “default value”—that is, a value that’s used if none

are supplied, like so:

function myFunction($argument1 = 1, $argument2 = 2) {

If the function is called without any arguments—for example,

myFunction()—then the $argument1 variable is set to 1 and the $argument2

variable is set to 2.

Structured PHP Programming 233

www.EBooksWorld.ir

This feature can be used with the query function to set the $parameters variable

to an empty array if no value is supplied:

function query($pdo, $sql, $parameters = []) {

$query = $pdo->prepare($sql);

foreach ($parameters as $name => $value) {

$query->bindValue($name, $value);

}

$query->execute();

return $query;

}

With a default value set on the $parameters argument, the function can be called

and provided with values for the $pdo and $sql arguments. If no third argument

is provided, $parameters will use the default value, which we defined to be an

empty array.

Now that $parameters has a default value, the totalJokes function can be left as

it was, and doesn’t need to provide the third argument to the query function:

function totalJokes($pdo) {

$query = query($pdo, 'SELECT COUNT(*) FROM `joke`');

$row = $query->fetch();

return $row[0];

}

When the query function is called, the third parameter is missing and PHP will

automatically assign the value [] (an empty array) to it. When the function is run,

the foreach loop will still be executed. However, because the array is empty, it

will iterate zero times and bindValue will never be called:

foreach ($parameters as $name => $value) {

$query->bindValue($name, $value);

}

234 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Now that you know how this works, I’ll show you a shortcut. This foreach

statement that binds all the parameters can actually be removed. The execute

method can optionally take an argument of parameters to be bound in exactly the

same way, letting us reduce the code in the query function by passing the

$parameters array directly to the execute method, rather than manually binding

each, one by one:

function query($pdo, $sql, $parameters = []) {

$query = $pdo->prepare($sql);

$query->execute($parameters);

return $query;

}

Using Functions to Replace Queries

With the query function complete, you have the ability to query the database very

quickly. The totalJokes function allows for easily querying the database for the

number of jokes in the table. Let’s take the same approach and apply it to adding

jokes to the database with an INSERT query:

function insertJoke($pdo, $joketext, $authorId) {

$query = 'INSERT INTO `joke` (`joketext`, `jokedate`,

`authorId`) VALUES (:joketext, CURDATE(), :authorId)';

$parameters = [':joketext' => $joketext, ':authorId'

=> $authorId];

query($pdo, $query, $parameters);

}

The insertJoke function lets us very quickly insert a record into the joke table

with a single line of code by providing it the database connection ($pdo), the text

of the joke ($joketext) and the ID of the author ($authorId):

Structured PHP Programming 235

www.EBooksWorld.ir

insertJoke($pdo, 'Why did the programmer quit his job? He

➥ didn\'t get arrays', 1);

Each of the columns in the database is an argument for the function, which can

now be called repeatedly to quickly issue the relevant INSERT query with far less

code than we’d have needed previously:

insertJoke($pdo, 'Why was the empty array stuck outside? It

➥ didn\'t have any keys', 1);

insertJoke($pdo, 'An SQL query goes into a bar, walks up to

➥ two tables and asks "Can I join you?"', 2);

This approach is considerably quicker and easier than having to write all the

code for running the query each time you insert a joke: preparing the query,

binding the parameters and then finally executing the query.

Now, finally, you could use the following controller code for adding a joke:

if (isset($_POST['joketext'])) {

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

$sql = 'INSERT INTO `joke` SET

`joketext` = :joketext,

`jokedate` = CURDATE()';

$stmt = $pdo->prepare($sql);

$stmt->bindValue(':joketext', $_POST['joketext']);

$stmt->execute();

header('location: jokes.php');

}

catch (PDOException $e) {

236 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . '

in ' . $e->getFile() . ':' . $e->getLine();

}

}

But instead of this, you can put the insertJoke and query functions in the

DatabaseFunctions.php file and then write this much simpler version:

6-6. Structure-AddJoke

if (isset($_POST['joketext'])) {

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

insertJoke($pdo, $_POST['joketext'], 1);

header('location: jokes.php');

}

catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . '

in ' . $e->getFile() . ':' . $e->getLine();

}

}

You can see that I’ve put the query, totalJokes and insertJoke functions into a

file called DatabaseFunctions.php and included it as required.

For now, all jokes will have 1 set as the authorId. Later on, I’ll show you how to

handle logins and associate the joke with the currently logged in user.

Structured PHP Programming 237

www.EBooksWorld.ir

Updating Jokes

Along with inserting a joke, it’s useful to be able to update a record. Perhaps there

was a spelling error in one of the jokes and it needs to be changed.

An update function needs more information than the insert function. It needs to

know the ID of the record being updated along with the new values for each

column:

function updateJoke($pdo, $jokeId, $joketext, $authorId) {

$parameters = [':joketext' => $joketext,

':authorId' => $authorId, ':id' => $jokeId];

query($pdo, 'UPDATE `joke` SET `authorId` = :authorId,

`joketext` = :joketext WHERE `id` = :id', $parameters);

}

The updateJoke function can be called anywhere a joke needs to be updated:

updateJoke($pdo, 1, '!false - It\'s funny because it\'s

➥ true', 1);

The line above will update the joke with the id 1 with the supplied authorId and

jokeText. The equivalent of running all the code:

$query = $pdo->prepare('UPDATE `joke`

SET `authorId` = :authorId, `joketext` = :joketext

WHERE id = :id');

$query->bindValue(':id', 1);

$query->bindValue(':authorId', 1);

$query->bindValue(':joketext', '!false - It\'s funny

➥ because it\'s true');

$query->execute();

238 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

This is a significant advantage: anywhere in the code that a joke needs to be

updated, the single function call can do it, saving a lot of time.

Editing Jokes on the Website

Let’s make use of our new functions getJoke and updateJoke by adding a page

that allows for editing the existing jokes. In essence, it’s the same as addjoke.php.

It will display a form, and when the form is submitted it will send the data to the

database.

However, there are two main differences:

1. When the edit page loads, it needs to retrieve the current joke text from the

database in order to pre-fill the <textarea> with the current joke. After all, if

it’s a simple typo, you don’t want to make the user re-type the whole joke!

2. When the form is submitted, it needs to run an UPDATE query rather than an

INSERT query.

In the public directory, create editjoke.php that looks like this:

<?php

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

try {

if (isset($_POST['joketext'])) {

updateJoke($pdo, $_POST['jokeid'], $_POST['joketext'], 1);

header('location: jokes.php');

} else {

$joke = getJoke($pdo, $_GET['id']);

$title = 'Edit joke';

ob_start();

include __DIR__ . '/../templates/editjoke.html.php';

Structured PHP Programming 239

www.EBooksWorld.ir

$output = ob_get_clean();

}

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . '

in ' . $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

There are a few main differences between this new editjoke.php page and the

addjoke.php page.

Firstly, you may have noticed that the two include files have been included at the

very top of the page. This is so the database functions are available whether or

not the form has been submitted.

If the form hasn’t been submitted, we need to query the database for the current

joke text. If it has been submitted, we’ll need to run the relevant update query.

Secondly, the try statement surrounds the if rather than having the if surround

the try. The reason for this is simple: there may be an error in either the if or

else block.

Speaking of the else block, that’s the next change. Instead of just loading the

form, the else block has this line of code:

$joke = getJoke($pdo, $_GET['id']);

This part of the code selects a joke from the database by its ID using the getJoke

function from earlier. The ID of the joke being edited must be supplied using a

GET variable—so that visiting editjoke.php?id=4, for example, will execute the

query SELECT * FROMjokeWHEREid= 4 and store the resulting joke in the $joke

array.

240 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The $joke variable can now be used in the corresponding template file

editjoke.html.php:

<form action="" method="post">

<input type="hidden" name="jokeid"

value="<?=$joke['id'];?>">

<label for="joketext">Type your joke here:

</label>

<textarea id="joketext" name="joketext" rows="3"

cols="40"><?=$joke['joketext']?></textarea>

<input type="submit" value="Save">

</form>

This template is slightly different from the template for adding jokes. The most

obvious change is that the current joke text, from the $joke variable, is loaded

into the <textarea> when the page loads. However, there’s another change:

there’s also a hidden input that sends the ID of the joke being edited back to the

page when the submit button is pressed.

In editjoke.php, there are now two $_POST variables available when the form

has been submitted—$_POST['jokeid'], representing the ID of the joke being

edited, and $_POST['joketext'], containing the new text for the joke.

These are then passed into our updateJoke function:

updateJoke($pdo, $_POST['jokeid'], $_POST['joketext'], 1);

Before you can test this example for yourself, you’ll need to add a link next to

each joke in the joke list that gives us a link to the editjoke.php controller with

the ID of the joke being edited. If you go directly to editjoke.php, you’ll see an

error, as editjoke.php needs the ID of the joke being edited in order for the

current value in the joketext column to be displayed in the <textarea>.

Open up jokes.html.php from the templates directory and add a link to

editjoke.php for each joke:

Structured PHP Programming 241

www.EBooksWorld.ir

<p><?=$totalJokes?> jokes have been submitted to

➥ the Internet Joke Database.</p>

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke['joketext'], ENT_QUOTES,

'UTF-8')?>

(by <a href="mailto:<?php

echo htmlspecialchars(

$joke['email'],

ENT_QUOTES,

'UTF-8'

); ?>"><?php

echo htmlspecialchars(

$joke['name'],

ENT_QUOTES,

'UTF-8'

); ?>)

<a href="editjoke.php?id=<?=$joke['id']?>">

Edit

<form action="deletejoke.php" method="post">

<input type="hidden" name="id"

value="<?=$joke['id']?>">

<input type="submit" value="Delete">

</form>

</p>

</blockquote>

<?php endforeach; ?>

Each joke is linked to editjoke.php?id=, followed by the ID of the joke you wish

to edit.

Try this example (Structure-EditJoke) and load up the jokes list. Each joke will

have an Edit link after the author’s name, and by clicking the link, the joke text

will be loaded into the form. When you press Save, it will trigger the update

242 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

query by calling the updateJoke function.

Delete Function

The same thing can now be done with delete to allow deletion of jokes in the

same quick and easy way with a single line of code:

function deleteJoke($pdo, $id) {

$parameters = [':id' => $id];

query($pdo, 'DELETE FROM `joke`

WHERE `id` = :id', $parameters);

}

Then call the function to delete a joke with a specific ID from the database:

// Delete a joke with the ID of 2

deleteJoke($pdo, 2);

Add the function to DatabaseFunctions.php and amend deletejoke.php to use

the new function:

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

deleteJoke($pdo, $_POST['id']);

header('location: jokes.php');

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Unable to connect to the database server: '

. $e->getMessage() . ' in ' .

Structured PHP Programming 243

www.EBooksWorld.ir

$e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

Select Function

We can apply the same logic to fetching all the jokes from the joke table by

adding an allJokes function to DatabaseFunctions.php and amending

jokes.php accordingly:

function allJokes($pdo) {

$jokes = query($pdo, 'SELECT `joke`.`id`, `joketext`,

`name`, `email`

FROM `joke` INNER JOIN `author`

ON `authorid` = `author`.`id`');

return $jokes->fetchAll();

}

In this instance, the query is more complex than the one-liners used for

deleteJoke and updateJoke. It’s the same query we already had in jokes.php for

selecting the jokes and the information about the author.

Here I’ve used PDO’s fetchAll function. This returns an array of all records that

were retrieved by the query. You can use the new allJokes function like this:

$jokes = allJokes($pdo);

echo '';

foreach ($jokes as $joke) {

echo '' . $joke . '';

}

echo '';

244 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

This will print out all the jokes from the database in a list.

Update the jokes.php controller to use the new function:

6-7. Structure-AddJoke

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

$jokes = allJokes($pdo);

$title = 'Joke list';

$totalJokes = totalJokes($pdo);

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

}

catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . '

in ' . $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

We’ve now got a set of reusable functions that can be used anywhere we need to

interact with the database table. Whether it’s finding all the jokes, a single joke or

issuing an INSERT, UPDATE or DELETE query, it’s possible to run the query without

actually typing out all the code each time. Anywhere on the website we need to

interact with the database table jokes, it’s quick and easy using our new set of

functions.

Structured PHP Programming 245

www.EBooksWorld.ir

The Best Way

In this chapter, I’ve helped you to rise above the basic questions of what PHP can

do for you, and begin to look for the best way to code a solution. Sure, you can

approach many simple scripts as lists of actions you want PHP to do for you, but

when you tackle site-wide issues such as database connections, shared navigation

elements, visitor statistics, and access control systems, it really pays to be able to

structure your code carefully.

We’ve now explored a couple of simple but effective devices for writing

structured PHP code. Include files let you reuse a single piece of code across

multiple pages of your site, greatly reducing the burden when you need to make

changes. Writing your own functions to put in these include files lets you build

powerful libraries of functions that can perform tasks as needed and return values

to the scripts that call them. These new techniques will pay off in a big way in

the rest of this book.

In the next chapter, you’ll learn how to refine these functions further and make

them even more reusable, using some new techniques that include writing your

own objects and classes.

246 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

7Chapter

Improving the Insert and Update Functions

In the last chapter, I showed you how to break the code up into easily reusable

functions. This has several advantages:

the code where the function is called is easier to read

you can re-use the same function from anywhere

In this chapter, I’ll take this a step further and show you how to make a function

that could be used for any database table, and then show you how object-oriented

programming can simplify this task even further.

Improving the Update Function

updateJoke($pdo, 1, 'Why did the programmer quit his job? He

➥ didn\'t get arrays', 1);

Improving the Insert and Update Functions 247

www.EBooksWorld.ir

To run this function, all of the arguments for the function must be provided:

joke ID

joke text

author ID

What if you just wanted to update the joke text, rather than the joke text and

author ID? Or just update the joke’s author? With the updateJoke function above,

all the information needs to be provided each time.

A better way of doing this is to take the field values as an array, with the keys

representing the field names and the array contents representing the data to be

stored in the database. For example:

updateJoke($pdo, [

'id' => 1,

'joketext' => 'Why did the programmer quit his job?

He didn\'t get arrays']

);

Another example:

updateJoke($pdo, [

'id' => 1,

'authorId' => 4

]);

This is a lot nicer, as only the information being updated (and the primary key)

need to be sent to the function. It also has the advantage of being easier to read:

you can read this code and see exactly what each field is being set to. With the

earlier version, you have to know which parameter represents which field. If you

applied that to a table with 10 or 20 fields, you’d have to get the order of the

arguments exactly right and remember which field was at each position.

248 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

To make the function take an array, it needs to be updated. Currently it looks like

this, and takes an argument for each field:

function updateJoke($pdo, $jokeId, $joketext, $authorId) {

$parameters = [':joketext' => $joketext,

':authorId' => $authorId, ':id' => $jokeId];

query($pdo, 'UPDATE `joke`

SET `authorId` = :authorId, `joketext` = :joketext

WHERE `id` = :id', $parameters);

}

Changing the function so that it can take an array as a second argument and run

the query is less than straightforward, as the query above is expecting parameters

for :authorid, :joketext and :primaryKey. What will happen if they’re not all

provided? If you try it, you’ll get an error.

To work around this error, we need to dynamically generate the query so it only

contains the relevant fields (only the ones we actually want to update).

The foreach loop (which we saw in Chapter 2) can loop over an array. Take the

following code:

$array = [

'id' => 1,

'joketext' => 'Why was the empty array stuck outside?

It didn\'t have any keys'

];

foreach ($array as $key => $value) {

echo $key . ' = ' . $value . ',';

}

This will print the following:

id = 1, joketext = Why was the empty array stuck outside? It

Improving the Insert and Update Functions 249

www.EBooksWorld.ir

➥ didn't have any keys

It’s possible to use a foreach loop to produce the UPDATE query:

$array = [

'id' => 1,

'joketext' => '!false - it\'s funny because it\'s true'

];

$query = ' UPDATE `joke` SET ';

foreach ($array as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ','

}

$query .= ' WHERE `id` = :primaryKey';

echo $query;

The code above will print this query:

UPDATE `joke` SET `id` = :id, `joketext` = :joketext,

WHERE `id` = :primaryKey

The query is generated dynamically based on the contents of $array, and only

the field names from the array will appear in the query.

You’ll notice that the id field is included in the statement. This isn’t needed, but

having it here will simplify things later on.

The .= Operator

Note the use of the .= operator above. It adds to the end of the existing string,

rather than overwriting it!

250 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The following code can be used to generate the query with just the authorId:

$array = [

'id' => 1,

'authorid' => 4

];

$query = 'UPDATE `joke` SET ';

foreach ($array as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ','

}

$query .= ' WHERE `id` = :primaryKey';

echo $query;

The code above will print the following query:

UPDATE `joke` SET `id` = :id, `authorId` = :authorId,

WHERE `id` = :id

This lets us generate almost the exact query that’s needed to update any field, or

set of fields, in the joke table.

I say almost, because if you sent this query to the database you’d get an error.

Unfortunately, there’s a subtle problem with this generated query. You may have

noticed that each time the loop runs, it adds a comma to each part of the SET

clause, generating this:

SET `id` = :id, `authorId` = :authorId,

In the following section, I’ll show what to do about this.

Improving the Insert and Update Functions 251

www.EBooksWorld.ir

Stripping the Trailing Comma

The problem with this part of the query is that there’s an extra comma at the end

of the clause between authorId and WHERE:

UPDATE `joke` SET `id` = :id, `authorId` = :authorId,

WHERE `id` = :id

To be a valid query, it should actually be this:

UPDATE `joke` SET `id` = :id, `authorId` = :authorId

WHERE `id` = :id

This is a subtle, single character difference. However, it’s the difference between a

valid query and an invalid one! It would be possible to tweak the foreach loop to

omit the comma on the last iteration, but it’s simpler just to remove the comma

after the string has been generated.

The rtrim function can be used to remove (or trim) specific characters from the

end of a string. In our case, we want to remove the comma from the $query string

before appending the WHERE clause:

$array = [

'id' => 1,

'authorid' => 4

];

$query = 'UPDATE `joke` SET ';

foreach ($array as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ','

}

$query = rtrim($query, ',');

$query .= ' WHERE `id` = :primaryKey';

252 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

echo $query;

The line $query = rtrim($query, ','); will remove the trailing comma from

the end of the $query string, giving us a valid SQL UPDATE query. This will

display the entire query without the extra comma:

UPDATE `joke` SET `id` = :id, `joketext` = :joketext

WHERE `id` = :primaryKey

By placing this code into the function, the improved version of updateJoke can

now be used:

function updateJoke($pdo, $fields) {

$query = ' UPDATE `joke` SET ';

foreach ($array as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ','

}

$query = rtrim($query, ',');

$query .= ' WHERE `id` = :primaryKey';

// Set the :primaryKey variable

$fields['primaryKey'] = $fields['id'];

query($pdo, $query, $fields);

}

You’ll notice I set the primaryKey key manually with this line:

// Set the :primaryKey variable

$fields['primaryKey'] = $fields['id'];

Improving the Insert and Update Functions 253

www.EBooksWorld.ir

This is so that the WHERE clause in the query is provided with the relevant ID to

update. :id can’t be used, because it has already been used in the query, and each

parameter needs a unique name.

With this version of the updateJoke function, it’s now possible to run it as we

designed earlier:

updateJoke($pdo, [

'id' => 1,

'joketext' => '!false - it\'s funny because it\'s true']

);

Or we could do this:

updateJoke($pdo, [

'id' => 1,

'authorId' => 4]

);

Improving the Insert Function

Using this knowledge, we can do the same thing for the insertJoke function. The

INSERT query can use a syntax different from UPDATE’s, and it works like this:

$query = 'INSERT INTO `joke` (`joketext`, `jokedate`,

`authorId`)

Writing Functions

When you write a function, it’s usually easier to write some examples of how you

think it should be called before writing the code inside the function itself. This

gives you a target to work towards, and some code you can run to see whether it’s

working correctly or not.

254 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

VALUES (:joketext, CURDATE(), :authorId)';

There are two parts to this—the field names and the values. Firstly, let’s handle

the column names. As we did with the updateJoke function, we can use a loop

and rtrim to create the list of fields for the first line of the query:

function insertJoke($pdo, $fields) {

$query = 'INSERT INTO `joke` ('

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

}

This will generate the first part of the query, and $query will store the following:

INSERT INTO `joke` (`authorId`, `joketext`) VALUES (

… when called with this array:

[

'authorId' => 4,

'joketext' => '!false - it\'s funny because it\'s true'

]

The next part of the query should be the placeholders for the values:

VALUES (:authorId, :joketext)

Improving the Insert and Update Functions 255

www.EBooksWorld.ir

These are the keys prefixed with a colon (:). Once again, we can use foreach to

loop through the column names and add the placeholders before sending the

query to the database:

function insertJoke($pdo, $fields) {

$query = 'INSERT INTO `joke` ('

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

foreach ($fields as $key => $value) {

$query .= ':' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ')';

query($pdo, $query);

}

The insertJoke function can now be used to insert data into any of the fields:

insertJoke($pdo, [

'authorId' => 4,

'joketext' => '!false - it\'s funny because it\'s true'

]

);

Of course, it will error if the wrong column names are used, but it’s clearer to

anyone seeing this code which data is being placed into each of the columns. As

we’ll see later, it also makes it easier to use the function with forms.

256 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

For now, amend your website to use the two new functions by replacing the

existing ones in DatabaseFunctions.php:

function insertJoke($pdo, $fields) {

$query = 'INSERT INTO `joke` ('

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

foreach ($fields as $key => $value) {

$query .= ':' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ')';

query($pdo, $query);

}

function updateJoke($pdo, $fields) {

$query = ' UPDATE `joke` SET ';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ' WHERE `id` = :primaryKey';

// Set the :primaryKey variable

$fields['primaryKey'] = $fields['id'];

Improving the Insert and Update Functions 257

www.EBooksWorld.ir

query($pdo, $query, $fields);

}

Amend editjoke.php to use the new updateJoke function:

updateJoke($pdo, [

'id' => $_POST['jokeid'],

'joketext' => $_POST['joketext'],

'authorId' => 1

]);

You might try amending addjoke.php to use the new function:

insertJoke($pdo, ['authorId' => 1, 'jokeText' =>

➥ $_POST['joketext']]);

This example can be found in Structure2-ArrayFunctions-Error.

If you try this, you’ll get an error:

Database error: SQLSTATE[HY000]: General error: 1364 Field

➥ 'jokedate' doesn't have a default value in
➥ /home/vagrant/Code/Project/includes/DatabaseFunctions.php:5

The reason for the error is that we haven’t supplied a value for the jokedate

column.

Handling Dates

The cause of the above error is that we’ve lost the ability to supply a date when

inserting a joke.

Previously, we used the CURDATE() function. Using the new insertJoke function,

258 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

you may attempt to set the joke like so:

insertJoke($pdo, ['authorId' => 1,

'jokeText' => $_POST['joketext'],

'jokedate' => 'CURDATE()'

]);

Although the logic here is sound (we want to insert the current date into the

jokedate column), this approach won’t work as intended. Just as whatever text is

stored in the $_POST['joketext'] variable will be inserted into the joketext

column, the above code would try to write the value CURDATE() into the jokedate

column, rather than executing the function and retrieving the date.

To solve this, we can read the current date using PHP—rather than from

MySQL—using the PHP DateTime class.

The PHP DateTime class can be used to represent dates in PHP and format them

in any way. For example:

$date = new DateTime();

echo $date->format('d/m/Y H:i:s');

By default, a new instance of a DateTime, without a provided argument, will

represent today’s date. So if you were reading this on the 8th September 2019 at

around 7.00 p.m., this would print something like:

08/09/2019 19:12:34

You can give PHP a string to convert to a date and then format the date in any

way you like. For example:

$date = new DateTime('5th March 2019');

Improving the Insert and Update Functions 259

www.EBooksWorld.ir

echo $date->format('d/m/Y');

The string d/m/Y here represents day/month/year, which would print 05/03/

2019. The PHP DateTime class is very powerful and incredibly useful for

handling dates in PHP. A full list of the available methods of formatting a data is

available in the PHP manual

However, the only format we need to use is the format MySQL understands.

Dates and times in MySQL are always stored using the format YYYY-MM-DD

HH:MM:SS. For example, MySQL would store the date of the 13th of July 2019 as

2019-07-13.

The DateTime class can be used to represent any date. Today’s date could be

induced in this format, like so:

// Don't give it a date so it uses the current date/time

$date = new DateTime();

echo $date->format('Y-m-d H:i:s');

The above will print something like this:

2019-09-08 19:16:34

This is the format that’s needed when you insert into a DATETIME field in MySQL.

The insert function can already handle this. We can just pass the current date as

one of the array keys to the function:

$date = new DateTime();

insertJoke($pdo, [

'authorId' => 4,

260 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://php.net/manual/en/function.date.php

'joketext' => 'Why did the chicken cross the road? To get

➥ to the other side',
'jokedate' => $date->format('Y-m-d H:i:s')

]

);

This will work fine. However, every time we want to use the function, we need to

remember the date format used by MySQL. This can be a bit of a pain, as it

requires repeating the code for formatting the date (and remembering the string

Y-m-d H:i:s) each time a date needs to be inserted.

Instead, a better approach would be to have the function format the date for us,

saving some work each time it’s called:

function insertJoke($pdo, $fields) {

$query = 'INSERT INTO `joke` (';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

foreach ($fields as $key => $value) {

$query .= ':' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ')';

foreach ($fields as $key => $value) {

if ($value instanceof DateTime) {

$fields[$key] = $value->format('Y-m-d');

}

}

Improving the Insert and Update Functions 261

www.EBooksWorld.ir

query($pdo, $query, $fields);

}

Using the above version of the function, a date object can be passed into the

function without formatting it:

insertJoke($pdo, [

'authorId' => 4,

'joketext' => '!false - it\'s funny because it\'s true',

'jokedate' => new DateTime()

]

);

The function will look for any date objects it has been given and automatically

format them to the format needed by MySQL. When the function is called, you

don’t need to remember the exact format needed by MySQL; it’s done for you

inside the function. The function will automatically convert any DateTime object

it comes across into a string that MySQL can understand:

// Loop through the array of fields

foreach ($fields as $key => $value) {

// If any of the values are a DateTime object

if ($value instanceof DateTime) {

// Then replace the value in the array with the date

// in the format Y-m-d H:i:s

$fields[$key] = $value->format('Y-m-d H:i:s');

}

}

One operator you haven’t come across yet is the instanceof operator. This is a

comparison operator like == or !=. However, instead of checking to see if the two

values are the same, it checks to see whether the variable on the left ($value) is

the same kind of object as the one on the right (DateTime). One important

distinction is that the value is not being checked, only the type. It’s like saying “Is

262 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

it a car?” rather than “Is it an E-Type Jaguar?”

Wherever a DateTime object is found in the array, it’s replaced with the

equivalent date string in the format MySQL needs. This allows us to completely

forget about the format MySQL actually needs and just supply DateTime objects

to the insertJoke function.

Let’s also add the automatic date formatting to the updateJoke function:

function updateJoke($pdo, $fields) {

$query = ' UPDATE joke SET ';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ' WHERE id = :primarykey';

foreach ($fields as $key => $value) {

if ($value instanceof DateTime) {

$fields[$key] = $value->format('Y-m-d');

}

}

// Set the :primaryKey variable

$fields['primaryKey'] = $fields['id'];

query($pdo, $query, $fields);

}

This will take the same approach we used in insertJoke and apply it to the

update function. Any DateTime object that is passed to the function in the

$fields array will be converted to a string that MySQL understands.

As we have copied/pasted code, it’s good practice to move the duplicated code

Improving the Insert and Update Functions 263

www.EBooksWorld.ir

into its own function to save repetition and follow the DRY principle:

function processDates($fields) {

foreach ($fields as $key => $value) {

if ($value instanceof DateTime) {

$fields[$key] = $value->format('Y-m-d');

}

}

return $fields;

}

Let’s put the function in DatabaseFunctions.php and change the updateJoke and

insertJoke functions to make use of it:

function insertJoke($pdo, $fields) {

$query = 'INSERT INTO `joke` (';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

foreach ($fields as $key => $value) {

$query .= ':' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ')';

$fields = processDates($fields);

query($pdo, $query, $fields);

}

264 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

function updateJoke($pdo, $fields) {

$query = ' UPDATE `joke` SET ';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ' WHERE `id` = :primaryKey';

// Set the :primaryKey variable

$fields['primaryKey'] = $fields['id'];

$fields = processDates($fields);

query($pdo, $query, $fields);

}

Finally, amend addjoke.php to provide the DateTime() object for the value of the

jokedate column:

insertJoke($pdo, ['authorId' => 1,

'jokeText' => $_POST['joketext'],

'jokedate' => new DateTime()

]);

This example can be found in tructure2-ArrayFunctions-Dates.

Displaying the Joke Date

While we’re dealing with dates, let’s display the date on which the joke was

posted alongside the author’s name in the template. The page will now display

something like “By Tom Butler on 2019-08-04”.

Improving the Insert and Update Functions 265

www.EBooksWorld.ir

Firstly, we’ll need to amend the allJokes function to retrieve the date from the

database:

function allJokes($pdo) {

$jokes = query($pdo, 'SELECT `joke`.`id`, `joketext`,

`jokedate`, `name`, `email`

FROM `joke` INNER JOIN `author`

ON `authorid` = `author`.`id`');

return $jokes->fetchAll();

}

Now we can reference the date column in the template file jokes.html.php:

<p><?=$totalJokes?> jokes have been submitted to

➥ the Internet Joke Database.</p>

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke['joketext'],

ENT_QUOTES, 'UTF-8')?>

(by <a href="mailto:<?=htmlspecialchars(

$joke['email'],

ENT_QUOTES,

'UTF-8'

); ?>">

<?=htmlspecialchars(

$joke['name'],

ENT_QUOTES,

'UTF-8'

); ?> on <?=$joke['jokedate']; ?>)

<a href="editjoke.php?id=<?=$joke['id']?>">

Edit

<form action="deletejoke.php" method="post">

<input type="hidden" name="id"

266 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

value="<?=$joke['id']?>">

<input type="submit" value="Delete">

</form>

</p>

</blockquote>

<?php endforeach; ?>

If you run the code above, you’ll see the date printed on the page. Unfortunately,

it will be printed in the format that MySQL uses—that is, 2019-08-04, rather than

a nicer format that people who are viewing the website would prefer.

It’s possible to use the DateTime class to do this for us by amending the template

file to create an instance of the DateTime class and formatting the date in a nicer

way:

(by <a href="mailto:<?=htmlspecialchars(

$joke['email'],

ENT_QUOTES,

'UTF-8'

); ?>">

<?=htmlspecialchars(

$joke['name'],

ENT_QUOTES,

'UTF-8'

); ?> on

<?php

$date = new DateTime($joke['jokedate']);

echo $date->format('jS F Y');

?>)

<a href="editjoke.php?id=<?=$joke['id']?>">

Edit

The DateTime class can take an argument of a date and, luckily for us, it

understands the format MySQL uses—allowing us to quickly format the data in

any way we like.

Improving the Insert and Update Functions 267

www.EBooksWorld.ir

The line echo $date->format('jS F Y'); formats the date in a much nicer way,

and will display something like 4th August 2019.

This example can be found in Structure2-ArrayFunctions-Dates2.

Making Your Own Tools

Blacksmiths are unique in that they make their own tools. Carpenters

don’t make their saws and hammers, tailors don’t make their scissors

and needles, and plumbers don’t make their wrenches, but blacksmiths

can make their hammers, tongs, anvils, and chisels — Daniel C. Dennet,

Intuition Pumps and Other Tools for Thinking

This is an interesting observation—and I’ll explain why I’ve included in in a

moment-but it implies a small paradox. If a blacksmith is needed to make

blacksmith’s tools, where did the first blacksmith’s tools come from? As it turns

out, there’s actually a simple explanation: the first tools were incredibly

crude—just some rocks used to bash out some metal rods. But the blacksmith can

fuse two of those rods together to make a basic hammer, and then use that

hammer to make an even better hammer, gradually making newer and better

equipment.

By improving the tools to be more precise and easier to use, the blacksmith can

make products faster, create higher-quality items, produce a wider variety of

products, make other specialist tools, and let lesser-skilled workers such as

apprentices produce products beyond their skill level.

It does take time to create a tool, but once the tool is created, the blacksmith can

use it to make thousands of products. Over the long term, the time spent making

the tool quickly pays off.

You’re probably wondering what any of this has to do with PHP programming.

I’m going to amend Dennet’s quote slightly and say that blacksmiths are almost

unique in being able to make their own tools—because programmers also possess

this ability.

Every opportunity I listed for blacksmiths to create their own tools exists for

programmers as well. In fact, everything you use on your computer is a tool

268 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

written by another programmer. Even the PHP programming language you’re

using is a tool originally written by a developer called Rasmus Lerdorf.

Programming languages don’t just suddenly exist. Computers don’t even

understand PHP at all! They only understand binary code.

Like blacksmiths, programmers started with very crude tools: punch cards that

had a hole or no hole to represent a one or a zero. These were then manually fed

into the computer to program it. Writing and understanding the code took an

incredible amount of skill. As computers developed, so did the way we program

them.

Instead of representing everything as ones and zeros with punch cards,

programmers invented tools that take human-readable and easier-to-understand

code and convert it (or “compile” it, if you want to get technical) into the binary

code that the computer understands. It’s easy to forget that programming

languages exist for humans, not for computers.

When you sit down in front of your computer with your favorite code editor, you

can be forgiven for thinking you’re using the most refined hammer that can be

made and that you have all the tools available to pick from.

A programming language is just a tool, and you can use it to make your own

tools. Every time you write a function, you’re creating a new tool. You can either

make tools that have many uses, which you can use over and over again, or tools

with limited use that can only be used for one very specific job.

In your kitchen you have many tools. You probably need a knife to prepare nearly

every meal, but how often do you use a garlic press?

A tool is more useful if it can be used for a variety of different tasks. In the

kitchen, the more recipes the tool can help make, the more useful it is.

When writing a function in PHP (or any programming language), strive to write

functions that are more like the knife than the garlic press. Write functions that

can be used over and over again on any website, rather than functions that only

apply to a very specific case on a single website.

So far in this chapter, we’ve taken functions that need an exact number of

Improving the Insert and Update Functions 269

www.EBooksWorld.ir

arguments in a very specific order and rewritten them as functions that allow

arguments to be specified in (almost) any order, with values optionally omitted

entirely if they don’t need updating.

The problem with the function now is that it’s more like the garlic press than the

knife. Just as the garlic press is only useful for recipes that have garlic, the

updateJoke function is only useful when we want to update a record in the joke

table. We can’t take this function and use it on another website, because the next

website you build probably won’t even have a table called joke.

The next step in refining our tools is to make our functions more like the knife,

able to work with any database table. After all, a knife can be used to chop garlic

anyway.

Generic Functions

Before we make any large-scale changes, let’s expand the website and add a

function for retrieving all the authors from the database in the same manner we

used for the allJokes function:

function allAuthors($pdo) {

$authors = query($pdo, 'SELECT * FROM `author`');

return $authors->fetchAll();

}

Let’s also add functions for inserting and deleting authors from the author table:

function deleteAuthor($pdo, $id) {

$parameters = [':id' => $id];

query($pdo, 'DELETE FROM `author`

WHERE `id` = :id', $parameters);

}

270 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

function insertAuthor($pdo, $fields) {

$query = 'INSERT INTO `author` (';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

foreach ($fields as $key => $value) {

$query .= ':' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ')';

$fields = processDates($fields);

query($pdo, $query, $fields);

}

These deleteAuthor and insertAuthor functions are almost identical to the

corresponding joke functions, deleteJoke and insertJoke. It would be better to

create generic functions that could be used with any database table. That way, we

can write the function once and use it for any database table. If we continued

down the route of having five different functions for each database table, we’d

very quickly end up with a lot of very similar code.

The differences between the functions are just the names of the tables. By

replacing the table name with a variable, the function can be used to retrieve all

the records from any database table. That way, it’s no longer necessary to write a

different function for each table:

function findAll($pdo, $table) {

Improving the Insert and Update Functions 271

www.EBooksWorld.ir

$result = query($pdo, 'SELECT * FROM `' . $table . '`');

return $result->fetchAll();

}

Once the function has been written, this new tool can be used to retrieve all the

records from any database table:

// Select all the jokes from the database

$allJokes = findAll($pdo, 'joke');

// Select all the authors from the database

$allAuthors = findAll($pdo, 'author');

The same thing can be done with delete:

function delete($pdo, $table, $id) {

$parameters = [':id' => $id];

query($pdo, 'DELETE FROM `' . $table . '`

WHERE `id` = :id', $parameters);

}

This allows deleting a record from any table based on its ID:

// Delete author with the ID of 2

delete($pdo, 'author', 2);

// Delete joke with the id of 5

delete($pdo, 'joke', 5);

This function works, but it’s still a little inflexible: it assumes that the primary

key field in the table is called id. This function can only work with tables that

have a field named id for their primary key, which isn’t always the case. A table

272 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

that stored information about books, for example, might have isbn as the primary

key. In order for our function to work with any database table structure, the

primary key can also be replaced with a variable:

function delete($pdo, $table, $primaryKey, $id) {

$parameters = [':id' => $id];

query($pdo, 'DELETE FROM `' . $table . '`

WHERE `' . $primaryKey . '` = :id', $parameters);

}

Whenever the delete function is called, it’s now supplied with four arguments:

the $pdo database connection

the name of the table to delete a record from

the ID of the record to delete

the field that acts as the primary key

And it can be called like this:

// Delete author with the ID of 2

delete($pdo, 'author', 'id', 2);

// Delete joke with the id of 5

delete($pdo, 'joke', 'id', 5);

// Delete the book with the ISBN 978-3-16-148410-0

delete($pdo, 'book', '978-3-16-148410-0', 'isbn');

Along with the delete and select functions, let’s do the same thing with the

update and insert functions by replacing the table name with a function

argument:

function insert($pdo, $table, $fields) {

$query = 'INSERT INTO `' . $table . '` (';

Improving the Insert and Update Functions 273

www.EBooksWorld.ir

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

foreach ($fields as $key => $value) {

$query .= ':' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ')';

$fields = processDates($fields);

query($pdo, $query, $fields);

}

function update($pdo, $table, $primaryKey, $fields) {

$query = ' UPDATE `' . $table .'` SET ';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ' WHERE `' . $primaryKey . '` = :primaryKey';

// Set the :primaryKey variable

$fields['primaryKey'] = $fields['id'];

$fields = processDates($fields);

query($pdo, $query, $fields);

}

274 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Notice that in the update function, I’ve also created a variable called primaryKey.

That’s because we can’t assume that the primary key (used in the WHEREid=

:primaryKey part of the query) will always be id.

In the last chapter we created a function called getJoke, which found a specific

joke by its ID. That function, too, can be made to work with any database table.

This findById function can be used to find a single record from any table using

the primary key:

function findById($pdo, $table, $primaryKey, $value) {

$query = 'SELECT * FROM `' . $table . '`

WHERE `' . $primaryKey . '` = :value';

$parameters = [

'value' => $value

];

$query = query($pdo, $query, $parameters);

return $query->fetch();

}

We now have a set of functions that can be used to interact quickly and easily

with any database table and use PHP’s DateTime class for dates:

// Add a new record to the database

$record = [

'joketext' => '!false - it\'s funny because it\'s true',

'authorId' => 2,

'jokedate' => new DateTime()

];

insert($pdo, 'joke', $record);

// Delete from the author table where `id` is `2`

Improving the Insert and Update Functions 275

www.EBooksWorld.ir

delete($pdo, 'author', 'id', 2);

$jokes = findAll($pdo, $joke);

Finally, for the sake of completeness, let’s also make the same change to the

totalJokes function, allowing us to get the number of records in any table:

function total($pdo, $table) {

$query = query($pdo, 'SELECT COUNT(*)

FROM `' . $table . '`');

$row = $query->fetch();

return $row[0];

}

Using These Functions

Now that we’ve got the functions, let’s put them into our controllers. Firstly, we’ll

change the the addjoke.php controller to use the new generic insert function. It

currently looks like this:

<?php

if (isset($_POST['joketext'])) {

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

insertJoke($pdo, ['authorId' => 1,

'jokeText' => $_POST['joketext'],

'jokedate' => new DateTime()]);

header('location: jokes.php');

// …

276 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

To replace the insertJoke function with the generic insert function, we just

need to change the name and supply the name of the table:

<?php

if (isset($_POST['joketext'])) {

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

insert($pdo, 'joke', ['authorId' => 1, 'jokeText' =>

➥ $_POST['joketext'], 'jokedate' => new DateTime()]);

header('location: jokes.php');

// …

Now amend editjoke.php and deletejoke.php files in the same way. Firstly

editjoke.php:

<?php

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

try {

if (isset($_POST['joketext'])) {

update($pdo, 'joke', 'id', ['id' => $_POST['jokeid'],

'joketext' => $_POST['joketext'],

'authorId' => 1]);

header('location: jokes.php');

} else {

$joke = findById($pdo, 'joke', 'id', $_GET['id']);

$title = 'Edit joke';

ob_start();

include __DIR__ . '/../templates/editjoke.html.php';

Improving the Insert and Update Functions 277

www.EBooksWorld.ir

$output = ob_get_clean();

}

}

// …

And here’s the updated deletejoke.php:

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

delete($pdo, 'joke', 'id', $_POST['id']);

// …

The next part is the list of jokes. Currently, it uses the allJokes function, which

also retrieves information about the author of each joke. There’s no simple way to

write a generic function that retrieves information from two tables. It would have

to know which fields were used to join the tables and which tables were being

joined. It would be possible to do this with a function with lots of arguments, but

the function would be difficult to use and overly complex.

Instead, we can use the generic findAll and findById functions to achieve this:

$result = findAll($pdo, 'joke');

$jokes = [];

foreach ($result as $joke) {

$author = findById($pdo, 'author', 'id', $joke['authorId']);

$jokes[] = [

'id' => $joke['id'],

'joketext' => $joke['joketext'],

278 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

'name' => $author['name'],

'email' => $author['email']

];

}

The complete jokes.php looks like this:

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

$result = findAll($pdo, 'joke');

$jokes = [];

foreach ($result as $joke) {

$author = findById($pdo, 'author', 'id',

$joke['authorId']);

$jokes[] = [

'id' => $joke['id'],

'joketext' => $joke['joketext'],

'jokedate' => $joke['jokedate'],

'name' => $author['name'],

'email' => $author['email']

];

}

$title = 'Joke list';

$totalJokes = total($pdo, 'joke');

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

Improving the Insert and Update Functions 279

www.EBooksWorld.ir

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . '

in ' . $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

This example can be found in Structure2-GenericFunctions.

This works by fetching the list of jokes (without the author information), then

looping over each joke and finding the corresponding author by their id, then

writing the complete joke with the information from both tables into the $jokes

array. This is essentially what an INNER JOIN does in MySQL.

Each joke is now made up of values from the $author variable, which is a record

from the author table and values from the joke table.

You may have realized that this method is going to be slower, because more

queries are sent to the database. This is a common issue with these kinds of

generic functions, and it’s called the N+1 problem1 There are several methods for

reducing this performance issue2, but for smaller sites, where we’re dealing with

hundreds or thousands of records rather than millions, it’s unlikely to cause any

real problems. The difference will likely be in the region of milliseconds.

Repeated Code Is the Enemy

Whenever you’re writing software, you need to be vigilant about repeated code.

Any time you find yourself with two or more copies of identical or very similar

code, it’s always worth taking a step back and looking to see if there’s a way of

1. For more information on the N+1 problem, refer to the Microsoft article “Select N+1

Problem – How to Decrease Your ORM Performance”: http://blogs.microsoft.co.il/gilf/

2010/08/18/select-n1-problem-how-to-decrease-your-orm-performance/
2. To see how the N+1 problem can be avoided entirely, refer to

https://www.sitepoint.com/silver-bullet-n1-problem/

280 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

merging the code into one reusable block.

By creating the generic functions insert, update, delete, findAll and findById,

it’s now very quick and easy for us to create a website that deals with any kind of

database operation. The functions can be used to interact very simply with any

database table we might ever need.

But there’s still room for improvement. The files addjoke.php and editjoke.php

do very similar jobs: they display a form, and when the form is submitted, they

send the submitted data off to the database.

Similarly, the template files addjoke.html.php and editjoke.html.php are

almost identical. There’s very little difference between them. The only real

difference is that the edit page displays a pre-filled form where the add page

presents an empty form.

The problem with repeated code is that, if something has to change, you have to

make the same change in multiple locations. What if we wanted to add a category

to a joke, so that when a joke was added or edited the user could choose Knock

knock jokes, Programming Jokes, Puns, One liners, etc?

We could achieve this by adding a <select> box to the add joke page, but we’d

also need to make the same change to the edit joke page. Each time we made a

change to addjoke.php, we’d need to make the corresponding change in

editjoke.php.

If you ever find yourself in a situation like this, where you have to make similar

changes in multiple files, it’s a good sign that you should combine both sets of

code into one. Of course, the new code needs to handle both cases.

There are a couple of differences between addjoke.php and editjoke.php:

1. addjoke.php issues an INSERT query, while editjoke.php issues an UPDATE

query.

2. editjoke.php’s template file has a hidden input that stores the ID of the joke

being edited.

But everything else is almost the same.

Improving the Insert and Update Functions 281

www.EBooksWorld.ir

Let’s merge both pieces of code together, so that editjoke.php can handle both

editing an existing joke and adding a new one. The script will be able to tell

whether we’re adding or editing based on whether or not an ID is supplied in the

URI.

Visiting editjoke.php?id=12 will load the joke with the ID 12 from the database

and allow us to edit it. When the form is submitted, it will issue the relevant

UPDATE query, while just visiting editjoke.php—without an ID specified—will

display an empty form and, when submitted, perform an INSERT query.

Creating a Page for Adding and Editing

Let’s handle the form first—which either loads the joke into the fields or displays

a blank form. Currently, editjoke.php assumes there’s the id GETvariable set, and

loads the joke accordingly before loading the template file:

else {

$joke = findById($pdo, 'joke', 'id', $_GET['id']);

$title = 'Edit joke';

ob_start();

include __DIR__ . '/../templates/editjoke.html.php';

$output = ob_get_clean();

}

This can be replaced with an if statement to only load the joke from the database

if an id has actually been provided:

else {

if (isset($_GET['id'])) {

$joke = findById($pdo, 'joke', 'id', $_GET['id']);

}

$title = 'Edit joke';

282 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

ob_start();

include __DIR__ . '/../templates/editjoke.html.php';

$output = ob_get_clean();

}

If you try the above code and visit editjoke.php without supplying an ID as a

GET variable, it won’t quite work as intended. You’ll actually see some strange

errors appearing inside the <textarea>. That’s because when editjoke.html.php

is loaded, it references a variable called $joke which, because of the new if

statement, is only created when the ID is supplied.

One solution would be to load the addjoke.html.php file if there’s no ID set and

editjoke.html.php if there is. Unfortunately, this doesn’t solve the initial

problem: to add a new field to the form using this approach, we’d still need to

edit two files.

Instead, let’s amend editjoke.html.php so it only tries to print the existing data

into the textarea and hidden input if the joke variable is set:

<form action="" method="post">

<input type="hidden" name="jokeid"

value="<?php if (isset($joke)): ?>

<?=$joke['id']?>

<?php endif; ?>

?>">

<label for="joketext">Type your joke here:

</label>

<textarea id="joketext" name="joketext" rows="3"

cols="40"><?php if (isset($joke)): ?>

<?=$joke['joketext']?>

<?php endif; ?></textarea>

<input type="submit" name="submit" value="Save">

</form>

Improving the Insert and Update Functions 283

www.EBooksWorld.ir

Now the joketext and id will only be written to the page if the $joke variable

has been set, and it’s only set when we’re editing an existing record.

Before continuing, let’s tidy up the code a little. Previously, to print the ID of the

joke into the hidden input, it required a simpler piece of code:

<input type="hidden" name="jokeid"

value="<?=$joke[id]?>">

Now that we’re using the if statement, we need the full <?php opening and

several lines of code.

A nice feature introduced in PHP 7 is the Null coalescing operator. It’s a very

confusing name, but is actually just a shorthand for this:

if (isset($something)) {

echo $something;

}

else {

echo 'variable not set';

}

This can be expressed using the null coalescing operator (??) like so:

echo $something ?? 'variable not set';

On the left-hand side of the ?? operator is the variable being checked, and on the

right is the output that’s used if it’s not set. In the case above, if the $something

variable is set, it will print the contents of the variable. If the variable isn’t set, it

will print variable not set, and even better, it also works with arrays.

Let’s make use of it in our templates, rather than having to write out the entire if

statement for each field:

284 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

<form action="" method="post">

<input type="hidden" name="jokeid"

value="<?=$joke['id'] ?? ''?>">

<label for="joketext">Type your joke here:

</label>

<textarea id="joketext" name="joketext" rows="3"

cols="40"><?=$joke['joketext'] ??

➥ ''?></textarea>
<input type="submit" name="submit" value="Save">

</form>

In this instance, the right-hand part is an empty string. Either the text of the

loaded joke will be displayed in the text box, or if the $joke variable is not set, it

will display an empty string '' in the box.

To complete this page, we need to change what happens when the form is

submitted. Either an update or insert query will need to be run.

The simplest way would be to look to see if the ID field has been supplied:

if (isset($_POST['id']) && $_POST['id'] != '') {

update(...);

}

else ;

insert(...)

}

Although this would work, once again there’s an opportunity to make this more

generic. This logic for if the ID is set, update, otherwise insert is going to be the

same for any form.

If we had a form for authors, the same logic would be useful: if there’s no ID,

perform an insert; if there is, perform an update. Indeed, this would apply

anywhere we have a form that will be used for add or edit. The code above would

need to be repeated for any form we implemented in this way.

Another problem with this approach is that it wouldn’t work in cases where the

Improving the Insert and Update Functions 285

www.EBooksWorld.ir

primary key was a normal field on the form, such as ISBNs for books. Regardless

of whether an UPDATE or INSERT query is required, the ISBN would be provided.

Instead, we can try to insert a record, and if it’s unsuccessful, update instead

using a try … catch statement:

try {

insert(…);

}

catch(PDOException $e) {

update(…);

}

Now an INSERT will be sent to the database, but it may cause an

error—“Duplicate key”—when a record with the supplied ID is already set. If an

error does occur, an UPDATE query is issued instead to update the existing record.

To stop us needing to repeat this logic for every form, we could make another

function, called save, which performs an insert or an update using the try …

catch above:

function save($pdo, $table, $primaryKey, $record) {

try {

if ($record[$primaryKey] == '') {

$record[$primaryKey] = null;

}

insert($pdo, $table, $record);

}

catch (PDOException $e) {

update($pdo, $table, $primaryKey, $record);

}

}

This will work for any record in any table. If there’s an error when trying to

insert, it will issue the corresponding update query instead.

286 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The save function here needs all the arguments required by both the insert and

update functions in order to call them. There’s no need to repeat any of the logic

from those functions; they can just be called from within the relatively short save

function.

The line if ($record[$primaryKey] == '') { is used here so that the INSERT

function never tries to insert an empty string into the ID column. Most of the

time, the primary key will be an INT column that only accepts numbers. By

replacing the empty string with NULL, it will trigger MySQL’s auto_increment

feature and generate a new ID.

Now editjoke.php can be modified to use the new save function:

try {

if (isset($_POST['joketext'])) {

save($pdo, 'joke', 'id', ['id' => $_POST['jokeid'],

'joketext' => $_POST['joketext'],

'jokedate' => new DateTime(),

'authorId' => 1]);

header('location: jokes.php');

}

Finally, you can delete the controller addjoke.php and the template

addjoke.html.php, as they’re no longer needed. Both add and edit are now

handled by editjoke.php. Change the link in the menu in layout.html.php to

go to editjoke.php instead of addjoke.php.

This example can be found in Structure2-GenericFunction-Save.

Further Polishing

The new save function can be used to add records to the database. It will

automatically insert or update depending on whether the id field is set to an

existing ID. For the add form, where the ID field isn’t set, there’s still an id key in

the $_POST array, because the hidden input still exits on the form.

Improving the Insert and Update Functions 287

www.EBooksWorld.ir

This allows us to treat add and edit identically, saving us a lot of work. Without

this generic save function, we’d need different HTML forms and different

controller logic for processing the submissions.

Using this approach, there’s less code to write initially, and the lack of HTML or

PHP code repetition is an extra bonus. To add a new field, all we need to do is

add the field to the database, amend the template and supply the new value to the

save function.

Adding new fields is a very simple process. Because the save function handles

both INSERT and UPDATE queries, and the insert and update functions both

dynamically generate the queries, adding a field to the query is now as easy as

adding an entry to an array!

This updated code is incredibly easy to manage compared to the code we started

with at the beginning of the last chapter. However—and you’re probably

anticipating me saying this by now—it’s always worth asking whether it can be

simplified further. Once again, the answer is yes.

There’s a little repetition here:

[

'id' => $_POST['jokeid'],

'authorId' => 1,

'jokedate' => new DateTime(),

'joketext' => $_POST['joketext']

];

Each field in the $_POST array is mapped to a key in the $joke array with the

same name.

Take a look at the line 'joketext' => $_POST['joketext'],. All we’re really

doing here is creating a key in the $joke array with the name joketext and the

value from the $_POST array’s joketext element.

Really, we’re just copying data from the $_POST array exactly into the $joke array.

If the form had more fields, we’d need to copy those too.

288 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

It would be possible to do something similar using this code:

$joke = $_POST;

$joke['authorId'] = 1;

$joke['jokedate'] = new DateTime();

save($pdo, 'joke', 'id', $joke);

This will automatically include all the fields from the form in the $joke array

without needing to manually copy them.

Now, if we added a new field to the form, there are only two steps: add the

column in the database and add the form. As long as the column name in the

database is the same as the field name on the form, it’s possible to add new fields

to the form without ever opening up the controller!

As neat as that sounds, if you do try the code above, you’ll find you get an error.

That’s because the $_POST array also contains the submit button. When the

INSERT query is generated, it would actually generate this query:

INSERT INTO `joke` (`joketext`, `jokedate`, `authorid`,

➥ `submit`)

This is obviously a problem: there’s no submit column in the database table joke.

A quick and dirty way of fixing this is to remove the submit button from the array

using unset:

$joke = $_POST;

// Remove the submit element from the array

unset($joke['submit']);

$joke['authorId'] = 1;

$joke['jokedate'] = new DateTime();

save($pdo, 'joke', 'id', $joke);

Improving the Insert and Update Functions 289

www.EBooksWorld.ir

Although this works, the problem with this approach is that you’d have to

remove any form elements you don’t want inserted into the database. For

example, if you have a checkbox on the form that sends an email when checked,

you’d also remove this checkbox from the $_POST array prior to calling the save

function.

As usual, there’s a better way. When using HTML forms, you can actually send an

array as post data by changing the field names. Change editjoke.html.php to

this:

<form action="" method="post">

<input type="hidden" name="joke[id]"

value="<?=$joke['id'] ?? ''?>">

<label for="joketext">Type your joke here:

</label>

<textarea id="joketext" name="joke[joketext]" rows="3

" cols="40"><?=$joke['joketext'] ??

➥ ''?></textarea>
<input type="submit" name="submit" value="Save">

</form>

Each of the fields that represents some data for the joke has been changed slightly.

The name attribute of each form field has been updated to represent an array:

jokeid is now joke[id] and joketext is now joke[joketext].

This tells PHP to treat these fields like an array when the form is submitted.

