Pro

React 16

aaaaaaaaaaa

Pro React 16

Adam Freeman

Apress-

www.EBooksWorld.ir

Pro React 16

Adam Freeman
London, UK

ISBN-13 (pbk): 978-1-4842-4450-0 ISBN-13 (electronic): 978-1-4842-4451-7
https://doi.org/10.1007/978-1-4842-4451-7

Copyright © 2019 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www. freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com, for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/9781484244500. For more detailed
information, please visit www. apress.com/source-code.

Printed on acid-free paper

www.EBookswWorld.ir

https://doi.org/10.1007/978-1-4842-4451-7
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
http://editorial@apress.com
http://bookpermissions@springernature.com
www.apress.com/bulk-sales
www.apress.com/9781484244500
www.apress.com/source-code/

Dedicated to my lovely wife, Jacqui Griffyth.
(And also to Peanut.)

www.EBookswWorld.ir

Contents

AbOUt the AUTNOLceeiirreeeiirseneisrssssssssssnsssssssssssnssnsssssssnnssssssnnssssnsnnnsssnsnnnsnsnnnnnnns XXi

About the Technical REVIEWETcuurrrrrssesnmssssssssmmssssssnssssssssssssssnnnsssssssssssssnnnnnnnnns XXxiii

Part I: Getting Started with React.............cccccmnninecmnnnnsennnnnnsssennnnnns 1

Chapter 1: Your First React Applicationccccceemmmmmmmmsmssssssssnnmmssmmsssssssssssessssssnns 3
Preparing the Development ENVIrONMENt..........ccocvcrcicrcn s e 3
INSTAIING NOGEJS ...ttt e e b e R e e R e e r e r e ne e nnis 3
Installing the create-react-app PACKageccccvvierricierie s e 4
INSTAIING Git....c.cceeeireecriree s e bR e ee AR e e bR e bR e e e e R e s 4
INSTAllING AN EQITON ... s p e p e ne s 5
INSTAIIING @ BrOWSETcc.cereecrecececiresis e ss s e s r e e e a e p e e s e e e p e p e e nenrnnis 5
Creating the ProjECL........coe e sn e sn e n e sn e e 6
Understanding the Project STrUCTUNE ... s 6
Adding the Bootstrap CSS FramMEWOIKcccoerurueiririrecenirise e 8
Starting the DevelopmMENt TOOIS........covu i 8
Replacing the Placeholder Content ... 10
Displaying Dynamic COntentc.cccvceenciennicnesne e 11
Understanding State Data Changes........cccovrrrninnrnnsncsn st sesssss s 13
Adding the To-Do Application FEAtUIESccceeeeerererere e see e 15
Displaying the TO-D0 HEMS ..o 18
Introducing Additional COMPONENTScccceererererere e n s 21
Using the Child COMPONENTS.........cccoererererrerererereresereressersesessesessesessessssessssesssssssessssessssessesessessssssassens 23

A\

www.EBookswWorld.ir

vi

CONTENTS

Adding the Finishing TOUCHES.........cccccverrierennerr e 24
Managing the Visibility of Completed TASKSccccererrerererrenerirresesessese s sesessssenes 24
Persistently STOriNg DAta..........ccccererreienrireieserreee e 27

RS0 111 30

Chapter 2: Understanding React...........cciussummmssansmssanssssansssssssssssnsssssssssssnsssssnnnssnns 31

Should | USE REACE?cccvireriririssis s 31
Understanding Round-Trip APPlICALIONSccceererererierersererereser e seserssessesessesessesessesassessesessssesassanaens 32
Understanding Single-Page APPlICALIONScoeeerereriererierereresesseresesssessesessesessessssessssessesessssessssasaens 32
Understanding Application COMPIEXITYcciveeeereriererierrsererere s e s s eses e ssesesseressesessesassessesessesessesanaens 33

What Do | Need t0 KNOW?.........cocvrininnini s s 33

How Do | Set Up My Development Environment?...........cccovvvrvrrrcnsnsessesses s sessessenens 33

What Is the Structure of This BOOK? ... 33
Part 1: Getting Started With REACTccceceverrerre e sae e snenannens 34
Part 2: Working With REACTcccvreeere sttt sa s e s ae e sa e sas e saenesaenesaenanaens 34
Part 3: Creating Complete React APPlICALIONScccvcereerereererererereserssessesessesessesessesassessesessssessesensens 34

Are There Lots of EXAMPIES?......cccoeeeeeeerrese e sse s e s ssessessessessssssssssnssssssssssssssssnssnnnns 34

Where Can You Get the Example COUR?ccocvvrverierserrerser s see e e e e 36

Where Can You Get Corrections for This BOOK?..........ccouuinnnininnsnnssssesesssesssnnns 36

How Can You Contact ME? ... s 36

SUMMAIY ...ttt e s a e r s ae e s a e e Re e s e ae e s re e n e nnenrnnnas 36

Chapter 3: HTML, JSX, and CSS Primerccccccmmmrrmmsssssssssssnnssssssssssssssssnssssssssnss 37

Preparing for This Chapter ... 37
Preparing the HTML File and the COMPONENT..........cooiiirrneerre e 38
Running the EXample APPlICALION.........ccorueeeerreccrir e 39

Understanding HTML and DOM EIEMENTScccevevereernrenrensee e sessesssessssessessessessasssssens 39
Understanding Element CONTENT...........ccoeererererre e e e s e sas e sse e sesessesessesassessesessesesassanaens 4
Understanding AtHDULES ... 43
Creating HTML Elements DYNamiCally..........cccvreeerererierersereesersesesesesessssessesesssssssessssesassessesssssssssssansens 43
Creating Elements Dynamically Using a React COmponent...........covoumcnsnnmnnsnsssssesssnens 45

www.EBookswWorld.ir

CONTENTS

Using Expressions in React EIEmMENtScccocveeiinennicnsse s 46
Mixing Expressions and Static CONENt ... s 47
Performing Computation in EXPreSSIONSccovueeeerereeenesesesenesesessssesesessesesessssssessssssesssesessssssssesssssnes 48
Accessing Component Properties and Methods..........coceceerniienernnescssse s 49
Using EXpressions t0 Set Prop VAIUEScccoereeererireeenesesisesesesesse s sssssessssnnes 50
Using Expressions t0 HANAIE EVENTS..........ccovnnnnnsccccceseeeee s 51

Understanding BOOTSIIap........ccvererererinnnsseesee e sse e ssesesseeseesaessssassassassasssssssssssasssssnns 52
Applying Basic BOOISIIAP CIASSEScecerrererrererererersnersssessesessessssessssessssessesssssssssessssessssessssessensssenssses 52
Using Bootstrap t0 Create Gridsceoverererererererereressessesessesesessssessssessesesssssssessssessssessesesssssssesansens 54
Using Bootstrap t0 Style TADIEScccvcerecererere st sre s e e sa s e s e e sesseses e sas e saesesassesassanaens 56
Using Bootstrap t0 StYI FOIMScccvevecererere e sereres e sse e saeses e sassesassessesessesessssassesassessesessssessssanaens 58

BT 111 P2 SRS 99

Chapter 4: JavaScript Primercccccceummmmmmmsssssssmmmmmmmssssssssssssssssssssssssssssssssnnns 61

Preparing for This Chapter ... e 62

USING STALBMENTS ..o 64

Defining and UsSing FUNCHIONS..........ccocrvrininserer s sn e e e s 64
Defining Functions With PArameterscoecveverererierenieserere s e sesesesessesessesessesessesassessesessssesssssnsens 65
Defining Functions That RETUrN RESUILScccveeerererierrserterere s e sesesssessesessesessesessesassessesessssessesanaens 67
Using Functions as Arguments t0 Other FUNCHONS..........cccoeverererierece e esse e sesnesennens 68

Using Variables and TYPES......ccceeeererereressersessessessessessessessessssssssssssssssssssssssssssssssssssnns 69
Using the Primitive TYPEScoecieiisresir st s et sn e p e a e e s e nn s 7

Using JavaScript OPerators.........ccceeeeereresessesse e sse e sssssessessesssssssssssessssssssssssssssssens 74
Using Conditional StAtEMENTSccceeeririeiecree e 74
The Equality Operator vs. the Identity OPerator...........coooccceereiesrnsesesess e 75
EXPIiCitly CONVEITING TYPES ...cuvveeeererieeereriee s ne s s 76

WOIKiNG With AITQYScecererierierersessessesses s e se s e e ses e s e se s s s ssssessnssasssssessassnssssssssnnns 78
USING AN Array LItEralccceeeecesere st r e sertesereses e sas e saesessesessesassesassesaesesasassssassesassessesessesensenanaens 78
Reading and Modifying the Contents of @n ArTaycccccvevrereriererrerssere e esassessesessesesaesanaens 78
Enumerating the Contents 0f @n ArTay........ccoeeceererererieresieserereses e sesesssessesessesessesessessssessesessssssassansens 79
USing the SPread OPEIaAtOrccccceeeriereerererererereseseressessesessesessessssessssessesessessssessssessssessesessessssesansens 80
Using the Built-in Array METhOUS.........cccvecererererererereres s ssesesesesesessesssessesessesessessssesassessesessesessssanaens 81

vii

www.EBookswWorld.ir

CONTENTS

WOrking With ODJECTSceveeerererirerese e 82
USING ODJECT LItEIaAIS.......cveeeererteccririe et s e e e e e s nes 83
Using FUNCLIONS @S METNOUS........cccourieicirieecs e 84
USING CIASSES ...cuvvreeuererrsreeesesseesesessesesesesss e e sssss s sssssse e e sss s e e sssse e e sessase s ssssasessssssessnsssssassnsssnsassnes 85
Copying Properties from One Object t0 ANOTHEr ... s 87
Capturing Parameter Names from ODJECTES.........c.cocrerererercnerineresssese s 88

Understanding JavaScript MOUUIES.........cccverererererr s e ses e sae e e 89
Creating and Using @ JavaScript MOGUIE..........ccecerereriereriererererereseseresessesessesessessssesassessesessssessesanaens 89
Exporting Named Features from a MOUIE...........ccevereererierrererererereseresessesessesessesessesassessesessssesassanaens 92
Defining Multiple Named Features in @ MOGUIEccoeierererereriereseresesse e sessesessesassessesessssessesanaens 93

Understanding JavaScript PrOMISESccceeeeeresressessessessesse e ssesssssssnssssssssssssssssssnens 95
Understanding the Asynchronous Operation ProbIemcccnnnccessnesesesee e 95
USiNg @ JAVaSCIiPt PrOMISE..........coceuiueeiererieeerisse et 96
Simplifying the ASYNCRroNOUS COUEccceereruieiririeeere e 97

SUMMAIY ...t a s e ae e s a s R e s e ea e e e ne e s e nnennnnnas 97

Chapter 5: SportsStore: A Real Application...........ccmmimmmmnnss. 99

Preparing the ProjeCt ... 100
Installing Additional NPIM PACKAGEScervererererreenerirenseeseseseesesesssssesessssssssssssssssssssssssssssssssssssens 100
Adding the CSS Stylesheets t0 the Project ... 102
Preparing the WED SEIVICE ... 103
Running the Example APPlICALION.........cccocverreieeerirreses e 105

Creating the Data STOre.........cccverererrrere e sa e e sa e sa e sn e sn e 106
Creating the Data Store Actions and Action Creatorsccccvvvererererresesseressesse s sessesessesessesessenns 106

Creating the Shopping FEAUrES.........ccceeeeereie e nns 108
Creating the Product and Category COMPONENTS...........ccocoeierereienerireese e 109
Connecting to the Data Store and the URL ROULET..........cccererrccrcnnccresrerin e 111
Adding the Shop t0 the APPliCAtiON ..o s 114
Improving the Category Selection BUIONS ... 115

Adding the Shopping Cart ... 117
Extending the Data STOre........ccceeeeereereeses e 117
Creating the Cart SUMMAry COMPONENT.........cccoriieeerrreererr e 120

viii

www.EBookswWorld.ir

CONTENTS

Adding the Cart Detail COMPONENTccccevvrererere et ses e s e sae e saesessesasaesaesesaeesaesnaes 124
Adding the Cart URL to the Routing Configuration............ccceceveevererererersesensenessesessessesesessssessesessesenes 126
RS0 1 - 129
Chapter 6: SportsStore: REST and Checkoutcccivnnemmnnnssssssnnnssssssnssssssnnns 131
Preparing for This Chapter ... 131
Consuming the RESTIUl WED SErVICeccuvererererrie e ses s e e s e e s sesenns 132
Creating @ Configuration Filcoueeerrirreiesesnreese s s nnns 133
Creating @ DAtA SOUICE.......cccvrrrrerererrsreeseresrse s srs e ses e e e e s e e ss e e e s sse e e nsnse e s nansasnnnnnns 133
Extending the Data STOre........cccecceerrieescrirresi s e 134
Updating the ACHON CreAtOr..........cccvureierererreenesesrsssesesssse s sesse s e e s s e sessssesssssssssssssssnssssnsens 135
Paginating Data...........ccccoveiirriiie e 136
Understanding the Web Service Pagination SUPPOIt.........cccvcevrvererererse s ses e saeenns 138
Changing the HTTP Request and ACHIONcccoeeerererererererersssersesessesessesessesasessesessssessssassessssessssenes 139
Creating the Data Loading COMPONENT..........cccvererrrererererereresserre e sesse e e sasessesessssessssassesassesassenes 140
Updating the Store Connector COMPONENTcccveverrierrieree s sse e e sassesaenens 141
Updating the All Category BULEON..........ccovereierererrsere v se e sse e sse e saesassesassesaesenes 143
Creating the Pagination CONTIOIS..........cccveereeiererereesere s s sersesessesessesessesassesasessesessesessssassesassesssnenes 144
Adding the CheCKOUL PrOCESScccceeerereesrerressessesse e ssessesse e sssssssssssssnssssssssssssssnnsns 150
Extending the REST Data Source and the Data STOre..........ccoreeeenreieiennsesesrsee e 151
Creating the CheCKOUE FOIM ...t 153
Simplifying the Shop Connector Component...........ccovvrvrvrnrrsss s 162
SUMMEAIY ...t a s e e a e e ae e s Re e s e r e e e e a e e e ne e s e nnnnnanas 163
Chapter 7: SportsStore: Administrationccccnnemnmnnnsennmssnss——— 165
Preparing for This Chaptercccocreenicnesse s sns e 165
Running the Example APPlICALION ... e 166
Creating @ GraphQL SEIVICEccoeeeeererererresressessesse e sssssessessessesnssnssnessssnssnssnssssnsnns 167
Defining the GraphQL SCREMA..........c.oiieiririeecriee e 167
Defining the GraphQL RESOIVEIScuccceererieeiririeeesirese e 168
UPAALING the SEIVE ... e 170

ix

www.EBookswWorld.ir

CONTENTS

Creating the Order Administration Features...........cccevrrernieressnesss s 173
Defining the Order Table COMPONENT.........ooovieieeee e 174
Defining the Connector COMPONENT...........oeoeeirreieenreere e 175
Configuring the GraphQL ClENTccceerireieeerereese s 178
Configuring the MULALIONc.ceoeeeeieecr e 180

Creating the Product Administration FEAtUurescocverrrrrrnnrsnssesses s ses s sessensenns 182
Connecting the Product Table COMPONENL..........ccccerererercererierer s sesse s e rassesaesessesessesassesassesassenes 184
Creating the Editor COMPONENTS.........ccevereverrerererereresere s reesessesessesessesassesassessesessssessssassesassessenenes 187
Updating the Routing ConfigUurationccoeceeeerrneresre s sesse e sas s saesessesassesassesasnenes 190

SUMMANY ...ttt s e r s s nssn s sn s n s n e n s nssn e sr s e s er s e e nn e snsnn e s e nnennennennennennnnnennnnnan 192

Chapter 8: SportsStore: Authentication and Deployment............coccmmmnnnnnnsssnns 193

Preparing for This Chapter ... 193

Adding Authentication for GraphQL REqUESTSccceeevererrrrre e 197
Understanding the Authentication SYSTEM ... 197
Creating the Authentication CONtEXt.........cooeceeeereecerreer e 198
Creating the Authentication FOrM.........c.cooumieeneceee e 201
Guarding the Authentication FEALUIESccceeeerreeeerrrccer e 202
Adding a Navigation Link for the Administration FEAtUresc.coveerrrenenrnsnesrneesesesee s 204

Preparing the Application for Deployment............cccvvrvrrnrnrrsnss s 205
Enabling Lazy Loading for the Administration FEAtUresccceevererererrerersernsers s seseressesessenns 205
Creating the DAta Fileccveeeerererererereres s rerse s see s e res e ss e e saesessesessesassesassesaesesassesaesassesassesasnenes 207
Configuring the REQUEST URLS......ccceverererertrerierereeseseesessesessessesessssessesessessssessssessssesssnssssssssesassesssnenes 207
ST o [T T T T2 o] o - 0o 208
Creating the APPlICALION SEIVETccceveriererreree e s s s s s sae s sesessesa s e sas e saesesaesesaesassesassesassenes 208
Testing the Production Build @nd SEIVEFcccveeerererreresrereererresersesesesassessssessesessessssessssessssessenssses 209

Containerizing the SportsStore Application...........cccceeeeeieeencsese s 210
INSTAIING DOCKETveeieeirerir st b e e e e e bbb e e e p e e 210
Preparing the AppliCALION ..o e 211
Creating the DOCKEr CONTAINETccceieieriniern s r e s p e p e 211
Running the ApPlICALION........c.ccoi e 212

1111 11 SRRSO 214

www.EBookswWorld.ir

CONTENTS

Part II: Working with Reactccccceeemmmmnnnsssssesennmnnsssssssssssssnnnnsnss 219

Chapter 9: Understanding React Projects.........ccccusummmmmssssnnnmsssssnsnsssssssnnssssssnnns 217
Preparing for This Chapter ... 218
Understanding the React Project Structure.........cocvvveveverevcsesses s ses e 220
Understanding the Source Code FOIAETccverererrererererreresrereesessesessesesesasessesessesessssassessssessenenes 222
Understanding the Packages FOIETccoeevererererrresereseressessesessesessesassessssessssesssssssssassessssessenenes 223
Using the React Development TOOIScccceeeeeeienese e sne e e snesnenns 226
Understanding the Compilation and Transformation ProCess.........cccoerievniernsennnnnesnesessesessessnenns 227
Understanding the Development HTTP SEIVErcovvrirncnescse e sss e 231
Understanding Static CONtent............coeorerrinnc e 232
Understanding the Error DiSplay...........cccvvrrninnnscsscsiress e ses s sss s 237
Understanding the LINTEr ... s s 238
Configuring the Development TOOIS ... e 242
Debugging React APPlICALIONSccceceeeriereenrnerineresesse s 243
Exploring the Application STAte..........cccccerreiiererrrese e 245
USiNG the BrOWSEr DEDUGUETcccourerueerererreesesessesesesesesseesesssseesesessesesesesssssssessssssssssssssssssssssnsnsnens 246

E3 U112 7 248
Chapter 10: Components and Propsccccuusssesnsmssssssnssssssssnsssssssssssssssssssssssnnnnss 249
Preparing for This Chapter ... 250
Understanding COMPONENTS........cccoeeeeeresesesre e e sse e ssessessesresnesnesnesnesnssnssnsssannnns 252
Rendering HTIML CONEENL..........coeic s sn e n s e 253
Rendering Other COMPONENTScoiiirririeeereriee e se s sa e 255
UNderstanding PropS.......coccoieenerenmnsesssese s s ssesssssssssssssssnsesns 259
Defining Props in the Parent COMPONENT..........co i 259
Receiving Props in the Child COMPONENT.........ccoiriierrecrrr e 260
Combining JavaScript and Props to Render Contentcccocevvvrvevrnnnensessensensennenns 261
Selectively Rendering CONtENL..........cccoecererre e s ae e se e sae e sesae e saenesaenessesanaens 262
RENAEIING AITAYSeoveereererereeereesessesessesessessssessssesssssssssassessssessssessessssesssssssssessssessessssensssessssessssessenees 264
Rendering MUltiple EIEMENTS.......ccccvcrerirerererrr st re e ses e sse e sesessesassesas e sassessesessssasassassesssnenes 268

xi

www.EBookswWorld.ir

CONTENTS

Rendering NO CONTENT.........ccoviererererere st e e sae e a e e sae e sae e e e e e ae e sae e sae e enenaenees 271
Attempting t0 ChanGge PrOPS.......ccveeerererererereerersseresessesssessssessesessesassesassessssessssssssssssessssessessssnssnes 272
USING FUNCLION PrOPSc.eeeeeeecccecte et sse s s sne s s snesnesnesnesnssnennssnesnssnnnns 273
Invoking Prop FUunctions With ArgUMENTS ... 275
Passing on Props to Child COMPONENts..........cccvverversersensensensesses s ses s e sessessessessenns 279
Passing On All Props to Child COMPONENTS.........ccccerererererererenrerre e sesseseseresessesessesessesessesassessssenes 280
Providing Default Prop ValIUES ...t ne s 281
Type Checking Prop ValUEScccvcrcrcercerser s sn s 283
E3 1111 286
Chapter 11: Stateful Components.........ccccunnmemmmmmnmmmmmmssssssssmmmes———————————————— 287
Preparing for This Chapter ... 288
Understanding the Different Component TYPeS........ccocvverereriernsesiesnsesesssessssessesessenns 289
Understanding Stateless COMPONENTS........ccccccvrerereererereseresersesessesessesessessssesssessesesssssssessssessssessenenes 289
Understanding Stateful COMPONENTS.........cccvierererererrrere s res e sre e sse s sas e ssesesaesesassessesassesassenes 290
Creating a Stateful Component ... e 291
Understanding the COmPONENt CIASSc..ceeeeererereieririreenesis e eens 291
Understanding the Import STatementco e 292
Understanding the render Method..........cccou i 292
Understanding Stateful Component PrOPS.......coccccciennininicss s ssse s ses s e ssssens 292
Adding State DAtaccceeveerenierenrnseresrsessse e an s 293
Reading State DAta..........ccccoeeerrrreieririneeseri e 294
Modifying State Data.........c.ccvcrrrrrierirrrrr s 295
Avoiding the State Data Modification PitfallSccccerverrierniererre e se e sse e sseneenes 297
Defining Stateful Components USiNg HOOKS.........ccccverernnsersesses s ses e ses e sennns 303
Lifting Up State Datacooevererirrrrrcreresrs s sss s sss s s ssssasssssassasssssssnnns 305
Lifting Up State Data FUMNETcoouieeeereeses st 308
Defining Prop Types and Default Values...........cccocvvervrrencrnencensc s 311
1111 11T SRS 313

xii

www.EBookswWorld.ir

CONTENTS

Chapter 12: Working with Events..........cccoinnnmmmmmmnsssmnmnnsssssnmsssssssssssssssssssssssssss 319

Preparing for This Chapterccocreenicncsne e sne e 316
Understanding EVENTScocoeeeeeccsecescse e sse s s snssnesne e snssne e nnns 318
Invoking a Method to Handle an EVeNt ... 319
Receiving an EVENt ODJECT..........coceeerieccrreecs st 324
Invoking Event Handlers with @ CuStom Argument............cccoereceneneresncsssese s eens 329
Preventing Default BERAVIOFccccuiirererniere e e sa e s 331
Managing Event Propagationc.ccocvvrvrinninsenies s ses e e e e e e e s sessenns 333
Understanding the Target and Bubble Phases...........ccccvreereriererrerenere s resessesessesessesessesessessssenes 333
Understanding the Capture PRASE.........covevecererere s res e sesesse e s sss e ssesessesesassassesassesasnenes 337
Determining the EVENt PRASE ..ottt res e sse e sa s se e sae e sassassesassesasnenes 339
Stopping EVENt Propagationcccecceererererereresessersesesessessesessesessessssessssessessssessssessssessenssssssssesassens 342
SUMMEATY ...ttt a e b s ae e e a e e e e a e ae e s nennaeas 343
Chapter 13: Reconciliation and Lifecyclesccnsmmsmmsmmmssnmssnissmssssssssssssenss 349
Preparing for This Chapterccocieenicresrc e 346
Creating the Example COMPONENTSccceirieriieresre e sn e 347
Understanding How Content Is Renderedoooeeeeeiececcsccs s sennns 350
Understanding the UPdate PrOCESScccorueeeererreenerirneeseses e sssssens 353
Understanding the ReconCiliation PrOCESSoveeererereeririsee s 354
Understanding List ReCONCIlIALIONcocourueeeeririeesesscese e 357
Explicitly Triggering ReconCiliation............cocvvrverversensenses s ses e senens 359
Understanding the Component LIfeCYCIE........c.ccovrrierrriresniennsene e sesesss s e 361
Understanding the Mounting PRASEccovcereirennssncsn e sns e 362
Understanding the Update PRaSEcoeercerrirccsc e sn e 365
Understanding the Unmounting PRaSecccovcreirinncsnc s sns s 366
Using the EffeCt HOOK........ccoeeeeecece ettt sne s e s sns s snesnssnssnesnnnns 367
Using the Advanced Lifecycle Methods.........ccceererererennssesres s ses e sassessenns 371
Preventing Unnecessary Component UPates..........ccveeerereriererrereerereseresesesessessssessesessssessessssesssnees 371
Setting State Data from Prop VAIUESccceeererererercerrrerterere e sesseseseraesessesessesessessssessssessssessesesaens 374
SUMMEAIY ...t a e s b e e e ae e s e R e e e e n e e e ae e s e ne e naeas 377
xiii

www.EBookswWorld.ir

CONTENTS

Chapter 14: Composing Applicationscccuseemmmmsssssnnmmsssssssmmsssssssssssssssssssssnss 319

Preparing for This Chaptercccocieenicsesre e 380
Creating the Example COMPONENTSccovvrninnmnni s 381
Understanding the Basic Component Relationshipcccvcevvvveevinrnniensnssenseessensenns 383
Using the Children Prop.......occccecerereress s sssssssssssssssssssassssssssssssssssssssassassssssssnns 384
Manipulating Prop ChilUreNecceueeeee e res e res e see e sesesse e s e sas e saesesaesesassasaesassesasnenes 385
Creating a Specialized COMPONENt ..o s 390
Creating Higher-Order COMPONENtScccceeeeeeeesesese e sss s ssessessessssssssssesssssssssssnns 393
Creating Stateful Higher-Order COMPONENTScccoceerurereririreesesesreese e sesss s sessssssens 396
Combining Higher-0rder COMPONENTSccceerirreenererinseeseseseesesesseesesessssssesessssesssessssssssssssssssssens 399
USING RENAEBT PrOPS.......ccuereireereersereersesaessesssssessessssssssssssssssassssssssssssssssssssssssssssssssssssssnns 400
Using a Render Prop wWith an ArgUMENL...........cocecrerrerre s rer e ree e rerse e e ses e ssesesaesesaesassesassesasnenes 403
Using Contexts for Global Data.............ccceceveeerierenenenscsess e 405
Defining the CONTEXL........ccceerercrc e b e e p e r e 409
Creating the Context CONSUMEccceiriernere s n e r e sn e r s 409
Creating the Context ProVIter........ccc s sn e 410
Changing Context Data Values in @ CONSUMETccoeerermiernsresesessesesssssesssesss s ssssssessessssesssnesns 412
Using the Simplified Context CONSUMEr APIScococecrerrerr e 416
Defining Error BOUNAANIESc.cvcercerierirersen s se e s e e e s snesnsnns 418
Creating the Error Boundary COMPONENT..........ccoveeeerreneereseseesesesseese s ses e sessssssesessssessnsens 419
E3 1111 P2 7S 422
Chapter 15: Forms and Validationcccccunemmmmnssmmnmmnsssnnmmssssssmmssssssssssssnn 423
Preparing for This Chapter ... 424
Defining the EXample COMPONENTS.........cccceverrerrerererererereresersesessesessesessessssessssessssessssessssessessssessenees 425
Starting the Development TOOIS.........cccveererererere e rre e e s ae e ae e ae e saesas e sae e saenesaenesaesanaens 427
USINg FOrM EIBMENLScceeeeceececece e ss e snesns s sresn s snesnssnesnesnssnsnnennnnnns 427
USing Select EIBMENTS.......cccouieccccce e e 429
USiNg Radio BULIONSccoeeiiciccrcire e sn s e e sn s 432
USING CRECKDOXESceeueerierircrrecrse i sn e s r e b b p e e n e e ne e nn e p e e 434
Using Checkboxes to Populate @n Arrayccceeerennennsesssesse e sesss s e sessssessssessssssssssssesssnesns 436
USING TEXE AFBASccveeeeercsir e et b e e e e bR p e e R e nn e p e e 438

xiv

www.EBookswWorld.ir

CONTENTS

Validating FOrm Data...........cccovieiennncnenniesnese e 439
Defining the Validation RUIES..........c.oreeerireiecrreesesrise e 440
Creating the Container COMPONENTcovuiiieerreererrre e 441
Displaying Validation MESSAQEScoeceeererrenenererreeneseresseesesss e sesessesssesessssssesessssssssssssssssssssssssssnens 443
Applying the FOrm Validation...........ccccerieennneescssese s sesns 444
Validating Other Element and Data TYPES.......ccvurueerererreereririseseses s sesse s sssesessns 446
Performing Whole-Form Validation...........c.oeceeeeennnnecseseesesesiee e sesssseseens 452

RS0 2 456

Chapter 16: Using Refs and Portals.........c.ccomssemmmssansmsssnsssssssssssnsssssnsssssnsssssnnnss 457

Preparing for This Chapter ... 458

Creating RefS......coc e sse e sne e sn e snesr e sn e n e snenn e snenn e nnennennnnans 462

Using Refs to Create Uncontrolled Form Components..........ccooueveenseressssessnsessesensenns 465
Creating Refs Using @ Callback FUNCHION.........cccoouieeenreecccrr e 467
Validating Uncontrolled FOrm COMPONENTScccceererreenererinesesersse e sesesse e sesessssssesessns 470

Understanding Refs and the LifeCyCle........cccvurrrirrrrrs s e seneens 475

Using Refs with Other Libraries or Frameworksccccoceeeeenesessessesssssssssssssessensenns 481

Accessing a Child Component’s Content..........c.ccocvvevinirennnnesnsessssseses s sssseenes 484
USING REf FOPWAIAINGc.coeeereeeecririreecririe e s e s e na s s e 485

USING POMAIS ... sse s sa e saesn e saesa e sae e sa s sa e sassa e sa e sassa e snenaennns 487

11] 11T SR 490

Chapter 17: Unit TeStingccccvusssemmmmssssnnnmmssssnsnssssssssnssssssssnssssssssssssssnnnssssssnnnnss 491

Preparing for This Chapter ... 492
Creating COMPONENTScccvieieirerire e s r e s se s e b a e e e e nn e p e e 493
Running the Example APpPlICALION ..o 496

Running the Placeholder Unit TESTccocveniienniiressese s 496

Testing a Component Using Shallow Rendering.........c.ccoevvrververnersnsensensessessessessessenans 499

Testing a Component with Full Rendering.........c.ccocvvreerircssscessessesses s 503

XV

www.EBookswWorld.ir

CONTENTS

Testing with Props, State, Methods, and Events.........c.ccccvvrvrvrvrcrcscrcr e 504
Testing the Effect 0f MEtNOUS.........coveeeeerrecrree e 506
Testing the Effects 0f an EVENT ... s 506
Testing the Interaction Between COMPONENTS.........cccorveeeerernescnirre e 508

E3 1111 1P 7 509

Part Ill: Creating Complete Applicationscccevvvnersssssssssssssssnnnss 311

Chapter 18: Creating Complete Applications...........cccinmnnmmmmnssssnsnmnssssnnnssssssnnns 513
Creating the ProJECL........cvevererere e sae s e sa s sa e sa e sa e sa e sa e sa s sn e snenns 514
Starting the DevelopmeENnt TOOIS.........cccveerererierere e rre e erese e e saesessesessesassesae e sasnesaesassenanaens 515
Creating the Example ApPliCatioNcccoeeeeecece e nns 515
Creating the Product FEALUIES..........coerereecsirce e 516
Creating the Supplier FUNCLONAIILYcocevriericrc s 520
Completing the ApPlICALION.........cccoirere e 525
Understanding the Limitations of the Example Application...........cccceecevvvevririersennnnns 528
E3 1111 P2 7 529
Chapter 19: Using a Redux Data Store.........cccusummssansmsssnsmsssnsssssnsssssnsssssnsssssnnnss 531
Preparing for This Chapter ... se e 532
Creating @ Data StOreccoeeeeeeerecereee e sr s sn e sn s snennenns 533
Defining the Data TYPESccccericicire e a e e e p e p s 534
Defining the Initial Data............cooeeeiiiiicnc s 535
Defining the Model Data ACtion TYPESccccerrerricrnrrr s sa e 535
Defining the Model ACHON Creators ... s sns e sse s 536
Defining the REAUCET ...t p b p e e e n e 537
Creating the DAta STOTE ... 539
Using the Data Store in the React Application...........cccceveeeeevesssc s 539
Applying the Data Store to the Top-Level Component ..o 539
Connecting the Product DAta...........ccceceerereienenriresesisise e nens 540
Connecting the SUPPHEr DALA........cccoieerererreierereree e e e e 543
XVi

www.EBookswWorld.ir

CONTENTS

Expanding the Data STOre...........ccoceecreeniencsrcrr s 546
Adding State Data 10 the STOre..........ccceereceerree e 546
Defining the Action Types and Creators for State Data...........cccccovvvrerrienninncc e 547
Defining the State Data REAUCETcccorurreiereririeeseririee s 547
Incorporating the State Data Features into the STOre ... 548
Connecting the React Components to the Stored State Data.........c.coeoeevrresesnnesesssereseseeeeeens 550

Dispatching MUltiple ACLIONS.........cccvvrverrerserrerser s se e se e e e sassassnesnsnns 554

Understanding the Need for REferences ... 557

SUMMEAIY ...t e s a e s sre e s e s e e s e n s e s ne e e e nnnnnnnas 959

Chapter 20: Using the Data Store APIScccccemmrrrrnssssssssssmmnsmssssssssssssssssssssssnns 561

Preparing for This Chapter ... 562

Using the Redux Data STore APl ... ses s e e s s sas e ssesnnns 563
Obtaining the Data STore STAte........cccvevrerrce e ra e e 564
Observing Data StOre ChaNQES........cccuvererererrererere e rereres e reesessesessesessesassesassessesessesessesassesassessenenes 567
DiSPACRING ACLIONScvecerereeeree st s e rae e e se e ra s s e s ae e s s e e saesaeae e s e s e e e sae e sae e naenannesaeneres 569
Creating @ Connector COMPONENT..........cccvceveeierrerererererereresersesessesessesessesassesassessesessessssesassesassesssnenes 570

ENhancing REAUCETSccocvcrierceririn s sn e sn s snssn s e snssnssnnnns 574

Using Data Store MiddIEWArE...........cccceriereressereisesese s 577

Enhancing the Data Store........c.cccvvririnrnsrrr e nns 580
ApPPIYING the ENNANCETccveereeerrerererereresesessessesesaesessesassessssessesessssassessssessssesssssssessssessssessenessessnes 582

Using the React-RedUX APL.............o e sse s s snssns s s snssnesnsnns 584
Advanced CONNECt FEATUIES.........cocecciriiicct bbb 584

1111 1= SRS 589

Chapter 21: Using URL Routing.......ccccceermssssssssmnnmmsssssssssssssssssnssssssssssssnssssessssnns 591

Preparing for This Chapter ... 592

Getting Started with URL ROULING.......cccoereerererererie e ses e e e e sns e sessassannns 594
Getting Started with the Link COMPONENL.........ccccerrerrerrcerer s se s ssesessesessesassesassesssnenes 595
Getting Started with the Route COMPONENT ... 595

xvii

www.EBookswWorld.ir

CONTENTS

Responding 10 Navigationc.ccoeeeiennncnesnesnsesesssse e ssse s 596
Selecting Components and CONTENTccovreeerrneiesrr e 597
MAECHING URLS....cvvieeeerieeeiriririe e sa s e s se e s s s e s se e e e sannnnns 599
Making a Single ROULe MALCH..........ceueeeerrtcccrree e 604
Using Redirection as the Fallback ROULE...........covueeeererinccrereesesee e 605

Rendering Navigation LINKSccccvvrrensensensinnensessessesses s ssssessessesssssesssssesssssssssssssenns 608
Indicating the ACHIVE ROULE.........oeceeeece et se e e sa s s ae e ae e sa e e e 610

Selecting and Configuring the ROULEr ... 612
Using the HashRouter COMPONENL..........ccou i 613

SUMMEAY ...ttt e s ae e a s s ae e s r e e s e a e e e ne e nsnnnnnnnnas 614

Chapter 22: Advanced URL Routing.......ccuussmemmmmmnnnssssssssssssnnsssssssssssssssnnssssssssnas 615

Preparing for This Chapter ... 616

Creating Routing-Aware COMPONENTScccceveereereereereeseessssssssessessssssssssasssssasssssasssssenns 617
Understanding the MatCh Prop........ccccevreerrrerererese s reseses e sse e sessesessesasessssesssssssssassesassesssnenes 618
Understanding the LOCALION PrOPcccvvveverrerererereresesesesessssessssessesessessssessssessssessesssssssssessssesssnenes 620
USING URL PArameELeIS.......cccvueereererrererserersersssessssessesessssessessssessssessesessessssessssessssessessssenssssssssesassessenenes 622

Accessing Routing Data in Other COmponents...........cccceeeeeeeeessseseeseesee s ses e 628
Accessing Routing Data Directly in @ COMPONENt ..o s 628
Accessing Routing Data Using a Higher-Order Component............ccoeeinniennncnnscsnesensesesessssessesennes 630

Navigating ProgrammatiCallycccoeerrerenniennnesesnsse s 632
Navigating Programmatically USing COMPONENTSceeeeerereieneririeesesessesesessss e sesseeeens 633
Prompting the User Before Navigationcoeeeeerrncicnnneseseseseese e sesseeseens 634

Generating Routes Programmatically...........ccoceverevenenenssesss s sessessessessenns 639

Using Routing with Connected Data Store Componentsccccoceeeeevecesessesseesennnnns 641
Replacing the Display COMPONENTS ..o sn e 642
Updating the Connected Editor COmponent............ccoernninnncressesss e ens 643
Updating the Connected Table COMPONENL..........ccoevrirrirrierr e 644
Completing the Routing Configuration...........ccoecrrcninncsncr e 645

SUMMEAIY ...t a s s ae e s e re e s e a e e ne e s nnnnnnnnns 647

xviii

www.EBookswWorld.ir

CONTENTS

Chapter 23: Consuming a RESTful Web Serviceccceunssemmmmsssssnnsssssssssssssssnnes 649

Preparing for This Chapterccocreenicncsne e sne e 650
Adding Packages t0 the PrOjJECT.........ccccieeiersic s sn e 650
Preparing the WED SEIVICE ... s s 651
Adding a Component and @ ROULEcccccereriicnnrcre e sse e e s sss s neenas 652
Running the Web Service and the Example Applicationccccccovveernienniennscsesese e 654

Understanding RESTul WED SEIrVICEScccevverreererreerierrersessesssessesssessesssessesssessesssenns 655

Consuming @ WEbh SErVICE........coovverererererr s see e s e sassassassassassasnnns 657
Creating the Data Source COMPONENTc.cccverererere e sa e ae e e sa e sa e es 657
Getting Data in the COMPONENL.........cceircereere e ra e s s ae e ae e s e s e e nae e s 659
Saving, Updating, and Deleting Datacccoeveeerrierrierercre e res e sesesaeses e ses e saesesaesessesasaens 661
LD LT 0 IRy =0] 667

Consuming a Web Service with a Data Store...........ccccecveerierncrsesnsse e 673
Creating the New MIiddIBWAIEccceererrieresere s sn e s p e 673
Adding the Middleware 1o the Data STOre...........ccoverenrrerncrn e 674
Completing the Application Changes..........covererrennennesrsess e sn e 675

1111 11 SRS 677

Chapter 24: Understanding GraphQLccccurcmmismmmsssmsmssssssssssssssssssssssssssssnsnss 679

Preparing for This Chapter ... 680

Understanding GraphQLccooceeeiiennsmnessnere e sss e ssesssseens 682

Creating the GraphQL SEIVET.........cccverrirernere e 683
Creating the SCEMA ... e p e 683
Creating the RESOIVELS ...t e r e p e e n e p s 685
Creating the SEIVEN ... s e e e e n e r e 686

Making GraphQL QUEKIES........ccererererrerererere s e se e sss s e sss e sas s e sss e ssesessesassesnes 687
Querying for Related DAtaccocvererererererenereresese s s 688
Creating Queries With AFGUMENTS..........cccovrueiererrreese s e e se s se s sessssssnnens 691

Making GraphQL MUtations.........cccceeeereenscressnesssesesss s snsennes 697

Xix

www.EBookswWorld.ir

XX

CONTENTS

Other GraphQL FEALUIEScoeveeererereereerie e sae s s e s sassnesaesnssn s snesannnens 701
USiNG REQUEST VANADIEScovrvieeceririeccrirtee e se s s nens 701
Making MUItIPIE REQUESTESccoveeeeeririeceririee e 703
Using Query Fragments for Field SeleCtionccccvevrevrirnrcrnsrc et 704

E3 1111 1P 7 705

Chapter 25: Consuming GraphQL...........cccivumsnmmmmmssssnnnmmssssssnmsssssssssssssssnssssssnnnns 707

Preparing for This Chapter ... 707
Adding Packages 10 the PrOJECT.........ccceverererrererere e rerereseressessesesseses e sas e sas e sassassesassesassessesessensnaes 707
Changing the Data for the GraphQL SEIVENcccevrerrierriertrrerre e rerse e sse e sesessesessesassessenenes 708
Updating the Schema and RESOIVEIS.........ccvecerrererererrrereresersssessesessesessessssesssessssessssssssssssessssesssnenes 708
Integrating the GraphQL Server with the Development TOOIS ... 711

Consuming a GraphQL SErVICE........cccuerererererreressessessessessessessesssssesnssnesnesnssnssssssnsans 713
Defining the Queries and MULAtiONSccovereirercnr e r s 713
Defining the Data SOUICE...........ccovrireiirirerr e e e p s r s 715
Configuring the Isolated COMPONENTS ... 716

Using GraphQL with @ Data Store.........cccccvveeivenenmniennse e 718
Adjusting to the GraphQL Data FOrmat...........cccoreiererenenescnireesesesse e 720

Using a GraphQL Client Frameworkcccoovvrennesnsenesnsessse s ssesesessssessesessenns 725
00 10 0T T i L= 0 T 725
Creating @ GraphQL COMPONENTccccererereererrererrereresessesesersesessesessesessessssessssessesessessssesassessssessenenes 726
LS00 L0 730
Adding Support for Supplier Data and Editing.........cccceveeeerriererererre e ressesee e sesessesessesessenenes 735

11] 11 R 740

QX e iiumrninnnnansuse s s s n s r A ——————————————— 741

www.EBookswWorld.ir

About the Author

Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently serving as chief
technology officer and chief operating officer of a global bank. Now retired,
he spends his time writing and long-distance running.

XXi

www.EBooksWorld.ir

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for BluArancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

xxiii

www.EBooksWorld.ir

http://www.bluarancio.com/

PART |

Getting Started with React

CHAPTER 1

Your First React Application

The best way to get started with React is to dive in. In this chapter, I take you through a simple development
process to create an application to keep track of to-do items. In Chapters 5-8, I show you how to create

a more complex and realistic application, but, for now, a simple example will be enough to demonstrate
how React applications are created and how the basic features work. Don’t worry if you don’t understand
everything in this chapter—the idea is to get an overall sense of how React works. I explain everything in
detail in later chapters.

Note If you want a conventional description of React features, you can jump to Part 2 of this book,
where | start the process of describing individual features in depth. Before you go, make sure you install the
development tools and packages described in this chapter.

Preparing the Development Environment

There is some preparation required for React development. In the sections that follow, I explain how to get
set up and ready to create your first project.

Installing Node.js

The tools used for React development rely on Node.js—also known as Node—which was created in 2009

as a simple and efficient runtime for server-side applications written in JavaScript. Node.js is based on the
JavaScript engine used in the Chrome browser and provides an API for executing JavaScript code outside of
the browser environment.

Node.js has enjoyed success as an application server, but for this book it is interesting because it has
provided the foundation for a new generation of cross-platform development and build tools.

Itis important that you download the same version of Node.js that I use throughout this book. Although
Node.js is relatively stable, there are still breaking API changes from time to time that may stop the examples
Iinclude in the chapters from working. The version I have used is 10.14.1, which is the current Long-Term
Support release at the time of writing. There may be a later version available by the time you read this, but you
should stick to the 10.14.1 release for the examples in this book. A complete set of 10.14.1 releases, with installers
for Windows and macOS and binary packages for other platforms, is available at https://nodejs.org/
dist/v10.14.1.