If you submit the form, the $_POST array will store two values: submit and joke.

$_POST['joke'] is itself an array from which you can read the id value using

$_POST['joke']['id'].

For our purposes, we can read all of the information for the joke using $joke =

$_POST['joke'] and it won’t contain the submit button entry, or any other array

keys/values that we don’t want to send to the save function.

290 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$joke = $_POST['joke'];

$joke['authorId'] = 1;

$joke['jokedate'] = new DateTime();

The $joke array will contain all the values from $_POST['joke'] and any we

want to add that don’t come from the form—in this case, authorId and jokedate.

Following this approach, however, it’s important that the field names on the form

directly match up to column names in the database, so I’ve used joke[id]

instead of joke[jokeid]. The latter would try to write to a column in the

database called jokeid, which doesn’t exist.

Finally, you’ll need to update the if statement that detects whether the form has

been submitted to look for the new joke key, rather than joketext which no

longer exits:

if (isset($_POST['joke'])) {

The complete controller code now looks like this:

Improving the Insert and Update Functions 291

www.EBooksWorld.ir

7-1. Structure2-GenericFunctions-SaveArray

<?php

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../includes/DatabaseFunctions.php';

try {

if (isset($_POST['joke'])) {

$joke = $_POST['joke'];

$joke['jokedate'] = new DateTime();

$joke['authorId'] = 1;

save($pdo, 'joke', 'id', $joke);

header('location: jokes.php');

} else {

if (isset($_GET['id'])) {

$joke = findById($pdo, 'joke', 'id', $_GET['id']);

}

$title = 'Edit joke';

ob_start();

include __DIR__ . '/../templates/editjoke.html.php';

$output = ob_get_clean();

}

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

If we wanted add a field to the joke table and alter the form now, it would only

require two changes: adding the field to the database and then editing the HTML

form. A single update to editjoke.html.php will let us add a form field that

292 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

works for both the edit and add pages.

Moving Forward

In this chapter, I’ve showed you how to reduce repeated code and write functions

for use with any database table. We’ve moved from some very specific functions

to functions that can be used in several different situations.

You now have a set of tools you can use to extend this website or even write a

completely different one. None of the functions are tied to concepts like jokes or

authors, which means we could use them on a website that dealt with entirely

different concepts—for example, books, products, blogs, or anything you can

think of. Now that you’ve written the tools, the hard part is done, and in your

next project you can save a lot of time by reusing the tools you’ve created.

Improving the Insert and Update Functions 293

www.EBooksWorld.ir

8Chapter

Objects and Classes

In the last chapter, I showed you how to write generic, reusable functions that

could be used to manipulate any database table. In this chapter, we’ll move those

functions into a class, to avoid some of the repetition that’s needed when they’re

used.

One of the biggest problems with functions is that all the information they need

to execute has to be sent to them in arguments. In the case of the delete function

we wrote, there are four pieces of information:

the $pdo database instance

the name of the table to delete from

the name of the primary key field

the value to delete

294 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The same is true of all the functions—findById, findAll, update, insert and

save. Each of the functions we created needs to be passed at least the $pdo

database instance and the name of the table. All of them except findAll and

insert also need to know the name of the column that represents the primary

key.

For example, the save function is used like this:

if (isset($_POST['joke'])) {

$joke = $_POST['joke'];

$joke['jokedate'] = new DateTime();

$joke['authorId'] = 1;

save($pdo, 'joke', 'id', $joke);

// …

Each time one of the functions is called, it must be passed the $pdo instance.

With up to four arguments for each function, it can be difficult to remember the

order they need to be provided in.

A good method for avoiding this problem is putting the functions inside a class.

Time for Class

As each class needs a name, and ours will deal with functions that have

something to do with database tables, we’ll call ours DatabaseTable.

Like variables, classes can contain any sequence of alphanumeric characters.

However, special characters like -, +, { or a space aren’t allowed.

By convention, classes in PHP use CamelCase, starting with an uppercase letter

followed by lowercase letters until the start of the next word. PHP allows for the

class to be called databasetable, DATABASETABLE, or some other similar

variation, but it’s a good idea to follow the naming convention used by almost all

PHP programmers.

Objects and Classes 295

www.EBooksWorld.ir

You can think of a class as a collection of functions and data (variables). Each

class will contain a set of functions and some data that the functions can access.

Our DatabaseTable class needs to contain all the functions we created for

interacting with the database, along with any functions that those functions need

to call.

As a first step, move all the database functions into a class wrapper:

<?php

class DatabaseTable

{

private function query($pdo, $sql, $parameters = [])

{

$query = $pdo->prepare($sql);

$query->execute($parameters);

return $query;

}

public function total($pdo, $table)

{

$query = $this->query($pdo, 'SELECT COUNT(*) FROM

`' . $table . '`');

$row = $query->fetch();

return $row[0];

}

public function findById($pdo, $table, $primaryKey, $value)

{

$query = 'SELECT * FROM `' . $table . '` WHERE

`' . $primaryKey . '` = :value';

$parameters = [

'value' => $value

];

$query = $this->query($pdo, $query, $parameters);

return $query->fetch();

}

296 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

private function insert($pdo, $table, $fields)

{

$query = 'INSERT INTO `' . $table . '` (';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

foreach ($fields as $key => $value) {

$query .= ':' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ')';

$fields = $this->processDates($fields);

$this->query($pdo, $query, $fields);

}

private function update($pdo, $table, $primaryKey, $fields)

{

$query = ' UPDATE `' . $table .'` SET ';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ' WHERE `' . $primaryKey . '` = :primaryKey';

// Set the :primaryKey variable

$fields['primaryKey'] = $fields['id'];

Objects and Classes 297

www.EBooksWorld.ir

$fields = $this->processDates($fields);

$this->query($pdo, $query, $fields);

}

public function delete($pdo, $table, $primaryKey, $id)

{

$parameters = [':id' => $id];

$this->query($pdo, 'DELETE FROM `' . $table . '` WHERE

`' . $primaryKey . '` = :id', $parameters);

}

public function findAll($pdo, $table)

{

$result = query($pdo, 'SELECT * FROM `' . $table . '`');

return $result->fetchAll();

}

private function processDates($fields)

{

foreach ($fields as $key => $value) {

if ($value instanceof DateTime) {

$fields[$key] = $value->format('Y-m-d');

}

}

return $fields;

}

public function save($pdo, $table, $primaryKey, $record)

{

try {

if ($record[$primaryKey] == '') {

$record[$primaryKey] = null;

}

$this->insert($pdo, $table, $record);

} catch (PDOException $e) {

298 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$this->update($pdo, $table, $primaryKey, $record);

}

}

}

Like templates and include files, it’s good practice to store classes outside the

public directory. Create a new directory called classes inside your Project

directory and save the code above as DatabaseTable.php.

If you examine the code above, you’ll see I’ve made two changes beyond just

pasting the functions into the class. The first change I’ve made is that when

functions from within the class are called, they’re prefixed with $this->. Instead

of $result = query($pdo,…, the updated code has $result =

$this->query($pdo,….

You can think of this as “this class”. We can’t just use query() anymore, because

now that the query() function is inside the class, it can’t be called like a global

function, as it’s outside of global scope. Any method inside a class can only be

called on a variable. In the same way we use $pdo->prepare(), the query()

Naming Your Class Files

It’s good practice to name your class files exactly the same as your classes. The class

DatabaseTable would be placed in DatabaseTable.php, a class called User

would be stored in User.php and so on. Although it doesn’t matter at the moment,

later on I’ll introduce something called an autoloader, and it will be difficult to use

without this convention.

Methods

A function that exists inside a class is called a method. Although many

developers—and the PHP language itself—use the word function to describe

subroutines in classes, the correct term is method, which I’ll be using throughout.

However, the difference between a function and a method is that a method is inside

a class, while a function isn’t.

Anything you can do with a function (arguments, return values, calling other

functions) can also be done with a method.

Objects and Classes 299

www.EBooksWorld.ir

method is now called on an object. From within the class, the current object is

referenced as $this. The $this variable is created automatically inside any

method and will always exist without being declared.

Public vs Private

The second change I’ve made when converting functions to methods is that each

is prefixed with either public or private. These are known as visibility, allowing

the programmer to determine where the method can be called from.

Methods marked private can only be called from other methods inside the class,

whereas methods marked public can be called from both inside and outside the

class. You’ve already seen some public methods on the PDO instance we’ve been

using throughout this book. When you call $pdo->prepare(), you’re calling a

public method called prepare. If the method was marked private, this wouldn’t

be possible.

What’s the point of private methods then? Take a look at the methods I’ve marked

as private in the DatabaseTable class: query and processDates. The reason

these are private is that, on their own, they aren’t very useful. Nobody using the

DatabaseTable class should ever need to call the query method directly. The

query method is only there to provide some shared functionality for the other

methods in the class—save, findById, and so on. The same is true of the

processDates function.

At first glance, it seems a little pointless. However, it’s actually a very useful tool.

Once a method such as query is private, you can completely rewrite the way it

works, and you can guarantee the only place it’s being called from is another

method within the same class.

When you’re working in large teams or sharing your code online, knowing

exactly where a method is called from is useful. You can release a new version of

the class without the query method, and you can be guaranteed it’s not being

used anywhere else. Someone else can use the new version and their code won’t

be broken.

If it was public and you changed the code, you’d have no idea if the query

300 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

function was being called from anywhere else, and you’d need to be wary of

changing the way it worked in case it broke someone else’s code.

Objects

You can think of a class as a recipe. On its own, it’s just a series of instructions.

To make something from it that’s actually useful—something you can eat—you

need to follow the instructions.

A class on its own isn’t very useful: it’s just a series of instructions. There’s no

way to call a method from within the class without creating an object. An object

is an instance of a class.

Creating an instance of the DatabaseTable class is done the same way as the pdo

instance we’ve been using throughout this book: only the name of our class,

DatabaseTable, is used:

$databaseTable = new DatabaseTable();

The new keyword creates an object from the defined class, which can then be

used. Without this step, none of the functions defined in the class can be used.

At the moment, this feels like an extra step that doesn’t achieve anything special.

But as we’ll see later on, this is a very powerful tool for programmers, allowing us

to create different instances that represent different database tables.

Once the object is created, the methods can be called on the variable in the same

way we call $pdo->prepare() on the $pdo object:

$databaseTable = new DatabaseTable();

$jokes = $databaseTable->findAll($pdo, 'joke');

Any of the public methods can be called in this way. However, if you try to call

one of the private methods, you’ll get an error.

Objects and Classes 301

www.EBooksWorld.ir

Class Variables

At the start of this chapter, I mentioned that the goal of using objects and classes

was to reduce repeated code. However, so far we’ve actually made the code

longer. With the DatabaseTable class, each time we want to use one of the

methods, we need to call it on an object:

$databaseTable = new DatabaseTable();

$jokes = $databaseTable->findAll($pdo, 'joke');

$databaseTable->save($pdo, 'joke', 'id', $_POST['joke']);

In this case, we’ve increased rather than reduced the amount of code that’s

required.

Each time one of the methods in the class is called, it needs the same

information—at a minimum, the database connection and the name of the table

that’s being interacted with.

Rather than supply these values every time a method is called, it’s possible to

supply them once, to the class, and have the values used within the methods.

Every class can have variables that are available to be used within any method. To

declare a variable that will be used inside the class, you need to declare the

variable within the class. It’s convention to define variables at the top of the class,

before any methods.

To declare a variable, you must make it visible and give it a name. For example:

class MyClass {

public $myVariable;

}

Once the variable has been declared, you can use it when you create an instance

302 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

of the class. Like methods, variables can be written to and read from using the

arrow (->) operator:

$myInstance = new MyClass();

$myInstance->myVariable = 'A value';

echo $myInstance->myVariable; // prints "A value"

An important distinction between class variables and normal variables is that

they’re bound to a specific instance. In practice, all this means is that each

instance can have a different value for the same variable. For example:

$myInstance = new MyClass();

$myInstance->myVariable = 'A value';

$myInstance2 = new MyClass();

$myInstance2->myVariable = 'Another value';

echo $myInstance->myVariable;

echo $myInstance2->myVariable;

This will print “A value” and then “Another value”, because each instance of the

class has its own value for the myVariable variable. Later on, this will be very

useful for our DatabaseTable class, but for now, let’s just add the variables for the

$pdo instance, the table name and the primary key to the class:

class DatabaseTable {

public $pdo;

public $table;

public $primaryKey;

// …

}

A class is more than just a collection of functions. You can think of it as a

Objects and Classes 303

www.EBooksWorld.ir

blueprint that can be used to create objects. Each object or instance of the class

can store its own values for these variables.

For example, when you create the $pdo variable for your database connection, the

$pdo variable stores the connection information—the database server address,

username, password, etc. You don’t need to send this information every time you

call prepare or execute; the information is stored inside the $pdo object.

The same can be done with the DatabaseTable class. Once the variables have

been declared, they can be written to on each instance:

$databaseTable = new DatabaseTable();

$databaseTable->pdo = $pdo;

$databaseTable->table = 'joke';

$databaseTable->prmaryKey = 'id';

Now that the variables are set, they can be used instead of the arguments inside

any of the methods in the class. For example, the findAll and query methods

can be rewritten to use the class variables, instead of having the database

connection and table name passed in explicitly:

private function query($sql, $parameters = []) {

$query = $this->pdo->prepare($sql);

$query->execute($parameters);

return $query;

}

public function findAll() {

$result = $this->query('SELECT *

FROM ' . $this->table);

return $result->fetchAll();

}

The variables in the class are accessed the same way as the functions using the

$this variable. Now, when the findAll() function is called, it doesn’t need any

304 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

arguments, because the $pdo connection and the name of the table are read from

the class variables:

$jokesTable = new DatabaseTable();

$jokesTable->pdo = $pdo;

$jokesTable->table = 'joke';

$jokes = $databaseTable->findAll();

Let’s go ahead and make this change to all the methods. Anywhere $pdo, $table

or $primaryKey was used as an argument, the argument can be removed and

replaced with a reference to the class variable.

Here’s what the total method looks like now:

public function total() {

$query = $this->query('SELECT COUNT(*)

FROM `' . $this->table . '`');

$row = $query->fetch();

return $row[0];

}

The save method:

public function save($record) {

try {

if ($record[$this->primaryKey] == '') {

$record[$this->primaryKey] = null;

}

$this->insert($record);

}

catch (PDOException $e) {

$this->update($record);

}

}

Objects and Classes 305

www.EBooksWorld.ir

The update method:

private function update($fields) {

$query = ' UPDATE `' . $this->table .'` SET ';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ' WHERE `' . $this->primaryKey . '`

= :primaryKey';

// Set the :primaryKey variable

$fields['primaryKey'] = $fields['id'];

$fields = $this->processDates($fields);

$this->query($query, $fields);

}

The insert method:

private function insert($fields) {

$query = 'INSERT INTO `' . $this->table . '` (';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

foreach ($fields as $key => $value) {

$query .= ':' . $key . ',';

}

306 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$query = rtrim($query, ',');

$query .= ')';

$fields = $this->processDates($fields);

$this->query($query, $fields);

}

The findById method:

public function findById($value) {

$query = 'SELECT * FROM `' . $this->table . '` WHERE

`' . $this->primaryKey . '` = :value';

$parameters = [

'value' => $value

];

$query = $this->query($query, $parameters);

return $query->fetch();

}

The delete method:

public function delete($id) {

$parameters = [':id' => $id];

$this->query('DELETE FROM `' . $this->table . '` WHERE

`' . $this->primaryKey . '` = :id', $parameters);

}

The processDates method remains unchanged, as it doesn’t require any of the

class variables.

Objects and Classes 307

www.EBooksWorld.ir

Now, to interact with the database, the common variables only need to be set

once:

$jokesTable = new DatabaseTable();

$jokesTable->pdo = $pdo;

$jokesTable->table = 'joke';

$jokesTable->primaryKey = 'id';

And then the methods can be used without repeating all the arguments:

// Find the joke with the ID `123`

$joke123 = $jokesTable->findById(123);

// Find All the jokes

$jokes = $jokesTable->findAll();

foreach ($jokes as $joke) {

// …

}

// Delete the joke with the ID `33`

$jokesTable->delete(33);

$newJoke = [

'authorId' => 1,

'jokedate' => new DateTime(),

'joketext' => 'A man threw some cheese and milk at me.

➥ How dairy!'
];

$jokesTable->save($newJoke);

This reduces the number of arguments needed by each method, and makes it

easier for someone using the methods to follow. They don’t have to remember the

order of all the arguments—for example, whether the table name is the first or

second argument.

308 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

This is a huge improvement, but there are some potential problems. What

happens if the variables aren’t set before the findAll() method is called? What

happens if the $pdo variable is set to a string rather than an object?

$jokesTable = new DatabaseTable();

$jokes = $databaseTable->findAll();

If you run this you’ll get an error, because the findAll method is expecting the

$pdo and table variables to be set to valid values. Luckily, there’s a way of

preventing this from happening.

Constructors

As the author of a class, you get to tell anyone who uses it how it works. (If you

want to get technical, this is called the Application Programming Interface or

API). You can make sure that any required variables are set before any functions

are run.

There’s a special function you can add to the class called a constructor. This is a

function that is automatically run whenever an instance of the class is created. To

add a constructor to a class, you simply add a function called __construct().

This is a method like any other, but it’s called automatically. For example:

class MyClass {

Magic Methods

That’s two underscores in front of the word construct. If you use just one, it won’t

work!

In PHP, any method prefixed by two underscores is a magic method. These are

generally called automatically in different cases. As the language evolves, more of

these magic methods may be added, so it’s a good idea to avoid giving your own

methods names beginning with two underscores.

A complete list of the available magic methods can be found in the PHP manual.

Objects and Classes 309

www.EBooksWorld.ir

http://php.net/manual/en/language.oop5.magic.php

public function __construct() {

echo 'construct called';

}

}

$myclass1 = new MyClass();

$myclass2 = new MyClass();

Once a function with the name __construct() is created, each time you create a

new instance of the class the function is called. The code above will output the

following:

construct called

construct called

Even though we’ve never directly called the function using

$myclass1->__construct(), you can see it’s been called because the string

construct called has been printed.

You’ll also have noticed it’s been called twice. This is because each time an

instance of the class is created, the constructor is called.

Like any other function, the constructor can also take arguments. For example:

class MyClass {

public function __construct($argument1) {

echo $argument1;

}

}

When you create an instance of the class, the arguments can be provided:

$myclass1 = new MyClass('one');

$myclass2 = new MyClass('two');

310 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

If you try to create an instance of the class that needs a constructor argument and

doesn’t have a default defined, but you fail to pass in an argument, you’ll see an

error.

Let’s add a constructor to the DatabaseTable class that sets the $pdo, $table and

$primaryKey variables:

class DatabaseTable {

public $pdo;

public $table;

public $primaryKey;

public function __construct($pdo, $table, $primaryKey) {

$this->pdo = $pdo;

$this->table = $table;

$this->primaryKey = $primaryKey;

}

// …

}

You’ll come across constructors like this frequently if you start using objects and

classes regularly, so it’s important to understand what’s happening here.

There are two different variables with the same names, which can be confusing at

first. The first version is the argument, which is defined in the line public

function __construct($pdo, $table, $primaryKEy) {. When you create a

function argument, the variable is only available inside that specific function and

isn’t available to be used in other functions in the class.

Placing Your Constructor Methods

It’s common practice to put the constructor at the top of the class, after variables but

before any other methods.

Objects and Classes 311

www.EBooksWorld.ir

When the constructor is called, the $pdo instance is sent to it, but we want to

make the $pdo instance available to every function in the class. The only way to

make a variable available to every function inside the class is to make it a class

variable like we did above. Instead of setting the class variable from outside the

class—for example, $jokesTable->pdo = $pdo;—we want to set it from within

the constructor inside the class.

Like before, the $this variable represents the current instance, and $this->pdo

= $pdo; is doing the same thing as $jokesTable->pdo = $pdo;, only from inside

the class. Both $jokesTable and $this reference the same object, and making

changes to one will be reflected in the other.

You can think of this like the English language. Although you’ll always refer to

yourself as “I”, your friends will use your name. Regardless of whether you’re

referring to yourself, or someone is referring to you by your name, it’s always the

same person—you—who’s being referred to.

The same thing happens here. $this references the current instance from inside

the class, like “I” in English. However, $jokesTable refers to the same instance

using its name from outside the class.

Using either $jokesTable->pdo = $pdo from outside the class, or $this->pdo =

$pdo; from inside the class, the $pdo class variable will be set and then be

available inside any methods when they’re called on that instance.

By using a constructor, when the instance is created, two variables must be

supplied:

$jokesTable = new DatabaseTable($pdo, 'jokes', 'id');

If you tried to create an instance of the DatabaseTable class without passing it

two arguments, it would give you an error, because the two arguments are

required for the code to work.

This kind of check ensures the code is robust. It also helps anyone who uses the

class, because they’ll see an error as soon as they do something wrong.

312 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Type Hinting

If we’re trying to make the class foolproof, there’s still a problem. What happens

if the person using your DatabaseTable class gets the order of the arguments

wrong? Consider these two examples:

$jokesTable = new DatabaseTable('jokes', $pdo, 'id');

$jokesTable = new DatabaseTable($pdo, 'jokes', 'id');

The first could easily be written instead of the second. This is an innocent

mistake, and an easy one to make by accident. An error won’t be seen until one of

the functions in the class is called. For example:

$jokesTable = new DatabaseTable('jokes', $pdo, 'id');

$jokes = $jokes->findAll();

The code above will result in the error “Call to function prepare on non-object”,

because the findAll function contains the line $result =

$this->query('SELECT * FROM ' . $this->table);, and the query function

has the line $query = $this->pdo->prepare($sql);.

Because the order of the constructor arguments is wrong, the $pdo variable will

actually be set to the string joke. The string joke does not have a function called

prepare, which is what causes the error.

The error “Call to function prepare on non-object” doesn’t make it clear what

went wrong, and it would be difficult for the person who made the mistake to

figure it out without looking in depth at your class and examining it line by line.

To help them out, it’s better to ensure that the arguments are the correct type. PHP

is loosely typed, meaning that a variable can be any type—such as a string, a

number, an array, or an object. Even so, you can enforce types when you create a

Objects and Classes 313

www.EBooksWorld.ir

function. This is particularly useful for constructors, where getting the arguments

in the wrong order appears to work. For example, take the following code:

$jokesTable = new DatabaseTable('jokes', $pdo);

This won’t actually cause any errors. The person running this line of code won’t

know that it’s wrong. It’s possible to use if statements to check the type of each

argument, but PHP also provides a nice feature called “type hinting”.

Type hinting allows you to specify the type of an argument. The type can be a

class name, or one of the basic types, such as string, array or integer.

To provide a type hint for an argument, prefix the variable name with the type

that the variable should be. For our database class this will be:

public function __construct(PDO $pdo, string $table, string

➥ $primaryKey) {

This tells PHP to check the types of each argument when they’re provided. If the

object is constructed with the wrong types now—as in $jokesTable = new

DatabaseTable('jokes', $pdo, 'id');, for example—PHP will check to see

whether the type of each argument matches the hint. If it doesn’t, it will produce

an error. The error that’s printed in this case is this:

Uncaught TypeError: Argument 1 passed to

➥ DatabaseTable::__construct() must be an instance of PDO,
➥ string given

This error explains much more clearly what the problem is than “Call to function

Type Hinting Compatibility

Type hinting for basic types (numbers strings, arrays—anything that isn’t an object)

was only introduced in PHP 7. It’s possible your web host is still on PHP 5, so be

careful when using this feature!

314 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

prepare on non-object”, and it prevents the rest of the script from even running.

As soon as a mistake is detected, the script is halted so you can fix it. This is a lot

better than only getting a vague error message at the point you’re trying to call

one of the methods on the object!

By using type hinting on constructors like this, you can ensure that the class

variables are set to the types you’re expecting. This way, when the code

$this->pdo->prepare is run inside one of the methods in the class, $this->pdo

must be set to an instance of $pdo and have a prepare method. There’s no way for

the $this->pdo variable to be set to a string, a number, or even not set to

anything.

This is known as defensive programming, and it’s a very useful way of

preventing bugs. By stopping variables being set to the wrong type, you can rule

out the possibility of many potential bugs.

Private Variables

The class variables and constructor in the DatabaseTable class now look like

this:

class DatabaseTable {

public $pdo;

public $table;

public $primaryKey;

public function __construct(PDO $pdo, string $table,

string $primaryKey) {

$this->pdo = $pdo;

$this->table = $table;

$this->primaryKey = $primaryKey;

}

// …

}

When an instance of the class is created, it must be passed three arguments, and

Objects and Classes 315

www.EBooksWorld.ir

those three arguments must be of specific types (a $pdo instance, a string and a

string).

It’s now impossible to construct the class without providing the correct

parameters:

$jokesTable = new DatabaseTable($pdo, 'jokes', 'id');

Any other combination, such as new DatabaseTable($pdo, 'jokes');, or new

DatabaseTable('jokes', $pdo, 'id'); or new DatabaseTable(); will display

an error. Once one of the methods is called (for example,

$jokesTable->findAll();), all of the class variables must have been set to the

correct type, which should stop the $pdo variable being set to anything but a real

database connection, a PDO instance.

However, the code still has a weak point. There’s still a way of making it so the

$pdo variable in the class is not a PDO instance.

That’s because the variable $pdo is public. Like public functions, this means that

the variables are accessible from outside the class, and it means the following

code is possible:

// Correctly create the instance with a database connection

$jokesTable = new DatabaseTable($pdo, 'jokes', 'id');

$jokesTable->pdo = 'a string';

$jokes = $jokesTable->findAll();

Although the constructor is ensuring that a valid database connection is being set

when the object is created, the code above has overwritten the $pdo class variable

between the constructor being executed and the findAll method being called.

The $pdo variable in the $jokesTable object has been set to “a string”. When the

findAll() method runs, $this->pdo->prepare() will throw an error, because

$this->pdo is a string, not an object with a prepare method.

316 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Public class variables like these cause problems because they allow the variable

to be overwritten from anywhere. Instead, it’s good practice to make class

variables private to prevent these issues:

class DatabaseTable {

private $pdo;

private $table;

private $primaryKey;

public function __construct(PDO $pdo, string $table, string

$primaryKey) {

$this->pdo = $pdo;

$this->table = $table;

$this->primaryKey = $primaryKey;

}

// …

}

When the variables are private, like private functions, they can’t be accessed from

outside the class (for either reading or writing).

By combining type hints, constructors and private properties, several conditions

have been imposed on the class:

1. It’s impossible to create an instance of the DatabaseTable class without

passing it a $pdo instance.

2. The first argument must be a valid PDO instance.

3. There’s no way to change the $pdo variable after it’s been set.

As a result of these conditions, when any of the functions (such as findAll() or

save()) are called, the $pdo, $table and $primaryKey variables must be set, and

must be of the correct type. When $this->pdo->prepare() is called, it won’t

cause an error, because there’s no way that findAll() can be called unless the

variables are correctly set.

Objects and Classes 317

www.EBooksWorld.ir

This type of defensive programming can take a little more thinking about—for

example, what needs to be public and what needs to be private?—but in all but

the most simple projects, it’s worth it! By eliminating the conditions for a bug to

exist, you can save yourself a lot of bug-tracking time later on.

Using the DatabaseTable Class

The final version of the DatabaseTable class looks like this:

<?php

class DatabaseTable

{

private $pdo;

private $table;

private $primaryKey;

public function __construct(PDO $pdo, string $table,

string $primaryKey)

{

$this->pdo = $pdo;

$this->table = $table;

$this->primaryKey = $primaryKey;

}

private function query($sql, $parameters = [])

{

$query = $this->pdo->prepare($sql);

$query->execute($parameters);

return $query;

}

public function total()

{

$query = $this->query('SELECT COUNT(*) FROM

`' . $this->table . '`');

$row = $query->fetch();

return $row[0];

}

318 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

public function findById($value)

{

$query = 'SELECT * FROM `' . $this->table . '` WHERE `' .

$this->primaryKey . '` = :value';

$parameters = [

'value' => $value

];

$query = $this->query($query, $parameters);

return $query->fetch();

}

private function insert($fields)

{

$query = 'INSERT INTO `' . $this->table . '` (';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

foreach ($fields as $key => $value) {

$query .= ':' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ')';

$fields = $this->processDates($fields);

$this->query($query, $fields);

}

Objects and Classes 319

www.EBooksWorld.ir

private function update($fields)

{

$query = ' UPDATE `' . $this->table .'` SET ';

foreach ($fields as $key => $value) {

$query .= '`' . $key . '` = :' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ' WHERE `' . $this->primaryKey . '` =

:primaryKey';

// Set the :primaryKey variable

$fields['primaryKey'] = $fields['id'];

$fields = $this->processDates($fields);

$this->query($query, $fields);

}

public function delete($id)

{

$parameters = [':id' => $id];

$this->query('DELETE FROM `' . $this->table . '` WHERE

`' . $this->primaryKey . '` = :id', $parameters);

}

public function findAll()

{

$result = $this->query('SELECT * FROM ' .

$this->table);

return $result->fetchAll();

}

private function processDates($fields)

{

320 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

foreach ($fields as $key => $value) {

if ($value instanceof DateTime) {

$fields[$key] = $value->format('Y-m-d');

}

}

return $fields;

}

public function save($record)

{

try {

if ($record[$this->primaryKey] == '') {

$record[$this->primaryKey] = null;

}

$this->insert($record);

} catch (PDOException $e) {

$this->update($record);

}

}

}

Let’s save this in its own file, DatabaseTable.php. Remember to put the <?php tag

at the top of the file.

One of the most useful features of using classes is that, once a class has been

Omitting the Closing Tag from Your Files

Whenever you create a PHP file, you need to remember to put the PHP code inside

PHP tags. However, the closing tag is optional, and it’s actually better to omit it if

the file only contains PHP code.

This is because, if there are any whitespace characters (blank lines, tabs or spaces)

at the end of the file after the closing PHP tag ?>, they’ll be sent to the browser,

which isn’t what you want to happen. Instead, it’s better to prevent this from

happening by omitting the ?> tag entirely. By leaving out the closing PHP tag, the

whitespace will be interpreted on the server by PHP, and ignored, rather than being

sent as part of the HTML code to the browser.

Objects and Classes 321

www.EBooksWorld.ir

written, it can be used as many times as you like. And each time you use it, by

creating an instance, that instance can store different values of the class variables.

For example, it’s possible to use the DatabaseTable class to interact with the

joke table and the author table.

Because each instance has its own version of the variables, we can have one

version of the class where $table is set to joke and one version where $table is

set to author:

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', id');

// Find the joke with the ID 123

$joke = $jokesTable->findById(123);

// Find the author with the ID 34

$author = $authorsTable->findById(34);

Because the class variable $table is different, a different table will be used for

each of the instances.

When $author = $authorsTable->findById(34) is called, $this->table is

equal to author, so the query that runs will be SELECT * FROM author …,

whereas when $joke = $jokesTable->findById(123); is called, $this->table

is set to joke, so the query that runs is SELET * FROM joke ….

This means the DatabaseTable class can now be used to insert, update or find

records from any table in the database by constructing an instance with the table

name in the constructor!

Updating the Controller to Use the Class

Now that we have the complete DatabaseTable class, let’s use it in the

controllers.

Firstly, delete includes/DatabaseFunctions.php. All our functions are now

stored inside the class in classes/DatabaseTable.php.

322 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Secondly, let’s update public/jokes.php to use the new class:

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

$result = $jokesTable->findAll();

$jokes = [];

foreach ($result as $joke) {

$author = $authorsTable->findById($joke['authorId']);

$jokes[] = [

'id' => $joke['id'],

'joketext' => $joke['joketext'],

'jokedate' => $joke['jokedate'],

'name' => $author['name'],

'email' => $author['email']

];

}

$title = 'Joke list';

$totalJokes = $jokesTable->total();

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

Objects and Classes 323

www.EBooksWorld.ir

}

include __DIR__ . '/../templates/layout.html.php';

This controller is better. We no longer have to provide the table name and $pdo

instance to each of the functions—total, findById and findAll. The functions

can each be called on either the $jokesTable variable or the $authorsTable

variable to run the relevant query on either table.

Let’s do the same thing with our other controllers.

Here’s the updated deletejoke.php:

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$jokesTable->delete($_POST['id']);

header('location: jokes.php');

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Unable to connect to the database server: ' .

$e->getMessage() . ' in ' .

$e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

And editjoke.php:

<?php

324 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

if (isset($_POST['joke'])) {

$joke = $_POST['joke'];

$joke['jokedate'] = new DateTime();

$joke['authorId'] = 1;

$jokesTable->save($joke);

header('location: jokes.php');

} else {

if (isset($_GET['id'])) {

$joke = $jokesTable->findById($_GET['id']);

}

$title = 'Edit joke';

ob_start();

include __DIR__ . '/../templates/editjoke.html.php';

$output = ob_get_clean();

}

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

This example can befoound in OOP-DatabaseTable

Now that you’re familiar with objects and classes, and you know that repeated

Objects and Classes 325

www.EBooksWorld.ir

code is a very bad thing for a programmer, it’s time to start tidying up these

controller scripts.

While making the last few changes, you would have found yourself making

similar changes in multiple locations. As I mentioned earlier in this book, the

DRY (Don’t Repeat Yourself) principle states that it’s bad practice to have

repeated code.

DRY

Carefully examine the different controllers. What is actually different about

them?

Each of the controllers follows this basic pattern:

<?php

try {

/*

- include some required files

*/

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabasetabaseTable.php';

/*

- create one or more database table instances

*/

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

/*

- Do something that's unique to this particular page

and create the $title and $output variables

*/

} catch (PDOException $e) {

/*

- Handle errors if they occur

*/

326 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . '

in ' . $e->getFile() . ':' . $e->getLine();

}

/*

- Load the template file

*/

include __DIR__ . '/../templates/layout.html.php';

Using this approach, if you wanted to rename the DatabaseConnection.php file,

you’d have to go through each controller to use the new name. Similarly, if you

wanted to change the layout file, you’d need to edit each controller separately.

All that really changes for each controller is the middle section that creates the

$output and $title variables for the layout to use.

Rather than having different files for each controller, it’s possible to write a single

controller that handles each action as a method. That way, we can have one file

that handles all the parts that are common to each page, and methods in a class

that handle the individual parts.

Creating a Controller Class

The first thing we could do is move the code for each controller into a method in

a class. Firstly create a class called JokeController.

As this is a special type of class, we won’t store it in the classes directory.

Instead, create a new directory called controllers and save this as

JokeController:

class JokeController {

}

Objects and Classes 327

www.EBooksWorld.ir

Before moving the relevant code into methods, let’s consider what variables this

class needs. Any variables required by the various actions will need to be class

variables so that they can be defined once and used in any of the methods.

In this case, there are only two variables that are common to the controllers:

$authorsTable and $jokesTable. Add these two variables to the class:

class JokeController {

private $authorsTable;

private $jokesTable;

}

Like the DatabaseTable class, it’s good practice to make these variables private so

they can only be changed from within the class. Also, like the DatabaseTable

class, you’ll need a constructor so that the two variables can be set when the class

is instantiated:

class JokeController {

private $authorsTable;

private $jokesTable;

public function __construct(DatabaseTable $jokesTable,

DatabaseTable $authorsTable) {

$this->jokesTable = $jokesTable;

$this->authorsTable = $authorsTable;

}

}

Add the listJokes method first. Copy/paste the relevant section from jokes.php,

but remember to use the class variables $jokesTable and $authorsTable, rather

than including the existing code from jokes.php which creates them in the same

block. We’ll create the instances once and pass them into the controller:

public function list() {

$result = $this->jokesTable->findAll();

328 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$jokes = [];

foreach ($result as $joke) {

$author =

$this->authorsTable->findById($joke['authorId']);

$jokes[] = [

'id' => $joke['id'],

'joketext' => $joke['joketext'],

'jokedate' => $joke['jokedate'],

'name' => $author['name'],

'email' => $author['email']

];

}

$title = 'Joke list';

$totalJokes = $this->jokesTable->total();

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

}

Before getting this working, let’s add the other methods for the corresponding

editjoke and deletejoke pages, along with the home page from index.php:

public function home() {

$title = 'Internet Joke Database';

ob_start();

include __DIR__ . '/../templates/home.html.php';

$output = ob_get_clean();

Objects and Classes 329

www.EBooksWorld.ir

}

public function delete() {

$this->jokesTable->delete($_POST['id']);

header('location: jokes.php');

}

public function edit() {

if (isset($_POST['joke'])) {

$joke = $_POST['joke'];

$joke['jokedate'] = new DateTime();

$joke['authorId'] = 1;

$this->jokesTable->save($joke);

header('location: jokes.php');

}

else {

if (isset($_GET['id'])) {

$joke = $this->jokesTable->findById($_GET['id']);

}

$title = 'Edit joke';

ob_start();

include __DIR__ . '/../templates/editjoke.html.php';

$output = ob_get_clean();

}

}

If you examine the controller code closely, you might notice that, regardless of

how we eventually use this class, it’s not going to be very useful. That’s because

330 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

the $title and $output variables can never be used in layout.html.php. Once

either the home, edit or list methods are run, the $title and $output variables,

along with their contents, are lost.

To make those variables available to the code that calls the methods, we’ll use the

return keyword. We already used return in the DatabaseTable class. Each time

a method was run, it was able to send some data back to the place it was called

from. The findAll method returns an array of all the records in the table.

It would be possible to return the $output variable using return $output, but

when layout.html.php is loaded, it will need both the $output and the $title

variables.

Like the findAll method, the individual controller methods can return arrays:

public function home() {

$title = 'Internet Joke Database';

ob_start();

include __DIR__ . '/../templates/home.html.php';

$output = ob_get_clean();

return ['output' => $output, 'title' => $title];

}

public function list() {

$result = $this->jokesTable->findAll();

$jokes = [];

foreach ($result as $joke) {

$author =

$this->authorsTable->findById($joke['authorId']);

$jokes[] = [

'id' => $joke['id'],

'joketext' => $joke['joketext'],

'jokedate' => $joke['jokedate'],

Objects and Classes 331

www.EBooksWorld.ir

'name' => $author['name'],

'email' => $author['email']

];

}

$title = 'Joke list';

$totalJokes = $this->jokesTable->total();

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

return ['output' => $output, 'title' => $title];

}

public function edit() {

if (isset($_POST['joke'])) {

$joke = $_POST['joke'];

$joke['jokedate'] = new DateTime();

$joke['authorId'] = 1;

$this->jokesTable->save($joke);

header('location: jokes.php');

}

else {

if (isset($_GET['id'])) {

$joke = $this->jokesTable->findById($_GET['id']);

}

$title = 'Edit joke';

332 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

ob_start();

include __DIR__ . '/../templates/editjoke.html.php';

$output = ob_get_clean();

return ['output' => $output, 'title' => $title];

}

}

The return value of each of the functions is an array that contains the output

and title variables. Now, when one of the methods is called, it will return the

output and title strings, which can then be used.

Importantly, because each method returns data in the same format (an array with

output and title keys), no matter which of the methods is called, we’ll have an

array with two variables.

Until now, we’ve had each different page using its own file: index.php,

jokes.php, editjoke.php, and deletejoke.php.

Single Entry Point

With the controller complete, we can now write a single file to handle any page.

Importantly, this single file can contain all the code that was previously repeated

in each of the files. As a starting point, here’s a very crude way of using the new

class:

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ . '/../controllers/JokeController.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

Objects and Classes 333

www.EBooksWorld.ir

$jokeController = new JokeController($jokesTable,

$authorsTable);

if (isset($_GET['edit'])) {

$page = $jokeController->edit();

} elseif (isset($_GET['delete'])) {

$page = $jokeController->delete();

} elseif (isset($_GET['list'])) {

$page = $jokeController->list();

} else {

$page = $jokeController->home();

}

$title = $page['title'];

$output = $page['output'];

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

You can find this example in OOP-EntryPoint

Save this over the top of index.php in the public directory and visit the home

page at http://http://192.168.10.10/. If everything is correct, the page will

display as expected.

While you have the public directory open, delete jokes.php, editjoke.php and

deletejoke.php. We’ve moved the relevant code from these files into

JokeController, so they’re no longer needed.

The new index.php page follows the same structure as each of our controllers. A

lot of this code looks familiar, but let’s go through the new lines individually.

334 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$jokeController = new JokeController($jokesTable,

$authorsTable);

This creates an instance of the JokeController class that we just wrote. When

the constructor is called, it’s passed the instances of DatabaseTable,

$jokesTable, and $authorsTable.

if (isset($_GET['edit'])) {

$page = $jokeController->edit();

}

else if (isset($_GET['delete'])) {

$page = $jokeController->delete();

}

else if (isset($_GET['list'])) {

$page = $jokeController->list();

}

else {

$page = $jokeController->home();

}

This if … else if block is the clever part. These if statements examine the

$_GET variables to determine which of the methods in the JokeController class

is called. Because of the else clause, at least one of these blocks is guaranteed to

get executed.

Regardless of how this page is accessed, the $page variable will be created, and

will contain two values—the page title, in the title key, and the page contents,

stored under the output key.

The final part creates the $title and $output variables for use in the template by

reading them out of the newly created $page array.

$title = $page['title'];

Objects and Classes 335

www.EBooksWorld.ir

$output = $page['output'];

To check all this works, open up the home page in your browser at

http://192.168.10.10/.

Unfortunately, if you click any of the links—for example the Jokes List

link—you’ll see an error.

That’s because there are no longer individual pages that represent each page of

the website. Now, everything is diverted through index.php. To access any of the

pages on the website, you’ll have to type index.php followed by a relevant URL

variable.

To access the “Joke List” page, you'll have to visit http://192.168.10.10/

index.php?list.

This is called a single entry point or front controller.

We’ll have to go through and change all links to the old pages to go via

index.php, but before we do that, let’s do some tidying up.

I already called the new index.php crude, because it’s not very efficient. Every

time you want to add a page to the website, you’ll need to do two things:

1. add the method in JokeController

2. add the relevant else if block in index.php

You’ve probably already noticed that the GET variable name maps exactly to the

name of the function:

when $_GET['edit'] is set, the edit function is called

when $_GET['list'] is set, the list function is called

This seems a bit redundant. PHP allows some cool stuff. For example, you can do

this:

$function = 'edit';

336 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$jokeController->$function();

This will evaluate $function to edit and actually call

$jokeController->edit(). We can utilize this feature to read the GET variable

and call the method with that name.

Commonly, a function in a controller is called an action. We could use the GET

variable action to call the relevant function on the controller.

index.php?action=edit would call the edit function, index.php?action=delete

would call delete, and so on. The code for this is remarkably simple:

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ . '/../controllers/JokeController.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

$jokeController = new JokeController($jokesTable,

$authorsTable);

$action = $_GET['action'] ?? 'home';

$page = $jokeController->$action();

$title = $page['title'];

$output = $page['output'];

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

Objects and Classes 337

www.EBooksWorld.ir

The whole if … else block that selects the relevant action has been replaced

with two lines:

$action = $_GET['action'] ?? 'home';

$page = $jokeController->$action();

The first line utilizes the confusingly named “null coalescing operator” I

introduced in Chapter 6. This reads the GET variable called action. If it’s set,

action is read from the GET variable, and if it’s not, $action is set to “home”.

The second line calls the relevant method on the $jokeController object.

If you open up your browser and visit index.php?action=listjokes, you’ll see

the list of jokes. If you visit index.php without an action set, you’ll see the home

page.

The advantage of this approach is that, to add a new page to the website, all we

need to do is add a method to the JokeController class and link to index.php,

supplying the relevant action variable.

Now that the URL structure of the website has changed completely, we’ll need to

go through each page and update any links, form actions, or redirects.

Firstly, layout.html.php:

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<link rel="stylesheet" href="jokes.css">

<title><?=$title?></title>

</head>

<body>

<nav>

<header>

<h1>Internet Joke Database</h1>

</header>

338 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Home

Jokes List

Add a new Joke

</nav>

<main>

<?=$output?>

</main>

<footer>

© IJDB 2017

</footer>

</body>

</html>

Now open jokes.html.php, change the “Edit” link and form action for deleting:

<p><?=$totalJokes?> jokes have been submitted

to the Internet Joke Database.</p>

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke['joketext'],

ENT_QUOTES, 'UTF-8')?>

(by <a

➥ href="mailto:<?=htmlspecialchars($joke['email'],
ENT_QUOTES, 'UTF-8'); ?>">

<?=htmlspecialchars($joke['name'], ENT_QUOTES, 'UTF-8');

➥ ?> on
<?php

$date = new DateTime($joke['jokedate']);

Objects and Classes 339

www.EBooksWorld.ir

echo $date->format('jS F Y');

?>)

<a

➥ href="index.php?action=edit&id=<?=$joke['id']?>">
Edit

<form action="index.php?action=delete" method="post">

<input type="hidden" name="id"

value="<?=$joke['id']?>">

<input type="submit" value="Delete">

</form>

</p>

</blockquote>

<?php endforeach; ?>

Finally, change the two redirects in JokeController from header('location:

jokes.php'); to header('location: index.php?action=list');.

You can find this example in OOP-EntryPoint2

Keeping it DRY

You’re nearly done! A large proportion of your PHP code is now neatly organized

into methods inside classes, and you can quickly add new pages to the website by

simply creating a new method inside JokeController. Before we continue, let’s

quickly remove some of the remaining repeated code.

If you examine JokeController, most of the methods perform the same set of

steps. The edit method contains this code:

ob_start();

include __DIR__ . '/../templates/editjoke.html.php';

$output = ob_get_clean();

return ['output' => $output, 'title' => $title];

340 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The home method contains this code:

ob_start();

include __DIR__ . '/../templates/home.html.php';

$output = ob_get_clean();

return ['output' => $output, 'title' => $title];

The list method contains this code:

ob_start();

include __DIR__ . '/../templates/jokes.html.php';

$output = ob_get_clean();

return ['output' => $output, 'title' => $title];

These blocks of code are all very similar. Some of the lines are identical. As

always, whenever you see repeated code like this, it’s worth considering how it

can be removed.

Rather than having each action include this block of code, it would be simpler to

have the action provide a file name—such as home.html.php—and then have it

loaded from within index.php.

To make that change, firstly open up index.php and change it to this:

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ . '/../controllers/JokeController.php';

Objects and Classes 341

www.EBooksWorld.ir

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

$jokeController = new JokeController($jokesTable,

$authorsTable);

$action = $_GET['action'] ?? 'home';

$page = $jokeController->$action();

$title = $page['title'];

ob_start();

include __DIR__ . '/../templates/' . $page['template'];

$output = ob_get_clean();

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

I’ve moved the three repeated lines from the individual methods into index.php.

index.php now expects the $page variable to provide a template key. Let’s

amend each of the controller actions to provide it. The controller actions will no

longer provide the $output variable, but instead just a filename for index.php to

include.

The home method:

public function home() {

$title = 'Internet Joke Database';

return ['template' => 'home.html.php', 'title' =>

342 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$title];

}

The list method:

public function list() {

$result = $this->jokesTable->findAll();

$jokes = [];

foreach ($result as $joke) {

$author = $this->authorsTable->

findById($joke['authorId']);

$jokes[] = [

'id' => $joke['id'],

'joketext' => $joke['joketext'],

'jokedate' => $joke['jokedate'],

'name' => $author['name'],

'email' => $author['email']

];

}

$title = 'Joke list';

$totalJokes = $this->jokesTable->total();

return ['template' => 'jokes.html.php', '

title' => $title];

}

The edit method:

public function edit() {

if (isset($_POST['joke'])) {

$joke = $_POST['joke'];

$joke['jokedate'] = new DateTime();

Objects and Classes 343

www.EBooksWorld.ir

$joke['authorId'] = 1;

$this->jokesTable->save($joke);

header('location: index.php?action=list');

}

else {

if (isset($_GET['id'])) {

$joke = $this->jokesTable->findById($_GET['id']);

}

$title = 'Edit joke';

return ['template' => 'editjoke.html.php',

'title' => $title];

}

}

Each action now provides the name of a template that gets loaded in index.php.

We’ve saved ourselves from needing to repeat the output buffer and include

lines.

However, if you try the code above, only the home page will work. If you try

viewing the list of jokes, you’ll get an error:

Notice: Undefined variable: totalJokes in

➥ /home/vagrant/Code/Project/templates/jokes.html.php on line 2

The reason for this error is that jokes.html.php is now being included from

index.php and index.php does not include the variable $totalJokes.

We need a way to get the $totalJokes and $jokes variables into index.php.

On first glance, you might think to do it in the return statement, the same way

that we did with the title, output, and later template variables:

344 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

return ['template' => 'jokes.html.php',

'title' => $title,

'totalJokes' => $totalJokes,

'jokes' => $jokes];

And then recreate the variables in index.php:

$action = $_GET['action'] ?? 'home';

$page = $jokeController->$action();

$title = $page['title'];

$totalJokes = $page['totalJokes'];

$jokes = $page['jokes'];

ob_start();

include __DIR__ . '/../templates/' . $page['template'];

$output = ob_get_clean();

If you try this, the jokes list page will work as expected. However, as soon as you

navigate to another page, you’ll get errors. For example, the “Edit Joke” page

requires a variable called joke, and it doesn’t provide the variables for

totalJokes or jokes.

A very messy solution would be to have each method in the controller return

every single variable that’s needed, but leave the array values blank when they’re

not needed. The edit return statement would then end up looking like this:

return ['template' => 'jokes.html.php',

'title' => $title,

'totalJokes' => '',

'jokes' => '',

'joke' => $joke];

Objects and Classes 345

www.EBooksWorld.ir

This is obviously not a viable solution. Each time we add a template that requires

a variable with a new name, we’d need to amend every single controller method

to provide an empty string for that variable and then amend index.php to set it!

Template Variables

Instead, we’ll solve the problem in the same way we did for the return statement.

Each method will supply an array of variables.

The list return statement will now look like this:

return ['template' => 'jokes.html.php',

'title' => $title,

'variables' => [

'totalJokes' => $totalJokes,

'jokes' => $jokes

]

];

This is called a multi-dimensional array: there’s an array inside an array. In this

case, the variables key maps to a second array that contains the keys

totalJokes and jokes.

Although the code is slightly more difficult to read, the advantage of this

approach is that each controller method can provide a different array in the

variables key. The editJoke page can use this return statement:

return ['template' => 'editjoke.html.php',

'title' => $title,

'variables' => [

'joke' => $joke ?? null

]

];

346 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

In the code above, the joke array key is mapped to $joke ?? null. You were

probably expecting to see 'joke' => $joke. However, because the joke variable

may or may not have been set by the code above, the joke key is set either to the

contents of the joke variable or to null. null is an empty value.

Both the list and edit controller actions now consistently return an array with

the keys template, title and variables.

We can now use the variables array in index.php. The simplest way to achieve

this would be to create a variable called $variables inside index.php, in the

same way we did with $title:

$title = $page['title'];

$variables = $page['variables'];

ob_start();

include __DIR__ . '/../templates/' . $page['template'];

$output = ob_get_clean();

Each template (such as jokes.html.php) now has access to the $variables array,

and could read values from it—for example, by replacing this:

<p><?=$totalJokes?> jokes have been submitted to

➥ the Internet Joke Database.</p>

… with this:

<p><?=$variables['totalJokes']?> jokes have been

➥ submitted to the Internet Joke Database.</p>

This solution works, but it means opening up and changing every template file. A

simpler alternative is to create the variables that are required.

Objects and Classes 347

www.EBooksWorld.ir

Luckily, PHP provides a method of doing exactly that. The extract function can

be used to create variables from an array:

$array ['hello' => 'world'];

extract($array);

echo $hello; // prints "world"

A variable is created for any key in the array, and its value is set to the

corresponding value. We can use extract to create the relevant template

variables in index.php:

$action = $_GET['action'] ?? 'home';

$page = $jokeController->$action();

$title = $page['title'];

if (isset($page['variables'])) {

extract($page['variables']);

}

ob_start();

include __DIR__ . '/../templates/' . $page['template'];

$output = ob_get_clean();

You can find this example in OOP-EntryPoint3.

If $page['variables'] is an array that’s come from the list method, variables

called totalJokes and jokes will be created. If it was created by the edit

method, a single variable named joke will be created.

I’ve surrounded the extract call with if (isset($page['variables'])),

because some methods, like the home method, may not need to provide any

348 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

methods to the template.

Be Careful With Extract

Everything is working perfectly, and we’ve managed to remove the repeated code

from the controller’s methods. Unfortunately, we’re not quite done yet.

One of the biggest problems with extract is that it creates variables in the

current scope. Take another look at this block of code:

$action = $_GET['action'] ?? 'home';

$page = $jokeController->$action();

$title = $page['title'];

if (isset($page['variables'])) {

extract($page['variables']);

}

ob_start();

include __DIR__ . '/../templates/' . $page['template'];

What would happen if the array $page['variables'] contained the keys page

and title? The $title and $page variables would be overwritten! It’s likely the

overwritten $page variable would not be an array with a key called template that

contains the name of a template file.

If the return statement from a controller action happened to include a key called

page in the variables array, it would prevent that controller action from loading

a template.

It is possible to tell the extract function not to overwrite variables, but then if the

template is expecting a variable called $page, it’s going to be given the wrong

information.

Objects and Classes 349

www.EBooksWorld.ir

A very simple solution to this is moving the code that loads the template into its

own function. Amend index.php to this:

350 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

8-1. OOP-EntryPoint-Template

<?php

function loadTemplate($templateFileName, $variables = [])

{

extract($variables);

ob_start();

include __DIR__ . '/../templates/' . $templateFileName;

return ob_get_clean();

}

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ . '/../controllers/JokeController.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

$jokeController = new JokeController($jokesTable,

$authorsTable);

$action = $_GET['action'] ?? 'home';

$page = $jokeController->$action();

$title = $page['title'];

if (isset($page['variables'])) {

$output = loadTemplate($page['template'],

$page['variables']);

} else {

$output = loadTemplate($page['template']);

}

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

Objects and Classes 351

www.EBooksWorld.ir

}

include __DIR__ . '/../templates/layout.html.php';

If the variables array does contain keys called page or title, placing the code

for loading a template in its own function (loadTemplate) means the existing

variables won’t be overwritten, because they don’t exist inside the function’s

scope.

In this chapter, I showed you how to use object-oriented programming to break

up the code further and reduce repetition. We also began to add a clearer

structure to the controller code. In the next chapter, I’ll show you how to make

index.php usable with other controllers, so the code above doesn’t need to be

repeated.

352 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

9Chapter

Creating an Extensible Framework

Now that you’re able to write a controller with methods, and call those methods

from index.php, the next step is to add the rest of the pages for managing the

website. Currently, we can add jokes to the database through index.php by

specifying an action URL parameter. However, a real website will need to do

considerably more than handle basic database operations for a single table.

The next extension of the website will be allowing users to register as authors and

post their own jokes. However, before we do that I’ll show you how to write a

modern, flexible framework to build upon. By the end of this chapter, you’ll have

the foundation for building any website, and you’ll have a good understanding of

the techniques and concepts used by professional PHP developers.

We’re not going to add any new features. Instead, I’m going to show you how the

code can be organized so that it can be reused on each website you build.

Creating an Extensible Framework 353

www.EBooksWorld.ir

In the last chapter, we ended with this code in index.php:

<?php

function loadTemplate($templateFileName, $variables = [])

{

extract($variables);

ob_start();

include __DIR__ . '/../templates/' . $templateFileName;

return ob_get_clean();

}

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ . '/../controllers/JokeController.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

$jokeController = new JokeController($jokesTable,

$authorsTable);

$action = $_GET['action'] ?? 'home';

$page = $jokeController->$action();

$title = $page['title'];

if (isset($page['variables'])) {

$output = loadTemplate($page['template'],

$page['variables']);

} else {

$output = loadTemplate($page['template']);

}

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

354 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

This lets us call any of the functions in the JokeController class by specifying

the action URL parameter—for example, by linking to or visiting

index.php?action=list.

Search Engines

Before we make any structural changes to the code, we need to do a little

housekeeping. In PHP, functions are not case sensitive. list is treated exactly the

same way as LIST. Due to case insensitivity, visiting index.php?action=list will

display the page, but so will index.php?action=LIST or

index.php?action=List. This may seem like a good thing, as people will be able

to mistype the URL and still see the correct page. However, this feature can also

cause problems for search engines.

Some search engines will see these two URLs as two entirely different pages,

even if they display the exact same content. Both index.php?action=LIST and

index.php?action=list will appear in search results. You might think “Great,

more of my pages will appear in search results!” But search engines generally

dislike “duplicate content”, either ranking it lower or ignoring it altogether.

Would you prefer one result on the first page or two results potentially much

further down in the search pages?

There are several ways to fix this. You can tell search engines to ignore certain

pages. Or you can tell them which is the “canonical” (primary) version. But this

can be difficult to manage on larger sites, and it’s usually simpler to enforce strict

URLs. A common way to do this is forcing all URLs to lowercase.

Forcing URLs to lowercase is possible using a simple piece of PHP code, which

detects whether or not the user entered a lowercase URL:

Creating an Extensible Framework 355

www.EBooksWorld.ir

<?php

$action = $_GET['action'];

if ($action == strtolower($action)) {

$jokeController->$action();

} else {

echo 'Sorry that page does not exist.';

}

This code compares $action to a lowercase version of $action. The strtolower

function converts any string to lowercase: LISTJOKES, listJokes or listjokes all

become listjokes. By comparing the original $action to the lowercase version,

it’s possible to work out whether or not someone came to the page using a

lowercase value for $action. If they didn’t, an error is displayed. Visitors and

search engines will only see the content on the lowercase version of the URL.

While doing this will prevent duplicate content and protect your search engine

ranking, it’s not very helpful for users who accidentally mistype the URL.

Luckily, we can get the best of both worlds by redirecting non-lowercase pages to

their lowercase equivalents.

We’ve already used the header function to redirect people to different pages. We

can also use the header function to send all uppercase URLs to their lowercase

equivalents:

<?php

$action = $_GET['action'];

if ($action == strtolower($action)) {

$jokeController->$action();

} else {

header('location: index.php?action=' . strtolower($action));

}

356 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Now anyone who visits index.php?action=LISTJOKES or

index.php?action=listJokes will be redirected to

index.php?action=listjokes. However, there’s one more thing we need to do.

There are two types of redirection, temporary and permanent. To tell search

engines not to list the page, you need to tell them the redirection is permanent.

This is done with an “HTTP response code”. You’ve probably come across at least

one of these while browsing the web. The code 404 means “Not found”. Each

time a page is sent to the browser, a response code is sent along with it to tell the

browser and search engines how to treat the page. To tell the browser that a

redirect is permanent, you need to send the code 301. PHP has a function called

http_response_code that can be used to send the 301 response code along with

the redirect:

<?php

$action = $_GET['action'];

if ($action == strtolower($action)) {

$jokeController->$action();

} else {

http_response_code(301);

header('location: index.php?action=' . strtolower($action));

}

HTTP Response Codes

There are many different HTTP response codes you can use. 404 is particularly

useful when you display an error message, as this will stop the page appearing in

search results and prevent the page from going into the browser’s history. You don’t

generally want “Sorry, the product you requested is no longer available” appearing

in search engines. You can even change the HTTP response code to 404 to get

search engines to unlist pages that are no longer relevant.

A complete list of response codes and their meaning can be found on the W3.org

website.

Creating an Extensible Framework 357

www.EBooksWorld.ir

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Make Things Generic

In PHP and any other programming language, if you can make a piece of code

generic and able to cope with different use cases, it’s generally considered better,

because it’s more flexible. If you can reuse existing code, it saves you from

needing to write similar code repeatedly. This is the approach we took with the

DatabaseTable class. Rather than writing similar code elsewhere in our

application, the DatabaseTable class can be used any time we need to interact

with the database.

The index.php code we already have allows any function to be called in the

JokeController class by specifying the action URL parameter.

Using a single file to handle any controller action is an improvement over having

a unique file for each action, because it avoids us repeating code.

The complete index.php, including the redirect that we just added, now looks

like this:

358 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

9-1. CMS-Redirect

function loadTemplate($templateFileName, $variables = []) {

extract($variables);

ob_start();

include __DIR__ . '/../templates/' . $templateFileName;

return ob_get_clean();

}

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ .

'/../classes/controllers/JokeController.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

$jokeController = new JokeController($jokesTable,

$authorsTable);

$action = $_GET['action'] ?? 'home';

if ($action == strtolower($action)) {

$page = $jokeController->$action();

}

else {

http_response_code(301);

header('location: index.php?action=' .

strtolower($action));

}

$title = $page['title'];

if (isset($page['variables'])) {

$output = loadTemplate($page['template'],

$page['variables']);

}

else {

Creating an Extensible Framework 359

www.EBooksWorld.ir

$output = loadTemplate($page['template']);

}

}

catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

Thinking Ahead: User Registration

The next step for us will be to allow someone to register as a user so they can post

a joke. To do this, we’ll need a new page on the website. Although it would be

possible to keep adding methods to the JokeController class, on any nontrivial

website this would result in a very large class that contained the code for every

single page on the website.

Instead, we’ll create a new controller called RegisterController with some

methods to handle user registration. This helps keep the code manageable, by

keeping anything to do with jokes in JokeController and any page related to

user registration in RegisterController.

With the index.php above, we’d need to write a new PHP script to utilize

RegisterController, such as register.php, that looked like this:

<?php

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ . '/../controllers/RegisterController.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

360 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$registerController = new RegisterController($authorsTable);

$action = $_GET['action'] ?? 'home';

if ($action == strtolower($action)) {

$page = $registerController->$action();

} else {

http_response_code(301);

header('location: index.php?action=' .

strtolower($action));

}

$title = $page['title'];

if (isset($page['variables'])) {

$output = loadTemplate($page['template'],

$page['variables']);

} else {

$output = loadTemplate($page['template']);

}

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

Most of this code is identical to index.php. The only differences are:

1. include 'JokeController.php'; becomes include

'RegisterController.php';

2. $jokeController = new JokeController($jokesTable, $authorsTable);

becomes $registerController = new

RegisterController($authorsTable);

Creating an Extensible Framework 361

www.EBooksWorld.ir

3. $jokeController->$action(); becomes $registerController->$action();

It would be better if a single index.php could work with any controller in the

same way it works with any action, avoiding the need for different PHP files for

loading each controller. To achieve that, we’d need to make it so that the same

index.php can be used for any controller.

The third change is very easy to fix, so let’s remove that difference first.

The only reason this needs changing is because of the different variable names

$jokesController and $registerController. If the same variable names were

used throughout—such as $controller—then this change wouldn’t be needed.

$controller = new RegisterController($authorsTable); or $controller =

new JokeController($jokesTable, $authorsTable); could both work with

$controller->$action();.

The solution to 1. will be simple to implement. As we saw when loading

templates, the include statement can be used to include files using a string stored

in a variable.

Making this change to include the correct file is fairly simple:

$controllerName = ucfirst($_GET['controller']) .

'Controller';

include __DIR__ . '/../controllers/' . $controllerName .

'.php';

As you already know, variables can be built up from other variables, including

$_GET variables. Using the same process we used to define $action, it’s also

possible to specify a URL parameter for controller, like so:

index.php?controller=jokes&action=listJokes. We could use this to load

JokesController and call the action listJokes.

To build the class name, I’ve used ucfirst to make the first letter of the controller

from the URL uppercase to match the filename. joke as supplied in the URL

becomes Joke. The string Controller.php is then appended to give the complete

362 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

class name.

Using the URL parameter controller=register would mean the file

RegisterController.php is included.

Now the file that contains the controller will be included by specifying the

controller name in the URL, so that it’s available in $_GET['controller'].

That fixes problem 1. and partially fixes problem 3. The new code looks like this:

include __DIR__ . '/../controllers/' . $_GET['controller'] .

'.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

$controller = new RegisterController($authorsTable);

$action = $_GET['action'] ?? 'home';

if ($action == strtolower($action)) {

$page = $controller->$action();

}

For change 2. we need to be able to substitute the line $controller = new

JokeController($jokesTable, $authorsTable); with a line that creates the

relevant controller (for now, either JokeController or RegisterController).

Just as a variable can be used in place of a method name, a variable can also be

used in place of a class name, so it’s possible to substitute the class name with a

variable from $_GET:

$controllerObject = new $controllerName($jokesTable,

$authorsTable);

new $controllerName() will create an instance of the class name provided in the

$_GET variable controller. Visiting index.php?controller=joke&action=list

Creating an Extensible Framework 363

www.EBooksWorld.ir

will now load the controller with the name JokeController.

We can also apply the same logic as before to do the following:

select a default controller (“joke”) if no $_GET['controller'] variable is set:

$controllerName = $_GET['controller'] ?? 'joke';

redirect to the lowercase URL if required:

if ($action == strtolower($action) &&

$controllerName == strtolower($controllerName)) {

}

else {

// redirect to lowercase version

}

Now we can take the name from $controllerName and get the class name by

making the first letter uppercase (the ucfirst function does this for any string)

and then appending the string Controller:

$className = ucfirst($controllerName) . 'Controller';

Finally, include the relevant file and create the controller instance:

include __DIR__ . '/../controllers/' . $className . '.php';

$controller = new $className($jokesTable, $authorsTable);

The complete block of code looks like this:

$action = $_GET['action'] ?? 'home';

$controllerName = $_GET['controller'] ?? 'joke';

364 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

if ($action == strtolower($action) &&

$controllerName == strtolower($controllerName)) {

$className = ucfirst($controllerName) . 'Controller';

include __DIR__ . '/../controllers/' . $className . '.php';

$controller = new $className($jokesTable, $authorsTable);

$page = $controller->$action();

}

else {

http_response_code(301);

header('location: index.php?controller=' .

strtolower($controllerName) . '&action=' .

strtolower($action));

}

If we add this to index.php and visit one of the joke pages—via

index.php?controller=joke&action=list, for example—it will work as

intended.

However, you may have spotted a potential problem. When the controller is

created, its constructor is called and passed the $jokesTable and $authorsTable

objects.

What if different controllers require different objects to work? For example, the

RegisterController class will only require $authorsTable.

Dependencies

Different controllers will inevitably require different dependencies. The

JokeController we built in the last chapter requires the $jokesTable and

$authorsTable objects, but not all controllers will require those same objects.

An object that’s required by another object is called a dependency. For example,

JokeController is dependent on the $jokesTable instance, as without it, it

won’t work correctly.

Creating an Extensible Framework 365

www.EBooksWorld.ir

To identify a dependency in a piece of code, look for a function call on another

object. For example, the delete method in the controller depends on the

jokesTable variable, and that variable must contain a DatabaseTable instance.

Without a DatabaseTable instance, the delete method below can’t work. It’s

dependent on functionality from another class.

public function delete() {

$this->jokesTable->delete($_POST['id']);

header('Location: .');

exit();

}

The method being called jokesTable->delete() is in another class. If the

DatabaseTable class didn’t exist, this delete function would fail. We can say that

the JokeController class is dependent on the DatabaseTable class. Likewise, we

can say that the DatabaseTable class has a dependency on the PDO class, because

it can’t function without it.

We’re going to add a second controller, RegisterController, that deals with

allowing new authors to register so they can post jokes.

To begin with, we’ll create a single form for registration. When submitted,

information will need to be inserted into the author table. There’s no reason this

controller will ever need to interact with the $jokesTable object, so a

RegisterController object would be instantiated like this:

$controller = new RegisterController($authorsTable);

Other controllers might need other database tables—for example, a categories

table for categorizing the jokes or objects that don’t even deal with database

access, to validate data that’s been entered.

We face a problem here. We can use a variable in place of the class name like so:

$controllerName = $_GET['controller'];

366 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$controller = new $controllerName($authorsTable);

But there’s no easy way to determine what dependencies the required controller

needs.

I’ll warn you now, this is the most complicated topic in this book, and something

even very experienced developers struggle with! Different people have come up

with some potential solutions, and there are many approaches you can take.

However, many are considered “bad practice” and should be avoided. I could

write a book on this subject alone (it’s a large section of my PhD thesis!) so

instead of telling you what not to do (creating the objects in the constructor of the

controller, singletons or service locators), I’m going to stick with best practices

and show you a few options for handling it in the preferred way.

It’s a very good idea to pass dependencies into the constructor of classes that

need them. As I mentioned in the last chapter, this stops an object being able to

exist without having the dependencies set. The problem we have is that different

controllers will require different dependencies. The JokesController class

constructor looks like this:

public function __construct(DatabaseTable $jokesTable,

DatabaseTable $authorsTable) {

$this->jokesTable = $jokesTable;

$this->authorsTable = $authorsTable;

}

And when we write the code for the RegisterController class, the constructor

will look like this:

public function __construct(DatabaseTable $authorsTable) {

$this->authorsTable = $authorsTable;

}

The JokesController class has dependencies on two DatabaseTable objects, one

Creating an Extensible Framework 367

www.EBooksWorld.ir

for authors and one for jokes. The RegisterController class only has a

dependency on one, $authorsTable. If we’re trying to automate creation of the

controllers, it presents a problem: if the constructors are different, how can the

objects be automatically created?

One method of fixing this would be to ensure that all controllers have the same

constructor. They all require access to all the possible DatabaseTable objects.

This works, but it’s messy. It results in controllers with dependencies on

everything that any controller may ever need. One major downside to this

approach is that, when a new database table is added, all the controllers’

constructors must be changed. We could overcome this by passing an array of all

the possible dependencies and picking out the ones we need. This is essentially

something known as a “Service Locator”, and it’s a common approach, although

it’s been widely considered bad practice over the last few years.

The technical term for what we’re doing is dependency injection. It sounds

complicated, but it’s just a fancy term for passing dependencies into constructors.

You’ve been doing it all along without even knowing!

The simplest way of solving the problem of different constructors needing

different arguments is a series of if statements. This way, each controller can be

created with the correct dependencies:

$action = $_GET['action'] ?? 'home';

$controllerName = $_GET['controller'] ?? 'joke';

if ($controllerName === 'joke') {

$controller = new JokeController($jokesTable,

➥ $authorsTable);
}

else if ($controllerName === 'register') {

$controller = new RegisterController($authorsTable);

}

$page = $controller->$action();

Now the controller is selected by the variable supplied in $_GET['controller'],

368 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

and the method defined in $_GET['action'] is called on the controller object.

This approach is very flexible. It allows us to call any method in any controller by

specifying the class name in the controller URL variable and method name in

the action URL variable. Although this adds some flexibility, it also opens up

several security issues. Someone can alter the URL and run any method in any

class. Depending on what our controllers are doing, this may cause a problem.

Instead, it’s more secure, and only a little extra code, to specify a single URL

variable that triggers a specific controller action. This single URL variable is

called a route:

$route = $_GET['route'] ?? 'joke/home'; // If no route

➥ variable is set, use 'home'

if ($route === 'joke/list') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->list();

}

else if ($route === 'joke/home') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->home();

}

else if ($route === 'register') {

include __DIR__ .

'/../classes/controllers/RegisterController.php';

$controller = new RegisterController($authorsTable);

$page = $controller->showForm();

}

Although this is slightly more code and we have some repetition, it’s

considerably more secure. Someone can only instantiate a controller and call a

Creating an Extensible Framework 369

www.EBooksWorld.ir

method if it’s in this list. In this case, the repetition is preferable to the potential

security hole of letting anyone call any method.

I’ve used joke/list and joke/edit, with the joke/ prefix, because each page

needs a unique identifier. In future, we may want to create a page that lists or

allows editing authors, which can then be stored on the URLs author/list,

author/edit, etc.

The complete index.php now looks like this:

370 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

9-2. CMS-Controller

<?php

function loadTemplate($templateFileName, $variables = [])

{

extract($variables);

ob_start();

include __DIR__ . '/../templates/' . $templateFileName;

return ob_get_clean();

}

try {

include __DIR__ . '/../includes/DatabaseConnection.php';

include __DIR__ . '/../classes/DatabaseTable.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

//if no route variable is set, use 'joke/home'

$route = $_GET['route'] ?? 'joke/home';

if ($route == strtolower($route)) {

if ($route === 'joke/list') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->list();

} elseif ($route === 'joke/home') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->home();

} elseif ($route === 'joke/edit') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

Creating an Extensible Framework 371

www.EBooksWorld.ir

$page = $controller->edit();

} elseif ($route === 'joke/delete') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->delete();

} elseif ($route === 'register') {

include __DIR__ .

'/../classes/controllers/RegisterController.php';

$controller = new RegisterController($authorsTable);

$page = $controller->showForm();

}

} else {

http_response_code(301);

header('location: index.php?route=' . strtolower($route));

}

$title = $page['title'];

if (isset($page['variables'])) {

$output = loadTemplate($page['template'],

$page['variables']);

} else {

$output = loadTemplate($page['template']);

}

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

}

include __DIR__ . '/../templates/layout.html.php';

Note that I’ve also amended the if statement that checks case to use the new

$route variable.

Ideally, we were looking to be able to use any controller without editing

372 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

index.php. But for simplicity’s sake, we’ll stick with this approach.

Now that the routes have changed, we’ll also need to amend layout.html.php to

use the new routes in the menu:

Jokes

➥ List
Add a

➥ new Joke

Before we go ahead and change all the links throughout the website, I want to

introduce an approach called URL Rewriting, which is another reason for using a

single route variable instead of separate controller and action variables.

URL Rewriting

A lot of websites are written in PHP, including Facebook and Wikipedia. If you

visit one of these sites, you’ll see that the URLs don’t look like the ones we’ve

been using on the joke website.

The URL for SitePoint’s Wikipedia page is https://en.wikipedia.org/wiki/

SitePoint, and its Facebook page URL is https://www.facebook.com/

sitepoint/.

Using the structure we’ve looked at so far, you’d probably expect to see

something like https://www.facebook.com/

index.php?controller=page&id=sitepoint or https://en.wikipedia.org/

index.php?route=wiki/sitepoint.

Most PHP websites don’t actually show you the PHP filename in the URL. Many

years ago, search engines preferred this approach. These days, search engines

don’t care about URL structureURL structure, and friendly URLs are used more

for aesthetic reasons.

As most websites use this approach, it’s useful to know how to do it.

URL Rewriting is a tool for forwarding one URL to another. You can configure

Creating an Extensible Framework 373

www.EBooksWorld.ir

https://www.sitepoint.com/friendly-urls/

your web server so that when someone visits /jokes/list, it actually runs

index.php?route=jokes/list, or even when someone visits contact.php it

instead it runs index.php?route=contact.

Importantly, the original URL is still shown in the browser’s address bar.

URL Rewriting is a long and complex topic. You can set up all kinds of wonderful

and impressive rules. However, almost all modern PHP websites use the same

rule: if a file requested doesn’t exist, load index.php.

In fact, the Homestead Improved box we’re using is already set up to do this. Visit

http://192.168.10.10/I-dont-exist.php or any whimsical filename you can

think of and you’ll see the website home page rather than an error page.

If you create the file I-dont-exist.php and visit the page in the browser, it will

be loaded. Otherwise, all requests are sent to index.php.

374 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

You know just enough about URL rewriting to make use of it on the site. Rather

than using a $_GET variable to determine the route, you can use the URL that the

person used to connect to the website. PHP supplies this information in the

variable $_SERVER['REQUEST_URI'].

Open up index.php and replace this:

$route = $_GET['route'] ?? 'joke/home';

… with this:

NGINX

If you need to configure an NGINX server for URL rewriting, the guide on the

NGINX website is the first place to look for examples.

However, for most setups you’ll just need the configuration directive:

location / {

try_files $uri $uri/ /index.php;

}

For Apache servers, the same can be achieved by creating a file called .htaccess

in the public (or, more likely for Apache, public_html or httpdocs) directory

with the following contents:

conf

RewriteEngine on

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^.*$ /index.php [NC,L,QSA]

How this works is beyond the scope of this book, but it will have the same effect. If

a file doesn’t exist, it will load index.php rather than display and error. More

information on configuring URL rewriting when using Apache can be found in the

SitePoint article “Learn Apache mod_rewrite: 13 Real-world Examples”.

Creating an Extensible Framework 375

www.EBooksWorld.ir

https://www.nginx.com/blog/creating-nginx-rewrite-rules/
https://www.nginx.com/blog/creating-nginx-rewrite-rules/
https://www.sitepoint.com/apache-mod_rewrite-examples/

$route = ltrim(strtok($_SERVER['REQUEST_URI'], '?'), '/');

The ltrim function removes the leading /. If you visit http://192.168.10.10/

joke/list, $_SERVER['REQUEST_URI'] will store the string /joke/list. By

trimming any leading slashes, we can match the request URI to our existing

routes.

Because the $_SERVER['REQUEST_URI'] contains the complete URL, if the URL

contains $_GET variables, the entire URL string is included in the variable. We

don’t want these in our routes.

The following code will return the entire string up to the first question mark, or

the entire string if there’s no question mark:

strtok($_SERVER['REQUEST_URI'], '?')

Now, visit http://192.168.10.10/joke/list and you’ll see the joke list on the

prettier URL … with one problem! One issue with URL rewriting in this manner

is that the browser will see the / in joke/list as a directory separator.

<link rel="stylesheet" href="jokes.css">

When the browser sees the line above, it will look for jokes.css at

http://192.168.10.10/joke/jokes.css. As that file doesn’t exist, the stylesheet

won’t be applied.

There are two possible fixes:

1. The HTML <base> tag. Although it’s a viable solution, it introduces a few

issues that are not worth covering here.

2. Make all URLs relative to the domain. To do this, just prefix all links with a /.

The second option is more work but causes fewer issues. Let’s open up

layout.html and change this:

376 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

<link rel="stylesheet" href="jokes.css">

… to this:

<link rel="stylesheet" href="/jokes.css">

By prefixing a link in an HTML document with a forward slash /, it tells the

browser to look for the file from the top level of the website. If we refresh the

page, we’ll see the styles now display correctly.

If we just visit http://192.168.10.10/ without specifying a file name, we’ll see

an error. That’s because we don’t have a route set up for an empty string.

In index.php, we replace else if ($route === 'joke/home') { with else if

($route === '') {. If we refresh the home page, it should display as expected.

Finally, let’s amend each link on the website to use the new prettier format.

layout.html.php:

Home

Jokes List

Add a new Joke

The edit link and delete form action in jokes.html.php:

<a href="/joke/edit?id=<?=$joke['id']?>">Edit

<form action="/joke/delete" method="post">

<input type="hidden" name="id"

value="<?=$joke['id']?>">

Creating an Extensible Framework 377

www.EBooksWorld.ir

<input type="submit" value="Delete">

</form>

And finally the two redirects in JokeController.php:

header('location: /joke/list');

You can find this example in CMS-Controller-Rewrite.

Now you know why we’re making these structural changes before our website has

too many pages!

Tidying Up

You’ve probably noticed that index.php is getting a bit long and unwieldy. Before

we get into creating RegisterController.php, let’s tidy up index.php a little.

Make it OOP

One of the primary causes of overly complex code is nested if statements. With

any long piece of code, it’s possible to break it up into a single class with a set of

functions.

This can be done by identifying unique tasks within the code. Looking at the

code, we can see the following distinct tasks:

instantiating the controller and calling the relevant action based on $route

the loadTemplate function

redirecting to a lowercase version of the URL if required

loading the relevant template file and setting its variables

Let’s take each of these and make it a function inside a class called EntryPoint,

inside the classes directory.

This class will take a single variable, $route, representing the route to load. It

378 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

will then store the route in a class variable so that each function can use it:

<?php

class EntryPoint

{

private $route;

public function __construct($route)

{

$this->route = $route;

}

}

The next step is checking that the route is the correct case and redirecting to the

lowercase version if it’s not:

private function checkUrl() {

if ($this->route !== strtolower($this->route)) {

http_response_code(301);

header('location: ' . strtolower($this->route));

}

}

I’ve amended the logic here slightly so that the if statement checks to see if the

supplied route is the same as the lowercase version.

This function can be called directly from the constructor:

public function __construct($route) {

$this->route = $route;

$this->checkUrl();

}

By putting the function call in the controller, this class won’t even get

constructed if either $controller or $action are not lowercase.

Creating an Extensible Framework 379

www.EBooksWorld.ir

The existing loadTemplate function can be copied directly into the class. I’ve

made it private, as we’re going to call it from another method in the same class:

private function loadTemplate($templateFileName,

$variables = []) {

extract($variables);

ob_start();

include __DIR__ . '/../templates/' . $templateFileName;

return ob_get_clean();

}

There are two parts left: loading/instantiating the controller and handling the

$page variable to generate the layout.

Firstly, let’s copy/paste the entire if statement that checks the route and move it

to its own function called callAction. The task for this method is calling the

relevant controller action and returning the $page variable:

private function callAction() {

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ . '/../includes/DatabaseConnection.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

if ($this->route === 'joke/list') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->list();

}

else if ($this->route === '') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

380 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$authorsTable);

$page = $controller->home();

}

else if ($this->route === 'joke/edit') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->edit();

}

else if ($this->route === 'joke/delete') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->delete();

}

else if ($this->route === 'register') {

include __DIR__ .

'/../classes/controllers/RegisterController.php';

$controller = new RegisterController($authorsTable);

$page = $controller->showForm();

}

return $page;

}

I’ve made this function a method private. Once again, we’ll only be calling it from

within the class.

Because the new DatabaseTable lines are the only parts of our code that need the

$pdo database connection or DatabaseTable class, I’ve moved the include

statement for DatabaseConnection.php and DatabaseTable.php here. In fact, if

DatabaseConnection.php wasn’t included here, the line $jokesTable = new

DatabaseTable($pdo, 'joke', 'id'); would fail, as there’s no $pdo variable in

this scope.

Finally, we can place the remaining code for loading the relevant template and

Creating an Extensible Framework 381

www.EBooksWorld.ir

supplying it variables into a method called run. This will be the only public

method in the class:

public function run() {

$page = $this->callAction();

$title = $page['title'];

if (isset($page['variables'])) {

$output = $this->loadTemplate($page['template'],

$page['variables']);

}

else {

$output = $this->loadTemplate($page['template']);

}

include __DIR__ . '/../templates/layout.html.php';

}

There’s nothing new here, but we’ve moved each task into its own method. The

callAction method deals entirely with the controllers and returns the $page

variable.

Using the new EntryPoint class, index.php can now be rewritten like this:

<?php

try {

include __DIR__ . '/../classes/EntryPoint.php';

$route = ltrim(strtok($_SERVER['REQUEST_URI'], '?'), '/');

$entryPoint = new EntryPoint($route);

$entryPoint->run();

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

382 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

include __DIR__ . '/../templates/layout.html.php';

}

The complete EntryPoint.php looks like this:

Creating an Extensible Framework 383

www.EBooksWorld.ir

9-3. CMS-EntryPoint-Class

<?php

class EntryPoint

{

private $route;

public function __construct($route)

{

$this->route = $route;

$this->checkUrl();

}

private function checkUrl()

{

if ($this->route !== strtolower($this->route)) {

http_response_code(301);

header('location: ' . strtolower($this->route));

}

}

private function loadTemplate($templateFileName,

$variables = [])

{

extract($variables);

ob_start();

include __DIR__ . '/../templates/' . $templateFileName;

return ob_get_clean();

}

private function callAction()

{

include __DIR__ .

'/../classes/DatabaseTable.php';

include __DIR__ .

'/../includes/DatabaseConnection.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

384 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

if ($this->route === 'joke/list') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->list();

} elseif ($this->route === '') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->home();

} elseif ($this->route === 'joke/edit') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->edit();

} elseif ($this->route === 'joke/delete') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->delete();

} elseif ($this->route === 'register') {

include __DIR__ .

'/../classes/controllers/RegisterController.php';

$controller = new RegisterController($authorsTable);

$page = $controller->showForm();

}

return $page;

}

public function run()

{

$page = $this->callAction();

$title = $page['title'];

Creating an Extensible Framework 385

www.EBooksWorld.ir

if (isset($page['variables'])) {

$output = $this->loadTemplate($page['template'],

$page['variables']);

} else {

$output = $this->loadTemplate($page['template']);

}

include __DIR__ . '/../templates/layout.html.php';

}

}

We just made some very substantial changes. Although none of the code is new,

and it doesn’t produce any different output, the structure is completely different.

Take a look through the completed EntryPoint.php to see how it works. Each

task is now in its own method, rather than being nested inside a series of if

statements.

Our index.php and EntryPoint.php can now be used to load any controller

class, and call any method on it, by specifying the appropriate route.

A controller can be easily added by creating a class in the controllers directory

and adding the logic for creating the controller and calling the relevant action in

the callAction method.

As every single page on the website is now going to be loaded using the

EntryPoint class, it’s worth taking some time to make sure it’s correct. Before we

add another controller, let’s consider how code can be reused on a much larger

scale than we’ve looked at until now.

Reusing Code on Different Websites

Now that we’ve tidied up index.php, it’s worth considering what we’ve achieved

by doing so. We’ve broken up the code into more easily manageable chunks, and

the code is easier to read. If there’s a problem with the redirect check, you know

to look in the checkURL method. If a template isn’t loading correctly, you know to

look in the loadTemplate method. And if a URL isn’t displaying the page it

386 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

should, you know to look in the callAction method.

Even though we haven’t finished our Internet Joke Database website yet, it’s

worth thinking about your next website. You probably didn’t buy this book so

you could make a website for people to post jokes. You likely have a real project

in mind that you’re planning to build using the knowledge you learn from this

book.

How much of the code we’ve written so far can be used without modification on

your next website?

We specifically built the DatabaseTable class so that it can work with any

database table. Not only can it work with tables that exist for the joke website,

joke and author, it could work with tables called customer, product and order

for a shopping website, or account and message on a social media website, or

indeed any database table on any website.

Generic or Project Specific?

Besides the DatabaseTable class, how much of the code we’ve written so far

would be useful on another website? The templates probably wouldn’t. Another

website would likely have completely different HTML, its forms would have

completely different fields, and the website would deal with a different topic.

The controllers would be different. The code in JokeController is very specific

to the joke website we’re building. It’s unlikely the code in the controller will be

useful without changing it.

However, the code we just wrote in the EntryPoint class that loads controllers

and template files would be useful on another website. The templates and

controllers loaded would be different, but the code to load those files would be

the same.

There are two types of code files in any given website:

1. project-specific files containing code that’s only relevant to that particular

website

2. generic, reusable files containing code that can be used to build any website

Creating an Extensible Framework 387

www.EBooksWorld.ir

The more code we can make generic, the bigger the foundation we have to work

from when we start a new website. If we can use a lot of code from our previous

website on our next website, we’ll save ourselves a lot of time.

Rather than having to write code that’s similar to the EntryPoint and

DatabaseTable classes for our next website, we could save a lot of time by using

the code we already have.

This foundation is called a framework—a set of generic code (usually classes)

that can be quickly built on to build any website. It doesn’t contain any code

that’s specific to one particular project.

It’s important to make a distinction between framework code and project-specific

code. If we can successfully separate them, we can reuse our framework code in

every website we build, saving significant upfront development time. If we have

framework code mixed with project-specific code, we’ll find ourselves writing

very similar code for every website we build.

When we first start out, it can be difficult to recognize which parts of the code

belong specifically to that project, and which can be used across different

projects.

As a rule of thumb, processes are generic but data is specific. For example,

adding a joke to the database is specific to the joke site, but adding to the

database is a generic process that’s needed on most websites.

In Chapter 8, I showed how to separate out the generic add to database process

from the project-specific process of adding a joke. Anything related to jokes is in

JokeController.php, but all the code related to adding to the database is stored

in DatabaseTable.php.

By identifying the process and separating it from the project-specific data being

worked with, we can repeat the same process of adding to the database with any

data on any website by reusing the DatabaseTable class.

The first step to making something generic is usually placing it inside a class.

This helps us break up the problem into smaller parts. Once we’ve broken the

problem up into individual methods, we can then see which are generic and

which are project specific.

388 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

A dead giveaway that something is project specific is a hardcoded value or

variable name that alludes to something for that project only.

Let’s apply that to the new EntryPoint class. The methods loadTemplate,

checkUrl and run don’t contain any references to jokes, authors or anything that’s

specific the joke website. Indeed, we’ll need a way of loading controllers and

templates on future websites; they just won’t be dealing with jokes and authors.

However, the callAction method contains several references to jokes and

authors. If we wanted to reuse this class on a different website—for example, an

online shop—we’d need to rewrite the entire method. It won’t have controllers or

database tables dealing with jokes authors; it will have controllers and database

tables for products, customers, and orders.

Let’s imagine we do have two websites—the joke website and an online shop.

We’ve copy/pasted the file EntryPoint.php and changed callAction to suit each

website. If there’s a bug in the checkUrl or run methods, we’d need to fix the bug

in two places, while being careful not to change any code specific to that website.

Instead, if the file contained only the generic framework code, we could overwrite

the old EntryPoint.php with the new one everywhere it’s being used, and fix the

bug without worrying about undoing changes that were made specifically for one

project.

Making EntryPoint Generic

The answer, then, is to remove all references to project-specific concepts from

otherwise generic classes.

This process is more of an art than a science, and even experienced developers

can struggle to work out where to draw the line between generic and project-

specific code. However, I’m going to show you a fairly simple step-by-step

process that can be used to remove a project-specific method from a class, turning

it into a framework class.

1. Identify the method you want to remove.

In this case, it’s the callAction method:

Creating an Extensible Framework 389

www.EBooksWorld.ir

private function callAction() {

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ . '/../includes/DatabaseConnection.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

if ($this->route === 'joke/list') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->list();

}

else if ($this->route === '') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->home();

}

else if ($this->route === 'joke/edit') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->edit();

}

else if ($this->route === 'joke/delete') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->delete();

}

else if ($this->route === 'register') {

include __DIR__ .

'/../classes/controllers/RegisterController.php';

$controller = new RegisterController($authorsTable);

$page = $controller->showForm();

390 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

}

return $page;

}

2. Move the method to its own class and make it public.

Create a class called IjdbRoutes in classes/IjdbRoutes.php:

<?php

class IjdbRoutes

{

public function callAction()

{

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ . '/../includes/DatabaseConnection.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

if ($this->route === 'joke/list') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->list();

} elseif ($this->route === '') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->home();

} elseif ($this->route === 'joke/edit') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->edit();

Creating an Extensible Framework 391

www.EBooksWorld.ir

} elseif ($this->route === 'joke/delete') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->delete();

} elseif ($this->route === 'register') {

include __DIR__ .

'/../classes/controllers/RegisterController.php';

$controller = new RegisterController($authorsTable);

$page = $controller->showForm();

}

return $page;

}

}

3. Replace any referenced class variables with arguments.

Replace $this->route with $route and add the $route as arguments for the

method.

<?php

class IjdbRoutes

{

public function callAction($route)

{

include __DIR__ . '/../classes/DatabaseTable.php';

include __DIR__ . '/../includes/DatabaseConnection.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

if ($route === 'joke/list') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

392 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$page = $controller->list();

} elseif ($route === '') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->home();

} elseif ($route === 'joke/edit') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->edit();

} elseif ($route === 'joke/delete') {

include __DIR__ .

'/../classes/controllers/JokeController.php';

$controller = new JokeController($jokesTable,

$authorsTable);

$page = $controller->delete();

} elseif ($route === 'register') {

include __DIR__ .

'/../classes/controllers/RegisterController.php';

$controller = new RegisterController($authorsTable);

$page = $controller->showForm();

}

return $page;

}

}

4. Remove the method from the original class.

Remove callAction from the EntryPoint class.

5. Add a new constructor argument/class variable to the original class.

Add $controllerArguments as a constructor argument/class variable to

EntryPoint:

Creating an Extensible Framework 393

www.EBooksWorld.ir

class EntryPoint {

private $route;

private $routes;

public function __construct($route, $routes) {

$this->route = $route;

$this->routes = $routes;

$this->checkUrl();

}

// …

We’ll use the $routes variable to contain an instance of IjdbRoutes.

6. Pass in an instance of the new class when the original class is created.

In index.php, replace $entryPoint = new EntryPoint($route); with

$entryPoint = new EntryPoint($route, new IjdbRoutes());, and remember

to include the IjdbRoutes.php file in index.php.

The new index.php looks like this:

<?php

try {

include __DIR__ . '/../classes/EntryPoint.php';

include __DIR__ . '/../classes/IjdbRoutes.php';

$route = ltrim(strtok($_SERVER['REQUEST_URI'], '?'), '/');

$entryPoint = new EntryPoint($route, new IjdbActions());

$entryPoint->run();

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

include __DIR__ . '/../templates/layout.html.php';

394 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

}

7. Change the method call to reference the new object and pass in any required

variables.

In EntryPoint, change $page = $this->callAction(); to $page =

$this->routes->callAction($this->route);.

You can find this code in CMS-EntryPoint-Framework

With that complete, we now have a generic EntryPoint.php. There are no longer

any references to jokes, authors or anything specific to one particular website.

In future, to create a website for an online shop, we can write the relevant

ShopActions class with a callAction method to handle the arguments for that

specific website:

class ShopActions {

public function callAction($route) {

// load the controller and call the relevant action

// …

return $controller->$action();

}

}

By splitting out the framework code from the project-specific code, it’s possible to

use the same EntryPoint class in any project. We can pass it the actions it’s going

to use when it’s constructed. The index.php for the shop website would contain

this line:

$entryPoint = new EntryPoint($controller, $action, new

➥ ShopActions());

Creating an Extensible Framework 395

www.EBooksWorld.ir

Autoloading and Namespaces

One line of code we’re repeating often is the include line to include a relevant

class each time a class is required.

Any time we use one of the classes we’ve created, it must be referenced with an

include statement. This can get tricky to manage, as you need to ensure the class

file has been included before you use the class. On top of that, if you accidentally

issue the include statement twice for the same class, you’ll see an error.

Our IjdbRoutes class has to include the DatabaseTable and controller classes,

and index.php has to include the EntryPoint and Ijdb classes.

Some pages may require some classes to be loaded, whereas others may require

other classes to be loaded.

A very inefficient but easy-to-organize method of managing loading classes would

be to include every single class at the top of the index.php file, so that any class

that might be needed has already been loaded. Using this method, we’ll never

have to write an include statement for a class outside index.php.

A major drawback of this approach is that each time you add a new class to the

project, you’ll have to open up index.php and add the relevant include

statement. This is time consuming, and will use an unnecessary amount of

memory on the server, as all classes would be loaded whether they’re needed or

not.

I’ve advised placing classes in their own files throughout this book, as well as

naming files to match identically the name of the classes they contain. The class

DatabaseTable is inside the file DatabaseTable.php, JokeController is stored

in JokeController.php, and EntryPoint is stored in a file called

EntryPoint.php.

One of the reasons I’ve advised structuring files this way is that it’s considered

good practice. It helps someone reading the code to find the classes that are

referenced. If they want to look at the code for JokeController, they know to

look in JokeController.php.

396 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

One other advantage of a standardized file structure is that PHP contains a feature

called autoloading. Autoloading is used to automatically load PHP files that store

classes. As long as your file names are consistent with the class names, it’s easy to

write an autoloader to load the relevant PHP file.

Once we’ve written an autoloader, we’ll never need to write an include line for a

class anywhere in the project.

When we use the statement new ClassName(), if the class ClassName doesn’t

exist (because it hasn’t been included), PHP can trigger an autoloader that can

then load the file ClassName.php, and the rest of the script will continue as

normal without us ever needing to manually write the line include

'ClassName.php';.

An autoloader is a function that takes a class name as an argument and then

includes the file that contains the corresponding class. The function can be as

simple as this:

function autoloader($className) {

$file = __DIR__ . '/../classes/' . $className . '.php';

include $file;

}

It would be possible to use this function manually to save a little time:

autoloader('DatabaseTable');

autoloader('EntryPoint');

This would include both DatabaseTable.php and EntryPoint.php. However, it’s

possible to instruct PHP to call this function automatically whenever it can’t find

a class that’s referenced:

spl_autoload_register('autoloader');

The function spl_autoload_register is built into PHP and allows us to tell PHP

Creating an Extensible Framework 397

www.EBooksWorld.ir

to call the function with the name we’ve given if it comes across a class that

hasn’t yet been included.

The autoloader function will be called automatically when a class is used for the

first time:

function autoloader($className) {

$file = __DIR__ . '/../classes/' . $className . '.php';

include $file;

}

spl_autoload_register('autoloader');

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$controller = new EntryPoint($jokesTable);

Now files will automatically be included the first time the class stored in them is

used. new DatabaseTable will trigger the autoloader with DatabaseTable, as the

$className argument and DatabaseTable.php will be included.

Case Sensitivity

PHP classes are not case sensitive, but file names usually are. This can cause a

problem with autoloaders. The first time a class is used it will be included, and

new DatabaseTable will load DatabaseTable.php. However, new databasetable

will cause an error, because the filename is case sensitive and

databasetable.php doesn’t exist.

So a problem is caused in a situation like this:

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorstable = new databasetable($pdo, 'author', 'id');

The code above will work as intended, because the first time DatabaseTable is

loaded with the correct case, the file is successfully included and PHP’s case

398 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

insensitivity allows both objects to be constructed.

However, if we reverse the order of arguments—because the autoloader is

triggered with a lowercase name—we’ll get an error:

$authorstable = new databasetable($pdo, 'author', 'id');

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

An alternative is to make all file names lowercase and have the autoloader

convert the class name to lowercase before loading the file. Although this is a

more robust approach and arguably a better technical implementation, it goes

against PHP community conventions, and will cause problems if we want to

share our code with other people in the future.

Implement an Autoloader

Let’s implement an autoloader. To keep things organized, let’s create

autoload.php and save it in the includes directory:

<?php

function autoloader($className)

{

$file = __DIR__ . '/../classes/' . $className . '.php';

include $file;

}

spl_autoload_register('autoloader');

Now we can amend index.php to include the autoloader, but remove the include

lines that explicitly include EntryPoint.php and IjdbRoutes.php:

<?php

try {

include __DIR__ . '/../includes/autoload.php';

Creating an Extensible Framework 399

www.EBooksWorld.ir

$route = ltrim(strtok($_SERVER['REQUEST_URI'], '?'), '/');

$entryPoint = new EntryPoint($route, new IjdbRoutes());

$entryPoint->run();

} catch (PDOException $e) {

$title = 'An error has occurred';

$output = 'Database error: ' . $e->getMessage() . ' in '

. $e->getFile() . ':' . $e->getLine();

include __DIR__ . '/../templates/layout.html.php';

}

We can also remove the include line for DatabaseTable from IjdbRoutes.php:

<?php

class IjdbRoutes {

public function callAction($route) {

include __DIR__ . '/../includes/DatabaseConnection.php';

$jokesTable = new DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new DatabaseTable($pdo, 'author', 'id');

if ($route === 'joke/list') {

You can find this code in CMS-EntryPoint-Autoload.

Notice that DatabaseConnection.php is still included manually, because it

doesn’t include a class. It sets up the $pdo variable, which is used by both

DatabaseTable objects. Autoloaders can only be used to load classes, and that’s

one of the reasons it’s a good idea to structure as much of our code as possible

inside classes.

Redecorating

If we peruse the rest of the code for include statements, we’ll see that the

400 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

autoloader works for all classes that are framework classes, but doesn’t work for

JokeController or RegisterController. The controller is still loaded in

IjdbRoutes.php on several lines:

include __DIR__ .

➥ '/../classes/controllers/JokeController.php';

We might try removing this line and having the autoloader load it automatically.

If we do, we’ll see an error. That error occurs because, when PHP encounters new

JokeController and triggers the autoloader, it attempts to load

JokeController.php from the classes directory, rather than from the classes/

controllers directory where the file is actually stored.

Earlier in this chapter, I mentioned the difference between framework code—the

code you might want to use on every website you build—and project-specific

code that exists only for one particular website.

It’s a good idea to keep these separated in different directories, so that you can

easily copy/paste framework files between websites without copying files that are

specific to a single project.

Let’s name our framework after the title of this book, Ninja. Move all the

framework code into a directory called Ninja inside the classes directory. We

should move EntryPoint.php and DatabaseTable.php, as these are our two

generic framework files.

Similarly, let’s create a new directory inside the classes directory called Ijdb.

This is where we’ll keep all the code that’s specific to the joke site and can’t be

reused on future websites. We’ll move IjdbRoutes.php into the Ijdb directory

and move the controllers directory inside as well.

While we’re moving things around, for consistency, let’s give the Controllers

directory an uppercase C and ensure the Ninja and Ijdb directories all start with

an uppercase letter.

When we’re finished, EntryPoint.php and DatabaseTable.php should be located

inside classes/Ninja/, while JokeController should be stored inside classes/

Creating an Extensible Framework 401

www.EBooksWorld.ir

Ijdb/Controllers and IjdbRoutes.php inside classes/Ijdb.

Don’t try loading the website! As we’ve moved all the files around, everything is

broken!

Because all of our classes are now one level deeper inside the file structure, we’ll

need to amend any include lines in the files we just moved around.

Firstly, let’s open up EntryPoint.php and change this:

include __DIR__ . '/../templates/' . $templateFileName;

… to this:

include __DIR__ . '/../../templates/' . $templateFileName;

I’ve added the extra ../ before templates/ so it looks up an additional directory.

Now we should change this:

include __DIR__ . '/../templates/layout.html.php';

… to this:

include __DIR__ . '/../../templates/layout.html.php';

Now, inside IjdbRoutes.php, we’ll need to change this:

include __DIR__ . '/../includes/DatabaseConnection.php';

… to this:

include __DIR__ . '/../../includes/DatabaseConnection.php';

402 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

If we do try loading a page at this point, we’ll see some errors. That’s because the

autoloader is now looking in the wrong place.

To solve this, we could add some logic to the autoloader that looks at the name of

the class and loads the file from the correct location, or store an array of class

names mapped to file names.

Instead, we’re going to use a new tool: namespaces.

Namespaces

Each of our classes has a unique name. However, are they truly unique? If we

download some code someone else has written, it may well contain a class

named DatabaseTable or EntryPoint. In a world with thousands of PHP

developers, these names aren’t unique.

Modern PHP is great: we can find code online that does almost anything we can

dream of—creating graphs and charts, turning web pages into PDFs, manipulating

images and videos, connecting to Twitter streams, controlling services on a

Raspberry Pi. The list is almost endless.

What if we found a great-looking library we wanted to use but it included a class

named DatabaseTable? This name clash would present a problem. When we run

the line new DatabaseTable, PHP has to know which class should be used.

One feature that has revolutionized PHP and made it much easier to share code

online is namespaces.

Before namespaces came along, PHP developers would name their classes with a

prefix. For example, we might name our classes Ninja_EntryPoint,

Ninja_DatabaseTable and Ijdb_JokeController.

That way, when we wanted to use SuperLibary_DatabaseTable, it wouldn’t

clash with Ninja_DatabaseTable, and we could use both DatabaseTable classes

on the same website.

Creating an Extensible Framework 403

www.EBooksWorld.ir

Namespaces provide a simpler method of solving the same problem. Every class

we write can (and should!) be placed within a namespace.

You can think of namespaces a bit like folders on your computer. Inside any

given folder on your computer, each file has to have a unique name. For example,

our public directory can only contain one file named index.php, but a different

directory could also contain a different file also named index.php.

Let’s move our framework files into the Ninja namespace. At the top of

EntryPoint.php and DatabaseTable.php, add the following code:

namespace Ninja;

The first few lines of DatabaseTable.php now look like this:

<?php

namespace Ninja;

class DatabaseTable {

private $pdo;

private $table;

// …

Now add the namespace Ijdb to IjdbRoutes.php:

<?php

namespace Ijdb;

class IjdbRoutes {

public function callAction($route) {

// …

Before giving the final class (JokeController) a namespace, I’ll show you how to

use the classes now that they have a namespace.

404 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

index.php has the code new EntryPoint and new IjdbRoutes. Now that the

classes are inside namespaces, this won’t work. We’ll need to specify the

namespace when instantiating the class by using a backslash (\), followed by the

namespace, another backslash, and then the class.

This line:

$entryPoint = new EntryPoint($route, new IjdbRoutes());

… will become this:

$entryPoint = new \Ninja\EntryPoint($routes, new

➥ \Ijdb\IjdbRoutes());

Similarly, in IjdbRoutes.php, we need to change new DatabaseTable to new

\Ninja\DatabaseTable:

$jokesTable = new \Ninja\DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new \Ninja\DatabaseTable($pdo, 'author',

➥ 'id');

At this point, we might be inclined to add the namespace Ijdb to

JokeController. We’ll be giving JokeController a namespace containing Ijdb,

but we’ll give it the namespace Ijdb\Controllers.

The backslash (\) in the namespace represents a sub-namespace—a namespace

within a namespace. This isn’t strictly necessary, but it’s a good idea to keep

related code together. In this case, we’ll place all controllers inside the Ijdb\

Controllers namespace and the Ijdb/Controllers directory.

While we’re changing the JokeController.php file to include the namespace,

we’ll rename the class (and file) to Joke. That way, the class is \Ijdb\

Controllers\Joke rather than \Ijdb\Controllers\JokeController, and the

word “Controller” isn’t repeated unnecessarily in the full class name.

Creating an Extensible Framework 405

www.EBooksWorld.ir

This parallel between directory structures and namespaces is important. It allows

us to write an autoloader than can use both namespaces and class names to locate

the file it needs to load.

The combined namespace and class name now represent the folder structure,

making it easy to autoload the classes.

This convention is known as PSR-4 (PSR stands for PHP Standards

Recommendations), and it’s used by almost all modern PHP projects. Each class

should be contained inside a file that directly maps to its namespace and class

name. The full class name including namespace should exactly match the

directory and file name, including case sensitivity. The PSR-4 standard also

provides a few other rules that I won’t go into here. To read more about PSR-4,

take a look at the PHP-FIG website.

Autoloading with PSR-4

By using PSR-4, it’s simple to convert a class name in a namespace to a file path.

Let’s replace autoload.php with this PSR-4 version:

<?php

function autoloader($className)

{

$fileName = str_replace('\\', '/', $className) . '.php';

$file = __DIR__ . '/../classes/' . $fileName;

include $file;

}

spl_autoload_register('autoloader');

When the autoloader is triggered with a class inside the namespace, it’s passed

the entire class name including the namespace. For example, when EntryPoint is

loaded, the autoloader is given the class name Ninja\EntryPoint.

The line str_replace('\\', '/', $className) . '.php'; replaces

406 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://www.php-fig.org/psr/psr-4/

backslashes with forward slashes to represent the file in the file system. Ninja\

EntryPoint becomes Ninja/EntryPoint.php, referencing the file.

With the autoloader in place, we can now remove the include lines from

IjdbRoutes.php, which load JokeController and RegisterController:

include __DIR__ .

'/../classes/controllers/JokeController.php';

Then we should change the reference to the controllers to use the full class name:

$controller = new \Ijdb\Controllers\Joke($jokesTable,

$authorsTable);

Nearly there! We’re close to having the site up and running again using the new

file and namespace structure. However, if we try to load one of the pages, we’ll

see this error:

Uncaught TypeError: Argument 1 passed to

➥ Ninja\DatabaseTable::__construct() must be an instance of
➥ Ninja\PDO, instance of PDO given

To fix it, we can open up DatabaseTable.php and change the type hint in the

constructor from PDO to \PDO. We saw this error because namespaces are relative.

If you provide a reference to a class name, in a type hint or following the new

keyword, PHP will look for a class with that name in the current namespace. We

also need to replace DateTime with \DateTime and PDOException with

\PDOException in this file.

Because the DatabaseTable class is inside the Ninja prefix, without the

backslash prefix PHP will to load the class \Ninja\PDO rather than the inbuilt

PHP class PDO.

The PDO class is in something called the global namespace—that is, a class that

Creating an Extensible Framework 407

www.EBooksWorld.ir

exists at the very top level, effectively not inside a namespace. To reference a

class in the global namespace, we must prefix it with a backslash.

Save DatabaseTable.php and refresh the page. There’s just one more error to fix:

Fatal error: Uncaught TypeError: Argument 1 passed to

➥ Ijdb\Controllers\Joke::__construct() must be an instance of
➥ Ijdb\Controllers\DatabaseTable, instance of
➥ Ninja\DatabaseTable given

This is the same problem as above. Because there’s no namespace specified, PHP

looks for a class called DatabaseTable in the current namespace. As the

controller is in the Ijdb namespace, PHP will try to load the class Ijdb\

DatabaseTable.

We could fix this the same way as above—by providing the class name with the

namespace (which PHP refers to as a Fully qualified class name): \Ninja\

DatabaseTable. But a neater solution is importing the class DatabaseTable into

the current namespace.

We can do this with the use keyword after the namespace declaration:

9-4. CMS-EntryPoint-Namespaces

<?php

namespace Ijdb\Controllers;

use \Ninja\DatabaseTable;

class Joke {

private $authorsTable;

// …

If we’ve done everything correctly, we should be able to refresh the website and

see everything working once again.

We’ve made a lot of changes here, but only to the structure of the code. Most of

the code is the same as before; we’ve just moved it around. To recap, we’ve done

408 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

the following:

split our code up into classes, recognizing the code that’s specific to the joke

website and the code that can be used on any future website

organized all our classes in either the Ijdb directory, for project-specific files,

or the Ninja directory for our framework files

given all our classes namespaces

removed all include statements for classes by implementing a PSR-4

compatible autoloader

A Note on Composer

Most modern PHP applications use a tool called Composer to handle all

autoloading. It’s also used to quickly and easily download and install third-party

libraries. It’s beyond the scope of this book, but if you follow the PSR-4

convention, your classes are good to go when you want to start using it, and you

can use composer’s autoloader as a drop-in replacement for the autoload.php we

just wrote.

When you do start using Composer, just add this code to your composer.json file:

{

"autoload": {

"psr-4": {

"Ninja\\": "classes/Ninja",

"Ijdb\\": "classes/Ijdb"

}

}

}

For an overview of Composer, take a look at the SitePoint article “Re-Introducing

Composer – the Cornerstone of Modern PHP Apps”.

Creating an Extensible Framework 409

www.EBooksWorld.ir

https://www.sitepoint.com/re-introducing-composer/
https://www.sitepoint.com/re-introducing-composer/

And the REST

The current iteration of our router uses a very simplistic approach. Each route is a

string from the URL that maps to a controller and calls a specific action.

If we continue using this approach, we’ll quickly find ourselves repeating logic in

the controllers.

Our edit joke form contains the following logic: if the form is submitted, process

the submission, otherwise display the form.

This logic will be required for any form on the website. Similarly, we can

envisage other features in the future requiring similar logic in the controller. For

example: display the page if the user is logged in, otherwise display the login

form.

When the edit joke form is submitted, it uses the POST method. Any other request

to pages on the website will use the GET method.

PHP can detect whether the page was requested using GET or POST. The variable

$_SERVER['REQUEST_METHOD'] is created by PHP and will contain either the

string GET or the string POST, depending on how the page was requested by the

browser.