When you install Node.js, make sure you select the option to add the Node.js executables to the path.
When the installation is complete, run the command shown in Listing 1-1.

© Adam Freeman 2019 3
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_1

www.EBookswWorld.ir

https://nodejs.org/dist/v10.14.1
https://nodejs.org/dist/v10.14.1

CHAPTER 1 © YOUR FIRST REACT APPLICATION

Listing 1-1. Checking the Node Version
node -v

If the installation has gone as it should, then you will see the following version number displayed:
v10.14.1

The Node.js installer includes the Node Package Manager (NPM), which is used to manage the
packages in a project. Run the command shown in Listing 1-2 to ensure that NPM is working.

Listing 1-2. Checking NPM Works
npm -v

If everything is working as it should, then you will see the following version number:

6.4.1

Installing the create-react-app Package

The create-react-app package is the standard way to create and manage complex React packages and
provides developers with a complete toolchain. There are other ways to get started with React, but this is the
approach that best suits most projects and is the one that I use throughout this book.

To install the package, open a new command prompt and run the command shown in Listing 1-3. If you
are using Linux or macOS, you may need to use sudo.

Listing 1-3. Installing the create-react-app Package

npm install --global create-react-app@2.1.2

Installing Git

The Git revision control tool is required to manage some of the packages required for React development.
If you are using Windows or macOS, then download and run the installer from https://git-scm.com/
downloads. (On macOS, you may have to change your security settings to open the installer, which has not
been signed by the developers.)

Git is already included in most Linux distributions. If you want to install the latest version, then consult
the installation instructions for your distribution at https://git-scm.com/download/1linux. As an example,
for Ubuntu, which is the Linux distribution I use, I used the command shown in Listing 1-4.

Listing 1-4. Installing Git

sudo apt-get install git

www.EBookswWorld.ir

https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/download/linux

CHAPTER 1 * YOUR FIRST REACT APPLICATION

Once you have completed the installation, open a new command prompt and run the command shown
in Listing 1-5 to check that Git is installed and available.

Listing 1-5. Checking Git
git --version

This command prints out the version of the Git package that has been installed. At the time of writing,
the latest version of Git for Windows and Linux is 2.20.1, and the latest version of Git for macOS is 2.19.2.

Installing an Editor

React development can be done with any programmer’s editor, from which there is an endless number to
choose. Some editors have enhanced support for working with React, including highlighting keywords and
expressions. If you don’t already have a preferred editor for web application development, then you can
consider some of the popular options in Table 1-1. I don’t rely on any specific editor for this book, and you
should use whichever editor you are comfortable working with.

Table 1-1. Popular Programming Editors

Name Description

Sublime Text Sublime Text is a commercial cross-platform editor that has packages to support
most programming languages, frameworks, and platforms. See www. sublimetext.com
for details.

Atom Atom is an open-source, cross-platform editor that has a particular emphasis on
customization and extensibility. See atom. io for details.

Brackets Brackets is a free open-source editor developed by Adobe. See brackets.io for
details.

Visual Studio Code Visual Studio Code is an open-source, cross-platform editor from Microsoft, with an
emphasis on extensibility. See code.visualstudio.com for details.

Visual Studio Visual Studio is Microsoft’s flagship developer tool. There are free and commercial
editions available, and it comes with a wide range of additional tools that integrate
into the Microsoft ecosystem.

Installing a Browser

The final choice to make is the browser that you will use to check your work during development. All the
current-generation browsers have good developer support and work well with React, but there is a useful
extension for Chrome and Firefox called react-devtools that provides insights into the state of a React
application and that is especially useful in complex projects. See https://github.com/facebook/react-
devtools for details of installing the extension. I used Google Chrome throughout this book, and this is the
browser I recommend you use to follow the examples.

www.EBooksWorld.ir

http://www.sublimetext.com
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools

CHAPTER 1 © YOUR FIRST REACT APPLICATION

Creating the Project

Projects are created and managed from the command line. Open a new command prompt, navigate to a
convenient location, and run the command shown in Listing 1-6 to create the project for this chapter.

Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-react-16.

Listing 1-6. Creating the Project
npx create-react-app todo

The npx command was installed as part of the Node.js/NPM package in the previous section and is used
to run Node.js packages. The create-react-app argument tells npx to run the create-react-app package
that is used to create new React projects and was installed in Listing 1-3. The final argument is todo, which
is the name of the project to create. When you run this command, the project will be created, and all of the
packages required for developing and running a React project will be downloaded and installed. The setup
process can take a while because there are a large number of packages to download.

Note When you create a new project, you may see warnings about security vulnerabilities. React
development relies on a large number of packages, each of which has its own dependencies, and security
issues will inevitably be discovered. For the examples in this book, it is important to use the package versions
specified to ensure you get the expected results. For your own projects, you should review the warnings and
update to versions that resolve the problems.

Understanding the Project Structure

Open the todo folder using your preferred editor, and you will see the project structure shown in Figure 1-1.
The figure shows the layout in my preferred editor—Visual Studio—and you may see the project content
presented slightly differently if you have chosen a different editor.

www.EBooksWorld.ir

https://github.com/Apress/pro-react-16

CHAPTER 1 * YOUR FIRST REACT APPLICATION

Solution Explorer - Folder View *A X
o O ﬁ oL - | = o ar [E] | -
Search Solution Explorer - Folder View (Ctrl+;) P~
b node_modules
4 public

[favicon.ico
L) indexhtml
&T manifest.json
4 src
App.css
LT Appjs
IT App.test,js
index.css
IT indexjs
B o
IT registerServiceWorker.js
j .gitignore
&T packagejson
&T package-lock.json
@ README.md

Figure 1-1. The project structure

This is the starting point for all projects, and while the purpose of each file may not be obvious at the
moment, you will know what each file and folder is for by the end of the book. For the moment, Table 1-2
briefly describes the files that are important for this chapter, and I provide a detailed explanation of React
projects in Chapter 9.

Table 1-2. The Important Files in the Project for This Chapter

Name Description

public/index.html This is the HTML file that is loaded by the browser. It contains an element
in which the application is displayed and a script element that loads the
application’s JavaScript files.

src/index. js This is the JavaScript file that is responsible for configuring and starting the React
application. I use this file to add the Bootstrap CSS framework to the application
in the next section.

src/App.Jjs This is the React component, which contains the HTML content that will
be displayed to the user and the JavaScript code required by the HTML.
Components are the main building blocks in a React application, and you will
see them used throughout this book.

www.EBooksWorld.ir

CHAPTER 1 © YOUR FIRST REACT APPLICATION

Adding the Bootstrap CSS Framework

Tuse the excellent Bootstrap CSS framework to style the HTML presented by the examples in this book. I
describe the basic use of Bootstrap in Chapter 3, but to get started in this chapter, run the commands shown
in Listing 1-7 to navigate to the todo folder and add the Bootstrap package to the project.

Tip The command used to manage the packages in a project is npm, which is confusingly similar to npx,
which is used only when creating a new project. It is important not to confuse the two commands.

Listing 1-7. Adding the Bootstrap CSS Framework

cd todo
npm install bootstrap@4.1.2

To include Bootstrap in the application, add the statement shown in Listing 1-8 to the index. js file.

Listing 1-8. Including Bootstrap in the index.js File in the src Folder

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css’;

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
servicelWorker.unregister();

As I explain in Chapter 4, the import statement is used to declare a dependency so that it becomes part

of the application. The import keyword is most often used to declare dependencies on JavaScript code, but it
can also be used for CSS stylesheets.

Starting the Development Tools

When you create a project using the create-react-app package, a complete set of development tools
is installed so that the project can be compiled, packaged up, and delivered to the browser. Using the
command prompt, run the commands shown in Listing 1-9 in the todo folder to start the development tools.

Listing 1-9. Starting the Development Tools

npm start

www.EBookswWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

There is an initial preparation process when the development tools start, which can take a moment to
complete. Don’t be put off by the amount of time the preparation takes because this process is required only
when you start a development session. When the startup process is complete, you will see a message like this
one, which confirms that the application is running and tells you which HTTP port to connect to:

Compiled successfully!
You can now view todo in the browser.

Local: http://localhost:3000/

On Your Network: http://192.168.0.77:3000/
Note that the development build is not optimized.
To create a production build, use npm run build.

The default port used to listen for HTTP requests is 3000, although a different port will be selected if
3000 is in use. Once the initial preparation for the project is complete, a new browser window will open and
display the URL http://localhost:3000 and the placeholder content shown in Figure 1-2.

. React App
« C @ localhost:3000

and save to reload.

Learn

Figure 1-2. Running the example application

www.EBookswWorld.ir

CHAPTER 1 © YOUR FIRST REACT APPLICATION

Replacing the Placeholder Content

The content that is displayed in Figure 1-2 is a placeholder that is used to ensure that the development tools
are working. To replace the default content, I changed the App. js file, as shown in Listing 1-10.
Listing 1-10. Removing the Placeholder in the App.js File in the src Folder

import React, { Component } from 'react’;
//import logo from './logo.svg';
//import './App.css';

export default class App extends Component {

render() {
return (
<divy
<h4 className="bg-primary text-white text-center p-2"»
To Do List
</ha>
</div>
)
};

The App. js file contains a React component, which is named App. Components are the main building
block for React applications, and they are written using JSX, which is a superset of JavaScript that allows
HTML to be included in code files without requiring any special quoting. I describe JSX in more detail in
Chapter 3, but in this listing, the App component defines a render method that React calls to get the content
to display to the user.

Tip React supports recent additions to the JavaScript language, such as the class keyword, which is used
in Listing 1-10. | provide a primer for the most useful JavaScript features in Chapter 4.

When you save the App. js file, the React development tools automatically detect the changes, rebuild
the application, and instruct the browser to reload, showing the content in Figure 1-3.

- React App x

< C @ localhost:3000

To Do List

Figure 1-3. Replacing the placeholder content

10

www.EBooksWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

The JSX files used in React development make it easy to mix HTML and JavaScript, but there are
some important differences from regular HTML files. You can see a common example in the h4 element in
Listing 1-10, shown here:

<h4 className="bg-primary text-white text-center p-2">
To Do List
</h4>

In regular HTML, the class attribute is used to assign elements to classes, which is how elements are
styled when using the Bootstrap CSS framework. Even though it might not appear so, JSX files are JavaScript
files, and JavaScript configures classes through the className property. The differences between pure HTML
and JSX can be jarring when you first begin React development, but they soon will become second nature.

Tip [provide a brief overview of working with the Bootstrap CSS framework in Chapter 3, where | explain
the meaning of the classes to which the h4 element has been assigned in Listing 1-10, such as bg-primary,
text-white, and p-2. You can ignore these classes for the moment, however, and just focus on the basic
structure of the application.

React will write a warning message to the browser’s JavaScript console if you forget you are working with
JSX and use standard HTML instead. If you use the class attribute instead of className, for example, you
will see the Invalid DOM property 'class'. Did you mean 'className'? warning. To see the browser’s
JavaScript console, press the F12 key and select the Console or JavaScript Console tab.

Displaying Dynamic Content

All web applications need to display dynamic content to the user, and React makes this easy by supporting
the expressions feature. An expression is a fragment of JavaScript that is evaluated when a component’s
render method is called and provides the means to display data to the user. Many expressions are used to
display data values defined by the component to keep track of the state of the application, known as state
data. State data and expressions are easier to understand when you see an example, and Listing 1-11 adds
both to the App component.

Listing 1-11. Adding State Data and Data Bindings in the App.js File in the src Folder

import React, { Component } from 'react’;
export default class App extends Component {

constructor(props) {
super (props);

this.state = {
userName: "Adam"
}

11

www.EBookswWorld.ir

CHAPTER 1 © YOUR FIRST REACT APPLICATION

render() {
return (
<div>
<h4 className="bg-primary text-white text-center p-2">
{ this.state.userName }'s To Do List
</ha>
</div>
)
};

The constructor is a special method that is invoked when the component is initialized, and calling
the super method within the constructor is required to ensure that the component is set up properly, as I
explain in Chapter 11. The props parameter defined by the constructor is important in React development
because it allows one component to configure another, which you will see shortly.

Tip The term props is short for properties, and it reflects the way React creates the HTML content that is
displayed in the browser, as | explain in Chapter 3.

React components have a special property named state, which is used to define state data, like this:

this.state = {
userName: "Adam"
}

The this keyword refers to the current object and is used to access its properties and methods. The
highlighted statement assigns an object with a userName property to this.state, which is all that is required
to set up state data. Once state data has been defined, it can be included in the content generated by the
component in an expression, like this:

<h4 className="bg-primary text-white text-center p-2">
{ this.state.userName }'s To Do List
</h4>

Expressions are denoted with curly braces (the { and } characters). When the render method is
invoked, the expression is evaluated, and its result is included in the content presented to the user. The
expression in Listing 1-11 reads the value of the userName state data property, producing the result shown in
Figure 1-4.

12

www.EBooksWorld.ir

CHAPTER 1

B React2pp x

&« C @ localhost:3000

Adam's To Do List

Figure 1-4. Using state data and expressions in the App.js file in the src Folder

Understanding State Data Changes

YOUR FIRST REACT APPLICATION

The dynamic nature of a React application is based on changes to state data, which React responds to by
invoking the component’s render method again, which causes the expressions to be re-evaluated using the
new state data values. In Listing 1-12, I have updated the App component so that the value of the userName

state data property is changed.

Listing 1-12. Changing State Data in the App.js File in the src Folder

import React, { Component } from 'react’;
export default class App extends Component {

constructor(props) {
super(props);
this.state = {
userName: "Adam"

}
}
changeStateData = () => {
this.setState({
usexrName: this.state.userName === "Adam" ? "Bob" : "Adam"
h)
}
render() {
return (
<div>
<h4 className="bg-primary text-white text-center p-2">
{ this.state.userName }'s To Do List
</ha>
<button className="btn btn-primary m-2"
onClick={ this.changeStateData }»
Change
</button>
</div>
)
};

www.EBooksWorld.ir

13

CHAPTER 1 © YOUR FIRST REACT APPLICATION

Save the changes to the App. js file, and you will see a button in the browser window. Clicking the
button changes the username, as shown in Figure 1-5.

. React App x

<

B reactapp x

&«

C @ localhost:3000

C @ localhost:3000

Bob's To Do List

Adam's To Do List

Figure 1-5. Changing the username

This example contains several important React features working together. The first is the onClick
attribute on the button element.

<button className="btn btn-primary m-2" onClick={ this.changeStateData }>
Change
</button>

The onClick attribute is assigned an expression that React evaluates when the button is clicked.
Clicking a button triggers an event, and onClick is an example of an event-handler prop. The function or
method that is specified by onClick will be invoked each time the button is clicked. The expression in
Listing 1-12 specifies the changeStateData method, which is defined using the fat arrow syntax, which
allows functions to be expressed concisely, as shown here:

changeStateData = () => {
this.setState({ userName: this.state.userName === "Adam" ? "Bob" : "Adam" })
}

As I explain in Chapter 4, fat arrow functions are used to simplify responding to events, but they be
used more widely and help keep the mix of HTML and JavaScript readable in a React application. The
changeStateData method uses the setState method to set a new value for the userName property. When the
setState method is called, React updates the component’s state data with the new values and then invokes
the render method so that the expressions will generate updated content. This is why clicking the button
changes the name shown in the browser window from Adam to Bob. I didn’t have to explicitly tell React that
the value used by the expression changed—I just called the setState method to set the new value and left
React to update the content in the browser.

Tip The this keyword is required whenever you use the properties and methods defined by a component,
including the setState method. Forgetting to use this is a common error in React development, and it is the
first thing to check if you don’t get the behavior you expect.

14

www.EBooksWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

Functions defined using the fat arrow syntax don’t use the return keyword or require curly braces around
the function body, which can result in simpler and clearer render methods, for example, as shown in Listing 1-13.

Listing 1-13. Redefining a Method Using a Fat Arrow Function in the App.js File in the src Folder

import React, { Component } from 'react';
export default class App extends Component {

constructor(props) {
super (props);
this.state = {
userName: "Adam"
}

}

changeStateData = () => {
this.setState({
userName: this.state.userName === "Adam" ? "Bob" : "Adam"
}

}

render = () =>
<div>
<h4 className="bg-primary text-white text-center p-2">
{ this.state.userName }'s To Do List
</h4>
<button className="btn btn-primary m-2"
onClick={ this.changeStateData }>
Change
</button>
</div>

I use both styles to define functions and methods in this book. For the most part, you can choose
between conventional JavaScript functions and fat arrow functions, although there are some important
considerations explained in Chapter 12.

Adding the To-Do Application Features

Now that you have seen how React can display dynamic content, it is time to start adding the features
required by the application, starting with additional state data and expressions, as shown in Listing 1-14.

Listing 1-14. Adding Application Features in the App.js File in the src Folder

import React, { Component } from 'react';
export default class App extends Component {

constructor(props) {
super (props);

15

www.EBookswWorld.ir

CHAPTER 1 © YOUR FIRST REACT APPLICATION

this.state = {
userName: "Adam",
todoItems: [{ action: "Buy Flowers", done: false },
{ action: "Get Shoes", done: false },
{ action: "Collect Tickets", done: true },
{ action: "Call Joe", done: false }],

newItemText:

}

updateNewTextValue = (event) => {
this.setState({ newItemText: event.target.value });
}

createNewTodo = () => {
if (!this.state.todoItems
.find(item =» item.action === this.state.newItemText)) {
this.setState({
todoItems: [...this.state.todoItems,
{ action: this.state.newItemText, done: false }],
newItemText: ""

render = () =>
<div>
<h4 className="bg-primary text-white text-center p-2">
{this.state.userName}'s To Do List
({ this.state.todoItems.filter(t => !t.done).length} items to do)
</h4>
<div className="container-fluid"»
<div className="my-1"»
<input className="form-control"
value={ this.state.newItemText }
onChange={ this.updateNewTextValue } />
<button className="btn btn-primary mt-1"
onClick={ this.createNewTodo }>Add</buttony
</div>
</div>
</div>

Because React expressions are JavaScript, they can be used to inspect data values and generate results
dynamically, like this expression:

<h4 className="bg-primary text-white text-center p-2">
{this.state.userName}'s To Do List
({ this.state.todoItems.filter(t => !t.done).length} items to do)
</ha>

16

www.EBookswWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

This expression filters the objects in the todoItems state data array so that only incomplete items are
selected and then reads the value of the 1length property, which is the value that the binding will display
to the user. The JSX format makes it easy to mix HTML elements and code like this, although complex
expressions can be difficult to read and are often defined in a property or method to keep the HTML as
simple as possible.

The changes in Listing 1-14 introduce an input element, which allows the user to enter the text for a
new to-do item. The input element has two props, which are used to manage the content of the element and
respond to changes, shown here:

<input className="form-control"
value={ this.state.newItemText } onChange={ this.updateNewTextValue } />

The value prop is used to set the contents of the input element. In this case, the expression that the
value prop contains will return the value of the newItemText state data property, which means that any
change to the state data property will update the contents of the input element. The onChange prop tells
React what to do when the change event is triggered, which will happen when the user types into the input
element. This expression tells React to invoke the component’s updateNewTextValue method, which
uses the setState method to update the newItemText state data property. This may seem like a circular
approach, but it ensures that React knows how to deal with changes performed by code and by the user.

The button element uses the onClick prop to tell React to invoke the createNewTodo method in
response to the click event. The createNewTodo method checks that there an existing item with the same
text and, if there is not, uses the setState method to add a new item to the todoItems array and resets the
newItemText property, which has the effect of clearing the input element. The statement that adds the new
item to the array does so with the JavaScript spread operator, which is a recent addition to the JavaScript
language.

todoItems: [...this.state.todoItenms,
{ action: this.state.newItemText, done: false }],

The spread operator is three periods, and it expands an array. The tools used for React development
allow recent JavaScript features to be used and translates them into compatible code that can be understood
by older web browsers. I describe the spread operator and other useful JavaScript features in Chapter 4.

To see the effect of the changes in Listing 1-14, enter a description of a task into the text field and click
the Add button. React responds to the event by invoking the method specified by the button’s onClick prop,
which uses the value of the input element to create a new to-do item. You can’t see the description of the
task yet, but you will see that the number of incomplete tasks increases, as shown in Figure 1-6.

17

www.EBookswWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

B Reactipp x

< C @ localhost:3000

- React App x

€« C @ locathost:3000

Adam's To Do Lisi (4 items to do)

Adam's To Do List (3 items to do)

Walk the Dog

Figure 1-6. Adding a new task

Displaying the To-Do Items

The next step is to display each to-do item to the user so they can see details of the task and mark them
complete when they are done, as shown in Listing 1-15.

Listing 1-15. Displaying To-Do Items in the App.js File in the src Folder

import React, { Component } from 'react';
export default class App extends Component {

constructor(props) {
super (props);
this.state = {
userName: "Adam",
todoItems: [{ action: "Buy Flowers", done: false },
{ action: "Get Shoes", done: false },
{ action: "Collect Tickets", done: true },
{ action: "Call Joe", done: false }],

newItemText:

}

updateNewTextValue = (event) => {
this.setState({ newItemText: event.target.value });
}

createNewTodo = () => {
if (!this.state.todoItems
.find(item => item.action === this.state.newItemText)) {
this.setState({
todoItems: [...this.state.todoItems,
{ action: this.state.newItemText, done: false }],
newItemText: ""

1

18

www.EBooksWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

toggleTodo = (todo) =» this.setState({ todoItems:
this.state.todoItems.map(item =» item.action === todo.action
? { ...item, done: !'item.done } : item) });

todoTableRows = () =» this.state.todoItems.map(item =»

<tr key={ item.action }»
<td>{ item.action}</td>
<tdy

<input type="checkbox" checked={ item.done }
onChange={ () =» this.toggleTodo(item) } />

</td>

</try);

render = () =>
<div>
<h4 className="bg-primary text-white text-center p-2">
{this.state.userName}'s To Do List
({ this.state.todoItems.filter(t => !t.done).length} items to do)
</ha>
<div className="container-fluid">
<div className="my-1">
<input className="form-control"
value={ this.state.newItemText }
onChange={ this.updateNewTextValue } />
<button className="btn btn-primary mt-1"
onClick={ this.createNewTodo }>Add</button>
</div>
<table className="table table-striped table-bordered"s
<thead»
<trs<thsDescription</thy<th>Done</th></tr>
</thead>
<tbody>{ this.todoTableRows() }</tbody>
</table>
</div>
</div>

So far, the emphasis in the App. js file has been embedding a JavaScript expression in fragments of HTML.

But the JSX format allows HTML and JavaScript to be mixed freely, which means that JavaScript methods can
return HTML content. You can see an example in Listing 1-15, where the todoTableRows method uses the
JavaScript map method to produce a sequence of HTML elements for each object in the todoItems array, like this:

todoTableRows = () => this.state.todoItems.map(item =>
<tr key={ item.action }»
<td>{ item.action}</td>
<td>
<input type="checkbox" checked={ item.done }
onChange={ () => this.toggleTodo(item) } />
</td>
</tr>);

19

www.EBookswWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

Each item in the array is mapped to a tr element, which is the HTML element for a table row. Within
the tr element is a set of td elements that define HTML table cells. The HTML content produced by the
map method contains further JavaScript expressions that populate the td elements with state data values or
functions that will be invoked to handle an event.

React does enforce some restrictions on the content it handles, such as the key prop added to each tr
element by the todoTableRows method, shown here:

<tr key={ item.action }»

As you will learn in detail in Chapter 13, React invokes a component’s render method when there is a
change and compares the result with the HTML that is displayed in the browser so that only the differences
are applied. React requires the key prop so that it can correlate the content is displayed with the data that
produced it and manage changes efficiently.

The result of the changes in Listing 1-15 is that each to-do item is displayed with a checkbox that the
user toggles to indicate that the task is complete. Each table row generated by the todoTableRows method
contains an input element configured as a checkbox.

The result of the changes in Listing 1-15 is that the list of to-do items is displayed in a table and that
checking an item as complete reduces the number displayed in the header, as shown in Figure 1-7.

- React App X

300(
&« C @ localhost:3000 B Reactipop x

&« C @ localhost:3000

Description Done Add

Buy Flowers Description Ddne

Get Shoes Buy Flowers

Collect Tickets v Get Shoes

Call Joe & Collect Tickets v
Call Joe

Figure 1-7. Displaying the to-do items

20

www.EBooksWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

Introducing Additional Components

At the moment, all of the example application’s functionality is contained in a single component, which can
become difficult to manage as new features are added. To help keep components manageable, functionality
is delegated up into separate components that are responsible for specific features. These are known as child
components, while the component that delegated the functionality is known as the parent.

In this section, I am going to introduce several child components, each of which will be responsible for
a single feature. I started by adding a file called TodoBanner. js to the src folder and using it to define the
component shown in Listing 1-16.

Listing 1-16. The Contents of the TodoBanner.js File in the src Folder

import React, { Component } from 'react’;
export class TodoBanner extends Component {

render = () =>
<h4 className="bg-primary text-white text-center p-2">
{ this.props.name }'s To Do List
({ this.props.tasks.filter(t => !t.done).length } items to do)
</ha>

This component is responsible for displaying the banner. Parent components provide their children
with data using props, and the data values are accessed through the props property, accessed via the this
keyword. This component, which is called TodoBanner, expects to receive two props: a name prop, which
contains the user’s name, and a tasks prop, which contains the set of tasks and which is filtered to display
the number that are incomplete. To display the value of the name prop, for example, the component uses an
expression that contains this.props.name, like this:

{ this.props.name }'s To Do List

When React invokes the TodoBanner component’s render method, the value of the name prop provided
by the parent component will be included in the result. The other expression in the TodoBanner component’s
render method uses the JavaScript filter method to select the incomplete items and determine how many
there are, showing that props can be used in expressions that do more than just display their value.

Next, I created a file called TodoRow. js in the src folder and used it to define the component shown in
Listing 1-17.

Listing 1-17. The Contents of the TodoRow:.js File in the src Folder

import React, { Component } from 'react';
export class TodoRow extends Component {

render = () =>
<tr>
<td>{ this.props.item.action}</td>
<td>
<input type="checkbox" checked={ this.props.item.done }

21

www.EBookswWorld.ir

CHAPTER 1 © YOUR FIRST REACT APPLICATION

onChange={ () => this.props.callback(this.props.item) }
/>
</td>
</tr>

This component will be responsible for displaying a single row in the table, showing details of a to-do
item. The data that is received by a child component through its props is read-only and must not be altered.
To make changes, parent components can use function props to provide children with callback functions
that are invoked when something important happens. This combination allows collaboration between
components: data props allow a parent to provide data to a child, and function props allow a child to
communicate with this parent.

The component in Listing 1-17 defines a data prop named item that is used to receive the to-do item to
be displayed, and it defines a function prop named callback that provides a function that is invoked when
the user toggles the checkbox. For the final child component, I added a file called TodoCreator. js to the src
folder and added the code shown in Listing 1-18.

Listing 1-18. The Contents of the TodoCreator.js File in the src Folder

import React, { Component } from 'react’;
export class TodoCreator extends Component {

constructor(props) {

super (props);

this.state = { newItemText: "" }
}

updateNewTextValue = (event) => {
this.setState({ newItemText: event.target.value});
}

createNewTodo = () => {
this.props.callback(this.state.newItemText);
this.setState({ newItemText: ""});

}

render = () =>
<div className="my-1">
<input className="form-control” value={ this.state.newItemText }
onChange={ this.updateNewTextValue } />
<button className="btn btn-primary mt-1"
onClick={ this.createNewTodo }>Add</button>
</div>

Child components can have their own state data, which is what this component uses to handle the
content of its input element. The component invokes a function prop to notify its parent when the user
clicks the Add button.

22

www.EBookswWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

Using the Child Components

The components I defined in the previous section take responsibility for specific features of the to-do
application. In Listing 1-19, I have updated the App component to use the three new components, each of
which is configured using props to provide them with the data and callback functions they require.

Listing 1-19. Applying Child Components in the App.js File in the src Folder

import React, { Component } from 'react';
import { TodoBanner } from "./TodoBanner";
import { TodoCreator } from "./TodoCreator";
import { TodoRow } from "./TodoRow";

export default class App extends Component {

constructor(props) {
super (props);
this.state = {
userName: "Adam",
todoItems: [{ action: "Buy Flowers", done: false },
{ action: "Get Shoes", done: false },
{ action: "Collect Tickets", done: true },
{ action: "Call Joe", done: false }],
//newItemText: ""

}

updateNewTextValue = (event) => {
this.setState({ newItemText: event.target.value });

}
createNewTodo = (task) => {
if (!this.state.todoItems.find(item =» item.action === task)) {
this.setState({
todoItems: [...this.state.todoItems, { action: task, done: false }]
D;
}
}
toggleTodo = (todo) => this.setState({ todoItems:
this.state.todoItems.map(item => item.action === todo.action
? { ...item, done: !item.done } : item) });

todoTableRows = () => this.state.todoItems.map(item =>
<TodoRow key={ item.action } item={ item } callback={ this.toggleTodo } /»)

render = () =>
<div>
<TodoBanner name={ this.state.userName } tasks={this.state.todoItems } /»
<div className="container-fluid">
<TodoCreator callback={ this.createNewTodo } />
<table className="table table-striped table-bordered">

23

www.EBookswWorld.ir

CHAPTER 1 © YOUR FIRST REACT APPLICATION

<thead>
<tr><th>Description</th><th>Done</th></tr>
</thead>
<tbody>{ this.todoTableRows() }</tbody>
</table>
</div>
</div>

The new import statements declare dependencies on the child components, which ensures they are
included in the application during the build process. Child components are used as custom HTML elements,
with attributes and expressions defining the props that the component will receive, like this:

<TodoBanner name={ this.state.userName } tasks={this.state.todoItems } />

The expressions used to set the prop values provide a child component with access to specific data and
methods defined by its parent. In this case, the name and tasks props are used to provide the TodoBanner
component with the values of the userName and todoItems state data properties.

Adding the Finishing Touches

The basic features of the application are in place, and the set of components that provide those features are
all working together. In this section, I add some finishing touches to complete the to-do application.

Managing the Visibility of Completed Tasks

At the moment, tasks always remain visible to the user even when they have been completed. To address
this, I will present the user with separate lists of complete and incomplete tasks and allow the incomplete
tasks to be hidden. I added a file called VisibilityControl. js to the src folder and used it to define the
component shown in Listing 1-20.

Listing 1-20. The Contents of the VisibilityControl.js File in the src Folder

import React, { Component } from 'react';
export class VisibilityControl extends Component {

render = () =>
<div className="form-check">
<input className="form-check-input" type="checkbox"
checked={ this.props.isChecked }
onChange={ (e) => this.props.callback(e.target.checked) } />
<label className="form-check-label">
Show { this.props.description }
</label>
</div>

24

www.EBookswWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

Using props to receive data and callback functions from a parent makes it easy to add new features to
an application. The component defined in Listing 1-20 is a general-purpose feature that has no knowledge

of the content that it is being used to manage, and it works entirely through its props: the description prop

provides the label text it displays, the isChecked prop provides the initial state for the checkbox, and the
callback prop provides the function that is invoked when the user toggles the checkbox and triggers the
change event.

In Listing 1-21, I have updated the App component to apply the VisibilityControl componentasa
child, along with the changes required to display the completed and incomplete tasks separately.

Listing 1-21. Managing Completed Tasks in the App.js File in the src Folder

import React, { Component } from 'react';

import { TodoBanner } from "./TodoBanner";

import { TodoCreator } from "./TodoCreator";

import { TodoRow } from "./TodoRow";

import { VisibilityControl } from "./VisibilityControl";

export default class App extends Component {

constructor(props) {
super (props);
this.state = {
userName: "Adam",
todoItems: [{ action: "Buy Flowers", done: false },
{ action: "Get Shoes", done: false },
{ action: "Collect Tickets", done: true },
{ action: "Call Joe", done: false }],
showCompleted: true

}

updateNewTextValue = (event) => {
this.setState({ newItemText: event.target.value });
}

createNewTodo = (task) => {
if (!this.state.todoItems.find(item => item.action === task)) {
this.setState({
todoItems: [...this.state.todoItems, { action: task, done: false }]

D;
}
}
toggleTodo = (todo) => this.setState({ todoItems:
this.state.todoItems.map(item => item.action === todo.action
? { ...item, done: !item.done } : item) });

todoTableRows = (doneValue) =» this.state.todoItems
filter(item =» item.done === doneValue).map(item =»
<TodoRow key={ item.action } item={ item }
callback={ this.toggleTodo } />)

www.EBookswWorld.ir

25

CHAPTER 1 © YOUR FIRST REACT APPLICATION

render = () =>
<div>
<TodoBanner name={ this.state.userName }
tasks={this.state.todoItems } />
<div className="container-fluid">
<TodoCreator callback={ this.createNewTodo } />
<table className="table table-striped table-bordered">
<thead>
<tr><th>Description</th><th>Done</th></tr>
</thead>
<tbody>{ this.todoTableRows(false) }</tbody>
</table>
<div className="bg-secondary text-white text-center p-2"»
<VUisibilityControl description="Completed Tasks"
isChecked={this.state.showCompleted}
callback={ (checked) =»
this.setState({ showCompleted: checked })} />
</div>

{ this.state.showCompleted &&
<table className="table table-striped table-bordered"s

<thead»
<trs<thsDescription</thy<th>Done</th></tr>
</thead>
<tbody>{ this.todoTableRows(true) }</tbody>
</table>
}
</div>

</div>

The VisibilityControl component is configured so it changes the value of the App component’s state
data property named showCompleted when the user toggles the checkbox. To separate the complete and
incomplete tasks, I added a parameter to the todoTableRows method and used the filter method to select
objects from the state data array based on the value of the done property.

To display the completed tasks, I added a second table element. The table will be displayed only when
the showCompleted property is true, so I placed the table and its content inside a data binding expression
and used the && operator, like this:

{ this.state.showCompleted && <table className="table table-striped table-bordered">

When the expression is evaluated, the table element will be included in the component’s content only
if the showCompleted property is true. This is another example of how JSX mixes content and code. For the
most part, JSX does a good job at blending elements and code statements, but it doesn’t excel at everything,
and the syntax required for conditional statements is awkward, as this example shows.

When you save the changes to the App. js file, you will see the separate sets of tasks. When you toggle
the checkbox for a task, it will be moved to the other table, as shown in Figure 1-8. When you toggle the Show
Completed Tasks checkbox, the second table will be hidden.

26

www.EBookswWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

[LEEEE *®

C | D locathost 3000

|
Dascription Done
‘ Description Done Description S
Buy Flowers
‘ Buy Flowers iy e
Get Shoes
| Get Shoes it dhoes
| collsoe 1 W Show Completed Tasks
| B Show Completed Tasks Description o
|
| D) Colw Jickets -
Callect Tickets L

Call Joe o

Figure 1-8. Changing the task display

Persistently Storing Data

The final change is to store the data so that the user’s list is preserved when navigating away from the
application. Later in the book, I demonstrate different ways of working with data stored on a server, but for
this chapter I am going to keep the application simple and ask the browser to store the data using the Local
Storage API, as shown in Listing 1-22.

Tip The Local Storage API is a standard browser feature and isn’t specific to React development.
See https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage for a good description
of how local storage works.

Listing 1-22. Persistently Storing Data in the App.js File in the src Folder

import React, { Component } from 'react’;

import { TodoBanner } from "./TodoBanner";

import { TodoCreator } from "./TodoCreator";

import { TodoRow } from "./TodoRow";

import { VisibilityControl } from "./VisibilityControl";

export default class App extends Component {

constructor(props) {
super(props);
this.state = {
userName: "Adam",
todoItems: [{ action: "Buy Flowers", done: false },
{ action: "Get Shoes", done: false },
{ action: "Collect Tickets", done: true },

27

www.EBooksWorld.ir

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

CHAPTER 1 * YOUR FIRST REACT APPLICATION

{ action: "Call Joe", done: false }],
showCompleted: true

}

updateNewTextValue = (event) => {
this.setState({ newItemText: event.target.value });
}

createNewTodo = (task) => {
if (!this.state.todoItems.find(item => item.action === task)) {
this.setState({
todoItems: [...this.state.todoItems, { action: task, done: false }]
}> () => localStorage.setItem("todos", JSON.stringify(this.state)));

}

toggleTodo = (todo) => this.setState({ todoItems:
this.state.todoItems.map(item => item.action === todo.action
? { ...item, done: !item.done } : item) });

todoTableRows = (doneValue) => this.state.todoItems
.filter(item => item.done === doneValue).map(item =>
<TodoRow key={ item.action } item={ item }
callback={ this.toggleTodo } />)

componentDidMount = () => {
let data = localStorage.getItem("todos");
this.setState(data != null
? JSON.parse(data)

userName: "Adam",
todoItems: [{ action: "Buy Flowers", done: false },
{ action: "Get Shoes", done: false },
{ action: "Collect Tickets", done: true },
{ action: "Call Joe", done: false }],
showCompleted: true

s
}

render = () =>
<div>
<TodoBanner name={ this.state.userName }
tasks={this.state.todoItems } />
<div className="container-fluid">
<TodoCreator callback={ this.createNewTodo } />
<table className="table table-striped table-bordered">
<thead>
<tr><th>Description</th><th>Done</th></tr>
</thead>
<tbody>{ this.todoTableRows(false) }</tbody>
</table>

28

www.EBookswWorld.ir

CHAPTER 1 * YOUR FIRST REACT APPLICATION

<div className="bg-secondary text-white text-center p-2">
<VisibilityControl description="Completed Tasks"
isChecked={this.state.showCompleted}
callback={ (checked) =>
this.setState({ showCompleted: checked })} />
</div>

{ this.state.showCompleted 8&
<table className="table table-striped table-bordered">

<thead>
<tr><th>Description</th><th>Done</th></tr>
</thead>
<tbody>{ this.todoTableRows(true) }</tbody>
</table>
}
</div>

</div>

The Local Storage API is accessed through the localStorage object, and the component uses the
setItem method to store the to-do items when a new to-do item is created. The local storage feature is only
able to store string values, so I serialize the data objects as JSON before they can be stored. The setState
method can accept a function that will be updated once the state data has been updated, as described in
Chapter 11, and that ensures that the most recent data is stored.

Components have a well-defined lifecycle, which is described in Chapter 13, and can implement
methods to receive notifications about important events. The component in the listing implements the
componentDidMount method, which is invoked early in the component’s life and provides a good opportunity
to perform tasks such as loading data.

To retrieve the stored data, I have used the Local Storage API's getItem method. I use the setState
method to update the component with the stored data or with some default data if there is no stored data
available

There is no visual change, but the application will persistently store any to-do items you create, which
means they will still be available when you reload the browser window or navigate away to a different URL,
such as the Apress home page, and then back to http://localhost:3000, as shown in Figure 1-9.

29

www.EBookswWorld.ir

CHAPTER 1 © YOUR FIRST REACT APPLICATION

C | & Secure

Add APIESS
Add
Description
Description Done
Buy Flowers
Buy Flowers
Get Shoes Aprass eBook Su
o Get Shoes
o Get your next hot
€& —
Go Running
Go Running
Description
Description Done | =
Collect Tickets
Collect Tickets o

Figure 1-9. Storing data

Summary

In this chapter, I created a simple example application to introduce you to the React development process
and to demonstrate some important React concepts. You saw that React development is focused on
components, which are defined in JSX files that combine JavaScript code and HTML content. When you
create a project, everything that is required to work with JSX files, build the application, and deliver it to the
browser for testing is included so that you can get started quickly and easily.

You also learned that React applications can contain multiple components, each of which is responsible
for a specific feature and which receive the data and callback functions they require using props.

Many more React features are available, as you can tell from the size of this book, but the basic
application I created in this chapter has shown you the most essential characteristics of React development
and will provide a foundation for later chapters. In the next chapter, I put React in context and describe the
structure and content of this book.

30

www.EBooksWorld.ir

CHAPTER 2

Understanding React

React is a flexible and powerful open-source framework for developing client-side applications; it takes cues
from the world of server-side development and applies them to HTML elements, and it creates a foundation
that makes building rich web applications easier. In this book, I explain how React works and demonstrate
the different features it provides.

THIS BOOK AND THE REACT RELEASE SCHEDULE

The React team makes frequent releases, which means there is an ongoing stream of fixes and
features. Minor releases tend not to break existing features and largely contain bug fixes. The major
releases can contain substantial changes and may not offer backward compatibility.

It doesn’t seem fair or reasonable to ask readers to buy a new edition of this book every few months,
especially since the majority of React features are unlikely to change even in a major release. Instead,
| am going to post updates following the major releases to the GitHub repository for this book,
https://github.com/Apress/pro-react-16.

This is an ongoing experiment for me (and for Apress), and | don’t yet know what form those updates
may take—not least because | don’t know what the major releases of React will contain—but the goal
is to extend the life of this book by supplementing the examples it contains.

I am not making any promises about what the updates will be like, what form they will take, or how long
| will produce them before folding them into a new edition of this book. Please keep an open mind and
check the repository for this book when new React versions are released. If you have ideas about how
the updates could be improved, then e-mail me at adam@adam-freeman.com and let me know.

Should | Use React?

React isn’t the solution to every problem, and it is important to know when you should use React and when
you should seek an alternative. React delivers the kind of functionality that used to be available only to
server-side developers but is delivered entirely in the browser. The browser has to do a lot of work each time
an HTML document to which React has been applied is loaded: data has to be loaded, components have
to be created and composed, expressions have to be evaluated, and so on, creating the foundation for the
features that I described in Chapter 1 and those that I explain throughout the rest of this book.

This kind of work takes time to perform, and the amount of time depends on the complexity of the
React application and—critically—on the quality of the browser and the processing capability of the device.

© Adam Freeman 2019 31
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_2

www.EBookswWorld.ir

https://github.com/Apress/pro-react-16

CHAPTER 2 © UNDERSTANDING REACT

You won’t notice any performance issues when using the latest browsers on a capable desktop machine, but
old browsers on underpowered smartphones can really slow down the initial setup of a React application.

The goal, therefore, is to perform this setup as infrequently as possible and deliver as much of the app as
possible to the user when it is performed. This means giving careful thought to the kind of web application
you build. In broad terms, there are two basic kinds of web application: round-trip and single-page.

Understanding Round-Trip Applications

For along time, web apps were developed to follow a round-trip model. The browser requests an initial
HTML document from the server. User interactions—such as clicking a link or submitting a form—leads the
browser to request and receive a completely new HTML document. In this kind of application, the browser
is essentially a rending engine for HTML content, and all of the application logic and data resides on the
server. The browser makes a series of stateless HTTP requests that the server handles by generating HTML
documents dynamically.

Alot of current web development is still for round-trip applications, especially for line-of-business
projects, not least because they put few demands on the browser and have the widest possible client
support. But there are some serious drawbacks to round-trip applications: they make the user wait while
the next HTML document is requested and loaded, they require a large server-side infrastructure to process
all the requests and manage all the application state, and they can require more bandwidth because each
HTML document has to be self-contained, which can lead to the same content being included in each
response from the server. React is not well-suited to round-trip applications because the browser has to
perform the initial setup process for each new HTML document that is received from the server.

Understanding Single-Page Applications

Single-page applications (SPAs) take a different approach. An initial HTML document is sent to the browser,
but user interactions lead to HTTP requests for small fragments of HTML or data inserted into the existing
set of elements being displayed to the user. The initial HTML document is never reloaded or replaced, and
the user can continue to interact with the existing HTML while the HTTP requests are being performed
asynchronously, even if that just means seeing a “data loading” message.

React is well-suited to single-page applications because the work that the browser has to perform to
initialize the application has to be performed only once, after which the application runs in the browser,
responding to user interaction and requesting the data or content that is required in the background.

COMPARING REACT TO VUE.JS AND ANGULAR

There are two main competitors to React: Angular and Vue.js. There are differences between them, but,
for the most part, all of these frameworks are excellent, all of them work in similar ways, and all of them
can be used to create rich and fluid client-side applications.

The real difference between these frameworks is the developer experience. Angular requires you to use

TypeScript to be effective, for example, whereas it is just an option with React and Vue.js projects. React
and Vue.js mix HTML and JavaScript together in a single file, which not everyone likes, although the way
this is done differs for each framework.

My advice is simple: pick the framework that you like the look of the most and switch to one of the
others if you don’t get on with it. That may seem like an unscientific approach, but there isn’t a bad
choice to make, and you will find that many of the core concepts carry over between frameworks even
if you change the one you use.

32

www.EBookswWorld.ir

CHAPTER 2 © UNDERSTANDING REACT

Understanding Application Complexity

The type of application isn’t the only consideration when deciding whether React would be well-suited to
a project. The complexity of a project is also important, and I often from readers who have embarked on

a project using a client-side framework such as React, Angular, or Vue.js, when something much simpler
would have been sufficient. A framework such as React requires a substantial time commitment to master
(as the size of this book illustrates), and this effort isn’t justified if you just need to validate a form or
populate a select element programmatically.