We can use this to determine if the form was submitted, and call a different

controller action if the form was submitted:

else if ($route === 'joke/edit' &&

$_SERVER['REQUEST_METHOD'] === 'GET') {

$controller = new \Ijdb\Controllers\Joke($jokesTable,

$authorsTable);

$page = $controller->edit();

}

else if ($route === 'joke/edit' &&

➥ $_SERVER['REQUEST_METHOD'] === 'POST') {
$controller = new \Ijdb\Controllers\Joke($jokesTable,

$authorsTable);

$page = $controller->editSubmit();

410 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

}

This approach works, but it’s rather long-winded. Instead, we can use nested

arrays to create a data structure that represents all of the routes in the

application:

$routes = [

'joke/edit' => [

'POST' => [

'controller' => $jokeController,

'action' => 'saveEdit'

],

'GET' => [

'controller' => $jokeController,

'action' => 'edit'

]

],

'home' => [

'GET' => [

'controller' => $jokeController,

'action' => 'home'

]

]

// …

This may look fairly strange, but this kind of multidimensional data structure is

used frequently in programming, so it’s a good tool to learn.

Looking at the code for the $routes array, the downside of this approach is

obvious: it requires writing out exactly which controller and action to call for

every single page on the website. There are ways around this by using wildcards,

but I’ll leave that as an exercise for the reader.

The $routes variable is a standard array. It’s possible to extract the nested arrays.

If we wanted to get the controller and action for the POST method for the route

Creating an Extensible Framework 411

www.EBooksWorld.ir

joke/edit, we could do it like this:

// First read the route

$route = $routes['joke/edit'];

// Now read the value stored in the `POST` key:

$postRoute = $route['POST'];

// Finally, read the controller and action:

$controller = $postRoute['controller'];

$action = $postRoute['action'];

We are effectively “digging down” into the array, choosing which branch of the

data structure to follow—a bit like the file/folder structure on your computer.

This can also be expressed in a much shorter way by chaining the square brackets

for looking up each value in the arrays:

$controller = $routes['joke/edit']['POST']['controller'];

$action = $routes['joke/edit']['POST']['action'];

By using variables in place of strings, it’s possible to substitute the hardcoded

values with values from the $_SERVER variables REQUEST_URI and

REQUEST_METHOD:

$route = $_SERVER['REQUEST_URI'];

$method = $_SERVER['REQUEST_METHOD'];

$controller = $route[$route][$method]['controller'];

$action = $route[$route][$method]['action'];

$controller->$action();

This approach of having the same URL perform different actions depending on

412 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

the request method is loosely known as Representational State Transfer (REST).

Let’s go ahead and implement a router using the REST approach on our site.

To begin with, change the callAction method in the IjdbRoutes class to include

both the $routes array for the jokes website and the code for selecting the

relevant route:

<?php

namespace Ijdb;

class IjdbRoutes

{

public function callAction($route)

{

include __DIR__ . '/../../includes/DatabaseConnection.php';

$jokesTable = new \Ninja\DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new \Ninja\DatabaseTable($pdo, 'author',

'id');

$jokeController = new \Ijdb\Controllers\Joke($jokesTable,

$authorsTable);

$routes = [

'joke/edit' => [

'POST' => [

REST Methods

Although REST typically supports the methods PUT and DELETE along with GET

and POST, because web browsers only support GET and POST, PHP developers tend

to use POST in place of both PUT and DELETE requests. As such, it’s not worth

examining the differences in this book.

Some PHP developers have found superficial ways of mimicking PUT and DELETE,

but most developers just stick to using POST for writing data and GET for reading.

For more information on REST, see the SitePoint article “Best Practices REST API

from Scratch – Introduction”.

Creating an Extensible Framework 413

www.EBooksWorld.ir

https://www.sitepoint.com/best-practices-rest-api-scratch-introduction/
https://www.sitepoint.com/best-practices-rest-api-scratch-introduction/

'controller' => $jokeController,

'action' => 'saveEdit'

],

'GET' => [

'controller' => $jokeController,

'action' => 'edit'

]

],

'joke/delete' => [

'POST' => [

'controller' => $jokeController,

'action' => 'delete'

]

],

'joke/list' => [

'GET' => [

'controller' => $jokeController,

'action' => 'list'

]

],

'' => [

'GET' => [

'controller' => $jokeController,

'action' => 'home'

]

]

];

$method = $_SERVER['REQUEST_METHOD'];

$controller = $routes[$route][$method]['controller'];

$action = $routes[$route][$method]['action'];

return $controller->$action();

}

}

Now split the edit method in Controllers/Joke.php into a method for

414 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

displaying the form and another for the handling the submission:

public function saveEdit() {

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$joke['authorId'] = 1;

$this->jokesTable->save($joke);

header('location: /joke/list');

}

public function edit() {

if (isset($_GET['id'])) {

$joke = $this->jokesTable->findById($_GET['id']);

}

$title = 'Edit joke';

return ['template' => 'editjoke.html.php',

'title' => $title,

'variables' => [

'joke' => $joke ?? null

]

];

}

Once again, it’s worth taking a look at the code for the new IjdbRoutes class. On

the next website, we’ll need to repeat the logic for selecting the correct controller

and calling the action. This logic will be identical on any site we build:

$method = $_SERVER['REQUEST_METHOD'];

$controller = $routes[$route][$method]['controller'];

$action = $routes[$route][$method]['action'];

return $controller->$action();

Creating an Extensible Framework 415

www.EBooksWorld.ir

Instead, we’ll just use the IjdbRoute class to provide the $routes array. We’ll

rename the callAction method getRoutes, remove the argument, and have it

return the array rather than accessing it:

<?php

namespace Ijdb;

class IjdbRoutes

{

public function getRoutes()

{

include __DIR__ . '/../../includes/DatabaseConnection.php';

$jokesTable = new \Ninja\DatabaseTable($pdo, 'joke', 'id');

$authorsTable = new \Ninja\DatabaseTable($pdo, 'author',

'id');

$jokeController = new \Ijdb\Controllers\Joke($jokesTable,

$authorsTable);

$routes = [

'joke/edit' => [

'POST' => [

'controller' => $jokeController,

'action' => 'saveEdit'

],

'GET' => [

'controller' => $jokeController,

'action' => 'edit'

]

],

'joke/delete' => [

'POST' => [

'controller' => $jokeController,

'action' => 'delete'

]

],

'joke/list' => [

'GET' => [

416 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

'controller' => $jokeController,

'action' => 'list'

]

],

'' => [

'GET' => [

'controller' => $jokeController,

'action' => 'home'

]

]

];

return $routes;

}

}

Now we’ll amend EntryPoint to use both $method and $route. We could hard

code the $route and $method variables in the run method by reading from the

server here:

public function run() {

$method = $_SERVER['REQUEST_METHOD'];

$route = $_SERVER['REQUEST_URI'];

// …

The problem with this approach is that it’s not very flexible. If we ever want to

use the EntryPoint class in an application that isn’t web based, it won’t work,

because these server variables won’t be set.

Instead, let’s create a class variable and amend the constructor to take the method

along with the route:

class EntryPoint {

private $route;

private $method;

Creating an Extensible Framework 417

www.EBooksWorld.ir

private $routes;

public function __construct($route, $method, $routes) {

$this->route = $route;

$this->routes = $routes;

$this->method = $method;

$this->checkUrl();

}

Next, we amend the run method to make use of both class variables:

public function run() {

$routes = $this->routes->getRoutes();

$controller = $routes[$this->route]

[$this->method]['controller'];

$action = $routes[$this->route]

[$this->method]['action'];

$page = $controller->$action();

$title = $page['title'];

if (isset($page['variables'])) {

$output = $this->loadTemplate($page['template'],

$page['variables']);

}

else {

$output = $this->loadTemplate($page['template']);

}

include __DIR__ . '/../../templates/layout.html.php';

}

Then we supply the method in index.php:

418 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$entryPoint = new \Ninja\EntryPoint($route,

$_SERVER['REQUEST_METHOD'], new \Ijdb\IjdbRoutes());

You can find this code in CMS-EntryPoint-Namespaces-Router.

Avoiding hardcoding like this is a very good habit to get into. The trend in PHP

(and software development in general) is towards test-driven development (TDD),

and hardcoded values like $_SERVER['REQUEST_METHOD'] make testing difficult.

Although TDD is well beyond the scope of this book, I do want to teach you

practices that will make your eventual move to TDD as easy as possible.

Enforcing Dependency Structure with Interfaces

In Chapter 8, when we created the DatabaseTable class, we wrote the constructor

so that it would check the types of its arguments:

public function __construct(PDO $pdo, string $table, string

➥ $primaryKey) {

Using this approach, it’s impossible to construct an instance of the

DatabaseTable class without supplying an instance of PDO as the first argument.

The EntryPoint class has a dependency on IjdbRoutes, and it calls the

getRoutes method on it:

$routes = $this->routes->getRoutes();

However, what happens if the $this->routes variable is not an instance of

IjdbJokes, or it’s an object that doesn’t have a getRoutes method?

As we did with DatabaseTable, we can enforce the types using hints in the

constructor:

Creating an Extensible Framework 419

www.EBooksWorld.ir

public function __construct(string $route, string $method,

➥ \Ijdb\IjdbRoutes $routes) {

With the type hints in place, it’s impossible to construct the EntryPoint class

without supplying an instance of IjdbRoutes as the third argument. But this

breaks our flexibility! What happens when we build the online shop and we want

to use a class called \Shop\Routes? Ideally, we want the flexibility of allowing

each website to supply a different set of routes, but we also want the robustness

that type checking gives us.

This can be achieved using something called an interface. An interface can be

used to describe what methods a class should contain, but doesn’t contain any

actual logic. Classes can then implement the interface.

An interface for the routes would look like this:

<?php

namespace Ninja;

interface Routes

{

public function getRoutes();

}

You’ll notice that it looks a little like a class. It has a namespace, a name and a

method. However, the difference between an interface and a class is that it only

contains the method header (the first line), and doesn’t contain any logic.

Let’s save the interface in the Ninja directory as Routes.php. Like classes,

interface files can be loaded by the autoloader.

We can now type hint the interface in EntryPoint:

public function __construct(string $route, string $method,

➥ \Ninja\Routes $routes) {

420 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Currently, this will prevent us from passing an instance of Ijdb\IjdbRoutes into

EntryPoint’s constructor. However, we can make IjdbRoutes implement the

interface:

<?php

namespace Ijdb;

class IjdbRoutes implements \Ninja\Routes {

You can find this codd in CMS-EntryPoint-Interface.

This has two effects:

1. The class IjdbRoutes must contain the methods described in the interface. If

not, an error is displayed.

2. The IjdbRoutes class can now be type hinted using the interface.

Now, when we build the online shop or any other website, we can make a new

version of the routes class by implementing the interface:

namespace Shop;

class Routes implements \Ninja\Routes {

public function getRoutes() {

// Return routes for the online shop

}

}

Interfaces are very useful for the kind of generic framework we’ve built. By

providing a set of interfaces, each website can provide classes that implement the

interfaces, guaranteeing that the framework code and project-specific code fit

together.

You can connect your TV to a Blu-ray player, a satellite TV receiver, a games

console, or even a computer, because they all use HDMI. The makers of the TV

don’t know what’s going to be connected to it, but anything that follows the

HDMI standard will work with the TV. Similarly, anything that uses the Ninja\

Creating an Extensible Framework 421

www.EBooksWorld.ir

Routes interface will work with the Ninja framework.

Interfaces, when used correctly, are a very powerful tool for bridging framework

and project-specific code.

Your Own Framework

Writing a framework is a rite of passage for a PHP developer. Everyone does it,

and we’ve just written one! Through this book, I hope I’ve helped you avoid some

of the common traps developers fall into.

In this chapter you learned:

the difference between framework code and project-specific code

how to differentiate them by use of directory structures and namespaces

how to write an autoloader

the basics of interfaces and REST

routing and URL rewriting

Although we haven’t added any functionality in this chapter, the knowledge

covered here will put you on a very firm footing when working with modern PHP

applications and third-party code from fellow developers.

422 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

10Chapter

Allowing Users to Register Accounts

Now that we’ve done all the hard work of building an extensible framework, it’s

time to add some new functionality to the website. We’re going to make it so that

users can register accounts on the website with a view to letting them post jokes

themselves.

You should already have the table for authors in the database with some data

you added via MySQL Workbench. If you don’t, you can execute this query to

create the table:

CREATE TABLE author (

id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

name VARCHAR(255),

email VARCHAR(255)

) DEFAULT CHARACTER SET utf8mb4 ENGINE=InnoDB

Allowing Users to Register Accounts 423

www.EBooksWorld.ir

Don’t worry about adding any records if you have none. We’ll be creating a form

that lets us add authors from the website.

The first step is to add another column to the database to store the password that

users will use to log in. Let’s create another column, either using MySQL

Workbench’s GUI or running the following query:

ALTER TABLE author ADD COLUMN password VARCHAR(255)

The column name should be password and the type VARCHAR(255). I know that

255 characters sounds like a very long password, but there’s a reason for making

the column so large, which we’ll get to later.

The first thing that’s needed is the controller code. Create the file Register.php

in the Ijdb\Controllers directory, then create the class with the following

variables, constructor and a method for loading the registration form. For

registering users, the only dependency needed is the DatabaseTable object that

represents the authors table:

<?php

namespace Ijdb\Controllers;

use \Ninja\DatabaseTable;

class Register

{

private $authorsTable;

public function __construct(DatabaseTable $authorsTable)

{

$this->authorsTable = $authorsTable;

}

public function registrationForm()

{

424 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

return ['template' => 'register.html.php',

'title' => 'Register an account'];

}

public function success()

{

return ['template' => 'registersuccess.html.php',

'title' => 'Registration Successful'];

}

}

I’ve added two actions: one for displaying the form, and one for displaying the

Registration Successful page.

Here’s the template, register.html.php, in the templates directory:

<form action="" method="post">

<label for="email">Your email address</label>

<input name="author[email]" id="email" type="text">

<label for="name">Your name</label>

<input name="author[name]" id="name" type="text">

<label for="password">Password</label>

<input name="author[password]" id="password"

type="password">

<input type="submit" name="submit"

value="Register account">

</form>

Here’s registersuccess.html.php:

<h2>Registration Successful</h2>

<p>You are now registered on the Internet Joke

➥ Database</p>

Allowing Users to Register Accounts 425

www.EBooksWorld.ir

And finally, the routes in IjdbRoutes.php:

// …

$jokeController = new \Ijdb\Controllers\Joke($jokesTable,

$authorsTable);

$authorController =

new \Ijdb\Controllers\Register($authorsTable);

$routes = [

'author/register' => [

'GET' => [

'controller' => $authorController,

'action' => 'registrationForm'

]

],

'author/success' => [

'GET' => [

'controller' => $authorController,

'action' => 'success'

]

],

'joke/edit' => [

// …

If we visit http://192.168.10.10/author/register, we should see the form. To

make the form work, we’ll need to add the POST route in IjdbRoutes and the

relevant method in the controller.

'author/register' => [

'GET' => [

'controller' => $authorController,

'action' => 'registrationForm'

],

'POST' => [

'controller' => $authorController,

426 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

'action' => 'registerUser'

]

],

Register.php:

public function registerUser() {

$author = $_POST['author'];

$this->authorsTable->save($author);

header('Location: /author/success');

}

You canfind this code in Registration-Form.

Once the form is submitted, the router will execute the registerUser method

and save the new author information by reading from the $_POST array.

Check if it works by filling out the form, submitting it and selecting all the

records from the author table using MySQL Workbench. If you don’t see the data

for the record you just added, double check all your code and try again.

We have a basic registration form working, but there are some problems with it in

its current state. We need some control over what’s allowed in the database.

There are some rules we probably want to enforce on the data before allowing the

record to be inserted:

All fields should actually contain some data, so no blank email or name.

The email address should be a real email address. For example,

paul@example.org is allowed, but abc123 isn’t.

The email address entered must not already belong to an account.

These validation rules need to be checked before the data is inserted, but also

after the form is submitted. If there’s a problem with the submission, it’s good

practice to show the form to the user again so they can fix their mistakes.

Allowing Users to Register Accounts 427

www.EBooksWorld.ir

Each one of these validation rules needs to be applied in slightly different ways,

but with a similar result. We’ll use if statements for each check and set a boolean

variable $valid to keep track of whether the data is valid or not. For example, to

check that each field has a value inside it, we can use a series of if statements

that set the $valid variable to false if one of the fields is empty:

public function registerUser() {

$author = $_POST['author'];

// Assume the data is valid to begin with

$valid = true;

// But if any of the fields have been left blank

// set $valid to false

if (empty($author['name'])) {

$valid = false;

}

if (empty($author['email'])) {

$valid = false;

}

if (empty($author['password'])) {

$valid = false;

}

// If $valid is still true, no fields were blank

// and the data can be added

if ($valid == true) {

$this->authorsTable->save($author);

header('Location: /author/success');

}

else {

// If the data is not valid, show the form again

return ['template' => 'register.html.php',

'title' => 'Register an account'];

}

}

428 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Try it yourself by submitting the form and leaving one or more fields blank. You

should see the blank form again rather than the “Registration Successful”

message.

If $valid has been set to false because one of the fields is empty, then the form is

shown again by returning a title and template. If you did try this for yourself,

you’ll have immediately noticed that whatever you typed into the box has been

removed, and there’s no indication to the user of what was wrong.

To fix this, let’s first create a second array to keep a list of error messages to show

to the user:

public function registerUser() {

$author = $_POST['author'];

// Assume the data is valid to begin with

$valid = true;

$errors = [];

// But if any of the fields have been left blank

// set $valid to false

if (empty($author['name'])) {

$valid = false;

$errors[] = 'Name cannot be blank';

}

if (empty($author['email'])) {

Using empty() Above

I’ve used empty($author['name']) instead of $author['name'] == '' here,

because this will also catch invalid form submissions without causing an error.

It’s possible for someone to submit a POST request without filling in your form! It’s

likely they might not supply values (an empty string is still a value!) for some of the

form fields. It’s better to avoid these kinds of errors than potentially alert malicious

users to how the site works.

Allowing Users to Register Accounts 429

www.EBooksWorld.ir

$valid = false;

$errors[] = 'Email cannot be blank';

}

if (empty($author['password'])) {

$valid = false;

$errors[] = 'Password cannot be blank';

}

// If $valid is still true, no fields were blank

// and the data can be added

if ($valid == true) {

$this->authorsTable->save($author);

header('Location: /author/success');

}

else {

// If the data is not valid, show the form again

return ['template' => 'register.html.php',

'title' => 'Register an account'];

}

}

Remember the [] = operator for arrays? This will be added to the end of the

$errors array, so if the user leaves all three fields blank, all three error messages

will be stored in the $errors array. These errors will need to be shown to the user

by displaying them in the template.

When we created the joke list page, we supplied the template some variables

using the variables key in the returned array. The same thing can be done here

with the errors:

// If the data is not valid, show the form again

return ['template' => 'register.html.php',

'title' => 'Register an account',

'variables' => [

'errors' => $errors

]

430 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

];

And now the $errors variable can be used in register.html.php:

<?php

if (!empty($errors)) :

?>

<div class="errors">

<p>Your account could not be created,

please check the following:</p>

<?php

foreach ($errors as $error) :

?>

<?= $error ?>

<?php

endforeach; ?>

</div>

<?php

endif;

?>

<form action="" method="post">

<label for="email">Your email address</label>

<input name="author[email]" id="email" type="text">

<label for="name">Your name</label>

<input name="author[name]" id="name" type="text">

<label for="password">Password</label>

<input name="author[password]" id="password"

type="password">

<input type="submit" name="submit"

value="Register account">

</form>

Allowing Users to Register Accounts 431

www.EBooksWorld.ir

To make the errors look a bit nicer, add the following to jokes.css:

.errors {

padding: 1em;

border: 1px solid red;

background-color: lightyellow;

color: red;

margin-bottom: 1em;

overflow: auto;

}

.errors ul {

margin-left: 1em;

}

If there are any errors now, they’ll all be printed in a list at the top of the page

before the form, and the user will know what went wrong.

To make things even easier, we’ll re-fill the form with the data from $_POST.

Firstly, let’s supply the $author information to the template by amending the

return value:

return ['template' => 'register.html.php',

'title' => 'Register an account',

'variables' => [

'errors' => $errors,

'author' => $author

]

];

Now print the values in the form fields if they’re set. This is exactly the same

approach we took in editjoke.html.php to fill the form with the information in

the database:

<label for="email">Your email address</label>

<input name="author[email]" id="email" type="text"

432 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

value="<?=$author['email'] ?? ''?>">

<label for="name">Your name</label>

<input name="author[name]" id="name" type="text"

value="<?=$author['name'] ?? ''?>">

<label for="password">Password</label>

<input name="author[password]" id="password"

type="password"

value="<?=$author['password'] ?? ''?>">

<input type="submit" name="submit" v

alue="Register account">

You can find this code in Registration-Validation.

Validating Email Addresses

The validation above will prevent someone from leaving the email address field

blank. However, it doesn’t guarantee they’ve entered a valid email address. They

can still enter “a” into the field and it will pass the validation.

To ensure they enter a valid email address, we need to do some checking. We

could look at each character in the string and look for an “@” symbol, ensuring

it’s not the first character, and perhaps also look for a “.” after the “@” to match

“x@x.x”. However, this will take quite a few lines of code and will be complex to

implement.

As for most common problems, PHP includes a method of validating email

addresses that’s far more accurate and simpler to use than building your own.

There’s no need to reinvent the wheel.

To check an email address in PHP, you can use the filter_var function like so:

$email = 'tom@example.org';

if (filter_var($email, FILTER_VALIDATE_EMAIL) == false) {

Allowing Users to Register Accounts 433

www.EBooksWorld.ir

echo 'Valid email address';

}

else {

echo 'Invalid email address';

}

The filter_var function is provided by PHP and takes two arguments. The first

is the string to validate, and the second is the type of data to check against. There

are several options, including FILTER_VALIDATE_URL and FILTER_VALIDATE_INT,

for checking whether a given string is a valid URL or integer. The only one we

need at this moment is FILTER_VALIDATE_EMAIL, which is used to validate email

addresses. For a complete list of all the options supported by filter_var, see the

function’s page on the PHP website.

Let’s implement this check in the Register controller:

if (empty($author['email'])) {

$valid = false;

$errors[] = 'Email cannot be blank';

}

else if (filter_var($author['email']) == false) {

$valid = false;

$errors[] = 'Invalid email address';

}

You can find this code in Registration-Validation-Email.

First, we check whether the email address has been provided, and if it has,

whether it’s a valid email address using filter_var. If both checks pass, the

email address is valid and no errors are displayed.

Preventing the Same Person from Registering Twice

There’s one other check we need to do on the email address: ensuring the same

person can’t have multiple accounts. Allowing someone to have multiple

434 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://php.net/manual/en/function.filter-var.php

accounts can cause problems with a website. If they log in, which account do

they log in to? If they can see their previous jokes, they’ll only see the ones

posted by the account they’re logged in to, and any information tailored to them

will only be displayed on one account.

It’s very good practice to prevent the same person from registering twice with the

same email address. This can be enforced in the database, but it’s more consistent

to use PHP to check this. We already have the $authorsTable object for searching

for records in the author database table. We can make use of it to check if an

email address already exists.

Currently, the class DatabaseTable contains a findById method that allows you

to retrieve a record from the table by its ID.

Let’s add another method called find that takes two arguments:

the column to search in

the value to search for

$results = $authorsTable->find('email',

'tom@example.org');

Once implemented, the find method will select all the records where the email

column is set to tom@example.org using the query SELECT * FROM author

WHERE email = 'tom@example.org'.

Because the DatabaseTable class already contains the query function, we can

implement the find function in a similar way to the current findyById function:

public function findById($value) {

$query = 'SELECT * FROM ' . $this->table . ' WHERE ' .

$this->primaryKey . ' = :primaryKey';

$parameters = [

'primaryKey' => $value

];

Allowing Users to Register Accounts 435

www.EBooksWorld.ir

$query = $this->query($query, $parameters);

return $query->fetch();

}

public function find($column, $value) {

$query = 'SELECT * FROM ' . $this->table . ' WHERE ' .

$column . ' = :value';

$parameters = [

'value' => $value

];

$query = $this->query($query, $parameters);

return $query->fetchAll();

}

There are two differences, but the code is very similar. Instead of searching using

the column name from $this->primaryKey, the column name is provided by the

argument $column, and the return statement uses $query->fetchAll() to return

all the records as an array.

The $query->fetch function will only return one record. If we’re searching any

column for any value, it’s possible that multiple records may have the same

value. The fetchAll method is used to return all the matched records. Ideally, we

want a generic find function that we can use anywhere we’d like to search the

database for records that have a value set for a specified column.

Now that the find function has been added, we can use it to determine whether

an email address already exists in the database:

if (count($authorsTable->find('email', $author['email']))

➥ > 0) {
$valid = false;

$errors[] = 'That email address is already registered';

}

436 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The count function can be used to tally the number of records returned by the

find method. If it’s greater than zero (> 0), there’s already a record in the system

with the email address being searched for, and you can display an error

accordingly.

The only issue with this approach is that it’s case sensitive. If the user has already

registered with tom@example.org and then re-registers using TOM@EXAMPLE.ORG,

these will be seen as different email addresses. In order to correctly determine

whether tom@example.org has already signed up, the email address can be stored

in the database in lowercase, and searched using the lowercase version. The

complete registerUser method now looks like this:

public function registerUser() {

$author = $_POST['author'];

// Assume the data is valid to begin with

$valid = true;

$errors = [];

// But if any of the fields have been left blank

// set $valid to false

if (empty($author['name'])) {

$valid = false;

$errors[] = 'Name cannot be blank';

}

if (empty($author['email'])) {

$valid = false;

$errors[] = 'Email cannot be blank';

}

else if (filter_var($author['email'],

FILTER_VALIDATE_EMAIL) == false) {

$valid = false;

$errors[] = 'Invalid email address';

}

else { // If the email is not blank and valid:

Allowing Users to Register Accounts 437

www.EBooksWorld.ir

// convert the email to lowercase

$author['email'] = strtolower($author['email']);

// Search for the lowercase version of $author['email']

if (count($this->authorsTable->

find('email', $author['email'])) > 0) {

$valid = false;

$errors[] = 'That email address is already registered';

}

}

if (empty($author['password'])) {

$valid = false;

$errors[] = 'Password cannot be blank';

}

// If $valid is still true, no fields were blank

// and the data can be added

if ($valid == true) {

// When submitted, the $author variable now contains a

// lowercase value for email

$this->authorsTable->save($author);

header('Location: /author/success');

} else {

// If the data is not valid, show the form again

return ['template' => 'register.html.php',

'title' => 'Register an account',

'variables' => [

'errors' => $errors,

'author' => $author

]

];

}

}

By converting the email address to lowercase, when inserting the data and when

searching for it, we can deal with email addresses in a case-insensitive manner.

438 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Securely Storing Passwords

Now that the validation has been added, it’s possible for anyone who enters valid

data into the form to sign up and have their information added to the database.

Go ahead and add some test users and check that it’s working correctly by

verifying that the record has been added to the author table.

Using the approach above, if someone types “mypassword123” into the password

field, that’s what will be stored in the database. We might think that’s not a

problem, since only we have access to the database, and we’re not going misuse

the information. But would we really want the developers of every website we

use to know our password?

If our website gets hacked, it’s then possible for the hacker to see all of our users’

passwords, and because people are forgetful, they tend to use the same password

for every website they visit.

Someone with access to someone else’s email/password combination could,

therefore, do quite a bit of damage beyond accessing the account on this one site

we just built—such as reading their email or accessing their PayPal account.

A good website developer will help protect their users from this kind of attack.

The most common method of achieving this is using a “one way hashing

function”.

A hashing function takes a string like mypassword123 and converts it to an

encrypted version of the string, known as a hash. For example, mypassword123

would be hashed and produce a seemingly random string of numbers and letters

such as 9c87baa223f464954940f859bcf2e233.

Email Addresses and Case-sensitivity

Technically, email addresses can be case-sensitive. However, this is discouraged,

and for all practical applications it’s safe to assume that email addresses are not

case sensitive. No major email provider allows case-sensitive email addresses.

The alternative is hoping that users always type in their email address with the

same case, which is not a good assumption to make.

Allowing Users to Register Accounts 439

www.EBooksWorld.ir

https://tools.ietf.org/html/rfc5321#page-42

To convert a string to a hash, we can use one of several available hashing

functions built into PHP, including md5 and sha1. Using these functions is simple:

echo md5('mypassword123');

// prints 9c87baa223f464954940f859bcf2e233

This isn’t “encryption” in the true sense. There’s no way to decrypt that

seemingly random string of letters and numbers back into mypassword123.

One method of storing passwords is to store these hashes in the database. When a

user types “mypassword123” into the password field,

9c87baa223f464954940f859bcf2e233 is stored in the password column in the

database instead of mypassword123.

Now, if someone does manage to gain access to the database, all they’ll see is a

list of names and hashes. For example:

Kevin 9c87baa223f464954940f859bcf2e233

Laura 47bce5c74f589f4867dbd57e9ca9f808

Tom 9c87baa223f464954940f859bcf2e233

Jane 8d6e8d4897a32c5d011a89346477fb07

This solves the problem of someone with access to the database being able to read

everyone’s password. However, it’s not perfect. What do you know about Kevin

and Tom’s passwords? Looking at the list you can see that they’re the same! If you

can work out Kevin’s password, you’ll also know Tom’s.

And, what’s worse, we actually know what the password is, because we already

discovered that 9c87baa223f464954940f859bcf2e233 is the hash for

mypassword123. Because people all use the same common passwords, hackers

will generate the hashes for common passwords in order to quickly work out

which users are using them. Once you know that the hash for password is

5f4dcc3b5aa765d61d8327deb882cf99, you can query the database for any user

who has that hash and you’ll know their password is password. Do this for the

top 100, 200 or 1000 passwords, and on a large site you’ll work out dozens of real

email/password combinations.

440 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

You’ll have heard about the importance of using a secure, not easily guessable

password, and this is one of the many reasons why. If your password is

uncommon, hackers won’t have generated a hash for it, and won’t be able to

easily work out what your password is!

There are several methods for solving this problem with duplicated hashes, but

there’s a lot to consider, and making a truly secure password hash is more

difficult than it seems. If you want to learn more about the theory for solving this,

take a look at the SitePoint article “Password Hashing in PHP”.

Luckily for us, PHP includes a very secure way of storing passwords. It’s at least

as good as any solution developers will come up with, and avoids developers like

us needing to fully understand the security problems that can occur. For this

reason, it’s strongly recommended to use the inbuilt PHP algorithm for hashing

passwords rather than to create your own.

Now that you understand the importance and the theory behind password

hashing, let’s put it into practice.

PHP contains two functions, password_hash and password_verify. For now,

we’re only interested in password_hash. We’ll use password_verify in the next

chapter when we’re checking to see whether someone entered the correct

username and password when logging in.

This is how we can hash a password using the password_hash function:

$hash = password_hash($password, PASSWORD_DEFAULT);

$password stores the text of the password being hashed, and PASSWORD_DEFAULT

is the algorithm to use. It’s generally best to leave it up to the PHP developers, as

this will choose the best algorithm currently available. (At the time of writing,

this is an algorithm known as bcrypt, but it may change over time.)

If we run the code above with a password such as “mypassword123” and echo

the $hash variable, we’ll see something like this:

$2y$10$XPtbphrRABcV95GxoeAk.OeI8tPgaypkKicBUhX/YbC9QYSSoowRq

Allowing Users to Register Accounts 441

www.EBooksWorld.ir

https://www.sitepoint.com/password-hashing-in-php/
https://www.npmjs.com/package/bcrypt

I say “something like”, because each time you run the function, you’ll get a

different result. Even if you use “mypassword123” as the password each time,

you’ll get a different hash as a result. If two people have the same password,

different hashes will be stored in the database.

Earlier in the chapter, when we added the password column to the database table,

I said to make it 255 characters. This is because hashes can be long, and if the

default algorithm changes, they may grow in size.

Let’s implement the password_hash function in the registration form. It’s

surprisingly easy:

// …

if ($valid == true) {

// Hash the password before saving it in the database

$author['password'] = password_hash($author['password'],

PASSWORD_DEFAULT);

// When submitted, the $author variable now contains a

// lowercase value for email and a hashed password

$this->authorsTable->save($author);

header('Location: /author/success');

}

// …

The password value in the $author array is replaced with the hashed version.

Now, when the data is saved, the hashed password is stored in the database,

instead of the value mypassword123 (or whatever was entered into the form).

Registration Complete

The final version of the Register controller looks like this:

442 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

10-1. Registration-Validation-Email2

<?php

namespace Ijdb\Controllers;

use \Ninja\DatabaseTable;

class Register

{

private $authorsTable;

public function __construct(DatabaseTable $authorsTable)

{

$this->authorsTable = $authorsTable;

}

public function registrationForm()

{

return ['template' => 'register.html.php',

'title' => 'Register an account'];

}

public function success()

{

return ['template' => 'registersuccess.html.php',

'title' => 'Registration Successful'];

}

public function registerUser()

{

$author = $_POST['author'];

// Assume the data is valid to begin with

$valid = true;

$errors = [];

// But if any of the fields have been left blank

// set $valid to false

if (empty($author['name'])) {

$valid = false;

$errors[] = 'Name cannot be blank';

Allowing Users to Register Accounts 443

www.EBooksWorld.ir

}

if (empty($author['email'])) {

$valid = false;

$errors[] = 'Email cannot be blank';

} elseif (filter_var($author['email'],

FILTER_VALIDATE_EMAIL) == false) {

$valid = false;

$errors[] = 'Invalid email address';

} else { // If the email is not blank and valid:

// convert the email to lowercase

$author['email'] = strtolower($author['email']);

// Search for the lowercase version of $author['email']

if (count($this->authorsTable->find('email',

$author['email'])) > 0) {

$valid = false;

$errors[] = 'That email address is already

registered';

}

}

if (empty($author['password'])) {

$valid = false;

$errors[] = 'Password cannot be blank';

}

// If $valid is still true, no fields were blank

// and the data can be added

if ($valid == true) {

// Hash the password before saving it in the database

$author['password'] =

password_hash($author['password'],

PASSWORD_DEFAULT);

// When submitted, the $author variable now contains a

// lowercase value for email and a hashed password

$this->authorsTable->save($author);

header('Location: /author/success');

444 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

} else {

// If the data is not valid, show the form again

return ['template' => 'register.html.php',

'title' => 'Register an account',

'variables' => [

'errors' => $errors,

'author' => $author

]

];

}

}

}

In this chapter, I showed you how to add a new controller to the website, allow

users to sign up for accounts, validate the data that’s entered into a form, and how

to store passwords securely.

In the next chapter, we’ll build a login form, using a tool called sessions to track

whether a user is logged in or not.

Allowing Users to Register Accounts 445

www.EBooksWorld.ir

11Chapter

Cookies, Sessions, and Access Control

In the last chapter, I showed you how users can register accounts on the website.

Now it’s time to make those accounts functional, so that users can log in to the

website. The process is familiar to web users: they enter a username and

password, and get access to content that’s unique to their account.

Although a familiar process from the perspective of someone using the website,

for a developer, building a website that allows logging in can seem daunting at

first.

By its nature, HTTP is stateless. You connect to a website, the server gives you a

file. As you’ve already seen, you can send data from the browser to the server

using GET variables and HTML forms. However, the information is provided to a

single page, and is only available when the browser provides GET (or POST)

variables.

446 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

For a login system, the user will need to send their username and password to the

server once, and then maintain a “logged-in” state on every subsequent page

request.

Although this information could be sent via URL parameters or HTML forms, it

would need to be provided to each page. From a user’s point of view, entering

their username and password each time they visit a different page is time

consuming and inefficient.

Two technologies, cookies and sessions, can be used to store information about a

particular user between pages.

Cookies and sessions are two of those mysterious technologies that are almost

always made out to be more intimidating and complex than they really are. In

this chapter, I’ll debunk those myths by explaining in simple language what they

are, how they work, and what they can do for you. I’ll also provide practical

examples to demonstrate each.

Finally, we’ll use these new tools to give our newly registered users the ability to

navigate around the website and post jokes associated with their account.

Cookies

Most computer programs these days preserve some form of state, whether it be

the position of the application window, or the names of the last five files you

worked with. The values are usually stored in a small file on your system so they

can be read back the next time the program is run. When web developers took

web design to the next level, and moved from static pages to complete, interactive

online applications, there was a need for similar functionality in web browsers.

And thus, cookies were born.

A cookie is a name–value pair, an array of sorts, associated with a given website,

and stored on the computer that runs the client (browser). Once a cookie is set by

a website, all future page requests to that same site will send the information

stored in the cookie back to the website until it expires (or becomes out of date).

Other websites are unable to access the cookies set by your site, and vice versa.

So, contrary to popular belief, they’re a relatively safe place to store personal

Cookies, Sessions, and Access Control 447

www.EBooksWorld.ir

information. Cookies in and of themselves are incapable of compromising a user’s

privacy.

The life cycle of a PHP-generated cookie is as follows:

1. First, a web browser requests a URL that corresponds to a PHP script. Within

that script is a call to the setcookie function that’s built into PHP.

2. The page produced by the PHP script is sent back to the browser, along with

an HTTP set-cookie header that contains the name (for example, mycookie)

and the value of the cookie to be set.

3. When it receives this HTTP header, the browser creates and stores the

specified value as a cookie named mycookie.

4. Subsequent page requests to that website contain an HTTP cookie header that

sends the name–value pair (mycookie=value) to the script requested.

5. Upon receipt of a page request with a cookie header, PHP automatically

creates an entry in the $_COOKIE array with the name of the cookie

($_COOKIE['mycookie']) and its value.

In other words, the PHP setcookie function lets us set a variable that will

automatically be set by subsequent page requests from the same browser. Each

browser (or website visitor) can have a different value set in the same cookie.

Before we examine an actual example, let’s take a close look at the setcookie

function:

bool setcookie (string $name [, string $value = "" [,

int $expire = 0 [, string $path = "" [,

string $domain = "" [, bool $secure = false [,

bool $httponly = false]]]]]])

Square Brackets

The square brackets ([…]) indicate arguments of the function that are optional. You

can omit these arguments and some defaults will be set by PHP automatically.

448 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://php.net/manual/en/function.setcookie.php
http://php.net/manual/en/function.setcookie.php
http://php.net/manual/en/function.setcookie.php

Like the header function we saw in Chapter 4, the setcookie function adds

HTTP headers to the page, and thus must be called before any of the actual page

content is sent. Any attempt to call setcookie after page content has been sent to

the browser will produce a PHP error message. Typically, therefore, we’ll use

these functions in our controller script before any actual output is sent (by an

included PHP template, for example).

The only required parameter for this function is the name parameter, which

specifies the name of the cookie. Calling setcookie with only the name

parameter will actually delete the cookie that’s stored on the browser, if it exists.

The value parameter allows you to create a new cookie, or modify the value

stored in an existing one.

By default, cookies will remain stored by the browser, and thus will continue to

be sent with page requests until the browser is closed by the user. If you want the

cookie to persist beyond the current browser session, you must set the

expiryTime parameter to specify the number of seconds from January 1, 1970 to

the time at which you want the cookie to be deleted automatically. Although that

sounds arbitrary, this is a very common time format known as a unix timestamp,

and PHP has inbuilt functions for calculating this so you don’t need to do it

yourself.

The current time in this format can be obtained using the PHP time function.

Thus, a cookie could be set to expire in one hour, for example, by setting

expiryTime to time() + 3600. To delete a cookie that has a preset expiry time,

change this expiry time to represent a point in the past (such as one year ago:

time() – 3600 * 24 * 365). Here are two examples showing these techniques

in practice:

// Set a cookie to expire in 1 year

setcookie('mycookie', 'somevalue',

time() + 3600 * 24 * 365);

// Delete it

setcookie('mycookie', '',

time() - 3600 * 24 * 365);

Cookies, Sessions, and Access Control 449

www.EBooksWorld.ir

The path parameter lets us restrict access to the cookie to a given path on our

server. For instance, if we set a path of '/admin/' for a cookie, only requests for

pages in the admin directory (and its subdirectories) will include the cookie as

part of the request. Note the trailing /, which prevents scripts in other directories

beginning with /admin (such as /adminfake/) from accessing the cookie. This is

helpful if you’re sharing a server with other users, and each user has a web home

directory. It allows us to set cookies without exposing our visitors’ data to the

scripts of other users on our server.

The domain parameter serves a similar purpose: it restricts the cookie’s access to

a given domain. By default, a cookie will be returned only to the host from which

it was originally sent. Large companies, however, commonly have several host

names for their web presence (for example, www.example.com and

support.example.com). To create a cookie that’s accessible by pages on both

servers, we would set the domain parameter to '.example.com'. Note the leading

., which allows anything ending in .example.com to access the cookie. However,

cookies are never shared across different domains. Setting the domain parameter

to example2.com won’t make the cookie available on another site.

The secure parameter, when set to 1, indicates that the cookie should be sent only

with page requests that happen over a secure (SSL) connection (that is, with a

URL that starts with https://).

The httpOnly parameter, when set to 1, tells the browser to prevent JavaScript

UNIX Timestamps

Unix timestamps will change in the future. In the year 2038, they’ll suffer a similar

problem to the Y2K bug, because the data type used to store them can’t store a high

enough number to count the seconds after January 19, 2038.

This may seem a long way off at the moment, but it’s worth keeping in mind. To

make a cookie persistent, we must set an expiration date. We might be inclined to

make this a date very far in the future so that it effectively never expires—perhaps

the current date + 20 years.

Doing this calculation will break if our script executes after January 19, 2018,

because the expiration date will be after 2038 and the cookie will not be set.

Selecting 10 years’ time will break our program in 2028. I recommend we select one

year, so that we’re safe until 2037—by which time there’ll be a proper fix in place.

450 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

code on our site from seeing the cookie that we’re setting. Normally, the

JavaScript code we include in our site can read the cookies that have been set by

the server for the current page. While this can be useful in some cases, it also puts

the data stored in our cookies at risk should an attacker figure out a way to inject

malicious JavaScript code into our site. This code could then read your users’

potentially sensitive cookie data and do unspeakable things with them. If we set

httpOnly to 1, the cookie we’re setting will be sent to our PHP scripts as usual,

but will be invisible to JavaScript code running on our site.

While all parameters except name are optional, we must specify values for earlier

parameters if we want to specify values for later ones. For instance, to call

setcookie with a domain value, we also need to specify a value for the

expiryTime parameter. To omit parameters that require a value, we can set string

parameters (value, path, domain) to'' (the empty string) and numerical

parameters (expiryTime, secure) to 0.

Let’s now look at an example of cookies in use. Imagine we want to display a

special welcome message to people on their first visit to our site. We could use a

cookie to count the number of times a user has been to our site before, and only

display the message when the cookie hasn’t been set. Here’s the code:

11-1. Sessions-Cookie

<?php

if (!isset($_COOKIE['visits'])) {

$_COOKIE['visits'] = 0;

}

$visits = $_COOKIE['visits'] + 1;

setcookie('visits', $visits, time() + 3600 * 24 * 365);

if ($visits > 1) {

echo "This is visit number $visits.";

} else {

// First visit

echo 'Welcome to our website! Click here for a tour!';

}

Cookies, Sessions, and Access Control 451

www.EBooksWorld.ir

This code starts by checking if $_COOKIE['visits'] is set. If it isn’t, it means the

visits cookie has yet to be set in the user’s browser. To handle this special case,

we set $_COOKIE['visits'] to 0. The rest of our code can then safely assume that

$_COOKIE['visits'] contains the number of previous visits the user has made to

the site.

Next, to work out the number of this visit, we take $_COOKIE['visits'] and add

the value 1. This variable, $visits, will be used by our PHP template.

Finally, we use setcookie to set the visits cookie to reflect the new number of

visits. We set this cookie to expire in one year’s time.

The images below shows what this example looks like the first time a browser

visits the page and after the second visit.

11-2. The first visit

452 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

11-3. The second visit

Before we go overboard using cookies, we have to be aware that browsers place a

limit on the number and size of cookies allowed per website. Some browsers will

start deleting old cookies to make room for new ones after we’ve set 20 cookies

from our site. Other browsers will allow up to 50 cookies per site, but will reject

new cookies beyond this limit. Browsers also enforce a maximum combined size

for all cookies from all websites, so an especially cookie-heavy site might cause

our own site’s cookies to be deleted.

Each time someone visits our website, all of the cookies are sent to the web

server. If we store a lot of information in the cookie, it can slow down the

responsiveness of the website, because extra data must be transferred with each

page view.

Cookies can also be read by anyone who gains access to the computer they’re

stored on, so cookies are only as secure as the computer being used to view the

website.

For these reasons, we should do our best to keep the number and size of the

cookies our site creates to a minimum.

Cookies, Sessions, and Access Control 453

www.EBooksWorld.ir

PHP Sessions

Because of the limitations I’ve just described, cookies are inappropriate for

storing large amounts of information. If we run an ecommerce website that uses

cookies to store items in shopping carts as users make their way through our site,

it can be a huge problem. The bigger a customer’s order, the more likely it will

run afoul of a browser’s cookie restrictions.

Sessions were developed in PHP as the solution to this issue. Instead of storing

all our (possibly large) data as cookies in our visitor’s web browser, sessions let us

store the data on our web server. The only value that’s stored in the browser is a

single cookie containing the user’s session ID—a long string of letters and

numbers that serves to identify that user uniquely for the duration of their visit to

our site. It’s a variable for which PHP watches on subsequent page requests, and

uses to load the stored data that’s associated with that session.

Unless configured otherwise, a PHP session automatically sets a cookie in the

user’s browser that contains the session ID. The browser then sends that cookie,

along with every request for a page from our site, so that PHP can determine

which of the potentially many current sessions the request belongs to. Using a set

of temporary files that are stored on the web server, PHP keeps track of the

variables that have been registered in each session, along with their values.

Before you can go ahead and use the spiffy session-management features in PHP,

we should ensure that the relevant section of our php.ini file has been set up

properly. If we’re using the Homestead box described in Chapter 1, it’s safe to

assume this has been done for us. Otherwise, we need to open our php.ini file in

a text editor and look for the section marked [Session]. Beneath it, we’ll find

around 20 options that begin with the word session. Most of them are fine as

they are, but there are a few crucial ones we’ll want to check:

session.save_handler = files

session.save_path = "/tmp"

session.use_cookies = 1

454 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

session.save_path tells PHP where to create the temporary files used to track

sessions. It must be set to a directory that exists on the system, or we’ll receive

ugly error messages when we try to create a session on one of our pages. On

macOS and Linux systems, /tmp is a popular choice. In Windows, we could use

C:\WINDOWS\TEMP, or some other directory if you prefer (D:\PHP\SESSIONS, for

example). With these adjustments made, we restart our web server software to

allow the changes to take effect. This directory must be writable by the user that

PHP is running as.

We’re now ready to start working with PHP sessions. Before we jump into an

example, let’s quickly look at the most common session management functions in

PHP. To tell PHP to look for a session ID, or start a new session if none is found,

we simply call session_start. If an existing session ID is found when this

function is called, PHP restores the variables that belong to that session. Since

this function attempts to create a cookie, it must come before any page content is

sent to the browser, just as we saw for setcookie above:

session_start();

To create a session variable that will be available on all pages in the site when

accessed by the current user, we set a value in the special $_SESSION array. For

Finding php.ini

The php.ini configuration applies globally to our PHP scripts, and can be stored

on the server in various locations. On the Homestead Improved box we’re using, it’s

located at /etc/php/7.1/php.ini. This location may change if you’re using a

newer version of the virtual machine, and will almost certainly be different on a

real web server.

To find out the location of the configuration file that’s in use, run this PHP script:

<?php

echo phpinfo();

You’ll see a line near the top that says “Loaded Configuration File”, which is the

path to the php.ini configuration file that’s in use on the website.

Cookies, Sessions, and Access Control 455

www.EBooksWorld.ir

example, the following will store the variable called password in the current

session. The $_SESSION variable will be empty until we’ve called

session_start(), so we need to ensure we don’t read or write to it before the

session has been started.

It’s useful to have an understanding of how sessions work behind the scenes.

Once we call session_start(), it actually creates a cookie with a unique ID to

represent each individual user. For example, the first person on the web page may

be user 1, the second 2, and so on.

Then, when they visit the next page, their ID is sent back to the website, and

when the session is started, all the information stored for that user is retrieved.

For example, all the information stored for ID 1 represents user 1, and the

information for session ID 2 represents user 2.

This allows sessions to keep track of different information for each user of the

website. In practice, IDs aren’t simple sequential numbers like 1, 2 or 3. They’re

complex, difficult to guess strings of seemingly random numbers and letters. If

sessions were easy to guess, hackers could easily pretend to be each user of the

website by changing the ID stored in their session cookie!

After the session has been started, we can treat the $_SESSION variable like a

normal array, reading and writing values to it:

$_SESSION['password'] = 'mypassword';

To remove a variable from the current session, we can use PHP’s unset function:

unset($_SESSION['password']);

Finally, if we want to end the current session and delete all registered variables in

the process, clear all the stored values and use session_destroy:

$_SESSION = [];

session_destroy();

456 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

For more detailed information on these and the other session-management

functions in PHP, see the relevant section of the PHP Manual.

Now that we have these basic functions under our belt, let’s put them to work in a

simple example.

Counting Visits with Sessions

I showed you how to use cookies to track the number of times someone had

visited the page, and the same thing can be done with sessions:

11-4. Sessions-Count

<?php

session_start();

if (!isset($_SESSION['visits'])) {

$_SESSION['visits'] = 0;

}

$_SESSION['visits'] = $_SESSION['visits'] + 1;

if ($_SESSION['visits'] > 1) {

echo 'This is visit number ' . $_SESSION['visits'];

} else {

// First visit

echo 'Welcome to my website! Click here for a tour!';

}

$_SESSION is used in place of $_COOKIE, and you’ll notice the code is a little

simpler than the code used for cookies.

For the cookie, we needed to calculate the lifetime and set an expiration time.

Sessions are simpler: no expiration time is required, but any data stored in the

session is lost when the browser is closed.

Cookies, Sessions, and Access Control 457

www.EBooksWorld.ir

http://www.php.net/session

Access Control

One of the most common reasons for building a database-driven website is that it

allows users to interact with a site from any web browser, anywhere! But in a

world where roaming bands of jubilant hackers will fill our site with viruses and

pornography, we need to stop and think about the security of our website.

At the very least, we’ll want to require username and password authentication

before a visitor can post anything to the website. There are two main ways of

doing this:

configure our web server software to require a valid login for the relevant

pages

use PHP to prompt the user and check the login credentials as appropriate

If we have access to our web server’s configuration, the first option is often the

easiest to set up, but the second is by far the more flexible. With PHP, we can

design our own login form, and even embed it into the layout of our site if we

wish. PHP also makes it easy to change the credentials required to gain access, or

manage a database of authorized users, each with their own credentials and

privileges.

In this section, we’ll enhance our joke database site to protect sensitive features

with username/password-based authentication. In order to control which users

can do what, we’ll build a sophisticated role-based access control system.

“What does all this have to do with cookies and sessions?” you might wonder.

Well, rather than prompting our users for login credentials every time they want

to view a confidential page or perform a sensitive action, we can use PHP

sessions to hold on to those credentials throughout their visit to our site.

Logging In

In the last chapter, I showed you how users could register accounts on the

website and have their password stored securely. The next step is to allow those

registered users to log in and post jokes to the website.

458 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Obviously, access control is a feature that will be handy in many different PHP

projects and on different pages on the website. Therefore, like our database

connection code and DatabaseTable class, it makes sense to write as much of our

access control code as possible as a shared class, so that we can then reuse it

throughout the website and in future projects.

The general process for “logging in” consists of the user supplying an email

address and password. If the database contains a matching author, it means the

user filled out the login form correctly and we have to log in the user.

But what exactly does “log in the user” mean? There are two approaches to this,

both of which involve using PHP sessions:

1. We can log in the user by setting a session variable as a “flag” (for example,

$_SESSION['userid'] = $userId). On future requests, we can just check if

this variable is set and use it to read the ID of the logged-in user.

2. We can store the supplied email address and password in the session, and

then on future requests, we can check if these variables are set. If they are, we

can check the values in the session against the values in the database.

The first option will give better performance, since the user’s credentials are only

checked once—when the login form is submitted. The second option offers

greater security, since the user’s credentials are checked against the database

every time a sensitive page is requested.

In general, the more secure option is preferable, since it allows us to remove

authors from the site even while they’re logged in. Otherwise, once a user is

logged in, they’ll stay logged in for as long as their PHP session remains active.

That’s a steep price to pay for a little extra performance.

The theory behind this is simple to implement, but it’s made more difficult

because the password field in the database doesn’t store the password in plain

text, as typed by the user. Instead, it stores a hashed password like this:

$2y$10$XPtbphrRABcV95GxoeAk.OeI8tPgaypkKicBUhX/YbC9QYSSoowRq

Cookies, Sessions, and Access Control 459

www.EBooksWorld.ir

There’s no way to decrypt the password to do the comparison, but because we

used password_hash to hash the password, we can use password_verify to check

it.

password_verify takes two arguments: the plain text password to check and the

hashed password from the database. It returns true or false depending on whether

the password is correct.

To check the password, we’ll need the hash password from the database before

being able to use it with password_verify. Luckily, thanks to the DatabaseTable

class and the existing $authorsTable variable, it’s easy for us to look up the

hashed password of a user by using their email address:

$author = $authorsTable->find('email',

➥ strtolower($_POST['email']);

Once the user’s information is stored in $author, it’s possible to check the

password using the password_verify function, like so:

if (!empty($author) &&

password_verify($_POST['password'],

$author[0]['password'])) {

// Login successful

}

else {

// Passwords don't match, an error occurred

}

Note the [0] after $author. That’s because the find function may return more

than one record. We need to specifically read the first record returned.

The first condition in the if statement checks to see if an author has been

retrieved from the database. If one has, the second condition will check that the

password entered by the user matches the one in the database.

The order is important here. PHP will run and (&&) conditions left to right, and

460 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

stop when one evaluates to false. If the order was reversed and the password

check was done before !empty($author), an error might occur, because $author

might not contain an array with a password key! By putting the !empty($author)

check first, we know that something is set in the password key for the $author

array.

Once the user has entered the email address and password, they can be “logged

in” by setting the session variable.

After checking the password was correct using password_verify, it’s time to

write some data to the session. There are various options here. We could just

store the user ID or the email address of the person who’s been logged in.

However, it’s good practice to store both the login name and password in the

session and check them both on each page view. That way, if the user is logged in

on two different computers and the password is changed, they’ll be logged out

and required to log back in.

This is a useful security feature for users, since if one of those logged in locations

were not really the user, someone having managed to get unauthorized access to

their account, the attacker would be logged out as soon as the password was

changed. Without storing the password in the session, the attacker could log in

once, and as long as the browser was left open, they’d maintain access to the

user’s account.

One method of achieving this is to store both the email address and password in

the session:

Hashing

You may have thought that we could use this:

if (password_hash($_POST['password'],

PASSWORD_DEFAULT) == $author[0]['password']) { ...

However, password_hash creates a different hash each time it’s called, even if it’s

called with the same password string! We must use password_verify to check

the password.