In the excitement that surrounds client-side frameworks, it is easy to forget that browsers provide a rich
set of APIs that can be used directly and that these are the same APIs that React relies on for all of its features.
If you have a problem that is simple and self-contained, then you should consider using the browser APIs
directly, starting with the Document Object Model (DOM) API. You will see that some of the examples in
this book use the browser APIs directly, but a good place to start if you are new to browser development is
https://developer.mozilla.org, which contains good documentation for all of the APIs that browsers
support.

The drawback of the browser APIs, especially the DOM AP], is that they can be awkward to work with
and older browsers tend to implement features differently. A good alternative to working directly with the
browser APIs, especially if you have to support older browsers, is jQuery (https://jquery.org). jQuery
simplifies working with HTML elements and has excellent support for handling events, animations, and
asynchronous HTTP requests.

React comes into its own in large applications, where there are complex workflows to implement,
different types of users to deal with, and substantial volumes of data to be processed. In these situations, you
can work directly with the browser APIs, but it becomes difficult to manage the code and hard to scale up the
application. The features provided by React make it easier to build large and complex applications and to
do so without getting bogged down in reams of unreadable code, which is often the fate of complex projects
that don’t adopt a framework.

What Do | Need to Know?

If you decide that React is the right choice for your project, then you should be familiar with the basics of
web development, have an understanding of how HTML and CSS work, and have a working knowledge of
JavaScript. If you are a little hazy on some of these details, I provide primers for the features I use in this book
in Chapters 3 and 4. https://developer.mozilla.org is a good place to brush up on the fundamentals of
HTML, CSS, and JavaScript.

How Do | Set Up My Development Environment?

The only development tools needed for React development are the ones you installed in Chapter 1 when
you created your first application. Some later chapters require additional packages, but full instructions are
provided. If you successfully built the application in Chapter 1, then you are set for React development and
for the rest of the chapters in this book.

What Is the Structure of This Book?

This book is split into three parts, each of which covers a set of related topics.

33

www.EBookswWorld.ir

https://developer.mozilla.org
https://jquery.org
https://developer.mozilla.org

CHAPTER 2 © UNDERSTANDING REACT

Part 1: Getting Started with React

Part 1 of this book provides the information you need to get started with React development. It includes
this chapter and primer/refresher chapters for the key technologies used in React development, including
HTML, CSS, and JavaScript. Chapter 1 showed you how to create a simple React application, and
Chapters 5-8 take you through the process of building a more realistic application, called SportsStore.

Part 2: Working with React

Part 2 of this book covers the core React features that are required in most projects. React provides a lot of
built-in functionality, which I describe in depth, along with the way that custom code and content is added
to a project to create bespoke features.

Part 3: Creating Complete React Applications

React relies on additional packages to provide the advanced features that are required by most complex
applications. In Part 3 of this book, I introduce the most important of these packages, show you how they
work, and explain how they add to the core React features.

Are There Lots of Examples?

There are loads of examples. The best way to learn React is by example, and I have packed as many of them
into this book as I can, along with screenshots so you can see the effects of each feature. To maximize the
number of examples in this book, I have adopted a simple convention to avoid listing the same code or
content over and over. When I create a file, I will show its full contents, just as I have in Listing 2-1. I include
the name of the file and its folder in the listing’s header, and I show the changes that I have made in bold.
Listing 2-1. Using a Callback in the SimpleButton.js File in the src Folder

import React, { Component } from "react";
export class SimpleButton extends Component {

constructor(props) {

super (props);
this.state = {
counter: 0,

hasButtonBeenClicked: false

}

render = () =>
<button onClick={ this.handleClick }
className={ this.props.className }
disabled={ this.props.disabled === "true"
|| this.props.disabled === true }>
{ this.props.text} { this.state.counter }
{ this.state.hasButtonBeenClicked 8&
<div>Button Clicked!</div>
}

34

www.EBookswWorld.ir

CHAPTER 2 © UNDERSTANDING REACT

</button>
}

handleClick = () => {
this.setState({ counter: this.state.counter + 1 },
() => this.setState({ hasButtonBeenClicked: this.state.counter » 0 }));
this.props.callback();

This is a listing from Chapter 11, which shows the contents of a file called SimpleButton. js that can be
found in the src folder. Don’t worry about the content of the listing or the purpose of the file; just be aware
that this type of listing contains the complete contents of a file and that the changes you need to make to
follow the example are shown in bold.

Some files in a React application can be long, but the feature that I am describing requires only a small
change. Rather than list the complete file, I use an ellipsis (three periods in series) to indicate a partial
listing, which shows just part of the file, as shown in Listing 2-2.

Listing 2-2. Making Multiple Updates in the SimpleButton.js File in the src Folder

handleClick = () => {
for (let i = 05 i < 5; i++) {
this.setState({ counter: this.state.counter + 1});
}

this.setState({ hasButtonBeenClicked: true });
this.props.callback();

This is a later listing from Chapter 11, and it shows a set of changes that are applied to only one part of a
much larger file. When you see a partial listing, you will know that the rest of the file does not have to change
and that only the sections marked in bold are different.

In some cases, changes are required in different parts of a file, which makes it difficult to show as a
partial listing. In this situation, I omit part of the file’s contents, as shown in Listing 2-3.

Listing 2-3. Implementing a Lifecycle Method in the Message.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

export class Message extends Component {
// ...other methods omitted for brevity...

componentDidMount () {
console.log("componentDidMount Message Component");
}

componentDidUpdate() {
console.log("componentDidUpdate Message Component”);
}

35

www.EBookswWorld.ir

CHAPTER 2 © UNDERSTANDING REACT

The changes are still marked in bold, and the parts of the file that are omitted from the listing are not
affected by this example.

Where Can You Get the Example Code?

You can download the example projects for all the chapters in this book from https://github.com/Apress/
pro-react-16. The download is available without charge and contains everything that you need to follow
the examples without having to type in all of the code.

Where Can You Get Corrections for This Book?

You can find errata for this book at https://github.com/Apress/pro-react-16.

How Can You Contact Me?

If you have problems making the examples in this chapter work or if you find a problem in the book, then
you can e-mail me at adam@adam-freeman.com, and I will try my best to help. Please check the errata for
this book to see whether it contains a solution to your problem before contacting me.

Summary

In this chapter, I explained when React is a good choice for projects and outlined the alternatives and
competitors. I also outlined the content and structure of this book, explained where to get updates, and
explained how to contact me if you have problems with the examples in this book. In the next chapter,
I provide a primer for the HTML and CSS features that I use in this book to explain React development.

36

www.EBookswWorld.ir

https://github.com/Apress/pro-react-16
https://github.com/Apress/pro-react-16
https://github.com/Apress/pro-react-16

CHAPTER 3

HTML, JSX, and CSS Primer

In this chapter, I provide a brief overview of HTML and explain how HTML content can be mixed with
JavaScript code when using JSX, which is the superset of JavaScript supported by the React development
tools that allows HTML to be mixed with code. I also introduce the Bootstrap CSS framework, which I use to
style the content in the examples throughout this book.

Note Don’t worry if not all the features described in this chapter make immediate sense. Some rely on
recent additions to the JavaScript language that you may not have encountered before, which are described in
Chapter 4 or explained in detail in other chapters.

Preparing for This Chapter

To create the project for this chapter, open a new command prompt, navigate to a convenient location, and
run the command shown in Listing 3-1.

Tip You can download the example project for this chapter—and for all of the other chapters in this
book—from https://github.com/Apress/pro-react-16

Listing 3-1. Creating the Example Project

npx create-react-app primer

Once the project has been created, run the commands shown in Listing 3-2 to navigate to the project
folder and install the Bootstrap CSS framework.

© Adam Freeman 2019 37
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_3

www.EBookswWorld.ir

https://github.com/Apress/pro-react-16

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

Note When you create a new project, you may see warnings about security vulnerabilities. React
development relies on a large number of packages, each of which has its own dependencies, and security
issues will inevitably be discovered. For the examples in this book, it is important to use the package versions
specified to ensure you get the expected results. For your own projects, you should review the warnings and
update to versions that resolve the problems.

Listing 3-2. Adding the Bootstrap Package to the Project

cd primer
npm install bootstrap@4.1.2

To include Bootstrap in the application, add the statement shown in Listing 3-3 to the index. js file.

Listing 3-3. Including Bootstrap in the index.js File in the src Folder

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import * as serviceWorker from './servicelWorker';
import 'bootstrap/dist/css/bootstrap.css’;

ReactDOM.render (<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
servicelWorker.unregister();

Preparing the HTML File and the Component

To prepare for the examples in the chapter, replace the contents of the index.html file in the public folder
with the content shown in Listing 3-4.

Listing 3-4. Replacing the Contents of the index.html File in the public Folder

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Primer</title>
</head>
<body>
<h4 class="bg-primary text-white text-center p-2 m-1">
Static HTML Element
</h4>

38

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

<div id="domParent"></div>
<div id="root"></div>
</body>
</html>

Replace the contents of the App. js file in the src folder with the code shown in Listing 3-5.

Listing 3-5. Replacing the Contents of the App.js File in the src folder

import React, { Component } from "react";

export default class App extends Component {
render = () =>
<h4 className="bg-primary text-white text-center p-2 m-1">
Component Element
</h4>

—

Running the Example Application

Ensure that all the changes are saved and use the command prompt to run the command shown in
Listing 3-6 in the primer folder.

Listing 3-6. Starting the Development Tools
npm start

The React development tools will start, and once the initial preparations are complete, a new browser
window will open and display the content shown in Figure 3-1.

m

% C @ localhost:3000 & $

Static HTML Element

Component Element

Figure 3-1. Running the example application

Understanding HTML and DOM Elements

At the heart of all React web applications are HTML elements, which are used to describe the content that
will be presented to the user. In a React application, the contents of the static index.html file in the public
folder are combined with the HTML elements created dynamically by React to produce an HTML document
that the browser displays to the user.

39

www.EBooksWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

An HTML element tells the browser what kind of content each part of an HTML document represents.
Here is an HTML element from the index.html file in the public folder:

<h4 class="bg-primary text-white text-center p-2 m-1">
Static HTML Element
</h4>

As illustrated in Figure 3-2, this element has several parts: the start tag, the end tag, the attributes, and
the content.

Start Tag Attribute
‘ ¢

<h4| |class="bg-primary text-white text-center p-2 m-1">

Static HTML Element |<— Content

</h4>

t

End Tag

Figure 3-2. The anatomy of an HTML element

The name of this element (also referred to as the tag name or just the tag) is h4, and it tells the browser
that the content between the tags should be treated as a header. There are a range of header elements,
ranging from h1 to h6, where h1 is conventionally used for the most important content, h2 for slightly less
important content, and so on.

When you define an HTML element, you start by placing the tag name in angle brackets (the < and >
characters) and end an element by using the tag in a similar way, except that you also add a / character after
the left-angle bracket (<), to create the start tag and end tag.

The tag indicates the purpose of the element, and there is a wide range of element types defined by the
HTML specification. In Table 3-1, I have described the elements that I used most commonly in this book. For
a complete list of tag types, you should consult the HTML specification.

40

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

Table 3-1. Common HTML Elements Used in the Examples

Element Description

a Alink (more formally known as an anchor), which the user clicks to navigate to a new URL or
anew location within the current document

button A button, which can be clicked by the user to initiate an action

div A generic element; often used to add structure to a document for presentation purposes

h1 to h6 Aheader

input A field used to gather a single data item from the user

table A table, used to organize content into rows and columns

tbody The body of the table (as opposed to the header or footer)

td A content cell in a table row

th A header cell in a table row

thead The header of a table

tr Arowin atable

Understanding Element Content

Whatever appears between the start and end tags is the element’s content. An element can contain text
(such as Static HTML Element in this case) or other HTML elements. In Listing 3-7, I have added a new
HTML element that contains another element.

Listing 3-7. Adding a New Element in the index.html File in the public Folder

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Primer</title>
</head>
<body>
<h4 class="bg-primary text-white text-center p-2 m-1">
Static HTML Element
</h4>
<div class="text-center m-2"»
<divs>This is a span element</div»
<divs>This is another span element</divy
</div>
<div id="domParent"></div>
<div id="root"></div>
</body>
</html>

The outer element is known as the parent, while the elements it contains are known as children. The
additions in Listing 3-7 define a parent div element that has two children, also div elements. The content
of each child div element is a text message, producing the result shown in Figure 3-3. Being able to create a

41

www.EBooksWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

hierarchy of elements is an essential HTML feature. It is one of the key building blocks for React applications,
and it allows complex content to be created.

m

. 3 C © localhost:3000 % :

Static HTML Element

This is a span element
This is another span element

Component Element

Figure 3-3. Adding parent and child elements

Understanding Element Content Restrictions

Some elements have restrictions on the types of elements that can be their children. The div elements in
the example can contain any other element and are used to add structure to an HTML document, often

so that content can be easily styled. Other elements have more specific roles that require specific types of
elements to be used as children. For example, a tbody element, which you will see in later chapters and
which represents the body of a table, can contain only one or more tr elements, each of which represents a
table row.

Tip Don’t worry about learning all of the HTML elements and their relationships. You will pick up everything
you need to know as you follow the examples in later chapters, and most code editors will display a warning if
you try to create invalid HTML.

Understanding Void Elements

Some elements are not allowed to contain anything at all. These are called void or self-closing elements, and
they are written without a separate end tag, like this:

<input />

Avoid element is defined in a single tag, and you add a / character before the last angle bracket (the >
character). The element shown here is the most common example of a void element, and it is used to gather
data from the user in HTML forms. You will see many examples of void elements in later chapters.

www.EBooksWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

Understanding Attributes

You can provide additional information to the browser by adding attributes to your elements. Here is the
attribute that was applied to the h4 element illustrated in Figure 3-2:

<h4 class="bg-primary text-white text-center p-2 m-1">
Static HTML Element
</h4>

Attributes are always defined as part of the start tag, and most attributes have a name and a value,
separated by an equal sign, as illustrated in Figure 3-4.

Naine Vaiue
<h4|class |=| "bg-primary text-white text-center p-2 m-1"|>

Figure 3-4. The name and value of an attribute

The name of this attribute is class, which is used to group related elements, typically so that their
appearance can be managed consistently. This is why the class attribute has been used in this example, and
the attribute value associates the h4 element with a number of classes that relate to styles provided by the
Bootstrap CSS package, which I describe later in the chapter.

Creating HTML Elements Dynamically

The HTML elements defined in the index.html file are static. These elements are received and displayed
by the browser just as they are defined, which you can see by right-clicking in the browser window and
selecting Inspect or Inspect Element from the pop-up menu. The F12 developer tools will open and display
the contents of the HTML document, which will include this element:

<h4 class="bg-primary text-white text-center p-2 m-1">
Static HTML Element
</h4>

HTML elements can also be dynamically created using JavaScript and the Domain Object Model
(DOM) API that all modern browsers support. In Listing 3-8, I have added some JavaScript to the index.html
file that uses the DOM API to add a new element to the HTML document.

43

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

Listing 3-8. Creating an Element Dynamically in the index.html File in the public Folder

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Primer</title>
</head>
<body>
<h4 class="bg-primary text-white text-center p-2 m-1">
Static HTML Element
</h4>
<div class="text-center m-2">
<div>This is a span element</div>
<div>This is another span element</div>
</div>
<div id="domParent"></div>
<div id="root"></div>
<script>
let element = document.createElement("ha")
element.className = "bg-primary text-white text-center p-2 m-1";
element.textContent = "DOM API HTML Element";
document.getElementById("domParent").appendChild(element);
</script>
</body>
</html>

The script element denotes a section of JavaScript code, which the browser will execute when it
processes the contents of the index. html file and which creates a new HTML element, as shown in
Figure 3-5.

. Primer
X C @ localhost:3000 o

Static HTML Element

This is a span element
This is another span element

DOM API HTML Element

Component Element

Figure 3-5. Creating an element using the DOM API

The first JavaScript statement in Listing 3-8 creates a new h4 element.

let element = document.createElement("h4")

www.EBooksWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

The document object represents the HTML document that the browser is displaying, and the
createElement method returns an object that represents a new HTML element. The object that the DOM
API provides to represent the new HTML element has properties that correspond to the attributes that are
used when defining static HTML. The second JavaScript statement in Listing 3-8 uses the property that
corresponds to the class attribute.

element.className = "bg-primary text-white text-center p-2 m-1";

Most of the properties defined by element objects have the same name as the attributes they
correspond to. There are some exceptions, including className, which is used because the class keyword is
reserved in many programming languages, including JavaScript.

The remaining JavaScript statements set the text content of the HTML element and add it to the HTML
document so it is displayed by the browser. If you examine the new element by right-clicking in the browser
window and selecting Inspect from the pop-up menu, you will see that the object created by the JavaScript
statements in Listing 3-8 has been represented just like the static element from the index.html file.

<h4 class="bg-primary text-white text-center p-2 m-1">DOM API HTML Element</h4>

It is worth emphasizing that the index.html file does not contain this HTML element. Instead, it
contains a series of JavaScript statements that instructed the browser to create the element and add it to the
content presented to the user.

Creating Elements Dynamically Using a React Component

If you examine the contents of the App. js file, you will see that the render method of the App component
combines aspects of the static and dynamic HTML elements from earlier sections:

import React, { Component } from "react";

export default class App extends Component {
render = () =>
<h4 className="bg-primary text-white text-center p-2 m-1"»
Component Element
</ha>

React uses the DOM API to create the HTML elements specified by the render method, which it does
by creating an object that is configured through its properties. The JSX format used for React development
allows HTML elements to be defined declaratively, but the result is still JavaScript when the file is processed
by the development tools, which is why the h4 element is configured using className and not class in
the App render method. JSX lets elements appear to be configured using attributes, but they are just the
means by which values are specified for properties, and this is why the term prop is used so much in React
development.

45

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

Note No special steps are required to use JSX, which is supported by the tools added to the project by
the create-react-app package. | explain how elements defined using JSX are transformed into JavaScript in
Chapter 9.

Using Expressions in React Elements

The ability to use expressions to configure elements is one of the key features of React and JSX. Expressions
are denoted by curly braces (the { and } characters), and the result is inserted into the content generated by
a component. In Listing 3-9, [have used an expression to set the content of the h4 element rendered by the
App component.

Listing 3-9. Using an Expression in the App.js File in the src Folder

import React, { Component } from "react";
const message = "This is a constant"
export default class App extends Component {

render = () =>
<h4 className="bg-primary text-white text-center p-2 m-1">
{ message }
</h4>

I'have defined a constant named message and used an expression to use the message value as the
content for the h4 element. To simplify the example, I commented out the static HTML element and the
DOM API code from the index.html file, as shown in Listing 3-10.

Listing 3-10. Removing Elements in the index.html File in the public Folder

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Primer</title>
</head>
<body>
<!-- <h4 class="bg-primary text-white text-center p-2 m-1"s
Static HTML Element
</ha>
<div class="text-center m-2"»
<div>This is a span element</div>
<div>This is another span element</div>
</div>
<div id="domParent"»</divy --»
<div id="root"></div>

46

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

¢!-- «<script»
let element = document.createElement("h4")
element.className = "bg-primary text-white text-center p-2 m-1";
element.textContent = "DOM API HTML Element";
document.getElementById("domParent™).appendChild(element);

</scripty -->

</body>
</html>

Save the changes, and you will see the value of the constant defined in Listing 3-9 displayed in the h4
element produced by the App component, as shown in Figure 3-6.

Primer

€ C @ localhost %

This is a constant

Figure 3-6. Using an expression to set the content of an element

Mixing Expressions and Static Content

Expressions can be combined with static values to create more complex results, as shown in Listing 3-11,
which uses an expression to set part of the content for the h4 element.

Listing 3-11. Mixing an Expression with Static Content in the App.js File in the src Folder
import React, { Component } from "react";
const count = 4
export default class App extends Component {
render = () =>
<h4 className="bg-primary text-white text-center p-2 m-1">

Number of things: { count }
</h4>

The expression includes the count value in the content of the h4 element, which is combined with the
static content, producing the result shown in Figure 3-7.

47

www.EBooksWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

B8 e

o C @ localhost:300¢ r

Number of things: 4

Figure 3-7. Mixing an expression and static content

Performing Computation in Expressions

Expressions can do more than inject values into the content rendered by a component and can be used for
any computation, as shown in Listing 3-12.

Listing 3-12. Performing a Computation in the App.js File in the src Folder
import React, { Component } from "react";
const count = 4
export default class App extends Component {
render = () =>
<h4 className="bg-primary text-white text-center p-2 m-1">

Number of things: { count % 2 === 0 ? "Even" : "0dd" }
</h4>

This example uses the ternary operator to determine whether the count value is odd or even and
produces the result shown in Figure 3-8.

B8 e

<« C @ localhost:3000 o

Number of things: Even

Figure 3-8. Performing computation in an expression

Expressions are well-suited to simple operations, but trying to include too much code in an expression
results in a confusing component. For more complex operations, a function should be defined and invoked
by the expression so that the function result is incorporated into the content produced by the component, as
shown in Listing 3-13.

48

www.EBooksWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

Listing 3-13. Defining a Function in the App.js File in the src Folder

import React, { Component } from "react";
const count = 4

function isEven() {
return count % 2 === 0 ? "Even" : "0dd";
}

export default class App extends Component {

render = () =>
<h4 className="bg-primary text-white text-center p-2 m-1">
Number of things: { isEven() }
</h4>

When you use a function in an expression, you must invoke it with parentheses (the (and) characters),
as shown in the listing, so that the result of the function is included in the content generated by the
component.

Accessing Component Properties and Methods

The this keyword is required to specify properties and method defined by the component, as shown in
Listing 3-14. As I explain in Part 2, there are different ways to create components, but the technique I use
throughout this book is the one shown in the listing, which provides the widest range of features and is
suitable for most projects.

Listing 3-14. Using the this Keyword in an Expression in the App.js File in the src Folder

import React, { Component } from "react";
export default class App extends Component {

constructor(props) {

super(props);
this.state = {
count: 4

}
}
isEven() {

return this.state.count % 2 === 0 ? "Even" : "0dd";
}

render = () =>
<h4 className="bg-primary text-white text-center p-2 m-1">
Number of things: { this.isEven() }
</h4>

49

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

The component in this listing defines a constructor, which is how the initial state of the component is
configured, as I explain in Chapter 4. The constructor assigns an object to the state property, with a count value
of 4. The component also defines a method called isEven, which accesses the count value as this.state.count.
The this keyword refers to the component instance, as explained in Chapter 4; state refers to the state property
created in the constructor; and count selects the value to use in the computation. This this keyword is also used
invoke the isEven method in the expression. The result is the same as the previous listing. Some methods require
arguments, which can be specified as part of the expression, as shown in Listing 3-15.

Listing 3-15. Passing an Argument to a Method in the App.js File in the src Folder

import React, { Component } from "react";
export default class App extends Component {

constructor(props) {

super (props);
this.state = {
count: 4

}
}
isEven(val) {

return val % 2 === 0 ? "Even" : "0dd";
}

render = () =>
<h4 className="bg-primary text-white text-center p-2 m-1">
Number of things: { this.isEven(this.state.count) }
</ha>

The expression in this example invokes the isEven method, using the count value as the argument. The
result is the same as the previous listing.

Using Expressions to Set Prop Values

Expressions can also be used to set the value of props, which allows HTML elements and child components
to be configured. In Listing 3-16, I have added a method to the App component whose result is used to set the
className prop of the h4 element.

Listing 3-16. Setting a Prop Value in the App.js File in the src Folder
import React, { Component } from "react";
export default class App extends Component {
constructor(props) {
super (props);

this.state = {
count: 4
}

50

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

iskven(val) {
return val % 2 === 0 ? "Even" : "0dd";
}

getClassName(val) {
return val % 2 ===
? "bg-primary text-white text-center p-2 m-1"
: "bg-secondary text-white text-center p-2 m-1"

}

render = () =>
<h4 className={this.getClassName(this.state.count)}>
Number of things: { this.isEven(this.state.count) }
</h4>

The result is the same as the previous listing.

Using Expressions to Handle Events

Expressions are used to tell React how to respond to events when they are triggered by an element.
In Listing 3-17, I have added a button to the content returned by the App component and used the onClick
prop to tell React how to respond when the click event is triggered.

Listing 3-17. Handling an Event in the App.js File in the src Folder

import React, { Component } from "react";
export default class App extends Component {

constructor(props) {

super (props);
this.state = {
count: 4

}
}
iskEven(val) {

return val % 2 === 0 ? "Even" : "0dd";
}

getClassName(val) {
return val % 2 ===
? "bg-primary text-white text-center p-2 m-1"
: "bg-secondary text-white text-center p-2 m-1"

}

handleClick = () => this.setState({ count: this.state.count + 1});
render = () =>
<h4 className={this.getClassName(this.state.count)}>
<button className="btn btn-info m-2" onClick={ this.handleClick }»

51

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

Click Me
</button>
Number of things: { this.isEven(this.state.count) }
</h4>

The button element is configured using the onClick prop, which tells React to invoke the handleClick
method in response to the click event. Note that the method isn’t specified using parentheses. Also, note
that the handleClick method is defined using the fat arrow syntax; handling events is one of the few times
where the way that a method is defined is important, as I explain in Chapter 12. Clicking the button updates
the value of the count property, which changes the outcome of the other expressions in the render method,
producing the effect shown in Figure 3-9.

. Primer

localhost:3000
€ c © &« C (@ localhost:3000

Click e [<umber of tinings: Fven

clickme Number of things: Odd

Figure 3-9. Handling an event

Understanding Bootstrap

HTML elements tell the browser what kind of content they represent, but they don’t provide any information
about how that content should be displayed. The information about how to display elements is provided using
Cascading Style Sheets (CSS). CSS consists of a comprehensive set of properties that can be used to configure
every aspect of an element’s appearance and a set of selectors that allow those properties to be applied.

One of the main problems with CSS is that some browsers interpret properties slightly differently, which
can lead to variations in the way that HTML content is displayed on different devices. It can be difficult to
track down and correct these problems, and CSS frameworks have emerged to help web app developers style
their HTML content in a simple and consistent way.

The most popular CSS framework is Bootstrap, which was originally developed at Twitter but has
become a widely used open source project. Bootstrap consists of a set of CSS classes that can be applied
to elements to style them consistently and some optional JavaScript code that performs additional
enhancement (but that I do not use in this book). I use Bootstrap in my own projects; it works well across
browsers, and it is simple to use. I use the Bootstrap CSS styles in this book because they let me style my
examples without having to define and then list my own custom CSS in each chapter. Bootstrap provides a
lot more features than the ones I use in this book; see http://getbootstrap.com for full details.

I don’t want to get into too much detail about Bootstrap because it isn’t the topic of this book, but I do
want to give you enough information so you can tell which parts of an example are React features and which
are related to Bootstrap.

Applying Basic Bootstrap Classes

Bootstrap styles are applied via the className prop, which is the counterpart to the class attribute, and
is used to group related elements. The className prop isn’t just used to apply CSS styles, but it is the most

52

www.EBooksWorld.ir

http://getbootstrap.com

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

common use, and it underpins the way that Bootstrap and similar frameworks operate. Here is an HTML
element with a classNae prop, taken from Listing 3-9:

<h4 className="bg-primary text-white text-center p-2 m-1">
{ message }
</h4>

The className prop assigns the h4 element to five classes, whose names are separated by spaces:
bg-primary, text-white, text-center, p-2, and m-1. These classes correspond to collections of styles
defined by Bootstrap, as described in Table 3-2.

Table 3-2. The h4 Element Classes

Name Description

bg-primary This class applies a style context to provide a visual cue about the purpose of the element.
See the “Using Contextual Classes” section.

text-white This class applies a style that sets the text color for the element’s content to white.
text-center This class applies a style that horizontally centers the element’s content.

p-2 This class applies a style that adds spacing around the element’s content, as described in
the “Using Margin and Padding” section.

m-1 This class applies a style that adds spacing around the element, as described in the “Using
Margin and Padding” section.

Using Contextual Classes

One of the main advantages of using a CSS framework like Bootstrap is to simplify the process of creating a
consistent theme throughout an application. Bootstrap defines a set of style contexts that are used to style
related elements consistently. These contexts, which are described in Table 3-3, are used in the names of the
classes that apply Bootstrap styles to elements.

Table 3-3. The Bootstrap Style Contexts

Name Description

primary Indicates the main action or area of content
secondary Indicates the supporting areas of content
success Indicates a successful outcome

info Presents additional information

warning Presents warnings

danger Presents serious warnings

muted De-emphasizes content

dark Increases contrast by using a dark color
white Increases contrast by using white

53

www.EBooksWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

Bootstrap provides classes that allow the style contexts to be applied to different types of elements.
The h4 element with which I started this section has been added to the bg-primary class, which sets the
background color of an element to indicate that it is related to the main purpose of the application. Other
classes are specific to a certain set of elements, such as btn-primary, which is used to configure button
and a elements so they appear as buttons whose colors are consistent with other elements in the primary
context. Some of these context classes must be applied in conjunction with other classes that configure the
basic style of an element, such as the btn class, which is combined with the btn-primary class.

Using Margin and Padding

Bootstrap includes a set of utility classes that are used to add padding, which is space between an element’s
edge and its content, and margin, which is space between an element’s edge and the surrounding elements.
The benefit of using these classes is that they apply a consistent amount of spacing throughout the
application.

The names of these classes follow a well-defined pattern. Here is the h4 element from Listing 3-9 again:

<h4 className="bg-primary text-white text-center p-2 m-1">
{ message }

The classes that apply margin and padding to elements follow a well-defined naming schema: first, the
letter m (for margin) or p (for padding), followed by an optional letter selecting specific edges (t for top, b for
bottom, 1 for left, or r for right), then a hyphen, and, finally, a number indicating how much space should be
applied (0 for no spacing, or 1, 2, 3, 4 or 5 for increasing amounts). If there is no letter to specify edges, then
the margin or padding will be applied to all edges. To help put this schema in context, the p-2 class to which
the h4 element has been added applies padding level 2 to all of the element’s edges.

Using Bootstrap to Create Grids

Bootstrap provides style classes that can be used to create different kinds of grid layout, ranging from one to
twelve columns. I use the grid layout for many of the examples in this book, and I have created a simple grid
layout in Listing 3-18.

Listing 3-18. Creating a Grid in the App.js File in the src Folder

import React, { Component } from "react";
export default class App extends Component {

constructor(props) {

super (props);
this.state = {
count: 4

}
}
iskven(val) {

return val % 2 === 0 ? "Even" : "0dd";
}

54

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

getClassName(val) {
return val % 2 ===
? "bg-primary text-white text-center p-2 m-1"
: "bg-secondary text-white text-center p-2 m-1"

}

handleClick = () => this.setState({ count: this.state.count + 1});

render = () =>
<div className="container-fluid p-4"»
<div className="row bg-info text-white p-2"»
<div className="col font-weight-bold">Value</div>
<div className="col-6 font-weight-bold"Even?</divy
</divy
<div className="row bg-light p-2 border"»
<div className="col"»{ this.state.count }</divy
<div className="col-6"»{ this.isEven(this.state.count) }</divy
</divy
<div className="row"»
<div className="col"»
<button className="btn btn-info m-2"
onClick={ this.handleClick }»
Click Me
</button>
</div>
</divy
</div>

The Bootstrap grid layout system is simple to use. A top-level div element is assigned to the container
class (or the container-fluid class if you want it to span the available space). You specify a column by
applying the row class to a div element, which has the effect of setting up the grid layout for the content that
the div element contains.

Each row defines 12 columns, and you specify how many columns each child element will occupy by
assigning a class whose name is col- followed by the number of columns. For example, the class col-1
specifies that an element occupies one column, col-2 specifies two columns, and so on, right through to
col-12, which specifies that an element fills the entire row. If you omit the number of columns and just
assign an element to the col class, then Bootstrap will allocate an equal amount of the remaining columns.
The grid in Listing 3-18 produces the layout shown in Figure 3-10.

55

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

m

& > C @ localhost:3000 % :

12 Even

Click Me

Figure 3-10. Using a grid layout

Using Bootstrap to Style Tables

Bootstrap includes support for styling table elements and their contents, which is a feature [use in some of
the examples in later chapters. Table 3-4 lists the key Bootstrap classes for working with tables.

Table 3-4. The Bootstrap CSS Classes for Tables

Name Description

table Applies general styling to a table element and its rows
table-striped Applies alternate-row striping to the rows in the table body
table-bordered Applies borders to all rows and columns

table-sm Reduces the spacing in the table to create a more compact layout

All these classes are applied directly to the table element, as shown in Listing 3-19, where I have
replaced the grid layout with a table.

Listing 3-19. Using a Table Layout in the App.js File in the src Folder
import React, { Component } from "react";
export default class App extends Component {
constructor(props) {
super(props);

this.state = {
count: 4
}

www.EBooksWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

iskven(val) {
return val % 2 === 0 ? "Even" : "0dd";
}

getClassName(val) {
return val % 2 ===
? "bg-primary text-white text-center p-2 m-1"
: "bg-secondary text-white text-center p-2 m-1"

}

handleClick = () => this.setState({ count: this.state.count + 1});

render = () =>
<table className="table table-striped table-bordered table-sm"»
<thead className="bg-info text-white"»
<tr><thr>Value</th><thyEven?</th></tr>
</thead>
<tbody>
<try
<tdy{ this.state.count }</td>
<tdy{ this.isEven(this.state.count) } </td>
</tr>
</tbody>
<tfoot className="text-center"»
<try
<td colSpan="2"»
<button className="btn btn-info m-2"
onClick={ this.handleClick }»
Click Me
</button>
</tdy
</tr>
</tfoot>
</table>

Tip Notice that | have used the thead element when defining the tables in Listing 3-19. Browsers will
automatically add any tr elements that are direct descendants of table elements to a tbody element if one
has not been used. You will get odd results if you rely on this behavior when working with Bootstrap, and it is
always a good idea to use the full set of elements when defining a table.

57

www.EBookswWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

Figure 3-11 shows the result of using a table instead of a grid.

m

< C @ localhost:3000 & :

4 Even

Click Me

Figure 3-11. Styling a table

Using Bootstrap to Style Forms

Bootstrap includes styling for form elements, allowing them to be styled consistently with other elements in
the application. In Listing 3-20, I have added form elements to the content produced by the App component.

Listing 3-20. Adding Form Elements in the App.js File in the src Folder

import React, { Component } from "react";
export default class App extends Component {

render = () =>
<div className="m-2"»
<div className="form-group"s
<labelyName:</labels
<input className="form-control" /»
</div>
<div className="form-group">
<label>City:</label>
<input className="form-control" />
</divy
</div>

The basic styling for forms is achieved by applying the form-group class to a div element that contains
a label and an input element, where the input element is assigned to the form-control class. Bootstrap
styles the elements so that the label is shown above the input element and the input element occupies 100
percent of the available horizontal space, as shown in Figure 3-12.

58

www.EBooksWorld.ir

CHAPTER 3 © HTML, JSX, AND CSS PRIMER

m

< C @ localhost:3000 & :

Name:

City:

Figure 3-12. Styling form elements

Summary

In this chapter, I provided a brief overview of HTML and explained how it can be mixed with JavaScript
code in React development, albeit with some changes and restrictions. I also introduced the Bootstrap CSS
framework, which I use throughout this book but which is not directly related to React. You need to have

a good grasp of HTML and CSS to be truly effective in web application development, but the best way to
learn is by firsthand experience, and the descriptions and examples in this chapter will be enough to get you
started and provide just enough background information for the examples ahead. In the next chapter,

I continue the primer theme and introduce the most important JavaScript features used in this book.

59

www.EBooksWorld.ir

CHAPTER 4

JavaScript Primer

In this chapter, I provide a quick tour of the most important features of the JavaScript language as they apply
to React development. I don’t have the space to describe JavaScript completely, so I have focused on the
essentials that you'll need to get up to speed and follow the examples in this book.
JavaScript has been modernized in recent years with the addition of convenient language features and
a substantial expansion of the utility functions available for common tasks such as array handling. Not all
browsers support the latest features, and so the React development tools include the Babel package, which
is responsible for transforming JavaScript written using the latest features into code that can be relied on to
work in most mainstream browsers. This is means you are able to enjoy a modern development experience
without needing to pay attention to dealing with the differences between browsers and keeping track of the
features each supports. Table 4-1 summarizes the chapter.

Table 4-1. Chapter Summary

Problem Solution Listing

Provide instructions that will be Use JavaScript statement 4

executed by the browser

Delay execution of statements until they Use JavaScript functions 5-7,10-12

are required

Define functions with variable numbers Use default and rest parameters 8,9

of parameters

Express functions concisely Use fat arrow functions 13

Define variables and constants Use the let and const keywords 14,15

Use the JavaScript primitive types Use the string, number, or boolean keywords 16,17, 19

Define strings that include other values ~ Use template strings 18

Execute statements conditionally Use the if and else and switch keywords 20

Compare values and identities Use the equality and identity operators 21,22

Convert types Use the type conversion keywords 23-25

Group related items Define an array 26, 27

Read or change a value in an array Use the index accessor notation 28,29

Enumerate the contents of an array Use a for loop or the forEach method 30
(continued)

© Adam Freeman 2019

A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_4

www.EBookswWorld.ir

61

CHAPTER 4 © JAVASCRIPT PRIMER

Table 4-1. (continued)

Problem Solution Listing
Expand the contents of an array Use the spread operator 31,32
Process the contents of an array Use the built-in array method 33
Gather related values into a single unit ~ Define an object using a literal or a class 34-36, 40
Define an operation that can be Define a method 37,39, 43, 44
performed on the values of an object
Copy properties and value from one Use the Object.assign method or use the 41,42
object to another spread operator
Group related features Define a JavaScript module 45-54
Observe an asynchronous operation Define a Promise and use the async and 55-58
await keywords

Preparing for This Chapter

In this chapter, I continue working with the primer project created in Chapter 3. To prepare for this chapter,
Iadded a file called example. js to the sxc folder and added the code shown in Listing 4-1.

Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 4-1. The Contents of the example.js File in the src Folder

console.log("Hello");

To incorporate the example. js file into the application, I added the statement shown in Listing 4-2 to
the index. js file in the src folder.

Listing 4-2. Importing a File in the index.js File in the src Folder

import React from 'react’;

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import * as serviceWorker from './servicelWorker';
import 'bootstrap/dist/css/bootstrap.css’;

import "./example";

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.

// Learn more about service workers: http://bit.ly/CRA-PWA
servicelWorker.unregister();

62

www.EBooksWorld.ir

https://github.com/Apress/pro-react-16

CHAPTER 4 * JAVASCRIPT PRIMER

Open a command prompt, navigate to the primer folder, and run the command shown in Listing 4-3 to
start the React development tools.

Listing 4-3. Starting the Development Tools

npm start

The initial preparation of the project will take a moment, after which a new browser window or tab will
open and navigate to http://localhost:3000, displaying the content shown in Figure 4-1.

m

&€ > C @ localhost:3000 i ;

Name:

City:

Figure 4-1. Running the example application

Open the browser’s F12 development tools, which can usually be done by pressing F12 on the keyboard
or right-clicking in the browser window and selecting Inspect from the pop-up menu. Inspect the Console
tab, and you will see that the statement in the example. js file from Listing 4-1 has produced a simple result,
as shown in Figure 4-2.

€ DevTools - localhost:3000/ - O X
& il Elements Console Network Performance Sources Application »
Pl ® top ¥ | © | Filter Default levels ¥ o]
Hello example.js:1
>
i Console X

Figure 4-2. A result in the browser’s console

63

www.EBooksWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

All of the examples in this chapter produce text output and so rather than show screenshots of the
Console tab, I will use just the text, like this:

Hello

Using Statements

The basic JavaScript building block is the statement. Each statement represents a single command, and
statements are usually terminated by a semicolon (;). The semicolon is optional, but using them makes
your code easier to read and allows for multiple statements on a single line. In Listing 4-4, I have added
statements to the JavaScript file.

Listing 4-4. Adding JavaScript Statements in the example.js File in the src Folder

console.log("Hello");
console.log("Apples");

console.log("This is a statement");
console.log("This is also a statement");

The browser executes each statement in turn. In this example, all the statements simply write messages
to the console. The results are as follows:

Hello

Apples

This is a statement

This is also a statement

Defining and Using Functions

When the browser receives JavaScript code, it executes the statements it contains in the order in which they
are defined. This is what happened in the previous example. The statements in the example. js file were
executed one by one, all of which wrote a message to the console, all in the order in which they were defined
in example. js. You can also package statements into a function, which won’t be executed until the browser
encounters a statement that invokes that function, as shown in Listing 4-5.

Listing 4-5. Defining a JavaScript Function in the example.js File in the src Folder

const myFunc = function () {
console.log("This statement is inside the function");

};
console.log("This statement is outside the function");
myFunc();
Defining a function simple: use the const keyword followed by the name you want to give the function,
followed by the equal sign (=) and the function keyword, followed by parentheses (the (and) characters).

The statements you want the function to contain are enclosed between braces (the { and } characters).

64

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

In the listing, I used the name myFunc, and the function contains a single statement that writes a
message to the JavaScript console. The statement in the function won’t be executed until the browser
reaches another statement that calls the myFunc function, like this:

myFunc();

When you save the changes to the example. js file, the updated JavaScript code will be sent to the
browser, where it is executed and produces the following output:

This statement is outside the function
This statement is inside the function

You can see that the statement inside the function isn’t executed immediately, but other than
demonstrating how functions are defined, this example isn’t especially useful because the function is
invoked immediately after it has been defined. Functions are much more useful when they are invoked in
response to some kind of change or event, such as user interaction.

You can also define functions so you don’t have to explicitly create and assign a variable, as shown in
Listing 4-6.

Listing 4-6. Defining a Function in the example.js File in the src Folder

function myFunc() {
console.log("This statement is inside the function");
}
console.log("This statement is outside the function");
myFunc();
The code works in the same way as Listing 4-5 but is more familiar for most developers. This example

produces the same result as Listing 4-5.

Defining Functions with Parameters

JavaScript allows you to define parameters for functions, as shown in Listing 4-7.

Listing 4-7. Defining Functions with Parameters in the example.js File in the src Folder

function myFunc(name, weather) {
console.log("Hello " + name + ".");
console.log("It is " + weather + " today.");

}

myFunc("Adam", "sunny");

65

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

I added two parameters to the myFunc function, called name and weather. JavaScript is a dynamically
typed language, which means you don’t have to declare the data type of the parameters when you define the
function. I'll come back to dynamic typing later in the chapter when I cover JavaScript variables. To invoke a
function with parameters, you provide values as arguments when you invoke the function, like this:

myFunc("Adam", "sunny");

The results from this listing are as follows:

Hello Adam.
It is sunny today.

Using Default and Rest Parameters

The number of arguments you provide when you invoke a function doesn’t need to match the number of
parameters in the function. If you call the function with fewer arguments than it has parameters, then the
value of any parameters you have not supplied values for is undefined, which is a special JavaScript value.
If you call the function with more arguments than there are parameters, then the additional arguments are
ignored.

The consequence of this is that you can’t create two functions with the same name and different
parameters and expect JavaScript to differentiate between them based on the arguments you provide when
invoking the function. This is called polymorphism, and although it is supported in languages such as Java
and C#, itisn’t available in JavaScript. Instead, if you define two functions with the same name, then the
second definition replaces the first.

There are two ways that you can modify a function to respond to a mismatch between the number
of parameters it defines and the number of arguments used to invoke it. Default parameters deal with the
situation where there are fewer arguments than parameters and allow you to provide a default value for the
parameters for which there are no arguments, as shown in Listing 4-8.

Listing 4-8. Using a Default Parameter in the example.js File in the src Folder

function myFunc(name, weather = "raining") {
console.log("Hello " + name + ".");
console.log("It is " + weather + " today.");

}

myFunc("Adam");

The weather parameter in the function has been assigned a default value of raining, which will be used
if the function is invoked with only one argument, producing the following results:

Hello Adam.
It is raining today.

Rest parameters are used to capture any additional arguments when a function is invoked with
additional arguments, as shown in Listing 4-9.

66

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

Listing 4-9. Using a Rest Parameter in the example.js File in the src Folder

function myFunc(name, weather, ...extraArgs) {
console.log("Hello " + name + ".");
console.log("It is " + weather + " today.");
for (let i = 0; i < extraArgs.length; i++) {
console.log("Extra Arg: " + extraArgs[i]);
}

}

myFunc("Adam", "sunny", "one", "two", "three");

The rest parameter must be the last parameter defined by the function, and its name is prefixed with
an ellipsis (three periods, . . .). The rest parameter is an array to which any extra arguments will be assigned.
In the listing, the function prints out each extra argument to the console, producing the following results:

Hello Adam.

It is sunny today.
Extra Arg: one
Extra Arg: two
Extra Arg: three

Defining Functions That Return Results

You can return results from functions using the return keyword. Listing 4-10 shows a function that returns a
result.

Listing 4-10. Returning a Result from a Function in the example.js File in the src Folder

function myFunc(name) {
return ("Hello " + name + ".");
}

console.log(myFunc("Adam"));

This function defines one parameter and uses it to produce a result. I invoke the function and pass the
result as the argument to the console. log function, like this:
console.log(myFunc("Adam"));

Notice that you don’t have to declare that the function will return a result or denote the data type of the

result. The result from this listing is as follows:

Hello Adam.

67

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

Using Functions as Arguments to Other Functions

JavaScript functions can be treated as objects, which means you can use one function as the argument to
another, as demonstrated in Listing 4-11.

Listing 4-11. Using a Function as an Arguments in the example.js File in the src Folder

function myFunc(nameFunction) {
return ("Hello " + nameFunction() + ".");
}

console.log(myFunc(function () {
return "Adam";

N);
The myFunc function defines a parameter called nameFunction that it invokes to get the value to insert
into the string it returns. I pass a function that returns Adam as the argument to myFunc, which produces the

following output:

Hello Adam.

Functions can be chained together, building up more complex functionality from small and easily
tested pieces of code, as shown in Listing 4-12.

Listing 4-12. Chaining Functions Calls in the example.js File in the src Folder

function myFunc(nameFunction) {
return ("Hello " + nameFunction() + ".");
}

function printName(nameFunction, printFunction) {
printFunction(myFunc(nameFunction));

}

printName(function () { return "Adam" }, console.log);
This example produces the following output:

Hello Adam.

Using Arrow Functions

Arrow functions—also known as fat arrow functions or lambda expressions—are an alternative way of
defining functions and are often used to define functions that are used only as arguments to other functions.
Listing 4-13 replaces the functions from the previous example with arrow functions.

68

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

Listing 4-13. Using Arrow Functions in the example.js File in the src Folder

const myFunc = (nameFunction) =» ("Hello " + nameFunction() + ".");
const printName = (nameFunction, printFunction) =>
printFunction(myFunc(nameFunction));

printName(function () { return "Adam" }, console.log);

These functions perform the same work as the ones in Listing 4-12. There are three parts to an arrow
function: the input parameters, then an equal sign and a greater-than sign (the “arrow”), and finally the
function result. The return keyword and curly braces are required only if the arrow function needs to
execute more than one statement. There are more examples of arrow functions later in this chapter, and you
will see them used throughout the book.

Note In React development, you can decide which style of function you prefer to use, and you will see that
| use both in the examples in this book. Care must be taken when defining functions that respond to events,
however, as explained in Chapter 12.

Using Variables and Types

The let keyword is used to declare variables and, optionally, assign a value to the variable in a single
statement—as opposed to the const keyword I used in earlier examples, which creates a constant value that
cannot be modified.

When you use let or const, the variable or constant that you create can be accessed only in the
region of code in which they are defined, which is known as the variable or constant’s scope and which is
demonstrated in Listing 4-14.

Listing 4-14. Using let to Declare Variables in the example.js File in the src Folder

function messageFunction(name, weather) {

let message = "Hello, Adam";

if (weather === "sunny") {
let message = "It is a nice day";
console.log(message);

} else {
let message = "It is " + weather + " today";
console.log(message);

}

console.log(message);

}

messageFunction("Adam", "raining");

69

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

In this example, there are three statements that use the let keyword to define a variable called message.
The scope of each variable is limited to the region of code that it is defined in, producing the following
results:

It is raining today
Hello, Adam

This may seem like an odd example, but there is another keyword that can be used to declare variables:
var. The let and const keywords are relatively new additions to the JavaScript specification that is intended
to address some oddities in the way var behaves. Listing 4-15 takes the example from Listing 4-14 and
replaces let with var.

USING LET AND CONST

It is good practice to use the const keyword for any value that you don’t expect to change so that you
receive an error if any modifications are attempted. This is a practice that | rarely follow, however—in
part because | am still struggling to adapt to not using the var keyword and in part because | write
code in a range of languages and there are some features that | avoid because they trip me up when |
switch from one to another. If you are new to JavaScript, then | recommend trying to use const and let
correctly and avoiding following my poor behavior.

Listing 4-15. Using var to Declare Variables in the example.js File in the src Folder

function messageFunction(name, weather) {
var message = "Hello, Adam";
if (weather === "sunny") {
var message = "It is a nice day";
console.log(message);
} else {
var message = "It is
console.log(message);

+ weather + " today";

console.log(message);

}

messageFunction("Adam", "raining");
When you save the changes in the listing, you will see the following results:

It is raining today
It is raining today

Some browsers will show repeated statements as a single line with a number next to them indicating
how many times that output has occurred. This means you may see one statement with the number 2 next to
it, indicating that it occurred twice.

The problem is that the var keyword creates variables whose scope is the containing function, which
means that all the references to message are referring to the same variable. This can cause unexpected
results for even experienced JavaScript developers and is the reason that the more conventional let keyword

70

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

was introduced. The React development tools include warnings for common problems, which is why you
will also see the following messages in the JavaScript console:

Line 4: 'message' is already defined no-redeclare
Line 7: 'message' is already defined no-redeclare

These messages can be cryptic until you get used to them, and the easiest way to learn more about them
is to consult the documentation for the ESLint package, which applies a set of rules to JavaScript code and is
used by the React development tools to create the warnings. The name of the rule is included in the warning,
and the name of the rule that produced the warnings for Listing 4-15 is no-redeclare, which is described at
https://eslint.org/docs/rules/no-redeclare.

USING VARIABLE CLOSURE

If you define a function inside another function—creating inner and outer functions—then the inner
function is able to access the outer function’s variables, using a feature called closure, like this:

function myFunc(name) {
let myLocalVar = "sunny";
let innerFunction = function () {
return ("Hello " + name + ". Today is
}

return innerFunction();

+ mylLocalVar + ".");

}

console.log(myFunc("Adam"));

The inner function in this example is able to access the local variables of the outer function, including its
parameter. This is a powerful feature that means you don’t have to define parameters on inner functions
1o pass around data values, but caution is required because it is easy to get unexpected results when
using common variable names like counter or index, where you may not realize that you are reusing a
variable name from the outer function.

Using the Primitive Types

JavaScript defines a basic set of primitive types: string, number, boolean. This may seem like a short list, but
JavaScript manages to fit a lot of flexibility into these types.

Tip | am simplifying here. There are three other primitives that you may encounter. Variables that have been
declared but not assigned a value are undefined, while the null value is used to indicate that a variable has no
value, just as in other languages. The final primitive type is Symbol, which is an immutable value that represents
a unique ID but which is not widely used at the time of writing.

71

www.EBookswWorld.ir

https://eslint.org/docs/rules/no-redeclare

CHAPTER 4 © JAVASCRIPT PRIMER

Working with Booleans

The boolean type has two values: true and false. Listing 4-16 shows both values being used, but this type is
most useful when used in conditional statements, such as an if statement. There is no console output from
this listing, although you will see warnings because the variables have been defined and not used.

Listing 4-16. Defining boolean Values in the example.js File in the src Folder

let firstBool = true;
let secondBool = false;

Working with Strings

You define string values using either the double quote or single quote characters, as shown in Listing 4-17.

Listing 4-17. Defining string Variables in the example.js File in the src Folder

let firstString = "This is a string";
let secondString = 'And so is this';

The quote characters you use must match. You can’t start a string with a single quote and finish with
a double quote, for example. There is no console output for this listing. JavaScript provides string objects
with a basic set of properties and methods, the most useful of which are described in Table 4-2.

Table 4-2. Useful string Properties and Methods

Name Description

length This property returns the number of characters in the string.

charAt(index) This method returns a string containing the character at the specified index.
concat(string) This method returns a new string that concatenates the string on which the

method is called and the string provided as an argument.

indexOf(term, start) This method returns the first index at which term appears in the string or -1 if
there is no match. The optional start argument specifies the start index for the
search.

replace(term, newTerm) This method returns a new string in which all instances of term are replaced
with newTerm.

slice(start, end) This method returns a substring containing the characters between the start
and end indices.

split(term) This method splits up a string into an array of values that were separated by term.

toUpperCase() These methods return new strings in which all the characters are uppercase or

toLowerCase() lowercase.

trim() This method returns a new string from which all the leading and trailing

whitespace characters have been removed.

72

www.EBooksWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

Using Template Strings

A common programming task is to combine static content with data values to produce a string that can be
presented to the user. The traditional way to do this is through string concatenation, which is the approach I
have been using in the examples so far in this chapter, as follows:

let message = "It is " + weather + " today";

JavaScript also supports template strings, which allow data values to be specified inline, which can
help reduce errors and result in a more natural development experience. Listing 4-18 shows the use of a
template string.

Listing 4-18. Using a Template String in the example.js File in the src Folder

function messageFunction(weather) {
let message = "It is ${weather} today’;
console.log(message);

}

messageFunction("raining");
Template strings begin and end with backticks (the ~ character), and data values are denoted by curly

braces preceded by a dollar sign. This string, for example, incorporates the value of the weather variable into
the template string:

let message = "It is ${weather} today;

This example produces the following output:

It is raining today

Working with Numbers

The number type is used to represent both integer and floating-point numbers (also known as real numbers).
Listing 4-19 provides a demonstration.

Listing 4-19. Defining number Values in the example.js File in the src Folder

let daysInWeek = 7;
let pi = 3.14;
let hexValue = OXFFFF;

You don’t have to specify which kind of number you are using. You just express the value you require,
and JavaScript will act accordingly. In the listing, I have defined an integer value, defined a floating-point
value, and prefixed a value with Ox to denote a hexadecimal value.

73

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

Using JavaScript Operators

JavaScript defines a largely standard set of operators. I've summarized the most useful in Table 4-3.

Table 4-3. Useful JavaScript Operators

Operator Description

++, -- Pre- or post-increment and decrement

+, -, X, /0% Addition, subtraction, multiplication, division, remainder

<, <=, >, >= Less than, less than or equal to, more than, more than or equal to
==, l= Equality and inequality tests

===, l== Identity and nonidentity tests

8&, || Logical AND and OR (|| is used to coalesce null values)

= Assignment

+ String concatenation

?: Three-operand conditional statement

Using Conditional Statements

Many of the JavaScript operators are used in conjunction with conditional statements. In this book, I tend
to use the if/else and switch statements. Listing 4-20 shows the use of both, which will be familiar to most
developers.

Listing 4-20. Using Conditional Statements in the example.js File in the src Folder

let name = "Adam";

if (name === "Adam") {
console.log("Name is Adam");
} else if (name === "Jacqui") {
console.log("Name is Jacqui");
} else {
console.log("Name is neither Adam or Jacqui");
}
switch (name) {
case "Adam":
console.log("Name is Adam");
break;

case "Jacqui":
console.log("Name is Jacqui");

break;
default:
console.log("Name is neither Adam or Jacqui");
break;
}
74

www.EBooksWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

This example produces the following results:

Name is Adam
Name is Adam

The Equality Operator vs. the Identity Operator

The equality and identity operators are of particular note. The equality operator will attempt to coerce
(convert) operands to the same type to assess equality. This is a handy feature, as long as you are aware it is
happening. Listing 4-21 shows the equality operator in action.

Listing 4-21. Using the Equality Operator in the example.js File in the src Folder
let firstval = 5;
let secondval = "5";

if (firstval == secondval) {
console.log("They are the same");
} else {
console.log("They are NOT the same");
}

The output from this example is as follows:

They are the same

JavaScript is converting the two operands into the same type and comparing them. In essence, the
equality operator tests that values are the same irrespective of their type. This causes sufficient confusion
that you will also see a warning in the JavaScript console:

Line 4: Expected '===' and instead saw '==' eqgeqeq

A more predictable way of making comparisons is to use the identity operator (===, three equal signs,
rather than the two of the equality operator), as shown in Listing 4-22.
Listing 4-22. Using the Identity Operator in the example.js File in the src Folder
let firstval = 5;
let secondval = "5";

if (firstVal === secondVal) {
console.log("They are the same");
} else {
console.log("They are NOT the same");
}

75

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

In this example, the identity operator will consider the two variables to be different. This operator
doesn’t coerce types. The result is as follows:

They are NOT the same

Explicitly Converting Types

The string concatenation operator (+) has precedence over the addition operator (also +), which means that
JavaScript will concatenate variables in preference to adding. This can cause confusion because JavaScript
will also convert types freely to produce a result—and not always the result that is expected, as shown in
Listing 4-23.

Listing 4-23. String Concatenation Operator Precedence in the example.js File in the src Folder

let myData1

5+ 5;
let myData2 = 5 + "5"

.
’

console.log("Result 1:
console.log("Result 2:

+ myData1);
+ myData2);

These statements produce the following result:

Result 1: 10
Result 2: 55

The second result is the kind that causes confusion. What might be intended to be an addition
operation is interpreted as string concatenation through a combination of operator precedence and over-
eager type conversion. To avoid this, you can explicitly convert the types of values to ensure you perform the
right kind of operation, as described in the following sections.

Converting Numbers to Strings

If you are working with multiple number variables and want to concatenate them as strings, then you can
convert the numbers to strings with the toString method, as shown in Listing 4-24.

Listing 4-24. Using the number.toString Method in the example.js File in the src Folder
let myData1 = (5).toString() + String(5);

console.log("Result: " + myDatal);

Notice that I placed the numeric value in parentheses, and then I called the toString method. This
is because you have to allow JavaScript to convert the literal value into a number before you can call the
methods that the number type defines. I have also shown an alternative approach to achieve the same effect,
which is to call the String function and pass in the numeric value as an argument. Both of these techniques
have the same effect, which is to convert a number to a string, meaning that the + operator is used for string
concatenation and not addition. The output from this script is as follows:

Result: 55

76

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

There are some other methods that allow you to exert more control over how a number is represented
as a string. I briefly describe these methods in Table 4-4. All of the methods shown in the table are defined by
the number type.

Table 4-4. Useful Number-to-String Methods

Method Description

toString() This method returns a string that represents a number in base 10.

toString(2) This method returns a string that represents a number in binary, octal, or

toString(8) hexadecimal notation.

toString(16)

toFixed(n) This method returns a string representing a real number with n digits after the
decimal point.

toExponential(n) This method returns a string that represents a number using exponential notation
with one digit before the decimal point and n digits after.

toPrecision(n) This method returns a string that represents a number with n significant digits,
using exponential notation if required.

Converting Strings to Numbers

The complementary technique is to convert strings to numbers so that you can perform addition rather
than concatenation. You can do this with the Number function, as shown in Listing 4-25.

Listing 4-25. Converting Strings to Numbers in the example.js File in the src Folder

let firstval = "5";
let secondval = "5";

let result = Number(firstVal) + Number(secondVal);
console.log("Result: " + result);

The output from this script is as follows:

Result: 10

The Number function is strict in the way that is parses string values, but there are two other functions you
can use that are more flexible and will ignore trailing non-number characters. These functions are parseInt
and parseFloat. I have described all three methods in Table 4-5.

Table 4-5. Useful String to Number Methods

Method Description

Number (str) This method parses the specified string to create an integer or real value.
parselnt(str) This method parses the specified string to create an integer value.
parseFloat(str) This method parses the specified string to create an integer or real value.

7

www.EBooksWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

Working with Arrays

JavaScript arrays work like arrays in most other programming languages. Listing 4-26 shows how you can
create and populate an array.

Listing 4-26. Creating and Populating an Array in the example.js File in the src Folder

let myArray = new Array();

myArray[0] = 100;
myArray[1] = "Adam";
myArray[2] = true;

I have created a new array by calling new Array(). This creates an empty array, which I assign to the
variable myArray. In the subsequent statements, I assign values to various index positions in the array.
(There is no output from this listing.)

There are a couple of things to note in this example. First, I didn’t need to declare the number of items in
the array when I created it. JavaScript arrays will resize themselves to hold any number of items. The second
point is that I didn’t have to declare the data types that the array will hold. Any JavaScript array can hold any
mix of data types. In the example, I have assigned three items to the array: a number, a string, and a boolean.

Using an Array Literal

The example in Listing 4-26 produces a warning because using new Array() isn’t the standard way to create
an array. Instead, the array literal style lets you create and populate an array in a single statement, as shown
in Listing 4-27.

Listing 4-27. Using the Array Literal Style in the example.js File in the src Folder
let myArray = [100, "Adam", true];
In this example, I specified that the myArray variable should be assigned a new array by specifying the

items [wanted in the array between square brackets ([and]). (There is no console output from this listing,
although there will be a warning because the array is defined but not used.)

Reading and Modifying the Contents of an Array

You read the value at a given index using square braces ([and]), placing the index you require between the
braces, as shown in Listing 4-28.

Listing 4-28. Reading the Data from an Array Index in the example.js File in the src Folder
let myArray = [100, "Adam", true];
console.log(Index 0: ${myArray[o0]}");
You can modify the data held in any position in a JavaScript array simply by assigning a new value to
the index. Just as with regular variables, you can switch the data type at an index without any problems. The

output from the listing is as follows:

Index 0: 100

78

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

Listing 4-29 demonstrates how to modify the contents of an array.

Listing 4-29. Modifying the Contents of an Array in the example.js File in the src Folder

let myArray = [100, "Adam", true];
myArray[0] = "Tuesday";

console.log("Index 0: ${myArray[0]});

In this example, I have assigned a string to position 0 in the array, a position that was previously held
by a number and produces this output:

Index 0: Tuesday

Enumerating the Contents of an Array

You enumerate the content of an array using a for loop or using the forEach method, which receives a
function that is called to process each element in the array. Both approaches are shown in Listing 4-30.

Listing 4-30. Enumerating the Contents of an Array in the example.js File in the src Folder

let myArray = [100, "Adam", true];

for (let i = 0; i < myArray.length; i++) {
console.log(Index ${i}: ${myArray[i]}");
}

console.log("---");
myArray.forEach((value, index) => console.log(Index ${index}: ${value}));

The JavaScript for loop works just the same way as loops in many other languages. You determine how
many elements there are in the array by using the length property.

The function passed to the forEach method is given two arguments: the value of the current item
to be processed and the position of that item in the array. In this listing, I have used an arrow function as
the argument to the forEach method, which is the kind of use for which they excel (and you will see used
throughout this book). The output from the listing is as follows:

Index 0: 100
Index 1: Adam
Index 2: true
Index 0: 100
Index 1: Adam
Index 2: true

[y

79

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

Using the Spread Operator

The spread operator is used to expand an array so that its contents can be used as function arguments.
Listing 4-31 defines a function that accepts multiple arguments and invokes it using the values in an array
with and without the spread operator.

Listing 4-31. Using the Spread Operator in the example.js File in the src Folder

function printItems(numValue, stringValue, boolValue) {
console.log(Number: ${numValue}");
console.log("String: ${stringValue});
console.log(Boolean: ${boolValue}");

}
let myArray = [100, "Adam", true];
printItems(myArray[0], myArray[1], myArray[2]);
printItems(...myArray);
The spread operator is an ellipsis (a sequence of three periods), and it causes the array to be unpacked
and passed to the printItems function as individual arguments.

printItems(...myArray);

The spread operator also makes it easy to concatenate arrays, as shown in Listing 4-32.

Listing 4-32. Concatenating Arrays in the example.js File in the src Folder

let myArray = [100, "Adam", true];

let myOtherArray = [200, "Bob", false, ...myArray];

myOtherArray.forEach((value, index) => console.log(Index ${index}: ${value}));

Using the spread operator, I am able to specify myArray as an item when I define myOtherArray, with
the result that the contents of the first array will be unpacked and added as items to the second array. This
example produces the following results:

Index 0: 200
Index 1: Bob
Index 2: false
Index 3: 100
Index 4: Adam
Index 5: true

Note Arrays can also be de-structured, whereby the individual elements of an array are assigned to
different variables, so that [var1, var2] = [3, 4] assigns a value of 3 to vari1 and 4 to var2. Array de-
structuring is used by the hooks feature, which is described in Chapter 11.

80

www.EBooksWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

Using the Built-in Array Methods

The JavaScript Array object defines a number of methods that you can use to work with arrays, the most
useful of which are described in Table 4-6.

Table 4-6. Useful Array Methods

Method Description

concat(otherArray) This method returns a new array that concatenates the array on which it has
been called with the array specified as the argument. Multiple arrays can be
specified.

join(separator) This method joins all the elements in the array to form a string. The argument
specifies the character used to delimit the items.

pop() This method removes and returns the last item in the array.

shift() This method removes and returns the first element in the array.

push(item) This method appends the specified item to the end of the array.

unshift(item) This method inserts a new item at the start of the array.

reverse() This method returns a new array that contains the items in reverse order.

slice(start,end) This method returns a section of the array.

sort() This method sorts the array. An optional comparison function can be used to

splice(index, count)

unshift(item)
every(test)

some(test)
filter(test)
find(test)
findIndex(test)
forEach(callback)

includes(value)
map (callback)

reduce(callback)

perform custom comparisons.

This method removes count items from the array, starting at the specified index.
The removed items are returned as the result of the method.

This method inserts a new item at the start of the array.

This method calls the test function for each item in the array and returns true
if the function returns true for all of them and false otherwise.

This method returns true if calling the test function for each item in the array
returns true atleast once.

This method returns a new array containing the items for which the test
function returns true.

This method returns the first item in the array for which the test function
returns true.

This method returns the index of the first item in the array for which the test
function returns true.

This method invokes the callback function for each item in the array, as
described in the previous section.

This method returns true if the array contains the specified value.

This method returns a new array containing the result of invoking the callback
function for every item in the array.

This method returns the accumulated value produced by invoking the callback
function for every item in the array.

81

www.EBooksWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

Since many of the methods in Table 4-6 return a new array, these methods can be chained together to
process data, as shown in Listing 4-33.
Listing 4-33. Processing an Array in the example.js File in the src Folder

let products = [
{ name: "Hat", price: 24.5, stock: 10 },
{ name: "Kayak", price: 289.99, stock: 1 },
{ name: "Soccer Ball", price: 10, stock: 0 },
{ name: "Running Shoes", price: 116.50, stock: 20 }

1;
let totalValue = products
filter(item => item.stock > 0)
.reduce((prev, item) => prev + (item.price * item.stock), 0);

console.log(Total value: $${totalvalue.toFixed(2)}");

Tuse the filter method to select the items in the array whose stock value is greater than zero and use
the reduce method to determine the total value of those items, producing the following output:

Total value: $2864.99

Working with Objects

There are several ways to create objects in JavaScript. Listing 4-34 gives a simple example to get started.

Listing 4-34. Creating an Object in the example.js File in the src Folder

let myData = new Object();
myData.name = "Adam";
myData.weather = "sunny";

console.log(Hello ${myData.name}.”);
console.log("Today is ${myData.weather}.);

I create an object by calling new Object(), and I assign the result (the newly created object) to a variable
called myData. Once the object is created, I can define properties on the object just by assigning values, like this:

myData.name = "Adam";

Prior to this statement, my object doesn’t have a property called name. When the statement has
executed, the property does exist, and it has been assigned the value Adam. You can read the value of a
property by combining the variable name and the property name with a period, like this:

console.log(Hello ${myData.name}.");

82

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

The result from the listing is as follows:

Hello Adam.
Today is sunny.

Using Object Literals

The previous example produces a warning because the standard way to define objects is to do so using the
object literal format, which also allows properties to be defined in a single step, as shown in Listing 4-35.

Listing 4-35. Using the Object Literal Format in the example.js File in the src Folder

let myData = {
name: "Adam",
weather: "sunny"

)

console.log(Hello ${myData.name}.”);
console.log("Today is ${myData.weather}.);

Each property that you want to define is separated from its value using a colon (:), and properties are
separated using a comma (,). The effect is the same as in the previous example, and the result from the
listing is as follows:

Hello Adam.
Today is sunny.

Using Variables as Object Properties

If you use a variable as an object property, JavaScript will use the variable name as the property name and
the variable value as the property value, as shown in Listing 4-36.

Listing 4-36. Using a Variable in an Object Literal in the example.js File in the src Folder

let name = "Adam"

let myData = {
name,
weather: "sunny'

};

console.log("Hello ${myData.name}.”);
console.log("Today is ${myData.weather}.);

83

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

The name variable is used to add a property to the myData object, such that the property is taken from
the variable, name in this case, as its value, Adam. This is a useful technique when you want to combine a set
of data values into an object, and you will see it used in examples in later chapters. The code in Listing 4-37
produces the following output:

Hello Adam.
Today is sunny.

Using Functions as Methods

One of the features that I like most about JavaScript is the way you can add functions to objects. A function
defined on an object is called a method. Listing 4-37 shows how you can add methods in this manner.

Listing 4-37. Adding Methods to an Object in the example.js File in the src Folder

let myData = {
name: "Adam",
weather: "sunny",
printMessages: function () {
console.log(Hello ${myData.name}.”);
console.log(Today is ${myData.weather}.”);

};
myData.printMessages();

In this example, I have used a function to create a method called printMessages. Notice that to refer to
the properties defined by the object, I have to use the this keyword. When a function is used as a method,
the function is implicitly passed the object on which the method has been called as an argument through the
special variable this. The output from the listing is as follows:

Hello Adam.
Today is sunny.

You can also define methods without using the function keyword, as shown in Listing 4-38.

Listing 4-38. Defining a Method in the example.js File in the src Folder

let myData = {
name: "Adam",
weather: "sunny",
printMessages() {
console.log(Hello ${myData.name}.”);
console.log(Today is ${myData.weather}.”);

};
myData.printMessages();

84

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

The output from this listing is as follows:

Hello Adam.
Today is sunny.

The fat arrow syntax can also be used to define methods, as shown in Listing 4-39.

Listing 4-39. Defining a Fat Arrow Method in the example.js File in the src Folder

let myData = {
name: "Adam",
weather: "sunny",
printMessages: () => {
console.log(Hello ${myData.name}.”);
console.log(Today is ${myData.weather}.”);
}
};

myData.printMessages();

Tip If you are returning an object literal as the result from a fat arrow function, then you must enclose the
object in parentheses, €.g., myFunc = () => ({ data: "hello"}).You will receive an error if you omit the
parentheses because the build tools will assume that the curly braces of the object literal are the start and end
of a function body.

Using Classes

Classes are templates for objects, defining the properties and methods that new instances will possess. Classes
are a recent addition to the JavaScript language, and they are used in React development to define components
that have state data, as explained in Chapter 11. In Listing 4-40, I have replaced the object literal with a class.
Listing 4-40. Using a Class in the example.js File in the src Folder
class MyData {
constructor() {
this.name = "Adam";

this.weather = "sunny";

}

printMessages = () => {
console.log(Hello ${this.name}.");
console.log(Today is ${this.weather}.");

}

let myData = new MyData();
myData.printMessages();

85

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

Classes are defined using the class keyword. The constructor is a special method that is automatically
invoked when an object is created from the class, which is known as instantiating the class. An object created
from a class is said to be an instance of that class.

In JavaScript, the constructor is used to define the properties that instances will have, and the current
object is referred to using the this keyword. The constructor in Listing 4-40 defines name and weather
properties by assigning values to this.name and this.weather. Classes define methods by assigning
functions to names, and in Listing 4-40, the class defines a printMessages method that is defined using the
fat arrow syntax and that prints out messages to the console. Notice that the this keyword is required to
access the values of the name and weather variables.

Tip There are other ways to use JavaScript classes, but | have focused on the way they are used in React
development and in the examples throughout this book. See https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Classes for full details.

A new instance of the class is created using the new keyword, and a class can be used to create multiple
objects, each of which has its own data values that are separate from the other instances. In the listing, the
new keyword is used to create an object from the MyData class, which is then assigned to a variable named
myData. The object’s printMessages method is invoked, producing the following output:

Hello Adam.
Today is sunny.

In other languages and frameworks, classes are used for inheritance, where one class builds on the
methods and properties defined by another. React development does not use class inheritance directly and
uses an alternative approach, known as composition, to create complex features, as described in Chapter 14.
The exception is when a React component is defined using a class, where the extends keyword must be used
to ensure that the class inherits the core features required for a component. If you examine the contents of
the App. js file, you will see that the component is defined using the class and extends keywords, like this:

import React, { Component } from "react";
export default class App extends Component {

render = () =>
<div className="m-2">
<div className="form-group">
<label>Name:</label>
<input className="form-control" />
</div>
<div className="form-group">
<label>City:</label>
<input className="form-control" />
</div>
</div>

86

www.EBookswWorld.ir

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

CHAPTER 4 * JAVASCRIPT PRIMER

Copying Properties from One Object to Another

Some important features provided by React and the packages I describe in Part 3 rely on copying the
properties from one object to another. JavaScript provides the Object.assign method for this purpose, as
demonstrated in Listing 4-41.

Listing 4-41. Copying Object Properties in the example.js File in the src Folder
class MyData {

constructor() {
this.name = "Adam";
this.weather = "sunny";

}

printMessages = () => {
console.log("Hello ${this.name}.”);
console.log("Today is ${this.weather}.");

}
let myData = new MyData();
let secondObject = {};
Object.assign(secondObject, myData);
secondObject.printMessages();
This example uses the literal form to create a new object that has no properties and uses the
Object.assign method to copy the properties—and their values—from the myData object. This example

produces the following output:

Hello Adam.
Today is sunny.

The destructuring operator—which is the same as the spread operator—can be used to copy properties
from one object to another, and a technique I use in later chapters is to copy all of the existing properties
using the destructuring operator and then define a new value for some of them, as shown in Listing 4-42.
Listing 4-42. Copying Using a Spread in the example.js File in the src Folder
class MyData {

constructor() {

this.name = "Adam";
this.weather = "sunny";

}
printMessages = () => {

console.log(Hello ${this.name}.");

87

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

console.log(Today is ${this.weather}.");

}

let myData = new MyData();
let secondObject = { ...myData, weather: "cloudy"};
console.log(myData: ${ myData.weather}, secondObject: ${secondObject.weather});

This example copies the properties from the myData object and provides a new value for the weather
property, producing the following output:

myData: sunny, secondObject: cloudy

Capturing Parameter Names from Objects

When an object is received as a function or method parameter, it can be awkward to navigate through the
properties to get the data required. As a simple example, Listing 4-43 defines a structure of objects that are
navigated to get data values.

Listing 4-43. Navigating Object Properties in the example.js File in the src Folder

const myData = {
name: "Bob",
location: {
city: "Paris",
country: "France"
b
employment: {
title: "Manager”,
dept: "Sales"

}

function printDetails(data) {
console.log(Name: ${data.name}, City: ${data.location.city},
Role: ${data.employment.title}");

}
printDetails(myData);
The printDetails function has to navigate through the object to get the name, city, and title

properties it requires. The same outcome can be achieved more elegantly by capturing specific properties as
named parameters, as shown in Listing 4-44.

88

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

Listing 4-44. Capturing Named Parameters in the example.js File in the src Folder

const myData = {
name: "Bob",
location: {
city: "Paris",
country: "France"
b
employment: {
title: "Manager",
dept: "Sales"

}

function printDetails({ name, location: { city }, employment: { title }}) {
console.log(Name: ${name}, City: ${city}, Role: ${title});
}

printDetails(myData);

This example applies the technique described in Listing 4-36 to select specific properties from the
object. This listing and Listing 4-43 produce the same output.

Name: Bob, City: Paris, Role: Manager

Understanding JavaScript Modules

React applications are too complex to define in a single JavaScript file. To break up an application into more
manageable chunks, JavaScript supports modules, which contain JavaScript code that other parts of the
application depend on. In the sections that follow, I explain the different ways that modules can be defined
and used.

Creating and Using a JavaScript Module

There are already JavaScript modules in the example project, but the best way to understand how they work
is to create and use a new module. I added a file called sum. js in the src folder and added the code shown in
Listing 4-45.

Listing 4-45. The Contents of the sum.js File in the src Folder

export default function(values) {
return values.reduce((total, val) => total + val, 0);
}

The sum. js file contains a function that accepts an array of values and uses the JavaScript array reduce
method to sum them and return the result. What'’s important about this example is not what it does but the
fact that the function is defined in its own file, which is the basic building block for a module.

There are two keywords used in Listing 4-45 that you will often encounter when defining modules:
export and default. The export keyword is used to denote the features that will be available outside the

89

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

module. By default, the contents of the JavaScript file are private and must be explicitly shared using the
export keyword before they can be used in the rest of the application. The default keyword is used when
the module contains a single feature, such as the function defined in Listing 4-45. Together, the export and
default keywords are used to specify that the only function in the sum. js file is available for use in the rest of
the application.

Using the JavaScript Module

Another keyword is required to use a module: the import keyword. In Listing 4-46, I used the import
keyword to access the function defined in the previous section so that it can be used in the example. js file.

Listing 4-46. Using a JavaScript Module in the example.js File in the src Folder

import additionFunction from "./sum";
let values = [10, 20, 30, 40, 50];
let total = additionFunction(values);
console.log("Total: ${total}");
The import keyword is used to declare a dependency on the module. The import keyword can be used

in a number of different ways, but this is the format you will use most often when working with modules you
have created yourself, and the key parts are illustrated in Figure 4-3.

Keyword |dentifier Keyword Location

' ' v

import || additionFunction ||from | |"./sum";

Figure 4-3. Declaring a dependency on a module

The import keyword is followed by an identifier, which is the name by which the function will be known
when it is used, and the identifier in this example is additionFunction.

Tip Notice that it is the import statement in which the identifier is applied, which means that the code
that consumes the function from the module chooses the name by which it will be known and that multiple
import statements for the same module in different parts of the application can use different names to refer to
the same function. See the next section for details of how the module can specify the names of the features it
contains.

90

www.EBooksWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

The from keyword follows the identifier, which is then followed by the location of the module. It is
important to pay close attention to the location because different behaviors are created by different location
formats, as described in the sidebar.

During the build process, the React tools will detect the import statement and include the function
from the sum. js file in the JavaScript file that is sent to the browser so that it can execute the application. The
identifier used in the import statement can be used to access the function in the module, in just the same
way that locally defined functions are used.

let total = additionFunction(values);
If you examine the browser’s JavaScript console, you will see that the code in Listing 4-42 uses the

module’s function to produce the following result:

Total: 150

UNDERSTANDING MODULE LOCATIONS

The location of a module changes the way that the build tools will look for the module when creating
the JavaScript file that is sent to the browser. For modules you have defined yourself, the location is
specified as a relative path; it starts with one or two periods, which indicates that the path is relative to
the current file or to the current file’s parent directory. In Listing 4-46, the location starts with a period.

import additionFunction from "./sum";

This location tells the build tools that there is a dependency on the sum module, which can be found
in the same folder as the file that contains the import statement. Notice that the file extension is not
included in the location.

If you omit the initial period, then the import statement declares a dependency on a module in the
node_modules folder, which is where packages are installed during the project setup. This kind of
location is used to access features provided by third-party packages, including the React packages,
which is why you will see statements like this in React projects:

import React, { Component } from "react";

The location for this import statement doesn’t start with a period and will be interpreted as a
dependency on the react module in the project’s node_modules folder, which is the package that
provides the core React application features.

91

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

Exporting Named Features from a Module

A module can assign names to the features it exports, which is the approach I have taken for most of the
examples in this book. In Listing 4-47, I have given a name to the function that is exported by the sum
module.

Listing 4-47. Exporting a Named Feature in the sum.js File in the src Folder

export function sumValues (values) {
return values.reduce((total, val) => total + val, 0);
}

The function provides the same feature but is exported using the name sumValues and no longer uses
the default keyword. In Listing 4-48, I have imported the feature using its new name in the example. js file.

Listing 4-48. Importing a Named Feature in the example.js File in the src Folder

import { sumValues } from "./sum";
let values = [10, 20, 30, 40, 50];
let total = sumValues(values);
console.log("Total: ${total}");

The name of the feature to be imported is specified in curly braces (the { and } characters) and is used
by this name in the code. A module can export default and named features, as shown in Listing 4-49.

Listing 4-49. Exporting Named and Default Features in the sum.js File in the src Folder

export function sumValues (values) {
return values.reduce((total, val) => total + val, 0);

}
export default function sumOdd(values) {

return sumValues(values.filter((item, index) =» index % 2 === 0));
}

The new feature is exported using the default keyword. In Listing 4-50, I have imported the new feature
as the default export from the module.

Listing 4-50. Importing a Default Feature in the example.js File in the src Folder

import oddOnly, { sumValues } from "./sum";
let values = [10, 20, 30, 40, 50];

let total = sumValues(values);
let odds = oddOnly(values);

console.log(Total: ${total}, 0dd Total: ${odds}");

92

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

This is the pattern you will see at the start of the React components in the examples throughout this
book because the core React features required for JSX are the default export from the react module and the
Component class is a named feature:

import React, { Component } from "react";

The example in Listing 4-50 produces the following output:

Total: 150, Odd Total: 90

Defining Multiple Named Features in a Module

Modules can contain more than one named function or value, which is useful for grouping related
features. To demonstrate, I created a file called operations. js to the src folder and added the code shown
in Listing 4-51.

Listing 4-51. The Contents of the operations.js File in the src Folder

export function multiply(values) {
return values.reduce((total, val) => total * val, 1);
}

export function subtract(amount, values) {
return values.reduce((total, val) => total - val, amount);
}

export function divide(first, second) {
return first / second;
}

This module defines three functions to which the export keyword has been applied. Unlike the
previous example, the default keyword is not used, and each function has its own name. When importing
from a module that contains multiple features, the names of the required features are specified as a comma-
separated list between the braces, as shown in Listing 4-52.

Listing 4-52. Importing Named Features in the example.js File in the src Folder

import oddOnly, { sumValues } from
import { multiply, subtract } from

./sum";
"./operations";

let values = [10, 20, 30, 40, 50];

let total = sumValues(values);
let odds = oddOnly(values);

console.log("Total: ${total}, Odd Total: ${odds}");

console.log(Multiply: ${multiply(values)});
console.log(Subtract: ${subtract(1000, values)}");

93

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

The braces that follow the import keyword surround the list of functions that I want to use, which is the
multiply and subtract functions in this case, separated by commas. I only declare dependencies on the
functions that I require, and there is no dependency on the divide function, which is defined in the module
but not used. This example produces the following output:

Total: 150, Odd Total: 90
Multiply: 12000000
Subtract: 850

Changing Module Feature Names

When importing named features from modules, you may find that there are two modules that use the same
name or that the name used by the module doesn’t produce readable code when it is imported. You can
select a new name using the as keyword, as shown in Listing 4-53.

Listing 4-53. Assigning a Name to a Feature in the example.js File in the src Folder

import oddOnly, { sumValues } from "./sum";
import { multiply, subtract as deduct } from

./operations";
let values = [10, 20, 30, 40, 50];

let total = sumValues(values);
let odds = oddOnly(values);

console.log("Total: ${total}, Odd Total: ${odds}");
console.log("Multiply: ${multiply(values)}");
console.log(" Subtract: ${deduct(12000, values)});

Tused the as keyword to specify that the subtract function should be given the name deduct when
imported into the example. js file. This listing produces the same output as Listing 4-53.

Importing an Entire Module

Listing the names of all the functions in a module gets out of hand for complex modules. A more elegant
approach is to import all the features provided by a module and just use the features you require, as shown
in Listing 4-54.

Listing 4-54. Importing an Entire Module in the example.js File in the src Folder

import oddOnly, { sumValues } from "./sum";
import * as ops from "./operations";

let values = [10, 20, 30, 40, 50];

let total = sumValues(values);
let odds = oddOnly(values);

console.log("Total: ${total}, Odd Total: ${odds}");
console.log(Multiply: ${ops.multiply(values)});
console.log(" Subtract: ${ops.subtract(1000, values)});

94

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

An asterisk is used to import everything in a module, followed by the as keyword and an identifier
through which the module functions and values will be accessed. In this case, the identifier is ops, which
means that the multiply, subtract, and divide functions can be accessed as ops.multiply, ops.subtract,
and ops.divide. This listing produces the same output as Listing 4-53.

Understanding JavaScript Promises

A promise is a background activity that will be completed at some point in the future. The most common use
for promises in this book is requesting data using an HTTP request, which is performed asynchronously and
produces a result when a response is received from the web server.

Understanding the Asynchronous Operation Problem

The classic asynchronous operation for a web application is an HTTP request, which is typically used to get
the data and content that a user requires. I explain how to make HTTP requests in Part 3 of this book, but

I need something simpler for this chapter, so I added a file called async. js to the src folder with the code
shown in Listing 4-55.

Listing 4-55. The Contents of the async.js File in the src Folder

import { sumValues } from "./sum";

export function asyncAdd(values) {
setTimeout(() => {
let total = sumValues(values);
console.log(Async Total: ${total}");
return total;
}, 500);

The setTimeout function invokes a function asynchronously after a specified delay. In the listing, the
asyncAdd function receives a parameter that is passed to the sumValues function defined in the sun module
after a delay of 500 milliseconds, creating a background operation that doesn’t complete immediately for the
examples in this chapter and acting as a placeholder for more useful operations, such as making an HTTP
request. In Listing 4-56, I have updated the example. js file to use the asyncAdd function.

Listing 4-56. Performing Background Work in the example.js File in the src Folder

import { asyncAdd } from "./async";
let values = [10, 20, 30, 40, 50];
let total = asyncAdd(values);

console.log(Main Total: ${total});

95

www.EBookswWorld.ir

CHAPTER 4 © JAVASCRIPT PRIMER

The problem this example demonstrates is that the result from the asyncAdd function isn’t produced
until after the statements in the example. js file have been executed, which you can see in the output shown
in the browser’s JavaScript console:

Main Total: undefined
Async Total: 150

The browser executes the statements in the example. js file and invokes the asyncAdd function as
instructed. The browser moves on to the next statement in the example. js file, which writes a message to
the console using the result provided by asyncAdd—but this happens before the asynchronous task has been
completed, which is why the output is undefined. The asynchronous task subsequently completes, but it is
too late for the result to be used by the example. js file.

Using a JavaScript Promise

To solve the problem in the previous section, I need a mechanism that allows me to observe the
asynchronous task so that I can wait for it to complete and then write out the result. This is the role of the
JavaScript Promise, which I have applied to the asyncAdd function in Listing 4-57.

Listing 4-57. Using a Promise in the async.js File in the src Folder

import { sumValues } from "./sum";
export function asyncAdd(values) {
return new Promise(callback =»
setTimeout(() => {
let total = sumValues(values);
console.log(Async Total: ${total}");
callback(total);

}, 500));

It can be difficult to unpack the functions in this example. The new keyword is used to create a Promise,
which accepts the function that is to be observed. The observed function is provided with a callback that is
invoked when the asynchronous task has completed and that accepts the result of the task as an argument.
Invoking the callback function is known as resolving the promise.

The Promise object that has become the result of the asyncAdd function allows the asynchronous task to
be observed so that follow-up work can be performed when the task completes, as shown in Listing 4-58.

Listing 4-58. Observing a Promise in the example.js File in the src Folder

import { asyncAdd } from "./async";

let values = [10, 20, 30, 40, 50];

asyncAdd(values).then(total =» console.log(Main Total: ${total}));

96

www.EBookswWorld.ir

CHAPTER 4 * JAVASCRIPT PRIMER

The then method accepts a function that will be invoked when the callback is used. The result passed to
the callback is provided to the then function. In this case, that means the total isn’t written to the browser’s
JavaScript console until the asynchronous task has completed and produces the following output:

Async Total: 150
Main Total: 150

Simplifying the Asynchronous Code

JavaScript provides two keywords—async and await—that support asynchronous operations without having
to work directly with promises. In Listing 4-59, I have applied these keywords in the example. js file.

Caution It is important to understand that using async/await doesn’t change the way that an application
behaves. The operation is still performed asynchronously, and the result will not be available until the operation
completes. These keywords are just a convenience to simplify working with asynchronous code so that you
don’t have to use the then method.

Listing 4-59. Using async and await in the example.js File in the src Folder

import { asyncAdd } from "./async";

let values = [10, 20, 30, 40, 50];

async function doTask() {
let total = await asyncAdd(values);
console.log(Main Total: ${total}");

}
doTask();

These keywords can be applied only to functions, which is why I added the doTask function in this
listing. The async keyword tells JavaScript that this function relies on functionality that requires a promise.
The await keyword is used when calling a function that returns a Promise and has the effect of assigning the
result provided to the Promise object’s callback and then executing the statements that follow, producing the
following result:

Async Total: 150
Main Total: 150

Summary

In this chapter, I provided a brief primer on JavaScript, focusing on the core functionality that will get you
started for React development. In the next chapter, I start the process of building a more complex and
realistic project, called SportsStore.

97

www.EBookswWorld.ir

CHAPTER 5

SportsStore: A Real Application W,

In Chapter 2, I built a quick and simple React application. Small and focused examples allow me to
demonstrate specific features, but they can lack context. To help overcome this problem, I am going to create
a simple but realistic e-commerce application.

My application, called SportsStore, will follow the classic approach taken by online stores everywhere. I
will create an online product catalog that customers can browse by category and page, a shopping cart where
users can add and remove products, and a checkout where customers can enter their details and place
their orders. I will also create an administration area that includes create, read, update, and delete (CRUD)
facilities for managing products and orders—and I will protect it so that only logged-in administrators can
make changes. Finally, I show you how to prepare a React application for deployment.