Cookies, Sessions, and Access Control 461

www.EBooksWorld.ir

$_SESSION['email'] = $_POST['email'];

$_SESSION['password'] = $_POST['password'];

Then, on each page view, we’d check the information in the session against the

database:

$author = $authorsTable->find('email',

strtolower($_SESSION['email']))[0];

if (!empty($author) &&

password_verify($_SESSION['password'],

$author['password'])) {

// Display password protected content

}

else {

// Display an error message and clear the session

// logging the user out

}

This is theoretically what we want to do. With this approach, if the password is

changed in the database, or the author is removed from the database, the user will

be logged out.

However, there’s an obvious security issue here. Although sessions are stored on

the server, if someone did gain access to our web server, they could see the plain

text password of any logged-in users, completely forfeiting the benefit of hashing

the password in the first place.

To avoid storing the plain text password of the logged-in users in the session,

we’ll need to adjust the logic slightly.

Instead of storing the plain text password in the session, it’s better to store the

password hash from the database in the session. If someone is able to read the

session data from the server, they’ll only see the hash, not the real password!

To store the hash in the session, we can use the following code:

462 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$_SESSION['email'] = $_POST['email'];

$_SESSION['password'] = $author['password'];

With the email address and hash stored, we can check the values from the

database, and if either the email address or password stored in the database have

changed, the user can be logged out.

On each page, we’ll need to run this code:

$author = $authorsTable->find('email',

strtolower($_SESSION['email']));

if (!empty($author) && $author[0]['password'] ===

$_SESSION['password']) {

// Display password protected content

}

else {

// Display an error message and log the user out

}

The code above does three things:

1. It searches the database for the user with the email address from the session,

which would have been set when the user submitted the login form.

2. It checks a record has been retrieved from the database. After all, it’s possible

the user entered an email address that doesn’t actually exist in the database.

3. It compares the password in the session to the password that’s currently in the

database. If it’s changed between logging in and viewing this page, the user

will be logged out.

As this check will need to be done on every page we want to password protect,

let’s move it into a class for easy reuse. We’ll need two methods for now:

one that’s called when the user tries to log in with an email address and

password

Cookies, Sessions, and Access Control 463

www.EBooksWorld.ir

one that’s called on each page to check whether the user is logged in or not

(with the check that ensures the password hasn’t changed in the database)

Since this is something that’s going to be useful on any website we build, we’ll

place it in the Ninja framework namespace:

<?php

namespace Ninja;

class Authentication

{

private $users;

private $usernameColumn;

private $passwordColumn;

public function __construct(DatabaseTable $users,

$usernameColumn, $passwordColumn)

{

session_start();

$this->users = $users;

$this->usernameColumn = $usernameColumn;

$this->passwordColumn = $passwordColumn;

}

public function login($username, $password)

{

$user = $this->users->find($this->usernameColumn,

strtolower($username));

if (!empty($user) && password_verify($password,

$user[0][$this->passwordColumn])) {

session_regenerate_id();

$_SESSION['username'] = $username;

$_SESSION['password'] =

$user[0][$this->passwordColumn];

return true;

} else {

return false;

}

}

464 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

public function isLoggedIn()

{

if (empty($_SESSION['username'])) {

return false;

}

$user = $this->users->find($this->usernameColumn,

strtolower($_SESSION['username']));

if (!empty($user) &&

$user[0][$this->passwordColumn]

=== $_SESSION['password']) {

return true;

} else {

return false;

}

}

}

Let’s save this as Authentication.php in the classes/Ninja directory so it can

be used later.

This is mostly the same code I already showed you with a few minor changes.

Firstly, take a look at the constructor. There are three variables required for this

class:

1. a DatabaseTable instance, which is configured for the table that stores user

accounts

2. the name of the column that stores the login names

3. the name of the column that stores the password

As this class will be useful on multiple websites, we need to code it so that it can

be used in as many situations as possible. Although the column names that store

the login names and passwords are email and password on this website, on

another website the login name might be stored under username or

customer_login or any other name you can think of. The same is true for the

password.

Cookies, Sessions, and Access Control 465

www.EBooksWorld.ir

By making these constructor arguments rather than hardcoding them into the

class, it’s now possible to use this class on any website, regardless of whether the

column names in the database are email and password or something else.

Each time we want to read the password from the database, the class variables are

used. The code is slightly more complex: $user[0][$this->passwordColumn]

instead of $user[0]['password'].

But the added flexibility of being able to use this on websites that have the

password stored in a column with a different name heavily outweighs the small

additional complexity in this class.

When the Authentication class is created, it starts the session. This avoids us

needing to manually call session_start on each page. As long as the

Authentication class has been instantiated, a session will have been started.

When login or isLoggedIn are called, the session must have been started.

Both login and isLoggedIn return true or false, which we can later call to

determine whether the user has entered valid credentials or is already logged in.

There’s also an initial check in the isLoggedIn method, ensuring there is data in

the session. If not, it returns false, as without a session variable username, the

user is not logged in.

One final security measure that’s worth implementing is changing the session ID

after a successful login. Earlier I mentioned that session IDs should not easily be

guessable. Otherwise, hackers could pretend to be someone else, an attack

commonly known as session fixation. All the hacker needs to steal someone else’s

session is the session ID.

It’s good practice to change the session ID after a successful login just in case

someone managed to get hold of the session ID before the user logged in. PHP

makes this very easy, and the single function session_regenerate_id does this

by picking a new random ID for that user.

This can be placed in the if block that runs when the login is successful:

if (!empty($author) && password_verify($password,

466 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$author[0]['password'])) {

session_regenerate_id();

$_SESSION['email'] = $email;

$_SESSION['password'] = $author['password'];

return true;

}

If you follow the logic through, you may have realized that frequently changing

the session ID can increase security. In fact, it would be very secure to change the

user’s session ID on every page load.

However, doing so causes several practical problems. If someone has different

pages open in different tabs, or the website uses a technology called Ajax, they

effectively get logged out of one tab when they open another! These problems are

worse than the minor security benefit of changing the session ID on every page.

Protected Pages

Now that the authentication class is complete, it’s time to use it in the website.

Before creating a login page, let’s secure some of the existing pages so they can’t

be viewed unless as user is logged in (or the isLoggedIn function returns true).

Currently, we only have the Joke controller. The listJokes method should be

visible without logging in, but the facility to add, edit or delete a joke should only

be available to users who are logged in.

To achieve this, we’ll need to determine whether or not a user is logged in. If they

are, the page is displayed as normal. If not, an error message is displayed in its

place.

We already have the Authentication class, which allows us to determine

whether or not someone is logged in. We could pass the $authentication

instance into each controller and add a check to each controller action, like so:

public function edit() {

if (!$this->authentication->isLoggedIn()) {

Cookies, Sessions, and Access Control 467

www.EBooksWorld.ir

return ['template' => 'error.html',

'title' => 'You are not authorized to view this page'];

}

else {

// Display the form

}

// …

We’d also require a relevant error.html.php to display an error message such as

“You must be logged in to view this page”.

Although this approach will work, it will result in repeated code. Every

controller action that should only be available to logged-in users would require

repeating this same if statement. As you already know, if you find yourself

repeating very similar code in multiple places, it’s usually better to move the

code so it can be written once and reused.

In this case, a better approach is adjusting the router to perform the login check

and either use the requested route or display an error page.

Firstly, let’s open up IjdbRoutes.php and add 'login' => true to each of the

routes that we want to secure, joke/edit and joke/delete:

'joke/edit' => [

'POST' => [

'controller' => $jokeController,

'action' => 'saveEdit'

],

'GET' => [

'controller' => $jokeController,

'action' => 'edit'

],

'login' => true

],

'joke/delete' => [

'POST' => [

468 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

'controller' => $jokeController,

'action' => 'delete'

],

'login' => true

],

Next, we’ll add a new method, getAuthentication. This method will return the

Authentication object used by this website. By placing this method here, it

allows us to configure the Authentication class differently on different websites.

This object needs to be used in the EntryPoint class, but we need to avoid

constructing it there, as the table and column names will be different on each

website we build.

By constructing the object in the IjdbRoutes class, it can be changed for each

website we build.

public function getAuthentication() {

$authorsTable = new \Ninja\DatabaseTable($pdo,

'author', 'id');

return new \Ninja\Authentication($authorsTable,

'email', 'password');

}

As the Authentication class requires an instance of DatabaseTable representing

the table that stores the logins, I’ve copied the line that creates the

$authorsTable object. This copy/paste approach is not ideal from either a

performance or maintainability point of view. It’s better to have a single instance

representing the authors table. To achieve that, move the construction of the

database table into the constructor and store it in a class variable:

<?php

namespace Ijdb;

class IjdbRoutes implements \Ninja\Routes

{

Cookies, Sessions, and Access Control 469

www.EBooksWorld.ir

private $authorsTable;

private $jokesTable;

private $authentication;

public function __construct()

{

include __DIR__ . '/../../includes/DatabaseConnection.php';

$this->jokesTable = new \Ninja\DatabaseTable($pdo,

'joke', 'id');

$this->authorsTable = new \Ninja\DatabaseTable($pdo,

'author', 'id');

$this->authentication =

new \Ninja\Authentication($this->authorsTable,

'email', 'password');

}

public function getRoutes()

{

$jokeController =

new \Ijdb\Controllers\Joke($this->jokesTable,

$this->authorsTable);

$authorController = new \Ijdb\Controllers\Register

($this->authorsTable);

$routes = [

'author/register' => [

'GET' => [

'controller' => $authorController,

'action' => 'registrationForm'

],

'POST' => [

'controller' => $authorController,

'action' => 'registerUser'

]

],

'author/success' => [

'GET' => [

'controller' => $authorController,

'action' => 'success'

470 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

]

],

'joke/edit' => [

'POST' => [

'controller' => $jokeController,

'action' => 'saveEdit'

],

'GET' => [

'controller' => $jokeController,

'action' => 'edit'

],

'login' => true

],

'joke/delete' => [

'POST' => [

'controller' => $jokeController,

'action' => 'delete'

],

'login' => true

],

'joke/list' => [

'GET' => [

'controller' => $jokeController,

'action' => 'list'

]

],

'' => [

'GET' => [

'controller' => $jokeController,

'action' => 'home'

]

]

];

return $routes;

}

public function getAuthentication()

{

Cookies, Sessions, and Access Control 471

www.EBooksWorld.ir

return $this->authentication;

}

}

For consistency, I’ve also made $jokesTable into a class variable. As the

Authentication object might be required by controllers, I’ve moved that into the

constructor as well. It then gets returned by the getAuthentication method.

Interfaces and Return Types

Before adding an authentication check to EntryPoint, let’s add

getAuthentication to the interface Routes:

<?php

namespace Ninja;

interface Routes

{

public function getRoutes();

public function getAuthentication();

}

With the method getAuthentication added to the interface, any class that

implements it must have a method called getAuthentication. When we add the

relevant ShopRoutes class for an online shop, it will need to provide an array and

an authentication object.

Let’s improve the interface slightly. The Routes interface will ensure that the two

methods exist in the class. However, what if getAuthentication in the

IjdbRoutes class were not to return an Authentication object? If whatever is

calling getAuthentication is expecting an Authentication object, perhaps to

call the isLoggedIn method, and an instance of DatabaseTable or an array is

returned, it will cause an error.

As an extra line of defense, it’s possible to type hint a return value. If the method

472 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

returns something other than the expected type, an error will occur.

Let’s amend the interface like so:

<?php

namespace Ninja;

interface Routes

{

public function getRoutes(): array;

public function getAuthentication(): \Ninja\Authentication;

}

I’ve amended the method headers to include a return type appending : \Ninja\

Authentication to the method header. If the method returns anything other than

an Authentication object, or doesn’t return anything at all, PHP will display a

meaningful error.

You’ll notice I’ve also hinted the return type for the getRoutes method: it must

return an array.

Once we’ve amended the interface, we’ll need to amend the IjdbRoutes class to

match:

public function getRoutes(): array {

$jokeController =

new \Ijdb\Controllers\Joke($this->jokesTable,

$this->authorsTable);

// …

return $routes;

}

public function getAuthentication(): \Ninja\Authentication {

return $this->authentication;

}

The interface is now very explicit. Anyone who wants to build a website using

Cookies, Sessions, and Access Control 473

www.EBooksWorld.ir

our Ninja framework knows that the Routes class they create for that website

must include a method called getRoutes, which returns an array and a method

called getAuthentication that returns an Authentication object.

An interface like this is very useful if we’re writing code we want others to build

on. The interface can act as documentation and give other developers instructions

to follow. By writing their code to fit our interface, it will work correctly with our

class.

PHP programmers share code all the time, and interfaces like this make doing so

a lot easier. We can share our Ninja framework and another developer knows

how to use it by writing classes that implement our interface. Interfaces are a very

powerful but under-utilized tool that act as bridge between framework code and

project-specific code.

An interface describes some gaps in the framework code that need to be filled by

the project-specific code. Each project can then fill those gaps with code that’s

specific to the individual website being built.

Making Use of the Authentication Class

In EntryPoint.php, add a check that looks for the login key in the route array. If

it’s set, and it’s set to true, and the user is not logged in, redirect to a login page.

Otherwise, display the page as normal:

474 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

11-5. Sessions-LoginCheck

if (isset($routes[$this->route]['login']) &&

isset($routes[$this->route]['login']) &&

!$authentication->isLoggedIn()) {

header('location: /login/error');

}

else {

$controller = $routes[$this->route]

[$this->method]['controller'];

$action = $routes[$this->route][$this->method]

['action'];

$page = $controller->$action();

$title = $page['title'];

if (isset($page['variables'])) {

$output = $this->loadTemplate($page['template'],

$page['variables']);

}

else {

$output = $this->loadTemplate($page['template']);

}

include __DIR__ . '/../../templates/layout.html.php';

}

For pages that require users to be logged in, it’s important that the controller

action is never called. Consider the following code:

if (isset($routes[$this->route]['login']) &&

isset($routes[$this->route]['login']) &&

!$authentication->isLoggedIn()) {

header('location: /login/error');

}

$controller = $routes[$this->route][$this->method]

['controller'];

$action = $routes[$this->route][$this->method]

Cookies, Sessions, and Access Control 475

www.EBooksWorld.ir

['action'];

$page = $controller->$action();

// …

Without the else statement, this would look like it was working. If we visited

joke/delete, we’d get redirected to the login page. However, take a look at what’s

happening here: the redirect is being sent, but then the controller action is called.

This would be a huge problem: although we’d be redirected to the login page, the

relevant DELETE query would still be sent to the database!

Login Error Message

If we test the code above by trying to add a joke, we should see a page of errors, as

we’ll have been redirected to /login/error. Let’s create a page at that location to

display a more meaningful error message.

You should be familiar with the process of adding a page to the website by now.

Try adding the error page yourself. If you’re not quite sure or want to be

consistent with the provided examples, follow these steps:

Firstly, add loginerror.html.php in the templates directory:

<h2>You are not logged in</h2>

<p>You must be logged in to view this page. <a

➥ href="/login">Click here to log in or <a
➥ href="/author/register">Click here to register an
➥ account</p>

Now add the controller Login.php in the Ijdb\Controllers directory:

<?php

namespace Ijdb\Controllers;

476 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

class Login

{

public function error()

{

return ['template' => 'loginerror.html.php', 'title'

=> 'You are not logged in'];

}

}

Finally, instantiate the controller and add the route to IjdbRoutes.php:

Cookies, Sessions, and Access Control 477

www.EBooksWorld.ir

11-6. Sessions-LoginError

public function getRoutes(): array {

$jokeController = new \Ijdb\Controllers\Joke

($this->jokesTable, $this->authorsTable);

$authorController = new \Ijdb\Controllers\Register

($this->authorsTable);

$loginController = new \Ijdb\Controllers\Login();

$routes = [

'author/register' => [

'GET' => [

'controller' => $authorController,

'action' => 'registrationForm'

],

'POST' => [

'controller' => $authorController,

'action' => 'registerUser'

]

],

// …

'login/error' => [

'GET' => [

'controller' => $loginController,

'action' => 'error'

]

]

];

If we visit any page where login is set to true in the $routes array, we’ll see the

error page. By adding 'login' => true to a route, we now have a quick and easy

method of restricting access to pages, and we don’t need to perform this check in

every controller action.

Creating a Login Form

Now that the login check is in place and we know that it works, it’s time to build

a form for logging in. As it stands, there’s no way to add or edit a joke, because

478 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

there’s no facility to log in.

We already created the Login controller, and we’ll need to add two methods—one

for displaying the form, and one for handling the submission.

As the login form will need to call the login method we created in the

Authentication class, it will need the Authentication class as a constructor

argument and class variable:

<?php

namespace Ijdb\Controllers;

class Login

{

private $authentication;

public function __construct(\Ninja\Authentication

$authentication)

{

$this->authentication = $authentication;

}

public function error()

{

return ['template' => 'loginerror.html.php', 'title'

=> 'You are not logged in'];

}

}

Once the constructor has been added, the function to display the form and check

the login credentials can be added. Just displaying the form is simple:

public function loginForm() {

return ['template' => 'login.html.php',

'title' => 'Log In'];

}

Cookies, Sessions, and Access Control 479

www.EBooksWorld.ir

Now we can add the template login.html.php:

<?php

if (isset($error)):

echo '<div class="errors">' . $error . '</div>';

endif;

?>

<form method="post" action="">

<label for="email">Your email address</label>

<input type="text" id="email" name="email">

<label for="password">Your password</label>

<input type="password" id="password" name="password">

<input type="submit" name="login" value="Log in">

</form>

<p>Don't have an account? <a

➥ href="/author/register">Click here to register an
➥ account</p>

You’ll notice I’ve included some PHP code for displaying an error message in

case logging in is not successful.

Finally, amend IjdbRoutes.php to add the route. We’ll also need to provide the

login controller with the $authentication instance:

public function getRoutes(): array {

// …

$loginController = new \Ijdb\Controllers\

Login($this->authentication);

$routes = [

// …

'login' => [

'GET' => [

'controller' => $loginController,

'action' => 'loginForm'

480 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

]

],

// …

];

If we visit http://192.168.10.10/login, we’ll see a familiar login form with text

boxes for entering our email address and password. As there’s no POST route or

any logic to process the form, it won’t do anything yet.

Let’s add the POST action and a simple page for displaying a “Login Successful”

message:

IjdbRoutes.php:

$routes = [

// …

'login' => [

'GET' => [

'controller' => $loginController,

'action' => 'loginForm'

],

'POST' => [

'controller' => $loginController,

'action' => 'processLogin'

]

],

'login/success' => [

'GET' => [

'controller' => $loginController,

'action' => 'success'

],

'login' => true

]

We’ve already built the functionality for logging in, and checking whether a user

is logged in, in the Authentication class. This is the difficult part of the login

process, and we can call the existing login method with data that’s been entered

Cookies, Sessions, and Access Control 481

www.EBooksWorld.ir

on a form by the user. If the login method returns true, their details were correct

and we can redirect to a page that says “Login successful”. Otherwise, show an

error.

Login.php:

public function processLogin() {

if ($this->authentication->login($_POST['email'],

$_POST['password'])) {

header('location: /login/success');

}

else {

return ['template' => 'login.html.php',

'title' => 'Log In',

'variables' => [

'error' => 'Invalid username/password.'

]

];

}

}

public function success() {

return ['template' => 'loginsuccess.html.php',

'title' => 'Login Successful'];

}

loginsuccess.html.php:

<h2>Login Successful</h2>

<p>You are now logged in.</p>

You can find this code in Sessions-LoginForm.

If you haven’t already, create an account using the registration form we created in

the previous chapter. Visit http://192.168.10.10/login and log in. If you’re

logged in, you’ll be able to add, edit and delete jokes. If you’re not logged in, an

482 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

error message is shown.

Logging Out

Let’s add a new button to the site layout to allow logging in or logging out. For

logged-in users, a “Log out” button should show. For users who aren’t logged in,

the button should show “Log in”.

This change will require editing layout.html to add the menu link. However, it

will require some logic to display one of the two links.

Currently, layout.html.php is just included directly with this line:

include __DIR__ . '/../../templates/layout.html.php';

For consistency, and to reuse the code we already have, let’s use the existing

loadTemplate function so that we can pass variables to layout.html. In this case,

we’ll create a single variable, $loggedIn, which stores whether or not the user is

logged in. Replace the include line with the following:

echo $this->loadTemplate('layout.html.php', ['loggedIn'

➥ =>
$authentication->isLoggedIn(),

'output' => $output,

'title' => $title

]);

Privacy Pointers

It would be possible to display different messages to the user depending on why

their login failed—for example, “Invalid email address” when the email address

doesn’t exist, and “Invalid password” when the email address is registered but the

passwords don’t match.

Although this helps the user by letting them see what went wrong, it’s a privacy

breach. Anyone can type in someone else’s email address and see if they’re

registered on your website based on the error message that’s shown.

Cookies, Sessions, and Access Control 483

www.EBooksWorld.ir

Now, inside layout.html.php the variable loggedIn will store true or false

depending on whether or not the user is logged in.

Open up layout.html.php and add the log in/log out links with an if … else

statement to display the correct link, depending on whether or not the user is

logged in:

Home

Jokes List

Add a new Joke

<?php if ($loggedIn): ?>

Log out

<?php else: ?>

Log in

<?php endif; ?>

Finally, let’s create the logout page and route:

Login.php:

public function logout() {

unset($_SESSION);

return ['template' => 'logout.html.php',

'title' => 'You have been logged out'];

}

unset($_SESSION); will remove any data from the current session, logging the

484 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

user out.

Let’s add the route to IjdbRoutes:

'logout' => [

'GET' => [

'controller' => $loginController,

'action' => 'logout'

]

],

logout.html.php:

<h2>Logged out</h2>

<p>You have been logged out</p>

You can find this code in Sessions-Logout.

Assigning Added Jokes to the Logged-in User

Now that users can register and log in, it’s time to make it so that when a joke is

posted, it’s associated with the user who’s logged in. We already have an

authorId column in the joke table. All we need to do is give it a value when the

joke is added. The saveEdit method in the Joke controller currently contains this

code:

public function saveEdit() {

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$joke['authorId'] = 1;

$this->jokesTable->save($joke);

header('location: /joke/list');

}

Cookies, Sessions, and Access Control 485

www.EBooksWorld.ir

At the moment, authorId is always set to 1. To get the ID of the logged-in user,

we’ll need to amend the Authentication class slightly to provide a way of

retrieving the record for the logged-in user.

In the Authentication class, add the following method:

public function getUser() {

if ($this->isLoggedIn()) {

return $this->users->find($this->usernameColumn,

strtolower($_SESSION['username']))[0];

}

else {

return false;

}

}

This function checks to see if the user is logged in, and if they are, returns an

array that contains the record representing the user who’s logged in. As with the

login and isLoggedIn methods, we need [0] after the find method call to return

the first record retrieved.

It’s possible just to return the ID of the logged-in user, but later on we might want

to know the name or the email address of the user. Returning the entire record

gives more flexibility moving forward.

Let’s make the Authentication class available in the Joke controller by adding a

use line for Ninja\Authentication and adding the class variable and constructor

argument:

<?php

namespace Ijdb\Controllers;

use \Ninja\DatabaseTable;

use \Ninja\Authentication;

class Joke {

486 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

private $authorsTable;

private $jokesTable;

public function __construct(DatabaseTable $jokesTable,

DatabaseTable $authorsTable,

Authentication $authentication) {

$this->jokesTable = $jokesTable;

$this->authorsTable = $authorsTable;

$this->authentication = $authentication;

}

Here’s the argument list in IjdbRoutes:

$jokeController = new

➥ \Ijdb\Controllers\Joke($this->jokesTable,
➥ $this->authorsTable, $this->authentication);

Once JokesController has access to the authentication class, assigning an author

to a joke when it’s created is very easy:

public function saveEdit() {

$author = $this->authentication->getUser();

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$joke['authorId'] = $author['id'];

$this->jokesTable->save($joke);

header('location: /joke/list');

}

You can find this code in Sessions-AuthorId.

Whenever a joke is added, the author’s ID is assigned to the joke in the database.

Cookies, Sessions, and Access Control 487

www.EBooksWorld.ir

The currently logged-in user is retrieved from the database and their ID copied to

the authorId column of the joke table.

But there’s a concern here. What if $author contains false because the user isn’t

logged in? Because the login check already happens in EntryPoint, there should

be no way for the saveEdit method to be called unless someone is logged in.

Go ahead and add a few jokes to the website. You’ll need to be logged in, but the

jokes should get attributed to you! When you view the list of jokes, the jokes you

post will be listed as being posted by you.

You now have a fully functional login system. You can add pages to the website

and make them visible only to logged-in users. Your users can register for

accounts and log in to the website!

User Permissions

If you’ve been testing out the login system and have been playing around editing,

deleting and adding jokes, you’ll have noticed a problem: anyone can delete or

edit anyone else’s jokes!

For most websites, when someone posts something, they have complete control

over it and only they are able to delete it or make changes to it. Imagine how

confusing Facebook or Twitter would be if people could edit and delete each

other’s posts!

Let’s add some checks to the site that prevent users from being able to add or edit

each other’s jokes.

The first thing to do is hide the edit and delete buttons from the joke list for jokes

that don’t belong to the logged-in user.

To do this, firstly we’ll need to provide the ID of the author along with the name

and email in the $jokes array in the list method:

public function list() {

$result = $this->jokesTable->findAll();

488 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$jokes = [];

foreach ($result as $joke) {

$author = $this->authorsTable->

findById($joke['authorId']);

$jokes[] = [

'id' => $joke['id'],

'joketext' => $joke['joketext'],

'jokedate' => $joke['jokedate'],

'name' => $author['name'],

'email' => $author['email'],

'authorId' => $author['id']

];

}

// …

Then, in the same method, we’ll pass the ID of the logged-in user to the template:

// …

$totalJokes = $this->jokesTable->total();

$author = $this->authentication->getUser();

return ['template' => 'jokes.html.php',

'title' => $title,

'variables' => [

'totalJokes' => $totalJokes,

'jokes' => $jokes,

'userId' => $author['id'] ?? null

]

];

As the person viewing the page may not be logged in, there may not be an author

ID associated with the current user. To account for that, I’ve used

$author['id'] ?? null to set the userId variable in the template to null when

Cookies, Sessions, and Access Control 489

www.EBooksWorld.ir

no user is logged in.

Finally, in the jokes.html.php, add an if statement inside the loop that iterates

over the jokes. If the currently logged-in user is the user who posted the joke,

display the edit and delete buttons. Otherwise, don’t show them:

// …

echo $date->format('jS F Y');

?>)

<?php if ($userId == $joke['authorId']): ?>

<a href="/joke/edit?id=<?=$joke['id']?>">

Edit

<form action="/joke/delete" method="post">

<input type="hidden" name="id"

value="<?=$joke['id']?>">

<input type="submit" value="Delete">

</form>

<?php endif; ?>

</p>

</blockquote>

<?php endforeach; ?>

You can find this code in Sessions-CheckUser

The clever part here is the if statement. It checks that $userId, which stores the

ID of the currently logged-in user, is equal to the authorId of the joke being

printed. If the logged-in user posted the joke, then the edit and delete buttons are

displayed.

Mission Accomplished?

If you test the site at this point, you might think that’s done. Users can’t edit or

delete each other’s jokes. However, that’s not quite true. Users can’t see the edit or

delete buttons for jokes they didn’t post, but there’s nothing to stop them from

visiting the edit page directly.

Try visiting http://192.168.10.10/joke/edit?id=1 and changing the ID in the

490 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

URL. You’ll see the edit page for any of the jokes, regardless of whether your

account posted them.

To fix this, we need to add a check to this page in the same way we did for the

joke list.

Firstly, like the joke list page, we supply the editjoke.html.php template with

the ID of the logged-in user:

public function edit() {

$author = $this->authentication->getUser();

if (isset($_GET['id'])) {

$joke = $this->jokesTable->findById($_GET['id']);

}

$title = 'Edit joke';

return ['template' => 'editjoke.html.php',

'title' => $title,

'variables' => [

'joke' => $joke ?? null,

'userId' => $author['id'] ?? null

]

];

}

Then, in editjoke.html.php, only display the form if the userId matches the

joke’s authorId:

<?php if ($userId == $joke['authorId']): ?>

<form action="" method="post">

<input type="hidden" name="joke[id]"

value="<?=$joke['id'] ?? ''?>">

<label for="joketext">Type your joke here:

</label>

<textarea id="joketext" name="joke[joketext]" rows="3"

cols="40"><?=$joke['joketext'] ?? ''?>

Cookies, Sessions, and Access Control 491

www.EBooksWorld.ir

</textarea>

<input type="submit" name="submit" value="Save">

</form>

<?php else: ?>

<p>You may only edit jokes that you posted.</p>

<?php endif; ?>

I’ve included an error message so that something is displayed in case someone

does try to edit a joke they didn’t create.

Now the user can’t see the edit form for jokes they didn’t create. Before

celebrating the new security of our site, there’s one more thing we need to do.

A sneaky attacker could create an HTML file with a form that posted data to your

website. For example, they could create the file editjoke.html:

<form action="http://192.168.10.10/joke/edit?id=1"

method="post">

<input type="hidden" name="joke[id]" value="1">

<label for="joketext">Type your joke here:

</label>

<textarea id="joketext" name="joke[joketext]" rows="3"

cols="40"></textarea>

<input type="submit" name="submit" value="Save">

</form>

As long as they were logged in to the website, they could submit this form and

regardless of who they were logged in as, edit the joke with the ID 1. We need to

add the same check to the method that handles the form submission.

To do this, we need to read the existing joke from the database and check that the

ID matches the ID of the existing user:

public function saveEdit() {

492 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$author = $this->authentication->getUser();

if (isset($_GET['id'])) {

$joke = $this->jokesTable->findById($_GET['id']);

if ($joke['authorId'] != $author['id']) {

return;

}

}

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$joke['authorId'] = $author['id'];

$this->jokesTable->save($joke);

header('location: /joke/list');

}

The check here issues the return command if the joke’s authorId column is not

the same as the ID of the currently logged-in user. The return command will exit

the method, and the rest of the code won’t run.

The same thing needs to be done in the delete method to prevent someone

creating a form to delete other people’s jokes:

public function delete() {

$author = $this->authentication->getUser();

$joke = $this->jokesTable->findById($_POST['id']);

if ($joke['authorId'] != $author['id']) {

return;

}

$this->jokesTable->delete($_POST['id']);

Cookies, Sessions, and Access Control 493

www.EBooksWorld.ir

header('location: /joke/list');

}

You can find this code in Sessions-CheckUser-Secured

That’s it! You’ve secured all the relevant features of the website so that jokes can

only be edited or deleted by the person who posted them.

It’s very easy to forget that hiding a link is not enough to make something secure.

We also need to ensure that people can’t find the URL and access the page

anyway.

The Sky’s the Limit

In this chapter, you learned about the two main methods of creating persistent

variables—those variables that continue to exist from page to page in PHP. The

first stores the variable in the visitor’s browser in the form of a cookie. By default,

cookies terminate at the end of the browser session, but by specifying an expiry

time, they can be preserved indefinitely. Unfortunately, cookies are fairly

unreliable, because you have no way of knowing when the browser might delete

your cookies, and because some users occasionally clear their cookies out over

concern for their privacy.

Sessions, on the other hand, free you from all the limitations of cookies. They let

you store an unlimited number of potentially large variables. Sessions are an

essential building block in modern ecommerce applications, as we demonstrated

in our simple shopping cart example. They’re also a critical component of

systems that provide access control, like the one we built for our joke content

management system.

At this point, you should be equipped with all the basic skills and concepts you

need to build your very own database-driven website. While you may be tempted

to skip the challenge of building a complete system for safely accepting public

submissions, I encourage you to give it a try. You already have all the skills

necessary to build it, and there’s no better way to learn than to make a few

mistakes of your own. At the very least, set this challenge aside for now and come

494 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

back to it when you’ve finished this book.

If you can tackle it with confidence, you may wish to try another challenge. Want

to let users rate the jokes on the site? How about letting joke authors make

changes to their jokes, but with the backup of requiring an administrator to

approve the changes before they go live on the site? The power and complexity of

the system is limited only by your imagination.

In the rest of this book, I’ll cover more advanced topics that will help optimize

our site’s performance and solve some complex problems using less code. Oh,

and of course we’ll explore more exciting features of PHP and MySQL!

In the nex chapter, we’ll take a step away from our joke database and have a

close-up look at MySQL server maintenance and administration. We’ll learn how

to make backups of our database (a critical task for any web-based company), how

to administer MySQL users and their passwords, and how to log in to a MySQL

server if you’ve forgotten your password.

Cookies, Sessions, and Access Control 495

www.EBooksWorld.ir

12Chapter

MySQL Administration

At the core of most well-designed, content-driven sites is a relational database. In

this book, we’ve used the MySQL Relational Database Management System

(RDBMS) to create our database. MySQL is a popular choice among web

developers because it’s free, and because MySQL servers are fairly simple to set

up. As I demonstrated in Chapter 1, with proper instructions and a pre-

configured Vagrant box, getting a MySQL database up and running only takes a

couple of minutes.

If all you need is a MySQL server so you can play with a few examples and

experiment a little, the initial a process we went through inChapter 1 is likely to

be all you’ll need. If, on the other hand, you want to set up a database back end to

a real live website—perhaps a site your company depends on—there are a few

more fundamentals you’ll need to learn before you can rely on a MySQL server

day in, day out.

496 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

First, we’ll look at backups. Backing up data that’s important to you or your

business should be an essential item on any administrator’s list of priorities.

Because administrators usually have more interesting work to do, though, backup

procedures are often arranged once out of necessity and deemed “good enough”

for all applications. If, until now, your answer to the question, “Should we back

up our databases?” has been, “It’s okay; they’ll be backed up along with

everything else,” you really should read on. I’ll show you why a generic file-

backup solution is inadequate for many MySQL installations, and I’ll

demonstrate the right way to back up and restore a MySQL database.

Next, it’s time we looked more closely at how to control access to your MySQL

database. I showed you the basics early in this book, but it turns out there are

some tricky details that can make your life difficult if you don’t understand them.

Oh, and I’ll show you how to regain control of your MySQL server should you

forget your password!

Then we’ll turn our attention to performance, and how to keep our SELECT

queries running quickly. With the careful application of database indexes (a skill

many working PHP developers lack, surprisingly), you can keep your database

speedy even as it grows to contain thousands (or even hundreds of thousands) of

rows.

Finally, I’ll show you how to use a feature of MySQL—foreign keys—to express

the structure of your database, and how the tables it contains are related to one

another.

As you can see, this chapter’s a real mixed bag, but by the end of it you’ll

understand MySQL a whole lot better!

However, MySQL is a large and complex database with a lot of nuances and

advanced features. If you’re interested in learning MySQL beyond the fairly

simple requirements of a website, I recommend SitePoint’s Jump Start MySQL.

Backing Up MySQL Databases

Like web servers, most MySQL servers are expected to remain online 24 hours a

day, seven days a week. This makes backups of MySQL database files

MySQL Administration 497

www.EBooksWorld.ir

https://www.sitepoint.com/premium/books/jump-start-mysql

problematic. Because the MySQL server uses memory caches and buffers to

improve the efficiency of updates to the database files stored on disk, these files

may be in an inconsistent state at any given time. Since standard backup

procedures involve merely copying system and data files, backups of MySQL data

files are unreliable, as there’s no guarantee the files that are copied are in a fit

state to be used as replacements in the event of a crash.

Furthermore, as many website databases receive new information at all hours of

the day, standard backups can provide only periodic snapshots of database data.

Any information stored in the database that’s changed after the last backup will

be lost in the event that the live MySQL data files are destroyed or become

unusable. In many situations, such as when a MySQL server is used to track

customer orders on an ecommerce site, this is an unacceptable loss.

Facilities exist in MySQL to keep up-to-date backups that are largely unaffected

by server activity at the time at which the backups are generated. Unfortunately,

they require you to set up a backup scheme specifically for your MySQL data,

completely apart from whatever backup measures you’ve established for the rest

of your data. As with any good backup system, however, you’ll appreciate it

when the time comes to use it.

Database Backups Using MySQL Workbench

The MySQL administration tool we’ve been using throughout this book, MySQL

Workbench, also offers a convenient facility for obtaining a backup of your site’s

database.

After logging in to the server, the right-hand menu has an option for Data Export.

This opens a panel that displays all the databases on the server.

498 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

12-1. Click Data Export to save a backup of your database

There are two main options: Export to Dump Project Folder and Export to Self-

Contained File. The latter is more useful for us, as it allows us to store the backup

in a single file.

Select Export to Self-Contained File, pick where you want to store the backup,

and press Start Export. The default settings are perfect for our needs.

If you open the backup file in a text editor, you’ll find it contains a series of SQL

CREATE TABLE and INSERT commands that, if run on a blank database, would

reproduce the current contents of your database. Yes, a MySQL database backup

is just a series of SQL commands!

To restore your database from a backup file like this one, first make sure your

database is empty (right-click on each table and select Drop Table). Then just

click Data Import/Restore. To select the backup file, choose Import from Self-

Contained file, find your backup file, and select the schema (for the jokes

database it’s ijdb).

MySQL Administration 499

www.EBooksWorld.ir

In this way, we can use MySQL Workbench to create backups of our databases.

MySQL Workbench connects to the MySQL server to perform backups, rather

than accessing the MySQL database data files directly. The backup it produces is

therefore guaranteed to be a valid copy of the database, instead of merely a point-

in-time snapshot of the database files stored on disk, which may be in a state of

flux as long as the MySQL server is running.

Database Backups Using mysqlpump

MySQL Workbench makes it really easy to obtain a database backup whenever

the mood strikes you, but the best backups are automated, and MySQL

Workbench is not an automated backup tool.

As you’ll already know if you’ve ever worked with MySQL on Linux, the MySQL

database server software comes with a handful of utility programs designed to be

run from the command prompt. One of these programs is mysqlpump. MySQL

Workbench actually uses this tool behind the scenes; it just provides a user-

friendly interface.

When run, mysqlpump connects to a MySQL server (in much the same way as PHP

does) and downloads the complete contents of the database(s) you specify. It then

outputs the series of SQL commands required to create a database with those

same contents. If you save the output of mysqlpump to a file, you’ll have yourself

the same kind of backup file that MySQL Workbench can generate for you!

You can run mysqlpump from your computer if you have MySQL installed.

However, the Homestead Improved virtual machine we’re using already has the

mysqlpump tool installed for us.

One of the advantages of using a virtual server such as Homestead Improved is

that it acts like a real web server. By learning how to perform a backup on the

virtual server, you’ll know how to create a backup on a real web server!

For both a real web server and our virtual one, you’ll need to log in to the server

using a protocol called Secure Shell (SSH for short). This is a command line

protocol that gives you a command prompt on a remote computer. Any

commands you run via SSH will be executed on the web server, not on your local

PC.

500 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Vagrant includes a shortcut command to do this. Make sure your server is

running and you can type vagrant ssh to connect to the virtual server via SSH.

This is a convenient shorthand, but it’s worth understanding what this does

behind the scenes so you’re familiar with the process on a real server. Connecting

to a remote server via SSH is very easy. From the Git Bash command prompt on

Windows, or the Terminal/Console on macOS/Linux, type the following:

ssh vagrant@127.0.0.1 -p 2222

The above command will ask you if you want to trust the server (type yes), and

when asked for a password, provide vagrant.

The ssh command can be broken down into three parts: vagrant is the username,

127.0.0.1 is the server address and -p 2222 is the port. For a real web server, the

-p 2222 option will not be necessary, unless you change this in the SSH settings,

which is something that’s outside the scope of this book. By default, SSH runs on

port 22, but Vagrant uses port 2222, which is why we need to specify it when we

connect.

Once you’ve connected to the server via SSH, you can create a database backup

with the mysqlpump command. The following command (typed all on one line)

connects to the MySQL server running on the local machine as user root with

password password, and saves a backup of the ijdb database into the file

ijdb.sql:

mysqlpump -u homestead -psecret ijdb > ijdb.sql

Let’s break this command down to its individual parts:

mysqlpump executes the mysqlpump application.

-u homestead sets the username used to log in to the server. We can specify any

user here, including the ijdb user we created.

-psecret sets the password to secret. Note that there’s no space between -p and

the password, secret. This is used to specify the password on the command line.

MySQL Administration 501

www.EBooksWorld.ir

We could use only -p, but we’ll be prompted for a password. Although more

secure, a password prompt is unsuitable for automated backups, as someone has

to type in the password each time the database is exported.

ijdb is the name of the schema to export.

The > operator can be used with any command, and is used to redirect the output

to a file. Without this, the entire database backup is printed to the screen. For

testing purposes, it can be useful to omit this (and the following filename) to

check that the output looks correct. There’s no point having an automated backup

if it’s not actually backing up the data we’re expecting it to!

ijdb.sql is the name of the file to create. It defaults to the “current working

directory”, but it can be useful to specify a full path such as /var/backups/

ijdb.sql when using automated backups, as the command may not run from a

directory you can write to.

To restore this database after a server crash, we could again feed this SQL file to

MySQL Workbench. Alternatively, we could use the mysql utility program:

mysql -u homestead -psecret ijdb < ijdb.sql

This command has the same options as the mysqlpump command. However, in

this instance, we’re loading a file using the < operator and sending the contents of

the file to the mysql program, rather than saving to a file.

But how do we bridge the gap between these snapshots to maintain a database

backup that’s always up to date?

Incremental Backups Using Binary Logs

As I mentioned, many situations in which MySQL databases are used would

make the loss of data—any data—unacceptable. In cases like these, we need a

way to bridge the gaps between the backups we made using MySQL Workbench

or mysqlpump as recently described.

The solution is to configure the MySQL server to keep a binary log, a record of all

502 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

SQL queries that were received by the database, and which modified the contents

of the database in some way. This includes INSERT, UPDATE, and DELETE

statements (among others), but excludes SELECT statements.

The basic idea of a binary log is that you should be able to restore the contents of

the database at the very moment at which a disaster occurs. This restoration

involves applying a backup (made using MySQL Workbench or mysqlpump), and

then applying the contents of the binary logs that were generated after that

backup was made.

You can also edit binary logs to undo mistakes that might have been made. For

example, if a co-worker comes to you after accidentally issuing a DROP TABLE

command, you can export your binary log to a text file and then edit that file to

remove the command. You can then restore the database using your last backup

and then running the edited binary log. In this way, you can even preserve

database changes that were made after the accident. And, as a precaution, you

should probably also revoke your co-worker’s DROP privileges.

To tell your MySQL server to keep binary logs, you need to edit the server’s

my.ini (Windows) or my.cnf (macOS or Linux) configuration file. This is a

simple text file with a list of options that control some of the finer points of how

your MySQL server works. In many cases, MySQL is installed without a

configuration file, and simply runs with the default settings. In this situation,

you’ll need to create a new file and set the appropriate option.

To enable binary logging, you add a log-bin setting to the [mysqld] section of

your configuration file. The Homestead Improved virtual machine doesn’t have

binary logs enabled by default. To enable them, you’ll need to connect to the

virtual machine via SSH, as described in the previous section, and edit the

configuration file.

As you’re connected via a command line, you won’t be able to open up the

configuration file using your normal editor (Sublime Text, Atom or even Notepad)

and you’ll need to use a command line text editor.

The simplest editor is called nano, and the configuration file you’ll need to edit is

stored at the location /etc/mysql/mysqld.conf.d/mysqld.conf. If you’re used to

Windows, this file path may look a little strange: there’s no drive letter, and there

MySQL Administration 503

www.EBooksWorld.ir

are forward slashes instead of back slashes. Don’t worry, this is the way files are

referenced on Linux systems.

To open the file in nano, use this command while logged in to the virtual

machine with SSH:

sudo nano /etc/mysql/mysqld.conf.d/mysqld.conf

The sudo prefix will open the file with administrator privileges. After all, you

wouldn’t want just anyone being able to make changes to the MySQL

configuration. If you try the command without sudo, you won’t be able to save

changes to the file.

With the file open on the screen, you can use the arrow keys to move around. If

you’re new to command line text editors, it can be a little disconcerting, as there

are no scrollbars and your mouse cursor doesn’t do anything! Don’t worry, we

don’t have to do much using nano. We’ll just uncomment a couple of lines.

The setting we’re looking for is called log_bin. This option stores a file path for

where we want the binary log to be kept. To find the setting, press Ctrl+W on your

keyboard. This issues a “Where” command. (You’re probably familiar with

Ctrl+F for “Find”; nano uses the term “where” instead.) After pressing Ctrl+W,

type log_bin and press return. The editor will take you to this line:

#log_bin = /var/log/mysql/mysql-bin.log

The log-bin setting tells MySQL where to store the binary log files and what

name to give them. The default path is fine. The only change needed on this line

is to remove the preceding #—which acts as a comment (like // in PHP). Remove

the # using the backspace or delete key so the line reads like this:

log_bin = /var/log/mysql/mysql-bin.log

We’ll also need to uncomment the line above, which is #server-id = 1, again

504 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

remove the # so it becomes server-id = 1. That’s all the changes we need to

make to the configuration. (If you can’t see the line, use Ctrl+W again and type

server-id as you did before for log_bin.)

Now save the file by pressing Ctrl+O. (That's the letter “o”, not a zero. It stands

for “output” in nano’s terminology). We’re nearly done. Press Ctrl+X to exit nano

and return to the command prompt.

The final step is to restart MySQL so that it reads the updated configuration. To

do this, run the following command:

sudo systemctl restart mysql.service

The sudo prefix here is important, as only people with administrator privileges

can start and stop services.

Now that the binary log is enabled, a new file will be created each time the server

flushes its log files. In practice, this occurs whenever the server is restarted.

From now on, the server will create binary log files. To make sure, check the

location you specified, in order to verify that a new log file was created when the

server started up. Run the following command:

ls /var/log/mysql

Just the Same on a Real Web Server

You’ve just learned how to enable binary logging and how to change configuration

files on a virtual machine, but the process will be the same if you ever need to do

this on a real web server.

Where to Store Your Logs

If possible, you should store your binary logs on a hard disk other than the one

where your MySQL database files are stored. That way, if a hard disk goes bad, you

won’t lose both your database and your backups!

MySQL Administration 505

www.EBooksWorld.ir

In the event of a disaster, as long as you have a full backup and the binary log

files that were generated after the backup was made, restoring your database

should be fairly simple. Set up a new, empty MySQL server, then apply the full

backup as described in the previous section. All that’s left is to apply the binary

logs using the mysqlbinlog utility program.

mysqlbinlog’s job is to convert the data format of MySQL binary logs into SQL

commands that you can run on your database. Say you had two binary log files

that you needed to apply after restoring your most recent full backup. You can

generate an SQL text file from the two files using mysqlbinlog, and then apply

that file to your MySQL server just as you would a file generated by mysqlpump:

mysqlbinlog binlog.000041 binlog.000042 > binlog.sql

mysql -u root -psecret < binlog.sql

MySQL Access Control Tips

In Chapter 3, I mentioned that the database called mysql, which appears on every

MySQL server, is used to keep track of users, their passwords, and what they’re

allowed to do. In Chapter 4, I showed you how to use MySQL Workbench to

create another user account, with access only to your website’s database.

The MySQL access control system is fully documented in Chapter 5 of the

MySQL Reference Manual. In essence, user access is governed by the contents of

five tables in the mysql database: user, db, host, tables_priv and columns_priv.

If you plan to edit these tables directly using INSERT, UPDATE and DELETE

statements, I suggest you read the relevant section of the MySQL manual first. But

for us mere mortals, MySQL Workbench provides all the tools you’ll need to

manage access to your MySQL server.

Homestead Improved

In the case of the Homestead Improved box, the steps in this section have been

done for us, and you don’t need to make any changes to the user accounts. This

section will be beneficial when you want to start working with a real web server.

506 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://dev.mysql.com/doc/refman/5.5/en/privilege-system.html
http://dev.mysql.com/doc/refman/5.5/en/privilege-system.html

As a result of the way the access control system in MySQL works, there are some

idiosyncrasies you should be aware of if you’re going to be responsible for

controlling access to a MySQL server.

Host Name Issues

When you create users who can log in to the MySQL server only from the

computer on which that server is running (for example, you require them to log

in to the server and run the mysql command prompt utility from there, or to

communicate using server-side scripts like PHP), you may ask yourself what to

enter in the Host field of MySQL Workbench’s Add a new User form. Imagine the

server is running on www.example.com. Should you specify the Host as

www.example.com or localhost?

The answer is that neither is reliable enough to handle all connections. In theory,

if, when connecting, the user specifies the host name either with the mysql

command prompt utility program, or with PHP’s PDO class, that host name will

have to match the entry in the access control system. However, as you probably

want to avoid forcing your users to specify the host name in a particular way (in

fact, users of the mysql utility program are likely to want to steer clear of stating

the host name at all), it’s best to use a workaround.

For users who need the ability to connect from the machine on which the MySQL

server is running, it’s best to create two user entries in the MySQL access system:

one with the actual host name of the machine (www.example.com, for example),

and the other with localhost. Of course, you’ll have to grant/revoke all

privileges to both user entries individually, but it’s the only workaround that you

can really rely on.

Another problem commonly faced by MySQL administrators is that user entries

whose host names contain wildcards (for example, %.example.com) may fail to

work. When MySQL’s access control system behaves unexpectedly, it’s usually

due to the way MySQL prioritizes the user entries. In particular, it orders entries

so that more specific host names appear first. (For example, www.example.com is

absolutely specific, %.example.com is less specific, and % is totally unspecific.)

In a fresh installation, the MySQL access control system contains two root user

entries, and two anonymous user entries. (These latter allow connections to be

MySQL Administration 507

www.EBooksWorld.ir

made from the local host using any username. The two entries support

connections from localhost and the server’s actual host name, as described

before.) The problem just described occurs when the anonymous user entries take

precedence over our new entry, because their host name is more specific.

Let’s look at the abridged contents of the user table on www.example.com, a

fictitious MySQL server, where we’ve just added a new account for a user named

Jess. The rows are sorted in the order in which the MySQL server considers them

when it validates a connection:

Host User Password

------------------- -------- -----------------

localhost root encrypted value

www.example.com root encrypted value

localhost

www.example.com

%.example.com jess encrypted value

As you can see, since Jess’s entry has the least specific host name, it comes last in

the list. When Jess attempts to connect from www.example.com, the MySQL server

matches her connection attempt to one of the anonymous user entries (a blank

User value matches anyone). Since a password is unnecessary for these

anonymous entries, and presumably Jess enters her password, MySQL rejects the

connection attempt. Even if Jess managed to connect without a password, she

would be given the very limited privileges that are assigned to anonymous users,

as opposed to the privileges assigned to her entry in the access control system.

The solution is either to make your first order of business as a MySQL

administrator the deletion of those anonymous user entries (DELETE FROM

mysql.user WHERE User=""), or to give two more entries to all users who need to

connect from localhost (that is, entries for localhost and the actual host name

of the server):

Host User Password

------------------- -------- -----------------

localhost root encrypted value

www.example.com root encrypted value

508 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

localhost jess encrypted value

www.example.com jess encrypted value

localhost

www.example.com

%.example.com jess encrypted value

As it’s excessively burdensome to maintain three user entries (and three sets of

privileges) for each user, I recommend that you remove the anonymous users,

unless you have a particular need for them:

Host User Password

------------------- -------- -----------------

localhost root encrypted value

www.example.com root encrypted value

%.example.com jess encrypted value

Locked Out?

Like locking your keys in the car, forgetting your password after you’ve spent an

hour installing and tweaking a new MySQL server can be rather embarrassing!

Fortunately, if you have administrator access to the computer on which the

MySQL server is running, or if you can log in as the user you set up to run the

MySQL server, all is well. The following procedure will let you regain control of

the server.

First, you must shut down the MySQL server by running this command:

sudo systemctl stop mysql.service

I’m Assuming You Know How to Log In to the Server

Again, I’m going to go ahead and assume in this section that if you’re locked out of

your MySQL server, you know how to log in to the server and that you have SSH

access.

MySQL Administration 509

www.EBooksWorld.ir

Now that the server’s down, you must restart it using the skip-grant-tables

option. You can do this by adding the option to your MySQL server’s my.cnf

configuration file (see the instructions for setting up such a file in the

“Incremental Backups Using Binary Logs” section above):

Under the [mysqld] line, add skip-grant-tables and save the file:

[mysqld]

skip-grant-tables

This instructs the MySQL server to allow unrestricted access to anyone.

Obviously, you’ll want to run the server in this mode as briefly as possible, to

avoid the inherent security risks.

Restart the server with this command:

sudo systemctl start mysql.service

Connect to the MySQL server (using MySQL Workbench or the mysql command

prompt utility), then change your user’s password to a memorable one:

UPDATE mysql.user SET Password=PASSWORD("newpassword")

WHERE User="homestead"

Finally, disconnect, shut down your MySQL server as above, and remove the

skip-grant-tables option. Start the server again and you’ll be able to connect

with the new password.

That’s it! (And thankfully, nobody ever has to know what you did.) As for locking

your keys in your car, you’re on your own there.

Indexes

Just as the index in this book makes it a lot easier to find every mention of a

510 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

particular topic in its pages, a database index can make it much easier for MySQL

to find the records you’ve asked for in a SELECT query. Let me give you an

example.

As the Internet Joke Database grows, the joke table might grow to contain

thousands or rows, if not hundreds of thousands. Now, let’s say PHP asks for the

text of a particular joke:

SELECT joketext FROM joke WHERE id = 1234

In the absence of an index, MySQL must look at the value of the id column in

each and every row of the joke table, one by one, until it finds the one with the

value 1234. Worse yet, without an index, MySQL has no way of knowing that

there is only one row with that value, so it must also scan the rest of the table for

more matching rows to make sure it gets them all!

Computers are fast, and good at menial labor, but in the web development game,

where half seconds count, large tables and complex WHERE clauses can easily

combine to create delays of 30 seconds or more!

Fortunately for us, this query will always run quickly, and that’s because the id

column of the joke table has an index. To see it, open MySQL Workbench, right-

click the joke table, and click Alter table. At the bottom of the window are some

tabs, one of which is Indexes. Click on that and you’ll see a list of indexes on the

table.

MySQL Administration 511

www.EBooksWorld.ir

12-2. Each of our tables already has a single index

Take a look at the left-hand column and you’ll see an index called PRIMARY.

Remember how we defined the id column of the table:

CREATE TABLE joke (

id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

joketext TEXT,

jokedate DATE NOT NULL,

authorId INT

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

In fact, “key” is just a fancy way to say “index” in database parlance, and a

primary key is just an index named PRIMARY that requires each value in the table

for that particular column to be unique.

What all this boils down to is that every database table we’ve created so far has an

index on its id column. Any WHERE clause that seeks a particular id value will be

able to find the record with that value quickly, because it will be able to look it up

in the index to know exactly where in the table the relevant record is.

You can confirm this by asking MySQL to explain how it performs a particular

512 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

SELECT query. To do this, just add the command EXPLAIN at the start of the query:

EXPLAIN SELECT joketext FROM joke WHERE id = 1

If you run this EXPLAIN query in MySQL Workbench, you’ll see something similar

to this:

12-3. These results confirm that the SELECT query will use the PRIMARY index

Now consider this SELECT query, which fetches all jokes by a particular author:

SELECT * FROM joke WHERE authorId = 2

Ask MySQL to EXPLAIN this SELECT, and you’ll see a result like this:

12-4. Those NULLs indicate slowness

As you can see, MySQL is unable to find an index to assist with this query, so it’s

forced to perform a complete scan of the table for results. We can speed up this

query by adding an index to the table for the authorId column.