My goal in this chapter and those that follow is to give you a sense of what real React development is
like by creating as realistic an example as possible. I want to focus on React and the related packages that are
used in most projects, of course, and so I have simplified the integration with external systems, such as the
database, and omitted others entirely, such as payment processing.

The SportsStore example is one that I use in all of my books, not least because it demonstrates the ways
in which different frameworks, languages, and development styles can be used to achieve the same result.
You don’t need to have read any of my other books to follow this chapter, but you will find the contrasts
interesting if you already own my Pro ASP.NET Core MVC 2 or Pro Angular 6 book, for example.

The React features that I use in the SportsStore application are covered in-depth in later chapters.
Rather than duplicate everything here, I tell you just enough to make sense of the example application and
refer you to other chapters for in-depth information. You can either read the SportsStore chapters from end
to end to get a sense of how React works or jump to and from the detail chapters to get into the depth.

Either way, don’t expect to understand everything right away—React applications have a lot of moving
parts and depend on a lot of packages, and the SportsStore application is intended to show you how they fit
together without diving too deeply into the details that the rest of the book describes.

Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

© Adam Freeman 2019 99
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_5

www.EBookswWorld.ir

https://github.com/Apress/pro-react-16

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

Preparing the Project

To create the project, open a new command prompt, navigate to a convenient location, and run the
command shown in Listing 5-1.

Listing 5-1. Creating the SportsStore Project
npx create-react-app sportsstore

The create-react-app tool will create a new React project named sportsstore with the packages,
configuration files, and placeholder content required to start development. The project setup process may
take some time to complete because there is a large number of NPM packages to download and install.

Note When you create a new project, you may see warnings about security vulnerabilities. React
development relies on a large number of packages, each of which has its own dependencies, and security
issues will inevitably be discovered. For the examples in this book, it is important to use the package versions
specified to ensure you get the expected results. For your own projects, you should review the warnings and
update to versions that resolve the problems.

Installing Additional NPM Packages

Additional packages are required for the SportsStore project, in addition to the core React libraries and
development tools installed by the create-react-app package. Run the commands shown in Listing 5-2 to
navigate to the sportsstore folder and add the packages. (The npm install command can be used to add
multiple packages in one go, but the result is a long command where it is easy to omit a package. To avoid
errors, I add packages individually throughout this book.)

Note It is important to use the version numbers shown in the listing. You may see warnings about unmet
peer dependencies as you add the packages, but these can be ignored.

Listing 5-2. Installing Additional Packages

cd sportsstore

npm install bootstrap@4.1.2

npm install @fortawesome/fontawesome-free@5.6.1
npm install redux@4.0.1

npm install react-redux@®6.0.0

npm install react-router-dom@4.3.1

npm install axios@0.18.0

npm install graphql@14.0.2

npm install apollo-boost@0.1.22

npm install react-apollo@2.3.2

100

www.EBooksWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

Don’t be put off by the number of additional packages that are required. React focuses on a core set
of the features that are required by web applications and relies on supporting packages to create complete
applications. To provide some context, the packages added in Listing 5-2 are described in Table 5-1, and I
cover them in depth in Part 3 of this book.

Table 5-1. The Packages Required for the SportsStore Project

Name Description
bootstrap This package provides the CSS styles that I used to present HTML content
throughout the book.

fontawesome-free This package provides icons that can be included in HTML content. I have used the
free package, but there is a more comprehensive paid-for option available, too.

redux This package provides a data store, which simplifies the process of coordinating the
different parts of the application. See Chapter 19 for details.

react-redux This package integrates a Redux data store into a React application, as described in
Chapters 19 and 20.

react-router-dom This package provides URL routing, which allows the content presented to the user to
be selected based on the browser’s current URL, as described in Chapters 21 and 22.

axios This package is used to make HTTP requests and will be used to access RESTful and
GraphQL services, as described in Chapters 23-25.

graphql This package contains the reference implementation of the GraphQL specification.

apollo-boost This package contains a client used to consume a GraphQL service, as described in
Chapter 25.

react-apollo This package is used to integrate the GraphQL client into a React application, as
described in Chapter 25.

Further packages are required to create the back-end services that the SportsStore application will
consume. Using the command prompt, run the commands shown in Listing 5-3 in the sportsstore
folder. These packages are installed using the --save-dev argument, which indicates they are used during
development and will not be part of the SportsStore application when it is deployed.

Listing 5-3. Adding Further Packages

npm install --save-dev json-server@0.14.2

npm install --save-dev jsonwebtoken@8.1.1

npm install --save-dev express@4.16.4

npm install --save-dev express-graphql@o.7.1

npm install --save-dev cors@2.8.5

npm install --save-dev faker@4.1.0

npm install --save-dev chokidar@2.0.4

npm install --save-dev npm-run-all@4.1.3

npm install --save-dev connect-history-api-fallback@1.5.0

101

www.EBooksWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

You won’t need these packages for applications that consume data from existing services, but I need to
create a complete infrastructure for the SportsStore application. Table 5-2 briefly describes the purpose of
each package installed in Listing 5-3.

Table 5-2. The Additional Packages Required by the SportsStore Project

Name Description

json-server This package will be used to provide a RESTful web service in Chapter 6.

jsonwebtoken This package will be used to authenticate users in Chapter 8.

graphql This package will be used to define the schema for the GraphQL server
in Chapter 7.

express This package will be used to host the back-end servers.

express-graphql This package will be used to create a GraphQL server.

cors This package is used to enable cross-origin request sharing (CORS)
requests.

faker This package generates fake data for testing and is used in Chapter 6.

chokidar This package monitors files for changes.

npm-run-all This package is used to run multiple NPM scripts in a single command.

connect-history-api-fallback This package is used to respond to HTTP requests with the index.html
file and is used in the production server in Chapter 8.

Adding the CSS Stylesheets to the Project

To use the Bootstrap and Font Awesome packages, I need to add import statements to the application’s

index. js file. The purpose of the index. js file is to start the application, as described in Chapter 9, and
adding the import statements shown in Listing 5-4 ensures that the styles I require can be applied to the
HTML content presented by the SportsStore application.

Listing 5-4. Adding CSS Stylesheets in the index.js File in the src Folder

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import * as serviceWorker from './servicelWorker';
import "bootstrap/dist/css/bootstrap.css”;

import "@fortawesome/fontawesome-free/css/all.min.css";

ReactDOM.render (<App />, document.getElementById('root'));
// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.

// Learn more about service workers: http://bit.ly/CRA-PWA
servicelWorker.unregister();

102

www.EBooksWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

Preparing the Web Service

Once the basic structure of the application is in place, I will add support for consuming data from a web
service. In preparation, I added a file called data. js to the sportsstore folder with the content shown in

Listing 5-5.

Listing 5-5. The Contents of the data.js File in the sportsstore Folder

module.exports

= function () {

return {
categories: ["Watersports", "Soccer", "Chess"],
products: [
{ id: 1, name: "Kayak", category: "Watersports",

1

{
{

description: "A boat for one person", price: 275 },
id: 2, name: "Lifejacket", category: "Watersports",
description: "Protective and fashionable", price: 48.95 },
id: 3, name: "Soccer Ball", category: "Soccer",
description: "FIFA-approved size and weight", price: 19.50 },
id: 4, name: "Corner Flags", category: "Soccer",
description: "Give your playing field a professional touch",
price: 34.95 },
id: 5, name: "Stadium", category: "Soccer",
description: "Flat-packed 35,000-seat stadium", price: 79500 },
id: 6, name: "Thinking Cap", category: "Chess",
description: "Improve brain efficiency by 75%", price: 16 },
id: 7, name: "Unsteady Chair", category: "Chess",
description: "Secretly give your opponent a disadvantage",
price: 29.95 },
id: 8, name: "Human Chess Board", category: "Chess",
description: "A fun game for the family", price: 75 },
id: 9, name: "Bling Bling King", category: "Chess",
description: "Gold-plated, diamond-studded King", price: 1200 }

orders: []

The code in Listing 5-5 creates three data collections that will be used by the application. The products

collection contains the products for sale to the customer, the categories collection contains the set of
categories into which the products are organized, and the orders collection contains the orders that

customers have placed (but is currently empty).
Iadded afile called server. js to the sportsstore folder with the code shown in Listing 5-6. This is the

code that creates the web service that will provide the application with data. I add features to the back-end

server, such as authentication and support for GraphQL, in later chapters.

Listing 5-6. The Contents of the server.js File in the sportsstore Folder

const express

= require("express");

const jsonServer = require("json-server");
const chokidar = require("chokidar");
const cors = require("cors");

www.EBookswWorld.ir

103

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

const fileName = process.argv[2] || "./data.js"
const port = process.argv[3] || 3500;

let router = undefined;
const app = express();

const createServer = () => {
delete require.cache[require.resolve(fileName)];
setTimeout(() => {
router = jsonServer.router(fileName.endsWith(".js")
? require(fileName)() : fileName);
}, 100)

}

createServer();

app.use(cors());
app.use(jsonServer.bodyParser)

app.use("/api", (req, resp, next) => router(req, resp, next));

chokidar.watch(fileName).on("change", () => {
console.log("Reloading web service data...");
createServer();
console.log("Reloading web service data complete.");

D;
app.listen(port, () => console.log(Web service running on port ${port}"));

To ensure that the web service is started alongside the React development tools, I changed the scripts
section of the package. json file, as shown in Listing 5-7.

Listing 5-7. Enabling the Web Service in the package.json File in the sportsstore Folder

"scripts": {
"start": "npm-run-all --parallel reactstart webservice",
"reactstart": "react-scripts start",
"webservice": "node server.js",
"build": "react-scripts build",
"test": "react-scripts test",
"eject": "react-scripts eject"

b

This change uses the npm-run-all package to run the React development server and the web service at
the same time.

104

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

Running the Example Application

To start the application and the web service, use the command prompt to run the command shown in
Listing 5-8 in the sportsstore folder.

Listing 5-8. Starting the Application
npm start

There will be a pause while the initial compilation is completed, and then a new browser window will
open displaying the placeholder content shown in Figure 5-1.

I7 ReactApp X

St

C @ localhost:3000

and save to reload.

Learn React

Figure 5-1. Running the example application

To make sure that the web service is running, open a new browser window and request the URL
http://localhost:3500/api/products/1. The browser will display a JSON representation of one of the
products defined in Listing 5-5, as follows:

{ "id":1, "name":"Kayak", "category":"Watersports",

"description":"A boat for one person”,"price":275 }

105

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

Creating the Data Store

The starting point for SportsStore is the data store, which will be the repository for the data presented to the
user and the supporting details required to coordinate application features, such as pagination.

I am going to start with a data store that uses local placeholder data. Later, I will add support for getting
the data from a web service, but static data is a good place to start because it keeps the focus on the React
application. The SportsStore data store will be created using the Redux package, which is the most
popular data store for React projects and which I describe in Chapters 19 and 20. To get started, I created the
src/data folder and added to it a file called placeholderData. js, with the content shown in Listing 5-9.

Listing 5-9. The Contents of the placeholderData.js File in the src/data Folder

export const data = {
categories: ["Watersports", "Soccer", "Chess", "Running"],
products: [
{ id: 1, name: "P1", category: "Watersports",
description: "P1 (Watersports)", price: 3 },
{ id: 2, name: "P2", category: "Watersports”,
description: "P2 (Watersports)", price: 4 },
{ id: 3, name: "P3", category: "Running",
description: "P3 (Running)", price: 5 },
{ id: 4, name: "P4", category: "Chess",
description: "P4 (Chess)", price: 6 },
{ id: 5, name: "P5", category: "Chess",
description: "P6 (Chess)", price: 7 },

Creating the Data Store Actions and Action Creators

Redux data stores separate reading data from the operations that change it. This can feel awkward at first,
but it is similar to other parts of React development, such as component state data and using GraphQL, and
it quickly becomes second nature.

Actions are objects that are sent to the data store to make changes to the data it contains. Actions have
types, and action objects are created using action creators. The only action I need at the moment will load
the data into the store, initially using the placeholder data defined in Listing 5-9 but eventually from a web
service. There are different ways you can structure the actions for a data store, but it is worth identifying the
common themes that are shared between different types of data to avoid code duplication later. I added a file
called Types.js in the src/data folder and used it to list the data types in the store and the set of actions that
can be performed on them, as shown in Listing 5-10.

Listing 5-10. The Contents of the Types.js File in the src/data Folder

export const DataTypes = {
PRODUCTS: "products",
CATEGORIES: "categories"

}

export const ActionTypes = {
DATA_LOAD: "data_load"
}

106

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

There are two data types—PRODUCTS and CATEGORIES—and a single action, DATA_LOAD, which will
populate the data store. There is no requirement to defined action types this way, but using constant values
avoids typos when specifying action types elsewhere in the application.

Next, I need to define an action creator function, which will create an action object that can be
processed by the data store to alter the data it contains. I added a file called ActionCreators. js to the src/
data folder, with the code shown in Listing 5-11.

Listing 5-11. The Contents of the ActionCreators.js File in the src/data Folder

import { ActionTypes} from "./Types";
import { data as phData} from "./placeholderData";

export const loadData = (dataType) => ({
type: ActionTypes.DATA_LOAD,
payload: {
dataType: dataType,
data: phData[dataType]
}
;s

The use of action creators is described in Chapter 19, but the only requirement for the objects produced
by action creators is they must have a type property whose value specifies the type of change required to the
data store. It is a good idea to use a common set of properties in action objects so that they can be handled
consistently, and the action creator defined in Listing 5-11 returns an action object that has a payload
property, which is the convention I will use for all of the SportsStore data store actions.

The payload property for the action object in Listing 5-11 has a dataType property that indicates the
type of data that the action relates to and a data property that provides the data to be added to the data store.
The value for the data property is obtained from the placeholder data at the moment, but I replace this with
data obtained from a web service in Chapter 6.

Actions are processed by data store reducers, which are functions that receive the current contents of
the data store and an action object and use them to make changes. I added a file called ShopReducer. js to
the src/data folder and defined the reducer shown in Listing 5-12.

Listing 5-12. The Contents of the ShopReducer.js File in the src/data Folder

import { ActionTypes } from "./Types";
export const ShopReducer = (storeData, action) => {
switch(action.type) {
case ActionTypes.DATA LOAD:
return {
...storeData,
[action.payload.dataType]: action.payload.data
};
default:
return storeData || {};

Reducers are required to create and return new objects that incorporate any required changes. If the
action type isn’t recognized, the reducer must return the data store object it received unchanged. The
reducer in Listing 5-12 handles the DATA_LOAD action by creating a new object with all the properties of the
old store plus the new data received in the action. Reducers are described in more detail in Chapter 19.

107

www.EBookswWorld.ir

CHAPTER 5 * SPORTSSTORE: A REAL APPLICATION

As the final step for creating the data store, I added a file called DataStore. js to the src/data folder
and added the code shown in Listing 5-13.

Listing 5-13. The Contents of the DataStore.js File in the src/data Folder

import { createStore } from "redux";
import { ShopReducer } from "./ShopReducer";

export const SportsStoreDataStore = createStore(ShopReducer);
The Redux package provides the createStore function, which sets up a new data store using a reducer.

This is enough to create a data store to get started with, but I will add additional features later so that further
operations can be performed and so that data can be loaded from a web service.

Creating the Shopping Features

The first part of the application that will be seen by users is the storefront, which will present the available
products in a two-column layout that allows filtering by category, as shown in Figure 5-2.

Sports Store

Category Buttons Product Table

e All e Product 1
o Watersports e Product 2
e Soccer e Product 3
e Chess e Product 4
L] L]

Figure 5-2. The basic structure of the application

I am going to structure the application so that the browser’s URL is used to select the content presented
to the user. To get started, the application will support the URLs described in Table 5-3, which will allow the
user to see the products for sale and filter them by category.

Table 5-3. The SportsStore URLs

Name Description
/shop/products This URL will display all of the products to the user, regardless of category.
/shop/products/chess This URL will display the products in a specific category. In this case, the

URL will select the Chess category.

108

www.EBooksWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

Note | have adopted the British term shop for the part of the application that offers products for sale to
customers. | want to avoid confusion between the data store, in which the application’s data is kept, and the
product store, from which the user makes purchases.

Responding to the browser’s URL in the application is known as URL routing, which is provided by the
React Router package added in Listing 5-2, and which is described in detail in Chapters 21 and 22.

Creating the Product and Category Components

Components are the building blocks for React applications and are responsible for the content presented to
the user. I created the src/shop folder and added to it a file called ProductList. js with the contents shown
in Listing 5-14.

Listing 5-14. The Contents of the ProductList.js File in the src/shop Folder

import React, { Component } from "react";
export class ProductlList extends Component {

render() {
if (this.props.products == null || this.props.products.length === 0) {
return <h5 className="p-2">No Products</h5>
}

return this.props.products.map(p =>
<div className="card m-1 p-1 bg-light" key={ p.id }>
<hg>
{ p.name }

${ p.price.toFixed(2) }

</h4>
<div className="card-text bg-white p-1">
{ p.description }
</div>
</div>

Components are created to perform small tasks or display small amounts of content and are combined
to create more complex features. The ProductList component defined in Listing 5-14 is responsible for
displaying details of a list of products, whose details are received through a prop named product. Props
are used to configure components and allow them to do their work—such as display details of a product—
without getting involved in where the data comes from. The ProductList component generates HTML
content that includes the value of each product’s name, price, and description properties, but it doesn’t
have knowledge of how those products are defined in the application or whether they have been defined
locally or retrieved from a remote server.

109

www.EBooksWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

Next, I added a file called CategoryNavigation.js to the src/shop folder and defined the component
shown in Listing 5-15.

Listing 5-15. The Contents of the CategoryNavigation.js File in the src/shop Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class CategoryNavigation extends Component {

render() {
return <React.Fragment>
<Link className="btn btn-secondary btn-block"
to={ this.props.baseUrl }>All</Link>
{ this.props.categories && this.props.categories.map(cat =>
<Link className="btn btn-secondary btn-block" key={ cat }
to={ “${this.props.baseUrl}/${cat.toLowerCase()} }>»
{ cat }
</Link>

)}

</React.Fragment>

The selection of a category will be handled by navigating to a new URL, which is done using the Link
component provided by the React Router package. When the user clicks a Link, the browser is asked to
navigate to a new URL without sending any HTTP requests or reloading the application. The details included
in the new URL, such as the selected category in this case, allow different parts of the application to work
together.

The CategoryNavigation component receives the array of categories through a prop named
categories. The component checks to ensure that the array has been defined and uses the map method to
generate the content for each array item. React requires a key prop to be applied to the elements generated
by the map method so that changes to the array can be handled efficiently, as explained in Chapter 10. The
result is a Link component for each category that is received in the array with an additional Link so that
the user can select all products, regardless of category. The Link components are styled so they appear as
buttons, and the URLs that the browser will navigate to are the combination of a prop called baseUr1 and the
name of the category.

To bring together the product table and the category buttons, I added a file called Shop. js to the
src/shop folder and added the code shown in Listing 5-16.

Listing 5-16. The Contents of the Shop.js File in the src/shop Folder

import React, { Component } from "react";
import { CategoryNavigation } from "./CategoryNavigation";
import { ProductList } from "./Productlist";

export class Shop extends Component {
render() {
return <div className="container-fluid">

<div className="row">
<div className="col bg-dark text-white">

110

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

<div className="navbar-brand">SPORTS STORE</div>
</div>
</div>
<div className="row">
<div className="col-3 p-2">
<CategoryNavigation baseUrl="/shop/products"
categories={ this.props.categories } />
</div>
<div className="col-9 p-2">
<ProductList products={ this.props.products } />
</div>
</div>
</div>

A component can delegate responsibility for part of its content to other components. In its render
method, the Shop component defined in Listing 5-16 contains HTML elements that set up a grid structure
using Bootstrap CSS classes but delegates responsibility for populating some of the grid cells to the
CategoryNavigation and ProductList components. These delegated components are expressed as custom
HTML elements in the render method, where the element tag matches the name of the component, like this:

<ProductList products={ this.props.products } />

A relationship is created between the two components: the Shop component is the parent of the
Productlist, and the ProductList component is the child of the Shop. Parents configure their child
components by providing props, and in Listing 5-16, the Shop component passes on the products prop
it received from its parent to its ProductList child component, which will be used to display the list of
products to the user. The relationships between components and the ways they can be used to create
complex features are described in Part 2 of this book.

Connecting to the Data Store and the URL Router

The Shop component and its CategoryNavigation and ProductList children need access to the data store.
To connect these components to the features they require, I added a file called ShopConnector. js to the
src/shop folder with the code shown in Listing 5-17.

Listing 5-17. The Contents of the ShopConnector.js File in the src/shop Folder

import React, { Component } from "react";
import { Switch, Route, Redirect }
from "react-router-dom"
import { connect } from "react-redux";
import { loadData } from "../data/ActionCreators"”;
import { DataTypes } from "../data/Types";
import { Shop } from "./Shop";

111

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

const mapStateToProps = (dataStore) => ({

...dataStore
1
const mapDispatchToProps = {
loadData
}
const filterProducts = (products = [], category) =>
(!category || category === "All")
? products

: products.filter(p => p.category.tolowerCase() === category.tolLowerCase());

export const ShopConnector = connect(mapStateToProps, mapDispatchToProps)(
class extends Component {
render() {
return <Switch>
<Route path="/shop/products/:category?"”
render={ (routeProps) =>
<Shop { ...this.props } { ...routeProps }
products={ filterProducts(this.props.products,
routeProps.match.params.category) } />} />
<Redirect to="/shop/products” />
</Switch>
}

componentDidMount () {
this.props.loadData(DataTypes.CATEGORIES);
this.props.loadData(DataTypes.PRODUCTS);

Don’t worry if the code in Listing 5-17 seems impenetrable at the moment. The code is more complex
than earlier listings because this component brings together and consolidates several features so they can be
used more easily elsewhere in the project, as shown in Figure 5-3.

. Category
URL Routing Navigation
Connector > Shop
Data Store ProductList

Figure 5-3. Connecting an application to its services

112

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

The advantage of this approach is that it simplifies adding features or making changes to the application
because the components that present content to the user receive their data via props without the need to
obtain it directly from the data store or the URL routing system. The disadvantage is that the component that
connects the rest of the application to its services can be difficult to write and maintain, as it must combine
the features of different packages and present them to its children. The complexity of this component will
increase until the end of Chapter 6, when I consolidate the code around the final set of SportsStore shopping
features.

The component in Listing 5-17 connects the Redux data store and the URL router to the Shop
component. The Redux package provides the connect function, which is used to link a component to a data
store so that its props are either values from the data store or functions that dispatch data store actions when
they are invoked, as described in Chapter 20. It is the connect function that has led to much of the code in
Listing 5-17 because it requires mappings between the data store and the component’s props, which can be
verbose. The mappings in Listing 5-17 give the Shop component access to all of the properties defined in the
data store, which consists of the product and category data at present but will include other features later.

Tip You can be more specific in the data store properties you map to props, as demonstrated in Chapter 20,
but | have mapped all of the products, which is a useful approach when you start developing a new project
because it means you don’t have to remember to map new properties each time you enhance the data store.

The product data must be filtered using the selected category, which is accessed through the
features provided by the React Router package. A Route is used to select the component that will be
displayed to the user when the browser navigates to a specific URL. The Route in Listing 5-17 matches the
URLs from Table 5-3, like this:

<Route path="/shop/products/:category?" render={ (routeProps) =>

The path prop tells the Route to wait until the browser navigates to the /shop/products URL. If there is
an additional segment in the URL, such as /shop/products/running, then the contents of that segment will
be assigned to a parameter named category, which is how the user’s category selection will be determined.

When the browser navigates to a URL that matches the path prop, the Route displays the content
specified by the render prop, like this:

<Route path="/shop/products/:category?" render={ (routeProps) =»>
<Shop { ...this.props } { ...routeProps }
products={ filterProducts(this.props.products,
routeProps.match.params.category) } />} />

This is the point at which the data store and the URL routing features are combined. The Shop
component needs to know which category the user has selected, which is available through the argument
passed to the Route component’s render prop. The category is combined with the data from the data store
both of which are passed on to the Shop component. The order in which props are applied to a component
allows props to be overridden, which I have relied on to replace the products data obtained from the data
store with the result from the filterProduct function, which selects only the products in the category
chosen by the user.

113

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

The Route is used in conjunction with Switch and Redirect components, both of which are part of the
React Router package and which combine to redirect the browser to /shop/products if the browser’s current
URL isn’t matched by the Route.

The ShopConnector component uses the componentDidMount method to load the data into the data
store. The componentDidMount method is part of the React component lifecycle, which is described in detail
in Chapter 13.

Adding the Shop to the Application

In Listing 5-18, I have set up the data store and the URL routing features and incorporated the
ShopConnector component into the application.

Listing 5-18. Adding Routing and a Data Store to the App.js File in the src Folder

import React, { Component } from "react";

import { SportsStoreDataStore } from "./data/DataStore";

import { Provider } from "react-redux";

import { BrowserRouter as Router, Route, Switch, Redirect }
from "react-router-dom";

import { ShopConnector } from

./shop/ShopConnector";

export default class App extends Component {

render() {
return <Provider store={ SportsStoreDataStore }>
<Router>
<Switch>
<Route path="/shop" component={ ShopConnector } />
<Redirect to="/shop" />
</Switch>
</Router>
</Provider>
}

The data store is applied to the application using a Provider, with the store prop being assigned the
data store created in Listing 5-13. The URL routing features are applied to the application using the Router
component, which I have supplemented using the Switch, Route, and Redirect components. The Redirect
will navigate to the /shop URL, which matches the path prop of the Route and displays the ShopConnector
component, producing the result shown in Figure 5-4. Clicking a category button redirects the browser to
anew URL, such as /shop/products/watersports, which has the effect of filtering the products that are
displayed.

114

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

React App

@ localhos!

P1
Watersports F1 (Watersports)
P2 (Wat rt:
i Soccer P2
P3

P3 (Running)

F2 (Watersports)
Chess

P4

P4 (Chess)

PS5 ad

P& (Chess)

Figure 5-4. Creating the basic shopping features

Improving the Category Selection Buttons

The category selection buttons work but don’t clearly reflect the current category to the user. To remedy this,
Tadded a file called TogglelLink. js to the src folder and used it to define the component shown in
Listing 5-19.

Tip | added this component to the src folder because | will use it for other parts of the application once the
shop has been completed. There are no hard-and-fast rules about how a React project is organized, but | tend
to keep related files grouped together in folders.

Listing 5-19. The Contents of the ToggleLink.js File in the src Folder
import React, { Component } from "react";
import { Route, Link } from "react-router-dom";

export class TogglelLink extends Component {

render() {
return <Route path={ this.props.to } exact={ this.props.exact }
children={ routeProps => {

const baseClasses = this.props.className || "m-2 btn btn-block";
const activeClass = this.props.activeClass || "btn-primary";
const inActiveClass = this.props.inActiveClass || "btn-secondary"

115

www.EBooksWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

const combinedClasses =
“${baseClasses} ${routeProps.match ? activeClass : inActiveClass}"

return <Link to={ this.props.to } className={ combinedClasses }>
{ this.props.children }
</Link>

JR e

The React Router package provides a component that indicates when a specific URL has been matched,
but it doesn’t work well with the Bootstrap CSS classes, as I describe in Chapter 22, where I explain how the
Togglelink component works in detail. For this chapter, it is enough to know that the Route component can
be used to provide access to the URL routing system in order to get details about the current route.

In Listing 5-20, I have updated the CategoryNavigation component to use the ToggleLink component.

Listing 5-20. Using ToggleLinks in the CategoryNavigation.js File in the src/shop Folder

import React, { Component } from "react";
//import { Link } from "react-router-dom";
import { ToggleLink } from "../ToggleLink";

export class CategoryNavigation extends Component {

render() {
return <React.Fragment>
<ToggleLink to={ this.props.baseUrl } exact={ true }»All</ToggleLink>
{ this.props.categories && this.props.categories.map(cat =>
<ToggleLink key={ cat }
to={ “${this.props.baseUrl}/${cat.toLowerCase()} }>»

{ cat }
</ToggleLink>
)}
</React.Fragment>
}
}
116

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

The effect is to clearly indicate which category has been selected, as shown in Figure 5-5.

B ReactApp X

- C @ localhost:3000/shop/products/watersports Yr

SPORTS STORE

All P1

P1 (Watersports)

| Watersports

P2 $4.00

P2 (Watersports)

Soccer

Chess

Figure 5-5. Highlighting the selected component

Adding the Shopping Cart

The shopping cart will allow the user to select several products in a single purchase before checking out. In
the sections that follow, I add extend the data store to keep track of the user’s product selections and create
components that provide detailed and summary cart views.

Extending the Data Store

To extend the data store to add support for tracking the user’s product selections, I added the action types
shown in Listing 5-21.

Listing 5-21. Defining Action Types in the Types.js File in the src/data Folder

export const DataTypes = {
PRODUCTS: "products",
CATEGORIES: "categories"

—

export const ActionTypes = {
DATA_LOAD: "data load",
CART_ADD: "cart_add",
CART_UPDATE: "cart_update",
CART_REMOVE: “cart_delete",
CART_CLEAR: "cart_clear"

—

117

www.EBooksWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

The new actions will allow products to be added and removed from the cart and for the entire cart
content to be cleared.

You can define action creators and reducers for different parts of the application in the same file, but
breaking them into separate files can make development easier, especially in large projects. I added a file
called CartActionCreators. js to the src/data folder and used it to define action creators for the new
action types, as shown in Listing 5-22.

Listing 5-22. The Contents of the CartActionCreators.js File in the src/data Folder

import { ActionTypes} from "./Types";
export const addToCart = (product, quantity) => ({
type: ActionTypes.CART_ADD,
payload: {
product,
quantity: quantity || 1
}
1;

export const updateCartQuantity = (product, quantity) => ({
type: ActionTypes.CART_UPDATE,
payload: { product, quantity }

b

export const removeFromCart = (product) => ({
type: ActionTypes.CART_REMOVE,
payload: product

b

export const clearCart = () => ({
type: ActionTypes.CART_CLEAR
H

The action objects created by the functions in Listing 5-22 have a payload property that carries the data
required to execute the action. To define a reducer that will process cart-related actions, I added a file called
CartReducer. js in the src/data folder and defined the function shown in Listing 5-23.

Listing 5-23. The Contents of the CartReducer.js File in the src/data Folder

import { ActionTypes } from "./Types";
export const CartReducer = (storeData, action) => {
let newStore = { cart: [], cartItems: 0, cartPrice: 0, ...storeData }
switch(action.type) {
case ActionTypes.CART_ADD:
const p = action.payload.product;
const g = action.payload.quantity;

let existing = newStore.cart.find(item => item.product.id === p.id);
if (existing) {

existing.quantity += q;
} else {

118

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

newStore.cart = [...newStore.cart, action.payload];
}
newStore.cartItems += q;
newStore.cartPrice += p.price * g;
return newStore;

case ActionTypes.CART_UPDATE:
newStore.cart = newStore.cart.map(item => {

if (item.product.id === action.payload.product.id) {
const diff = action.payload.quantity - item.quantity;
newStore.cartItems += diff;
newStore.cartPrice+= (item.product.price * diff);
return action.payload;

} else {
return item;

}

};

return newStore;

case ActionTypes.CART_REMOVE:
let selection = newStore.cart.find(item =>
item.product.id === action.payload.id);
newStore.cartItems -= selection.quantity;
newStore.cartPrice -= selection.quantity * selection.product.price;
newStore.cart = newStore.cart.filter(item => item !== selection);
return newStore;

case ActionTypes.CART_CLEAR:

return { ...storeData, cart: [], cartItems: 0, cartPrice: o0}
default:
return storeData || {};

The reducer for the cart actions keeps track of the user’s product selection by adding a cart property to
the data store and assigning it an array of objects that have product and quantity properties. There are also
cartItems and cartPrice properties that keep track of the number of items in the cart and their total price.

Tip Itis important to keep the structure of your data store flat because changes deep in an object hierarchy
won't be detected and displayed to the user. It is for this reason that the cart, cartItems, and cartPrice
properties are defined alongside the products and categories properties in the data store, rather than
grouped together into a single structure.

By default, the Redux data store uses only one reducer, but it is easy to combine multiple reducers to
suit your project. There is built-in support for dividing up responsibilities for the data store between multiple
reducers, as described in Chapter 19, but this splits up the data so each reducer can see only part of the
model. For the SportsStore application, I want each reducer to have access to the complete data store, so

119

www.EBooksWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

I'added a file called CommonReducer. js to the src/data folder and used it to define the function shown in
Listing 5-24.

Listing 5-24. The Contents of the CommonReducer.js File in the src/data Folder

export const CommonReducer = (...reducers) => (storeData, action) => {
for (let i = 0; i < reducers.length; i++) {
let newStore = reducers[i](storeData, action);
if (newStore !== storeData) {
return newStore;
}

}

return storeData;

The commonReducer function combines multiple reducers into a single function and asks each of them
to handle actions. Reducers return new objects when they modify the contents of the data store, which
makes it easy to detect when an action has been handled. The result is that the SportsStore data store can
support multiple reducers where the first to change the data store is considered to have processed the
action. In Listing 5-25, I have updated the data store configuration to use the commonReducer function to
combine the shop and cart reducers.

Listing 5-25. Combining Reducers in the DataStore.js File in the src/data Folder

import { createStore } from "redux";

import { ShopReducer } from "./ShopReducer";
import { CartReducer } from "./CartReducer";
import { CommonReducer } from "./CommonReducer";

export const SportsStoreDataStore
= createStore(CommonReducer(ShopReducer, CartReducer));

Creating the Cart Summary Component

To show the user a summary of their shopping cart, I added a file called CartSummary. js in the src/shop
folder and used it to define the component shown in Listing 5-26.

Listing 5-26. The Contents of the CartSummary.js File in the src/shop Folder

import React, { Component } from "react";

import { Link } from "react-router-dom";

export class CartSummary extends Component {

getSummary = () => {
if (this.props.cartItems > 0) {
return
{ this.props.cartItems } item(s),
${ this.props.cartPrice.toFixed(2)}

120

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

} else {
return Your cart: (empty)
}

}

getlinkClasses = () => {
return “btn btn-sm bg-dark text-white
${ this.props.cartItems === 0 ? "disabled": ""}°;
}

render() {
return <div className="float-right">
<small>
{ this.getSummary() }
<Link className={ this.getLinkClasses() }
to="/shop/cart">
<i className="fa fa-shopping-cart"></i>
</Link>
</small>
</div>

The component defined in Listing 5-26 receives the data it requires through cartItems and cartPrice
props, which are used to create a summary of the component, along with a Link that will navigate to the /
shop/cart URL when clicked. The Link is disabled when the value of the items prop is zero to prevent the
user from progressing without selecting at least one product.

Tip The i element used as the content of the Link applies a cart icon from the Font Awesome package
added to the project in Listing 5-2. See https://fontawesome.com for more details and the full range of icons
available.

React handles many aspects of web application development well, but there are some common tasks
that are harder to achieve than you might be used to. One example is conditional rendering, where a data
value is used to select different content to present to the user or different values for props. The cleanest
approach in React is to define a method that uses JavaScript to return a result expressed as HTML, like the
getSummary and getLinkClasses methods in Listing 5-26, which are invoked in the component’s render
method. The other approach is to use the 8& operator inline, which works well for simple expressions.

In Listing 5-27, I connected the cart-related additions from the data store to the rest of the application,
along with the action creator functions.

Listing 5-27. Connecting the Cart in the ShopConnector.js File in the src/shop Folder

import React, { Component } from "react";
import { Switch, Route, Redirect }
from "react-router-dom"
import { connect } from "react-redux";
import { loadData } from "../data/ActionCreators"”;
import { DataTypes } from "../data/Types";

121

www.EBooksWorld.ir

https://fontawesome.com

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

import { Shop } from "./Shop";
import { addToCart, updateCartQuantity, removeFromCart, clearCart }

from

«+/data/CartActionCreators”;

const mapStateToProps = (dataStore) => ({

1)

...dataStore

const mapDispatchToProps = {

}

loadData,addToCart, updateCartQuantity, removeFromCart, clearCart

const filterProducts = (products = [], category) =>

(!category || category === "All")
? products
: products.filter(p => p.category.tolLowerCase() === category.tolLowerCase());

export const ShopConnector = connect(mapStateToProps, mapDispatchToProps)(

class extends Component {
render() {
return <Switch>
<Route path="/shop/products/:category?"
render={ (routeProps) =>
<Shop { ...this.props } { ...routeProps }
products={ filterProducts(this.props.products,
routeProps.match.params.category) } />} />
<Redirect to="/shop/products" />
</Switch>

}

componentDidMount () {
this.props.loadData(DataTypes.CATEGORIES);
this.props.loadData(DataTypes.PRODUCTS);

In Listing 5-28, I added a CartSummary to the content rendered by the Shop component, which will

ensure that details of the user’s selections are shown above the list of products.

Listing 5-28. Adding the Summary in the Shop.js File in the src/shop Folder

import React, { Component } from "react";
import { CategoryNavigation } from "./CategoryNavigation";
import { ProductlList } from "./ProductlList";

import { CartSummary } from

./CartSummaxy";

export class Shop extends Component {

122

render() {
return <div className="container-fluid">
<div className="row">

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

<div className="col bg-dark text-white">
<div className="navbar-brand">SPORTS STORE</div>
<CartSummary { ...this.props } />
</div>
</div>
<div className="row">
<div className="col-3 p-2">
<CategoryNavigation baseUrl="/shop/products”
categories={ this.props.categories } />
</div>
<div className="col-9 p-2">
<ProductList products={ this.props.products }
addToCart={ this.props.addToCart } />
</div>
</div>
</div>

To allow the user to add a product to the cart, added a button alongside the description of each
product produced by the ProductList component, as shown in Listing 5-29.

Listing 5-29. Adding a Button in the ProductList.js File in the src/shop Folder

import React, { Component } from "react";
export class ProductlList extends Component {

render() {
if (this.props.products == null || this.props.products.length === 0) {
return <h5 className="p-2">No Products</h5>
}

return this.props.products.map(p =>
<div className="card m-1 p-1 bg-light" key={ p.id }>
<h4>
{ p.name }

${ p.price.toFixed(2) }

</h4>
<div className="card-text bg-white p-1">
{ p.description }
<button className="btn btn-success btn-sm float-right"
onClick={ () =»> this.props.addToCart(p) } »
Add To Cart
</button>
</div>
</div>

123

www.EBookswWorld.ir

CHAPTER 5 * SPORTSSTORE: A REAL APPLICATION

React provides props that are used to register handlers for events, as described in Chapter 12. The
handler for the click event, which is triggered when an element is clicked, is onClick, and the function that
is specified invokes the addToCart prop, which is mapped to the data store action creator of the same name.

The result is that each product is shown with an Add To Cart button. When the button is clicked, the
data store is updated, and the summary of the user’s selections reflects the additional item and the new total
price, as shown in Figure 5-6.

« > C @ localhost:3000/shop/products H 1item(s), $3.00 "W

SPORTS STORE

All P1
P1 (Watersports -
Watersports (por) Add To Cart | <X'05
Soccer P2 g

w PRRVAtESOAIS) mits. % ot e _w ot el "

Figure 5-6. Adding a product to the cart

il

Adding the Cart Detail Component

To provide the user with a detailed view of their selections, I added a file called CartDetails. js
to the src/shop folder and used it to define the component shown in Listing 5-30.

Listing 5-30. The Contents of the CartDetails.js File in the src/shop Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";
import { CartDetailsRows } from "./CartDetailsRows";

export class CartDetails extends Component {

getlLinkClasses = () => “btn btn-secondary m-1
${this.props.cartItems === 0 ? "disabled": ""}°;

render() {
return <div className="m-3">
<h2 className="text-center">Your Cart</h2>
<table className="table table-bordered table-striped">
<thead>
<tr>
<th>Quantity</th>
<th>Product</th>
<th className="text-right">Price</th>

124

www.EBooksWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

<th className="text-right">Subtotal</th>
<th/>
</tr>
</thead>
<tbody>
<CartDetailsRows cart={ this.props.cart}
cartPrice={ this.props.cartPrice }
updateQuantity={ this.props.updateCartQuantity }
removeFromCart={ this.props.removeFromCart } />
</tbody>
</table>
<div className="text-center">
<Link className="btn btn-primary m-1" to="/shop">
Continue Shopping
</Link>
<Link className={ this.getLinkClasses() } to="/shop/checkout">
Checkout
</Link>
</div>
</div>

The CartDetails component presents a table to the user, along with Link components that return to
the product list or navigate to the /shop/checkout URL, which starts the checkout process.

The CartDetails component relies on a CartDetailsRows component to display details of the user’s
product selection. To create this component, I added a file called CartDetailsRows. js to the src/shop
folder and used it to define the component shown in Listing 5-31.

Listing 5-31. The Contents of the CartDetailsRows.js File in the src/shop Folder

import React, { Component } from "react";
export class CartDetailsRows extends Component {

handleChange = (product, event) => {
this.props.updateQuantity(product, event.target.value);
}

render() {
if (!this.props.cart || this.props.cart.length === 0) {
return <tr>
<td colSpan="5">Your cart is empty</td>
</tr>
} else {
return <React.Fragment>
{ this.props.cart.map(item =>
<tr key={ item.product.id }>
<td>
<input type="number" value={ item.quantity }
onChange={ (ev) =>

125

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

this.handleChange(item.product, ev) } />
</td>
<td>{ item.product.name }</td>
<td>${ item.product.price.toFixed(2) }</td>
<td>${ (item.quantity * item.product.price).toFixed(2) }</td>
<td>
<button className="btn btn-sm btn-danger"
onClick={ () =>
this.props.removeFromCart(item.product)}>
Remove
</button>
</td>
</tr>
)}
<tr>
<th colSpan="3" className="text-right">Total:</th>
<th colSpan="2">${ this.props.cartPrice.toFixed(2) }</th>
</tr>
</React.Fragment>

The render method must return a single top-level element, which is inserted into the HTML in place of
the component’s element when the HTML document is produced, as explained in Chapter 9. It isn’t always
possible to return a single HTML element without disrupting the content layout, such as in this example,
where multiple table rows are required. For these situations, the React.Fragment element is used. This
element is discarded when the content is processed and the elements it contains are added to the HTML
document.

Adding the Cart URL to the Routing Configuration

In Listing 5-32, I have updated the routing configuration in the ShopConnector component to add support
for the /shop/cart URL.

Listing 5-32. Adding a New URL in the ShopConnector.js File in the src/shop Folder

import React, { Component } from "react";

import { Switch, Route, Redirect }
from "react-router-dom"

import { connect } from "react-redux";

import { loadData } from "../data/ActionCreators”;

import { DataTypes } from "../data/Types";

import { Shop } from "./Shop";

import { addToCart, updateCartQuantity, removeFromCart, clearCart }
from "../data/CartActionCreators”;

import { CartDetails } from "./CartDetails";

const mapStateToProps = (dataStore) => ({
...dataStore
}

126

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

const mapDispatchToProps = {
loadData,
addToCart, updateCartQuantity, removeFromCart, clearCart

}
const filterProducts = (products = [], category) =>
(!category || category === "All")
? products

: products.filter(p => p.category.tolowerCase() === category.tolLowerCase());

export const ShopConnector = connect(mapStateToProps, mapDispatchToProps)(
class extends Component {
render() {
return <Switch>
<Route path="/shop/products/:category?"”
render={ (routeProps) =>
<Shop { ...this.props } { ...routeProps }
products={ filterProducts(this.props.products,
routeProps.match.params.category) } />} />
<Route path="/shop/cart" render={ (routeProps) =»
<CartDetails { ...this.props } { ...routeProps } />} />
<Redirect to="/shop/products" />
</Switch>
}

componentDidMount () {
this.props.loadData(DataTypes.CATEGORIES);
this.props.loadData(DataTypes.PRODUCTS);

The new Route handles the /shop/cart URL by displaying the CartDetails component, which receives
props from both the data store and the routing system. In Listing 5-33, I have updated the Shop component
to define a wrapper function around the addToCart action creator that also navigates to the new URL.

Listing 5-33. Navigating to the Cart in the Shop.js File in the src/shop Folder

import React, { Component } from "react";

import { CategoryNavigation } from "./CategoryNavigation";
import { ProductlList } from "./ProductlList";

import { CartSummary } from "./CartSummary";

export class Shop extends Component {
handleAddToCart = (...args) => {

this.props.addToCart(...args);
this.props.history.push("/shop/cart");

127

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

render() {
return <div className="container-fluid">
<div className="row">
<div className="col bg-dark text-white">
<div className="navbar-brand">SPORTS STORE</div>
<CartSummary { ...this.props } />
</div>
</div>
<div className="row">
<div className="col-3 p-2">
<CategoryNavigation baseUrl="/shop/products"”
categories={ this.props.categories } />
</div>
<div className="col-9 p-2">
<ProductList products={ this.props.products }
addToCart={ this.handleAddToCart } /»
</div>
</div>
</div>

The result is that clicking the Add To Cart button for a product displays the updated cart, which provides
the user with the choice to return to the product list and make further selections, edit the contents of the
cart, or start the checkout process, as shown in Figure 5-7.