Specifying a Joke ID that Exists

Note that I’ve specified a joke ID of 1 in this query, which actually exists in my

database. Had I used a made-up value like 1234, MySQL is smart enough to know

that this ID doesn’t exist in the joke table and wouldn’t even try to fetch results

from the table.

MySQL Administration 513

www.EBooksWorld.ir

In MySQL Workbench, select the joke table, right-click and choose Alter Table.

On the Indexes tab, add a new row under PRIMARY by double-clicking the empty

cell. Give your index a name (this can be anything, but the column name is often

used) and select the type as INDEX. We can’t use UNIQUE here, because that would

prevent each author from being able to have more than one joke in the table.

12-5. Creating a new index for the authorId column

Now select the authorId column from the middle panel and click Apply. Ask

MySQL to EXPLAIN the SELECT query again to confirm that it will use your new

authorId index this time.

It might be tempting to index each and every column in your database, but I’d

advise against it. Not only do indexes require extra disk space, but every time you

make a change to the contents of your database (with an INSERT or UPDATE query,

But the author Table Has an Index?

Yes, the id column of the author table has an index by virtue of it being the

primary key for that table. This won’t help in the case of this query, however, which

has no involvement with the author table at all.

The WHERE clause in this case is looking for a value in the authorId field of the

joke table, which is without an index.

514 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

for example), MySQL has to spend time rebuilding all affected indexes!

For this reason, you should usually add the indexes required to keep your

website’s SELECT queries speedy and no more. As a rule of thumb, you should

create an index on any column that you use in a WHERE, GROUP BY, ORDER BY or

JOIN ... ON clause.

Multicolumn Indexes

But wait! Not every table will have an id column. Consider a table that associates

jokes with categories.

We’d need a table for categories, which will have an ID:

CREATE TABLE `category` (

`id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

`name` VARCHAR(255),

PRIMARY KEY (`id`)

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

However, in this instance we’d need what’s known as a many-to-many

relationship. Each joke might fit into more than one category. For example, the

joke “Why did the programmer quit his job? He didn’t get arrays” fits into both

the categories “programming jokes” and “one-liners”.

We can’t model this relationship in the same way as we have with the

relationship between authors and jokes—by creating a categoryId column in the

joke table. Doing so only allows us to have a single category for a joke.

Instead, we need to create something called a join table or junction table, which

has two columns,jokeId and categoryId. The joke_category junction table

might contain values like this:

jokeId | catoryId

1 | 1

1 | 2

2 | 3

MySQL Administration 515

www.EBooksWorld.ir

3 | 1

It’s all numbers, but assuming category 1 is “one-liners”, to find all the jokes in

the category we can use this query:

SELECT jokeId FROM joke_category WHERE categoryId = 1

This would give the following results:

jokeId

1

3

Then we can read the individual jokes from the database by looping over the

results and issuing a select query for each of the jokes:

SELECT * FROM joke WHERE id = 1;

SELECT * FROM joke WHERE id = 3;

The joke_category table doesn’t have an obvious primary key. Although we

could create an id auto increment column, this is far from ideal. We don’t want

the same record appearing twice. For example:

jokeId | catoryId

1 | 1

1 | 2

2 | 3

3 | 1

3 | 1

Now joke 3 in category 1 appears twice. Any query to select the jokes in category

1 will return joke 3 twice! To prevent that, we can actually create a multi-column

516 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

primary key:

CREATE TABLE joke_category (

jokeId INT NOT NULL,

categoryId INT NOT NULL,

PRIMARY KEY (jokeId, categoryId)

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

This table’s primary key is made up of two columns: jokeid and categoryid. The

image below shows what this index looks like in MySQL Workbench. Because a

primary key has to be unique, there’s no way for this table to store the same

record twice.

12-6. Indexes can contain multiple columns

A multi-column index like this is called a composite index. It’s great at speeding

up queries that involve both indexed columns, like the one below, which checks

if joke ID 3 is in category ID 4:

SELECT * FROM joke_category WHERE jokeid = 3 AND categoryid

➥ = 4

MySQL Administration 517

www.EBooksWorld.ir

A two-column index like this one can also be used as a one-column index on the

first column in the list. In this case, that’s the jokeid field, so this query will also

use the index to list the categories that joke ID 1 belongs to:

SELECT * FROM joke_category WHERE jokeid = 1

Foreign Keys

By now, you should be used to the concept of a column in one table pointing to

the id column in another table to represent a relationship between the two tables.

For example, the authorId column in joke points to the id column in author to

record which author wrote each joke.

In database design lingo, a column that contains values that match those in

another table is called a foreign key. That is, we say that authorId is a foreign

key that references the id column in author.

Up to this point, we’ve simply designed tables with foreign key relationships in

mind, but these relationships haven’t been enforced by MySQL. That is, we’ve

made sure to only store values in authorId that correspond to entries in the

author table. But if we carelessly inserted an authorId value without any

matches for an author record, MySQL would do nothing to stop us. As far as

MySQL is concerned, authorId is just a column that contains whole numbers.

MySQL supports a feature called foreign key constraints, which you can use to

record relationships between tables like this one explicitly and have MySQL

enforce them. You can include foreign key constraints in your CREATE TABLE

commands, or you can add foreign key constraints to existing tables using ALTER

TABLE:

CREATE TABLE joke (

id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

joketext TEXT,

jokedate DATE NOT NULL,

authorId INT,

FOREIGN KEY (authorId) REFERENCES author (id)

518 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

ALTER TABLE joke

ADD FOREIGN KEY (authorId) REFERENCES author (id)

You can also use MySQL Workbench to create foreign key constraints. First, you

must make sure the foreign key column (authorId in this case) has an index.

MySQL will create this index for you automatically if you use either of these two

queries, but MySQL Workbench requires you to do it yourself. Thankfully, we

already added an index to authorId. Next, on the Foreign Keys tab for the joke

table, double-click in the top row of the Foreign Key Name column. A name will

be generated for you, and this isn’t used by MySQL. It’s for your own reference.

Next, we call the key fk_joke_author to highlight that we’re creating a foreign

key between the joke and author tables. Then select the author table as the

referenced table and choose the authorId column as the Column and id column

as the Referenced column.

12-7. Setting up a foreign key in MySQL Workbench

With this foreign key constraint in place, MySQL will reject any attempt to insert

MySQL Administration 519

www.EBooksWorld.ir

into joke an authorId value that fails to correspond to an entry in the author

table. Furthermore, it will stop you from deleting an entry in the author table

unless you first remove any joke records that point to it.

Better Safe than Sorry

Admittedly, this chapter hasn’t been the usual nonstop, action–packed codefest

to which you may have become accustomed by now. But our concentration on

these topics—the backup and restoration of MySQL data, the inner workings of

the MySQL access control system, the improvement of query performance with

indexes, and the enforcement of the structure of your database with foreign

keys—has armed you with the tools you’ll need to set up a MySQL database

server that will stand the test of time, as well as endure the constant traffic your

site will attract.

Referential Action

Instead of rejecting attempts to delete or update records that have foreign keys

pointing to them (for example, preventing you from deleting authors who still have

jokes associated with them), you can perform a referential action. This involves

configuring a foreign key constraint in MySQL to automatically resolve the conflict.

It can do this either by cascading the operation (that is, deleting any jokes

associated with the author that you’re deleting), or by setting the values of any

affected foreign key columns to NULL (setting the authorId of the author’s jokes to

NULL). That’s what the ON RESTRICT and ON UPDATE options for the foreign key

constraint in MySQL Workbench are all about.

It can be tempting to use this feature to let MySQL take care of what happens to

affected jokes when a user deletes an author or a category. It’s certainly easier to

select an option in MySQL Workbench than it is to write the PHP code to

automatically delete related jokes before removing an author.

The problem with doing this is that it splits the logic of your website into two

places: your PHP code and the foreign key constraints. No longer will you be able to

see and control everything that happens when you delete a joke by just looking at

the PHP controller responsible for doing that job.

For this reason, most experienced PHP developers (myself included) prefer to avoid

using referential actions in foreign key constraints. In fact, some developers prefer

to avoid using foreign key constraints altogether!

520 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

13Chapter

Relationships

As you’ve worked through the construction of the Internet Joke Database website,

you’ve had opportunities to explore most aspects of Structured Query Language

(SQL). From the basic form of a CREATE TABLE query to the two syntaxes of

INSERT queries, you probably know many of these commands by heart now.

In Chapter 5, I showed you how to perform basic JOINs using SQL to fetch data

from more than one table at a time. A lot of the time, you’ll come across

situations where you want to do this—for example, finding information about an

author as well as all the jokes they’ve posted, or finding a category and all the

jokes that reside inside it.

SQL JOIN is one of many solutions to this problem. Although there are

performance advantages to using JOIN, unfortunately JOINs don’t work well with

object-oriented programming. The relational approach used by databases is

Relationships 521

www.EBooksWorld.ir

generally incompatible with the nested structure of object-oriented programming.

In object-oriented programming, objects are stored in a hierarchical structure. An

author contains—or, in the correct OOP terminology, encapsulates—a list of their

jokes, and a category also encapsulates a list of the jokes within the category.

A SELECT query that fetches an author along with all of their jokes can be written

like this:

SELECT author.name, joke.id, joke.joketext

FROM author

INNER JOIN joke ON joke.authorId = author.id

WHERE authorId = 123

Using an object-oriented approach, there are various practical ways of achieving

this, which we’ll look into shortly. But at a more general level, using OOP, rather

than an SQL query, fetching a list of jokes would be expressed like this:

// Find the author with the id `123`

$author = $authors->findById(123);

// Get all the jokes by this author

$jokes = $author->getJokes();

// Print the text of the first joke by that author.

echo $jokes[0]->joketext;

Notice that there’s no SQL here. The data is coming from the database, but it all

happens behind the scenes.

We could fetch all the information by using the SQL query I provided above, but

this doesn’t work well with the DatabaseTable class we’ve used so far. It would

be very difficult to design the class in such a way that it would account for every

possible set of relationships we may want.

So far, we’ve dealt with the relationship between jokes and authors in a relational

way. If we wanted to get the information about an author, along with a list of all

522 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

their jokes, we’d do this:

// Find the author with the ID 123

$author = $this->authors->findById(123);

// Now find all the jokes posted by the author with that ID

$jokesByAuthor = $this->jokes->find('authorId',

$authorId);

This runs two separate SELECT queries, and the two DatabaseTable instances are

entirely separate.

We used a similar approach when inserting a joke into the database:

public function saveEdit() {

$author = $this->authentication->getUser();

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$joke['authorId'] = $author['id'];

$this->jokesTable->save($joke);

header('location: /joke/list');

}

This code uses the authentication class to fetch the record that stores the

currently logged-in user. It then reads the author’s id in order to provide it when

the joke is added: $joke['authorId'] = $author['id'];.

Whoever writes this code must know about the underlying structure of the

database and that the authors and jokes are stored in a relational way.

In object-oriented programming, it’s preferable to hide the underlying

implementation, and the code above would be expressed like this:

Relationships 523

www.EBooksWorld.ir

public function saveEdit() {

$author = $this->authentication->getUser();

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$author->addJoke($joke);

header('location: /joke/list');

}

Not a lot has changed, so look closely! Firstly, the line $joke['authorId'] =

$author['id']; has been removed. Secondly, instead of saving the joke to the

$jokesTable object, it’s being passed to the author object:

$author->addJoke($joke);.

What is the advantage of this approach? The person who writes this code doesn’t

have to know anything about what happens behind the scenes, or how the

relationship is modeled in the database—that there’s an authorId column in the

joke table.

Instead of modeling the relationships in a relational way, object-oriented

programming takes a hierarchical approach, using data structures. Just as the

routes in the IjdbRoutes class is a multi-dimensional array, OOP has multi-

dimensional data structures stored within objects.

In the example above, the $author->addJoke($joke) method call might be

writing the joke data to a database. Alternatively, it might be saving the data to a

file. And that file could be in JSON format, XML format or an Excel spreadsheet.

The developer who writes this saveEdit method doesn’t need to know anything

about the underlying storage mechanism—how data is being stored—but only

that the data is being stored somehow, and that it’s being stored inside the author

instance.

In object-oriented programming terminology, this is known as implementation

hiding, and it has several advantages. Different people can work on different

sections of the code. The developer who writes the saveEdit doesn’t have to be

524 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

familiar with how addJoke actually works. They only need to know that it saves

data, and that the data can be retrieved later.

When you use the method $pdo->query, you don’t need to know how $pdo

actually communicates with the database. You only need to know what the

method returns and what arguments it requires. We can imagine what the

following lines of code do, knowing how each of them works:

$jokes = $author->getJokes();

echo $joke->getAuthor()->name;

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$author->addJoke($joke);

In the middle example, as long as you know there’s a getAuthor method that you

can call on the $joke instance, it doesn’t matter how it works. The author name

could be hardcoded into the class, or it could go off and fetch it from the

database.

This is particularly useful, because the storage system can be changed at any

time, and the code above doesn’t need to change. The methods getJokes,

getAuthor and $joke can be completely rewritten to write to/read from a file, for

example, but the code above will still work without any further changes.

If the saveEdit contained the INSERT query with all the relevant database fields,

we’d need to rewrite the whole method to change the way the data is stored, and

we’d need to do this anywhere data was inserted.

This approach to splitting up the logic is loosely known as separation of

concerns. The process of saving a joke is different from the process of writing

data to the database. Each of these is a different concern. By splitting out the two

Relationships 525

www.EBooksWorld.ir

concerns, you have a lot more flexibility. The addJoke method can be called from

anywhere without needing to repeat the logic. The way the addJoke method

works can be completely rewritten to work in a different way, but the code that

calls it can remain unchanged.

This added flexibility is incredibly useful for an increasingly popular

development methodology called test-driven development (TDD). In TDD, you’d

test the code by writing a version of the DatabaseTable class that worked as a

placeholder for the test, rather than needing a working database containing

relevant test data.

Although TDD is beyond the scope of this book, by thinking about separation of

concerns, you’ll be able to start writing automated tests for your code without

making large-scale changes.

A common problem mid-level developers have when first learning about TDD is

that they understand the advantages of it, but their code isn’t written in such a

way that makes it easy to test. By considering separation of concerns earlier on in

your programming career, you’ll make it easier for yourself moving forward.

For more information on TDD, check out the introductory article Re-Introducing

PHPUnit – Getting Started with TDD in PHP”.

Object Relational Mappers

The DatabaseTable class we’ve built step by step so far is a type of library called

an object relational mapper (or ORM). There are a lot of ORM implementations

available, such as Doctrine, Propel and ReadBeanPHP. These all do essentially

the same job as the DatabaseTable class we’ve been building: providing an

object-oriented interface for a relational database. They bridge the gap between

the relational database’s SQL queries and the PHP code we’re using for everything

else on the website.

Generally, ORMs deal with Objects. Using our DatabaseTable class to find an

author and print their name, we can use this code:

$author = $authors->findById(123);

526 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

https://www.sitepoint.com/re-introducing-phpunit-getting-started-tdd-php/
https://www.sitepoint.com/re-introducing-phpunit-getting-started-tdd-php/
http://www.doctrine-project.org/
http://propelorm.org/
http://redbeanphp.com/index.php

echo $author['name'];

Here, the $author variable is an array with keys for each of the columns in the

database. Arrays can’t contain functions1, so implementing an addJoke method

on the $author instance isn’t possible.

If we want the ability to call methods on the $author instance, such as

$author->addJoke($joke) like above, the $author variable needs to be an object

rather than an array. The first thing we need to do is create the relevant class to

represent authors. Firstly, some properties for each of the columns from the

database:

namespace Ijdb\Entity;

class Author {

public $id;

public $name;

public $email;

public $password;

}

As the properties of an author are unique to the joke website, I’ve put the class in

the Ijdb namespace.

A class like this, which is designed to map directly to a record in the database, is

commonly known as an Entity Class, which is why I’ve used the name Entity in

the namespace. We’ll have a different entity class for each of the database tables

we need to represent. Create the directory Entity inside the Ijdb folder and save

the class inside it with the name Author.php.

Although the variables don’t need to be declared here, and what we’re doing will

1. OK, that’s a lie. They can contain a special type of function called a closure, but doing

so has several severe limitations compared to the OOP based approach I’m going to show

you instead.

Relationships 527

www.EBooksWorld.ir

work identically whether they are or not, it makes the code easier to read and

understand if the variables are included.

There’s some repetition here: every time you add a column to the database table,

you’ll need to add it to this entity class. Because of this, many ORMs provide a

method of generating these entity classes from the database schema, or even

creating the database table from the object!

I’m not going to show you how to do that, but if you do want to try something

similar, you should take a look at the MySQL DESCRIBE query to retrieve a list of

columns in a table, or the PHP Reflection library to get a list of properties in a

class.

Public Properties

Every time we’ve created a class variable so far, it’s been private, so that the data

used is only accessible to methods within the class. The advantage of this is that

class variables can be easily added, renamed or removed without potentially

breaking any of the code that uses the class.

It also prevents developers accidentally breaking the functionality of the class. If

the pdo variable were public in the DatabaseTable class, it would be possible to

do this:

$this->jokesTable->pdo = 1234;

Any further call to methods on the DatabaseTable class would break:

$this->jokesTable->findById('1243');

The findById method would call $this->pdo->query('…'), but because the pdo

variable is no longer a PDO instance, it would break!

In most cases, private properties are strongly preferred over public ones.

However, in the case of entity classes, you should use public properties.

528 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

https://dev.mysql.com/doc/refman/5.7/en/getting-information.html
http://php.net/manual/en/book.reflection.php

The sole purpose of an entity class is to make some data available. It’s no good

having a class representing an author if you can’t even read the author’s name!

Nine times out of ten—in fact, ninety-nine times out of a hundred—public

properties are the wrong solution to any given problem. However, if the

responsibility of the class is to represent a data structure, and it’s interchangeable

with an array, then public properties are fine.

Methods in Entity Classes

A class is used to store the data about authors instead of an array, because the

class can contain methods, and we can do things like this:

// Find the author with the id 1234

$author = $this->authorsTable->findById('1234');

// Find all the jokes by that author

$author->getJokes();

// Add a new joke and associate it with the author

// represented by $author

$author->addJoke($joke);

Let’s take a moment to think about what the getJokes method might look like.

Assuming the id property in the $author class is set, it would be possible to do

this:

public function getJokes() {

return $this->jokesTable->find('authorId',

$this->id);

}

To do this, the author class needs access to the jokesTable instance of the

DatabaseTable class. Add the getJokes method, along with a constructor and

class variable to store the reference to the jokesTable instance:

Relationships 529

www.EBooksWorld.ir

<?php

namespace Ijdb\Entity;

class Author

{

public $id;

public $name;

public $email;

public $password;

private $jokesTable;

public function __construct(\Ninja\DatabaseTable

➥ $jokesTable)
{

$this->jokesTable = $jokesTable;

}

public function getJokes()

{

return $this->jokesTable->find('authorId',

$this->id);

}

}

We’re going to amend the DatabaseTable class to return an instance of this class

instead of an array. But before we do that, let’s take a look at how the Author class

can be used on its own:

$jokesTable = new \Ninja\DatabaseTable($pdo, 'joke', 'id');

$author = new \Ijdb\Entity\Author($jokesTable);

$author->id = 123;

$jokes = $author->getJokes();

This would query the database for all the jokes by the author with the ID 123. We

530 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

can now fetch data that’s related to the author, once we have an Author instance

that represents any given author, by setting the id property.

Next, we need the addJoke method that takes a joke as an argument, sets the

authorId property and then inserts it into the database:

public function addJoke($joke) {

$joke['authorId'] = $this->id;

$this->jokesTable->save($joke);

}

Let’s use the new class inside the Joke controller’s saveEdit method to save the

jokes using $author->addJoke($joke).

public function saveEdit() {

$author = $this->authentication->getUser();

$authorObject = new \Ijdb\Entity\Author

($this->jokesTable);

$authorObject->id = $author['id'];

$authorObject->name = $author['name'];

$authorObject->email = $author['email'];

$authorObject->password = $author['password'];

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$authorObject->addJoke($joke);

header('location: /joke/list');

}

You can find this code in Relationships-Author.

Relationships 531

www.EBooksWorld.ir

Using Entity Classes from the DatabaseTable Class

Because the database returns data as an array, I’ve copied the data from the

$author array returned by getUser() to an instance of the newly created Author

class.

Both the array $author and the object $authorObject will represent the same

author. The only difference is that one is an object and the other is an array.

Most of the lines of code in the method simply copy data from the array to an

object. This is obviously inefficient, and the problem can be avoided if we can

construct the Author object outside of the saveEdit method and have getUser

return the constructed object like so:

public function saveEdit() {

$authorObject = $this->authentication->getUser();

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$authorObject->addJoke($joke);

header('location: /joke/list');

}

Currently, an array is created, because the getUser method in the

Authentication class calls the findById method in the DatabaseTable class:

public function findById($pdo, $table, $primaryKey,

$value) {

$query = 'SELECT * FROM ' . $table . ' WHERE ' .

$primaryKey . ' = :primaryKey';

$parameters = [

'primaryKey' => $value

];

532 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$query = $this->query($query, $parameters);

return $query->fetch();

}

Here, $query->fetch() returns an array. Luckily for us, there’s also a

fetchObject method, which returns an instance of a specified class—in our case,

Author. This will instruct PDO to create an instance of the Author class and set

the properties on that, rather than returning a simple array.

For example, to have fetchObject() return an Author object, you can use this

code:

return $query->fetchObject('Author', [$jokesTable]);

There are two arguments here:

1. The name of the class to instantiate.

2. An array of arguments to provide to the constructor when the object is created.

Because there’s only a single element in the array, [$jokesTable] looks a little

strange. However, as constructors can have multiple arguments, an array is

required so you can provide each constructor argument.

Now, rather than writing new Author somewhere in our code, we can have the

PDO library create an instance of the Author class in place of returning the data

as an array.

$pdo->query('SELECT * FROM `author` WHERE id = 123');

$author = $query->fetchObject('Author', [$jokesTable]);

Because the Author class requires the $jokesTable class as a constructor

argument, this must also be provided as an argument when fetchObject is

called. However, we can’t amend the DatabaseTable class to use the return line

Relationships 533

www.EBooksWorld.ir

above—firstly, because it doesn’t have access to the $jokesTable variable, and

secondly, because we’re using the DatabaseTable class to interact with different

database tables. When the findById method is called, it may be on the

authorsTable instance, the jokesTable instance, or an instance of the

DatabaseTable class that represents some other database table.

We’ll want a different entity class for each table, and they almost certainly won’t

have the same constructor arguments.

Instead of hardcoding the class name and constructor argument, we can amend

the constructor of the DatabaseTable class to take two optional arguments—the

name of the class to create, and any arguments to provide to it:

class DatabaseTable {

private $pdo;

private $table;

private $primaryKey;

private $className;

private $constructorArgs;

public function __construct(\PDO $pdo, string $table,

string $primaryKey, string $className = '\stdClass',

array $constructorArgs = []) {

$this->pdo = $pdo;

$this->table = $table;

$this->primaryKey = $primaryKey;

$this->className = $className;

$this->constructorArgs = $constructorArgs;

}

Notice that I’ve given default values to each of the new arguments. The stdClass

class is an inbuilt PHP empty class that can be used for simple data storage.

By specifying this as a default value, if no class name is specified, it will use this

generic inbuilt one. The advantage this gives us is that we don’t need to create a

unique entity class for every database table, but only those we want to add

methods to!

534 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The findById method can now be changed to read the new class variables and

use those in place of hardcoded ones in the fetchObject method call:

public function findById($value) {

$query = 'SELECT * FROM `' . $this->table . '` WHERE `' .

$this->primaryKey . '` = :value';

$parameters = [

'value' => $value

];

$query = $this->query($query, $parameters);

return $query->fetchObject($this->className,

$this->constructorArgs);

}

PDO’s fetchAll method—which we’re using in the DatabaseTable’s find and

findAll methods—can also be instructed to return an object by providing

\PDO::FETCH_CLASS as the first argument, the class name as the second, and the

constructor arguments as the third:

return $result->fetchAll(\PDO::FETCH_CLASS,

➥ $this->className, $this->constructorArgs);

Now that we’ve amended the DatabaseTable class, we can change IjdbRoutes,

where the DatabaseTable class is instantiated, and provide the class name and

the arguments for the $authorsTable instance:

$this->jokesTable = new \Ninja\DatabaseTable($pdo,

'joke', 'id');

$this->authorsTable = new \Ninja\DatabaseTable($pdo,

'author', 'id', '\Ijdb\Entity\Author',

[$this->jokesTable]);

Relationships 535

www.EBooksWorld.ir

Now, when the $authorsTable instance is used to retrieve a record, like this:

$author = $authorsTable->findById(123);

… the $author variable will be an instance of the Author class, and any methods

in the class (such as addJoke) will available for us to call.

As we’ve made a change to the DatabaseTable class, this will affect every

instance of the class. When jokes are retrieved from the database, an object will

also be retrieved. As we haven’t specified an entity class for jokes (yet!), they will

be an stdClass instance.

If you load up the joke list page in your browser, at this point you’ll see this error:

Fatal error: uncaught Error: cannot use object of type

➥ stdClass as array in
➥ /home/vagrant/Code/Project/classes/Ijdb/Controllers/Joke.php
➥ on line 21

We’ll fix this later, but first let’s get saveEdit working. Amend the saveEdit

method to avoid all the value copying. Change the code from this:

public function saveEdit() {

$author = $this->authentication->getUser();

$authorObject = new \Ijdb\Entity\Author

($this->jokesTable);

$authorObject->id = $author['id'];

$authorObject->name = $author['name'];

$authorObject->email = $author['email'];

$authorObject->password = $author['password'];

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

536 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$authorObject->addJoke($joke);

header('location: /joke/list');

}

… to this:

public function saveEdit() {

$author = $this->authentication->getUser();

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$author->addJoke($joke);

header('location: /joke/list');

}

Because getUser now returns an instance of Author with all the properties

already set, we can use this instance rather than having to manually create the

$authorObject instance and set each property individually.

Before we can test that this works, we’ll also need to amend the Authentication

class to use an object rather than an array. In the isLoggedIn method, replace this

line:

if (!empty($user) &&

$user[0][$this->passwordColumn] ===

$_SESSION['password']) {

… with this:

$passwordColumn = $this->passwordColumn;

if (!empty($user) && $user[0]->$passwordColumn

Relationships 537

www.EBooksWorld.ir

=== $_SESSION['password']) {

This code looks complicated! However, let’s take a moment to understand what’s

happening here.

The $user[0] variable now stores an instance of the Author class. The Author

class has a property called password. To read this property, you could use this:

$user[0]->password

However, if you remember back to Chapter 11, you’ll recall that the

Authentication class has a class variable, which stores the name of the database

column that contains the password. It might not be password in every website

you build.

Assuming the password column is password, once the variables have been

evaluated, all we’re doing here is replacing $user['password'] with the object

variant $user->password. But this is complicated by the fact that we’re using a

variable for the column name. We really need $user[$this->passwordColumn] to

be replaced with $user->$this->passwordColumn.

It’s possible to use a variable to access a property on an object using a string, as

we do with an array:

$columnName = 'password';

// Read value stored under key 'password' from array

$password = $array[$columnName];

// Read value stored under property 'password' from object

$password = $object->$columnName;

You might be wondering why I didn’t use $user[0]->$this->passwordColumn.

As PHP evaluates left to right, it would try to look up the contents of the variable

538 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$this (an object), then try to read a variable with that name. As a variable name

can’t be an object, PHP will give an error. Instead, I read the value into its own

variable, $passwordColumn, then used $user[0]->$passwordColumn.

Do the same with this line in the login method:

public function login($username, $password) {

$user = $this->users->find($this->usernameColumn,

strtolower($username));

if (!empty($user) && password_verify($password,

$user[0][$this->passwordColumn])) {

session_regenerate_id();

$_SESSION['username'] = $username;

$_SESSION['password'] =

$user[0][$this->passwordColumn];

return true;

}

else {

return false;

}

}

The above code changes to this:

public function login($username, $password) {

$user = $this->users->find($this->usernameColumn,

strtolower($username));

Using Braces

As an alternative to creating a new variable, you can also use braces to tell PHP to

evaluate the $this->passwordColumn lookup first:

$user[0]->{$this->passwordColumn};

Relationships 539

www.EBooksWorld.ir

if (!empty($user) && password_verify($password,

$user[0]->{$this->passwordColumn})) {

session_regenerate_id();

$_SESSION['username'] = $username;

$_SESSION['password'] =

$user[0]->{$this->passwordColumn};

return true;

}

else {

return false;

}

}

This code can be found in Relationships-DatabaseTableEntity.

After submitting the form, you’ll see an error on the list page, but you can check

the new saveEdit method is working by logging in to the website and adding a

joke. When you’re redirected to the list page, you’ll see an error, but you can

check that the joke has been added by viewing the contents of the joke table in

MySQL Workbench.

Joke Objects

Now we’ll fix the joke list page. At the moment it displays an error, thanks to this

code in the controller:

$author = $this->authorsTable->

findById($joke['authorId']);

$jokes[] = [

'id' => $joke['id'],

'joketext' => $joke['joketext'],

'jokedate' => $joke['jokedate'],

'name' => $author['name'],

'email' => $author['email']

];

540 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The error occurs because $author and $joke are no longer arrays. This is a

simple fix: change the syntax that reads from an array to use the object syntax:

$author = $this->authorsTable->

findById($joke->authorId);

$jokes[] = [

'id' => $joke->id,

'joketext' => $joke->joketext,

'jokedate' => $joke->jokedate,

'name' => $author->name,

'email' => $author->email

];

You’ll also need to change the method’s return statement to use the object syntax

for the $author variable.

return ['template' => 'jokes.html.php',

'title' => $title,

'variables' => [

'totalJokes' => $totalJokes,

'jokes' => $jokes,

'userId' => $author->id ?? null

]

];

Now also amend the delete method to read the joke’s authorId from the new

object:

if ($joke->authorId != $author->id)

This code can be found in Relationships-Objects.

Although this solution works, now that we’re using an object-oriented approach,

it can be solved in a much nicer way. Currently, each value from either the

Relationships 541

www.EBooksWorld.ir

author or joke table is stored under an equivalent key in the $jokes array.

The code for generating the $jokes array looks like this:

public function list() {

$result = $this->jokesTable->findAll();

$jokes = [];

foreach ($result as $joke) {

$author = $this->authorsTable->

findById($joke->authorId);

$jokes[] = [

'id' => $joke->id,

'joketext' => $joke->joketext,

'jokedate' => $joke->jokedate,

'name' => $author->name,

'email' => $author->email

];

}

The $jokes array is used to provide the template access to each joke and its

author.

The process currently looks like this:

query the database and select all the jokes

loop over each joke and:

select the related author

create a new array containing all the information about the joke and the

author

pass this constructed array to the template for display

This is a very long-winded process for something we can make a lot simpler

using OOP.

At the moment, we can fetch all the jokes by a specific author using

$author->getJokes(). However, we can also model the inverse relationship and

542 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

do something like this:

echo $joke->getAuthor()->name;

This would let us get the author for any given joke, and this code could even be

run from the template.

If the $this->jokesTable->findAll(); call returned an array of joke objects,

each with their own getAuthor method, this process of creating an array with

both sets of data would be unnecessary!

Firstly, let’s create the Joke entity class in Ijdb/Entity/Joke.php:

<?php

namespace Ijdb\Entity;

class Joke

{

public $id;

public $authorId;

public $jokedate;

public $joketext;

private $authorsTable;

public function __construct(\Ninja\DatabaseTable

$authorsTable)

{

$this->authorsTable = $authorsTable;

}

public function getAuthor()

{

return $this->authorsTable->

findById($this->authorId);

}

}

Relationships 543

www.EBooksWorld.ir

The Joke class works in the same way as the Author class: it has a constructor

that asks for an instance of a DatabaseTable class that contains related data. In

this case, it will be passed the DatabaseTable instance, which represents the

author database table.

The getAuthor method returns the author for the current joke. If

$this->authorId is 5, it will return an Author object that represents the author

with the ID 5.

Using the Joke Class

To use the new Joke class, we’ll need to update the IjdbRoutes class to provide

the authorsTable instance as a constructor argument. The relevant section of

code currently looks like this:

$this->jokesTable = new \Ninja\DatabaseTable($pdo,

'joke', 'id', '\Ijdb\Entity\Joke',

[$this->authorsTable]);

$this->authorsTable = new \Ninja\DatabaseTable($pdo,

'author', 'id', '\Ijdb\Entity\Author',

[$this->jokesTable]);

This will pass the authorsTable instance to the jokesTable instance and the

authorsTable instance.

Think about that for a second. It poses a problem that’s not immediately obvious.

If the authorsTable instance constructor requires an instance of jokesTable, and

the jokesTable constructor requires an authorsTable instance, we have a

catch-22: to create the jokesTable instance, you need an existing authorsTable

instance. To create the authorsTable instance, you need an existing jokesTable

instance. Both instances require the other instance to exist before they do!

If you try the code above, the PDO library will throw an exception—“Cannot call

constructor”. Although the message isn’t very clear, it’s because of the problem I

just highlighted.

544 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

This catch-22 occurs sometimes in object-oriented programming. Luckily, in this

case it can be fairly easily solved using something called a reference.

References

A reference is special type of variable, a bit like a shortcut in Windows, or a

symlink in macOS or Linux. A shortcut on your computer is a special type of file

that doesn’t contain any data itself. Instead, it points to another file. When you

open the shortcut, it actually opens the file the shortcut is pointing to.

References work in a similar way. Instead of a variable containing a specific

value, a it can contain a reference to another variable. When you read the value of

a variable that stores the reference, it will read the value of the variable being

referenced.

To create a reference, you prefix the variable you want to create a reference to

with an ampersand (&):

$originalVariable = 1;

$reference = &$originalVariable;

$originalVariable = 2;

echo $reference;

The code above will print 2. Without the &, it would print 1! That’s because the

variable $reference contains a reference to the $originalVariable variable.

Whenever the value of $reference is read, it will actually go off and read the

value of the variable $originalVariable as it is at that moment in time.

This is important, because it allows us to solve the catch-22 we encountered

earlier. By providing references as the constructor arguments for the Joke and

Author classes, by the time the authorsTable and jokesTable instances are

needed, they’ll have been created:

$this->jokesTable = new \Ninja\DatabaseTable($pdo,

'joke', 'id', '\Ijdb\Entity\Joke',

[&$this->authorsTable]);

Relationships 545

www.EBooksWorld.ir

$this->authorsTable = new \Ninja\DatabaseTable($pdo,

'author', 'id', '\Ijdb\Entity\Author',

[&$this->jokesTable]);

Now, when the DatabaseTable class creates a Joke or Author object and has to

provide it the authorsTable or jokesTable instance, it will read what’s stored in

the authorsTable or jokesTable class variables at the time any Author or Joke

entity is instantiated.

Simplifying the List Controller Action

The following is now possible inside a controller:

$joke = $this->jokesTable->findById(123);

echo $joke->getAuthor()->name;

Now that a joke is an object, we can pass the whole object into the template and

read the author from there.

Remove this code from the list method:

$jokes = [];

foreach ($result as $joke) {

$author = $this->authorsTable->

findById($joke->authorId);

$jokes[] = [

'id' => $joke->id,

'joketext' => $joke->joketext,

'jokedate' => $joke->jokedate,

'name' => $author->name,

'email' => $author->email

];

}

546 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

This code was necessary when using arrays, because for each joke, we needed to

fetch the information about the joke, and the information about the author of that

particular joke, then combine them into a single data structure.

However, now that we’re using objects, this ugly copying code is redundant.

Once we’ve removed it, we can also replace this code:

$result = $this->jokesTable->findAll();

… with this:

$jokes = $this->jokesTable->findAll();

The DatabaseTable class now provides an array of objects rather than arrays.

Each Joke object has a method getAuthor, which returns the author of the joke.

Rather than fetching the author in the controller, we can now do it in the

template jokes.html.php. Let’s update the template to use the new objects rather

than the arrays:

Relationships 547

www.EBooksWorld.ir

13-1. Relationships-JokeObject

<p><?=$totalJokes?> jokes have been submitted to

➥ the Internet Joke Database.</p>

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke->joketext, ENT_QUOTES,

'UTF-8')?>

(by <a href="mailto:<?=htmlspecialchars(

$joke->getAuthor()->email,

ENT_QUOTES, 'UTF-8'

); ?>">

<?=htmlspecialchars(

$joke->getAuthor()->name,

ENT_QUOTES,

'UTF-8'

); ?> on

<?php

$date = new DateTime($joke->jokedate);

echo $date->format('jS F Y');

?>)

<?php if ($userId == $joke->authorId):

?>

<a href="/joke/edit?id=<?=$joke->id?>">

Edit

<form action="/joke/delete" method="post">

<input type="hidden" name="id"

value="<?=$joke->id?>">

<input type="submit" value="Delete">

</form>

<?php endif; ?>

</p>

</blockquote>

<?php endforeach; ?>

548 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

For the fields from the joke table, this is fairly simple. We just change the syntax

from an array to an object. For example, $joke['joketext'] becomes

$joke->joketext.

It’s slightly more complicated where we want to read information about each

joke’s author. Before reading the author’s email, we need to fetch the author

instance. To read the author’s email, we previously used $joke['email'], which

now becomes $joke->getAuthor()->email.

This actually fetches the author from within the template! Previously, when

writing the controller, we had to anticipate exactly which variables were needed

by the template.

Now, the controller just provides a list of jokes. The template can now read any of

the values it needs, including information about the author. If we added a new

column in the database—for example, a joke category—we could amend the

template to show this value without needing to change the controller.

Tidying Up

Now that we’ve changed the way the DatabaseTable class works, we’ve broken

the “Edit Joke” page. To fix it, open up the template editjoke.html.php and

replace the array syntax with object syntax for accessing the joke’s properties:

Relationships 549

www.EBooksWorld.ir

13-2. Relationships-EditJoke

<?php if (empty($joke->id) || $userId ==

$joke->authorId):?>

<form action="" method="post">

<input type="hidden" name="joke[id]"

value="<?=$joke->id ?? ''?>">

<label for="joketext">Type your joke here:

</label>

<textarea id="joketext" name="joke[joketext]" rows="3"

cols="40"><?=$joke->joketext ?? ''?>

</textarea>

<input type="submit" name="submit" value="Save">

</form>

<?php else:

?>

<p>You may only edit jokes that you posted.</p>

<?php endif; ?>

We’ve now got an almost entirely object-oriented website! All the entities have

their own class, and we can add any methods we like to each entity class.

Caching

You might have noticed a potential performance problem with the Joke entity

class. The getAuthor method looks like this:

public function getAuthor() {

return

➥ $this->authorsTable->findById($this->authorId);
}

Although this works fine, it’s unnecessarily slow. Each time this getAuthor

method is called, it will send the same query to the database and retrieve the

same result. The following code will send three queries to the database:

550 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

echo $joke->getAuthor()->name;

echo $joke->getAuthor()->email;

echo $joke->getAuthor()->password;

Querying the database is considerably slower than just reading a value from a

variable. Each time a query is sent to the database, it will slow down the page’s

speed slightly. Although each query adds only a tiny overhead, if this is done

inside a loop on a page, it can cause a noticeable slowdown.

To avoid this problem, you can fetch the author object once, then use the existing

instance:

$author = $joke->getAuthor();

echo $author->name;

echo $author->name;

echo $author->password;

By doing this, we avoid sending three queries to the database, because getAuthor

is only called once. This method works, but it’s rather crude. You have to

remember to implement this technique, and on a larger website you’d have to

mentally keep track of all the places you’d need to do this.

Instead, it’s better to implement a technique called transparent caching. The term

caching refers to storing some data for quicker access later on, and the technique

I’m about to show you is called transparent caching because the person using the

class doesn’t even need to know it’s happening!

To implement caching, add a property to the Joke entity class to store the author

between method calls:

class Joke {

// …

public $joketext;

private $authorsTable;

private $author;

Relationships 551

www.EBooksWorld.ir

// …

Then, in the getAuthor method, we can add logic that will do the following:

check to see if the author class variable has a value

if it’s empty, fetch the author from the database and store it in the class

variable

return the value stored in the author variable

public function getAuthor() {

if (empty($this->author)) {

$this->author =

➥ $this->authorsTable->findById($this->authorId);
}

return $this->author;

}

You can find this code in Relationships-Cached.

With this simple if statement in place, the database will only be queried the first

time the getAuthor method is called on any given joke instance.

Now, the following code will only send a single query to the database:

echo $joke->getAuthor()->name;

echo $joke->getAuthor()->email;

echo $joke->getAuthor()->password;

By solving the potential performance issue inside the class, it no longer matters

how it’s used externally. There will only ever be a single query for each instance

of the class.

552 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Joke Categories

Now that you know how to add relationships between different tables and model

them using classes, let’s add a new relationship.

At the moment, we have a single list of jokes. As we only have half a dozen jokes

on the website, this works fine, but moving forward as more people register for

the website and post jokes, the joke list page will keep getting longer!

People viewing the website may want to view a specific type of joke. For

example, programming jokes, knock-knock jokes, one-liners, puns and so on.

The most obvious way to achieve this is the way we modeled the relationship

between jokes and authors: create a category table to list the different categories,

then create a categoryId column in the joke table to allow each joke to be placed

in a category.

However, a joke may fall into more than one category.

Before modeling the relationship, let’s add a new form that allows creating new

categories and storing them in the database. It’s been a while since we’ve added a

new page to the website, and we’ve made a few changes since we last did, so I’ll

go through this in detail.

Firstly, let’s create the table to store the categories:

CREATE TABLE `ijdb_sample`.`category` (

`id` INT NOT NULL AUTO_INCREMENT,

`name` VARCHAR(255) NULL,

PRIMARY KEY (`id`));

Either use the SQL code above or use MySQL Workbench to create the category

table with two columns: id and name. id is the primary key, so make sure it’s

AUTO_INCREMENT, and type should be VARCHAR.

Create a new controller called Category in Ijdb/Controllers/Category.php.

This controller will need access to a DatabaseTable instance that allows

Relationships 553

www.EBooksWorld.ir

interacting with the new category table.

<?php

namespace Ijdb\Controllers;

class Category

{

private $categoriesTable;

public function __construct(\Ninja\DatabaseTable

$categoriesTable)

{

$this->categoriesTable = $categoriesTable;

}

}

Like the controller for jokes, we’ll need several actions: list to display a list of

categories, delete to delete a category, edit to display the add/edit form, and

saveEdit to handle the form submission.

Let’s add the form first. Create the template editcategory.html.php:

<form action="" method="post">

<input type="hidden"

name="category[id]"

value="<?=$category->id ?? ''?>">

<label for="categoryname">Enter category name:

</label>

<input type="text"

id="categoryname"

name="category[name]"

value="<?=$category->

name ?? ''?>" />

<input type="submit" name="submit" value="Save">

</form>

You can find this code in Relationships-AddCategory.

554 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Like editjoke.html.php, this template will be used for both the edit and add

pages, so we’ll pre-fill the text box if the $category variable is set.

Add the edit method to the new Category class:

public function edit() {

if (isset($_GET['id'])) {

$category =

➥ $this->categoriesTable->findById($_GET['id']);
}

$title = 'Edit Category';

return ['template' => 'editcategory.html.php',

'title' => $title,

'variables' => [

'category' => $category ?? null

]

];

}

Open up IjdbRoutes. The first thing to do here is to create the instance of the

DatabaseTable class for the category table. Like authorsTable and jokesTable,

this can be stored in a class variable and created in the constructor:

class IjdbRoutes implements \Ninja\Routes {

private $authorsTable;

private $jokesTable;

private $categoriesTable;

private $authentication;

public function __construct() {

include __DIR__ . '/../../includes/DatabaseConnection.php';

$this->jokesTable = new \Ninja\DatabaseTable($pdo,

'joke', 'id', '\Ijdb\Entity\Joke',

[&$this->authorsTable]);

Relationships 555

www.EBooksWorld.ir

$this->authorsTable = new \Ninja\DatabaseTable($pdo,

'author', 'id',

'\Ijdb\Entity\Author',

[&$this->jokesTable]);

$this->categoriesTable = new \Ninja\DatabaseTable($pdo,

➥ 'category', 'id');

// …

Notice that I haven’t specified an entity class for the category table. Unless we

need to add some functionality to it, it can use the stdClass class that we set as

the default.

Next, create an instance of the Category controller and add the route for the edit

page. We’ll display this on the URL /category/edit:

556 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

13-3. Relationships-AddCategory2

$authorController = new \Ijdb\Controllers\Register

($this->authorsTable);

$loginController = new \Ijdb\Controllers\Login

($this->authentication);

$categoryController = new \Ijdb\Controllers\Category

($this->categoriesTable);

$routes = [

// …

'category/edit' => [

'POST' => [

'controller' => $categoryController,

'action' => 'saveEdit'

],

'GET' => [

'controller' => $categoryController,

'action' => 'edit'

],

'login' => true

],

// …

If you’ve followed the steps above, visit http://192.168.10.10/category/edit

and you should see the form. We’ve already set up the route, so let’s add the

saveEdit method to add a category to the database when the form is submitted:

13-4. Relationships-AddCategory-Save

public function saveEdit() {

$category = $_POST['category'];

$this->categoriesTable->save($category);

header('location: /category/list');

}

If you test the form and press Submit, you’ll see an error message, because we

Relationships 557

www.EBooksWorld.ir

haven’t built the list page yet. However, you can check the form is working by

selecting all the records from the table in MySQL Workbench.

Once a category has been added, you should even be able to edit it by visiting

http://192.168.10.10/category/edit?id=1.

At this point, it’s worth momentarily stepping back and considering the benefit of

the classes and framework we’ve built. With fairly little effort, we’ve created a

form that allows inserting data into the database, loading a record into it and

editing. Think back to Chapter 4, when we were manually writing INSERT and

UPDATE queries, and think about how much more code you would have needed to

write with that approach!

List Page

We can also add the list page with fairly little code. Firstly, let’s create a template,

categories.html.php, that loops through a list of categories and displays an edit/

delete button for each of them:

<h2>Categories</h2>

Add a new category

<?php foreach ($categories as $category): ?>

<blockquote>

<p>

<?=htmlspecialchars($category->name,

ENT_QUOTES, 'UTF-8')?>

<a

href="/category/edit?id=<?=$category->id?>">

Edit

<form action="/category/delete" method="post">

<input type="hidden"

name="id"

value="<?=$category->id?>">

<input type="submit" value="Delete">

</form>

</p>

558 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

</blockquote>

<?php endforeach; ?>

Here’s the controller action in Category.php:

public function list() {

$categories = $this->categoriesTable->findAll();

$title = 'Joke Categories';

return ['template' => 'categories.html.php',

'title' => $title,

'variables' => [

'categories' => $categories

]

];

}

And finally, here’s the route in IjdbRoutes:

'category/list' => [

'GET' => [

'controller' => $categoryController,

'action' => 'list'

],

'login' => true

],

You can find this code in Relationships-ListCategories.

The Edit link from the template already works. Add the route and controller

action for the Delete button to finish the category management pages:

'category/delete' => [

Relationships 559

www.EBooksWorld.ir

'POST' => [

'controller' => $categoryController,

'action' => 'delete'

],

'login' => true

],

public function delete() {

$this->categoriesTable->delete($_POST['id']);

header('location: /category/list');

}

Example: Relationships-DeleteCategory

Assigning Jokes to Categories

Now that categories can be added to the website, let’s add the ability to assign a

joke to a category.

As I mentioned previously, the simplest approach would be to have a <select>

box on the add joke page, which sets a categoryId column in the joke table.

However, this approach is the least flexible. It’s possible that a joke will fall into

more than one category. Instead, we’re going to model this relationship using a

join table—that is, a table with just two columns.

In our case, the columns will be jokeId and categoryId.

Let’s create the following table using either MySQL Workbench or by running this

query:

CREATE TABLE `ijdb_sample`.`joke_category` (

`jokeId` INT NOT NULL,

`categoryId` INT NOT NULL,

560 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

PRIMARY KEY (`jokeId`, `categoryId`));

Note that both the jokeId and categoryId columns are the primary key. As I

explained in Chapter 4, this is to prevent the same joke being added to a category

twice.

Before continuing, let’s add some categories to the database. Using the form at

http://192.168.10.10/category/edit, add the categories “programming jokes”

and “one-liners”.

Currently we have three jokes, each of which falls into the “programming jokes”

category:

How many programmers does it take to screw in a lightbulb? None, it’s

a hardware problem.

Why did the programmer quit his job? He didn’t get arrays.

Why was the empty array stuck outside? It didn’t have any keys.

Here are some more jokes that fit in the two categories:

Bugs come in through open Windows. (“programming jokes” and “one-

liners” categories)

How do functions break up? They stop calling each other.

(“programming jokes” only)

You don’t need any training to be a litter picker, you pick it up on the

job. (“one-liners” only)

Venison’s dear, isn’t it? (“one-liners” only)

It’s tricky being a magician. (“one-liners” only)

Don’t add these just yet. We’ll amend the Add Joke page to allow selecting

categories and then add the jokes.

Instead of using a <select> box, we’ll use a series of checkboxes to allow users to

Relationships 561

www.EBooksWorld.ir

select which categories a joke falls into.

As the Joke controller will now need to be able to pass a list of categories to the

editjoke.html.php template, let’s amend the controller with a new constructor

argument and class variable:

class Joke {

private $authorsTable;

private $jokesTable;

private $categoriesTable;

private $authentication;

public function __construct(DatabaseTable $jokesTable,

DatabaseTable $authorsTable,

DatabaseTable $categoriesTable,

Authentication $authentication) {

$this->jokesTable = $jokesTable;

$this->authorsTable = $authorsTable;

$this->categoriesTable = $categoriesTable;

$this->authentication = $authentication;

}

// …

Now we should pass in the categoriesTable DatabaseTable instance when the

Joke controller is instantiated in IjdbRoutes:

$jokeController = new \Ijdb\Controllers\Joke

($this->jokesTable, $this->authorsTable,

$this->categoriesTable,

$this->authentication);

Aesthetic Choices

For consistency, I’ve placed the argument before the Authentication argument.

There’s no practical reason for this; it’s an entirely aesthetic choice to put all the

DatabaseTable instances together.

562 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

In the edit method, pass the list of categories to the template:

public function edit() {

$author = $this->authentication->getUser();

$categories = $this->categoriesTable->findAll();

if (isset($_GET['id'])) {

$joke = $this->jokesTable->findById($_GET['id']);

}

$title = 'Edit joke';

return ['template' => 'editjoke.html.php',

'title' => $title,

'variables' => [

'joke' => $joke ?? null,

'userId' => $author->id ?? null,

'categories' => $categories

]

];

}

}

The next step is to set up the list of categories in the editjoke.html.php

template and create a checkbox for each:

<form action="" method="post">

<input type="hidden" name="joke[id]"

value="<?=$joke->id ?? ''?>">

<label for="joketext">Type your joke here:

</label>

<textarea id="joketext" name="joke[joketext]" rows="3"

cols="40"><?=$joke->joketext ?? ''?>

</textarea>

<p>Select categories for this joke:</p>

<?php foreach ($categories as $category): ?>

Relationships 563

www.EBooksWorld.ir

<input type="checkbox"

name="category[]"

value="<?=$category->id?>" />

<label><?=$category->name?></label>

<?php endforeach; ?>

<input type="submit" name="submit" value="Save">

</form>

The code here should be familiar by now, but I’ll quickly go over the additions

I’ve made.

<?php foreach ($categories as $category): ?>: loop over each of the

categories.

<input type="checkbox" name="category[]" value="<?=$category->id?>"

/>: this creates a checkbox for each category with the value property set to the ID

of the category.

name="category[]": by setting the name of the checkbox to category[], an array

will be created when the form is submitted. For example, if you checked the

checkboxes with the values 1 and 3, the variable $_POST['category'] would

contain an array with the values 1 and 3 (['1', '3']).

If you try the code above, the formatting will look strange. Add the following CSS

to jokes.css to fix it:

form p {clear: both;}

input[type="checkbox"] {float: left; clear: left; width:

➥ auto; margin-right: 10px;}
input[type="checkbox"] + label {clear: right;}

You can find this code in Relationships-JokeCategory

Now that the categories are listed and selectable on the Add Joke page, we need

to change the saveEdit method to handle new data from the form submission.

564 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

It’s important to understand what needs to happen here. When the form is

submitted, an array of the IDs of the checked categories will be sent as a $_POST

variable. Each category ID and the ID of the new joke will then be written to the

joke_category table.

Before we can add records to the joke_category table, we’ll need a

DatabaseTable instance for it. Add the class variable and create the instance in

IjdbRoutes:

// …

private $jokeCategoriesTable;

public function __construct() {

include __DIR__ . '/../../includes/DatabaseConnection.php';

$this->jokesTable = new \Ninja\DatabaseTable($pdo,

'joke', 'id', '\Ijdb\Entity\Joke',

[&$this->authorsTable]);

$this->authorsTable = new \Ninja\DatabaseTable($pdo,

'author', 'id',

'\Ijdb\Entity\Author',

[&$this->jokesTable]);

$this->categoriesTable = new \Ninja\DatabaseTable($pdo,

'category', 'id');

$this->jokeCategoriesTable =

new \Ninja\DatabaseTable($pdo,

'joke_category', 'categoryId');

// …

We could pass the jokeCategoriesTable instance to the Joke controller.

However, like we did with the $author->addJoke method, it’s better to

implement this using an object-oriented approach, where a joke is added to a

category using this code:

$joke->addCategory($categoryId);

Relationships 565

www.EBooksWorld.ir

To do this, we’ll need a Joke entity instance in the saveEdit method in the Joke

controller. The code for the updated saveEdit method will look like this:

public function saveEdit() {

$author = $this->authentication->getUser();

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$jokeEntity = $author->addJoke($joke);

foreach ($_POST['category'] as $categoryId) {

$jokeEntity->addCategory($categoryId);

}

header('location: /joke/list');

}

The important change to what we have at the moment is the line $jokeEntity =

$author->addJoke($joke);.

The addJoke method, which currently does not have a return value, will need to

return a Joke entity instance, which represents the joke that has just been added

to the database.

As a first thought, a simple approach would be to fetch the joke from the

jokesTable instance after it’s been created, using the following process:

take the data for the new joke from $_POST

pass it to the addJoke method in the Author entity class

retrieve the newly added joke from the database using a SELECT query (or the

findById method)

For example:

public function addJoke($joke) {

$joke['authorId'] = $this->id;

566 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

// Store the joke in the database

$this->jokesTable->save($joke);

// Fetch the new joke as an object

return $this->jokesTable->findById($id);

}

There are two problems with this:

1. We don’t know what the newly created joke’s id is.

2. It adds additional overhead. We’re actually making two trips to the

database—once to run an INSERT query to send the data about the new joke,

and then a SELECT query to fetch that very same information back out of the

database immediately afterwards! We already have the information in the

$joke variable, so there’s no need to fetch it from the database here.

Although, it would be possible to create the Joke entity instance in the addJoke

method, it makes more sense to place this functionality in the DatabaseTable

class. Whenever save is called, it can return the relevant entity instance. By

placing this logic inside the save method, any time any data is written to any

database table, the save method will return an object representing that newly

added record.