128

www.EBookswWorld.ir

CHAPTER 5 © SPORTSSTORE: A REAL APPLICATION

. React App x

= C @ localhost:3000/shop/cart b+ :
Your Cart
Quantity Product Price Subtotal
2 P2 $4.00 $8.00 Remove

4 P1 $3.00 $12.00 Remove

1 P3 55-00 550’0 Remove

Total: $25.00

Continue Shopping

Figure 5-7. Integrating the cart into the SportsStore project

The Checkout button returns the user to the /store/products URL at the moment, but I add support
for checking out in Chapter 6.

Summary

In this chapter, I started development of a realistic React project. The first part of the chapter was spent
setting up the Redux data store, which introduces a range of terms—actions, action creators, reducers—that
you may not be familiar with but which will soon become second nature. I also set up the React Router
package so that the browser’s URL can be used to select the content and data that is presented to the user.
The foundation these features provides takes time to set up, but you will see that it starts to pay dividends as
I add further features to SportsStore. In the next chapter, I add further features to the SportsStore application.

129

www.EBooksWorld.ir

CHAPTER 6

SportsStore: REST and Checkout/

In this chapter, I continue adding features to the SportsStore application I created in Chapter 5. I add support
for retrieving data from a web service, presenting larger amounts of data in pages and checking out and
placing orders.

Preparing for This Chapter

No preparation is required for this chapter, which uses the SportsStore project created in Chapter 5.
To start the React development tools and the RESTful web service, open a command prompt, navigate to the
sportsstore folder, and run the command shown in Listing 6-1.

Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 6-1. Starting the Development Tools and Web Service

npm start

The initial build process will take a few seconds, after which a new browser window or tab will open and
display the SportsStore application, as shown in Figure 6-1.

© Adam Freeman 2019 131
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_6

www.EBookswWorld.ir

https://github.com/Apress/pro-react-16

CHAPTER 6 SPORTSSTORE: REST AND CHECKOUT

' React App x

i C @ localhost:3000/shop/products w :

SPORTS STORE bt i

P1 [$3.00]

o P1 (Watersports)
Soccer P2 $4.00
Chee P2 (Watersports)

e [$5.00

P3 (Running)

_j* Ny - ISRt [P Bs .. [T et el e,

|

Figure 6-1. Running the SportsStore application

Consuming the RESTful Web Service

The basic structure of the SportsStore application is taking shape, and I have enough functionality in place
to remove the placeholder data and start using the RESTful web service. In Chapter 7, I use GraphQL, which
is a more flexible (and complex) alternative to REST web services, but regular web services are common,
and I am going to use a REST web service to provide the SportsStore application with its product data and to
submit orders at the end of the checkout process.

I describe REST in more detail in Chapter 23, but for this chapter, I need just one basic HTTP request to
get started. Open a new browser tab and request http://localhost:3500/api/products. The browser will
send an HTTP GET request to the web service that was created in Chapter 5 and started by the command
in Listing 6-1. The GET method combined with the URL tells the web service that a list of the products is
required and produces the following result:

[{"id":1,"name":"Kayak","category":"Watersports",

"description":"A boat for one person

n, "price" :275},
{"id":2,"name": "Lifejacket","category": "Watersports",
"description”:"Protective and fashionable","price":48.95},

{"1d":3,"name": "Soccer Ball","category":"Soccer",

"description":"FIFA-approved size and weight","price":19.5},
{"id":4,"name":"Corner Flags","category":"Soccer",

"description":"Give your playing field a professional touch","price":34.95},
"id":5,"name":"Stadium","category":"Soccer",

"description":"Flat-packed 35,000-seat stadium","price":79500},

13

\S]

www.EBooksWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

{"id":6,"name": "Thinking Cap","category":"Chess",

"description":"Improve brain efficiency by 75%","price":16},
{"id":7,"name": "Unsteady Chair","category":"Chess",

"description”:"Secretly give your opponent a disadvantage","price":29.95},

"id":8,"name":"Human Chess Board","category":"Chess",
"description":"A fun game for the family","price":75},
"id":9,"name":"Bling Bling King","category":"Chess",

"description":"Gold-plated, diamond-studded King","price":1200}]

The web service responds to requests using the JSON data format, which is easy to deal with in a React
application since it is similar to the JavaScript object literal form described in Chapter 4. In the sections that
follow, I'll create a foundation for working with the web service and use it to replace the static data that is
currently displayed by the SportsStore application.

Creating a Configuration File

Projects often require different URLs in production and development. To avoid hard-coding the URLs into
individual JavaScript files, I added a file called Urls. js to the src/data folder and used it to define the
configuration data shown in Listing 6-2.

Listing 6-2. The Contents of the Urls.js File in the src/data Folder
import { DataTypes } from "./Types";
const protocol = "http";

const hostname = "localhost";
const port = 3500;

export const RestUrls = {
[DataTypes.PRODUCTS]: “${protocol}://${hostname}:${port}/api/products’,
[DataTypes.CATEGORIES]: “${protocol}://${hostname}:${port}/api/categories”

When I prepare the SportsStore application for deployment in Chapter 8, I will be able to configure the
URLs required to access the web service in one place. I have used the data types already defined for the data
store for consistency, which helps keeps references to the different types of data consistent and reduces the
risk of a typo.

Creating a Data Source

I added afile called RestDataSource. js to the src/data folder and added the code shown in
Listing 6-3. I want to consolidate the code that is responsible for sending HTTP requests to the web service
and processing the results, allowing me to keep it contained in one place in the project.

133

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Listing 6-3. The Contents of the RestDataSource.js File in the src/data Folder

import Axios from "axios";
import { RestUrls } from "./Urls";

export class RestDataSource {

GetData = (dataType) =>
this.SendRequest("get", RestUrls[dataType]);

SendRequest = (method, url) => Axios.request({ method, url });

The RestDataSource class uses the Axios package to make HTTP requests to the web service. Axios
is described in Chapter 23 and is a popular package for handling HTTP because it provides a consistent
API and automatically processes responses to transform JSON into JavaScript objects. In Listing 6-3, the
GetData method uses Axios to send an HTTP request to the web service to get all of the available objects for
a specified data type. The result from the GetData method is a Promise that is resolved when the response is
received from the web service.

Extending the Data Store

HTTP requests sent by JavaScript code are performed asynchronously. This doesn't fit well with the default
behavior of the Redux data store, which responds to changes only when an action is processed by a reducer.

Redux data stores can be extended to support asynchronous operations using a middleware function,
which inspects the actions that are sent to the data store and alters them before they are processed. In
Chapter 20, I create data store middleware that intercepts actions and delays them while it performs
asynchronous requests to get data.

For the SportsStore application, I am going to take a different approach and add support for actions
whose payload is a Promise, which I described briefly in Chapter 4. The middleware will wait until the
Promise is resolved and then pass on the action using the outcome of the Promise as the payload. I added a
file called AsyncMiddleware. js to the src/data folder and added the code shown in Listing 6-4.

Listing 6-4. The Contents of the AsyncMiddleware.js File in the src/data Folder

const isPromise = (payload) =>
(typeof(payload) === "object" || typeof(payload) === "function")
88 typeof(payload.then) === "function";

export const asyncActions = () => (next) => (action) => {
if (isPromise(action.payload)) {
action.payload.then(result => next({...action, payload: result}));
} else {
next(action)
}

The code in Listing 6-4 contains a function that checks to see whether an action’s payload is a Promise,
which it does by looking for function or objects that have a then function. The asyncAction function will
be used as the data store middleware, and it calls then on the Promise to wait for it to be resolved, at which
point it uses the result to replace the payload and passes it on, using the next function, which continues the

134

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

normal path through the data store. Actions whose payloads are not a Promise are passed on immediately.
In Listing 6-5, I have added the middleware to the data store.

Listing 6-5. Adding Middleware in the DataStore.js File in the src/data Folder

import { createStore, applyMiddleware } from "redux";
import { ShopReducer } from "./ShopReducer";

import { CartReducer } from "./CartReducer";

import { CommonReducer } from "./CommonReducer";
import { asyncActions } from "./AsyncMiddleware";

export const SportsStoreDataStore
= createStore(CommonReducer(ShopReducer, CartReducer),
applyMiddleware(asyncActions));

The applyMiddleware is used to wrap the middleware so that it receives the actions, and the result
is passed as an argument to the createStore function that creates the data store. The effect is that the
asyncActions function defined in Listing 6-4 will be able to inspect all of the actions sent to the data store
and seamlessly deal with those with a Promise payload.

Updating the Action Creator

In Listing 6-6, I removed the placeholder data from the store action creator and replaced it with a Promise
that sends a request using the data source.

Listing 6-6. Using a Promise in the ActionCreators.js File in the src/data Folder

import { ActionTypes} from "./Types";
//import { data as phData} from "./placeholderData";
import { RestDataSource } from "./RestDataSource";

const dataSource = new RestDataSource();

export const loadData = (dataType) => ({
type: ActionTypes.DATA_LOAD,
payload: dataSource.GetData(dataType)
.then(response => ({ dataType, data: response.data}))

1

When the action object created by the loadData function is received by the data store, the middleware
defined in Listing 6-5 will wait for the response to be received from the web service and then pass on
the action for normal processing, with the result that the SportsStore application displays data obtained
remotely, as shown in Figure 6-2.

135

www.EBookswWorld.ir

CHAPTER 6 SPORTSSTORE: REST AND CHECKOUT

. React App x

- C @ localhost:3000/shop/products/chess w

SPORTS STORE Your cart: fempty) ™

;

Thinking Cap $16.

Improve brain efficiency by 75% Add To Cart

Watersports

Soccer Unsteady Chair

Secretly give your opponent a disadvantage Add To Cart

Human Chess Board $75

A fun game for the family Add To Cart

Bling Bling King $1200.00

Gold-plated, diamond-studded King Add To Cart

Figure 6-2. Using data from a web service

Paginating Data

The SportsStore application is now receiving data from the web service, but most applications have to deal
with larger amounts of data, which must be presented to the user in pages. In Listing 6-7, have used the
Faker.js package to generate a larger number of products to replace the data presented by the web service.

Listing 6-7. Increasing the Amount of Data in the data.js File in the sportsstore Folder

var faker = require("faker");
var data = [];
var categories = ["Watersports”, "Soccer", "Chess", "Running"];
faker.seed(100);
for (let i = 1; i <= 503; i++) {
var category = faker.helpers.randomize(categories);
data.push({
id: i,
name: faker.commerce.productName(),
category: category,
description: ~${category}: ${faker.lorem.sentence(3)},
price: Number(faker.commerce.price())

H

136

www.EBooksWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

module.exports = function () {
return {
categories: categories,
products: data,
orders: []

—

The Faker.js package is an excellent tool for easily generating data for development and testing,
providing contextual data through an API described at https://github.com/Marak/Faker.js. When you
save the data. js file, the change will be detected by the server code created in Chapter 5 and loaded into
the web service. Reload the SportsStore application in the browser window, and you will see all of the
new products shown in a single list, as shown in Figure 6-3. The user can still filter the products using the
category buttons, but there is still too much data presented in one go.

. React App x

e C @ localhost:3000/shop/products w :

S PO RTS STO R E Your cart: (empty) "

Handcrafted Plastic Shirt

Chess: Nihil non nulla. Add To Cart

"
—
s
g
I!

Watersports

&
g

SOGcer Rustic Wooden Mouse

Watersports: Tempore non dolorem. Add To Cart

Chess

Refined Rubber Car

Watersports: Necessitatibus fuga non. Add To Cart
Awesome Wooden Chair $951.00
Watersports: Eius nemo reiciendis. Add To Cart

Rustic Wooden Car $63

Running: lllum enim ad. Add To Cart

1
»

Figure 6-3. Generating more data for testing pagination

137

www.EBooksWorld.ir

https://github.com/Marak/Faker.js

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Tip The code in Listing 6-7 creates 503 product objects. It is a good idea to use numbers of objects that
are not divisible by the size of the pages you intend to support so that you can be sure that your code deals with
a few stragglers on the last page.

Understanding the Web Service Pagination Support

Pagination requires support from the server so that it provides the client with the means to request a subset
of the available data and information about how much data is available. There is no standard approach to
providing pagination, and you should consult the documentation for the server or service you are using.

The json-server package that provides the RESTful web service for the SportsStore application
supports pagination through query strings. Open a new browser window and request the URL shown in
Listing 6-8 to see how pagination works.

Listing 6-8. Requesting a Page of Data
http://localhost:3500/api/products?category like=watersports8 page=28 limit=3& sort=name

The query string for this URL—the part that follows the ? character—asks the web service to return a
page of products from a specific category, using the fields described in Table 6-1.

Table 6-1. The Query String Fields Required for Pagination

Name Description

category like This field filters the results to include only those objects whose category property
matches the field value, which is Watersports in the example URL. If the category field
is omitted, then products from all categories will be included in the results.

_page This field selects the page number.

_limit This field selects the page size.

_sort This field specifies the property by which the objects will be sorted before being
paginated.

The URL in Listing 6-8 asks the web service to return the second page containing three products from
the set that have a category value of Watersports, sorted by the name property, producing the following
results:

"id":469,"name": "Awesome Fresh Pants","category":"Watersports”,
"description":"Watersports: Quia quam aut.","price":864},

"id":19,"name":"Awesome Frozen Car","category":"Watersports",
"description”:"Watersports: A rerum mollitia.","price":314},

"id":182,"name": "Awesome Cranite Fish", "category":"Watersports",

description":"Watersports: Hic omnis incidunt.","price":521}

138

www.EBooksWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

The web service response contains headers that help the client make future requests. Use the browser
to request the URL shown in Listing 6-9.

Listing 6-9. Making a Simpler Pagination Request
http://localhost:3500/api/products? page=28& limit=3

The simpler URL makes the result headers easier to understand. Use the browser’s F12 developer tools
to inspect the response, and you will see that it contains the following headers:

X-Total-Count: 503

Link: <http://localhost:3500/api/products? page=1& limit=3>; rel="first",
<http://localhost:3500/api/products? page=18& limit=3>; rel="prev",
<http://localhost:3500/api/products? page=3& limit=3>; rel="next",
<http://localhost:3500/api/products? page=1688 limit=3>; rel="last"

These are not the only headers in the response, but they have been added specifically to help the client
with future pagination requests. The X-Total-Count header provides the total number of objects that are
matched by the request URL, which is useful for determining the total number of pages. Since there is no
category field in the URL in Listing 6-9, the server has reported that 503 objects are available.

The Link header provides a set of URLs that can be used to query the first and last pages, and the pages
before and after the current pages, although clients are not required to use the Link header to formulate
subsequent requests.

Changing the HTTP Request and Action

In Listing 6-10, I changed the formulation of the URL for the request that obtains the product data to include
request parameters, which will be used to request pages and specify a category. The Axios package will use
the parameters to add query string to the request URL.

Listing 6-10. Adding URL Parameters in the RestDataSource.js File in the src/data/rest Folder

import Axios from "axios";
import { RestUrls } from "./Urls";

export class RestDataSource {

GetData = async(dataType, params) =»
this.SendRequest("get"”, RestUrls[dataType], params);

SendRequest = (method, url, params) =» Axios.request({
method, url, params
D;

In Listing 6-11, I have updated the action created by the loadData action creator so that it includes
parameters and adds additional information from the response to the data store.

139

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Listing 6-11. Changing the Action in the ActionCreators.js File in the src/data Folder

import { ActionTypes } from "./Types";
import { RestDataSource } from "./RestDataSource";

const dataSource = new RestDataSource();

export const loadData = (dataType, params) =»> (

{
type: ActionTypes.DATA_LOAD,
payload: dataSource.GetData(dataType, params).then(response =»
({ dataType,
data: response.data,
total: Number(response.headers["x-total-count"]),
params
)
)
1))

When the Promise is resolved by the data store middleware, the action object that is sent to the reducer
will contain payload.total and payload.params properties. The total property will contain the value of the
X-Total-Count header, which I will use to create the pagination navigation controls. The params property
will contain the parameters used to make the request, which I will use to determine when the user has
made a change that requires an HTTP request for more data. In Listing 6-12, I have updated the reducer that
processes the DATA_LOAD action so that the new action properties are added to the data store.

Listing 6-12. Adding Data Store Properties in the ShopReducer.js File in the src/data Folder
import { ActionTypes } from "./Types";

export const ShopReducer = (storeData, action) => {
switch(action.type) {
case ActionTypes.DATA_LOAD:
return {
...storeData,
[action.payload.dataType]: action.payload.data,
[*${action.payload.dataType}_total]: action.payload.total,
[*${action.payload.dataType}_params™]: action.payload.params
};
default:
return storeData || {};

Creating the Data Loading Component

To create a component that takes care of obtaining the product data, I added a file called DataGetter. js to
the src/data folder and used it to define the component shown in Listing 6-13.

140

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Listing 6-13. The Contents of the DataGetter.js File in the src/data Folder

import React, { Component } from "react";
import { DataTypes } from "../data/Types";

export class DataGetter extends Component {

render() {
return <React.Fragment>{ this.props.children }</React.Fragment>
}

componentDidUpdate = () => this.getData();
componentDidMount = () => this.getData();

getData = () => {

const dsData = this.props.products params || {} ;

const rtData = {
_limit: this.props.pageSize || 5,
_sort: this.props.sortKey || "name",
_page: this.props.match.params.page || 1,
category like: (this.props.match.params.category || "") === "all"

? "" : this.props.match.params.category

}

if (Object.keys(rtData).find(key => dsData[key] !== rtData[key])) {
this.props.loadData(DataTypes.PRODUCTS, rtData);

This component renders the content its parent provides between the start and end tags using the
children props. This is useful for defining components that provide services to the application but that
don’t present content to the user. In this case, I need a component that can receive details of the current
route and its parameters and also access the data store. The component’s componentDidMount and
componentDidUpdate methods, both part of the component lifecycle described in Chapter 13, call the
getData method, which gets the parameters from the URL and compares them with those in the data store
that were added after the last request. If there has been a change, a new action is dispatched that will load
the data the user requires.

In addition to the category and page number, which are taken from the URL, the action is created with
_sortand limit parameters that order the results and set the data size. The values used for sorting and for
setting the page size will be obtained from the data store.

Updating the Store Connector Component

To introduce the pagination support into the application, I updated the ShopConnector component, which
is responsible for connecting the shop features in the application to the data store and the URL router. The
changes in Listing 6-14 add the DataGetter component and remove the category filter for product data
(since the products will already be filtered by the web service).

141

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Listing 6-14. Adding Pagination in the ShopConnector.js File in the src/shop Folder

import React, { Component } from "react";
import { Switch, Route, Redirect }
from "react-router-dom"
import { connect } from "react-redux";
import { loadData } from "../data/ActionCreators”;
import { DataTypes } from "../data/Types";
import { Shop } from "./Shop";
import { addToCart, updateCartQuantity, removeFromCart, clearCart }
from "../data/CartActionCreators"”;
import { CartDetails } from "./CartDetails";
import { DataGetter } from "../data/DataGetter”;

const mapStateToProps = (dataStore) => ({

...dataStore
b
const mapDispatchToProps = {
loadData,
addToCart, updateCartQuantity, removeFromCart, clearCart
}
/! const filterProducts = (products = [], category) =»>
7 ('category || category === "All")
1/ ? products
1/ : products.filter(p =»
/7 p.category.toLowerCase() === category.tolLowerCase());

export const ShopConnector = connect(mapStateToProps, mapDispatchToProps)(
class extends Component {
render() {
return <Switch>
<Redirect from="/shop/products/:category”
to="/shop/products/:category/1" exact={ true } />
<Route path={ "/shop/products/:category/:page” }
render={ (routeProps) =>
<DataGetter { ...this.props } { ...routeProps }»
<Shop { ...this.props } { ...routeProps } />
</DataGetter>
} />
<Route path="/shop/cart" render={ (routeProps) =>
<CartDetails { ...this.props } { ...routeProps } />} />
<Redirect to="/shop/products/all/1" /»
</Switch>

}

componentDidMount () {
this.props.loadData(DataTypes.CATEGORIES);
//this.props.loadData(DataTypes.PRODUCTS) ;

142

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

I have updated the routing configuration to support pagination. The first routing change is the addition
of a Redirect, which matches URLs that have a category but no page and redirects them to the URL for the
first page of the selected category. I also changed the existing Redirect so that it redirects any unmatched
URLSs to /shop/products/all.

The result is a block of code that looks more complicated than it is. When the ShopConnector
component is asked to render its content, it uses a Route to match the URL and get category and
parameters, like this:

<Route path={ "/shop/products/:category/:page" }

Immediately before the Route is a Redirect that matches URLs that have one segment and redirects the
browser to a URL that will select the first page:

<Redirect from="/shop/products/:category"”
to="/shop/products/:category/1" exact={ true } />

This redirection ensures that there is always category and page values to work with. The other Redirect
matches any other URLs and redirects them to the URL for the first page of the products, unfiltered by
category.

<Redirect to="/shop/products/all/1" />

Updating the All Category Button

The routing components used in Listing 6-14 require a corresponding change to the A1l category button so
that it is highlighted when no category has been selected, as shown in Listing 6-15.

Listing 6-15. Updating the All Button in the CategoryNavigation.js File in the src/shop Folder

import React, { Component } from "react";
import { ToggleLink } from "../ToggleLink";

export class CategoryNavigation extends Component {

render() {
return <React.Fragment>
<ToggleLink to={ ~${this.props.baseUrl}/all" } exact={ false }»
All
</ToggleLink>
{ this.props.categories && this.props.categories.map(cat =>
<ToggleLink key={ cat }
to={ “${this.props.baseUrl}/${cat.toLowerCase()} }>
{ cat }
</ToggleLink>
)}

143

www.EBookswWorld.ir

CHAPTER 6 SPORTSSTORE: REST AND CHECKOUT

</React.Fragment>

I have added /all to the URL matched by the ToggleLink component and set the exact prop to false so
that URLs such as /shop/products/all/1 will be matched. The effect is that the application requests individual
pages of data from the web service, which is also responsible for filtering based on category. Each time the user
clicks a category button, the DataGetter component requests new data, as shown in Figure 6-4.

. React App
&« C @ localhost300

B reectapp x

T

C (@ localhost:3000/shop/products/watersports/

Your cart: fempty) W

SPORTS STORE

Awesome Concrete Table $624.00

Watersports: Et nisi qui. Add To Cart

o i Awesome Cotton Gloves $396.

Watersports: Et Mg

m Watersports: Impedit labore quaerat, Add To Cart

il e e i Awesome Cotton Mouse

Watersports: Consequatur provident magnam. Add To Cart

Awesome Coti

T —— Awesome Fresh Pants

4 H E 2
JHE HE

Watersports: Quia quam aut. Add To Cart

Awesome Coti

Withreponis Impadt Awesome Frozen Car $314.00

Watersports: A rerum mollitia. Add To Cart

Figure 6-4. Requesting pages of data from the web service

Creating the Pagination Controls

The next step is to create a component that will allow the user to navigate to different pages and change
the page size. Listing 6-16 defines new data store action types that will be used to change the page size and
specify the property that will be used for sorting results.

Listing 6-16. Adding New Action Types in the Types.js File in the src/data Folder

export const DataTypes = {
PRODUCTS: "products",
CATEGORIES: "categories"

}

export const ActionTypes = {
DATA_LOAD: "data load",
DATA_SET_SORT_PROPERTY: "data_set_sort",
DATA_SET_PAGESIZE: "data_set_pagesize",

144

www.EBooksWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

CART_ADD: "cart add",
CART_UPDATE: "cart update",
CART_REMOVE: "cart_delete",
CART_CLEAR: "cart_clear"

In Listing 6-17, I added new action creators that create actions using the new types.

Listing 6-17. Defining Creators in the ActionCreators.js File in the src/data Folder

import { ActionTypes } from "./Types";
import { RestDataSource } from "./RestDataSource";

const dataSource = new RestDataSource();

export const loadData = (dataType, params) => (

{
type: ActionTypes.DATA_LOAD,
payload: dataSource.GetData(dataType, params).then(response =>
({ dataType,
data: response.data,
total: Number(response.headers["x-total-count"]),
params
b))
)
1

export const setPageSize = (newSize) =»
({ type: ActionTypes.DATA_SET_PAGESIZE, payload: newSize});

export const setSortProperty = (newProp) =»
({ type: ActionTypes.DATA_SET_SORT_PROPERTY, payload: newProp});

In Listing 6-18, I extended the reducer to support the new actions.

Listing 6-18. Supporting New Actions in the ShopReducer.js File in the src/data Folder

import { ActionTypes } from "./Types";
export const ShopReducer = (storeData, action) => {
switch(action.type) {
case ActionTypes.DATA_LOAD:
return {

...storeData,
[action.payload.dataType]: action.payload.data,
[*${action.payload.dataType} total™]: action.payload.total,
[“${action.payload.dataType} params™]: action.payload.params

};

145

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

case ActionTypes.DATA_SET_PAGESIZE:

return { ...storeData, pageSize: action.payload }
case ActionTypes.DATA_SET_SORT_PROPERTY:

return { ...storeData, sortKey: action.payload }
default:

return storeData || {};

To produce the HTML elements that will allow the user to use the pagination features, I added a file
called PaginationControls. js to the src folder and used it to define the component shown in Listing 6-19.

Listing 6-19. The Contents of the PaginationControls.js File in the src Folder

import React, { Component } from "react";
import { PaginationButtons } from "./PaginationButtons";

export class PaginationControls extends Component {

constructor(props) {
super(props);
this.pageSizes = this.props.sizes || [5, 10, 25, 100];
this.sortKeys = this.props.keys || ["Name", "Price"];

}

handlePageSizeChange = (ev) => {
this.props.setPageSize(ev.target.value);
}

handleSortPropertyChange = (ev) => {
this.props.setSortProperty(ev.target.value);
}

render() {
return <div className="m-2">
<div className="text-center m-1">
<PaginationButtons currentPage={this.props.currentPage}
pageCount={this.props.pageCount}
navigate={ this.props.navigateToPage }/>
</div>
<div className="form-inline justify-content-center">
<select className="form-control"
onChange={ this.handlePageSizeChange }
value={ this.props.pageSize|| this.pageSizes[0] }>
{ this.pageSizes.map(s =>
<option value={s} key={s}>{s} per page</option>
)}

</select>
<select className="form-control"
onChange={ this.handleSortPropertyChange }
value={ this.props.sortKey || this.sortKeys[o] }>
{ this.sortKeys.map(k =>

146

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

<option value={k.toLowerCase()} key={k}>
Sort By { k }
</option>
)}
</select>
</div>
</div>

The PaginationControls component uses select elements to allow the user to change the page size
and the property used to sort the results. The option elements that provide the individual values that can be
selected can be configured using props, which will allow me to reuse this component for the administration
features in Chapter 7. If no props are supplied, then default values suitable for paginating products are used.

The onChange prop is applied to the select elements to respond to user changes, which are handled by
methods that receive the event triggered by the change and invoke function props that are received from the
parent component.

The process of generating the buttons that will allow movement between pages has been delegated to a
component named PaginationButtons. To create this component, I added a file called PaginationButtons.js
to the src folder and added the code shown in Listing 6-20.

Listing 6-20. The Contents of the PaginationButtons.js File in the src Folder

import React, { Component } from "react";
export class PaginationButtons extends Component {

getPageNumbers = () => {
if (this.props.pageCount < 4) {
return [...Array(this.props.pageCount + 1).keys()].slice(1);
} else if (this.props.currentPage <= 4) {
return [1, 2, 3, 4, 5];
} else if (this.props.currentPage > this.props.pageCount - 4) {
return [...Array(5).keys()].reverse()
.map(v => this.props.pageCount - v);
} else {
return [this.props.currentPage -1, this.props.currentPage,
this.props.currentPage + 1];

}

render() {
const current = this.props.currentPage;
const pageCount = this.props.pageCount;
const navigate = this.props.navigate;
return <React.Fragment>
<button onClick={ () => navigate(current - 1) }
disabled={ current === 1 } className="btn btn-secondary mx-1">
Previous
</button>

147

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

{ current > 4 &&
<React.Fragment>
<button className="btn btn-secondary mx-1"
onClick={ () => navigate(1)}>1</button>
...
</React.Fragment>

}
{ this.getPageNumbers().map(num =>
<button className={ “btn mx-1 ${num === current
? "btn-primary": "btn-secondary"}"}
onClick={ () => navigate(num)} key={ num }>
{ num }
</button>)}
{ current <= (pageCount - 4) &%
<React.Fragment>
...
<button className="btn btn-secondary mx-1"
onClick={ () => navigate(pageCount)}>
{ pageCount }
</button>
</React.Fragment>
}

<button onClick={ () => navigate(current + 1) }
disabled={ current === pageCount }
className="btn btn-secondary mx-1">
Next
</button>
</React.Fragment>

Creating the pagination buttons is a complex process, and it is easy to get bogged down in the detail.
The approach I have taken in Listing 6-20 aims to strike a balance between simplicity and providing the user
with enough context to navigate through large amounts of data.

To connect the pagination controls to the product data in the store, I added a file called
ProductPageConnector. js to the src/shop folder and defined the component shown in Listing 6-21.

Listing 6-21. The Contents of the ProductPageConnector.js File in the src/shop Folder

import { connect } from "react-redux";

import { withRouter } from "react-router-dom";
import { setPageSize, setSortProperty } from "../data/ActionCreators";
const mapStateToProps = dataStore => dataStore;

const mapDispatchToProps = { setPageSize, setSortProperty };

const mergeProps = (dataStore, actionCreators, router) => ({
...dataStore, ...router, ...actionCreators,
currentPage: Number(router.match.params.page),

148

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

pageCount: Math.ceil((dataStore.products total

| dataStore.pageSize || 5)/(dataStore.pageSize || 5)),
navigateToPage: (page) => router.history

.push(" /shop/products/${router.match.params.category}/${page}"),

1)

export const ProductPageConnector = (PageComponent) =>
withRouter(connect(mapStateToProps, mapDispatchToProps,
mergeProps) (PageComponent))

As I explained earlier, the complexity in a React application often coalesces where different features
are combined, which is the connector components in the SportsStore application. The code in Listing 6-21
creates a higher-order component (known as a HOC and described in Chapter 14), which is a function that
provides features to another component through its props. The HOC is named ProductPageConnector, and
it combines data store properties, action creators, and route parameters to provide the pagination control
components with access to the features they require. The connect function is the same one I used in
Chapter 5 to connect a component to the data store, and it has been used in conjunction with the withRouter
function, which is its counterpart from the React Router package and which provides a component with
the route details from the closest Route. In Listing 6-22, I have applied the higher-order component to the
PaginationControls component and added the result to the content presented to the user.

Listing 6-22. Adding Pagination Controls in the Shop.js File in the src/shop Folder

import React, { Component } from "react";

import { CategoryNavigation } from "./CategoryNavigation";
import { ProductlList } from "./ProductlList";

import { CartSummary } from "./CartSummary";

import { ProductPageConnector } from "./ProductPageConnector";
import { PaginationControls } from "../PaginationControls";

const ProductPages = ProductPageConnector(PaginationControls);
export class Shop extends Component {

handleAddToCart = (...args) => {
this.props.addToCart(...args);
this.props.history.push("/shop/cart");
}

render() {
return <div className="container-fluid">
<div className="row">
<div className="col bg-dark text-white">
<div className="navbar-brand">SPORTS STORE</div>
<CartSummary { ...this.props } />
</div>
</div>
<div className="row">
<div className="col-3 p-2">
<CategoryNavigation baseUrl="/shop/products”
categories={ this.props.categories } />
</div>

149

www.EBookswWorld.ir

CHAPTER 6 SPORTSSTORE: REST AND CHECKOUT

<div className="col-9 p-2">
<ProductPages />
<ProductList products={ this.props.products }
addToCart={ this.handleAddToCart } />
</div>
</div>
</div>

The result is a series of buttons allowing the user to move between pages, alongside select elements
that change the sort property and the page size, as shown in Figure 6-5.

_

= i @ localhost:3000/shop/products/all/1 o :

SPORTS STORE Your cart: (empty) W

EREE COOooonn e

5 per page Y| SortBy Name ¥

Awesome Concrete Pizza
Chess: Vel corrupti laudantium.

m Awesome Concrete Table $624.00
Watersports: Et nisi qui.

i $499.00
Aweso_mfpgnttj)nﬁlke PP ” = |

'mu»—*"'-"“"

Figure 6-5. Adding support for paginating products

Adding the Checkout Process

The core features of the application are in place, allowing the user to filter and navigate through the product
data and add items to a basket that are displayed in summary and detailed views. Once the user completes
the checkout process, a new order must be sent to the web service, which will complete the shopping, reset
the user’s cart, and display a summary message. In the sections that follow, I add support for checking out
and placing an order.

150

www.EBooksWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Extending the REST Data Source and the Data Store

As I explain in Chapter 23, when a RESTful web service receives an HTTP request, it uses a combination

of the request method (also known as the verb) and the URL to determine what operation should be
performed. To send an order to the web service, am going to send a POST request to the web service’s
/orders URL. To keep the new features consistent with the existing application, I started by adding a
constant that identifies the data type for orders and a new action for storing the order, as shown in Listing 6-23.

Listing 6-23. Adding Types in the Types.js File in the src/data Folder

export const DataTypes = {
PRODUCTS: "products",
CATEGORIES: "categories",
ORDERS: "orders"

}

export const ActionTypes = {
DATA_LOAD: "data_load",
DATA_STORE: "data_store",
DATA_SET SORT PROPERTY: "data_set sort",
DATA SET PAGESIZE: "data_set pagesize",
CART_ADD: "cart_add",
CART_UPDATE: "cart_update",
CART_REMOVE: "cart delete",
CART _CLEAR: "cart clear"

The new data type allows me to define the URL for placing the order, as shown in Listing 6-24. I also use
it in Chapter 7 when I add support for administration features.

Listing 6-24. Adding a New URL in the Utls.js File in the src/data Folder
import { DataTypes } from "./Types";

const protocol = "http";
const hostname = "localhost";
const port = 3500;

export const RestUrls = {
[DataTypes.PRODUCTS]: ~${protocol}://${hostname}:${port}/api/products’,

[DataTypes.CATEGORIES]: “${protocol}://${hostname}:${port}/api/categories”,
[DataTypes.ORDERS]: ~${protocol}://${hostname}:${port}/api/orders”

In Listing 6-25, I added a method to the REST data source that receives the order object and sends it to
the web service.

151

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Listing 6-25. Adding a Method in the RestDataSource.js File in the src/data Folder

import Axios from "axios";
import { RestUrls } from "./Urls";

export class RestDataSource {
constructor(err handler) {
this.error handler = err handler || (() => {});
}
GetData = (dataType, params) =>

this.SendRequest("get", RestUrls[dataType], params);

StoreData = (dataType, data) =»>
this.SendRequest("post”, RestUrls[dataType], {}, data);

SendRequest = (method, url, params, data) =»>
Axios.request({ method, url, params, data });

The Axios package will receive a data object and take care of formatting it so that it can be sent to the
web service. In Listing 6-26, I added a new action creator that uses a Promise to send an order to the web
service. The web service will return the stored data, which will include a unique identifier.

Listing 6-26. Adding a Creator to the ActionCreators.js File in the src/data Folder

import { ActionTypes, DataTypes } from "./Types";
import { RestDataSource } from "./RestDataSource";

const dataSource = new RestDataSource();

export const loadData = (dataType, params) => (

{
type: ActionTypes.DATA_LOAD,
payload: dataSource.GetData(dataType, params).then(response =>
({ dataType,
data: response.data,
total: Number(response.headers["x-total-count"]),
params
b))
)
H

export const setPageSize = (newSize) => {
return ({ type: ActionTypes.DATA SET_PAGESIZE, payload: newSize});
}

export const setSortProperty = (newProp) =>
({ type: ActionTypes.DATA SET SORT PROPERTY, payload: newProp});

152

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

export const placeOrder = (order) =» ({
type: ActionTypes.DATA_STORE,
payload: dataSource.StoreData(DataTypes.ORDERS, order).then(response => ({
dataType: DataTypes.ORDERS, data: response.data

N)
)

To process the result and add the order to the data store, I added the reducer shown in Listing 6-27.

Listing 6-27. Storing an Order in the ShopReducer.js File in the src/data Folder

import { ActionTypes, DataTypes } from "./Types";

export const ShopReducer = (storeData, action) => {
switch(action.type) {
case ActionTypes.DATA LOAD:
return {
...storeData,
[action.payload.dataType]: action.payload.data,
[“${action.payload.dataType} total]: action.payload.total,
[“${action.payload.dataType} params™]: action.payload.params

};
case ActionTypes.DATA SET PAGESIZE:
return { ...storeData, pageSize: action.payload }

case ActionTypes.DATA SET_SORT PROPERTY:
return { ...storeData, sortKey: action.payload }
case ActionTypes.DATA_STORE:
if (action.payload.dataType === DataTypes.ORDERS) {
return { ...storeData, order: action.payload.data }
}

break;
default:
return storeData || {};

Creating the Checkout Form

To complete a SportsStore order, the user must complete a form with their personal details, which means

that I must present the user with a form. React supports two ways to use form elements: controlled and
uncontrolled. For a controlled element, React manages the element’s content and responds to its change
events. The select elements used for configuring pagination fall into this category. For the checkout form,

I am going to use uncontrolled elements, which are not closely managed by React and rely more on the
browser’s functionality. The key to using uncontrolled for elements is a feature called refs, described in
Chapter 16, which allow a React component to keep track of the HTML elements that are produced by its
render method after they have been displayed to the user. For the checkout form, the advantage of using refs
is that I can validate the form using the HTMLS5 validation API, which I describe in Chapter 15. The validation
API requires direct access to the form elements, which wouldn’t be possible without the use of refs.

153

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Note There are packages available for creating and validating forms in React applications, but they can
be awkward to use and apply restrictions on the appearance of the form or the structure of the data that it
produces. It is easy to create custom forms and validation using the features described in Chapters 15 and 16,
which is the approach | have taken for the SportsStore chapter.

Creating the Validated Form

Iam going to create a reusable form with validation that will generate the fields required programmatically.
I created the src/forms folder and added to it a file called ValidatedForm. js, which I used to define the
component shown in Listing 6-28.

Listing 6-28. The Contents of the ValidatedForm.js File in the src/forms Folder

import React, { Component } from "react";
import { ValidationError } from "./ValidationError";
import { CetMessages } from "./ValidationMessages";

export class ValidatedForm extends Component {

constructor(props) {
super (props);
this.state = {
validationErrors: {}
}

this.formElements = {};
}

handleSubmit = () => {
this.setState(state => {
const newState = { ...state, validationErrors: {} }
Object.values(this.formElements).forEach(elem => {
if (lelem.checkvalidity()) {
newState.validationErrors[elem.name] = GetMessages(elem);
}

1)

return newState;

}) () :>{
if (Object.keys(this.state.validationErrors).length === 0) {
const data = Object.assign(...0Object.entries(this.formElements)

.map(e => ({[e[0]]: e[1].value})))
this.props.submitCallback(data);

1

154

www.EBooksWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

registerRef = (element) => {
if (element !== null) {
this.formElements[element.name] = element;
}

}

renderElement = (modelItem) => {
const name = modelItem.name || modelItem.label.tolLowerCase();
return <div className="form-group" key={ modelItem.label }>
<label>{ modelItem.label }</label>
<ValidationError errors={ this.state.validationErrors[name] } />
<input className="form-control" name={ name } ref={ this.registerRef }
{ ...this.props.defaultAttrs } { ...modelItem.attrs } />

</div>
}
render() {
return <React.Fragment>
{ this.props.formModel.map(m => this.renderElement(m))}
<div className="text-center">
<button className="btn btn-secondary m-1"
onClick={ this.props.cancelCallback }>
{ this.props.cancelText || "Cancel" }
</button>
<button className="btn btn-primary m-1"
onClick={ this.handleSubmit }>
{ this.props.submitText || "Submit"}
</button>
</div>
</React.Fragment>
}

The ValidatedForm component receives a data model and uses it to create a form that is validated
using the HTML5 API. Each form element is rendered with a label and a ValidationError component
that displays validation messages to the user. The form is displayed with buttons that cancel or submit the
form using callback functions provided as props. The submit callback will not be invoked unless all of the
elements meet their validation constraints.

When the submit callback is invoked, it will receive an object whose properties are the name attribute
values for the form elements and whose values are the data entered into each field by the user.

Defining the Form

To create the component that is used to display error messages, I added a file called ValidationError.js to
the src/forms folder and added the code shown in Listing 6-29.

155

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Listing 6-29. The Contents of the ValidationError.js File in the src/forms Folder

import React, { Component } from "react";
export class ValidationError extends Component {

render() {
if (this.props.errors) {
return this.props.errors.map(err =>
<h6 className="text-danger" key={err}>
{ err }
</h6>
)
}

return null;

The validation API presents validation errors in an awkward way, as explained in Chapter 16. To create
messages that can be shown to the user, I added a file called ValidationMessages.js in the src/forms
folder and defined the function shown in Listing 6-30.

Listing 6-30. The Contents of the ValidationMessages.js File in the src/forms Folder

export const GetMessages = (elem) => {
const messages = [];
if (elem.validity.valueMissing) {
messages.push("Value required");

if (elem.validity.typeMismatch) {
messages.push("Invalid ${elem.type}");
}

return messages,;

To use the validated form for checking out, I added a file called Checkout. js to the src/shop folder and
defined the component shown in Listing 6-31.

Listing 6-31. The Contents of the Checkout.js File in the src/shop Folder

import React, { Component } from "react";
import { ValidatedForm } from "../forms/ValidatedForm";

export class Checkout extends Component {

constructor(props) {
super (props);
this.defaultAttrs = { type: "text", required: true };
this.formModel = [
{ label: "Name"},
{ label: "Email", attrs: { type: "email" }},
{ label: "Address" },
{ label: "City"},

156

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

{ label: "Zip/Postal Code", name: "zip"},
{ label: "Country"}]

}

handleSubmit = (formData) => {
const order = { ...formData, products: this.props.cart.map(item =>
({ quantity: item.quantity, product id: item.product.id})) }
this.props.placeOrder(order);
this.props.clearCart();
this.props.history.push("/shop/thanks");

handleCancel = () => {
this.props.history.push("/shop/cart");

}
render() {
return <div className="container-fluid">
<div className="row">
<div className="col bg-dark text-white">
<div className="navbar-brand">SPORTS STORE</div>
</div>
</div>
<div className="row">
<div className="col m-2">
<ValidatedForm formModel={ this.formModel }
defaultAttrs={ this.defaultAttrs }
submitCallback={ this.handleSubmit }
cancelCallback={ this.handleCancel }
submitText="Place Order"
cancelText="Return to Cart" />
</div>
</div>
</div>
}

The Checkout component uses a ValidatedForm to present the user with fields for their name, email,
and address. Each form element will be created with the required attribute, and the type attribute of the
input element for the email address is set to email. These attributes are used by the HTML5 constraint
validation API and will prevent the user from placing an order unless they provide a value for all fields and
enter a valid email address into the email field (although it should be noted that only the format of the email
address is validated).

The handleSubmit method will be invoked when the user submits valid form data. This method receives
the form data and combines it with details of the user’s cart before calling the placeOrder and clearCart
action creators and then navigating to the /shop/thanks URL.

157

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Creating the Thank You Component

To present the user with confirmation of their order and to complete the checkout process, I added a file
called Thanks. js to the src/shop folder and defined the component shown in Listing 6-32.

Listing 6-32. The Contents of the Thanks.js File in the src/shop Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class Thanks extends Component {

render() {
return <div>
<div className="col bg-dark text-white">
<div className="navbar-brand">SPORTS STORE</div>
</div>
<div className="m-2 text-center"»
<h2>Thanks!</h2>
<p>Thanks for placing your order.</p>
<p>Your order is #{ this.props.order ? this.props.order.id : 0 }</p>
<p>We'll ship your goods as soon as possible.</p>
<Link to="/shop" className="btn btn-primary">
Return to Store
</Link>
</div>
</div>

The Thanks component displays a simple message and includes the value of the id property from the
order object, which it obtains through its order prop. This component will be connected to the data store,
and the order object it contains will have an id value that is assigned by the RESTful web service.

Applying the New Components

To add the new components to the application, I altered the routing configuration in the ShopConnector
component, as shown in Listing 6-33.

Listing 6-33. Adding New Routes in the ShopConnector.js File in the src/shop Folder

import React, { Component } from "react";

import { Switch, Route, Redirect }
from "react-router-dom"

import { connect } from "react-redux";

import { loadData, placeOrder } from "../data/ActionCreators”;

import { DataTypes } from "../data/Types";

import { Shop } from "./Shop";

import { addToCart, updateCartQuantity, removeFromCart, clearCart }
from "../data/CartActionCreators"”;

import { CartDetails } from "./CartDetails";

158

www.EBookswWorld.ir

CHAPTER 6
import { DataGetter } from "../data/DataGetter";
import { Checkout } from "./Checkout";
import { Thanks } from "./Thanks";
const mapStateToProps = (dataStore) => ({
...dataStore
}
const mapDispatchToProps = {
loadData,
addToCart, updateCartQuantity, removeFromCart, clearCart,
placeOrder
}

SPORTSSTORE: REST AND CHECKOUT

export const ShopConnector = connect(mapStateToProps, mapDispatchToProps)(

class extends Component {
render() {
return <Switch>
<Redirect from="/shop/products/:category"”

to="/shop/products/:category/1" exact={ true } />

<Route path={ "/shop/products/:category/:page" }
render={ (routeProps) =>

<DataGetter { ...this.props } { ...routeProps }>
<Shop { ...this.props } { ...routeProps } />

</DataGetter>
} />

<Route path="/shop/cart" render={ (routeProps) =>

<CartDetails { ...this.props } { ...routeProps } />} />
<Route path="/shop/checkout” render={ routeProps =»
<Checkout { ...this.props } { ...routeProps } /> } />

<Route path="/shop/thanks" render={ routeProps =»>

<Thanks { ...this.props } { ...routeProps } /> } />

<Redirect to="/shop/products/all/1" />
</Switch>

}

componentDidMount () {
this.props.loadData(DataTypes.CATEGORIES);
}

The result allows the user to check out. To test the new features, navigate to http://localhost:3000,
add one or more products to the cart, and click the Checkout button, which will present the form shown in
Figure 6-6. If you click the Place Order button before filling out the form, you will see validation warnings, as

shown in the figure.

www.EBookswWorld.ir

159

CHAPTER 6 SPORTSSTORE: REST AND CHECKOUT

B seactipp
(_

=

C O localhost3000/shop/checkout

SPORTS STORE

Name
Your Cart
Quantity Product Price
| Email
1 Awesome Cotton Bike $49900 § bob
Total: § address

Continue Shopping

Zip/Postal Code

Return to Cart

Mame

Value required

Email

Invalid email
bob

Address

Value required

City
Value required

Zip/Postal Code

Value required

Country

Value required

Figure 6-6. Validation errors when checking out

Note Validation is performed only when the user clicks the button. See Chapters 15 and 16 for examples of

validating the contents of a form element after each keystroke.

If you have filled all the fields and entered a valid email address, your
click the Place Order button, displaying the summary shown in Figure 6-7.

160

www.EBooksWorld.ir

order will be placed when you

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

m

= C ® localhost:3000/shop/thanks p ¢

SPORTS STORE

Thanks!

Thanks for placing your order.
Your order is #1

We'll ship your goods as soon as possible.

Return to Store

Figure 6-7. Placing an order

Open a new browser tab and request http://localhost:3500/api/orders, and the response will show
the JSON representation of the order you place, like this:

[{
"name":"Bob Smith","email":"bob@example.com",
"address":"123 Main Street","city":"New York","zip":"NY 10036",
"country":"USA", "products”:[{"quantity":1,"product id":318}],"id":1

}]

Each time you place an order, it will be assigned an id by the RESTful web service, which will then be
displayed in the order summary.

Tip The data used by the web service is regenerated each time that the development tools are started with
the npm start command, which makes it easy to reset the application. In Chapter 8, | switch the SportsStore
application to a persistent database as part of the preparations for deployment.

161

www.EBooksWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

Simplifying the Shop Connector Component

All of the features required by the shopping part of the SportsStore application are complete, but I am going
to make one more change in this chapter.

A React application is driven by its props, which provide components with the data and functions
they require. When features like URL routing and a data store are used, the point where their capabilities
are translated into props can become complex. For the SportsStore application, that is the ShopConnector
component, which incorporates data store properties, action creators, and URL routing for the shopping
part of the application. The advantage of consolidating these features is that the other shopping components
are simpler to write, maintain, and test. The disadvantage is that consolidation results in code that is hard to
read and where errors are likely to arise.

As T added features to the application, I added a new Route that selected a component and provided it
with access to props from the data store and the URL router. I could have been more specific about the props
each component received, which is the practice I have followed in many of the examples later in the book.
For the SportsStore project, however, I gave every component access to all of the props, which is an approach
that makes development easier and which allows the routing code to be tidied up once all of the features
have been added. In Listing 6-34, I have simplified the connector for the shopping features.

Listing 6-34. Simplifying the Code in the ShopConnector.js File in the src/connectors Folder

import React, { Component } from "react";
import { Switch, Route, Redirect }

from "react-router-dom"
import { connect } from "react-redux";
import * as ShopActions from "../data/ActionCreators”;
import { DataTypes } from "../data/Types";
import { Shop } from "../shop/Shop";
import * as CartActions from "../data/CartActionCreators";
import { CartDetails } from "../shop/CartDetails"”;
import { DataGetter } from "../data/DataGetter"”;
import { Checkout } from "../shop/Checkout";
import { Thanks } from "../shop/Thanks";

const mapDispatchToProps = { ...ShopActions, ...CartActions};

export const ShopConnector = connect(ds =» ds, mapDispatchToProps)(
class extends Component {

selectComponent = (routeProps) =» {
const wrap = (Component, Content) =»
<Component { ...this.props} { ...routeProps}»
{ Content && wrap(Content)}
</Component>
switch (routeProps.match.params.section) {
case "products”:
return wrap(DataGetter, Shop);
case "cart":
return wrap(CartDetails);
case "checkout":
return wrap(Checkout);

162

www.EBookswWorld.ir

CHAPTER 6 © SPORTSSTORE: REST AND CHECKOUT

case "thanks":
return wrap(Thanks);
default:
return <Redirect to="/shop/products/all/1" />

}
}
render() {
return <Switch>
<Redirect from="/shop/products/:category"
to="/shop/products/:category/1" exact={ true } />
<Route path={ "/shop/:section?/:category?/:page?"}
render = { routeProps =» this.selectComponent(routeProps) } />
</Switch>
}

componentDidMount = () => this.props.loadData(DataTypes.CATEGORIES);

In Chapter 9, I explain how JSX is translated into JavaScript, but it is easy to forget that all components
can be restructured to rely less on the declarative nature of HTML elements and more on pure JavaScript.
In Listing 6-34, I have collapsed the multiple Route components into one whose render function selects
the component that should be displayed to the user and provides it with props from the data store and URL
router. I have also changed the import statements for the action creators and used the spread operator when
mapping them to function props, which I didn’t do earlier because I wanted to show how I connected each
data store feature to the rest of the application.

Summary

In this chapter, I continued the development of the SportsStore folder, adding support for working with the
RESTful web server, scaling up the amount of data that the application can deal with, and adding support
for checking out and placing orders. In the next chapter, I add the administration features to the SportsStore
application.

163

www.EBookswWorld.ir

CHAPTER 7

SportsStore: Administration

In this chapter, I add the administration features to the SportsStore application, providing the tools required
to manage orders and products. I use GraphQL in this chapter rather than expanding the RESTful web
service I used for the customer-facing part of SportsStore. GraphQL is an alternative to conventional web
services that puts the client in control of the data it receives, although it requires more initial setup and can
be more complex to use.

Preparing for This Chapter

This chapter builds on the SportsStore project created in Chapter 5 and modified in Chapter 6. To prepare
for this chapter, I am going to generate a number of fake orders so there is data to work with, as shown in
Listing 7-1.

Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16

Listing 7-1. Altering the Application Data in the data.js File in the sportsstore Folder

var faker = require("faker");
faker.seed(100);
var categories = ["Watersports”, "Soccer", "Chess"];
var products = [];
for (let i = 1; 1 <= 503; i++) {
var category = faker.helpers.randomize(categories);
products.push({
id: i,
name: faker.commerce.productName(),
category: category,
description: ~${category}: ${faker.lorem.sentence(3)},
price: Number(faker.commerce.price())

H
}

var orders = [];
for (let i = 1; 1 <= 103; i++) {
var fname = faker.name.firstName(); var sname = faker.name.lastName();

© Adam Freeman 2019 165
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_7

www.EBookswWorld.ir

https://github.com/Apress/pro-react-16

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

var order = {
id: i, name: ~${fname} ${sname}",
email: faker.internet.email(fname, sname),
address: faker.address.streetAddress(), city: faker.address.city(),
zip: faker.address.zipCode(), country: faker.address.country(),
shipped: faker.random.boolean(), products:[]

}

var productCount = faker.random.number({min: 1, max: 5});

var product_ids = [];

while (product_ids.length < productCount) {
var candidateId = faker.random.number({ min: 1, max: products.length});
if (product_ids.indexOf(candidateld) === -1) {

product_ids.push(candidateld);

}

}
for (let j = 0; j < productCount; j++) {
order.products.push({
quantity: faker.random.number({min: 1, max: 10}),
product_id: product ids[j]
H
}

orders.push(order);

}

module.exports = () => ({ categories, products, orders })

Running the Example Application

Open a new command prompt, navigate to the sportsstore folder, and run the command shown in Listing 7-2.

Listing 7-2. Running the Example Application
npm start

The React development tools and the RESTful web service will start. Once the development tools have
compiled the SportsStore application, a new browser window will open and display the content shown in
Figure 7-1.

166

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

. React App
&« C (@ locathost3000/shop/products/all/1
SPORTS STORE Your cart: fempty) W
pioi]] oo]]s B or] v
Watersports 5 per page *| Sort By Name ¥
Soccer Awesome Concrete Pizza
Chess Soccer: Vel corrupti laudantium.
Awesome Concrete Table $624.00
Watersports: Et nisi qui. Add To Cart

bt g, g, st dsorog Bt QI TLEen. P I s LRI 4

Figure 7-1. Running the example application

Creating a GraphQL Service

The administration features that I add to the SportsStore application in this chapter will use GraphQL
instead of a RESTful web service. Few real applications would need to mix REST and GraphQL for the same
data, but I want to demonstrate both approaches to remote services.

GraphQL isn’t specific to React development, but it is so closely associated with React that I included
an introduction to GraphQL in Chapter 24 and demonstrated the different ways a GraphQL service can be
consumed by a React application in Chapter 25.

Tip 1am going to create a custom GraphQL server for the SportsStore application so that | can share data
with the RESTful web service provided by the excellent json-server package. As | explain in Chapter 24, there
are open source and commercial GraphQL servers available.

Defining the GraphQL Schema

GraphQL requires that all of its operations are defined in a schema. To define the schema for the queries the
service will support, I created a file called serverQueriesSchema.graphql in the sportsstore folder with the
content shown in Listing 7-3.

Listing 7-3. The Contents of serverQueriesSchema.graphql in the sportsstore Folder

type product { id: ID!, name: String!, description: String! category: String!
price: Float! }

type productPage { totalSize: Int!, products(sort: String, page: Int, pageSize: Int): [product]}

type orderPage { totalSize: Int, orders(sort: String, page: Int, pageSize: Int): [order]}

167

www.EBooksWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

type order {
id: ID!, name: String!, email: String!, address: String!, city: String!,
zip: String!, country: String!, shipped: Boolean, products: [productSelection]

}

type productSelection { quantity: Int!, product: product }

type Query {
product(id: ID!): product
products(category: String, sort: String, page: Int, pageSize: Int): productPage
categories: [String]
orders(onlyUnshipped: Boolean): orderPage

The GraphQL specification includes a schema language used to define the features that a service
provides. The schema in Listing 7-3 defines queries for products, categories, and orders. The product and
order queries support pagination and return results that include a totalSize property that reports the
number of items available so the client can present the user with pagination controls. The products can be
filtered by category, and the orders can be filtered so that only unshipped orders are shown.

In GraphQL, changes are performed using mutations, following the theme of separating
operations to read and write data that is common to much of React development. I added a file called
serverMutationsSchema.graphql to the sportsstore folder and used it to define the mutations shown in
Listing 7-4.

Listing 7-4. The Contents of the serverMutationsSchema.graphql File in the sportsstore Folder

input productStore {
name: String!, description: String!, category: String!, price: Float!
}

input productUpdate {
id: ID!, name: String, description: String, category: String, price: Float
}

type Mutation {
storeProduct(product: productStore): product
updateProduct(product: productUpdate): product
deleteProduct(id: ID!): product
shipOrder(id: ID!, shipped: Boolean!): order

The schema in Listing 7-4 defines mutations for storing new products, updating and deleting existing
products, and marking orders as shipped or unshipped.

Defining the GraphQL Resolvers

The schema in a GraphQL service is implemented by a resolver. To provide the resolver for the queries,
Iadded a file called serverQueriesResolver.js in the sportsstore folder with the code shown in Listing 7-5.

168

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

Listing 7-5. The Contents of the serverQueriesResolver.js File in the sportsstore Folder

const paginateQuery = (query, page = 1, pageSize = 5) =>
query.drop((page - 1) * pageSize).take(pageSize);

const product = ({id}, {db}) => db.get("products").getById(id).value();

const products = ({ category }, { db}) => ({
totalSize: () => db.get("products")
.filter(p => category ? new RegExp(category, "i").test(p.category) : p)
.size().value(),
products: ({page, pageSize, sort}) => {
let query = db.get("products");
if (category) {
query = query.filter(item =>
new RegExp(category, "i").test(item.category))
}
if (sort) { query = query.orderBy(sort) }
return paginateQuery(query, page, pageSize).value();
}
1

const categories = (args, {db}) => db.get("categories").value();

const resolveProducts = (products, db) =>
products.map(p => ({
quantity: p.quantity,
product: product({ id: p.product id} , {db})
)

const resolveOrders = (onlyUnshipped, { page, pageSize, sort}, { db }) => {
let query = db.get("orders");
if (onlyUnshipped) { query = query.filter({ shipped: false}) }
if (sort) { query = query.orderBy(sort) }
return paginateQuery(query, page, pageSize).value()
.map(order => ({ ...order, products: () =>
resolveProducts(order.products, db) }));

}

const orders = ({onlyUnshipped = false}, {db}) => ({
totalSize: () => db.get("orders")
.filter(o => onlyUnshipped ? o.shipped === false : o).size().value(),
orders: (...args) => resolveOrders(onlyUnshipped, ...args)

1)

module.exports = { product, products, categories, orders }
The code in Listing 7-5 implements the queries defined in Listing 7-3. You can see an example of a
stand-alone custom GraphQL server in Chapter 24, but the code in Listing 7-5 relies on the Lowdb database

that the json-server package uses for data storage and that is described in detail at https://github.com/
typicode/lowdb.

169

www.EBookswWorld.ir

https://github.com/typicode/lowdb
https://github.com/typicode/lowdb

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

Each query is resolved using a series of functions invoked when the client requests specific fields,
ensuring that the server has to load and process only the data that is needed. For the orders query, for
example, the chain of functions ensures that the server only has to query the database for the related
product objects if the client asks for them, avoiding retrieving data that is not required.

To implement the mutations, I added a file called serverMutationsResolver. js to the sportsstore
folder and added the code shown in Listing 7-6.

Listing 7-6. The Contents of the serverMutationsResolver.js File in the sportsstore Folder
const storeProduct = ({ product}, {db }) =>
db.get("products").insert(product).value();

const updateProduct = ({ product }, { db }) =>
db.get("products").updateById(product.id, product).value();

const deleteProduct = ({ id }, { db }) => db.get("products").removeById(id).value();

const shipOrder = ({ id, shipped }, { db }) =>
db.get("orders").updateById(id, { shipped: shipped}).value()

module.exports = {
storeProduct, updateProduct, deleteProduct, shipOrder
}

Each of the functions defined in Listing 7-6 corresponds to a mutation defined in Listing 7-4. The code
required to implement the mutation is simpler than the queries because the queries required additional
statements to filter and page data.

Updating the Server

In Chapter 5, I added the packages required to create a GraphQL server to the SportsStore project.
In Listing 7-7, I have used these packages to add support for GraphQL to the back-end server that has been
providing the SportsStore application with its RESTful web service.

Listing 7-7. Adding GraphQL in the server.js File in the sportsstore Folder

const express = require("express");

const jsonServer = require("json-server");

const chokidar = require('chokidar');

const cors = require("cors");

const fs = require("fs");

const { buildSchema } = require("graphql");

const graphqlHTTP = require("express-graphql");

const queryResolvers = require("./serverQueriesResolver");
const mutationResolvers = require("./sexverMutationsResolver");

const fileName = process.argv[2] || "./data.js"
const port = process.argv[3] || 3500;

170

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

let router = undefined;
let graph = undefined;

const app = express();

const createServer = () => {
delete require.cache[require.resolve(fileName)];
setTimeout(() => {
router = jsonServer.router(fileName.endsWith(".js")
? require(fileName)() : fileName);
let schema = fs.readFileSync("./serverQueriesSchema.graphql”, "utf-8")
+ fs.readFileSync("./serverMutationsSchema.graphql”, "utf-8");
let resolvers = { ...queryResolvers, ...mutationResolvers };
graph = graphqlHTTP({
schema: buildSchema(schema), rootValue: resolvers,
graphiql: true, context: { db: router.db }
h)

}, 100)

}

createServer();

app.use(cors());

app.use(jsonServer.bodyParser)

app.use("/api", (req, resp, next) => router(req, resp, next));
app.use("/graphql”, (req, resp, next) => graph(req, resp, next));

chokidar.watch(fileName).on("change", () => {
console.log("Reloading web service data...");

createServer();
console.log("Reloading web service data complete.");

D;
app.listen(port, () => console.log(Web service running on port ${port}"));

The additions load the schema and resolvers and use them to create a GraphQL service that shares a
database with the existing RESTful web service. Stop the development tools and run the command shown in
Listing 7-8 in the sportsstore folder to start them again, which will also start the GraphQL server.

Listing 7-8. Starting the Development Tools and Services

npm start

171

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

To make sure that the GraphQL server is running, navigate to http://localhost:3500/graphql, which
will display the tool shown in Figure 7-2.

[GraphiQL
& C (@D locathost:3500/graphgl i
GraphiQL = Prettify History < Docs

{ »

QUERY VARIABLES

Figure 7-2. The GraphiQL browser

The package I used to create the GraphQL server includes the GraphiQL browser, which makes it easy
to explore a GraphQL service. Replace the welcome message in the left part of the window with the GraphQL
mutation shown in Listing 7-9.

Note The data used by the RESTful web service and GraphQL service is reset each time the npm start
command 2 is used, which means that the change made by the mutation in Listing 7-9 will be lost when you
next start the server. | convert the SportsStore application to a persistent database as part of the deployment
preparations in Chapter 8.

Listing 7-9. A GraphQL Mutation

mutation {
updateProduct(product: {
id: 272, price: 100
}) { id, name, category, price }

172

www.EBooksWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

Click the Execute Query button to send the mutation to the GraphQL server, which will update a
product in the database and produce the following result:

{
"data": {
"updateProduct": {
Ilidll: II272II’
"name": "Awesome Concrete Pizza",
"category": "Soccer",
"price": 100

Navigate back to http://localhost:3000 (or reload the browser tab if it is still open), and you will see
that the price of the first product shown in the list has changed, as shown in Figure 7-3.

. React App

C @ localhost:3000/shop/products/all/1

SPORTS STORE Your cart: fempty) W

ST T T

Watersports 5 per page *| SortBy Name ¥

Soccer Awesome Concrete Pizza $100.00

Chee Soccer: Vel corrupti laudantium.

Awesome Concrete Table

Watersports: Et nisi qui.
Y Wy W SRR i Y SR e Y : _

Figure 7-3. The effect of a GraphQL mutation

Creating the Order Administration Features

GraphQL requires more work at the server to create the schema and write the resolvers, but the benefit is
that the client can be much simpler than one that uses a RESTful web service. In part, this is because of the
way that GraphQL uses well-defined but flexible queries, but it is also because the GraphQL client package
provides a lot of useful features that I had to create manually in Chapters 5 and 6.

173

www.EBooksWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

Note The way that | use GraphQL in the SportsStore chapter is the simplest approach, but it hides the
detail of how GraphQL works. In Chapter 25, | demonstrate how to use GraphQL directly over HTTP and also
how to integrate GraphQL into an application that uses a data store.

Defining the Order Table Component

I am going to start by creating a display of the orders. To define the component that displays the order data,
I'added afile called OrdersTable. js in the src/admin folder and added the code shown in Listing 7-10

Listing 7-10. The Contents of the OrdersTable.js File in the src/admin Folder

import React, { Component } from "react";
import { OrdersRow } from "./OrdersRow";
import { PaginationControls } from "../PaginationControls";

export class OrdersTable extends Component {

render = () =>
<div>
<h4 className="bg-info text-white text-center p-2">
{ this.props.totalSize } Orders
</h4>

<PaginationControls keys={["ID", "Name"]}
{ ...this.props } />

<table className="table table-sm table-striped">
<thead>
<tr><th>ID</th>
<th>Name</th><th>Email</th>
<th className="text-right">Total</th>
<th className="text-center">Shipped</th>
</tr>
</thead>
<tbody>
{ this.props.orders.map(order =>
<OrdersRow key={ order.id }
order={ order} toggleShipped={ () =>
this.props.toggleShipped(order.id, !order.shipped) }
/>
)}
</tbody>
</table>
</div>

The OrdersTable component displays the total number of orders and renders a table where
responsibility for each row is delegated to the OrdersRow component, which I defined by adding a file called
OrdersRow. js to the src/admin folder with the code shown in Listing 7-11.

174

www.EBooksWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

Listing 7-11. The Contents of the OrdersRow.js File in the src/admin Folder

import React, { Component } from "react";
export class OrdersRow extends Component {

calcTotal = (products) => products.reduce((total, p) =>
total += p.quantity * p.product.price, 0).toFixed(2)

getShipping = (order) => order.shipped
? <i className="fa fa-shipping-fast text-success" />
: <i className="fa fa-exclamation-circle text-danger" />

render = () =>
<tr>
<td>{ this.props.order.id }</td>
<td>{this.props.order.name}</td>
<td>{ this.props.order.email }</td>
<td className="text-right">
${ this.calcTotal(this.props.order.products) }
</td>
<td className="text-center">
<button className="btn btn-sm btn-block bg-muted"
onClick={ this.props.toggleShipped }>
{ this.getShipping(this.props.order)}

{ this.props.order.shipped
? " Shipped" : " Pending"}

</button>
</td>
</tr>

Defining the Connector Component

When a GraphQL client queries its server, it provides values for any parameters the query defines and
specifies the data fields that it wants to receive. This is the biggest difference from most RESTful web
services, and it means that GraphQL clients receive only the data values they require. It does mean, however,
that a client-side query has to be defined before data can be retrieved from the server. I like to define queries
separately from components, and I added a file called clientQueries. js to the src/admin folder with the
content shown in Listing 7-12.

Listing 7-12. The Contents of the clientQueries.js File in the src/admin Folder

import gql from "graphql-tag";

export const ordersSummaryQuery = gql’
query($onlyShipped: Boolean, $page:Int, $pageSize:Int, $sort:String) {
orders(onlyUnshipped: $onlyShipped) {
totalSize,

175

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

orders(page: $page, pageSize: $pageSize, sort: $sort) {
id, name, email, shipped
products {
quantity, product { price }

y

GraphQL queries are defined as JavaScript string literals in the client application but must be processed
using the gql function from the graphql-tag package. The query in Listing 7-12 targets the server’s orders
query and will accept variables that are used for the query’s onlyShipped, page, pageSize, and sort
parameters. The client query selects only the fields it requires and incorporates details of the product data
related to each order, which is included in the query results generated by the server’s resolver for the orders
query.

The GraphQL client package, React-Apollo, provides the graphql function, which is the counterpart
to the connect and withRouter functions used earlier and which connects a component to the GraphQL
features by creating a higher-order component, which is a function that provides features to a component,
as described in Chapter 14. To create the connection between the OrdersTable component and the query
defined in Listing 7-12, I added a file called OrdersConnector. js to the src/admin folder and added the
code shown in Listing 7-13.

Listing 7-13. The Contents of the OrdersConnector.js File in the src/admin Folder

import { graphql } from "react-apollo";
import { ordersSummaryQuery } from "./clientQueries";
import { OrdersTable } from "./OrdersTable";

const vars = {
onlyShipped: false, page: 1, pageSize: 10, sort: "id"

}
export const OrdersConnector = graphql(ordersSummaryQuery,
{
options: (props) => ({ variables: vars }),
props: ({data: { loading, orders, refetch }}) => ({
totalSize: loading ? 0 : orders.totalSize,
orders: loading ? []: orders.orders,
currentPage: vars.page,
pageCount: loading ? 0 : Math.ceil(orders.totalSize / vars.pageSize),
navigateToPage: (page) => { vars.page = Number(page); refetch(vars)},
pageSize: vars.pageSize,
setPageSize: (size) => { vars.pageSize = Number(size); refetch(vars)},
sortKey: vars.sort,
setSortProperty: (key) => { vars.sort = key; refetch(vars)},
1
}
)(OrdersTable)

176

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

The graphql function accepts arguments for the query and a configuration object and returns a
function that is used to wrap a component and provide it access to the query features. There are many
properties supported by the configuration object, but I require only two. The first is the options property,
which is used to create the set of variables that will be applied to the GraphQL query, using a function that
receives the props applied by the parent component.

Tip The Apollo GraphQL client caches the results from queries so that it doesn’t send duplicate requests to
the server, which is useful when using components with routing, for example.

The second is the props property, which is used to create the props that will be passed to the display
component and is provided with a data object that combines details of the query progress, the response
from the server, and the functions used to refresh the query.

I selected three properties from the data object and used them to create the props for the OrdersTable
component. The loading property is true while the query is sent to the server and the response is awaited,
which allows me to use placeholder values until the GraphQL response is received. The results of the query
are assigned to a property given the query name, which is orders in this case. The response from a query is
structured like this:

{ "orders":
{ "totalSize":103,
"orders":[

{"id":"1","name":"Velva Dietrich","email":"Velva Dietrich@yahoo.com",

"shipped":false, "products":[{"quantity":8,"product”:{"price":84 },

{"quantity":7,"product”:{"price":125}, {"quantity":3,"product”:{"price":352}
...other data values omitted for brevity...

To get the total number of available orders, for example, I read the value of the orders.totalSize
property, like this:
totalSize: loading ? 0 : orders.totalSize,

The value of the totalSize prop is zero until the result from the server has been received and is then
assigned the value of orders.totalSize.

The third property I selected from the data object is refetch, which is a function that resends the query
and which I use to respond to pagination changes.

navigateToPage: (page) => { vars.page = Number(page); refetch(vars)},

I pass all of the query variables to the refetch function for brevity, but any values the function receives
are merged with the original variables, which can be useful for more complex queries.

177

www.EBooksWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

Tip There s also a fetchMore function available that can be used to retrieve data and merge it with existing
results, which is useful for components that gradually build up the data they present to the user. | have taken a
simpler approach for the SportsStore application, and each page of data replaces the previous query results.

Configuring the GraphQL Client

Access to the GraphQL client features is provided through the ApolloProvider component. To configure
the GraphQL client and to create a convenient placeholder for other administration features, I created the
src/admin folder and added to it a file called Admin. js, which I used to define the component shown in
Listing 7-14.

Listing 7-14. The Contents of the Admin.js File in the src/admin Folder

import React, { Component } from "react";

import ApolloClient from "apollo-boost";

import { ApolloProvider} from "react-apollo”;
import { GraphQlUrl } from "../data/Urls";

import { OrdersConnector } from "./OrdersConnector”

const graphQlClient = new ApolloClient({
uri: GraphQlurl
D;

export class Admin extends Component {

render() {
return <ApolloProvider client={ graphQlClient }>
<div className="container-fluid">
<div className="row">
<div className="col bg-info text-white">
<div className="navbar-brand">SPORTS STORE</div>
</div>
</div>
<div className="row">
<div className="col p-2">
<0rdersConnector />
</div>
</div>
</div>
</ApolloProvider>

To get started with the administration features, [am going to display an OrdersTable component,
which I will create in the next section. I'll return to Admin and use URL routing to display additional features.
To set the URL that will be used to communicate with the GraphQL server, I added the statement shown in
Listing 7-15 to the Urls. js file.

178

www.EBooksWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

Listing 7-15. Adding a URL in the Urls.js File in the src/data Folder

import { DataTypes } from "./Types";
const protocol = "http";

const hostname = "localhost";

const port = 3500;

export const RestUrls = {
[DataTypes.PRODUCTS]: ~${protocol}://${hostname}:${port}/api/products”,
[DataTypes.CATEGORIES]: “${protocol}://${hostname}:${port}/api/categories”,
[DataTypes.ORDERS]: “${protocol}://${hostname}:${port}/api/orders”

export const GraphQlUrl = ~${protocol}://${hostname}:${port}/graphql”;

GraphQL requires only one URL because, unlike REST, it doesn’t use the URL or the HTTP method to
describe an operation. In Chapter 8, I will change the URLs used by the application as I prepare the project
for deployment.

To incorporate the new features into the application, I added the route shown in Listing 7-16 to the App
component.

Listing 7-16. Adding a Route in the App.js File in the src Folder

import React, { Component } from "react";

import { SportsStoreDataStore } from "./data/DataStore”;

import { Provider } from "react-redux";

import { BrowserRouter as Router, Route, Switch, Redirect }
from "react-router-dom";

import { ShopConnector } from "./shop/ShopConnector";

import { Admin } from "./admin/Admin";

export default class App extends Component {

render() {
return <Provider store={ SportsStoreDataStore }>
<Router>
<Switch>
<Route path="/shop" component={ ShopConnector } />
<Route path="/admin" component={ Admin } /»
<Redirect to="/shop" />
</Switch>
</Router>
</Provider>
}

Save the changes to the files and navigate to http://localhost:3000/admin, and you will see the
results shown in Figure 7-4.

179

www.EBookswWorld.ir

CHAPTER 7 = SPORTSSTORE: ADMINISTRATION

B Reactapp

€ - C @ localhost:3000/admin

SPORTS STORE

10 perpage " | SortByID i

ID Name Email Total Shipped
1 Velva Dietrich Velva_Dietrich@yahoo.com £2603.00 0 Pending
2 Odessa Lubowitz Odessa.Lubowitz@hotmail.com $14104.00 0 Pending
3 Imelda O'Reilly Imelda44@yahoo.com $9913.00 0O Pending
- Christelle Gibson Christelle_Gibson@gmail.com £3982.00 # Shipped
5 Justen Gusikowski Justen.Gusikowski10@hotmail.com $15905.00 O Pending
6 Karl Mante Karl.Mante@yahoo.com $1449.00 s Shipped
7 Tianna Mitchell Tianna75@gmail.com $6390.00 O Pending
8 Pierre Wiegand Pierre. Wiegand@gmail.com $4472.00 & Shipped
g Quinton Rath Quinton55@yahoo.com $7889.00 0 Pending
10 Araceli Boyle Araceli_Boyle@yahoo.com $3420.00 # Shipped

Figure 7-4. Making a GraphQL query from a component

Configuring the Mutation

The same basic approach for queries can be applied to integrate mutations into a React application. To allow
the administrator to mark orders as shipped, I added a file called clientMutations. js to the src/admin
folder with the content shown in Listing 7-17.

Listing 7-17. The Contents of the clientMutations.js File in the src/admin Folder
import gql from "graphql-tag";
export const shipOrder = ggl’

mutation($id: ID!, $shipped: Boolean!) {

shipOrder(id: $id, shipped: $shipped) {
id, shipped
}

}
The GraphQL targets the shipOrder mutation, which updates the shipped property of an order
specified by the value of its id property. In Listing 7-18 [have used the graphql function to provide access to

the mutation and its results.

180

www.EBooksWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

Listing 7-18. Applying a Mutation in the OrdersConnector.js File in the src/admin Folder

import { graphql, compose } from "react-apollo”;
import { ordersSummaryQuery } from "./clientQueries";
import { OrdersTable } from "./OrdersTable";

import { shipOrder } from "./clientMutations";

const vars = {
onlyShipped: false, page: 1, pageSize: 10, sort: "id"

export const OrdersConnector = compose(
graphgl (ordersSummaryQuery,

options: (props) => ({ variables: vars }),

props: ({data: { loading, orders, refetch }}) => ({
totalSize: loading ? 0 : orders.totalSize,
orders: loading ? []: orders.orders,
currentPage: vars.page,

pageCount: loading ? 0 : Math.ceil(orders.totalSize / vars.pageSize),
navigateToPage: (page) => { vars.page = Number(page); refetch(vars)},

pageSize: vars.pageSize,
setPageSize: (size) =>
{ vars.pageSize = Number(size); refetch(vars)},
sortKey: vars.sort,
setSortProperty: (key) => { vars.sort = key; refetch(vars)},
b
}
)5
graphql(shipOrder, {
props: ({ mutate }) => ({

)
h)
) (OrdersTable);

toggleShipped: (id, shipped) => mutate({ variables: { id, shipped }})

The React-Apollo package provides the compose function that simplifies combining queries and
mutations. The existing query is combined with another call to the graphql function, which is passed the

mutation from Listing 7-17. When using a mutation, the props property in the configuration object receives a
function named mutate, which I use to create a prop called toggleShipped, corresponding to the prop used
by the OrdersRow component to change the status of an order. To see the result, click the Shipped/Pending

indicator for an order in the table, and its status will be changed, as shown in Figure 7-5.

www.EBookswWorld.ir

181

CHAPTER 7 = SPORTSSTORE: ADMINISTRATION

B Resctapp
€ - C @ localhost:3000/admin
SPORTS STORE
103 Orders
T TLLE
5 per page v| SortBylID X —— exlaad
o PP
ID Name Email Total Shipped $2 & Shipped
1 Velva Dietrich Velva_Dietrich@yahoo.com $2603.00| @ Pending
$14104.00 [1] Pending
2 Odessa Lubowitz Odessa.Lubowitz@hotmail.com $14104.00 @ Pending
$9913.00 @ Pending
3 Imelda O'Reilly Imelda44@yahoo.com $9913.00 @ Pending
$398200 & Shipped
4 Christelle Gibson Christelle_Gibson@gmail.com §3982.00 @ Shipped b $15905.00 @
. Pending
5 Justen Gusikowski Justen.Gusikowski10@hotmail.com $15905.00 @ Pending

Figure 7-5. Using a mutation

The Apollo client automatically updates its cache of data when there is a change, which means that
the change to the value of the shipped property is automatically reflected in the data displayed by the
OrdersTable component.

Creating the Product Administration Features

To provide administration of the products presented to the user, I added a file called ProductsTable. js to
the src/admin folder and used it to define the component shown in Listing 7-19.

Listing 7-19. The Contents of the ProductsTable.js File in the src/admin Folder

import React, { Component } from "react";

import { Link } from "react-router-dom";

import { PaginationControls } from "../PaginationControls";
import { ProductsRow } from "./ProductsRow";

export class ProductsTable extends Component {
render = () =>
<div>
<h4 className="bg-info text-white text-center p-2">

{ this.props.totalSize } Products
</h4>

182

www.EBooksWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

<PaginationControls keys={["ID", "Name", "Category"]}
{ ...this.props } />

<table className="table table-sm table-striped">
<thead>
<tr><th>ID</th>
<th>Name</th><th>Category</th>
<th className="text-right">Price</th>
<th className="text-center"></th>
</tr>
</thead>
<tbody>
{ this.props.products.map(prod =>
<ProductsRow key={ prod.id} product={ prod }
deleteProduct={ this.props.deleteProduct } />
)}
</tbody>
</table>
<div className="text-center">
<Link to="/admin/products/create" className="btn btn-primary">
Create Product
</Link>
</div>

</div>

The ProductsTable component receives an array of objects through its products prop and uses the
ProductsRow component to generate a table row for each of them. There is also a Link styled as a button that
will be used to navigate to the component that will allow new products to be created.

To create the ProductsRow component that is responsible for a single table row, I added a file called
ProductsRow. js to the src/admin folder and added the code shown in Listing 7-20.

Listing 7-20. The Contents of the ProductsRow.js File in the src/admin Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class ProductsRow extends Component {

render = () =>

<tr>
<td>{ this.props.product.id }</td>
<td>{this.props.product.name}</td>
<td>{ this.props.product.category }</td>
<td className="text-right">
${ this.props.product.price.toFixed(2) }
</td>
<td className="text-center">
<button className="btn btn-sm btn-danger mx-1"
onClick={ () =>
this.props.deleteProduct(this.props.product.id) }>
Delete

183

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

</button>
<Link to={"/admin/products/${this.props.product.id}"}
className="btn btn-sm btn-warning">
Edit
</Link>
</td>
</tr>

Table cells are rendered for the id, name, category, and price properties. There is a button that invokes
a function prop named deleteProduct that will remove a product from the database, and there is a Link that
will navigate to the component used to edit product details.

Connecting the Product Table Component

To connect the product table component to the GraphQL data, I added the queries shown in Listing 7-21 to
the clientQueries. js file, which also include the query I will require for editing a product. These queries
correspond to the server-side GraphQL defined at the start of the chapter.

Listing 7-21. Adding Queries in the clientQueries.js File in the src/admin Folder

import gql from "graphql-tag";

export const ordersSummaryQuery = gql’
query($onlyShipped: Boolean, $page:Int, $pageSize:Int, $sort:String) {
orders(onlyUnshipped: $onlyShipped) {

totalSize,

orders(page: $page, pageSize: $pageSize, sort: $sort) {
id, name, email, shipped
products {

quantity, product { price }

}

y

export const productsList = gql’
query($page: Int, $pageSize: Int, $sort: String) {
products {
totalSize,
products(page: $page, pageSize: $pageSize, sort: $sort) {
id, name, category, price
}

)
}

export const product = gql”
query($id: ID!) {

product(id: $id) {
id, name, description, category, price
}

¥

184

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

The query assigned to the constant named productslList will retrieve the id, name, category, and price
properties for a page of products. The query assigned to the constant named product will retrieve the id,
name, description, category, and price properties of a single product object. To add support for deleting,
creating, and editing objects, I added the mutations shown in Listing 7-22 to the clientMutations. js file.

Listing 7-22. Adding Mutations in the clientMutations.js File in the src/admin Folder

import gql from "graphql-tag";

export const shipOrder = gql®
mutation($id: ID!, $shipped: Boolean!) {
shipOrder(id: $id, shipped: $shipped) {
id, shipped

y

export const storeProduct = gql’
mutation($product: productStore) {
storeProduct(product: $product) {
id, name, category, description, price
}

¥

export const updateProduct = gql”
mutation($product: productUpdate) {
updateProduct(product: $product) {
id, name, category, description, price
}

¥

export const deleteProduct = gql”
mutation($id: ID!) {
deleteProduct(id: $id) {
id
}
¥
The new mutations correspond to the server-side GraphQL defined at the start of the chapter and allow
the client to store a new product, edit an existing product, and delete a product.
Having defined the queries and mutations, [added a file called ProductsConnector. js to the src/admin
folder and defined the higher-order component shown in Listing 7-23.
Listing 7-23. The Contents of the ProductsConnector.js File in the src/admin Folder

import { graphql, compose } from "react-apollo";
import { ProductsTable } from "./ProductsTable";
import { productsList } from "./clientQueries";
import { deleteProduct } from "./clientMutations"”;

const vars = {
page: 1, pageSize: 10, sort: "id"
}

185

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

export const ConnectedProducts = compose(

graphgl(productslist,
{

options: (props) => ({ variables: vars }),
props: ({data: { loading, products, refetch }}) => ({
totalSize: loading ? 0 : products.totalSize,
products: loading ? []: products.products,
currentPage: vars.page,
pageCount: loading ? 0
: Math.ceil(products.totalSize / vars.pageSize),
navigateToPage: (page) => { vars.page = Number(page); refetch(vars)},
pageSize: vars.pageSize,
setPageSize: (size) =>
{ vars.pageSize = Number(size); refetch(vars)},
sortKey: vars.sort,
setSortProperty: (key) => { vars.sort = key; refetch(vars)},
1))
}

)5
graphgl(deleteProduct,
{

options: {

update: (cache, { data: { deleteProduct: { id }}}) => {
const queryDetails = { query: productsList, variables: vars };
const data = cache.readQuery(queryDetails)
data.products.products =

data.products.products.filter(p => p.id !== id);

data.products.totalSize = data.products.totalSize - 1;
cache.writeQuery({...queryDetails, data });

}
b
props: ({ mutate }) => ({
deleteProduct: (id) => mutate({ variables: { id }})
H

1)

) (ProductsTable);

The code in Listing 7-23 is similar to the corresponding code for the orders administration features. One

key difference is that mutations that remove objects do not automatically update the local cached data. For
this type of mutation, an update function must be defined that modifies the cached data directly, like this:

update: (cache, { data: { deleteProduct: { id }}}) => {

186

const queryDetails = { query: productslList, variables: vars };

const data = cache.readQuery(queryDetails)

data.products.products = data.products.products.filter(p => p.id !== id);
data.products.totalSize = data.products.totalSize - 1;
cache.writeQuery({...queryDetails, data });

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

This function reads the cached data, removes an object, reduces the totalSize to reflect the deletion,
and then writes the data back to the cache, which will have the effect of updating the product list without
needing to query the server.

Tip The downside of this approach is that it doesn’t repaginate the data to reflect the deletion, which
means that the page displays fewer items until the user navigates to another page. In the next section, |
demonstrate how to address this by clearing the cached data, which leads to an additional GraphQL query but
ensures that the application is consistent.

Creating the Editor Components

To allow the user to create a new product, [added a file called ProductEditor. js to the src/admin folder
and defined the component shown in Listing 7-24.

Listing 7-24. The Contents of the ProductEditor.js File in the src/admin Folder

import React, { Component } from "react";

import { Query } from "react-apollo";

import { ProductCreator } from "./ProductCreator";
import { product } from "./clientQueries";

export class ProductEditor extends Component {

render = () =>
<Query query={ product } variables={ {id: this.props.match.params.id} } >
{ ({ loading, data }) => {
if (!loading) {
return <ProductCreator {...this.props } product={data.product}
mode="edit" />
}

return null;

1}

</Query>

The Query component is provided as an alternative to the graphql function and allows GraphQL
queries to be performed declaratively, with the results and other client features presented through a render
prop function, which is described in Chapter 14. The ProductEditor component defined in Listing 7-24 will
obtain the id of the product that the administrator wants to edit and obtains it using the Query component,
which is configured using its query and variables props. The render prop function receives an object
with loading and data properties, which have the same purpose as for the graphql function I used earlier.
The ProductEditor component renders no content while the loading property is true and then displays a
ProductCreator component, passing the data received from the query through the prop named product.

The ProductCreator component will do double duty in the SportsStore application. When used on its
own, it will present the administrator with an empty form that will be sent to the storeProduct mutation.
When it is used by the ProductEditor component, it will show details of an existing product and send the
form data to the updateProduct mutation. To define the component, I added a file called ProductCreator. js
to the src/admin folder with the code shown in Listing 7-25.

187

www.EBooksWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

Listing 7-25. The Contents of the ProductCreator.js File in the src/admin Folder

import React, { Component } from "react";
import { ValidatedForm } from "../forms/ValidatedForm";
import { Mutation } from "react-apollo";

import { storeProduct, updateProduct } from

./clientMutations"”;
export class ProductCreator extends Component {

constructor(props) {
super(props);
this.defaultAttrs = { type: "text", required: true };
this.formModel = [
{ label: "Name" }, { label: "Description" },
{ label: "Category" },
{ label: "Price", attrs: { type: "number"}}
1;
this.mutation = storeProduct;
if (this.props.mode === "edit") {
this.mutation = updateProduct;
this.formModel = [{ label: "Id", attrs: { disabled: true }},
...this.formModel]
.map(item => ({ ...item, attrs: { ...item.attrs,
defaultValue: this.props.product[item.label.toLowerCase()]} }));

}

navigate = () => this.props.history.push("/admin/products");

render = () => {
return <div className="container-fluid">
<div className="row">
<div className="col bg-dark text-white">
<div className="navbar-brand">SPORTS STORE</div>
</div>
</div>
<div className="row">
<div className="col m-2">
<Mutation mutation={ this.mutation }>
{ (saveMutation, {client }) => {
return <ValidatedForm formModel={ this.formModel }
defaultAttrs={ this.defaultAttrs }
submitCallback={ data => {
saveMutation({variables: { product:
{ ...data, price: Number(data.price) }}});
if (this.props.mode !== "edit") {
client.resetStore();
}

this.navigate();

1}

188

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

cancelCallback={ this.navigate }
submitText="Save" cancelText="Cancel" />
1
</Mutation>
</div>
</div>
</div>

The ProductCreator component relies on the ValidatedForm that I created in Chapter 6 to handle
checkout from the shopping part of the application. The form is configured with the fields required to edit a
product, which will include the values obtained from the GraphQL query when they are provided through
the product prop.