The addJoke method above should be changed to this:

public function addJoke($joke) {

$joke['authorId'] = $this->id;

return $this->jokesTable->save($joke);

}

This will just return the return value of the save method from the DatabaseTable

class. That is, whatever the save method returns to the addJoke method will also

Relationships 567

www.EBooksWorld.ir

be returned by the addJoke method.

Open up the DatabaseTable class and find the save method:

public function save($record) {

try {

if ($record[$this->primaryKey] == '') {

$record[$this->primaryKey] = null;

}

$this->insert($record);

}

catch (\PDOException $e) {

$this->update($record);

}

}

This calls either the insert or update method. The first thing we need to do here

is create an instance of the relevant entity class. For jokes, it will be the Joke

class; for authors, it will be the Author class; and so on.

To create the relevant entity, we can use this code:

$entity = new

➥ $this->className(...$this->constructorArgs);

This looks complicated. There are lots of variables, and a brand new operator! It’s

important to understand what’s happening here, so I’ll show you how this works.

Let’s think about what we want to do for the joke class. To create an instance of

the Joke entity class, we’d need the following code:

$joke = new \Ijdb\Entity\Joke($authorsTable);

The class name, \Ijdb\Entity\Joke, is stored in the $this->className variable,

so the above could be expressed like this:

568 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$joke = new $this->className($authorsTable);

And this will still work in the same way.

However, each entity class has different arguments and, potentially, a different

number of arguments. The Author entity class, for example, requires the

$jokesTabe instance. We already have the list of arguments for the entity class in

the $this->constructorArgs variable as an array.

The ... operator, known as the argument unpacking operator or splat operator,

allows specifying an array in place of several arguments.

For example, consider this code:

$array = [1, 2];

someFunction(...$array);

It’s the same as this:

someFunction(1, 2);

In our use case, this code:

$entity = new

➥ $this->className(...$this->constructorArgs);

… is equivalent to this:

$entity = new

➥ $this->className($this->constructorArgs[0],
➥ $this->constructorArgs[1]);

Relationships 569

www.EBooksWorld.ir

Once this code has run, the $entity variable will store an object. The type of that

object will depend on the class defined in $this->className. For the

$jokesTable instance, it will be an instance of the Joke entity class.

This line can be placed inside the save method, along with a line to return the

newly created entity object:

public function save($record) {

$entity = new $this->

className(...$this->constructorArgs);

try {

if ($record[$this->primaryKey] == '') {

$record[$this->primaryKey] = null;

}

$this->insert($record);

}

catch (\PDOException $e) {

$this->update($record);

}

return $entity;

}

With those lines in place, the save method will instantiate the relevant, empty,

entity class. The next stage is writing the data that was sent to the database to the

class. This can be done with a simple foreach:

public function save($record) {

$entity = new $this->

className(...$this->constructorArgs);

try {

if ($record[$this->primaryKey] == '') {

$record[$this->primaryKey] = null;

}

$this->insert($record);

}

570 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

catch (\PDOException $e) {

$this->update($record);

}

foreach ($record as $key => $value) {

if (!empty($value)) {

$entity->$key = $value;

}

}

return $entity;

}

The important line here is $entity->$key = $value;. Each time foreach

iterates, the $key variable is set to the column name—for example joketext—and

the $value variable is set to the value being written to that column. By using the

$key variable after the object access operator (->), it will write to the property

with the name of the column.

The if (!empty($value)) check is in place to prevent values that are already set

on the entity (such as the primary key) being overwritten with null.

$record = ['joketext' => 'Why did the empty array get

➥ stuck outside? It didn\'t have any keys',
'authorId' => 1,

'jokedate' => '2017-06-22'];

foreach ($record as $key => $value) {

if (!empty($value)) {

$joke->$key = $value;

}

}

The code above will have the same result as this:

$joke->joketext = 'Why did the empty array get stuck

Relationships 571

www.EBooksWorld.ir

➥ outside? It didn\'t have any keys';

$joke->authorId = 1;

$joke->jokedate = '2018-06-22';

With the foreach in place, writing the values to the entity object, the save

method will return the object with all the values that were passed as an array to

the method.

This will work fine for records being updated, as the $record variable will

include keys for all the columns in the database table.

A newly created record, however, will not have the primary key set. When a joke

is added, we pass the save method values for the joketext, jokedate and

authorId columns, not the id. In fact, we couldn’t pass the id even if we wanted

to, as we don’t know what it will be before the record has been created in the

database.

The id primary key is actually created by MySQL inside the database. For INSERT

queries, we’ll need to read the value from the database immediately after the

record has been added.

Luckily, the PDO library provides a very simple method of doing this. After an

INSERT query has been sent to the database, you can call the lastInsertId

method on the PDO instance to read the ID of the last record inserted.

To implement this, let’s amend the insert method in our DatabaseTable class to

return the last insert ID:

private function insert($fields) {

$query = 'INSERT INTO `' . $this->table . '` (';

Converting Arrays to Objects

This approach is a common method of converting an array to an object.

572 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

foreach ($fields as $key => $value) {

$query .= '`' . $key . '`,';

}

$query = rtrim($query, ',');

$query .= ') VALUES (';

foreach ($fields as $key => $value) {

$query .= ':' . $key . ',';

}

$query = rtrim($query, ',');

$query .= ')';

$fields = $this->processDates($fields);

$this->query($query, $fields);

return $this->pdo->lastInsertId();

}

Now, the save method can read this value and set the primary key on the created

entity object:

public function save($record) {

$entity = new $this->

className(...$this->constructorArgs);

try {

if ($record[$this->primaryKey] == '') {

$record[$this->primaryKey] = null;

}

$insertId = $this->insert($record);

$entity->{$this->primaryKey} = $insertId;

Relationships 573

www.EBooksWorld.ir

}

catch (\PDOException $e) {

$this->update($record);

}

foreach ($record as $key => $value) {

$entity->$key = $value;

}

return $entity;

}

I’ve used the shorthand method with braces to set the primary key, but it’s the

same as this:

$insertId = $this->insert($record);

$primaryKey = $this->primaryKey;

$entity->$primaryKey = $insertId;

The save method is now complete. Any time the save method is called, it will

return an entity instance representing the record that’s just been saved.

Assigning Categories to Jokes

This functionality is required to enable the joke controller to assign categories to

a joke instance. We can amend the saveEdit method in the Joke controller to

look like this:

public function saveEdit() {

$author = $this->authentication->getUser();

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

574 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$jokeEntity = $author->addJoke($joke);

foreach ($_POST['category'] as $categoryId) {

$jokeEntity->addCategory($categoryId);

}

header('location: /joke/list');

}

Now that $author->addJoke($joke); returns a Joke entity object, we can call

methods on an entity representing the record that has just been inserted. In this

case, $jokeEntity->addCategory($categoryId); can be used to assign a

category to the joke that was just added to the database.

Of course, for this to work we’ll need to make some changes to the Joke entity

class.

As the addCategory method will write a record to the new joke_category table,

it will need a reference to the jokeCategoriesTable DatabaseTable instance.

You know the drill here: add a class variable and constructor argument:

<?php

namespace Ijdb\Entity;

class Joke {

public $id;

public $authorId;

public $jokedate;

public $joketext;

private $authorsTable;

private $author;

private $jokeCategoriesTable;

public function __construct(\Ninja\DatabaseTable

$authorsTable, \Ninja\DatabaseTable

$jokeCategoriesTable) {

$this->authorsTable = $authorsTable;

$this->jokeCategoriesTable = $jokeCategoriesTable;

Relationships 575

www.EBooksWorld.ir

}

// …

Then amend IjdbRoutes to provide the instance as an argument to the

constructor of the $jokesTable instance:

$this->jokesTable = new \Ninja\DatabaseTable($pdo,

'joke', 'id', '\Ijdb\Entity\Joke',

[&$this->authorsTable,

&$this->jokeCategoriesTable]);

By adding &$this->jokeCategoriesTable to the array passed as the fifth

argument, each time an instance of \Ijdb\Entity\Joke is created inside the

$jokesTable instance, the constructor will be called with the authorsTable and

jokeCategoriesTable instances.

Next, add the addCategory method to the Joke entity class:

public function addCategory($categoryId) {

$jokeCat = ['jokeId' => $this->id,

'categoryId' => $categoryId];

$this->jokeCategoriesTable->save($jokeCat);

}

You can find this code in Relationships-AssignCategory

This code is fairly simple. The first line creates an array that represents the record

to be added. The jokeId is the id of the joke that we’re adding the category to,

and the categoryId comes from the argument.

With this code in place, whenever a joke is added to the website it’s assigned to

the categories that were checked.

576 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Go ahead and add the jokes I supplied earlier, or your own, and verify that the

records have been added to the joke_category join table by selecting the

records from the table in MySQL Workbench.

Displaying Jokes by Category

Now that we have jokes in the database that are assigned to a category, let’s add a

page that allows selecting jokes by category.

On the Joke List page, let’s add a list of categories to allow filtering of the jokes.

The first part is fairly simple: we need a list of categories as links on the Joke List

page. This involves two fairly simple steps:

1. Amend the list action to pass a list of categories to the template:

public function list() {

$jokes = $this->jokesTable->findAll();

$title = 'Joke list';

$totalJokes = $this->jokesTable->total();

$author = $this->authentication->getUser();

return ['template' => 'jokes.html.php',

'title' => $title,

'variables' => [

'totalJokes' => $totalJokes,

'jokes' => $jokes,

'userId' => $author->id ?? null,

'categories' => $this->categoriesTable->findAll()

]

];

}

1. Loop through the categories in the jokes.html.php template and create a list

with links for each one:

Relationships 577

www.EBooksWorld.ir

<ul class="categories">

<?php foreach ($categories as $category): ?>

<a href="/joke/list?category=

<?=$category->id?>">

<?=$category->name?>

<?php endforeach; ?>

To make it look a little nicer, you can also add a containing div and a div around

the list of jokes:

<div class="jokelist">

<ul class="categories">

<?php foreach ($categories as $category): ?>

<a href="/joke/list?category=

<?=$category->id?>">

<?=$category->name?>

<?php endforeach; ?>

<div class="jokes">

<p><?=$totalJokes?> jokes have been submitted to

➥ the Internet Joke Database.</p>

<?php foreach ($jokes as $joke): ?>

// …

<?php endforeach; ?>

</div>

Then apply the following CSS:

.jokelist {display: table;}

.categories {display: table-cell; width: 20%;

578 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

➥ background-color: #333; padding: 1em; list-style-type: none;}
.categories a {color: white; text-decoration: none;}

.categories li {margin-bottom: 1em;}

.jokelist .jokes {display: table-cell; padding: 1em;}

You can find this code in Relationships-CategoryList.

That’s the list done, but the links currently don’t do anything. Each link sets a

$_GET variable called category to the ID of the category we want to view. If you

click on one of the new category links, you’ll see the page you visit is /jokes/

list?category=1 or similar.

You’ve likely already worked out what we need to do now. We need to use the

new $_GET variable to display a filtered list of jokes if the category variable is

set.

If we had done a simpler relationship with a categoryId column in the joke

table, this would be relatively simple. In the list controller action, we’d just

amend the way in which the $jokes variable was set:

if (isset($_GET['category'])) {

$jokes = $this->jokesTable->find('category',

$_GET['category']);

}

else {

$jokes = $this->jokesTable->findAll();

}

However, as we have a many-to-many relationship, it's not quite so simple. One

option is to pass the jokeCategoriesTable to the controller and do something

like this:

if (isset($_GET['category'])) {

$jokeCategories = $this->jokeCategoriesTable->

find('categoryId', $_GET['categoryId']);

Relationships 579

www.EBooksWorld.ir

$jokes = [];

foreach ($jokeCategories as $jokeCategory) {

$jokes[] = $this->jokesTable->

findById($jokeCategory->jokeId);

}

}

else {

$jokes = $this->jokesTable->findAll();

}

In this example, we’re getting a list of all the records from the joke_cagegory

table for the chosen category by its id—for example, 4. This gives us a set of

records, each with a categoryId and a jokeId.

In our example, the categoryId will always be 4, because we’ve only selected the

records from that category, but each record has a unique jokeId. We then loop

through all the records and find the relevant record from the joke table, adding

each joke record to the $jokes array.

If you want to go ahead and test this approach for yourself, use the code above in

the list method, create the jokeCategoriesTable class variable, constructor

argument, and pass the instance into the Joke controller from IjdbRoutes.

I haven’t given you the code for this because it’s not a great solution. One of the

most difficult parts of programming is placing code in the right place. The logic

above is correct. It works, and it was fairly simple to work out. However, it would

be better if we could get a list of jokes from a category like this:

$category = $this->categoriesTable->

findById($_GET['category']);

$jokes = $category->getJokes();

Doing so would allow us to get a list of jokes from a category anywhere in the

program, not just the list method.

580 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

You already know how to achieve this: we did the same thing with

$joke->getAuthor(). In principle, this is the same.

We’ll need a Category entity class that has access to the jokesTable instance, the

jokeCategoriesTable instance, and has a method called getJokes:

<?php

namespace Ijdb\Entity;

use Ninja\DatabaseTable;

class Category

{

public $id;

public $name;

private $jokesTable;

private $jokeCategoriesTable;

public function __construct(DatabaseTable $jokesTable,

DatabaseTable $jokeCategoriesTable)

{

$this->jokesTable = $jokesTable;

$this->jokeCategoriesTable = $jokeCategoriesTable;

}

public function getJokes()

{

$jokeCategories = $this->jokeCategoriesTable->

find('categoryId', $this->id);

$jokes = [];

foreach ($jokeCategories as $jokeCategory) {

$joke = $this->jokesTable->

findById($jokeCategory->jokeId);

if ($joke) {

$jokes[] = $joke;

}

}

Relationships 581

www.EBooksWorld.ir

return $jokes;

}

}

Save this in classes/Ijdb/Entity/Category.php. You’ll notice the code in the

getJokes method is almost the same as the code I showed you earlier. The only

differences are that it uses $this->id instead of $_GET['category'] and returns

the $jokes array. One minor change I’ve added is a safety precaution: the if

($joke) check ensures that a joke is only added to the $jokes array if it can be

retrieved from the database.

Amend IjdbRoutes to set the categoriesTable instance to use the new Category

entity class and provide the two constructor arguments:

$this->categoriesTable = new \Ninja\DatabaseTable($pdo,

➥ 'category', 'id', '\Ijdb\Entity\Category',
➥ [&$this->jokesTable,
➥ &$this->jokeCategoriesTable]);

Finally, use the new getJokes method to retrieve the jokes in the list controller

action:

if (isset($_GET['category'])) {

$category = $this->categoriesTable->

findById($_GET['category']);

$jokes = $category->getJokes();

}

else {

$jokes = $this->jokesTable->findAll();

}

You can find this code in Relationships-CategoryList2

Using this approach, any time you need a list of jokes that exist in a category, you

can find the category and then use $category->getJokes().

582 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

If you visit the Joke List page of the website, you’ll be able to click on the category

links to filter the jokes.

Editing Jokes

We’ve got most of the functionality for placing jokes in categories, but you’ll

notice a problem if you try to edit a joke. In fact, there are two problems.

The first, and the most obvious, can be found by editing a joke: try to edit one of

the jokes that’s already in a category and you’ll immediately notice that the boxes

aren’t checked.

To fix this, we need to amend the code that prints the checkboxes:

<p>Select categories for this joke:</p>

<?php foreach ($categories as $category): ?>

<input type="checkbox" name="category[]"

value="<?=$category->id?>" />

<label><?=$category->name?></label>

<?php endforeach; ?>

To check a checkbox, you add the attribute checked to the input element:

<input type="checkbox" checked name="category[]"

value="<?=$category->id?>" />

This is simple to add with an if statement to display checked if the joke is inside

the category. The difficult part is determining if the joke is inside any given

category.

We’ll also solve this in an object-oriented way. Let’s add a method in the joke

entity so we can use this:

if ($joke->hasCategory($category->id))

Relationships 583

www.EBooksWorld.ir

Add the hasCategory method to the Joke entity class:

public function hasCategory($categoryId) {

$jokeCategories = $this->jokeCategoriesTable->

find('jokeId', $this->id);

foreach ($jokeCategories as $jokeCategory) {

if ($jokeCategory->categoryId == $categoryId) {

return true;

}

}

}

This works by finding all the categories that are associated with a joke, looping

through them and checking to see whether one of those matches a given

$categoryId.

With that in place, we can use it in the editjoke.html.php template:

<p>Select categories for this joke:</p>

<?php foreach ($categories as $category): ?>

<?php if ($joke &&

$joke->hasCategory($category->id)): ?>

<input type="checkbox" checked name="category[]"

value="<?=$category->id?>" />

<?php else: ?>

<input type="checkbox" name="category[]"

value="<?=$category->id?>" />

<?php endif; ?>

<label><?=$category->name?></label>

<?php endforeach; ?>

If you go to edit a joke, the relevant category boxes will now be checked, solving

the first problem.

584 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The second problem is a little more subtle. If you edit a joke but don’t change the

categories, everything will appear to work. However, if you uncheck a box, the

changes won’t be saved!

Try editing one of the jokes and unchecking all the category boxes before pressing

Save. When you go back to edit the joke, the boxes will still be checked.

The reason for this issue is a common one when dealing with checkboxes in this

way. Although we have some logic that says, “If the box is checked, add a record

to the joke_category table,” we don’t have anything to remove that record after

it’s been added and the checkbox has been unticked.

We could use this process:

loop through every single category

check to see if the corresponding checkbook box wasn’t checked

if the box wasn’t checked and there’s a corresponding record, delete the record

We’d need do this check for every category, and it would take a fairly large

amount of code to achieve.

Instead, a much simpler approach is to delete all the records from the

joke_category table that are related to the joke we’re editing, then apply the

same logic as before: loop through the checked boxes and insert records for each

category that was checked.

Admittedly, this isn’t entirely efficient. If the joke is edited and the category

checkboxes aren’t changed, this will cause unnecessary deletion and reinsertion

of identical data. However, it’s still the simplest approach.

Our DatabaseTable class has a delete method that allows deleting a record by its

primary key. However, our table has two primary keys—jokeId and

categoryId—so we can’t use it as it currently is.

Instead, let’s add a deleteWhere method to the DatabaseTable class that works

like the existing find method:

public function deleteWhere($column, $value) {

$query = 'DELETE FROM ' . $this->table . '

Relationships 585

www.EBooksWorld.ir

WHERE ' . $column . ' = :value';

$parameters = [

'value' => $value

];

$query = $this->query($query, $parameters);

}

The code here is identical to the find method, except that it sends a DELETE query

to the database rather than a SELECT query. For example,

$jokesTable->deleteWhere('authorId', 7) would delete all the jokes by the

author with the id of 7.

Add a clearCategories method to the Joke entity class that removes all the

related records from the jokeCategories table for a given joke.

public function clearCategories() {

$this->jokeCategoriesTable->deleteWhere('jokeId',

$this->id);

}

When $joke->clearCategories() is called, it will remove every record from the

joke_category table that represents the joke stored in $joke. Add this call to the

saveEdit method in the Joke controller:

public function saveEdit() {

$author = $this->authentication->getUser();

$joke = $_POST['joke'];

$joke['jokedate'] = new \DateTime();

$jokeEntity = $author->addJoke($joke);

$jokeEntity->clearCategories();

586 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

foreach ($_POST['category'] as $categoryId) {

$jokeEntity->addCategory($categoryId);

}

header('location: /joke/list');

}

You can find this code in Relationships-ChangeCategories.

Test it for yourself by editing a joke and unchecking some categories, then going

back and adding them again. If you’ve followed the steps here, you’ll be able to

change the categories as you’d expect.

User Roles

We’ve now got a fully functional jokes website where users can register, post

jokes, edit/delete their own submissions and view jokes by category.

But what happens if someone posts something you want to delete, or you want to

fix a spelling mistake in someone else’s joke?

At the moment, you can’t do that! There’s a check in place that only allows

authors to edit their own jokes. If someone else posts something, there’s currently

no way for you to amend it.

The website is also set up so that anyone can add new categories. It would be

better if only you (the website owner) were able to do that.

This is a very common problem on websites, and it’s generally solved with access

levels, where different accounts can perform different tasks.

On our website, we would need at minimum the following access levels:

1. Standard users: can post new jokes and edit/delete jokes they’ve posted.

2. Administrators: can add/edit/remove categories, post jokes, and edit/delete

jokes anyone has posted. They should also be able to turn other users into

Relationships 587

www.EBooksWorld.ir

administrators.

The simplest way to do this is to have a column in the author table that

represents the author’s access level. A 1 in the column could represent a normal

user and, and a 2 could represent an administrator. It would then be easy to add a

check on any page to determine whether or not the logged-in user was an

administrator:

$author = $this->authentication->getUser();

if ($author->accessLevel == 2) {

// They're an administrator

}

else {

// Otherwise, they're not

}

This method is very simple to understand, and we could even very easily abstract

it to if ($author->isAdmin()) to improve the readability.

This implementation of access levels is fine for small websites with only a few

users, or when there’s only one administrator.

However, on larger, real-world websites, you often need to give users different

levels of access. For example, we may want someone to be able to add categories,

but not able to grant other people administrator access, or worse, revoke your

administrator privileges so they have complete control of the website!

A more flexible approach is to give each user individual permissions for each

action. For example, we could set a user up to be able to edit a category but not

add an administrator.

For this website, we’ve already considered these permissions:

edit other people’s jokes

delete other people’s jokes

add categories

edit categories

588 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

remove categories

edit user access levels

Before we model this in the database, let’s think about how we’d check these in

the existing code.

Our Author entity class could have a method called hasPermission that takes a

single argument and returns true or false, depending on whether or not the user

has a specific permission.

We could assign numbers to each of the permissions above, so that the following

code could be used to check whether they have permission to edit other people’s

jokes:

if ($author->hasPermission(1))

2 could represent deleting other users’ jokes, 3 could be whether members are

allowed to add categories, and so on.

This is roughly what we want to do, but looking at the line of code above, it’s

really not clear what’s happening. If you saw the code

$author->hasPermission(6), you’d have to go away and look up what 6 meant.

To make the code much easier to read, each value can be stored inside a

constant—which, like a variable, is a label given to a value. The difference,

however, is that a constant always has the same value. The value is set once at the

beginning of the program and can’t be changed.

In object-oriented programming, constants are defined in classes like so:

<?php

namespace Ijdb\Entity;

class Author {

const EDIT_JOKES = 1;

const DELETE_JOKES = 2;

Relationships 589

www.EBooksWorld.ir

const LIST_CATEGORIES = 3;

const EDIT_CATEGORIES = 4;

const REMOVE_CATEGORIES = 5;

const EDIT_USER_ACCESS = 6;

I’ve defined the constants in the Author entity class, since the permissions are

related to authors.

We’ll also define a method called hasPermission in the class:

<?php

namespace Ijdb\Entity;

class Author {

const EDIT_JOKES = 1;

const DELETE_JOKES = 2;

const LIST_CATEGORIES = 3;

const EDIT_CATEGORIES = 4;

const REMOVE_CATEGORIES = 5;

const EDIT_USER_ACCESS = 6;

// …

public function hasPermission($permission) {

// …

}

Before we write the code for this method, I’m going to show you how it will be

used:

Constant Conventions

By convention, constants are written in uppercase, with words separated by

underscores. Although it’s possible to use lowercase letters, it’s almost universal in

every programming language that constants are written like this!

590 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$author = $this->authentication->getUser();

if ($author->hasPermission

(\Ijdb\Entity\Author::LIST_CATEGORIES)) {

// …

}

Notice that the constant is prefixed with the namespace and class name, then a

::. The :: operator is used to access constants in a given class.

When accessing a constant, you don’t need an instance to be created, as each

instance would have the same value for the constant anyway.

There are two different places we’ll need to implement this. The first is page-level

access. As we did with the login check, a check can be done in the router to stop

people even viewing a page if they don’t have the correct permissions.

This will need to be done in EntryPoint, but because each website you build

might have a different way of handling these checks, we’ll add a new method to

IjdbRoutes called checkPermissions:

public function checkPermission($permission): bool {

$user = $this->authentication->getUser();

if ($user && $user->hasPermission($permission)) {

return true;

} else {

return false;

}

}

This fetches the current logged-in user and checks to see if they have a specific

permission.

As this is something that will need to be provided by any website you build,

amend the Routes interface to include the checkPermission method:

Relationships 591

www.EBooksWorld.ir

<?php

namespace Ninja;

interface Routes

{

public function getRoutes(): array;

public function getAuthentication(): \Ninja\Authentication;

public function checkPermission($permission): bool;

}

To implement this in the EntryPointy class, we’ll add an extra entry to the

$routes array to specify which permissions are required for accessing each page.

Let’s start with the category permissions:

'category/edit' => [

'POST' => [

'controller' => $categoryController,

'action' => 'saveEdit'

],

'GET' => [

'controller' => $categoryController,

'action' => 'edit'

],

'login' => true,

'permissions' => \Ijdb\Entity\Author::EDIT_CATEGORIES

],

'category/delete' => [

'POST' => [

'controller' => $categoryController,

'action' => 'delete'

],

'login' => true,

'permissions' => \Ijdb\Entity\Author::REMOVE_CATEGORIES

],

'category/list' => [

'GET' => [

'controller' => $categoryController,

'action' => 'list'

592 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

],

'login' => true,

'permissions' => \Ijdb\Entity\Author::LIST_CATEGORIES

],

I’ve added the relevant permission requirements to each page using an extra key

in the array. This only defines an extra value in the array. We’ll need to have the

EntryPoint class call the checkPermission method that we just added to

determine whether the logged-in user is allowed to view the page.

The process here is fairly straightforward. When you visit a page—for example,

/category/edit—the EntryPoint class will read the value stored in the

permissions key for that route, then call the new checkPermission method to

determine whether the user who is logged in and viewing the page has that

permission.

This will work in the same way as the login check:

if (isset($routes[$this->route]['login']) &&

!$authentication->isLoggedIn()) {

header('location: /login/error');

}

else if (isset($routes[$this->route]['permissions'])

➥ &&
!$this->routes->checkPermission

($$routes[$this->route]['permissions'])) {

header('location: /login/error');

}

else {

// …

Firstly, the login check is performed, then the permissions check. If the route

contains a permissions key, the value stored under that key—for example,

\Ijdb\Entity\Author::REMOVE_CATEGORIES—is passed to the checkPermission

method, which determines whether the logged-in user has the required

permission.

Relationships 593

www.EBooksWorld.ir

Since we haven’t written the code for the hasPermission method in the Author

entity class yet, any permission check will always return false. Go ahead and try

viewing the category list by visiting http://192.168.10.10/category/list.

You’ll see the error page that says “You are not logged in”. At this point, you

might want to add a new template and route that displays a more accurate error

message, but by now you should be very familiar with adding pages, so I’m not

going to walk you through it!

You can find this code in Relationships-PermissionsCheck.

Creating a Form to Assign Permissions

Before we can implement the hasPermission method, the website needs a page

that allows assigning permissions to any given user.

We’ll need two pages—one that lists all the authors, so we can select the one we

want to give permissions to, and a second that contains a form with checkboxes

for each permission.

Add the following routes:

'author/permissions' => [

'GET' => [

'controller' => $authorController,

'action' => 'permissions'

],

'POST' => [

'controller' => $authorController,

'action' => 'savePermissions'

],

'login' => true

],

'author/list' => [

'GET' => [

'controller' => $authorController,

'action' => 'list'

],

594 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

'login' => true

],

For now, we only have a login check on here. If we add a permissions check right

now, we won’t be able to use the form to set the permissions, because your

account won’t have the required permission to view the page!

Rather than adding a new controller, we’ll use the Register controller that

already exists and is used for handling changes to users’ accounts.

Author List

Let’s do the list first. Add a method in the Register controller called list that

fetches a list of all the registered users and passes them to the template:

public function list() {

$authors = $this->authorsTable->findAll();

return ['template' => 'authorlist.html.php',

'title' => 'Author List',

'variables' => [

'authors' => $authors

]

];

}

And here’s the template authorlist.html.php for listing the users:

<h2>User List</h2>

<table>

<thead>

<th>Name</th>

<th>Email</th>

<th>Edit</th>

</thead>

Relationships 595

www.EBooksWorld.ir

<tbody>

<?php foreach ($authors as $author): ?>

<tr>

<td><?=$author->name;?></td>

<td><?=$author->email;?></td>

<td>

<a

➥ href="/author/permissions?id=<?=$author->id;?>">
Edit Permissions</td>

</tr>

<?php endforeach; ?>

</tbody>

</table>

If you visit http://192.168.10.10/author/list, you’ll see the list of registered

authors, each with a link for editing their permissions.

The Edit Permissions link goes to the /author/permissions page, and passes it

the id of the author whose permissions we want to change.

Edit Author Permissions

There’s nothing on the Edit Permissions page yet, because we haven’t created it.

It’s quite a simple page: it will display a checkbox for each permission in the

system, and it will be checked if the author currently has that permission.

The template could look like this:

<input type="checkbox" value="1" <?php if

➥ ($author->hasPermission(EDIT_JOKES)) {
echo 'checked';

} ?> Edit Jokes

<input type="checkbox" value="2" <?php if

➥ ($author->hasPermission(DELETE_JOKES)) {
echo 'checked';

} ?> Delete Jokes

596 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

<input type="checkbox" value="3" <?php if

➥ ($author->hasPermission(LIST_CATEGORIES)) {
echo 'checked';

} ?> Add Categories

// etc.

This would work, but it requires storing the information about the permissions in

two different places—the constants in the Author entity class, and the template.

We also need to write out all the HTML and PHP for each checkbox.

Like most cases when we find repetition like this, there’s a much easier way!

It’s actually possible to read information about the variables, methods and

constants that are contained inside a class using a tool called Reflection.

We can actually get a list of constants, and their values, from the class!

PHP makes this fairly simple. To reflect the Author entity class and read all its

properties, you can use the following code:

$reflected = new \ReflectionClass('\Ijdb\Entity\Author');

$constants = $reflected->getConstants();

The $constants array will contain information about all the constants that are

defined within the class. If you use var_dump to print out the contents of the

$constants variable, you’ll see an array with the constant names as the key and

the constant values as the value:

array (size=6)

'EDIT_JOKES' => int 1

'DELETE_JOKES' => int 2

'LIST_CATEGORIES' => int 3

'EDIT_CATEGORIES' => int 4

'REMOVE_CATEGORIES' => int 5

'EDIT_USER_ACCESS' => int 6

Relationships 597

www.EBooksWorld.ir

By passing this array to the template, we can actually generate the list of

checkboxes for permissions from the constants inside the template.

Add this permissions method to the Register controller.:

public function permissions() {

$author = $this->authorsTable->findById($_GET['id']);

$reflected = new \ReflectionClass('\Ijdb\Entity\Author');

$constants = $reflected->getConstants();

return ['template' => 'permissions.html.php',

'title' => 'Edit Permissions',

'variables' => [

'author' => $author,

'permissions' => $constants

]

];

}

And here’s the corresponding template permissions.html.php:

<h2>Edit <?=$author->name?>’s

➥ Permissions</h2>

<form action="" method="post">

<?php foreach ($permissions as $name => $value): ?>

<div>

Reflection

Reflection can be a very powerful tool, and I’ve only scratched the surface of what

you can do. For more information on Reflection, see the PHP manual page.

598 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://php.net/manual/en/book.reflection.php

<input name="permissions[]"

type="checkbox"

value="<?=$value?>"

<?php if ($author->hasPermission($value)):

echo 'checked'; endif; ?> />

<label><?=$name?>

</div>

<?php endforeach; ?>

<input type="submit" value="Submit" />

</form>

Like we did with categories, I’ve made the checkbox list an array. If you go to edit

one of the user’s permissions, you’ll see a checkbox for each of the constants in

the Author class!

This makes future developments a lot easier. Once the constant has been added to

the Author entity class, it will automatically appear on the list without us having

to manually go and edit the template each time we want to add a new permission

to the website.

You can find this code in Relationships-EditPermissions

Setting Permissions

The next stage is storing the user’s permissions once you press save. Each user

will have a set of permissions, and there are many different ways to represent this

in the database.

We could do it in the same way we did with categories: create a user_permission

table with two columns authorId and permission. Then we could write a record

for each permission. A user with the id of 4 and the permissions EDIT_JOKES,

LIST_CATEGORIES and REMOVE_CATEGORIES would have the following records:

authorId | permission

4 | 1

4 | 3

Relationships 599

www.EBooksWorld.ir

4 | 5

You already know how to implement this. You’ll need to create the table, the

relevant DatabaseTable instance, and write the savePermissions method to

create a record in the user_permission table for each checked box. Finally, the

hasPermission method in the Author entity class would look something like this:

public function hasPermission($permission) {

$permissions = $this->userPermissionsTable->

find('authorId', $this->id);

foreach ($permissions as $permission) {

if ($permission->permission == $permission) {

return true;

}

}

}

Before you implement this, I’m going to show you an alternative approach.

A Different Approach

Imagine if we set up the author table with a column for each permission:

CREATE TABLE `author` (

`id` INT(11) NOT NULL AUTO_INCREMENT,

`name` VARCHAR(255) DEFAULT NULL,

`email` VARCHAR(255) DEFAULT NULL,

`password` VARCHAR(255) DEFAULT NULL,

`editJoke` TINYINT(1) NOT NULL DEFAULT 0,

`deleteJokes` TINYINT(1) NOT NULL DEFAULT 0,

`addCatgories` TINYINT(1) NOT NULL DEFAULT 0,

`removeCategories` TINYINT(1) NOT NULL DEFAULT 0,

`editUserAccess` TINYINT(1) NOT NULL DEFAULT 0,

PRIMARY KEY (`id`)

) ENGINE=InnoDB CHARSET=utf8;

600 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Each column is TINYINT(1), which means it can store a single bit. It can either be

a 1 or 0, and I’ve set it to default to 0.

We could then set any author’s permissions using an UPDATE statement. For the

user I mentioned earlier with the id of 4, this could be sent to the database as:

UPDATE `author` SET `editJokes` = 1, `listCategories` = 1,

➥ `removeCategories` = 1 WHERE `id` = 4

It would be possible to name our checkboxes with the names of the columns and

use them in the same way as any other field.

The advantage of this approach is that it’s simpler. To find out if a user has a

permission, you can just use this:

// Can this author edit jokes?

if ($author->editJokes == 1)

Or this:

// Can this author remove categories?

if ($author->removeCategories == 1)

This is a nicer approach than a join table, as the same check using a join table

would require querying the database for all the user’s permissions, looping

through the records, and checking to see whether the permission we’re looking

for has a corresponding record.

The downside to this approach is that every time we add a permission to the

website, we’d need to add a column to the table.

In principle, though, this is a lot simpler. It avoids a database table, and checking

Relationships 601

www.EBooksWorld.ir

whether a user has a permission requires significantly less code and fewer

database queries.

Each permission is a simple 1 or 0 in the database.

If you examined a user’s record in MySQL Workbench, you might see something

like 0 1 0 0 1 0 0 in the permissions columns.

A Crash Course in Binary

This sequence of ones and zeros looks a lot like binary. In fact, every number

stored in a database is actually stored as a series of ones and zeros behind the

scenes.

If you have an INT column and it stores the number 6 for a particular record, it

will actually store the binary value 0110 on the hard disk. Everything stored on a

computer is binary!

Each binary number is a bit like a database record. Each one or zero is in a

specific column, and that column represents a particular value.

In fact, with normal decimal numbers, when you see the value 2395, you know

that the 3 (since it’s in the third column from the right) represents 300.

The above number can actually be expressed like this:

2 x 1000 +

3 x 100 +

9 x 10

5 x 1

You’re so familiar with this process that it’s second nature, and you don’t need to

think about it. Binary works in the same way. The only differences are that only

the digits one and zero are available, and the column numbers are different.

In both binary and decimal, numbers are created right to left. As an extra digit is

added, it’s added to the left-hand side. To add 300 to 27, you add a 3 to the left.

The same thing is true of binary: digits further to the right have a higher value.

602 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

In the case of the binary number 0110, the third column from the right represents

4, and the second column from the right represents 2.

To translate the value of the binary number 0110 into decimal, you can do the

same kind of calculation as long as you know the values of each column. In

decimal, each column is multiplied by ten each time you move to the left. In

binary, each column is multiplied by two.

To work out the total of 0110, we can do the same calculation:

0 x 8 +

1 x 4 +

1 x 2 +

0 x 1

If you calculate this, you’ll get 6. Each column is called a bit, and in this example

we can describe the 8 bit as not being set (because it’s set to zero) and the 4 bit as

being set (because it’s set to one).

See if you can convert the following binary numbers to decimal2:

1000

0020

1010

Be Bit-Wise

You’re probably wondering why any of this matters and what it has to do with

user permissions.

In short, binary has nothing to do with permissions. But neither do if statements

or checkboxes. All three are tools we can use to solve the problem of permissions.

What’s useful is that you can use PHP (and almost every programming language)

to inquire whether any given integer has a 1 or 0 set for any of the bits that make

up the number.

2. The answers are 8 (1x8), 2 (1x2) and 10 (1x2 + 1x8).

Relationships 603

www.EBooksWorld.ir

Bitwise Permissions

Rather than using a different database column to store each one or zero, we could

use a single binary number to store those ones and zeros in a single column.

By assigning a column to a permission, a binary number can represent which

permissions any user has.

EDIT_USER_ACCESS | REMOVE_CATEGORIES | EDIT_CATEGORIES |

32 | 16 | 8

|

LIST_CATEGORIES | DELETE_JOKES | EDIT_JOKES |

4 | 2 | 1 |

The binary number 000001, which has a 1 in the EDIT_JOKES column, would

represent a user with EDIT_JOKES permissions.

111111 would represent a user that had all the permissions, and 011111 would

represent a user that had every permission apart from being able to edit the

permissions of other users (EDIT_USER_ACCESS).

This process is identical to using multiple columns in a database, each with a one

or zero. We’re just using a binary number to represent the same data. Rather than

one column per bit, we can store multiple bits in a single INT column.

Let’s convert the binary numbers to decimal: 000001 becomes 1, 111111 becomes

63 and 011111 becomes 31. We can easily store these numbers as integers in a

database!

If someone has the permissions value 63, we know they have all the permissions

that are available.

Back to PHP

The difficult part is extracting the individual permissions. What if we want to

know whether the user has the EDIT_CATEGORIES permission? On the chart above,

I’ve assigned the 8 bit to mean EDIT_CATEGORIES. If a user has the permissions

604 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

value 13, it’s not clear whether the 8 bit is set.

In a database with multiple columns, we can use SELECT * FROM author WHERE

id = 4 AND editCategories = 1 to determine whether the editCategories

column is set to 1 for a specific user—in this case, the user with the id of 4.

Most programming languages, including PHP and MySQL, support something

called bitwise operations. These allow you to inquire whether a specific bit is set

in any integer. Using a single permissions column, the query above can be

expressed as follows:

SELECT * FROM author WHERE id = 4 AND 8 & permissions

The clever part here is the part AND 8 & permissions. This uses the bitwise and

(&) operator to inquire whether the 8 bit is set in the number stored in the

permissions column for that record.

PHP also provides the bitwise and operator. You’ve already seen that the number

6 is represented as 0110, which means that the bits 4 and 2 are set.

The bitwise & operator can be used to determine whether a bit is set in a specific

number, and it’s used like this:

if (6 & 2) {

}

This says, “Is the bit 2 set in the number 6?”, and it will evaluate to true. If you

wanted to check bit 1, however, it would return false, because the 1 bit is not set

in the binary representation of 6 (0110):

if (6 & 1) {

}

Relationships 605

www.EBooksWorld.ir

Binary operations like this are actually fairly common in PHP! When you set the

error_reporting variable in PHP to E_WARNING | E_NOTICE, what you’re doing

is setting the bits that represent warnings and notices. PHP will then internally

check which bits are set when it encounters an error.

Internally, PHP will do something like this:

if (E_NOTICE & ini_get('error_reporting')) {

display_notice($notice);

}

We can apply this to permissions. Imagine the author table had a column called

permissions: it's possible to determine whether an author has the permission

EDIT_CATEGORIES by using this code:

if ($author->permissions & 8) {

}

This code has the same problem I mentioned earlier: it’s not clear exactly what’s

happening here to anyone looking at the code. Again, we could represent the bits

as constants:

const EDIT_JOKES = 1;

const DELETE_JOKES = 2;

const LIST_CATEGORIES = 4;

const EDIT_CATEGORIES = 8;

const REMOVE_CATEGORIES = 16;

const EDIT_USER_ACCESS = 32;

And we could write the permissions check like so:

// Does the author have the EDIT_CATEGORIES permission?

if ($author->permissions & EDIT_CATEGORIES) {

606 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

}

// Does the author have the DELETE_JOKES permission?

if ($author->permissions & DELETE_JOKES) {

}

You don’t even need to understand the underlying binary to understand what’s

happening here, and the individual numbers don’t even matter!

Storing Bitwise Permissions in the Database

Let’s implement this on the website. Amend the author table by adding a column

called permissions, and set it to INT(64) so we can store a maximum of 64

different permissions.

Change the constant values in the Author entity class as I have above.

We don’t need to make any changes to the Edit Permissions form page, but we

need to add the savePermissions method and have it store the binary

permissions in the database.

Before we do that, let’s consider what will happen when the form is submitted. If

you checked the boxes labeled EDIT_JOKES and REMOVE_CATEGORIES, the variable

$_POST['permissions'] would be an array containing the numbers 1 and 16

([1, 16]).

We want to convert those to the binary representation, where the 1 bit and 16 bits

are set. It sounds difficult but, as you’ll see very shortly, it’s not!

The number we need to generate is 010001, where bits 16 and 1 are set. Use your

new binary knowledge to calculate the decimal version of this value, and you’ll

work out that this binary number represents 17.

All we need to do is add the numbers together!

Relationships 607

www.EBooksWorld.ir

Just to prove the theory, let’s imagine that the boxes for EDIT_JOKES,

DELETE_JOKES, LIST_CATEGORIES and EDIT_USER_ACCESS are ticked. When the

form is submitted, we’d get the array [1, 2, 4, 32].

The binary representation of those permissions is 100111. If you work out what

that is in decimal, you’ll get 39. Add together the values from the array 1 + 2 +

4 + 32 and you’ll also get 39!

All we need to do to store the numbers in the database is add together each

element in the $_POST['permissions'] array.

PHP even includes a function called array_sum that can do exactly that.

The savePermissions method in the Register controller can be written like this:

public function savePermissions() {

$author = [

'id' => $_GET['id'],

'permissions' => array_sum($_POST['permissions'] ?? [])

];

$this->authorsTable->save($author);

header('location: /author/list');

}

The line 'permissions' => array_sum($_POST['permissions'] ?? []) is used

to add all the values from the $_POST['permissions'] array. However, if no

boxes are ticked, $_POST['permissions'] won’t be set. The ?? operator is used to

provide the array_sum operator with an empty array if there’s nothing in the

$_POST['permissions'] variable.

That’s it! The savePermissions method is converting the checked boxes into a

number, and that number’s binary representation is how we’re modeling the

permissions of each user.

608 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Join Table or Bitwise

When using the join table approach for categories, to cater for boxes that were

unchecked, we specifically had to delete all the records and reinsert them each

time the form was submitted. As the permissions column is a single number, if

no boxes are checked, array_sum will return 0 and the 0 will be inserted into the

database, avoiding the need to specifically handle unchecked boxes.

The final piece is the hasPermission method in the Author entity class. Add the

$permission class variable. Then, to check if a user has a permission, we need a

single line of code:

13-5. Relationships-BinaryPermissions

public function hasPermission($permission) {

return $this->permissions & $permission;

}

There are several advantages to this approach over a join table. The first is

performance: we don’t need to query the database for the user’s permissions.

Secondly, this is considerably less code for both saving the form and checking

whether the permission is set.

The downsides to this approach are that it can be more difficult to understand if

you’re not familiar with the bitwise operator. However, bitwise operators are

fairly common in PHP. They’re used by the PDO library and for the various

php.ini configuration settings such as error_reporting, so it’s a good idea to

have a basic understanding of what they do. The second downside is that you’re

limited to 64 bits, because that’s all a CPU can process. However, if you find

yourself needing more, you can group the permissions into different columns,

such as jokePermissions and adminPermissions.

Whether you choose to implement user roles as bitwise, like I have here, or

whether you use a join table, is up to you. There are pros and cons to each

approach. Personally, I prefer the shorter code and fewer database operations,

which bitwise operators offer.

Relationships 609

www.EBooksWorld.ir

Cleaning Up

There’s a little tidying up left to do. Firstly, we need to add the permissions to the

routes.

Make sure you have granted your user account the permission EDIT_USER_ACCESS

before making these changes, or you won’t be able to change anyone’s

permissions!

We already amended the routes for LIST_CATEGORIES, EDIT_CATEGORIES and

REMOVE_CATEGORIES.

You can test this works by visiting http://192.168.10.10/category/list and

giving and revoking your LIST_CATEGORIES permission.

Let’s do the same for EDIT_USER_ACCESS. Set the permissions key in the

IjdbRoutes $routes array for the author list and permissions pages:

$routes = [

// …

'author/permissions' => [

'GET' => [

'controller' => $authorController,

'action' => 'permissions'

],

'POST' => [

'controller' => $authorController,

'action' => 'savePermissions'

],

'login' => true,

'permissions' => \Ijdb\Entity\Author::EDIT_USER_ACCESS

],

'author/list' => [

'GET' => [

'controller' => $authorController,

'action' => 'list'

],

'login' => true,

'permissions' => \Ijdb\Entity\Author::EDIT_USER_ACCESS

610 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

],

This will prevent anyone who doesn’t have the EDIT_USER_ACCESS permission

from changing the permissions of other users.

Editing Others’ Jokes

The final two permissions are EDIT_JOKES and DELETE_JOKES, which determine

whether the logged-in user can edit or delete a joke someone else has posted.

We can’t do this with the $routes array, because the check isn’t done there. The

edit link and delete button are hidden in the template, and there are checks

inside the joke controller.

Firstly, let’s make the edit link and delete button appear on the list page for all

jokes if you have the EDIT_JOKES or DELETE_JOKES permissions.

The relevant section of jokes.html.php looks like this:

<?php if ($userId == $joke->authorId) {

?>

<a href="/joke/edit?id=<?=$joke->id?>">

Edit

<form action="/joke/delete" method="post">

<input type="hidden" name="id"

value="<?=$joke->id?>">

<input type="submit" value="Delete">

</form>

<?php

} ?>

Now that we have different permissions for edit and delete, we’ll need two

separate if statements—one for the delete button and one for the edit link.

However, we can’t do this with the $userId alone. Instead of passing in the

$userId variable to the template, change the list method in the Joke controller

Relationships 611

www.EBooksWorld.ir

to pass in the entire $author object that represents the logged-in user:

return ['template' => 'jokes.html.php',

'title' => $title,

'variables' => [

'totalJokes' => $totalJokes,

'jokes' => $jokes,

'user' => $author, //previously 'userId' =>

$author->id

'categories' => $this->categoriesTable->findAll()

]

];

The check in the template can now be amended so that the button and link are

only visible to the person who posted the joke, or someone with the relevant

permission:

<?php if ($user): ?>

<?php if ($user->id == $joke->authorId ||

$user->hasPermission(\Ijdb\Entity\Author::EDIT_JOKES)):

➥ ?>
<a href="/joke/edit?id=<?=$joke->id?>">

Edit

<?php endif; ?>

<?php if ($user->id == $joke->authorId ||

$user->hasPermission(\Ijdb\Entity\Author::DELETE_JOKES)):

?>

<form action="/joke/delete" method="post">

<input type="hidden" name="id"

value="<?=$joke->id?>">

<input type="submit" value="Delete">

</form>

<?php endif; ?>

<?php endif; ?>

This is a lot more complicated, as there are now three if statements. I’ve added

if ($user) around the entire block, because the $user variable may be empty if

612 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

no one is logged in.

The following two use a logical or to determine whether the person who’s

viewing the page is the same person who posted the joke, or if they have the

relevant permission.

Editing the jokes.html.php template makes the buttons appear, but if you have

the EDIT_JOKES permission and attempt to edit a joke you didn’t post, you’ll see

the error “You may only edit jokes that you posted”. That’s because we added a

specific check in the editjoke.html.php template, and the delete method in the

Joke controller.

Change delete to include the permissions check:

public function delete() {

$author = $this->authentication->getUser();

$joke = $this->jokesTable->findById($_POST['id']);

if ($joke->authorId != $author->id &&

➥ !$author->hasPermission(\Ijdb\Entity\Author::DELETE_JOKES))
➥ {

return;

}

$this->jokesTable->delete($_POST['id']);

header('location: /joke/list');

}

And, like the list method, pass the entire author object to the template in the

edit method, and adjust the template to include the permissions check.

controllers/joke.php:

return ['template' => 'editjoke.html.php',

Relationships 613

www.EBooksWorld.ir

'title' => $title,

'variables' => [

'joke' => $joke ?? null,

'user' => $author,

'categories' => $categories

]

];

In editjoke.html.php, this code:

<?php if (empty($joke->id) || $userId ==

➥ $joke->authorId): ?>

… becomes this:

<?php if (empty($joke->id) || $user->id ==

➥ $joke->authorId ||
➥ $user->hasPermission(\Ijdb\Entity\Author::EDIT_JOKES)):
➥ ?>

That’s it! All the permission checks are now in place.

Phew!

In this chapter, I showed you how to think in a more object-oriented way, and

how to handle relationships between objects in an OOP way rather than a

relational way.

You learned how to represent many-to-many relationships using both join tables

and bitwise operations.

We added permissions to the existing site, but moving forward, you can think

about user permissions as you go and create them while you’re writing the

original code.

614 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

That’s it! We have a completely functional and working website that does almost

anything we would want for a real-world project. I have a couple of small things

left to show you, but we’re basically done! There’s little else I can teach you.

In the next chapter, I'll show you how to make a few tweaks to the DatabaseTable

class to allow sorting and limiting, but you already have almost all the tools you

need to build a fully functional website.

Relationships 615

www.EBooksWorld.ir

14Chapter

Content Formatting with Regular
Expressions

We’re almost there! We’ve designed a database to store jokes, organized them into

categories, and tracked their authors. We’ve learned how to create a web page that

displays this library of jokes to site visitors. We’ve even developed a set of web

pages that a site administrator can use to manage the joke library without

knowing anything about databases.

In so doing, we’ve built a site that frees the resident webmaster from continually

having to plug new content into tired HTML page templates, and from

maintaining an unmanageable mass of HTML files. The HTML is now kept

completely separate from the data it displays. If you want to redesign the site, you

simply have to make the changes to the HTML contained in the PHP templates

that you’ve constructed. A change to one file (for example, modifying the footer)

is immediately reflected in the page layouts of all pages in the site. Only one task

616 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

still requires knowledge of HTML: content formatting.

On any but the simplest of websites, it will be necessary to allow content (in our

case, jokes) to include some sort of formatting. In a simple case, this might merely

be the ability to break text into paragraphs. Often, however, content providers

will expect facilities such as bold or italic text, hyperlinks, and so on.

As it stands, we’ve stripped out any formatting from text entered by users using

the htmlspecialchars function.

If, instead, we just echo out the raw content pulled from the database, we can

enable administrators to include formatting in the form of HTML code in the joke

text:

<?php echo $joke->joketext; ?>

Following this simple change, a site administrator could include HTML tags that

would have their usual effect on the joke text when inserted into a page.

But is this really what we want? Left unchecked, content providers can do a lot of

damage by including HTML code in the content they add to your site’s database.

Particularly if your system will be enabling nontechnical users to submit content,

you’ll find that invalid, obsolete, and otherwise inappropriate code will gradually

infest the pristine website you set out to build. With one stray tag, a well-meaning

user could tear apart the layout of your site.

In this chapter, you’ll learn about several PHP functions that you haven’t seen

before, which are used for finding and replacing patterns of text in your site’s

content. I’ll show you how to use these capabilities to provide a simpler markup

language for your users that’s better suited to content formatting. By the time

we’ve finished, we’ll have completed a content management system that anyone

with a web browser can use—no knowledge of HTML required.

Regular Expressions

To implement our own markup language, we’ll have to write some PHP code to

Content Formatting with Regular Expressions 617

www.EBooksWorld.ir

spot our custom tags in the text of jokes and then replace them with their HTML

equivalents. For tackling this sort of task, PHP includes extensive support for

regular expressions.

A regular expression is a short piece of code that describes a pattern of text that

may occur in content like our jokes. We use regular expressions to search for and

replace patterns of text. They’re available in many programming languages and

environments, and are especially prevalent in web development languages like

PHP.

The popularity of regular expressions has everything to do with how useful they

are, and absolutely nothing to do with how easy they are to use—because they’re

not at all easy. In fact, to most people who encounter them for the first time,

regular expressions look like what might eventuate if you fell asleep with your

face on the keyboard.

Here, for example, is a relatively simple (yes, really!) regular expression that will

match any string that might be a valid email address:

/^[\w\.\-]+@([\w\-]+\.)+[a-z]+$/i

Scary, huh? By the end of this section, you’ll actually be able to make sense of

that.

The language of a regular expression is cryptic enough that, once you master it,

you may feel as if you’re able to weave magical incantations with the code you

write. To begin with, let’s start with some very simple regular expressions.

This is a regular expression that searches for the text “PHP” (without the quotes):

/PHP/

Fairly simple, right? It’s the text you want to search for, surrounded by a pair of

matching delimiters. Traditionally, slashes (/) are used as regular expression

delimiters, but another common choice is the hash character (#). You can actually

use any character as a delimiter except letters, numbers, or backslashes (\). I’ll

618 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

use slashes for all the regular expressions in this chapter.

To use a regular expression, you must be familiar with the regular expression

functions available in PHP. preg_match is the most basic, and can be used to

determine whether or not a regular expression is matched by a particular text

string.

Consider this code:

<?php

$text = 'PHP rules!';

if (preg_match('/PHP/', $text)) {

echo '$text contains the string "PHP".';

} else {

echo '$text does not contain the string "PHP".';

}

In this example, the regular expression finds a match, because the string stored in

the variable $text contains “PHP”. This example will therefore output the

message shown below.

14-1. The regular expression finds a match

Escaping Delimiters

To include a forward slash as part of a regular expression that uses forward slashes

as delimiters, you must escape it with a preceding backslash (\/); otherwise, it will

be interpreted as marking the end of the pattern.

The same goes for other delimiter characters: if you use hash characters as

delimiters, you’ll need to escape any hashes within the expression with backslashes

(\#).

Content Formatting with Regular Expressions 619

www.EBooksWorld.ir

By default, regular expressions are case-sensitive. That is, lowercase characters in

the expression only match lowercase characters in the string, and uppercase

characters only match uppercase characters. If you want to perform a case-

insensitive search instead, you can use a pattern modifier to make the regular

expression ignore case.

Pattern modifiers are single-character flags following the ending delimiter of an

expression. The modifier for performing a case-insensitive match is i. So while

/PHP/ will only match strings that contain “PHP”, /PHP/i will match strings that

contain “PHP”, “php”, or even “pHp”.

Here’s an example to illustrate this:

<?php

$text = 'What is Php?';

if (preg_match('/PHP/i', $text)) {

echo '$text contains the string "PHP".';

} else {

echo '$text does not contain the string "PHP".';

}

Again, as shown below, this outputs the same message, despite the string actually

containing “Php”.

14-2. No need to be picky …

Regular expressions are almost a programming language unto themselves. A

dazzling variety of characters have a special significance when they appear in a

regular expression. Using these special characters, you can describe in great

Use of Single Quotes Above

Notice that the single quotes around the strings in the code prevent PHP from filling

in the value of the variable $text.