The counterpart to the Query component is Mutation, which allows a mutation to be used within the
render function. The render prop function receives a function that is invoked to send the mutation to the
server and that accepts an object that provides the variables for the mutation, like this:

<Mutation mutation={ this.mutation }>
{ (saveMutation, {client }) => {
return <ValidatedForm formModel={ this.formModel }
defaultAttrs={ this.defaultAttrs }
submitCallback={ data =» {
saveMutation({variables: { product:
{ ...data, price: Number(data.price) }}});
if (this.props.mode !== "edit") {
client.resetStore();

}

this.navigate();
3
cancelCallback={ this.navigate }
submitText="Save" cancelText="Cancel" />
}
}

</Mutation>

I have highlighted the section of code that sets up the function prop that is passed to the ValidatedForm
component and that sends the mutation when it is invoked. When an object is updated, the Apollo client
automatically updates its cached data to reflect the change, just as when I marked orders as shipped earlier
in the chapter. New objects are not automatically processed, which means that the application has to take
responsibility for managing the cache. The approach I took for deleting an object was to update the existing
cache, but that is a much more complex process for a new item because it means trying to work out whether
it should be displayed on the current page and, if so, where in the sort order it would appear. As a simpler
alternative, I have received a client parameter from the render prop function, which allows me to clear the
cached data through its resetStore method. When the navigate function sends the browser back to the
product list, a fresh GraphQL will be sent to the server, which ensures that the data is consistently paged and
sorted, albeit at the cost of an additional query.

189

www.EBookswWorld.ir

CHAPTER 7 © SPORTSSTORE: ADMINISTRATION

Updating the Routing Configuration

The final step is to update the routing configuration to add navigation buttons that allow the order and
product administration features to be selected, as shown in Listing 7-26.

Listing 7-26. Updating the Routing Configuration in the Admin.js File in the src/admin Folder

import React, { Component } from "react";

import ApolloClient from "apollo-boost";

import { ApolloProvider} from "react-apollo”;

import { GraphQlUrl } from "../data/Urls";

import { OrdersConnector } from "./OrdersConnector”

import { Route, Redirect, Switch } from "react-router-dom";
import { ToggleLink } from "../ToggleLink";

import { ConnectedProducts } from "./ProductsConnector”;
import { ProductEditor } from "./ProductEditor";

import { ProductCreator } from "./ProductCreator";

const graphQlClient = new ApolloClient({
uri: GraphQlurl
D;

export class Admin extends Component {

render() {
return <ApolloProvider client={ graphQlClient }>
<div className="container-fluid">
<div className="row">
<div className="col bg-info text-white">
<div className="navbar-brand">SPORTS STORE</div>
</div>
</div>
<div className="row">
<div className="col-3 p-2"»
<ToggleLink to="/admin/oxders"»0Orders</ToggleLink>
<ToggleLink to="/admin/products"sProducts</ToggleLink>

</div>
<div className="col-9 p-2"»>
<Switch>
<Route path="/admin/orders" component={ OrdersConnector } />
<Route path="/admin/products/create"
component={ ProductCreator} />
<Route path="/admin/products/:id"
component={ ProductEditor} />
<Route path="/admin/products"
component={ ConnectedProducts } /»
<Redirect to="/admin/oxders" />
</Switchy

190

www.EBookswWorld.ir

CHAPTER 7 = SPORTSSTORE: ADMINISTRATION

</div>
</div>
</div>
</ApolloProvider>

—

Save the changes, and you will see the layout shown in Figure 7-6. Clicking the Products button will
display a paged table of products, which can be deleted and edited using the buttons in each table row.

| € C @ localhost 3000/admin/products o

SPORTS STORE

503 Products

10 perpage *| Sort By ID .
D Name Category Price
1 Handerafted Plastic Shirt Soccer $148.00
2 Rustic Wooden Mouse Waterspons $453.00
Green Handerafied Plastic Shin
Refined Rubber Car Watersports $523.00

Description

Soccer: Nihil non nida.

B resctice

& 3 0 @ loahost 3000 sdminipoducts -4 H Category

SPORTS STORE Soccer

[rowes] Zapaanne a -

1W0perpage ™| SortByiD r

1D Name Category

Green Handcrafted Plastic Shir | $142.00

||

2 Rustic Wooden Mouse Watersports §452.00

3 Refined Rubber Car Watersports §522.00

4 Awesome Wooden Chair Watersports §951.00 m B
b st e B RISy . e g o 55525 R

Figure 7-6. The product administration features

191

www.EBooksWorld.ir

CHAPTER 7 = SPORTSSTORE: ADMINISTRATION

Clicking the Create Product button will display an editor that allows new products to be defined, as
shown in Figure 7-7.

B feacape

« C @ localostil

Eananne /s

Aardvark-Shaped Pawns D Name Category Price

Description ,iw Aardvark-Shaped Pawns Chess $250.00 et
Animal themed chess pieces 272 Awesome Concrete Pizza Soccer $44.00 m Edit
Category 110 Awesome Concrete Table Watersports 362400 NN Eog
P 318 Awesome Cotton Bike Chess sisoco [R
bitke 33 Awesome Cotton Chicken Soccer $591.00 m Ean
250

Create Product

Figure 7-7. Creating a new product

Summary

In this chapter, I added the administration features to the SportsStore application. I started by creating a
GraphQL service with the queries and mutations required to manage the order and products data. I used the
GraphQL service to expand the application features, relying on the GraphQL client to manage the data in the
application so thatI didn’t need to create and manage a data store. In the next chapter, I add authentication
for the administration features and prepare the application for deployment.

192

www.EBooksWorld.ir

CHAPTER 8

SportsStore: Authentication and
Deployment

In this chapter, I add authentication to the SportsStore application to protect the administration features
from unauthorized use. I also prepare the SportsStore application for deployment into a Docker container,
which can be used on most hosting platforms.

Preparing for This Chapter

To prepare for this chapter, I am going to add support for authentication and authorization to the simple
server that provides the RESTful web service and GraphQL service. At the moment, any client can perform
any operation, which means that shoppers could change prices, create products, and perform other tasks
that should be restricted to administrators. Table 8-1 lists the combination of HTTP methods and URLs
that should be publicly accessible; everything else will be protected, including all GraphQL queries and
mutations.

Table 8-1. The Publicly Accessible HTTP Methods and URL Combinations

HTTP Method URL Description

GET /api/products This combination is used to request pages of products for shoppers.

GET /api/categories This combination is used to request the set of categories and is used to
provide shoppers with navigation buttons.

POST /api/orders This combination is used to submit orders.

POST /login This combination will be used to submit a username and password for
authentication.

Tip You can download the example project for this chapter—and for all the other chapters in this
book—ifrom https://github.com/Apress/pro-react-16.

© Adam Freeman 2019 193
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_8

www.EBookswWorld.ir

https://github.com/Apress/pro-react-16

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

To implement the authentication and provide the means for authorization, I added a file called
authMiddleware. js to the sportsstore folder and added the code shown in Listing 8-1.

Listing 8-1. The Contents of the authMiddleware.js File in the sportsstore Folder

const jwt = require("jsonwebtoken");
const APP_SECRET = "myappsecret"”, USERNAME = "admin", PASSWORD = "secret";

const anonOps = [{ method: "GET", urls: ["/api/products", "/api/categories"]},
{ method: "POST", urls: ["/api/orders"]}]

module.exports = function (req, res, next) {
if (anonOps.find(op => op.method === req.method
88 op.urls.find(url => req.url.startsWith(url)))) {

next();
} else if (req.url === "/login" && req.method === "POST") {
if (req.body.username === USERNAME &3 req.body.password === PASSWORD) {
res.json({

success: true,
token: jwt.sign({ data: USERNAME, expiresIn: "1h" }, APP_SECRET)
D;
} else {
res.json({ success: false });

res.end();
} else {

let token = req.headers["authorization"];

if (token != null 8& token.startsWith("Bearer<")) {
token = token.substring(7, token.length - 1);
jwt.verify(token, APP_SECRET);
next();

} else {
res.statusCode = 401;
res.end();

The code in Listing 8-1 will inspect each request received by the HTTP server that delivers the RESTful
web service and the GraphQL service. A 401 unauthorized response is returned if a request isn’t for one of
the unsecured combinations of HTTP method and URL. The /1login URL is used for authentication, with the
hardwired credentials shown in Table 8-2.

Table 8-2. The Credentials Used by the SportsStore Application

Name Description
name admin
password secret

194

www.EBooksWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

Caution All of the server-side code in the SportsStore project can be used for real projects except
Listing 8-1, which contains hard-coded credentials and is unsuitable for anything other than basic development
and testing.

To add the middleware to the server, I added the statements shown in Listing 8-2 to the server. js file.

Listing 8-2. Adding Middleware in the server.js File in the sportsstore Folder

const express = require("express");

const jsonServer = require("json-server");

const chokidar = require('chokidar');

const cors = require("cors");

const fs = require("fs");

const { buildSchema } = require("graphgl");

const graphqlHTTP = require("express-graphql");

const queryResolvers = require("./serverQueriesResolver");
const mutationResolvers = require("./serverMutationsResolver");
const auth = require("./authMiddleware");

const fileName = process.argv[2] || "./data.js"
const port = process.argv[3] || 3500;

let router = undefined;
let graph = undefined;

const app = express();

const createServer = () => {
delete require.cache[require.resolve(fileName)];
setTimeout(() => {
router = jsonServer.router(fileName.endsWith(".js")
? require(fileName)() : fileName);
let schema = fs.readFileSync("./serverQueriesSchema.graphql”, "utf-8")
+ fs.readFileSync("./serverMutationsSchema.graphgl”, "utf-8");
let resolvers = { ...queryResolvers, ...mutationResolvers };
graph = graphqlHTTP({
schema: buildSchema(schema), rootValue: resolvers,
graphiql: true, context: { db: router.db }

}
}, 100)
}
createServer();

app.use(cors());
app.use(jsonServer.bodyParser)

app.use(auth);
app.use("/api", (req, resp, next) => router(req, resp, next));

195

www.EBooksWorld.ir

CHAPTER 8 SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

app.use("/graphql”, (req, resp, next) => graph(req, resp, next));
chokidar.watch(fileName).on("change", () => {
console.log("Reloading web service data...");

createServer();
console.log("Reloading web service data complete.");

};

app.listen(port, () => console.log(Web service running on port ${port}"));

Open a new command prompt, navigate to the sportsstore folder, and run the command shown in
Listing 8-3 to start the React development tools, the RESTful web service, and the GraphQL service.

Listing 8-3. Starting the Development Tool and Web Services

npm start

Once the project has been compiled, a new browser window will open and show the SportsStore
shopping features, as shown in Figure 8-1.

. React App

< C @ localhost:3000/shop/products/allf1

SPORTS STORE Your cart: (empty) ‘
e pions | 1 08K

Soccer: Vel corrupti laudantium. To Cart

Awesome Concrete Table

Watersports: Et nisi qui. Add To Cant

¢ ~HMEN,
8 > &
S 8 g

Awesome Cotton Bike

Chess: Sed est quasi. Add To Cart

Awesome Cotton Chicken

Soccer: Sunt consequatur ad. To Cart

:
8

Lo
w
w

Awesome Cotton Gloves 6.00

Watersports: Impedit labore quaerat. To Cart

i

Figure 8-1. Running the example application

196

www.EBooksWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

Adding Authentication for GraphQL Requests

The introduction of the authentication middleware has broken the administration features, which rely on
HTTP requests that are no longer publicly accessible. If you navigate to http://localhost:3000/admin, you
will see the effect of the 401 - Not Authorized response that the server makes to the GraphQL HTTP requests,
as shown in Figure 8-2.

. React App X

“ C @ localhost:3000/admin/orders i
— — 1 of 2 errors on the page

TypeError: Cannot read property 'totalSize' of undefined

props “

C:/Users/adas/Documents/Books/Pro React 16/Source Code/Current/sportsstore/src/adein/OrdersConnector.js:1%

12| €
13 | options: (props) => ({ variables: vars }),
14 | props: ({data: { lcading, orders, refetch }}) => ({
>15 | totalsize: loading ? @ : orders.totalsize,
6 | » orders: loading ? []: orders.orders,
17 | currentPage: vars.page,
18 | pageCount: loading ? @ : Math.ceil(orders.totalSize / vaers.pageSize),

o gt Y _

'ﬂili-ﬁ, .»-n-—r ->- PP p— aalt™- S —— ot e f .

Figure 8-2. Encountering an error

In the sections that follow, I explain how the SportsStore application will authenticate users and
implement the required features to prevent the error shown in the figure and restore the administration
features for authenticated users.

Understanding the Authentication System

When the server authenticates a user, it will return a JSON Web Token (JWT) that the application must
include in subsequent HTTP requests to show that authentication has been successfully performed. You

can read the JWT specification at https://tools.ietf.org/html/rfc7519, but for the purposes of the
SportsStore project, it is enough to know that the application can authenticate the user by sending a

POST request to the /login URL, including a JSON-formatted object in the request body that contains name
and password properties. There is only one set of valid credentials in the authentication code defined in
Listing 8-1, which I have repeated in Table 8-3. You should not hard-code credentials in real projects, but this
is the username and password that you will need for the SportsStore application.

Table 8-3. The Authentication Credentials Supported by the RESTful Web Service

Username Password

admin secret

197

www.EBooksWorld.ir

https://tools.ietf.org/html/rfc7519

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

If the correct credentials are sent to the /1ogin URL, then the response from the server will contain a
JSON object like this:

{
"success": true,
"token":"eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCI9.eyIkYXRhIjoiYWRtaW4ilCI1leHBpcmVz
SW410iIxaCIsImlhdCI6MTQ30Dk1NjI1MnO.1JaDDxrSu-bHBtdWrz0312p DG5tKypGvecA
NgOyz1lg8"
}

The success property describes the outcome of the authentication operation, and the token property
contains the JWT, which should be included in subsequent requests using the Authorization HTTP header
in this format:

Authorization: Bearer<eylhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyJkYXRhIjoiYWRtaW4ilC
J1eHBpcmVzSW410iIxaCIsImlhdCI6MTQ30Dk1NjI1Mn0.1JaDDrSu-bHBtd
Wrz0312p_DG5tKypGv6cANgOyz1g8>

I configured the JWT tokens returned by the server so they expire after one hour.
If the wrong credentials are sent to the server, then the JSON object returned in the response will
contain just a success property set to false, like this:

{
}

"success": false

Creating the Authentication Context

The SportsStore application needs to be able to determine whether the user has been authenticated and
keep track of the web token that must be included in HTTP requests, ensuring that the administration
features are shown only after successful authentication.

This is the type of information that is often required in multiple places in an application, to ensure that
components can easily collaborate. For the SportsStore application, I am going to use the React context
feature, which allows functionality to be easily shared between components in a simple and lightweight
way and which is described in Chapter 14. I created the src/auth folder and added to it a file called
AuthContext. js with the code shown in Listing 8-4.

Listing 8-4. The Contents of the AuthContext.js File in the src/auth Folder

import React from "react";

export const AuthContext = React.createContext({
isAuthenticated: false,
webToken: null,
authenticate: (username, password) => {},
signout: () => {}

b

The React.createContext method is used to create a context, and the object it receives is used for
default values, which is why the authenticate and signout functions are empty. The real functionality for a

198

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

context is provided by a provider component, which I defined by creating a file called AuthProviderImpl.js
in the src/auth folder and adding the code shown in Listing 8-5.

Listing 8-5. The Contents of the AuthProviderImpl.js File in the src/auth Folder

import React, { Component } from "react";
import Axios from "axios";

import { AuthContext } from "./AuthContext";
import { authUrl } from "../data/Urls";

export class AuthProviderImpl extends Component {

constructor(props) {
super(props);
this.state = {
isAuthenticated: false,
webToken: null

}

authenticate = (credentials) => {
return Axios.post(authUrl, credentials).then(response => {
if (response.data.success === true) {
this.setState({
isAuthenticated: true,
webToken:response.data.token
H
return true;
} else {
throw new Error("Invalid Credentials");
}

1)
}

signout = () => {
this.setState({ isAuthenticated: false, webToken: null });
}

render = () =>
<AuthContext.Provider value={ {...this.state,
authenticate: this.authenticate, signout: this.signout}}>
{ this.props.children }
</AuthContext.Provider>

This component uses the React context feature in its render method to provide an implementation of
the AuthContext properties and functions, which it does through the value prop of the special AuthContext.
Provider element. The effect is to share access to the state data and the authenticate and signout methods
directly to any descendant component that applies the corresponding AuthContext.Consumer element,
which I will use shortly.

The implementation of the authenticate method uses the Axios package to send a POST request
to validate credentials that will be obtained from the user. The result of the authenticate method is a

199

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

Promise that will be resolved when the server responds to confirm the credentials and will be rejected if the
credentials are incorrect.
To define the URL used to perform authentication, I added the URL shown in Listing 8-6.

Listing 8-6. Adding a URL in the Urls.js File in the src/data Folder

import { DataTypes } from "./Types";
const protocol = "http";

const hostname = "localhost";

const port = 3500;

export const RestUrls = {
[DataTypes.PRODUCTS]: ~${protocol}://${hostname}:${port}/api/products”,
[DataTypes.CATEGORIES]: “${protocol}://${hostname}:${port}/api/categories”,
[DataTypes.ORDERS]: “${protocol}://${hostname}:${port}/api/orders”

}

export const GraphQlUrl = “${protocol}://${hostname}:${port}/graphql”;
export const authUrl = “${protocol}://${hostname}:${port}/login”;

To apply the context to the SportsStore application, I made the changes shown in Listing 8-7 to
the App. js file.

Listing 8-7. Adding a Context Provider to the App.js File in the src Folder

import React, { Component } from "react";

import { SportsStoreDataStore } from "./data/DataStore";

import { Provider } from "react-redux";

import { BrowserRouter as Router, Route, Switch, Redirect }
from "react-router-dom";

import { ShopConnector } from "./shop/ShopConnector";

import { Admin } from "./admin/Admin";

import { AuthProviderImpl } from "./auth/AuthProviderImpl";

export default class App extends Component {

render() {
return <Provider store={ SportsStoreDataStore }>
<AuthProviderImpls
<Router>
<Switch>
<Route path="/shop" component={ ShopConnector } />
<Route path="/admin" component={ Admin } />
<Redirect to="/shop" />
</Switch>
</Router>
</AuthProviderImpls>
</Provider>
}
}
200

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

To make it easier to consume the features defined by the AuthContext, I added a file called
AuthWrapper. js to the src/auth folder and defined the higher-order component shown in Listing 8-8.

Listing 8-8. The Contents of the AuthWrapper.js File in the src/auth Folder

import React, { Component } from "react";
import { AuthContext } from "./AuthContext";

export const authWrapper = (WrappedComponent) =>
class extends Component {
render = () =>
<AuthContext.Consumer>
{ context =>
<WrappedComponent { ...this.props } { ...context } />

</AuthContext.Consumer>

}

The context features rely on a render prop function, which can be difficult to integrate directly into
components. Using the authWrapper function will allow a component to receive the features defined by the
AuthContext as props. (Higher-order components and render prop functions are both described in Chapter 14.)

Creating the Authentication Form

To allow the user to provide their credentials, I added a file called AuthPrompt. js to the src/auth folder and
used it to define the component shown in Listing 8-9.

Listing 8-9. The Contents of the AuthPrompt.js File in the src/auth Folder

import React, { Component } from "react";

import { withRouter } from "react-router-dom";

import { authWrapper } from "./AuthWrapper”;

import { ValidatedForm } from "../forms/ValidatedForm";

export const AuthPrompt = withRouter(authWrapper(class extends Component {

constructor(props) {
super (props);
this.state = {
errorMessage: null

this.defaultAttrs = { required: true };
this.formModel = [
{ label: "Username", attrs: { defaultValue: "admin"}},
{ label: "Password", attrs: { type: "password"} },
15
}

authenticate = (credentials) => {
this.props.authenticate(credentials)
.catch(err => this.setState({ errorMessage: err.message}))
.then(this.props.history.push("/admin"));

201

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

render = () =>
<div className="container-fluid">
<div className="row">
<div className="col bg-dark text-white">
<div className="navbar-brand">SPORTS STORE</div>
</div>
</div>
<div className="row">
<div className="col m-2">
{ this.state.errorMessage != null &%
<h4 className="bg-danger text-center text-white m-1 p-2">
{ this.state.errorMessage }
</h4>
}
<ValidatedForm formModel={ this.formModel }
defaultAttrs={ this.defaultAttrs }
submitCallback={ this.authenticate }
submitText="Login"
cancelCallback={ () => this.props.history.push("/")}
cancelText="Cancel"
/>
</div>
</div>
</div>

N)

This component receives routing features from the withRouter function and authentication features
from the authWrapper function, both of which will be presented through the component’s props. The
ValidatedFormI defined in Chapter 6 is used to present the user with username and password fields, both
of which require values. When the form data is submitted, the authenticate method forwards the details
for authentication. If authentication is successful, then the history object provided by the URL routing
system (described in Chapters 21 and 22) is used to redirect the user to the /admin URL. An error message is
displayed if authentication fails.

Guarding the Authentication Features

To prevent access to the administration features until the user has been authenticated, I made the changes
shown in Listing 8-10 to the Admin component.

Listing 8-10. Guarding Features in the Admin.js File in the src/admin Folder

import React, { Component } from "react";

import ApolloClient from "apollo-boost";

import { ApolloProvider} from "react-apollo";

import { GraphQlUrl } from "../data/Urls";

import { OrdersConnector } from "./OrdersConnector"

import { Route, Redirect, Switch } from "react-router-dom";
import { ToggleLink } from "../TogglelLink";

import { ConnectedProducts } from "./ProductsConnector"”;
import { ProductEditor } from "./ProductEditor";

import { ProductCreator } from "./ProductCreator";

202

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

import { AuthPrompt } from "../auth/AuthPrompt";
import { authWrapper } from "../auth/AuthWrapper”;

/1 const graphQlClient = new ApolloClient({
/7 uri: GraphQlurl

11});

export const Admin = authWirapper(class extends Component {

constructor(props) {
supex (props);
this.client = new ApolloClient({
uri: GraphQlurl,
request: gqloperation => gqloperation.setContext({
headers: {
Authorization: "Bearer<${this.props.webToken}>"
)b

h
)
}

render() {
return <ApolloProvider client={ this.client }»
<div className="container-fluid">
<div className="row">
<div className="col bg-info text-white">
<div className="navbar-brand">SPORTS STORE</div>
</div>
</div>
<div className="row">
<div className="col-3 p-2">
<ToggleLink to="/admin/orders">Orders</ToggleLink>
<ToggleLink to="/admin/products">Products</TogglelLink>
{ this.props.isAuthenticated &&
<button onClick={ this.props.signout }

className=
"btn btn-block btn-secondary m-2 fixed-bottom col-3"»
Log Out
</button>
}
</div>
<div className="col-9 p-2">
<Switch>
{
Ithis.props.isAuthenticated &&
<Route component={ AuthPrompt } />
}

<Route path="/admin/orders" component={ OrdersConnector } />
<Route path="/admin/products/create"

component={ ProductCreator} />
<Route path="/admin/products/:id"

203

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

component={ ProductEditor} />
<Route path="/admin/products"”
component={ ConnectedProducts } />
<Redirect to="/admin/orders" />
</Switch>
</div>
</div>
</div>
</ApolloProvider>
}
H

The Admin component is wrapped with the authWrapper function so it has access to the authentication
features. The ApolloClient object is created in the constructor so that I can add a function that modifies
each request to add an Authorization header to each GraphQL HTTP request.

There are two new code fragments in the render method. The first displays a logout button if the user is
authenticated. The second fragment checks the authentication status and produces a Route component that
displays the AuthPrompt component, regardless of the URL. (A Route component without a path property
will always display its component and can be used with a Switch to prevent other Route components from
being evaluated.)

Adding a Navigation Link for the Administration Features

To make it easier to use the administration features, I added a Link to the CategoryNavigation component,
as shown in Listing 8-11.

Listing 8-11. Adding a Link in the CategoryNavigation.js File in the src/shop Folder

import React, { Component } from "react";
import { ToggleLink } from "../ToggleLink";
import { Link } from "react-router-dom";

export class CategoryNavigation extends Component {

render() {
return <React.Fragment>
<ToggleLink to={ “${this.props.baseUrl}/all" } exact={ false }>
All
</ToggleLink>
{ this.props.categories && this.props.categories.map(cat =>
<ToggleLink key={ cat }
to={ “${this.props.baseUrl}/${cat.toLowerCase()} }>»
{ cat }
</ToggleLink>
)}
<Link className="btn btn-block btn-secondary fixed-bottom m-2 col-3"
to="/admin"»

Administration
</Linky
</React.Fragment>
}
}
204

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

To see the authentication feature, navigate to http://localhost:3000 and click the new Administration
button. The guard will ensure that the authentication form is displayed. Enter secret into the password field
and click the Login button to perform authentication, which will then display the administration features, as
shown in Figure 8-3. Click the Log Out button to return to the unauthenticated state.

B Rt 2o
€« X SPORTS STORE
103 orger
T ~ ooggoa-o
Usern,
admin
ID Name Email Total Shipped
Password 1 Velva Dietrich Velva_Dietrich@yahoo.com 5260300 @ Pending
2 Odessa Lubowitz Ddessa Lubowitz@hatmail. com 31310400 o Pending
oo 3 Imelda O'Reilly Imeldadd@yahoo.com $9913.00 @ Pending
Cance
4 Charistelle Gibsen Christefle_Gibson@gmail com $3%8200 @ smipped
5 Justen Gusikowsk Juste L 10 il.com §15305.00 @ Pending
Log Out

Figure 8-3. Authenticating to use the administration features

Preparing the Application for Deployment

In the sections that follow, I prepare the SportsStore application so that it can be deployed.

Enabling Lazy Loading for the Administration Features

When the application is deployed, the individual JavaScript files will be combined into a single file that the
browser can download more efficiently. Most of the users will be shoppers, which means they are unlikely
to require the administration features. To prevent them from downloading code that is unlikely to be
used, I have enabled lazy loading on the import statement that incorporates the top-level administration
component into the rest of the application, as shown in Listing 8-12.

Listing 8-12. Using Lazy Loading in the App.js File in the src Folder

import React, { Component, lazy, Suspense } from "react";

import { SportsStoreDataStore } from "./data/DataStore”;

import { Provider } from "react-redux";

import { BrowserRouter as Router, Route, Switch, Redirect }
from "react-router-dom";

import { ShopConnector } from "./shop/ShopConnector”;

//import { Admin } from "./admin/Admin";

import { AuthProviderImpl } from "./auth/AuthProviderImpl";

const Admin = lazy(() => import("./admin/Admin"));

export default class App extends Component {

205

www.EBooksWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

render() {
return <Provider store={ SportsStoreDataStore }>
<AuthProviderImpl>
<Router>
<Switch>
<Route path="/shop" component={ ShopConnector } />
<Route path="/admin" render={
routeProps =>
<Suspense fallback={ <h3»>Loading...</h3» }»
<Admin { ...routeProps } />
</Suspense>
Y />
<Redirect to="/shop" />
</Switch>
</Router>
</AuthProviderImpl>
</Provider>
}

The Suspense component is used to denote content that should be loaded only when it is required and
is combined with the lazy function. Together, these ensure that the Adnin component will not be loaded
until it is required. The lazy loading feature is a recent addition to React and, at the time of writing, doesn’t
support lazily loading named exports from files. To accommodate this requirement, I changed the definition
of the Admin component as shown in Listing 8-13.

Listing 8-13. Changing the Export in the Admin.js File in the src/admin Folder

import React, { Component } from "react";

import ApolloClient from "apollo-boost";

import { ApolloProvider} from "react-apollo";

import { GraphQlUrl } from "../data/Urls";

import { OrdersConnector } from "./OrdersConnector"
import { Route, Redirect, Switch } from "react-router-dom";
import { ToggleLink } from "../TogglelLink";

import { ConnectedProducts } from "./ProductsConnector”;
import { ProductEditor } from "./ProductEditor";

import { ProductCreator } from "./ProductCreator";
import { AuthPrompt } from "../auth/AuthPrompt";

import { authWrapper } from "../auth/AuthWrapper";

export default authlirapper(class extends Component {

// ...constructor and render method omitted for brevity...

1

206

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

Creating the Data File

The data file that is used by the RESTful and GraphQL services uses JavaScript to generate the same data
each time the server is started. This has been useful during development because it has made it easy to
return to a known state, but it isn’t suitable for a production application.

The json-server package will create a persistent database when it is provided with a JSON file,
so I added a file called productionData. json to the sportstore folder with the content shown in Listing 8-14.

Listing 8-14. The Contents of the productionData.json File in the sportsstore Folder

{
"products": [
{ "id": 1, "name": "Kayak", "category": "Watersports",
"description": "A boat for one person", "price": 275 },
{ "id": 2, "name": "Lifejacket", "category": "Watersports",
"description": "Protective and fashionable", "price": 48.95 },
{ "id": 3, "name": "Soccer Ball", "category": "Soccer",
"description": "FIFA-approved size and weight", "price": 19.50 },
{ "id": 4, "name": "Corner Flags", "category": "Soccer",
"description": "Give your playing field a professional touch",
"price": 34.95 },
{ "id": 5, "name": "Stadium", "category": "Soccer",
"description": "Flat-packed 35,000-seat stadium", "price": 79500 },
{ "id": 6, "name": "Thinking Cap", "category": "Chess",
"description": "Improve brain efficiency by 75%", "price": 16 },
{ "id": 7, "name": "Unsteady Chair", "category": "Chess",
"description": "Secretly give your opponent a disadvantage",
"price": 29.95 },
{ "id": 8, "name": "Human Chess Board", "category": "Chess",
"description": "A fun game for the family", "price": 75 },
{ "id": 9, "name": "Bling Bling King", "category": "Chess",
"description": "Gold-plated, diamond-studded King", "price": 1200 }
1,
"categories": ["Watersports", "Soccer", "Chess"],
"orders": []
}

Configuring the Request URLSs

When I deploy the application, I will replace the React development HTTP server with one that combines
serving static HTML and JavaScript files, as well as providing the RESTful and GraphQL services. To prepare
for combining all the services on a single port, I changed the format of the URLs that the SportsStore uses, as
shown in Listing 8-15.

Listing 8-15. Changing URLs in the Urls.js File in the src/data Folder

import { DataTypes } from "./Types";
// const protocol = "http";

// const hostname = "localhost";

// const port = 3500;

207

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

export const RestUrls = {
[DataTypes.PRODUCTS]: ~/api/products”,
[DataTypes.CATEGORIES]: " /api/categories’,
[DataTypes.ORDERS]: ~/api/orders”

export const GraphQlUrl = ~/graphql~;
export const authUrl = ~/login”;

Building the Application

To create the optimized version of the application suitable for production use, open a new command
prompt, navigate to the sportsstore folder, and run the command shown in Listing 8-16.

Listing 8-16. Building the Application for Deployment
npm run build

The build process can take a moment to complete, and the result is an optimized set of files in the
build folder.

Creating the Application Server

The React development HTTP server isn’t suitable for production. In Listing 8-17, I have extended the
server that has been providing the RESTful and GraphQL services so that it will also serve the files from the
build folder.

Listing 8-17. Configuring the Server in the server.js File in the sportsstore Folder

const express = require("express");

const jsonServer = require("json-server");

const chokidar = require('chokidar');

const cors = require("cors");

const fs = require("fs");

const { buildSchema } = require("graphgl");

const graphqlHTTP = require("express-graphql");

const queryResolvers = require("./serverQueriesResolver");
const mutationResolvers = require("./serverMutationsResolver");
const auth = require("./authMiddleware");

const history = require("connect-history-api-fallback");

const fileName = process.argv[2] || "./data.js"
const port = process.argv[3] || 3500;

let router = undefined;
let graph = undefined;

const app = express();

208

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

const createServer = () => {
delete require.cache[require.resolve(fileName)];
setTimeout(() => {
router = jsonServer.router(fileName.endsWith(".js")
? require(fileName)() : fileName);
let schema = fs.readFileSync("./serverQueriesSchema.graphql”, "utf-8")
+ fs.readFileSync("./serverMutationsSchema.graphql”, "utf-8");
let resolvers = { ...queryResolvers, ...mutationResolvers };
graph = graphqlHTTP({
schema: buildSchema(schema), rootValue: resolvers,
graphigl: true, context: { db: router.db }

H
}, 100)
}
createServer();

app.use(history());

app.use("/", express.static("./build"));

app.use(cors());

app.use(jsonServer.bodyParser)

app.use(auth);

app.use("/api", (req, resp, next) => router(req, resp, next));
app.use("/graphql”, (req, resp, next) => graph(req, resp, next));

chokidar.watch(fileName).on("change", () => {
console.log("Reloading web service data...");

createServer();
console.log("Reloading web service data complete.");

};

app.listen(port, () => console.log(Web service running on port ${port}"));
The connect-history-api-fallback package responds to any HTTP request with the contents of the

index.html file. This is useful for applications that use URL routing because it means that users can navigate
directly to the URLSs to which the application navigates using the HTML5 History APL.

Testing the Production Build and Server

To ensure that the production build is working and that the server has been configured correctly, run the
command shown in Listing 8-18 in the sportsstore folder.

Listing 8-18. Testing the Production Build
node server.js ./productionData.json 4000

Once the server has started, open a new browser window and navigate to http://localhost:4000; you
will see the familiar content shown in Figure 8-4.

209

www.EBookswWorld.ir

CHAPTER 8 SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

. React App

= C @ localhost:4000/s
SPORTS STORE Your cart: (empty) ™

EEnacs

Watersports 5 per page v| SortBy Name ¥

Soccer Bling Bling King $1200.00

Gold-plated, diamond-studded King Add To Cart

Chess

Corner Flags

Give your playing field a professional touch Add To Cart

Human Chess Board

A fun game for the family To Cart

Kayak $275.00

A boat for one person Add To Cart

§‘~3
LLELE

Lifejacket $48.95

Protective and fashionable Add To Cart

Figure 8-4. Testing the application

Containerizing the SportsStore Application

To complete this chapter, I am going to create a container for the SportsStore application so that it can be
deployed into production. At the time of writing, Docker is the most popular way to create containers, which
is a pared-down version of Linux with just enough functionality to run the application. Most cloud platforms
or hosting engines have support for Docker, and its tools run on the most popular operating systems.

Installing Docker

The first step is to download and install the Docker tools on your development machine, which is available
from www. docker . com/products/docker. There are versions for macOS, Windows, and Linux, and there are
some specialized versions to work with the Amazon and Microsoft cloud platforms. The free Community
edition is sufficient for this chapter.

210

www.EBooksWorld.ir

http://www.docker.com/products/docker

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

Caution One drawback of using Docker is that the company that produces the software has
gained a reputation for making breaking changes. This may mean that the example that follows may
not work as intended with later versions. If you have problems, check the repository for this book for updates
(https://github.com/Apress/pro-react-16) or contact me at adam@adam-freeman.com.

Preparing the Application

The first step is to create a configuration file for NPM that will be used to download the additional packages
required by the application for use in the container. I created a file called deploy-package.jsonin the
sportsstore folder with the content shown in Listing 8-19.

Listing 8-19. The Contents of the deploy-package.json File in the sportsstore Folder

{

"name": "sportsstore",

"description”: "SportsStore",

"repository": "https://github.com/Apress/pro-react-16",
"license": "0BSD",

"devDependencies”: {
"graphql": "~14.0.2",
"chokidar": "~2.0.4",
"connect-history-api-fallback": "*1.5.0",
"cors": "~2.8.5",
"express": ""4.16.4",
"express-graphql": ""0.7.1",
"json-server": ""0.14.2",
"jsonwebtoken": "78.1.1"

The devDependencies section species the packages required to run the application in the container.
All of the packages that are used in the browser have been included in the JavaScript files produced by the
build command. The other fields describe the application, and their main use is to prevent warning when
the container is created.

Creating the Docker Container

To define the container, I added a file called Dockerfile (with no extension) to the sportsstore folder and
added the content shown in Listing 8-20.

Listing 8-20. The Contents of the Dockerfile File in the sportsstore Folder

FROM node:10.14.1
RUN mkdir -p /usr/src/sportsstore

COPY build /usxr/src/sportsstore/build

211

www.EBooksWorld.ir

https://github.com/Apress/pro-react-16

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

COPY authMiddleware.js /usr/src/sportsstore/

COPY productionData.json /usr/src/sportsstore/

COPY server.js /usr/src/sportsstore/

COPY deploy-package.json /usr/src/sportsstore/package.json
COPY serverQueriesSchema.graphgl /usr/src/sportsstore/
COPY serverQueriesResolver.js /usr/src/sportsstore/

COPY serverMutationsSchema.graphql /usr/src/sportsstore/
COPY serverMutationsResolver.js /usr/src/sportsstore/
WORKDIR /usr/src/sportsstore

RUN echo 'package-lock=false' >> .npmrc

RUN npm install

EXPOSE 80

CMD ["node", "server.js", "./productionData.json", "80"]

The contents of the Dockerfile use a base image that has been configured with Node.js and copies the
files required to run the application, including the bundle file containing the application and the file that will
be used to install the NPM packages required to run the application in deployment.

To speed up the containerization process, I created a file called .dockerignore in the sportsstore
folder with the content shown in Listing 8-21. This tells Docker to ignore the node_modules folder, which is
not required in the container and takes a long time to process.

Listing 8-21. The Contents of the .dockerignore File in the sportsstore Folder

node_modules

Run the command shown in Listing 8-22 in the sportsstore folder to create an image that will contain
the SportsStore application, along with all the packages it requires.

Listing 8-22. Building the Docker Image
docker build . -t sportsstore -f Dockerfile

An image is a template for containers. As Docker processes the instructions in the Docker file, the NPM
packages will be downloaded and installed, and the configuration and code files will be copied into the image.

Running the Application

Once the image has been created, create and start a new container using the command shown in
Listing 8-23.

212

www.EBookswWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

Listing 8-23. Starting the Docker Container

docker run -p 80:80 sportsstore

You can test the application by opening http://localhost in the browser, which will display the
response provided by the web server running in the container, as shown in Figure 8-5.

. React App

&« @ @ localhost/shop/products/all/1

SPORTS STORE Your cart: (empty) W

EEna

Watersports 5 per page Y| SortByName ¥

Soccer Bling Bling King $1200.00

Gold-plated, diamond-studded King Add To Cart

Chess

Corner Flags

Give your playing field a professional touch Add To Cart

Human Chess Board $75.00

A fun game for the family Add To Cart

Kayak $275.00

A boat for one person Add To Cart

Lifejacket $48.95

Protective and fashionable Add To Cart
Administration

Figure 8-5. Running the containerized SportsStore application

To stop the container, run the command shown in Listing 8-24.

Listing 8-24. Listing the Containers

docker ps

213

www.EBooksWorld.ir

CHAPTER 8 © SPORTSSTORE: AUTHENTICATION AND DEPLOYMENT

You will see a list of running containers, like this (I have omitted some fields for brevity):

CONTAINER ID IMAGE COMMAND CREATED
ecc84f7245d6 sportsstore "node server.js" 33 seconds ago

Using the value in the Container ID column, run the command shown in Listing 8-25.

Listing 8-25. Stopping the Container
docker stop ecc84f7245d6

The application is ready to deploy to any platform that supports Docker.

Summary

This chapter completes the SportsStore application, showing how a React application can be prepared for
deployment and how easy it is to put a React application into a container such as Docker. That’s the end of
this part of the book. In Part 2, I begin the process of digging into the details and show you how the features
T'used to create the SportsStore application work in depth.

214

www.EBookswWorld.ir

PART Il

Working with React

www.EBookswWorld.ir

CHAPTER 9

Understanding React Projects -

In Part 1 of this book, I created the SportsStore application to demonstrate how different React features can
be combined with other packages to create a realistic application. In this part of the book, I dig into the detail
of the built-in React features. In this chapter, I describe the structure of a React project and explain the tools
that are provided for developers and the process by which code and content is compiled, packaged, and sent
to the browser. Table 9-1 puts this chapter in context.

Table 9-1. Putting React Projects in Context

Question Answer

What are they? The create-react-app package is used to create projects and set
up the tools that are required for effective React development.

Why are they useful? Projects created with the create-react-app package are designed

How are they used?

Are there any pitfalls or limitations?

Are there any alternatives?

for the development of complex applications and provide a
complete set of tools for development, testing, and deployment.

A project is created using the npx create-react-app package, and
the development tools are started using the npm start command.

The create-react-app package is “opiniated,” which means that it
provides a specific way of working with few configuration options.
This can be frustrating if you are used to a different workflow.

You don’t have to use create-react-app to create projects. There
are alternative packages available as noted later in this chapter.

© Adam Freeman 2019

217

A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_9

www.EBookswWorld.ir

CHAPTER 9 © UNDERSTANDING REACT PROJECTS

Table 9-2 summarizes the chapter.

Table 9-2. Chapter Summary

Problem Solution Listing

Create a new React project Use the create-react-app package and add optional packages 1-3

Transform HTML to JavaScript Use the JSX format to mix HTML and code statements 6

Include static content Add files to the src folder and incorporate them into the 9-10
application using the import keyword

Include static content outside ~ Add files to the public folder and define references using the 11-13

of the development tools PUBLIC_URL property

Disabling linting messages Add comments to JavaScript files 15-19

Configure the React Create an .env file and set configuration properties 20

development tools

Debug React applications Use the React Devtools browser extension or use the browser 22-26
debugger

Preparing for This Chapter

To create the example project for this chapter, open a new command prompt, navigate to a convenient
location, and run the command shown in Listing 9-1.

Listing 9-1. Creating the Project

npx create-react-app projecttools

Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Note When you create a new project, you may see warnings about security vulnerabilities. React
development relies on a large number of packages, each of which has its own dependencies, and security
issues will inevitably be discovered. For the examples in this book, it is important to use the package versions
specified to ensure you get the expected results. For your own projects, you should review the warnings and
update to versions that resolve the problems.

Run the commands shown in Listing 9-2 to navigate to the project folder and add the Bootstrap package
to the project.

218

www.EBooksWorld.ir

https://github.com/Apress/pro-react-16

CHAPTER 9 © UNDERSTANDING REACT PROJECTS

Listing 9-2. Adding the Bootstrap CSS Framework

cd projecttools
npm install bootstrap@4.1.2

To include the Bootstrap CSS stylesheet in the application, add the statement shown in Listing 9-3 to the
index. js file, which can be found in the src folder.

Listing 9-3. Including Bootstrap in the index.js File in the src Folder

import React from 'react’;

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import * as serviceWorker from './servicelWorker';
import 'bootstrap/dist/css/bootstrap.css’;

ReactDOM.render (<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
servicelWorker.unregister();

Using the command prompt, run the command shown in Listing 9-4 in the projecttools folder to start
the development tools.

Caution Notice that the development tools are started using the npm command and not the npx command
that was used in Listing 9-1.

Listing 9-4. Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000 and display the placeholder content shown in Figure 9-1.

219

www.EBooksWorld.ir

CHAPTER 9 © UNDERSTANDING REACT PROJECTS

. React App
< C @ localhost:3000

and save to reload.

Learn React

Figure 9-1. Running the example application

Understanding the React Project Structure

When you create a new project, you will start with a basic set of React application files, some placeholder
content, and a complete set of development tools. Figure 9-2 shows the contents of the projecttools folder.

220

www.EBookswWorld.ir

Solution Explorer - Folder View
co@E-cCaB| -

Search Solution Explorer - Folder View (Ctrl+;)

b node_modules
4 public
favicon.ico
1 index.html
£T manifest.json
4 src
App.css
LT Appjs
LT App.testjs
index.css
IT indexjs
E | logo.svg
LT registerServiceWorker.js
_] .gitignore
£T package,json
£T package-lockjson
@ README.md

4 @ projecttools

P~

Figure 9-2. The contents of a new project

CHAPTER 9 © UNDERSTANDING REACT PROJECTS

Note You don’t have to use the create-react-app package to create React projects, but it is the most
common approach, and it takes care of configuring the build tools that support the features described in this
chapter. You can create all of the files and configure the tools directly, if you prefer, or use one of the other
techniques available for creating a project, which are described at https://reactjs.org/docs/create-a-

new-react-app.html.

Table 9-3 describes each of the files in the project, and I provide more details about the most important

files in the sections that follow.

www.EBooksWorld.ir

221

https://reactjs.org/docs/create-a-new-react-app.html
https://reactjs.org/docs/create-a-new-react-app.html

CHAPTER 9 © UNDERSTANDING REACT PROJECTS

Table 9-3. The Project Files and Folders

Name

Description

node_modules

public

SIC

.gitignore

package.json
package-lock.json

README .md

This folder contains the packages that the application and development tools
require, as described in the “Understanding the Packages Folder” section.

This folder is used for static content and includes the index.html file that is used
to respond to HTTP requests, as described in the “Understanding Static Content”
section.

This folder contains the application code and content, as described in the
“Understanding the Source Code Folder” section.

This file is used to exclude files and folders from the Git revision co