620 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

detail the pattern of characters that a PHP function like preg_match will search

for. To show you what I mean, let’s look at a slightly more complex regular

expression:

/^PH.*/

The caret (^) is placed at the beginning of an expression and indicates that the

pattern much match the start of the string. The expression above will only match

strings that start withPH.

The dot (.) means “any single character”. The expression /PH./ would match

PHP, PHA, PHx and any other string that started with PH and one more letter.

The asterisk (*) is a modifier for the dot, and it means “zero or more of the

preceding character”. The expression P* would match PPPPPPP but not PHP.

.* matches any character zero or more times.

Therefore, the pattern /^PH.*/ matches not only the string “PH”, but “PHP”,

“PHX”, “PHP: Hypertext Preprocessor”, and any other string beginning with

“PH”.

When you first encounter it, regular expression syntax can be downright

confusing and difficult to remember, so if you intend to make extensive use of it,

a good reference might come in handy. Regular expressions are a complex and

extensive mini-language. I’m not going to try to cover it here. Instead, I’ll

introduce the individual characters as we need them. The PHP Manual includes a

very thorough regular expression reference,, and interactive tools such as

regex101.com are incredibly useful visual learning tools.

String Replacement with Regular Expressions

As you may recall, we’re aiming in this chapter to make it easier for non-HTML-

savvy users to add formatting to the jokes on our website. For example, if a user

puts asterisks around a word in the text of a joke—such as 'Knock

knock…'—we’d like to display the joke with HTML emphasis tags around that

Content Formatting with Regular Expressions 621

www.EBooksWorld.ir

http://php.net/manual/en/reference.pcre.pattern.syntax.php
https://regex101.com/

word: Knock knock…'.

We can detect the presence of plain-text formatting such as this in a joke’s text

using preg_match with the regular expression syntax we’ve just learned.

However, what we need to do is pinpoint that formatting and replace it with

appropriate HTML tags. To achieve this, we need to look at another regular

expression function offered by PHP: preg_replace.

preg_replace, like preg_match, accepts a regular expression and a string of text,

and attempts to match the regular expression in the string. In addition,

preg_replace takes another string of text and replaces every match of the regular

expression with that string.

The syntax for preg_replace is as follows:

$newString = preg_replace($regExp, $replaceWith,

➥ $oldString);

Here, $regExp is the regular expression, and replaceWith is the string that will

replace matches in $oldString. The function returns the new string with all the

replacements made. In that code, this newly generated string is stored in

$newString.

We’re now ready to build our joke formatting function.

Emphasized Text

We could use a relevant preg_replace method everywhere it’s required in our

templates. However, since this is going to be useful in multiple places, and any

website we build, we’ll create a class for it and place it in our Ninja namespace:

namespace Ninja;

class Markdown {

private $string;

public function __construct($markDown) {

622 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$this->string = $markDown;

}

public function toHtml() {

// convert $this->string to HTML

return $html;

}

}

The plain-text formatting syntax we’ll support is a simplified form of Markdown,

created by John Gruber.

Markdown is a text-to-HTML conversion tool for web writers.

Markdown allows you to write using an easy-to-read, easy-to-write

plain-text format, then convert it to structurally valid XHTML (or

HTML). — the Markdown home page

Since this class will convert Markdown to HTML, it’s named MarkDown.

This first action is to use the htmlentities function to convert any HTML code

present in the text into text, by removing any characters that are understood by

browsers (<, >, &, "). We want to avoid any HTML code appearing in the output,

except that which is generated from plain-text formatting.1

Let’s start with formatting that will create bold and italic text.

In Markdown, you can emphasize text by surrounding it with a pair of asterisks

(*), or a pair of underscores (_). Obviously, we’ll replace any such pair with

and tags.2

1. Technically, this breaks one of the features of Markdown: support for inline HTML.

“Real” Markdown can contain HTML code, which will be passed through to the browser

untouched. The idea is that you can use HTML to produce any formatting that’s too

complex to create using Markdown’s plain-text formatting syntax. Since we don’t want to

allow this, it might be more accurate to say we’ll support Markdown-style formatting.
2. You may be more accustomed to using and <i> tags for bold and italic text.

However, I’ve chosen to respect the most recent HTML standards, which recommend using

Content Formatting with Regular Expressions 623

www.EBooksWorld.ir

http://daringfireball.net/projects/markdown/

To achieve this, we’ll use two regular expressions: one that handles a pair of

asterisks, and one that handles a pair of underscores.

Let’s start with the underscores:

/_[^_]+_/

Breaking this down:

/: we choose our usual slash character to begin (and therefore delimit) our regular

expression.

_: there’s nothing special about underscores in regular expressions, so this will

simply match an underscore character in the text.

[^_]: square brackets are used to match a sequence of one or more characters that

are placed between the opening bracket [and closing bracket]. The caret (^),

when placed inside square brackets, acts as a logical not. The expression [^_]

will match any character that is not an underscore.

+: the plus character indicates one or more characters that match the preceding

expression. [^_]+ can be read as one or more characters that are not an

underscore.

_: the second underscore, which marks the end of the italicized text.

/: the end of the regular expression.

In English, the expression /_[^_]+_/ could be translated as: “Find an underscore,

followed by one or more characters that aren’t an underscore, and stop at the

following underscore.”

Now, it’s easy enough to feed this regular expression to preg_replace, but we

have a problem:

the more meaningful strong and em tags, respectively. If bold text doesn’t necessarily

indicate strong emphasis in your content, and italic text isn’t representative of emphasis,

you might want to use b and i instead.

624 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$text = preg_replace('/_[^_]+_/', 'emphasized

➥ text', $text);

The second argument we pass to preg_replace needs to be the text that we want

to replace each match with. The problem is, we have no idea what the text that

goes between the and tags should be. It’s part of the text that’s being

matched by our regular expression!

Thankfully, another feature of preg_replace comes to our rescue. If you surround

a portion of the regular expression with parentheses, you can capture the

corresponding portion of the matched text and use it in the replacement string. To

do this, you’ll use the code $n, where n is 1 for the first parenthesized portion of

the regular expression, 2 for the second, and so on, up to 99 for the 99th. Consider

this example:

$text = 'banana';

$text = preg_replace('/(.*)(nana)/', '$2$1', $text);

echo $text; // outputs 'nanaba'

So $1 is replaced with the text matched by the first grouped portion of the regular

expression ((.*)—zero or more non-newline characters), which is ba in this case.

$2 is replaced by nana, which is the text matched by the second grouped portion

of the regular expression ((nana)). The replacement string '$2$1', therefore,

produces 'nanaba'.

We can use the same principle to create our emphasized text, adding parentheses

to our regular expression:

/_([^_]+)_/

These parentheses have no effect on how the expression works at all, but they

create a group of matched characters that we can reuse in our replacement string:

Content Formatting with Regular Expressions 625

www.EBooksWorld.ir

$text = preg_replace('/_([^_]+)_/',

➥ '$1', $text);

The pattern to match and replace pairs of asterisks looks much the same, except

we need to escape the asterisks with backslashes, since the asterisk character

normally has a special meaning in regular expressions:

$text = preg_replace('/*([^*]+)*/',

➥ '$1', $text);

That takes care of emphasized text, but Markdown also supports creating strong

emphasis (tags) by surrounding text with a pair of double asterisks or

underscores (**strong emphasis** or __strong emphasis__). Here’s the regular

expression to match pairs of double underscores:

/__(.+?)__/s

The double underscores at the start and end are straightforward enough, but

what’s going on inside the parentheses?

Previously, in our single-underscore pattern, we used [^_]+ to match a series of

one or more characters, none of which could be underscores. That works fine

when the end of the emphasized text is marked by a single underscore. But when

the end is a double underscore, we want to allow for the emphasized text to

contain single underscores (for example, __text_with_strong_emphasis__). “No

underscores allowed,” therefore, won’t cut it: we must come up with some other

way to match the emphasized text.

You might be tempted to use .+ (one or more characters, any kind), giving us a

regular expression like this:3

3. The s pattern modifier at the end of the regular expression ensures that the dot (.) will

truly match any character, including newlines.

626 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

/__(.+)__/s

The problem with this pattern is that the + is greedy: it will cause this portion of

the regular expression to gobble up as many characters as it can. Consider this

joke, for example:

__Knock-knock.__ Who’s there? __Boo.__ Boo who? __Aw, don’t

➥ cry about it!__

When presented with this text, the regular expression above will see just a single

match, beginning with two underscores at the start of the joke and ending with

two underscores at the end. The rest of the text in between (including all the

other double underscores) will be gobbled up by the greedy .+ as the text to be

emphasized!

To fix this problem, we can ask the + to be non-greedy by adding a question mark

after it. Instead of matching as many characters as possible, .+? will match as few

characters as possible while still matching the rest of the pattern, ensuring we’ll

match each piece of emphasized text (and the double-underscores that surround

it) individually. This gets us to our final regular expression:

/__(.+?)__/s

Using the same technique, we can also come up with a regular expression for

double-asterisks. This is how the finished code for applying strong emphasis ends

up looking:

$text = preg_replace('/__(.+?)__/s',

➥ '$1', $text);
$text = preg_replace('/**(.+?)**/s',

➥ '$1', $text);

One last point: we must avoid converting pairs of single asterisks and

Content Formatting with Regular Expressions 627

www.EBooksWorld.ir

underscores into and tags until after we’ve converted the pairs of

double asterisks and underscores in the text into and tags.

Our toHtml function, therefore, will apply strong emphasis first, then regular

emphasis:

namespace Ninja;

class Markdown {

private $string;

public function __construct($markDown) {

$this->string = $markDown;

}

public function toHtml() {

// convert $this->string to HTML

$text = htmlspecialchars($this->string, ENT_QUOTES,

'UTF-8');

// strong (bold)

$text = preg_replace('/__(.+?)__/s',

'$1', $text);

$text = preg_replace('/**(.+?)**/s',

'$1', $text);

// emphasis (italic)

$text = preg_replace('/_([^_]+)_/',

'$1', $text);

$text = preg_replace('/*([^*]+)*/',

'$1', $text);

return $text;

}

}

Paragraphs

While we could choose characters to mark the start and end of paragraphs, just as

628 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

we did for emphasized text, a simpler approach makes more sense. Since your

users will type the content into a form field that allows them to create paragraphs

using the Enter key, we’ll take a single newline to indicate a line break (
)

and a double newline to indicate a new paragraph (</p><p>).

As I explained earlier, you can represent a newline character in a regular

expression as \n. Other whitespace characters you can write this way include a

carriage return (\r) and a tab space (\t).

Exactly which characters are inserted into text when the user hits Enter depends

on the user’s operating system. In general, Windows computers represent a line

break as a carriage return followed by a newline (\r\n), whereas Mac computers

used to represent it as a single carriage return character (\r). These days, Macs

and Linux computers use a single newline character (\n) to indicate a new line.4

To deal with these different line-break styles, any of which may be submitted by

the browser, we must do some conversion:

// Convert Windows (\r\n) to Unix (\n)

$text = preg_replace('/\r\n/', "\n", $text);

// Convert Macintosh (\r) to Unix (\n)

$text = preg_replace('/\r/', "\n", $text);

4. In fact, the type of line breaks used can vary between software programs on the same

computer. If you’ve ever opened a text file in Notepad to see all the line breaks missing,

you’ve experienced the frustration this can cause. Advanced text editors used by

programmers usually let you specify the type of line breaks to use when saving a text file.

Content Formatting with Regular Expressions 629

www.EBooksWorld.ir

With our line breaks all converted to newline characters, we can convert them to

paragraph breaks (when they occur in pairs) and line breaks (when they occur

alone):

// Paragraphs

$text = '<p>' . preg_replace('/\n\n/',

➥ '</p><p>', $text) . '</p>';

// Line breaks

$text = preg_replace('/\n/', '
', $text);

Note the addition of <p> and </p> tags surrounding the joke text. Because our

jokes may contain paragraph breaks, we must make sure the joke text is output

within the context of a paragraph to begin with.

Avoid Using Double-Quoted String with Regular Expressions

All the regular expressions we’ve seen so far in this chapter have been expressed as

single-quoted PHP strings. The automatic variable substitution provided by PHP

strings is sometimes more convenient, but they can cause headaches when used

with regular expressions.

Double-quoted PHP strings and regular expressions share a number of special

character escape codes. "\n" is a PHP string containing a newline character.

Likewise, /\n/ is a regular expression that will match any string containing a

newline character. We can represent this regular expression as a single-quoted PHP

string ('/\n/') and all is well, because the code \n has no special meaning in a

single-quoted PHP string.

If we were to use a double-quoted string to represent this regular expression, we’d

have to write "/\\n/"—with a double-backslash. The double-backslash tells PHP

to include an actual backslash in the string, rather than combining it with the n that

follows it to represent a newline character. This string will therefore generate the

desired regular expression, /\n/.

Because of the added complexity it introduces, it’s best to avoid using double-

quoted strings when writing regular expressions. Note, however, that I have used

double quotes for the replacement strings ("\n") passed as the second parameter to

preg_replace. In this case, we actually do want to create a string containing a

newline character, so a double-quoted string does the job perfectly.

630 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

This code does the trick: the line breaks in the text will now become the natural

line- and paragraph-breaks expected by the user, removing the requirement to

learn anything new to create this simple formatting.

It turns out, however, that there’s a simpler way to achieve the same result in this

case: there’s no need to use regular expressions at all! PHP’s str_replace

function works a lot like preg_replace, except that it only searches for strings

instead of regular expression patterns:

$newString = str_replace($searchFor, $replaceWith,

➥ $oldString);

We can therefore rewrite our line-breaking code as follows:

// Convert Windows (\r\n) to Unix (\n)

$text = str_replace("\r\n", "\n", $text);

// Convert Macintosh (\r) to Unix (\n)

$text = str_replace("\r", "\n", $text);

// Paragraphs

$text = '<p>' . str_replace("\n\n",

➥ '</p><p>', $text) . '</p>';
// Line breaks

$text = str_replace("\n", '
', $text);

str_replace is much more efficient than preg_replace, because there’s no need

for it to apply the complex rules that govern regular expressions. Whenever

str_replace (or str_ireplace, if you need a case-insensitive search) can do the

job, you should use it instead of preg_replace.

Hyperlinks

While supporting the inclusion of hyperlinks in the text of jokes may seem

unnecessary, such a feature makes plenty of sense in other applications.

Here’s what a hyperlink looks like in Markdown:5

Content Formatting with Regular Expressions 631

www.EBooksWorld.ir

[linked text](link URL)

Simple, right? You put the text of the link in square brackets, and follow it with

the URL for the link in parentheses.

As it turns out, you’ve already learned everything you need to match and replace

links like this with HTML links. If you’re feeling up to the challenge, you should

stop reading right here and try to tackle the problem yourself!

First, we need a regular expression that will match links of this form. The regular

expression is as follows:

/\[([^\]]+)]\((.+)\)/i

This is a rather complicated regular expression. You can see how regular

expressions have gained a reputation for being indecipherable!

Squint at it for a little while, and see if you can figure out how it works. Try

writing out the expression on regex101.com and it will display the regular

expression in its groups with some useful highlighting. You can try typing in

various strings to see which match.

Let me break it down for you:

/: as with all our regular expressions, we choose to mark its beginning with a

slash.

\[: this matches the opening square bracket ([). Since square brackets have a

special meaning in regular expressions, we must escape it with a backslash to

have it interpreted literally.

([^\]]+): first of all, this portion of the regular expression is surrounded with

parentheses, so the matching text will be available to us as $1 when we write the

5. Markdown also supports a more advanced link syntax where you put the link URL at

the end of the document, as a footnote. But we won’t be supporting that kind of link in our

simplified Markdown implementation.

632 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

https://regex101.com/

replacement string. Inside the parentheses, we’re after the linked text. Because

the end of the linked text is marked with a closing square bracket (]), we can

describe it as one or more characters, none of which is a closing square bracket

([^\]]+).

]\(: this will match the closing square bracket that ends the linked text, followed

by the opening parenthesis that signals the start of the link URL. The parenthesis

needs to be escaped with a backslash to prevent it from having its usual grouping

effect. (The square bracket doesn’t need to be escaped with a backslash, because

there’s no unescaped opening square bracket currently in play.)

(.+): as URLs can contain (almost) any character, anything typed inside the

markdown parentheses will be matched by .+ and stored inside the group $2 in

the replacement string.

\): this escaped parenthesis matches the closing parenthesis ()) at the end of the

link URL.

/i: we mark the end of the regular expression with a slash, followed by the case-

insensitivity flag, i.

We can therefore convert links with the following PHP code:

$text = preg_replace(

'/\[([^\]]+)]\(([-a-z0-9._~:\/?#@!$&\'()*+,;=%]+)\)/i',

'$1', $text);

As you can see, $1 is used in the replacement string to substitute the captured

link text, and $2 is used for the captured URL.

Additionally, because we’re expressing our regular expression as a single-quoted

PHP string, you have to escape the single quote that appears in the list of

acceptable characters with a backslash.

Putting It All Together

Here’s how our finished class for converting Markdown to HTML looks:

Content Formatting with Regular Expressions 633

www.EBooksWorld.ir

<?php

namespace Ninja;

class Markdown

{

private $string;

public function __construct($markDown)

{

$this->string = $markDown;

}

public function toHtml()

{

// convert $this->string to HTML

$text = htmlspecialchars($this->string, ENT_QUOTES,

'UTF-8');

// strong (bold)

$text = preg_replace('/__(.+?)__/s',

'$1', $text);

$text = preg_replace('/**(.+?)**/s',

'$1', $text);

// emphasis (italic)

$text = preg_replace('/_([^_]+)_/',

'$1', $text);

$text = preg_replace('/*([^*]+)*/',

'$1', $text);

// Convert Windows (\r\n) to Unix (\n)

$text = str_replace("\r\n", "\n",

$text);

// Convert Macintosh (\r) to Unix (\n)

$text = str_replace("\r", "\n",

$text);

// Paragraphs

$text = '<p>' . str_replace("\n\n",

'</p><p>', $text) . '</p>';

634 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

// Line breaks

$text = str_replace("\n", '
', $text);

// [linked text](link URL)

$text = preg_replace(

'/\[([^\]]+)]\(([-a-z0-9._~:\/?#@!$&\'()*+,;=%]+)\)/i',

'$1',

$text

);

return $text;

}

}

We can then use this class in our template that outputs the joke text,

jokes.html.php:

<div class="jokelist">

<ul class="categories">

<?php foreach ($categories as $category): ?>

<a href="/joke/list?category=

<?=$category->id?>"><

?=$category->name?>

<?php endforeach; ?>

<div class="jokes">

<p><?=$totalJokes?> jokes have been submitted to

➥ the Internet Joke Database.</p>

<?php foreach ($jokes as $joke): ?>

<blockquote>

<p>

<?=htmlspecialchars($joke->joketext,

ENT_QUOTES, 'UTF-8')?>

Content Formatting with Regular Expressions 635

www.EBooksWorld.ir

(by <a href="mailto:<?=htmlspecialchars(

$joke->getAuthor()->email,

ENT_QUOTES,

'UTF-8'

); ?>">

<?=htmlspecialchars(

$joke->getAuthor()->name,

ENT_QUOTES,

'UTF-8'

); ?> on

<?php

$date = new DateTime($joke->jokedate);

echo $date->format('jS F Y');

?>)

<?php if ($user): ?>

<?php if ($user->id == $joke->authorId ||

$user->hasPermission(\Ijdb\Entity\Author::EDIT_JOKES)):

➥ ?>
<a href="/joke/edit?id=<?=$joke->id?>">

Edit

<?php endif; ?>

<?php if ($user->id == $joke->authorId ||

$user->hasPermission(\Ijdb\Entity\Author::DELETE_JOKES)):

➥ ?>
<form action="/joke/delete" method="post">

<input type="hidden" name="id"

value="<?=$joke->id?>">

<input type="submit" value="Delete">

</form>

<?php endif; ?>

<?php endif; ?>

</p>

</blockquote>

<?php endforeach; ?>

</div>

636 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The line we’re interested in is this:

<?=htmlspecialchars($joke->joketext,

ENT_QUOTES, 'UTF-8')?>

However, each joke is already wrapped in a <p> tag. This can be removed:

<div class="jokelist">

<ul class="categories">

<?php foreach($categories as $category): ?>

<a href="/joke/list?category=

<?=$category->id?>">

<?=$category->name?>

<?php endforeach; ?>

<div class="jokes">

<p><?=$totalJokes?> jokes have been submitted to

➥ the Internet Joke Database.</p>

<?php foreach($jokes as $joke): ?>

<blockquote>

<!-- Remove the opening tag <p> -->

<?=htmlspecialchars($joke->joketext,

ENT_QUOTES, 'UTF-8')?>

<!--- … -->

<?php endif; ?>

<!-- Remove the closing tag </p> -->

</blockquote>

<?php endforeach; ?>

</div>

Content Formatting with Regular Expressions 637

www.EBooksWorld.ir

Now, replace the line that shows the joke text with this:

<?php

$markdown = new \Ninja\Markdown($joke->joketext);

echo $markdown->toHtml();

?>

This will pass the contents of joketext to the markdown class as a constructor

argument and call the toHtml method to convert the text to HTML.

This is a lot untidier than the original method, as it requires two lines. As with

most things in PHP, there is a way to express this using shorter syntax:

<?=(new

➥ \Ninja\Markdown($joke->joketext))->toHtml()?>

This code can be found in Formatting-Markdown.

With these changes made, take your new plain-text formatting for a spin! Edit a

few of your jokes to contain Markdown syntax and verify that the formatting is

correctly displayed.

Why Using Markdown is Cool

What’s nice about adopting a formatting syntax like Markdown for your own

website is that there’s often plenty of open-source code out there to help you deal

with it.

Your newfound regular expression skills will serve you well in your career as a web

developer, but if you want to support Markdown formatting on your site, the easiest

way to do it would be to not write all the code to handle Markdown formatting

yourself!

Commonly used Markdown libraries include ParseDown and cebe/markdown.

638 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

https://github.com/erusev/parsedown
https://github.com/cebe/markdown

Sorting, Limiting and Offsets

We’ve spent a lot of time writing PHP code and, thanks to the DatabaseTable

class, it’s been quite some time since you learned about any new SQL.

However, there’s a few final MySQL features I’d like to show you before you get

your Ninja title.

Sorting

MySQL supports asking for retrieved records in a specific order. At the moment,

the Joke List page displays jokes in the order they were posted. It would be better

if it showed the newest first.

A SELECT query can contain an ORDER BY clause that specifies the column that the

data is sorted by.

For our jokes table, SELECT * FROM `joke` ORDER BY `jokedate` would order

the jokes by the date they were posted. You can also specify a modifier of ASC

(ascending-counting up) or DESC (descending-counting down).

SELECT * FROM `joke` ORDER BY `jokedate` DESC

This query would select all the jokes and order them by date in descending order,

newest first.

Let’s implement this on the website. All our SQL queries are generated by the

DatabaseTable class, so we’ll need to amend that to include an ORDER BY clause.

At the moment, the findAll method looks like this:

public function findAll() {

$result = $this->query('SELECT * FROM ' .

$this->table);

return $result->fetchAll(\PDO::FETCH_CLASS,

Content Formatting with Regular Expressions 639

www.EBooksWorld.ir

$this->className, $this->constructorArgs);

}

Let’s add an optional argument for ORDER BY:

public function findAll($orderBy = null) {

$query = 'SELECT * FROM ' . $this->table;

if ($orderBy != null) {

$query .= ' ORDER BY ' . $orderBy;

}

$result = $this->query($query);

return $result->fetchAll(\PDO::FETCH_CLASS,

$this->className, $this->constructorArgs);

}

The SELECT query is now built up in the same way we built the INSERT and

UPDATE queries. When a value for $orderBy is supplied, it’s appended to the

query along with the ORDER BY clause. By making the argument optional, all of

our existing code will still work without modification. We can provide a value for

the $orderby argument only where it’s needed.

To sort the Joke List page by date descending, amend the Joke controller's list

method to supply the argument to the findAll method:

public function list() {

if (isset($_GET['category'])) {

$category = $this->categoriesTable->

findById($_GET['category']);

$jokes = $category->getJokes();

}

else {

640 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$jokes = $this->jokesTable->findAll('jokedate DESC');

}

// …

At the moment, the main Joke List page is sorted newest first. However, if you

click on one of the categories, they’re listed oldest first.

You might consider adding the same optional argument to the find method:

public function find($column, $value, $orderBy = null) {

$query = 'SELECT * FROM ' . $this->table . '

WHERE ' . $column . ' = :value';

$parameters = [

'value' => $value

];

if ($orderBy != null) {

$query .= ' ORDER BY ' . $orderBy;

}

$query = $this->query($query, $parameters);

return $query->fetchAll(\PDO::FETCH_CLASS,

$this->className, $this->constructorArgs);

}

Although this will be useful, it’s not going to solve the problem. The list of jokes

is generated in the Category entity class:

public function getJokes() {

$jokeCategories = $this->jokeCategoriesTable->

find('categoryId', $this->id);

$jokes = [];

Content Formatting with Regular Expressions 641

www.EBooksWorld.ir

foreach ($jokeCategories as $jokeCategory) {

$joke = $this->jokesTable->

findById($jokeCategory->jokeId);

if ($joke) {

$jokes[] = $joke;

}

}

return $jokes;

}

Because the find method is called on the DatabaseTable instance that represents

the joke_category table, we can’t easily sort by date.

There are a few ways to solve this. We could add a date column to the

joke_category table for sorting purposes. We could also use an SQL JOIN, but

that would be difficult to implement into our OOP DatabaseTable class.

Instead, we can do the sort in PHP itself, using the usort function. The usort

function takes two arguments: an array to be sorted, and the name of a function

that compares two values.

The example given in the PHP manual is this:

<?php

function cmp($a, $b)

{

if ($a == $b) {

return 0;

}

return ($a < $b) ? -1 : 1;

}

$a = [3, 2, 5, 6, 1];

usort($a, "cmp");

642 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

http://php.net/manual/en/function.usort.php

foreach ($a as $key => $value) {

echo "$key: $value\n";

}

The code above outputs this:

0: 1

1: 2

2: 3

3: 5

4: 6

The array has been sorted smallest to largest. The cmp function is called with two

values from the array, and returns 1 if the first should be placed after the second,

and -1 if the first should be placed before the second. The important part is this

line:

return ($a < $b) ? -1 : 1;

The syntax here looks strange if you haven’t come across it before. You actually

know what’s happening here, but you’ve not seen it expressed in this way. The

code here is a shorthand (or ternary) if statement, and it’s identical in execution

to this:

if ($a < $b) {

return -1;

} else {

return 1;

}

The comparison function can take arguments that are objects, and we can build a

comparison function into our Category class like so:

Content Formatting with Regular Expressions 643

www.EBooksWorld.ir

public function getJokes() {

$jokeCategories = $this->jokeCategoriesTable->

find('categoryId', $this->id);

$jokes = [];

foreach ($jokeCategories as $jokeCategory) {

$joke = $this->jokesTable->

findById($jokeCategory->jokeId);

if ($joke) {

$jokes[] = $joke;

}

}

usort($jokes, [$this, 'sortJokes']);

return $jokes;

}

private function sortJokes($a, $b) {

$aDate = new \DateTime($a->jokedate);

$bDate = new \DateTime($b->jokedate);

if ($aDate->getTimestamp() == $bDate->getTimestamp())

➥ {
return 0;

}

return $aDate->getTimestamp() >

➥ $bDate->getTimestamp() ? -1 : 1;
}

You can find this code in Formatting-Usort

There’s a lot going on here, so I’ll go through it line by line. Firstly, the $jokes

array is sorted using the usort function: usort($jokes, [$this,

'sortJokes']);. To call a method in a class, rather than just a function, you can

use an array containing the object you want to call the method on (in our case,

the same instance, $this) and the name of the method to be called (sortJokes).

644 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

The sortJokes method starts by converting the dates from each of the $a and $b

objects into \DateTime instances for easier comparison. The getTimestamp

method returns a Unix timestamp—the number of seconds between the January 1

1970 and the date being represented. Using timestamps allows us to compare the

dates as integers.

The if statement checks to see if the dates have the same timestamp. If so, it

returns 0, indicating that neither should be moved before or after the other in the

sorted list.

If the dates are different, either 1 or -1 is returned to sort the dates. Notice I’ve

used $a > $b, which will sort the array in the opposite order to the example, and

put the larger timestamps (later dates) first.

There’s a slight performance overhead in using usort instead of ORDER BY and

having the database perform the sort, but unless you’re dealing with thousands of

records, the difference between the two will be milliseconds at worst!

Pagination with LIMIT and OFFSET

Now that you know how to sort the records, we can think a little about

scalability. You’ve probably got fewer than a dozen jokes in your database at the

moment. What will happen after the website has been online a few months and is

starting to get popular? You might get users coming on and posting hundreds of

jokes a day.

It won’t take long before the Joke List page takes a very long time to load because

it’s displaying hundreds or thousands of jokes. The performance alone will put

users off, but nobody is going to sit and read through a page of two thousand

jokes.

A common approach is using pagination to display a sensible number—for

example, ten jokes per page—and allow clicking a link to move between pages.

Before you continue, add at least 21 jokes to your database so we can test this

correctly. Alternatively, for testing purposes, change 10 in the following sections

to 2 to display two jokes per page.

Content Formatting with Regular Expressions 645

www.EBooksWorld.ir

Our first task is to display just the first ten jokes. Using SQL, this is incredibly

easy. The LIMIT clause can be appended to any SELECT query to restrict the

number of records returned:

SELECT * FROM `joke` ORDER BY `jokedate DESC` LIMIT 10

We’ll need to build this into findAll and find methods of the DatabaseTable

class as optional parameters, as we did with the $orderBy variable:

public function find($column, $value, $orderBy = null,

$limit = null) {

$query = 'SELECT * FROM ' . $this->table . '

WHERE ' . $column . ' = :value';

$parameters = [

'value' => $value

];

if ($orderBy != null) {

$query .= ' ORDER BY ' . $orderBy;

}

if ($limit != null) {

$query .= ' LIMIT ' . $limit;

}

$query = $this->query($query, $parameters);

return $query->fetchAll(\PDO::FETCH_CLASS,

$this->className, $this->constructorArgs);

}

public function findAll($orderBy = null, $limit = null) {

What If I Don’t Know any Jokes?

Don’t worry if you can’t think of any jokes. Just add some test data like “joke one”,

“joke two”, “joke three”, etc.

646 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$query = 'SELECT * FROM ' . $this->table;

if ($orderBy != null) {

$query .= ' ORDER BY ' . $orderBy;

}

if ($limit != null) {

$query .= ' LIMIT ' . $limit;

}

$result = $this->query($query);

return $result->fetchAll(\PDO::FETCH_CLASS,

$this->className, $this->constructorArgs);

}

Then, to limit to ten jokes, open up the Joke controller class and provide the

value 10 for the new $limit argument:

$jokes = $this->jokesTable->findAll('jokedate DESC',

➥ 10);

Also supply the new limit in the Category entity class:

$jokeCategories =

➥ $this->jokeCategoriesTable->find('categoryId',
➥ $this->id, null, 10);

You’ll notice I’ve supplied null for the $orderBy argument. Even though the

argument is optional, to provide a value for $limit, a value for all the earlier

arguments must be provided.

With that in place, you’ll see only ten jokes on the Joke List page. The problem

now is how we’ll view the rest of the jokes!

Content Formatting with Regular Expressions 647

www.EBooksWorld.ir

The solution is to have different pages that can be accessed by a $_GET variable:

/joke/list?page=1 or /joke/list?page=2 to select which page to show. Page 1

will show jokes 1–10, page 2 will show jokes 11–20, and so on.

Before doing anything using the page $_GET variable, let’s create the links in the

template. We can easily use a for loop to display a set of links to different pages:

for ($i = 1; $i <= 10; $i++) {

echo '' .

$i '';

}

The problem is, we need to know how many pages there will be. It’s actually very

easy to work out. If we’re displaying ten jokes per page, the number of pages is

the number of jokes in the database divided by ten, and then rounded up.

With 21 jokes in the system, 21/10 is 2.1, and if we round up, it gives 3 pages.

PHP’s ceil function can be used to round up any decimal number.

The template already has access to the $totalJokes variable, so we can display

the pages at the end of jokes.html.php:

// …

<?php endif; ?>

</blockquote>

<?php endforeach; ?>

Select page:

<?php

// Calculate the number of pages

$numPages = ceil($totalJokes/10);

// Display a link for each page

for ($i = 1; $i <= $numPages; $i++):

?>

<a href="/joke/list?page=<?=$i?>">

<?=$i?>

648 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

<?php endfor; ?>

</div>

If you click the links, the $_GET variable will be set. It’s now just a matter of using

it to display different sets of jokes.

The SQL clause OFFSET can be used with LIMIT to do exactly what we want:

SELECT * FROM `joke` ORDER BY `jokedate` LIMIT 10 OFFSET 10

This query will return 10 jokes, but instead of returning the first ten jokes, it will

display ten jokes starting from joke 10.

We’ll need to turn page numbers into offsets. Page 1, will be OFFSET 0, page 2

will be OFFSET 10, page 3 will be OFFSET 20 and so on. This is a simple

calculation: $offset = ($_GET['page']-1)*10.

As we did with limit, let’s add OFFSET as an optional argument for the findAll

and find methods:

public function findAll($orderBy = null, $limit = null,

$offset = null) {

$query = 'SELECT * FROM ' . $this->table;

if ($orderBy != null) {

$query .= ' ORDER BY ' . $orderBy;

}

if ($limit != null) {

$query .= ' LIMIT ' . $limit;

}

if ($offset != null) {

$query .= ' OFFSET ' . $offset;

}

Content Formatting with Regular Expressions 649

www.EBooksWorld.ir

$result = $this->query($query);

return $result->fetchAll(\PDO::FETCH_CLASS,

$this->className, $this->constructorArgs);

}

public function find($column, $value,

$orderBy = null, $limit = null, $offset = null) {

$query = 'SELECT * FROM ' . $this->table . '

WHERE ' . $column . ' = :value';

$parameters = [

'value' => $value

];

if ($orderBy != null) {

$query .= ' ORDER BY ' . $orderBy;

}

if ($limit != null) {

$query .= ' LIMIT ' . $limit;

}

if ($offset != null) {

$query .= ' OFFSET ' . $offset;

}

$query = $this->query($query, $parameters);

return $query->fetchAll(\PDO::FETCH_CLASS,

$this->className, $this->constructorArgs);

}

Then supply the offset in the list method in the Joke controller:

$page = $_GET['page'] ?? 1;

650 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$offset = ($page-1)*10;

if (isset($_GET['category'])) {

$category = $this->categoriesTable->

findById($_GET['category']);

$jokes = $category->getJokes();

}

else {

$jokes = $this->jokesTable->findAll('jokedate DESC',

10, $offset);

}

$title = 'Joke List';

$totalJokes = $this->jokesTable->total();

$author = $this->authentication->getUser();

return ['template' => 'jokes.html.php',

'title' => $title,

'variables' => [

'totalJokes' => $totalJokes,

'jokes' => $jokes,

'user' => $author,

'categories' => $this->categoriesTable->findAll()

]

];

}

Now, if you click between the different page links, you’ll see ten different jokes

on each page.

This new pagination doesn’t work for the lists within categories, and we’ll fix that

shortly. But at the moment, the links aren’t very user friendly. Let’s change the

styling of the link that represents the current page.

We can pass the number of the current page to the template:

Content Formatting with Regular Expressions 651

www.EBooksWorld.ir

return ['template' => 'jokes.html.php',

'title' => $title,

'variables' => [

'totalJokes' => $totalJokes,

'jokes' => $jokes,

'user' => $author,

'categories' => $this->categoriesTable->findAll(),

'currentPage' => $page

]

];

Then add a CSS class to the page link if it’s the current page:

Select page:

<?php

$numPages = ceil($totalJokes/10);

for ($i = 1; $i <= $numPages; $i++):

if ($i == $currentPage):

?>

<a class="currentpage"

href="/joke/list?page=<?=$i?>">

<?=$i?>

<?php else: ?>

<a href="/joke/list?page=<?=$i?>">

<?=$i?>

<?php endif; ?>

<?php endfor; ?>

</div>

I’ve added a CSS class currentpage to the link if the link being printed is the

current page being viewed. Add some CSS to jokes.css to make the link stand

out. You could change the color, make it bold, underlined or however you like.

I’ve chosen to surround the number with square brackets:

652 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

.currentpage:before {

content: "[";

}

.currentpage:after {

content: "]";

}

You can find this code in Formatting-Pagination

Pagination in Categories

We have a small bug in the code at the moment. If you click on one of the

categories, it won’t supply the correct offset value.

To fix this, we can add an $offset argument to the Category entity’s getJokes

method. While you’re there, to improve flexibility you may as well supply $limit

as an argument as well, instead of hardcoding it in the method:

public function getJokes($limit = null, $offset = null) {

$jokeCategories =

$this->jokeCategoriesTable->find('categoryId',

$this->id, null, $limit, $offset);

$jokes = [];

foreach ($jokeCategories as $jokeCategory) {

$joke =

$this->jokesTable->findById($jokeCategory->jokeId);

if ($joke) {

$jokes[] = $joke;

}

}

usort($jokes, [$this, 'sortJokes']);

return $jokes;

}

Content Formatting with Regular Expressions 653

www.EBooksWorld.ir

Then provide the values when the method is called in the list method:

if (isset($_GET['category'])) {

$category =

$this->categoriesTable->findById($_GET['category']);

$jokes = $category->getJokes(10, $offset);

}

With that done, the pagination will work … kind of. You can manually enter the

$_GET variables in the URL—for example, http://192.168.10.10/joke/

list?category=1&page=1. However, the links we created don’t work.

There are two problems:

1. The page links don’t include the category variable.

2. The number of page links displayed is based on the total number of jokes in

the database, not the number of jokes in the selected category.

Let’s fix these one at a time. The easiest task is providing the category in the link.

In the list method, we’ll need to pass the category to the template:

return ['template' => 'jokes.html.php',

'title' => $title,

'variables' => [

'totalJokes' => $totalJokes,

'jokes' => $jokes,

'user' => $author,

'categories' => $this->categoriesTable->findAll(),

'currentPage' => $page,

'category' => $_GET['category'] ?? null

]

];

Then amend the links in the template to provide the category variable if required:

654 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Select page:

<?php

$numPages = ceil($totalJokes/10);

for ($i = 1; $i <= $numPages; $i++):

if ($i == $currentPage):

?>

<a class="currentpage"

href="/joke/list?page=<?=$i?>

<?=!empty($categoryId) ?

'&category=' . $categoryId : '' ?>">

<?=$i?>

<?php else: ?>

<a href="/joke/list?page=<?=$i?>

<?=!empty($categoryId) ?

'&category=' . $categoryId : '' ?>">

<?=$i?>

<?php endif; ?>

<?php endfor; ?>

</div>

I’ve used the shorthand if, which I displayed earlier to append

&category=$categoryId to the link if it’s set.

We’ve fixed the first problem, but the number of page links being displayed is still

calculated based on the number of jokes in the entire table, rather than just a

category.

At the moment, the total method in the DatabaseTable class returns the total

number of records in a given table. To count a subset of the records, it will need a

WHERE clause. We can implement it in the same way as the find method:

public function total($field = null, $value = null) {

$sql = 'SELECT COUNT(*) FROM `' . $this->table . '`';

$parameters = [];

Content Formatting with Regular Expressions 655

www.EBooksWorld.ir

if (!empty($field)) {

$sql .= ' WHERE `' . $field . '` = :value';

$parameters = ['value' => $value];

}

$query = $this->query($sql, $parameters);

$row = $query->fetch();

return $row[0];

}

The total method now supports doing something like echo

$this->jokesTable->total('authorId', 4);, which would give us the total

number of jokes by the author with the id of 4.

We can’t do the same to count the number of jokes in a category, as there’s no

categoryId column in the joke table. We need to call the total method on the

jokeCategoriesTable instance:

$this->jokeCategoriesTable->total('categoryId', 2);, which would count

the number of jokes in the category with the id of 2.

Instead of implementing this in the list method, let’s add a new method to the

Category entity class that returns the number of jokes in that particular category:

$totalJokes = $category->getNumJokes();:

public function getNumJokes() {

return $this->jokeCategoriesTable->total('categoryId',

$this->id);

}

This can then be called from the list method in the Joke controller:

public function list() {

$page = $_GET['page'] ?? 1;

656 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

$offset = ($page-1)*10;

if (isset($_GET['category'])) {

$category =

$this->categoriesTable->findById($_GET['category']);

$jokes = $category->getJokes(10, $offset);

$totalJokes = $category->getNumJokes();

}

else {

$jokes = $this->jokesTable->findAll('jokedate DESC',

10, $offset);

$totalJokes = $this->jokesTable->total();

}

$title = 'Joke List';

// …

You can find this code in Final-Website.

Notice that I’ve moved the original $totalJokes variable into the else branch of

the if statement. When a category is selected, $totalJokes is the total number of

jokes in the selected category. When no category has been chosen, $totalJokes

stores the total number of jokes in the database.

Achievement Unlocked: Ninja

That’s it! You’re done, and you get your PHP black belt.

In this chapter, I showed you some additional tools that will be useful when you

develop your next website. You have a basic understanding of regular

expressions, along with the SQL features of LIMIT and OFFSET, and you know

how to combine them to paginate data sets.

You now have all the tools you need to build a real website. You know how to

think about writing code, and you know how to separate out project specific code

from the code you can use in future projects. You also have an understanding of

Content Formatting with Regular Expressions 657

www.EBooksWorld.ir

the concepts behind PHP frameworks. You can jump into Symfony, Zend or

Laravel, and although the code will be different, all the concepts you’ve learned

in this book will be familiar.

What Next?

You have all the tools you need to build a fully functional PHP website and put it

live on the web. Go ahead and publish your first website. It’s a great feeling!

With programming, there’s always more to learn. There are different techniques

and approaches you can try out, and a lot of different tools that will help you

develop more efficiently and reduce bugs.

You’re never “done”, you never complete the game. You just keep playing. Each

time you learn something new, be it a new tool, a new technique, or even a new

language, it will extend what you knew before and you’ll wonder how you ever

coped without it. Things also change constantly, and it’s difficult to keep up. Why

do you think we’re on the sixth edition of this book? Don’t be disappointed:

learning is fun, and as long as you don’t fall into the trap of thinking you know

everything, you’ll go a long way.

Now that you’ve finished this book, you do, however, have more than enough

knowledge to work on your own projects, or even get a job as a junior PHP

developer!

Before taking the next few steps, I recommend getting at least two or three

projects finished to ensure you’re comfortable with everything from this book. It

won’t sink in right away, and as you go forward, you’ll find yourself solving

different sets of problems. It will take you a few attempts to get everything clear

in your mind.

Once you’ve done that, you can move on to the next few steps. What are those

steps?

1. Composer. Composer is a package management tool that’s used by almost all

PHP projects these days. If you want to use someone else’s code in your

project, you’ll need to know how to use Composer.

658 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

https://www.sitepoint.com/re-introducing-composer/

2. Take a look at some PHP frameworks to see how other people do things. In

2017, I’d recommend Laravel and Symfony as starting points, but that’s likely

to change within a few years.

3. PHPUnit. Test-driven development has really taken off in PHP over the last

few years, and for good reason. Once you start using TDD, it’s difficult to go

back. Everything seems so much tidier and easier. Rather than having to load

up your website, fill in your form, then check the record was inserted into a

database, you can just run a script that does all that for you!

4. Git. Git is a vital tool for software developers. You may have come across the

website GitHub, which allows sharing code and collaborating with other

developers. To use the site, you’ll need to understand git. But at its most basic,

it’s an incredible tool. No more copy/pasting code after making a change, or

commenting out large sections. Just delete it, and git will keep track of any

changes you make!

With that said, there’s little else I need to add. However you proceed from this

point, rest assured you’re starting out with a solid grounding in the essentials and

a good understanding of the tools and techniques used by modern PHP websites.

That’s more than can be said for many developers working today. Take that

advantage and use it.

Most importantly, go out there and write some code!

Content Formatting with Regular Expressions 659

www.EBooksWorld.ir

https://www.sitepoint.com/bootstrapping-laravel-crud-project/
https://www.sitepoint.com/building-a-web-app-with-symfony-2-bootstrapping/
https://www.sitepoint.com/re-introducing-phpunit-getting-started-tdd-php/
https://www.sitepoint.com/git-for-beginners/

Appendix A: Using The Sample Code
Repository

Each code sample in this book is provided in a GitHub repository at

https://github.com/spbooks/phpmysql6. Where a set of code for an example is

available in the archive, it is either captioned with its name over the code sample

itself (for example PHP-Loops), or I’ll let you know the name of the set of code in

the text. You can find the complete sample code on the GitHub repository. In Git’s

terminology, each set of code is known as a branch.

There are two ways to use the sample code.

If you just want to view the code for a specific file in a single example, you can do

it easily on GitHub. Choose the example by it’s name using the Branch dropdown

on the main GitHub page. You will then see a list of files and directories for the

selected example (In Git’s terms, this is a Branch) and can click on each file to

view the code.

Alternatively, if you would like to easily run the sample code without having to

copy and paste files in and out of the web server’s Project directory you can

easily do this. I’ve provided a tool that allows you to quickly and easily view any

of the code samples.

To use the code samples, follow these steps:

1. Make sure your Project directory is empty.

2. Using the git bash tool you use to boot the virtual machine, make sure you

have navigated to the directory you normally run vagrant up from then run

the following command:

git clone https://github.com/spbooks/phpmysql6 Project

3. Visit http://192.168.10.10/samples/, you’ll see a list of all the available

samples.

660 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

Click on the name of the sample you want to view and the files will be created in

the Project directory and view the files on the URL http://192.168.10.10/.

Some Caveats

Switching Samples

Once on a specific sample, the Project directory will contain only code for the

sample you are viewing. If you had been working on any files they will be

hidden. They have not been deleted!

Each time you switch between samples, any changes you have made will be

backed up in their own branch based on the branch you made changes to. By

default, you will be on the master branch. When you switch to one of the

samples, all files you have created in the Project folder will be saved into a

branch called master followed by the date at time the snapshot was taken. For

example: Master_2017-10-01-17.16.52. You can get your code back by switching

to this new branch from the list at http://192.168.10.10/samples/.

Sample Database

All the sample code uses the database ijdb_sample. This database will be deleted

and recreated each time you switch between samples, any changes you make to

the ijdb_sample database will be lost when you switch between samples. If you

are following the book, you should make all your changes to the ijdb database.

Using The Sample Code Repository 661

www.EBooksWorld.ir

Appendix B: Linux Troubleshooting

As a Linux user, installing the software is incredibly easy but you’ll usually need

an extra step to connect to the server once it’s running. By default Linux will not

allow you to connect to the IP address, you will need to run the following

commands as root:

sudo ip link set vboxnet0 up sudo ip addr add

➥ 192.168.10.1/24 dev vboxnet0

Depending on your distribution you may need to manually load VirtualBox’s

kernel modules. If later you see a warning about VirtualBox’s Kernel modules,

run the following commands:

sudo modprobe vboxdrv sudo modprobe vboxnetadp sudo modprobe

➥ vboxnetflt

This will need to be run each time you reboot your computer. To make the

changes permanent refer to your distribution’s manual regarding kernel modules.

662 PHP & MySQL: Novice to Ninja, 6th Edition

www.EBooksWorld.ir

	PHP & MySQL: Novice to Ninja, 6th Edition
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About Tom Butler
	About Kevin Yank
	About SitePoint
	Table of Contents
	Preface
	Who Should Read This Book
	Programming Has Changed
	It Takes 10,000 Hours to Become an Expert
	Resist the Temptation to Skip Ahead
	The Concorde Fallacy
	You’re Not Learning PHP
	Getting Braces and Semicolons in the Right Place Is the Easy Part
	You Won’t Get Anything Done by Planning
	Okay, Design Isn’t All Bad

	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	Supplementary Materials

	Installation
	Your Own Web Server
	Server Setup 1: Manually Installing All the Software Components
	Server Setup 2: Pre-packaged Installations
	Server Setup 3: Virtual Servers

	Your Own Virtual Server
	Installation on Windows
	Installation on macOS
	Installation on Linux

	Getting Started with Vagrant
	Using the Command Prompt to Navigate
	Running the Command in the Right Place
	If the vagrant up Command Hangs
	Linux Issues
	Text Editors

	Introducing PHP
	Basic Syntax and Statements
	Syntax Highlighting
	Quotes

	Variables, Operators, and Comments
	Variables
	Operators
	Comments

	Control Structures
	If Statements
	Use the Double-Equals
	Escaping the Quote
	or and and

	Loops
	For Loops
	While Loops
	PSR-2

	Arrays
	The array Keyword
	Escaping Quotes

	User Interaction and Forms
	Passing Variables in Links
	Text Encoding

	Passing Variables in Forms
	Adding Some CSS
	GET or POST?

	Hiding the Seams
	PHP Templates
	Security Concerns
	Many Templates, One Controller
	Web Server Configuration
	Remembering the User’s Name

	Bring on the Database

	Introducing MySQL
	An Introduction to Databases
	Using MySQL Workbench to Run SQL Queries
	Case Sensitivity

	Creating a Database
	Structured Query Language
	Dive Deeper Into SQL
	Case Sensitivity and Convention

	Creating a Table
	Adding Data
	Displaying the Bottom Panel on Low-Res Screens

	A Word of Warning
	Where’s the Darned Backtick Key?

	Viewing Stored Data
	Using * Instead

	Modifying Stored Data
	WHERE is Optional

	Deleting Stored Data
	Again, WHERE is Optional

	Let PHP Do the Typing

	Publishing MySQL Data on the Web
	The Big Picture
	Creating a MySQL User Account
	Connecting to MySQL with PHP
	Uncaught Exceptions
	The $e Variable
	Schemas

	A Crash Course in Object-oriented Programming
	Configuring the Connection
	Other Ways to Set the Charset
	What Happens After the Script Has Finished?

	Sending SQL Queries with PHP
	Handling SELECT Result Sets
	Using foreach
	Using the Shorthand

	Thinking Ahead
	Only Connect to the Database Where Necessary

	Inserting Data into the Database
	Deleting Data from the Database
	Using a foreach Loop Instead
	Why Aren’t the Form and Input Tags Outside the Blockquote?
	Don’t Use Hyperlinks to Perform Actions

	Mission Accomplished

	Relational Database Design
	Giving Credit Where Credit Is Due
	May Need to Boot the Server

	Rule of Thumb: Keep Entities Separate
	Both Kinds of INSERT

	SELECT with Multiple Tables
	Simple Relationships
	Many-to-many Relationships
	One for Many, and Many for One

	Structured PHP Programming
	Include Files
	Including HTML Content
	Including PHP Code
	Types of Includes

	Custom Functions and Function Libraries
	Variable Scope
	Careful Where You Place Your Files

	Breaking Up Your Code Into Reusable Functions
	Using Functions to Replace Queries
	Updating Jokes
	Editing Jokes on the Website
	Delete Function
	Select Function

	The Best Way

	Improving the Insert and Update Functions
	Improving the Update Function
	The .= Operator
	Stripping the Trailing Comma
	Writing Functions

	Improving the Insert Function

	Handling Dates
	Displaying the Joke Date

	Making Your Own Tools
	Generic Functions
	Using These Functions
	Repeated Code Is the Enemy
	Creating a Page for Adding and Editing

	Further Polishing
	Moving Forward

	Objects and Classes
	Time for Class
	Naming Your Class Files
	Methods

	Public vs Private
	Objects
	Class Variables
	Constructors
	Magic Methods
	Placing Your Constructor Methods

	Type Hinting
	Type Hinting Compatibility

	Private Variables
	Using the DatabaseTable Class
	Omitting the Closing Tag from Your Files

	Updating the Controller to Use the Class
	DRY
	Creating a Controller Class
	Single Entry Point
	Keeping it DRY
	Template Variables
	Be Careful With Extract

	Creating an Extensible Framework
	Search Engines
	HTTP Response Codes

	Make Things Generic
	Thinking Ahead: User Registration
	Dependencies
	URL Rewriting
	NGINX

	Tidying Up
	Make it OOP

	Reusing Code on Different Websites
	Generic or Project Specific?
	Making EntryPoint Generic

	Autoloading and Namespaces
	Case Sensitivity
	Implement an Autoloader
	Redecorating
	Namespaces
	Autoloading with PSR-4
	A Note on Composer
	And the REST
	REST Methods

	Enforcing Dependency Structure with Interfaces
	Your Own Framework

	Allowing Users to Register Accounts
	Using empty() Above
	Validating Email Addresses
	Preventing the Same Person from Registering Twice
	Email Addresses and Case-sensitivity

	Securely Storing Passwords
	Registration Complete

	Cookies, Sessions, and Access Control
	Cookies
	Square Brackets
	UNIX Timestamps

	PHP Sessions
	Finding php.ini
	Counting Visits with Sessions

	Access Control
	Logging In
	Hashing

	Protected Pages
	Interfaces and Return Types
	Making Use of the Authentication Class
	Login Error Message

	Creating a Login Form
	Privacy Pointers

	Logging Out
	Assigning Added Jokes to the Logged-in User
	User Permissions
	Mission Accomplished?

	The Sky’s the Limit

	MySQL Administration
	Backing Up MySQL Databases
	Database Backups Using MySQL Workbench
	Database Backups Using mysqlpump
	Incremental Backups Using Binary Logs
	Just the Same on a Real Web Server
	Where to Store Your Logs

	MySQL Access Control Tips
	Homestead Improved
	Host Name Issues
	Locked Out?
	I’m Assuming You Know How to Log In to the Server

	Indexes
	Specifying a Joke ID that Exists
	But the author Table Has an Index?
	Multicolumn Indexes

	Foreign Keys
	Referential Action

	Better Safe than Sorry

	Relationships
	Object Relational Mappers
	Public Properties
	Methods in Entity Classes
	Using Entity Classes from the DatabaseTable Class
	Using Braces

	Joke Objects
	Using the Joke Class
	References
	Simplifying the List Controller Action

	Tidying Up
	Caching

	Joke Categories
	List Page

	Assigning Jokes to Categories
	Aesthetic Choices
	Converting Arrays to Objects
	Assigning Categories to Jokes

	Displaying Jokes by Category
	Editing Jokes
	User Roles
	Constant Conventions

	Creating a Form to Assign Permissions
	Author List
	Edit Author Permissions
	Reflection

	Setting Permissions
	A Different Approach
	A Crash Course in Binary
	Be Bit-Wise
	Bitwise Permissions

	Back to PHP
	Storing Bitwise Permissions in the Database
	Join Table or Bitwise
	Cleaning Up
	Editing Others’ Jokes

	Phew!

	Content Formatting with Regular Expressions
	Regular Expressions
	Escaping Delimiters
	Use of Single Quotes Above

	String Replacement with Regular Expressions
	Emphasized Text
	Paragraphs
	Avoid Using Double-Quoted String with Regular Expressions

	Hyperlinks

	Putting It All Together
	Why Using Markdown is Cool

	Sorting, Limiting and Offsets
	Sorting
	Pagination with LIMIT and OFFSET
	What If I Don’t Know any Jokes?

	Pagination in Categories

	Achievement Unlocked: Ninja
	What Next?

	Using The Sample Code Repository
	Some Caveats
	Switching Samples
	Sample Database

	Linux Troubleshooting

